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SENSITIVITY ANALYSIS OF EXPECTED SHORTFALL
BY MEANS OF A SECOND-ORDER APPROXIMATION

SUMMARY

Financial institutions require risk quantification in orde set a capital reserve to
cover adverse market movements. Expected Shortfall (ESEaherent risk measure
that serves the purpose of inferring market risk. Since described as the average
loss beyond a specified threshold, ES represents a pra&eativude. Identifying
the overall ES for a position with multiple risk factors ishéaved by a weighted
aggregation of the rate of returns on the underlying riskoi@ On the other hand,
this relation does not exactly hold in terms of geometrig&igithmic) return. Because
geometric return is the one that is more adequate to workiwitfie context of market
relations and risk measurement than arithmetic returncanskorder approximation
can be considered over weighted combination to increasgraocin the estimation
of ES. Particularly, handling each risk factor separatdlyaat attention by the
financial crisis of 2007-2009 to better understand factortrdoution to the overall
risk. Sensitivity analysis of the approximations mentiinetherefore performed via
first derivatives of ES with respect to position allocation.

Risk refers to the variation of the future value of a positicecduse of market
fluctuations. A typical implementation of the Monte Carlo heat involves simulating

repeatedly from possible future events by enabling the tigeedest available models
of financial markets. In this study, the estimation of ES @sdensitivity is accordingly
based on Monte Carlo simulation utilizing parallel compgtiechniques due to its
computational cost with a relatively slow convergence.ratetally, in addition to

the increase in the accuracy of the estimation by a highegroagproximation, it

is demonstrated that the acceleration of the simulation pgrallel execution on a
distributed memory system.
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IK INCI DERECE YAKLASTIRIM YOLUYLA
BEKLENEN KAYIP HASSASLIK ANAL iZ|

OZET

Risk terimi, ekonomik, politik, sosyal ve teknolojik konuia yaygin bir kullanima
sahiptir.  Genel olarak risk, 6zel bir hareketle iliskillao kayip veya hasarin
gerceklesme ihtimalidir. Finansal olarak ise ters piylsesaeketlerinden etkilenmemek
icin ayrilan sermaye rezervini ifade eder. Finansal pikada beklenen kayip arttikga
beklenen kazang da artmaktadir. Bu durum finansal kurumdddatin bir sekilde risk
almasina yol acmaktadir. Risk yonetiminin buradaki rolirs teiyasa hareketleri
yluzinden olusabilecek kayip miktarini belirlemek amicrwysk tayini yapmaktir.
Risk yonetimi sistemleri, birden fazla risk faktériindengan pozisyon igin tim riski
tayin eden batunsel ¢ozumler igerir. Ayrica, risk faktdrieve aralarindaki etkilesimi
anlamaya calisir.

Piyasa riski, finansal varliklarin derindeki ters hareketler nedeniyle ortaya ¢ikan bir
risk tradir. Riske Maruz Oger (RMD), kavramsal basifi, hesaplama kolayd ve
hazir uygulanabilirji sayesinde standartlasan bir risk dlgtim téfatir. RMD, belirli
bir giiven diizeyinde elde tutma slresi boyunca olasi en bkgyil olarak tanimlanir.
RMD’den baska piyasa riski tayinine hizmet eden BekleneniK&BK) ise tutarli
bir risk dlgciim tekngidir. BK, belirli bir esik degjerin 6tesindeki ortalama kayip olarak
tanimlandgindan koruyucu bir tutum sergilemektedir. Bu esigeiec@juniukla RMD
seviyesi olarak belirlenir. BK, RMD’nin barindirg yetersizlikleri ortadan kaldiran
Ozelliklere sahiptir:

e RMD otesindeki kayip hakkinda bilgi vermesi

e birikimli pozisyon riskinin risk faktorlerinin birikimliriskinden kiicik olmasi

e daha genel stokastik sartlarda gecdjiilisajlanmasi.

Varliklarin BK tayininde kullanilan getiri orani iki sekieé hesaplanabilir: aritmetik ve
geometrik (logaritmik) getiri. Birden fazla risk faktoriieigen bir pozisyon igin getiri
orant, ilgili risk faktdrlerinin getiri oranlariningrlikli ortalamasi alinarak elde edilir.
Bu iliski aritmetik getiri gz 6nline alindinda tam olarak gganirken geometrik getiri
s6z konusu oldgunda sadece yaklastirim olarak kalmaktadir. Ote yangamgtrik
getiri, piyasa iliskileri ve risk 6lcimi ligaminda calismak igin aritmetik getiriden
daha elveriglidir:
e Varlik fiyatlarinin eksi dger almasini engeller.
e Cok donem getiri hesabi i¢in tek donem getirilerinin toplasmérngindeki gibi
hesaplama kolaydn salar.
Bu durumda BK tahmininde dpulugu arttirmak amaciyladarlikh birlesim yerine
stratejik varlik d@ilimi icin tlretilen ikinci derece yaklastirirm kullaabilir.
Onerilen ikinci derece yaklastirrmda geometrik getiitieagirlikli birlesimi terimine,
faktorler arasindaki kovaryansa ve faktorlerijragina dayal terimler eklenmistir.
Matematiksel gosterilimin yaninda yaklastirimla ildihansal notlar:

XXI



e Varlik fiyatlarinin geometrik Brownian hareketini izlgilisirekli zamanda tam
olarak tutmaktadir.

e Kisa zaman araliklari igin daha kesin sonuglar vermektedir

e Yiksek derecede oldundan teorik olarak bakisimsizhk ve sivrilik etkilerin
yansitmaktadir.

e AQirhkli birlesim ile aradaki fark, yuksek volatilite démlerinde blyuyebilmekte-
dir.

2007-2009 finansal kriziyle birlikte her risk faktérint eog ele almak, pozisyonun
buttn riskine neden olan katkiyr daha iyi anlamak adinaatiklekmeye baslamistir.
Bu durumda da bahsedilen yaklastirimlarin hassaslik an#iktor paylarina gore
BK birinci tlrevleri alinarak yapilir. Onerilen ikinci dere yaklastirimin hassaslik
analizinde agadaki eler yer almaktadir:

e esik dgjere kosullu bglihk

o faktor agirhgi

o faktorler arasi kovaryans, dolayisiyla korelasyon.

Risk, piyasa dalgalanmalari nedeniyle pozisyonun geleegkrthde meydana gelen
degisimlerle ilgilidir.  Monte Carlo yonteminin tipik bir uyglamasi, finansal
piyasalarda erigilebilir en iyi modellerin kullanimimniomkin kilarak olasi gelecek
olgularin defalarca benzetimini icerir.  Buna gha olarak calismada BK ve
hassasginin tahmini, Monte Carlo benzetimine dayanmaktadir. spahda, varlik
fiyatlarinin izleyecgi model olarak logaritmik fiyat farklarina dayanan georiketr
Brownian hareketi secilidir. Dolayisiyla olasilik @ami normal dgilim seklinde
Ozellesir. Her bir risk faktoru igin risk faktorleri araslaki korelasyonu dikkate alan
rassal say! uUretiminin ardindan segilen fiyat modeli kultaak getiri hesabi yapilir.
Son agsamadagalikl birlesime ve 6nerilen ikinci derece yaklagtma gore iki farkli
BK 6lgimi yapilabilir.

IMKB100 endeksi, Istanbul Menkul Kiymetler BorsasiINIKB) hisse senedi
piyasasinda temel endeks olarak kullanilir. IMKB100 endelsisinden 80 adet fir-
maya ait hisse senetleri kullanilarak yaklastirimlatkist 6rneklenmektedir. Finansal
kriz nedeniyle ortaya ¢ikan sapmalar vurgulamak amad@gla7.2008-0207.2009
tarih aral§ ele alinmaktadir. Oncelikle, ilgili donem icerisind@idikli birlesim ve
ikinci derece yaklastirim kullanilarak elde edilen ikrikha giinlik geometrik getiri
sonucu, pozisyonun gerceklesmis gunlik geometrik igstie karsilastiriimaktadir.
Burada, ikinci derece yaklastirrmin pozisyonun gercakiig, ginlik geometrik
getirisine daha ¢ok yakinsd@pigosterilmektedir. Sonrasinda, ilgili ddnemin son gund
itibariyle gunlik BK 6lcimi ve hassaslik analizi yapilaragkrhesabi Gzerindeki
etkiler incelenmektedir. Sonucta ikinci derece yaklagt) agirlikli birlesimden daha
distk BK d@erleri Uretmektedir. Risk faktorlerinin hassasliklari idanci derece
yaklastirnmda c¢gunlukla daha disik derler almaktadir.

