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Boğaziçi University
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ROBUST FACE RECOGNITION ON NONLINEAR MANIFOLDS

SUMMARY

The face recognition is one of the most studied, yet one of the most incomplete
topic due to the nonlinearity and the diversity of variations which are effective during
the data acquisition. Developing an algorithm that can handle illumination, pose,
expression, occlusion etc. altogether still seems to be a very challenging job. There
exist lots of study concerning invariant representations to handle certain variations, yet
a generic approach to model different variations at once still seems to be a task to
accomplish.

In this study, we define a baseline framework to handle different types of variations.
The main attention is to propose a guideline that can be used for different types of
variations without requiring any modifications depending on the physical or geometric
characteristics of the concerned variation. In other words, the methodology can be
utilized for recognition under illumination, pose changes or expression changes. The
proposed method is established over the subspace analysis; therefore, the direction of
the future works is also defined explicitly.

The proposed method defines the geometry of the variation space spanned by
observations (images) of a class (a person) under an operative variation (illumination).
This goal is achieved by constructing a coordinate system for this subspace.

Many popular face recognition algorithms use holistic approaches in conjunction
with appearence-based models. Appearance-based models utilize the actual pixel
intensities, and this fact alone is enough to damage the effective signal-noise ratio since
individual pixels tend to change dramatically under certain variations like illumination
and facial expression. A common approach to handle these variations is to define a
lower dimensional subspace in which the useful statistics are more definite compared
to the noise.

Under a problematic variation, individual or class statistics may be altered dramatically
preventing a useful discrimination. In LDA, the idea of distinguishing the real signal
source and the noise caused by the variation was exploited by controlling the inter-class
and intra-class variances. To understand the face space under variations, one needs
to determine its geometric structure i.e. to understand the distribution of images
according to their illumination and pose labels. Definitely, it can not be managed
in the original input space because the dimensionality is considerably large, and pixel
values tend to change critically even under small environmental changes.

When the utilized appearance-based method depends on a dimensionality reduction
technique as a transformation agent, factor analysis happens to be the main actor.
Factor analysis is a powerful tool, especially when it is used for the dimensionality

xvii



reduction. The classification is achieved in the lower dimensional subspace instead of
the noisy higher dimensional pixel space.

Regardless of the selected technique to classify the object, a numerical representation
of the object is needed to perform calculations. The simplest representation is the
vectorized form of the image matrix. These vectors then are assumed to span a
vector space, and all calculations can be carried out in this vector space. In its initial
form the vector space assumption is not able to handle real life variations effectively.
This assumption is very loose and can only be useful under lots of constraints. First
of all, in the real life face images do not span an Euclidean vector space in the
sense of mathematical definitions. Beside the fact that the face space is not ℜm×n

as a topological space, it is not also Euclidean in the geometrical manner since the
Euclidean distance can not represent the geometric structure of face distributions.
Banach and Hilbert spaces, as more generalized vector spaces, are still useless as they
inherit linear scaling of the distance.

Although the face space is not Euclidean, face vectors lie on subspaces which are
locally Euclidean and smooth. Differentiable manifolds are generalization of this
kind of locally Euclidean and smooth subspaces. Manifold learning approaches can
help with employing non-Euclidean geometries into the subspace analyses. The main
idea behind manifold learning is to utilize local geodesic distances instead of global
Euclidean distances.

In this study, a new subspace analysis perspective, in which a new representation
is proposed implicitly, is drawn. Images of a person under a certain variation are
assumed to be generated by a linear generative model. The identity of a novel
observation is determined by the likelihood of being generated by this model. In other
words, the generative model of each person, represents observations (images) by its
model parameters. A manifold embedding technique is incorporated to handle the
nonlinearity introduced by the variation; hence, a novel connection between manifold
learning and generative models is proposed.

The proposed method can be summarized as a two-step probabilistic framework. The
first step is a bootstrap phase in which the useful statistics are calculated. A manifold
learning technique is employed at this step to define the geometry of the subspace. The
second step includes regular training and testing tasks.

Numerous experiments were performed to analyze the performance of the proposed
method against different variation types and with relatively large databases. In both
cases, the results are very promising. Several advantages of the method can be
summarized as follows: (1) different types of variation that lie on smooth manifolds
can be handled by the method, (2) the scalability of the classical factor analysis is
improved by a class dependent scheme, (3) the decision process is fully probabilistic,
and posterior probabilities can be utilized for large scale and domain specific real
life applications by incorporating priors on the identities, (4) bootstrap has less time
complexity compared to 3D rendering approaches, and finally (5) a single observation
for each identity is sufficient to perform reliable recognition while a way to use more
images is also introduced.

xviii



DOĞRUSAL OLMAYAN MANİFOLDLAR ÜZERİNDE
GÜRBÜZ YÜZ TANIMA

ÖZET

Günümüze dek yapılmış tüm çalışmalara rağmen, yüz tanıma konusu hala
kontrollü ortamlarda gösterdiği başarının ötesinde bir ilerlemeye ihtiyaç duymaktadır.
Görüntüleme sırasında etkin olan, ışıklandırma, poz, yüz ifadeleri gibi değişimler
tanıma etkinliğini olumsuz yönde ve yoğun bir biçimde etkilemektedir. Belli
değişimler karşısında başarı gösteren yöntemler geliştirilmiş olmasına karşın, farklı
değişimleri aynı yaklaşım ile modelleyebilen bir çalışmadan bahsetmek pek mümkün
olamamaktadır.

Bu çalışmanın amacı, farklı değişimleri modelleyebilecek genel bir yaklaşımın
tasarlanması ve başarımının ölçülmesidir. Sunulan yaklaşımın, değişimlere özel
ayarlamalara ihtiyaç duymadan, yalın hali ile kullanılabilmesi ve böylece farklı alt
uzay incelemelerini aynı çatı altında toplayabilmesi hedeflenmektedir. Önerilen
yöntem, genel hatları ile, alt uzay tasarımlarına dayanmaktadır ve böylece gelecekte
yöntemin ne şekilde geliştirilebileceği, kapalı bir şekilde sunulmaktadır.

Çalışma içerisinde, farklı değişimlere karşılık gelen görüntülerin oluşturduğu
geometrilerin incelenmesi ve bu geometrilere ait bilgilerin ışığında, kişilere ait
değişim manifoldlarının oluşturulması ile tanıma işlemin gerçekleştirileceği ortamın
hazırlanması söz konusu olacaktır.

Birçok tanıma yöntemi, görünüm tabanlı yöntemleri kullanmaktadır. Görünüm tabanlı
yöntemler, işlenmemiş gözek (ing: pixel) parlaklık değerlerini kullanırlar ve bu
durum, etkin sinyal/gürültü oranını düşürmek yönünde etkide bulunur çünkü parlaklık
değerleri temel değişimler altında büyük değişiklikler gösterirler. Değişimlerin sebep
olduğu sorunlar ile baş etmenin en temel yollarından birisi, parlaklık değerlerinden
oluşan öznitelik vektörlerinin, daha düşük boyutlu altuzaylar içerisinde temsil edilmesi
ve böylece faydalı sayımların etkin hale getirilmesidir.

Görünüm tabanlı yöntemlerler birlikte, düşük boyutlu altuzay tasarımlarından
faydalanılacağı zaman, etmen çözümlemesi baş aktör olarak karşımıza çıkar.
Etmen çözümlemesinde temel mantık, öznitelik vektörlerinin daha düşük boyutlu
altuzaylar içerisinde temsil edilmesi ve sınıflandırmanın bu temsiller yardımı ile
gerçekleştirilmesidir. PCA ve LDA gibi boyut düşürme yöntemleri de etmen
çözümlemesiyle aynı mantık ile çalışmakta ancak etkileşimin yönünü değiştirmektedir.
Etmen çözümlemesi, her gözlemi düşük boyutlu temsillerden üreterek altuzaydan
gözlem uzayına doğru bir yönelim sergilerken, diğer yöntemlerde gözlem uzayından
altuzaya doğru çalışan dönüşümlerden faydalanılacaktır. Bu çalışma, üretim modelleri
üzerine kurulduğu için temel olarak etmen çözümlemesini alacaktır.

xix



Etmen çözümlemesi ve benzeri temel yöntemler, değişimlerin oluşturduğu geometri-
lerin doğrusal olmayan yapıları nedeniyle yeterli etkinliğe ulaşamamaktadırlar. Bu
amaçla, uygulama alanı belirlendikten sonra, bu alan için özelleşmiş yöntemlerin
kullanılması genelde tercih edilen yöntem olmuştur. Yüz tanıma söz konusu
olduğunda, değişimlerin etkilerinin ortadan kaldırılması ancak belli başarımlarla
sağlanabilmektedir.

Etmen çözümlemesi benzeri yöntemler ile üretilen alt uzay, tüm sınıflar (örneğin
kişiler) için ortak olacak ve sınıflar arası ayrım, bu alt uzay içerisindeki yerleşim
ile sağlanacaktır. Söz konusu değişimin (örneğin farklı ışıklandırmalar) öznitelik
vektörlerinde meydana getireceği farklılık, sınıf farklılığından daha baskın ise alt uzay
içerisindeki konuşlanmalar yeterince etkili olamayacaktır.

