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RELIABILITY BASED STRUCTURAL and AEROELASTIC
OPTIMIZATION of WING MODELS with HIGH FIDELITY SOLVERS

SUMMARY

In engineering design, uncertainties related to geometries, material properties,
manufacturing processes and operating conditions are inevitable factors which
should be accurately quantified and included while designing and optimizing a
realistic system for a required level of reliability and efficiency.

In this thesis, reliability based design optimization (RBDO) methodology is
constructed by coupling high-fidelity commercial solvers for aeroelastic analysis and
an in-house code developed for reliability analysis.

A RBDO benchmark problem (from the literature) and the developed methodology is
validated. An in-house code is integrated to commercial software for aircraft wing
applications. Finally the methodology is applied to a fluid-structure interaction (FSI)
problem where reliability based structural optimization of a simple aircraft wing and
reliability based aeroelastic optimization of AGARD 445.6 wing are performed.

In the final application, the optimization criteria include both deterministic and
probabilistic constraints with both structural and aerodynamic uncertainties such as
in yield strength, Mach number and angle of attack. To evaluate the probability of
failure for the probabilistic constraints, first order reliability analysis methods,
Hasofer-Lind (HL) iteration method and advanced mean value (AMV) method are
implemented in Matlab to compute most probable failure point (MPP) solution.
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KANAT MODELLERININ YUKSEK DOGRULUKLU COZUCULERLE
GUVENILIRLIK TABANLI YAPISAL ve AEROELASTIK
ENIYILESTIiRMESI

OZET

Miihendislik tasariminda, geometriye, malzeme Ozelliklerine, liretim siireclerine ve
isletim kosullarma bagl belirsizlikler kacimilmazdir. Bu belirsizlikler dogru olarak
degerlendirilmeli ve sistemler tasarlanirken ve eniyilenirken hesaba katilmahdirlar.

Bu calismada, giivenilirlik tabanli tasarim eniyileme (GTTE) metodolojisi
olusturulmustur. Burada hem ticari miihendislik yazilimlar1 hem de kendimizin
gelistirilmis giivenilirlik kodu ilk uygulama olarak, literatiirden alinan ankastre kirig
ornegiyle dogrulanmistir. Daha sonra genel kanat yapismin eniyilemesi ve en son
olarak AGARD 445.6 kanadmin aeroelastik eniyilemesi problemine uygulanmaigstir.

Ele alinan en son problemde, eniyileme kriterleri arasinda akma mukavemeti, Mach
sayis1 ve hiicum acis1 gibi yapisal ve aerodinamik parametrelere ait belirsizlikler,
olasiliksal kisitlamalarda kullanilmistir, ayrica deterministik kisitlamalarda
mevcuttur. Olasiliksal kisitlarin hata olasiligini hesaplamak i¢in, birinci dereceden
giivenilirlik analiz metodlarmdan olan Hasofer-Lind iterasyon metodu ve
gelistirilmis ortalama deger (GOD) metodu Matlab’da uygulanmistir. Boylece en
olas1 hasar noktasi (EON) ¢6ziimii hesap edilmistir.
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1. INTRODUCTION

1.1 Background and Literature Review of Reliability Based Design

Optimization

Today, in aircraft industry, there is a great competition to release new aircraft designs
which are faster, more efficient, more economical, more reliable and even quieter
than the former ones both in military and civil applications. The challenging multi-
disciplinary task of aircraft design can be realized by incorporation of numerical
optimization techniques in the industrial design process. However, there are always
uncertainties related to design parameters, modelling, manufacturing process,
operating conditions and human factors when designing a new aircraft. Aerospace
structures have been designed traditionally by using deterministic approaches based
on Federal Aviation Administration (FAA) regulations for a high level of safety.
However, it is known that deterministic optimization techniques may lead to
unreliable or inefficient designs since they can not consider the uncertainties in

different design parameters simultaneously.

In engineering design, uncertainties related to geometries, material properties,
manufacturing processes and operating conditions are inevitable factors which
should be accurately quantified and included while designing and optimizing a
realistic system for a required level of robustness and efficiency. For that reason,
recently there is a growing interest in replacing deterministic design approaches with
uncertainty-based stochastic computations to produce more robust and efficient
structures. In reliability-based stochastic computations, uncertainty can be

represented using random variables, processes, and fields.

In general, reliability analysis methods can be categorized into three main types:
sampling methods, projection methods, and moment methods. The application of
these methods is usually based on their accuracy, computational costs, ease of

implementation, and the area interest in the response distribution (mean or tails).



Sampling methods, such as the Monte Carlo Simulation method [1,2], are widely
used due to their generality, simplicity, and effectiveness on problems that are highly
nonlinear with respect to the uncertainty parameters. A basic advantage of sampling
methods is their direct utilization of experiments to obtain mathematical solutions or
probabilistic information concerning problems whose system equations cannot be
solved easily by known procedures. However, as practical engineering applications
typically require a high level of reliability, a large number of samples is needed to
obtain accurate results. Therefore, Monte Carlo simulation is impractical for implicit
systems solved by high-fidelity numerical simulation. Improved sampling methods,
such as importance sampling [3,4], adaptive importance sampling [5,6], and radial
importance sampling [7], reduce the number of samples by up to 20 times in
comparison with Monte Carlo simulation [8], but are still computationally too

expensive, for example, for the use with high-fidelity aeroelastic simulations.

Stochastic projection methods are based on an explicit expansion of the systems’
response, such as the polynomial chaos expansion (PCE) [9] and Karhunen-Loeve
(KL) expansion. The size and order of the expansion depends on the nonlinearity of
the system with respect to the input randomness and the number of random inputs.
The computational cost increases significantly with the order of approximation and
the number of random inputs. The application of stochastic projection methods to
structures is well explored, and mature computational procedures have been
developed [10,11]. Stochastic flow problems have also been frequently studied in the
literature [12,13], not including the vast amount of literature on stochastic modeling
of turbulence. However, the application of stochastic projection methods to fluid
structure interaction (FSI) problems is still in its infancy. For characterizing and
quantifying stochastic variations around the mean value, a polynomial chaos
expansion has been applied to the aeroelastic state equations for small academic

problems by Xiu et al. [14].

Moment methods approximate the limit state of an event in question to simplify the
integration of the response probability density function over the area of occurrence.
The mean value first-order second moment (FOSM) method [15] is frequently used
to approximate the influence of random input on the stochastic system response.
However, as the mean value point is usually not found on the failure surface, the

FOSM approach typically leads to inaccurate results and the prediction is sensitive to



the mathematical formulation of the limit state function [16]. First- and Second-
Order Reliability Methods (FORM and SORM) employ an approximation of the
limit state function at the Most Probable Point (MPP) of failure [17]. FORM requires
the first-order derivatives to linearize the failure function at the MPP, and therefore it
is considered accurate as long as the curvature of the failure function in the space of
the uncertainty variables is not too large at the MPP. SORM approximates highly
nonlinear systems more accurately than FORM, but requires the first and second
order derivatives to build a quadratic approximation of the failure surface at the

MPP.

Reliability is the probability that a system will perform its function over a specified
period of time and under specified service conditions. Assesing reliability within a
design optimization context is broadly useful, and reliability based design
optimization (RBDO) methods are popular approaches for designing systems while
accounting for uncertainty [18]. In RBDO, the statistical nature of constraints and
design problems are defined in the objective function and probabilistic constraint. In
RBDO, the cost is optimized subject to prescribed probabilistic constraints by
solving a mathematical nonlinear programming problem. Therefore, the solution
from RBDO provides not only an improved design but also a higher level of

confidence in the design [19].

In general, an RBDO model includes deterministic design variables, random design
variables and random parameters. A deterministic design variable is a design variable
to be designed with its negligible uncertainties. A random design variable is a
variable to be designed with uncertainty property being considered (usually the mean

of the variable is to be determined) while a random parameter can not be controlled.

The probability distributions can be used to describe the stochastic nature of the
random design variables and random parameters, where the variations are
represented by standard deviations which are usually assumed to be constant. Thus, a
typical RBDO problem can be defined as a stochastic optimization model with the
objective function over the mean values of design variables (deterministic and

stochastic) is to be optimized, subject to probabilistic constraints.

Two essential components of RBDO are reliability analysis and optimization.

Reliability analysis focuses on analyzing the probabilistic constraints to ensure the



reliability levels are satisfied while optimization is seeking for the minimum

objective function subjected to the probabilistic constraints.

Reliability analysis perform uncertainty quantification (UQ) by computing
approximate response function distribution statistics based on specified input random
variable probability distributions. Extensive research has been done to explore
various efficient reliability analysis techniques including sensitivity-based
approximation approaches by Eggert [20], Parkinson [21], MPP (most probable
failure point) based approaches by Hohenbichler [22], Koyluoglu [23], Hasofer [17],
Monte Carlo Simulations (MCS) and Response Surface Model based approaches by
Chen [24], Sues [25], Koch [26]. Among those, MPP based approaches have
attracted more attention as they require relatively less computational effort while still
producing results with acceptable accuracy compared to the other three approaches
[27,28].

Reliability based design optimization (RBDO) involves evaluation of probabilistic
constraints, which can be done in two different ways, the reliability index approach
(RIA) and the performance measure approach (PMA). Popular numerical methods
for RIA are the Hasofer Lind-Rackwitz Fiessler (HL-RF) method [17,29], modified
HL-RF [29], and two-point approximation [30,31]. For PMA, the Advanced Mean
Value (AMV) method [5,32] is a popular numerical method.

Another research topic in RBDO is on integration of reliability analysis and
optimization, using bi-level strategy or sequential strategy. The resulting RIA/PMA

algorithms can be employed within bi-level or sequential RBDO approaches.

Bi-level methods (Figure 1.1) treat the reliability analysis as the inner loop analyzing
the probabilistic constraint satisfaction for the given solutions provided by the outer
optimizer which locates the optimal solution iteratively. As a result, bi-level methods
are computationally expensive for a complex engineering design [27,33,34].
Therefore, sequential methods have been developed to address the computational
challenges as in the work of Zou and Mahadevan [27], Du and Chen [34], Thanedar
[35], Tu [36], Chen [37], Royset [38] and Youn [39].

Integration of RBDO methodologies to aerospace engineering applications has been
a challenging research subject recently. Petit [41] presented general sources of

uncertainty on aeroelastic response such as flutter flight testing, prediction of limit



cycle oscillations and design optimization with aeroelastic constraints and reviewed

research challenges in this field.

Allen and Maute [42] presented a computational methodology that both utilizes high-
fidelity simulation methods and accounts for uncertainties in design and operating

conditions within the design process of aeroelastic structures.

A new design

New design point as
the mean of random
variables

l Reliability

Constraint | ———> analysis

loop
Optimization [ Reliability

loop Constraint 2

Constraint Check:

— analysis
loop

‘ Reliability

Constraint n =~ ——F—> analysis
| loop

Optimal Design
¥

Figure 1.1 : Flowchart of bi-level reliability based design optimization (RBDO) [40]

Hosder et al. [43] presented an inexpensive non-intrusive polynomial chaos (NIPC)
method for the propagation of input uncertainty in CFD simulations. Moreover, this
NIPC approach has been applied to three different problems which were an inviscid
oblique shock wave problem with geometric uncertainty, an inviscid expansion wave
problem with geometric uncertainty, and a subsonic, two dimensional, laminar
boundary layer flow over a flat plate with an uncertain free-stream dynamic

viscosity.

Kwon et al. [44] performed a reliability analysis for the aerodynamic analysis of a
2D airfoil, a 3D wing and a wing body configuration by using moment method. A
stochastic spectral projection solver based on generalized polynomial chaos

expansion was applied to the uncertainty quantification of stochastic compressible



flows around a NACAOO012 airfoil due to random free-stream Mach number and
angle of attack by Chassaing et al. [45].

Recently, Missoum et. al. [46] presented a methodology which constructed explicit
flutter and subcritical limit cycle oscillation boundaries in terms of deterministic and
random design variables for the reliability-based design optimization of systems with
nonlinear aeroelastic constraints.

In this thesis, firstly, a deep investigation of RBDO techniques is presented and then
a fully automatic, modular and practical design framework which employs RBDO
techniques within a multidisciplinary code coupling approach based on high-fidelity
CAD, CFD and CSD softwares and fluid-structure interface is developed and applied
to aeroelastic optimization problems. In this computational framework, finite volume
based flow solver Fluent is used to solve inviscid 3D Euler equations and Catia is
used as a parametric 3D solid modeler. Abaqus, a structural finite element method
solver, is used to compute the structural response of the aeroelastic system. Mpcci,
mesh based parallel code coupling interface, is used to exchange the pressure and
displacement information between Fluent and Abaqus to perform a loosely coupled
aeroelastic analysis. Modefrontier is employed as a multi-objective and multi-
disciplinary optimization driver to control the optimization workflow.

The optimization criteria include both deterministic and probabilistic constraints with
both structural and aerodynamic uncertainties such as in yield strength, Mach
number and angle of attack. To evaluate the probability of failure for the
probabilistic constraints, first order reliability method (FORM) is used. In RIA,
Hasofer-Lind iteration method is implemented in Matlab to compute MPP (Most
Probable failure Point) solution. In PMA, AMV method is implemented in Matlab to
compute MPP solution. The integrated framework is validated with academic and
structural problems and then extended to more realistic wing configurations with
aeroelastic criteria.

Deterministic optimization studies with multidisciplinary code coupling approach
were presented in the former work of Nikbay et al. [47,48]. Present work is an
RBDO extension of the former MDO frameworks in Ref. [47] and [48] so that day-
to-day codes can be still used in an attach/detach manner for realistic problems with

stochastic nature.



1.2 Purpose and Outline of the Thesis

The main purpose of this work is to learn and take advantage of the reliability based
design optimization concept and underline its importance for the practical industrial

applications with uncertainty parameters.

In the second chapter, reliability based design optimization is introduced.
Mathematical approaches about reliability analysis and inverse reliability analysis are

given and the related methods are presented.

The third chapter covers the verification of the implemented algorithm. A benchmark
problem with a cantilever beam design from the literature is solved and the
methodology is validated. Different reliability analysis methods are compared in

terms of efficiency.

The fourth chapter includes the integration of the written code and commercial
softwares for the optimization problems presented formerly by Nikbay et al. [47,48].
Reliability based structural optimization of a simple aircraft wing and reliability

based aeroelastic optimization of AGARD 445.6 wing are performed.

In the fifth chapter, conclusions are drawn based on the results.






2. RELIABILITY BASED DESIGN OPTIMIZATION

Assesing reliability within a design optimization context is broadly useful, and
reliability based design optimization (RBDO) methods are popular approaches for
designing systems while accounting for uncertainty [18]. In RBDO, the statistical
nature of constraints and design problems are defined in the objective function and

probabilistic constraint.

RBDO involves evaluation of probabilistic constraints, which is usually done in two
different ways, the reliability index approach (RIA) and the performance measure
approach (PMA). The resulting RIA/PMA algorithms can be employed within bi-
level or sequential RBDO approaches. In this study, bi-level RBDO approach is

used.

2.1 Design Optimization Problem Formulation

Standard design optimization model can be formulated as:
Minimize : f(b) = f(by, by, ..., by,)
Subject to : g;(b) = gi(by,by,...,b,) <0, i=1,..,n4
hj(b) = hj(by,by,...,b,) =0, j=1,..,n
B ={beR"|b, <b < by} 2.1)

where B is a set of design variables restricted by lower and upper bounds b; and by,
f(b) is cost function, g;(b) is a set of inequality constraints, h;(b) denotes a set of

equality constraints, and n, n,, ny are the number of design variables, inequality and

g

equality constraints respectively.

2.2 Structural Reliability

2.2.1 Basic Probabilistic Descriptions

Random Variable : The uncertainties of an engineering system are identified by the

variations of the random vector X = [X{, X5, ..., X,]T, which can be random design



variables or random parameters of the system. X’s particular value is represented by

X = [xq, X, e, xp]T.

Probability Density Function : The probability distribution of X; is described by its
probability density function (PDF) fy (x;). fx,(x;) is the PDF of X; as shown in

Figure 2.1.

fx(x)

M

X

Figure 2.1 : The probability density function (PDF) of normal distribution [50]

Cumulative Distribution Function : The cumulative distribution function (CDF)

Fy,(x;) describes the probability that a random variable X; with a given probability

distribution will be found at a value less than or equal to x;. For every real number

x;, the CDF of a random variable X; is given by
Fy,(x;) = P(X; < x;) (2.2)

where the right-hand side represents the probability that the random variable X; takes

on a value less than or equal to x;. Fx,(x;) is the CDF of X; as shown in Figure 2.2.

Joint Probability Density Function : The probability function that two or more
random events will happen simultaneously (JPDF) fx(x). For instance, the

probability of the two-dimensional case is calculated as
d b
Pla<X<b,c<Y<dl=[ [ for(xy)dxdy (2.3)

where fxy (x,y) is the joint PDF (JPDF) of the random variables X and Y.
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Fyf) |
1.0

Fiy(x)

v

Figure 2.2 : The cumulative distribution function (CDF) of normal distribution [50]

Mean : This is a weighted average of all the values that a random variable may take.

If fx,(x;) is the PDF of X;, the mean is given by

ux, = EIX] = [ x; fx,(x)dx; (2.4)

Kx, 1s also called the first raw moment. The operator, E [.] denotes the average or

expected value of X;, possesses the following useful properties: If X; and X, are

independent random parameters,

E[X:X,] = E[X,] E[X;] (2.5)
E[X; + X;] = E[X,] + E[X,] (2.6)
and if c is a constant,

Elc]=c (2.7)
E[cX;] = c E[X;] 2.8)

Variance and Standard Deviation : The variance, V[X;], a second central moment

of X;, is a measure of spread in the data about mean:
2
VX =E|(X; - 1x)’| 2.9)

The standard deviation is a square root of the variance:

ax, = JVIX{] (2.10)

11



The variance operator, V[.], possesses the following useful properties: If X; and X,

are independent random parameters,

VX +X,] =V[X] + V[X,] (2.11)
and if c is a constant,

Vlc]=0 (2.12)
VicX;] = c?V[X;] (2.13)

Normal (Gaussian) Distribution : The normal distribution is given by

1 1 (xi—uxi

2
fx, () = —=exp [—5 ) ] , —oo<x; <o (2.14)

O'Xl.

where py, and oy, denote the mean and standard deviation of the variable X,
respectively, and X; is identified as N(yxi,axi) if it has a normal (gaussian)

distribution.

