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FOREWORD

This work came into existence by a joint effort of my dear advisor, authors of hundreds
of previous works, my family, lots of friends, and me. During my PhD study, I was
also partially supported by TUBITAK-BIDEB and iTU-BAP.

As being close to idealism in a philosophical manner, I have been always thinking that
the abstraction harms the truth; however, I could not help myself with performing yet
another work concerning abstraction.

March 2012 Birkan TUNC
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ROBUST FACE RECOGNITION ON NONLINEAR MANIFOLDS

SUMMARY

The face recognition is one of the most studied, yet one of the most incomplete
topic due to the nonlinearity and the diversity of variations which are effective during
the data acquisition. Developing an algorithm that can handle illumination, pose,
expression, occlusion etc. altogether still seems to be a very challenging job. There
exist lots of study concerning invariant representations to handle certain variations, yet
a generic approach to model different variations at once still seems to be a task to
accomplish.

In this study, we define a baseline framework to handle different types of variations.
The main attention is to propose a guideline that can be used for different types of
variations without requiring any modifications depending on the physical or geometric
characteristics of the concerned variation. In other words, the methodology can be
utilized for recognition under illumination, pose changes or expression changes. The
proposed method is established over the subspace analysis; therefore, the direction of
the future works is also defined explicitly.

The proposed method defines the geometry of the variation space spanned by
observations (images) of a class (a person) under an operative variation (illumination).
This goal is achieved by constructing a coordinate system for this subspace.

Many popular face recognition algorithms use holistic approaches in conjunction
with appearence-based models. Appearance-based models utilize the actual pixel
intensities, and this fact alone is enough to damage the effective signal-noise ratio since
individual pixels tend to change dramatically under certain variations like illumination
and facial expression. A common approach to handle these variations is to define a
lower dimensional subspace in which the useful statistics are more definite compared
to the noise.

Under a problematic variation, individual or class statistics may be altered dramatically
preventing a useful discrimination. In LDA, the idea of distinguishing the real signal
source and the noise caused by the variation was exploited by controlling the inter-class
and intra-class variances. To understand the face space under variations, one needs
to determine its geometric structure i.e. to understand the distribution of images
according to their illumination and pose labels. Definitely, it can not be managed
in the original input space because the dimensionality is considerably large, and pixel
values tend to change critically even under small environmental changes.

When the utilized appearance-based method depends on a dimensionality reduction
technique as a transformation agent, factor analysis happens to be the main actor.
Factor analysis is a powerful tool, especially when it is used for the dimensionality

XVvil



reduction. The classification is achieved in the lower dimensional subspace instead of
the noisy higher dimensional pixel space.

Regardless of the selected technique to classify the object, a numerical representation
of the object is needed to perform calculations. The simplest representation is the
vectorized form of the image matrix. These vectors then are assumed to span a
vector space, and all calculations can be carried out in this vector space. In its initial
form the vector space assumption is not able to handle real life variations effectively.
This assumption is very loose and can only be useful under lots of constraints. First
of all, in the real life face images do not span an Euclidean vector space in the
sense of mathematical definitions. Beside the fact that the face space is not R"*"
as a topological space, it is not also Euclidean in the geometrical manner since the
Euclidean distance can not represent the geometric structure of face distributions.
Banach and Hilbert spaces, as more generalized vector spaces, are still useless as they
inherit linear scaling of the distance.

Although the face space is not Euclidean, face vectors lie on subspaces which are
locally Euclidean and smooth. Differentiable manifolds are generalization of this
kind of locally Euclidean and smooth subspaces. Manifold learning approaches can
help with employing non-Euclidean geometries into the subspace analyses. The main
idea behind manifold learning is to utilize local geodesic distances instead of global
Euclidean distances.

In this study, a new subspace analysis perspective, in which a new representation
is proposed implicitly, is drawn. Images of a person under a certain variation are
assumed to be generated by a linear generative model. The identity of a novel
observation is determined by the likelihood of being generated by this model. In other
words, the generative model of each person, represents observations (images) by its
model parameters. A manifold embedding technique is incorporated to handle the
nonlinearity introduced by the variation; hence, a novel connection between manifold
learning and generative models is proposed.

The proposed method can be summarized as a two-step probabilistic framework. The
first step is a bootstrap phase in which the useful statistics are calculated. A manifold
learning technique is employed at this step to define the geometry of the subspace. The
second step includes regular training and testing tasks.

Numerous experiments were performed to analyze the performance of the proposed
method against different variation types and with relatively large databases. In both
cases, the results are very promising. Several advantages of the method can be
summarized as follows: (1) different types of variation that lie on smooth manifolds
can be handled by the method, (2) the scalability of the classical factor analysis is
improved by a class dependent scheme, (3) the decision process is fully probabilistic,
and posterior probabilities can be utilized for large scale and domain specific real
life applications by incorporating priors on the identities, (4) bootstrap has less time
complexity compared to 3D rendering approaches, and finally (5) a single observation
for each identity is sufficient to perform reliable recognition while a way to use more
images is also introduced.
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DOGRUSAL OLMAYAN MANIFOLDLAR UZERINDE
GURBUZ YUZ TANIMA

OZET

Gliniimiize dek yapilmig tim caligmalara ragmen, yiiz tamima konusu hala
kontrollii ortamlarda gosterdigi basarinin 6tesinde bir ilerlemeye ihtiya¢c duymaktadir.
Goriintiilleme sirasinda etkin olan, 1siklandirma, poz, yiiz ifadeleri gibi degisimler
tanima etkinligini olumsuz yonde ve yogun bir bicimde etkilemektedir. Belli
degisimler karsisinda basar1 gosteren yontemler gelistirilmis olmasina karsin, farkli
degisimleri ayn1 yaklagsim ile modelleyebilen bir calismadan bahsetmek pek miimkiin
olamamaktadir.

Bu calismanin amaci, farkli degisimleri modelleyebilecek genel bir yaklagimin
tasarlanmasi1 ve basariminin Ol¢iilmesidir.  Sunulan yaklasimin, degisimlere 6zel
ayarlamalara ihtiya¢ duymadan, yalin hali ile kullanilabilmesi ve boylece farkli alt
uzay incelemelerini aym cati altinda toplayabilmesi hedeflenmektedir. Onerilen
yontem, genel hatlar1 ile, alt uzay tasarimlarina dayanmaktadir ve boylece gelecekte
yontemin ne sekilde gelistirilebilecegi, kapal1 bir sekilde sunulmaktadir.

Calisma igerisinde, farkli degisimlere karsilik gelen goriintiilerin olusturdugu
geometrilerin incelenmesi ve bu geometrilere ait bilgilerin 151g8inda, kisilere ait
degisim manifoldlarinin olusturulmasi ile tanima islemin gergeklestirilecegi ortamin
hazirlanmasi s6z konusu olacaktir.

Bir¢ok tanima yontemi, goriiniim tabanli yontemleri kullanmaktadir. Goriiniim tabanl
yontemler, islenmemis gozek (ing: pixel) parlaklik degerlerini kullanirlar ve bu
durum, etkin sinyal/giiriiltii oranim1 diisiirmek yoniinde etkide bulunur ¢iinkii parlaklik
degerleri temel degisimler altinda biiyiik degisiklikler gosterirler. Degisimlerin sebep
oldugu sorunlar ile bag etmenin en temel yollarindan birisi, parlaklik degerlerinden
olusan 6znitelik vektorlerinin, daha diisiik boyutlu altuzaylar igerisinde temsil edilmesi
ve boylece faydali sayimlarin etkin hale getirilmesidir.

Gorliniim tabanli yontemlerler birlikte, diisiik boyutlu altuzay tasarimlarindan
faydalanilacagi zaman, etmen c¢oOziimlemesi bas aktor olarak karsimiza cikar.
Etmen coziimlemesinde temel mantik, 6znitelik vektorlerinin daha diisiik boyutlu
altuzaylar igerisinde temsil edilmesi ve smiflandirmanin bu temsiller yardim ile
gerceklestirilmesidir.  PCA ve LDA gibi boyut diisiirme yontemleri de etmen
coziimlemesiyle ayn1 mantik ile calismakta ancak etkilesimin yoniinii degistirmektedir.
Etmen c¢oziimlemesi, her gozlemi diisiik boyutlu temsillerden iireterek altuzaydan
gozlem uzayima dogru bir yonelim sergilerken, diger yontemlerde gézlem uzayindan
altuzaya dogru calisan doniisiimlerden faydalanilacaktir. Bu ¢alisma, iiretim modelleri
tizerine kuruldugu i¢in temel olarak etmen ¢éziimlemesini alacaktir.
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Etmen ¢6ziimlemesi ve benzeri temel yontemler, degisimlerin olusturdugu geometri-
lerin dogrusal olmayan yapilar1 nedeniyle yeterli etkinlige ulasamamaktadirlar. Bu
amacla, uygulama alani belirlendikten sonra, bu alan i¢in 6zellesmis yontemlerin
kullanilmas1 genelde tercih edilen yontem olmustur. Yiiz tanima s6z konusu
oldugunda, degisimlerin etkilerinin ortadan kaldirilmasi ancak belli basarimlarla
saglanabilmektedir.

Etmen coziimlemesi benzeri yontemler ile iiretilen alt uzay, tiim siniflar (6rnegin
kigiler) icin ortak olacak ve siiflar arasi ayrim, bu alt uzay icerisindeki yerlesim
ile saglanacaktir. S0z konusu degisimin (0rne8in farkli 1siklandirmalar) 6znitelik
vektorlerinde meydana getirecegi farklilik, sinif farklilifindan daha baskin ise alt uzay
icerisindeki konuglanmalar yeterince etkili olamayacaktir.

Nesne goriinlimlerinin taradigi vektor uzayr icerisinde, soz konusu degisimlerin
meydana getirecegi alt uzayin geometrisi genelde dogrusal degildir. Bu durum, diisiik
boyutlu alt uzay konaglarinin (ing: coordinates) PCA, LDA gibi dogrusal teknikler
ile anlamli bir sekilde elde edilmesini engelleyecektir. Bu baglamda gelistirilen ve
basart ile kullanilan Manifold 6grenimi teknikleri dogrusal olmayan geometrilerin,
genellemelere gerek kalmadan incelenebilmesine olanak tanimaktadir.

Bu calismada, olasilik tabanli PCA benzeri bir gerceve kullanilarak, dogrusalliktan
belli diizeyde uzak degisimlerin modellenebilmesi ve bu degisimlerin var oldugu
durumlarda simiflandirma yapilabilmesi icin genel amach bir yontem gelistirilmistir.
Yontem iki temel asamadan olugmaktadir: (1) Manifold 68renimi ve (2) olasilik
temelli iiretim modeli. Ilk asamada elde edilen diisiik boyutlu alt uzay konaglari,
ikinci asamada sinifa 6zel altuzaylarin belirlenmesinde kullanilmaktadir. Yontemin en
belirgin uistiinliigii, her sinif icin ayr bir alt uzay elde edilmesi ve egitim asamasinda
her sinifin tek bir 6rneginin yeterli olmasidir. Siniflarin bagimsiz alt uzaylar icerisinde
modellenmesi, yontemin ayrim giiciinii olduk¢a arttirmaktadir.

Calismanin ilk adimui, ilgilenilen degisimin meydana getirdigi altuzay geometrisinin
belirlenmesi olacaktir. Bu amacla manifold 6grenimi yontemleri diisiik boyutlu
kona¢ degerlerinin bulunmasi icin kullanilabilir. Bu calismada LPP y&nteminden
faydalanilmaktadir. LPP ciktisi, yeni konaglarin iiretimi i¢in kullanilan bir M
matrisidir. Herhangi bir x 6znitelik vektorii i¢in yeni konag degerleri (¢ = Mx) esitligi
ile hesaplanabilir. Kullanilan M matrisi tiim siniflar icin ortaktir. LPP ile modelleme
sirasinda, etiketleme degisim tiirii lizerinden yapilabilir. Boylece, iki farkli x 6znitelik
vektorii ayn1 degisim tiirline sahipse, farkli siniflara ait olsalar bile karsilik gelen ¢
konag vektorleri aym olacaktir. Ornegin, kizginlik ifadesi tagtyan iki farkli Kisinin
goriintiileri ayn1 ¢ degerlerine sahipken, ayni kisinin kizginlik ve {iziintii ifadelerindeki
goriintiileri farkli ¢ degerlerine sahip olurlar.

