




ISTANBUL TECHNICAL UNIVERSITY ⋆ INFORMATICS INSTITUTE

SENSITIVITY ANALYSIS OF EXPECTED SHORTFALL
BY MEANS OF A SECOND-ORDER APPROXIMATION

M.Sc. THESIS

Güven Gül POLAT

Computational Science and Engineering

Computational Science and Engineering

JUNE 2012





ISTANBUL TECHNICAL UNIVERSITY ⋆ INFORMATICS INSTITUTE

SENSITIVITY ANALYSIS OF EXPECTED SHORTFALL
BY MEANS OF A SECOND-ORDER APPROXIMATION

M.Sc. THESIS

Güven Gül POLAT
(702081006)

Computational Science and Engineering

Computational Science and Engineering

Thesis Advisor: Prof. Dr. Burç ÜLENG İN
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SENSITIVITY ANALYSIS OF EXPECTED SHORTFALL
BY MEANS OF A SECOND-ORDER APPROXIMATION

SUMMARY

Financial institutions require risk quantification in order to set a capital reserve to
cover adverse market movements. Expected Shortfall (ES) isa coherent risk measure
that serves the purpose of inferring market risk. Since it isdescribed as the average
loss beyond a specified threshold, ES represents a protective attitude. Identifying
the overall ES for a position with multiple risk factors is achieved by a weighted
aggregation of the rate of returns on the underlying risk factors. On the other hand,
this relation does not exactly hold in terms of geometric (logarithmic) return. Because
geometric return is the one that is more adequate to work within the context of market
relations and risk measurement than arithmetic return, a second-order approximation
can be considered over weighted combination to increase accuracy in the estimation
of ES. Particularly, handling each risk factor separately attract attention by the
financial crisis of 2007-2009 to better understand factor contribution to the overall
risk. Sensitivity analysis of the approximations mentioned is therefore performed via
first derivatives of ES with respect to position allocation.

Risk refers to the variation of the future value of a position because of market
fluctuations. A typical implementation of the Monte Carlo method involves simulating
repeatedly from possible future events by enabling the use of the best available models
of financial markets. In this study, the estimation of ES and its sensitivity is accordingly
based on Monte Carlo simulation utilizing parallel computing techniques due to its
computational cost with a relatively slow convergence rate. Totally, in addition to
the increase in the accuracy of the estimation by a higher order approximation, it
is demonstrated that the acceleration of the simulation by aparallel execution on a
distributed memory system.
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İK İNCİ DERECE YAKLAŞTIRIM YOLUYLA
BEKLENEN KAYIP HASSASLIK ANAL İZ İ

ÖZET

Risk terimi, ekonomik, politik, sosyal ve teknolojik konularda yaygın bir kullanıma
sahiptir. Genel olarak risk, özel bir hareketle ilişkili olan kayıp veya hasarın
gerçekleşme ihtimalidir. Finansal olarak ise ters piyasahareketlerinden etkilenmemek
için ayrılan sermaye rezervini ifade eder. Finansal piyasalarda beklenen kayıp arttıkça
beklenen kazanç da artmaktadır. Bu durum finansal kurumlarınaktif bir şekilde risk
almasına yol açmaktadır. Risk yönetiminin buradaki rolü, ters piyasa hareketleri
yüzünden oluşabilecek kayıp miktarını belirlemek amacıyla risk tayini yapmaktır.
Risk yönetimi sistemleri, birden fazla risk faktöründen oluşan pozisyon için tüm riski
tayin eden bütünsel çözümler içerir. Ayrıca, risk faktörlerini ve aralarındaki etkileşimi
anlamaya çalışır.

Piyasa riski, finansal varlıkların değerindeki ters hareketler nedeniyle ortaya çıkan bir
risk türüdür. Riske Maruz Dĕger (RMD), kavramsal basitliği, hesaplama kolaylığı ve
hazır uygulanabilirlĭgi sayesinde standartlaşan bir risk ölçüm tekniğidir. RMD, belirli
bir güven düzeyinde elde tutma süresi boyunca olası en büyükkayıp olarak tanımlanır.
RMD’den başka piyasa riski tayinine hizmet eden Beklenen Kayıp (BK) ise tutarlı
bir risk ölçüm teknĭgidir. BK, belirli bir eşik dĕgerin ötesindeki ortalama kayıp olarak
tanımlandı̆gından koruyucu bir tutum sergilemektedir. Bu eşik değer çŏgunlukla RMD
seviyesi olarak belirlenir. BK, RMD’nin barındırdığı yetersizlikleri ortadan kaldıran
özelliklere sahiptir:
• RMD ötesindeki kayıp hakkında bilgi vermesi
• birikimli pozisyon riskinin risk faktörlerinin birikimliriskinden küçük olması
• daha genel stokastik şartlarda geçerliliğin săglanması.

Varlıkların BK tayininde kullanılan getiri oranı iki şekilde hesaplanabilir: aritmetik ve
geometrik (logaritmik) getiri. Birden fazla risk faktörü içeren bir pozisyon için getiri
oranı, ilgili risk faktörlerinin getiri oranlarının ăgırlıklı ortalaması alınarak elde edilir.
Bu ilişki aritmetik getiri göz önüne alındığında tam olarak sağlanırken geometrik getiri
söz konusu oldŭgunda sadece yaklaştırım olarak kalmaktadır. Öte yandan geometrik
getiri, piyasa ilişkileri ve risk ölçümü băglamında çalışmak için aritmetik getiriden
daha elverişlidir:
• Varlık fiyatlarının eksi dĕger almasını engeller.
• Çok dönem getiri hesabı için tek dönem getirilerinin toplanması örnĕgindeki gibi

hesaplama kolaylığı săglar.
Bu durumda BK tahmininde doğruluğu arttırmak amacıyla ağırlıklı birleşim yerine
stratejik varlık dăgılımı için türetilen ikinci derece yaklaştırım kullanılabilir.
Önerilen ikinci derece yaklaştırımda geometrik getirilerin ağırlıklı birleşimi terimine,
faktörler arasındaki kovaryansa ve faktörlerin ağırlığına dayalı terimler eklenmiştir.
Matematiksel gösterilimin yanında yaklaştırımla ilgilifinansal notlar:

xxi



• Varlık fiyatlarının geometrik Brownian hareketini izlediği sürekli zamanda tam
olarak tutmaktadır.

• Kısa zaman aralıkları için daha kesin sonuçlar vermektedir.
• Yüksek derecede olduğundan teorik olarak bakışımsızlık ve sivrilik etkilerini

yansıtmaktadır.
• Ağırlıklı birleşim ile aradaki fark, yüksek volatilite dönemlerinde büyüyebilmekte-

dir.

2007-2009 finansal kriziyle birlikte her risk faktörünü ayrıca ele almak, pozisyonun
bütün riskine neden olan katkıyı daha iyi anlamak adına dikkat çekmeye başlamıştır.
Bu durumda da bahsedilen yaklaştırımların hassaslık analizi, faktör paylarına göre
BK birinci türevleri alınarak yapılır. Önerilen ikinci derece yaklaştırımın hassaslık
analizinde aşăgıdaki ö̆geler yer almaktadır:
• eşik dĕgere koşullu băglılık
• faktör ăgırlığı
• faktörler arası kovaryans, dolayısıyla korelasyon.

Risk, piyasa dalgalanmaları nedeniyle pozisyonun gelecek değerinde meydana gelen
dĕgişimlerle ilgilidir. Monte Carlo yönteminin tipik bir uygulaması, finansal
piyasalarda erişilebilir en iyi modellerin kullanımını mümkün kılarak olası gelecek
olguların defalarca benzetimini içerir. Buna bağlı olarak çalışmada BK ve
hassaslı̆gının tahmini, Monte Carlo benzetimine dayanmaktadır. Çalı¸smada, varlık
fiyatlarının izleyecĕgi model olarak logaritmik fiyat farklarına dayanan geometrik
Brownian hareketi seçilidir. Dolayısıyla olasılık dağılımı normal dăgılım şeklinde
özelleşir. Her bir risk faktörü için risk faktörleri arasındaki korelasyonu dikkate alan
rassal sayı üretiminin ardından seçilen fiyat modeli kullanılarak getiri hesabı yapılır.
Son aşamada, ağırlıklı birleşime ve önerilen ikinci derece yaklaştırıma göre iki farklı
BK ölçümü yapılabilir.