The gaussian distribution can be normalized by defining

xi_#Xi

$i = (2.15)

O'Xi

and yields the standard normal distribution N(0,1) with zero mean and unit standard

deviation.

The PDF of the standard normally distributed variable ; is given by

1 1
$(E) = fo,(6) = T=ewp| 367, —0 <& <o (2.16)
where ¢ (.) represents the standard normal probability density function.

The CDF of the standard normally distributed variable ¢; is given by
i 1 1
O(E) = Fz,(§) = [° m=exp |-3&°] d&; 2.17)

where ®(.) represents the standard normal cumulative distribution function. The
values of the standard normal cumulative distribution function, ®(.), are tabulated in

Appendix A.1 [50].
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2.2.2 Structural Reliability Assessment

When a structure exceeds a specific limit in one of its design criteria, the structure
fails to perform as it is required. For example, exceeding yield strength of a material
may cause plastic deformation of the structure. This specific limit is called a limit-
state. If the probability of failure of the structure exceeds the required value, the

structure will be considered unreliable.

The limit-state function or performance function, g(.) and probability of failure, P,

can be defined as
g(X) = R(X) — S(X) (2.18)
Pr = Plg(.) < 0] 2.19)

where R is the resistance and S is the actual loading of the system. Both R(.) and
S(.) are functions of random variables X. The notation g(.) < 0 inequality denotes
the failure region, g(.) = 0 and g(.) > 0 indicate the failure surface and safe region,

respectively.

The mean and standard deviation of the limit-state, g(.), can be determined from the
elementary definition of the mean and variance (Equations (2.6) and (2.11)). The

mean of g(.) is
g = Ur — Us (2.20)

where pp and pg are the means of R and S, respectively. If R and § are independent,

the standard deviation of g(.) is
0y =+ 0f +0¢ (2.21)
where oi and gy are the standard deviations of R and S, respectively.

Reliability index, f, is defined as;

B, =Yg = brbs (2.22)

o, ’ 2, 2
9 oR+0os

Figure 2.3 shows a geometrical illustration of the reliability index in a one-

dimensional case.

The idea behind the reliability index is that the distance from point u, to the limit-

state surface provides a good measure of reliability. The distance is measured in units

13



of the uncertainty scale parameter o,. The shaded area of Figure 2.3 identifies the

probability of failure.

f.;)(g) A

g<0

Failure Region g>0

P

P

Safe Region

Mg

Figure 2.3 : Probability density function (PDF) for limit-state function g(.) [50]

For a special case, the resistance, R, and actual loading, S, are assumed to be

normally distributed and independent. The limit-state function is also normally

distributed, since g(.) is a linear function of R and S.

Thus, the PDF of the limit-state function is

2
1 1 -
S -

The probability of failure is

2
0 0 1 19—
Pr=Plg<o0]=[_f(g)dg=]_, ogvzi P [_£<go:g) l dg

When g = 0, the probability of failure is computed as

2
_ (0 1 _1 0—pug
e men] 22 o

0 1 1
Pr = | oo 0P [~582] dg

g-u d )
Here, B = g sodp, = = , boundaries are;
S O_g S O_g

0—ug

wheng =02 f, = o = —fs
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—X®—Ug

Og

— 00

when g = —00 2 B, =
Equation (2.26) can be rewritten as

—Bs 1 1
P =0 exp|-1p2|dp; (2.27)

From Equations (2.17) and (2.27), the probability of failure can be obtained as

Py = ®(=p5) =1 - P(By) (2.28)

2.3 General Definition of RBDO Model

When uncertainties are included in a design optimization problem; a RBDO model is

formulated as below;
Minimize : f(b,puy)
Subjectto: P = Pi[g;(b,X) < 0] < Pg;, i=1,..,m

hf”(b) <0, j=1,..,n (2.29)

where g;(.) represents the performance function, hf”(.) represents a set of
deterministic constraints, b is the vector of deterministic design variables, and X is
the random parameters of the system. Py; is the probability of failure of the ith
probabilistic constraint. P; is the probability function of the ith probabilistic
constraint. Pg; is the required probability of failure level of the ith probabilistic
constraint. m is the number of probabilistic constraints. n is the number of

deterministic constraints.

The probabilistic constraints are described by the performance functions g;(b, X),

their probabilistic models, and their required probability of failure levels Pg;.

Consider a performance function g;(b,X), where g;(b,X) < 0 denotes the failure
region, g;(b,X) = 0 and g;(b,X) > 0 indicate the failure surface and safe region,
respectively. The statistical description of the failure of the performance function

gi(b, X) is characterized by its CDF F;,(0) as
F,,(0) = P;[g;(b,X) < 0] = fgi(b,X)<O o[ fx(@)dx; .dx, , i=1,..,m (2.30)

The evaluation of Equation (2.30) requires reliability analysis where the multiple

integration is involved as shown in Equation (2.30). Some approximate probability

15



integration methods have been developed to provide efficient solutions, such as the
first order reliability method (FORM) or second order reliability method (SORM).
FORM often provides adequate accuracy and is widely used for RBDO applications
[39].

Each required probability of failure level of the system Pp; is often represented by
the target reliability index as B, = —®~1(Pg;) using Equation (2.28). Hence, any

probabilistic constraint in Equation (2.29) can be rewritten using Equation (2.30) as
Fy,(0) < (=B, (2.31)
which can also be expressed in two ways through inverse transformations [51] as

Bs, = =071 (E,, (0)) = B, (2.32)
Gp, = F;;1(@(=B)) =0 (2.33)

where B, and g, are respectively called the reliability index and the probabilistic

performance measure for the ith probabilistic constraint.

Equation (2.32) is employed to describe the probabilistic constraint in Equation
(2.29) using the reliability index and it is called the reliability index approach (RIA).

At a given design, the evaluation of reliability index S, for RIA is performed using

reliability analysis. Equation (2.29) can be rewritten using RIA as
Minimize : f(b,puy)
Subject to : B, = By, i=1,...m
hjm(b) <0, j=1,..,n (2.34)

Equation (2.33) is employed to describe the probabilistic constraint in Equation
(2.29) using the probabilistic performance measure and it is called the performance
measure approach (PMA). At a given design, the evaluation of probabilistic

performance measure g, for PMA is performed using inverse reliability analysis.

Equation (2.29) can be rewritten using PMA as
Minimize : f(b,puy)

Subject to : p; 2 0, i=1,...m

hf”(b) <0, j=1,..,n (2.35)
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Transformation of the Random Variables from X-space to U-space

Standardize the random variables;

u; = 2 (2.36)

O'Xi

where uy, and oy, represent the mean and the standard deviation of random variable
X;, respectively. The mean and standard deviation of the standard normally
distributed variable, u;, are zero and unity, respectively.

From Equation (2.36), the mean value point py, in the original space (X-space) is

mapped into the origin of the normal space (U-space) as shown in Figure 2.4.

X2

X-Space u;

iy

Safe Regiq

)

® (U xi, U x) (0,0) / : N uj

Failure Region

Safe Region

a(X)=0

X; g(u)=0

Figure 2.4 : Mapping of failure surface from X-space to U-space [50]

2.4 Reliability Index Approach

In RIA, reliability index S, can be obtained using mean value first order second
moment (MVFOSM), FORM or SORM. B, can be obtained using FORM by

formulating an optimization problem with one equality constraint in U-space follows

as;
Minimize : ||U]|
Subjectto: g(U) =0 (2.37)

where the optimum point on the failure surface is called the most probable failure
point (MPP). There are many algorithms available that can solve this problem [52].

In this thesis; the most commonly used recursive algorithms, the Hasofer Lind (HL)
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and Hasofer Lind - Rackwitz Fiessler (HL-RF) methods, are introduced to solve the

reliability problems.

2.4.1 First Order Reliability Method (FORM)

In this section, we first discuss the MVFOSM method, and then the details of FORM,
because the development of FORM can be traced to MVFOSM.

Mean Value First Order Second Moment (MVFOSM) Method

The name “first-order” comes from the first-order expansion of the performance
function. In the MVFOSM method, the performance function is represented as the
first-order Taylor series expansion at the mean value point. Assuming that the
random variables X are statistically independent, the approximate performance

function at the mean is written as

GX) =~ gluy) + Vg(ux)" (X — uy) (2.38)

where, ty = {lix,, Hx,» s Hy,}" is the mean value vector, and Vg(uy) is the gradient

dag(ux) 9g(ux) 6g(ux)}T
ox, ' oxp, 77 0xq ’

vector of g evaluated at uy, Vg(uy) = {

The mean value of the approximate performance function §(X) is

ug = E[gX0] = g(ux) (2.39)
The variance of the approximate performance function §(X) is

Var[§(X)] = Var[g(ux)] + Var[Vg(ux)" (X — px)] (2.40)
In Equation (2.40),

Var[g(ux)] =0

Var[Vg(ux)] =0

Var[Vg(ux)" (X — ux)] = Var[Vg(uy)"X] — uxVar[Vg(uy)]

Var[Vg(ux)" (X — ux)] = Var[Vg(ux)"X] — 0 = [Vg(ux)"]*Var(X)

Var[§(X)] = [Vg(u)T1?Var(X) (2.41)

Therefore, the standard deviation of the approximate performance function is

1

o3 = VarGO0] = TG PVar() = [z, (242) oz | 242
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The reliability index [ is computed as

By =t1— 9w (2.43)
[Z?n(aga(ﬂ.x ))Zoazc-]

If the performance function is linear Equation (2.43) is same as with Equation (2.22).

N[

If the performance function is nonlinear, the approximate performance function §(X)
is obtained by linearizing the original performance function g(uy) at the mean value
point. This method is called the MVFOSM method, and the S given in Equation
(2.43) is called a MVFOSM reliability index.

The MVFOSM method changes the original complex probability problem into a
simple problem. However, there are two serious drawbacks in the MVFOSM

method:

1- Evaluation of reliability by linearizing the limit-state function about the mean
values leads to erroneous estimates for performance functions with high
nonlinearity, or for large coefficients of variation [50].

2- The MVFOSM method fails to be invariant with different mathematically
equivalent formulations of the same problem. This is a problem not only for

nonlinear forms of g(.), but also for certain linear forms [50].
Hasofer and Lind (HL) Reliability Index

The reliability index that can be shown from Figure 2.3, is the measure of the
distance from the origin to the failure surface. In the one-dimensional case, the
standard deviation of the performance function g(.) is used as the scale. To obtain a
similar scale in multiple variables, Hasofer and Lind [17] proposed a linear mapping

of the basic variables into a set of normalized and independent variables, u;.

Assess the fundamental case with the independent variables of strength, R, and

stress, S, that are both normally distributed.

1- Hasofer and Lind presents the standard normalized random variables,

= R- A S—
R="2HR § =K (2.44)

OR Os
where pp and pg are the mean values of random variables R and S,
respectively, and o and og are the standard deviations of R and S,

respectively.
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2- Transform the failure surface g(R,S) = 0 in the original (R,S) coordinate
system into the failure surface g(ﬁ, 5‘) in the standard normalized (R,S)
coordinate system,
g(R(R),S5(S)) = §(R,S) = Rog — Sog + (g — ps) = 0 (2.45)

3- In the (R,S) coordinate system, the shortest distance from the origin to the

failure surface g (ﬁ, S ) = 0 is equal to the reliability index as shown in Figure

2.5.
_ Ap* — HR7Hs
ps = OP* = o (2.46)

The point P*(f\'*,f*) on g (ﬁ, S ) = 0 which corresponds to this shortest distance, is
often referred to as the most probable failure point (MPP).
In normally distributed and independent variables of n-dimensional space, the failure

surface is a nonlinear function:

g(X) = g({xlr er ---rxn}T) = 0 (2"47)
g
R R
Safe Region
g9>0 -
|
- He |- 6 >
o : S
i ‘ . Failure Region
1 g<o0
ol Hg s

Oy

Figure 2.5 : Geometrical illustration of reliability index £ [50]

The failure surface g(X) = 0 in X-space is mapped into the corresponding failure
surface g(U) = 0 in U-space, as shown in Figure 2.4. The reliability index S is the

shortest distance from the origin to the failure surface g(U) = 0 as

20



min

min

ﬁs:Ueg(U)zO(UTU)E

(2.48)

This reliability index S is also called the Hasofer and Lind (HL) reliability index.
Hasofer and Lind (HL) Iteration Method

From Equation (2.48), reliability index, [, is the solution of a constrained

optimization problem in the standard normal space.
Minimize : B(U) = ||U]|,
Subjectto: g(U) =0 (2.49)

Suppose that the failure surface with n-dimensional normally distributed and

independent random variables X is

9X) = g({xy, xz .., 22} =0 (2.50)

This performance function can be linear or nonlinear. Transforming the performance

function given in Equation (2.50) using Equation (2.36),

T
g(U) =4 ({O-Xlul + MXl' O-quz + MXZ' ...,O-Xnun + MXTL} ) =0 (2.51)

The first-order Taylor series expansion of g(U) at the MPP P* is

~ " n Og*
) ~ gu*) + ¥, 2980

=1 aui

(u; —uy) (2.52)

From the transformation of Equation (2.36), we have

ag*) _ ag™)
ou; | ox; OXi (2.53)

The shortest distance from the origin to the approximate failure surface given in

Equation (2.52) is

* n 0gu®) *
B . ‘ug . g(u )_Zi=1 axl, O-Xiui
s = — =

()1 2
g O LI\
=1\ ax; Xi

The derivation of Equation (2.54) is shown in Appendix A.2. The direction cosine of

(2.54)

the unit outward normal vector is given as

ag(u®) ag(x®)
—_— ——0
@ =cos 0 = ——24 - 0 7 (2.55)
i P = T Irgaol R
i=1( ox; ) IX;
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where a; expresses the relative effect of the corresponding random variable on the
total variation as shown in Figure 2.6. Thus, it is called the sensitivity factor. The

relationship between [ and «; is given as

9Bs _ 0 [2 2 7 _ Ui _ . 55
e = aui*/ul Ui bup = 2t=a, ((=12,.m) (2.56)
U
@, = cos 6, . 6<0

- \
@27 0080, \ Failure Region
4‘----__."‘- “
- .“*,“ A

,’ \\ A

s ~ A
z Y

u*,= f5c0s0, W,
’ \ 2
g>0 .r’ b a

Safe Regi,c;n

I
I
I

|
\

Figure 2.6 : Sensitivity factors [50]

The coordinates of the MPP P* are computed from Equations (2.54) and (2.55),

*
X;i—Ux.

* __ L i

U;

Bs a; (2.57)

= =
The coordinates corresponding to MPP P* in the original space are

x; =px, +Bsox, a;, (i=12,..,n) (2.58)
Since MPP P* is a point on the limit-state surface,

gw) = g({xi, x5, .., x33") =0 (2.59)
The main steps of the HL iteration method are:

1- Define the appropriate performance function of Equation (2.50)

2- Assign the mean value point as an initial design point,

Xig =y, (I =12,..1) (2.60)
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and compute the gradients Vg(X,,) of the performance function at this point.
x; 1 is the i*" element in the vector X, of the k™ iteration

3- Compute the initial §; (MVFOSM reliability index) using Equation (2.43)
and its sensitivity factor using Equation (2.55)

4- Compute a new design point X and U}, using Equations (2.58) and (2.57),
function value, and gradients at this new design point

5- Compute the reliability index B (HL reliability index) using Equation (2.54)
and its sensitivity factor using Equation (2.55)

6- Iterate steps 4)~6) until the estimate of ¢ converges

7- Calculate the coordinates of the design point X; or MPP, x*.

In this work, the partial derivatives needed for direction cosine and f; calculations
will be computed by finite differencing since commercial codes are used to solve the
structural and aerodynamic responses. These commercial codes will be treated as
black-box and run again with a small perturbation parameter from batch mode so that
the numerical derivative needed in reliability analysis will be automatically

computed by forward differencing in HL iterations in reliability analysis.
Hasofer Lind — Rackwitz Fiessler (HL-RF) Method

The HL method was proposed by Hasofer and Lind. The HL method only considers
normally distributed random variables, so it cannot be used for non-normal random
variables. In non-normal cases, the probability of failure calculation given in
Equation (2.28) is inappropriate. Rackwitz and Fiessler extended the HL method to
include random variable distribution information, calling their extended method the

HL-RF method.

A simple transformation called the equivalent normal distribution (normal tail
approximation) is described below. When the random variables are mutually

independent, the transformation is given as
u; = O Fy, (x)] (2.61)

where ®~1[.] is the inverse of the standard normal cumulative distribution function
O[.].

Rosenblatt transformation [50] can be used to obtain equivalent normal distribution.
Equivalent normal distribution can be obtained by matching the cumulative

distribution functions and probability density functions of the original, non-normal
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random variable distributions, and the approximate or equivalent normal random

variable distributions at the MPP.

Assuming that x; is an equivalent normally distributed random variable, the CDF

values of x; and x; are equal at the MPP:

* * xlf_uX"
Fy,(x() = Fyr(xj) = & —+ (2.62)
Xj
So
g = x{ = @7 Fy, (D ]oy, (2.63)

The PDF values of x; and x; at x; are equal:

*

X

—u
Xi
(o)

fr (D) = fr G = oi,¢< ) (2.64)

Xl
From Equations (2.63) and (2.64), the equivalent mean Hx! and standard deviation

oy of the approximate normal distribution is derived as below:
L

) (2.65)

O/
X

tyx = x{ = @7y, (xD] oy (2.66)

This normal tail approximation is shown in Figure 2.7.