Manifold 6grenimi ile ilgilenilen degisimin sebep oldugu geometri Ogrenildikten
sonra amag¢ altuzayin bir taban takiminin hesaplanmasi olacaktir. Tiim bu amaclar
dogrultusunda bir 6n inceleme veri kiimesi olusturulacak ve model 6grenimi
gerceklestirilecektir. Bu dogrultuda, ilgilenilen degisim altindaki goriintiilerden olusan
herhangi bir X = {x;} veri kiimesinden faydalanilabilir. Burada, i sinifina ait ve k
tiriinde degisiklige sahip X;; 6znitelik vektoriiniin,

X, = W;c, + &
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tiretim modeli ile olusturuldugu kabul edilecektir. Bu esitligin geleneksel etmen
coziimlemesi yaziminin gelistirilmis bir hali oldugunu sdylemek miimkiindiir.
Goriildugt gibi W; matrisi sinifa ozel bir etmen agirliklar kiimesiyken, ¢; vektorii
her smif icin ortaktir ve de8isimin tiiriinii belirtmektedir. Bu tasarim, geleneksel
etmen ¢Oziimlemesinden farkli olarak her smf icin ayri etmen bilesen kiimesi
tanimlamaktadir. Es deyigsle, elde edilecek alt uzay taban takimlari her sinif i¢in
ayr1 olacaktir. Boylece her sinifa 6zel ayri1 bir etmen ¢oziimlemesi kurgulandigindan
bahsedilebilir. Bu farkli modeller arasindaki ortaklik, c¢; vektorleri {izerinden
saglanmaktadir. Bagka bir sekilde yorumlamak istersek, ¢ vektoriileri ilgilenilen
degisimin olusturdugu manifold iizerindeki yerel kona¢ degerlerimizdir. Benzer
sekilde W matrisleri de taban takimlarin ifade eder.

Hesaplamalar1 kolaylastirmak amaciyla ayni modeli x;; vektoriiniin her bir 68esi i¢in
_wTl
Xik = W; ¢ + &,

seklinde yeniden kurgulamak miimkiin olmaktadir. Tiim hesaplamalar sirasinda
bu esitlikten faydalanilacaktir. Bu esitlikteki ¢; degerleri LPP sonrasinda bilinir
durumdadir. Ayrica w; vektorii ve g, sabiti lizerinde sirasiyla

p(wi) ~ 4(u,Q7"),
p(&) ~ 9(0,07),

Gauss dagilimlar1 kabullenmesi yapilacaktir. Boylece, amacimiz bu dagilimlarin
degistirgelerinin belirlenmesi olacaktir. Bu noktaya kadar tiim hesaplamalar 6n
inceleme amaciyla gerceklestirilmigtir. Bagka bir deyisle, e8itim sirasinda sisteme
tanmtilacak olan smiflara ait W; islecleri bulunmak istendiginde temel alinacak
dagilimlarda etkin Q, u ve sz degistirgelerinin bulunmas: saglanmisti.  Bu
hesaplamalarda kullanilacak X Orneklem kiimesinin, egitim ve test asamalarininda
kullanilacak olan kiimeden farkli olmasi beklenmektedir. Her sinif icin birden fazla
ornegin (x;;) gerekecegi de unutulmamalidir.

On inceleme asamasinda kullanilan X Orneklem kiimesi, rastgele bir kiimedir ve
ayrim/tanima yapilmasi istenen smnif Orneklerini icermez. Egitim asamasinda,
tizerlerinde tanmima deneyleri yapilacak kisiler i¢in W; matrislerinin bulunmasi
amaglanmaktadir. Bu amacla MAP tahminlemesi,

Wyap = argmaxy — p(W|X)

seklinde kullanilabilir. Bayes kurali yardimiyla p(w|x) = p(x|w)p(w) esitliginden
faylanmamiz miimkiin olur. Boylece 6n dnceleme asamasinda belirledigimiz dagilim-
lar yardimiyla MAP tahminlemesine bir ¢6ziim bulabiliriz. Sonug olarak, tanimak
istedigimiz kisinin drnek goriintiisii ile kisiye ait taban takimi belirlenebilecektir.

Yeni bir x test Ornegi icin, ait olunan sinifin belirlenmesi, her sinf i¢in p(x|W;)
olasiliklarinin hesaplanarak, en biiyiik degerin secilmesi ile olacaktir. Diger bir yontem
de, egitim asamasinda hesaplanan W; matrisinin, birim boylu ve dik siitunlardan
olusacak hale getirildikten sonra, x vektoriiniin,

X; = W,'WITX,
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seklinde sentezlenmeye caligilmasi olabilir. Bu durumda son karar, ||x; — x|| boyu
tizerinden verilecektir.

Yontemin farkli degisimler altinda caligsabildigini gostermek amaciyla, 1siklandirma,
poz ve ifade farkliliklar1 s6z konusuyken yiiz tanima deneyleri yapilmistir. YOntem,
mevcut yazinda bagaril olarak nitelendirilen yontemlerle yarigsan bagarim oranlari elde
etmis ve yiiksek boyutlu veritabanlari i¢cin de uygun oldugunu kanitlamigtir.

Onerilen yontemin baz1 temel art1 degerleri su sekilde siralanabilir: (1) Manifoldlar
iizerinde tanimli farkli degisimler, yontem iizerinde yenilemeye ihtiya¢ duyulmadan
kontrol altina alinabilmektedir. (2) Geleneksel etmen ¢oziimlemesi yaklagiminin
etkinligi ve olgeklenebilirligi, sinif temelli bir yaklagim ile arttirilmistir. (3) Karar
verme siireci tamamen olasiliksaldir ve boylece yliksek boyutlu veritabanlarina yonelik
olarak oOnciil olasiliklarin devreye sokulmasi ve alinacak kararin alan bilgisi ile
kuvvetlendirilmesi miimkiindiir. (4) U¢ boyutlu modellemeler ile kiyaslandiginda,
Oon inceleme asamasinin zaman karmasikligi daha disiiktiir. (5) Her kisinin tek
bir 6rneginin bulunmasi tanima i¢in yeterliyken, birden ¢ok goriintiiniin bulunmast
durumunda bagarimu arttiracak eklentiler de tanimlanmasgtir.
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1. INTRODUCTION

When the subject under consideration is the object recognition and specifically the
face recognition a compelling question arises: why does such an exhaustively studied
subject still need further attention which concludes in a PhD thesis? Answer is
easy just like the question itself: Among all computer vision studies, the problem of
recognizing faces is one of the most studied, yet one of the most incomplete topic due
to the nonlinearity and the diversity of variations which are effective during the data
acquisition. Developing an algorithm that can handle illumination, pose, expression,
occlusion etc. altogether still seems to be a very challenging job. That may be realized
by using 3D scanners or equivalent technologies during the recognition; however, such
an solution itself produces new constraints in addition to the already exhausting real

life requirements.

Regardless of the selected technique to classify the object, a numerical representation
of the object -a face in our case- is needed to perform calculations. At this point,
probably the most important decision should be made which in turn determines the
upper boundary of the final recognition rate. The decision concerns the selection of
the base representation. The utilized classification algorithm can only push the limit

implicitly defined by the representation.

The simplest representation is the vectorized form of the image matrix. These
vectors then are assumed to span a vector space, and all calculations can be carried
out in this vector space. This simple idea was actually a corner stone for today’s
recognition algorithms. When for the first time, M. Turk and A. Pentland made
use of Euclidean vector spaces by employing a well known dimensionality reduction
technique Principal Component Analysis (PCA) [1] in their remarkable work [2], they

opened a gate to the diverse possibilities of the matrix algebra.

Indeed, in its initial form the vector space assumption is not able to handle real life

variations effectively. This assumption is very loose and can only be useful under



lots of constraints. First of all, in the real life face images do not span an Euclidean
vector space in the sense of mathematical definitions. Even when the face images are
considered as m X n-dimensional vectors, there is no meaning of multiplying a face
vector with a scalar (especially with a negative one). Pixel values are bounded in
some intervals like [0,255], and image vectors can not be generated by adding two
face vectors if the resulting pixels are outside this interval. Beside the fact that the face
space is not R™*" as a topological space, it is not also Euclidean in the geometrical
manner since the Euclidean distance can not represent the geometric structure of face
distributions. Banach and Hilbert spaces, as more generalized vector spaces, are still
useless as they inherit linear scaling of the distance [3]. Due to all these negative
aspects, techniques relying on linear subspaces of face images are easily affected by

even simple variations.

Embeddings like PCA can solve problems caused by statistically well behaving
noise. However, under a problematic variation, individual or interclass statistics
may be altered dramatically preventing a useful discrimination. An elegant idea is
to distinguish the real signal source (identity of the image) and the noise caused by
the variation (differences imposed by illumination). In Linear Discriminant Analysis
(LDA) [4], this idea was exploited by controlling the inter-class and intra-class
variances. That was the second leap towards the world of sophisticated subspace
analyses. After LDA, we now know that it is possible to embed face images in a
subspace which explicitly designed to handle the variation. Using a layer of abstraction
(representing faces by coordinates inside the subspace instead of original pixel values),

it is possible to get a new set of vectors behaving more presumably under variations.

One way to understand the face space under variations like illumination and pose
changes is to determine its geometric structure i.e. to understand the distribution of
images according to their illumination and pose labels regardless of their identities.
Definitely, it can not be managed in the original input space because the dimensionality
is considerably large, and pixel values tend to change critically even under small

environmental changes.

Although the face space is not Euclidean, face vectors lie on subspaces which are

locally Euclidean and smooth. Differentiable manifolds are generalization of this
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kind of locally Euclidean and smooth subspaces. Face images taken from different
viewpoints or under changing illumination conditions can be regarded as lying on
smooth manifolds [5-9]. Under uncontrolled environmental settings, the manifold
assumption may not hold due to the complexity of the data. However, it is still possible

to utilize this assumption by only considering a small set of significant factors.

Manifold learning approaches can help with employing non-Euclidean geometries
into the subspace analyses. Manifold learning can be summarized as a nonlinear
dimensionality reduction technique based on the assumption that input data lie on a
differentiable manifold. The main idea behind manifold learning is to utilize local

geodesic distances instead of global Euclidean distances [6,9, 10].

In this study, a new subspace analysis framework called Class Dependent Factor
Analysis (CDFA) is proposed. During the formulation of the framework, a new
representation is suggested implicitly. Images of a person under a certain variation
are assumed to be generated by a linear generative model. The identity of a novel
observation is determined by the likelihood of being generated by this model. In other
words, the generative model of each person, represents observations (images) by its
model parameters. A manifold embedding technique is incorporated to handle the
nonlinearity introduced by the variation; hence, a novel connection between manifold

learning and generative models is proposed.

1.1 The Problem Definition

The proposed framework is an alternative approach for handling different variations in
the face recognition problem. The scope of the study consists of a generic way to deal
with three leading factors namely, illumination, viewpoint, and facial expression. Face
recognition under such variations is the main challenging task in the domain. This
study addresses a common and generic solution which can be employed against such
variations without any modification based on geometrical or physical aspects of the

variation.

Appearance based models (i.e. feature vectors are constructed by raw pixel values)

are utilized through the study. Input images are used in their raw gray valued form



without any preprocessing (beside z-normalization) or new representations like LBP

[11]. Hence, the explicit shape information is not present in the feature vectors.

Example face images are given in Figure 1.1 to illustrate effects of illumination, facial
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expression, and viewpoint.

Figure 1.1: Effects of different variations: (a) illumination, (b) pose, (c) facial
expression.

1.2 The Classical Approaches And Their Limitations

Many popular face recognition algorithms use holistic approaches in conjunction with
appearence-based models [12]. Appearance-based models utilize the actual pixel
intensities, and this fact alone is enough to damage the effective signal-noise ratio since
individual pixels tend to change dramatically under certain variations like illumination
and facial expression. A common approach to handle these variations is to define a
lower dimensional subspace in which the useful statistics are more definite compared
to the noise. As an example, PCA is used to define a subspace where the variance on

principal axes is maximized.