Geometrik getiri ve risk hesaplamalari C programlama dilidnilarak yapiimaktadir.
Monte Carlo yonteminin nispeten yavags bir yakinsaklik desge sahip hesaplama
yukl nedeniyle dauinik bellekli mimari sisteminde paralel hesaplama telarikden
faydalaniimaktadir. Cesitli performans kriterleri ateqyla risk faktori sayisi kadar
islemci kullanilarak hizlanma gandgi gosterilmektedir.
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Toplamda, daha yiiksek derece bir yaklastirim yoluyla tahdogrulunun arttiril-
masina ek olarak danik bellekli mimari sisteminde bir paralel hesaplama ile
benzetimdeki hizlanma vurgulanmaktadir.
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1. INTRODUCTION

The term risk is widely utilized within the literature on ewomic, political, social
and technological subjects (Cheng et al, 2004). In a generaes risk is expressed
as a chance of injury or loss related to a specified actionofEknd Miao, 2009).
Financially, risk is a capital reserve to cover adverse etamkovements. In other
words, risk means random profit or loss of a position. It carpbsitive (profit) or
negative (loss) (Cheng et al, 2004). The major sources ofihoissancial institutions
are typically identified as market risk, credit risk and @tiemal risk. Market risk
refers to the losses because of adverse movements in the eifinancial assets.
Credit risk results from being unwilling or unable of the ctemparties to fulfill
contractual obligations which are due. Operational rigké& of incurring losses due
to failed or inadequate internal processes, systems anugeoto external events.
Since these categories often interact with each other, lasgification is arbitrary to

some extent (Jorion, 2007).

In financial markets, there is generally no so-called "fregchi which is another
way of saying no profit without risk. This leads financial ingions to actively take
on risks. The role of financial risk management is thereby éasnre and manage
these risks through various methods such as diversificatietging, or repackaging
and transferring back to markets (Eberlein et al, 2007). ti®darly, regulators
and supervisory authorities require each financial in#bituto determine the capital
reserve amount via risk management methods in order to préamkruptcy if large

losses occur (Eberlein et al, 2007; Lan, 2010).

Risk management frameworks and systems include integratetions whose goal is
to assess the overall risk for a position of multiple risktéas (Eberlein et al, 2007).
The philosophy of a risk management framework is to try toangstind the individiual
risk factors and the interaction among each other, and totdyahe overall risk

(Constantinescu, 2011). The quantification is generallyopered by modeling the



uncertain payoff as a random variable, and enables a cduaitional is applied to.
Such functionals are defined as risk measures (Follmer amd&@008). An adequate
risk measure must be responsive in uncertain market condjtand be reflective of the
latest available information in a non-independent andtidatly distributed framework
(Scaillet, 2004).

Besides quantification, the decomposition of risk is presgrds a useful risk
management tool in practice, e.g. selecting risk factasdbhieve the best risk-return
trade-off, allocating capital to individual risk factorsr; transfer pricing (Yamai and
Yoshiba, 2002a; Acharya et al, 2009). Furthermore, the &l&nancial Crisis of
2007-2009 has motivated academic research and superyisbcy agenda to better
understand risk contribution to the whole in order to capsystemic risk. Following
Acharya et al. (2010) and Brownlees and Engle (2010), systeisk contribution
of each financial institution depends on its expected loss systemic crisis and its
degree of leverage. While the degree of leverage is readilyjadole, loss contribution

requires to be estimated using appropriate time seriesadgth

The overall risk of a market and its sensitivity to each riaktbr thus become vital
to the survival of financial institutions. A coherent risk &sere that serves such
a purpose is Expected Shortfall (ES). ES is the loss comdition the return being
eqgual to or less than a threshold and the return on a porifotiven by the weighted
combination of the underlying equities returns in termsrithenetic return. Hereby,
sensitivity analysis is performed with respect to portdailocation. Since it is more
adequate to work with geometric (logarithmic) returns gkidssessment and weighted
combination equation is only approximately achieved irs ttbédse, a second-order

approximation is considered for the portfolio geometritire.

An identical practice over XU100 index is tackled in thisastuo illustrate the impact
of the approximations. XU100 is designed by Istanbul Stogkhange (ISE) as
the basic index for ISE stock market. It consists of one hedditocks which are
selected among the stocks of companies listed on Nationgté¥land the stocks of
real estate investment trusts and venture capital invegtinests listed on Corporate
Products Market. The time interval between@12008 and 037.2009 is observed

by highlighting the deviations due to the financial crisis.
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Section 2 gives definitions which are basis for market riskl aepresents the
speriorities of ES against the standard market risk meagahge at Risk (VaR).
Following, it mathematically demonstrates a portfolio Ef&daits sensitivity to
individual risk factors by means of a weighted combinatiord @& second-order
approximation. Despite its computational cost with a reddy slow convergence
rate, Monte Carlo simulation is an attractive methodologypiecise estimates due
to its capability of modeling the behavior of possible f@@vents. Section 3 clearly
describes the estimation methods of ES on a portfolio, aodskes on the stages of a
financial Monte Carlo simulation. Itis shown over the implertation in Section 4 that
the accuracy is increased by the second-order approximatd the computational
complexity is reduced utilizing parallel computing tedumes. Finally, section 5

briefly sums up, and makes recommendations for future relsear






2. MARKET RISK

Market risk is the risk of adverse deviations in the value aaficial instruments
because of market movements during the time interval neéaletiquidating the

transactions. The period of liquidation is vital to the a&sseent of those adverse
deviations. Whether it gets longer, the potential worsedass is higher due to the

fact that market volatility tends to increase over longeizans (Bessis, 2010).

On the other hand, it is rationale to limit market risk to tiguidation period since
liquidating instruments or hedging their future changegatdie is possible at any time.
The liquidation period varies with the types of instrumemrtg). one day for foreign
exchanges, and much longer for exotic derivatives. In @aer, ragulatory identifies

rules to set the liquidation period (Bessis, 2010).

Foreign exchange rates, interest rates and stock priceékeatbree typical forms that
reflect market risk. Currency risk refers to the losses dudamges in exchange rates.
Interest rate risk is the risk of decrease in net interesinme through the changes of
interest rates. Equity risk designates the losses thalt fes stock market dynamics
(Sevil, 2001).

2.1 Market Risk Measures

Market risk was previously considered as a correcting faat@expected return. Such
primitive measures were convenient for an immediate orflatl preferences. Then,
variance was proposed by Markowitz in order to measure skerelated to the return
on assets and utilized until the standard risk measure, VaR jntroduced (Cheng et
al, 2004).

2.1.1 VaR: lacking subadditivity

VaR was referred in the late 1980s by major financial firms fek assessment of

their trading portfolios. Following, J.P. Morgan, one ottiwvorld’s leading global



investment banks, presented VaR as a standard risk measu®94 (Linsmeier and
Pearson, 2000). It is now widely applied by other financiatitations, nonfinancial
corporations and institutional investors due to its cotealsimplicity, computational

facility, and ready applicability (Yamai and Yoshiba, 2002

VaR is defined as "possible maximum loss over a given holdimggevithin a fixed
confidence level". Mathematically, VaR at the 106- ) percent confidence level is

the lower 10@ percentile of the return distribution.
VaRy = —inf{x|P[X <x] > a} (2.3

whereX is the return of a specified portfolio. itfi f {x|A} is the lower limit ofx given
eventA, inf{x|P[X < x] > o'} denotes the lower 1@percentile of return distribution
(Yamai and Yoshiba, 2002b).

Despite its popularity in practice, VaR has the drawbacks:

e conveying no information about the extent of loss beyond#e level

¢ lacking subadditivity and thereby discouraging diversificn (Artzner et al, 1999)
e probable violation of second order stochastic dominandesarof risk aversion in

the traditional sense (Rau-Bredow, 2004).

This criticism has lead to a search for more appropriaterateres. Accordingly in
1999, Artzner et al. introduced axioms on risk measures hoded that these axioms
should be achieved by any risk measure that is to be usedfémtigé risk regulation

or management.

