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RELIABILITY BASED STRUCTURAL and AEROELASTIC 
OPTIMIZATION of WING MODELS with HIGH FIDELITY SOLVERS 

SUMMARY 

In engineering design, uncertainties related to geometries, material properties, 
manufacturing processes and operating conditions are inevitable factors which 
should be accurately quantified and included while designing and optimizing a 
realistic system for a required level of reliability and efficiency. 

In this thesis, reliability based design optimization (RBDO) methodology is 
constructed by coupling high-fidelity commercial solvers for aeroelastic analysis and 
an in-house code developed for reliability analysis. 

A RBDO benchmark problem (from the literature) and the developed methodology is 
validated. An in-house code is integrated to commercial software for aircraft wing 
applications. Finally the methodology is applied to a fluid-structure interaction (FSI) 
problem where reliability based structural optimization of a simple aircraft wing and 
reliability based aeroelastic optimization of AGARD 445.6 wing are performed.  

In the final application, the optimization criteria include both deterministic and 
probabilistic constraints with both structural and aerodynamic uncertainties such as 
in yield strength, Mach number and angle of attack. To evaluate the probability of 
failure for the probabilistic constraints, first order reliability analysis methods, 
Hasofer-Lind (HL) iteration method and advanced mean value (AMV) method are 
implemented in Matlab to compute most probable failure point (MPP) solution. 
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KANAT MODELLERĐNĐN YÜKSEK DOĞRULUKLU ÇÖZÜCÜLERLE 
GÜVENĐLĐRLĐK TABANLI YAPISAL ve AEROELASTĐK 
ENĐYĐLEŞTĐRMESĐ 

ÖZET 

Mühendislik tasarımında, geometriye, malzeme özelliklerine, üretim süreçlerine ve 
işletim koşullarına bağlı belirsizlikler kaçınılmazdır. Bu belirsizlikler doğru olarak 
değerlendirilmeli ve sistemler tasarlanırken ve eniyilenirken hesaba katılmalıdırlar. 

Bu çalışmada, güvenilirlik tabanlı tasarım eniyileme (GTTE) metodolojisi 
oluşturulmuştur. Burada hem ticari mühendislik yazılımları hem de kendimizin 
geliştirilmiş güvenilirlik kodu ilk uygulama olarak, literatürden alınan ankastre kiriş 
örneğiyle doğrulanmıştır. Daha sonra genel kanat yapısının eniyilemesi ve en son 
olarak AGARD 445.6 kanadının aeroelastik eniyilemesi problemine uygulanmıştır. 

Ele alınan en son problemde, eniyileme kriterleri arasında akma mukavemeti, Mach 
sayısı ve hücum açısı gibi yapısal ve aerodinamik parametrelere ait belirsizlikler, 
olasılıksal kısıtlamalarda kullanılmıştır, ayrıca deterministik kısıtlamalarda 
mevcuttur. Olasılıksal kısıtların hata olasılığını hesaplamak için, birinci dereceden 
güvenilirlik analiz metodlarından olan Hasofer-Lind iterasyon metodu ve 
geliştirilmiş ortalama değer (GOD) metodu Matlab’da uygulanmıştır. Böylece en 
olası hasar noktası (EON) çözümü hesap edilmiştir.  
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1. INTRODUCTION 

1.1 Background and Literature Review of Reliability Based Design 

Optimization 

Today, in aircraft industry, there is a great competition to release new aircraft designs 

which are faster, more efficient, more economical, more reliable and even quieter 

than the former ones both in military and civil applications. The challenging multi-

disciplinary task of aircraft design can be realized by incorporation of numerical 

optimization techniques in the industrial design process. However, there are always 

uncertainties related to design parameters, modelling, manufacturing process, 

operating conditions and human factors when designing a new aircraft. Aerospace 

structures have been designed traditionally by using deterministic approaches based 

on Federal Aviation Administration (FAA) regulations for a high level of safety. 

However, it is known that deterministic optimization techniques may lead to 

unreliable or inefficient designs since they can not consider the uncertainties in 

different design parameters simultaneously. 

In engineering design, uncertainties related to geometries, material properties, 

manufacturing processes and operating conditions are inevitable factors which 

should be accurately quantified and included while designing and optimizing a 

realistic system for a required level of robustness and efficiency. For that reason, 

recently there is a growing interest in replacing deterministic design approaches with 

uncertainty-based stochastic computations to produce more robust and efficient 

structures. In reliability-based stochastic computations, uncertainty can be 

represented using random variables, processes, and fields. 

In general, reliability analysis methods can be categorized into three main types: 

sampling methods, projection methods, and moment methods. The application of 

these methods is usually based on their accuracy, computational costs, ease of 

implementation, and the area interest in the response distribution (mean or tails). 
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Sampling methods, such as the Monte Carlo Simulation method [1,2], are widely 

used due to their generality, simplicity, and effectiveness on problems that are highly 

nonlinear with respect to the uncertainty parameters. A basic advantage of sampling 

methods is their direct utilization of experiments to obtain mathematical solutions or 

probabilistic information concerning problems whose system equations cannot be 

solved easily by known procedures. However, as practical engineering applications 

typically require a high level of reliability, a large number of samples is needed to 

obtain accurate results. Therefore, Monte Carlo simulation is impractical for implicit 

systems solved by high-fidelity numerical simulation. Improved sampling methods, 

such as importance sampling [3,4], adaptive importance sampling [5,6], and radial 

importance sampling [7], reduce the number of samples by up to 20 times in 

comparison with Monte Carlo simulation [8], but are still computationally too 

expensive, for example, for the use with high-fidelity aeroelastic simulations. 

Stochastic projection methods are based on an explicit expansion of the systems’ 

response, such as the polynomial chaos expansion (PCE) [9] and Karhunen-Loeve 

(KL) expansion. The size and order of the expansion depends on the nonlinearity of 

the system with respect to the input randomness and the number of random inputs. 

The computational cost increases significantly with the order of approximation and 

the number of random inputs. The application of stochastic projection methods to 

structures is well explored, and mature computational procedures have been 

developed [10,11]. Stochastic flow problems have also been frequently studied in the 

literature [12,13], not including the vast amount of literature on stochastic modeling 

of turbulence. However, the application of stochastic projection methods to fluid 

structure interaction (FSI) problems is still in its infancy. For characterizing and 

quantifying stochastic variations around the mean value, a polynomial chaos 

expansion has been applied to the aeroelastic state equations for small academic 

problems by Xiu et al. [14]. 

Moment methods approximate the limit state of an event in question to simplify the 

integration of the response probability density function over the area of occurrence. 

The mean value first-order second moment (FOSM) method [15] is frequently used 

to approximate the influence of random input on the stochastic system response. 

However, as the mean value point is usually not found on the failure surface, the 

FOSM approach typically leads to inaccurate results and the prediction is sensitive to 
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the mathematical formulation of the limit state function [16]. First- and Second-

Order Reliability Methods (FORM and SORM) employ an approximation of the 

limit state function at the Most Probable Point (MPP) of failure [17]. FORM requires 

the first-order derivatives to linearize the failure function at the MPP, and therefore it 

is considered accurate as long as the curvature of the failure function in the space of 

the uncertainty variables is not too large at the MPP. SORM approximates highly 

nonlinear systems more accurately than FORM, but requires the first and second 

order derivatives to build a quadratic approximation of the failure surface at the 

MPP. 

Reliability is the probability that a system will perform its function over a specified 

period of time and under specified service conditions. Assesing reliability within a 

design optimization context is broadly useful, and reliability based design 

optimization (RBDO) methods are popular approaches for designing systems while 

accounting for uncertainty [18]. In RBDO, the statistical nature of constraints and 

design problems are defined in the objective function and probabilistic constraint. In 

RBDO, the cost is optimized subject to prescribed probabilistic constraints by 

solving a mathematical nonlinear programming problem. Therefore, the solution 

from RBDO provides not only an improved design but also a higher level of 

confidence in the design [19]. 

In general, an RBDO model includes deterministic design variables, random design 

variables and random parameters. A deterministic design variable is a design variable 

to be designed with its negligible uncertainties. A random design variable is a 

variable to be designed with uncertainty property being considered (usually the mean 

of the variable is to be determined) while a random parameter can not be controlled.  

The probability distributions can be used to describe the stochastic nature of the 

random design variables and random parameters, where the variations are 

represented by standard deviations which are usually assumed to be constant. Thus, a 

typical RBDO problem can be defined as a stochastic optimization model with the 

objective function over the mean values of design variables (deterministic and 

stochastic) is to be optimized, subject to probabilistic constraints. 

Two essential components of RBDO are reliability analysis and optimization. 

Reliability analysis focuses on analyzing the probabilistic constraints to ensure the 
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reliability levels are satisfied while optimization is seeking for the minimum 

objective function subjected to the probabilistic constraints.  

Reliability analysis perform uncertainty quantification (UQ) by computing 

approximate response function distribution statistics based on specified input random 

variable probability distributions. Extensive research has been done to explore 

various efficient reliability analysis techniques including sensitivity-based 

approximation approaches by Eggert [20], Parkinson [21], MPP (most probable 

failure point) based approaches by Hohenbichler [22], Koyluoglu [23], Hasofer [17], 

Monte Carlo Simulations (MCS) and Response Surface Model based approaches by 

Chen [24], Sues [25], Koch [26]. Among those, MPP based approaches have 

attracted more attention as they require relatively less computational effort while still 

producing results with acceptable accuracy compared to the other three approaches 

[27,28]. 

Reliability based design optimization (RBDO) involves evaluation of probabilistic 

constraints, which can be done in two different ways, the reliability index approach 

(RIA) and the performance measure approach (PMA). Popular numerical methods 

for RIA are the Hasofer Lind-Rackwitz Fiessler (HL-RF) method [17,29], modified 

HL-RF [29], and two-point approximation [30,31]. For PMA, the Advanced Mean 

Value (AMV) method [5,32] is a popular numerical method. 

Another research topic in RBDO is on integration of reliability analysis and 

optimization, using bi-level strategy or sequential strategy. The resulting RIA/PMA 

algorithms can be employed within bi-level or sequential RBDO approaches.  

Bi-level methods (Figure 1.1) treat the reliability analysis as the inner loop analyzing 

the probabilistic constraint satisfaction for the given solutions provided by the outer 

optimizer which locates the optimal solution iteratively. As a result, bi-level methods 

are computationally expensive for a complex engineering design [27,33,34]. 

Therefore, sequential methods have been developed to address the computational 

challenges as in the work of Zou and Mahadevan [27], Du and Chen [34], Thanedar 

[35], Tu [36], Chen [37], Royset [38] and Youn [39]. 

Integration of RBDO methodologies to aerospace engineering applications has been 

a challenging research subject recently. Petit [41] presented general sources of 

uncertainty on aeroelastic response such as flutter flight testing, prediction of limit 
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cycle oscillations and design optimization with aeroelastic constraints and reviewed 

research challenges in this field. 

Allen and Maute [42] presented a computational methodology that both utilizes high-

fidelity simulation methods and accounts for uncertainties in design and operating 

conditions within the design process of aeroelastic structures. 

 

Figure 1.1 : Flowchart of bi-level reliability based design optimization (RBDO) [40] 

Hosder et al. [43] presented an inexpensive non-intrusive polynomial chaos (NIPC) 

method for the propagation of input uncertainty in CFD simulations. Moreover, this 

NIPC approach has been applied to three different problems which were an inviscid 

oblique shock wave problem with geometric uncertainty, an inviscid expansion wave 

problem with geometric uncertainty, and a subsonic, two dimensional, laminar 

boundary layer flow over a flat plate with an uncertain free-stream dynamic 

viscosity. 

Kwon et al. [44] performed a reliability analysis for the aerodynamic analysis of a 

2D airfoil, a 3D wing and a wing body configuration by using moment method. A 

stochastic spectral projection solver based on generalized polynomial chaos 

expansion was applied to the uncertainty quantification of stochastic compressible 
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flows around a NACA0012 airfoil due to random free-stream Mach number and 

angle of attack by Chassaing et al. [45]. 

Recently, Missoum et. al. [46] presented a methodology which constructed explicit 

flutter and subcritical limit cycle oscillation boundaries in terms of deterministic and 

random design variables for the reliability-based design optimization of systems with 

nonlinear aeroelastic constraints. 

In this thesis, firstly, a deep investigation of RBDO techniques is presented and then 

a fully automatic, modular and practical design framework which employs RBDO 

techniques within a multidisciplinary code coupling approach based on high-fidelity 

CAD, CFD and CSD softwares and fluid-structure interface is developed and applied 

to aeroelastic optimization problems. In this computational framework, finite volume 

based flow solver Fluent is used to solve inviscid 3D Euler equations and Catia is 

used as a parametric 3D solid modeler. Abaqus, a structural finite element method 

solver, is used to compute the structural response of the aeroelastic system. Mpcci, 

mesh based parallel code coupling interface, is used to exchange the pressure and 

displacement information between Fluent and Abaqus to perform a loosely coupled 

aeroelastic analysis. Modefrontier is employed as a multi-objective and multi-

disciplinary optimization driver to control the optimization workflow. 

The optimization criteria include both deterministic and probabilistic constraints with 

both structural and aerodynamic uncertainties such as in yield strength, Mach 

number and angle of attack. To evaluate the probability of failure for the 

probabilistic constraints, first order reliability method (FORM) is used. In RIA, 

Hasofer-Lind iteration method is implemented in Matlab to compute MPP (Most 

Probable failure Point) solution. In PMA, AMV method is implemented in Matlab to 

compute MPP solution. The integrated framework is validated with academic and 

structural problems and then extended to more realistic wing configurations with 

aeroelastic criteria. 

Deterministic optimization studies with multidisciplinary code coupling approach 

were presented in the former work of Nikbay et al. [47,48]. Present work is an 

RBDO extension of the former MDO frameworks in Ref. [47] and [48] so that day-

to-day codes can be still used in an attach/detach manner for realistic problems with 

stochastic nature. 
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1.2 Purpose and Outline of the Thesis 

The main purpose of this work is to learn and take advantage of the reliability based 

design optimization concept and underline its importance for the practical industrial 

applications with uncertainty parameters. 

In the second chapter, reliability based design optimization is introduced. 

Mathematical approaches about reliability analysis and inverse reliability analysis are 

given and the related methods are presented.  

The third chapter covers the verification of the implemented algorithm. A benchmark 

problem with a cantilever beam design from the literature is solved and the 

methodology is validated. Different reliability analysis methods are compared in 

terms of efficiency.  

The fourth chapter includes the integration of the written code and commercial 

softwares for the optimization problems presented formerly by Nikbay et al. [47,48]. 

Reliability based structural optimization of a simple aircraft wing and reliability 

based aeroelastic optimization of AGARD 445.6 wing are performed.  

In the fifth chapter, conclusions are drawn based on the results. 
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2. RELIABILITY BASED DESIGN OPTIMIZATION 

Assesing reliability within a design optimization context is broadly useful, and 

reliability based design optimization (RBDO) methods are popular approaches for 

designing systems while accounting for uncertainty [18]. In RBDO, the statistical 

nature of constraints and design problems are defined in the objective function and 

probabilistic constraint. 

RBDO involves evaluation of probabilistic constraints, which is usually done in two 

different ways, the reliability index approach (RIA) and the performance measure 

approach (PMA). The resulting RIA/PMA algorithms can be employed within bi-

level or sequential RBDO approaches. In this study, bi-level RBDO approach is 

used. 

2.1 Design Optimization Problem Formulation 

Standard design optimization model can be formulated as: 

5676869:  ;  ���� � ����, ��, … , �	� 

<��=:>? ?@ ;  '���� � '����, ��, … , �	� A 0,     6 � 1, … , 7C    

                      DE��� � DE���, ��, … , �	� � 0,     = � 1, … , 7F   

                      G � H� I J	|�L A � A ��M                           (2.1) 

where G is a set of design variables restricted by lower and upper bounds �N  and  �O, 

���� is cost function, '���� is a set of inequality constraints, DE��� denotes a set of 

equality constraints, and n, nQ, nR are the number of design variables, inequality and 

equality constraints respectively. 

2.2 Structural Reliability 

2.2.1 Basic Probabilistic Descriptions 

Random Variable : The uncertainties of an engineering system are identified by the 

variations of the random vector � � ���, ��, … , �	

, which can be random design 
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variables or random parameters of the system. �’s particular value is represented by 

� � ���, ��, … , �	

. 

Probability Density Function : The probability distribution of �� is described by its 

probability density function (PDF) �������. ������� is the PDF of �� as shown in 

Figure 2.1. 

 

Figure 2.1 : The probability density function (PDF) of normal distribution [50] 

Cumulative Distribution Function : The cumulative distribution function (CDF) 

������� describes the probability that a random variable �� with a given probability 

distribution will be found at a value less than or equal to ��. For every real number 

��, the CDF of a random variable �� is given by 

������� � )��� A ���                                         (2.2) 

where the right-hand side represents the probability that the random variable �� takes 

on a value less than or equal to ��. ������� is the CDF of �� as shown in Figure 2.2. 

Joint Probability Density Function : The probability function that two or more 

random events will happen simultaneously (JPDF) �����. For instance, the 

probability of the two-dimensional case is calculated as 

)�S T � T � , > T U T V
 � W W ��X��, Y�Z[\] V� VY              (2.3) 

where ��X��, Y� is the joint PDF (JPDF) of the random variables � and U. 
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Figure 2.2 : The cumulative distribution function (CDF) of normal distribution [50] 

Mean : This is a weighted average of all the values that a random variable may take. 