Nesne görünümlerinin taradığı vektör uzayı içerisinde, söz konusu değişimlerin
meydana getireceği alt uzayın geometrisi genelde doğrusal değildir. Bu durum, düşük
boyutlu alt uzay konaçlarının (ing: coordinates) PCA, LDA gibi doğrusal teknikler
ile anlamlı bir şekilde elde edilmesini engelleyecektir. Bu bağlamda geliştirilen ve
başarı ile kullanılan Manifold öğrenimi teknikleri doğrusal olmayan geometrilerin,
genellemelere gerek kalmadan incelenebilmesine olanak tanımaktadır.

Bu çalışmada, olasılık tabanlı PCA benzeri bir çerçeve kullanılarak, doğrusallıktan
belli düzeyde uzak değişimlerin modellenebilmesi ve bu değişimlerin var olduğu
durumlarda sınıflandırma yapılabilmesi için genel amaçlı bir yöntem geliştirilmiştir.
Yöntem iki temel aşamadan oluşmaktadır: (1) Manifold öğrenimi ve (2) olasılık
temelli üretim modeli. İlk aşamada elde edilen düşük boyutlu alt uzay konaçları,
ikinci aşamada sınıfa özel altuzayların belirlenmesinde kullanılmaktadır. Yöntemin en
belirgin üstünlüğü, her sınıf için ayrı bir alt uzay elde edilmesi ve eğitim aşamasında
her sınıfın tek bir örneğinin yeterli olmasıdır. Sınıfların bağımsız alt uzaylar içerisinde
modellenmesi, yöntemin ayrım gücünü oldukça arttırmaktadır.

Çalışmanın ilk adımı, ilgilenilen değişimin meydana getirdiği altuzay geometrisinin
belirlenmesi olacaktır. Bu amaçla manifold öğrenimi yöntemleri düşük boyutlu
konaç değerlerinin bulunması için kullanılabilir. Bu çalışmada LPP yönteminden
faydalanılmaktadır. LPP çıktısı, yeni konaçların üretimi için kullanılan bir M
matrisidir. Herhangi bir x öznitelik vektörü için yeni konaç değerleri (c = Mx) eşitliği
ile hesaplanabilir. Kullanılan M matrisi tüm sınıflar için ortaktır. LPP ile modelleme
sırasında, etiketleme değişim türü üzerinden yapılabilir. Böylece, iki farklı x öznitelik
vektörü aynı değişim türüne sahipse, farklı sınıflara ait olsalar bile karşılık gelen c
konaç vektörleri aynı olacaktır. Örneğin, kızgınlık ifadesi taşıyan iki farklı kişinin
görüntüleri aynı c değerlerine sahipken, aynı kişinin kızgınlık ve üzüntü ifadelerindeki
görüntüleri farklı c değerlerine sahip olurlar.

Manifold öğrenimi ile ilgilenilen değişimin sebep olduğu geometri öğrenildikten
sonra amaç altuzayın bir taban takımının hesaplanması olacaktır. Tüm bu amaçlar
doğrultusunda bir ön inceleme veri kümesi oluşturulacak ve model öğrenimi
gerçekleştirilecektir. Bu doğrultuda, ilgilenilen değişim altındaki görüntülerden oluşan
herhangi bir X = {xik} veri kümesinden faydalanılabilir. Burada, i sınıfına ait ve k
türünde değişikliğe sahip xik öznitelik vektörünün,

xik = Wick + εk
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üretim modeli ile oluşturulduğu kabul edilecektir. Bu eşitliğin geleneksel etmen
çözümlemesi yazımının geliştirilmiş bir hali olduğunu söylemek mümkündür.
Görüldüğü gibi Wi matrisi sınıfa özel bir etmen ağırlıkları kümesiyken, ck vektörü
her sınıf için ortaktır ve değişimin türünü belirtmektedir. Bu tasarım, geleneksel
etmen çözümlemesinden farklı olarak her sınıf için ayrı etmen bileşen kümesi
tanımlamaktadır. Eş deyişle, elde edilecek alt uzay taban takımları her sınıf için
ayrı olacaktır. Böylece her sınıfa özel ayrı bir etmen çözümlemesi kurgulandığından
bahsedilebilir. Bu farklı modeller arasındaki ortaklık, ck vektörleri üzerinden
sağlanmaktadır. Başka bir şekilde yorumlamak istersek, c vektörüleri ilgilenilen
değişimin oluşturduğu manifold üzerindeki yerel konaç değerlerimizdir. Benzer
şekilde W matrisleri de taban takımlarını ifade eder.

Hesaplamaları kolaylaştırmak amacıyla aynı modeli xik vektörünün her bir öğesi için

xik = wT
i ck + εk ,

şeklinde yeniden kurgulamak mümkün olmaktadır. Tüm hesaplamalar sırasında
bu eşitlikten faydalanılacaktır. Bu eşitlikteki ck değerleri LPP sonrasında bilinir
durumdadır. Ayrıca wi vektörü ve εk sabiti üzerinde sırasıyla

p(wi) ∼ G (µ,Ω−1),

p(εk) ∼ G (0,σ2
k ),

Gauss dağılımları kabullenmesi yapılacaktır. Böylece, amacımız bu dağılımların
değiştirgelerinin belirlenmesi olacaktır. Bu noktaya kadar tüm hesaplamalar ön
inceleme amacıyla gerçekleştirilmiştir. Başka bir deyişle, eğitim sırasında sisteme
tanıtılacak olan sınıflara ait Wi işleçleri bulunmak istendiğinde temel alınacak
dağılımlarda etkin Ω, µ ve σ2

k değiştirgelerinin bulunması sağlanmıştır. Bu
hesaplamalarda kullanılacak X örneklem kümesinin, eğitim ve test aşamalarınında
kullanılacak olan kümeden farklı olması beklenmektedir. Her sınıf için birden fazla
örneğin (xik) gerekeceği de unutulmamalıdır.

Ön inceleme aşamasında kullanılan X örneklem kümesi, rastgele bir kümedir ve
ayrım/tanıma yapılması istenen sınıf örneklerini içermez. Eğitim aşamasında,
üzerlerinde tanıma deneyleri yapılacak kişiler için Wi matrislerinin bulunması
amaçlanmaktadır. Bu amaçla MAP tahminlemesi,

wMAP = argmaxw p(w|x)

şeklinde kullanılabilir. Bayes kuralı yardımıyla p(w|x) = p(x|w)p(w) eşitliğinden
faylanmamız mümkün olur. Böylece ön önceleme aşamasında belirlediğimiz dağılım-
lar yardımıyla MAP tahminlemesine bir çözüm bulabiliriz. Sonuç olarak, tanımak
istediğimiz kişinin örnek görüntüsü ile kişiye ait taban takımı belirlenebilecektir.

Yeni bir x test örneği için, ait olunan sınıfın belirlenmesi, her sınıf için p(x|Wi)
olasılıklarının hesaplanarak, en büyük değerin seçilmesi ile olacaktır. Diğer bir yöntem
de, eğitim aşamasında hesaplanan Wi matrisinin, birim boylu ve dik sütunlardan
oluşacak hale getirildikten sonra, x vektörünün,

xi = WiWT
i x ,

xxi



şeklinde sentezlenmeye çalışılması olabilir. Bu durumda son karar, ‖xi − x‖ boyu
üzerinden verilecektir.

Yöntemin farklı değişimler altında çalışabildiğini göstermek amacıyla, ışıklandırma,
poz ve ifade farklılıkları söz konusuyken yüz tanıma deneyleri yapılmıştır. Yöntem,
mevcut yazında başarılı olarak nitelendirilen yöntemlerle yarışan başarım oranları elde
etmiş ve yüksek boyutlu veritabanları için de uygun olduğunu kanıtlamıştır.

Önerilen yöntemin bazı temel artı değerleri şu şekilde sıralanabilir: (1) Manifoldlar
üzerinde tanımlı farklı değişimler, yöntem üzerinde yenilemeye ihtiyaç duyulmadan
kontrol altına alınabilmektedir. (2) Geleneksel etmen çözümlemesi yaklaşımının
etkinliği ve ölçeklenebilirliği, sınıf temelli bir yaklaşım ile arttırılmıştır. (3) Karar
verme süreci tamamen olasılıksaldır ve böylece yüksek boyutlu veritabanlarına yönelik
olarak öncül olasılıkların devreye sokulması ve alınacak kararın alan bilgisi ile
kuvvetlendirilmesi mümkündür. (4) Üç boyutlu modellemeler ile kıyaslandığında,
ön inceleme aşamasının zaman karmaşıklığı daha düşüktür. (5) Her kişinin tek
bir örneğinin bulunması tanıma için yeterliyken, birden çok görüntünün bulunması
durumunda başarımı arttıracak eklentiler de tanımlanmıştır.
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1. INTRODUCTION

When the subject under consideration is the object recognition and specifically the

face recognition a compelling question arises: why does such an exhaustively studied

subject still need further attention which concludes in a PhD thesis? Answer is

easy just like the question itself: Among all computer vision studies, the problem of

recognizing faces is one of the most studied, yet one of the most incomplete topic due

to the nonlinearity and the diversity of variations which are effective during the data

acquisition. Developing an algorithm that can handle illumination, pose, expression,

occlusion etc. altogether still seems to be a very challenging job. That may be realized

by using 3D scanners or equivalent technologies during the recognition; however, such

an solution itself produces new constraints in addition to the already exhausting real

life requirements.