2.1.2 Coherent risk measure

Artzner et al. (1999) stated four axioms and called a risksueasatisfying these
axioms as coherent. Denoting Ipya coherent risk measure for random variabtes
andY, the four axioms that have to hold are:

1. Translation invariancep(X 4+ k) = p(X) —k, for all X € ¢ and all real numberk.

2. Subadditivity:p(X +Y) < p(X) + p(Y), forall X,Y € 4.

3. Positive homogeneityp(AX) = A p(X), forallA >0and allX € 4.

4. Monotonicity: p(Y) < p(X), forall X,Y € ¢ with X <.



whereQ is the set of states of nature and assumed to be finiteZaisdhe set of all

risks, namely the set of all real-valued functions(®n

Translation invariance indicates that the addition of aesamountk to the initial
position X reduces the rislp(X), the cash needed to make the position acceptable,

by k. It is clear that
P(X+ p(X)) = p(X) — p(X) =0 2.2

addingp(X), the cash needed for the measured risk, to the postioauses a neutral
position (Dowd, 2005; Cheng et al, 2004).

Subadditivity ensures the risk from the cumulative poritio+ Y is smaller than the
cumulative risksp(X) + p(Y) (Jadhav et al, 2009). It reflects an expectation how a
risk measure bahaves under the composition or addition sifipos. It also presents

motivation for portfolio diversification (Jadhav et al, Z0@6b, 2011).

Subadditivity reportsp(AX) = Ap(X) for all A > 0 and all X € 4. Positive
homogeneity imposes this axiom by providing proportiorhitisk of a position with
its scale or size (Dowd, 2005; Cheng et al, 2004).

Through monotonicity, final net worth that have the relatior Y should obviously

generate the opposite relation in terms of their rigks) > p(Y) (Cheng et al, 2004).

Any risk measure that fails to serve some of the axioms witfgren paradoxical

results because of wrong evaluation of relative risks (Bicet al, 2008). It is proved
that VaR is not always subadditive even though it assuresmaxtranslation invariance,
positive homogeneity and monotonicity. Thus, VaR is not herent risk mesure

(Artzner et al, 1999).

2.1.3 ES: leading coherency

A coherent alternative risk measure to VaR is given by ES.siffined as
ES = —E[X|X <C] 2.3

whereX is the return of a specified portfolio ar@lis a known threshold, generally
the VaR at a specified confidence levg[X|X < C] accordingly denotes the expected

value ofX which is conditional on being equal to or less than a giveagholdC.
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Alleviating the first drawback of VaR, it measures the average beyond the VaR
level, i.e. the average loss in the woostases (Yamai and Yoshiba, 2002a; Caporin
and De Magistris, 2011; Rau-Bredow, 2004). Secondly, in audiio the axioms
translation invariance, positive homogeneity and monatdy, it is shown that ES
fulfills the subadditivity axiom which ensures its coheremas a risk measure (Artzner
et al, 1999; Yamai and Yoshiba, 2002a). In this way, ES falfithe property
of convexity which enables efficient decomposition and ropation (Yamai and
Yoshiba, 2002a; Dowd, 2005; Follmer and Schied, 2008). ,L&Stis valid under
more general conditions than VaR. Particularly, an ES bagetkion is consistent
with expected utility maximization in a second order st@tltadominance while a

VaR based decision is only in first order stochastic domiagbowd, 2005).

Still, VaR is widely used for economic capital calculationedto its conceptual
simplicity. The economic capital calculated via VaR at tH#(1 — a) percent
confidence level relates to the capital needed to keep traultigfrobability below
100a percent. Thus, the default probability can be controlledribl practitioners
through the use of VaR for risk management (Yamai and Yosk2ida2h).

On the other hand, ES that is by definition higher than VaRrsete a more

conservative performance in economic capital calculatiddesides, as a natural
remedy for the deficiencies of VaR, which is not a coherent mglasure in general,
ES attract attention from VaR through risk management m@&¢¥amai and Yoshiba,
2002b).

2.2 Portfolio ES
The rate of return on a portfolio composedgpecific assets at tintds given by
Rpt =W Ry

= _iWi,tRi,t (2.9

where w; is the n-dimensional vector of weightsR; the n-dimensional vector of

arithmetic returns with the elements; andR;¢, respectively. There is the obvious



constrainty ! ; wi; = 1. The arithmetic return of asseis equal to

Rt=(St—St-1)/St-1
=S§1/St-1—1 (2.9

whereS; is the asset price of asgeit timet (Penza and Bansal, 2001). Accordingly,

St-1hit-1
Wit = ’ ’
" S1Si-1hit-1

whereh; is the total number of assets of asisat timet.

(2.6

Since ES can be represented in terms of rate of return, theaxB$ortfolio composed

of n specific assets based on arithmetic return framework is\diye
ES = —E[W'R|Ry, < C]

~—E liwime <C (2.7

However, it is more adequate to work with geometric retumthée context of market

relations and risk measurement due to:

e guaranteeing that asset prices can never become negative

e enabling much easier calculations such as the sum of theemned geometric
returns for multiple-period geometric return (Dowd, 1998)

The geometric return on assas defined as

rit=INSt—InSt_1

=In(St/St-1)
=In(1+Ry) (2.9
More generally,
Geometric reture= In(1+ Arithmetic returr) (2.9

When geometric price differences are considered, the wadgbbmbination of the

underlying asset returns does not exactly hold (Campbel] 082; Caporin and De



Magistris, 2011).
n
rpt,1 = IN(1+Rpt) =In(1+ ZWMRH)
i=
n
# Y Wit(InSt—InSt-1)
i; | '
n
= Y wiln(1+Ry
i=

n
= lemri?t =wry (2.10
i=
wherer; is then-dimensional vector of geometric returns with the elements

This relation was studied by Campbell and Viceira (1999) anchi@zell et al. (2002)
in strategic asset allocation framework, and the followaggproximation for the
geometric return on a portfolio was derived:
Mpt2 = Wi e+ %WtT(diag(Qt) — Qiwy)
n 1 n 1 n n
= i;WLtri,t +35 i;Wi,tQii,t 32 J_ZlQiLtWLth,t (2.1)

whereQ; the covariance matrix of assets geometric returns withldraentsQ;; ; and

diag(Q:) is the vector containing the diagonal elements of the cawag matrix.

The covariance of random variablsandY with meansux andpy is measured by

Cov(X,Y) = E[(X — kx) (Y — ptv)] (2.19

or equivalently,
cov(X,Y) = E(XY) — ux Uy (2.13

The second description occurs from the distributive priypefrexpected value (Larsen
and Marx, 1981). Expected value is for the number of mostniecbservations the
number of which must be high enough to generate reasonatdei@oce estimates, on

the other hand low enough to respond to the latest marketsven

The notion of covariance links variance and correlation. ldAmriance is a measure of
volatility, correlation indicates the extent to which tweriesX andY move together. A
correlation coefficient lies in the intervat 1, +1], and takes the valuel if movement

in line is exact, 0 if there is no link;-1 if movement in line but in the opposite direction

10



is exact (Luenberger, 1998). The dimensionless correlatefficient cortX,Y) of X

andY is accordingly derived by normalizing the covariance

cov(X,Y)
XY)=———"""> 2.1
corX,Y) = =~ (219
The two key features of covariance are
e cov(X,X) = var(X) generalizing the concept of variance since
var(X) = E[(X - x)? (2.19

e cov(X,Y)=0if X andY are independent (Larsen and Marx, 1981).

A covariance matrixQ is symmetric with the elementQ;; those are covariances
between pairs of random variables denoted B, Xo,...,X,. The elements on the
main diagonal can be described as the variances of eaclbleasiace coyX;,X) =
var(X;) (Tabachnick and Fidell, 2007).

Qij = cov(Xi, X;) = E[(X — 1) (Xj — ;)] (2.19

Since it is desired to evaluate covariance matrix at eack step in the second-order

approximation procedure, three methodologies are intedu

1. Historical estimation is the most straightforward agmto that assumes that the
covariance matrix is constant over time. After a window szgpecified, volatilities
and covariances are estimated simultaneously. On the btret, this approach
has a deficiency of being strictly accurate only if the "trueVariance matrix is
obtained. Such a condition is never satisfied in practice.

2. The deficiency of historical estimation approach is #@i@d by evaluating
covariance matrix utilizing multivariate exponentiallyeighted moving average
(EWMA) method. EWMA is a particular case of the equally weightaoving

average method in the form of
Q=AQ_ 1+ A=Al jri1 (2.17

where A is a constant decay term between 0 and 1. The lower the valle of

is, the higher the weight of the recent observations are. Oude fact that it

11



accommodates changing volatilities and covariances awey, EWMA method is

more flexible than historical estimation.