İMKB100 endeksi, İstanbul Menkul Kıymetler Borsası (İMKB) hisse senedi
piyasasında temel endeks olarak kullanılır. IMKB100 endeksi içerisinden 80 adet fir-
maya ait hisse senetleri kullanılarak yaklaştırımların etkisi örneklenmektedir. Finansal
kriz nedeniyle ortaya çıkan sapmaları vurgulamak amacıyla01.07.2008-02.07.2009
tarih aralı̆gı ele alınmaktadır. Öncelikle, ilgili dönem içerisinde ağırlıklı birleşim ve
ikinci derece yaklaştırım kullanılarak elde edilen iki farklı günlük geometrik getiri
sonucu, pozisyonun gerçekleşmiş günlük geometrik getirisiyle karşılaştırılmaktadır.
Burada, ikinci derece yaklaştırımın pozisyonun gerçekle¸smiş günlük geometrik
getirisine daha çok yakınsadığı gösterilmektedir. Sonrasında, ilgili dönemin son günü
itibariyle günlük BK ölçümü ve hassaslık analizi yapılarak risk hesabı üzerindeki
etkiler incelenmektedir. Sonuçta ikinci derece yaklaştırım, ăgırlıklı birleşimden daha
düşük BK dĕgerleri üretmektedir. Risk faktörlerinin hassaslıkları daikinci derece
yaklaştırımda çŏgunlukla daha düşük değerler almaktadır.

Geometrik getiri ve risk hesaplamaları C programlama dili kullanılarak yapılmaktadır.
Monte Carlo yönteminin nispeten yavaş bir yakınsaklık derecesine sahip hesaplama
yükü nedeniyle dăgınık bellekli mimari sisteminde paralel hesaplama tekniklerinden
faydalanılmaktadır. Çeşitli performans kriterleri aracılığıyla risk faktörü sayısı kadar
işlemci kullanılarak hızlanma sağlandı̆gı gösterilmektedir.
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Toplamda, daha yüksek derece bir yaklaştırım yoluyla tahmin doğrulunun arttırıl-
masına ek olarak dağınık bellekli mimari sisteminde bir paralel hesaplama ile
benzetimdeki hızlanma vurgulanmaktadır.

xxiii



xxiv



1. INTRODUCTION

The term risk is widely utilized within the literature on economic, political, social

and technological subjects (Cheng et al, 2004). In a general sense, risk is expressed

as a chance of injury or loss related to a specified action (Elliott and Miao, 2009).

Financially, risk is a capital reserve to cover adverse market movements. In other

words, risk means random profit or loss of a position. It can bepositive (profit) or

negative (loss) (Cheng et al, 2004). The major sources of lossin financial institutions

are typically identified as market risk, credit risk and operational risk. Market risk

refers to the losses because of adverse movements in the value of financial assets.

Credit risk results from being unwilling or unable of the counterparties to fulfill

contractual obligations which are due. Operational risk isthat of incurring losses due

to failed or inadequate internal processes, systems and people or to external events.

Since these categories often interact with each other, any classification is arbitrary to

some extent (Jorion, 2007).

In financial markets, there is generally no so-called "free lunch" which is another

way of saying no profit without risk. This leads financial institutions to actively take

on risks. The role of financial risk management is thereby to measure and manage

these risks through various methods such as diversification, hedging, or repackaging

and transferring back to markets (Eberlein et al, 2007). Particularly, regulators

and supervisory authorities require each financial institution to determine the capital

reserve amount via risk management methods in order to prevent bankruptcy if large

losses occur (Eberlein et al, 2007; Lan, 2010).

Risk management frameworks and systems include integrated solutions whose goal is

to assess the overall risk for a position of multiple risk factors (Eberlein et al, 2007).

The philosophy of a risk management framework is to try to understand the individiual

risk factors and the interaction among each other, and to quantify the overall risk

(Constantinescu, 2011). The quantification is generally performed by modeling the
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uncertain payoff as a random variable, and enables a certainfunctional is applied to.

Such functionals are defined as risk measures (Föllmer and Schied, 2008). An adequate

risk measure must be responsive in uncertain market conditions, and be reflective of the

latest available information in a non-independent and identically distributed framework

(Scaillet, 2004).

Besides quantification, the decomposition of risk is presented as a useful risk

management tool in practice, e.g. selecting risk factors that achieve the best risk-return

trade-off, allocating capital to individual risk factors,or transfer pricing (Yamai and

Yoshiba, 2002a; Acharya et al, 2009). Furthermore, the Global Financial Crisis of

2007-2009 has motivated academic research and supervisorypolicy agenda to better

understand risk contribution to the whole in order to capture systemic risk. Following

Acharya et al. (2010) and Brownlees and Engle (2010), systemic risk contribution

of each financial institution depends on its expected loss ina systemic crisis and its

degree of leverage. While the degree of leverage is readily available, loss contribution

requires to be estimated using appropriate time series methods.

The overall risk of a market and its sensitivity to each risk factor thus become vital

to the survival of financial institutions. A coherent risk measure that serves such

a purpose is Expected Shortfall (ES). ES is the loss conditional on the return being

equal to or less than a threshold and the return on a portfoliois given by the weighted

combination of the underlying equities returns in terms of arithmetic return. Hereby,

sensitivity analysis is performed with respect to portfolio allocation. Since it is more

adequate to work with geometric (logarithmic) returns in risk assessment and weighted

combination equation is only approximately achieved in this case, a second-order

approximation is considered for the portfolio geometric return.

An identical practice over XU100 index is tackled in this study to illustrate the impact

of the approximations. XU100 is designed by Istanbul Stock Exchange (ISE) as

the basic index for ISE stock market. It consists of one hundred stocks which are

selected among the stocks of companies listed on National Market and the stocks of

real estate investment trusts and venture capital investment trusts listed on Corporate

Products Market. The time interval between 01.07.2008 and 03.07.2009 is observed

by highlighting the deviations due to the financial crisis.

2



Section 2 gives definitions which are basis for market risk and represents the

speriorities of ES against the standard market risk measureValue at Risk (VaR).

Following, it mathematically demonstrates a portfolio ES and its sensitivity to

individual risk factors by means of a weighted combination and a second-order

approximation. Despite its computational cost with a relatively slow convergence

rate, Monte Carlo simulation is an attractive methodology for precise estimates due

to its capability of modeling the behavior of possible future events. Section 3 clearly

describes the estimation methods of ES on a portfolio, and focuses on the stages of a

financial Monte Carlo simulation. It is shown over the implementation in Section 4 that

the accuracy is increased by the second-order approximation and the computational

complexity is reduced utilizing parallel computing techniques. Finally, section 5

briefly sums up, and makes recommendations for future research.

3
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2. MARKET RISK

Market risk is the risk of adverse deviations in the value of financial instruments

because of market movements during the time interval neededfor liquidating the

transactions. The period of liquidation is vital to the assessment of those adverse

deviations. Whether it gets longer, the potential worst-case loss is higher due to the

fact that market volatility tends to increase over longer horizons (Bessis, 2010).

On the other hand, it is rationale to limit market risk to the liquidation period since

liquidating instruments or hedging their future changes ofvalue is possible at any time.

The liquidation period varies with the types of instruments, e.g. one day for foreign

exchanges, and much longer for exotic derivatives. In particular, ragulatory identifies

rules to set the liquidation period (Bessis, 2010).

Foreign exchange rates, interest rates and stock prices arethe three typical forms that

reflect market risk. Currency risk refers to the losses due to changes in exchange rates.

Interest rate risk is the risk of decrease in net interest income through the changes of

interest rates. Equity risk designates the losses that result from stock market dynamics

(Sevil, 2001).

2.1 Market Risk Measures

Market risk was previously considered as a correcting factor of expected return. Such

primitive measures were convenient for an immediate order of all preferences. Then,

variance was proposed by Markowitz in order to measure the risk related to the return

on assets and utilized until the standard risk measure, VaR, was introduced (Cheng et

al, 2004).

2.1.1 VaR: lacking subadditivity

VaR was referred in the late 1980s by major financial firms for risk assessment of

their trading portfolios. Following, J.P. Morgan, one of the world’s leading global

5



investment banks, presented VaR as a standard risk measure in 1994 (Linsmeier and

Pearson, 2000). It is now widely applied by other financial institutions, nonfinancial

corporations and institutional investors due to its conceptual simplicity, computational

facility, and ready applicability (Yamai and Yoshiba, 2002b).

VaR is defined as "possible maximum loss over a given holding period within a fixed

confidence level". Mathematically, VaR at the 100(1−α) percent confidence level is

the lower 100α percentile of the return distribution.

VaRα = −in f{x|P[X ≤ x] > α} (2.1)

whereX is the return of a specified portfolio. Ifin f{x|A} is the lower limit ofx given

eventA, in f{x|P[X ≤ x] > α} denotes the lower 100α percentile of return distribution

(Yamai and Yoshiba, 2002b).

Despite its popularity in practice, VaR has the drawbacks:

• conveying no information about the extent of loss beyond theVaR level

• lacking subadditivity and thereby discouraging diversification (Artzner et al, 1999)

• probable violation of second order stochastic dominance and so of risk aversion in

the traditional sense (Rau-Bredow, 2004).

This criticism has lead to a search for more appropriate alternatives. Accordingly in

1999, Artzner et al. introduced axioms on risk measures and showed that these axioms

should be achieved by any risk measure that is to be used for effective risk regulation

or management.