If ������� is the PDF of ��, the mean is given by 

��� � ����
 � W ��&̂^ �������V��                 (2.4) 

���  is also called the first raw moment. The operator, ��. 
 denotes the average or 

expected value of ��, possesses the following useful properties: If �� and �� are 

independent random parameters, 

������
 � ����
 ����
                  (2.5) 

���� _ ��
 � ����
 _ ����
                 (2.6) 

and if c is a constant, 

��>
 � >                    (2.7) 

��>��
 � > ����
                   (2.8) 

Variance and Standard Deviation : The variance,  ���
, a second central moment 

of ��, is a measure of spread in the data about mean: 

 ���
 � � `a�� b ���c�d                  (2.9) 

The standard deviation is a square root of the variance: 

!�� � e ���
                  (2.10) 
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The variance operator,  �. 
, possesses the following useful properties: If �� and �� 

are independent random parameters, 

 ��� _ ��
 �  ���
 _  ���
               (2.11) 

and if c is a constant, 

 �>
 � 0                  (2.12) 

 �>��
 � >�  ���
                 (2.13) 

Normal (Gaussian) Distribution : The normal distribution is given by 

������� � �fg�√�i :�j kb �� lm�&ng�fg� o�p   ,    b ∞ T �� T ∞             (2.14) 

where ���  and !��  denote the mean and standard deviation of the variable ��, 
respectively, and �� is identified as ra���  , !��c if it has a normal (gaussian) 

distribution. 

The gaussian distribution can be normalized by defining 

#� � m�&ng�fg�                                                                                                              (2.15) 

and yields the standard normal distribution r�0,1� with zero mean and unit standard 

deviation.  

The PDF of the standard normally distributed variable #� is given by 

$�#�� � �s��#�� � �√�i :�j `b �� #��d   ,    b ∞ T #� T ∞            (2.16) 

where $�. � represents the standard normal probability density function. 

The CDF of the standard normally distributed variable #� is given by 

Φ�#�� � �s��#�� � W �√�i :�j `b �� #� �d  V#�t�&^                 (2.17) 

where Φ�. � represents the standard normal cumulative distribution function. The 

values of the standard normal cumulative distribution function, Φ�. �, are tabulated in 

Appendix A.1 [50]. 
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2.2.2 Structural Reliability Assessment 

When a structure exceeds a specific limit in one of its design criteria, the structure 

fails to perform as it is required. For example, exceeding yield strength of a material 

may cause plastic deformation of the structure. This specific limit is called a limit-

state. If the probability of failure of the structure exceeds the required value, the 

structure will be considered unreliable. 

The limit-state function or performance function, '�. � and probability of failure, )*, 

can be defined as 

'��� � u��� b <���                (2.18) 

)* � )�'�. � T 0
                 (2.19) 

where R is the resistance and S is the actual loading of the system. Both u�. � and 

<�. � are functions of random variables X. The notation '�. � T 0 inequality denotes 

the failure region, '�. � � 0 and '�. � v 0 indicate the failure surface and safe region, 

respectively. 

The mean and standard deviation of the limit-state, '�. �, can be determined from the 

elementary definition of the mean and variance (Equations (2.6) and (2.11)). The 

mean of '�. � is 

�C � �+ b �w                  (2.20) 

where �+  and �w are the means of R and S, respectively. If R and S are independent, 

the standard deviation of '�. � is 

!C � e!+� _ !w�                                                                                                     (2.21) 

where !+ and !w are the standard deviations of R and S, respectively. 

Reliability index, ,-, is defined as; 

,- � nxfx � ny&nz
{fy|}fz|

                                                                                                  (2.22) 

Figure 2.3 shows a geometrical illustration of the reliability index in a one-

dimensional case. 

The idea behind the reliability index is that the distance from point �C to the limit-

state surface provides a good measure of reliability. The distance is measured in units 
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of the uncertainty scale parameter !C. The shaded area of Figure 2.3 identifies the 

probability of failure.  

 

Figure 2.3 : Probability density function (PDF) for limit-state function '�. � [50] 

For a special case, the resistance, R, and actual loading, S, are assumed to be 

normally distributed and independent. The limit-state function is also normally 

distributed, since '�. � is a linear function of R and S. 

Thus, the PDF of the limit-state function is 

�C�'� � �fx√�i :�j kb �� lC&nxfx o�p   ,    b ∞ T ' T ∞                                           (2.23) 

The probability of failure is 

)* � )�' T 0
 � W �C�'� V'~&^ � W �fx√�i :�j kb �� lC&nxfx o�p  V'~&^                   (2.24) 

When ' � 0, the probability of failure is computed as 

)* � W �fx√�i :�j kb �� l~&nxfx o�p  V'~&^               (2.25) 

)* � W �fx√�i :�j `b �� ,-�d  V'~&^                (2.26) 

Here, ,- � C&nxfx   so V,- � \Cfx  , boundaries are; 

when ' � 0 � ,- � ~&nxfx � b,-  
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when ' � b∞ � ,- � &^&nxfx � b∞ 

Equation (2.26) can be rewritten as 

)* � W �√�i :�j `b �� ,-�d V,-&��&^                 (2.27) 

From Equations (2.17) and (2.27), the probability of failure can be obtained as 

)* � Φ�b,-� � 1 b Φ�,-�                           (2.28) 

2.3 General Definition of RBDO Model 

When uncertainties are included in a design optimization problem; a RBDO model is 

formulated as below; 

5676869:  ;  ���, ��� 

<��=:>? ?@ ;  )*� � )��'���, �� T 0
 A )+� ,     6 � 1, … , 8              

                      DE\�.��� T 0,                                    = � 1, … , 7                      (2.29) 

where '��. � represents the performance function, DE\�.�. � represents a set of 

deterministic constraints, b is the vector of deterministic design variables, and � is 

the random parameters of the system. )*� is the probability of failure of the 6th 

probabilistic constraint. )� is the probability function of the 6th probabilistic 

constraint. )+� is the required probability of failure level of the 6th probabilistic 

constraint. m is the number of probabilistic constraints. n is the number of 

deterministic constraints. 

The probabilistic constraints are described by the performance functions '���, ��, 

their probabilistic models, and their required probability of failure levels )+�. 
Consider a performance function '���, ��, where '���, �� T 0 denotes the failure 

region, '���, �� � 0 and '���, �� v 0 indicate the failure surface and safe region, 

respectively. The statistical description of the failure of the performance function 

'���, �� is characterized by its CDF �C��0� as 

�C��0� � )��'���, �� T 0
 � W … W �����V�� … V�	 C���,���~  ,     6 � 1, … , 8   (2.30) 

The evaluation of Equation (2.30) requires reliability analysis where the multiple 

integration is involved as shown in Equation (2.30). Some approximate probability 
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integration methods have been developed to provide efficient solutions, such as the 

first order reliability method (FORM) or second order reliability method (SORM). 

FORM often provides adequate accuracy and is widely used for RBDO  applications 

[39]. 

Each required probability of failure level of the system )+� is often represented by 

the target reliability index as ,.� � bΦ&��)+�� using Equation (2.28). Hence, any 

probabilistic constraint in Equation (2.29) can be rewritten using Equation (2.30) as 

�C��0� A Φ�b,.� �                 (2.31) 

which can also be expressed in two ways through inverse transformations [51] as 

,-� � bΦ&���C��0�� � ,.�                 (2.32) 

'/� � �C�&�aΦ�b,.��c � 0                (2.33) 

where ,-�  and '/�  are respectively called the reliability index and the probabilistic 

performance measure for the ith probabilistic constraint. 

Equation (2.32) is employed to describe the probabilistic constraint in Equation 

(2.29) using the reliability index and it is called the reliability index approach (RIA). 

At a given design, the evaluation of reliability index ,-�  for RIA is performed using 

reliability analysis. Equation (2.29) can be rewritten using RIA as 

5676869:  ;  ���, ��� 

<��=:>? ?@ ;  ,-� � ,.� ,           6 � 1, … , 8                

                         DE\�.��� T 0,     = � 1, … , 7               (2.34) 

Equation (2.33) is employed to describe the probabilistic constraint in Equation 

(2.29) using the probabilistic performance measure and it is called the performance 

measure approach (PMA). At a given design, the evaluation of probabilistic 

performance measure '/�  for PMA is performed using inverse reliability analysis. 

Equation (2.29) can be rewritten using PMA as 

5676869:  ;  ���, ��� 

<��=:>? ?@ ;  '/� � 0,             6 � 1, … , 8    

                         DE\�.��� T 0,     = � 1, … , 7                       (2.35) 
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Transformation of the Random Variables from X-space to U-space 

Standardize the random variables; 

�� � m�&ng�fg�                            (2.36) 

where ���  and !��  represent the mean and the standard deviation of random variable 

��, respectively. The mean and standard deviation of the standard normally 

distributed variable, ��, are zero and unity, respectively.  

From Equation (2.36), the mean value point ��� in the original space (X-space) is 

mapped into the origin of the normal space (U-space) as shown in Figure 2.4. 

 

Figure 2.4 : Mapping of failure surface from X-space to U-space [50] 

2.4 Reliability Index Approach 

In RIA, reliability index ,-�  can be obtained  using mean value first order second 

moment (MVFOSM), FORM or SORM. ,-�  can be obtained using FORM by 

formulating an optimization problem with one equality constraint in U-space follows 

as; 

5676869:  ; ||�|| 
<��=:>? ?@ ;  '��� � 0                  (2.37) 

where the optimum point on the failure surface is called the most probable failure 

point (MPP). There are many algorithms available that can solve this problem [52]. 

In this thesis; the most commonly used recursive algorithms, the Hasofer Lind (HL) 
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and Hasofer Lind - Rackwitz Fiessler (HL-RF) methods, are introduced to solve the 

reliability problems. 

2.4.1 First Order Reliability Method (FORM) 

In this section, we first discuss the MVFOSM method, and then the details of FORM, 

because the development of FORM can be traced to MVFOSM. 

Mean Value First Order Second Moment (MVFOSM) Method 

The name “first-order” comes from the first-order expansion of the performance 

function. In the MVFOSM method, the performance function is represented as the 

first-order Taylor series expansion at the mean value point. Assuming that the 

random variables � are statistically independent, the approximate performance 

function at the mean is written as 

'���� � '���� _ �'����
�� b ���                (2.38) 

where, �� � H�m� , �m| , … , �m�M
 is the mean value vector, and �'���� is the gradient 

vector of g evaluated at ��, �'���� � ��C�n���m� , �C�n���m| , … , �C�n���m� �

. 

The mean value of the approximate performance function '���� is 

�C� � ��'����
 � '����                   (2.39) 

The variance of the approximate performance function '���� is 

 S��'����
 �  S��'����
 _  S���'����
�� b ���
                 (2.40) 

In Equation (2.40), 

 S��'����
 � 0 

 S���'����
 � 0 

 S���'����
�� b ���
 �  S���'����
�
 b �� S���'����
      
 S���'����
�� b ���
 �  S���'����
�
 b 0 � ��'����

� S����         

 S��'����
 � ��'����

� S����                 (2.41) 

Therefore, the standard deviation of the approximate performance function is 

!C� � e S��'����
 � e��'����

� S���� � �∑ ��C�n���m� �� !m��	��� ��|
                 (2.42)      
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The reliability index ,- is computed as 

,- � nx�fx� � C�n��
k∑ l�xa��c��� o|f��|���� p

�|                 (2.43)      

If the performance function is linear Equation (2.43) is same as with Equation (2.22). 

If the performance function is nonlinear, the approximate performance function '���� 

is obtained by linearizing the original performance function '���� at the mean value 

point. This method is called the MVFOSM method, and the ,- given in Equation 

(2.43) is called a MVFOSM reliability index. 

The MVFOSM method changes the original complex probability problem into a 

simple problem. However, there are two serious drawbacks in the MVFOSM 

method: 

1- Evaluation of reliability by linearizing the limit-state function about the mean 

values leads to erroneous estimates for performance functions with high 

nonlinearity, or for large coefficients of variation [50]. 

2- The MVFOSM method fails to be invariant with different mathematically 

equivalent formulations of the same problem. This is a problem not only for 

nonlinear forms of '�. �, but also for certain linear forms [50]. 

Hasofer and Lind (HL) Reliability Index 

The reliability index that can be shown from Figure 2.3, is the measure of the 

distance from the origin to the failure surface. In the one-dimensional case, the 

standard deviation of the performance function '�. � is used as the scale. To obtain a 

similar scale in multiple variables, Hasofer and Lind [17] proposed a linear mapping 

of the basic variables into a set of normalized and independent variables, ��. 
Assess the fundamental case with the independent variables of strength, R, and 

stress, S, that are both normally distributed. 

1- Hasofer and Lind presents the standard normalized random variables, 

u� � +&nyfy , <� � w&nzfz                                                                               (2.44) 

where �+  and �w are the mean values of random variables R and S,   

respectively, and !+ and !w are the standard deviations of R and S,   

respectively. 
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2- Transform the failure surface '�u, <� � 0 in the original �u, <� coordinate 

system into the failure surface ' au�, <�c in the standard normalized �u�, <�� 

coordinate system, 

'au�u��, <�<��c � ' au�, <�c � u�!+ b <�!w _ ��+ b �w� � 0                      (2.45) 

3- In the �u�, <�� coordinate system, the shortest distance from the origin to the 

failure surface ' au�, <�c � 0 is equal to the reliability index as shown in Figure 

2.5. 

,- � ¡�)� � ny&nz
{fy|}fz|

                 (2.46) 

The point ¢�a£¤�, ¥¤�c on ' au�, <�c � 0 which corresponds to this shortest distance, is 

often referred to as the most probable failure point (MPP). 

In normally distributed and independent variables of n-dimensional space, the failure 

surface is a nonlinear function: 

'��� � '�H��, ��, … , �	M
� � 0                (2.47) 

 

Figure 2.5 : Geometrical illustration of reliability index ,- [50] 

The failure surface '��� � 0 in X-space is mapped into the corresponding failure 

surface '��� � 0 in U-space, as shown in Figure 2.4. The reliability index ,- is the 

shortest distance from the origin to the failure surface '��� � 0 as 
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,- � 867� ¦ '��� � 0  ��
  ���|  � 867� ¦ '��� � 0  §�§�             (2.48) 

This reliability index ,- is also called the Hasofer and Lind (HL) reliability index. 

Hasofer and Lind (HL) Iteration Method 

From Equation (2.48), reliability index, ,-, is the solution of a constrained 

optimization problem in the standard normal space. 

5676869:  ; ,��� � §�§� 

<��=:>? ?@ ;  '��� � 0                  (2.49) 

Suppose that the failure surface with n-dimensional normally distributed and 

independent random variables X is 

'��� � '�H��, ��, … , �	M
� � 0                (2.50) 

This performance function can be linear or nonlinear. Transforming the performance 

function given in Equation (2.50) using Equation (2.36), 

'��� � ' �¨!���� _ ��� , !�|�� _ ��| , … , !���	 _ ���©
� � 0             (2.51) 

The first-order Taylor series expansion of '��� at the MPP ¢� is 

'���� � '���� _ ∑ ªC����ª«�
	��� ��� b ����                                                                 (2.52) 

From the transformation of Equation (2.36), we have 

ªC����ª«� � ªC����ªm� !��                                                                                                   (2.53) 

The shortest distance from the origin to the approximate failure surface given in 

Equation (2.52) is 

,- � nx�fx� � C����&∑ ¬x����¬�� fg�«������
­∑ l�x������� o|fg�|����

                (2.54) 

The derivation of Equation (2.54) is shown in Appendix A.2. The direction cosine of 

the unit outward normal vector is given as 

0� � >@ ®  �̄ � b �x�����°�§�C����§ � b ¬x����¬�� fg�
­∑ l�x������� o|fg�|����

                  (2.55) 
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where 0� expresses the relative effect of the corresponding random variable on the 

total variation as shown in Figure 2.6. Thus, it is called the sensitivity factor. The 

relationship between ,- and 0� is given as 

ª��ª«� � ªª«� e��� _ ���_, … , _�	� � «��� � 0� ,     �6 � 1,2, … , 7�                               (2.56) 

 

Figure 2.6 : Sensitivity factors [50] 

The coordinates of the MPP ¢� are computed from Equations (2.54) and (2.55), 

��� � m��&ng�fg� � ,- 0�                  (2.57) 

The coordinates corresponding to MPP ¢� in the original space are  

��� � ��� _ ,- !�� 0�  ,     �6 � 1,2, … , 7�               (2.58) 

Since MPP ¢� is a point on the limit-state surface, 

'���� � '�H���, ���, … , �	� M
� � 0                          (2.59) 

The main steps of the HL iteration method are: 

1- Define the appropriate performance function of Equation (2.50) 

2- Assign the mean value point as an initial design point, 

��,² � ���  ,     �6 � 1,2, … 7�                                                                      (2.60) 
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and compute the gradients �'��²� of the performance function at this point. 

��,²  is the 6.F element in the vector �² of the ³.F iteration 

3- Compute the initial ,- (MVFOSM reliability index) using Equation (2.43) 

and its sensitivity factor using Equation (2.55) 

4- Compute a new design point �² and �²  using Equations (2.58) and (2.57), 

function value, and gradients at this new design point 

5- Compute the reliability index ,- (HL reliability index) using Equation (2.54) 

and its sensitivity factor using Equation (2.55) 

6- Iterate steps 4)~6) until the estimate of ,- converges 

7- Calculate the coordinates of the design point �² or MPP, ��. 

In this work, the partial derivatives needed for direction cosine and ,- calculations 

will be computed by finite differencing since commercial codes are used to solve the 

structural and aerodynamic responses. These commercial codes will be treated as 

black-box and run again with a small perturbation parameter from batch mode so that 

the numerical derivative needed in reliability analysis will be automatically 

computed by forward differencing in HL iterations in reliability analysis. 

Hasofer Lind – Rackwitz Fiessler (HL-RF) Method 

The HL method was proposed by Hasofer and Lind. The HL method only considers 

normally distributed random variables, so it cannot be used for non-normal random 

variables. In non-normal cases, the probability of failure calculation given in 

Equation (2.28) is inappropriate. Rackwitz and Fiessler extended the HL method to 

include random variable distribution information, calling their extended method the 

HL-RF method. 

A simple transformation called the equivalent normal distribution (normal tail 

approximation) is described below. When the random variables are mutually 

independent, the transformation is given as 

�� � Φ&�´�������µ                 (2.61) 

where Φ&��. 
 is the inverse of the standard normal cumulative distribution function 

Φ�. 
. 
Rosenblatt transformation [50] can be used to obtain equivalent normal distribution. 