It is desired that each volatility and covariance has its epecific decay factor to
achieve the best fit for separate estimates. However, ahangder of differenfA
values can be difficult to handle in addition to no guaranteperform a positive
definite covariance matrix estimate. Such consideratiedstd choose a single
decay factor. Accordingly, JP Morgan suggests to use EWMAehaidh A = 0.94
for daily estimates.

. Generalized autoregressive conditional heteroskedgstGARCH) models are
generally better than EWMA method in forecasting the futexel of covariances.

GARCH (1, 1) model for updating a covariance matrix is
Qr=w+aX 1Y% 1+BQ 1 (2.18

and the long-term average covarianced§1— a — 3) wherew, a andf are the

parameters to be estimated. Despite its preference over EVibtAod, the number
of parameters are so large that cause a bottleneck. Fudherinis shown that the
covariance matrices obtained via EWMA method are sometihmebest when the

matrices are used for risk assessment (Dowd 2005; Hull,)2003

The proposed approximation exactly holds in continuouse tiwwhere asset prices

follow a geometric Brownian motion and is highly accurate $bort time intervals

(Campbell et al, 2002). The notes about the equation are (Capod De Magistris,
2011):

e A covariance and weights based term is added to weighted ioatidn of single
geometric returns.
e It can be illustrated as a second order approximation of threfgdio geometric

return by means of assets geometric returns.

In addition, the following remarks are emphasized throdghdnalysis of Equation
(2.11) (Caporin and De Magistris, 2011):

e The portfolio geometric return depends on the assets gelematiurns and on their

covariances together.

12



e Higher order approximations theoretically include theseffof assymmetry (due
to co-skewness matrices) and peakedness (due to leptsisutbly means of
co-kurtosis matrices) which are concerned when large texasmfrom normality
occur.

e Most relevant, the difference between the geometric reggregation and

Equation(2.11) may enlarge in the presence of high volatility phases.

Finally, the ES on a portfolio composedmEpecific assets based on geometric return
framework is approximated by

1. first-order:

EQi1=-E [WTI’ |I'p,1 < C}

n
=-E [ZWiri|rp,1§C (2.19
i=
2. second-order:
1 .
ES2=-E [WTr + EWT(dlag(Q) —Qw)|rp2 < C}
n 1 n 1 n n
=—-E wWiri + = ) WiQii — = Qijwiwijlrp2 <C (2.20
22 M52, 2,

2.2.1 Sensitivity analysis

According to Acharya et al. (2010) and Brownlees and Engld@20the sensitivity
of ES on a portfolio with respect to portfolio allocation iseasured via Marginal

Expected Shortfall (MES).

Based on the notation in the relaticd10), MES is defined as the partial derivative of
ES at the 10QL — a) percent confidence level to and is indicated as a conditional

expectation (Yamai and Yoshiba, 2002a).

JES 1 0 n
= 2 = —_ H <
MES&; 1k W, W ( E [i_z Wiri|rp1 <C )
(3 n
=—| - Er; <
W é WiE[ri|rp1 < C]
N ow,
=—Y —E[n < )
3w ElNlrea =] (2.21
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The partial derivative form produces Kronecker delta deddaty &

ow [0 itk
d_wk_{li:k: k (222

and MES by means of a first-order approximation is

MES, 1k = —_deE[ri\rp,l <C]

= —E[lrp1<C] (2.23

MES implies how a particular asset risk reflects to the pbaoverall risk. In other
words, MES is the expectation of a particular asset loss wieportfolio itself is in
its left tail (Acharya et al, 2010).

Since MES derives from the assumption in Equati®21), it is suggested to consider
the proposed second-order approximation for the relatietwéen the portfolio

geometric return and the geometric returns of individuatts

ES 17} d 12 122
MES 2k = de’l = owe (—E [i;Wiri +5 2 Wi —5 Qijwiwj|rpz <C

0 1 n n
+—1=z WiW;E[Qjj|rp2 < C]
oW Zi; ]Zl

N ow; 12 ow

=—) — rp2 <Cl—=Y —E|[Qji|rp2 <C
/4 a [ |p, = ] 2i: de [ |I| p,2 > ]
1

The partial derivative form in the third term of the above &iipn is obtained by the
product rule formula which is used to find the derivatives mfducts of two or more
functions.

0 oW, ow;
o ) = (St S0 ) — G+ i (2.29
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MES accordingly becomes

5

MES}ZI(—— [r||r 2<C——deEQ”\I’ 2<C]

(Sw; + Wi &k ) E[Qij[rp2 < C]

NI =

'[M:,

+

M=

i=1]

1
- E[rk|rp2 <C]- EE[Qkk’rpZ <C]

NII—\

(Z QkJ|I’p2<C —|—le| |k|l’p2<C]> (2.29

Since the covariance matrix is symmetric, MES by means of @rskorder

approximation:
1
MESy 2k = —E[r|rp2 < C] - EE[Qkk“pZ <Cl+ = ( ZWI Qi[rp2 < C]>

—E (2.27)

1 n
et 5 Qi — ZWiQik!Fp,z <C
i=

Thus, three other factors impact on MES of the proposed ctiore

e the asset risk conditionally to a threshold

¢ the portfolio weight on assets

e the covariance, and so the correlations between the spessdiet and the other

elements of the portfolio (Caporin and De Magistris, 2011).
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3. NONPARAMETRIC ESTIMATION OF PORTFOLIO ES
ES is the average of the worst 1% of losses (Dowd, 2005)
E 1 aV d 3.1
S = | VaRdp (3.3
Whether the loss distribution is discrete,

ES =

Q|

a
S (phighest loss x probability @f"highest loss (3.2
p=0

Historical simulation is a nonparametric way of estimati®8. It directly uses the
past data as a guide to predict the future value of financ&tuments without an
assumption of a probability distribution. The main stagea bistorical simulation in
risk measurement are

Stage 1ldentifying the risk factors

Stage 2Collecting data of each risk factor over a specified time irger

Stage 3Calculating the portfolio return value within the interval.

This procedure provides alternative scenarios to the nurabenovements in the
interval which are then ranked to assess the ES (Hull, 200@)e drawback of
historical simulation is the excessive reliability on aagivset of past data. The larger
the data is, the more reliable but more retrospective it mtkeanalysis (Parasuraman,
2011).

Since risk is associated with the variation of the futuraugabf a position because
of market fluctuations, it is better to consider future valwaly in risk assessment
(Artzner et al, 1999). Monte Carlo methods accordingly retytbe behavior of
possible future events by enabling the use of the best &lailaodels of financial
markets (Lan, 2010).

Estimation methods other than Monte Carlo simulation consanplifications and

approximations that cause doubt on the validity of the tegu&n, 2010).
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Monte Carlo simulation approach is widely applied inspitatefcomputational cost

with a relatively slow convergence rate (Singla et al, 2008)

A typical implementation of the Monte Carlo method involvasating repeatedly
from random processes to estimate the result (Dowd, 2001 simulation procedure
in risk measurement is
Stage 1Selecting a model for the price of risk factors
Stage 2Estimating the probability distribution and parameters
Stage 3Constructing random paths for each risk factor
Stage 4Calculating the portfolio return value at the end of the tatmee period
Stage 5. Repeating stages 3 and 4 enough times to be confident (JoGOid; 2
Dowd, 2005).
These stages generate a distribution of values which camfbedsto infer the ES

(Jorion, 2007).

3.1 Portfolio Monte Carlo Simulation

Monte Carlo simulation procedure for a portfolio composedno$pecific assets
involves simulations of the portfolio value at the end of agfied time period. The
differences between the current value and the simulatadefutalue of a portfolio

present estimates of the profit or loss over that given tinmezbo (Singla et al, 2008).
The portfolio ES is then simply the appropriate average evaitithe sorted return
estimates. Accordingly, an estimation of MES derives frbm average values of the
individual risk factors in that particular scenario by segvconditional expectation
purpose. Here is a brief example to illustrate the procedssuming a Monte
Carlo simulation of 1000 return paths. For a confidence le®8b9the portfolio

ES is the average value of the worst 50 scenarios and thegaverdues of the

individual positions in that 50 worst scenarios refer tameates of MES, i.e. the

partial derivatives of ES.

The Monte Carlo simulation stages for the estimation of the&S& portfolio and the
sensitivities of the relative risk factors are describedhi@ following subsections in

detail.
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3.1.1 Model selection

A model that reflects the behavior of the risk factor pricesatected in primary.
Portfolio risk measurement is achieved by assessing theevafl a portfolio at the
end of a predefined time period. The foremost models forqiinancial instruments
over those time horizons are driven by stochastic procgSsegla et al, 2008; Dowd,
2005).