Regardless of the selected technique to classify the object, a numerical representation

of the object -a face in our case- is needed to perform calculations. At this point,

probably the most important decision should be made which in turn determines the

upper boundary of the final recognition rate. The decision concerns the selection of

the base representation. The utilized classification algorithm can only push the limit

implicitly defined by the representation.

The simplest representation is the vectorized form of the image matrix. These

vectors then are assumed to span a vector space, and all calculations can be carried

out in this vector space. This simple idea was actually a corner stone for today’s

recognition algorithms. When for the first time, M. Turk and A. Pentland made

use of Euclidean vector spaces by employing a well known dimensionality reduction

technique Principal Component Analysis (PCA) [1] in their remarkable work [2], they

opened a gate to the diverse possibilities of the matrix algebra.

Indeed, in its initial form the vector space assumption is not able to handle real life

variations effectively. This assumption is very loose and can only be useful under
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lots of constraints. First of all, in the real life face images do not span an Euclidean

vector space in the sense of mathematical definitions. Even when the face images are

considered as m× n-dimensional vectors, there is no meaning of multiplying a face

vector with a scalar (especially with a negative one). Pixel values are bounded in

some intervals like [0,255], and image vectors can not be generated by adding two

face vectors if the resulting pixels are outside this interval. Beside the fact that the face

space is not ℜm×n as a topological space, it is not also Euclidean in the geometrical

manner since the Euclidean distance can not represent the geometric structure of face

distributions. Banach and Hilbert spaces, as more generalized vector spaces, are still

useless as they inherit linear scaling of the distance [3]. Due to all these negative

aspects, techniques relying on linear subspaces of face images are easily affected by

even simple variations.

Embeddings like PCA can solve problems caused by statistically well behaving

noise. However, under a problematic variation, individual or interclass statistics

may be altered dramatically preventing a useful discrimination. An elegant idea is

to distinguish the real signal source (identity of the image) and the noise caused by

the variation (differences imposed by illumination). In Linear Discriminant Analysis

(LDA) [4], this idea was exploited by controlling the inter-class and intra-class

variances. That was the second leap towards the world of sophisticated subspace

analyses. After LDA, we now know that it is possible to embed face images in a

subspace which explicitly designed to handle the variation. Using a layer of abstraction

(representing faces by coordinates inside the subspace instead of original pixel values),

it is possible to get a new set of vectors behaving more presumably under variations.

One way to understand the face space under variations like illumination and pose

changes is to determine its geometric structure i.e. to understand the distribution of

images according to their illumination and pose labels regardless of their identities.

Definitely, it can not be managed in the original input space because the dimensionality

is considerably large, and pixel values tend to change critically even under small

environmental changes.

Although the face space is not Euclidean, face vectors lie on subspaces which are

locally Euclidean and smooth. Differentiable manifolds are generalization of this
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kind of locally Euclidean and smooth subspaces. Face images taken from different

viewpoints or under changing illumination conditions can be regarded as lying on

smooth manifolds [5–9]. Under uncontrolled environmental settings, the manifold

assumption may not hold due to the complexity of the data. However, it is still possible

to utilize this assumption by only considering a small set of significant factors.

Manifold learning approaches can help with employing non-Euclidean geometries

into the subspace analyses. Manifold learning can be summarized as a nonlinear

dimensionality reduction technique based on the assumption that input data lie on a

differentiable manifold. The main idea behind manifold learning is to utilize local

geodesic distances instead of global Euclidean distances [6, 9, 10].

In this study, a new subspace analysis framework called Class Dependent Factor

Analysis (CDFA) is proposed. During the formulation of the framework, a new

representation is suggested implicitly. Images of a person under a certain variation

are assumed to be generated by a linear generative model. The identity of a novel

observation is determined by the likelihood of being generated by this model. In other

words, the generative model of each person, represents observations (images) by its

model parameters. A manifold embedding technique is incorporated to handle the

nonlinearity introduced by the variation; hence, a novel connection between manifold

learning and generative models is proposed.

1.1 The Problem Definition

The proposed framework is an alternative approach for handling different variations in

the face recognition problem. The scope of the study consists of a generic way to deal

with three leading factors namely, illumination, viewpoint, and facial expression. Face

recognition under such variations is the main challenging task in the domain. This

study addresses a common and generic solution which can be employed against such

variations without any modification based on geometrical or physical aspects of the

variation.

Appearance based models (i.e. feature vectors are constructed by raw pixel values)

are utilized through the study. Input images are used in their raw gray valued form
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without any preprocessing (beside z-normalization) or new representations like LBP

[11]. Hence, the explicit shape information is not present in the feature vectors.

Example face images are given in Figure 1.1 to illustrate effects of illumination, facial

expression, and viewpoint.

(a) (b)

(c)

Figure 1.1: Effects of different variations: (a) illumination, (b) pose, (c) facial
expression.

1.2 The Classical Approaches And Their Limitations

Many popular face recognition algorithms use holistic approaches in conjunction with

appearence-based models [12]. Appearance-based models utilize the actual pixel

intensities, and this fact alone is enough to damage the effective signal-noise ratio since

individual pixels tend to change dramatically under certain variations like illumination

and facial expression. A common approach to handle these variations is to define a

lower dimensional subspace in which the useful statistics are more definite compared

to the noise. As an example, PCA is used to define a subspace where the variance on

principal axes is maximized.

When the utilized appearance-based method depends on a dimensionality reduction

technique, factor analysis (FA) happens to be the main actor. Besides the methods

which concern physical and geometric properties of the studied object, most of

the modern approaches share the main ideas of this statistical tool. FA is a well

known and commonly used approach in the data analysis community. Although its

early development traces to the beginning of the century, it is still one of the most

popular multivariate statistical analysis tools in applied science domain [13]. Its main
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formulation is a linear generative model

x = Wc+ ε , (1.1)

where the weighted average of lower dimensional factors, c, is taken to generate a

higher dimensional signal, x. In this view, FA can be seen as a dimensionality reduction

technique when the inverse mapping of W is considered.

FA is a powerful tool, especially when it is used for the dimensionality reduction.

The classification is achieved in the lower dimensional subspace instead of the noisy

higher dimensional pixel space. The very same idea is exploited in PCA and LDA.

They both have similar underlying generative models but different directions between

the lower dimensional subspace and the higher dimensional observation space. For

PCA and LDA, the direction is drawn from the higher dimensional observation space

to the lower dimensional subspace as in

c = WT x , (1.2)

when considering zero mean observations. Although the error term is omitted in this

form, it is modeled implicitly by defining a distribution over observations. In PCA, the

transformation matrix, W, is estimated by considering the eigenvectors of the empirical

covariance matrix of observations while in LDA, it is constracted by maximizing the

(between variance / within variance) ratio of classes. Indeed, the most important

difference between LDA, PCA, and FA is the fact that LDA is a supervised method

whereas PCA and FA are unsupervised methods.

In classical approaches, the first limitation arises with the common subspace constraint:

The mapping, W, is common for all classes. The discrimination among classes is

achieved by the deployment of the class centroids on the coordinate system. Such a

modeling is insufficient when the effect of the variation is more dominant than the class

characteristics. In such a case, the coordinates of the points are mostly determined by

the variation type. A well known example is the fact that the images of different people

under same illumination lie closer in such subspaces compared to the images of a single

person under different illumination.

Another important drawback of a classical subspace approach is its dimensionality

concerns. As new identities are introduced to the gallery, methods like FA, LDA, and
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PCA require the subspace is to be re-constructed to increase the dimensionality. This

is an important constraint to sustain the scalability of the method.

As a critical fact, classical embeddings like PCA can handle variations caused by

statistically well behaving noise terms. However, variation types that are effective in

the real life prevent a useful discrimination by altering individual or interclass statistics

dramatically.

1.3 Overview of the CDFA Framework

The design of the framework starts with the reformulation of the factor analysis model

under a variation such as illumination. An observation xik, which belongs to the class

i and has a variation k, is generated by the model

xik = Wick + εk . (1.3)

With this formulation, individual factor loadings, Wi, for each class i, are introduced

instead of a common loading matrix for all classes. However, the factors, ck

(coordinates on the lower dimensional subspace), are common for all classes and

related to the variation type. The geometric interpretation yields different manifolds

for different classes while all manifolds have exactly same intrinsic geometries. Inside

two manifolds, points having same local coordinates correspond to the same variation

type. This interpretation is illustrated in Figure 1.2.