Equivalent normal distribution can be obtained by matching the cumulative 

distribution functions and probability density functions of the original, non-normal 
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random variable distributions, and the approximate or equivalent normal random 

variable distributions at the MPP.  

Assuming that ��¶ is an equivalent normally distributed random variable, the CDF 

values of �� and ��¶ are equal at the MPP: 

�������� � ���·����� �  Φ ¸m��&ng�·fg�·
¹                                                                        (2.62) 

So 

���· � ��� b Φ&�´��������µ!��·                                                                                (2.63) 

The PDF values of �� and ��¶ at ��� are equal: 

�������� � ���· ����� �  �fg�·
$ ¸m��&ng�·fg�·

¹              (2.64) 

From Equations (2.63) and (2.64), the equivalent mean ���· and standard deviation 

!��· of the approximate normal distribution is derived as below: 

!��· � º�»¼�`½g�am��cd�
*g�am��c                  (2.65) 

���· � ��� b Φ&�´��������µ!��·               (2.66) 

This normal tail approximation is shown in Figure 2.7. 

 

Figure 2.7 : Normal tail approximation [50] 
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The transformation of the random variables from the X-space to the U-space can be 

performed using Equations (2.65), (2.66) and (2.67), 

�� � m�&ng�·fg�·
                  (2.67) 

and the performance function '��� in U-space is approximately obtained. 

The HL-RF algorithm is similar to the HL iteration method. A flowchart of the 

algorithm is given in Figure 2.8. 

2.4.2 Example Problem for FORM 

The performance function is 

'���, ��� � ��2 _ ��2 b 18                (2.68) 

where �� and �� are the independent random variables with normal distributions 

(mean �m� � �m| � 10.0, standard deviation !m� � !m| � 5.0). Find the reliability 

index ,- by using the FORM [50]. 

Solution of the example is described below step by step. 

Step 1: The mean value point )�(10.0, 10.0) is set as an initial design point in X-

space, it corresponds to point )�(0.0, 0.0) in U-space after transformation as shown 

in Figure 2.9. 

 

Figure 2.9 : Initial design points in original space (X-space) and standard space        

(U-space) 
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Figure 2.8 : HL-RF method flowchart [50] 
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Step 2: The first reliability index value ,- � 0.9343 is computed using MVFOSM, 

and then the new design point )2(-0.6607, -0.6607) is obtained as shown in Figure 

2.10. 

 

Figure 2.10 : Reliability index ,- and new design point )2 

Step 3: In Figure 2.11, a circle with a radius ,- � 0.9343 and )�(0.0, 0.0) as a 

center point is drawn. The performance function’s value at point )2(-0.6607, -

0.6607) is '���, ��� � 582.629. The point )2(-0.6607, -0.6607) in U-space 

corresponds to )Ä(6.6967, 6.6967) in X-space with the same performance function 

value '���, ��� � 582.629. 

 

Figure 2.11 : Reliability index ,- and performance function ' 
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Step 4: The second reliability index value ,- � 1.5468 is computed using FORM, 

and then the new design point )3(-1.0937, -1.0937) is obtained as shown in Figure 

2.12. 

 

Figure 2.12 : Reliability index ,- and new design point )3 

The same procedures can be repeated until the estimate of ,- converges. The 

iteration results are summarized in Table 2.1. The reliability index is ,- � 2.2401. 

Most probable failure point (MPP) corresponding to this reliability index is �� �
� 2.0801, 2.0801 
. 

Table 2.1 : Iteration results in FORM 

Iteration 
 No. 

1 2 3 4 5 6 7 

'���, ��� 1982.0 582.629 168.08 45.529 10.01 1.1451 0.023 Å'Å�� 300 134.537 61.598 30.0897 17.43 13.5252 12.9917 

Å'Å�� 300 134.537 61.598 30.0897 17.43 13.5252 12.9917 

,- 0.9343 1.5468 1.9327 2.1467 2.2279 2.2398 2.2401 0� -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 0� -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 -0.7071 �� 6.6967 4.5313 3.1670 2.4104 2.1233 2.0810 2.0801 �� 6.6967 4.5313 3.1670 2.4104 2.1233 2.0810 2.0801 �� -0.6607 -1.0937 -1.3666 -1.5179 -1.5753 -1.5838 -1.5840 �� -0.6607 -1.0937 -1.3666 -1.5179 -1.5753 -1.5838 -1.5840 
Convergence 

(ε ) 
- 0.6556 0.2495 0.1107 0.036 0.005 0.00001 
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2.5 Performance Measure Approach 

In PMA, reliability analysis can be formulated as the inverse of reliability analysis in 

RIA. The probabilistic performance measure '/�  can be obtained using MVFOSM 

method, FORM or SORM. Here, '/�  is obtained using the FORM in U-space defined 

as 

5676869:  ; '��� 

<��=:>? ?@ ; ||�|| � ,.                (2.69) 

where the optimum point on a target reliability surface is identified as the MPP. 

General optimization algorithms can be employed to solve the optimization problem 

in Equation (2.69). However, the Advanced Mean Value (AMV) method is well 

suited for PMA due to its simplicity and efficiency [39]. 

2.5.1 Advanced Mean Value (AMV) Method 

Formulation of the AMV method begins with the MVFOSM method, defined as 

�ÆÇ½ÈwÆ� � ,.  1�0�     where    1�0� � b É�C�n��§É�C�n��§ � b É�C�~�§É�C�~�§            (2.70) 

To minimize the performance function '��� in Equation (2.70), the normalized 

steepest descent direction 1�0� is defined at the mean value. The AMV method 

iteratively updates the direction vector of the steepest descent method at the probable 

point �ÊÆÇ�²�  initially obtained using the MVFOSM method. Thus, the AMV method 

can be formulated as 

�ÊÆÇ��� � �ÆÇ½ÈwÆ�  ,         �ÊÆÇ�²}�� � ,.  1��ÊÆÇ�²� �                                                    (2.71) 

where 

1 ��ÊÆÇ�²� � � b É�C��ËÌÍ�Î� �
ÏÉ�C��ËÌÍ�Î� �Ï                 (2.72) 
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2.5.2 Example Problem for AMV Method 

The performance function is 

'���, ��� � b exp��� b 7� b �� _ 10              (2.73) 

where �� and �� are the independent random variables with normal distributions 

(mean �m� � �m| � 6.0, standard deviation !m� � !m| � 0.8). The target reliability 

index is set to  ,. � 3.0. Find the performance measure ' by using the AMV method 

[39]. 

Solution of the example is described below step by step. 

Step 1: The mean value point )�(6.0, 6.0) is set as an initial design point in X-space, 

it corresponds to point )�(0.0, 0.0) in U-space after transformation as shown in 

Figure 2.13. 

 

Figure 2.13 : Initial design points in original space (X-space) and standard space       

(U-space) 

Step 2: In Figure 2.14, a circle with a radius ,. � 3.0 and )�(0.0, 0.0) as a center 

point is drawn. The new design point is obtained as )2(1.0358, 2.8155). The 

performance measure value at point )2 is '���, ��� � 0.9051. The point )2 in U-

space corresponds to )Ä(6.8286, 8.2524) in X-space with the same performance 

measure value '���, ��� � 0.9051. 
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Figure 2.14 : Performance function ' and new design point )2 

Step 3: In the next iteration, the design point is obtained as )3(1.9329, 2.2943) and 

the performance measure value at the point )3 is '���, ��� � 0.4376 as shown in 

Figure 2.15. 

 

Figure 2.15 : Design point )3 and target reliability index ,. 

The same procedures can be repeated until the estimate of performance measure ' 

converges. The iteration results are summarized in Table 2.2. The performance 

measure is ' � b0.3579. Most probable failure point (MPP) corresponding to this 

performance measure is �� � � 8.3173, 6.6247 
. 
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Table 2.2 : Iteration results in AMV method 

Iteration 
 No. 

1 2 3 4 5 6 

,. 3.0 3.0 3.0 3.0 3.0 3.0 Å'Å�� -0.2943 -0.6740 -1.3816 -2.3485 -2.8538 -2.9677 

Å'Å�� -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 

'���, ��� 0.9051 0.4376 -0.1383 -0.3412 -0.3574 -0.3579 7� 0.3453 0.6443 0.8654 0.9466 0.9629 0.9655 7� 0.9385 0.7648 0.5011 0.3224 0.2699 0.2603 �� 6.8286 7.5463 8.0769 8.2718 8.3109 8.3173 �� 8.2524 7.8354 7.2027 6.7739 6.6478 6.6247 �� 1.0358 1.9329 2.5962 2.8398 2.8886 2.8966 �� 2.8155 2.2943 1.5033 0.9673 0.8098 0.7808 
Convergence 

(ε ) 
- 0.4674 0.5759 0.2029 0.0162 0.0005 
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3. RELIABILITY BASED STRUCTURAL OPTIMIZATION OF A 

CANTILEVER BEAM VERIFICATION 

This chapter presents the implementation of the reliability analysis methods using 

Matlab and a benchmark problem from literature is used to validate the 

implementation. 

3.1 Design of a Cantilever Beam 

This test problem is adapted from the reliability-based design optimization literature 

[53]. Figure 3.1 shows the cantilever beam with a rectangular cross-section subjected 

to a vertical load, YP , and a horizontal load, XP , at the tip. It is assumed that the 

beam has a fixed length of L = 100.0 in. and that the cross sectional dimensions of 

the beam remain constant along the length of the beam. The design objective is to 

prevent yielding due to normal stress while minimizing the weight of the beam or, 

equivalently, the cross-sectional area w*t. 

 

Figure 3.1 : Design optimization of a cantilever beam 

We consider yielding at the root of the fixed end of the beam, where the maximum 

normal stress (S) is calculated analytically as follows 









+= XY P

tw
P

wt
S

22

600600
                             (3.1) 

The limit state function is; 









+−=−= XY P

tw
P

wt
RSRg

22

600600
                            (3.2) 
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where R is the random yield strength, XP  and YP  are mutually independent random 

loads. Assume that there are uncertainties in XP , YP , and R, and they follow normal 

distributions with the following parameters as shown in Table 3.1. 

Table 3.1 : Statistics of loads and material properties 

Random Variable R (psi) 
XP  (lbf) YP  (lbf) 

Mean 40000 500 1000 
Standard Deviation 2000 100 100 

It is assumed that the manufacturing tolerances on the cross-sectional width w and 

thickness t are relatively small and, therefore, the dimensions will be treated as 

deterministic design variables. 

3.2 Deterministic Design 

In deterministic design, the design with minimum weight can be obtained by solving 

the following optimization problem using a safety factor (SF). We assume that the 

random variables R, XP  and YP  are fixed at their means. 

Minimize  : Area = w* t 

Subject to : 0* ≥−= SSFRg                             (3.3) 

3.2.1 Deterministic Analytical Solution 

Equation (3.3) is a typical nonlinear programming problem, and is here solved using 

by a built-in Matlab function called fmincon (Appendix A.3). A safety factor of 1.5 

is used for this analytical solution. The maximum normal stress is evaluated using 

Equation (3.1). 

Solution of the reference study took about 2 seconds using Matlab’s fmincon 

function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz 

processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a 

result, the optimum design shown in Table 3.2 corresponding to the minimum area is 

(w, t) = (2.2407, 4.4814). 
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Table 3.2 : Deterministic analytical design result 

w (inch) t (inch) g (psi) Area ( 2
inch ) 

2.2407 4.4814 0.1271 10.0415 

3.2.2 Deterministic Computational Solution 

For a problem which the analytical formulation of stress function is not available, the 

stress value can be calculated from the finite element analysis software, and here 

Abaqus is used to obtain the maximum normal stress value (S). This exercise is a 

building block for the more complicated applications that will be solved in this 

thesis. 

Equation (3.3) is solved using Modefrontier as an optimizer driver. The optimization 

workflow for deterministic design can be shown in Figure 3.2. 

 

Figure 3.2 : Optimization workflow for deterministic design 

Solution of the present study took about 5 hours 37 minutes using Modefrontier on a 

workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor, with 

2.00 GB of RAM on Microsoft Windows XP operating system. Design of 

experiment (DOE) techniques are used to limit the number of runs. Initial number of 

designs are provided for the learning process of the algorithm so optimum designs 

can be obtained fastly. In this study, 16 DOE is used. “Full Factorial” method which 
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works best with less than 8 variables is employed to distribute DOE points. BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) algorithm which is a method for solving 

nonlinear optimization problems is used for attaining optimum result. Finally a total 

number of 1157 designs are generated for the optimization problem. As a result 209 

unfeasible designs and 948 feasible designs are found. The values of selected designs 

are given in Table 3.3. The first design which has the minimum area is the optimum 

solution. 

Table 3.3 : Selected designs of deterministic computational solution 

Design w (inch) t (inch) g (psi) Area ( 2
inch ) 

1 
2 

2.2135 
2.2824 

4.5366 
4.4000 

0.55 
1.6 

10.041 
10.042 

3 2.1962 4.5729 2.95 10.043 

3.2.3 Comparison of Analytical and Computational Solutions 

Both the analytical and computational results that are obtained using Matlab’s 

fmincon function and Modefrontier are similar, and the results are shown in Table 

3.4. 

Table 3.4 : Comparison of deterministic design results 

 w (inch) t (inch) g (psi) Area ( 2
inch ) 

Present Study ~ Modefrontier 2.2135 4.5366 0.55 10.041 
Reference Study ~ Literature 
(fmincon) [53] 

2.2407 4.4814 0.1271 10.0415 

3.3 Reliability Based Design Optimization 

3.3.1 Reliability Index Approach (RIA) 

Depending on the goal of the optimization problem, different formulations can be 

used. For example, if the goal is to achieve maximum reliability as long as the weight 

is within some bounds, the optimization problem can be formulated as 

Maximize : sβ  

Subject to : ≤= twArea *  Area upper bound                          (3.4) 

If the goal is to achieve minimum weight as long as the reliability is within some 

bounds, the optimization problem can be formulated as 
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Minimize  : twArea *=  

Subject to : ts ββ ≥                              (3.5) 

The selection of a target reliability index, tβ , is problem dependent and often 

controversial. A commonly used value is 3.000, corresponding to, for a normally 

distributed performance function (g), a reliability of 0.99865 or a probability of 

failure of 0.00135. 

Equation (3.5) is used in this study to optimize the beam design. The sβ  value is 

computed using first order reliability method (FORM) for a given design with both 

analytical and computational formulation of stress function. 

3.3.1.1 Reliability Index Approach with Analytical Stress Solution 

From literature, we have observed that the stress constraint is usually dominant with 

respect to the displacement constraint. For approval of this condition, in RBDO, in 

addition to stress constraint a displacement constraint is also considered in the 

optimization problem. Analytical formulation of the problem is 

Minimize  : twArea *=  

Subject to : 000.3=≥ ts ββ     

           000.3=≥ td ββ                 

where  







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RSRg

22
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DDDg XY

ntdisplaceme                       (3.6) 

In the above, .2535.20 inD =  is the displacement tolerance at the free end of the 

beam. E is the random Young’s modulus and has a normal distribution of N(29E6, 

1.45E6) psi. Equation (3.6) is solved by using a built-in Matlab function, fmincon 

using FORM (Appendix A.4). Fmincon seeks the optimum solution in the outer loop, 

FORM is used for reliability analysis in the inner loop. 

Solution of the reference study took about 2 seconds using Matlab’s fmincon 

function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz 
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processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a 

result, the optimum designs for different constraints are shown in Table 3.5. 

Table 3.5 : Reliability index approach with analytical stress solution 

Constraints w (inch) t (inch) 
sβ   dβ  Area ( 2

inch ) 

Stress 2.4460 3.8922 3.000 - 9.5202 
Displacement 2.7015 3.4078 - 3.000 9.2063 

Stress and Disp.  2.4484 3.8884 3.000 3.000 9.5203 

From Table 3.5, the results match well as in the reference study [53] and it is 

validated that the stress constraint is dominant. In this problem, only stress constraint 

is considered for the optimization problems for computational simplicity. For the 

stress constraint, optimum design FORM results are shown in Table 3.6. The 

reliability index sβ is 3.000. The limit-state function (g) value at most probable 

failure point (MPP), [ ]1133,712,36705* =x , is zero, this reliability index can be 

considered as the shortest distance from the origin to the limit-state surface. 

Table 3.6 : Iteration results in FORM for the optimum design in analytical RIA  

Iteration No. 1 2 

),,,,( twPPRg YX  10925 0 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -25.7658 -25.7658 

YP

g

∂

∂
 -16.1921 -16.1921 

sβ  3.000 3.000 

1α  -0.5492 -0.5492 

2α  0.7076 0.7076 

3α  0.4447 0.4447 

R   (X-space) 36705 36705 

XP  (X-space) 712 712 

YP   (X-space) 1133 1133 
R   (U-space) -1.6477 -1.6477 

XP  (U-space) 2.1228 2.1228 

 YP   (U-space) 1.3340 1.3340 
Convergence (ε ) - 2.9605E-16 
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3.3.1.2 Reliability Index Approach with Computational Stress Solution 

Numerical formulation of the problem is 

Minimize  : twArea *=  

Subject to : 000.3=≥ ts ββ                               

where  SRg −=                                   (3.7) 

Equation (3.7) is solved using Modefrontier as an optimizer driver. An in-house code 

developed in Matlab is used for the reliability analysis. Briefly, Modefrontier seeks 

the optimum solution in the outer loop, FORM code written in Matlab is used for 

reliability analysis in the inner loop. The optimization workflow for reliability based 

design can be shown in Figure 3.3. In Appendix A.5, FORM code with the script 

files written in Matlab is shown. Abaqus calculates the maximum normal stress value 

(S). 

 

Figure 3.3 : Optimization workflow for reliability index approach (RIA) 

Solution of the present study took about 27 hours 13 minutes using Modefrontier on 

a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor, 

with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 16 

design of experiments (DOE) is used. “Full Factorial” is employed to distribute DOE 
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points. BFGS algorithm is used to reach the optimum result. Finally a total number 

of 350 designs are generated during the optimization problem. As a result 67 

unfeasible designs and 283 feasible designs are found. The values of selected designs 

are given in Table 3.7. The first design which has the minimum area is the optimum 

solution. 