Non-normal
Distribution

[ ()= 1(x)

Equivalent
Normal
Distribution

F,(x)=F,(x))

Figure 2.7 : Normal tail approximation [50]
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The transformation of the random variables from the X-space to the U-space can be

performed using Equations (2.65), (2.66) and (2.67),

Xi=hy!

w; = (2.67)

(o]
X;

and the performance function g(U) in U-space is approximately obtained.

The HL-RF algorithm is similar to the HL iteration method. A flowchart of the
algorithm is given in Figure 2.8.

2.4.2 Example Problem for FORM

The performance function is

g(xy,x) =x3 +x3 —18 (2.68)

where x; and x, are the independent random variables with normal distributions
(mean p, = p,, = 10.0, standard deviation oy, = g,, = 5.0). Find the reliability

index fs by using the FORM [50].
Solution of the example is described below step by step.

Step 1: The mean value point P;(10.0, 10.0) is set as an initial design point in X-
space, it corresponds to point P,(0.0, 0.0) in U-space after transformation as shown

in Figure 2.9.

Original Space Standart Space

20 0 P +*
18 P 2
p -0.5
10 1 *
W 5 = 1
0
15
3
-10 2
-10 0 10 20 2 15 1 0.5 0

Figure 2.9 : Initial design points in original space (X-space) and standard space

(U-space)
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Detfine random variables,
distributions, mean, variance, erc.

!

X=X,
If k=1X =u )
Transformation
X=U

v

Compute g,(U), Vg, (U)

k4

Compute F using FORM
If k=1, compute § using MVFOSM

:

Compute New Design Point
X,

No (k=k+1}

f converges?

Figure 2.8 : HL-RF method flowchart [50]
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Step 2: The first reliability index value s = 0.9343 is computed using MVFOSM,
and then the new design point P3(-0.6607, -0.6607) is obtained as shown in Figure
2.10.

Original Space Standart Space
20 0
P, i
15 P /
. -0.5
10 1y P ¥
3
S5 = 1
0
15
-5
10 2
-10 0 10 20 2 15 1 0.5 0

Figure 2.10 : Reliability index f; and new design point P3

Step 3: In Figure 2.11, a circle with a radius Sy = 0.9343 and P,(0.0, 0.0) as a
center point is drawn. The performance function’s value at point P3(-0.6607, -
0.6607) is g(uy,u,) = 582.629. The point P;(-0.6607, -0.6607) in U-space
corresponds to P,(6.6967, 6.6967) in X-space with the same performance function
value g(xq,x,) = 582.629.

Original Space Standart Space
20
15
Pl
10 #*
xN 5 P4 3N

0

5 90x,%;)
-10 2

-10 0 10 20 2 15 1 0.5 0

Figure 2.11 : Reliability index f; and performance function g
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Step 4: The second reliability index value 3 = 1.5468 is computed using FORM,
and then the new design point P5(-1.0937, -1.0937) is obtained as shown in Figure
2.12.

Original Space Standart Space

15
Pl
10 #*
KN 5 P4 JN
0
Bal
10 2
-10 0 10 20 2 15 1 0.5 0

Figure 2.12 : Reliability index f; and new design point Ps

The same procedures can be repeated until the estimate of [y converges. The
iteration results are summarized in Table 2.1. The reliability index is s = 2.2401.
Most probable failure point (MPP) corresponding to this reliability index is x* =
[ 2.0801,2.0801 ].

Table 2.1 : Iteration results in FORM

Iteration 1 2 3 4 5 6 7

No.
g(x1,x,) 1982.0 582.629 168.08 45.529 10.01 1.1451 0.023

0
% 300 134.537 61.598 30.0897 17.43 13.5252 12.9917

1

0
% 300 134.537 61.598 30.0897 17.43 13.5252 12.9917

2

Bs 09343 1.5468 1.9327 2.1467 2.2279 22398 2.2401
a; -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071
a, -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071
x, 6.6967 45313 3.1670 24104 2.1233 2.0810 2.0801
x, 6.6967 45313 3.1670 24104 2.1233 2.0810 2.0801
u; -0.6607 -1.0937 -1.3666 -1.5179 -1.5753 -1.5838 -1.5840
u, -0.6607 -1.0937 -1.3666 -1.5179 -1.5753 -1.5838 -1.5840

Convefgingc‘;’ - 0.6556 02495 0.1107  0.036  0.005 0.00001
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2.5 Performance Measure Approach

In PMA, reliability analysis can be formulated as the inverse of reliability analysis in

RIA. The probabilistic performance measure g, can be obtained using MVFOSM
method, FORM or SORM. Here, g, is obtained using the FORM in U-space defined

as

Minimize : g(U)

Subject to : ||U]|| = B (2.69)
where the optimum point on a target reliability surface is identified as the MPP.
General optimization algorithms can be employed to solve the optimization problem

in Equation (2.69). However, the Advanced Mean Value (AMV) method is well
suited for PMA due to its simplicity and efficiency [39].

2.5.1 Advanced Mean Value (AMYV) Method
Formulation of the AMV method begins with the MVFOSM method, defined as

x9x) _ _ w90
I7xg (el I7wg (Ol (2.70)

Upvrosm = Be n(0)  where n(0) = —
To minimize the performance function g(U) in Equation (2.70), the normalized
steepest descent direction n(0) is defined at the mean value. The AMV method
iteratively updates the direction vector of the steepest descent method at the probable
point u,g’;\;v initially obtained using the MVFOSM method. Thus, the AMV method

can be formulated as

1 . k+1 k
u,(MBIV = UpyFosm » uﬁ,JV) = bt n(u,(M}V (2.71)
where
(k)
Vi u
n(ufy,) = - 28 apy) 2.72)
79|

29



2.5.2 Example Problem for AMYV Method
The performance function is
g(x1,x,) = —exp(x; —7) —x, + 10 (2.73)

where x; and x, are the independent random variables with normal distributions
(mean u, = p,, = 6.0, standard deviation g, = gy, = 0.8). The target reliability
index is set to B; = 3.0. Find the performance measure g by using the AMV method
[39].

Solution of the example is described below step by step.

Step 1: The mean value point P;(6.0, 6.0) is set as an initial design point in X-space,
it corresponds to point P,(0.0, 0.0) in U-space after transformation as shown in

Figure 2.13.

Original Space Standard Space

4
i P,
B : 2
~ ~ Py (o
U, u
- 4 ‘/ = 0 g( 1 2)
5 g(xq, %)
-2
0
0 5 10 -2 ] 2 4

Figure 2.13 : Initial design points in original space (X-space) and standard space

(U-space)

Step 2: In Figure 2.14, a circle with a radius ; = 3.0 and P,(0.0, 0.0) as a center
point is drawn. The new design point is obtained as P5(1.0358, 2.8155). The
performance measure value at point P; is g(uq,u,) = 0.9051. The point P; in U-
space corresponds to P,(6.8286, 8.2524) in X-space with the same performance

measure value g(x;,x,) = 0.9051.
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Original Space Standard Space

P, . gluy,u2) g =30
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1r 42

B - 2 Py
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2
0
0 5 10 2 o 2 4

Figure 2.14 : Performance function g and new design point P;

Step 3: In the next iteration, the design point is obtained as P5(1.9329, 2.2943) and
the performance measure value at the point Pg is g(u,u,) = 0.4376 as shown in

Figure 2.15.

Original Space Standard Space

Figure 2.15 : Design point P5 and target reliability index f;

The same procedures can be repeated until the estimate of performance measure g
converges. The iteration results are summarized in Table 2.2. The performance
measure is g = —0.3579. Most probable failure point (MPP) corresponding to this

performance measure is x* = [ 8.3173,6.6247 ].
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Table 2.2 : Iteration results in AMV method

Iteration 1 2 3 4 5 6
No.
B 3.0 3.0 3.0 3.0 3.0 3.0
0
% -0.2943 -0.6740 -1.3816 -2.3485 -2.8538 -2.9677
1
0
% -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000
2

g(x1,x,) 09051 0.4376 -0.1383 -0.3412 -0.3574 -0.3579
ny 03453 0.6443 0.8654 0.9466 0.9629 0.9655
n, 09385 0.7648 0.5011 0.3224 0.2699 0.2603
x; 6.8286 7.5463 8.0769 8.2718 8.3109 8.3173
x, 8.2524 7.8354 7.2027 6.7739  6.6478  6.6247
u; 1.0358 1.9329 2.5962 2.8398 2.8886 2.8966
u, 2.8155 2.2943 15033 0.9673 0.8098 0.7808

Convefgingc‘; - 04674 0.5759 02029 0.0162  0.0005
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3. RELIABILITY BASED STRUCTURAL OPTIMIZATION OF A
CANTILEVER BEAM VERIFICATION

This chapter presents the implementation of the reliability analysis methods using
Matlab and a benchmark problem from literature is used to validate the

implementation.

3.1 Design of a Cantilever Beam

This test problem is adapted from the reliability-based design optimization literature
[53]. Figure 3.1 shows the cantilever beam with a rectangular cross-section subjected
to a vertical load, P,, and a horizontal load, P,, at the tip. It is assumed that the
beam has a fixed length of L = 700.0 in. and that the cross sectional dimensions of
the beam remain constant along the length of the beam. The design objective is to
prevent yielding due to normal stress while minimizing the weight of the beam or,

equivalently, the cross-sectional area w*t.

- L=100" ———p

Figure 3.1 : Design optimization of a cantilever beam

We consider yielding at the root of the fixed end of the beam, where the maximum
normal stress (S) is calculated analytically as follows

S= [ 000 p, | 600, j 3.1)

wit? w?t

The limit state function is;

3.2)

2 2
wt

600 600 ij
w't

g=R—S:R—[—PY+—
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where R is the random yield strength, P, and P, are mutually independent random
loads. Assume that there are uncertainties in P,, P,, and R, and they follow normal

distributions with the following parameters as shown in Table 3.1.

Table 3.1 : Statistics of loads and material properties

Random Variable R (psi) P, (Ibf) P, (Ibf)
Mean 40000 500 1000
Standard Deviation 2000 100 100

It is assumed that the manufacturing tolerances on the cross-sectional width w and
thickness ¢ are relatively small and, therefore, the dimensions will be treated as

deterministic design variables.

3.2 Deterministic Design

In deterministic design, the design with minimum weight can be obtained by solving
the following optimization problem using a safety factor (SF). We assume that the

random variables R, P, and P, are fixed at their means.
Minimize : Area = w*t

Subjectto: g=R-SF*S2>0 A3.3)

3.2.1 Deterministic Analytical Solution

Equation (3.3) is a typical nonlinear programming problem, and is here solved using
by a built-in Matlab function called fmincon (Appendix A.3). A safety factor of 1.5
is used for this analytical solution. The maximum normal stress is evaluated using

Equation (3.1).

Solution of the reference study took about 2 seconds using Matlab’s fmincon
function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz
processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a
result, the optimum design shown in Table 3.2 corresponding to the minimum area is

(w, 1) =(2.2407, 4.4814).
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Table 3.2 : Deterministic analytical design result

w (inch) ¢ (inch) g (ps)) Area (inch?*)
2.2407 4.4814 0.1271 10.0415

3.2.2 Deterministic Computational Solution

For a problem which the analytical formulation of stress function is not available, the
stress value can be calculated from the finite element analysis software, and here
Abaqus is used to obtain the maximum normal stress value (S). This exercise is a
building block for the more complicated applications that will be solved in this

thesis.

Equation (3.3) is solved using Modefrontier as an optimizer driver. The optimization

workflow for deterministic design can be shown in Figure 3.2.

&
D G” min_weight

w
SEO— abaqus_py
t >0
‘o
Abaqus Exit
=0
- ¥
@]
Scheduler:B-BFGS i output
. o
DOE e By '
2=, 7
Omm I%O;DZ;@

Figure 3.2 : Optimization workflow for deterministic design

Solution of the present study took about 5 hours 37 minutes using Modefrontier on a
workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor, with
2.00 GB of RAM on Microsoft Windows XP operating system. Design of
experiment (DOE) techniques are used to limit the number of runs. Initial number of
designs are provided for the learning process of the algorithm so optimum designs

can be obtained fastly. In this study, 16 DOE is used. “Full Factorial” method which
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works best with less than 8 variables is employed to distribute DOE points. BEGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm which is a method for solving
nonlinear optimization problems is used for attaining optimum result. Finally a total
number of 1157 designs are generated for the optimization problem. As a result 209
unfeasible designs and 948 feasible designs are found. The values of selected designs
are given in Table 3.3. The first design which has the minimum area is the optimum

solution.

Table 3.3 : Selected designs of deterministic computational solution

Design  w (inch) ¢ (inch) g (ps1) Area (inch?*)

1 22135 4.5366 0.55 10.041
2 2.2824  4.4000 1.6 10.042
3 2.1962  4.5729 2.95 10.043

3.2.3 Comparison of Analytical and Computational Solutions

Both the analytical and computational results that are obtained using Matlab’s

fmincon function and Modefrontier are similar, and the results are shown in Table
3.4.

Table 3.4 : Comparison of deterministic design results

w(inch)  7(inch) g (psi) Area (inch?)
Present Study ~ Modefrontier 2.2135  4.5366 0.55 10.041

Reference Study ~ Literature 22407 44814 0.1271 10.0415
(fmincon) [53]

3.3 Reliability Based Design Optimization

3.3.1 Reliability Index Approach (RIA)

Depending on the goal of the optimization problem, different formulations can be
used. For example, if the goal is to achieve maximum reliability as long as the weight

is within some bounds, the optimization problem can be formulated as
Maximize : S,

Subjectto:  Area=w*t < Area upper bound 3.4

If the goal is to achieve minimum weight as long as the reliability is within some

bounds, the optimization problem can be formulated as
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Minimize : Area=w¥*t
Subjectto: B, 28 3.5

The selection of a target reliability index, [, is problem dependent and often

controversial. A commonly used value is 3.000, corresponding to, for a normally
distributed performance function (g), a reliability of 0.99865 or a probability of
failure of 0.00135.

Equation (3.5) is used in this study to optimize the beam design. The [, value is

computed using first order reliability method (FORM) for a given design with both

analytical and computational formulation of stress function.
3.3.1.1 Reliability Index Approach with Analytical Stress Solution

From literature, we have observed that the stress constraint is usually dominant with
respect to the displacement constraint. For approval of this condition, in RBDO, in
addition to stress constraint a displacement constraint is also considered in the

optimization problem. Analytical formulation of the problem is
Minimize : Area=w*t

Subjectto: B = =3.000

B, 25 =3.000
where 8ress =R—S =R—(gPy +@ij
wt w't
ar (Y (P Y
gdisplacement = DO - D = DO - EWZ' \/(l’_;) + (sz) (3'6)

In the above, D, =2.2535n. is the displacement tolerance at the free end of the

beam. E is the random Young’s modulus and has a normal distribution of N(29E6,
1.45E6) psi. Equation (3.6) is solved by using a built-in Matlab function, fmincon
using FORM (Appendix A.4). Fmincon seeks the optimum solution in the outer loop,

FORM is used for reliability analysis in the inner loop.

Solution of the reference study took about 2 seconds using Matlab’s fmincon

function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz
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processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a

result, the optimum designs for different constraints are shown in Table 3.5.

Table 3.5 : Reliability index approach with analytical stress solution

Constraints w (inch) ¢ (inch) B, B, Area (inch®)
Stress  2.4460  3.8922 3.000 - 9.5202

Displacement  2.7015  3.4078 - 3.000 9.2063
Stress and Disp.  2.4484  3.8884 3.000 3.000 9.5203

From Table 3.5, the results match well as in the reference study [53] and it is
validated that the stress constraint is dominant. In this problem, only stress constraint
is considered for the optimization problems for computational simplicity. For the

stress constraint, optimum design FORM results are shown in Table 3.6. The

reliability index /S, is 3.000. The limit-state function (g) value at most probable

failure point (MPP), x° :[36705712,1133], is zero, this reliability index can be

considered as the shortest distance from the origin to the limit-state surface.

Table 3.6 : Iteration results in FORM for the optimum design in analytical RIA

Iteration No. 1 2
g(R,P,,P,,w,t) 10925 0
a_g 1 1
OoR

g
oP, -25.7658 -25.7658

g
E -16.1921 -16.1921
B, 3.000 3.000
Q -0.5492 -0.5492
a, 0.7076 0.7076
a, 0.4447 0.4447
R (X-space) 36705 36705
P, (X-space) 712 712
P, (X-space) 1133 1133
R (U-space) -1.6477 -1.6477
P, (U-space) 2.1228 2.1228
P, (U-space) 1.3340 1.3340
Convergence (£ ) - 2.9605E-16
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3.3.1.2 Reliability Index Approach with Computational Stress Solution
Numerical formulation of the problem is

Minimize : Area=w*t

Subjectto: B = =3.000

where g=R-S 3.7)

Equation (3.7) is solved using Modefrontier as an optimizer driver. An in-house code
developed in Matlab is used for the reliability analysis. Briefly, Modefrontier seeks
the optimum solution in the outer loop, FORM code written in Matlab is used for
reliability analysis in the inner loop. The optimization workflow for reliability based
design can be shown in Figure 3.3. In Appendix A.5, FORM code with the script

files written in Matlab is shown. Abaqus calculates the maximum normal stress value

(8.