(a) (b)

Figure 1.2: Illustration of individual manifolds of different identities. Any point on
the manifold corresponds to a variation type. The intrinsic geometry is
common among different manifolds. This behavior results in the same
variation type for same coordinate values.
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Several important aspects of this formulation should be mentioned:

• Each class has its own subspace/manifold. Therefore, discrimination between

classes is performed by the distance to the manifold instead of the distance within

the manifold. Inside each individual manifold, a mixture of Gaussians is defined to

model the variation.

• Coordinate vectors, ck, represent the variation type instead of class identities. Thus,

the determination of the variation value is explicitly provided. The variation of an

observation, xik, can be determined if the factor loadings are known.

• Class identities are stored as factor loadings in matrix Wi. This property increases

the scalability of the recognition as more space is left for identity. The variation

does not condition the structure of the matrix since it is already modeled by the

factors. Theoretically, recognition can be performed under even severe variations,

as long as class dependent factor loadings are recovered successfully.

• The intrinsic dimensionality of manifolds is fixed once determined during the

bootstrap. Nevertheless, the actual dimensionality in which the recognition is

performed is n since the manifolds are embedded in ℜn, where n is the number

of pixels in images.

• A manifold learning step is employed to derive the reduced dimensional

coordinates, ck. Thus, a connection between manifold learning and probabilistic

generative models is proposed. This can be seen as an initial step towards nonlinear

probabilistic models.

The difference between individualized and common factor loadings can be observed

in Figure 1.3. The proposed method introduces basis sets which are specific to their

corresponding classes.

With this setting, one can synthesize different images of a person under different

conditions like changing illumination given a class dependent basis set. Figure 1.4

illustrates an example synthesis. Results can be improved by sophisticated error

models; however, this work does not concern such a task as the main goal is limited

with the discrimination among classes.
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(a) (b)

Figure 1.3: Demonstration of the semantic difference between (a) a common basis set
generated by a classical approach (SVD was used for this example) and (b)
class dependent basis sets generated by the proposed approach. Each basis
set includes the class information intrinsically. For this example, images
under changing illumination conditions were used.

A critical feature of the method is its generic structure. No physical or geometrical

attributes of the concerned variation are employed during calculations. Hence, any

variation lying on a smooth manifold can be modeled by the proposed method.

Figure 1.4: Several synthesis results for a single identity with varying illumination
conditions.

1.4 Connections to Previous Works

The proposed method has an analogous formulation with the probabilistic

interpretation of PCA [14,15]. Both approaches tackle with finding lower dimensional

representations of observations under some prior assumptions. The main difference

is that the proposed method derives class specific coordinates and accounts for the

variation explicitly.

A similar framework was introduced in [16]. That work dealt with individualized

subspaces. The actual improvement over [16] is that CDFA has a more generic
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structure which can be used for the general classification problem whereas only

illumination was considered in [16]. The authors of [16] used spherical harmonics

to calculate class specific bases. The results are limited to illumination as the spherical

harmonics can not be generalized to other types of variation. The relation between

reflectance functions on a Lambertian surface and spherical harmonics was defined

in [17] and [18].

The authors of [19] developed a cone model to solve the face recognition problem with

varying illumination. They argued that the set of images of an object in a fixed pose

but under all possible illumination define a convex cone. The approach requires a few

images of each gallery identity to estimate its surface geometry and albedo map. After

estimation is completed, synthetic images with different illumination conditions can be

rendered. That model illustrates the real power of the subspace analysis; nevertheless,

it is again constrained to be useful only for illumination and may not work with a

single observation. The proposed method is able to work with a single observation

while extra observations increase the accuracy.

Other techniques such as [20–24] suffer from being useful only for the specific

variation type that they have been developed for. We try to propose a method which

can be used for different variations.

A comparable work was performed in [25]. Authors defined a common subspace

for class identities yet different transformation matrices (factor loadings) for different

poses. Keeping the class information inside the coordinate vectors inherits an

important disadvantage of classical subspace methods: as the number of classes

increases, the subspace dimensions also need to be increased to sustain the scalability.

The technique may work with different variations that can be discretized. The same

idea was used in [26] again for pose variations.

The probabilistic approaches for the discriminative subspace analysis were proposed

in [27] and [28]. Both solutions were based on LDA with different settings. In [27],

authors defined a three layer decision process. At the initial layer, identity is drawn

from a common Gaussian distribution. Then, at the second layer a perturbation is

applied by another Gaussian. Finally, the third layer defines a projection from the latent
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space to the observation space. In [28], the model introduced in [25] was improved by

employing different projections from the latent space to the observation space: one

for the between-individual subspace and one for the within-individual subspace. Both

models still assume common subspaces for different identities.

Compressive sensing and sparse representation were utilized in [29] and [30]. The

subspace analysis was performed on the basis of compressive sensing theory. Both

techniques can be used for different types of variation. The technique introduced in

[29] finds a discriminative sparse representation of each probe image by using the

whole gallery as a dictionary i.e. by a linear combination of gallery images. Such

a model requires each gallery identity to have a sufficiently large training set, and

the space complexity is high since all training images have to stored and accessed.

The method in [30] assumes that an image of a class can be represented as a sum of a

common component and a innovation component. The common component carries the

main identity related information for the class while the sparse innovative component is

specific to the image and includes the information related to the variation. To calculate

required statistics, both techniques need several images of an identity. These methods

are used in our benchmarks against facial expressions.

1.5 Other Related Works

The face recognition can be seen as one of the most popular and successful applications

in the image processing and understanding domain [12]. However, as a challenging

problem, illumination and pose invariant recognition still remains as an open study.

Face images taken in an uncontrolled environment usually contain variations in

viewpoint and illumination; therefore, these two factors have an important role in the

robustness of the system.

It is known for a long time, the feature-based methods like elastic bunch graph

matching [31] are promisingly successful against lots of factors including illumination

and viewpoint [12]. Nevertheless, their extreme sensitivity to the feature extraction

and the measurement of extracted features makes them unreliable [19]. As a result,

appearance-based methods have dominated the literature.
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One of the milestones for face recognition under variations can be stated as fisherfaces

[4] technique. LDA was used in [4] to construct a subspace on which inter-person

variance is optimally large while intra-person variance is efficiently small. The main

drawback of the technique, same as PCA [2], is the Euclidean consideration of the

data space. The method fails when data points lie on a nonlinear subspace, which is

usually true with multimodally distributed face images. A promising improvement

was proposed in [26] as using local linear transformations instead of one global

transformation. Method finds different mapping functions for different pose classes.

When a probe image is tested, its pose is determined by a soft clustering. Deciding to

the number of pose clusters is a vital problem as in all clustering algorithms. Moreover,

novel poses can not be handled in case of critical variations.

In [32], authors used the neighborhood structure of the input space to determine

the underlying nonlinear manifold of multimodal face images. Locality Preserving

Projections (LPP) was applied to calculate a basis set called laplacianfaces. Face

images with different poses, facial expressions, and illumination conditions were

studied and the recognition performances were shown to be higher compared to

fisherfaces or eigenfaces.

Pose variation was studied in [33] by using view-based eigenfaces. For each view,

eigenfaces were calculated and employed as separate transformations into a common

lower dimensional subspace. Authors also introduced eigenfeatures by which a

feature based scheme was incorporated. Their performance highly depends on the

discretization as it is a fact in [22]. In [22], the eigen light fields technique was

utilized to define the subspace of poses. Unfamiliar poses can be handled by the

technique. Authors in [20] combined the generalized photometric stereo and eigen

light field concept to design a generic method which is also insensitive to illumination

changes. 3D morphable face models were used in [34], [19], and [16] to generate novel

poses, and their performance values were superior to the previous research. Rendering

ability for new poses and illumination conditions is exceptional with 3D morphable

models [35]. However, the computational cost of generating 3D models from 2D

images or using laser scanners to access 3D models decrease the feasibility of the

recognition system.
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Illumination variance was studied in [23]. Authors proposed quotient image as an

illumination insensitive identity signature. The approach may fail when the probe

image has an unpredictable shadow; however, it has the ability of recognizing probe

images with illuminations different than that of gallery images. Technique requires

only one gallery image per subject. The method in [24] introduced extra constraints on

the albedo and the surface normal to remove the shadow constraint.

An illumination cone model was proposed in [19]. Authors argued that set of images

of an object in a fixed pose but under all illumination conditions define a convex cone.

The method requires a few images of a test identity to estimate its surface geometry

and albedo map. To handle pose variations, they defined different illumination cones

for each sampled viewpoint.

All sets of Lambertian reflectance functions, which can be used to generate all kinds

of illumination conditions for Lambertian objects, were defined in [17] and [18]. They

showed that by using only nine spherical harmonics, a wide variety of illumination can

be approximated. A methodology for recognition was also proposed in [17]. In [16],

spherical harmonics approach was exploited, and excellent results for recognition were

represented. They implemented a 3D morphable model to achieve pose invariance, and

this requires generating 3D face models from 2D images.