When the utilized appearance-based method depends on a dimensionality reduction
technique, factor analysis (FA) happens to be the main actor. Besides the methods
which concern physical and geometric properties of the studied object, most of
the modern approaches share the main ideas of this statistical tool. FA is a well
known and commonly used approach in the data analysis community. Although its
early development traces to the beginning of the century, it is still one of the most

popular multivariate statistical analysis tools in applied science domain [13]. Its main



formulation is a linear generative model
x=Wc+eg, (1.1

where the weighted average of lower dimensional factors, ¢, is taken to generate a
higher dimensional signal, x. In this view, FA can be seen as a dimensionality reduction

technique when the inverse mapping of W is considered.

FA is a powerful tool, especially when it is used for the dimensionality reduction.
The classification is achieved in the lower dimensional subspace instead of the noisy
higher dimensional pixel space. The very same idea is exploited in PCA and LDA.
They both have similar underlying generative models but different directions between
the lower dimensional subspace and the higher dimensional observation space. For
PCA and LDA, the direction is drawn from the higher dimensional observation space

to the lower dimensional subspace as in
c=Wx, (1.2)

when considering zero mean observations. Although the error term is omitted in this
form, it is modeled implicitly by defining a distribution over observations. In PCA, the
transformation matrix, W, is estimated by considering the eigenvectors of the empirical
covariance matrix of observations while in LDA, it is constracted by maximizing the
(between variance / within variance) ratio of classes. Indeed, the most important
difference between LDA, PCA, and FA is the fact that LDA is a supervised method

whereas PCA and FA are unsupervised methods.

In classical approaches, the first limitation arises with the common subspace constraint:
The mapping, W, is common for all classes. The discrimination among classes is
achieved by the deployment of the class centroids on the coordinate system. Such a
modeling is insufficient when the effect of the variation is more dominant than the class
characteristics. In such a case, the coordinates of the points are mostly determined by
the variation type. A well known example is the fact that the images of different people
under same illumination lie closer in such subspaces compared to the images of a single

person under different illumination.

Another important drawback of a classical subspace approach is its dimensionality

concerns. As new identities are introduced to the gallery, methods like FA, LDA, and
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PCA require the subspace is to be re-constructed to increase the dimensionality. This

is an important constraint to sustain the scalability of the method.

As a critical fact, classical embeddings like PCA can handle variations caused by
statistically well behaving noise terms. However, variation types that are effective in
the real life prevent a useful discrimination by altering individual or interclass statistics

dramatically.

1.3 Overview of the CDFA Framework

The design of the framework starts with the reformulation of the factor analysis model
under a variation such as illumination. An observation X;;, which belongs to the class

i and has a variation k, is generated by the model

X = W;c, + €. 1.3)

With this formulation, individual factor loadings, W;, for each class i, are introduced
instead of a common loading matrix for all classes. However, the factors, ¢
(coordinates on the lower dimensional subspace), are common for all classes and
related to the variation type. The geometric interpretation yields different manifolds
for different classes while all manifolds have exactly same intrinsic geometries. Inside
two manifolds, points having same local coordinates correspond to the same variation

type. This interpretation is illustrated in Figure 1.2.

Class A Class B

(a) (b)

Figure 1.2: Illustration of individual manifolds of different identities. Any point on
the manifold corresponds to a variation type. The intrinsic geometry is
common among different manifolds. This behavior results in the same
variation type for same coordinate values.



Several important aspects of this formulation should be mentioned:

e Each class has its own subspace/manifold. Therefore, discrimination between
classes is performed by the distance to the manifold instead of the distance within
the manifold. Inside each individual manifold, a mixture of Gaussians is defined to

model the variation.

e Coordinate vectors, ¢, represent the variation type instead of class identities. Thus,
the determination of the variation value is explicitly provided. The variation of an

observation, X, can be determined if the factor loadings are known.

e (lass identities are stored as factor loadings in matrix W;. This property increases
the scalability of the recognition as more space is left for identity. The variation
does not condition the structure of the matrix since it is already modeled by the
factors. Theoretically, recognition can be performed under even severe variations,

as long as class dependent factor loadings are recovered successfully.

e The intrinsic dimensionality of manifolds is fixed once determined during the
bootstrap. Nevertheless, the actual dimensionality in which the recognition is
performed is n since the manifolds are embedded in R”, where n is the number

of pixels in images.

e A manifold learning step is employed to derive the reduced dimensional
coordinates, ¢;. Thus, a connection between manifold learning and probabilistic
generative models is proposed. This can be seen as an initial step towards nonlinear

probabilistic models.

The difference between individualized and common factor loadings can be observed
in Figure 1.3. The proposed method introduces basis sets which are specific to their

corresponding classes.

With this setting, one can synthesize different images of a person under different
conditions like changing illumination given a class dependent basis set. Figure 1.4
illustrates an example synthesis. Results can be improved by sophisticated error
models; however, this work does not concern such a task as the main goal is limited

with the discrimination among classes.



(a) b)

Figure 1.3: Demonstration of the semantic difference between (a) a common basis set
generated by a classical approach (SVD was used for this example) and (b)
class dependent basis sets generated by the proposed approach. Each basis
set includes the class information intrinsically. For this example, images
under changing illumination conditions were used.

A critical feature of the method is its generic structure. No physical or geometrical
attributes of the concerned variation are employed during calculations. Hence, any

variation lying on a smooth manifold can be modeled by the proposed method.

Figure 1.4: Several synthesis results for a single identity with varying illumination
conditions.

1.4 Connections to Previous Works

The proposed method has an analogous formulation with the probabilistic
interpretation of PCA [14,15]. Both approaches tackle with finding lower dimensional
representations of observations under some prior assumptions. The main difference
is that the proposed method derives class specific coordinates and accounts for the

variation explicitly.

A similar framework was introduced in [16]. That work dealt with individualized

subspaces. The actual improvement over [16] is that CDFA has a more generic
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structure which can be used for the general classification problem whereas only
illumination was considered in [16]. The authors of [16] used spherical harmonics
to calculate class specific bases. The results are limited to illumination as the spherical
harmonics can not be generalized to other types of variation. The relation between
reflectance functions on a Lambertian surface and spherical harmonics was defined

in [17] and [18].

The authors of [19] developed a cone model to solve the face recognition problem with
varying illumination. They argued that the set of images of an object in a fixed pose
but under all possible illumination define a convex cone. The approach requires a few
images of each gallery identity to estimate its surface geometry and albedo map. After
estimation is completed, synthetic images with different illumination conditions can be
rendered. That model illustrates the real power of the subspace analysis; nevertheless,
it is again constrained to be useful only for illumination and may not work with a
single observation. The proposed method is able to work with a single observation

while extra observations increase the accuracy.

Other techniques such as [20-24] suffer from being useful only for the specific
variation type that they have been developed for. We try to propose a method which

can be used for different variations.

A comparable work was performed in [25]. Authors defined a common subspace
for class identities yet different transformation matrices (factor loadings) for different
poses. Keeping the class information inside the coordinate vectors inherits an
important disadvantage of classical subspace methods: as the number of classes
increases, the subspace dimensions also need to be increased to sustain the scalability.
The technique may work with different variations that can be discretized. The same

idea was used in [26] again for pose variations.

The probabilistic approaches for the discriminative subspace analysis were proposed
in [27] and [28]. Both solutions were based on LDA with different settings. In [27],
authors defined a three layer decision process. At the initial layer, identity is drawn
from a common Gaussian distribution. Then, at the second layer a perturbation is

applied by another Gaussian. Finally, the third layer defines a projection from the latent



space to the observation space. In [28], the model introduced in [25] was improved by
employing different projections from the latent space to the observation space: one
for the between-individual subspace and one for the within-individual subspace. Both

models still assume common subspaces for different identities.

Compressive sensing and sparse representation were utilized in [29] and [30]. The
subspace analysis was performed on the basis of compressive sensing theory. Both
techniques can be used for different types of variation. The technique introduced in
[29] finds a discriminative sparse representation of each probe image by using the
whole gallery as a dictionary i.e. by a linear combination of gallery images. Such
a model requires each gallery identity to have a sufficiently large training set, and
the space complexity is high since all training images have to stored and accessed.
The method in [30] assumes that an image of a class can be represented as a sum of a
common component and a innovation component. The common component carries the
main identity related information for the class while the sparse innovative component is
specific to the image and includes the information related to the variation. To calculate
required statistics, both techniques need several images of an identity. These methods

are used in our benchmarks against facial expressions.

1.5 Other Related Works

The face recognition can be seen as one of the most popular and successful applications
in the image processing and understanding domain [12]. However, as a challenging
problem, illumination and pose invariant recognition still remains as an open study.
Face images taken in an uncontrolled environment usually contain variations in
viewpoint and illumination; therefore, these two factors have an important role in the

robustness of the system.

It is known for a long time, the feature-based methods like elastic bunch graph
matching [31] are promisingly successful against lots of factors including illumination
and viewpoint [12]. Nevertheless, their extreme sensitivity to the feature extraction
and the measurement of extracted features makes them unreliable [19]. As a result,

appearance-based methods have dominated the literature.
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One of the milestones for face recognition under variations can be stated as fisherfaces
[4] technique. LDA was used in [4] to construct a subspace on which inter-person
variance is optimally large while intra-person variance is efficiently small. The main
drawback of the technique, same as PCA [2], is the Euclidean consideration of the
data space. The method fails when data points lie on a nonlinear subspace, which is
usually true with multimodally distributed face images. A promising improvement
was proposed in [26] as using local linear transformations instead of one global
transformation. Method finds different mapping functions for different pose classes.
When a probe image is tested, its pose is determined by a soft clustering. Deciding to
the number of pose clusters is a vital problem as in all clustering algorithms. Moreover,

novel poses can not be handled in case of critical variations.

In [32], authors used the neighborhood structure of the input space to determine
the underlying nonlinear manifold of multimodal face images. Locality Preserving
Projections (LPP) was applied to calculate a basis set called laplacianfaces. Face
images with different poses, facial expressions, and illumination conditions were
studied and the recognition performances were shown to be higher compared to

fisherfaces or eigenfaces.

Pose variation was studied in [33] by using view-based eigenfaces. For each view,
eigenfaces were calculated and employed as separate transformations into a common
lower dimensional subspace. Authors also introduced eigenfeatures by which a
feature based scheme was incorporated. Their performance highly depends on the
discretization as it is a fact in [22]. In [22], the eigen light fields technique was
utilized to define the subspace of poses. Unfamiliar poses can be handled by the
technique. Authors in [20] combined the generalized photometric stereo and eigen
light field concept to design a generic method which is also insensitive to illumination
changes. 3D morphable face models were used in [34], [19], and [16] to generate novel
poses, and their performance values were superior to the previous research. Rendering
ability for new poses and illumination conditions is exceptional with 3D morphable
models [35]. However, the computational cost of generating 3D models from 2D
images or using laser scanners to access 3D models decrease the feasibility of the

recognition system.
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[llumination variance was studied in [23]. Authors proposed quotient image as an
illumination insensitive identity signature. The approach may fail when the probe
image has an unpredictable shadow; however, it has the ability of recognizing probe
images with illuminations different than that of gallery images. Technique requires
only one gallery image per subject. The method in [24] introduced extra constraints on

the albedo and the surface normal to remove the shadow constraint.

An illumination cone model was proposed in [19]. Authors argued that set of images
of an object in a fixed pose but under all illumination conditions define a convex cone.
The method requires a few images of a test identity to estimate its surface geometry
and albedo map. To handle pose variations, they defined different illumination cones

for each sampled viewpoint.

All sets of Lambertian reflectance functions, which can be used to generate all kinds
of illumination conditions for Lambertian objects, were defined in [17] and [18]. They
showed that by using only nine spherical harmonics, a wide variety of illumination can
be approximated. A methodology for recognition was also proposed in [17]. In [16],
spherical harmonics approach was exploited, and excellent results for recognition were
represented. They implemented a 3D morphable model to achieve pose invariance, and

this requires generating 3D face models from 2D images.

Authors in [36] suggested a nonlinear subspace approach using the tensor
representation of faces in different conditions like facial expressions, illumination,
and poses. They employed n mode tensor Singular Value Decomposition (SVD) to
generate image basis. The method requires several images under different variations
for each training identity. In [37], another nonlinear subspace analysis was proposed
by the manifold assumption. For each identity, a gallery manifold is stored in the
database. When a test identity with several new poses arrives its probe manifold is
constructed and by help of manifold to manifold distance, its identity is determined.

The requirement for multiple images of the test person is the main drawback.