{:>0<>’ min_weight
w
%I:_ nanlzon
t D’%F
Waflab | Exit
.
o—p
SupportFiles %E V
4 output
% beta Cons_beta
{;;\%(‘ {):GQ
R
{;,\%u
5
DOE Scheduler’B-BF G5 p,\%r;
§§§34[3’%§0_ G
=
X
=)
A

Figure 3.3 : Optimization workflow for reliability index approach (RIA)

Solution of the present study took about 27 hours 13 minutes using Modefrontier on
a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor,
with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 16
design of experiments (DOE) is used. “Full Factorial” is employed to distribute DOE
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points. BFGS algorithm is used to reach the optimum result. Finally a total number
of 350 designs are generated during the optimization problem. As a result 67
unfeasible designs and 283 feasible designs are found. The values of selected designs
are given in Table 3.7. The first design which has the minimum area is the optimum

solution.

Table 3.7 : Selected designs of computational reliability index approach solution

Design  w (inch) t (inch) B, Area (inch®)
1 2.4000 3.9673  3.000 9.5215
2 2.4000 3.9681  3.003 9.5236
3 2.5064 3.8000  3.004 9.5243

For the optimum design FORM results can be shown from Table 3.8. The reliability
index f, is 3.000. The limit-state function (g) value (0.1033) at MPP,

x = [36724;715,1130], is close to zero compared to the starting value, this reliability

index can be considered as the shortest distance from the origin to the limit-state surface.

Table 3.8 : Iteration results in FORM for the optimum design in computational RIA

Iteration No. 1 2
g(R,P,,P,,w,t) 10990 0.1471
g
R 1 1
g
oP, -26.2550 -26.2550
9s
P, -15.8850 -15.8850
B, 3.000 3.000
Q -0.5460 -0.5460
a, 0.7168 0.7168
a, 0.4337 0.4337
R (X-space) 36724 36724
P, (X-space) 715 715
P, (X-space) 1130 1130
R (U-space) -1.6382 -1.6382
P, (U-space) 2.1506 2.1506
P, (U-space) 1.3012 1.3012
Convergence (€ ) - 1.4E-5
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3.3.1.3 Comparison of Analytical and Computational Solutions in RIA

Both the analytical and computational results that are obtained using Matlab’s
fmincon function and Modefrontier agree well, and the results are shown in Table

3.9.

Table 3.9 : Comparison of analytical and computational solutions in RIA

w (inch) 7 (inch) B, Area (inch®)
Present Study ~ Modefrontier 24000 3.9673 3.000 9.5215

Reference Study ~ Literature 24460 3.8922  3.000 9.5202
(fmincon) [53]

Comparison of FORM results for optimum designs in the analytical and

computational solutions can be shown from Table 3.10.

Table 3.10 : Comparison of FORM results in analytical and computational solutions

for RTA

Analytical Computational
8RR, Py, Py, w,1) 0 0.1471
a_g 1 1

OR

g
oP, -25.7658 -26.2550

9
P, -16.1921 -15.8850
B, 3.000 3.000
Q -0.5492 -0.5460
a, 0.7076 0.7168
a, 0.4447 0.4337
R (X-space) 36705 36724
P, (X-space) 712 715
P, (X-space) 1133 1130
R (U-space) -1.6477 -1.6382
P, (U-space) 2.1228 2.1506
P, (U-space) 1.3340 1.3012
Convergence (£) 2.9605E-16 1.4E-5

3.3.2 Performance Measure Approach (PMA)
3.3.2.1 Performance Measure Approach with Analytical Stress Solution

Analytical formulation of the problem is
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Minimize : Area=w%*t

Subject to : g=R—S=R—(gPy+@ij20
wit w't

where B =3.000 (3.8

Equation (3.8) is solved by using a built-in Matlab function, fmincon using advanced
mean value (AMV) method (Appendix A.6). In Equation (3.8), g value is computed
using AMV method. Fmincon seeks the optimum solution in the outer loop, AMV

method is used for inverse reliability analysis in the inner loop.

Solution of the reference study took about 2 seconds using Matlab’s fmincon
function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz
processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a
result, the optimum design shown in Table 3.11 corresponding to the minimum area

is (w, 1) = (2.4460, 3.8922).

Table 3.11 : Performance measure approach with analytical stress solution

w (inch) 7 (inch) & Area (inch?)
2.4460 3.8922 -8.3*%107 9.5202

For the optimum design AMV method results can be shown in Table 3.12. The limit-
state function (g) value is -8.3*107" corresponding to a target reliability index
B =3.000. MPP is x" =[367057121133].

3.3.2.2 Performance Measure Approach with Computational Stress Solution
Numerical formulation of the problem is

Minimize : Area=w*t

Subjectto: g=R-S

where B =3.000 3.9

Equation (3.9) is solved using Modefrontier as an optimizer driver. Matlab is used
for the inverse reliability analysis. Briefly, Modefrontier seeks the optimum solution
in the outer loop, AMV method code written in Matlab is used for inverse reliability
analysis in the inner loop. The optimization workflow for reliability based design can

be shown in Figure 3.4. In Appendix A.7, AMV method code with the script files
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Table 3.12 : Iteration results in AMV method for the optimum design in analytical

PMA

Iteration No. 1 2
B 3.000 3.000
a_g 1 1

OR

g

oP, -25.7659 -25.7659

9
P, -16.1924 -16.1924
g(R,Py,P,,w,1) -8.3*%1077 -8.3*%107
n, -0.5492 -0.5492
n, 0.7076 0.7076
n, 0.4447 0.4447
R (X-space) 36705 36705
P, (X-space) 712 712
P, (X-space) 1133 1133
R (U-space) -1.6477 -1.6477
P, (U-space) 2.1227 2.1227
P, (U-space) 1.3340 1.3340
Convergence (€ ) - 7.2760E-12
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written in Matlab is shown. Abaqus is used to compute the maximum normal stress

value (S).

2
> O’ min_weight

sﬁ::— nonlcon
; {:>%:‘
%F:—
Matlab 1 Exit
-
SupportFiles _DE P V
L‘;_LIQJ |
L% Cutput
o g Cons_g
{:4_&:‘ {:FGQ
R
{:4_—211:3
5
DOE SchedulerB-BF G5
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e —— e
{3’\_&3
Y
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Figure 3.4 : Optimization workflow for performance measure approach (PMA)

Solution of the present study took about 29 hours 10 minutes using Modefrontier on
a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor,
with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 16
design of experiments (DOE) is used. “Full Factorial” is employed to distribute DOE
points. BEGS algorithm is used to get optimum result. Finally a total number of 350
designs are generated for the optimization problem. As a result 67 unfeasible designs
and 283 feasible designs are found. The values of selected designs are given in Table

3.13. The first design which has the minimum area is the optimum solution.

Table 3.13 : Selected designs of computational performance measure approach

solution

Design w(inch) (inch) g (psi)  Area (inch®)

1 2.4000 3.9673 1.38 9.5215
2 2.4000  3.9681 12.36 9.5236
3 2.5064  3.8000  12.77 9.5243




For the optimum design AMV method results can be shown in Table 3.14. The limit-

state function (g) value is 1.3824 corresponding to a target reliability index

B =3.000. MPP is x" =[367247151130].

Table 3.14 : Iteration results in AMV method for optimum design in computational

PMA

Iteration No. 1 2
B 3.000 3.000

g
R 1 1

g
oP, -26.2550 -26.2550

g
E -15.8850 -15.8800
g(R,P,,P,,w,t) 1.3763 1.3824
n, -0.5460 -0.5461
n, 0.7168 0.7168
n, 0.4337 0.4336
R (X-space) 36724 36724
P, (X-space) 715 715
P, (X-space) 1130 1130
R (U-space) -1.6381 -1.6382
P, (U-space) 2.1504 2.1505
P, (U-space) 1.3010 1.3007
Convergence (£ ) - 0.0061

3.3.2.3 Comparison of Analytical and Computational Solutions

Both the analytical and computational results that are obtained using Matlab’s
fmincon function and Modefrontier agree well, and the results are shown in Table

3.15.

Table 3.15 : Comparison of analytical and computational solutions in PMA

w (inch) ¢ (inch) g (psi)  Area (inch®)
Present Study ~ Modefrontier 2.4000 3.9673 1.38 9.5215

Reference Study ~ Literature 24460 3.8922 -8.3%10~ 9.5202
(fmincon) [53]

Comparison of optimum results solved by AMV method both with analytical and

computational stress solutions are shown in Table 3.16.
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Table 3.16 : Comparison of AMV method results in analytical and computational

solutions for PMA

Analytical Computational

B. 3.000 3.000
a_g 1 1

oR

g
oP, -25.7659 -26.2550

9s
P, -16.1924 -15.8800
8(R, Py, B,wt)  -8.3*%107 1.3824
n, -0.5492 -0.5461
n, 0.7076 0.7168
n, 0.4447 0.4336
R (X-space) 36705 36724
P, (X-space) 712 715
P, (X-space) 1133 1130
R (U-space) -1.6477 -1.6382
P, (U-space) 2.1227 2.1505
P, (U-space) 1.3340 1.3007
Convergence (£ ) 7.2760E-12 0.0061

3.4 Comparison of Deterministic Optimization and Reliability Based Design

Optimization

Deterministic design of the cantilever beam results with a bulk beam design both as
shown in Table 3.17 and in Table 3.18. RIA and PMA give the same optimum result

for this cantilever beam problem in both analytical and computational solutions.

Table 3.17 : Comparison of deterministic and reliability based optimization with

analytical stress solutions

w(inch) z(inch)  Area (inch*) Safety Factor Wall Clock Time

Det. 2.2407 4.4814 10.0415 1.5 2 Seconds
RIA 2.4460 3.8922 9.5202 - 2 Seconds
PMA 2.4460 3.8922 9.5202 - 2 Seconds

Comparison of deterministic and reliability based design optimization with

computational stress solutions is shown in Table 3.18.
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Table 3.18 : Comparison of deterministic and reliability based design optimization

with computational stress solutions

w(inch) 7 (inch)  Area (inch®) Safety Factor Wall Clock Time

Det. 2.2135 4.5366 10.041 1.5 5 hours 37 min.
RIA 24000 3.9673 9.5215 - 27 hours 13 min.
PMA 24000 3.9673 9.5215 - 29 hours 10 min.

From now on, we deal with structural solutions in the wing problems because
analytical formulations of stress and displacement values for complex geometries
will not be available. For the beam problem, for each reliability analysis,
computational RIA solution calls Abaqus 11 times to obtain the normal stress value
while computational PMA solution calls Abaqus 12 times. Because of this state, for
one reliability analysis RIA computes the safety index [, approximately in 4
minutes, PMA computes the probabilistic performance measure g, approximately in
5 minutes. After examining Table 3.18, RIA solution is preferred for reliability
analysis in the computational wing problems because RIA solution needs less wall

clock time to obtain the reliability index value when compared to PMA solution.
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4. RELIABILITY BASED DESIGN OPTIMIZATION OF AEROSPACE
STRUCTURES

4.1 Generic Aircraft Wing Introduction

Previously, Nikbay et al. [48] presented a practical structural optimization problem
on a generic three dimensional wing geometry by employing high fidelity softwares
such as Catia, Abaqus and Modefrontier. In this thesis, the previous work will be
extended by incorporating an in-house reliability analysis code written in Matlab into

that high-fidelity structural optimization framework.

4.1.1 Structural Analysis Model

A simple aircraft wing which has a NACAO0012 airfoil profile is modeled
parametrically in Catia V5-R16. The wing's three dimensional geometric model
consists of 90 skin panels, 10 ribs and 4 spars while some of the skin panels are
stiffened by cylindirical annular stringers along the wing span. The wing has a
rectangular platform with 6m semi-span and 1.6m chord length. Finite element
model of the wing is prepared by using Abaqus 6.7.1 and is composed of linear shell
and beam elements. The model is shown in Figure 4.1, and consists of 17,070 linear
quadrilateral elements of shell type, 1264 linear line elements of beam type, a total of

18,334 elements and 16,024 nodes, thus 96,144 degrees of freedom.

Figure 4.1 : Computational model of the wing structure
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All members of the structure are made of aluminium with Young's modulus
E =70000MPa, Poisson ratio v=0.33, density p=2700kg/m’, yield strength
O =400MPa . As a cantilevered boundary condition, all of the degrees of

freedom at the root of the wing are set to zero. The aerodynamic load that will be
applied to the wing is supplied from a computational fluid dynamics (CFD) analysis
performed for the initial design. An Euler inviscid flow analysis was performed for
Mach=0.3 at sea level. For the sake of simplicity, the obtained total lift force of
approximately 25000N is then expressed as an elliptic lift function (4.1) which

changes along the wing span but assumed to be constant along the chord [48].

P(y)=(221%107) (1—y—jJ 4.1)
a

where a is the semi-span (6000 mm) and y is the point along the span on which the
load value should be found in MPa. A static load analysis of this wing will be used as
a reference to dictate the desired optimization constraints for this study. The

structural criteria related to the reference analysis are shown in Table 4.1.

Table 4.1 : Structural analysis results of the reference wing

Criteria Values
Maximum displacement 187 mm
Maximum Von Mises stress 202 MPa
Mass 336 kg
First modal frequency 4.35 Hz

4.1.2 Definition of Optimization Variables

Since ribs, spars and skin panels are modeled as shell elements, the thicknesses of
these elements and the diameter of the stringers are chosen as design parameters. The
thicknesses of spars, ribs and skin panels are divided into three groups along the
wing span (as shown in Figure 4.1), introducing 9 design variables. The outer
diameter of all the stringers are kept constant along the span and expressed as only
one design parameter while the wall thickness of the stringers are taken as one over
third of the outer diameter. In Figure 4.1, the structural components of the wing and
the thickness parameters related to these components are presented so that each

different color shows a different design parameter.
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Since the wing structure is divided into three sections along its span, there are three

independent skin panel thickness variables (¢,,,?,,,%,;), three independent spar
thickness variables (f,,%;,,15;) and three independent rib thickness variables

(tc1stcyst0) in the wing structure. In Figure 4.1, each different color shows a
different independent thickness parameter. Each of these thicknesses is related to its

initial thickness value 7 through an optimization parameter representing the

1

percentile change in thickness n,. n,; is the percentile change in the thicknesses of

skin panel in first section namely cantilevered side, n,, is the percentile change in
the thicknesses of skin panel in the middle section, and n,, is the percentile change

in the thicknesses of skin panel in the tip section. Thus, skin panel thicknesses are

allowed to change as follows;

~ ~ ~

Ly =Nyly Lo =Nl 1y =Nyl 4.2)

where, 1,,,1,,,1,; are the physical design variables describing the skin panel
thicknesses for the three partitions along the span. 7,, is chosen to be on the

cantilevered side. i‘:u , i‘;z ,1,, are the initial values for the thicknesses of skin panels

in three sections. Thus, spar thicknesses are allowed to change as follows;

~ ~ ~

g =Ny ly Ipy =Npolpy  lpy =Npslp, 4.3)

where, g ,15,,15, are the physical design variables describing the spar thicknesses

for the three partitions along the span. f is chosen to be on the cantilevered side.

~

Ty » g by are the initial values for the thicknesses of the three spar partitions.

Finally, rib thicknesses are allowed to change as follows;

~ ~ ~

Loy =Nyl Iea =Ncolcs Tos = Ncslcs 4.4)

where, 7.,,1.,,t-; are the physical design variables describing the rib thicknesses for
the three partitions along the span. 7., is chosen for the first rib on the cantilevered

side. 7.,,%.,,1., are the initial values for the thicknesses of the three different rib

groups.
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The outer diameter of all the stringers are kept constant along the span and expressed
as only one design parameter while the wall thickness of the stringers are taken as

one over third of the outer diameter. Thus, two more design variables, the stringer

outer diameter d,, and the inner wall thickness of the stringer beam ¢, are:

. d
dy=nod, 1,=-2 (4.5)

where d,, is the reference diameter value of the initial wing design.

The thickness optimization variables are constrained to be less than one so that the
initial bulk structure will get lighter with respect to the initial weight. The lower and

upper limits of the thickness optimization variables are chosen as:

0.192<n, <10 0.048<n,<10  0.064<n,,<1.0 (4.6)
0640<n, <10  0480<n,, <10  0.320<n,, <1.0

0.480<n, <10  0240<n,<10  0.080<n,,<1.0

02<n,, <10

In addition, the location of the first four ribs which is the group on the wing root side
and also the location of the middle two spars are variables. The absolute distances

from the root to each of the first four ribs are chosen as four optimization variables
Y1,Y2,Y3) Ya-

500mm < y; < 800mm 4.7)
900mm <y, < 1300mm

1400mm < y; < 1950mm

2150mm < y, < 2800mm

For two middle spars, the ratio of the distance between the leading edge of the wing
to the spar divided by the chord length is chosen as two dimensionless optimization

variables c;, ;.
0.25 < ¢; <045 (4.8)

0.55 < ¢, < 0.75
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A rather bulk wing initial design will be given for the optimization problem since
optimization variables are chosen such as to reduce the thicknesses in any ways. At
the initial configuration, &4, = {4y = t43 = 5mm, g, = tg, = tgz = 20mm,
tcr =ty = tez = 16mm, yl1 = 600mm, y, = 1100mm, y; = 1600mm, y, =
2250mm, c¢; = 0.35, ¢, = 0.65.

4.1.3 Deterministic Optimization of a Generic Aircraft Wing

The deterministic optimization that will be solved has two objectives as minimization
of weight and maximization of the first modal frequency of the structure while
constraining maximum Von Mises stress with the yield strength of the material.
Yield strength is 400 MPa. A safety factor of 1.5 is used on the stress constraint in
the deterministic optimization. The multi-objective optimization problem is

formulated as;

min M(s), max f; (s)
s eS s €S

Oyield
91(s) = m— 1 >0, g1(s) e R
g2(s) = ﬁ— 1 >0, gy(s)eR
gu(s) = 1— L >0, gs(s)eR
’ fi(s) =" 3
M,
9a(s) = M) 1 >0, gs(s) eR

S:{SERISLSSSSU} (4.9)

where M(s) is the total mass, g;(s) are the constraints, U, 4, (s) and 0,,,,(s) are the

maximum tip displacement and maximum Von Mises stress of the wing structure.
u, =187mm and M, =330kg are chosen as reference values from a reference wing
to constrain the displacement and mass. f;(s) is the first natural frequency of the
structure, while f,” =4.35H7 is the first natural frequency of the reference wing. S is
the set of optimization parameters with lower bound s; and upper bound sy.