Authors in [36] suggested a nonlinear subspace approach using the tensor

representation of faces in different conditions like facial expressions, illumination,

and poses. They employed n mode tensor Singular Value Decomposition (SVD) to

generate image basis. The method requires several images under different variations

for each training identity. In [37], another nonlinear subspace analysis was proposed

by the manifold assumption. For each identity, a gallery manifold is stored in the

database. When a test identity with several new poses arrives its probe manifold is

constructed and by help of manifold to manifold distance, its identity is determined.

The requirement for multiple images of the test person is the main drawback.

A considerable idea was introduced by bilinear generative models that can be used to

decompose orthogonal factors in [38]. Authors defined a separable bilinear mapping

between the input space and the lower dimensional subspace. Once all parameters of
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mappings are determined, one can separate identity and pose information explicitly.

They analyzed the recognition and synthesizing capabilities of the technique, and the

results were promising. In [39], illumination invariance was analyzed by employing

a similar framework. To overcome the matrix inversion requirement in the symmetric

bilinear model, authors proposed a ridge regressive technique. A modified asymmetric

model was introduced in [25] to cope with pose variations. Discretization resolution

for the pose space is one of the leading factors on performance. The nonlinearity for

the generative models was incorporated in [40]. Authors recommended a nonlinear

scheme combined with the bilinear model, and the linearity constraint of the classical

generative models was tried to be removed.
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2. A GENERIC FRAMEWORK

In this study, we define a baseline framework to handle different types of variations.

The main attention is to propose a guideline that can be used for different types of

variations without requiring any modifications depending on the physical or geometric

characteristics of the concerned variation. In other words, the methodology can be

utilized for recognition under illumination, pose changes or expression changes. The

proposed method is established over the subspace analysis; therefore, the direction of

the future works is also defined explicitly.

The CDFA defines the geometry of the variation space spanned by observations

(images) of a class (a person) under an operative variation (such as illumination). This

goal is achieved by constructing a coordinate system for this subspace.

2.1 Constructing a Basis Set for a Variation Type

The data geometry of subspaces spanned by the different images of a person under

changing illumination has been studied by several authors [16–19]. For instance,

spherical harmonics that can be employed to approximate any reflectance functions

were defined as a basis set of the illumination subspace in [17] and [18]. Authors

of [16] showed that this subspace can be effectively used for recognition under

illumination changes. Once you have a 3D map of a person i.e. surface normals of

the face map, spherical harmonics for this person can be defined as
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where λ is the surface albedo and nx, ny, and nz are surface normals at x, y, and

z directions, respectively. Only 9 harmonics are sufficient to capture approximately

99.9% of the energy of any reflectance function [17]. An example set of harmonics for

a person is demonstrated in Figure 2.1. Considering these harmonics as a basis set for

the variation subspace yields the following interpretation: Once the coordinate system

of the subspace corresponding to a person is constructed, it is possible to synthesize

any image of this person under any probable illumination condition. In this setting, a

given probe image can be recognized by a metric such as distance-to-manifold. Hence,

the initial problem is reduced to the problem of recovering basis sets for people in the

gallery.

Figure 2.1: Example set of spherical harmonics for a person. This basis set can be
used to synthesize images of this person under an arbitrary illumination.
Images are taken from [16].

Similar ideas were exploited in [19]. Again individual subspaces (illumination cones)

are defined for each person in the gallery. Those approaches may only fill a limited

gap for the real life recognition tasks since they are highly restricted to illumination

changes. One may not define a harmonic set or a cone model analytically for facial

expressions. Indeed, the main goal of this study is to eliminate this constraint. We try

to find a way to define basis sets corresponding to different types of variations without

using any physical or geometric properties of the concerned variation.

2.2 Proposed Generic Basis Recovery Scheme

The proposed scheme is an optimization procedure based on the linear generative

model

xik = Wick . (2.1)

An image xik is assumed to be generated by the linear combination of the basis

vectors (columns of the matrix Wi). The combination coefficients, ck, are the lower

dimensional coordinates in the subspace defined by the range of the matrix Wi. Let’s
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assume that we have K images of a person i with K different values of a certain

variation (images with different viewpoints or illumination). The total reconstruction

error inside the subspace related to that variation can be defined as

Ei =
K

∑
k=1
‖xik−Wick‖2

=
K

∑
k=1
‖xik−wi1ck1−wi2ck2−·· ·−winckn‖2 , (2.2)

in terms of bases (Wi) and coordiantes (ck) where wi j indicates jth column of the

matrix Wi, and ck j is jth element of vector ck.

As the notation states, individual bases for different identities are defined while keeping

the coordinates common to identities. This behavior is very similar to the one used in

the spherical harmonics approach. The basis, Wi, can be calculated by minimizing the

error. This procedure is repeated for each identity.

Indeed, this method is only useful if a complete set of images for each identity is

present. Unfortunately, this is not the case for real life scenarios. Therefore, a way to

recover the basis matrix, Wg, of a gallery identity g is required when only a few or a

single observation is present, xgk. This may be achieved by the Maximum a Posterior

(MAP) estimate as in

WMAP = argmax
Wg

p(Wg|xgk)

= argmax
Wg

p(xgk|Wg).p(W) . (2.3)

Such an approach requires the prior distribution, p(W), and the likelihood, p(xgk|Wg),

is defined beforehand. Given a novel observation, xpk, the class label can be

determined by assigning the identity g with the maximum likelihood, p(xpk|Wg,ck).

2.3 Mathematical Background

The proposed method can be summarized as a two step probabilistic framework. The

first step is a bootstrap phase in which useful statistics are calculated. A manifold

embedding technique is employed at this step to define the geometry of the subspace.

The second step includes regular training and testing tasks. Framework starts with

analyzing the underlying manifold. A bootstrap database, consisting of identities with
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several observations (people with several images), is collected for this purpose. The

identities of the bootstrap database are different than the ones to be recognized; any

suitable database can be selected.

To simplify the calculations, the equation (1.3) is rewritten in an element-wise form as

xik = wT
i ck + εk , (2.4)

where xik is an element of the observation vector, xik. Similarly, the vector wi is

the corresponding row of the matrix Wi. Again, εk is the corresponding element

of the error vector, εk. Such an element-wise formulation ignores the correlations

among pixels while introducing new correlations among columns of Wi. Unlike the

classical factor analysis model, the factors are treated as deterministic variables which

are calculated during the manifold learning step. Moreover, distributions

p(w) ∼ G (µ,Ω−1),

p(εk) ∼ G (0,σ2
k ), (2.5)

on the vector w and the constant εk are defined. Along with the prior over the vector

w, the conditional probability p(xk|w,ck) is needed for the MAP estimate. It may be

defined as another Gaussian by

p(xk|w,ck)∼ G (wT ck,σ
2
k ). (2.6)

The mean and the variance of the distribution are calculated by

E[xk|w,ck] = E[wT ck + εk] = wT ck +E[εk] = wT ck ,

E
[
(xk−E[xk|w,ck])

2] = E
[
(xk−wT ck)

2]= E
[
(εk−0)2]

= E
[
(εk−E [εk])

2]= σ
2
k , (2.7)

using the generative model (2.4).

The proposed method is detailed through the following sections and summarized in

Table 2.1. For all formulations, a single variation such as illumination is considered

for the sake of simplicity. The bootstrap database will include multiple images of

people under different conditions. However, the gallery including identities that are to

be recognized may contain a single image of each identity.
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Table 2.1: Summary of the CDFA.

Bootstrap: Given a bootstrap database, X = {xik}

– Calculate lower dimensional coordinates, ck, for each observation, xik, by a
manifold learning technique (Section 2.3.1)

– Calculate the parameters µ,Ω−1,σ2
k (Section 2.3.2 and Section 2.3.3)

Training: For each identity g in the gallery,

– Recover Wg specific to this identity by maximizing p(wg|xgk,ck) for each
element xgk of the observation, xgk (Section 2.3.4)

Testing: Given a probe observation xpk,

– Calculate the point to manifold distance for each identity g in the gallery, and
select the one with the minimum value (Section 2.3.5)

2.3.1 Manifold Learning

The aim of this step is to define a mapping, M, from the high dimensional image space

to the lower dimensional variation space as in

ck = MT xk . (2.8)

The term variation space is chosen to emphasize that the coordinates of the subspace

are related to the variation. Locality Preserving Projections (LPP) [10] is employed

as a manifold embedding technique. This technique tries to preserve the intrinsic

geometry and the local structure of the underlying manifold. Method starts with the one

dimensional subspace assumption. In this view, the one dimensional representations

of two observations xk and xj are ck and c j. The relation between xk and ck is defined

as ck = mT xk, where the vector m is a column of the mapping M. Considering the

weighted distance between data points in the one dimensional subspace as an error, the

total error after the dimension reduction becomes

E = ∑
k

∑
j

(
ck− c j

)2Sk j , (2.9)
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where the coefficients Sk j are the similarity indices and related to the distances in the

higher dimensional observation space. They may be defined by

Sk j =
{ exp(−‖xk−xj‖2/t), ‖xk−xj‖2 < δ ,

0, otherwise
(2.10)

where the parameter δ determines the radius of the local neighborhood. In other words,

method tries to assign close coordinates to the points which are in a small neighborhood

in the observation space. The cost function (2.9) can be rewritten as

E = 1
2 ∑k ∑ j

(
ck− c j

)2Sk j

= 1
2 ∑k ∑ j

(
mT xk−mT xj

)2Sk j

= mT X(D−S)XT m

= mT XLXT m, (2.11)

where the matrix X has data points, xi, as its columns. D is a diagonal matrix,

and its entries are column sums of S. L = D− S is the Laplacian matrix. By

introducing a constraint (mT XDXT m = 1), the minimization of (2.11) is transformed

to the generalized eigenvalue problem as

XLXT m = λXDXT m. (2.12)

Then, the eigenvectors corresponding to minimum eigenvalues are selected to construct

a linear mapping, M.

