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Gülşen TAŞKIN KAYA

Department : Computational Science and Engineering

Programme : Computational Science and Engineering

MAY 2011
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Asst. Prof. Şinasi KAYA (I.T.U.)

MAY 2011
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Gülşen TAŞKIN KAYA

(702032034)

Tezin Enstitüye Verildiği Tarih : 01 Ocak 2011
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SUPPORT VECTOR SELECTION AND ADAPTATION AND ITS
APPLICATION TO EARTHQUAKE DAMAGE ASSESSMENT

SUMMARY

Remote sensing technology is a powerful tool to identify damaged regions after an
earthquake. There are two methodological approaches in detection of earthquake
damage, mono- and multi-temporal approaches. Especially for providing effective
emergency management, mono-temporal approach is generally preferred in extraction
of earthquake damage as it does not depend on availability of pre-earthquake image.

The support vector machine (SVM) is a nonparametric classifier and represents a
very attractive approach in classification of linearly and nonlinearly separable data.
It has often been found to provide higher classification accuracy than other widely
used pattern recognition systems, such as parametric statistical classifiers and neural
networks. However, classification of nonlinearly separable data with support vector
machines conducted by using a nonlinear kernel function is often a difficult task
especially due to the necessity of choosing a convenient kernel type. Moreover, in
order to get the optimum classification performance with the SVM, a kernel and its
parameters should be determined in advance. This process takes more computational
time than SVM with linear kernel function.

In order to overcome or alleviate these difficulties of choosing kernel function
and its parameters, a novel nonparametric method called Support Vector Selection
and Adaptation (SVSA) has been introduced. It is applicable to both linearly
and nonlinearly separable data and aims at achieving classification performance
competitive with nonlinear support vector machines without using any kernel function
with less computation time.

The proposed method consists of two steps: selection and adaptation. In the selection
step, first the support vectors are obtained by a linear SVM. Then, these support vectors
are classified by using the K-Nearest Neighbor method, and some of them are rejected
if they are misclassified. In the adaptation step, in order to generate the reference
vectors to be used for the classification, the remaining support vectors are iteratively
adapted with respect to the training data excluding the support vectors. Afterwards,
classification of the test data is carried out by 1 nearest neighbour method with the
reference vectors using an adaptive distance metric.

The performance of the SVSA was tested with synthetic and remote sensing data
and compared to SVMs and KNN methods. The results showed that the SVSA has
better classification performance than linear SVM and a competitive classification
performance with NSVM. Additionally, in terms of computational performance, it was
observed that the SVSA is faster than the NSVM during the training process.
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DESTEK VEKTÖR SEÇİMİ VE UYARLAMASI VE DEPREM HASAR
TESPİT UYGULAMALARI

ÖZET

Uzaktan algılama teknolojisi, deprem sonrası oluşan hasarlı bölgelerin tespit
edilmesinde oldukça güçlü bir araçtır. Deprem hasarlarının belirlenmesinde, tekli ve
çoklu zamansal yaklaşım olmak üzere iki türlü yaklaşım vardır. Özellikle acil durum
yönetimi açısından, deprem öncesi veriye gereksinim duyulmaması nedeniyle deprem
hasarının belirlenmesinde genellikle tekli-zamansal yaklaşımlar tercih edilmektedir.

Destek Vektör Makineleri (DVM), parametrik olmayan bir sınıflandıcı olup, doğrusal
ve doğrusal olarak ayrılamayan verilerin sınıflandırılmasında kullanılan oldukça etkili
bir yöntemdir. Parametrik istatistiksel sınıflandırma yöntemleri ve yapay sinir
ağları gibi oldukça sık kullanılan diğer örüntü tanıma yöntemlerine nazaran daha
yüksek bir sınıflandırma başarımı verdiği gözlemlenmiştir. Ancak, doğrusal olmayan
verilerin DVM ile sınıflandırılmasında, özellikle uygun bir çekirdek fonksiyonu seçimi
gereksiniminden ötürü belirlenmesi oldukça zor olan doğrusal olmayan bir çekirdek
fonksiyonu seçmek gerekmektedir. Ayrıca, destek vektör makineleri ile optimum bir
sınıflandırma başarımı elde edebilmek için, çekirdek fonksiyonu ve parametrelerinin
önceden belirlenmesi gerekmektedir. Bu işlem, doğrusal çekirdek fonksiyonlu destek
vektör makinelerine nazaran daha fazla hesaplama zamanı gerektirmektedir.

Çekirdek fonksiyonu ve parametrelerinin şeçimi zorluklarının üstesinden gelmek veya
bu zorlukları azaltmak için, Destek Vektör Seçimi ve Uyarlaması (DVSU) isimli
yeni bir yöntem geliştirilmiştir. Yöntem hem doğrusal hem de doğrusal olmayan
verilerin sınıflandırılmasında kullanılabilmekte ve herhangi bir çekirdek fonksiyonu
kullanmaksızın, daha az bir hesaplamama zamanı ile doğrusal olmayan destek vektör
makinelerinin performansına ulaşabilmektedir.

Önerilen yöntem, seçim ve uyarlama olmak üzere iki adımdan oluşmaktadır. Seçim
aşamasında, ilk olarak doğrusal destek vektör makinesi ile destek vektörleri elde edilir.
Ardından, bu destek vektörleri K en yakın komşuluk yöntemi ile sınıflandırılır ve
yanlış sınıflandırılan destek vektörleri elenir. Uyarlama adımında, sınıflandırmada
kullanılacak referans vektörlerini üretmek için, destek vektörlerinin çıkarılması ile
güncellenen eğitim verilerine göre kalan destek vektörleri iteratif olarak uyarlanırlar.
Ardından, uyarlanabilir uzaklık ölçütü kullanılarak, referans vektörlerine göre 1 en
yakın komşuluk yöntemi ile test verisi sınıflandırılır.

DVSU yöntemi, sentetik ve uzaktan algılama verileri üzerinde kullanılarak, yöntemin
performansı DVM ve KNN yöntemleri ile karşılaştırılmıştır. Sonuçlar, DVSU
yönteminin doğrusal DVM yönteminden daha iyi ve doğrusal olmayan DVM yöntemi
ile de yarışabilir nitelikte olduğunu göstermiştir. Ayrıca, eğitim sırasındaki hesaplama
performansı açısından, DVSU yönteminin doğrusal olmayan DVM yönteminden daha
hızlı olduğu gözlemlenmiştir.
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1. INTRODUCTION

Remote sensing data have been used in a wide range of subjects such as land use

monitoring, and management, drought, flood and earthquake damage assessment. It

has been a popular ongoing research field especially for providing fast solutions to

earthquake damage assessment. Change detection techniques, statistical classification

methods and machine learning approaches have been applied to remote sensing

data in order to identify the earthquake damage. Supervised classification methods

such as statistical classification methods, and the machine learning approaches have

been widely preferred to be used in damage assessment, as they do not require a

pre-earthquake image.

Classification approaches using Bayesian methods are one of the basic approaches

in statistical pattern recognition [1]. The most common supervised classification

technique used in remote sensing area is the maximum likelihood classifier. As

Bayesian concepts are density based and assume specific density functions for each

information class, final decision rule (also referred to as the maximum as-posterior

rule) is based on the a-posteriori probabilities. However, the conditional probability

density function is generally not known and must be estimated from the training data.

Hence, the use of a Bayesian classifier might be critical if an adequate multivariate

statistical model is not available and the number of training samples is limited with

respect to the dimensionality of the dataset [2]. The performance of the classifier can

be affected, resulting in a lower classification accuracy. In such cases, operating a

non-parametric method is generally preferred if the form of the density function is

unknown. Approaches such as K-Nearest Neighbour (KNN)1, Neural Networks (NN)

and kernel-based methods are the alternative approaches to statistical classification

approaches.

1See Appendix 6 for detailed information.
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The K-Nearest-Neighbours is a non-parametric classification method, which is simple

but effective in many cases [3]. The original KNN does not need any training process

to make a decision. It uses all training data in classification, and that is why it is

called “lazy learning”. However, heavy computational load that is proportional to the

number of samples, and the number of dimensions of the feature space during testing

are important disadvantages of the algorithm. Moreover, it is necessary to choose an

appropriate value for neighbourhood K, and the performance of classification is very

much dependent on this value. Choosing K = 1 is also the most sensitive to noisy

samples, and it generally reduces the classification performance.

Neural networks have an advantage over traditional statistical methods as they are

distribution free [4]. In other words, they do not depend on any underlying statistical

distribution of the data. In the context of classification, a neural network can be

considered as a black box model that receives a set of input vectors and produces

responses from its output neurons, where the number of neurons depends on the

number of information classes (i.e. land cover classes). However, the NN approach

can be computationally complex and requires a large number of training samples.

Support Vector Machines (SVM) have been introduced as a non-parametric classifier

for pattern recognition and machine learning [5–8]. SVM is a relatively recent

development in the context of remote sensing and still needs further improvement,

modification and development of new kernel concepts. SVM is based on an optimal

linear separating hyperplane that is fitted to training samples of two classes within

a multi-dimensional feature space. The optimization problem that has to be solved

relies on Structural Risk Minimization (SRM) and is aimed at maximization of

the margins between the hyperplane and the closest training samples. For linearly

nonseparable samples, the input data is mapped into a high dimensional space, and

the computationally extensive mapping process is handled by using a positive definite

kernel function.

Using SVMs, several applications have been conducted in the field of remote sensing

image analysis [9–13]. In many studies, they performed more accurately than other

classifiers or performed at least equally well. On the other hand, the majority

of the studies uncovered common limitations to SVM methodologies, for example,

2



selection of the kernel functions. Choosing type of kernel function considerably affects

the classification performance, and it is not generally known before classification.

Moreover, even if the kernel function is determined before the classification, choice

of the parameter values for the kernel function, which controls the tradeoff between

maximizing the margin and minimizing the training error is another important

consideration in SVM applications.

In order to overcome such difficulties with nonlinear SVM (NSVM), Support Vector

Selection and Adaptation (SVSA) is introduced as a nonparametric supervised

classification method. The SVSA uses the support vectors obtained by the linear SVM

(LSVM) and selects some which are useful in terms of classification performance.

The selected vectors are next called reference vectors and adapted with respect

to the training data by using Learning Vector Quantization (LVQ)2 [14]. During

classification, the selected and adapted vectors, called reference vectors, are used

with 1 Nearest Neighbour method (1NN) using adaptive learning distance metric.

The SVSA handles both linearly and nonlinearly separable data with a competitive

classification performance to NSVM. It also outperforms the LSVM in terms of

classification performance. The main advantage of the method is to achieve

competitive classification performance without choosing any kernel function and its

parameters at a lower computational load.

In order to analyse the performance of the proposed method, synthetic data,

UCI-repository and Statlog-repository data [15], and different types of remote sensing

data including multisource, multispectral and hyperspectral data were used in the

experiments. As an earthquake implementation, a small urban region selected from

a high resolution satellite image from city of Bam in Iran was used in order to identify

the damage patterns by the SVSA using a pixel-based classification. Morever, in order

to improve the classification performance of the SVSA, texture properties of the area

of interest were additionally included to the pixel features, and damage assessment was

carried out with both pixel and textural features. All the experimental results showed

that the SVSA is competitive with nonlinear SVM and better than linear SVM.

2See Appendix B for detailed information.
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1.1 Methodological Literature Review

Recently, particular attention has been dedicated to SVM for the classification

of multispectral and hyperspectral remote sensing images [16, 17]. SVMs have

often been found to provide higher classification accuracy than other widely used

pattern recognition techniques, such as maximum likelihood or multilayer perceptron

classifiers. SVMs are also competitive with other kernel-based methods such as radial

basis function, neural networks and kernel Fisher discriminant analysis at a lower

computational cost [18]. There have been many research studies that use the SVM

model in the classification problem. Waske and Benediktsson (2010) addressed the

classification of multisensor datasets, consisting of multitemporal Synthetic Aperture

Radar (SAR) data and optical imagery [19]. The original outputs of each SVM

discriminant function were used in the subsequent fusion process, and it was shown

that the SVM-based fusion approach significantly improves the results of a single

SVM. Mari et al. (2010) presented two semisupervised one-class support vector

machine classifiers for remote sensing applications [20]. The first proposed algorithm

was based on modifying the one-class SVM kernel by modelling the data marginal

distribution. The second one was based on a simple modification of the standard SVM

cost function.

A Linear Support Vector Machine (LSVM) is based on determining an optimum

hyperplane that separates the data into two classes with the maximum margin [21]. The

LSVM typically has high classification accuracy for linearly separable data. However,

for nonlinearly separable data, LSVM has poor performance. For this type of data, a

Nonlinear Support Vector Machine (NSVM) is preferred. The NSVM transforms the

input data using a nonlinear kernel followed by the LSVM. Although the NSVM can

achieve higher classification performance, it requires high computation time to map

the input to a higher dimensional space by a nonlinear kernel function which is usually

a fully dense matrix [22]. The computational complexity of the NSVM grows with

the cube of the total number of training samples. It is a critical drawback especially

when dealing with hyperspectral image classification, where the dimensionality of

the original data is high, and kernel mapping is more vulnerable to dimensionality

problems.
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It is well known that the major task of the NSVM approach lies in the selection of

its kernel. Choosing different kernel functions produces different SVMs and may

result in different performances [23–25]. Therefore, exploration of new techniques

and systematic methodology to construct an efficient kernel function for designing

SVMs in a specific application are important research directions [26]. It is also

desirable to have a classifier model with both the efficiency of linear SVM and the

power of the nonlinear SVM. For this purpose, Chi and Ersoy (2002) presented

SVM-based binary decision trees [27]. Kasapoglu and Ersoy (2007) developed

another classification algorithm for remote sensing images to detect border vectors

determined by using class centers and misclassified training samples, followed by

their adaptation with a technique similar to the Learning Vector Quantization (LVQ)

[28]. Fu and Robles-Kelly (2008) proposed another approach which is a mixture

model combining linear SVMs for the classification of nonlinear data based on

divide-and-conquer strategy that partitions the input space into hyper-spherical regions

[29].

It is also worth to underline that the kernel-based implementation of SVMs involves

the selection of multiple parameters, including the kernel parameters such as

the parameters for the Gaussian and polynomial kernels and the regularization

parameters. For optimal performance, the kernel parameters have to be adjusted

before classification. Since these parameters have a regularization effect on the

cost function that is minimized during the training process, they may decrease the

overall classification performance if they are not well chosen. Selection of the kernel

parameters is empirically done by trying a finite number of values and keeping those

that provide the highest classification accuracy. This procedure requires a grid search

process over the space of the parameter values. It may not be easy to locate the grid

interval without prior knowledge of the problem. Since the optimal parameter values

vary from kernel to kernel as well, kernel parameter selection might be a challenging

task.