The designs which are found previously in the deterministic optimization process in
[48] are given in Table 4.2. The design which corresponds to Pareto 1 in Table 4.2 is

chosen as optimum design due to its minimum mass value while still satisfying

constraints. Pareto 1 has a safety index of Bpeterministic = 5-1492.
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Table 4.2 : Pareto designs of deterministic design of generic aircraft wing

Pareto o (MPa) wu_ (mm) Frequency (Hz) Mass (kg)

max

1 198.01 175.23 5.72 263.44
2 183.33 177.21 5.80 277.33
3 177.89 146.02 6.77 289.06

4.1.4 Reliability Based Design Optimization of a Generic Aircraft Wing

The reliability based design optimization problem that will be solved with two
random variables (which are yield strength y,.;4 and Young’s modulus E of the
material), has two objectives which are minimization of weight and maximization of
the first modal frequency of the structure (Equation (4.10)). Thus, the constraints
concerning stress (g,), displacement (g,) and frequency (g3) in this problem
become probabilistic constraints due to their dependencies on the random variables
vector X = [0ye14 E]. 0yjeiq and E are modeled with normal distributions assuming
N(400,20) MPa and N(70000,350) MPa respectively. Then, the multi-objective

optimization problem is formulated as;

min M(s), max f; (s)
s eS s €S

Oyi X
P gf””’(x,s) _ Sea®) >0 =1.0-1077, g""(X,s) R
O-max(s)
u
P prob(x, ——0—1>o]>1.0—1o—7, g7l (x, R
XS) = i Xs) 1202 X,s)
P prob _ flo —7 prob
X,s)=1- fl(Xs)ZO >10-10"7, g5 (X,s)eR
9§t (s) = m -1=0, 9.%(s) €R

S={seR|s; <s<sy} (4.10)

prob

where M(s) is the total mass, g; " (X, s) are the probabilistic constraints, gZ¢*(s)

are the deterministic constraints, U,,q,(X,s) and 0,,,,(s) are the maximum tip
displacement and maximum Von Mises stress of the wing structure. u, =187mm
and M, =330kg are chosen as reference values from a reference wing to constrain
the displacement and mass. f;(X,s) is the first natural frequency of the structure,

while f,’ =4.35Hz is the first natural frequency of the reference wing. S is the set of
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optimization parameters with lower bound s; and upper bound sy. After some
computations, the frequency constraint is not considered to be dominant in the
reliability analysis and treated as a deterministic constraint for the sake of simplicity.

In terms of reliability index, the above optimization problem can be expressed as;

min M(s), max f; (s)
s eS s €S

b prob
pTO (ﬁStress) - ﬁStress ﬁTargetStress 2 0, 91 (ﬁStress) eR

prOb(ﬁDLsp) ﬁDlSp ﬁTarget Disp = O: gzprOb(ﬁDisp) eR
et fO det
1
Et(s) - M( ) 1 2 Ol g4d6t(s) € R
S={seR|s; <s<sy} (4.11)

Here, Brarget stress aMd Brarget pisp are the target reliability indexes for stress and
displacement constraints and chosen as to be 5.1993 for a probability of faiure of
1077, They could have different values but here the same reliability level is chosen.
Equation (4.11) is solved using Modefrontier as an optimizer driver. FORM code
written in Matlab is used for reliability analysis. In Appendix A.8, FORM code with
the script files written in Matlab is shown. Catia is used as a parametric solid
modeler while Abaqus is used to compute the structural response of the wing system.
The optimization workflow for reliability based design optimization (RBDO) is

shown in Figure 4.2.

Solution of the present study took about 72 hours 30 minutes using Modefrontier on
a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor,
with 2.00 GB of RAM on Microsoft Windows XP operating system. At least twice of
the number of optimization parameters should be given as the number of design of
experiments (DOE) (as stated in Modefrontier’s user manual). So, in this study, 52
DOE is used. “Sobol Sequence” is employed to distribute DOE points because
Modefrontier’s user manual recommended “Sobol Sequence” as initial design
population for MOGA algorithm. MOGA-II (Multi Objective Genetic Algorithm II)
is used for attaining optimum result. Finally a total number of 290 designs are
generated for the optimization problem. As a result 75 unfeasible designs and 215

feasible designs are found. The values of pareto designs are given in Table 4.3.
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Table 4.3 : Pareto designs of reliability based structural design

Variables & 1 2 3 4 5 6 7
Criteria

nAl (mm) 0.85 0.92 0.92 0.92 0.82 0.92 0.92
nA2 (mm) 0.40 0.30 0.25 0.27 0.40 0.25 0.27
nA3 (mm) 0.14 0.14 0.17 0.17 0.14 0.17 0.17
nB1 (mm) 0.85 0.82 0.69 0.85 0.85 0.69 0.85
nB2 (mm) 0.68 0.95 0.73 0.63 0.63 0.73 0.63
nB3 (mm) 0.40 0.35 0.50 0.52 0.52 0.50 0.52
nC1 (mm) 0.68 0.83 0.55 0.50 0.50 0.55 0.50
nC2 (mm) 0.44 0.52 0.24 0.24 0.24 0.24 0.24
nC3 (mm) 0.23 0.15 0.25 0.23 0.23 0.25 0.23
nD1 (mm) 0.40 0.33 0.43 0.38 0.38 0.43 0.28
ribl _ref 16 16 16 16 16 16 16
rib2_ref 16 16 16 16 16 16 16
rib3_ref 16 16 16 16 16 16 16
rib_pos_1 (mm) 550 550 700 700 650 700 600
rib_pos_2 (mm) 950 950 1100 1100 1100 1100 1000
rib_pos_3 (mm) 1500 1450 1650 1900 1600 1900 1500
rib_pos_4 (mm) 2250 2250 2650 2750 2500 2750 2400
skinl_ref 5 5 5 5 5 5 5
skin2_ref 5 5 5 5 5 5 5
skin3_ref 5 5 5 5 5 5 5
sparl_ref 20 20 20 20 20 20 20
spar2_ref 20 20 20 20 20 20 20
spar3_ref 20 20 20 20 20 20 20
spar_pos_I (mm)  0.25 0.25 0.45 0.45 0.40 0.45 0.25
spar_pos_2 (mm)  0.55 0.55 0.75 0.55 0.60 0.75 0.55
stringer_outer_ref 15 15 15 15 15 15 15
Bstress 1233 11.15 1066 11.84 11.74 11.85 9.09
Oyiera (MPa) 153.36 177.04 18690 163.21 165.21 163.07 218.23
Boisp 3025 2593  6.19 3232 2686 18.89 1248
E (MPa) 59413 60925 67832 58687 60600 63388 65631
Frequency (Hz) 6.761 7.014 6.126 6419 6.404 6.333 6.136
Mass (kg) 268 278 246 267 258 253 253
Improvement of
Mass +%1.9 +%5.7 -%6.5 +%1.5 -%19 -%3.8 -%3.8
Improvement of
Frequency +%18  +%22  +%7 +%12  +%11  +%10 +%7
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Figure 4.2 : Modefrontier workflow for reliability based structural design

According to the desired criteria, one of the paretos can be chosen as the most
preferred design. The design which corresponds to Pareto 3 in Table 4.3 is chosen as
optimum design due to its minimum mass value while still satisfying the target

reliability index constraints.
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Figure 4.3 : Mass vs frequency space
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The selected pareto design 3 gives approximately %6.5 decrease in mass and %7
increase in frequency with respect to the reference values of 263 kg and 5.72 Hz. All
feasible designs are shown in mass vs frequency space in Figure 4.3 where the
regression line which shows the relationship between objective functions for the
feasible design points are demonstrated. As it is seen from the regression line in
Figure 4.3, the frequency values are decreasing while mass values are increasing as

expected.

In reliability based design optimization of a generic aircraft wing study, the pareto
designs’ reliability constraints are over-satisfied, other optimization drivers except

Modefrontier may prevent this issue.

4.2 Computational Aeroelastic Analysis

A realistic aeroelastic analysis is based on coupling of structural and aerodynamic
responses. In this present study, Mpcci (Mesh-based Parallel Code Coupling
Interface) is used for this required aeroelastic coupling interface.

While Abaqus-6.7.1 is used as finite element solver, 3D inviscid Euler equations are
solved with Fluent-6.3.26. The related two softwares are coupled by the use of Mpcci
to satisfy the required conditions of structural and aerodynamic responses in an
aeroelastic analysis. Then, Abaqus finds the displacements by using the aerodynamic
loads calculated with Fluent.

For a general aeroelastic system consisted of mass-damping-spring model, the

equation of motion can be written in an implicit form as below:
(M1} + [ D)} +[K ) = (£} +{F} w2

We can ignore the time dependent terms in above equation since only the static
aeroelastic effects are considered in this study. Moreover, the aeroelastic analysis
includes only aerodynamic effects for force definition. By using these assumptions,
we can derive an equation which is also compatible with finite element analysis

technique:

[K{u}={F,} (4.13)
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In this study, the flow was assumed to be inviscid while Euler equations were used to
model and solve it. 3D inviscid Euler equations can be written in a conservative

form:

%—V:N-F(w) =0 (4.14)

where w is conservative fluid state variable and can be defined as:

P
PU
w=-< pu,
Py

E

(4.15)

where p denotes the density of fluid; u,,u,,u;are velocities and E is the total internal
energy per mass.

Flux can also be represented by using three components 17"1,17"2, 17“3 as:

PU pu, Py
pu; +p puyi, Pusu,
_.1 =9 puly s _.2 =3 pus+p _.1 =9 Pusi, (4.16)
puity pui, pu; +p
(E+ pu, (E+ p)u, (E+ p)u,

4.3 AGARD 445.6 Wing Introduction

In the final step of this study, RBDO is applied to an aeroelastic optimization
problem. The well-known AGARD (Advisory Group for Aerospace Research and
Development) 445.6 wing is chosen as the wing structure. This wing is the first
aeroelastic configuration that is tested by Yates [54] in the “Transonic Dynamics
Tunnel (TDT)” at the NASA Langley Research Center. Deterministic aeroelastic
optimization of AGARD 445.6 wing problem was presented formerly in the work of
Nikbay [47] for the free stream Mach number of 0.85 and the angle of attack of 5
degrees. In the present work, we consider a set of random variables for fluid and

structural domain X = [0y;iq M @] while uncertainties in yield strength, Mach

number and angle of attack will be accounted in the reliability analysis.
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Figure 4.4 : Definition of angle of attack on an airfoil, lift and drag forces

4.3.1 Aeroelastic Analysis Model

The AGARD 445.6 wing is a swept-back wing with a quarter-chord sweep angle of
45 degrees. Cross sections of the wing are NACA 65A004 airfoils. The wing has a
taper ratio of 0.66 and an aspect ratio of 1.65. Moreover, it is a wall-mounted model
made with laminated mahogany. The wings parametric CAD model prepared with
Catia-V5 is given in Figure 4.5. There are 2 models of the AGARD 445.6 wing: solid
and weakened model. In this study weakened model of the wing is used. The finite
element model in Abaqus is composed of 19,610 linear hexahedral structural
elements. The computational grid of the flow domain was constructed in Gambit
with 691,000 tetrahedral elements and 1.35 million faces. The flow is modeled with

the Euler equations.

(a) Wing geometry (lengths in inches) (b) The finite element model of the wing

Figure 4.5 : AGARD 445.6 wing geometry and FEM model
4.3.2 Deterministic Optimization of AGARD 445.6 Wing

There are two objective functions in this deterministic optimization problem which

are maximizing the % ratio and minimizing the weight (Equation (4.17)). Mach
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number and angle of attack are 0.85 and 5 respectively. Then, the multi-objective

optimization problem is formulated as;

. L
MINg eg M(S) » MaAX eg D (S)

Ug

Umax ()

g1(s) = -1 =0, g:1(s) eR

S={seR|s, <s < sy) S=(/1,/1£) 01<1<05 0°§A£S500 w“r

where M(s) is the total mass of the wing, %(s) is the lift over drag value for the

wing. g;(s) are the constraints, U,q,(s) is the maximum tip displacement. A is the

C..
taper ratio defined as A=—"- and Ac is the sweep value at the quarter chord.
c 4

root
u, =76mm is chosen as reference value to constrain the displacement. S is the set of
optimization parameters with lower bound s; and upper bound sy,.
The designs which are found previously in the deterministic optimization process in
[47] are given in Table 4.4. The design which corresponds to Pareto 3 in Table 4.4 is

chosen as optimum design due to its minimum mass value while still satisfying the

displacement constraint.

Table 4.4 : Pareto designs of deterministic design of AGARD 445.6 wing

Pareto 3 (mm) L Mass (kg)
D
1 60.6254 12.5754 1.4885
2 70.6557 12.2043 1.0853
3 57.9876 11.4589 0.9715

4.3.3 Reliability Based Aeroelastic Optimization of AGARD 445.6 Wing

There are two objective functions in this problem which are maximizing the L ratio

and minimizing the weight (Equation (4.18)). The yield strength gy;¢;4, free stream

Mach number M and the angle of attack a are modeled with normal distributions
assuming N(8,0.4) MPa, N(0.85,0.03) and N(5,0.25) respectively. Then, the

multi-objective optimization problem is formulated as;

. L
Tip M) max ()
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prob O-yield (X) -7 p‘rob
X,s)=—2%"" _1>0/>10-107, X, R
lgl (X.5) Omax(X, 5) (X,s) €
u
PlgP™’(X,s) =—2 1 > o] >1.0-1077, g¥"(x, R
e e R b (X5) €

S={seR|s, <s < sy) S=(/1,/1§) 01<1<05 o°§AZSSOo s

where M(s) is the total mass of the wing, %(s) is the lift over drag value for the

wing. g7 "°P(X,s) are the probabilistic constraints, U, (X,s) and 0,4, (X,s) are

the maximum tip displacement and maximum Von Mises stress of the wing structure.

c,
A is the taper ratio defined as A=—%2 and Ac is the sweep value at the quarter
c

root

chord.

|
Tip Chord |

Sweep Angle

Height —— |

Root Chord

Figure 4.6 : Sweep angle, tip and root chords

u, =76mm is chosen as reference value to constrain the displacement. S is the set of

optimization parameters with lower bound s; and upper bound sy. In terms of

reliability index, the above optimization problem can be expressed as;
in M(s), max = ()
mip M() max; (s

b
glpro (ﬁStress) eR

v
L

b
pro (ﬂStress) - ﬁStress ﬂTarget Stress

v
R

b b
ggm (ﬂDisp) :BDisp - BTargetDisp ggm (ﬂDisp) eR
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S—{seR|s, <5 <5y} S:(’Mf) 01205 0 <A <50° @.19)

Here, the target reliability indexes for stress and displacement constraints are chosen
as to be 5.1993 for a probability of faiure of 10E-7. Several commercial software
codes were coupled during the optimization process in this problem. Fluent-6.3.26 is
used to solve inviscid 3D Euler equations, Gambit to generate the fluid domain mesh
generator and Catia-V5-R16 to model the parametric 3D solid. Abaqus-6.7.1 was
used to compute the structural response of the aeroelastic system. Mesh based
parallel code coupling interface Mpcci-3.0.6 was used to exchange the pressure and
displacement information between Fluent and Abaqus. Modefrontier-4.0 was used as
a multi-objective and multidisciplinary optimization software to solve the Equation
(4.19). FORM code written in Matlab is used for reliability analysis. The flowchart
of the FORM code is given in Figure 4.7. In Appendix A.9, FORM code with the

script files written in Matlab is shown.

Define random variables
X= [a-yl'eldl M(lCh, (X]

!

N X = Xk
Ifk=1X% = ux
Compute performance N Von Mises Stress Calculation
function g, (X), and its < ) o
gradient Vg, (X) 1- Mach, a values are written fluent.jou via a

Python script fluent_change.py

|

Compute 3 using FORM

2- fluent.jou is given as an input file to Fluent

If & = 1, compute f using MVFOSM 3- Fluent creates agard.cas for Mpcci
l 4- Mpcci analysis are started, as a result Von
Compute new design point X, Mises stress value is taken with a Python

script getMises.py

No (k=k+1)

B converges ?