The selection of the similarity indices totally determines the structure of the

embedding. In the current form, LPP preserves the locality by minimizing the local

variance. When Sk j is taken to be 1/n2 for all k, j then the Laplacian matrix, L,

becomes the data covariance matrix. In this form, we get the solution of PCA by

collecting the eigenvectors corresponding to the maximum eigenvalues. As an another

choice, Sk j can be defined in a supervised manner by

Sk j =
{ 1/nc, if xk and x j both belong to the class c ,

0, otherwise (2.13)

where nc is the number of data points in class c. By this way, XLXT becomes the within

covariance matrix SW . Similarly the between covariance matrix SB is C−XLXT where

the matrix C is the data covariance matrix. In LDA, a generalized eigenvalue problem
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is solved as

SBm = αSW m. (2.14)

With the new weight configuration, this equation is equivalent to

XLXT m = λCm. (2.15)

Finally, if the sample mean of the data set is zero, C is exactly XDXT . Such examples

show the key role of selecting Sk j during the embedding.

During the experiments, the following settings are used. A bootstrap database, {xik}, is

collected for the concerned variation. Each identity i has several images corresponding

to different values of the variation. The distances between images are calculated in a

supervised manner as in LDA. The similarity indices in (2.10) are determined based

on variation labels. In other words, instead of considering local neighborhoods (the

parameter δ ), the coefficients Sk j becomes 0 if two data points do not have the same

variation. For data points with the same variation, coefficients are calculated by the

heat kernel. Details can be gathered from [10, 32].

Using such a supervised approach draws an upper bound to the dimensionality of the

manifold. Since the rank of the generalized eigenvalue problem in (2.12) is determined

by the number of discretized variation labels (different types of illumination), the

dimensionality is at most the number of different variation labels in the bootstrap

database.

An example embedding of the bootstrap database into two dimensional subspace is

illustrated in Figure 2.2(a). A further averaging step is performed to discard the effect

of the identity completely. As shown in Figure 2.2(b), averages over identities are

calculated to represent each variation type.

The averaging is applied as follows: For each observation, xik, the reduced dimensional

coordinates, cik, are calculated by cik = MT xik. Then, for each variation label, k, the

average over all identities is taken by

ck =
1
N

N

∑
i=1

cik , (2.16)

where N is the total number of identities in the bootstrap database.
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(a) (b)

Figure 2.2: Embedding results of LPP: (a) 2D embedding of the bootstrap database
with changing illumination. (b) Average coordinates corresponding to
different illumination conditions. These coordinates are invariant to the
identity.

2.3.2 Bootstrap: an algebraic approach

In the bootstrap phase, the parameters µ,Ω−1,σ2
k , which define the distributions p(w)

and p(xik|wi,ck), are calculated. As a first attempt, the distributions are defined

empirically i.e. the basis vectors, w, are found for different identities in the bootstrap

database, and then parameters over them are calculated. Such an approach seems to be

non-globally-optimal; however, by performing some regularizations, it is believed to

reach an appropriate solution which agrees with the assumptions on the distributions.

Here, the governing equation defined in (1.3) is taken into account. Now we consider

factor loadings, W, as a basis set of the variation subspace. Similarly, factors, ck,

are assumed to be coordinates i.e. linear combination coefficients. If both parameters

(basis vectors and their coefficients) are treated as unknowns to be optimized, then

it is not possible to guarantee that the basis sets of different identities have similar

characteristics. If the basis sets of different identities are not forced to generate

a certain geometry for their own subspaces, they only adapt themselves to the

observations present in the bootstrap database. This fact illustrated in Figure 2.3.

When compared to the results in Figure 2.3 (a), it is easy to say that one may not

define proper distributions on the basis vectors of Figure 2.3 (b) since they do not have

compatible characteristics among themselves, unlike the ones in Figure 2.3 (a).

To this extend, the combination coefficients are kept fixed among different identities

to have a common geometry for different manifolds. Hence, another challenge is to
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(a)

(b)

Figure 2.3: Basis sets of different identities with (a) a constraint over the combination
coefficients, (b) no constraint over the combination coefficients.

be faced: a coefficient set that represents the geometry of the underlying manifold

most accurately is required. That is accomplished by the manifold learning step that is

detailed in Section 2.3.1.

The problem can be described as a high dimensional reconstruction error minimization.

The minimization is run for each identity in the bootstrap database separately to obtain

its basis set, W. Finally, measurements are performed over these basis sets to calculate

the required statistics.

Let’s assume that we have K images of an identity i in the bootstrap database. Then

the total reconstruction error for the identity i is

Ei =
K

∑
k=1
‖xik−Wick‖2

=
K

∑
k=1
‖xik−wi1ck1−wi2ck2−·· ·−winckn‖2 , (2.17)

where wi j indicates jth column of the matrix Wi, and ck j is jth element of vector

ck. The index i will be omitted in the following equations for the clarity. The

manifold dimension, n, is determined during the manifold embedding. Details on the

dimensionality are given in Section 3.1. The combination coefficients, ck, are assumed

to be calculated during the manifold embedding.
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The unknown basis vectors, wi j, can be minimized by taking the derivatives with

respect to them, and equating the derivatives to zero. To define orthogonalization

constraints over the bases, one may follow an iterative approach: find one basis vector

at each step. The framework starts with the 1-dimensional subspace assumption. Then,

the total reconstruction error is

E =
K

∑
k=1
‖xk− ck1w1‖2

=
K

∑
k=1

(xk− ck1w1)
T (xk− ck1w1)

= −2
K

∑
k=1

ck1xT
k w1 +wT

1 w1

K

∑
k=1

c2
k1 +

K

∑
k=1

xT
k xk

= −2cT
1 Xw1 +wT

1 w1cT
1 c1 +

K

∑
k=1

xT
k xk , (2.18)

where the matrix X includes vectors xT
k as its rows, and c1 is the vector of the first

coordinate terms. The last term, ∑
K
i=k xT

k xk can be omitted since it does not depend on

the optimization variable, w1.

To reduce the condition number related to the problem, usually a normalization

constraint as wT
1 w1 = 1 is introduced. However, since a value is already assigned

to each ck1, which plays a scaling role, using such a constraint on the norm of the

variable may result in stucking in a local optimum. Taking derivative with respect to

w1, and equating it to zero yields

∂E

∂w1
= 0⇒

0 = −2XT c1 +2w1cT
1 c1 . (2.19)

Therefore, the first basis vector is

w1 =
XT c1

cT
1 c1

. (2.20)

To calculate the second basis vector, a similar minimization formulation with an extra

constraint (wT
1 w2 = 0) can be used. By finding the minimum point for

E =
K

∑
k=1
‖xk− ck1w1− ck2w2‖2 +λ (wT

2 w1), (2.21)

the second basis can be found. The error term is now

E =−2cT
2 Yw2 +wT

2 w2cT
2 c2 +2λwT

2 w1 , (2.22)
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after omitting constant terms. The matrix Y is defined as Y = X− c1wT
1 . Again the

partial derivatives are taken with respect to unknown parameters, w2 and λ as

∂E

∂w1
= 0⇒

0 = −YT c2 +2w2cT
2 c2 +λw1 , (2.23)

∂E

∂λ
= 0⇒

0 = wT
2 w1 . (2.24)

If the equation equation (2.23) is multiplied by wT
1 to use the identity in (2.24), the

value λ is found to be

λ =
wT

1 YT c2

wT
1 w1

. (2.25)

Then the second basis is

w2 =
PYT c2

cT
2 c2

, (2.26)

where P = I− 1
wT

1 w1
w1wT

1 is a projection matrix that projects into the complementary

of the subspace spanned by the first basis vector, w1.

Following the same procedure, the nth basis is

wn =
PYT cn

cT
n cn

, (2.27)

and similarly Y = X−∑
n−1
i=1 ciwT

i and P = I−∑
n−1
i=1

1
wT

i wi
wiwT

i .