Since choosing kernel parameters is critical to the performance of the NSVM, other

methodologies have also been introduced in the literature. Two automatic techniques

have been developed which are based on the idea of estimating the parameter values
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so that 1) they maximize the margin; and 2) they minimize the estimate of the

expected generalization error. In one of them, Chapelle and Vapnik (2002) discussed

an analytical criterion that is a proxy of Vapnik-Chervonenkis (VC) dimension known

as the radius-margin bound [30]. This criterion is a quadratic function of the support

vectors multipliers. An automatic minimization algorithm is proposed for determining

the best kernel parameters. In the second one, Chung et al. (2003) discussed

use of differentiable bounds of the leave-one-out error [31]. Optimization of the

parameters is then carried out using a gradient descent search over the space of the

parameters. Ayata et al. (2005) discussed a SVM model selection criterion based

on the minimization of an empirical error estimate so that generalization error can

drastically be reduced. The SVM hyperparameters can be adequately chosen based on

this empirical error criterion [32]. Recently, Foody (2008) introduced a new method

called a Relevance Vector Machine (RVM) approach as a way to address the need to

define the regularization parameter [33]. RVMs are considered as a Bayesian treatment

alternative to SVMs and have several advantages including probabilistic predictions,

automatic estimation of parameters, and arbitrary kernel functions. The author argues

that the new method leads to reduced sensitivity to the hyperparameter settings.

In the area of hyperspectral remote sensing image classification, Bazi and Melgani

(2006) proposed an optimal SVM classification system to detect the best discriminative

features and to estimate the best SVM parameters with radius-margin bound

minimization by means of a genetic optimization framework [34].

In this thesis, in order to overcome the mentioned drawbacks of the NSVM, a new

method called Support Vector Selection and Adaptation (SVSA) is introduced [35].

The proposed method has some advantages over the NSVM. In the training stage,

the SVSA requires less computation time compared to NSVM, and no kernels are

needed. With nonlinearly separable data, classification performance of the SVSA is

competitive with NSVM. During the preliminary tests with the SVSA, it was observed

that the SVSA also outperforms LSVM [36–39].
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1.2 Literature Review of Earthquake Damage Assessment

Remote sensing technology is the most effective technology for disaster relief agencies

and civil protection units to assess damage for planning purposes [40]. Especially in

the aftermath of extreme earthquakes, in terms of providing critical information for

emergency responders, rapidly quantifying the extent and severity of building damage

is a high priority.

For earthquake damage assessment, mostly used methodological approaches are either

mono- or -multi-temporal [41]. In multi-temporal approaches, earthquake-induced

damage is assessed by change detection methods that involves the analysis of two

geometrically registered multispectral remote sensing images acquired in the same

geographical area at two different times.

Considerable amount of studied can be found in the literature utilizing change

detection methods [42,43]. Turker and San (2003) used pre-event and post-earthquake

images in order to detect earthquake-induced changes on 17 August 1999 in

Izmit, Turkey [44]. In order to preserve the spatial and spectral information,

the multispectral and panchromatic images were merged. The change areas were

detected by subtracting the image brightness values for the near-infrared (NIR) channel

of merged pre-earthquake image from the post-earthquake image. Adams (2004)

analysed multitemporal change detection methodologies by both using high resolution

Quickbird and moderate resolution SPOT and ERS satellite imagery [45]. Kosugi et

al. (2004) introduced a change detection system capable of detecting geographical

changes from a pair of aerial or satellite images automatically and detected urban

change detection related to earthquakes [46]. Turker and Cetinkaya (2005) discussed

detection of the collapsed buildings caused by earthquakes using Digital Elevation

Models (DEMs) created from pre- and post-earthquake stereo aerial photographs

[47]. Rathje et al. (2005) employed a semi-automated thematic classification

algorithm to identify damage patterns based on a comparison of pre-and-post event

high resolution imagery [48]. Gamba et al. (2006) addressed a problem of change

detection from Synthetic Aperture Radar (SAR) images [49]. The authors proposed
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an approach based on the extraction and comparison of linear features from multiple

SAR images to confirm pixel-based changes. The procedure was validated through

identifying earthquake damage. Gamba et al. (2007) addressed a problem

regarding post-earthquake building damage assessment performed by combining pre-

and post-earthquake images by using SAR images and ancillary data [50].

For post-earthquake damage assessment, multi-temporal approach using change

detection approaches has some disadvantages in terms of limitations like short time gap

between pre- and post-earthquake imagery or changes in brightness values caused by

external factors. Therefore, using only a post-earthquake image is commonly preferred

to identify earthquake damage. In the literature, there are several studies performed

using only post-earthquake satellite and aerial images, called mono-temporal approach,

to detect earthquake-induced damages and changes [51].

Gamba et al. (1998) developed a system which provides a rapid and reliable damage

detection without using pre-earthquake image for damage assessment [52]. The

pre-earthquake image was only used to extract data about buildings and infrastructures,

followed by analysis exploiting Geographical Information System (GIS) capabilities.

Immediately after the occurrence of the earthquake, post-earthquake image of the

affected area was next obtained to be compared with the pre-earthquake dataset in order

to identify earthquake damage. Turker and San (2004) used post-earthquake aerial

photographs in order to detect the collapsed buildings caused by the Izmit, Turkey

earthquake on 17 August 1999 by using corresponding shadows of the buildings

and GIS integration [53]. Saito and Spence (2004) introduced the qualitative and

quantitative methods for damage assessment with some results using both types of

methodologies, comparison of the results with ground truth data and some suggestions

for the application of these damage maps [54]. Balz and Liao (2010) presented

theoretical assumptions about the appearance of collapsed buildings in high-resolution

SAR images and verified with visual feature interpretations of real SAR images from

the area for building-damage assessment using only post-earthquake SAR images [55].

Another way of identifying earthquake damage in mono-temporal approach is to use

a supervised classification algorithm. Gong et al. (2010) focused on the detection of

geological hazards in the Wenchuan earthquake by using support vector machines and
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visual interpretation which were applied under the hierarchical stripping classification

framework to extract objects separately [56].

1.3 Thesis Outline

This thesis consists of six chapters. A brief summary of each chapter is given below.

Chapter 1 introduces the overall thesis topic and discusses the motivation for the

thesis work. In addition, it gives the literature review of the thesis in terms of both

methodological approaches and earthquake damage assessment and outlines the thesis

manuscript.

Chapter 2 reviews general overview of SVM for both linearly and nonlinearly

separable data. Classification of multiclass data by the SVM is also summarized.

Chapter 3 discusses the theoretical formulation of the proposed method, SVSA, and its

advantages over LSVM and NSVM. It also discusses the classification procedure by

the SVSA and describes the algorithm of the SVSA.

Chapter 4 presents the basic criteria used for comparisons between the algorithms,

and the computational complexities of the proposed method, SVMs and KNN.

Additionally, it presents the results of classification conducted by the proposed

algorithm in comparison to the classification performances of the other methods. For

this purpose, three different types of synthetic datasets were used to demonstrate

the classification mechanism of the proposed SVSA and to show differences with

some other classification methods. The synthetic data used were generated in a

two-dimensional feature space, which made it possible to visually display the decision

boundaries and to help understand the classification behaviour of the classifiers. In

order to show the power of the proposed algorithm with data having more than

two features, some datasets from UCI-repository and Statlog-repository were also

analysed, and classification performances were compared in terms of classification

performance. Some remote sensing classifications with different type of source,

multisource, multispectral and hyperspectral data were also analysed with the proposed

algorithm.
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Chapter 5 consists of a detailed earthquake damage assessment analysis with the

proposed algorithm. Both pixel- and hybrid pixel- and texture-based classification

was carried out with the proposed algorithm. In hybrid pixel- and texture-based

classification, Nonparametric Weighted Feature Extraction (NWFE) method was

also used to improve the classification performance further. For implementation, a

sub-region was chosen from city of Bam in Iran, and earthquake damage pattern was

estimated with the proposed method.

Chapter 6 presents the conclusions and the topics to be addressed in feature research.
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2. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) constitute a supervised non-parametric statistical

learning technique, and there is no assumption on the data distribution. In its original

formulation, the method is presented by Vapnik with a set of labelled data samples

and the SVM training algorithm aims to find a hyperplane that separates the dataset

into a discrete number of classes consistent with the training samples [57]. The term

optimal separation hyperplane is used to refer to the decision boundary that minimizes

misclassification, obtained in the training step. Learning refers to the iterative process

of finding a classifier with optimal decision boundary to separate the training samples

(in potentially high dimensional space) and then to separate test samples under the

same configurations.

The underlying principle of SVMs involves Structural Risk Minimization (SRM).

Under this scheme, SVMs minimize classification error of unseen samples without

prior assumptions made on the probability distribution of the samples.

2.1 Support Vector Machines

Support vector machine chooses a maximum-margin hyperplane and splits the sample

classes, while maximizing the distance to the nearest split example. The parameters of

the solution hyperplane are derived from a Quadratic Programming (QP) optimization

problem. In its simplest form, SVM is a binary classification algorithm, but it can also

be generalized to multiclass problems.

2.1.1 Linearly separable case

The implementation of a linear SVM assumes that features of data are linearly

separable in the input space.

11



Let us consider a supervised binary classification problem. Let’s assume that the

training set consisting of n samples, denoted by Equation 2.1, and separable by a linear

hyperplane.

X =
{
(x1,y1), . . . ,(xn,yn), xi ∈Rd, y ∈ {+1,−1}

}
(2.1)

where d and y ∈ {+1,−1} correspond to number of features and the class labels of

training data, respectively.

The decision function is based on the function sgn( f (x)), where f (x) is the

discriminant function associated with the hyperplane and defined as

f (x) = wTxi +b, w and b ∈Rd (2.2)

The linear hyperplane should satisfy the following constraints that define the separation

of the data samples:

yi = 1 wTxi +b≥ 1 (2.3)

yi =−1 wTxi +b≤−1, i = 1, . . . ,n (2.4)

Or in terms of one compact equation:

yi
(
wTxi +b

)
≥ 1, i = 1, . . . ,n (2.5)

It has been shown that classification is affected by another quantity, the margin (Figure

2.1). The margin is defined as the minimal distance from the separating hyperplane to

the closest data sample. The margin depends on the length of the weight vector w.

Among all the hyperplanes separating two classes, there exists only a unique one

yielding the maximum margin of separation between the classes. The optimal

hyperplane is geometrically equivalent to maximizing the margin, 2/||w||, the

perpendicular distance between two parallel hyperplanes. To maximizing the margin

is equivalent to minimizing the norm of the weights.
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wx + b = +1

Optimal separating 
hyperplane

Class -1

non-margin 
support vector

Class +1

margin =
2

||w||
− ξi

||w||

− b

||w||

margin support vectors

w

origin

wx + b = −1

Figure 2.1: Optimal separating hyperplane in SVMs for a linearly nonseparable case.
White and black circles refer to the classes +1 and −1, respectively.
Support vectors are indicated by extra circles.

In order to construct this optimal hyperplane for separable case, the following quadratic

optimization problem has to be solved with the following linear constraints:

Object function : min
{w,b}

1
2
‖w‖2 (2.6)

Subject to : yi
(
wTxi +b

)
≥ 1, i = 1, · · · ,n (2.7)

This constrained optimization problem can be translated to the unconstrained

optimization problem by introducing Lagrange multipliers:

L(w,b,α) =
1
2
‖w‖2−

n

∑
i=1

αi
{

yi
[
wTxi +b

]
−1
}

(2.8)

where αi are Lagrange multipliers. The Lagrangian L(w,b,α) has to be minimized

with respect to w and b and maximized with respect to αi ≥ 0.

Using Karush-Kuhn-Tucker (KKT) conditions, the parameters w and b in Equation

2.8 can be expressed in terms of only the parameters αi. Then, Equation 2.8 becomes

a dual problem that requires only maximization with respect to the Lagrangian

multipliers αi.
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According to the Kuhn-Tucker theorem, the solutions w∗, b∗ and α∗ parameters of

Equation 2.8 should satisfy the following conditions:

∂L(w∗,b∗,α∗)
∂b

= 0;
∂L(w∗,b∗,α∗)

∂w
= 0 (2.9)

Solving partial derivatives gives the following properties of optimal hyperplanes:

1. The coefficients α∗i should satisfy the constraints:

n

∑
i=1

α
∗
i yi = 0 αi ≥ 0 (2.10)

2. The vector w∗ is a linear combination of the vectors in the training set

w∗ =
n

∑
i=1

αiyixi αi ≥ 0 (2.11)

By the KKT complimentary conditions of optimization, the αi must be nonzero for all

the constraints, which are met with equality, in Equation 2.5, thus

α
∗
i

[
yi

(
w∗Txi +b∗

)
−1
]
= 0, i = 1, . . . ,n. (2.12)

The training samples corresponding to the nonzero Lagrangian multipliers are called

support vectors that lie at a distance exactly equal to 1/||w|| from the optimal

separating hyperplane (Figure 2.1). Since the support vectors are the data samples

closest to the decision function, conceptually they are the samples that are the most

difficult to classify. Therefore, the decision function of the optimal hyperplane is

written in terms of the support vectors while all the remaining training samples are

irrelevant to the solution.

In order to construct the dual problem, the w and b parameters in Equation 2.8 are

replaced with Equation 2.10 and Equation 2.11. After substituting the expressions into

the Lagrangian, the dual form of QP problem becomes

L(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy j
(
xT

i x j
)

subject to constraints
n

∑
i=1

α
∗
i yi = 0 αi ≥ 0. (2.13)
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By solving the QP problem, the Lagrangian parameters α∗i ’s can be determined.

Afterwards, with the representation of the hyperplane decision function in terms of

α∗i , · · ·α∗n and b∗, the function f (x) in Equation 2.2 is achieved as follows:

f (x) = sgn

(
∑
i∈S

α
∗
i yi
(
xT

i x
)
+b∗

)
(2.14)

where S is the subset of training samples corresponding to vectors with nonzero

Lagrange multipliers α∗i ’s. It is worth noting that the Lagrange multipliers effectively

weigh each training sample according to its importance in determining the decision

function. The parameter b∗ is computed as following from Equation 2.12 and from the

set of support vectors xi, i ∈ I ≡ {i : αi 6= 0}.

b∗ =
1
|I|∑i∈I

(
yi−

n

∑
j=1

α jy j
(
xi.x j

)
)

(2.15)

2.1.2 Linearly nonseparable case

In practice, data samples of different class labels overlap one another. This makes

linear separability difficult as the basic linear decision boundaries are often not

sufficient to classify patterns with high accuracy. In this case, soft margin method

is used [58].

In the hyperplane formulation, a data sample is nonseparable only if it does not satisfy

Equation 2.5. This corresponds to a data sample that falls within the margin or wrong

side of the decision boundary (see Figure 2.1). In order to handle nonseparable training

data, the concept of optimal separating hyperplane is generalized by introducing a

positive slack variable ξ for each training vector to separate with a minimum number

of errors.

yi
(
wTxi +b

)
≥ 1−ξi, i = 1, · · · ,n ξi > 0 (2.16)

The new cost function under Equation 2.16 constraints is defined as the solution that

minimizes the cost function that expresses a combination of two criteria: margin

maximization (as in the case of linearly separable data) and error minimization (to

penalize the wrongly classified samples).

ψ(w,ξ ) =
1
2
‖w‖+C

m

∑
i=1

ξi (2.17)
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where C is a positive regularization constant which controls the degree of penalization

of the slack variables ξi, so that, when C increases, fewer training errors are permitted,

although the generalization performance may degrade. The resulting classifier is

usually called soft margin classifier. If C = ∞, no value for ξi except 0 is allowed;

it is the so-called hard margin SVM case.