Figure 4.7 : Flowchart of the FORM code for AGARD 445.6 wing
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The optimization workflow for reliability based aeroelastic design can be shown in
Figure 4.8. In Figure 4.8, Catia V5 node updates the optimization variables by using
the parametric 3D CAD model. Then, the new geometric model is transferred to
Gambit in “iges” format. Gambit uses a journal file to prepare the fluid mesh and to
update the boundary conditions and then transfers the mesh file to Fluent node.
Fluent updates the optimization variables and imports the mesh files. Next, Fluent
prepares the flow model and sets boundary conditions through a journal file and
transfers the “case” file to Mpcci for the aeroelastic analysis. In CSD preprocessing,
Catia V5 node updates the optimization variables by using the parametric 3D CAD
model. Abaqus updates the structural model by using a Python script and transfers
the input file to Mpcci for the aeroelastic analysis. Then Mpcci performs the
coupling by using the Fluent and Abaqus models in batch mode. This aeroelastic
analysis produces a result file that contains the aerodynamic and structural criteria.
At each optimization iteration, an inner loop for reliability analysis is performed at
the Matlab node. Modefrontier controls the constraint violation for both deterministic
and probabilistic criteria. MOGA-II controls the optimization process and if needed,

new iteration process starts.

area chord

taper sweep gampit_jou %\j_?l %
Avd
catia_gambit et_gambit $'\Ijj fluent_jou
chr Suppor_Files nonlcon_agard Q
%
DOE —DC DEC E s ; Sﬂt <
omg Q o E
Sam .
o =0 >80
trapsfer_gambit_iges transfer_cfd_mesh
Scheduler:M O GA-II
s
C start
8" end majlab Exit
o] -
‘EEE' sweep_axis ﬁ PQEFC DEC o
Q Q beta_stress Const_stress
SWesp_
i —blLo—p3E
o o/ R
taper_ abagus_input_py %Ij - % g
%‘(‘ Mach_s
catia_apaq set_abaqus Output
Exm
ey . LoBye A
[=]
i \'I:‘aﬂi — %:ln
i cl
I'"J:LB“_ transfer_mpeel_fea 4 A maxsfines,
transfer_abad_iges d‘ > M
c > &
Emm— LS
: beta_disp Const_disp
volume min_weight
SR %, 4(«‘44115—[2@3
b %l >y
Mach_d
O
Alfa_d
—(>|%:1

Figure 4.8 : Modefrontier workflow for reliability based aeroelastic design
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Solution of the present study took about 215 hours 40 minutes using Modefrontier on
a workstation with Intel(R) Core(TM) 2 Quad CPU Q6700@2.40 GHz processor,
with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 12
design of experiments (DOE) is used. “Sobol Sequence” is employed to distribute
DOE points. MOGA-II (Multi Objective Genetic Algorithm II) is used for attaining
optimum result. Finally a total number of 43 designs are generated for the
optimization problem. As a result 20 unfeasible designs and 23 feasible designs are
found. The values of pareto designs are given in Table 4.5. According to the desired
criteria, one of the paretos can be chosen as the most preferred design. The design

which corresponds to Pareto 3 in Table 4.5 is chosen as optimum design due to its
minimum mass value, satisfactory % ratio, while still satisfying the target reliability

index constraints.

Table 4.5 : Pareto designs of reliability based aeroelastic design

Variables & Criteria 1 2 3 4 5 6
Sweep 8 16 8 10 10 18
Taper 0.225 0.275 0.200 0.225 0.250 0.325
Cp 0.039 0.038 0.040 0.039 0.039 0.037
C, 0.454 0.447 0.457 0.454 0.451 0.438
Bstress 6.133 5.444 6.323 6.045 5.858 5.233
Oyiela (MPa) 6.109 6.484 6.031 6.152 6.221 6.628
Mgiress 0.913 0.927 0911 0.912 0.910 0.933
Astress 5.823 5.740 5.853 5.828 5.809 5.703
Bpisp 5.923 5.296 5.374 5.555 6.057 5.209
Mpsp 0.928 1.009 0.924 0.928 0.928 0.936
Apisp 6.333 5.000 6.193 6.228 6.369 6.087
L/D 11.539 11.713 11.534 11.561 11.576 11.767
Mass (kg) 1.116 1.182 1.085 1.116 1.149 1.252

Improvement of Mass  +%14.9 +%21.0 +%11.7 +%14.9 +%18.3 +%28.9
Improvement of L /D +%0.7  +%2.2 +%0.7 +%0.9 +%1.0 +%2.7

The selected pareto design 3 gives approximately %11.7 increase in mass and %0.7
increase in L/D ratio with respect to the reference values of 0.9715 kg and 11.4589.
All feasible designs are shown in mass vs L/D ratio space in Figure 4.9 where the
regression line which shows the relationship between objective functions for the
feasible design points are demonstrated. As it is seen from the regression line in

Figure 4.9, the L /D values are increasing while mass values are increasing.
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Figure 4.9 : Mass vs L /D ratio space
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S. CONCLUSION AND FUTURE WORK

In this work, Reliability Index Approach (RIA) and Performance Measure Approach
(PMA) are implemented in an in-house developed RBDO code and integrated into a
multidisciplinary optimization framework composed of high-fidelity commercial
softwares. In this framework, finite volume based flow solver Fluent is used to solve
inviscid 3D Euler equations and Catia is used as a parametric 3D solid modeler.
Abaqus, a structural finite element method solver, is used to compute the structural
response of the aeroelastic system. MPCCI, mesh based parallel code coupling
interface, is used to exchange the pressure and displacement information between
Fluent and Abaqus to perform a loosely coupled aeroelastic analysis. Modefrontier is
employed as a multi-objective and multi-disciplinary optimization driver to control
the optimization work flow. The optimization criteria include both deterministic and

probabilistic constraints with both structural and aerodynamic uncertainties.

The RBDO methodology is validated with an example from the literature, then
extended to optimization of a generic wing structure and finally applied to an
aeroelastic optimization problem for AGARD 445.6 wing. In the wing structures,
Hasofer-Lind iteration method is implemented in Matlab to compute MPP (Most
Probable failure Point) solution. In the final application, random variation in
structural and aerodynamic parameters such as in yield strength, Mach number and

angle of attack are considered.

The presented reliability based multidisciplinary optimization process is proven to be
fully-automatic, modular and practical which could find potential applications in

industrial problems.

Future work for this study, the developed RBDO methodology could be applied to
dynamic fluid-structure interaction problems. FORM and SORM are adequate for the
low variations of the limit-state function, in high variations, expansion methods such
as polynomial chaos expansion (PCE) can be used and the number of uncertain

parameters could be increased. Usage of Mpcci for aeroelastic analysis takes too
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much computation time, other software applications can be used to overcome this

issue.
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APPENDIX A.1

Cumulative Standard Normal Distribution Table

Shaded Area= © (& )

) 0 z
Statistical Table of Cumulative Standard Normal Distribution (from —cto § )

< normecf( ) in MATLAB® >

£ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 |0.50000 0.50399 | 0.50798 0.51197 0.51595 0.51994 052392 |0.52790 0.53188 0.53586
0.1 |0.53983 0.54380 0.54776|0.55172 | 0.55567 0.55962  0.56356 | 0.56749 0.57142 0.57535
0.2 10.57926 058317 0.58706  0.59095 0.59483 0.59871  0.60257 | 0.60642 061026 0.61409
0.3 [0.61791 0.62172 | 0.625520.62930 0.63307 0.63683  0.64058 | 0.64431 0.64803 0.65173
0.4 |0.65542 065910 0.66276  0.66640 0.67003 0.67364  0.67724 | 0.68082 0.68439 0.68793
0.5 |0.69146 0.69497 0.69847 | 0.70194 | 0.70540 | 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 |0.72575 0.72907 0.73237 | 0.73565 | 0.73891 | 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 |0.75804 0.76115 0.76424 | 0.76730 | 0.77035  0.77337 0.77637 | 0.77935 0.78230 0.78324
0.8 |0.78814 0.79103 0.79389 | 0.79673 | 0.79955 0.80234 0.80511 |0.80785 0.81057 0.81327
0.9 |0.81594 0.81859 | 0.8212]1 0.82381 0.82639 0.82894 0.83147|0.83398 0.83646 0.83891
1.0 [ 0.84134 0.84375 0.84614 | 0.84849 | 0.85083 0.85314  0.85543 | 0.85769 0.85993 0.86214
1.1 |0.86433 | 0.86650 0.86864  0.87076 0.87286 0.87493 | 0.87698 | 0.87900 0.88100 0.88298
1.2 | 0.88493 | 0.88686 0.88877  0.89065 | 0.89251 0.89435 0.89617 | 0.89796 0.89973 0.90147
1.3 10.90320 0.90490 0.90658 | 0.90824 | 0.90988 0.91149 091308 |0.91466 091621 091774
L4 |0.91924 | 0.92073 092220 0.92364 092507 0.92647 | 092785 |0.92922 0.93056 0.93189
1.5 [0.93319 0.93448 0.93574 | 0.93699 | 093822 0.93943 | 0.94062 | 0.94179 0.94295 0.94408
1.6 |0.94520 | 0.94630 0.94738 | 0.94845 | 094950  0.95053 | 0.95154 | 0.95254 0.95352 0.95449
1.7 |0.95543 | 0.95637 095728 095818 095907 0.95994 096080 | 0.96164 0.96246 0.96327
1.8 | 0.96407 0.96485 0.96562 | 0.96638 | 0.96712 0.96784  0.96856 | 0.96926 0.96995 0.97062
1.9 10.97128 097193 0.97257|0.97320 | 0.97381 0.97441 097500 | 0.97558 0.97615 0.97670
2.0 [0.97725 097778 | 097831 0.97882 097932 0.97982 0.98030|0.98077 0.98124 098169
2.1 |0.98214 0.98257 0.98300 | 0.98341 098382 0.98422 098461 | 0.98500 0.98537 0.98574
2.2 |0.98610 098645 098679 098713 098745 0.98778 0.98809 | 0.98840 0.98870 0.98899
2.3 |0.98928 098956 | 0.98983 0.99010 099036 0.99061 099086 |0.99111 0.99134 099158
2.4 [0.99180 099202 099224 0.99245 099266 0.99286 0.99305 | 0.99324 0.99343 099361
2.5 10.99379 | 0.99396 0.99413 | 0.99430 | 0.99446  0.99461 | 0.99477 | 0.99492 0.99506 | 0.99520
2.6 |0.99534 099547 | 099560  0.99573 099585 0.99598  0.99609 | 0.99621 0.99632 0.99643
2.7 1099653 0.99664 0.99674 | 0.99683 | 0.99693 0.99702 099711 | 0.99720 0.99728 0.99736
2.8 [0.99744 099752 099760 | 0.99767 099774 0.99781 099788 | 0.99795 0.99801 099807
29 [0.99813 099819 099825 0.99831 0.99836 0.99841 0.99846 | 0.99851 0.99856 0.99861
3.0 10.99865 0.99869 0.99874 | 0.99878 0.99882 0.99886  0.99889 | 0.99893 0.99896 0.99900
3.1 [0.99903 099906 | 099910 0.99913 099916 0.99918 099921 | 0.99924 0.99926 0.99929
3.2 10.99931 099934 | 099936  0.99938 099940 0.99942  0.99944 | 0.99946 0.99948 0.99950
3.3 1099952 0.99953 0.99955|0.99957 | 0.99958 0.99960  0.99961 | 0.99962 0.99964 0.99965
3.4 [0.99966 0.99968 | 099969 0.99970 099971 0.99972 099973 | 0.99974 0.99975 0.99976
3.5 [0.99977 0.99978 | 0.99978 | 0.99979  0.99980  0.99981  0.99981 | 0.99982 0.99983  0.99983
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APPENDIX A.2

Derivation of Hasofer-Lind Reliability Index
From Equation (2.52), we have the first-order Taylor series expansion of g(U) at the

MPP.

JW) ~ g + T, 222 (g - u) (1

From Equation (2.36), we have

u = 2)

O'Xi

The first derivative of Equation (2) is

dx;

du; = 3)
Xi
From Equation (3),
dgw”) _ dg”)
ow, | ox OXi 4)
Equation (1) can be rewritten as
0 *
JW) ~ g) + Ty 22 0y, (g — u) 3)
The mean value of G(U) is
" a * ag(u” *
ug ~ E[GW)] = Elg)] + E [T, 2 2 0| - E [T, 20|  (©)
In Equation (6),
E[g(u)] = g(u’) (7)
[ agu”) ] agu”)
E 2, 20 0| = B [T, 2972 (i — x| ®)
| ag(u”) ] dg(u”) dg(u”)
E |2, ax; axiui_:E[?la ] E[?l dx; Mi] ©)
| dg(u”) ] dg(u”) dg(u”)
E_ i=1 %,:, Ox;Ui| = Elx;] Xiy ox; _E[Hxi] i=1 ox; (10)
| dg(u”) ] ag(u”) dg(u”)
E I =1 %;i Ox;Ui| = Hx; =1 ox; — Ux; =1 ox; =0 amn
[ agu”) X agu”) *
E_ =1 ox; Ox Ui | = =1 ox; Ox,U; 12)
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Using Equations (7), (11) and (12) in Equation (6) we obtain,

dgu”) x
— n

ng =~ E[g(U)]
The standard deviation of §(U) is

Var[g(U)]

In Equation (14) using Equation (5),

~ . ag(u* .
Var[g(W)] = Var[g@)] + Var | T, 2252 o, (w — u))]
Var[g(W)] = Varlg)] + Var |2, 2™ oy u,| - var [T
In Equation (16),

Var[g(u’)] =0

[ agu”) ] agu”)

Var i i=1 %;i Ox; Ui =Var[ i=1 %;i (xi_ﬂxi)]

[ n agu®) 1 _ n agu®) _ n ag(u®)
Var_ =15y, %, Ui —Var[ =15y, xi] Var[ =15y,

[y 29 ' dg(w* 99>
Var_ . %;i O, U =xr ( . ) Var|x;] = ?=1( o]

[ agu”) X
Var | ?=1 ga;t O-Xi i_ =0

Using Equations (17), (20) and (21) in Equation (16),

_ 9 N\ 2
var[g(W)] = T, (%42) o,
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APPENDIX A.3

Deterministic Design Optimization of a Cantilever Beam Matlab Code
main.m

% Deterministic Design Optimization of a Cantilever Beam

% Filename: main.m

% Date  :09.10.2010

% Code was written by MUHAMMET NASIF KURU

% Note : objective.m and nonlcon.m must be in the same directory
% Output : Area = w*t, width and thickness values

clc; clear;

% Optimization Variables : w, t

x0=14.0;4.0];

options = optimset('Largescale','off’,'Display','iter');

[x, fval] = fmincon(@objective, x0, [], [1, [1, [1, [, [], @nonlcon,options)

objective.m
function f = objective(x)

f=x(1) *x(2); % w *t

nonlcon.m
function [c, ceq] = nonlcon(x)
% Optimization Variables : w, t
w =x(1);
t=x(2);
% The random variables (R, X, Y) are fixed at their means.
R =40000;
X =500;
Y = 1000;
9% Maximum Normal Stress
S=600*Y/(w*t"2)+600* X/ (W2 *t);
% Limit State Function

safety_factor = 1.5;
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g =R - safety_factor * S;
9% Constraints

c(l) =-g;

ceq = [I;
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APPENDIX A 4

Reliability Based Design Optimization of a Cantilever Beam Matlab Code
(Analytical RIA)

main.m

% Reliability Based Design Optimization of a Cantilever Beam

% Reliability Index Approach and First Order Reliability Method (FORM) is
% used.

% Filename : main.m

% Date :04.04.2011

% Code was written by MUHAMMET NASIF KURU

% Output : Area = w*t, width and thickness values

clc; clear;

% Optimization Variables : w, t

d0 =[4.0; 4.0];

options = optimset('Display’, 'iter', MaxFunEvals',2000, TolCon',1e-6, TolFun',1e-
6,'TolX',1e-6);

[d, fval] = fmincon(@objective, dO, [], [1, [1, [1, [, [], @nonlcon, options)

objective.m
function f = objective(d)

f=d(1) *d(2);

stress.m
function f = stress(a)
R =a(l);
X =a(2);
Y =a(3);
w = a(4);
t =a(s);
f =R-(600*Y/(w*(t"2))+600*X/((W"2)*t));
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displacement.m

function f = displacement(a)

E =a(l);

X =a(2);

Y =a(3);

w =a(4);

t=a(d);

DO =2.2535;

L =100.0;

D =4 * A3 * sqrt((Y/t"2)2+(X/w 2)"2) [ (E * w * t)
f=D0 - D;

beta_stress.m
function beta_s = beta_stress(d)
% This function evaluates the beta stress value for the given design and

% returns the beta_s value

%R, X,Y

x_mean = [40000,500,1000]; % Mean values

x_standard = [2000, 100, 100]; % Standard deviations

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point
u=|[0,0,0]; % Initial design point in the standard normal space
[row, col] = size(x);
i=1;
while (convergence >= 0.001)
display('Tteration: ');
a=[x,d]; PRXYwt
m_g = stress(a); % Limit state function's value at design point
% Gradient calculation using central finite differences method
for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k);
P2 = stress([x,d"]);

80



x(k) = (u(k) - h) * x_standard(k) + x_mean(k);
P1 = stress([x,d"]);
grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k);
x(k) = temp;
end
9% End gradient calculation
sigma_g = sqrt(sum((grad .* x_standard).*2));
ifi==1
display('MVFOSM Beta:');
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g;
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g;
end
X = X_mean + beta(i) .* x_standard .* alfa; % Compute a new design point
u = (X - x_mean) ./ X_standard;
% Check beta convergence
ifi==1
convergence = 10;
else

convergence = abs(beta(i) - beta(i-1)) / beta(i-1);

end
i=i+1;
end
mpp = [x(1), x(2), x(3)]; 9% Most probable failure point (MPP)
a = [mpp,d];
mpp_g = stress(a); % Limit state function's value at the MPP
beta_s = beta(size(beta,2)); % Shortest distance to the MPP

beta_displacement.m

function beta_d = beta_displacement(d)
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% This function evaluates the beta displacement value for the given design and