3.1.1.1 Stochastic processes

A variable with a changing value over time in an uncertain wagaid to follow a
stochastic process. Stochastic processes can be clasisibagh time or variable. On
time basis, the kinds of stochastic processes are disinetevthere the value of the
variable can change at certain fixed points in time, and nantis time where changes
can occur at any time. Also on variable basis, there are @tsarariable where the
underlying variable can take only certain values, and oowtis variable where any

value in a certain range is possible (Hull, 2003).

A particular stochastic process is the Markov process wihieeefuture value of
a variable relies only on the current value, the past isauaht. It is generally
assumed that prices of financial instruments follow a Margmcess. The Markov
property thereby states that the probability distributddithe price at a future time is
independent of its history (Jorion, 2007).

The following stochastic processes are derived from a Maskochastic process with
a higher complexity, respectively.
Wiener processA Wiener process has the properties for a variable
— During a short time intervadt, the chang@®zis wheree is a random variable
with a standardized normal (Gaussian) distribution (@eormal distribution
with a mean of zero and a variance aD)L dz accordingly has a normal
distribution with a mean of zero and a standard deviatiovi &f, or a variance
of ot.
— The values odzfor any two separate short periods of tidteare independent

enabling a Markov property (Hull, 2003).
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Generalized Wiener procesi:generalized Wiener process for a variakherhich

is built from a Wiener process is
dx = adt + be v/t (3.3

wherea andb are constants representing expected drift rate and sthddaiation,
respectively (Jorion, 2007).
Ito process: A generalized Wiener process leads to an Ito process with the

parametera andb defined as functions:
dx = a(x,t)St +b(x,t)eV/3t (3.4)

At last, a typical stochastic process for stock prices whicknown as geometric

Brownian motion is developed

3S= uSdt + oSeVot (3.5
or
5—88: udt +oeVot (3.6)

wheredSis the change in the stock pri&in a short time intervabt, € is a random
number with a standardized normal distribution. The patameis the expected rate
of return per unit of time and is the standard deviation of the stock price. Since both
of the parameters are assumed to be cons@nis normally distributed with mean
udt and standard deviatiomy/3t which means

%va @(udt, oV/at) (3.7

where @(m,s) denotes a normal distribution with meamand standard deviatios
(Hull, 2003). Due to the drift and deviation terms are prajporl to the current value

of the priceS, the process is called geometric.

The key features of geometric Brownian motion are: guidingtfie Black-Scholes
formula which leads option pricing over time, securing ttiegt stock prices will get

positive values.

Despite its convenient implementation for stock pricese throcess has the
shortcoming: assuming that the price changes have a noiistebdtion while they

may have fatter tails than the normal distribution in pr@e{Jorion, 2007).
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3.1.1.2 1t6’s lemma and the log-normal property

A variablex following an It process is previously defined as
dx = a(x,t)3t +b(x,t)e v/t (3.8

It6’s lemma implies that a functio® of x, andt follows the process

0G_ 9G 19°G,, G
3G = (ﬁxa+ TR b)6t+ﬁb62 (3.9

and thereby an It6 process whej@a+ 9¢ + $2°Sb? is a drift rate and 98 )b? is a
variance rate. Through It6’s lemma, a geometric Brownianondbllows the process

which is followed by a functioris of S andt.

G dG 19°G o2 G
3G = (as“s +55g 52) Bt + 5 0507 (3.10

In order to imply log-normal property, the process followsdnSis derived applying

[t6’s lemma.
G _ 1
328(3_ ° 1
9G _ o
ot
The process followed b§ becomes
o2
0G = (u—;) ot+ 0oz (3.12
so that
2
InS(t +5t) —InS(t) = (u—%) dt+ oVt (3.13
or equivalently
2
S(t+ot) = S(t)epru_%) 5t+as¢&] (3.19

Because it generally provides more accurate results to ateuhS rather thanS
the equation is utilized to generate random paths in MontéoGamulation for the
estimation of ES. From EquatidB.12), G = In Sfollows a generalized Wiener process
due to the constant variablgsando. Since it has a constant drift ratg — %2) and a

constant variance rat¥, the difference in 18 between timeé and a future time + ot
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is normally distributed with meafu — %2)& and standard deviatiooiv/5t. In other

words, , )
InS(t+5t)—InS(t)~(p[(u—%> 5t, /3t (3.19

or ,
InS(t+6t)~<p{lnS(t)+ <u—%) 3t, o/t (3.1

whereSy is the stock price at a future tinle, & is the stock price at time zero (Hull,
2003).

3.1.2 Probability distribution specification

The probability distribution and parameters of the predefimodel are assessed at the
second stage of the procedure. Since the risk factors argeadkto follow a geometric

Brownian motion, a normal disribution is the one that mustpexgied.

3.1.2.1 Normal distribution

Normal distribution has a leading role in finance becauseaufficeently representing
the behaviour of many financial variables, e.g. the dailg odtreturn in a stock price
in geometric Brownian motion. The shape of a normal distrdouts like a bell with
a center more weighted and tails tapering off to zero. It canmwdeled by two
parameters, the megn expressing the location and the variar@®the dispersion
(Jorion, 2007).

A normal distribution for a random variabk with meanu and variances? has the

following probability density function (pdf)

(X, 0) = ——e (12 (3.17

whereX takes the value on the domairx € (—o,). A normal distribution with
a mean of zero and a variance (or standard deviation)(fslknown as a standard
normal distribution with the pdf (Dowd, 2005)

f(x) = ﬁe—xz/z (3.19

In order to find the parametens and o, maximum likelihood estimation (MLE)

procedure is applied. if(x|0) denotes the pdf specifying the probability of observing
22
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Normal distribution

Figure 3.1 Normal distribution.

data vectok and the parameter vect6y the likelihood function is defined by reversing

the roles of the data vectarand the parameter vectér

L(6]x) = f(x|6) (3.19

Through the probability theory, the pdf for the independemd identically distributed
dataxy, ..., X, given the parameter vectércan be represented as a multiplication of

pdfs for individual observationg

L(B]X1, . %) = F(x,.... %] 6) = F(xa]8) ... F(x0] 6) = qfx.|e (320

The principle of MLE is based on searching for the value ofgiaeameter vectoé
that maximizes the likelihood functioh,(6|x). The probability distribution thereby

makes the observed data "most likely".

Due to the two functions are monotonically related to eatieGtMLE is achieved by
maximizing the logarithm of the likelihood (log-likelihdd function InL(8|x) rather

thanL(6|x) for computational convenience in practice.

INL(6|X1,-..,Xn) :iln f(x0) (3.2)
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Assuming that the log-likelihood function is differentlab

dInL(6|x)
—98 = 0 (3.29

is satisfied at the resulting parameefor all i = 1, ..., k because first derivatives of a

continuous differentiable function vanish at extremummymi

Since the first derivative is only adequate to determink(#ix) is a maximum
or minimum, an additional condition must be also satistifedihe shape of the
log-likelihood function should be convex in the neighbarvtoof the resulting
parameter vectof to be a maximum. The second derivatives of the log-likeld®o

with negative values ensure this convexity property (My@a@p3).

92InL(6|x)
gt <o 3.2
002 329

For a normal distribution, the log-likelihood function is
n 1 2
f(Xq,...,. %1, 0) =In[| —==e%/2
( 1 n“'l ) il:l O'\/ZT

! 10 (x—p\°
_—énln(2n)—nln0—§i;< ) (3.29

o

and accordingly the first derivatives with respect to thepetergu ando
dln f _ S (6 — )

=0 3.2
omf _ n 3 (xi—p)?
90 o o 329
generates respectively
n .
= _z'—nlx' (3.2
o= M’
\/ n
n - 1\2
g2 = w (3.28
while the second derivatives are all negative values.
d%In f n
__ 2
o 52 <0 (3.29
o%nf n 330, (x—m?
do2 2 o4
no?—330 (65— p)> _ —230 (5 — 1)’

<0 (3.30

o4 o4
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3.1.3 Random number generation

At the foremost stage of Monte Carlo approach, normally itsted random paths for
n separate risk factors are uniformly constructed in ordeetoe a Weiner process that
is followed by such risk factors. When the underlying modstritution is stable, an
increase in the number of random paths reduces the relatiiraagion error (Yamai
and Yoshiba, 2002a).

From Ité’s lemma, the process followed by3nequires risk factors to be uncorrelated,
l.e. correlated with the coefficient of zero. Since the datien circumstance cannot
be ensured within multiple risk factors in practice, a randmath is designated from

that considers the correlation between paira ggk factors.