This optimization problem can also be translated to its dual form as follows:

L(α) =
n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jyiy j
(
xT

i x j
)

(2.18)

subject to :
n

∑
i=1

yiαi = 0, 0≤ αi ≤
C
n
. (2.19)

Solution of this optimization problem by KKT condition gives the optimum hyperplane

as follows:

f (x) = sgn

(
∑
i∈S

yiα
∗
i
(
xT

i x j
)
−b∗

)
(2.20)

where S is the set of support vectors, and b∗ is found by averaging over all the training

samples, which are calculated by using the following KKT conditions:

αi (yi(w xi−b∗)−1+ξi) = 0

(C−αi)ξi = 0 (2.21)

Equation 2.21 also indicates that ξ = 0 if αi <C. Therefore, b∗ can be averaged over

only those samples which 0≤ αi ≤C.

In the nonseparable case, two kinds of support vectors exist: 1) margin support vectors

and 2) non-margin support vectors. The margin support vectors lie on the hyperplane

margin (If αi <C, then ξ = 0). The non-margin support vectors fall on the wrong side

of this margin. In other words, when αi = C, the support vectors are missclassified if

ξ > 0. When 0 < ξ ≤ 1, the support vectors are correctly classified but are closer than

the 1/‖ w ‖ from the hyperplane (see Figure 2.1).

2.2 Nonlinear Support Vector Machines

In case of nonlinearly separable data, using a nonlinear function Φ, the training data

are mapped as Φ :Rn→RH into a higher dimensional feature space in order to make
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the data linearly separable. In this way, nonlinear SVM makes the maximum margin

hyperplane be fit in a feature space (Figure 2.2).
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Figure 2.2: The idea of nonlinear SVM is to map the training data into a higher
dimensional feature space via Φ, and construct a separating hyperplane
with maximum margin there. This yields a nonlinear decision boundary in
input space.

A linear classification problem is next formulated in that feature space [21].

Accordingly, the Lagrangian of the dual optimization problem (Equation 2.13) has

to be changed to the following equation:

L(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jK
(
xT

i x j
)

(2.22)

Notice the input vectors are involved in the expression through a kernel function

K(xT
i x j) = Φ(xi)

T
Φ(xi) (2.23)

Kernel functions have to satisfy the condition stated in Mercer’s theorem so as to

correspond to some inner product in the transformed (higher) dimensional feature

space [59]. This kind of kernel function allows to simplify the solution of the dual

problem considerably, since it avoids the computation of the inner products in the

transformed space.
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The final result is a discriminant function conveniently expressed as a function of the

data in the original (lower) dimensional feature space.

f (x) = sgn

(
∑
i∈S

yiαiK
(
xT

i x j
)
−b

)
(2.24)

Some commonly used kernels in the literature are tabulated in Table 2.1:

Table 2.1: Commonly used types of kernel functions in the literature.

Kernel K(xT
i x j)

Linear xT
i x j

Radial Basis Function exp
(
−γ||xi−x j||2

)
, γ > 0

Polynomial
(
γxT

i x j + r
)d

, γ > 0
Sigmoid tanh

(
γxT

i x j + r
)

Multi quadratic
√
||xi−x j||+η

1/2

Inverse multi quadratic
√
||xi−x j||+η

−1/2

Where γ, r, η and d are kernel parameters. The most commonly used kernel function

is Radial Basis Function (RBF) kernel which nonlinearly maps data into a high

dimensional space. Unlike the linear kernel, it can handle a case when the relation

between class labels and features is nonlinear. Furthermore, the linear kernel is a

special case of RBF as the linear kernel with a penalty parameter C has the same

performance as the RBF kernel with some parameters (C,γ) [60]. In addition, the

sigmoid kernel behaves like RBF for certain parameters [61].

2.3 SVM: Multiclass Strategies

The original SVM method was intrinsically designed for two class problems. However,

the classification of multispectral and hyperspectral remote sensing data usually

involves more than two classes. In the literature, there have been many strategies of

combination of SVMs considered to evaluate the impact of the multiclass problem in

the context of remote sensing data classification [62]. In this thesis, One-Against-One

(OAO) strategy was used to generalize the SVM to classify multiclass data [63].

The OAO strategy, also known as pair-wise coupling, consists of constructing one

SVM for each pair of classes. The final decision in OAO strategy is based on the
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winner-takes-all rule. In other words, the learning model generated by the SVMs with

training of each pair-wise class gives one vote to the winning class, and the sample is

labelled with the class having the most votes.

Let’s assume W = {w1,w2, · · · ,wT} be the set of T possible labels corresponding to

information classes. The OAO strategy involves T (T − 1)/2 SVMs trained for all

possible pair-wise classifications in order to distinguish the samples of one class from

the samples of another class. In this case, each SVM carries out a binary classification

in which two information classes wi and w j = (wi ∈W, w j ∈W, i 6= j) are analysed

against each other by means of a discriminant function fi j(x). Consequently, the

grouping becomes {
WA = wi
WB = w j

(2.25)

Before the decision process, it is necessary to compute for each class wi ∈W a score

function Si(x), which sums the favourable and unfavourable votes expressed for the

considered class

Si(x) =
T

∑
j=1
j 6=i

sgn{ fi j(x)} (2.26)

The final decision in the OAO strategy corresponds to the following maximization

w∗ = arg max
i=1,··· ,T

{Si(x)} (2.27)

Sometimes, conflicting may occur between two different classes characterized by the

same score. Such ambiguities can be solved by selecting the class with the highest

prior probability.
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3. SUPPORT VECTOR SELECTION AND ADAPTATION

SVMs are particularly appealing in the remote sensing field due to their ability

to successfully handle small training datasets, often producing higher classification

accuracy than the traditional methods [64].

Alongside the benefits derived from the SVM formulation, there are also several

challenges in application of SVM. The major setback concerning the applicability

of SVMs is the choice of kernels. Although many types of kernel functions are

available in the literature, some of the kernel functions may not provide optimal

SVM configuration for remote sensing applications. Empirical evidence indicates that

kernels such as radial basis function and polynomial kernels applied on SVM-based

classification of satellite image data produce different results. In addition to kernel

function, choice of kernel parameters also affects performance of SVM. Therefore,

difficulty in selection of proper kernel and its parameters generally limits effective

cross-disciplinary applications of SVMs [65].

In this thesis, our motivation is to overcome some of these general classification

problems of nonlinear SVM by developing a classification algorithm which is directly

based on using the support vectors and their adaptation with respect to the training data

to optimize partitioning in the feature space. The main contribution is to introduce a

new non-parametric supervised nonlinear classifier, called Support Vector Selection

and Adaptation (SVSA) method, without choosing any kernel function and parameters

[66].

The SVSA is a novel supervised classification method for classification of both linearly

and nonlinearly separable data [35]. In terms of classification performance, the

SVSA usually outperforms the LSVM. It is also competitive with the NSVM in the

classification of nonlinearly separable data. Therefore, a nonlinear as well as linear

classification performance can be achieved by the SVSA without the need for a kernel.
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Only the support vectors of the LSVM, which can be considered as the most important

vectors (closest to the decision boundary) are used in the SVSA. The method consists

of two stages: selection of support vectors obtained by LSVM and adaptation of

the selected support vectors. Some of the support vectors are selected based on

their contribution to overall classification accuracy, and they are then called reference

vectors. Afterwards, they are adaptively modified by using LVQ with respect to the

training data [67]. At the end of the adaptation process, the reference vectors are

finalized and used in classification during testing with the 1 Nearest Neighbour (1NN)

method with adaptive learning metric [68]. The learning schema of the SVSA method

is shown in Figure 3.1.

The proposed algorithm replaces the use of kernel functions by the following steps: a

selection step to choose the most significant linear support vectors for classification,

subsequent adaptation of the chosen linear support vectors for optimal classification

performance by using the LVQ adaptation scheme, and finally the 1NN rule for final

classification. It is known that the LVQ adaptation also maximizes the hypothesis

margin and also the sample margin, since the sample margin is larger than the

hypothesis margin [69]. Choosing the most significant linear support vectors reduces

the number of reference vectors. Such reduction is also known to result in better

generalization performance [70]. The SVSA also keeps the step of determining the

linear SVM the same. Therefore, the support vectors used in the SVSA are based on

Structural Risk Minimization (SRM) and VC dimension for a LSVM.

3.1 Support Vector Selection

Let n, d, and k denote the number of training samples, the number of features, and the

number of support vectors, respectively. Let X = {x1, . . . ,xn} represent the training

data with xi ∈ Rd , y ∈ Rn represent the class labels with yi ∈ {−1,+1}, and S ∈
{s1, . . . ,sk} represent the support vectors with si ∈Rd .

The linear SVM is employed to obtain the support vectors (S) from the training data

(X) as follows:

S =
{
(si,yi)

∣∣ (si,yi) ∈ X , 1≤ i≤ k
}

(3.1)
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where yi ∈ {−1,+1} is the class label of the ith support vector. The number of support

vectors is data dependent. If the data is linearly separable, the number of support

vectors is typically 20% of the training data. If not, the number of support vectors is

about 40% of the training data.

The training dataset (X) is next updated to exclude the support vectors as they are

used in the selection stage in order to choose some support vectors having the most

contribution to classification accuracy.

X̄ =
{
(xi,yi)

∣∣ (xi,yi) ∈ X\S, 1≤ i≤ n− k
}

(3.2)

The exclusion of support vectors from the training set is based on the observation

that the classification accuracy is increased by excluding them in the experiments.

Moreover, since the size of the training data is decreased, the computation time in

the selection stage is also decreased.

In the selection stage, the support vectors in the set S are first classified by using the

updated training dataset, X̄ , with the KNN algorithm. The leave-one-out algorithm is

used to determine the size of the neighbourhood, K, for KNN classification. The result

is given by

yp
j =
{

yl
∣∣ l = arg min j

{
‖s j−xi‖

}
, s j ∈ S, xi ∈ X̄

}
(3.3)

where yp
j is the predicted class label of the jth support vector. If the original and the

predicted label of a support vector are different, then this support vector is excluded

from the set of support vectors.

The remaining support vectors are called reference vectors and constitute the set R:

R =
{
(r j,y j)

∣∣ (r j,y j) ∈ S and yp
j = y j

}
, 1≤ j ≤ k (3.4)

3.2 Support Vector Adaptation

The reference vectors are iteratively adapted based on the training data in a way to

make them more representative for classification of data by the nearest neighbour rule.

The main logic of adaptation is that a reference vector causing a wrong decision should

be further away from the current training vector. Similarly, the nearest reference vector

with the correct decision should be closer to the current training vector.
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Adaptation is achieved by the Learning Vector Quantization (LVQ) algorithm. The

main idea of LVQ is to adapt the reference vectors so that they more optimally represent

the classes, thereby, diminishing misclassification errors. These reference vectors

result from an update procedure based on the training dataset. The learning procedure

consists of iteration over the training data and updating the reference vectors in order

to describe optimal class boundaries.

It is assumed that rw is the nearest reference vector with yw class label to randomly

chosen vector, xi ∈ X̄ with label yi. The adaptation is applied as follows:

rw[t +1] =
{

rw[t]−η [t](xi− rw[t]) if yw 6= yi
rw[t]+η [t](xi− rw[t]) if yw = yi

(3.5)

It means that if the class label of the winner reference vector rw matches the class label

of randomly selected the training sample xi, then the reference vector is moved towards

xi. Otherwise, it is moved away from the xi, where 0 ≤ η [t] ≤ 1 is the corresponding

learning rate parameter given by

η [t] = η0

(
1− t

T

)
(3.6)

where η0 is the initial value of η , t is the current number of iteration, and T is the

maximum number of iterations during learning. In this step, LVQ1 algorithm, which

is one of the improved algorithms of LVQ, was used [67]. In LVQ1, single set of

best matching prototypes is selected and moved closer or further away from each data

vector per iteration according to whether the classification decision is correct or wrong,

respectively.

3.3 Classification with Reference Vectors

The adaptation is an iterative process resulting in the reference vectors to be used

for classification of the test data by the nearest neighbour rule using adaptive nearest

neighbour rule [68]. In the classification of test data, unseen samples are classified by

using 1NN with the finalized reference vectors.

To define the locally adaptive distance between an unseen samples and a reference

vector, a largest sphere is first constructed centered on the reference vector that

excludes all the other reference vectors from other classes. The locally adaptive
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distance between unseen data, x̄i, and the reference vector, x̄ j is defined as

dnew(x̄i,x j) =
d(x̄i,x j)

r j
(3.7)

where d(x̄i,x j) is the Euclidean distance between x̄i and x j, and r j is the radius of the

largest sphere for the jth. reference vector, respectively.

Since the SVSA represents the feature space by using a small number of reference

vectors, the nearest reference vectors typically have different class labels, causing

K > 1 to yield worse results [28]. In all the experiments conducted, the highest

classification accuracy by the SVSA was obtained with K = 1.
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4. EXPERIMENTAL RESULTS

In order to test and to compare the proposed algorithm with other classifiers,

experiments were conducted on both synthetic and different types of remote sensing

data.

In synthetic data experiments, synthetic data with two or more classes and with two

features were created by using a Matlab Toolbox for Pattern Recognition [71, 72].

For binary classification, six different degrees of synthetic data having different types

of nonlinearity were generated to analyse the proposed algorithm. For multiclass

problem, a dataset with 8 classes was generated. The data with more features

obtained from UCI machine learning repository and Statlog repository were also used

in classification.

In remote sensing experiments, three different types of satellite data were used in

classification. In the first experiment, it was of interest to see how well the SVSA

method works in classification of multisource data. For this purpose, the Colorado

dataset consisting of ten classes and seven features was used for classification. In

the second experiment, a multispectral image with 10 m. resolution taken after the

earthquake in Adapazarı in Turkey was used to classify buildings as damaged and

undamaged. In the third experiment, a hyperspectral image was classified by using the

proposed algorithm in order to check the effectiveness of the proposed method in a

high dimensional space.

The SVSA algorithm was implemented in Matlab interface with the Library SVM

(LIBSVM) for finding the support vectors and LVQPAK software created with C

programming language for the adaptation part of the algorithm [67, 73].
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4.1 Assessing and Comparing Classification Algorithms

A comparison with the conventional SVMs was provided in terms of classification

accuracy. LSVM, NSVM with radial basis function (RBF) kernel, and NSVM with

polynomial function kernel were used in comparisons. The SVMs were computed in

Matlab software using the LIBSVM.

The KNN classifier was also considered in our experiments since it represents a

reference classification method in pattern recognition. In the experiments, KNN was

performed with both K = 1 and K = 5. As it is known, the choice of K is related to

the generalization performance of the classifier. Choosing a small number of K causes

reduction of generalization of the KNN classifier. K = 1 is most sensitive for noisy

samples.

The classification performance was assessed based on the following criteria:

1. An overall accuracy (OA)1 which is the number of correctly classified samples

divided by the total number of samples used in the classification.

2. An average accuracy which represents the average of class classification accuracy.

3. A kappa coefficient2 of agreement which is the percentage of agreement corrected

by the amount of agreement that could be expected due to chance alone [74].

These criteria used to compare classification results of the SVSA to other methods

were computed by using the confusion matrix3 [75].