2.1.2 Coherent risk measure

Artzner et al. (1999) stated four axioms and called a risk measure satisfying these

axioms as coherent. Denoting byp a coherent risk measure for random variablesX

andY, the four axioms that have to hold are:

1. Translation invariance:p(X +k) = p(X)−k, for all X ∈ G and all real numbersk.

2. Subadditivity:p(X +Y) ≤ p(X)+ p(Y), for all X,Y ∈ G .

3. Positive homogeneity:p(λX) = λ p(X), for all λ ≥ 0 and allX ∈ G .

4. Monotonicity:p(Y) ≤ p(X), for all X,Y ∈ G with X ≤Y.

6



whereΩ is the set of states of nature and assumed to be finite, andG is the set of all

risks, namely the set of all real-valued functions onΩ.

Translation invariance indicates that the addition of a sure amountk to the initial

positionX reduces the riskp(X), the cash needed to make the position acceptable,

by k. It is clear that

p(X + p(X)) = p(X)− p(X) = 0 (2.2)

addingp(X), the cash needed for the measured risk, to the positionX causes a neutral

position (Dowd, 2005; Cheng et al, 2004).

Subadditivity ensures the risk from the cumulative position X +Y is smaller than the

cumulative risksp(X) + p(Y) (Jadhav et al, 2009). It reflects an expectation how a

risk measure bahaves under the composition or addition of positions. It also presents

motivation for portfolio diversification (Jadhav et al, 2009; Göb, 2011).

Subadditivity reportsp(λX) = λ p(X) for all λ ≥ 0 and all X ∈ G . Positive

homogeneity imposes this axiom by providing proportion to the risk of a position with

its scale or size (Dowd, 2005; Cheng et al, 2004).

Through monotonicity, final net worth that have the relationX ≤ Y should obviously

generate the opposite relation in terms of their risksp(X) ≥ p(Y) (Cheng et al, 2004).

Any risk measure that fails to serve some of the axioms will perform paradoxical

results because of wrong evaluation of relative risks (Acerbi et al, 2008). It is proved

that VaR is not always subadditive even though it assures axioms translation invariance,

positive homogeneity and monotonicity. Thus, VaR is not a coherent risk mesure

(Artzner et al, 1999).

2.1.3 ES: leading coherency

A coherent alternative risk measure to VaR is given by ES. ES is defined as

ESα = −E[X|X ≤C] (2.3)

whereX is the return of a specified portfolio andC is a known threshold, generally

the VaR at a specified confidence level.E[X|X ≤C] accordingly denotes the expected

value ofX which is conditional on being equal to or less than a given thresholdC.

7



Alleviating the first drawback of VaR, it measures the averageloss beyond the VaR

level, i.e. the average loss in the worstα cases (Yamai and Yoshiba, 2002a; Caporin

and De Magistris, 2011; Rau-Bredow, 2004). Secondly, in addition to the axioms

translation invariance, positive homogeneity and monotonocity, it is shown that ES

fulfills the subadditivity axiom which ensures its coherence as a risk measure (Artzner

et al, 1999; Yamai and Yoshiba, 2002a). In this way, ES fulfills the property

of convexity which enables efficient decomposition and optimization (Yamai and

Yoshiba, 2002a; Dowd, 2005; Föllmer and Schied, 2008). Last, ES is valid under

more general conditions than VaR. Particularly, an ES based decision is consistent

with expected utility maximization in a second order stochastic dominance while a

VaR based decision is only in first order stochastic dominance (Dowd, 2005).

Still, VaR is widely used for economic capital calculation due to its conceptual

simplicity. The economic capital calculated via VaR at the 100(1− α) percent

confidence level relates to the capital needed to keep the default probability below

100α percent. Thus, the default probability can be controlled byrisk practitioners

through the use of VaR for risk management (Yamai and Yoshiba, 2002b).

On the other hand, ES that is by definition higher than VaR refers to a more

conservative performance in economic capital calculation. Besides, as a natural

remedy for the deficiencies of VaR, which is not a coherent riskmeasure in general,

ES attract attention from VaR through risk management practice (Yamai and Yoshiba,

2002b).

2.2 Portfolio ES

The rate of return on a portfolio composed ofn specific assets at timet is given by

Rp,t = wT
t Rt

=
n

∑
i=1

wi,tRi,t (2.4)

where wt is the n-dimensional vector of weights,Rt the n-dimensional vector of

arithmetic returns with the elementswi,t andRi,t , respectively. There is the obvious
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constraint∑n
i=1wi,t = 1. The arithmetic return of asseti is equal to

Ri,t = (Si,t −Si,t−1)/Si,t−1

= Si,t/Si,t−1−1 (2.5)

whereSi,t is the asset price of asseti at timet (Penza and Bansal, 2001). Accordingly,

wi,t =
Si,t−1hi,t−1

∑n
i=1Si,t−1hi,t−1

(2.6)

wherehi,t is the total number of assets of asseti at timet.

Since ES can be represented in terms of rate of return, the ES on a portfolio composed

of n specific assets based on arithmetic return framework is given by

ESα = −E
[

wTR|Rp ≤C
]

= −E

[

n

∑
i=1

wiRi|Rp ≤C

]

(2.7)

However, it is more adequate to work with geometric returns in the context of market

relations and risk measurement due to:

• guaranteeing that asset prices can never become negative

• enabling much easier calculations such as the sum of the one-period geometric

returns for multiple-period geometric return (Dowd, 1998).

The geometric return on asseti is defined as

r i,t = lnSi,t − lnSi,t−1

= ln(Si,t/Si,t−1)

= ln(1+Ri,t) (2.8)

More generally,

Geometric return= ln(1+Arithmetic return) (2.9)

When geometric price differences are considered, the weighted combination of the

underlying asset returns does not exactly hold (Campbell et al, 2002; Caporin and De

9



Magistris, 2011).

rp,t,1 = ln(1+Rp,t) = ln(1+
n

∑
i=1

wi,tRi,t)

6=
n

∑
i=1

wi,t(lnSi,t − lnSi,t−1)

=
n

∑
i=1

wi,t ln(1+Ri,t)

=
n

∑
i=1

wi,tr i,t = wT
t r t (2.10)

wherer t is then-dimensional vector of geometric returns with the elementsr i,t .

This relation was studied by Campbell and Viceira (1999) and Campbell et al. (2002)

in strategic asset allocation framework, and the followingapproximation for the

geometric return on a portfolio was derived:

rp,t,2 = wT
t r t +

1
2

wT
t (diag(Ωt)−Ωtwt)

=
n

∑
i=1

wi,tr i,t +
1
2

n

∑
i=1

wi,tΩii ,t −
1
2

n

∑
i=1

n

∑
j=1

Ωi j ,twi,tw j,t (2.11)

whereΩt the covariance matrix of assets geometric returns with the elementsΩi j ,t and

diag(Ωt) is the vector containing the diagonal elements of the covariance matrix.

The covariance of random variablesX andY with meansµX andµY is measured by

cov(X,Y) = E[(X−µX)(Y−µY)] (2.12)

or equivalently,

cov(X,Y) = E(XY)−µXµY (2.13)

The second description occurs from the distributive property of expected value (Larsen

and Marx, 1981). Expected value is for the number of most recent observations the

number of which must be high enough to generate reasonable covariance estimates, on

the other hand low enough to respond to the latest market events.

The notion of covariance links variance and correlation. While variance is a measure of

volatility, correlation indicates the extent to which two seriesX andY move together. A

correlation coefficient lies in the interval[−1,+1], and takes the value+1 if movement

in line is exact, 0 if there is no link,−1 if movement in line but in the opposite direction

10



is exact (Luenberger, 1998). The dimensionless correlation coefficient corr(X,Y) of X

andY is accordingly derived by normalizing the covariance

corr(X,Y) =
cov(X,Y)

σXσY
(2.14)

The two key features of covariance are

• cov(X,X) = var(X) generalizing the concept of variance since

var(X) = E[(X−µX)2] (2.15)

• cov(X,Y) = 0 if X andY are independent (Larsen and Marx, 1981).

A covariance matrixΩ is symmetric with the elementsΩi j those are covariances

between pairs ofn random variables denoted byX1,X2, . . . ,Xn. The elements on the

main diagonal can be described as the variances of each variable since cov(Xi ,Xi) =

var(Xi) (Tabachnick and Fidell, 2007).

Ωi j = cov(Xi,Xj) = E[(Xi −µi)(Xj −µ j)] (2.16)

Since it is desired to evaluate covariance matrix at each time step in the second-order

approximation procedure, three methodologies are introduced.

1. Historical estimation is the most straightforward approach that assumes that the

covariance matrix is constant over time. After a window sizeis specified, volatilities

and covariances are estimated simultaneously. On the otherhand, this approach

has a deficiency of being strictly accurate only if the "true" covariance matrix is

obtained. Such a condition is never satisfied in practice.

2. The deficiency of historical estimation approach is alleviated by evaluating

covariance matrix utilizing multivariate exponentially weighted moving average

(EWMA) method. EWMA is a particular case of the equally weighted moving

average method in the form of

Ωt = λΩt−1 +(1−λ )rT
t−1rt−1 (2.17)

whereλ is a constant decay term between 0 and 1. The lower the value ofλ

is, the higher the weight of the recent observations are. Dueto the fact that it
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accommodates changing volatilities and covariances over time, EWMA method is

more flexible than historical estimation.