A considerable idea was introduced by bilinear generative models that can be used to
decompose orthogonal factors in [38]. Authors defined a separable bilinear mapping

between the input space and the lower dimensional subspace. Once all parameters of
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mappings are determined, one can separate identity and pose information explicitly.
They analyzed the recognition and synthesizing capabilities of the technique, and the
results were promising. In [39], illumination invariance was analyzed by employing
a similar framework. To overcome the matrix inversion requirement in the symmetric
bilinear model, authors proposed a ridge regressive technique. A modified asymmetric
model was introduced in [25] to cope with pose variations. Discretization resolution
for the pose space is one of the leading factors on performance. The nonlinearity for
the generative models was incorporated in [40]. Authors recommended a nonlinear
scheme combined with the bilinear model, and the linearity constraint of the classical

generative models was tried to be removed.
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2. A GENERIC FRAMEWORK

In this study, we define a baseline framework to handle different types of variations.
The main attention is to propose a guideline that can be used for different types of
variations without requiring any modifications depending on the physical or geometric
characteristics of the concerned variation. In other words, the methodology can be
utilized for recognition under illumination, pose changes or expression changes. The
proposed method is established over the subspace analysis; therefore, the direction of

the future works is also defined explicitly.

The CDFA defines the geometry of the variation space spanned by observations
(images) of a class (a person) under an operative variation (such as illumination). This

goal is achieved by constructing a coordinate system for this subspace.

2.1 Constructing a Basis Set for a Variation Type

The data geometry of subspaces spanned by the different images of a person under
changing illumination has been studied by several authors [16-19]. For instance,
spherical harmonics that can be employed to approximate any reflectance functions
were defined as a basis set of the illumination subspace in [17] and [18]. Authors
of [16] showed that this subspace can be effectively used for recognition under
illumination changes. Once you have a 3D map of a person i.e. surface normals of

the face map, spherical harmonics for this person can be defined as
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where A is the surface albedo and n,, ny, and n; are surface normals at x, y, and
z directions, respectively. Only 9 harmonics are sufficient to capture approximately
99.9% of the energy of any reflectance function [17]. An example set of harmonics for
a person is demonstrated in Figure 2.1. Considering these harmonics as a basis set for
the variation subspace yields the following interpretation: Once the coordinate system
of the subspace corresponding to a person is constructed, it is possible to synthesize
any image of this person under any probable illumination condition. In this setting, a
given probe image can be recognized by a metric such as distance-to-manifold. Hence,
the initial problem is reduced to the problem of recovering basis sets for people in the

gallery.

Figure 2.1: Example set of spherical harmonics for a person. This basis set can be
used to synthesize images of this person under an arbitrary illumination.
Images are taken from [16].

Similar ideas were exploited in [19]. Again individual subspaces (illumination cones)
are defined for each person in the gallery. Those approaches may only fill a limited
gap for the real life recognition tasks since they are highly restricted to illumination
changes. One may not define a harmonic set or a cone model analytically for facial
expressions. Indeed, the main goal of this study is to eliminate this constraint. We try
to find a way to define basis sets corresponding to different types of variations without

using any physical or geometric properties of the concerned variation.

2.2 Proposed Generic Basis Recovery Scheme

The proposed scheme is an optimization procedure based on the linear generative
model

Xk = Wick. (2.1)

An image x;; is assumed to be generated by the linear combination of the basis
vectors (columns of the matrix W;). The combination coefficients, ¢, are the lower

dimensional coordinates in the subspace defined by the range of the matrix W;. Let’s
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assume that we have K images of a person i with K different values of a certain
variation (images with different viewpoints or illumination). The total reconstruction

error inside the subspace related to that variation can be defined as

K
& = Y llxu— Wi
k=1
K
= Y lIxie — Witk — Wizcko — - — WinCra |1, (2.2)
k=1

in terms of bases (W;) and coordiantes (¢;) where w;; indicates j’h column of the

matrix W;, and ¢y is jth element of vector c.

As the notation states, individual bases for different identities are defined while keeping
the coordinates common to identities. This behavior is very similar to the one used in
the spherical harmonics approach. The basis, W;, can be calculated by minimizing the

error. This procedure is repeated for each identity.

Indeed, this method is only useful if a complete set of images for each identity is
present. Unfortunately, this is not the case for real life scenarios. Therefore, a way to
recover the basis matrix, W, of a gallery identity g is required when only a few or a
single observation is present, Xg. This may be achieved by the Maximum a Posterior
(MAP) estimate as in

Wyap = argmax P(Wg|Xgr)
8

= argmax P(Xek|Wg).p(W) . (2.3

8
Such an approach requires the prior distribution, p(W), and the likelihood, p(Xox|Wy),
is defined beforehand. Given a novel observation, Xpk, the class label can be

determined by assigning the identity g with the maximum likelihood, p(X,x| Wy, ¢x).

2.3 Mathematical Background

The proposed method can be summarized as a two step probabilistic framework. The
first step is a bootstrap phase in which useful statistics are calculated. A manifold
embedding technique is employed at this step to define the geometry of the subspace.
The second step includes regular training and testing tasks. Framework starts with

analyzing the underlying manifold. A bootstrap database, consisting of identities with
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several observations (people with several images), is collected for this purpose. The
identities of the bootstrap database are different than the ones to be recognized; any

suitable database can be selected.

To simplify the calculations, the equation (1.3) is rewritten in an element-wise form as
K =w 2.4
Xik = W; Ck + &, (2.4)

where x;; is an element of the observation vector, X;;. Similarly, the vector w; is
the corresponding row of the matrix W;. Again, & is the corresponding element
of the error vector, €. Such an element-wise formulation ignores the correlations
among pixels while introducing new correlations among columns of W;. Unlike the
classical factor analysis model, the factors are treated as deterministic variables which

are calculated during the manifold learning step. Moreover, distributions

p(w) ~ g(u.Q7),
ple) ~ 9(0,67), (2.5)
on the vector w and the constant &, are defined. Along with the prior over the vector

w, the conditional probability p(xi|w,c;) is needed for the MAP estimate. It may be

defined as another Gaussian by
plxew,er) ~ 4 (wlep, of). (2.6)

The mean and the variance of the distribution are calculated by

— T — wl — wl

Elxglw,c;] = E[W cx+&|=w e, +E[g] =W ¢,
E[(a—Exlw,et)’] = E[(u—w'er)’] =E[(&—0)]

= E|(&—E[&])*] = of, 2.7)

using the generative model (2.4).

The proposed method is detailed through the following sections and summarized in
Table 2.1. For all formulations, a single variation such as illumination is considered
for the sake of simplicity. The bootstrap database will include multiple images of
people under different conditions. However, the gallery including identities that are to

be recognized may contain a single image of each identity.
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Table 2.1: Summary of the CDFA.

Bootstrap: Given a bootstrap database, X = {x; }

— Calculate lower dimensional coordinates, ¢, for each observation, x;;, by a
manifold learning technique (Section 2.3.1)

— Calculate the parameters y, Q! sz (Section 2.3.2 and Section 2.3.3)
Training: For each identity g in the gallery,

— Recover W, specific to this identity by maximizing p(W,|xe,cx) for each
element xg; of the observation, Xg (Section 2.3.4)

Testing: Given a probe observation X,

— Calculate the point to manifold distance for each identity g in the gallery, and
select the one with the minimum value (Section 2.3.5)

2.3.1 Manifold Learning

The aim of this step is to define a mapping, M, from the high dimensional image space

to the lower dimensional variation space as in
. =M'x, . (2.8)

The term variation space is chosen to emphasize that the coordinates of the subspace
are related to the variation. Locality Preserving Projections (LPP) [10] is employed
as a manifold embedding technique. This technique tries to preserve the intrinsic
geometry and the local structure of the underlying manifold. Method starts with the one
dimensional subspace assumption. In this view, the one dimensional representations
of two observations xk and X; are ¢, and c;. The relation between xk and ¢y is defined
as ¢y = m’ xy, where the vector m is a column of the mapping M. Considering the
weighted distance between data points in the one dimensional subspace as an error, the

total error after the dimension reduction becomes

g:ZZ(Ck_Cj)ZSkja (2.9)
ko j
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where the coefficients Sy ; are the similarity indices and related to the distances in the
higher dimensional observation space. They may be defined by

_ exp(—lxe—xjl*/1),  [lxe—x[]* <,
Skj = { 0, otherwise (2.10)

where the parameter 6 determines the radius of the local neighborhood. In other words,
method tries to assign close coordinates to the points which are in a small neighborhood

in the observation space. The cost function (2.9) can be rewritten as

2
&= LXj(ee—c)) Sk
2
= XL (m'x—m'x;)"Sy;
- m”X(D - $)X"m

- m’ XLX m, (2.11)

where the matrix X has data points, x;, as its columns. D is a diagonal matrix,
and its entries are column sums of S. L = D — S is the Laplacian matrix. By
introducing a constraint (m? XDX”m = 1), the minimization of (2.11) is transformed

to the generalized eigenvalue problem as
XLX"m = AXDX"m. (2.12)

Then, the eigenvectors corresponding to minimum eigenvalues are selected to construct

a linear mapping, M.

The selection of the similarity indices totally determines the structure of the
embedding. In the current form, LPP preserves the locality by minimizing the local
variance. When Sy ; is taken to be 1 /n? for all k, j then the Laplacian matrix, L,
becomes the data covariance matrix. In this form, we get the solution of PCA by
collecting the eigenvectors corresponding to the maximum eigenvalues. As an another

choice, Sy ; can be defined in a supervised manner by

s { 1/ne, if x; and x; both belong to the class ¢,
=

I 0, otherwise (2.13)

where 7. is the number of data points in class c. By this way, XLX” becomes the within
covariance matrix Sy. Similarly the between covariance matrix Sg is C — XLX” where

the matrix C is the data covariance matrix. In LDA, a generalized eigenvalue problem
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is solved as

Spgm = aSym. (2.14)

With the new weight configuration, this equation is equivalent to
XLX'm = ACm. (2.15)

Finally, if the sample mean of the data set is zero, C is exactly XDX”. Such examples

show the key role of selecting Sy ; during the embedding.

During the experiments, the following settings are used. A bootstrap database, {X}, is
collected for the concerned variation. Each identity i has several images corresponding
to different values of the variation. The distances between images are calculated in a
supervised manner as in LDA. The similarity indices in (2.10) are determined based
on variation labels. In other words, instead of considering local neighborhoods (the
parameter §), the coefficients S;; becomes 0 if two data points do not have the same
variation. For data points with the same variation, coefficients are calculated by the

heat kernel. Details can be gathered from [10, 32].

Using such a supervised approach draws an upper bound to the dimensionality of the
manifold. Since the rank of the generalized eigenvalue problem in (2.12) is determined
by the number of discretized variation labels (different types of illumination), the
dimensionality is at most the number of different variation labels in the bootstrap

database.

An example embedding of the bootstrap database into two dimensional subspace is
illustrated in Figure 2.2(a). A further averaging step is performed to discard the effect
of the identity completely. As shown in Figure 2.2(b), averages over identities are

calculated to represent each variation type.

The averaging is applied as follows: For each observation, x;;, the reduced dimensional
coordinates, ¢j, are calculated by ¢; = M”x;.. Then, for each variation label, k, the

average over all identities is taken by

1 N
= Z‘; Cik s (2.16)

where N is the total number of identities in the bootstrap database.
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Figure 2.2: Embedding results of LPP: (a) 2D embedding of the bootstrap database
with changing illumination. (b) Average coordinates corresponding to
different illumination conditions. These coordinates are invariant to the
identity.

2.3.2 Bootstrap: an algebraic approach

In the bootstrap phase, the parameters i, Q! sz, which define the distributions p(w)
and p(xjx|wi,¢cx), are calculated. As a first attempt, the distributions are defined
empirically i.e. the basis vectors, w, are found for different identities in the bootstrap
database, and then parameters over them are calculated. Such an approach seems to be
non-globally-optimal; however, by performing some regularizations, it is believed to

reach an appropriate solution which agrees with the assumptions on the distributions.