Table 3.7 : Selected designs of computational reliability index approach solution 

Design w (inch) t (inch) 
sβ  Area ( 2

inch ) 

1 
2 

2.4000 
2.4000 

3.9673 
3.9681 

3.000 
3.003 

9.5215 
9.5236 

3 2.5064 3.8000 3.004 9.5243 

For the optimum design FORM results can be shown from Table 3.8. The reliability 

index sβ  is 3.000. The limit-state function (g) value (0.1033) at MPP,

[ ]1130,715,36724* =x , is  close to zero compared to the starting value, this reliability 

index can be considered as the shortest distance from the origin to the limit-state surface. 

Table 3.8 : Iteration results in FORM for the optimum design in computational RIA 

Iteration No. 1 2 

),,,,( twPPRg YX  10990 0.1471 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -26.2550 -26.2550 

YP

g

∂

∂
 -15.8850 -15.8850 

sβ  3.000 3.000 

1α  -0.5460 -0.5460 

2α  0.7168 0.7168 

3α  0.4337 0.4337 

R   (X-space) 36724 36724 

XP  (X-space) 715 715 

YP   (X-space) 1130 1130 
R   (U-space) -1.6382 -1.6382 

XP  (U-space) 2.1506 2.1506 

 YP   (U-space) 1.3012 1.3012 
Convergence (ε ) - 1.4E-5 
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3.3.1.3 Comparison of Analytical and Computational Solutions in RIA 

Both the analytical and computational results that are obtained using Matlab’s 

fmincon function and Modefrontier agree well, and the results are shown in Table 

3.9. 

Table 3.9 : Comparison of analytical and computational solutions in RIA 

 w (inch) t (inch) 
sβ  Area ( 2

inch ) 

Present Study ~ Modefrontier 2.4000 3.9673 3.000 9.5215 
Reference Study ~ Literature 
(fmincon) [53] 

2.4460 3.8922 3.000 9.5202 

Comparison of FORM results for optimum designs in the analytical and 

computational solutions can be shown from Table 3.10. 

Table 3.10 : Comparison of FORM results in analytical and computational solutions 

for RIA 

 Analytical Computational 

),,,,( twPPRg YX  0 0.1471 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -25.7658 -26.2550 

YP

g

∂

∂
 -16.1921 -15.8850 

sβ  3.000 3.000 

1α  -0.5492 -0.5460 

2α  0.7076 0.7168 

3α  0.4447 0.4337 

R   (X-space) 36705 36724 

XP  (X-space) 712 715 

YP   (X-space) 1133 1130 
R   (U-space) -1.6477 -1.6382 

XP  (U-space) 2.1228 2.1506 

 YP   (U-space) 1.3340 1.3012 
Convergence (ε ) 2.9605E-16 1.4E-5 

3.3.2 Performance Measure Approach (PMA) 

3.3.2.1 Performance Measure Approach with Analytical Stress Solution 

Analytical formulation of the problem is 
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Minimize  : twArea *=  

Subject to : 0
600600

22
≥







+−=−= XY P

tw
P

wt
RSRg                            

where  000.3=tβ                               (3.8) 

Equation (3.8) is solved by using a built-in Matlab function, fmincon using advanced 

mean value (AMV) method (Appendix A.6). In Equation (3.8), g value is computed 

using AMV method. Fmincon seeks the optimum solution in the outer loop, AMV 

method is used for inverse reliability analysis in the inner loop. 

Solution of the reference study took about 2 seconds using Matlab’s fmincon 

function on a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz 

processor, with 2.00 GB of RAM on Microsoft Windows XP operating system. As a 

result, the optimum design shown in Table 3.11 corresponding to the minimum area 

is (w, t) = (2.4460, 3.8922). 

Table 3.11 : Performance measure approach with analytical stress solution 

w (inch) t (inch) g  Area ( 2
inch ) 

2.4460 3.8922 -8.3* 710−   9.5202 

For the optimum design AMV method results can be shown in Table 3.12. The limit-

state function (g) value is -8.3* 710−  corresponding to a target reliability index 

000.3=tβ . MPP is [ ]1133,712,36705* =x . 

3.3.2.2 Performance Measure Approach with Computational Stress Solution 

Numerical formulation of the problem is 

Minimize  : twArea *=  

Subject to : SRg −=                               

where  000.3=tβ                                   (3.9) 

Equation (3.9) is solved using Modefrontier as an optimizer driver. Matlab is used 

for the inverse reliability analysis. Briefly, Modefrontier seeks the optimum solution 

in the outer loop, AMV method code written in Matlab is used for inverse reliability 

analysis in the inner loop. The optimization workflow for reliability based design can 

be shown in Figure 3.4. In Appendix A.7, AMV method code with the script files  
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Table 3.12 : Iteration results in AMV method for the optimum design in analytical 

PMA 

Iteration No. 1 2 

tβ  3.000 3.000 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -25.7659 -25.7659 

YP

g

∂

∂
 -16.1924 -16.1924 

),,,,( twPPRg YX  -8.3* 710−  -8.3* 710−  

1n  -0.5492 -0.5492 

2n  0.7076 0.7076 

3n  0.4447 0.4447 

R   (X-space) 36705 36705 

XP  (X-space) 712 712 

YP   (X-space) 1133 1133 
R   (U-space) -1.6477 -1.6477 

XP  (U-space) 2.1227 2.1227 

 YP   (U-space) 1.3340 1.3340 
Convergence (ε ) - 7.2760E-12 
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written in Matlab is shown. Abaqus is used to compute the maximum normal stress 

value (S). 

 

Figure 3.4 : Optimization workflow for performance measure approach (PMA) 

Solution of the present study took about 29 hours 10 minutes using Modefrontier on 

a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor, 

with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 16 

design of experiments (DOE) is used. “Full Factorial” is employed to distribute DOE 

points. BFGS algorithm is used to get optimum result. Finally a total number of 350 

designs are generated for the optimization problem. As a result 67 unfeasible designs 

and 283 feasible designs are found. The values of selected designs are given in Table 

3.13. The first design which has the minimum area is the optimum solution. 

Table 3.13 : Selected designs of computational performance measure approach 

solution 

Design w (inch) t (inch) g (psi) Area ( 2
inch ) 

1 
2 

2.4000 
2.4000 

3.9673 
3.9681 

1.38 
12.36 

9.5215 
9.5236 

3 2.5064 3.8000 12.77 9.5243 



 
45

For the optimum design AMV method results can be shown in Table 3.14. The limit-

state function (g) value is 1.3824 corresponding to a target reliability index 

000.3=tβ . MPP is [ ]1130,715,36724* =x . 

Table 3.14 : Iteration results in AMV method for optimum design in computational 

PMA 

Iteration No. 1 2 

tβ  3.000 3.000 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -26.2550 -26.2550 

YP

g

∂

∂
 -15.8850 -15.8800 

),,,,( twPPRg YX  1.3763 1.3824 

1n  -0.5460 -0.5461 

2n  0.7168 0.7168 

3n  0.4337 0.4336 

R   (X-space) 36724 36724 

XP  (X-space) 715 715 

YP   (X-space) 1130 1130 
R   (U-space) -1.6381 -1.6382 

XP  (U-space) 2.1504 2.1505 

 YP   (U-space) 1.3010 1.3007 
Convergence (ε ) - 0.0061 

3.3.2.3 Comparison of Analytical and Computational Solutions 

Both the analytical and computational results that are obtained using Matlab’s 

fmincon function and Modefrontier agree well, and the results are shown in Table 

3.15. 

Table 3.15 : Comparison of analytical and computational solutions in PMA 

 w (inch) t (inch) g (psi) Area ( 2
inch ) 

Present Study ~ Modefrontier 2.4000 3.9673 1.38 9.5215 
Reference Study ~ Literature 
(fmincon) [53] 

2.4460 3.8922 -8.3* 710−  9.5202 

Comparison of optimum results solved by AMV method both with analytical and 

computational stress solutions are shown in Table 3.16. 
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Table 3.16 : Comparison of AMV method results in analytical and computational 

solutions for PMA 

 Analytical Computational 

tβ  3.000 3.000 

R

g

∂

∂
 1 1 

XP

g

∂

∂
 -25.7659 -26.2550 

YP

g

∂

∂
 -16.1924 -15.8800 

),,,,( twPPRg YX  -8.3* 710−  1.3824 

1n  -0.5492 -0.5461 

2n  0.7076 0.7168 

3n  0.4447 0.4336 

R   (X-space) 36705 36724 

XP  (X-space) 712 715 

YP   (X-space) 1133 1130 
R   (U-space) -1.6477 -1.6382 

XP  (U-space) 2.1227 2.1505 

 YP   (U-space) 1.3340 1.3007 
Convergence (ε ) 7.2760E-12 0.0061 

3.4 Comparison of Deterministic Optimization and Reliability Based Design 

Optimization 

Deterministic design of the cantilever beam results with a bulk beam design both as 

shown in Table 3.17 and in Table 3.18. RIA and PMA give the same optimum result 

for this cantilever beam problem in both analytical and computational solutions. 

Table 3.17 : Comparison of deterministic and reliability based optimization with 

analytical stress solutions 

 w (inch) t (inch) Area ( 2
inch ) Safety Factor Wall Clock Time 

Det. 2.2407 4.4814 10.0415 1.5 2 Seconds 
RIA 2.4460 3.8922 9.5202 - 2 Seconds 

PMA 2.4460 3.8922 9.5202 - 2 Seconds 

Comparison of deterministic and reliability based design optimization with 

computational stress solutions is shown in Table 3.18. 
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Table 3.18 : Comparison of deterministic and reliability based design optimization 

with computational stress solutions 

 w (inch) t (inch) Area ( 2
inch ) Safety Factor Wall Clock Time 

Det. 2.2135 4.5366 10.041 1.5 5 hours 37 min. 
RIA 2.4000 3.9673 9.5215 - 27 hours 13 min. 

PMA 2.4000 3.9673 9.5215 - 29 hours 10 min. 

From now on, we deal with structural solutions in the wing problems because 

analytical formulations of stress and displacement values for complex geometries 

will not be available. For the beam problem, for each reliability analysis, 

computational RIA solution calls Abaqus 11 times to obtain the normal stress value 

while computational PMA solution calls Abaqus 12 times. Because of this state, for 

one reliability analysis RIA computes the safety index ,- approximately in 4 

minutes, PMA computes the probabilistic performance measure '/�  approximately in 

5 minutes. After examining Table 3.18, RIA solution is preferred for reliability 

analysis in the computational wing problems because RIA solution needs less wall 

clock time to obtain the reliability index value when compared to PMA solution. 
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4. RELIABILITY BASED DESIGN OPTIMIZATION OF AEROSPACE 

STRUCTURES 

4.1 Generic Aircraft Wing Introduction 

Previously, Nikbay et al. [48] presented a practical structural optimization problem 

on a generic three dimensional wing geometry by employing high fidelity softwares 

such as Catia, Abaqus and Modefrontier. In this thesis, the previous work will be 

extended by incorporating an in-house reliability analysis code written in Matlab into 

that high-fidelity structural optimization framework. 

4.1.1 Structural Analysis Model 

A simple aircraft wing which has a NACA0012 airfoil profile is modeled 

parametrically in Catia V5-R16. The wing's three dimensional geometric model 

consists of 90 skin panels, 10 ribs and 4 spars while some of the skin panels are 

stiffened by cylindirical annular stringers along the wing span. The wing has a 

rectangular platform with 6m semi-span and 1.6m chord length. Finite element 

model of the wing is prepared by using Abaqus 6.7.1 and is composed of linear shell 

and beam elements. The model is shown in Figure 4.1, and consists of 17,070 linear 

quadrilateral elements of shell type, 1264 linear line elements of beam type, a total of 

18,334 elements and 16,024 nodes, thus 96,144 degrees of freedom.  

 

Figure 4.1 : Computational model of the wing structure 
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All members of the structure are made of aluminium with Young's modulus 

MPaE 70000= , Poisson ratio 33.0=υ , density 3/2700 mkg=ρ , yield strength 

MPayield 400=σ . As a cantilevered boundary condition, all of the degrees of 

freedom at the root of the wing are set to zero. The aerodynamic load that will be 

applied to the wing is supplied from a computational fluid dynamics (CFD) analysis 

performed for the initial design. An Euler inviscid flow analysis was performed for 

3.0=Mach  at sea level. For the sake of simplicity, the obtained total lift force of 

approximately N25000  is then expressed as an elliptic lift function (4.1) which 

changes along the wing span but assumed to be constant along the chord [48]. 









−= −

2

2
3 1)10*21.2()(

a

y
yP                  (4.1) 

where a is the semi-span (6000 mm) and y is the point along the span on which the 

load value should be found in MPa. A static load analysis of this wing will be used as 

a reference to dictate the desired optimization constraints for this study. The 

structural criteria related to the reference analysis are shown in Table 4.1. 

Table 4.1 : Structural analysis results of the reference wing 

Criteria Values 
Maximum displacement 187 mm 
Maximum Von Mises stress 202 MPa 
Mass 336 kg 
First modal frequency 4.35 Hz 

4.1.2 Definition of Optimization Variables 

Since ribs, spars and skin panels are modeled as shell elements, the thicknesses of 

these elements and the diameter of the stringers are chosen as design parameters. The 

thicknesses of spars, ribs and skin panels are divided into three groups along the 

wing span (as shown in Figure 4.1), introducing 9 design variables. The outer 

diameter of all the stringers are kept constant along the span and expressed as only 

one design parameter while the wall thickness of the stringers are taken as one over 

third of the outer diameter. In Figure 4.1, the structural components of the wing and 

the thickness parameters related to these components are presented so that each 

different color shows a different design parameter. 
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Since the wing structure is divided into three sections along its span, there are three 

independent skin panel thickness variables ),,( 321 AAA ttt , three independent spar 

thickness variables ),,( 321 BBB ttt  and three independent rib thickness variables 

),,( 321 CCC ttt  in the wing structure. In Figure 4.1, each different color shows a 

different independent thickness parameter. Each of these thicknesses is related to its 

initial thickness value it
~

 through an optimization parameter representing the 

percentile change in thickness in . 1An  is the percentile change in the thicknesses of 

skin panel in first section namely cantilevered side, 2An  is the percentile change in 

the thicknesses of skin panel in the middle section, and 3An  is the percentile change 

in the thicknesses of skin panel in the tip section. Thus, skin panel thicknesses are 

allowed to change as follows; 

111
~
AAA tnt =  222

~
AAA tnt =  333

~
AAA tnt =                 (4.2) 

where, 1At , 2At , 3At  are the physical design variables describing the skin panel 

thicknesses for the three partitions along the span. 1At  is chosen to be on the 

cantilevered side. 1
~
At , 2

~
At , 3

~
At  are the initial values for the thicknesses of skin panels 

in three sections. Thus, spar thicknesses are allowed to change as follows; 

111
~
BBB tnt =  222

~
BBB tnt =  333

~
BBB tnt =                 (4.3) 

where, 1Bt , 2Bt , 3Bt  are the physical design variables describing the spar thicknesses 

for the three partitions along the span. 1Bt  is chosen to be on the cantilevered side. 

1
~
Bt , 2

~
Bt , 3

~
Bt  are the initial values for the thicknesses of the three spar partitions. 

Finally, rib thicknesses are allowed to change as follows; 

111
~
CCC tnt =  222

~
CCC tnt =  333

~
CCC tnt =                 (4.4) 

where, 1Ct , 2Ct , 3Ct  are the physical design variables describing the rib thicknesses for 

the three partitions along the span. 1Ct  is chosen for the first rib on the cantilevered 

side. 1
~
Ct , 2

~
Ct , 3

~
Ct  are the initial values for the thicknesses of the three different rib 

groups.  
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The outer diameter of all the stringers are kept constant along the span and expressed 

as only one design parameter while the wall thickness of the stringers are taken as 

one over third of the outer diameter. Thus, two more design variables, the stringer 

outer diameter 0d  and the inner wall thickness of the stringer beam wt  are: 

0100 dnd =  
3

0d
tw =                     (4.5) 

where 0d  is the reference diameter value of the initial wing design.  

The thickness optimization variables are constrained to be less than one so that the 

initial bulk structure will get lighter with respect to the initial weight. The lower and 

upper limits of the thickness optimization variables are chosen as:  

0.1192.0 1 ≤≤ An  0.1048.0 2 ≤≤ An  0.1064.0 3 ≤≤ An              (4.6) 

0.1640.0 1 ≤≤ Bn  0.1480.0 2 ≤≤ Bn  0.1320.0 3 ≤≤ Bn  

0.1480.0 1 ≤≤ Cn  0.1240.0 2 ≤≤ Cn  0.1080.0 3 ≤≤ Cn  

0.2 A 7�~ A 1.0 

In addition, the location of the first four ribs which is the group on the wing root side 

and also the location of the middle two spars are variables. The absolute distances 

from the root to each of the first four ribs are chosen as four optimization variables 

Y�, Y� , Y2, YÄ. 

50088 A Y� A 80088                  (4.7) 

90088 A Y� A 130088                                                         
140088 A Y2 A 195088 

215088 A YÄ A 280088 

For two middle spars, the ratio of the distance between the leading edge of the wing 

to the spar divided by the chord length is chosen as two dimensionless optimization 

variables >�, >�.  

0.25 A >� A 0.45                   (4.8) 

0.55 A >� A 0.75  
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A rather bulk wing initial design will be given for the optimization problem since 

optimization variables are chosen such as to reduce the thicknesses in any ways. At 

the initial configuration, ?̃Ê� � ?̃Ê� � ?̃Ê2 � 588, ?̃Õ� � ?̃Õ� � ?̃Õ2 � 2088, 

?̃Ö� � ?̃Ö� � ?̃Ö2 � 1688, Y1 � 60088, Y� � 110088, Y2 � 160088, YÄ �
225088, >� � 0.35, >� � 0.65. 