The vector o independent normally distributed random numbers transformed to
the one with correlated elemerstsia Cholesky factorization of the relative covariance

matrix.

3.1.3.1 Cholesky factorization

If Q is a symmetric positive definite matrix in the vector spacalbh — by— n real

matricesR™", then there is a unique lower triangular mat@xe R™" with positive

diagonal elements, that ensu@s= GG'. A covariance matriX) € R™"js

e symmetric due t@ = QT

e positive definite iixQx{ > 0 for all nonzerax in the vector space of reatvectors,
Rnxn_

In particular, the factorizatio® = GG is defined as the Cholesky factorization and

G refers to the Cholesky triangle (Golub and van Loan, 1996).

The vector of correlated random numbers is generated byiptyutty the Cholesky

triangle by the vector of independent normally distributaddom numbers.

e=Gv
& g1 O o ... O V1
R B (339
S.n ng11 gr.12 9;13 gl.wn Vln
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3.1.4 Return evaluation

The correlated normal random numbers are used to generatemapaths according
to geometric Brownian motion followed by $using Itd’s lemma.
g2
S(t+dt) = S(t) epru - 7) St + 05\/5} (3.32
The parameterg ando which are obtained via MLE application to the pdf of a normal

distribution in Section 3.2.1 are also utilized here.

_ ik
p=s2 (3.33
o=t/ St (6 — )
n
0-2 — zin::L ():; B IJ)Z (334)

Therefore, the rate of return values at the end of each shwetinterval of individual
risk factors are readily calculated in this stage. Propereggation according to the
specified return evaluation, i.e. arithmetic or geometadhen performed to obtain

the rate of return values at the end of the target time period.

3.1.5 Inferring ES and sensitivity analysis

To assess the portfolio rate of return composed specific assets at tintet 1, the
rate of return values of separate risk factors are combinedrding to the equation of

1. first-order

rp.,t—i—l,l = W£|—+1rt+1 (333

2. second-order
T 1+ .
Mpt+12 = Wepalted + 5Wepa (diag(Qei1) — QeraWisa) (3.39

Such combinations are used to obtain profit or loss estinfiatéise overall portfolio at
timet. When the return estimates are sorted, the ES of the portibtize 1001 — o)
percent confidence level is the average value of the worstr J#dcent cases of the

combinations.
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4. PRACTICE IN XU100

An identical practice over XU100 index is tackled to illge the impact of the
approximations. XU100 is designed kstanbul Stock Exchange (ISE) as the basic
index for ISE stock market. It is the successor of the Comedsitiex which was
introduced in 1986 including the stocks of 40 companies aad W time limited to
the stocks of 100 companies. It consists of one hundred statkch are selected
among the stocks of companies listed on National Market aadtocks of real estate
investment trusts and venture capital investment trustedion Corporate Products
Market. The combination of such one hundred stocks is tlyechlangeable as the

sorted list is changeable.

ISE stock indices are calculated both in terms of price ahdme The only difference
between the price index and return index is related to thie dasdend payments. In
cash dividend payments, the divisor of the return index jasadd assuming that the
dividend paid is invested in the stocks included in the indgxoportion to the weight
of the stocks, whilst the divisor of the price index is notusdgd assuming that the
dividend paid is excluded from the portfolio (Stock indic2612). Since it is desired

to reflect only the changes in price, XU100 price index is teikeéo account.

In order to highlight the impact of the financial crisis of 2002009, the time interval
of 01.07.2008 and 037.2009 is considered for the identical practice. It consits o
251 daily observations starting from .0Z.2008 and ending with 087.2009.

Because the stock price values of 20 companies from the ducenposition of
XU100 index is not available for the desired time period, a nedex over 80
stocks which are already in XU100 index is defined: AEFES, ®RY AKBNK,

AKENR, AKGRT, AKSA, ALARK, ANSGR, ARCLK, ASELS, AYGAZ, BAGFS,

BANVT, BIMAS, BJKAS, BOYNR, BRISA, BRSAN, DEVA, DOAS, DOHOL,
DYHOL, ECILC, ECZYT, EGGUB, ENKAI, EREGL, FENER, FROTO, GARAN,
GLYHO, GOLDS, GOODY, GSDHO, GSRAY, GUBRF, HURGZ, IHEVA, IHLAS,
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IPEKE, ISCTR, ISFIN, ISGYO, ISYHO, 1ZMDC, KARSN, KARTN, KCHOL,
KONYA, KOZAA, KRDMD, METRO, MGROS, MNDRS, MUTLU, NETAS,
NTHOL, NTTUR, OTKAR, PETKM, PRKME, RHEAG, SAHOL, SASA, SISE,
SKBNK, TCELL, TEKST, TEKTU, THYAO, TIRE, TOASO, TRCAS, TRKCM,

TSKB, TSPOR, TTRAK, TUPRS, VESTL, YKBNK.

To illustrate how converges the first-order and secondroajgproximations, a

portfolio of the predefined stocks each of which has only Iresha provided at

01.07.2008. The portfolio is kept until 087.2009.

The relation discussed in Section22s tackled in the Figure.4 by showing the

weighted combination of the single equities geometricrretus not exactly equal to

the portfolio geometric return.

2.5 T

1.5

Rate of Return Difference (x 10'3)

03 ' N | 1“ l I ”ﬂ

oY VWWM %

0
05/01/08 07/01/08 09/01/08 11/01/08 01/01/09  03/01/09 05/01/09 07/01/09
Date

Figure 4.1 Portfolio rate of return differences.

09/01/09

Figure 42 plots the portfolio geometric return and approximatedngetnic returns

in the range 0D7.2008 and 037.2009. It is noticed that the second-order

approximation method converges more than the first-order ©his is because of the

sum of terms other than aggregating single equities refargguation(2.11) always

has a positive value.
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Figure 4.2 Portfolio rate of return differences (including proposedrection).

Geometric return evaluation on a portfolio is implementesihg C programming

language. The pseudocode is given as follows.

READ prices of equities
FOR each day in tine period
FOR each equity in portfolio
CALCULATE geonetric returns
CALCULATE portfolio val ue
DETERM NE covari ance matri x at the beginning of tine period
FOR each day in tine period
DETERM NE covari ance matri x via EWVA nodel
FOR each day in tine period
CALCULATE portfolio logaritmc return
CALCULATE first-order approxinated
portfolio geonetric return
CALCULATE second- order approxi mat ed
portfolio geonmetric return

4.1 ES Estimation

A new index over fixed 80 stocks is built utilizing the marketlues of underlying
equities. Market value is calculated by multiplying totahmber of assets that represent
the capital by the asset price.

MVit =SSt 4.1
whereS; is the asset price, arsg; is the total number of assets of assat timet.
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The index value is simply constructed as

SiLiMViy

=== 4.2
SILiMVit 1 42

le =11

wherel; is the index value at time

Table 41 presents Monte Carlo based daily ES estimates &7@&009 by means of
the first-order and second-order approximations for coniddevels 95% and 99%.

For the same confidence level, the results obtained via dewater approximation

Table 4.1 Index ES estimates by means of approximations.

First-order approximation Second-order approximation
ESos06 3.2774% 3.2471%
ESy90 3.7574% 3.7271%

are less than the ones via first-order approximation as gietli Accordigly the MES
estimates at the confidence level 95% are listed in TaBleld general, MES estimates

obtained via second-order approximation are lower lossesl

0.0012 T T T T T T T
| | | | i | MES;-MES,

0.0006

.0004

MES difference
o

0.0002

-0.0002

-0.0004 . . .

Stock Codes

Figure 4.3 MES differences.
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Table 4.2 MES estimates at the confidence level 95% by means of appatixins.