% returns the beta_d value

%E, X, Y

x_mean = [29E6,500,1000]; % Mean values

x_standard = [1.45E6, 100, 100]; % Standard deviations

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point
u=|[0,0,0]; % Initial design point in the standard normal space
[row, col] = size(x);
i=1;
while (convergence >= 0.001)
display('Tteration: ');
a=[xd]; %EXYwt
m_g = displacement(a); % Limit state function's value at design point
% Gradient calculation using central finite differences method
for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k);
P2 = displacement([x,d']);
x(k) = (u(k) - h) * x_standard(k) + x_mean(k);
P1 = displacement([x,d']);
grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k);
x(k) = temp;
end
9% End gradient calculation
sigma_g = sqrt(sum((grad .* x_standard).*2));
ifi==
display('MVFOSM Beta:');
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g;
else
display('FORM Beta :')

beta_upper = sum(grad .* x_standard .* u);
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beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g;
end
X = X_mean + beta(i) .* x_standard .* alfa;
u = (X - x_mean) ./ X_standard;
% Check beta convergence
ifi==1
convergence = 10;

else

% Compute a new design point

convergence = abs(beta(i) - beta(i-1)) / beta(i-1);

end
i=i+1;

end

mpp = [x(1), x(2), x(3)]; 9% Most probable failure point (MPP)

a = [mpp,d'];

mpp_g = displacement(a); % Limit state function's value at the MPP

beta_d = beta(size(beta,2)); % Shortest distance to the MPP

nonlcon.m

function [c, ceq] = nonlcon(d)
beta_t = 3.0;

beta_s = beta_stress(d)

beta_d = beta_displacement(d)
c(1) =beta_t - beta_s;

¢(2) = beta_t - beta_d;

ceq = [I;
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APPENDIX A.5

Reliability Based Design Optimization of a Cantilever Beam Matlab Code

(Computational RIA)
nonlcon.m

function nonlcon()

% This function evaluates the beta value for the given design

% Output : output.dat
display('Beta Stress Calculation')
display('Optimization Variables')
d=[w, t];

w=d(1)

t=d(2)

% R, X, Y

x_mean = [40000,500,1000];
x_standard = [2000, 100, 100];
h=0.1;

convergence = 10;

9% Mean values
% Standard deviations
% For gradient calculation increment amount

% To start the while loop, it is necessary

x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point

u=|[0,0,0]; % Initial design point in the standard normal space

[row, col] = size(x);

i=1;

while (convergence >= 0.01)
display('Iteration : ');
grad = [];

vonmises = vonmises_calculate([x,[w, t]]) %RXY wt

m_g = x(1) - vonmises

% Limit state function's value at design point

% Gradient calculation using central finite differences method

for k = 1:col
temp = x(k);

x(k) = (u(k) + h) * x_standard(k) + x_mean(k)

if (k ~= 1)

vonmises = vonmises_calculate([x,[w,t]])
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end
P2 =x(1) - vonmises
x(k) = (u(k) - h) * x_standard(k) + x_mean(k)
if(k~=1)
vonmises = vonmises_calculate([x,[w,t]])
end
P1 =x(1) - vonmises
grad(k) = ((P2 - P1) /(2 * h)) / x_standard(k)
x(k) = temp;
end
9% End gradient calculation
display('Gradient')
grad
sigma_g = sqrt(sum((grad .* x_standard).”2));
ifi==1
display('MVFOSM Beta :')
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
end
display('New Design Point')
X = X_mean + beta(i) .* x_standard .* alfa % Compute a new design point.
u = (X - x_mean) ./ X_standard
% Check beta convergence
ifi==
convergence = 10;
else
convergence = abs(beta(i) - beta(i-1)) / beta(i-1)
end

1=1+1;
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end

mpp = [x(1), x(2), x(3)] 9% Most probable failure point (MPP)
vonmises = vonmises_calculate([mpp,[w,t]])

mpp_g = mpp(1l) - vonmises % Limit state function's value at the MPP
converged_beta = beta(size(beta,2)) % Shortest distance to the MPP

f_write = fopen('output.dat’, 'w');

% converged_beta, R, S, g=R-S, X, Y

fprintf(f_write, '%f\n%f\n%\n%f\n%f\n%f\n', converged_beta, mpp(1), vonmises,
mpp_g, mpp(2), mpp(3));

fclose(f_write);

exit

vonmises_calculate.m
function vonmises = vonmises_calculate(a)
E =29 * 10"6;
% Write the values that must be updated for the given design to "mtlb.txt"
fid = fopen('mtlb.txt', 'w');
9% w,t,E, x,y
fprintf(fid, '%f %f %t %f %f, a(4), a(5), E, a(2), a(3));
fclose(fid);
% Updates the abaqus.py for the given input file "mtlb.txt"
'python writeinput_beam.py
% Call abaqus to calculate the maximum normal stress value
labq671.bat cae noGUI=abaqus.py
% Takes the maximum normal stress value from the abaqus output file
% "beam_stress.rpt"
'python getMises_beam.py
% Assigns the maximum normal stress value to the variable "vonmises"
fid = fopen('mises.dat’, 'r');
vonmises = fscanf(fid, '%f, 1);

fclose(fid);

writeinput_beam.py

import re, 0s
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a = open("abaqus.py", "r")
b = open("abaqus_temp.py", "w")
matlab = open("mtlb.txt","r")
e = matlab.read()
value = e.split(" ")
k=0
for 1 in value:
value[k] = float(i)
k=k+1
for 1 in a.readlines():
w = re.search("(.*Rect-Profile\'\,)(.*)\)",1)
E=re.search("(mdb.models\[\'ModeN\1\'\]\. materials\[\' Aliminium\\]\. Elastic\(
table=\(\O(.*)\,", 1)
fl=re.search("(region=region, cf3=)(.*)\,(.*)", 1) # Load x
f2=re.search("(region=region, cf2=-)(.*)\,(.*)", 1) # Load y
if w:
w_write = w.group(1) + " a=" + str(value[0]) + ", b=" + str(value[1]) + ")\n"
b.write(w_write)
elif E:
E_write = E.group(1) + str(value[2]) + ", 0.29), \n"
b.write(E_write)
elif f1:
f1_write = fl.group(1) + str(value[3]) + "," + f1.group(3) + "\n"
b.write(f1_write)
elif £2:
f2_write = f2.group(1) + str(value[4]) + "," + f2.group(3) + "\n"
b.write(f2_write)
else:
b.write(i)
a.close()
b.close()
os.remove("abaqus.py")

" "

os.rename("abaqus_temp.py", "abaqus.py")
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getMises_beam.py
# Input : beam_stress.rpt
# Output : mises.dat
import re, 0s
a = open("beam_stress.rpt", "r")
b = open("mises.dat", "w"
for 1 in a.readlines():
mises = re.search(".*Maximum(.*)", 1)
if mises:
liste = mises.group(1)
liste1l = liste.strip()
liste2 = listel.split(" ")
v_mises = float(liste2[0])
b.write(str(v_mises))
a.close()

b.close()

os.remove('beam_stress.rpt")

abaqus.py

# -*- coding: mbcs -*-

# Abaqus/CAE Version 6.7-1 replay file

# Internal Version: 2007_05_01-12.35.33 79448

# Run by Owner on Sun Feb 27 09:49:11 2011

# from driverUtils import executeOnCaeGraphicsStartup

# executeOnCaeGraphicsStartup()

#: Executing "onCaeGraphicsStartup()" in the site directory ...

from abaqus import *

from abaqusConstants import *

session. Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=133.858588412404,
height=162.841807678342)

session.viewports['Viewport: 1'].makeCurrent()

session.viewports['Viewport: 1'].maximize()

from caeModules import *

from driverUtils import executeOnCaeStartup
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executeOnCaeStartup()

Mdb()

#: A new model database has been created.

#: The model "Model-1" has been created.

session.viewports['Viewport: 1'].setValues(displayedObject=None)

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF,
engineeringFeatures=OFF)

s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',
sheetSize=300.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

s.Line(point1=(0.0, 0.0), point2=(100.0, 0.0))

s.HorizontalConstraint(entity=g[2])

p = mdb.models[ Model-1'].Part(name="Part-1', dimensionality=THREE_D,
type=DEFORMABLE_BODY)

p = mdb.models['Model-1'].parts[ Part-1']

p-BaseWire(sketch=s)

s.unsetPrimaryObject()

p = mdb.models['Model-1'].parts[ Part-1']

session.viewports['Viewport: 1'].setValues(displayedObject=p)

del mdb.models['Model-1'].sketches["__profile__']

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,
engineeringFeatures=ON)

mdb.models['Model-1'].Material(name='Aliminium')

mdb.models['Model-1'].materials['Aliminium']. Elastic(table=((29000000.0, 0.29),
)

mdb.models['Model-1'].RectangularProfile(name='Rect-Profile', a=2.4, b=3.9673)

mdb.models['Model-1']. BeamSection(name='"BeamSection', profile="Rect-Profile’,
integration=DURING_ANALYSIS, poissonRatio=0.0, material='Aliminium’,
temperatureVar=LINEAR)

p = mdb.models['Model-1'].parts[ Part-1']

e = p.edges

edges = e.getSequenceFromMask(mask=("[#1 [, ), )

region = regionToolset.Region(edges=edges)
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p = mdb.models['Model-1'].parts[ Part-1']

p-SectionAssignment(region=region, sectionName='BeamSection', offset=0.0)

a = mdb.models['Model-1'].rootAssembly

session.viewports['Viewport: 1'].setValues(displayedObject=a)

al = mdb.models['Model-1'].rootAssembly

al.DatumCsysByDefault(CARTESIAN)

p = mdb.models['Model-1'].parts[ Part-1']

al.Instance(name="Part-1-1', part=p, dependent=0OFF)

session.viewports['Viewport: 1'].assemblyDisplay.setValues(
adaptiveMeshConstraints=ON)

mdb.models['Model-1'].StaticStep(name='Step-1', previous="Tnitial,
description='"Beam-Step', initiallnc=0.1)

session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1")

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,
predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF)

a = mdb.models['Model-1'].rootAssembly

vl = a.instances| 'Part-1-1'].vertices

vertsl = vl.getSequenceFromMask(mask=("[#1 ], ), )

region = regionToolset.Region(vertices=verts1)

mdb.models['Model-1']. DisplacementBC(name="BC-1', createStepName='Step-1',
region=region, ul=0.0, u2=0.0, u3=0.0, ur1=0.0, ur2=0.0, ur3=0.0,
amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=",
localCsys=None)

session.viewports['Viewport: 1'].view.setValues(nearPlane=143.167,
farPlane=256.833, width=75.1627, height=63.0594, cameraPosition=(203.29,
29.8088, 124.954), cameraUpVector=(-0.145208, 0.987729, -0.0574938))

a = mdb.models['Model-1'].rootAssembly

vl = a.instances| 'Part-1-1'].vertices

vertsl = vl.getSequenceFromMask(mask=("[#2 ], ), )

region = regionToolset.Region(vertices=verts1)

mdb.models['Model-1'].ConcentratedForce(name="Load-x', createStepName="Step-

L,
region=region, cf3=715.061054, localCsys=None)

a = mdb.models['Model-1'].rootAssembly

90



vl = a.instances| 'Part-1-1'].vertices

vertsl = vl.getSequenceFromMask(mask=("[#2 ], ), )

region = regionToolset.Region(vertices=verts1)

mdb.models['Model-1'].ConcentratedForce(name="Load-y', createStepName="Step-

L,
region=region, cf2=-1130.117876, localCsys=None)

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=ON, loads=OFF,
bes=0FF, predefinedFields=OFF, connectors=OFF)

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues(
meshTechnique=ON)

a = mdb.models['Model-1'].rootAssembly

partInstances =(a.instances['Part-1-1'], )

a.seedPartInstance(regions=partInstances, size=0.01, deviationFactor=0.1)

elemTypel = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD)

a = mdb.models['Model-1'].rootAssembly

el = a.instances['Part-1-1'].edges

edgesl = el.getSequenceFromMask(mask=("[#1 ], ), )

pickedRegions =(edgesl, )

a.setElementType(regions=pickedRegions, elemTypes=(elemTypel, ))

elemTypel = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD)

a = mdb.models['Model-1'].rootAssembly

el = a.instances['Part-1-1'].edges

edgesl = el.getSequenceFromMask(mask=("[#1 ], ), )

pickedRegions =(edgesl, )

a.setElementType(regions=pickedRegions, elemTypes=(elemTypel, ))

a = mdb.models['Model-1'].rootAssembly

partInstances =(a.instances['Part-1-1'], )

a.generateMesh(regions=partlnstances)

p = mdb.models['Model-1'].parts[ Part-1']

session.viewports['Viewport: 1'].setValues(displayedObject=p)

p = mdb.models['Model-1'].parts[ Part-1']

e = p.edges

edges = e.getSequenceFromMask(mask=("[#1 [, ), )

region=regionToolset.Region(edges=edges)
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p = mdb.models['Model-1'].parts[ Part-1']

p-assignBeamSectionOrientation(region=region, method=N1_COSINES,

0.0, -1.0))

#: Beam orientations have been assigned to the selected regions.

a = mdb.models['Model-1'].rootAssembly

session.viewports['Viewport: 1'].setValues(displayedObject=a)

al = mdb.models['Model-1'].rootAssembly

al.regenerate()

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=0OFF)

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues(
meshTechnique=OFF)

mdb.Job(name="'Job-Beam', model="Model-1', type=ANALYSIS,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE,
description='"Beam job', parallelizationMethodExplicit=DOMAIN,
multiprocessingMode=DEFAULT, numDomains=1, userSubroutine=",

numCpus=1,
preMemory=256.0,standardMemory=256.0,standardMemoryPolicy=

MODERATE,
scratch=", echoPrint=OFF, modelPrint=OFF, contactPrint=OFF,
historyPrint=OFF)

mdb.jobs['Job-Beam'].submit(consistencyChecking=0OFF)

#: The job input file "Job-Beam.inp" has been submitted for analysis.

#: Job Job-Beam: Analysis Input File Processor completed successfully.

#: Job Job-Beam: Abaqus/Standard completed successfully.

#: Job Job-Beam completed successfully.

03 = session.openOdb(name="Job-Beam.odb')

#: Model: Job-Beam.odb

#: Number of Assemblies: 1

#: Number of Assembly instances: 0

#: Number of Part instances: 1

#: Number of Meshes:

#: Number of Element Sets:

#: Number of Node Sets:

—_ e = e

#: Number of Steps:
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session.viewports['Viewport: 1'].setValues(displayedObject=03)

odb = session.odbs['Job-Beam.odb']

session.fieldReportOptions.setValues(printX'YData=OFF, printTotal=OFF)

session.writeFieldReport(fileName='beam_stress.rpt', append=OFF,
sortltem='S.Mises', odb=odb, step=0, frame=6,
outputPosition=INTEGRATION_POINT,variable=(('S', INTEGRATION_POINT,

(«
INVARIANT, 'Mises'), )), ))
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APPENDIX A.6

Reliability Based Design Optimization of a Cantilever Beam Matlab Code
(Analytical PMA)

main.m

% Reliability Based Design Optimization of a Cantilever Beam

% Performance Measure Approach and Advanced Mean Value (AMV) Method is

% used.

% Filename : main.m

% Date : 28.10.2010

% Code was written by MUHAMMET NASIF KURU

% Note : objective.m, performance.m and nonlcon.m must be in the same directory
% Output : Area = w*t, width and thickness values

clc;clear;

% Optimization Variables : w, t

d0 =[4.0; 4.0];

options = optimset('Display’, 'iter',MaxFunEvals',2000, TolCon',1e-6,TolFun',1e-
6,'TolX',1e-6);

[d, fval] = fmincon(@objective, dO, [], [1, [1, [1, [, [], @nonlcon, options)

objective.m
function f = objective(d)

f=d(1) *d(2);

performance.m

function f = performance(a)

R=a(l);
X =a(2);
Y =a(3);
w = a(4);
t=a(s);

f = R-(600*Y/(w*(t"2))+600*X/((W*2)*1));
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nonlcon.m
function [c, ceq] = nonlcon(d)

% This function evaluates the g value for the given design

%R, X, Y

x_mean = [40000,500,1000]; % Mean values

x_standard = [2000, 100, 100]; % Standard deviations

beta_t = 3.0; % Target reliability index

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point
u=1[0,0,0]; % Initial design point in the standard normal space
[row, col] = size(x);
i=1;
while (convergence >= 10e-3)
% Gradient calculation using central finite differences method
for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k);
P2 = performance([x,d']);
x(k) = (u(k) - h) * x_standard(k) + x_mean(k);
P1 = performance([x,d']);

grad(k) = ((P2-P1) /(2 *h)); % Gradient in U-space

x(k) = temp;
end
display('Gradient')

grad_x = grad ./ x_standard % Gradient in X-space

9% End gradient calculation

norm = sqrt(sum(grad.”2));

n = - grad / norm % Normalized steepest descent direction
u=beta_t*n

x =u.* x_standard + x_mean % New Design Point

g(i) = performance([x,d']) % Performance Function's Value

ifi==

convergence = 10;
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else
convergence = abs(g(i) - g(i-1));
end
i=i+1;
end
mpp = X % Most probable failure point

c(l) =-g(i-1); % Negative value of performance function's value at the MPP

ceq =[];
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APPENDIX A.7

Reliability Based Design Optimization of a Cantilever Beam Matlab Code
(Computational PMA)

nonlcon.m

function nonlcon()

% This function evaluates the g value for the given design

% Output : output.dat

display('Performance Function Calculation')

display('Optimization Variables')

d=[w,t];

w=d(l)

t=d(2)

%R, X, Y

x_mean = [40000,500,1000]; % Mean values

x_standard = [2000, 100, 100]; % Standard deviations

h=0.1; % For gradient calculation increment amount
beta_t = 3.0; % Target reliability index

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point
u=|[0,0,0]; % Initial design point in the standard normal space
[row, col] = size(x);
i=1;
while (convergence >= 0.2)
display('Tteration : ');
grad = [[;
% Gradient calculation using central finite differences method

vonmises = vonmises_calculate([x,[w, t]]) %R XY wt

for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k)
if(k~=1)
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vonmises = vonmises_ calculate([x,[w,t]])

end

P2 =x(1) - vonmises

x(k) = (u(k) - h) * x_standard(k) + x_mean(k)

if (k ~= 1)

vonmises = vonmises_ calculate([x,[w,t]])

end

P1 =x(1) - vonmises

grad(k) = (P2 - P1) /(2 * h)) / x_standard(k) % Gradient in X-space
x(k) = temp;
end