4.1.3 Deterministic Optimization of a Generic Aircraft Wing 

The deterministic optimization that will be solved has two objectives as minimization 

of weight and maximization of the first modal frequency of the structure while 

constraining maximum Von Mises stress with the yield strength of the material. 

Yield strength is 400 MPa. A safety factor of 1.5 is used on the stress constraint in 

the deterministic optimization. The multi-objective optimization problem is 

formulated as; 

minÙ IS 5�Û� , maxÙ IS ���Û� 

'��Û� � !Ý��Þ\1.5 � !ß[m�Û� b 1  � 0,          '��Û� I J 

'��Û� � �~�ß[m�Û� b 1             � 0,          '��Û� I J 

'2�Û� � 1 b ��~
���Û�                    � 0,          '2�Û� I J 

'Ä�Û� � 5~5�Û� b 1                   � 0,         'Ä�Û� I J 

¥ � HÛ I J|ÛL A Û A Û�M
                   (4.9) 

where 5�Û� is the total mass, '��Û�
 are the constraints, �ß[m�Û� and !ß[m�Û� are the 

maximum tip displacement and maximum Von Mises stress of the wing structure.  

mmu 1870 =  and kgM 3300 =  are chosen as reference values from a reference wing 

to constrain the displacement and mass. ���Û� is the first natural frequency of the 

structure, while Hzf 35.40
1 =  is the first natural frequency of the reference wing. ¥ is 

the set of optimization parameters with lower bound ÛL and upper bound Û�. 

The designs which are found previously in the deterministic optimization process in 

[48] are given in Table 4.2. The design which corresponds to Pareto 1 in Table 4.2 is 

chosen as optimum design due to its minimum mass value while still satisfying 

constraints. Pareto 1 has a safety index of ,à�.�áß�	�-.�] � 5.1492. 
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Table 4.2 : Pareto designs of deterministic design of generic aircraft wing 

Pareto 
maxσ  (MPa) maxu  (mm) ��:â�:7>Y (Hz) 5S®® (kg) 

1 198.01 175.23 5.72 263.44 
2 183.33 177.21 5.80 277.33 
3 177.89 146.02 6.77 289.06 

4.1.4 Reliability Based Design Optimization of a Generic Aircraft Wing 

The reliability based design optimization problem that will be solved with two 

random variables (which are yield strength !Ý��Þ\ and Young’s modulus � of the 

material), has two objectives which are minimization of weight and maximization of 

the first modal frequency of the structure (Equation (4.10)). Thus, the constraints 

concerning stress �'��, displacement �'�� and frequency �'2� in this problem 

become probabilistic constraints due to their dependencies on the random variables 

vector � � �!Ý��Þ\   �
. !Ý��Þ\  and � are modeled with normal distributions assuming 

r�400, 20� 5)S and r�70000, 350� 5)S respectively. Then, the multi-objective 

optimization problem is formulated as; 

minÙ IS 5�Û� , maxÙ IS ���Û� 

) k'�/áãZ��, Û� � !Ý��Þ\���!ß[m�Û� b 1 � 0p   � 1.0 b 10&ä,        '�/áãZ��, Û�   I J 

) �'�/áãZ��, Û� � �~�ß[m��, Û� b 1 � 0� � 1.0 b 10&ä,        '�/áãZ��, Û�  I J 

) k'2/áãZ��, Û� � 1 b ��~
����, Û� � 0p       � 1.0 b 10&ä,        '2  /áãZ��, Û� I J 

'Ä\�.�Û� � 5~5�Û� b 1 � 0,                                                            'Ä  \�.�Û�        I J 

¥ � HÛ I J|ÛL A Û A Û�M
                 (4.10) 

where 5�Û� is the total mass, '�/áãZ��, Û�
 are the probabilistic constraints, '�\�.�Û� 

are the deterministic constraints, �ß[m��, Û� and !ß[m�Û� are the maximum tip 

displacement and maximum Von Mises stress of the wing structure.  mmu 1870 =  

and kgM 3300 =  are chosen as reference values from a reference wing to constrain 

the displacement and mass. ����, Û� is the first natural frequency of the structure, 

while Hzf 35.40
1 =  is the first natural frequency of the reference wing. ¥ is the set of 
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optimization parameters with lower bound ÛL and upper bound Û�. After some 

computations, the frequency constraint is not considered to be dominant in the 

reliability analysis and treated as a deterministic constraint for the sake of simplicity. 

In terms of reliability index, the above optimization problem can be expressed as; 

minÙ IS 5�Û� , maxÙ IS ���Û� 

'�/áãZ�,w.á�--� � ,w.á�--  b  ,
[áC�. w.á�--  �  0,        '�  /áãZ�,w.á�--�  I J 

'�/áãZa,à�-/c � ,à�-/  b  ,
[áC�. à�-/ �  0,                '�  /áãZa,à�-/c     I J 

'2\�.�Û� � 1 b ��~
���Û�        � 0,                                 '2  \�.�Û�               I J 

'Ä\�.�Û� � 5~5�Û� b 1       � 0,                                         'Ä  \�.�Û�               I J 

¥ � HÛ I J|ÛL A Û A Û�M                (4.11) 

Here, ,
[áC�. w.á�--  and ,
[áC�. à�-/ are the target reliability indexes for stress and 

displacement constraints and chosen as to be 5.1993 for a probability of faiure of 

10&ä. They could have different values but here the same reliability level is chosen. 

Equation (4.11) is solved using Modefrontier as an optimizer driver. FORM code 

written in Matlab is used for reliability analysis. In Appendix A.8, FORM code with 

the script files written in Matlab is shown. Catia is used as a parametric solid 

modeler while Abaqus is used to compute the structural response of the wing system. 

The optimization workflow for reliability based design optimization (RBDO) is 

shown in Figure 4.2. 

Solution of the present study took about 72 hours 30 minutes using Modefrontier on 

a workstation with Intel(R) Core(TM) 2 Quad CPU Q8300@2.50 GHz processor, 

with 2.00 GB of RAM on Microsoft Windows XP operating system. At least twice of 

the number of optimization parameters should be given as the number of design of 

experiments (DOE) (as stated in Modefrontier’s user manual). So, in this study, 52 

DOE is used. “Sobol Sequence” is employed to distribute DOE points because 

Modefrontier’s user manual recommended “Sobol Sequence” as initial design 

population for MOGA algorithm. MOGA-II (Multi Objective Genetic Algorithm II) 

is used for attaining optimum result. Finally a total number of 290 designs are 

generated for the optimization problem. As a result 75 unfeasible designs and 215 

feasible designs are found. The values of pareto designs are given in Table 4.3. 
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Table 4.3 : Pareto designs of reliability based structural design 

Variables & 
Criteria 

1 2 3 4 5 6 7 

nA1 (mm) 0.85 0.92 0.92 0.92 0.82 0.92 0.92 
nA2 (mm) 0.40 0.30 0.25 0.27 0.40 0.25 0.27 
nA3 (mm) 0.14 0.14 0.17 0.17 0.14 0.17 0.17 
nB1 (mm) 0.85 0.82 0.69 0.85 0.85 0.69 0.85 
nB2 (mm) 0.68 0.95 0.73 0.63 0.63 0.73 0.63 
nB3 (mm) 0.40 0.35 0.50 0.52 0.52 0.50 0.52 
nC1 (mm) 0.68 0.83 0.55 0.50 0.50 0.55 0.50 
nC2 (mm) 0.44 0.52 0.24 0.24 0.24 0.24 0.24 
nC3 (mm) 0.23 0.15 0.25 0.23 0.23 0.25 0.23 
nD1 (mm) 0.40 0.33 0.43 0.38 0.38 0.43 0.28 
rib1_ref 16 16 16 16 16 16 16 
rib2_ref 16 16 16 16 16 16 16 
rib3_ref 16 16 16 16 16 16 16 
rib_pos_1 (mm) 550 550 700 700 650 700 600 
rib_pos_2 (mm) 950 950 1100 1100 1100 1100 1000 
rib_pos_3 (mm) 1500 1450 1650 1900 1600 1900 1500 
rib_pos_4 (mm) 2250 2250 2650 2750 2500 2750 2400 
skin1_ref 5 5 5 5 5 5 5 
skin2_ref 5 5 5 5 5 5 5 
skin3_ref 5 5 5 5 5 5 5 
spar1_ref 20 20 20 20 20 20 20 
spar2_ref 20 20 20 20 20 20 20 
spar3_ref 20 20 20 20 20 20 20 
spar_pos_1 (mm) 0.25 0.25 0.45 0.45 0.40 0.45 0.25 
spar_pos_2 (mm) 0.55 0.55 0.75 0.55 0.60 0.75 0.55 
stringer_outer_ref 15 15 15 15 15 15 15 ,w.á�--  12.33 11.15 10.66 11.84 11.74 11.85 9.09 !Ý��Þ\  (MPa) 153.36 177.04 186.90 163.21 165.21 163.07 218.23 ,à�-/  30.25 25.93 6.19 32.32 26.86 18.89 12.48 � (MPa) 59413 60925 67832 58687 60600 63388 65631 
Frequency (Hz) 6.761 7.014 6.126 6.419 6.404 6.333 6.136 
Mass (kg) 268 278 246 267 258 253 253 
Improvement of 
Mass +%1.9 +%5.7 -%6.5 +%1.5 -%1.9 -%3.8 -%3.8 
Improvement of 
Frequency +%18 +%22 +%7 +%12 +%11 +%10 +%7 
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Figure 4.2 : Modefrontier workflow for reliability based structural design 

According to the desired criteria, one of the paretos can be chosen as the most 

preferred design. The design which corresponds to Pareto 3 in Table 4.3 is chosen as 

optimum design due to its minimum mass value while still satisfying the target 

reliability index constraints. 

 

Figure 4.3 : Mass vs frequency space 
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The selected pareto design 3 gives approximately %6.5 decrease in mass and %7 

increase in frequency with respect to the reference values of 263 kg and 5.72 Hz. All 

feasible designs are shown in mass vs frequency space in Figure 4.3 where the 

regression line which shows the relationship between objective functions for the 

feasible design points are demonstrated. As it is seen from the regression line in 

Figure 4.3, the frequency values are decreasing while mass values are increasing as 

expected. 

In reliability based design optimization of a generic aircraft wing study, the pareto 

designs’ reliability constraints are over-satisfied, other optimization drivers except 

Modefrontier may prevent this issue. 

4.2 Computational Aeroelastic Analysis 

A realistic aeroelastic analysis is based on coupling of structural and aerodynamic 

responses. In this present study, Mpcci (Mesh-based Parallel Code Coupling 

Interface) is used for this required aeroelastic coupling interface. 

While Abaqus-6.7.1 is used as finite element solver, 3D inviscid Euler equations are 

solved with Fluent-6.3.26. The related two softwares are coupled by the use of Mpcci 

to satisfy the required conditions of structural and aerodynamic responses in an 

aeroelastic analysis. Then, Abaqus finds the displacements by using the aerodynamic 

loads calculated with Fluent. 

For a general aeroelastic system consisted of mass-damping-spring model, the 

equation of motion can be written in an implicit form as below: 

[ ]{ } [ ]{ } [ ]{ } { } { }a e
M u D u K u F F+ + = +&& &

              (4.12)
 

We can ignore the time dependent terms in above equation since only the static 

aeroelastic effects are considered in this study. Moreover, the aeroelastic analysis 

includes only aerodynamic effects for force definition. By using these assumptions, 

we can derive an equation which is also compatible with finite element analysis 

technique: 

[ ]{ } { }a
K u F=

                                                                                                   
(4.13) 
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In this study, the flow was assumed to be inviscid while Euler equations were used to 

model and solve it. 3D inviscid Euler equations can be written in a conservative 

form: 

( ) 0
w

F w
t

∂
+ ∇• =

∂

r r

                                                                                                 
(4.14) 

where w  is conservative fluid state variable and can be defined as: 
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(4.15) 

where ρ denotes the density of fluid; 1 2 3, ,u u u are velocities and E is the total internal 

energy per mass. 

Flux can also be represented by using three components 1 2 3, ,F F F
r r r

 as: 
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(4.16) 

4.3 AGARD 445.6 Wing Introduction 

In the final step of this study, RBDO is applied to an aeroelastic optimization 

problem. The well-known AGARD (Advisory Group for Aerospace Research and 

Development) 445.6 wing is chosen as the wing structure. This wing is the first 

aeroelastic configuration that is tested by Yates [54] in the “Transonic Dynamics 

Tunnel (TDT)” at the NASA Langley Research Center. Deterministic aeroelastic 

optimization of AGARD 445.6 wing problem was presented formerly in the work of 

Nikbay [47] for the free stream Mach number of 0.85 and the angle of attack of 5 

degrees. In the present work, we consider a set of random variables for fluid and 

structural domain � � �!Ý��Þ\  5 0
 while uncertainties in yield strength, Mach 

number and angle of attack will be accounted in the reliability analysis. 
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Figure 4.4 : Definition of angle of attack on an airfoil, lift and drag forces 

4.3.1 Aeroelastic Analysis Model 

The AGARD 445.6 wing is a swept-back wing with a quarter-chord sweep angle of 

45 degrees. Cross sections of the wing are NACA 65A004 airfoils. The wing has a 

taper ratio of 0.66 and an aspect ratio of 1.65. Moreover, it is a wall-mounted model 

made with laminated mahogany. The wings parametric CAD model prepared with 

Catia-V5 is given in Figure 4.5. There are 2 models of the AGARD 445.6 wing: solid 

and weakened model. In this study weakened model of the wing is used. The finite 

element model in Abaqus is composed of 19,610 linear hexahedral structural 

elements. The computational grid of the flow domain was constructed in Gambit 

with 691,000 tetrahedral elements and 1.35 million faces. The flow is modeled with 

the Euler equations. 

 

Figure 4.5 : AGARD 445.6 wing geometry and FEM model 

4.3.2 Deterministic Optimization of AGARD 445.6 Wing 

There are two objective functions in this deterministic optimization problem which 

are maximizing the 
Nà ratio and minimizing the weight (Equation (4.17)). Mach 



 
61

number and angle of attack are 0.85 and 5 respectively. Then, the multi-objective 

optimization problem is formulated as; 

minÙ IS 5�Û� , maxÙ IS Nà �Û�  

'��Û� � «å«æç��Û� b 1 � 0,                     '��Û� I J  

¥ � HÛ I J|ÛL A Û A Û�M     Û � �è, éêë�   0.1 A è A 0.5   0° A éêë A 50°           (4.17) 

where 5�Û� is the total mass of the wing, 
Nà �Û� is the lift over drag value for the 

wing. '��Û� are the constraints, �ß[m�Û� is the maximum tip displacement. è is the 

taper ratio defined as 
root

tip

c

c
=λ  and éêë is the sweep value at the quarter chord. 

mmu 760 =  is chosen as reference value to constrain the displacement. ¥ is the set of 

optimization parameters with lower bound ÛL and upper bound Û�. 

The designs which are found previously in the deterministic optimization process in 

[47] are given in Table 4.4. The design which corresponds to Pareto 3 in Table 4.4 is 

chosen as optimum design due to its minimum mass value while still satisfying the 

displacement constraint. 

Table 4.4 : Pareto designs of deterministic design of AGARD 445.6 wing 

Pareto 
maxu  (mm) íî 

5S®® (kg) 

1 60.6254 12.5754 1.4885 
2 70.6557 12.2043 1.0853 
3 57.9876 11.4589 0.9715 

4.3.3 Reliability Based Aeroelastic Optimization of AGARD 445.6 Wing 

There are two objective functions in this problem which are maximizing the 
Nà ratio 

and minimizing the weight (Equation (4.18)). The yield strength !Ý��Þ\, free stream 

Mach number 5 and the angle of attack 0 are modeled with normal distributions 

assuming r�8, 0.4� 5)S, r�0.85, 0.03� and r�5, 0.25� respectively. Then, the 

multi-objective optimization problem is formulated as; 

minÙ IS 5�Û� , maxÙ IS
íî � Û� 
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) k '�/áãZ��, Û� � !Ý��Þ\���!ß[m��, Û� b 1 � 0p � 1.0 b 10&ä,      '�/áãZ��, Û� I J 

) �'�/áãZ��, Û� � �~�ß[m��, Û� b 1 � 0� � 1.0 b 10&ä,       '�/áãZ��, Û� I J 

¥ � HÛ I J|ÛL A Û A Û�M     Û � �è, éêë�   0.1 A è A 0.5   0° A éêë A 50°
          (4.18) 

where 5�Û� is the total mass of the wing, 
Nà �Û� is the lift over drag value for the 

wing. '�/áãZ��, Û�
 are the probabilistic constraints, �ß[m��, Û� and !ß[m��, Û� are 

the maximum tip displacement and maximum Von Mises stress of the wing structure. 

è is the taper ratio defined as 
root

tip

c

c
=λ  and éêë is the sweep value at the quarter 

chord. 

 

Figure 4.6 : Sweep angle, tip and root chords 

 mmu 760 =  is chosen as reference value to constrain the displacement. ¥ is the set of 

optimization parameters with lower bound ÛL and upper bound Û�. In terms of 

reliability index, the above optimization problem can be expressed as; 

minÙ IS 5�Û� , maxÙ IS
íî � Û� 

'�/áãZ�,w.á�--� � ,w.á�--  b  ,
[áC�. w.á�--  �  0,        '�  /áãZ�,w.á�--�  I J 

'�/áãZa,à�-/c   � ,à�-/  b  ,
[áC�. à�-/        �  0,       '�/áãZa,à�-/c      I J 
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          (4.19) 

Here, the target reliability indexes for stress and displacement constraints are chosen 

as to be 5.1993 for a probability of faiure of 10E-7. Several commercial software 

codes were coupled during the optimization process in this problem. Fluent-6.3.26 is 

used to solve inviscid 3D Euler equations, Gambit to generate the fluid domain mesh 

generator and Catia-V5-R16 to model the parametric 3D solid. Abaqus-6.7.1 was 

used to compute the structural response of the aeroelastic system. Mesh based 

parallel code coupling interface Mpcci-3.0.6 was used to exchange the pressure and 

displacement information between Fluent and Abaqus. Modefrontier-4.0 was used as 

a multi-objective and multidisciplinary optimization software to solve the Equation 

(4.19). FORM code written in Matlab is used for reliability analysis. The flowchart 

of the FORM code is given in Figure 4.7. In Appendix A.9, FORM code with the 

script files written in Matlab is shown. 