First-order
approximation
(%)

Second-order
approximation
(%)

First-order
approximation
(%)

Second-order
approximation
(%)

AEFES
AFYON
AKBNK
AKENR
AKGRT
AKSA
ALARK
ANSGR
ARCLK
ASELS
AYGAZ
BAGFS
BANVT
BIMAS
BJKAS
BOYNR
BRISA
BRSAN
DEVA
DOAS
DOHOL
DYHOL
ECILC
ECZYT
EGGUB
ENKAI
EREGL
FENER
FROTO
GARAN
GLYHO
GOLDS
GOODY
GSDHO
GSRAY
GUBRF
HURGZ
IHEVA
IHLAS
IPEKE

1.9075
1.9256
4.4488
3.1248
3.9729
1.3823
1.1947
2.2134
3.2912
1.8589
1.5910
4.8888
2.9593
4.0808
5.6613
3.1196
1.1353
3.1161
3.4603
2.9562
3.6644
4.8580
1.5878
1.0290
4.5019
3.8964
3.7826
2.5168
3.6611
4.0641
4.5944
3.8230
1.5836
5.9319
1.4259
5.0797
3.9387
6.4144
5.1726
4.5460

1.8921
1.9160
4.4575
3.1004
3.9775
1.3897
1.2035
2.2253
3.2874
1.8691
1.6034
4.8707
2.9414
4.0418
5.5624
3.1193
1.1463
3.1100
3.4337
2.9604
3.6441
4.8170
1.5939
1.0406
4.4835
3.8901
3.7872
2.4766
3.6352
4.0806
4.5585
3.8161
1.5954
5.9060
1.4050
5.0541
3.9301
6.3458
5.1223
4.5048

ISCTR
ISFIN
ISGYO
ISYHO
IZMDC
KARSN
KARTN
KCHOL
KONYA
KOZAA
KRDMD
METRO
MGROS
MNDRS
MUTLU
NETAS
NTHOL
NTTUR
OTKAR
PETKM
PRKME
RHEAG
SAHOL
SASA
SISE
SKBNK
TCELL
TEKST
TEKTU
THYAO
TIRE
TOASO
TRCAS
TRKCM
TSKB
TSPOR
TTRAK
TUPRS
VESTL
YKBNK

3.2666
2.8050
2.4644
3.7357
2.6263
3.0625
0.7628
3.3292
0.9936
49772
3.4578
5.0978
1.3476
6.6329
3.0679
2.4605
2.8532
2.6954
2.4950
2.0292
3.9559
27774
3.6676
3.4092
2.3649
3.9188
1.8739
5.6271
3.2986
24710
4.1361
4.3955
2.8791
1.9594
2.3611
3.1301
2.7988
2.7194
3.2549
3.5739

3.2888
2.8026
2.4625
3.7100
2.6237
3.0610
0.7688
3.3450
1.0018
4.9397
3.4584
4.9950
1.3363
6.5544
3.0653
2.4454
2.8334
2.6722
2.4935
2.0391
3.9234
2.7465
3.6762
3.3644
2.3836
3.9282
1.8840
5.6055
3.1926
2.4633
4.0465
4.3824
2.8762
1.9741
2.3705
3.0698
2.7886
2.7234
3.2376
3.5930
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4.1.1 Serial computing

The serial pseudocode for the implementation of both ES arh Mstimation

procedure simultaneously:

READ prices of equities
READ nunber of equities
CALCULATE rmar ket val ue
FOR each equity in index
CALCULATE i ndex wei ght
DETERM NE covariance matrix at the end of tinme period
SET Chol esky deconposition to covariance matri X
DETERM NE covariance matri x via EWVA nodel at the end of
specified tine period
SET random nunber generation
SET correl ated random nunber generation
CALCULATE geonetric return via geonmetric Browni an notion
CALCULATE si mul at ed mar ket ES
SET sinul ated market ES sorting
CALCULATE mar ket ES by neans of a first-order approximation
FOR each equity in index
CALCULATE rel ative MES
CALCULATE nmar ket ES by neans of a second-order approxination
FOR each equity in index
CALCULATE rel ative MES

Particularly, C language is applied for programming. Getprice and number values
of equities into the computation is done Viaead command due to read at once.
The original files therefore converted to binary version®f@eserial computing starts.
Secondly, random number generation is achieved utilizibgfR) Math Kernel Library
(MKL). Mersenne Twister pseudorandom number generator®9B7) has the period
length of 299371 and is 623-dimensionally equidistributed with up to 3Ralsicuracy
that attract attention to the generator for simulationsanous fields of science and
engineering (Statistical functions, 2012). Last, in-plaersion of quicksort algorithm
which is more complex, but more efficient in terms of spaceareaeent than the
standard version is served to the purpose of sorting. Imeipdler is the one that

is applied to compile the serial program.

4.1.2 Parallel computing

Emerging scientific and engineering applications steaityuire greater computa-

tional speed from a computer system than is available. Eurtbre, such applications
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are often repeated on large amounts of data to achieve ‘esidts. A natural way to

increase the related computational performance is to uigheprocessors to solve a
single problem. The overall problem is broken into a numbesubproblems, each of
which is solved simultaneously on a different processomnfiduet al, 1994; Wilkinson

and Allen, 1999).

Parallel programming is described as writing programs tas tway of com-
putation. It is ideally expected that the problem would bempteted in
(1/number of processoxth of the time spent by a single processor. However, this
is rarely performed in practice because of non-perfectsaivi of the problem into
independent parts and interconnection requirement of &nes ffor data transfer and

synchronization (Wilkinson and Allen, 1999).

A parallel computer is a specially designed computing ptatf containing multiple
processors or several independent computers intercathacsome way. The three
types of parallel computers are:
Shared memoryMultiple processors are connected to multiple memory meslul
where each processor can access any of. The connectiondnetiag processors
and memory is provided via an network interconnect. Eachtion in the whole
main memory has a unique address which is known as a singtessispace. Each
processor employs such a space to access the location
Distributed memoryEach processor has a local memory that is not accessable by
other processors. A processor only has access to a locatittnawn memory. An
network interconnect is provided for communication betwpecessors.
Distributed shared memorf§ach processor can access the whole memory using a
single memory address space. A processor must communicatder to access a

location which doesn't exist in its local memory (Wilkinsand Allen, 1999).

4.1.2.1 Embarrassingly parallel computing

An embarrassingly parallel computation is consideredlifteen a parallel computing
standpoint. The computation is divided into a number of cletey independent parts
which can be executed simultaneously. In the case of trulyeerassingly parallelism,

there will be no communication between separate processach processor demand
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data and supply results without any need from other processd@ccording to
Wilkinson and Allen (1999), a nearly embarrassingly patatbmputation is the one

that require data to be scattered, and results to be gatimesedhe way.

Monte Carlo methods are based on utilization of random selecin calculations
which lead to the solution to numerical and physical proldeue to the fact that
each calculation is independent of the others, Monte Cartboas are represented as

a clean example of an embarrassingly parallel computation.

The embarrassingly parallel computations apply pariiigneven though the
results of the parts need to be combined to obtain the desesdlt in most
partitioning formulations. Partitioning can be performeatb the program by data
or functions. Data partitioning or domain decompositionbssed on dividing
the data and performing upon the divided data concurren®y the other hand,
functional decomposition achieves dividing the programo imdependent functions

and executing them simultaneously (Wilkinson and Aller§9)9

Distributed memory system is the one that is utilized to # tiearly embarrassingly
parallel computation. C programming language based on &desRassing Interface
(MPI) is applied to parallelize the serial program, also pded with Intel MPI
compiler. The pseudocode of Monte Carlo simulation procethrparallel computing

is:

PARALLEL
READ prices of equities
READ nunber of equities
CALCULATE mar ket val ue
FOR each equity in index
CALCULATE i ndex wei ght
MASTER
DETERM NE covariance matrix at the end of tine period
SET Chol esky deconposition to covariance matri X
DETERM NE covariance matri x via EWVA nodel at the end of
specified tinme period
PARALLEL
SET random nunber generation
SET correl ated random nunber generation
CALCULATE geonetric return via geometric Browni an notion
CALCULATE si mul at ed mar ket ES
MASTER
SET sinmul ated nmarket ES sorting
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CALCULATE mar ket ES by neans of a first-order approxination
CALCULATE mar ket ES by neans of a second-order approximation
PARALLEL
FOR each equity in index
CALCULATE MES in sorting
MASTER
FOR each equity in index
CALCULATE MES by neans of a first-order approxi mation
CALCULATE MES by neans of a second-order approximtion

Data partitioning is hereby implemented considering bloegcomposition model.
In particular, that gives fall to the relative computatibramplexity which is
classified as time and space. Time complexity of the serialgnam that
implies time requirement in bigO notation as a function of program input
is O(number of equitiesiumber of simulations Space complexity that refers to
memory requirement is alg0(number of equitiesiumber of simulations Random
number generation on block partitions is locally set up athegrocessor

in the light of such complexities. Therefore, both compiesi become

O( number of equitiesiumber of simulation
number of processors

the entire group of processors, collective communicataistines are used in order

§. Since sending and receiving tasks are done with

to reduce time complexity. In addition, parallel file reaceraion is performed to a
single file that consists of binary versions of equities @@nd number values. The
advantage of doing parallel input/output is that it is gfhgiorward to read the file in
parallel with a different number of processors. Because diarassingly parallelizing

property, MT19937 is based on differesged on separate processors.