Here, the governing equation defined in (1.3) is taken into account. Now we consider
factor loadings, W, as a basis set of the variation subspace. Similarly, factors, ¢,
are assumed to be coordinates i.e. linear combination coefficients. If both parameters
(basis vectors and their coefficients) are treated as unknowns to be optimized, then
it is not possible to guarantee that the basis sets of different identities have similar
characteristics. If the basis sets of different identities are not forced to generate
a certain geometry for their own subspaces, they only adapt themselves to the
observations present in the bootstrap database. This fact illustrated in Figure 2.3.
When compared to the results in Figure 2.3 (a), it is easy to say that one may not
define proper distributions on the basis vectors of Figure 2.3 (b) since they do not have

compatible characteristics among themselves, unlike the ones in Figure 2.3 (a).

To this extend, the combination coefficients are kept fixed among different identities

to have a common geometry for different manifolds. Hence, another challenge is to
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(b)

Figure 2.3: Basis sets of different identities with (a) a constraint over the combination
coefficients, (b) no constraint over the combination coefficients.

be faced: a coefficient set that represents the geometry of the underlying manifold

most accurately is required. That is accomplished by the manifold learning step that is

detailed in Section 2.3.1.

The problem can be described as a high dimensional reconstruction error minimization.
The minimization is run for each identity in the bootstrap database separately to obtain
its basis set, W. Finally, measurements are performed over these basis sets to calculate

the required statistics.
Let’s assume that we have K images of an identity i in the bootstrap database. Then
the total reconstruction error for the identity i is

K
& = Y llxie— Wi
=1

K
= Y 1%k — Witk — Wicko — - — WinCian %, 2.17)
k=1

where w;; indicates j’h column of the matrix W;, and cy; is j’h element of vector
c;. The index i will be omitted in the following equations for the clarity. The
manifold dimension, 7, is determined during the manifold embedding. Details on the
dimensionality are given in Section 3.1. The combination coefficients, ¢, are assumed

to be calculated during the manifold embedding.
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The unknown basis vectors, w;;, can be minimized by taking the derivatives with
respect to them, and equating the derivatives to zero. To define orthogonalization
constraints over the bases, one may follow an iterative approach: find one basis vector
at each step. The framework starts with the 1-dimensional subspace assumption. Then,

the total reconstruction error is

K
& = Y Ixe—cawi?
k=1
K T
= Z (Xk — Ck1W1) (Xk - Cklwl)
k=1
K K K
= 2 Z Ck1X) W1 -+ W1 W Z ci + Z X( X
= k=1 k=1
K
= —2c1TXw1 +W1TW1C1T61 + Z XI{ka (2.18)
k=1

where the matrix X includes vectors x,{ as its rows, and c¢; is the vector of the first
coordinate terms. The last term, ):lK: X X,{Xk can be omitted since it does not depend on
the optimization variable, wj.

To reduce the condition number related to the problem, usually a normalization
constraint as wlTwl =1 is introduced. However, since a value is already assigned
to each ¢y, which plays a scaling role, using such a constraint on the norm of the

variable may result in stucking in a local optimum. Taking derivative with respect to

w1, and equating it to zero yields

&
— = 0=
8w1
0 = —2XT¢;+2wicle;. (2.19)
Therefore, the first basis vector is
XT
W=t (2.20)

To calculate the second basis vector, a similar minimization formulation with an extra

constraint (wlTwz = 0) can be used. By finding the minimum point for

K
=Y |xc—cuwi—cowa|* +A(wiwi), (2.21)
=1

the second basis can be found. The error term is now

& =25 Ywy +wiwyele, +2Awlwy, (2.22)
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after omitting constant terms. The matrix Y is defined as Y = X — clwlT. Again the

partial derivatives are taken with respect to unknown parameters, w, and A as

208
=~ — 0
8w1 =
0 = —Yle+ 2wzcg cr+ AWy, (2.23)
20&
ﬁ = 0=
0 = wiw. (2.24)

If the equation equation (2.23) is multiplied by wlT to use the identity in (2.24), the

value A is found to be

TyT
wiY'c
A= (2.25)
Then the second basis is
PY'¢
W= (2.26)
where P =1— wT;wlwlwlT is a projection matrix that projects into the complementary
1
of the subspace spanned by the first basis vector, wj.
Following the same procedure, the n' basis is
PY'¢
Wn = T n 5 (2.27)

and similarly Y = X — ¥/~ e;w! and P =T— Y/~ ——wiw].
i 1

As the complete basis set W; of each identity i in the bootstrap database is calculated,

the parameters of the distribution p(w) can be estimated by the empirical formulas

)
w=—Y w, (2.28)
N i=1

Q= ]ﬁiNl(wi—u)(wi—u)T- (2.29)
One should be careful with this notation. Here, we turned back to the form defined
in (2.4). Therefore, the vector w; is a row (not a column) of the matrix W;, and the
averages are taken over identities. After calculating the matrice W; for an identity i,

the parameters corresponding to different rows are determined independently.

The parameters of the error distribution, p(&), can be again estimated by an empirical
approach. The error for each identity i and the variation & is defined by (2.4) as
Eik = Xik — Wl-TCk. (2.30)
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Then, the mean value and the variance is calculated by averaging over identities. Here,
the mean value is most probably not zero contrary to the definition in (2.5). One may
redefine the distribution p(&) to have a nonzero mean value. Nevertheless, in such a

case the formulation of MAP estimate should be corrected in Section 2.3.4.

To relax the minimization problem, we included orthogonalization constraints over the
basis vectors. Nevertheless, it is possible to get a unique solution without using such
constraints provided that there exists a linearly independent set of coordinate vectors,
¢, corresponding to different values of the variation. This fact is shown in Appendix

A.l.

2.3.3 Bootstrap: a probabilistic approach

To provide an improved framework in terms of completeness, a new probabilistic
interpretation is presented. Here, the distributions p(w) and p(xj|w;,c;) are
re-defined. In other words, another way to calculate the parameters u,Q_l,sz is
shown. A way to calculate these distributions were already given in Section 2.3.2.

This time, a complete probabilistic approach is utilized.

The parameters of prior distributions defined in (2.5) are calculated again using the
bootstrap database, X = {x;}. Considering the element-wise formulation (2.4) and

priors, the conditional and the marginal distributions over the variable x; are

p(Xk|W,Ck) ~ g(chk, Gk2)7

plx) = [ pludw.edp(widw. 231)

Both the prior and the conditional distributions are Gaussians in (2.31), and this makes
the resulting marginal distribution, p(x;), to be another Gaussian. Indeed, this integral
form does not have to be solved analytically since the mean value and the variance can

be easily evaluated by employing the equation (2.4) as in

Elx) = EWw e +e]=Ew er+E[g] =pul e,

E[x—Ex))?] = E[(Wete—plen)?] =E[(W —ul)er)* +¢]
= E[(w—p)(w—p)"]ex+2E [e(w—p)"| e+ E [€?]
= /' Qe+ o, (2.32)
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where we assumed zero correlation between the error term € and the basis vector w

The mean and the variance parameters are sufficient to define the marginal as
pxe) ~ 9 (1" e, ¢ Qe+ 07). (2.33)

The bootstrap database can be used at this point to calculate the unknown parameters,
Q, u, and sz by maximizing the likelihoods. The Likelihood to be maximized is the
empirical likelihood of the observed points, x;;. Assuming i.i.d observations, the total

log likelihood over observations is
N K
Inp(X|u,Q,0f) = Z In p(xix), (2.34)
ik

where the upper bounds N and K denote the number of identities and different values
of the variation in the bootstrap gallery, respectively. After omitting the constant terms
which are not related to the unknown parameters, the cost functional becomes

N K r 5 N K X,k— )2
—sz:ln (ef Qe+ 07) — ZZk‘, . (2.35)

In order to determine the unknown parameters H,Q,sz which minimize the cost
functional, the partial derivatives are to be taken with respect to those and set them

equal to zero. By this way, equations

&
B_sz = 0=
N _ YV (i — HTCk)z
c; Qe+ 0 (] Qe+ 07)°
N
N(cQeitop) = Z(xlk—MTck)2=>
i
1Y 2
of = NZ xi— pler)” —ef Qex, (2.36)
&
E = 0
K T N
Cka CrCp T 2
= Xpp— M ¢e) (2.37
Z Tooio? & cggcﬁa,gf;(’k e :
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ﬁ = 0=
N & e (xik Ckﬂ)
0 =
Zl’zk" I Qe+ o}

K el 1 Y& xpe
(Z - )ZNZZ#:‘

Cka 1 N K XikCr
= — —_—, 2.38
(Z TQck+c7k)u Nzi:zk:c,fﬂckntckz (2:38)

define a system of nonlinear equations. The solution for (2.36) is also a solution for
(2.37), thus the system is rank deficient. It has infinite solutions; therefore, we can not
assume any optimality. To overcome this problem, one may calculate the covariance
matrix as defined in Section 2.3.2. We expect that such an empirical solution leads us
to an optimal solution. The experiments on changing illumination conditions, facial
expressions, and poses indicate that this assumption holds for real life scenarios. Thus,

two usefull equations are

N
Z Xk — 1 —c,{gck, (2.39)
i
CrCp 1 N K XikCk
- — 2.40
(Z T ey +62>“ NLL Toe o7 (240

Analytic solution to these nonlinear equations is not trivial. Thus, a fixed point iteration
is employed to approximate the solution. Let §; = ¢/ Q¢ + 07 and a(t) indicates the

value of the variable a at " iteration step. Then, at each iteration step, the equations

K CkC]{ o 1 N K XikC 2.41
Lo PO NL g0 (241

\_/
8}

N
Z Xik — (2.42)
i

are solved. With an appropriate initial guess, this procedure converges fast. Two
example solutions for p corresponding to different variation types are illustrated in
Figure 2.4. For all experiments, the initialization is done as (1) = 1, and the

stopping criteria is determined as |{i(¢ 4+ 1) — &(t)| < 107°. These calculations must

be repeated for each pixel location as the element-wise formulation is employed.
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(b)

Figure 2.4: Mean parameter, U, is illustrated for two different variation types: (a) for
illumination and (b) for expression.

2.3.4 Training: recovering class factors

Having the conditional probability p(xg|Wg,cx) and the prior probability p(wyg)
defined in the bootstrap, the MAP estimation can be applied to recover the factor

loadings of a gallery identity g, given an observation x, by
WiAp = argmax P(Welxgr,ck).
Using Bayes’ rule we get
WiAp = argn&gx P(Xgk|Wg, k) X p(Wy),
where the constant term p(xg) is omitted. Then, MAP estimate is
WhAp = argmax %(Wgck, o) x4 (u, Q). (2.43)
g

If the log propabilities are considered and the constant terms are ommitted, the cost

functional equals to

2
1 (g whex 1 To-1
&= 2( P ) 2(wg n)' Q (weg—p) | . (2.44)

Then, the derivative with respect to wy is taken as

oW,
2 T -1
= (xge —Weer) e = 2Q7 ' (wg—u). (2.45)
2

The MAP estimate for w, is the solution to the set of linear equations [16]

Aw, =b, (2.46)
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where

1
A= ol +07' b="Ee 10 . (2.47)
(0 (0
k k
When the algebraic approach defined in Section 2.3.2 is employed to estimate bootstrap

parameters, the error term has a nonzero mean value. Therefore, the conditional

distribution p(xg|Wg,cr) becomes an Gaussian defined by
G (Wi ek + U, , 7)), (2.48)

where g, is the mean value of the error term &. Then, the vector b in the final solution
of the vector wy is
Xgk — Heg -1
b=—"——5—+Q u. (2.49)
O
In these formulations, a single observation is enough for each class, while having more
points will increase the reliability of the recovery. When multiple observations exist
for an identity g, the coefficient matrix and the right-hand side vector are determined
by summations over observations as in
I r ~1 Xgk -1
A=Y e +Q7', b=) B+ 'u. (2.50)
k Ok k Ok
Factors, ¢, are assumed to be calculated by the mapping M of LPP. First, the identity

dependent factors ¢ are calculated by
Cor = M x4 (2.51)

Then, the identity invariant factors are obtained by finding the closest (in terms of
Euclidean distance) ¢; that is calculated by (2.16) during the bootstrap. Instead, one
may take the average of k nearest ¢; to increase the ability of handling novel values.

During our tests, we took the average of 3 nearest cy.

Equations in (2.50) include weighted averages over gallery observations. Therefore,
when there exist multiple observations, the MAP estimate finds a basis set that is the
most representative of an average observation. Such an approach may fail in case
of pose variation because images with different viewpoints are not suitable to take
averages. It is possible to register feature points for images of different illumination or

facial expressions (if no severe expression); however, that is not the case with the pose
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variation. Therefore, the average observation can not represent the multiple samples

with different poses.