 

Figure 4.7 : Flowchart of the FORM code for AGARD 445.6 wing 
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The optimization workflow for reliability based aeroelastic design can be shown in 

Figure 4.8. In Figure 4.8, Catia V5 node updates the optimization variables by using 

the parametric 3D CAD model. Then, the new geometric model is transferred to 

Gambit in “iges” format. Gambit uses a journal file to prepare the fluid mesh and to 

update the boundary conditions and then transfers the mesh file to Fluent node. 

Fluent updates the optimization variables and imports the mesh files. Next, Fluent 

prepares the flow model and sets boundary conditions through a journal file and 

transfers the “case” file to Mpcci for the aeroelastic analysis. In CSD preprocessing, 

Catia V5 node updates the optimization variables by using the parametric 3D CAD 

model. Abaqus updates the structural model by using a Python script and transfers 

the input file to Mpcci for the aeroelastic analysis. Then Mpcci performs the 

coupling by using the Fluent and Abaqus models in batch mode. This aeroelastic 

analysis produces a result file that contains the aerodynamic and structural criteria. 

At each optimization iteration, an inner loop for reliability analysis is performed at 

the Matlab node. Modefrontier controls the constraint violation for both deterministic 

and probabilistic criteria. MOGA-II controls the optimization process and if needed, 

new iteration process starts. 

 

Figure 4.8 : Modefrontier workflow for reliability based aeroelastic design 
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Solution of the present study took about 215 hours 40 minutes using Modefrontier on 

a workstation with Intel(R) Core(TM) 2 Quad CPU Q6700@2.40 GHz processor, 

with 2.00 GB of RAM on Microsoft Windows XP operating system. In this study, 12 

design of experiments (DOE) is used. “Sobol Sequence” is employed to distribute 

DOE points. MOGA-II (Multi Objective Genetic Algorithm II) is used for attaining 

optimum result. Finally a total number of 43 designs are generated for the 

optimization problem. As a result 20 unfeasible designs and 23 feasible designs are 

found. The values of pareto designs are given in Table 4.5. According to the desired 

criteria, one of the paretos can be chosen as the most preferred design. The design 

which corresponds to Pareto 3 in Table 4.5 is chosen as optimum design due to its 

minimum mass value, satisfactory 
Nà ratio, while still satisfying the target reliability 

index constraints. 

Table 4.5 : Pareto designs of reliability based aeroelastic design 

Variables & Criteria 1 2 3 4 5 6 
Sweep 8 16 8 10 10 18 
Taper 0.225 0.275 0.200 0.225 0.250 0.325 ïà 0.039 0.038 0.040 0.039 0.039 0.037 ïN 0.454 0.447 0.457 0.454 0.451 0.438 ,w.á�--  6.133 5.444 6.323 6.045 5.858 5.233 !Ý��Þ\  (MPa) 6.109 6.484 6.031 6.152 6.221 6.628 5w.á�-- 0.913 0.927 0.911 0.912 0.910 0.933 0w.á�--  5.823 5.740 5.853 5.828 5.809 5.703 ,à�-/  5.923 5.296 5.374 5.555 6.057 5.209 5à�-/ 0.928 1.009 0.924 0.928 0.928 0.936 0à�-/  6.333 5.000 6.193 6.228 6.369 6.087 í/î 11.539 11.713 11.534 11.561 11.576 11.767 
Mass (kg) 1.116 1.182 1.085 1.116 1.149 1.252 
Improvement of Mass +%14.9 +%21.0 +%11.7 +%14.9 +%18.3 +%28.9 
Improvement of í/î +%0.7 +%2.2 +%0.7 +%0.9 +%1.0 +%2.7 

The selected pareto design 3 gives approximately %11.7 increase in mass and %0.7 

increase in í/î ratio with respect to the reference values of 0.9715 kg and 11.4589. 

All feasible designs are shown in mass vs í/î ratio space in Figure 4.9 where the 

regression line which shows the relationship between objective functions for the 

feasible design points are demonstrated. As it is seen from the regression line in 

Figure 4.9, the í/î values are increasing while mass values are increasing. 
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Figure 4.9 : Mass vs í/î ratio space 
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5. CONCLUSION AND FUTURE WORK 

In this work, Reliability Index Approach (RIA) and Performance Measure Approach 

(PMA) are implemented in an in-house developed RBDO code and integrated into a 

multidisciplinary optimization framework composed of high-fidelity commercial 

softwares. In this framework, finite volume based flow solver Fluent is used to solve 

inviscid 3D Euler equations and Catia is used as a parametric 3D solid modeler. 

Abaqus, a structural finite element method solver, is used to compute the structural 

response of the aeroelastic system. MPCCI, mesh based parallel code coupling 

interface, is used to exchange the pressure and displacement information between 

Fluent and Abaqus to perform a loosely coupled aeroelastic analysis. Modefrontier is 

employed as a multi-objective and multi-disciplinary optimization driver to control 

the optimization work flow. The optimization criteria include both deterministic and 

probabilistic constraints with both structural and aerodynamic uncertainties. 

The RBDO methodology is validated with an example from the literature, then 

extended to optimization of a generic wing structure and finally applied to an 

aeroelastic optimization problem for AGARD 445.6 wing. In the wing structures, 

Hasofer-Lind iteration method is implemented in Matlab to compute MPP (Most 

Probable failure Point) solution. In the final application, random variation in 

structural and aerodynamic parameters such as in yield strength, Mach number and 

angle of attack are considered.  

The presented reliability based multidisciplinary optimization process is proven to be 

fully-automatic, modular and practical which could find potential applications in 

industrial problems. 

Future work for this study, the developed RBDO methodology could be applied to 

dynamic fluid-structure interaction problems. FORM and SORM are adequate for the 

low variations of the limit-state function, in high variations, expansion methods such 

as polynomial chaos expansion (PCE) can be used and the number of uncertain 

parameters could be increased. Usage of Mpcci for aeroelastic analysis takes too 
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much computation time, other software applications can be used to overcome this 

issue. 
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APPENDIX A.1 

 

Cumulative Standard Normal Distribution Table 
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APPENDIX A.2 

 

Derivation of Hasofer-Lind Reliability Index 

From Equation (2.52), we have the first-order Taylor series expansion of '��� at the 

MPP. 

'���� � '���� _ ∑ ªC����ª«�
	��� ��� b ����                                                                      (1) 

From Equation (2.36), we have 

�� � m�&ng�fg�                                                                                                                   (2) 

The first derivative of Equation (2) is 

V�� � \m�fg�                                                                                                                    (3) 

From Equation (3), 

ªC����ª«� � ªC����ªm� !��                                                                                                        (4) 

Equation (1) can be rewritten as 

'���� � '���� _ ∑ ªC����ªm�
	��� !����� b ����                                                                (5) 

The mean value of '���� is 

�C� � ��'����
 � ��'����
 _ � `∑ ªC����ªm�
	��� !����d b � `∑ ªC����ªm�

	��� !�����d            (6) 

In Equation (6), 

��'����
 � '����                                                                                                     (7) 

� `∑ ªC����ªm�
	��� !����d � � `∑ ªC����ªm�

	��� ��� b ����d        (8) 

� `∑ ªC����ªm�
	��� !����d � � `∑ ªC����ªm�

	��� ��d b � `∑ ªC����ªm�
	��� ���d           (9) 

� `∑ ªC����ªm�
	��� !����d � ����
 ∑ ªC����ªm�

	���  b �´���µ ∑ ªC����ªm�
	���     (10) 

� `∑ ªC����ªm�
	��� !����d � ��� ∑ ªC����ªm�

	���  b ��� ∑ ªC����ªm�
	��� � 0                                (11) 

� `∑ ªC����ªm�
	��� !�����d � ∑ ªC����ªm�

	��� !�����                                                                (12) 
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Using Equations (7), (11) and (12) in Equation (6) we obtain, 

�C� � ��'����
 � '���� b ∑ ªC����ªm�
	��� !�����                 (13) 

The standard deviation of '���� is 

!C� � e S��'����
                                                           (14) 

In Equation (14) using Equation (5), 

 S��'����
 �  S��'����
 _  S� `∑ ªC����ªm�
	��� !����� b ����d      (15) 

 S��'����
 �  S��'����
 _  S� `∑ ªC����ªm�
	��� !����d b  S� `∑ ªC����ªm�

	��� !�����d   (16) 

In Equation (16), 

 S��'����
 � 0            (17) 

 S� `∑ ªC����ªm�
	��� !����d �  S� `∑ ªC����ªm�

	��� ��� b ����d     (18) 

 S� `∑ ªC����ªm�
	��� !����d �  S� `∑ ªC����ªm� ��	��� d b  S� `∑ ªC����ªm�

	��� ���d                 (19) 

 S� `∑ ªC����ªm�
	��� !����d � ∑ �ªC����ªm� ��	���  S����
 � ∑ �ªC����ªm� ��	��� !���    (20) 

 S� `∑ ªC����ªm�
	��� !�����d � 0         (21) 

Using Equations (17), (20) and (21) in Equation (16), 

 S��'����
 � ∑ �ªC����ªm� ��	��� !���         (22) 

Using Equation (22) in Equation (14), 

!C� � e S��'����
 � {∑ �ªC����ªm� ��	��� !���         (23) 

Using Equations (13) and (23), the Hasofer-Lind reliability index is obtained as 

,- � nx�fx� � C����&∑ ¬x����¬�� fg�«������
­∑ l�x������� o|fg�|����

          (24) 
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APPENDIX A.3 

 

Deterministic Design Optimization of a Cantilever Beam Matlab Code 

main.m 

% Deterministic Design Optimization of a Cantilever Beam 

% Filename: main.m  

% Date     : 09.10.2010 

% Code was written by MUHAMMET NASIF KURU 

% Note     : objective.m and nonlcon.m must be in the same directory 

% Output : Area = w*t, width and thickness values 

clc; clear; 

% Optimization Variables : w, t 

x0 = [4.0 ; 4.0];  

options = optimset('Largescale','off','Display','iter'); 

[x, fval] = fmincon(@objective, x0, [], [], [], [], [], [], @nonlcon,options) 

 

objective.m 

function f = objective(x) 

   f = x(1) * x(2); % w * t 

 

nonlcon.m 

function [c, ceq] = nonlcon(x) 

   % Optimization Variables : w, t 

   w = x(1); 

   t = x(2);    

   % The random variables (R, X, Y) are fixed at their means. 

   R = 40000; 

   X = 500; 

   Y = 1000; 

   % Maximum Normal Stress 

   S = 600 * Y / (w * t^2) + 600 * X / (w^2 * t); 

   % Limit State Function 

   safety_factor = 1.5; 
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   g = R - safety_factor * S; 

   % Constraints 

   c(1) = -g; 

   ceq = []; 
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APPENDIX A.4 

 

Reliability Based Design Optimization of a Cantilever Beam Matlab Code 

(Analytical RIA) 

main.m 

% Reliability Based Design Optimization of a Cantilever Beam 

% Reliability Index Approach and First Order Reliability Method (FORM) is 

% used. 

% Filename : main.m  

% Date        : 04.04.2011 

% Code was written by MUHAMMET NASIF KURU 

% Output : Area = w*t, width and thickness values 

clc; clear; 

% Optimization Variables : w, t 

d0 = [4.0; 4.0]; 

options = optimset('Display', 'iter','MaxFunEvals',2000,'TolCon',1e-6,'TolFun',1e-

6,'TolX',1e-6); 

[d, fval] = fmincon(@objective, d0, [], [], [], [], [], [], @nonlcon, options) 

 

objective.m 

function f = objective(d) 

   f = d(1) * d(2); 

 

stress.m 

function f = stress(a) 

   R = a(1); 

   X = a(2); 

   Y = a(3); 

   w = a(4); 

   t   = a(5); 

   f   = R-(600*Y/(w*(t^2))+600*X/((w^2)*t)); 

 

 



 
80

displacement.m 

function f = displacement(a) 

   E = a(1); 

   X = a(2); 

   Y = a(3); 

   w = a(4); 

   t = a(5); 

   D0 = 2.2535; 

   L = 100.0; 

   D = 4 * L^3 * sqrt((Y/t^2)^2+(X/w^2)^2) / (E * w * t) 

   f = D0 - D; 

 

beta_stress.m 

function beta_s = beta_stress(d) 

% This function evaluates the beta stress value for the given design and 

% returns the beta_s value 

% R, X, Y 

x_mean     = [40000,500,1000];           % Mean values 

x_standard = [2000, 100, 100];            % Standard deviations 

h = 0.1;                                 % For gradient calculation increment amount 

convergence = 10;                % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];   % Initial design point 

u = [0, 0, 0];                          % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence >= 0.001) 

   display('Iteration: '); 

   a = [x,d'];                           % R X Y w t 

   m_g = stress(a);                % Limit state function's value at design point 

   % Gradient calculation using central finite differences method 

   for k = 1:col 

      temp = x(k); 

      x(k) = (u(k) + h) * x_standard(k) + x_mean(k); 

      P2 = stress([x,d']); 
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      x(k) = (u(k) - h) * x_standard(k) + x_mean(k); 

      P1 = stress([x,d']); 

      grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k); 

      x(k) = temp; 

   end 

   % End gradient calculation    

   sigma_g = sqrt(sum((grad .* x_standard).^2)); 

   if i == 1 

       display('MVFOSM Beta:'); 

       beta(i) = m_g / sigma_g 

       alfa = - (grad .* x_standard) ./ sigma_g; 

   else 

       display('FORM Beta :') 

       beta_upper = sum(grad .* x_standard .* u); 

       beta(i) = (m_g - beta_upper) / sigma_g 

       alfa = - (grad .* x_standard) ./ sigma_g; 

   end 

   x = x_mean + beta(i) .* x_standard .* alfa;      % Compute a new design point 

   u = (x - x_mean) ./ x_standard; 

   % Check beta convergence 

   if i == 1 

       convergence = 10; 

   else 

       convergence = abs(beta(i) - beta(i-1)) / beta(i-1); 

   end 

   i = i + 1; 

end 

mpp   = [x(1), x(2), x(3)];               % Most probable failure point (MPP) 

a = [mpp,d']; 

mpp_g = stress(a);                           % Limit state function's value at the MPP 

beta_s = beta(size(beta,2));             % Shortest distance to the MPP 

 

beta_displacement.m 

function beta_d = beta_displacement(d) 
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% This function evaluates the beta displacement value for the given design and 

% returns the beta_d value 

% E, X, Y 

x_mean     = [29E6,500,1000];            % Mean values 

x_standard = [1.45E6, 100, 100];        % Standard deviations 

h = 0.1;                                 % For gradient calculation increment amount 

convergence = 10;                % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];   % Initial design point 

u = [0, 0, 0];                          % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence >= 0.001) 

   display('Iteration: '); 

   a = [x,d'];                           % E X Y w t 

   m_g = displacement(a);    % Limit state function's value at design point 

   % Gradient calculation using central finite differences method 

   for k = 1:col 

      temp = x(k); 

      x(k) = (u(k) + h) * x_standard(k) + x_mean(k); 

      P2 = displacement([x,d']); 

      x(k) = (u(k) - h) * x_standard(k) + x_mean(k); 

      P1 = displacement([x,d']); 

      grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k); 

      x(k) = temp; 

   end 

   % End gradient calculation    

   sigma_g = sqrt(sum((grad .* x_standard).^2)); 

   if i == 1 

       display('MVFOSM Beta:'); 

       beta(i) = m_g / sigma_g 

       alfa = - (grad .* x_standard) ./ sigma_g; 

   else 

       display('FORM Beta :') 

       beta_upper = sum(grad .* x_standard .* u); 
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       beta(i) = (m_g - beta_upper) / sigma_g 

       alfa = - (grad .* x_standard) ./ sigma_g; 

   end 

   x = x_mean + beta(i) .* x_standard .* alfa;      % Compute a new design point 

   u = (x - x_mean) ./ x_standard; 

   % Check beta convergence 

   if i == 1 

       convergence = 10; 

   else 

       convergence = abs(beta(i) - beta(i-1)) / beta(i-1); 

   end 

   i = i + 1; 

end 

mpp   = [x(1), x(2), x(3)];               % Most probable failure point (MPP) 

a = [mpp,d']; 

mpp_g = displacement(a);              % Limit state function's value at the MPP 

beta_d = beta(size(beta,2));            % Shortest distance to the MPP 

 

nonlcon.m 

function [c, ceq] = nonlcon(d) 

beta_t = 3.0; 

beta_s = beta_stress(d) 

beta_d = beta_displacement(d) 

c(1) = beta_t - beta_s; 

c(2) = beta_t - beta_d; 

ceq = []; 
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APPENDIX A.5 

 

Reliability Based Design Optimization of a Cantilever Beam Matlab Code 

(Computational RIA) 

nonlcon.m 

function nonlcon() 

% This function evaluates the beta value for the given design 

% Output : output.dat 

display('Beta Stress Calculation') 

display('Optimization Variables') 

d= [w, t]; 

w = d(1) 

t = d(2) 

% R, X, Y 

x_mean     = [40000,500,1000];          % Mean values 

x_standard = [2000, 100, 100];           % Standard deviations 

h = 0.1;                                                % For gradient calculation increment amount 

convergence = 10;                                % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];  % Initial design point 

u = [0, 0, 0];                           % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence >= 0.01) 

    display('Iteration : '); 

    grad = []; 

    vonmises = vonmises_calculate([x,[w, t]])    % R X Y w t 

    m_g = x(1) - vonmises                 % Limit state function's value at design point 