In most of the experiments, especially when the test data was not given, the accuracy

assessment was conducted by 10-fold cross validation4 i.e. training on 90% of the data

and testing on the remaining 10% for 10 times. For classification accuracy comparison,

average accuracy percentage from 10-fold cross validation is used. In other words,

with 10-fold cross validation, 10 number of datasets were randomly generated to do

1See Appendix C for detailed information.
2See Appendix D for detailed information.
3See Appendix E for detailed information.
4See Appendix F for detailed information.
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averaging of the results to minimize the variance of the results and increase certainty

of conclusions.

In terms of classification performance and computational cost, scaling of data is

also an important preprocessing step for SVM. The main advantage of scaling is to

avoid features in larger numeric ranges dominating those in smaller numeric ranges.

Another advantage is to avoid numerical difficulties during computations. Because

kernel values usually depend on the inner products of feature vectors, e.g. the linear

kernel and the polynomial kernel, large feature values might cause numerical problems.

Therefore, each feature of a data vector was scaled to the range between -1 and +1

before using all the algorithms. The same method was used to scale both training and

testing data [76].

To be able to compare the computation time between the algorithms, all the codes used

in the experiments have to be implemented with the same programming language for

a fair comparison of computational time. Otherwise, the computation time between

different algorithms could lead to a wrong decision. Moreover, the code optimization

is also required, which means removing the redundancy from the code, for the time

comparison.

Hence, in order to make a fair comparison between the algorithms, either it is necessary

to rewrite all the codes in the same language or give the computational complexity of

the algorithms. We present below the computational complexities for the SVSA, the

SVMs and KNN methods. In addition to computational complexity, we also present

the space complexity in order to compare the memory storage requirements used by

the methods.

4.1.1 Computational complexity

During training, SVM needs to solve a quadratic programming (QP) problem in order

to find a separation hyperplane, which has high computational complexity. In order to

speed-up the SVM, some decomposition methods faster than QP are introduced in the

literature [77, 78]. In this way, the large QP problem is broken into a series of smaller

QP problems, and a fast solution of QP is obtained.

29



The computational complexity of the SVM can change depending on the linear or

nonlinear kernel used during training. Therefore, the complexity degree of NSVM

is higher than the linear SVM due to the use of kernel function. The computational

complexity of the linear SVM is O(n2), where n is the number training data. In NSVM,

the computational complexity is O(n3) because of computing the kernel function

values [79].

The computational complexity of the SVSA during training is analyzed for selection

and adaptation parts of the algorithm step by step as follows:

1. O(n2) for obtaining support vectors by LSVM.

2. O(n2logn) for selection of support vectors by KNN [80].

3. O(nlogn) for adaptation part in order to find the nearest reference vector to the

training data which is randomly selected.

Step number 3 is repeated T times, which is the maximum number of iterations, so the

worst-case computational complexity for this process is O(T nlogn). Including all the

processes, the computational complexity of the SVSA is O(n2logn), which is much

smaller than the complexity of a NSVM which equals to O(n3).

During testing, the computational complexities for both linear and nonlinear SVM

are O(n), where n corresponds to number of test data. Since the SVSA requires

sorting the distances from the reference vectors to an unclassified vector in order to

find the nearest reference vector, the computational complexity of the SVSA during

testing is O(nlogn). The computational and space complexity for each method is also

summarized in Table 4.1.

Therefore, it can be stated that the SVSA takes a longer time than the LSVM in terms

of speed performance during training stage because of the selection and the adaptation

of support vectors in addition to obtaining them. On the other hand, it requires less

time than NSVM since the method does not contain time consuming kernel processes.

The advantage of the SVSA method is that the classification performance of the NSVM

30



Table 4.1: The computational complexity and space complexity for each method
during training and testing process.

Training

SVM NSVM KNN SVSA
Comp. Complexity O(n2) O(n3) - O(n2logn)
Space Complexity O(n) O(n2) - O(n)

Testing

Comp. Complexity O(n) O(n) O(n2logn) O(nlogn)
Space Complexity O(n) O(n) O(n) O(n)

can be reached with faster calculations during training. During testing, the SVSA takes

a bit longer time compared to LSVM but faster than NSVM.

4.2 Choice of Parameters

The parameters of the linear SVM related to the penalty parameter, C, and slack

variable, ξ were chosen as the default parameters of the LIBSVM tool since these

parameters were not so sensitive to the results obtained with all the experiments. The

values of C and ξ were selected as 1 and 1/(number of features), respectively.

For NSVM with RBF kernel function, two parameters have to be estimated while using

RBF kernels: kernel parameter γ and penalty parameter C. In order to provide the best

parameters for the kernel, 10-fold cross validation was utilized in the model selection

with a grid search strategy. The potential combinations of C and γ were tested in a user

defined range, where C = 2−5 to 215 and γ = 2−15 to 23, and the best combination for

C and γ was selected based on the performance of cross validation.

For the parameters of polynomial kernel function, the default parameters of LIBSVM

were used in all the experiments; d = 3 and γ = 1/(number of features).

The initial value of learning rate parameter, η0 for the adaptation part of SVSA

was determined by using 10-fold cross-validation as well. The training data was

randomly divided into ten groups of equal size. Then, each of the ten groups served

as a validation set in turn, and the remaining data of the original training as a new

training set. Validations were carried out on these ten fold data to examine the
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classification accuracies associated with a number of initial values of learning rate

parameter, η0 = 0.1 to 1.0, in steps of 0.1 [81]. During the experiments conducted, it

was observed that the value of learning rate parameter slightly affects the performance

of the SVSA. In other words, the learning rate parameter does not have much influence

on the decision function obtained by the SVSA.

4.3 Synthetic Data Implementations

In these experiments, synthetic data with 2 and more classes, and 2 features were

created. In binary classification, six different types of data with different nonlinearities

were created. In the classification of multiclass problem, the data with 2 features and

8 classes were generated. The data from UCI and Statlog databases were also used in

the classification to provide the performance of the SVSA compared to other methods.

The performance of the SVSA method was compared to the LSVM, nonlinear

SVM with radial basis kernel function (NSVM-1), nonlinear SVM with polynomial

kernel function (NSVM-2) and KNN with 1 nearest neighbours (1NN) and 5 nearest

neighbours (5NN) in terms of class by class and overall classification accuracy (OA).

The standard deviations for each method were also calculated and averaged by 10-fold

cross validation.

4.3.1 Binary classification problem

For binary classification, six different types of synthetic data with different types of

nonlinearity were generated to analyse the proposed algorithm, and the data types used

in the experiments are visualized in Figure 4.1.

The number of samples for each dataset is 4000, and 40% and 60% of each dataset

were used as training and test data, respectively. All the algorithms were trained on the

training dataset, and tested on the test dataset generated by 10-fold cross validation.

The distribution of the reference vectors in the feature space for the banana-shaped

data is shown in Figure 4.2.

According to Figure 4.2, the support vectors which are comparatively far away from

the decision function obtained by the LSVM are the most adapted vectors by the
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Figure 4.1: Synthetic data types used in binary classification with 2 features.
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layısıyla, Yöntem 1’nin sınıflandırma performansı Yöntem 2’ye göre çok daha
yüksek olacaktır.

• A tipi veride, veri doğrusal bir dağılıma sahip olduğundan, uyarlama prensibine
göre, destek vektörlerinin uyarlanma miktarı çok az olacaktır. Bu nedenle, A
tipi veride, uyarlamanın sınıflandırma performansı üzerindeki etkisi de az ola-
caktır. Dolayısıyla, Yöntem 1 ve Yöntem 2 arasında, sınıflandırma performansı
açısından pek fazla bir fark olmayacaktır.

• C Tipi veri, kesinlikle doğrusal bir hiperdüzlem ile ayrılabilir bir yapıda değildir.
Dolayısıyla, doğrusal DVM sınıflayıcısı, bu veriyi ayırabilecek uygun bir hi-
per düzlem bulamamakta ve eğitim elemanlarının büyük çoğunluğunu destek
vektörü olarak seçmektedir. Destek vektörleri, kalan eğitim elemanlarına göre
uyarlanacağından ve uyarlama için az sayıda eğitim elemanı olacağından, uyar-
lama miktarı da az olacaktır. Bu nedenle, uyarlama işleminin sınıflandırma
performansı üzerinde fazla bir etkisi olmayacaktır.

Şekil 5’de, destek vektörlerinin seçimi ve uyarlaması sonucu elde edilen referans
vektörleri ve DVM’den elde edilen karar sınır fonksiyonu, B Tipi eğitim elemanları
üzerinde gösterilmektedir.
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Şekil 5: B Tipi veri üzerinde uyarlanmış referans vektörlerinin dağılımı. Uyarlanan referans
vektörleri mavi ok ile gösterilmektedir.

Şekil 5’e göre, karar sınır fonksiyonu civarında çok sayıda destek vektörünün
uyarlanamadığı saptanmıştır. Bu bölgedeki destek vektörlerinin uyarlanamamasının
nedeni, uyarlama sırasında, eğitim kümesi elemanlarından rastgele olarak seçilen
vektörlerin hiçbir zaman bu bölgedeki destek vektörlerine en yakın eğitim eleman-
ları olamamasından ileri gelmektedir. Bu bölgedeki, destek vektörlerinin uyarla-
namaması, sınıflandırma performansını olumsuz yönde etkilediği düşünülmektedir.
Bu amaçla, bu sorunun üstesinden gelmek için, destek vektörlerinin tümünü temsil
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Figure 4.2: The distribution of reference vectors in the feature space for the
banana-shaped data.

SVSA. The remaining support vectors keeps their position the same as before the

adaptation since there are no training data available around for the support vectors

to adapt. All the reference vectors, adapted or not, are used in the classification.
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Figure 4.3 shows how selection and adaptation part of the SVSA method affects the

classification performance on the difficult, banana and circular type of synthetic data.

The results are obtained based on the validation set by 10-fold cross validation.
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Figure 4.3: (a)The effect of selection stage to the classification performance. (b)The
effect of adaptation stage to the classification performance.

In Figure 4.3(a), the selection part of the SVSA was discarded from the algorithm

and classification was carried out with the reference vectors obtained without selection

stage, depicted with black line. Especially on the difficult and circular type of data,

the selection part of SVSA considerably improves the classification accuracy since the

class distribution is much more correlated to each other. In other words, when the data

is very difficult to classify, the selection stage of SVSA can be observed to be more

important in terms of classification performance.

In Figure 4.3(b), the classification accuracies conducted by using only support

vectors and adapted support vectors were compared to each other. Especially on the

banana-shaped dataset, the adaptation part seems more effective as the banana-shaped

data has a highly nonlinear distribution compared to other datasets. In the circular data,

the effect of adaptation is minor. Since the classes of circular data are fully overlapped,

almost all the training data are selected as the support vectors by the SVSA. So, as
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there are less number of training data around the support vectors, the adaptation stage

of SVSA is not effectively conducted.

The classification accuracies and standard deviations averaged over 10-fold cross

validation for all the methods are tabulated in Table 4.2.

Table 4.2: Classification of test accuracies for synthetic data with 2 features and 2
classes. OA and STD refer to overall accuracy and standard deviation,
respectively.

DATASETS CLASS
METHODS

LSVM NSVM-1 NSVM-2 SVSA 1NN 5NN

Lithuanian

c1 79.1 97.0 70.9 96.4 95.8 96.4
c2 88.4 97.1 99.7 97.1 96.3 97.0

OA 83.7 97.1 85.3 96.8 96.0 96.7
STD 1.0 0.5 0.6 0.5 0.7 0.6

Higleyman

c1 72.6 87.6 96.0 91.8 93.0 92.2
c2 100 99.7 35.0 97.9 93.4 96.5

OA 86.5 93.7 65.1 94.9 93.2 94.4
STD 1.4 1.2 1.7 0.7 1.1 0.8

Circular

c1 100 94.1 100 93.8 77.1 87.4
c2 1.1 74.6 1.1 73.9 76.2 75.3

OA 51.0 84.5 51.1 83.9 76.7 81.4
STD 1.3 2.2 0.3 2.1 2.4 1.6

Banana

c1 84.7 98.4 77.3 98.4 97.4 98.0
c2 85.2 98.0 95.6 98.0 97.6 97.8

OA 85.0 98.2 86.5 98.2 97.5 97.9
STD 1.3 0.5 1.4 0.6 0.7 0.6

Difficult

c1 93.3 93.1 18.0 92.4 90.1 92.4
c2 93.8 94.1 99.1 92.8 90.0 92.4

OA 93.5 93.6 59.3 92.6 90.1 92.4
STD 1.4 1.4 1.5 1.2 1.3 1.4

Gaussian

c1 84.7 84.8 96.2 85.1 77.7 82.0
c2 83.0 83.0 50.5 82.1 77.6 81.5

OA 83.9 83.9 73.5 83.6 77.7 81.7
STD 1.7 1.7 2.3 1.6 2.0 1.9

According to the experimental results provided in Table 4.2, it is observed that

the SVSA usually has better classification accuracy than the LSVM. Only for the
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higleyman, circular, difficult and gaussian datasets, LSVM performs better than SVSA

in terms of overall classification accuracy.

For the higleyman dataset, especially for the c2 class, the performance of LSVM is

better than the SVSA. However, there is an unbalanced distribution in the classification

accuracies of the higleyman dataset in binary classification. The classification accuracy

of c2 class is quite high while the classification accuracy obtained by the LSVM for

c1 class is low. This is because the optimal hyperplane found by the LSVM is such

that all the members of c2 are correctly classified. For the circular dataset, LSVM and

NSVM-2 give the highest classification performance only for the c1 class compared to

all the other methods. Since the classes of circular dataset is highly overlapped, the

optimal hyperplane found by the LSVM is somewhere that all the members of the c1

class is correctly classified while the most members of the c2 is missclassified. For

both higleyman and circular datasets, the SVSA has steady classification performance

over the classes compared to LSVM.

For the difficult dataset, the LSVM performs better than the SVSA. This is because the

class distribution of this dataset is quite linearly separable compared to other datasets.

The SVSA is also competitive with the NSVM with radial basis function kernel and

even better than the NSVM with polynomial function kernel. Besides, it is noted that

the NSVM with different types of kernels gives different classification performances,

and hence it is required to know which type of kernel is supposed to be chosen before

the learning. The standard deviation of SVSA for each dataset shows that the SVSA is

a robust method in the classification of these datasets.

In terms of computational time, since the size of training and test data were not so large,

the computational time spent during classification of test data for all the methods was

approximately less than one second. Besides, the computational time during learning

for the SVSA is less than NSVM due to the estimation of optimized kernel function

parameters.

In all these experiments, the maximum number of iterations for the SVSA was fixed as

50000, and the initial learning rate parameter for the SVSA was determined as 0.5. The

optimized kernel parameters of NSVM-1 for each dataset is tabulated in Table 4.3. The
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kernel parameters were obtained by using the grid search strategy with 10-fold cross

validation in a user defined range, where C = 2−15 to 215 and γ = 2−15 to 23.

Table 4.3: The optimized kernel parameters of the NSVM-1 for RBF kernel used in
the experiments.

Dataset C γ

Banana 64 8
Lithuanian 0.5 0.5
Gaussian 128 0.5
Difficult 0.125 1
Circular 0.03125 8
Higleyman 8192 0.5

4.3.2 Classification of multiclass dataset

For multiclass classification, a synthetic dataset with 8 classes and 2 features was

created from the same data used in binary classification, and is visualized in Figure

4.4. The number of samples used in the classification is 4000. The way of generating

training and test data in multiclass classification is the same as in binary classification.
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Figure 4.4: Multiclass data with different types of nonlinearities.