It is desired that each volatility and covariance has its ownspecific decay factor to

achieve the best fit for separate estimates. However, a largenumber of differentλ

values can be difficult to handle in addition to no guarantee to perform a positive

definite covariance matrix estimate. Such considerations led to choose a single

decay factor. Accordingly, JP Morgan suggests to use EWMA model with λ = 0.94

for daily estimates.

3. Generalized autoregressive conditional heteroskedasticity (GARCH) models are

generally better than EWMA method in forecasting the future level of covariances.

GARCH (1, 1) model for updating a covariance matrix is

Ωt = ω +αXt−1Yt−1 +βΩt−1 (2.18)

and the long-term average covariance isω/(1−α −β ) whereω, α andβ are the

parameters to be estimated. Despite its preference over EWMAmethod, the number

of parameters are so large that cause a bottleneck. Furthermore, it is shown that the

covariance matrices obtained via EWMA method are sometimes the best when the

matrices are used for risk assessment (Dowd 2005; Hull, 2003).

The proposed approximation exactly holds in continuous time where asset prices

follow a geometric Brownian motion and is highly accurate forshort time intervals

(Campbell et al, 2002). The notes about the equation are (Caporin and De Magistris,

2011):

• A covariance and weights based term is added to weighted combination of single

geometric returns.

• It can be illustrated as a second order approximation of the portfolio geometric

return by means of assets geometric returns.

In addition, the following remarks are emphasized through the analysis of Equation

(2.11) (Caporin and De Magistris, 2011):

• The portfolio geometric return depends on the assets geometric returns and on their

covariances together.
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• Higher order approximations theoretically include the effect of assymmetry (due

to co-skewness matrices) and peakedness (due to leptokurtosis by means of

co-kurtosis matrices) which are concerned when large deviations from normality

occur.

• Most relevant, the difference between the geometric returnaggregation and

Equation(2.11) may enlarge in the presence of high volatility phases.

Finally, the ES on a portfolio composed ofn specific assets based on geometric return

framework is approximated by

1. first-order:

ESα ,1 = −E
[

wTr |rp,1 ≤C
]

= −E

[

n

∑
i=1

wir i|rp,1 ≤C

]

(2.19)

2. second-order:

ESα ,2 = −E

[

wTr +
1
2

wT(diag(Ω)−Ωw)|rp,2 ≤C

]

= −E

[

n

∑
i=1

wir i +
1
2

n

∑
i=1

wiΩii −
1
2

n

∑
i=1

n

∑
j=1

Ωi j wiw j |rp,2 ≤C

]

(2.20)

2.2.1 Sensitivity analysis

According to Acharya et al. (2010) and Brownlees and Engle (2010), the sensitivity

of ES on a portfolio with respect to portfolio allocation is measured via Marginal

Expected Shortfall (MES).

Based on the notation in the relation(2.10), MES is defined as the partial derivative of

ES at the 100(1−α) percent confidence level towk and is indicated as a conditional

expectation (Yamai and Yoshiba, 2002a).

MESα ,1,k =
∂ESα ,1

∂wk
=

∂
∂wk

(

−E

[

n

∑
i=1

wir i|rp,1 ≤C

])

=
∂

∂wk

(

−
n

∑
i=1

wiE[r i|rp,1 ≤C]

)

= −
n

∑
i=1

∂wi

∂wk
E[r i|rp,1 ≤C] (2.21)
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The partial derivative form produces Kronecker delta denoted byδik

∂wi

∂wk
=

{

0 i 6= k
1 i = k

≡ δik (2.22)

and MES by means of a first-order approximation is

MESα ,1,k = −
n

∑
i=1

δikE[r i|rp,1 ≤C]

= −E[rk|rp,1 ≤C] (2.23)

MES implies how a particular asset risk reflects to the portfolio’s overall risk. In other

words, MES is the expectation of a particular asset loss whenthe portfolio itself is in

its left tail (Acharya et al, 2010).

Since MES derives from the assumption in Equation(2.21), it is suggested to consider

the proposed second-order approximation for the relation between the portfolio

geometric return and the geometric returns of individual assets.

MESα ,2,k =
∂ESα ,1

∂wk
=

∂
∂wk

(

−E

[

n

∑
i=1

wir i +
1
2

n

∑
i=1

wiΩii −
1
2

n

∑
i=1

n

∑
j=1

Ωi j wiw j |rp,2 ≤C

])

=
∂

∂wk

(

−
n

∑
i=1

wiE[r i|rp,2 ≤C]

)

− ∂
∂wk

(

1
2

n

∑
i=1

wiE[Ωii |rp,2 ≤C]

)

+
∂

∂wk

(

1
2

n

∑
i=1

n

∑
j=1

wiw jE[Ωi j |rp,2 ≤C]

)

=−
n

∑
i=1

∂wi

∂wk
E[r i|rp,2 ≤C]− 1

2

n

∑
i=1

∂wi

∂wk
E[Ωii |rp,2 ≤C]

+
1
2

n

∑
i=1

n

∑
j=1

∂
∂wk

(wiw j)E[Ωi j |rp,2 ≤C] (2.24)

The partial derivative form in the third term of the above equation is obtained by the

product rule formula which is used to find the derivatives of products of two or more

functions.
∂

∂wk
(wiw j) =

(

∂wi

∂wk
w j +wi

∂w j

∂wk

)

= δikw j +wiδik (2.25)
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MES accordingly becomes

MESα ,2,k =−
n

∑
i=1

δikE[r i|rp,2 ≤C]− 1
2

n

∑
i=1

δikE[Ωii |rp,2 ≤C]

+
1
2

n

∑
i=1

n

∑
j=1

(δikw j +wiδik)E[Ωi j |rp,2 ≤C]

=−E[rk|rp,2 ≤C]− 1
2

E[Ωkk|rp,2 ≤C]

+
1
2

(

n

∑
j=1

w jE[Ωk j|rp,2 ≤C]+
n

∑
i=1

wiE[Ωik|rp,2 ≤C]

)

(2.26)

Since the covariance matrix is symmetric, MES by means of a second-order

approximation:

MESα ,2,k = −E[rk|rp,2 ≤C]− 1
2

E[Ωkk|rp,2 ≤C]+
1
2

(

2
n

∑
i=1

wiE[Ωik|rp,2 ≤C]

)

= −E

[

rk +
1
2

Ωkk−
n

∑
i=1

wiΩik|rp,2 ≤C

]

(2.27)

Thus, three other factors impact on MES of the proposed correction:

• the asset risk conditionally to a threshold

• the portfolio weight on assets

• the covariance, and so the correlations between the specificasset and the other

elements of the portfolio (Caporin and De Magistris, 2011).
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3. NONPARAMETRIC ESTIMATION OF PORTFOLIO ES

ES is the average of the worst 100α% of losses (Dowd, 2005)

ESα =
1
α

∫ α

0
VaRpdp (3.1)

Whether the loss distribution is discrete,

ESα =
1
α

α

∑
p=0

(pthhighest loss x probability ofpthhighest loss) (3.2)

Historical simulation is a nonparametric way of estimatingES. It directly uses the

past data as a guide to predict the future value of financial instruments without an

assumption of a probability distribution. The main stages of a historical simulation in

risk measurement are

Stage 1.Identifying the risk factors

Stage 2.Collecting data of each risk factor over a specified time interval

Stage 3.Calculating the portfolio return value within the interval.

This procedure provides alternative scenarios to the number of movements in the

interval which are then ranked to assess the ES (Hull, 2003).The drawback of

historical simulation is the excessive reliability on a given set of past data. The larger

the data is, the more reliable but more retrospective it makes the analysis (Parasuraman,

2011).

Since risk is associated with the variation of the future value of a position because

of market fluctuations, it is better to consider future values only in risk assessment

(Artzner et al, 1999). Monte Carlo methods accordingly rely on the behavior of

possible future events by enabling the use of the best available models of financial

markets (Lan, 2010).

Estimation methods other than Monte Carlo simulation contain simplifications and

approximations that cause doubt on the validity of the results (Lan, 2010).
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Monte Carlo simulation approach is widely applied inspite ofits computational cost

with a relatively slow convergence rate (Singla et al, 2008).

A typical implementation of the Monte Carlo method involves simulating repeatedly

from random processes to estimate the result (Dowd, 2005). The simulation procedure

in risk measurement is

Stage 1.Selecting a model for the price of risk factors

Stage 2.Estimating the probability distribution and parameters

Stage 3.Constructing random paths for each risk factor

Stage 4.Calculating the portfolio return value at the end of the target time period

Stage 5. Repeating stages 3 and 4 enough times to be confident (Jorion, 2007;

Dowd, 2005).

These stages generate a distribution of values which can be sorted to infer the ES

(Jorion, 2007).

3.1 Portfolio Monte Carlo Simulation

Monte Carlo simulation procedure for a portfolio composed ofn specific assets

involves simulations of the portfolio value at the end of a specified time period. The

differences between the current value and the simulated future value of a portfolio

present estimates of the profit or loss over that given time horizon (Singla et al, 2008).