    % Gradient calculation using central finite differences method 

    for k = 1:col 

       temp = x(k); 

       x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 

          vonmises = vonmises_calculate([x,[w,t]]) 
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       end 

       P2 = x(1) - vonmises 

       x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 

          vonmises = vonmises_calculate([x,[w,t]]) 

       end 

       P1 = x(1) - vonmises 

       grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k)    

       x(k) = temp; 

    end 

    % End gradient calculation 

    display('Gradient') 

    grad 

    sigma_g = sqrt(sum((grad .* x_standard).^2)); 

    if i == 1 

        display('MVFOSM Beta :') 

        beta(i) = m_g / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    else 

        display('FORM Beta :') 

        beta_upper = sum(grad .* x_standard .* u); 

        beta(i) = (m_g - beta_upper) / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    end 

    display('New Design Point') 

    x = x_mean + beta(i) .* x_standard .* alfa          % Compute a new design point. 

    u = (x - x_mean) ./ x_standard 

    % Check beta convergence 

    if i == 1 

        convergence = 10; 

    else 

        convergence = abs(beta(i) - beta(i-1)) / beta(i-1) 

    end 

    i = i + 1; 
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end 

mpp   = [x(1), x(2), x(3)]                           % Most probable failure point (MPP) 

vonmises = vonmises_calculate([mpp,[w,t]]) 

mpp_g = mpp(1) - vonmises                      % Limit state function's value at the MPP 

converged_beta = beta(size(beta,2))           % Shortest distance to the MPP 

f_write = fopen('output.dat', 'w'); 

% converged_beta, R, S, g = R - S, X, Y 

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n%f\n', converged_beta, mpp(1), vonmises, 

mpp_g, mpp(2), mpp(3));  

fclose(f_write); 

exit 

 

vonmises_calculate.m 

function vonmises = vonmises_calculate(a) 

   E = 29 * 10^6; 

   % Write the values that must be updated for the given design to "mtlb.txt" 

   fid = fopen('mtlb.txt', 'w'); 

   % w, t , E, x, y 

   fprintf(fid, '%f %f %f %f %f', a(4), a(5), E, a(2), a(3)); 

   fclose(fid); 

   % Updates the abaqus.py for the given input file "mtlb.txt" 

   !python writeinput_beam.py 

   % Call abaqus to calculate the maximum normal stress value 

   !abq671.bat cae noGUI=abaqus.py 

   % Takes the maximum normal stress value from the abaqus output file 

   % "beam_stress.rpt" 

   !python getMises_beam.py 

   % Assigns the maximum normal stress value to the variable "vonmises" 

   fid = fopen('mises.dat', 'r'); 

   vonmises = fscanf(fid, '%f', 1); 

   fclose(fid); 

 

writeinput_beam.py 

import re, os 
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a = open("abaqus.py", "r") 

b = open("abaqus_temp.py", "w") 

matlab = open("mtlb.txt","r") 

e = matlab.read() 

value = e.split(" ") 

k = 0 

for i in value: 

    value[k] = float(i) 

    k = k + 1 

for i in a.readlines(): 

    w = re.search("(.*Rect-Profile\'\,)(.*)\)",i) 

    E=re.search("(mdb.models\[\'Model\1\'\]\.materials\[\'Aliminium\'\]\.Elastic\( 

table=\(\()(.*)\,", i) 

    f1=re.search("(region=region, cf3=)(.*)\,(.*)", i)  # Load x 

    f2=re.search("(region=region, cf2=-)(.*)\,(.*)", i) # Load y 

    if w: 

        w_write = w.group(1) + " a=" + str(value[0]) + ", b=" + str(value[1]) + ")\n" 

        b.write(w_write) 

    elif E: 

        E_write = E.group(1) + str(value[2]) + ", 0.29), \n" 

        b.write(E_write) 

    elif f1: 

        f1_write = f1.group(1) + str(value[3]) + "," + f1.group(3) + "\n" 

        b.write(f1_write) 

    elif f2: 

        f2_write = f2.group(1) + str(value[4]) + "," + f2.group(3) + "\n" 

        b.write(f2_write) 

    else: 

        b.write(i) 

a.close() 

b.close() 

os.remove("abaqus.py") 

os.rename("abaqus_temp.py", "abaqus.py") 
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getMises_beam.py 

# Input  : beam_stress.rpt 

# Output : mises.dat 

import re, os 

a = open("beam_stress.rpt", "r") 

b = open("mises.dat", "w") 

for i in a.readlines(): 

    mises = re.search(".*Maximum(.*)", i) 

    if mises: 

        liste = mises.group(1) 

        liste1 = liste.strip() 

        liste2 = liste1.split(" ") 

        v_mises = float(liste2[0]) 

        b.write(str(v_mises)) 

a.close() 

b.close() 

os.remove("beam_stress.rpt") 

 

abaqus.py 

# -*- coding: mbcs -*- 

# Abaqus/CAE Version 6.7-1 replay file 

# Internal Version: 2007_05_01-12.35.33 79448 

# Run by Owner on Sun Feb 27 09:49:11 2011 

# from driverUtils import executeOnCaeGraphicsStartup 

# executeOnCaeGraphicsStartup() 

#: Executing "onCaeGraphicsStartup()" in the site directory ... 

from abaqus import * 

from abaqusConstants import * 

session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=133.858588412404,  

    height=162.841807678342) 

session.viewports['Viewport: 1'].makeCurrent() 

session.viewports['Viewport: 1'].maximize() 

from caeModules import * 

from driverUtils import executeOnCaeStartup 
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executeOnCaeStartup() 

Mdb() 

#: A new model database has been created. 

#: The model "Model-1" has been created. 

session.viewports['Viewport: 1'].setValues(displayedObject=None) 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF,  

    engineeringFeatures=OFF) 

s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',  

    sheetSize=300.0) 

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 

s.setPrimaryObject(option=STANDALONE) 

s.Line(point1=(0.0, 0.0), point2=(100.0, 0.0)) 

s.HorizontalConstraint(entity=g[2]) 

p = mdb.models['Model-1'].Part(name='Part-1', dimensionality=THREE_D,  

    type=DEFORMABLE_BODY) 

p = mdb.models['Model-1'].parts['Part-1'] 

p.BaseWire(sketch=s) 

s.unsetPrimaryObject() 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

del mdb.models['Model-1'].sketches['__profile__'] 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,  

    engineeringFeatures=ON) 

mdb.models['Model-1'].Material(name='Aliminium') 

mdb.models['Model-1'].materials['Aliminium'].Elastic(table=((29000000.0, 0.29),  

    )) 

mdb.models['Model-1'].RectangularProfile(name='Rect-Profile', a=2.4, b=3.9673) 

mdb.models['Model-1'].BeamSection(name='BeamSection', profile='Rect-Profile',  

    integration=DURING_ANALYSIS, poissonRatio=0.0, material='Aliminium',  

    temperatureVar=LINEAR) 

p = mdb.models['Model-1'].parts['Part-1'] 

e = p.edges 

edges = e.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = regionToolset.Region(edges=edges) 
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p = mdb.models['Model-1'].parts['Part-1'] 

p.SectionAssignment(region=region, sectionName='BeamSection', offset=0.0) 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

a1 = mdb.models['Model-1'].rootAssembly 

a1.DatumCsysByDefault(CARTESIAN) 

p = mdb.models['Model-1'].parts['Part-1'] 

a1.Instance(name='Part-1-1', part=p, dependent=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    adaptiveMeshConstraints=ON) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial',  

    description='Beam-Step', initialInc=0.1) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1') 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,  

    predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF) 

a = mdb.models['Model-1'].rootAssembly 

v1 = a.instances['Part-1-1'].vertices 

verts1 = v1.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = regionToolset.Region(vertices=verts1) 

mdb.models['Model-1'].DisplacementBC(name='BC-1', createStepName='Step-1',  

    region=region, u1=0.0, u2=0.0, u3=0.0, ur1=0.0, ur2=0.0, ur3=0.0,  

    amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='',  

    localCsys=None) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=143.167,  

    farPlane=256.833, width=75.1627, height=63.0594, cameraPosition=(203.29,  

    29.8088, 124.954), cameraUpVector=(-0.145208, 0.987729, -0.0574938)) 

a = mdb.models['Model-1'].rootAssembly 

v1 = a.instances['Part-1-1'].vertices 

verts1 = v1.getSequenceFromMask(mask=('[#2 ]', ), ) 

region = regionToolset.Region(vertices=verts1) 

mdb.models['Model-1'].ConcentratedForce(name='Load-x', createStepName='Step-

1',  

    region=region, cf3=715.061054, localCsys=None) 

a = mdb.models['Model-1'].rootAssembly 
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v1 = a.instances['Part-1-1'].vertices 

verts1 = v1.getSequenceFromMask(mask=('[#2 ]', ), ) 

region = regionToolset.Region(vertices=verts1) 

mdb.models['Model-1'].ConcentratedForce(name='Load-y', createStepName='Step-

1',  

    region=region, cf2=-1130.117876, localCsys=None) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=ON, loads=OFF,  

    bcs=OFF, predefinedFields=OFF, connectors=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues( 

    meshTechnique=ON) 

a = mdb.models['Model-1'].rootAssembly 

partInstances =(a.instances['Part-1-1'], ) 

a.seedPartInstance(regions=partInstances, size=0.01, deviationFactor=0.1) 

elemType1 = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-1-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#1 ]', ), ) 

pickedRegions =(edges1, ) 

a.setElementType(regions=pickedRegions, elemTypes=(elemType1, )) 

elemType1 = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-1-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#1 ]', ), ) 

pickedRegions =(edges1, ) 

a.setElementType(regions=pickedRegions, elemTypes=(elemType1, )) 

a = mdb.models['Model-1'].rootAssembly 

partInstances =(a.instances['Part-1-1'], ) 

a.generateMesh(regions=partInstances) 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

p = mdb.models['Model-1'].parts['Part-1'] 

e = p.edges 

edges = e.getSequenceFromMask(mask=('[#1 ]', ), ) 

region=regionToolset.Region(edges=edges) 
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p = mdb.models['Model-1'].parts['Part-1'] 

p.assignBeamSectionOrientation(region=region, method=N1_COSINES, n1=(0.0, 

0.0, -1.0)) 

#: Beam orientations have been assigned to the selected regions. 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

a1 = mdb.models['Model-1'].rootAssembly 

a1.regenerate() 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues( 

    meshTechnique=OFF) 

mdb.Job(name='Job-Beam', model='Model-1', type=ANALYSIS,  

    explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE,  

    description='Beam job', parallelizationMethodExplicit=DOMAIN,  

    multiprocessingMode=DEFAULT, numDomains=1, userSubroutine='', 

numCpus=1,  

    preMemory=256.0,standardMemory=256.0,standardMemoryPolicy= 

MODERATE,  

    scratch='', echoPrint=OFF, modelPrint=OFF, contactPrint=OFF,  

    historyPrint=OFF) 

mdb.jobs['Job-Beam'].submit(consistencyChecking=OFF) 

#: The job input file "Job-Beam.inp" has been submitted for analysis. 

#: Job Job-Beam: Analysis Input File Processor completed successfully. 

#: Job Job-Beam: Abaqus/Standard completed successfully. 

#: Job Job-Beam completed successfully.  

o3 = session.openOdb(name='Job-Beam.odb') 

#: Model: Job-Beam.odb 

#: Number of Assemblies:              1 

#: Number of Assembly instances: 0 

#: Number of Part instances:          1   

#: Number of Meshes:                    1 

#: Number of Element Sets:           1 

#: Number of Node Sets:                1 

#: Number of Steps:                       1 
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session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs['Job-Beam.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName='beam_stress.rpt', append=OFF,  

    sortItem='S.Mises', odb=odb, step=0, frame=6,  

    outputPosition=INTEGRATION_POINT,variable=(('S', INTEGRATION_POINT, 

(( 

    INVARIANT, 'Mises'), )), )) 
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APPENDIX A.6 

 

Reliability Based Design Optimization of a Cantilever Beam Matlab Code 

(Analytical PMA) 

main.m 

% Reliability Based Design Optimization of a Cantilever Beam 

% Performance Measure Approach and Advanced Mean Value (AMV) Method is 

% used. 

% Filename : main.m 

% Date        : 28.10.2010 

% Code was written by MUHAMMET NASIF KURU 

% Note    : objective.m, performance.m and nonlcon.m must be in the same directory 

% Output : Area = w*t, width and thickness values 

clc;clear; 

% Optimization Variables : w, t 

d0 = [4.0; 4.0]; 

options = optimset('Display', 'iter','MaxFunEvals',2000,'TolCon',1e-6,'TolFun',1e-

6,'TolX',1e-6); 

[d, fval] = fmincon(@objective, d0, [], [], [], [], [], [], @nonlcon, options) 

 

objective.m 

function f = objective(d) 

   f = d(1) * d(2); 

 

performance.m 

function f = performance(a) 

   R = a(1); 

   X = a(2); 

   Y = a(3); 

   w = a(4); 

   t = a(5); 

   f = R-(600*Y/(w*(t^2))+600*X/((w^2)*t)); 
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nonlcon.m 

function [c, ceq] = nonlcon(d) 

% This function evaluates the g value for the given design 

% R, X, Y 

x_mean     = [40000,500,1000];         % Mean values 

x_standard = [2000, 100, 100];          % Standard deviations 

beta_t = 3.0;                                       % Target reliability index 

h = 0.1;                                               % For gradient calculation increment amount 

convergence = 10;                               % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];     % Initial design point 

u = [0, 0, 0];     % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence >= 10e-3) 

   % Gradient calculation using central finite differences method 

   for k = 1:col 

      temp = x(k); 

      x(k) = (u(k) + h) * x_standard(k) + x_mean(k); 

      P2 = performance([x,d']); 

      x(k) = (u(k) - h) * x_standard(k) + x_mean(k); 

      P1 = performance([x,d']); 

      grad(k) = ((P2 - P1) / (2 * h));   % Gradient in U-space 

      x(k) = temp; 

   end 

   display('Gradient') 

   grad_x = grad ./ x_standard        % Gradient in X-space 

   % End gradient calculation    

   norm = sqrt(sum(grad.^2)); 

   n = - grad / norm                         % Normalized steepest descent direction 

   u = beta_t * n  

   x = u .* x_standard + x_mean    % New Design Point   

   g(i) = performance([x,d'])            % Performance Function's Value 

   if i == 1 

      convergence = 10; 
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   else 

      convergence = abs(g(i) - g(i-1)); 

   end 

   i = i + 1; 

end 

mpp = x             % Most probable failure point 

c(1) = -g(i-1);      % Negative value of performance function's value at the MPP 

ceq = []; 
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APPENDIX A.7 

 

Reliability Based Design Optimization of a Cantilever Beam Matlab Code 

(Computational PMA) 

nonlcon.m 

function nonlcon() 

% This function evaluates the g value for the given design 

% Output : output.dat 

display('Performance Function Calculation') 

display('Optimization Variables') 

d = [w, t]; 

w = d(1) 

t = d(2) 

% R, X, Y 

x_mean     = [40000,500,1000];           % Mean values 

x_standard = [2000, 100, 100];           % Standard deviations 

h = 0.1;                                 % For gradient calculation increment amount 

beta_t = 3.0;                         % Target reliability index 

h = 0.1;                                 % For gradient calculation increment amount 

convergence = 10;                % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];   % Initial design point 

u = [0, 0, 0];                           % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence >= 0.2) 

   display('Iteration : '); 

   grad = []; 

   % Gradient calculation using central finite differences method 

   vonmises = vonmises_calculate([x,[w, t]])    % R X Y w t 

   for k = 1:col 

      temp = x(k); 

      x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

      if (k ~= 1) 
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         vonmises = vonmises_calculate([x,[w,t]]) 

      end 

      P2 = x(1) - vonmises 

      x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

      if (k ~= 1) 

         vonmises = vonmises_calculate([x,[w,t]]) 

      end 

      P1 = x(1) - vonmises 

      grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k)            % Gradient in X-space 

      x(k) = temp; 

   end 

   % End gradient calculation 

   display('Gradient in X-Space') 

   grad 

   display('Gradient in U-Space') 

   grad_u = grad .* x_standard 

   norm = sqrt(sum(grad_u.^2)) 

   n = - grad_u / norm                            % Normalized steepest descent direction 

   u = beta_t * n 

   display('New Design Point') 

   x = u .* x_standard + x_mean           % New design point 

   vonmises = vonmises_calculate([x,[w,t]]) 

   g(i) = x(1) - vonmises                         % Performance function's value 

   % Check g convergence 

   if i == 1 

      convergence = 10; 

   else 

      convergence = abs(g(i) - g(i-1)) 

   end 

   i = i + 1; 

end 

mpp = x                           % Most probable failure point (MPP) 

converged_g = g(i-1)        % Performance function's value at the MPP 

f_write = fopen('output.dat', 'w'); 
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% converged_g, R, S, X, Y 

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n', converged_g, mpp(1), vonmises, mpp(2), 

mpp(3));  

fclose(f_write); 

% 

exit 

 

vonmises_calculate.m : Appendix A.5 

writeinput_beam.py   : Appendix A.5 

getMises_beam.py      : Appendix A.5 

abaqus.py                    : Appendix A.5 

 

 

 

 

 

 

 

 

 

 

 

 



 
100

APPENDIX A.8 

 

Reliability Based Design Optimization of a Generic Aircraft Wing Matlab Code  

nonlcon.m 

function nonlcon() 

% Output : output.dat 

beta_stress(); 

beta_displacement(); 

exit  

 

beta_stress.m 

function beta_stress() 

% This function evaluates the beta value for the given design 

display('Beta Stress Calculation') 

% R 

x_mean     = [400];          % Mean value 

x_standard = [20];           % Standard deviation 

h = 0.1;                           % For gradient calculation increment amount 

convergence = 10;           % To start the while loop, it is necessary 

x = [x_mean(1)];             % Initial design point 

u = [0];                            % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence > 0.1) 

    display('Iteration : '); 

    grad = []; 

    vonmises = vonmises_calculate(x)       % R 

    m_g = x(1) - vonmises              % Limit state function's value at design point 