The average classification accuracies of all the methods on the multiclass dataset are

listed in Table 4.4.
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Table 4.4: Classification of test accuracies for the multiclass dataset with 2 features
and 8 classes. OA and STD refer to overall accuracy and standard deviation,
respectively.

CLASS METHODS
LSVM NSVM-1 NSVM-2 SVSA 1NN 5NN

c1 69.1 78.4 17.4 88.4 90 89.6
c2 95.3 97 99.2 93.6 89.8 93.8
c3 0 95.5 0 87.9 74.6 84.4
c4 100 67.7 97.8 70.9 73.7 73.5
c5 84.4 95.1 66.8 97.5 97.3 98
c6 83.3 93.3 0 98.4 96.9 97.8
c7 77.3 98 63.1 97.3 93.9 96.9
c8 90.2 97.3 95.6 96.9 96.1 97.5

OA 75.7 90.3 55.7 91.5 89.2 91.6

The standard deviations based on the 10-fold cross validation for all the methods during

the classification of the test data can also be visually seen with the box plot illustration

in Figure 4.5.
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Figure 4.5: The box plot of overall classification accuracies for the multiclass dataset
obtained with 10-fold cross validation for each method.

In terms of overall classification performance, the SVSA yields better classification

accuracy than LSVM and NSVM with RBF and polynomial kernel functions. The

SVSA has also competitive standard deviation compared to the NSVM-1. While the

SVSA gives the higher performance based on the average accuracy compared to 1NN

method, it has almost the same classification accuracy as 5NN. This result shows that
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the SVSA is not affected by noisy data although it uses 1NN classification approach

with the reference vectors during the classification.

We also note that linear SVM classifications is done with respect to the hyperplane

whereas SVSA classifications is done with reference vectors using 1NN. Hence, the

two methods do not need to give the same accuracy even with a linear classification

application.

The initial learning rate parameter and the maximum number of iterations for

adaptation part of the SVSA were determined as 0.5 and 50.000, respectively. The

kernel parameters of NSVM-1, C and γ , were estimated as 64 and 8, respectively.

4.3.3 UCI- and Statlog-repository datasets

The UCI- and Statog-repository databases used in the experiments are of different sizes

and features [82]. The dataset used are as follows: sonar, ionosphere, abalone, diabet,

heart, satellite, vowel and satellite-2. Table 4.5 lists the main characteristics of the

datasets used in the experiments.

Table 4.5: The characteristics of the dataset obtained from UCI- and
Statlog-repository.

Datasets # Data # Feature # Class
Sonar 208 60 2
Ionosphere 351 34 2
Abalone 4177 8 3
Pima indians diabet (Medical) 768 8 2
Statlog heart (medical) 270 13 2
Statlog Landsat satellite 6435 36 6
Vowel (connectionist bench) 990 10 11
Statlog Landsat satellite-2 883 36 5

According to Table 4.5, the sonar and the ionosphere datasets have less number of data

compared to their number of features. Abalone, which is highly overlapped data, is

one of the bigger datasets used in the experiment. The second one is satellite dataset

which is also not linearly separable.

40% and 60% of each dataset were used as training and test data, respectively. All

results presented were obtained based on overall classification accuracy averaged with
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10-fold cross validation. The averaged percentages of correctly classified samples in

test data are displayed with the box plot illustration in Table 4.6.

Table 4.6: The averaged percentages of correctly classified objects in test samples with
each UCI dataset.

UCI Dataset Methods
SVM NSVM-1 NSVM-2 SVSA 1NN 5NN

Sonar 75.4 88.0 62.1 88.5 87.1 82.7
Ionosphere 87.5 94.3 64.1 91.2 86.4 84.9

Abalone 54.9 54.9 53.8 55.1 50.1 53.4
Diabet 76.4 77.5 68.4 71.2 71.2 73.0
Heart 84.8 81.9 83.0 80.4 75.6 79.6

Satellite 86.9 92.0 69.3 91.3 90.4 90.9
Vowel 73.8 97.0 28.2 98.8 98.9 94.0

Satellite-2 95.1 96.0 71.0 96.0 95.1 95.1

According to Table 4.6, the SVSA provides considerably high classification accuracy

especially for sonar and ionosphere dataset although these datasets have less number

of training data compared to their number of features. For the abalone dataset, the

SVSA has the highest classification accuracy compared to other methods. Except

for diabetic and heart datasets, which are medical datasets, the SVSA has better

classification accuracy than LSVM for the remaining datasets. For the heart dataset,

the NSVM-1 also gives less classification accuracy compared to LSVM. Considering

the classification result of the satellite dataset, it can also be stated that the SVSA is a

successful method when the data is nonlinearly separable. As a conclusion, it is also

worth to mention that the classification accuracy of the SVSA is generally very close

to NSVM-1’s classification accuracy, and better than LSVM.

According to the results obtained by the nearest neighbour method, the classification

performance generally varies depending on the number of neighbourhood samples

used in KNN. Therefore, in order to obtain better performance by KNN, the number

of neighbourhood should be estimated before the classification conducted.

Figure 4.6 also shows the box plot illustration of 10-fold cross validation results for

each UCI and Statlog datasets.
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Figure 4.6: The box plot illustration of 10-fold cross validation results for each UCI
and Statlog datasets.

The parameters of RBF kernel used by NSVM-1 for each dataset are tabulated in Table

4.7.

Table 4.7: The optimized kernel parameters of RBF kernel function for each dataset
in UCI and Statlog datasets.

Dataset C γ

Sonar 4 0.25
Ionosphere 4 0.25
Abalone 64 2
Diabet 4 0.25
Heart 4 0.25
Satellite 2 2
Vowel 16 1
Satellite-2 8 0.5
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4.4 Remote Sensing Implementations

The proposed algorithm was also tested with different types of remote sensing data.

Three different remote sensing datasets were used in the experiments; multisource

data, multispectral data and hyperspectral data.

4.4.1 Multisource data : Colorado dataset

Classification was performed with the Colorado dataset consisting of the following

four data sources [83]:

• Landsat MSS data (four spectral data channels);

• Elevation data (in 10-m contour intervals, one data channel);

• Slope data(0 to 90 in 1 increments, one data channel);

• Aspect data (1 to 180 in 1 increments, one data channel);

Each channel comprises an image of 135 rows and 131 columns, and all channels

are spatially co-registered. The area used for classification is a mountainous area in

Colorado. Ground reference data are available with ten ground cover classes. One

class is water; the others are forest types, as specified in Table 4.8. Therefore, it is

very difficult to distinguish among the forest types using the Landsat MSS data alone,

since the forest classes show very similar spectral response. For these classes, it clearly

helps to add the topographic data sources to the Landsat data in order to make the data

more distinguishable. There are ten ground-cover classes listed in Table 4.8.

The Colorado data was classified by the SVSA, LSVM and NSVM with radial basis

and polynomial kernel function. The user’s and producer’s accuracies5 for each class

and overall classification accuracies based on producer’s accuracies for all the methods

are listed in Table 4.9.

According to the results in Table 4.9, the overall classification performance is generally

quite low for all the methods since the Colorado dataset represents a very difficult
5See Appendix G for detail information.
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Table 4.8: Training and test samples of the Colorado dataset for 10 land use classes
with 7 features.

Class Type of Class Number of samples
Training Test

c1 Water 408 195
c2 Colorado blue spruce 88 24
c3 Mountane/ subalpine meadow 45 42
c4 Aspen 75 65
c5 Ponderosa pine 105 139
c6 Ponderosa pine/douglas fir 126 188
c7 Engelmann spruce 224 70
c8 Douglas fir/white fir 32 44
c9 Douglas fir/ponderosa pine/Aspen 25 25
c10 Douglas fir/white fir/aspen 60 39

Total 1188 831

classification problem. The overall classification accuracy of the SVSA is better than

all the other methods. In addition, it gives higher classification accuracy for many

classes individually in comparison to NSVMs. The computational time spent during

testing is less than one second for all the methods due to a small number of test data

used in the classification.

The initial learning rate parameter and the number of maximum iterations for

adaptation part of the SVSA were determined as 0.5 and 40000, respectively. The

optimized parameters of nonlinear SVM, C and γ , with radial basis function were

determined as 2 and 8, respectively.

4.4.2 Multispectral data : Adapazarı earthquake image

SPOT HRVIR panchromatic images for Adapazarı earthquake were captured with a

10 m. spatial resolution before and after the event on 25 July 1999 and 4 October

1999, respectively (see Figure 4.7). They were geometrically corrected using 26

ground control points from 1:25 000 topographic map of the area [84]. Images were

transformed to Universal Transverse Mercator (UTM) coordinates using a first order

polynomial transformation and nearest neighbour resampling.
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Table 4.9: Test accuracies for classification of Colorado data. PA and UA refer to
producer’s and user’s accuracy, respectively.

Class Accuracy
METHODS

LSVM NSVM-1 NSVM-2 SVSA

c1
PA 100 94.4 100 99.5
UA 99.0 94.2 98.5 99.0

c2
PA 37.5 91.7 62.5 91.7
UA 11.4 10.7 5.50 18.0

c3
PA 4.8 2.40 2.40 38.1
UA 2.80 0.00 0.00 23.9

c4
PA 33.9 36.9 20.0 41.5
UA 45.8 25.9 23.1 34.4

c5
PA 3.60 1.44 0.00 20.9
UA 21.7 0.00 0.00 32.3

c6
PA 59.0 47.3 61.2 34.6
UA 38.3 46.6 42.1 60.7

c7
PA 92.9 100.0 85.7 94.3
UA 89.0 53.3 52.0 83.1

c8
PA 0.00 0.00 0.00 0.00
UA 0.00 0.00 0.00 0.00

c9
PA 0.00 0.00 0.00 0.00
UA 0.00 0.00 0.00 0.00

c10
PA 20.5 69.2 0.00 64.1
UA 21.1 0.00 0.00 39.7

Overall Accuracy 50.2 50.4 48.0 53.4

The training samples for the damage class to be assessed are quite difficult to be

visually picked from the post-earthquake image due to its low spatial resolution.

Therefore, both pre- and post-earthquake images were used together to be able to

conduct the SVSA in damage assessment.

In order to choose the damage samples for the training process, a difference image

representing changes occurred during the time between pre- and post-earthquake, was

generated by subtracting the matrices of pre- and post-earthquake images. However,

some vegetation regions might also be changed during the this time interval, so these

areas can be wrongly interpreted as damage despite not being damage. In order to

44



Post-earthquake imagePre-earthquake image

Figure 4.7: Pre- and post-earthquake panchromatic images captured on 25 July 1999
and 4 October 1999, respectively, for a small region in Adapazarı
in Turkey. The heavy damage area can visually be identified from
the post-earthquake image (brighter intensity values of the urban area
compared to pre-earthquake image).

prevent this confusion, a thematic map of urban area was also created by the SVSA

method using the intensity values of pre-earthquake image (Figure 4.8).

The difference image having changes occurred due to both earthquake and vegetation

was overlapped with the thematic map of urban area, and the changes occurred due to

vegetation were removed from the map of urban area. In other words, only the urban

area with earthquake damage was extracted from the difference image. Hence, the

training samples for the damage class were selected from this image as it is easier to

visually pick the damage samples. The training samples for the urban and vegetation

area were chosen from the pre-earthquake image.

After having training data, the post-earthquake image was classified by the SVSA and

the thematic map of damage for the area of interest was obtained as in Figure 4.9.

In order to test the classification performance of the SVSA in comparison to other

methods in the area of Adapazarı, ten different dataset combinations of the test data

for the urban, vegetation and damage class were randomly created, and all the methods
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Figure 4.8: The thematic map of the urban area identified by the SVSA from the
pre-earthquake image.
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Figure 4.9: The collapsed buildings indicated by the SVSA from the difference map.

were used to classify each dataset individually. The box plot of the classification error

for each method with these datasets is illustrated in Figure 4.10.
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Figure 4.10: The illustration of box plots for the classification error based on ten
different datasets for each method.

The SVSA has very low classification error with very small deviations in comparison

to linear SVM and nonlinear SVM with polynomial kernel. Additionally, the SVSA

method gives competitive classification performance compared to nonlinear SVM with

radial basis kernel function. This indication shows once again the importance of kernel

type on the classification performance.

4.4.3 Hyperspectral data : Washington DC Mall

In this section, main purpose is to provide how the SVSA performs in the high

dimensional space without being affected from curse of dimensionality, also called

Hughes phenomenon, which refers to the sample size required for training of a

specific classifier grows exponentially with the number of spectral bands [85].

Usually, effective ways to overcome this problem, are to increase sample numbers for

training or to reduce the dimensionality of hyperspectral remote sensing data. Since

increasing the number of samples for training costs human and material source as

well as computational time during training, dimensionally reduction of the training

data has been generally preferred in the literature. Therefore, feature selection or

feature extraction algorithms have been used to overcome Hughes phenomenon in the

literature [86–88].

A higher dimensional dataset captured by an airborne sensor (HYDICE) over

Washington DC Mall was used for exploring the performance of the SVSA in a high

dimensional feature space [89]. The original dataset consists of 220 spectral bands
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across 0.4−2.5 µm., where low signal-to-noise ratio bands were discarded, resulting

in a dataset of 191 spectral bands.

The DC dataset is a challenging one to analyse since the classes are complex. There

is a large diversity in the materials used in constructing rooftops, and consequently, no

single spectral response is representative of the class roofs [90].

A small segment of Washington, DC Mall dataset with 279×305 pixels was selected

for evaluating the classification performance of the proposed method as in Figure 4.11.
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Figure 4.11: Training and test samples for 7 Classes selected in hyperspectral image
of Washington DC Mall.

The training and test samples shown in Table 4.10 were collected from a reference

dataset which was supplied with the original data. The target land use classes were

seven classes used in previous studies with the DC Mall dataset: roofs, road, trail,

grass, tree, water and shadow [91].

The proposed method, SVSA, and the SVMs were used in classification of the

hyperspectral data. The user’s and producer’s classification accuracy of the test data

for each method are tabulated in Table 4.11.

According to Table 4.11, the SVSA has the highest overall classification accuracy

compared to the SVMs. Especially for the class trail, which is quite hard to distinguish
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Table 4.10: The number of training and test samples with 191 features and 7 classes.

CLASS NUMBER OF SAMPLES
Training Test Total

Roof 419 273 692
Road 132 109 241
Grass 181 215 396
Trees 226 145 371
Trail 37 28 65
Water 30 30 60
Shadow 73 68 141

Total 1098 868 1966

Table 4.11: Classification accuracies of test data [%]. UA and PA refer to user’s
accuracy and producer’s accuracy, respectively.

Class Accuracy Methods
LSVM NSVM-1 NSVM-2 SVSA

Roof UA 99.6 91.2 99.6 98.5
PA 94.8 97.3 94.8 97.5

Road UA 100 99.08 100 99.1
PA 100 100 99.1 100

Grass UA 100 99.5 100 100
PA 98.6 99.1 99.5 99.5

Trees UA 100 100 100 100
PA 98.0 98.6 98.6 99.3

Trails UA 35.7 67.9 42.9 71.4
PA 90.9 43.2 100 76.9

Water UA 100 100 100 100
PA 100 100 100 100

Shadow UA 95.6 98.5 97.1 98.5
PA 100 100 100 100

Overall accuracy 97.5 95.9 97.8 98.4
Time (s) 15 21 40 6

due to the small number of training data, the classification accuracy of the SVSA has

the highest performance in terms of user’s accuracy as well.