The portfolio ES is then simply the appropriate average value of the sorted return

estimates. Accordingly, an estimation of MES derives from the average values of the

individual risk factors in that particular scenario by serving conditional expectation

purpose. Here is a brief example to illustrate the procedureassuming a Monte

Carlo simulation of 1000 return paths. For a confidence level 95%, the portfolio

ES is the average value of the worst 50 scenarios and the average values of the

individual positions in that 50 worst scenarios refer to estimates of MES, i.e. the

partial derivatives of ES.

The Monte Carlo simulation stages for the estimation of the ESon a portfolio and the

sensitivities of the relative risk factors are described inthe following subsections in

detail.
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3.1.1 Model selection

A model that reflects the behavior of the risk factor prices isselected in primary.

Portfolio risk measurement is achieved by assessing the value of a portfolio at the

end of a predefined time period. The foremost models for pricing financial instruments

over those time horizons are driven by stochastic processes(Singla et al, 2008; Dowd,

2005).

3.1.1.1 Stochastic processes

A variable with a changing value over time in an uncertain wayis said to follow a

stochastic process. Stochastic processes can be classifiedthrough time or variable. On

time basis, the kinds of stochastic processes are discrete time where the value of the

variable can change at certain fixed points in time, and continuous time where changes

can occur at any time. Also on variable basis, there are discrete variable where the

underlying variable can take only certain values, and continuous variable where any

value in a certain range is possible (Hull, 2003).

A particular stochastic process is the Markov process wherethe future value of

a variable relies only on the current value, the past is irrelevant. It is generally

assumed that prices of financial instruments follow a Markovprocess. The Markov

property thereby states that the probability distributionof the price at a future time is

independent of its history (Jorion, 2007).

The following stochastic processes are derived from a Markov stochastic process with

a higher complexity, respectively.

Wiener process:A Wiener process has the properties for a variablez:

– During a short time intervalδ t, the changeδz is whereε is a random variable

with a standardized normal (Gaussian) distribution (i.e.,a normal distribution

with a mean of zero and a variance of 1.0). δz accordingly has a normal

distribution with a mean of zero and a standard deviation of
√

δ t, or a variance

of δ t.

– The values ofδz for any two separate short periods of timeδ t are independent

enabling a Markov property (Hull, 2003).
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Generalized Wiener process:A generalized Wiener process for a variablex which

is built from a Wiener process is

δx = aδ t +bε
√

δ t (3.3)

wherea andb are constants representing expected drift rate and standard deviation,

respectively (Jorion, 2007).

Ito process: A generalized Wiener process leads to an Ito process with the

parametersa andb defined as functions:

δx = a(x, t)δ t +b(x, t)ε
√

δ t (3.4)

At last, a typical stochastic process for stock prices whichis known as geometric

Brownian motion is developed

δS= µSδ t +σSε
√

δ t (3.5)

or
δS
S

= µδ t +σε
√

δ t (3.6)

whereδS is the change in the stock priceS in a short time intervalδ t, ε is a random

number with a standardized normal distribution. The parameter µ is the expected rate

of return per unit of time andσ is the standard deviation of the stock price. Since both

of the parameters are assumed to be constant,δS
S is normally distributed with mean

µδ t and standard deviationσ
√

δ t which means

δS
S

∼ φ(µδ t,σ
√

δ t) (3.7)

whereφ(m,s) denotes a normal distribution with meanm and standard deviations

(Hull, 2003). Due to the drift and deviation terms are proportional to the current value

of the priceS, the process is called geometric.

The key features of geometric Brownian motion are: guiding for the Black-Scholes

formula which leads option pricing over time, securing thatthe stock prices will get

positive values.

Despite its convenient implementation for stock prices, the process has the

shortcoming: assuming that the price changes have a normal distribution while they

may have fatter tails than the normal distribution in practice (Jorion, 2007).
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3.1.1.2 Itô’s lemma and the log-normal property

A variablex following an Itô process is previously defined as

δx = a(x, t)δ t +b(x, t)ε
√

δ t (3.8)

Itô’s lemma implies that a functionG of x, andt follows the process

δG =

(

∂G
∂x

a+
∂G
∂ t

+
1
2

∂ 2G
∂x2 b2

)

δ t +
∂G
∂x

bδz (3.9)

and thereby an Itô process where∂G
∂x a+ ∂G

∂ t + 1
2

∂ 2G
∂x2 b2 is a drift rate and(∂G

∂x )b2 is a

variance rate. Through Itô’s lemma, a geometric Brownian motion follows the process

which is followed by a functionG of S, andt.

δG =

(

∂G
∂S

µS+
∂G
∂ t

+
1
2

∂ 2G
∂S2 σ2S2

)

δ t +
∂G
∂S

σSδz (3.10)

In order to imply log-normal property, the process followedby lnS is derived applying

Itô’s lemma.

If G = lnS,

∂G
∂S = 1

S
∂ 2G
∂S2 = − 1

S2
∂G
∂ t = 0

(3.11)

The process followed byG becomes

δG =

(

µ − σ2

2

)

δ t +σδz (3.12)

so that

lnS(t +δ t)− lnS(t) =

(

µ − σ2

2

)

δ t +σε
√

δ t (3.13)

or equivalently

S(t +δ t) = S(t)exp

[(

µ − σ2

2

)

δ t +σε
√

δ t

]

(3.14)

Because it generally provides more accurate results to simulate lnS rather thanS,

the equation is utilized to generate random paths in Monte Carlo simulation for the

estimation of ES. From Equation(3.12), G= lnSfollows a generalized Wiener process

due to the constant variablesµ andσ . Since it has a constant drift rate(µ − σ2

2 ) and a

constant variance rateδ 2, the difference in lnSbetween timet and a future timet +δ t
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is normally distributed with mean(µ − σ2

2 )δ t and standard deviationσ
√

δ t. In other

words,

lnS(t +δ t)− lnS(t) ∼ φ
[(

µ − σ2

2

)

δ t,σ
√

δ t

]

(3.15)

or

lnS(t +δ t) ∼ φ
[

lnS(t)+

(

µ − σ2

2

)

δ t,σ
√

δ t

]

(3.16)

whereST is the stock price at a future timeT, S0 is the stock price at time zero (Hull,

2003).

3.1.2 Probability distribution specification

The probability distribution and parameters of the predefined model are assessed at the

second stage of the procedure. Since the risk factors are decided to follow a geometric

Brownian motion, a normal disribution is the one that must be specified.

3.1.2.1 Normal distribution

Normal distribution has a leading role in finance because of sufficiently representing

the behaviour of many financial variables, e.g. the daily rate of return in a stock price

in geometric Brownian motion. The shape of a normal distribution is like a bell with

a center more weighted and tails tapering off to zero. It can be modeled by two

parameters, the meanµ expressing the location and the varianceσ2 the dispersion

(Jorion, 2007).

A normal distribution for a random variableX with meanµ and varianceσ2 has the

following probability density function (pdf)

f (x|µ,σ) =
1

σ
√

2π
e−(x−µ)2/(2σ2) (3.17)

whereX takes the valuex on the domainx ∈ (−∞,∞). A normal distribution with

a mean of zero and a variance (or standard deviation) of 1.0 is known as a standard

normal distribution with the pdf (Dowd, 2005)

f (x) =
1

σ
√

2π
e−x2/2 (3.18)

In order to find the parametersµ and σ , maximum likelihood estimation (MLE)

procedure is applied. Iff (x|θ) denotes the pdf specifying the probability of observing
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Figure 3.1: Normal distribution.

data vectorx and the parameter vectorθ , the likelihood function is defined by reversing

the roles of the data vectorx and the parameter vectorθ .

L(θ |x) = f (x|θ) (3.19)

Through the probability theory, the pdf for the independentand identically distributed

datax1, . . . ,xn given the parameter vectorθ can be represented as a multiplication of

pdfs for individual observationsxi

L(θ |x1, . . . ,xn) = f (x1, . . . ,xn|θ) = f (x1|θ) . . . f (xn|θ) =
n

∏
i=1

f (xi |θ) (3.20)

The principle of MLE is based on searching for the value of theparameter vectorθ

that maximizes the likelihood function,L(θ |x). The probability distribution thereby

makes the observed data "most likely".

Due to the two functions are monotonically related to each other, MLE is achieved by

maximizing the logarithm of the likelihood (log-likelihood) function lnL(θ |x) rather

thanL(θ |x) for computational convenience in practice.

lnL(θ |x1, . . . ,xn) =
n

∑
i=1

ln f (xi |θ) (3.21)
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Assuming that the log-likelihood function is differentiable,

∂ lnL(θ |x)

∂θi
= 0 (3.22)

is satisfied at the resulting parameterθi for all i = 1, . . . ,k because first derivatives of a

continuous differentiable function vanish at extremum points.

Since the first derivative is only adequate to determine lnL(θ |x) is a maximum

or minimum, an additional condition must be also satistifed. The shape of the

log-likelihood function should be convex in the neighborhood of the resulting

parameter vectorθ to be a maximum. The second derivatives of the log-likelihoods

with negative values ensure this convexity property (Myung, 2003).