9% End gradient calculation
display('Gradient in X-Space')
grad

display('Gradient in U-Space')
grad_u = grad .* x_standard
norm = sqrt(sum(grad_u."2))
n =- grad_u/ norm
u=beta_t*n

display('New Design Point')

X =u .* x_standard + Xx_mean

9% Normalized steepest descent direction

% New design point

vonmises = vonmises_ calculate([x,[w,t]])

g(1) = x(1) - vonmises
% Check g convergence
ifi==

convergence = 10;

else

convergence = abs(g(i) - g(i-1))

% Performance function's value

end

i=i+1;
end
mpp = X % Most probable failure point (MPP)
converged_g = g(i-1) % Performance function's value at the MPP

f_write = fopen('output.dat’, 'w');
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% converged_g, R, S, X, Y

fprintf(f_write, '%f\n%N\n%f\n%fH\n%f\n', converged_g, mpp(1), vonmises, mpp(2),
mpp(3));

fclose(f_write);

%

exit

vonmises_calculate.m : Appendix A.5
writeinput_beam.py : Appendix A.5
getMises_beam.py : Appendix A.5
abaqus.py : Appendix A.5
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APPENDIX A.8

Reliability Based Design Optimization of a Generic Aircraft Wing Matlab Code
nonlcon.m

function nonlcon()

% Output : output.dat

beta_stress();

beta_displacement();

exit

beta_stress.m
function beta_stress()
% This function evaluates the beta value for the given design

display('Beta Stress Calculation')

% R

x_mean = [400]; % Mean value

x_standard = [20]; % Standard deviation

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

X = [x_mean(1)]; % Initial design point

u = [0]; % Initial design point in the standard normal space

[row, col] = size(X);
i=1;
while (convergence > 0.1)
display('Iteration : ');
grad = [];
vonmises = vonmises_calculate(x) % R
m_g = x(1) - vonmises % Limit state function's value at design point
% Gradient calculation using central finite differences method

for k= 1:col

temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k)
if (k~=1)
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vonmises = vonmises_calculate(x)
end
P2 =x(1) - vonmises
x(k) = (u(k) - h) * x_standard(k) + x_mean(k)
if(k~=1)
vonmises = vonmises_calculate(x)
end
P1 =x(1) - vonmises
grad(k) = ((P2 - P1) /(2 * h)) / x_standard(k)
x(k) = temp;
end
9% End gradient calculation
display('Gradient')
grad
sigma_g = sqrt(sum((grad .* x_standard).”2));
ifi==1
display('MVFOSM Beta :')
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
end
display('New Design Point')
X = X_mean + beta(i) .* x_standard .* alfa 9% Compute a new design point.
u = (X - x_mean) ./ X_standard
% Check beta convergence
ifi==
convergence = 10;
else
convergence = abs(beta(i) - beta(i-1)) / beta(i-1)

end
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1=1+1;

end
mpp = [x(1)] % Most probable failure point (MPP)
mpp_g = mpp(1l) - vonmises % Limit state function's value at the MPP

converged_beta = beta(size(beta,2)) % Shortest distance to the MPP

f_write = fopen('output.dat’, 'w');

% converged_beta, R, S, g=R-S

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n%f\n', converged_beta, mpp(1), vonmises,
mpp_g);

fclose(f_write);

vonmises_calculate.m

function vonmises = vonmises_calculate(a)
E =70000;
% Write the values that must be updated for the given design to "mtlb.txt"
fid = fopen('mtlb.txt', 'w');
% E
fprintf(fid, '%f, E);
fclose(fid);
% Updates the espana.py for the given input file "mtlb.txt"
'python writeinput_wing.py
% Call abaqus to calculate the maximum von mises stress value
labq671.bat cae noGUI=espana.py
% Takes the mass and frequency values from the file "espana_statik.dat"
% and writes them into the file "mass_freq.dat"
'python mass_freq.py
% Takes the maximum von mises stress value from the abaqus output file
% "espana_mises.rpt"
'python getMises_wing.py
% Assigns the maximum von Mises stress value to the variable "vonmises"
fid = fopen('mises.dat’, 'r');
vonmises = fscanf(fid, '%f, 1);

fclose(fid);
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writeinput_wing.py
import re, 0s
a = open("espana.py", "r'")
b = open("espana_temp.py", "w")
matlab = open("mtlb.txt","r")
e = float(matlab.read())
for 1 in a.readlines():
E=re.search("(mdb.models\[\'Model\- 1\'\|\.materials\[\'Material\-
I\\]\.Elastic\(table=\(\()(.*)\,", 1)
if E:
E_yazdir = E.group(1) + str(e) + ", 0.33),\n"
b.write(E_yazdir)
else:
b.write(i)
a.close()
b.close()
os.remove("espana.py")

" "

os.rename("espana_temp.py", "espana.py")
mass_freq.py
import re
a = open("espana_statik.dat", "r'")
f = open("mass_freq.dat", "w")
list_a = a.readlines()
for iin list_a:
search_mass = re.search("TOTAL MASS OF MODEL", 1)
search_freq = re.search(" MODE NO  EIGENVALUE", 1)
if search_mass:
b = list_a.index(1)
mass = float(list_a[b + 2])
elif search_freq:
¢ = list_a.index(i)
freq_list = list_a[c + 4].split()
freq = float(freq_list[3])
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f.write(str(mass) + "\n" + str(freq))
f.close()

a.close()

getMises_wing.py
# Input : espana_mises.rpt
# Output : mises.dat
import re, 0s
a = open("espana_mises.rpt", "r'")
b = open("mises.dat", "w"
for 1 in a.readlines():
mises = re.search(".*Maximum(.*)", 1)
if mises:
stress = float(mises.group(1))
b.write(str(stress))
break
a.close()

b.close()

os.remove("espana_mises.rpt")

beta_displacement.m
function beta_displacement()
% This function evaluates the beta value for the given design

display('Beta Displacement Calculation')

DO = 187,

% E

Xx_mean = [70000]; % Mean value

x_standard = [350]; % Standard deviation

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

X = [x_mean(1)]; % Initial design point

u = [0]; % Initial design point in the standard normal space

[row, col] = size(x);

i=1;
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while (convergence > 0.1)

display('Iteration : ');

grad = [J;
disp = displacement(x) % E
m_g = DO - disp % Limit state function's value at design point

% Gradient calculation using central finite differences method
for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k)
disp = displacement(x)
P2 =DO - disp
x(k) = (u(k) - h) * x_standard(k) + x_mean(k)
disp = displacement(x)
P1 =DO - disp
grad(k) = ((P2 - P1) /(2 * h)) / x_standard(k)
x(k) = temp;
end
9% End gradient calculation
display('Gradient')
grad
sigma_g = sqrt(sum((grad .* x_standard).”2));
ifi==
display('MVFOSM Beta :')
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
end
display('New Design Point')
X = X_mean + beta(i) .* x_standard .* alfa % Compute a new design point.

u = (X - x_mean) ./ X_standard
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% Check beta convergence
ifi==

convergence = 10;
else

convergence = abs(beta(i) - beta(i-1)) / beta(i-1)

end
i=i+1;
end
mpp = [x(1)] % Most probable failure point (MPP)

disp = displacement(mpp)

mpp_g = DO - disp % Limit state function's value at the MPP
converged_beta = beta(size(beta,2)) % Shortest distance to the MPP

f_write = fopen('output.dat’, 'a’);

% converged_beta, displacement, mpp_g, E

fprintf(f_write, '%f\n%N\n%N\n%N\n%f\n%f\n', converged_beta, disp, mpp_g,
mpp(1));

fclose(f_write);

displacement.m
function disp = displacement(x)
% Write the values that must be updated for the given design to "mtlb.txt"
fid = fopen('mtlb.txt', 'w');
% E
fprintf(fid, '%f, x(1));
fclose(fid);
% Updates the espana.py for the given input file "mtlb.txt"
'python writeinput_wing.py
% Call abaqus to calculate the maximum displacement value
labq671.bat cae noGUI=espana.py
% Takes the maximum displacement value from the abaqus output file
% "espana_displacement.rpt"
'python getDisp_wing.py
% Assigns the maximum displacement value to the variable "disp"

fid = fopen('disp.dat', 'r');
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disp = fscanf(fid, '%f’, 1);
fclose(fid);

getDisp_wing.py

# Input : espana_displacement.rpt

# Output : disp.dat

import re, 0s

a = open("espana_displacement.rpt”, "r")
b = open("disp.dat”, "w")

for 1 in a.readlines():

disp = re.search(".*Maximum(.*)", 1)

if disp:
yerd = float(disp.group(1))
b.write(str(yerd))
a.close()
b.close()

os.remove("espana_displacement.rpt")
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APPENDIX A.9

Reliability Based Aeroelastic Optimization of AGARD 445.6 Wing Matlab Code
nonlcon.m

function nonlcon()

% Output : output.dat

beta_stress();

beta_displacement();

exit

beta_stress.m
function beta_stress()
% This function evaluates the beta stress value for the given design
display('Beta Stress Calculation')
% R, Mach, Alfa
x_mean =[8, 0.85, 5]; % Mean value
x_standard = [0.4, 0.03, 0.25]; % Standard deviation
h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary
x = [x_mean(1), x_mean(2), x_mean(3)]; % Initial design point
u=|[0,0,0]; % Initial design point in the standard normal space
[row, col] = size(X);
i=1;
while (convergence > (.2)
display('Iteration : ');
grad = [];
vonmises = vonmises_calculate(x) % R, Mach, Alfa
% cl,cd values are taken.
if(i==1)
'python extract_cl_cd.py
cl_cd = fopen('cl_cd.txt', 'r');
a = fscanf(cl_cd,'%f");
fclose(cl_cd);
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cl=a(l)

cd=a(2)
end
m_g = x(1) - vonmises % Limit state function's value at design point

% Gradient calculation using central finite differences method

for k= 1:col

temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k)
if (k~=1)

vonmises = vonmises_calculate(x)
end
P2 =x(1) - vonmises
x(k) = (u(k) - h) * x_standard(k) + x_mean(k)
if(k~=1)
vonmises = vonmises_calculate(x)
end
P1 =x(1) - vonmises
grad(k) = ((P2 - P1)/ (2 * h)) / x_standard(k)
x(k) = temp;
end
9% End gradient calculation
display('Gradient')
grad
sigma_g = sqrt(sum((grad .* x_standard).”2));
ifi==
display('MVFOSM Beta :')
beta(i) = m_g / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_g - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g

end
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display('New Design Point')
X = X_mean + beta(i) .* x_standard .* alfa % Compute a new design point.
u = (X - x_mean) ./ X_standard
% Check beta convergence
ifi==1
convergence = 10;
else

convergence = abs(beta(i) - beta(i-1)) / beta(i-1)

end
i=i+1;
end
mpp = [x(1), x(2), x(3)] 9% Most probable failure point (MPP)

converged_beta = beta(size(beta,2)) % Shortest distance to the MPP

f_write = fopen('output.dat’, 'w');

% converged_beta, R, Mach, Alfa, cl, cd

fprintf(f_write, '%f\n%N\n%N\n%N\n%f\n%f\n', converged_beta, mpp(l), mpp(2),
mpp(3), cl, cd);

fclose(f_write);

vonmises_calculate.m
function vonmises = vonmises_calculate(x)
yazdir_mach_alfa_1 = fopen('mach_alfa.txt', 'w');
fprintf(yazdir_mach_alfa_1, '%f\n%f\n’, x(2), x(3));
fclose(yazdir_mach_alfa_1);
'python fluent_change.py
'fluent 3d -wait -i fluent.jou
'xcopy /E "C:\Documents and Settings\aysan\Desktop\MnK-
Tez\Agard\template_mpcci" "mpceci_batch" /i
'move agard.cas "mpcci_batch\fluent"
lcopy agard.inp "mpcci_batch\abaqus"
cd 'mpcci_batch'
'mpcci -batch mpceci_batch.csp
lecho "mpcci finished"

cd ..
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'move "mpcci_batch\fluent\cl-history"
'move "mpcci_batch\fluent\cd-history"
'move "mpcci_batch\abaqus\abaqus_run.odb"
'move "mpcci_batch\abaqus\abaqus_run.dat"
'rm -rf "mpcci_batch"

labq671.bat cae noGUI=abaqus.py

'python getMises.py

fid = fopen('mises.dat’, 'r');

vonmises = fscanf(fid, '%f’, 1);

fclose(fid);

fluent_change.py
import math, os
readed = open("mach_alfa.txt","r")
s = readed.readlines()
mach_new = float(s[0])
alfa = float(s[1])
readed.close()
a = open("fluent.jou", "r")
b = open("fluent_temp.jou","w")
alfa_cos = round(math.cos(math.radians(alfa)),3)
alfa_sin = round(math.sin(math.radians(alfa)),3)
k=1
for 1 in a.readlines():
if k ==23:
b.write(str(mach_new) + "\n")
elif k in [27,61,72]:
b.write(str(alfa_cos) + "\n")
elif k in [31,59,74]:
b.write(str(alfa_sin) + "\n")
else:
b.write(i)
k=k+1

a.close()
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b.close()
os.remove("'fluent.jou")

os.rename("fluent_temp.jou", "fluent.jou")

getMises.py
# Input : agard_mises.rpt
# Output : mises.dat
import re, 0s
a = open("agard_mises.rpt", "r")
b = open("mises.dat", "w"
for 1 in a.readlines():
mises = re.search(".*Maximum(.*)", 1)
if mises:
stress = float(mises.group(1))
b.write(str(stress))
a.close()

b.close()

os.remove("agard_mises.rpt")

extract_cl_cd.py

non_n

a = open("cl-history","r")

f = open("cd-history","r")

cl_cd = open("cl_cd.txt","w"

for 1 in a.readlines():
continue

b = i.split("\t")

¢ = float(b[1].strip())

for j in f.readlines():
continue

ok = j.split("\t")

okl = float(ok[1].strip())

cl_cd.write(str(c) + "\n" + str(ok1))

cl_cd.close()

a.close()
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f.close()

beta_displacement.m

function beta_displacement()

% This function evaluates the beta displacement value for the given design
display('Beta Displacement Calculation')

% Mach, Alfa

x_mean =[0.85,5]; % Mean value

x_standard = [0.03, 0.25]; % Standard deviation

h=0.1; % For gradient calculation increment amount
convergence = 10; % To start the while loop, it is necessary

x = [x_mean(1), x_mean(2)]; % Initial design point

u = [0, 0]; % Initial design point in the standard normal space
[row, col] = size(x);

i=1;

D =76.0;

while (convergence > (.2)

display('Iteration : ');

grad = [J;
disp = disp_calculate(x) 9% Mach, Alfa
m_d =D - disp % Limit state function's value at design point

% Gradient calculation using central finite differences method
for k = 1:col
temp = x(k);
x(k) = (u(k) + h) * x_standard(k) + x_mean(k)
disp = disp_calculate(x)
P2 =D - disp
x(k) = (u(k) - h) * x_standard(k) + x_mean(k)
disp = disp_calculate(x)
P1 =D - disp
grad(k) = ((P2 - P1) /(2 * h)) / x_standard(k)
x(k) = temp;
end

9% End gradient calculation
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display('Gradient')
grad
sigma_g = sqrt(sum((grad .* x_standard).”2));
ifi==1
display('MVFOSM Beta :')
beta(i) = m_d / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
else
display('FORM Beta :')
beta_upper = sum(grad .* x_standard .* u);
beta(i) = (m_d - beta_upper) / sigma_g
alfa = - (grad .* x_standard) ./ sigma_g
end
display('New Design Point')
X = X_mean + beta(i) .* x_standard .* alfa % Compute a new design point.
u = (X - x_mean) ./ X_standard
% Check beta convergence
ifi==1
convergence = 10;
else

convergence = abs(beta(i) - beta(i-1)) / beta(i-1)

end
i=i+1;
end
mpp = [x(1), x(2)] 9% Most probable failure point (MPP)

converged_beta = beta(size(beta,2)) % Shortest distance to the MPP
f_write = fopen('output.dat’, 'a’);

% converged_beta, Mach, Alfa

fprintf(f_write, '%f\n%f\n%f\n', converged_beta, mpp(1), mpp(2));

fclose(f_write);

disp_calculate.m
function disp = disp_calculate(x)

L]

yazdir_mach_alfa_1 = fopen('mach_alfa.txt', 'w');

114



fprintf(yazdir_mach_alfa_1, '%f\n%f\n’, x(1), x(2));

fclose(yazdir_mach_alfa_1);

'python fluent_change.py

'fluent 3d -wait -i fluent.jou

'xcopy /E "C:\Documents and Settings\aysan\Desktop\MnK-
Tez\agard_disp\template_mpcci" "mpcci_batch" /i

'move agard.cas "mpcci_batch\fluent"

lcopy agard.inp "mpcci_batch\abaqus"

cd 'mpcci_batch'

'mpcci -batch mpceci_batch.csp

lecho "mpcci finished"

cd ..

'move "mpcci_batch\fluent\cl-history"

'move "mpcci_batch\fluent\cd-history"

'move "mpcci_batch\abaqus\abaqus_run.odb"

'move "mpcci_batch\abaqus\abaqus_run.dat"

'rm -rf "mpcci_batch"

labq671.bat cae noGUI=abaqus.py

% Displacement Calculation

python getDisp_wing.py

fid = fopen('disp.dat', 'r');

disp = fscanf(fid, '%f’, 1);

fclose(fid);

getDisp_wing.py
# Input  : agard_disp.rpt
# Output : disp.dat
import re, 0s
a = open("agard_disp.rpt", "1")
b = open("disp.dat”, "w")
for 1 in a.readlines():
disp = re.search(".*Maximum(.*)", 1)
if disp:
yerd = float(disp.group(1))
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b.write(str(yerd) + "\n")
break

a.close()

b.close()

os.remove("agard_disp.rpt")
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