Considering the fact with the pose variation, we develop another recovery approach
that does not find a basis set which is a good representative for averages but can
synthesize each observation individually. Let’s assume we have K different images
of an identity g. Then, the main formulation
1 TA—1 X T
Wy = argmax _E(W_“> Q (w— ,u)—i—Z?Lk(xgk—w k), (2.52)
k

is an optimization scheme with several constraints where the constraints are introduced
as Xg = w’¢;. The first term is the Mahalanobis distance related to the prior, p(w).

The coefficients A; are the unknown Lagrange multipliers. A solution to this new

approach is derived in Appendix A.2.

2.3.5 Testing: classification of novel points

Given a novel observation X, the class label can be determined by assigning the class

with the maximum likelihood p(X,x|W,,¢).

Another approach which is used during our experiments is to minimize the distance

between the novel point and its synthesized counterparts (distance to manifold) as
dy = [[%pk = Xgrll (2.53)

where Xgr = WgWngpk is calculated for each gallery identity, g.

As a third choice, posterior probabilities may be used to decide the identity of the novel
point. The decision is made by selecting the maximum posterior p(Wg|X,,¢x). Bayes’
rule transforms the posterior into the multiplication of the likelihood and the prior:
P(WelXpk, k) = p(Xpk| Wy, ¢).p(W,) (the constant denominator p(x,;) is omitted).
This approach can be very useful in large scale real life scenarios as it lets us to employ

priors over gallery identities.

The second approach is employed for all of our experiments. For this approach, the
orthonormal W, matrices are considered, whereas no such constraint was employed

during the recovery. In the experiments, Gram-Schmidt orthonormalization process is

31



applied after solving (2.46). The detailed algorithm of the CDFA is given in Table 2.2.

Table 2.2: Detailed algorithm of the CDFA.

Bootstrap: Given a bootstrap database, X = {x; }

— Calculate the lower dimensional coordinates, ¢, by (2.16)
— For each pixel location

x Calculate the emprical covariance matrix, €, as defined in Section
(2.3.2)

x Calculate p and 0'13 using (2.41) and (2.42)

Training: Given gallery observations, G = {Xy}, for each identity g,

Calculate the lower dimensional coordinates, ¢, by (2.51)

Recover w, for each pixel location by (2.46)

Construct the matrix W, so that it has vectors w as its rows

— Apply Gram-Schmidt orthonormalization to the columns of W,
Testing: Given a probe observation, X,

— Calculate d, for each gallery identity g using (2.53)

— Select the identity with the minimum distance

2.4 Interpretation of Governing Distributions

Beside the geometrical interpretation of the generative model described in Section
1.3, another probabilistic interpretation is given here, regarding the formulation of the
CDFA framework. The marginal distribution p(x;) specifies a mixture of Gaussians
in which Gaussians are determined by the variation label k. Each Gaussian is
characterized by parameters u’ ¢, and c,{Qck + sz. Hence, the variation defines the

shape of each Gaussian.

Initially, the geometry of the manifold consisting of this mixture does not depend on

the identities, but only on the mean identity. Thus, the manifold can be considered
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as a template that will be customized after selection of an identity. When an identity
is drawn from the prior distribution p(w), it re-defines the mixture by the conditional
distributions p(xx|w,c;). This procedure also eliminates a considerable amount of
uncertainty in each Gaussian as the variance decreases to 62 from c,{ Qcy + sz. Whole

process is illustrated in Figure 2.5.

CDFA is defined as a two-layer decision process. At the first layer, class identities are
drawn from a prior distribution. The second layer defines a mixture of Gaussians
depending on a template manifold characterized by p(x;), and the conditional
distributions p(xz|w,cg). The assignment of observations to each Gaussian is achieved
by the manifold embedding. In this view, the manifold embedding can be considered

as a clustering scheme.
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Figure 2.5: Illustration of the governing distributions: (a) A template manifold
is defined by the marginal distribution, p(x;). (b) This template is
customized by the identity drawn from the prior distribution, p(w).
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3. EXPERIMENTAL EVALUATIONS

Several experiments were conducted to explore two important aspects of the CDFA
framework: (1) the recognition performance against extreme variations and (2)
scalability in relatively large databases. For the first evaluation, we selected databases
with extreme variations. Nevertheless, the sizes of such databases are usually small,
including at most 30-40 identities. To analyze the real life performance of the method,
a second group of experiments was performed on another set of databases with

moderate variations but large number of identities.

The main characteristic of the method is its ability to be used for different types of
variation. This claim was verified by different experiments under different types of
variation. Three types of variation were used during tests: (1) changing illumination,

(2) changing facial expressions, and (3) changing viewpoints.

3.1 Tuning the Bootstrap Parameters

Each test begins with the manifold embedding on the selected bootstrap database
to decide the geometrical features of the manifold. One parameter that should be
determined is the dimension of the underlying manifold. The manifold learning
technique LPP relies on the solution of a generalized eigenvalue problem; therefore,
the spectrum of eigenvalues may help with determining the dimension. However, using
an evaluation dataset is a better choice since the characteristics of the variation may

prevent a meaninful spectrum analysis.

As indicated in Section 2.3.1, the intrinsic dimensionality is bounded by the number of
different variation labels present in the bootstrap database. For instance, when using
Multi-PIE [41] as the bootstrap database, the dimensionality is bounded by 20 since
there are 20 different illumination conditions. However, this does not mean that the
recognition is performed in a 20 dimensional subspace. This value represents the

number of basis vectors to span the variation subspace of each identity. It is only
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related to the range of the generative model, i.e. how the method deals with novel
variations. The recognition is performed by the point-to-manifold measure which is
calculated in the original observation space R”", where n is the number of pixels of the

input images.

Certain properties of the manifolds like dimensionality are totally determined by the
bootstrap database. This is a clear and an understandable behavior since the bootstrap
database reflects the way that the operative variation is modeled. The best practice is

to use a bootstrap database that is the most compatible with the testing requirements.

The effect of the manifold dimension is given in Figure 3.1. For two types of variation
(illumination and facial expression), evaluation datasets were collected. Scenarios with
different bootstrap and evaluation sets are demonstrated to grasp the characteristics
completely. All tests were performed with evaluation sets containing 50 identities.
A single image was selected as the gallery and all remaining images were used as
probes. Those identities collected for the evaluation sets were not used during the

further experiments to reflect a real life behavior.

Experiments indicate that the method behaves similarly in terms of dimensionality
even if the bootstrap database is changed. The results are comparable when the
dimension is fixed among different evaluation sets. Moreover, slight changes in

dimension do not affect the recognition performance, considerably.

3.2 Classification Performance against Illumination

Tests with changing illumination conditions were performed with Yale B Database
[19]. This database includes 10 identities with 45 different illumination conditions.
The database can be split into 4 subsets according to the illumination direction, which
also highlights the difficulty of the recognition. Figure 3.2 shows several example

images from each subset.

The Extended Yale Face Database [42] was used as the bootstrap database. This
database is an extension of the original Yale B with 28 identities which are not present

in the original database. At the bootstrap phase, a subset of 41 illumination types out
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Figure 3.1: Recognition rates on evaluation sets with different manifold dimensions
under (a) illumination and (b) facial expression changes. Yale & Multi-PIE
means that the bootstrap set is from Yale and the evaluation set is from
Multi-PIE.

(b) Subset 2

(c) Subset 3
Figure 3.2: Some example images of Yale B Database

(d) Subset 4

of 45 was used due to several corrupted images. Hence, the gallery and probe images

had novel variations which were not present in the bootstrap database.

The size of images used in the experiments was 100 x 90. As a preprocessing step, all

images were normalized so that they have zero mean and unit variance. The dimension
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of the manifold was fixed as 9. Totally, 19 tests were performed, and the average was
taken as the final performance. For each test, a single image from subset 1 or subset
2 was selected as the gallery image, and all remaining images were used as probes.
In other words, 440 recognition attempts were performed for each test, resulting in
8360 recognition attempts in total. The recognition rates with this configuration are

given in Table 3.1. Recognition rates are very promising considering the moderate

Table 3.1: Face recognition rates for Yale B Database. Performances of the other
methods were taken from [16].

Methods Subset 1-2 | Subset 3 | Subset 4
Correlation 100 76.7 26.4
Eigenfaces 100 74.2 24.3

Linear Subspaces 100 100 85
Cones-attached 100 100 91.4
Cones-cast 100 100 100
9PL 100 100 97.2
Spherical Harmonics 100 99.7 96.9
CDFA 100 99.2 95

requirements for the bootstrap and the training. CDFA 1is trained by a single image for
each identity unlike methods Cones-attached, Cones-cast, and 9PL. which need number
of images between 5 and 9. Compared to the spherical harmonics, CDFA is a more
generic approach since it is not related to the physical aspects of the variation. The
behavior of the CDFA with increasing number of gallery images is demonstrated in
Table 3.2. Random images from subsets 1 and 2 are selected as gallery images for
each test. The increase in the recognition performance makes the proposed method

more comparable to other methods.

3.3 Classification Performance against Facial Expressions

As a second set of experiments, the performance of the CDFA with facial expressions
was analyzed. For this purpose, three databases were selected: Cohn-Kanade
AU-Coded facial expression database (CK+) [43], Japanese female facial expression
database (JAFFE) [44], and CMU AMP face expression database [45]. Several

example images of these databases are given in Figure 3.3.
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Table 3.2: Recognition error rates for Yale B Database with multiple gallery images.

# images | Subset 1-2 | Subset 3 | Subset4
1 0.0 0.8 5.0
2 0.0 0.2 1.4
3 0.0 0.1 0.6
4 0.0 0.0 0.3
5 0.0 0.0 0.1
6 0.0 0.0 0.0

(a) CMU AMP
@ sl sle sz =l =la &/
L E‘é TN Nl Sl &=

(b) CK+

N N T TR S

W N > ‘ o~
(c) JAFFE

Figure 3.3: Several images from expression databases.

CK+ database is a collection of video sequences starting with a neutral pose and ending
with a peak expression. 7 universal expressions [46] are included in the database: (1)
surprise, (2) anger, (3) happiness, (4) sadness, (5) disgust, (6) contempt, and (7) fear.
The contempt expression was discarded since only a few identities had this expression.
This database is used as a common bootstrap gallery. 4 images were sampled from
each sequence. Including one additional neutral image, at most 25 different images per
person (24 images corresponding to 6 expression and 1 neutral image) were collected.

The manifold dimension was determined to be 20.

Two groups of tests were performed using databases JAFFE and CMU AMP. JAFFE
includes 213 images of 10 Japanese women with number of facial expressions varying
between 20 and 23. These expressions can be different from the expressions which
exist in the bootstrap database. Therefore, the ability of the method with handling novel

variations was verified. CMU AMP have 13 identities with 75 different expressions.

39



Expressions present in this database are extremely severe as they also cause slight pose

changes along with changes in face geometries.

CDFA is compared against two state-of-art techniques CS [30] and SRC [29]. To make
fair comparisons, we followed the same scenarios with the compared methods, and the
gallery selection procedure and the structure of random tests were kept same. Image
size was set to be 32 x 32 since the compared methods had selected to use such a
small image size. For each identity, several gallery images were selected randomly,
and the remaining images were used as probes. Images were used after zero mean-unit
variance normalization. Results of two classical subspace techniques, PCA and LPP,
are also analyzed to understand the marginal improvements. The transformation
matrices for PCA and LPP are obtained using the CK+ bootstrap database. LPP is
trained in kNN mode with distances being calculated by the heat kernel. Table 3.3 and
Table 3.4 show test results for JAFFE and CMU AMP. Results for CS and SRC were
taken from [30]. To give an impression of the significance of the presented results, the
second columns list the number of actual recognition attempts for each experiment.
These values are simply calculated as (the number of test images x the number of

random trials).

CDFA steadily outperforms others for both databases. However, the main intention
here is to highlight that the same framework can be utilized for different types of
variation without any modification in the base configuration. Indeed, these databases
happend to be trivial although they include severe variations. Even a classical approach

like PCA can achieve high recognition rates on them.

Table 3.3: Average face recognition rates on JAFFE database. 40 trials with randomly
chosen gallery images were performed for each row.