∂ 2 lnL(θ |x)

∂θ 2
i

≤ 0 (3.23)

For a normal distribution, the log-likelihood function is

f (x1, . . . ,xn|µ,σ) = ln
n

∏
i=1

1

σ
√

2π
e−x2/2

= −1
2

nln(2π)−nlnσ − 1
2

n

∑
i=1

(

xi −µ
σ

)2

(3.24)

and accordingly the first derivatives with respect to the parametersµ andσ
∂ ln f
∂ µ

=
∑n

i=1(xi −µ)

σ2 = 0 (3.25)

∂ ln f
∂σ

= − n
σ

+
∑n

i=1(xi −µ)2

σ3 = 0 (3.26)

generates respectively

µ =
∑n

i=1xi

n
(3.27)

σ =

√

∑n
i=1(xi −µ)2

n
,

σ2 =
∑n

i=1(xi −µ)2

n
(3.28)

while the second derivatives are all negative values.

∂ 2 ln f
∂ µ

= − n
σ2 < 0 (3.29)

∂ 2 ln f
∂σ2 =

n
σ2 −

3∑n
i=1(xi −µ)2

σ4

=
nσ2−3∑n

i=1(xi −µ)2

σ4 =
−2∑n

i=1(xi −µ)2

σ4 < 0 (3.30)
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3.1.3 Random number generation

At the foremost stage of Monte Carlo approach, normally distributed random paths for

n separate risk factors are uniformly constructed in order toserve a Weiner process that

is followed by such risk factors. When the underlying model distribution is stable, an

increase in the number of random paths reduces the relative estimation error (Yamai

and Yoshiba, 2002a).

From Itô’s lemma, the process followed by lnSrequires risk factors to be uncorrelated,

i.e. correlated with the coefficient of zero. Since the correlation circumstance cannot

be ensured within multiple risk factors in practice, a random path is designated fromε

that considers the correlation between pairs ofn risk factors.

The vector ofn independent normally distributed random numbersν is transformed to

the one with correlated elementsε via Cholesky factorization of the relative covariance

matrix.

3.1.3.1 Cholesky factorization

If Ω is a symmetric positive definite matrix in the vector space ofall n−by−n real

matricesRnxn, then there is a unique lower triangular matrixG ∈ R
nxn with positive

diagonal elements, that ensuresΩ = GGT. A covariance matrixΩ ∈ R
nxn is

• symmetric due toΩ = ΩT

• positive definite ifxΩxT
t > 0 for all nonzerox in the vector space of realn-vectors,

R
nxn.

In particular, the factorizationΩ = GGT is defined as the Cholesky factorization and

G refers to the Cholesky triangle (Golub and van Loan, 1996).

The vector of correlated random numbers is generated by multiplying the Cholesky

triangle by the vector of independent normally distributedrandom numbers.

ε = Gν

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(3.31)
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3.1.4 Return evaluation

The correlated normal random numbers are used to generate random paths according

to geometric Brownian motion followed by lnSusing Itô’s lemma.

S(t +δ t) = S(t)exp

[(

µ − σ2

2

)

δ t +σε
√

δ t

]

(3.32)

The parametersµ andσ which are obtained via MLE application to the pdf of a normal

distribution in Section 3.1.2.1 are also utilized here.

µ =
∑n

i=1xi

n
(3.33)

σ =

√

∑n
i=1(xi −µ)2

n

σ2 =
∑n

i=1(xi −µ)2

n
(3.34)

Therefore, the rate of return values at the end of each short time interval of individual

risk factors are readily calculated in this stage. Proper aggregation according to the

specified return evaluation, i.e. arithmetic or geometric,is then performed to obtain

the rate of return values at the end of the target time period.

3.1.5 Inferring ES and sensitivity analysis

To assess the portfolio rate of return composed ofn specific assets at timet + 1, the

rate of return values of separate risk factors are combined according to the equation of

1. first-order

rp,t+1,1 = wT
t+1r t+1 (3.35)

2. second-order

rp,t+1,2 = wT
t+1r t+1 +

1
2

wT
t+1(diag(Ωt+1)−Ωt+1wt+1) (3.36)

Such combinations are used to obtain profit or loss estimatesfor the overall portfolio at

time t. When the return estimates are sorted, the ES of the portfolioat the 100(1−α)

percent confidence level is the average value of the worst 100α percent cases of the

combinations.
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4. PRACTICE IN XU100

An identical practice over XU100 index is tackled to illustrate the impact of the

approximations. XU100 is designed byİstanbul Stock Exchange (ISE) as the basic

index for ISE stock market. It is the successor of the Composite Index which was

introduced in 1986 including the stocks of 40 companies and was in time limited to

the stocks of 100 companies. It consists of one hundred stocks which are selected

among the stocks of companies listed on National Market and the stocks of real estate

investment trusts and venture capital investment trusts listed on Corporate Products

Market. The combination of such one hundred stocks is thereby changeable as the

sorted list is changeable.

ISE stock indices are calculated both in terms of price and return. The only difference

between the price index and return index is related to the cash dividend payments. In

cash dividend payments, the divisor of the return index is adjusted assuming that the

dividend paid is invested in the stocks included in the indexin proportion to the weight

of the stocks, whilst the divisor of the price index is not adjusted assuming that the

dividend paid is excluded from the portfolio (Stock indices, 2012). Since it is desired

to reflect only the changes in price, XU100 price index is taken into account.

In order to highlight the impact of the financial crisis of 2007−2009, the time interval

of 01.07.2008 and 03.07.2009 is considered for the identical practice. It consists of

251 daily observations starting from 01.07.2008 and ending with 03.07.2009.

Because the stock price values of 20 companies from the current composition of

XU100 index is not available for the desired time period, a new index over 80

stocks which are already in XU100 index is defined: AEFES, AFYON, AKBNK,

AKENR, AKGRT, AKSA, ALARK, ANSGR, ARCLK, ASELS, AYGAZ, BAGFS,

BANVT, BIMAS, BJKAS, BOYNR, BRISA, BRSAN, DEVA, DOAS, DOHOL,

DYHOL, ECILC, ECZYT, EGGUB, ENKAI, EREGL, FENER, FROTO, GARAN,

GLYHO, GOLDS, GOODY, GSDHO, GSRAY, GUBRF, HURGZ, IHEVA, IHLAS,
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IPEKE, ISCTR, ISFIN, ISGYO, ISYHO, IZMDC, KARSN, KARTN, KCHOL,

KONYA, KOZAA, KRDMD, METRO, MGROS, MNDRS, MUTLU, NETAS,

NTHOL, NTTUR, OTKAR, PETKM, PRKME, RHEAG, SAHOL, SASA, SISE,

SKBNK, TCELL, TEKST, TEKTU, THYAO, TIRE, TOASO, TRCAS, TRKCM,

TSKB, TSPOR, TTRAK, TUPRS, VESTL, YKBNK.

To illustrate how converges the first-order and second-order approximations, a

portfolio of the predefined stocks each of which has only 1 share is provided at

01.07.2008. The portfolio is kept until 03.07.2009.

The relation discussed in Section 2.2 is tackled in the Figure 4.1 by showing the

weighted combination of the single equities geometric returns is not exactly equal to

the portfolio geometric return.
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Figure 4.1: Portfolio rate of return differences.

Figure 4.2 plots the portfolio geometric return and approximated geometric returns

in the range 01.07.2008 and 03.07.2009. It is noticed that the second-order

approximation method converges more than the first-order one. This is because of the

sum of terms other than aggregating single equities returnsin Equation(2.11) always

has a positive value.
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Figure 4.2: Portfolio rate of return differences (including proposedcorrection).

Geometric return evaluation on a portfolio is implemented using C programming

language. The pseudocode is given as follows.

READ prices of equities
FOR each day in time period

FOR each equity in portfolio
CALCULATE geometric returns

CALCULATE portfolio value
DETERMINE covariance matrix at the beginning of time period
FOR each day in time period

DETERMINE covariance matrix via EWMA model
FOR each day in time period

CALCULATE portfolio logaritmic return
CALCULATE first-order approximated

portfolio geometric return
CALCULATE second-order approximated

portfolio geometric return

4.1 ES Estimation

A new index over fixed 80 stocks is built utilizing the market values of underlying

equities. Market value is calculated by multiplying total number of assets that represent

the capital by the asset price.

MV i,t = Si,tsi,t (4.1)

whereSi,t is the asset price, andsi,t is the total number of assets of asseti at timet.
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The index value is simply constructed as

It = It−1
∑n

i=1MV i,t

∑n
i=1MV i,t−1

(4.2)

whereIt is the index value at timet.

Table 4.1 presents Monte Carlo based daily ES estimates at 03.07.2009 by means of

the first-order and second-order approximations for confidence levels 95% and 99%.

For the same confidence level, the results obtained via second-order approximation

Table 4.1: Index ES estimates by means of approximations.