As the complete basis set Wi of each identity i in the bootstrap database is calculated,

the parameters of the distribution p(w) can be estimated by the empirical formulas

µ =
1
N

N

∑
i=1

wi , (2.28)

Ω =
1

N−1

N

∑
i=1

(wi−µ)(wi−µ)T . (2.29)

One should be careful with this notation. Here, we turned back to the form defined

in (2.4). Therefore, the vector wi is a row (not a column) of the matrix Wi, and the

averages are taken over identities. After calculating the matrice Wi for an identity i,

the parameters corresponding to different rows are determined independently.

The parameters of the error distribution, p(εk), can be again estimated by an empirical

approach. The error for each identity i and the variation k is defined by (2.4) as

εik = xik−wT
i ck . (2.30)
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Then, the mean value and the variance is calculated by averaging over identities. Here,

the mean value is most probably not zero contrary to the definition in (2.5). One may

redefine the distribution p(εk) to have a nonzero mean value. Nevertheless, in such a

case the formulation of MAP estimate should be corrected in Section 2.3.4.

To relax the minimization problem, we included orthogonalization constraints over the

basis vectors. Nevertheless, it is possible to get a unique solution without using such

constraints provided that there exists a linearly independent set of coordinate vectors,

ck, corresponding to different values of the variation. This fact is shown in Appendix

A.1.

2.3.3 Bootstrap: a probabilistic approach

To provide an improved framework in terms of completeness, a new probabilistic

interpretation is presented. Here, the distributions p(w) and p(xik|wi,ck) are

re-defined. In other words, another way to calculate the parameters µ,Ω−1,σ2
k is

shown. A way to calculate these distributions were already given in Section 2.3.2.

This time, a complete probabilistic approach is utilized.

The parameters of prior distributions defined in (2.5) are calculated again using the

bootstrap database, X = {xik}. Considering the element-wise formulation (2.4) and

priors, the conditional and the marginal distributions over the variable xk are

p(xk|w,ck) ∼ G (wT ck,σ
2
k ),

p(xk) =
∫

p(xk|w,ck)p(w)dw. (2.31)

Both the prior and the conditional distributions are Gaussians in (2.31), and this makes

the resulting marginal distribution, p(xk), to be another Gaussian. Indeed, this integral

form does not have to be solved analytically since the mean value and the variance can

be easily evaluated by employing the equation (2.4) as in

E[xk] = E[wT ck + εk] = E[wT ]ck +E[εk] = µ
T ck ,

E
[
(xk−E[xk])

2] = E
[
(wT ck + ε−µ

T ck)
2]= E

[
((wT −µ

T )ck)
2 + ε

]
= cT

k E
[
(w−µ)(w−µ)T ]ck +2E

[
ε(w−µ)T ]ck +E

[
ε

2]
= cT

k Ωck +σ
2
k , (2.32)
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where we assumed zero correlation between the error term ε and the basis vector w.

The mean and the variance parameters are sufficient to define the marginal as

p(xk)∼ G (µT ck,cT
k Ωck +σ

2
k ). (2.33)

The bootstrap database can be used at this point to calculate the unknown parameters,

Ω, µ , and σ2
k by maximizing the likelihoods. The Likelihood to be maximized is the

empirical likelihood of the observed points, xik. Assuming i.i.d observations, the total

log likelihood over observations is

ln p(X |µ,Ω,σ2
k ) =

N

∑
i

K

∑
k

ln p(xik), (2.34)

where the upper bounds N and K denote the number of identities and different values

of the variation in the bootstrap gallery, respectively. After omitting the constant terms

which are not related to the unknown parameters, the cost functional becomes

E =−
N

∑
i

K

∑
k

ln
(
cT

k Ωck +σ
2
k
)
−

N

∑
i

K

∑
k

(
xik−µT ck

)2

cT
k Ωck +σ2

k
. (2.35)

In order to determine the unknown parameters µ,Ω,σ2
k which minimize the cost

functional, the partial derivatives are to be taken with respect to those and set them

equal to zero. By this way, equations

∂E

∂σ2
k

= 0⇒

N
cT

k Ωck +σ2
k

=
∑

N
i
(
xik−µT ck

)2(
cT

k Ωck +σ2
k

)2 ⇒

N
(
cT

k Ωck +σ
2
k
)

=
N

∑
i

(
xik−µ

T ck
)2⇒

σ
2
k =

1
N

N

∑
i

(
xik−µ

T ck
)2− cT

k Ωck , (2.36)

∂E

∂Ω
= 0⇒

N
K

∑
k

ckcT
k

cT
k Ωck +σ2

k
=

K

∑
k

ckcT
k(

cT
k Ωck +σ2

k

)2

N

∑
i

(
xik−µ

T ck
)2

, (2.37)
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∂E

∂ µ
= 0⇒

0 =
N

∑
i

K

∑
k

ck
(
xik− cT

k µ
)

cT
k Ωck +σ2

k
⇒(

N
K

∑
k

ckcT
k µ

cT
k Ωck +σ2

k

)
=

1
N

N

∑
i

K

∑
k

xikck

cT
k Ωck +σ2

k
⇒(

K

∑
k

ckcT
k

cT
k Ωck +σ2

k

)
µ =

1
N

N

∑
i

K

∑
k

xikck

cT
k Ωck +σ2

k
, (2.38)

define a system of nonlinear equations. The solution for (2.36) is also a solution for

(2.37), thus the system is rank deficient. It has infinite solutions; therefore, we can not

assume any optimality. To overcome this problem, one may calculate the covariance

matrix as defined in Section 2.3.2. We expect that such an empirical solution leads us

to an optimal solution. The experiments on changing illumination conditions, facial

expressions, and poses indicate that this assumption holds for real life scenarios. Thus,

two usefull equations are

σ
2
k =

1
N

N

∑
i

(
xik−µ

T ck
)2− cT

k Ωck , (2.39)

(
K

∑
k

ckcT
k

cT
k Ωck +σ2

k

)
µ =

1
N

N

∑
i

K

∑
k

xikck

cT
k Ωck +σ2

k
. (2.40)

Analytic solution to these nonlinear equations is not trivial. Thus, a fixed point iteration

is employed to approximate the solution. Let ζk = cT
k Ωck +σ2

k and a(t) indicates the

value of the variable a at tth iteration step. Then, at each iteration step, the equations(
K

∑
k

ckcT
k

ζk(t)

)
µ(t) =

1
N

N

∑
i

K

∑
k

xikck

ζk(t)
, (2.41)

ζk(t +1) =
1
N

N

∑
i

(
xik−µ(t)T ck

)2
, (2.42)

are solved. With an appropriate initial guess, this procedure converges fast. Two

example solutions for µ corresponding to different variation types are illustrated in

Figure 2.4. For all experiments, the initialization is done as ζk(1) = 1, and the

stopping criteria is determined as |ζk(t +1)−ζk(t)| ≤ 10−6. These calculations must

be repeated for each pixel location as the element-wise formulation is employed.
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(a)

(b)

Figure 2.4: Mean parameter, µ , is illustrated for two different variation types: (a) for
illumination and (b) for expression.

2.3.4 Training: recovering class factors

Having the conditional probability p(xgk|wg,ck) and the prior probability p(wg)

defined in the bootstrap, the MAP estimation can be applied to recover the factor

loadings of a gallery identity g, given an observation xgk by

wMAP = argmax
wg

p(wg|xgk,ck).

Using Bayes’ rule we get

wMAP = argmax
wg

p(xgk|wg,ck)× p(wg),

where the constant term p(xgk) is omitted. Then, MAP estimate is

wMAP = argmax
wg

G (wT
g ck,σ

2
k )×G (µ,Ω−1). (2.43)

If the log propabilities are considered and the constant terms are ommitted, the cost

functional equals to

E =

−1
2

(
xgk−wT

g ck

σ2
k

)2

− 1
2
(wg−µ)T

Ω
−1(wg−µ)

 . (2.44)

Then, the derivative with respect to wg is taken as

∂E

∂wg
= 0⇒

2
σ2

k

(
xgk−wT

g ck
)

ck = 2Ω
−1(wg−µ). (2.45)

The MAP estimate for wg is the solution to the set of linear equations [16]

Awg = b, (2.46)
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where

A =
1

σ2
k

ckcT
k +Ω

−1 , b =
xgk

σ2
k

ck +Ω
−1

µ . (2.47)

When the algebraic approach defined in Section 2.3.2 is employed to estimate bootstrap

parameters, the error term has a nonzero mean value. Therefore, the conditional

distribution p(xgk|wg,ck) becomes an Gaussian defined by

G (wT
g ck +µεk ,σ

2
k ), (2.48)

where µεk is the mean value of the error term εk. Then, the vector b in the final solution

of the vector wg is

b =
xgk−µεk

σ2
k

ck +Ω
−1

µ . (2.49)

In these formulations, a single observation is enough for each class, while having more

points will increase the reliability of the recovery. When multiple observations exist

for an identity g, the coefficient matrix and the right-hand side vector are determined

by summations over observations as in

A = ∑
k

1
σ2

k
ckcT

k +Ω
−1 , b = ∑

k

xgk

σ2
k

ck +Ω
−1

µ . (2.50)

Factors, ck, are assumed to be calculated by the mapping M of LPP. First, the identity

dependent factors cgk are calculated by

cgk = MT xgk . (2.51)

Then, the identity invariant factors are obtained by finding the closest (in terms of

Euclidean distance) ck that is calculated by (2.16) during the bootstrap. Instead, one

may take the average of k nearest ck to increase the ability of handling novel values.