4.1.3 Performance and scalability

Generally, a serial program is evaluated in terms of exenutme which is expressed
as a function of input size. The execution time of a paraltelgpam also depends
on the architecture of the parallel computer and the numbprazessors. Therefore,
a parallel program cannot be evaluated isolating from allehchitecture (Kumar
et al, 2003). The architecture details where the applinatimn on are in Table.3

(Resources, 2012).

The computing resources are provided by National Center igh HPerformance

Computing of Turkey (UHeM). In order to test the parallel piang, wall clock time
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Table 4.3 Computing

server system technical specifications.

System Name

ANADOLU (HP ProLiant DL360 G5)

Processor Intel Xeon 2.33 GHz (5140 dual-core, E53:
quad-core)

Number of Compute Nodes 192

Number of Compute Cores 1004

Memory Architecture Distributed

Compute Node Memory Amoun

t8 GB (dual-core servers), 16 GB (quad-core

servers)

Compute Node Disk Amount

2 x 60 GB RAID1 + 60 GB

High Performance Network

InfiniBand 20 Gbps

Operating System

RHEL 5.1 x86_64

in seconds is used as the performance index. Speedup factafiiciency are also

analysed related to the test results.

The time elapsed from the beginning to the end of executioa gfogram on a

sequential computer gives the serial wall clock time of gmaigram. On the other

side, the parallel wall clock time is the time elapsed betwtee moment that a parallel

computation starts and the moment the last processor fgithexecution (Kumar et

al, 2003).
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Figure 4.4 Benchmark run time results based on the number of processors
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As seen in Figure 4, the parallel algorithms reduce the wall clock time apprately

to the execution time of the serial algorithm proportioneg the number of
processors. The foremost reason is that multiple procesaoe included by
dividing the whole process into separate tasks rather timghementing on a single
processor. Furthermore, the computation time is declingdtd the decomposed task
implementation concurrently. By increasing the random nemsize of each risk factor
for the fixed number of pocessors, wall clock time index iséirly rising. In addition,
doubling number of processors almost takes halfway downptrallel computing

time.

For the highest number of simulations, it can be mentionatl ttie wall clock time
is decreased in descending order due to smaller sized thpksamssors at each step
of incrementing number of processors, and on the other hesatey communication

cost. Speedup factor is defined as the ratio of the seriaimedf the best sequential

T T
10 x 10° Simulations —+—

Wall Clock Time (seconds)
[e]

4 ~
\
0 10 20 30 40 50 60 70 80

Number of Processors

Figure 4.5 Run time results for DAL0° simulations.

algorithm for solving a problem to the time taken by the gatalgorithm to solve the

same problem op identical processors (Kumar et al, 2003).

Run time using one processor (best sequential algorithry
Execution time using a multiprocessor with p processquj

Speedufp) = 4.3

Speedup factor should take place between 0 @nidhe lower bound 0 occurs when
a parallel program never terminates. However, a speedtgr faeater thamp can be
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obtained due to a specific reason such as a parallel programldss work than the

corresponding serial version (Wilkinson and Allen, 1999).
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Figure 4.6. Speedup factor results.

Figure 46 almost presents linear speedup that is reducingriamber of processors
proportioned by 2 for random number sizex1(P at each stock in the market index.
Equally divided tasks for parallelism primarily cause td genaximum speedup. In
addition, cost of communication and cost of contention ésources are reasons of not

observing perfect speedup which leads to scaled one.

Efficiency is a measure of the fraction of time for which a mssor is usefully
employed. It is the ratio of speedup to the number of progesso

Speedupp)

Efficiency(p) = 5

4.9

For perfect speedup, efficiency is equal to 1. Practicallg t the fact that speedup

factor p is rarely obtained, efficiency is between 0 and 1 (Kumar 2@03).

The speedup benchmark results lead that efficiency dropsdogasing the number of

processors for the fixed size problem as in Figuke 4
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5. CONCLUSION

The financial crisis of 2007-2009 has highlighted two bro#&k Mmanagement
strategies open to any financial institution. One approsth identify risk factors and
tackle each one separately, which sometimes refers to gation. The other is to
reduce risks via diversification. This study clearly atti@tention to define individual
risk factors by proposing a correction. It is firstly showrepan XU100 portfolio
that the second-order approximation converges to thegrtjeometric return more
than the weighted combination of single risk factors geoimeeturns. In such a
case, applying the proposed approximation in market ESsassnt produces a lower
loss value which relates to a less conservative result. itBatysanalysis are then
implemented via first derivatives of market ES with respeanarket allocation. The
sensitivities to individual risk factors generally preskenver loss values than the ones

estimated by means of a first-order approximation.

In addition, Monte Carlo simulation procedure is the one thattilized for market
ES estimation. Since Monte Carlo methods consider the behafipossible future
events, it is intended to minimize doubt on the validity of tlesults which is caused
by simplifications and approximations of other estimatiogtimods. Space and time
complexity of the procedure is reduced by applying paraltghputing techniques.
It is demonsrated via several performance criteria thaglacation is provided with

processors up to the number of risk factors.

In order to test how the second-order approximation corsetg the rate of return on a
portfolio, it is recommended to consider richer covariamadrix estimation methods,
e.g. GARCH(1, 1), for further research. Because it is highlyueate in short time

intervals, the approximation can be illustrated making okeealized variance and

covariance estimates.
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APPENDIX A

Table A.1: Stock code list

Stock code| Stock name Stock code| Stock name

AEFES ANADOLU EFES ISCTR IS BANKASI (C)
AFYON AFYON CIMENTO ISFIN IS FAN. KIR.

AKBNK AKBANK ISGYO IS GMYO _
AKENR AK ENERJ ISYHO ISIKLAR YAT. HOLD ING
AKGRT | AKSIGORTA IZMDC IZMIR DEMIR CELIK
AKSA AKSA KARSN KARSAN OTOMOTIV
ALARK ALARKO HOLDING KARTN KARTONSAN

ANSGR | ANADOLU SIGORTA KCHOL KOC HOLDING
ARCLK ARCELIK KONYA KONYA CIMENTO
ASELS ASELSAN KOZAA KOZA MADENCILIK
AYGAZ AYGAZ KRDMD | KARDEMIR (D)
BAGFS BAGFAS METRO | METRO HOLDING
BANVT BANVIT MGROS | MIGROS TICARET
BIMAS BiM MA GAZALAR MNDRS | MENDERES TEKSTL
BJKAS BESKTAS FUTBOL YAT. MUTLU MUTLU AKU

BOYNR BOYNER MAGAZACILIK NETAS NETAS TELEKOM.
BRISA BRISA NTHOL NET HOLDING
BRSAN BORUSAN MANNESMANN NTTUR NET TURIZM

DEVA DEVA HOLDING OTKAR OTOKAR

DOAS DOGUS OTOMOTV PETKM PETKIM

DOHOL DOGAN HOLDING PRKME PARK ELEK. MADENCIL IK
DYHOL | DOGAN YAYIN HOL. RHEAG | RHEAGIRISIM
ECILC ECZACIBASIILAC SAHOL SABANCI HOLDING
ECZYT ECZACIBASI YATIRIM SASA SASA POLYESTER
EGGUB | EGE GUBRE SISE SISE CAM

ENKAI ENKA INSAAT SKBNK SEKERBANK

EREGL EREGLI DEMIR CELIK TCELL TURKCELL

FENER FENERBAHCE SPORIF TEKST TEKSTILBANK
FROTO FORD OTOSAN TEKTU TEK-ART TURIZM
GARAN | GARANTI BANKASI THYAO TURK HAVA YOLLARI
GLYHO GLOBAL YAT. HOLD ING TIRE MONDI TIRE KUTSAN
GOLDS | GOLDAS KUYUMCULUK TOASO TOFAS OTO. FAB.
GOODY | GOOD-YEAR TRCAS TURCAS PETROL
GSDHO | GSD HOLDING _ TRKCM | TRAKYA CAM

GSRAY GALATASARAY SPORTIF TSKB T.S.K.B.

GUBRE GUBRE FABRK. TSPOR TRABZONSPOR SPORF
HURGZ | HURRIYET GZT. TTRAK TURK TRAKTOR
IHEVA IHLAS EV ALETLERI TUPRS TUPRAS

IHLAS IHLAS HOLDING VESTL VESTEL

IPEKE IPEK DOGAL ENERJ YKBNK YAPI VE KREDI BANK.
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