First-order approximation Second-order approximation
ES95% 3.2774% 3.2471%
ES99% 3.7574% 3.7271%

are less than the ones via first-order approximation as predicted. Accordigly the MES

estimates at the confidence level 95% are listed in Table 4.2. In general, MES estimates

obtained via second-order approximation are lower loss values.

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0  10  20  30  40  50  60  70  80

M
E
S
 
d
i
f
f
e
r
e
n
c
e

Stock Codes

MES
1
-MES

2

Figure 4.3: MES differences.

30



Table 4.2: MES estimates at the confidence level 95% by means of approximations.

First-order
approximation
(%)

Second-order
approximation
(%)

First-order
approximation
(%)

Second-order
approximation
(%)

AEFES 1.9075 1.8921 ISCTR 3.2666 3.2888
AFYON 1.9256 1.9160 ISFIN 2.8050 2.8026
AKBNK 4.4488 4.4575 ISGYO 2.4644 2.4625
AKENR 3.1248 3.1004 ISYHO 3.7357 3.7100
AKGRT 3.9729 3.9775 IZMDC 2.6263 2.6237
AKSA 1.3823 1.3897 KARSN 3.0625 3.0610
ALARK 1.1947 1.2035 KARTN 0.7628 0.7688
ANSGR 2.2134 2.2253 KCHOL 3.3292 3.3450
ARCLK 3.2912 3.2874 KONYA 0.9936 1.0018
ASELS 1.8589 1.8691 KOZAA 4.9772 4.9397
AYGAZ 1.5910 1.6034 KRDMD 3.4578 3.4584
BAGFS 4.8888 4.8707 METRO 5.0978 4.9950
BANVT 2.9593 2.9414 MGROS 1.3476 1.3363
BIMAS 4.0808 4.0418 MNDRS 6.6329 6.5544
BJKAS 5.6613 5.5624 MUTLU 3.0679 3.0653
BOYNR 3.1196 3.1193 NETAS 2.4605 2.4454
BRISA 1.1353 1.1463 NTHOL 2.8532 2.8334
BRSAN 3.1161 3.1100 NTTUR 2.6954 2.6722
DEVA 3.4603 3.4337 OTKAR 2.4950 2.4935
DOAS 2.9562 2.9604 PETKM 2.0292 2.0391
DOHOL 3.6644 3.6441 PRKME 3.9559 3.9234
DYHOL 4.8580 4.8170 RHEAG 2.7774 2.7465
ECILC 1.5878 1.5939 SAHOL 3.6676 3.6762
ECZYT 1.0290 1.0406 SASA 3.4092 3.3644
EGGUB 4.5019 4.4835 SISE 2.3649 2.3836
ENKAI 3.8964 3.8901 SKBNK 3.9188 3.9282
EREGL 3.7826 3.7872 TCELL 1.8739 1.8840
FENER 2.5168 2.4766 TEKST 5.6271 5.6055
FROTO 3.6611 3.6352 TEKTU 3.2986 3.1926
GARAN 4.0641 4.0806 THYAO 2.4710 2.4633
GLYHO 4.5944 4.5585 TIRE 4.1361 4.0465
GOLDS 3.8230 3.8161 TOASO 4.3955 4.3824
GOODY 1.5836 1.5954 TRCAS 2.8791 2.8762
GSDHO 5.9319 5.9060 TRKCM 1.9594 1.9741
GSRAY 1.4259 1.4050 TSKB 2.3611 2.3705
GUBRF 5.0797 5.0541 TSPOR 3.1301 3.0698
HURGZ 3.9387 3.9301 TTRAK 2.7988 2.7886
IHEVA 6.4144 6.3458 TUPRS 2.7194 2.7234
IHLAS 5.1726 5.1223 VESTL 3.2549 3.2376
IPEKE 4.5460 4.5048 YKBNK 3.5739 3.5930
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4.1.1 Serial computing

The serial pseudocode for the implementation of both ES and MES estimation

procedure simultaneously:

READ prices of equities
READ number of equities
CALCULATE market value
FOR each equity in index

CALCULATE index weight
DETERMINE covariance matrix at the end of time period
SET Cholesky decomposition to covariance matrix
DETERMINE covariance matrix via EWMA model at the end of

specified time period
SET random number generation
SET correlated random number generation
CALCULATE geometric return via geometric Brownian motion
CALCULATE simulated market ES
SET simulated market ES sorting
CALCULATE market ES by means of a first-order approximation
FOR each equity in index

CALCULATE relative MES
CALCULATE market ES by means of a second-order approximation
FOR each equity in index

CALCULATE relative MES

Particularly, C language is applied for programming. Getting price and number values

of equities into the computation is done viafread command due to read at once.

The original files therefore converted to binary versions before serial computing starts.

Secondly, random number generation is achieved utilizing Intel R© Math Kernel Library

(MKL). Mersenne Twister pseudorandom number generator (MT19937) has the period

length of 219937−1 and is 623-dimensionally equidistributed with up to 32-bit accuracy

that attract attention to the generator for simulations in various fields of science and

engineering (Statistical functions, 2012). Last, in-place version of quicksort algorithm

which is more complex, but more efficient in terms of space reqirement than the

standard version is served to the purpose of sorting. Intel compiler is the one that

is applied to compile the serial program.

4.1.2 Parallel computing

Emerging scientific and engineering applications steadilyrequire greater computa-

tional speed from a computer system than is available. Furthermore, such applications
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are often repeated on large amounts of data to achieve valid results. A natural way to

increase the related computational performance is to use multiple processors to solve a

single problem. The overall problem is broken into a number of subproblems, each of

which is solved simultaneously on a different processor (Kumar et al, 1994; Wilkinson

and Allen, 1999).

Parallel programming is described as writing programs for this way of com-

putation. It is ideally expected that the problem would be completed in

(1/number of processors)th of the time spent by a single processor. However, this

is rarely performed in practice because of non-perfect division of the problem into

independent parts and interconnection requirement of the parts for data transfer and

synchronization (Wilkinson and Allen, 1999).

A parallel computer is a specially designed computing platform containing multiple

processors or several independent computers interconnected in some way. The three

types of parallel computers are:

Shared memory:Multiple processors are connected to multiple memory modules

where each processor can access any of. The connection between the processors

and memory is provided via an network interconnect. Each location in the whole

main memory has a unique address which is known as a single address space. Each

processor employs such a space to access the location

Distributed memory:Each processor has a local memory that is not accessable by

other processors. A processor only has access to a location in its own memory. An

network interconnect is provided for communication between processors.

Distributed shared memory:Each processor can access the whole memory using a

single memory address space. A processor must communicate in order to access a

location which doesn’t exist in its local memory (Wilkinsonand Allen, 1999).

4.1.2.1 Embarrassingly parallel computing

An embarrassingly parallel computation is considered ideal from a parallel computing

standpoint. The computation is divided into a number of completely independent parts

which can be executed simultaneously. In the case of truly embarrassingly parallelism,

there will be no communication between separate processors. Each processor demand
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data and supply results without any need from other processors. According to

Wilkinson and Allen (1999), a nearly embarrassingly parallel computation is the one

that require data to be scattered, and results to be gatheredin some way.

Monte Carlo methods are based on utilization of random selections in calculations

which lead to the solution to numerical and physical problems. Due to the fact that

each calculation is independent of the others, Monte Carlo methods are represented as

a clean example of an embarrassingly parallel computation.

The embarrassingly parallel computations apply partitioning even though the

results of the parts need to be combined to obtain the desiredresult in most

partitioning formulations. Partitioning can be performedinto the program by data

or functions. Data partitioning or domain decomposition isbased on dividing

the data and performing upon the divided data concurrently.On the other hand,

functional decomposition achieves dividing the program into independent functions

and executing them simultaneously (Wilkinson and Allen, 1999).

Distributed memory system is the one that is utilized to fit the nearly embarrassingly

parallel computation. C programming language based on Message Passing Interface

(MPI) is applied to parallelize the serial program, also compiled with Intel MPI

compiler. The pseudocode of Monte Carlo simulation procedure for parallel computing

is:

PARALLEL
READ prices of equities
READ number of equities
CALCULATE market value
FOR each equity in index

CALCULATE index weight
MASTER

DETERMINE covariance matrix at the end of time period
SET Cholesky decomposition to covariance matrix
DETERMINE covariance matrix via EWMA model at the end of

specified time period
PARALLEL

SET random number generation
SET correlated random number generation
CALCULATE geometric return via geometric Brownian motion
CALCULATE simulated market ES

MASTER
SET simulated market ES sorting
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CALCULATE market ES by means of a first-order approximation
CALCULATE market ES by means of a second-order approximation

PARALLEL
FOR each equity in index

CALCULATE MES in sorting
MASTER

FOR each equity in index
CALCULATE MES by means of a first-order approximation
CALCULATE MES by means of a second-order approximation

Data partitioning is hereby implemented considering blockdecomposition model.