# Gallery | Recognition | CDFA | CS SRC | PCA | LPP
Images Attempts

2 7720 93.04 | 89.94 | 90.1 | 85.84 | 83.84
3 7320 94.50 | 93.22 | 92.1 | 89.1 | 89.32
4 6920 96.17 | 95.12 | 95.13 | 91.62 | 91.33
5 6520 96.33 | 96.12 | 96.01 | 93.54 | 93.87
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Table 3.4: Average face recognition rates on CMU AMP database. 10 trials with
randomly chosen gallery images were performed for each row.

# Gallery | Recognition | CDFA | CS SRC | PCA | LPP
Images Attempts

4 9230 99.92 | 9895 | 98.9 | 99.6 | 9991
5 9100 100 | 9991 | 99.8 | 99.66 | 99.71
6 8970 99.99 | 99.97 | 99.75 | 99.68 | 99.84
7 8840 100 100 | 99.74 | 99.71 | 99.75
8 8710 100 100 | 99.87 | 99.89 | 99.87
9 8580 100 100 100 | 99.94 | 99.97
10 8450 100 100 | 99.49 | 99.85 | 99.95

3.4 Classification Performance against Pose

Experiments are performed using Multi-PIE database [41]. Example images are
illustrated in Figure 3.4. Pose variations result in highly nonlinear geometries. Without
using a preprocessing or keypoint identification step, a single image can not be
employed effectively during the training to perform recognition with both 0° and +90°

probe images. Therefore, several gallery images of an identity are required during the
basis recovery.

; 1 u ]I'H E‘][ MILJ qﬁ114nr lL
* ol L. P S -

Figure 3.4: Example face images under different view point conditions.

In Table 3.5, the recognition performances with single gallery images are given. One
pose is picked for training, and all remainings are used for testing. The reliability of

the method fails with severe pose differences.

This behavior can be improved by using multiple gallery images. To demonstrate this
behavior, several images which can model the variation in an appropriate manner were
sampled. Recognition rates with different number of gallery images are given in Table
3.6. It was examined that the number of gallery images is not the main parameter
determining the final rates. The ability of the gallery set to represent the whole
population is a more important factor. This fact requires us to select gallery poses with

a high range. The recognition rates in Table 3.6 are not reliable enough although
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Table 3.5: Initial face recognition rates (%) with changing poses. A single image is
selected as a gallery image and recognition rates for +22.5°, £67.5° and
+90° are given. Tests are performed with 50 identities in the gallery.

[‘,_MMJ. 2 ‘{ N 7 =
Gallery Image / Probe Images | £22.5¢ S | 6750 BRA | 1900 Bk
L .] 50.0 10.0 10.0
L‘ 52.0 51.0 28.0
v
\-.J 51.0 55.0 24.0
ba ‘
.4 23.0 43.0 54.0
]
| 17.0 55.0 38.0

Table 3.6: Initial face recognition rates (%) with changing poses. Multiple images are
selected as gallery images and recognition rates for +22.5°, £67.5° and
+90° are given. Tests are performed with 50 identities in the gallery.

[".&.\['ﬁrﬂj a2 *{ 7 TV
Gallery Image / Probe Images | +£22.5¢ Sk | 16750 \-‘ w3 | £90° R
Eﬁjﬁ'ﬂ
] &
. . 80.0 83.0 31.0
b YRS
| 28.0 78.0 83.0
Proes
74.0 90.0 77.0

several images were used. The main reason is the quality of the basis recovery.

Equations in (2.50) include weighted averages over gallery samples.

This average

observation can not represents the multiple samples since the appearance differences

among different poses are critical.

Considering the fact with the pose variation, we develop another recovery approach

that is an alternative to the MAP estimate.

The approach is designed over the

optimization problem defined in 2.52. This new scheme can be employed during basis
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recovery when multiple observations per subjects are present. The final recognition
rates using the new approach are given in Table 3.7. The new method has a better

representation power compared to the previous MAP estimate.

Table 3.7: New results with the proposed basis recovery scheme. Multiple images are
selected as gallery images and recognition rates for +22.5°, £67.5¢ and
4907 are given. Tests are performed with 50 identities in the gallery.

[‘, = S 1[ X O
Gallery Image / Probe Images | +22.5 ¥ | Ve +67.5° ELdi ;

pjt 4
81.0 92.0 45.0

* | 28.0 79.0 82.0

FrOnN

89.0 94.0 89.0

3.5 Scalability

Further experiments were performed to examine the scalability of the proposed
method. Two relatively large databases were selected for the testing: CMU Multi-PIE
Database [41] and CAS-PEAL Database [47]. Subsets of databases consisting
of 249 identities for Multi-PIE and 267 identities for CAS-PEAL were collected.
CAS-PEAL was used for the evaluation against facial expressions and Multi-PIE
for the illumination. Multi-PIE includes 20 different illumination conditions, and
CAS-PEAL serves 5 facial expressions for each identity. Several example images are

shown in Figure 3.5.

The behavior of a classical subspace method against the increasing number of gallery
identities is demonstrated in Figure 3.6 (a). LDA against illumination was used for the
demonstration. All tests were performed on Multi-PIE with 2 random images of each

identity being selected as the gallery and the remaining 18 images as probes.
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(a) CAS-PEAL
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(b) CMU Multi-PIE
Figure 3.5: Several images from CAS-PEAL and CMU Multi-PIE databases.

LDA can perform steadily in terms of recognition rate with its usual configuration.
The subspace is re-constructed with each new identity, and the subspace dimension
becomes (ni — 1) where ni is the number identities. However, as new identities are
introduced, LDA needs to be re-trained to get a promising recognition rate. This
behavior is illustrated in Figure 3.6 (a) with "No bootstrap" label. One may eliminate
such a training requirement by using a bootstrap database. In this new setting, the
subspace is constructed only once by using the bootstrap database, yet the recognition
rate decreases as the number of gallery identities is increased. Moreover, different

bootstrap databases may result in significantly different recognition rates.

CDFA framework can improve the scalability as shown in Figure 3.6 (b). The
method was tested with several scenarios both for illumination and facial expressions.
When Yale! or CK+ was used as the bootstrap database, all settings like manifold
dimensionality were kept same as the ones in Section 3.2 and Section 3.3. We observe
that the final recognition rates are not affected significantly as bootstrap databases
are switched. The largest performance difference caused by changing the bootstrap

database was between 1% — 2%.

The results in Figure 3.6 (b) also suggest that it is possible to fix the template manifold
for a certain type of variation since same bootstrap database can be used in different
tests: CK+ was employed successfully in tests with CAS-PEAL, JAFFE, and CMU
AMP while the Yale database is compatible both for Multi-PIE and Yale itself.

I'There are two different Yale databases used during tests: Yale B Database [19] and Extended Yale
Face Database [42]. However, when a common name ’Yale’ is mentioned, it means that an augmented
database which is established by concatenating two is used.
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Figure 3.6: (a) Behavior of LDA against the illumination with increasing number
Three scenarios were tried: with no bootstrap, with a
bootstrap drawn from Multi-PIE, and with a bootstrap drawn from Yale.
(b) Behavior of CDFA against illumination and facial expressions. Yale &
Multi-PIE means that the bootstrap set is from Yale and the evaluation set

of identities.
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is from Multi-PIE.

Figure 3.7 gives recognition rates of several methods with increasing number of
identities in the gallery. CDFA was compared with PCA [2], LDA [4], and Tied
Factor Analysis (TFA) [25] since they share very common aspects with CDFA, in
terms of subspace analysis. The method in [25] was initially developed to handle
the pose variation; however, the authors proposed the algorithm as a generic factor
analysis framework just like CDFA. Multi-PIE and CAS-PEAL were used for testing
against illumination and facial expression, respectively. To provide a fair comparison,

a common bootstrap database with 50 identities was collected to learn the subspace
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parentheses shows the number of gallery images.

parameters for all methods. For tests with Multi-PIE, the bootstrap includes 1000

images while this value is 250 for the tests with CAS-PEAL. Subspace dimensions

were optimized individually for each method.

For both tests, bootstrap and the training/testing images were drawn from the same
databases. Therefore, the manifold dimension was 4 for tests with CAS-PEAL since
there are 5 different expressions in database, and the upper bound is limited by the

number of expressions. In both sets of experiments, the image size was 100 x 90.

Images were normalized with zero mean-unit variance normalization.
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For CDFA and TFA, a single gallery image was selected and all remaining images were
used as probes. Then, for a test having N gallery identities, 19 X N recognition attempts
were performed for Multi-PIE and 4 x N recognition attempts were performed for
CAS-PEAL. These attempts were repeated for each random gallery image selection,

and the averages were noted.

The recognition rates tend to decrease with other methods whereas CDFA performs

steadily as the number of identities increases. This fact is depicted in Figure 3.7.

3.6 Real Life Performance

Figure 3.8 represents some real life recognition results. We employed our face
detection / recognition system to get these results. The face detection system finds the
surrounding rectangle and then, feature detection is run inside the rectangle. Detected
features are only used for alignment and cropping. Their location information is not
favored for recognition purposes. During the training, multiple images of people are
used. Gallery includes 115 identities among them are 105 identities from Multi-PIE

database. For each identity 10 — 12 images taken on poses between £45 are collected.

Bootstrap tasks were performed against only pose variation. Therefore, the system is
variant to illumination changes. This fact can be observed in Figure 3.9. Nevertheless,
a system trained against only pose variations may handle minor facial expressions.
Figures 3.10 and 3.11 show this fact promisingly. Again, no information on facial
expressions was employed during the bootstrap. The real life performance against the

facial expressions are much robuster than that of illumination.

3.7 Computational Aspects

The proposed framework consists of four successive tasks: (1) manifold Learning, (2)

bootstrap, (3) training, and (4) testing.

The manifold learning includes two main calculations. First, a graph is constructed and
the distance of each edge is calculated (2.10). Then, a generalized eigenvalue problem
is solved for this graph (2.12). Beside, there exist several column summations and

one matrix-matrix subtraction to calculate matrices D and L in (2.12). As a final step,
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Figure 3.8: Several real life recognition results with pose variations.

lower dimensional coordinates are calculated by (2.8) which consists of a matrix-vector

multiplication.

In the bootstrap, equation (2.27) is solved for each basis vector. There are several
outer products, one matrix-matrix subtraction, one matrix-vector product and other

minor calculations for this equation. Then the mean vector and the covariance matrix
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Figure 3.9: When the system is trained only against the pose variation, it is variant to
the illumination changes. Recognition is failed when the position of the
light is reversed.

Vangel

Figure 3.10: Unlike illumination, the system is promisingly invariant to the facial
expressions although no such information is introduced during the
bootstrap.

is calculated for these basis vectors by regular calculations, (2.28) and (2.29). Statistics

for the error term are obtained after a matrix-vector product and a vector-vector

subtraction as in (2.30). If one wants to employ the probabilistic interpretation of

Section 2.3.3, the fixed point iteration defined in (2.41) and (2.42) is required to be

solved.

For the training, the main calculation is the solution of the system of linear equations
defined in (2.46). To construct the system, one outer product, one matrix inversion, one

matrix-vector product and summation of matrices and vectors are required. Since the
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Figure 3.11: Another set of examples to demonstrate the invariance to the facial
expressions.

size of the system relatively low depending on the dimension of the variation manifold,

both the matrix inversion and the solution of the system are easy tasks.

Testing is the final step and the only part that affects the real-life performance of the
framework. All previous calculations are performed offline. The main calculation

is the vector norm defined in (2.53). The synthetic image, X, is calculated by one
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matrix-vector product and one matrix-matrix product. This is repeated for each gallery

identity, then the minimum value of (2.53) is selected.

3.8 Complexity of the Framework

The determination of the complexity of the framework is divided into two sections:
(1) offline complexity, (2) online complexity. Offline complexity includes calculations
which are performed only once during the model learning or during introducing new
identities. These calculations do not affect the real-life performance of the framework.
Online complexity consists of calculations which are performed for each probe image,
continuously. Online complexity totally determines the real-time capability of a

recognition system.