In the SVSA, the classification of the hyperspectral image was carried out with the

45 reference vectors tabulated in Table 4.12. These results suggest that the proposed
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algorithm is also highly competitive in the classification of hyperspectral data, and

does not seem to be affected by the curse of dimensionality [92].

Table 4.12: The number of reference vectors used in the classification.

Type of classes TotalRoof Road Grass Tree Trail Water Shadow
4 5 9 6 8 4 9 45

Since the number of reference vectors obtained by the SVSA is 45, the computational

time spent by the SVSA during testing is less than all the SVMs.

The thematic map generated by the SVSA is shown in Figure 4.12(b).
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Figure 4.12: (a)Hyperspectral image of Washington DC Mall. (b)Thematic map of
DC Mall image obtained by SVSA.

According to Figure 4.12(b), the land use classes were considerably identified by the

SVSA with quite low salt-and-pepper classification noise.

The initial learning rate parameter and the number of maximum iterations for the

adaptation part of the SVSA algorithm were determined as 0.1 and 40000, respectively.

The parameters of nonlinear SVM, C and γ , were determined as 32 and 0.25,

respectively.
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5. EARTHQUAKE DAMAGE ASSESSMENT

In this chapter, a pansharpened post-earthquake image obtained from city of Bam was

used to assess earthquake damage by the proposed algorithm, SVSA. Two different

type of experiments were conducted on this image which are pixel-based and hybrid

pixel- and texture-based classification.

In pixel-based classification, only the pansharpened image was used with 4 spectral

bands, and the effectiveness of the proposed methodology was compared to SVMs and

KNN method. In terms of damage assessment, since using of texture information

obtained from high resolution image is important, texture information, also called

spatial information, were extracted by Gray Level Co-occurrence matrix (GLCM)

method from panchromatic image for the area of interest. Both spectral and spatial

information were used in classification. Nonparametric Weighted Feature Extraction

method (NWFE) was also used during classification in order to weight each feature

with hybrid pixel- and texture-based classification. The results showed that the

classification performance obtained by the SVSA was improved compared to its

pixel-based classification.

5.1 SVSA with Pixel-based Classification

Quickbird satellite images of the city of Bam, acquired on 30 September 2003

(pre-earthquake) and 03 January 2004 (post-earthquake) were obtained. Only a

post-earthquake pansharpened image having four spectral bands, which are RGB and

near-infrared (NIR), was used to distinguish damage patterns.

All the algorithms were evaluated using a small area of the city, approximately

5 hectares in size. Since there is no ground truth data available regarding to

land use classes, pansharpened images with 0.6 m. spatial resolution for pre- and

post-earthquake images were obtained and considered as the ground truth data (Figure

5.1).
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Pre-earthquake image Post-earthquake image

September 30, 2003 January 03, 2004

Figure 5.1: Pre- and post-earthquake pansharpened images of area of interest.

In order to obtain the pansharpened images, principle component resolution merge

method using a bilinear interpolation resampling technique was used. Since the

pansharpened image has high resolution compared to the multispectral image, the

pansharpened pre- and post-earthquake data were also used as ground truth data.

For the thematic classification, five classes were identified: Vegetation, shadow,

buildings, open ground and damage. Training and test data were visually selected

from the pansharpened post-earthquake image after being verified with pansharpened

pre- and post-earthquake images. The number of training and test samples used in the

classification for each class is tabulated in Table 5.1.

Table 5.1: The number of training and test samples for each class.

Class Class Number of samples
number Training Test Total

Vegetation 1 358 616 974
Shadow 2 276 449 725
Building 3 356 866 1222
Open ground 4 537 480 1017
Damage 5 397 1238 1634

Total 1924 3549 5572
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Additionally, Bhattacharya distance1 between each pair of classes for each subset of

four spectral bands was also calculated in order to measure the separability between

the classes. The results are shown in Table 5.2.

Table 5.2: Bhattacharya distances between pairs of classes with respect to different
combination of spectral channels. R, G, B and NIR represent red, green and
near-infrared channels while 1, 2, 3, 4 and 5 refer to vegetation, shadow,
building, open ground and damage classes, respectively. Avg. represents
the average value of each row.

Channels Class pair
Avg. 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

R-G-B-NIR 6.3 3.6 15.7 7.3 6.7 18.7 4.6 3.2 1.0 1.1 0.7
G-B-NIR 6.1 3.6 15.3 7.2 6.3 18.7 4.3 2.9 1.0 0.7 0.5
R-B-NIR 6.1 3.4 15.5 7.1 6.6 18.5 4.1 3.1 1.0 1.0 0.6
R-G-NIR 5.6 3.3 14.5 7.0 4.5 18.6 3.6 2.2 0.9 1.0 0.6
R-NIR 4.9 3.3 11.3 6.2 3.5 17.7 3.3 1.7 0.8 0.6 0.5
B-NIR 5.4 3.2 14.2 6.9 4.1 18.6 3.0 1.9 0.9 0.6 0.5
G-NIR 5.5 3.1 15.3 6.8 5.3 18.0 2.6 2.2 0.9 0.6 0.3
NIR 1.5 3.0 0.3 0.2 0.1 8.5 0.8 1.2 0.7 0.5 0.0
R-G-B 4.5 1.9 12.4 2.4 3.3 16.0 3.8 2.7 0.9 1.0 0.6
G-B 4.2 1.8 12.3 1.2 3.2 16.0 3.5 2.5 0.8 0.7 0.4
R-G 3.8 0.8 10.7 2.3 1.0 15.9 3.0 1.9 0.8 1.0 0.3
G 3.5 0.7 10.7 1.2 0.9 15.9 2.2 1.6 0.8 0.6 0.0
R-B 4.0 0.5 12.2 2.1 2.3 14.9 3.5 2.6 0.8 0.9 0.4
R 3.2 0.4 9.8 1.6 0.9 13.7 2.7 1.4 0.7 0.5 0.1
B 3.4 0.3 12.1 1.2 1.2 14.6 1.8 1.7 0.8 0.6 0.0

In Table 5.2, the interclass pair distances for all classes appear in rows placed in

descending order based on the average distance in the row. The results suggest that

in terms of classification performance, using all the spectral bands is a good choice for

classifying the five classes.

In terms of correlation between the class pairs, it can be stated that the most confused

classes are the damage versus open ground, damage versus building and building

versus open ground class. This is mainly because the rubble of collapsed buildings was

scattered along the open grounds, and the most buildings were made of clay. Due to

these reasons, the spectral response of the samples belonging to damage, open ground

and building classes reflect very similar spectral responses.

1See Appendix H for detail information.
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In the pixel-based classification, all the methods were first trained on the training

samples only by using four spectral bands to identify the damage patterns from the

post-earthquake image, and the test data were classified with respect to the learning

model generated by the methods. The overall accuracy and producer’s accuracy of the

test data for each method obtained are tabulated in Table 5.3.

Table 5.3: The overall accuracy and the producer’s accuracy of test data for each
method. OA refers to overall classification accuracy.

Methods

Classification accuracies [%]

Vegetation Shadow Building Open
ground Damage OA

LSVM 99.5 94.4 91.8 62.7 33.5 69.8
NSVM-1 99.5 96.7 88.1 59.6 71.6 81.7
NSVM 2 98.4 94.9 0.0 100.0 1.1 41.8

KNN 99.7 97.3 76.7 61.0 77.6 81.4
SVSA 99.7 97.3 79.7 58.8 79.3 82.4

According to Table 5.3, in terms of the overall classification accuracy, the SVSA gives

the highest classification accuracy compared to both linear and nonlinear SVM with

different kernels and KNN classifier. Since the classes of building, damage and open

ground are the most confused classes due to their similarity on spectral response, the

classification accuracies of these classes are generally low for all the methods while the

vegetation and the shadow classes can be easily separated from each other with higher

producer’s accuracy. In terms of damage identification, the SVSA gives the highest

producer’s accuracy as well.

In order to make a detailed analysis of the classification performance for each method,

except NSVM-2 as it has the lowest classification accuracy, a confusion matrix for each

method on the test data is also provided with the four statistical measures of accuracy

derived from the confusion matrix as tabulated in Table 5.4, listing user’s accuracy,

producer’s accuracy, kappa value and the overall accuracy.
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Table 5.4: Confusion matrix of test data for each method.

LSVM Number of samples

# Samples
User’s

Classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 613 14 0 0 2 629 97.5
Shadow 2 424 0 0 16 442 95.9

Building 0 0 795 60 152 1007 78.9
Open ground 0 11 19 301 653 984 30.6

Damage 1 0 52 119 415 587 70.7
616 449 866 480 1238 # Samples
99.5 94.4 91.8 62.7 33.5 Producer’s accuracy

62.3 Kappa value
69.8 Overall accuracy

NSVM-1 Number of samples

# Samples
User’s

Classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 613 10 0 0 6 629 97.5
Shadow 2 434 0 0 22 458 94.8

Building 0 0 763 46 88 897 85.1
Open ground 0 0 14 286 236 536 53.4

Damage 1 5 89 148 886 1129 78.5
616 449 866 480 1238 # Samples
99.5 96.7 88.1 59.6 71.6 Producer’s accuracy

76.3 Kappa value
81.7 Overall accuracy

KNN Number of samples

# Samples
User’s

Classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 614 10 0 0 6 630 97.5
Shadow 2 437 0 0 38 477 91.6

Building 0 0 664 32 90 786 84.5
Open ground 0 0 31 293 143 467 62.7

Damage 0 2 171 155 961 1289 74.6
616 449 866 480 1238 # Samples
99.7 97.3 76.7 61.0 77.6 Producer’s accuracy

75.7 Kappa value
81.4 Overall accuracy

SVSA Number of samples

# Samples
User’s

Classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 614 10 0 0 11 635 96.7
Shadow 2 437 0 1 38 478 91.4

Building 0 0 690 37 97 824 83.7
Open ground 0 0 25 282 110 417 67.6

Damage 0 2 151 160 982 1295 75.8
616 449 866 480 1238 # Samples
99.7 97.3 79.7 58.8 79.3 Producer’s accuracy

76.9 Kappa value
82.4 Overall accuracy
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According to Table 5.4, the SVSA has the highest Kappa value, 76.9%, which

represents a moderate agreement, while LSVM has the lowest one, 62.3%. Since

LSVM is a linear classifier, it is not effective to separate the classes which are much

correlated because of their similar spectral response. In the NSVM-1 classification,

due to the nonlinear decision function used in the classification, the accuracies are

improved compared to LSVM, so the Kappa value is also increased from 62.3% to

76.3%.

Not only the producer’s accuracy, the user’s accuracy should also be taken into account

in assessment of classification performance. Figure 5.2 shows the user’s and producer’s

accuracies for each class with respect to the methods compared to the SVSA classifier.
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Figure 5.2: User’s and producer’s accuracies of each class for all the methods.

Especially for the damage class, the SVSA has the highest producer’s accuracy, and

thus the SVSA can estimate 79.3% of damage pixels as correctly classified. Although
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the damage class identified by the SVSA shows the highest producer’s accuracy, only

75.8% of the area labelled damage is actually covered by the damage. In other words,

24.2% of pixels classified by the SVSA as damage actually belong to other classes.

The labels of damage class predicted by the SVSA and NSVM-1 were also compared

to each other to show the performance of each method for the classification of damage

class (Figure 5.3).
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Figure 5.3: The approximate rates of the damage class labels predicted by SVSA and
NSVM-1.

Figure 5.3 shows the rates of other classes confused with the damage class for both

SVSA and NSVM-1. According to Figure 5.3, the most confused classes with the

damage class predicted by the SVSA are the open ground and building class. 9% and

8% of the damage samples were classified as open ground and building by the SVSA.

In NSVM-1, 19% of the damage samples were classified as open ground which is

worse for NSVM-1 compared to SVSA.

Figures 5.4(a) and (b) show the comparison of user’s and producer’s accuracies for the

NSVM-1 and the SVSA. In Figure 5.4(c), the differences between the producer’s and

user’s accuracy, achieved by the NSVM-1 and the SVSA, are shown.

According to Figure 5.4(c), especially for the open ground and the damage class, the

SVSA is significantly better than NSVM-1, while the NSVM-1 has better accuracy
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Figure 5.4: (a)Comparison of producer’s accuracy. (b)Comparison of user’s accuracy.
(c)Difference between user’s and producer’s accuracy achieved by SVSA
and NSVM-1. The positive differences show that the SVSA has better
accuracy than NSVM-1 while negative differences show that the NSVM-1
has better accuracy than the SVSA.

for the building class. For the shadow class, NSVM-1 performs well compared to the

SVSA in terms of the user’s accuracy. Looking at the Figure 5.4(c), it can also be

stated that the SVSA achieves slightly better class accuracies than the NSVM-1.

The post-earthquake image was classified by the SVSA, and the thematic map was

obtained as in Figure 5.5.

According to Figure 5.5, the land use classes are generally identified well by the SVSA,

but there are some salt-and-pepper type of noise in the thematic map.

As a result of the pixel-based classification, it can be stated that the confusion between

classes can not be removed only by the spectral responses. Therefore, the textural

information of the classes should also be taken into account in order to reduce the

confusion between classes and obtain better classification performance.

For Iran, Bam earthquake damage assessment, the confusion matrix reveals that the

most confused classes are damage and open ground. The main reason of this confusion
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Figure 5.5: (a)Post-earthquake image. (b)Thematic map obtained by the SVSA with
pixel-based classification.

is that the classification carried out by the SVSA is a pixel-based classification. It

means that any object can be misclassified as another object in the image if their

spectral responses are similar enough. Therefore, in terms of higher classification

accuracy, more features are needed to be used in addition to the spectral bands in order

to increase the separability between the classes.

5.2 SVSA with Hybrid Pixel- and Texture-based Classification

In classification of remote sensing data of urban areas, a satellite image with high

spatial resolution is necessary to identify relatively small objects, i.e., houses and

narrow streets. The most commonly available remote sensing data of high spatial

resolution is the single band panchromatic data. However, for accurate classification,

using only a panchromatic image is not sufficient for discriminating detailed class

types. To overcome this problem, the spatial properties, texture features, obtained

from the panchromatic image should be used in classification. If the spatial content

of the image is not used, the resulting thematic map sometimes looks noisy, with

salt-and-pepper classification noise.
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There are several studies on extraction of spatial information and for use in

classification in order to improve the classification accuracy [93–95]. Fauvel et al.’s

paper (2008) was based on the fusion of the morphological information and the original

hyperspectral data, i.e., the two vectors of attributes were concatenated into one feature

vector [96]. After a reduction of dimensionality, the final classification was achieved

by using a support vector machine classifier. The algorithm was tested on some remote

sensing data from urban areas, and signification improvements were achieved in terms

of classification accuracy.

Thus, in order to improve the classification performance, spatial information between

the values of neighbouring pixels in the remote sensing data should additionally

be considered besides the spectral information during the classification process.