In particular, that gives fall to the relative computational complexity which is

classified as time and space. Time complexity of the serial program that

implies time requirement in bigO notation as a function of program input

is O(number of equitiesxnumber of simulations). Space complexity that refers to

memory requirement is alsoO(number of equitiesxnumber of simulations). Random

number generation on block partitions is locally set up at each processor

in the light of such complexities. Therefore, both complexities become

O(number of equitiesxnumber of simulations
number of processors ). Since sending and receiving tasks are done with

the entire group of processors, collective communication routines are used in order

to reduce time complexity. In addition, parallel file read operation is performed to a

single file that consists of binary versions of equities price and number values. The

advantage of doing parallel input/output is that it is straightforward to read the file in

parallel with a different number of processors. Because of embarrassingly parallelizing

property, MT19937 is based on differentseeds on separate processors.

4.1.3 Performance and scalability

Generally, a serial program is evaluated in terms of execution time which is expressed

as a function of input size. The execution time of a parallel program also depends

on the architecture of the parallel computer and the number of processors. Therefore,

a parallel program cannot be evaluated isolating from a parallel achitecture (Kumar

et al, 2003). The architecture details where the applications run on are in Table 4.3

(Resources, 2012).

The computing resources are provided by National Center for High Performance

Computing of Turkey (UHeM). In order to test the parallel program, wall clock time

35



Table 4.3: Computing server system technical specifications.

System Name ANADOLU (HP ProLiant DL360 G5)
Processor Intel Xeon 2.33 GHz (5140 dual-core, E5345

quad-core)
Number of Compute Nodes 192
Number of Compute Cores 1004
Memory Architecture Distributed
Compute Node Memory Amount8 GB (dual-core servers), 16 GB (quad-core

servers)
Compute Node Disk Amount 2 x 60 GB RAID1 + 60 GB
High Performance Network InfiniBand 20 Gbps
Operating System RHEL 5.1 x86_64

in seconds is used as the performance index. Speedup factor and efficiency are also

analysed related to the test results.

The time elapsed from the beginning to the end of execution ofa program on a

sequential computer gives the serial wall clock time of thatprogram. On the other

side, the parallel wall clock time is the time elapsed between the moment that a parallel

computation starts and the moment the last processor finishes its execution (Kumar et

al, 2003).
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As seen in Figure 4.4, the parallel algorithms reduce the wall clock time approximately

to the execution time of the serial algorithm proportioned by the number of

processors. The foremost reason is that multiple processors are included by

dividing the whole process into separate tasks rather than implementing on a single

processor. Furthermore, the computation time is declined due to the decomposed task

implementation concurrently. By increasing the random number size of each risk factor

for the fixed number of pocessors, wall clock time index is linearly rising. In addition,

doubling number of processors almost takes halfway down theparallel computing

time.

For the highest number of simulations, it can be mentioned that the wall clock time

is decreased in descending order due to smaller sized tasks of processors at each step

of incrementing number of processors, and on the other hand greater communication

cost. Speedup factor is defined as the ratio of the serial run time of the best sequential
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Figure 4.5: Run time results for 10x106 simulations.

algorithm for solving a problem to the time taken by the parallel algorithm to solve the

same problem onp identical processors (Kumar et al, 2003).

Speedup(p) =
Run time using one processor (best sequential algorithm)
Execution time using a multiprocessor with p processors

=
ts
tp

(4.3)

Speedup factor should take place between 0 andp. The lower bound 0 occurs when

a parallel program never terminates. However, a speedup factor greater thanp can be
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obtained due to a specific reason such as a parallel program does less work than the

corresponding serial version (Wilkinson and Allen, 1999).
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Figure 4.6: Speedup factor results.

Figure 4.6 almost presents linear speedup that is reducing top number of processors

proportioned by 2 for random number size 10x106 at each stock in the market index.

Equally divided tasks for parallelism primarily cause to get a maximum speedup. In

addition, cost of communication and cost of contention for resources are reasons of not

observing perfect speedup which leads to scaled one.

Efficiency is a measure of the fraction of time for which a processor is usefully

employed. It is the ratio of speedup to the number of processors.

Efficiency(p) =
Speedup(p)

p
(4.4)

For perfect speedup, efficiency is equal to 1. Practically, due to the fact that speedup

factor p is rarely obtained, efficiency is between 0 and 1 (Kumar et al,2003).

The speedup benchmark results lead that efficiency drops by increasing the number of

processors for the fixed size problem as in Figure 4.5.
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5. CONCLUSION

The financial crisis of 2007-2009 has highlighted two broad risk management

strategies open to any financial institution. One approach is to identify risk factors and

tackle each one separately, which sometimes refers to decomposition. The other is to

reduce risks via diversification. This study clearly attract attention to define individual

risk factors by proposing a correction. It is firstly shown over an XU100 portfolio

that the second-order approximation converges to the portfolio geometric return more

than the weighted combination of single risk factors geometric returns. In such a

case, applying the proposed approximation in market ES assessment produces a lower

loss value which relates to a less conservative result. Sensitivity analysis are then

implemented via first derivatives of market ES with respect to market allocation. The

sensitivities to individual risk factors generally present lower loss values than the ones

estimated by means of a first-order approximation.

In addition, Monte Carlo simulation procedure is the one thatis utilized for market

ES estimation. Since Monte Carlo methods consider the behavior of possible future

events, it is intended to minimize doubt on the validity of the results which is caused

by simplifications and approximations of other estimation methods. Space and time

complexity of the procedure is reduced by applying parallelcomputing techniques.

It is demonsrated via several performance criteria that acceleration is provided with

processors up to the number of risk factors.

In order to test how the second-order approximation converges to the rate of return on a

portfolio, it is recommended to consider richer covariancematrix estimation methods,

e.g. GARCH(1, 1), for further research. Because it is highly accurate in short time

intervals, the approximation can be illustrated making useof realized variance and

covariance estimates.
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APPENDIX A

Table A.1: Stock code list

Stock code Stock name Stock code Stock name
AEFES ANADOLU EFES ISCTR İŞ BANKASI (C)
AFYON AFYON ÇİMENTO ISFIN İŞ ḞIN. KİR.
AKBNK AKBANK ISGYO İŞ GMYO
AKENR AK ENERJ̇I ISYHO IŞIKLAR YAT. HOLD İNG
AKGRT AKSİGORTA IZMDC İZMİR DEMİR ÇELİK
AKSA AKSA KARSN KARSAN OTOMOṪIV
ALARK ALARKO HOLDİNG KARTN KARTONSAN
ANSGR ANADOLU SİGORTA KCHOL KOÇ HOLDİNG
ARCLK ARÇELİK KONYA KONYA ÇİMENTO
ASELS ASELSAN KOZAA KOZA MADENCİL İK
AYGAZ AYGAZ KRDMD KARDEMİR (D)
BAGFS BAGFAŞ METRO METRO HOLḊING
BANVT BANVİT MGROS MİGROS ṪICARET
BIMAS BİM MA ĞAZALAR MNDRS MENDERES TEKSṪIL
BJKAS BEŞ̇IKTAŞ FUTBOL YAT. MUTLU MUTLU AKÜ
BOYNR BOYNER MAĞAZACILIK NETAS NETAŞ TELEKOM.
BRISA BRİSA NTHOL NET HOLDİNG
BRSAN BORUSAN MANNESMANN NTTUR NET TUṘIZM
DEVA DEVA HOLDİNG OTKAR OTOKAR
DOAS DOĞUŞ OTOMOṪIV PETKM PETK̇IM
DOHOL DOĞAN HOLDİNG PRKME PARK ELEK. MADENCİL İK
DYHOL DOĞAN YAYIN HOL. RHEAG RHEA GİRİŞİM
ECILC ECZACIBAŞI İLAÇ SAHOL SABANCI HOLDİNG
ECZYT ECZACIBAŞI YATIRIM SASA SASA POLYESTER
EGGUB EGE GÜBRE SISE Ş̇IŞE CAM
ENKAI ENKA İNŞAAT SKBNK ŞEKERBANK
EREGL EREĞLİ DEMİR CELİK TCELL TURKCELL
FENER FENERBAHÇE SPORṪIF TEKST TEKSṪILBANK
FROTO FORD OTOSAN TEKTU TEK-ART TURİZM
GARAN GARANTİ BANKASI THYAO TÜRK HAVA YOLLARI
GLYHO GLOBAL YAT. HOLD İNG TIRE MONDİ TİRE KUTSAN
GOLDS GOLDAS KUYUMCULUK TOASO TOFAŞ OTO. FAB.
GOODY GOOD-YEAR TRCAS TURCAS PETROL
GSDHO GSD HOLḊING TRKCM TRAKYA CAM
GSRAY GALATASARAY SPORṪIF TSKB T.S.K.B.
GUBRF GÜBRE FABṘIK. TSPOR TRABZONSPOR SPORṪIF
HURGZ HÜRṘIYET GZT. TTRAK TÜRK TRAKTÖR
IHEVA İHLAS EV ALETLERİ TUPRS TÜPRAŞ
IHLAS İHLAS HOLDİNG VESTL VESTEL
IPEKE İPEK DOĞAL ENERJ̇I YKBNK YAPI VE KREDİ BANK.
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