3.8.1 Offline complexity

Let’s assume we have N bootstrap identities, each having K images corresponding K
variation values. The number of features (pixels in an image) is n. The dimension
of the variation manifold is fixed as d, which means that d minimum eigenvalues and
their corresponding eigenvectors are calculated. During training, the complexity of

introducing one gallery identity with a single gallery image is considered.

distance calculations are

. . . . NxK)!
performed, which are simple vector norms, resulting in O (Wl’l

For the manifold learning (see Section 2.3.1), %
) complexity.
The final generalized eigenvalue problem has a size of n x n. Therefore, the complexity
is assumed to be between O (nz) and O (n3) depending on the algorithm used. The

repetition factor d is omitted since it is usually too small (like 9 or 20) compared to n.

Basis vectors corresponding to each identity are calculated individually. Each basis
calculation requires matrix subtractions and matrix-vector multiplications. Therefore,
the complexity is O (nz) Again the calculations are repeated for each dimensions (d)
and for each identity (N). Finally, obtaining statistics over vectors results in another

O (n*) complexity.

In the training, the size of the system is d X d. In the worst case, the complexity

is O (d3). Since the calculations are repeated for each feature (i.e. image pixels),
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final complexity is O (nd3). To calculate the lower dimensional coordinates of the
probe image, one matrix-vector multiplication with a matrix of size d X n is performed.

Hence, there is another O (nd) complexity.

To summarize, for the manifold learning and the bootstrap, the complexity is at most
(0] (n3) This seems to be a huge amount of calculations; however, they are performed
only once when the model is constructed. During the training, which is performed for
each identity that is wanted to be recognized, the complexity is only O (nd3) . Although
the complexity is relatively small (depending on the dimension d), high wall clock
times are expected because to construct the system of linear equations, several readings
over memory are required to get covariance matrices etc. In other words, data access

may result in high waiting periods.

3.8.2 Online complexity

The real performance of the system is totally related to the testing phase. After
the model learning and the training are completed, the testing is performed for each
probe image, continuously. During testing, there exist one matrix-matrix and two
matrix-vector products followed by a vector norm. Hence, the complexity is O (nz)
Calculations are repeated for each gallery identity. This complexity does not change
as different methods are employed. Both likelihood and posterior distributions (see

Section 2.3.5) result in the same complexity values.

The main drawback of the proposed framework is its space complexity. For each
gallery identity, the whole subspace is defined. Compared to classical methods, which
store a low dimensional vector for each identity, storing a high dimensional matrix
requires more space. Moreover, the testing has relatively higher time complexity since
at least two matrix-vector products (M’ x » and W) are performed to make decision,

whereas the classical factor analysis only employs a norm calculation.

When speaking in terms of wall clock time, the training and the testing per image take
approximately 0.3 seconds and 40 milliseconds, respectively on a regular PC (Intel

Core 2 Duo 2.2 GHz and 3 GB RAM). These values are valid on a development
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environment. The real life performance is better with approximately 20 milliseconds

for testing on the same PC.
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4. CONCLUDING REMARKS

A linear generative model was developed to improve the general factor analysis
framework. The main novelty is the complete probabilistic structure that individualizes
manifold charts resulting in a class dependent design. Modeling nonlinear variations
like illumination and facial expression is achieved by incorporating a manifold
embedding technique to obtain a linear representation of the effective variation. This
is not a surprising approach considering the fact that such variations can be modeled
linearly on some geometries. For instance, illumination can be modeled as a linear

combination of spherical harmonics on a unit sphere.

A probabilistic framework that can be employed in general classification problems
when a problematic variation is exhibited on class samples is proposed. The only
assumption which is used implicitly is that the variation can be modeled on a
smooth manifold. If the nonlinear embedding fails, the resulting lower dimensional

coordinates may disturb the final performance.

The initial results are very promising indicating the potential of the proposed
framework as a replacement to regular subspace analysis methods. The proposed
approach defines a novel connection between the manifold embedding and the

probabilistic models.

Combining different variations is left as a future work. The first step towards this goal

may be using factor tensors instead of factor matrices.

4.1 Discussions on Experimental Results

Numerous experiments were performed to analyze the performance of the proposed
method against different variation types and with relatively large databases. In both

cases, the results are very promising.
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Several advantages of the method can be summarized as follows: (1) different types
of variation that lie on smooth manifolds can be handled by the method, (2) the
scalability of the classical factor analysis is improved by a class dependent scheme, (3)
the decision process is fully probabilistic, and posterior probabilities can be utilized
for large scale and domain specific real life applications by incorporating priors
on the identities, (4) bootstrap has less time complexity compared to 3D rendering
approaches, and finally (5) a single observation for each identity is sufficient to perform

reliable recognition while a way to use more images is also introduced.

4.2 Contributions

The proposed method is a generic framework that can be used for object recognition
under certain variations. In this view, a novel technique to derive a basis set of the
variation subspace related to the observations of an object under an operative variation

1s defined.

A new framework, which is a class dependent derivative of the classical factor analysis,
is proposed and two different solution schemes are provided for the optimization of the
corresponding error functions. Both algebraic and probabilistic views are analyzed to

offer a complete understanding of the underlying logic.

Defining separate manifolds for different classes is not a new approach; nevertheless,
drawing a generic framework for such an approach is a novel and significant step.
Moreover, defining a hard link between the coordinate systems of the manifolds and

the variation is another improvement over the classical subspace techniques.

A novel connection between manifold learning and the probabilistic generative models
is introduced in this study. Such an connection results in relaxation over the
optimization problems defined by the technique while it also provides new geometric
interpretations related to the algebraic and probabilistic solutions. Deriving solutions
directly on the manifolds without embedding them into an Euclidean space can be a

promising future work.

Handling different variations by employing a generic framework also suggests initial

steps towards combining different types of variations. Utilizing factor tensors and
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exploiting multilinear algebra decomposition techniques can be a first choice on this

task.

These contributions are introduced and explained in the following publications.

Table 4.1: Contributions of the study and related publications

Construction of coordinate systems for variation manifolds [48,49]
Introduction of Class Dependent Factor Analysis (CDFA) model | [50,51]
Algebraic solution to CDFA [52]
Probabilistic solution to CDFA [53]

4.3 Future Works

In this work, a generic framework that can be used against different types of variation
is introduced. However, handling multiple variation types at once is left as a major
future work. This may be managed by employing factor tensors instead of matrices,
yet in its initial formulation such a task seems to be difficult mainly due to the fact that
each possible variation has to be modeled explicitly, that with the inclusion of several
variation types either through tensors or some other mathematical tool the manifold

dimensionality quickly becomes unmanageable.

Another important improvement can be achieved by inclusion of a dynamic kernel that
is optimized for each variation type automatically. The current formulation considers
raw pixel values; however, it is a well known fact that the recognition rates can be

boosted by employing different kernels or transformations for different variation types.

Partitioning the face into subregions is a must to accomplish a promising real life
performance. Similarly, automatic feature detection can be very useful to make
robuster and more reliable decisions. By this way, the recognition can be performed
locally, and several decisions from subregions or areas around features points can be
fused to obtain better results. Indeed, a feature point detection procedure seems to be

an obligation to perform reliable pose invariant recognition.
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APPENDIX A.1

For the unconstrained minimization problem, we again consider factor loadings, W,
as a basis set of the variation subspace. Therefore, factors, ¢, are assumed to be
coordinates i.e. linear combination coefficients.

Let’s assume that we have K images of an identity i in the bootstrap database. Then
the total reconstruction error for the identity i is

K
& = ZHX,‘k—W,‘CkHz
k=1
- 2
= Y Ik — Witcrr — Wiacko — - — WinCral (A.1)
k=1

where w;; indicates j* column of the matrix W;, and ¢ 18 j'" element of vector c.
The error can be minimized by equating the derivatives with respect to unknown basis
vectors, w;j, to zero.

Normalization constraints ||w;;|| = 1 are not introduced, since the scaling factors ¢y;
are already known and fixed. Thus, relaxations on the norms of the vectors are required
to assure a global minimum. Similarly, orthogonality is not considered.

The optimization problem can be restated by a trace minimization as in
& = Tr[(X—ciw] — — c,,w,{)T (X—ciw] —--—c,w))]
Tr(XTX) —27r(XTe;wl) — - —21r(XT ¢, W)
Tr(wicleywl) +2Tr(wicl eowl) + - +2Tr(wicl e, w!)
2Tr(wacheywl ) + Tr(wael cowh ) + - - 4+ 2Tr(wach ¢, wl)

+ + +

+ 2Tr(waeleywh) + 2Tr(woel eowh ) + -+ Tr(w,ele,wl).  (A2)

to simplify calculations where the notation is changed slightly. The matrix X has the
vector x;; as its k' row. The vector ¢ ; 18 the collection of constants ¢ ;. The index i of
vectors w;; is dropped for the clarity. The objective functional is

& = Tr(X'X)—2c Xw; —---—2¢! Xw,

+ cchlwlTwl + 2c1TczW1TW2 + 2c1Tcnw1TWn
T wl To wl To wl
+ 2(:2 CIWy Wi +CZ COWy Wy - ‘|‘2C2 CpWHr Wy
+ ...
+ 2¢feiwlwi+- +ele,wiw,. (A.3)

Derivatives with respect to each basis vector yield a set of linear equations as

—XTe;+cleywi+---+cle,w, = 0,

—XTcn—f—c,fclwl +---+chnwn = 0. (Ad)

In the matrix form,
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cle; eley ... e, Wi XT¢
ey ey ... e, W) XTe,
clep eley ... ele, W, X7e¢,

The size of the system is relatively small depending on the dimension of the subspace.
The rank of the coefficient matrix is usually n provided that a linearly independent
set of vectors, ¢;, exists. Hence, there is a unique solution for the problem. As the
complete basis set W; of each identity i in the bootstrap database is calculated, the
covariance matrix for the distribution p(w) can be estimated by the empirical formula

(wi—w)(wi—wW)", (A.5)

M=

1
= —
N&

1

where W 1s the mean value. One should be careful with this notation. Here, the form
defined in (2.4) is employed. Therefore, the vector w; is a row (not a column) of the
matrix W;. After calculating the matrices W; for all identities in the bootstrap gallery,
the same procedure as defined in Section 2.3.2 is followed to obtain required statistics.
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APPENDIX A.2

The recognition rates in Table 3.6 are not reliable enough although several images are
used. The main reason is the quality of the basis recovery. Equations in (2.50) include
weighted averages over gallery samples. Such an average observation can not represent
the multiple samples since pose changes cause critical appearance differences. Thus,
the improvement in basis recovery is not linear with increasing number gallery images.

At this point, another recovery approach that does not try to find a basis set which is
good for averages but can synthesize each observation individually is developed. Let’s
asssume that there exist K different images of an identity g. The main formulation is
then an optimization scheme with several constraints, xg; = wl ¢;. The cost functional

1S

1

K
E = —E(W—,U)T.Q.il(w— ,U)‘i—zﬂrk(xgk_chk)v (A.6)
k

where the coefficients A; are the unknown Lagrange multipliers. A straight forward
optimization is applied and derivatives with respect to unknown variables w and A, are
taken to get a solution by

&

— = 0=
ow

K
QO lw = Qil‘u—l—Zlkai
k

K
wo= u+Y hQe, (A7)
k
&
a_lk = 0=
c,{w = Xk - (A.8)

If both sides of the equation (A.7) are multiplied by c]T and the identity defined in
equation (A.8) is employed, equations

K
T T T
W = cj[,L—I—Z?chchk,
k

K
xgj—cJT-,u = zk:/'chJT-Qck, (jZl,...,K), (A9)

emerge. The resulting set of equations can be solved by the matrix identity

clQe; Qe ... Qe A X1 —clu
chcl C;QCZ . C%QCZ 12 Xg2 — cgu

. . = . : (A.10)
ckQe; ckQe, ... ckQe Ak Xgk — Ch UL
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to determine the Lagrange multipliers. Then, the optimum w, vector can be calculated
by equation (A.7). In the case of single observation, the optimum wy is

(xgk - C]{,LL)

w = Qc¢;
T
C; Q.Ck

(A.11)

To analyze the result, (A.11) can be plugged into the prior p(w) as

Inp(w) ~ —(w—u)'Q (w—p)

(=) o1 (—elu)
= ——— ¢ QO " Qc———-—~
c’'Qc ¢ ¢ c’'Qc
e
= Toe Inp(x).

In other words, the more probable the observation x is drawn from the distribution
p(x), the more appropriate the recovered basis w in terms of compatibility to its prior
distribution p(w).
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