Spectral-and-spatial classification aims at assigning each image pixel to one class

using a feature vector based on its own spectral value (the spectral information) and

information extracted from its neighbourhood (the spatial information). Several studies

have shown that using both spectral and spatial information improves classification

accuracy and visual quality of thematic maps [97].

For extraction of the spatial information from the panchromatic image, the second

order Haralick features obtained by Gray Level Co-occurrence matrix were used. Eight

texture features calculated using the GLCM method were evaluated; homogeneity,

contrast, dissimilarity, mean, standard deviation, entropy, angular second moment and

correlation.

With the hybrid pixel- and texture-based classification, the number of features

increases during the classification. Therefore, different feature subsets should be taken

into account with respect to their contribution to the classification accuracy. In order to

assign different weight to each feature, nonparametric feature extraction method was

also used before the classification process. Figure 5.6 shows the steps followed in the

proposed hybrid pixel- and texture-based classification with the SVSA.
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Figure 5.6: The flow chart for both pixel-based and hybrid pixel- and texture-based
classification.

5.2.1 Gray Level Co-occurrence Matrix

In the scientific literature, one of the well-known and widely used technique is the

Gray Level Co-occurrence Matrix (GLCM), which is a way of extracting second order

statistical textural features [98, 99]. GLCM is a matrix derived from the gray-level

image, which shows the joint probability of distribution of a pair of gray levels,

separated at a certain distance and a certain orientation. Among many methods, the

GLCM method was found to be more effective [100].

Consider an image with Nx row and Ny columns. Let Ng corresponds to the number of

gray levels in the image. Therefore, the image in two dimensional spatial domain, can

be indexed with Lx = {1,2, · · · ,Nx} and Ly = {1,2, · · · ,Ny} corresponding to horizontal

and vertical spatial domains, respectively. The texture context information is specified
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by the matrix of relative frequencies Pd,θ (i, j) as follows:

Pd,θ (i, j) = #{(x1,y1)(x2,y2) | f (x1,y1) = i, f (x2,y2) = j,

‖(x1,y1)− (x2,y2)‖2 = d,

∠((x1,y1),(x2,y2)) = θ} (5.1)

where the intensity level of a pixel pair changes from i to j, the location of the first pixel

is (x1,y1) and that of the second pixel is (x2,y2), d is the Euclidean distance between

the pixel pair, θ is the angle between the two pixels, and # denotes the number of

elements in the set. pd,θ (i, j) is the (i, j)th element of the normalized co-occurence

matrix.

The gray level co-occurence matrix (GLCM) is calculated as a symmetric matrix, and

normalized as follows:

Pd,θ (i, j)S =
Pd,θ (i, j)+Pd,θ (i, j)T

2
(5.2)

Pd,θ (i, j)N =
Pd,θ (i, j)+Pd,θ (i, j)T

∑
Ng
i=1 ∑

Ng
i=1 Pd,θ (i, j)

(5.3)

where Pd,θ (i, j)S and Pd,θ (i, j)N are the symmetric and normalized GLCM matrices,

respectively.

5.2.2 Texture features from GLCM

In order to calculate texture features for each pixel in an image, a moving window

is usually used to define the neighbourhood of a pixel, and the texture measurement

calculated using the window is assigned to the center pixel (Figure 5.7).

A number of texture features, called Haralick’s features, can be extracted using GLCM

[101]. The Haralick’s features used in the implementation are as follows:

1. Contrast measures local spatial frequency. If the GLCM has large off-diagonal

elements, the local window has high contrast.

Contrast =
Ng

∑
i

Ng

∑
j
(i− j)2 pd,θ (i, j) (5.4)

2. Correlation is a measure of gray level linear dependence between the pixels at the

specified positions relative to each other. It shows how the reference pixel is related
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Figure 5.7: A representation of sliding window in an image with 3× 3 window size
and at different angles. The center pixel coloured with red corresponds to
texture measurement calculated within the window.

to its neighbour.

Correlation =
Ng

∑
i

Ng

∑
j

(i−µx)( j−µy)pd,θ (i, j)
σxσy

(5.5)

where µx and σx are the mean and the standard deviation of the row sums of the

co-ocurrence matrix; µy and σy are the mean and the standard deviation of the

column sums of the co-ocurrence matrix.

3. Dissimilarity is similar to contrast. The high contrast of the local window indicates

high dissimilarity value.

Dissimilarity =
Ng

∑
i

Ng

∑
j
| i− j | pd,θ (i, j) (5.6)

4. Entropy measures disorder in the image. The higher entropy corresponds to a

greater contrast from one pixel to the its neighbours.

Entropy =
Ng

∑
i

Ng

∑
j

(
pd,θ (i, j)

logpd,θ (i, j)

)
(5.7)

5. Homogeneity or inverse difference moment measures the similarity of the pixels,

and results in a larger value if the elements of the GLCM are concentrated on the

main diagonal.

Homogeneity =
Ng

∑
i

Ng

∑
j

(
pd,θ (i, j)

1+ | i− j |

)
(5.8)
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6. Mean defines the average level of intensity of the image.

Mean =
Ng

∑
i

Ng

∑
j

ipd,θ (i, j) (5.9)

7. Angular Second Moment (ASM) also known as uniformity or energy. It measures

local uniformity. ASM is higher when pixels are very similar.

Angular second moment =
Ng

∑
i=1

Ng

∑
j=1

pd,θ (i, j)2 (5.10)

8. Variance puts relatively higher weights on the elements that differ from the average

value of Pi,θ (i, j).

Variance =
Ng

∑
i

Ng

∑
j

pd,θ (i, j)(i−µx)
2 (5.11)

5.2.3 Nonparametric Weighted Feature Extraction

Nonparametric Weighted Feature Extraction (NWFE) is based on discriminant analysis

by focusing on samples near the eventual decision boundary [102]. The main idea

of the NWFE is as follows: 1) assigning different weights on every sample to

compute the local means and 2) defining nonparametric between-class and within-class

scatter matrices. Many experiments showed the effectiveness of the approach for the

classification of remote sensing data [103–105].

The NWFE defines new non-parametric between-class and within-class scatter

matrices to get more features by assigning different weights on every sample of training

set. The nonparametric between-class scatter matrix and within-scatter matrix are

defined as

Sb
NW =

L

∑
i=1

Pi

L

∑
j=1
j 6=i

ni

∑
k=1

λ
(i, j)
k
ni

(
x(i)k −M j(x

(i)
k )
)(

x(i)k −M j(x
(i)
k )
)T

(5.12)

Sw
NW =

L

∑
i=1

Pi

ni

∑
k=1

λ
(i, j)
k
ni

(
x(i)k −M j(x

(i)
k )
)(

x(i)k −M j(x
(i)
k )
)T

(5.13)

where x(i)k refers to kth sample from class i, ni is training sample size of class i, and Pi

denotes the prior probability of class i. The scatter matrix weight λ
(i, j)
k is defined as:

λ
(i, j)
k =

dist
(

x(i)k ,M j(x
(i)
k )
)−1

∑
ni
i=1 dist

(
x(i)l ,M j(x

(i)
l

)−1 (5.14)
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where dist(a,b) refers to Euclidean distance from a and b, and M j(x
(i)
k ) is the local

mean of x(i)k in the class j. It is defined as:

M j(x
(i)
k ) =

n j

∑
l=1

w(i, j)
kl x( j)

l (5.15)

where w(i, j)
kl is as follows:

w(i, j)
kl =

dist
(

x(i)k ,x( j)
l

)−1

∑
ni
l=1 dist

(
x(i)k ,x( j)

l

)−1 (5.16)

Figure 5.8 is the visualization of the parameters used in NWFE to compute

between-class and within-class scatter matrices. It shows the importance of using

boundary points and local means.
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Figure 5.8: The relationship between sample points and their local means in the
feature space. The + symbols are neighbours of x(i)k , and ⊗ represents
local means.

The goal of NWFE is to find a linear transformation A ∈ Rd×p, p ≤ d, which

maximizes the between-class scatter and minimizes the within-class scatter. The

columns of A are the optimal features obtained by optimizing the following criterion:

A = argmax
A

tr
(
(ATSw

NWA)−1ASb
NWA

)
(5.17)
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This maximization is equivalent to finding eigen-pairs (λi,vi)
n
i=1, λ1 ≥ λ2, · · · ,≥ λd

for the generalized eigenvalue problem:

Sb
NWv = λSw

NWv (5.18)

To reduce the effect of cross-products of within-class distances and prevent the

singularity, some regularization techniques can be applied to within-class scatter

matrix. In NWFE, within class scatter matrix is regularized by

Sw
NW = 0.5Sw

NW +0.5diag(Sw
NW) (5.19)

where diag(Sw
NW) means diagonal members of Sw

NW.

Solving Equation 5.18, the eigenvalues and eigenvectors are obtained as follows:

Q = [v1, · · · ,vn], Λ =




λ1 · · · 0
... . . . ...
0 · · · λn


 (5.20)

Where Q and Λ represent the orthogonal matrix and the eigenvalue matrix,

respectively.

The data in the transformed feature space is obtained via the following equation:

x̄ = Λ
1/2Qx (5.21)

where x̄ and x correspond to the data in the transformed feature space and the data

in the original feature space, respectively. The equation 5.21 is also equivalent to the

following equation:

dxy = (x−y)T
Σ(x−y) (5.22)

where dxy is the distance by weighted Σ between x and y data, and Σ = QTΛQ.

Equation 5.22 can also be written by substituting Σ as follows:

(x−y)T
Σ(x−y) = (x−y)T(QT

ΛQ)(x−y)

= (x−y)T(Λ1/2Q)T(Λ1/2Q)(x−y)

=
(
(Λ1/2Q)(x−y)

)T(
(Λ1/2Q)(x−y)

)

=
(

Λ
1/2Qx−Λ

1/2Qy
)T(

Λ
1/2Qx−Λ

1/2Qy
)

(5.23)
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Thus, by using Equation 5.23, dxy can be rewritten as below:

dxy = (x̄− ȳ)T(x̄− ȳ) (5.24)

where x̄ and ȳ refer to the data in the transformed feature space as in Equation 5.25.

x̄ = Λ
1/2Qx, ȳ = Λ

1/2Qy (5.25)

5.2.4 Earthquake damage assessment with hybrid pixel- and texture-based

In hybrid pixel- and texture-based classification, 8 texture features including

homogeneity, contrast, dissimilarity, mean, standard deviation, entropy, angular second

moment and correlation were obtained with the same pixel distance (1 pixel) and the

horizontal directional invariance by using the GLCM method from the panchromatic

image (Figure 5.9).

Figure 5.9: The panchromatic image, used for texture extraction, with 0.6 m. spatial
resolution and one spectral channel.

The textural features were added to spectral features during the classification. Figure

5.10) shows the textural features with their ID constituted with respect to their row of

using during the classification.

In order to calculate the texture features for each pixel in the panchromatic image, a

sliding window is usually used to define the neighbourhood of a pixel, and the texture

measurement calculated from the window is assigned to the center pixel. Since choice

67



Red
Green

Blue
Near Infrared

Correlation
Dissimilarity

Entropy
Homogenity

Mean
Angular second moment

Variance

M
ul

tis
pe

ct
ra

l b
an

ds

H
ar

al
ic

k'
s f

ea
tu

re
s

1 2 3 4 5 6 7 8 9 10 11 12
Feature ID

Contrast
spectral 
features

Spatial (textural) 
features

Figure 5.10: The numeric representation of spatial and spectral features used in the
hybrid pixel- and texture-based classification. The feature id shows the
cumulative features to be used in the classification, i.e., the feature ID 4
and 12 correspond to first four spectral bands and all the features (totally
12 features), respectively.

of the window size affects the classification accuracy, windows with different sizes

were used to find the best window size in terms of classification accuracy. As the

window size can not be bigger than the size of the object to be identified, only the

windows with 3× 3, 7× 7 and 9× 9 sizes were used in the classification of the test

data. For each window size, 8 spatial feature images were individually obtained based

on GLCM.

In order to use the spatial features in the classification of the test data, the training data

were first updated by adding the spatial feature to the current training data used in the

pixel-based classification. The training data for the spatial features were extracted from

the associated spatial feature image by using the image coordinates of training data

used for the pixel-based classification. The test data was also updated with the same

process. The training and test data were next transformed by using the transformation

matrix obtained by the NWFE method, and transformed training and test data were

used in the classification.

Figure 5.11 shows the behaviour of overall classification accuracy of the test data with

respect to spatial features added during the classification for each window size.
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Figure 5.11: Classification accuracies used for number of features used with respect
to window size used in GLCM.

According to Figure 5.11, as the number of features used in the classification grows,

the overall accuracy for each feature ID obtained by 9×9 window size uniformly better

compared to other window sizes. Thus, 9× 9 window size was found to be optimum

window size in terms of classification accuracy. The classification accuracy for each

class obtained with the 9×9 window size is tabulated in Table 5.5.

Table 5.5: The classification accuracies obtained with 9×9 window size.

Feature
Classification Accuracy [%]

ID Number Vegetation Shadow Building Open
Ground Damage OA

5 99.4 98.9 78.5 82.9 82.6 86.5
6 99.4 98.0 81.8 78.3 80.1 85.7
7 98.7 98.4 85.3 77.7 87.4 88.9
8 97.6 96.2 91.7 76.0 90.8 90.9
9 98.4 98.7 93.6 76.9 90.1 91.7
10 96.9 99.3 93.1 81.9 87.1 91.0
11 97.7 99.1 94.7 81.5 88.2 91.8
12 95.8 99.8 94.8 79.6 90.4 92.1

According to classification performances in Table 5.5, it is worth to state that after the

feature with ID 9, there is almost no contribution to the classification performance

in terms of overall classification accuracy. In other words, the textures which are

the mean, the angular moment and the variance do not have much influence on the

classification performance.
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The spatial feature images for the area of interest based on Haralick’s features obtained

with 9×9 window size are shown in Figure 5.12.

For classification, features of training and test data were transformed using NWFE.

In order to show the performance of the transformed data in terms of classification

accuracy, the original features and the features transformed by the NWFE were used

in the classification with the SVSA, and their overall classification accuracies are

compared in Figure 5.13.

Figure 5.13 shows that the features transformed by the NWFE has better classification

accuracy than the classification of original features by the SVSA. Therefore, all the

data used in the classification were transformed by the NWFE.

For the hybrid pixel- and texture-based classification, four spectral features and eight

spatial features were combined to be used during classification. The confusion

matrix of the SVSA method for both pixel-based and hybrid pixel- and texture-based

classification, including user’s accuracy, producer’s accuracy and kappa value are

tabulated in Table 5.6.

According to Table 5.6, in comparison to pixel-based classification, the confusion

matrix of hybrid pixel- and texture-based classification is diagonally more dominant

for all the classes, which means that the classification accuracy for all the classes

was increased with the hybrid pixel- and texture-based classification. The overall

classification accuracy was increased from 82.4% to 92.4%, and the kappa value was

also increased from 76.9% to 89.7%. The user’s and producer’s accuracy were also

increased with the hybrid pixel- and texture-based classification as shown in Figure

5.14.

According to Figure 5.14, especially for the most confused classes, which are

the building, open ground and damage, user’s accuracy and producer’s accuracy

dramatically increased with the hybrid pixel- and texture-based classification. In other

words, by using the textural features, the class separability of the most confused classes

were increased.