    % Gradient calculation using central finite differences method 

    for k = 1:col 

       temp = x(k); 

       x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 
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          vonmises = vonmises_calculate(x) 

       end 

       P2 = x(1) - vonmises 

       x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 

          vonmises = vonmises_calculate(x) 

       end 

       P1 = x(1) - vonmises 

       grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k) 

       x(k) = temp; 

    end 

    % End gradient calculation 

    display('Gradient') 

    grad 

    sigma_g = sqrt(sum((grad .* x_standard).^2)); 

    if i == 1 

        display('MVFOSM Beta :') 

        beta(i) = m_g / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    else 

        display('FORM Beta :') 

        beta_upper = sum(grad .* x_standard .* u); 

        beta(i) = (m_g - beta_upper) / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    end 

    display('New Design Point') 

    x = x_mean + beta(i) .* x_standard .* alfa       % Compute a new design point. 

    u = (x - x_mean) ./ x_standard 

    % Check beta convergence 

    if i == 1 

        convergence = 10; 

    else 

        convergence = abs(beta(i) - beta(i-1)) / beta(i-1) 

    end 
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    i = i + 1; 

end 

mpp   = [x(1)]                                     % Most probable failure point (MPP) 

mpp_g = mpp(1) - vonmises              % Limit state function's value at the MPP 

converged_beta = beta(size(beta,2))    % Shortest distance to the MPP 

f_write = fopen('output.dat', 'w'); 

% converged_beta, R, S, g = R - S 

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n%f\n', converged_beta, mpp(1), vonmises, 

mpp_g); 

fclose(f_write); 

 

vonmises_calculate.m 

function vonmises = vonmises_calculate(a) 

   E = 70000; 

   % Write the values that must be updated for the given design to "mtlb.txt" 

   fid = fopen('mtlb.txt', 'w'); 

   % E 

   fprintf(fid, '%f', E); 

   fclose(fid); 

   % Updates the espana.py for the given input file "mtlb.txt" 

   !python writeinput_wing.py 

   % Call abaqus to calculate the maximum von mises stress value 

   !abq671.bat cae noGUI=espana.py 

   % Takes the mass and frequency values from the file "espana_statik.dat" 

   % and writes them into the file "mass_freq.dat" 

   !python mass_freq.py 

   % Takes the maximum von mises stress value from the abaqus output file 

   % "espana_mises.rpt" 

   !python getMises_wing.py 

   % Assigns the maximum von Mises stress value to the variable "vonmises" 

   fid = fopen('mises.dat', 'r'); 

   vonmises = fscanf(fid, '%f', 1); 

   fclose(fid); 
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writeinput_wing.py 

import re, os 

a = open("espana.py", "r") 

b = open("espana_temp.py", "w") 

matlab = open("mtlb.txt","r") 

e = float(matlab.read()) 

for i in a.readlines(): 

    E=re.search("(mdb.models\[\'Model\-1\'\]\.materials\[\'Material\-

1\'\]\.Elastic\(table=\(\()(.*)\,", i) 

    if E: 

        E_yazdir = E.group(1) + str(e) + ", 0.33),\n" 

        b.write(E_yazdir) 

    else: 

        b.write(i) 

a.close()     

b.close() 

os.remove("espana.py") 

os.rename("espana_temp.py", "espana.py")       

 

mass_freq.py 

import re 

a = open("espana_statik.dat", "r") 

f = open("mass_freq.dat", "w") 

list_a = a.readlines() 

for i in list_a: 

    search_mass = re.search("TOTAL MASS OF MODEL", i) 

    search_freq = re.search(" MODE NO      EIGENVALUE", i) 

    if search_mass: 

        b = list_a.index(i) 

        mass = float(list_a[b + 2]) 

    elif search_freq: 

        c = list_a.index(i) 

        freq_list = list_a[c + 4].split() 

        freq = float(freq_list[3]) 
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f.write(str(mass) + "\n" + str(freq)) 

f.close() 

a.close() 

 

getMises_wing.py 

# Input   : espana_mises.rpt 

# Output : mises.dat 

import re, os 

a = open("espana_mises.rpt", "r") 

b = open("mises.dat", "w") 

for i in a.readlines(): 

    mises = re.search(".*Maximum(.*)", i) 

    if mises: 

        stress = float(mises.group(1)) 

        b.write(str(stress)) 

        break 

a.close() 

b.close() 

os.remove("espana_mises.rpt") 

 

beta_displacement.m 

function beta_displacement() 

% This function evaluates the beta value for the given design 

display('Beta Displacement Calculation') 

D0 = 187; 

% E 

x_mean      = [70000];        % Mean value 

x_standard = [350];            % Standard deviation 

h = 0.1;                               % For gradient calculation increment amount 

convergence = 10;               % To start the while loop, it is necessary 

x = [x_mean(1)];                 % Initial design point 

u = [0];                                % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 
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while (convergence > 0.1) 

    display('Iteration : '); 

    grad = []; 

    disp = displacement(x)                % E 

    m_g = D0 - disp                          % Limit state function's value at design point 

    % Gradient calculation using central finite differences method 

    for k = 1:col 

       temp = x(k); 

       x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

       disp = displacement(x) 

       P2 = D0 - disp 

       x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

       disp = displacement(x) 

       P1 = D0 - disp 

       grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k) 

       x(k) = temp; 

    end 

    % End gradient calculation     

    display('Gradient') 

    grad 

    sigma_g = sqrt(sum((grad .* x_standard).^2)); 

    if i == 1 

        display('MVFOSM Beta :') 

        beta(i) = m_g / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    else 

        display('FORM Beta :') 

        beta_upper = sum(grad .* x_standard .* u); 

        beta(i) = (m_g - beta_upper) / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    end 

    display('New Design Point') 

    x = x_mean + beta(i) .* x_standard .* alfa          % Compute a new design point. 

    u = (x - x_mean) ./ x_standard 
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    % Check beta convergence 

    if i == 1 

        convergence = 10; 

    else 

        convergence = abs(beta(i) - beta(i-1)) / beta(i-1) 

    end 

    i = i + 1; 

end 

mpp   = [x(1)]                                    % Most probable failure point (MPP) 

disp = displacement(mpp) 

mpp_g = D0 - disp                            % Limit state function's value at the MPP 

converged_beta = beta(size(beta,2))   % Shortest distance to the MPP 

f_write = fopen('output.dat', 'a'); 

% converged_beta, displacement, mpp_g, E 

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n%f\n', converged_beta, disp, mpp_g, 

mpp(1));  

fclose(f_write); 

 

displacement.m 

function disp = displacement(x) 

   % Write the values that must be updated for the given design to "mtlb.txt" 

   fid = fopen('mtlb.txt', 'w'); 

   % E 

   fprintf(fid, '%f', x(1)); 

   fclose(fid); 

   % Updates the espana.py for the given input file "mtlb.txt" 

   !python writeinput_wing.py 

   % Call abaqus to calculate the maximum displacement value 

   !abq671.bat cae noGUI=espana.py 

   % Takes the maximum displacement value from the abaqus output file 

   % "espana_displacement.rpt" 

   !python getDisp_wing.py 

   % Assigns the maximum displacement value to the variable "disp" 

   fid = fopen('disp.dat', 'r'); 
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   disp = fscanf(fid, '%f', 1); 

   fclose(fid); 

 

getDisp_wing.py 

# Input   : espana_displacement.rpt 

# Output : disp.dat 

import re, os 

a = open("espana_displacement.rpt", "r") 

b = open("disp.dat", "w") 

for i in a.readlines(): 

    disp = re.search(".*Maximum(.*)", i) 

    if disp: 

        yerd = float(disp.group(1)) 

        b.write(str(yerd)) 

a.close() 

b.close() 

os.remove("espana_displacement.rpt") 
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APPENDIX A.9 

 

Reliability Based Aeroelastic Optimization of AGARD 445.6 Wing Matlab Code 

nonlcon.m 

function nonlcon() 

% Output : output.dat 

beta_stress(); 

beta_displacement(); 

exit  

 

beta_stress.m 

function beta_stress() 

% This function evaluates the beta stress value for the given design 

display('Beta Stress Calculation') 

% R, Mach, Alfa 

x_mean      = [8, 0.85, 5];            % Mean value 

x_standard = [0.4, 0.03, 0.25];    % Standard deviation 

h = 0.1;                                        % For gradient calculation increment amount 

convergence = 10;                        % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2), x_mean(3)];  % Initial design point 

u = [0, 0, 0];                                   % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

while (convergence > 0.2) 

    display('Iteration : '); 

    grad = []; 

    vonmises = vonmises_calculate(x)             % R, Mach, Alfa  

    % cl,cd values are taken. 

    if (i == 1)   

       !python extract_cl_cd.py 

       cl_cd = fopen('cl_cd.txt', 'r'); 

       a = fscanf(cl_cd,'%f'); 

       fclose(cl_cd); 
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       cl = a(1) 

       cd = a(2) 

    end 

    m_g = x(1) - vonmises             % Limit state function's value at design point 

    % Gradient calculation using central finite differences method 

    for k = 1:col 

       temp = x(k); 

       x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 

          vonmises = vonmises_calculate(x) 

       end 

       P2 = x(1) - vonmises 

       x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

       if (k ~= 1) 

          vonmises = vonmises_calculate(x) 

       end 

       P1 = x(1) - vonmises 

       grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k) 

       x(k) = temp; 

    end 

    % End gradient calculation 

    display('Gradient') 

    grad 

    sigma_g = sqrt(sum((grad .* x_standard).^2)); 

    if i == 1 

        display('MVFOSM Beta :') 

        beta(i) = m_g / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    else 

        display('FORM Beta :') 

        beta_upper = sum(grad .* x_standard .* u); 

        beta(i) = (m_g - beta_upper) / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    end 
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    display('New Design Point') 

    x = x_mean + beta(i) .* x_standard .* alfa          % Compute a new design point. 

    u = (x - x_mean) ./ x_standard 

    % Check beta convergence 

    if i == 1 

        convergence = 10; 

    else 

        convergence = abs(beta(i) - beta(i-1)) / beta(i-1) 

    end 

    i = i + 1; 

end 

mpp   = [x(1), x(2), x(3)]                         % Most probable failure point (MPP) 

converged_beta = beta(size(beta,2))         % Shortest distance to the MPP 

f_write = fopen('output.dat', 'w'); 

% converged_beta, R, Mach, Alfa, cl, cd 

fprintf(f_write, '%f\n%f\n%f\n%f\n%f\n%f\n', converged_beta, mpp(1), mpp(2), 

mpp(3), cl, cd); 

fclose(f_write); 

 

vonmises_calculate.m 

function vonmises = vonmises_calculate(x) 

   yazdir_mach_alfa_1 = fopen('mach_alfa.txt', 'w'); 

   fprintf(yazdir_mach_alfa_1, '%f\n%f\n', x(2), x(3)); 

   fclose(yazdir_mach_alfa_1);          

   !python fluent_change.py 

   !fluent 3d -wait -i fluent.jou 

   !xcopy /E "C:\Documents and Settings\aysan\Desktop\MnK-

Tez\Agard\template_mpcci" "mpcci_batch" /i 

   !move agard.cas "mpcci_batch\fluent" 

   !copy agard.inp "mpcci_batch\abaqus" 

   cd  'mpcci_batch' 

   !mpcci -batch mpcci_batch.csp 

   !echo "mpcci finished" 

   cd  .. 
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   !move "mpcci_batch\fluent\cl-history" 

   !move "mpcci_batch\fluent\cd-history" 

   !move "mpcci_batch\abaqus\abaqus_run.odb" 

   !move "mpcci_batch\abaqus\abaqus_run.dat" 

   !rm -rf  "mpcci_batch" 

   !abq671.bat cae noGUI=abaqus.py 

   !python getMises.py 

   fid = fopen('mises.dat', 'r'); 

   vonmises = fscanf(fid, '%f', 1); 

   fclose(fid); 

 

fluent_change.py 

import math, os 

readed = open("mach_alfa.txt","r") 

s = readed.readlines() 

mach_new = float(s[0]) 

alfa = float(s[1]) 

readed.close() 

a = open("fluent.jou", "r") 

b = open("fluent_temp.jou","w") 

alfa_cos = round(math.cos(math.radians(alfa)),3) 

alfa_sin = round(math.sin(math.radians(alfa)),3) 

k = 1 

for i in a.readlines(): 

    if k == 23: 

        b.write(str(mach_new) + "\n") 

    elif k in [27,61,72]: 

        b.write(str(alfa_cos) + "\n") 

    elif k in [31,59,74]: 

        b.write(str(alfa_sin) + "\n") 

    else: 

        b.write(i) 

    k = k + 1 

a.close() 
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b.close() 

os.remove("fluent.jou") 

os.rename("fluent_temp.jou", "fluent.jou") 

 

getMises.py 

# Input    : agard_mises.rpt 

# Output : mises.dat 

import re, os 

a = open("agard_mises.rpt", "r") 

b = open("mises.dat", "w") 

for i in a.readlines(): 

    mises = re.search(".*Maximum(.*)", i) 

    if mises: 

        stress = float(mises.group(1)) 

        b.write(str(stress)) 

a.close() 

b.close() 

os.remove("agard_mises.rpt") 

 

extract_cl_cd.py 

a = open("cl-history","r") 

f = open("cd-history","r") 

cl_cd = open("cl_cd.txt","w") 

for i in a.readlines(): 

    continue 

b = i.split("\t") 

c = float(b[1].strip()) 

for j in f.readlines(): 

    continue 

ok = j.split("\t") 

ok1 = float(ok[1].strip()) 

cl_cd.write(str(c) + "\n" + str(ok1)) 

cl_cd.close() 

a.close() 
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f.close() 

 

beta_displacement.m 

function beta_displacement() 

% This function evaluates the beta displacement value for the given design 

display('Beta Displacement Calculation') 

% Mach, Alfa 

x_mean     = [0.85, 5];                   % Mean value 

x_standard = [0.03, 0.25];             % Standard deviation 

h = 0.1;                                  % For gradient calculation increment amount 

convergence = 10;                  % To start the while loop, it is necessary 

x = [x_mean(1), x_mean(2)]; % Initial design point 

u = [0, 0];                               % Initial design point in the standard normal space 

[row, col] = size(x); 

i = 1; 

D = 76.0; 

while (convergence > 0.2) 

    display('Iteration : '); 

    grad = []; 

    disp = disp_calculate(x)                % Mach, Alfa 

    m_d = D - disp                              % Limit state function's value at design point 

    % Gradient calculation using central finite differences method 

    for k = 1:col 

       temp = x(k); 

       x(k) = (u(k) + h) * x_standard(k) + x_mean(k) 

       disp = disp_calculate(x) 

       P2 = D - disp  

       x(k) = (u(k) - h) * x_standard(k) + x_mean(k) 

       disp = disp_calculate(x) 

       P1 = D - disp  

       grad(k) = ((P2 - P1) / (2 * h)) / x_standard(k) 

       x(k) = temp; 

    end 

    % End gradient calculation 



 
114

    display('Gradient') 

    grad 

    sigma_g = sqrt(sum((grad .* x_standard).^2)); 

    if i == 1 

        display('MVFOSM Beta :') 

        beta(i) = m_d / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    else 

        display('FORM Beta :') 

        beta_upper = sum(grad .* x_standard .* u); 

        beta(i) = (m_d - beta_upper) / sigma_g 

        alfa = - (grad .* x_standard) ./ sigma_g 

    end 

    display('New Design Point') 

    x = x_mean + beta(i) .* x_standard .* alfa          % Compute a new design point. 

    u = (x - x_mean) ./ x_standard 

    % Check beta convergence 

    if i == 1 

        convergence = 10; 

    else 

        convergence = abs(beta(i) - beta(i-1)) / beta(i-1) 

    end 

    i = i + 1; 

end 

mpp   = [x(1), x(2)]                              % Most probable failure point (MPP) 

converged_beta = beta(size(beta,2))     % Shortest distance to the MPP 

f_write = fopen('output.dat', 'a'); 

% converged_beta, Mach, Alfa 

fprintf(f_write, '%f\n%f\n%f\n', converged_beta, mpp(1), mpp(2)); 

fclose(f_write); 

 

disp_calculate.m 

function disp = disp_calculate(x) 

   yazdir_mach_alfa_1 = fopen('mach_alfa.txt', 'w'); 
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   fprintf(yazdir_mach_alfa_1, '%f\n%f\n', x(1), x(2)); 

   fclose(yazdir_mach_alfa_1);          

   !python fluent_change.py 

   !fluent 3d -wait -i fluent.jou 

   !xcopy /E "C:\Documents and Settings\aysan\Desktop\MnK-

Tez\agard_disp\template_mpcci" "mpcci_batch" /i 

   !move agard.cas "mpcci_batch\fluent" 

   !copy agard.inp "mpcci_batch\abaqus" 

   cd  'mpcci_batch' 

   !mpcci -batch mpcci_batch.csp 

   !echo "mpcci finished" 

   cd  .. 

   !move "mpcci_batch\fluent\cl-history" 

   !move "mpcci_batch\fluent\cd-history" 

   !move "mpcci_batch\abaqus\abaqus_run.odb" 

   !move "mpcci_batch\abaqus\abaqus_run.dat" 

   !rm -rf  "mpcci_batch" 

   !abq671.bat cae noGUI=abaqus.py 

   % Displacement Calculation 

   !python getDisp_wing.py 

   fid = fopen('disp.dat', 'r'); 

   disp = fscanf(fid, '%f', 1); 

   fclose(fid); 

 

getDisp_wing.py 

# Input    : agard_disp.rpt 

# Output : disp.dat 

import re, os 

a = open("agard_disp.rpt", "r") 

b = open("disp.dat", "w") 

for i in a.readlines(): 

    disp = re.search(".*Maximum(.*)", i) 

    if disp: 

        yerd = float(disp.group(1)) 
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        b.write(str(yerd) + "\n") 

        break 

a.close() 

b.close() 

os.remove("agard_disp.rpt")
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