Regarding the high dimensionality resulting in using both the spectral and the spatial

information together during classification, the computational load of the SVSA
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Figure 5.13: The classification accuracy of test data obtained by the SVSA with
transformed and not transformed features.

Table 5.6: Confusion matrices for both pixel-based and hybrid pixel- and
texture-based classification obtained by the SVSA.

SVSA Pixel-based classification

# Samples
User’s

Classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 614 10 0 0 11 635 96.7
Shadow 2 437 0 1 38 478 91.4

Building 0 0 690 37 97 824 83.7
Open Ground 0 0 25 282 110 417 67.6

Damage 0 2 151 160 982 1295 75.8
616 449 866 480 1238 # Samples
99.7 97.3 79.7 58.8 79.3 Producer’s accuracy

76.9 Kappa value
82.4 Overall accuracy

SVSA Hybrid pixel- and texture-based classification

# Samples
User’s

classification Vegetation Shadow Building Open
ground Damage accuracy

Vegetation 590 1 0 0 17 608 95.8
Shadow 26 448 1 3 0 478 99.8

Building 0 0 821 72 68 961 94.8
Open Ground 0 0 17 382 34 433 79.6

Damage 0 0 27 23 1119 1169 90.4
616 449 866 480 1238 # Samples
97.0 99.8 85.4 88.2 95.7 Producer’s accuracy

89.7 Kappa value
92.1 Overall accuracy

algorithm is also of interest. Since separability between the classes increases due

to using more features in the classification, the reference vectors representing the

feature space accordingly decrease. Therefore, in addition to improvement on the

classification accuracy with the hybrid pixel- and texture-based classification, the
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Figure 5.14: User’s and producer’s accuracy for each class in comparison to to pixel-
and hybrid pixel- and texture-based classification.

computational time required for classification also decreases with use of less reference

vectors.

Figure 5.15 shows the decrease of reference vectors as the number of features used in

the classification increase, and thus also proves increase on separability of the classes.

After the feature with ID 9, the number of the reference vectors slightly decrease. It

means that after the feature ID 9, no more textural features may require to be used in

the classification in terms of increasing separability. This result is also consistent with

the overall classification accuracies obtained after the feature ID 9 in Table 5.5.

The thematic map with hybrid pixel- and texture-based classification produced by the

SVSA method is shown in Figure 5.16.
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Figure 5.15: The number of reference vectors obtained by the SVSA with respect to
number of features used during the learning.

The thematic map obtained by the SVSA with the pixel-based classification looks more

noisy, salt-and-pepper classification noise, compared to the thematic map obtained

with the hybrid pixel- and texture-based classification. The result of the thematic map

obtained by the SVSA with the hybrid pixel- and texture-based classification was also

visually compared to the thematic map obtained by European Space Agency (Figure

5.17).

According to Figure 5.17(c), it seems visually from the post-earthquake image that

there were almost no damage on the bottom left corner of the image where the buildings

were located. However, according to Figure 5.17(d), the bottom left corner of the

image was moderately destroyed compared to rest of the places. Therefore, this result

is compatible with the thematic map obtained by the SVSA.
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Figure 5.16: (a)Pre-earthquake pansharpened image. (b)Post-earthquake
pansharpened image. (c)The thematic map obtained by the SVSA
with the pixel-based classification. (d)The thematic map obtained by the
SVSA with the hybrid pixel- and texture-based classification.
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Figure 5.17: (a)Pre-earthquake image. (b)The thematic map obtained by the SVSA
with hybrid pixel- and texture-based classification. (c)Post-earthquake
image. (d)The damage map obtained by European Space Agency.
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6. CONCLUSIONS AND DISCUSSIONS

In this thesis, a novel method called Support Vector Selection and Adaptation

(SVSA) was proposed in order to overcome the drawbacks of NSVM on choosing

a proper kernel type and associated parameters. The proposed method is reliable

for classification of both linearly separable and nonlinearly separable data without

need for a kernel. The SVSA method consists of selection of support vectors which

most contribute to classification accuracy and adaptation of them with respect to

training data. Their adaptation generates the reference vectors which are next used

for classification of test data by the 1NN method with adaptive distance metric.

The proposed algorithm was tested with synthetic data and remote sensing images

which are multisource, multispectral and hyperspectral, in comparison to linear,

nonlinear SVM and KNN algorithms. The results showed that the SVSA method gave

better classification results as compared to LSVM with nonlinearly separable data. The

SVSA performance was also competitive with and often better than NSVM with RBF

kernel function for both synthetic data and remote sensing images without requiring

any kernel function.

For earthquake damage assessment, a pixel-based classification was conducted by the

SVSA, and the proposed method gave the highest overall classification accuracy in

comparison to other methods. It is well known that the performance of a classifier

considerably depends on the textural features of an images. For this purpose, more

textural features were obtained from the panchromatic image using the GLCM to be

used in the classification together with the spectral information. The results obtained

by the SVSA showed that the classification performance was improved by including

textural features extracted from the image since class separability was increased.

For classification of earthquake damage, it is worth to imply that the quality

and accurateness of the training data is very important in terms of classification

performance since the SVSA algorithm is a supervised classification algorithm. As
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the damage patterns in the city of Iran, Bam are very complex, choice of training data

was difficult, because any ground truth data was not available. It is well known that,

having ground truth data makes choice of training data much easier and accurate.

In terms of computational complexities, the SVSA is faster than NSVM during training

but slightly slower than NSVM during testing if kernel function is fixed. In the future,

the SVSA method during testing can be speeded up by using parallel programming.

In comparison to LSVM, the SVSA is slightly slower than LSVM during training

because of the selection and the adaptation steps of the SVSA. In comparison to

KNN, the SVSA method needs considerably less computation time and less memory

requirements especially when having less number of reference vectors.

The SVSA method can be used in classification of any kind of data. All the

experiments carried out throughout the thesis infer that the SVSA is a competitive

classification method compared to NSVM without need for a kernel function.
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A: K-Nearest Neighbour

The K-Nearest Neighbour classification of a sample is made on the basis of the

classifications of the selected number of K neighbours [106].

Given a point x′ of the d-dimensional input feature space, an ordering function f ′x :

R
d →R is defined. The typical ordering function is based on the Euclidean metrics:

f x′(x) =‖ x− x ‖. By means of an ordering function, it is possible to order the entire

set of training samples X with respect to x′. This corresponds to define a function

rx′ : {1, . . . ,N} → {1, . . . ,N} that reorders the indexes of the N training points. We

define this function recursively, as follows:





rx′(1) = argmini fx′(xi) with i ∈ {1, . . . ,N},
rx′( j) = argmini fx′(xi) with i ∈ {1, . . . ,N} and

i 6= rx′(1), . . . , i 6= rx′( j−1) for j = 2, . . . ,N.

In this way, xrx′ ( j) is the point of the set X in the jth position in terms of distance from

x′, namely the jth nearest neighbour, and fx′(xrx′ ( j)) = ‖xrx′ ( j)− x′‖ is its distance

from x′. In other words, the following holds: j < k⇒ fx′(xrx′ ( j))≤ fx′(xrx′ (k)). Given

the above definition, the decision rule of the KNN classifier for binary classification

problems is defined by the following majority rule:

KNN(x) = sign

(
k

∑
i=1

yrx(i)

)
(A.1)

where yrx(i) ∈ {−1,+1} is the class label of the ith nearest training sample.
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B: Learning Vector Quantization

The aim of Learning Vector Quantization (LVQ) is to define optimal class regions in

the input data space. In general, from a given training set X of n prototypes, several

codebook vectors mi are initially selected. Then these codebook vectors are adaptively

modified in such a way that the nearest neighbourhood rule minimizes the average

expected misclassification probability.

The learning process consists of iteratively moving some of the codebook vectors mi

in the neighbourhood of a prototype x towards it and some away from it according to

the result of 1NN rule. Differences among the various LVQ algorithms refer to the

modifications to the codebook vectors.

Let x ∈ X be an input sample, let mc be the nearest codebook vector to x, and let mc(t)

represent the codebook vector mc at step t. The learning process in the basic LVQ1

algorithm consists of updating the position of mc. If the class label of the codebook

vector mc matches the class label of the training prototype x, then the codebook vector

is moved towards x. Otherwise, it is moved away from the given input prototype.

The modifications to the codebook vector mc are performed according to the following

general rule:

mc[t +1] =
{

mc[t]+η [t] (x−mc[t]) if class(x) =class(mc),
mc[t]−η [t] (x−mc[t]) if class(x) 6=class(mc).

(B.1)

where 0 < η [t]< 1 denotes the corresponding learning rate, and it may be constant or

decrease monotonically with time.
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C: Overall accuracy

The confusion matrix’s1 cell values on the diagonal represent a pixel count of correctly

classified pixels. The sum of the diagonal cells in the matrix represents the total number

of correctly classified pixels. The proportion of the total number of correctly classified

pixels to the total number of pixels in the matrix gives the overall accuracy for the

classification.

Overall accuracy =
(T P+T N)

(P+N)
(C.1)

There are also several measures of classification accuracy which can be derived from

the confusion matrix; namely user’s and producer’s accuracy.

1See Appendix E for detailed information.
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D: Kappa statistic

The accuracy measurements, the overall accuracy, producer’s accuracy, and user’s

accuracy, are based on either the principal diagonal, columns, or rows of the confusion

matrix only, which does not use the information from the whole confusion matrix1.

Kappa coefficient found by Cohen (1960) uses all of the information in the confusion

matrix in order for the chance allocation of labels to be taken into consideration [107].

Let’s suppose A is a confusion matrix with c× c dimension, where c is the number of

classes. The Kappa coefficient is defined by

K =
POA−PCA

1−PCA
(D.1)

POA =
∑

c
i=1 aii

N
(D.2)

PCA =
∑

c
i=1(ai+a+i)

N2 (D.3)

where POA and PCA correspond to overall accuracy and chance agreement, respectively.

aii is the entry of the confusion matrix, ai+ and a+i are the marginal totals of row i and

column j, respectively, and N is the total number of samples.

The Kappa coefficient takes not only the principal diagonal entries but also the

off-diagonal entries into consideration. The higher the value of Kappa, the better the

classification performance. If all classes are correctly identified, Kappa takes the value

1. As the values of the off-diagonal entries increase, the value of Kappa decreases.

Generally, Kappa coefficient greater than 0.80 (80%) represent strong agreement

between the remotely sensed classification and the reference data while the values

between 0.4 and 0.8 represent moderate agreement. The coefficient below 0.4 is

indicative of poor agreement.

1See Appendix E for detailed information.
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E: Confusion matrix

Accuracy is determined empirically, by selecting a sample (desirably an independent

random sample) of pixels from the thematic map and checking their labels against

classes determined from reference data [108]. Often reference data is referred to as

ground truth, and the pixels selected for accuracy checking are called test pixels. From

these checks the percentage of pixels from each class in the image labelled correctly

or labelled not correctly by the classifier can be estimated. These results are then

expressed in tabular form, often referred to as a confusion matrix, also known as a

error matrix or contingency table, and is illustrated in Figure E.1.
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Figure E.1: A confusion matrix for two classes. p, n are the type of classes class 1 and
class 2, respectively. p′ and n′ are the predicted classes by the classifier.

A confusion matrix contains the classifier performance about reference and predicted

classifications. The confusion matrix is a square matrix by c×c, where c is the number

of classes. The values listed in the matrix represent the number of ground truth pixels,

in each case, correctly and incorrectly labelled by the classifier. Information in the

horizontal rows generally corresponds to the thematic classes resulting from image
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classification. The vertical columns show the thematic information of the reference

data.

The basic attributes of a confusion matrix are true positive, true negative, false positive,

and false negative, respectively. If the outcome from a prediction is p and the reference

label is also p, then it is called a true positive (TP); however if the reference label is n

then it is to be a false positive (FP). Conversely, a true negative (TN) occurs when both

the prediction outcome and the reference label are n, and false negative (FN) is when

the prediction outcome is n while the reference label is p.
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F: K-Fold Cross Validation

In K-fold cross-validation, the dataset X is divided randomly into K equal sized parts,

Xi, i = 1, . . . ,K. In order to generate each pair, one of the K parts is kept out as the

validation set, and the remaining K− 1 parts are combined to form the training set.

Doing this K times, each time leaving out another one of the K parts out, K pairs are

obtained as follows:

V1 = X1 T1 = X2∪X3∪ . . .∪XK

V2 = X2 T2 = X1∪X3∪ . . .∪XK

...

VK = XK TK = X1∪X2∪ . . .∪XK−1

The cross-validation process is repeated K times, the folds, with each of the K

sub-samples used exactly once as the validation data. The K results from the folds

then can be averaged (or otherwise combined) to produce a single estimation. The

advantage of this method over repeated random sub-sampling is that all observations

are used for both training and validation, and each observation is used for validation

exactly once.

As K increases, the percentage of training samples increases and a more robust

estimator can be obtained, but the validation sets become smaller. 10-fold

cross-validation is commonly used.
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G: User’s and Producer’s accuracy

The user’s accuracy is the proportion of correctly classified pixels (TP and TN) to the

total number of pixels in that row (P′ and N′) for each row in the confusion matrix1

[109].

User’s accuracy =
T P
P′

for the first row (G.1)

=
T N
N′

for the second row (G.2)

The user’s accuracy provides a measure for the thematic map user of the probability

that the pixels on the classified map is being correctly assigned during the classification

process. In other words, the user accuracy denotes the probability that a classified

pixel actually represents that information class on the ground. It can also be called a

measure of a commission error which is a percentage of the pixels incorrectly assigned

to a particular class that actually belong to other classes.

The producer’s accuracy is calculated for each column by comparing the proportion of

correctly classified pixels in that column with the total number of pixels in the column.

Producer’s accuracy =
T P
P

for the first column (G.3)

=
T N
N

for the second column (G.4)

It shows what percentage of a particular ground class is correctly classified. The

producer’s accuracy provides a measure of how well the classification is achieved when

producing the thematic map. In other words, it tells us the proportion of pixels in the

test dataset that are correctly recognized by the classifier. Producer’s accuracy is also a

measure of omission error which is the percentage of pixels incorrectly excluded from

a particular class that actually belong in.

1See Appendix E for detailed information.
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H: Bhattacharya distance

Bhattacharya distance is widely used as a measure of statistical class separability

because of its analytical form and its relation to the Bayes error. It provides a

bound of classification accuracy taking into account first-and second-order statistics.

Bhattacharyya distance is the sum of two components, one based primarily on mean

differences and the other based on covariance differences.

For two normally distributed classes, the Bhattacharya distance is computed by the

equation

B =
1
8
(µ2−µ1)

T
[

Σ1 +Σ2

2

]−1

(µ2−µ1)+
1
2

ln
| (Σ1 +Σ2)/2 |
| Σ1 |1/2| Σ2 |1/2 (H.1)

where µi and Σi are the mean vector and covariance matrix of class i, respectively.

The bigger Bhattacharya Distance of the selected bands combination indicates the

better separability of the two classes.

For multiclasses, a commonly used method is to calculate the average Bhattacharya

distance between them. That is, we calculate the Bhattacharya distance of all the class

pairs and get the average. It is defined as:

B̄ =
N

∑
i=1

N

∑
j=1

p(wi)p(w j)Bi j (H.2)

where p(wi) is the weight for class i, and Bi j is the Bhattacharya distance for class i

and class j.
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