During our tests, we took the average of 3 nearest ck.

Equations in (2.50) include weighted averages over gallery observations. Therefore,

when there exist multiple observations, the MAP estimate finds a basis set that is the

most representative of an average observation. Such an approach may fail in case

of pose variation because images with different viewpoints are not suitable to take

averages. It is possible to register feature points for images of different illumination or

facial expressions (if no severe expression); however, that is not the case with the pose
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variation. Therefore, the average observation can not represent the multiple samples

with different poses.

Considering the fact with the pose variation, we develop another recovery approach

that does not find a basis set which is a good representative for averages but can

synthesize each observation individually. Let’s assume we have K different images

of an identity g. Then, the main formulation

wg = argmax
w

−1
2
(w−µ)T

Ω
−1(w− µ)+

K

∑
k

λk(xgk−wT ck), (2.52)

is an optimization scheme with several constraints where the constraints are introduced

as xgk = wT ck. The first term is the Mahalanobis distance related to the prior, p(w).

The coefficients λk are the unknown Lagrange multipliers. A solution to this new

approach is derived in Appendix A.2.

2.3.5 Testing: classification of novel points

Given a novel observation xpk, the class label can be determined by assigning the class

with the maximum likelihood p(xpk|Wg,ck).

Another approach which is used during our experiments is to minimize the distance

between the novel point and its synthesized counterparts (distance to manifold) as

dg = ‖xpk−xgk‖ , (2.53)

where xgk = WgWT
g xpk is calculated for each gallery identity, g.

As a third choice, posterior probabilities may be used to decide the identity of the novel

point. The decision is made by selecting the maximum posterior p(Wg|xpk,ck). Bayes’

rule transforms the posterior into the multiplication of the likelihood and the prior:

p(Wg|xpk,ck) = p(xpk|Wg,ck).p(Wg) (the constant denominator p(xpk) is omitted).

This approach can be very useful in large scale real life scenarios as it lets us to employ

priors over gallery identities.

The second approach is employed for all of our experiments. For this approach, the

orthonormal Wg matrices are considered, whereas no such constraint was employed

during the recovery. In the experiments, Gram-Schmidt orthonormalization process is
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applied after solving (2.46). The detailed algorithm of the CDFA is given in Table 2.2.

Table 2.2: Detailed algorithm of the CDFA.

Bootstrap: Given a bootstrap database, X = {xik}

– Calculate the lower dimensional coordinates, ck, by (2.16)

– For each pixel location

∗ Calculate the emprical covariance matrix, Ω, as defined in Section
(2.3.2)
∗ Calculate µ and σ2

k using (2.41) and (2.42)

Training: Given gallery observations, G = {xgk}, for each identity g,

– Calculate the lower dimensional coordinates, ck, by (2.51)

– Recover wg for each pixel location by (2.46)

– Construct the matrix Wg so that it has vectors wg as its rows

– Apply Gram-Schmidt orthonormalization to the columns of Wg

Testing: Given a probe observation, xpk,

– Calculate dg for each gallery identity g using (2.53)

– Select the identity with the minimum distance

2.4 Interpretation of Governing Distributions

Beside the geometrical interpretation of the generative model described in Section

1.3, another probabilistic interpretation is given here, regarding the formulation of the

CDFA framework. The marginal distribution p(xk) specifies a mixture of Gaussians

in which Gaussians are determined by the variation label k. Each Gaussian is

characterized by parameters µT ck and cT
k Ωck +σ2

k . Hence, the variation defines the

shape of each Gaussian.

Initially, the geometry of the manifold consisting of this mixture does not depend on

the identities, but only on the mean identity. Thus, the manifold can be considered
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as a template that will be customized after selection of an identity. When an identity

is drawn from the prior distribution p(w), it re-defines the mixture by the conditional

distributions p(xk|w,ck). This procedure also eliminates a considerable amount of

uncertainty in each Gaussian as the variance decreases to σ2 from cT
k Ωck +σ2

k . Whole

process is illustrated in Figure 2.5.

CDFA is defined as a two-layer decision process. At the first layer, class identities are

drawn from a prior distribution. The second layer defines a mixture of Gaussians

depending on a template manifold characterized by p(xk), and the conditional

distributions p(xk|w,ck). The assignment of observations to each Gaussian is achieved

by the manifold embedding. In this view, the manifold embedding can be considered

as a clustering scheme.
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(a)

(b)

Figure 2.5: Illustration of the governing distributions: (a) A template manifold
is defined by the marginal distribution, p(xk). (b) This template is
customized by the identity drawn from the prior distribution, p(w).
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3. EXPERIMENTAL EVALUATIONS

Several experiments were conducted to explore two important aspects of the CDFA

framework: (1) the recognition performance against extreme variations and (2)

scalability in relatively large databases. For the first evaluation, we selected databases

with extreme variations. Nevertheless, the sizes of such databases are usually small,

including at most 30-40 identities. To analyze the real life performance of the method,

a second group of experiments was performed on another set of databases with

moderate variations but large number of identities.

The main characteristic of the method is its ability to be used for different types of

variation. This claim was verified by different experiments under different types of

variation. Three types of variation were used during tests: (1) changing illumination,

(2) changing facial expressions, and (3) changing viewpoints.

3.1 Tuning the Bootstrap Parameters

Each test begins with the manifold embedding on the selected bootstrap database

to decide the geometrical features of the manifold. One parameter that should be

determined is the dimension of the underlying manifold. The manifold learning

technique LPP relies on the solution of a generalized eigenvalue problem; therefore,

the spectrum of eigenvalues may help with determining the dimension. However, using

an evaluation dataset is a better choice since the characteristics of the variation may

prevent a meaninful spectrum analysis.

As indicated in Section 2.3.1, the intrinsic dimensionality is bounded by the number of

different variation labels present in the bootstrap database. For instance, when using

Multi-PIE [41] as the bootstrap database, the dimensionality is bounded by 20 since

there are 20 different illumination conditions. However, this does not mean that the

recognition is performed in a 20 dimensional subspace. This value represents the

number of basis vectors to span the variation subspace of each identity. It is only

35



related to the range of the generative model, i.e. how the method deals with novel

variations. The recognition is performed by the point-to-manifold measure which is

calculated in the original observation space ℜn, where n is the number of pixels of the

input images.

Certain properties of the manifolds like dimensionality are totally determined by the

bootstrap database. This is a clear and an understandable behavior since the bootstrap

database reflects the way that the operative variation is modeled. The best practice is

to use a bootstrap database that is the most compatible with the testing requirements.

The effect of the manifold dimension is given in Figure 3.1. For two types of variation

(illumination and facial expression), evaluation datasets were collected. Scenarios with

different bootstrap and evaluation sets are demonstrated to grasp the characteristics

completely. All tests were performed with evaluation sets containing 50 identities.

A single image was selected as the gallery and all remaining images were used as

probes. Those identities collected for the evaluation sets were not used during the

further experiments to reflect a real life behavior.

Experiments indicate that the method behaves similarly in terms of dimensionality

even if the bootstrap database is changed. The results are comparable when the

dimension is fixed among different evaluation sets. Moreover, slight changes in

dimension do not affect the recognition performance, considerably.

3.2 Classification Performance against Illumination

Tests with changing illumination conditions were performed with Yale B Database

[19]. This database includes 10 identities with 45 different illumination conditions.

The database can be split into 4 subsets according to the illumination direction, which

also highlights the difficulty of the recognition. Figure 3.2 shows several example

images from each subset.

The Extended Yale Face Database [42] was used as the bootstrap database. This

database is an extension of the original Yale B with 28 identities which are not present

in the original database. At the bootstrap phase, a subset of 41 illumination types out

36



(a)

(b)

Figure 3.1: Recognition rates on evaluation sets with different manifold dimensions
under (a) illumination and (b) facial expression changes. Yale & Multi-PIE
means that the bootstrap set is from Yale and the evaluation set is from
Multi-PIE.

(a) Subset 1 (b) Subset 2

(c) Subset 3 (d) Subset 4

Figure 3.2: Some example images of Yale B Database

of 45 was used due to several corrupted images. Hence, the gallery and probe images

had novel variations which were not present in the bootstrap database.

The size of images used in the experiments was 100×90. As a preprocessing step, all

images were normalized so that they have zero mean and unit variance. The dimension
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of the manifold was fixed as 9. Totally, 19 tests were performed, and the average was

taken as the final performance. For each test, a single image from subset 1 or subset

2 was selected as the gallery image, and all remaining images were used as probes.

In other words, 440 recognition attempts were performed for each test, resulting in

8360 recognition attempts in total. The recognition rates with this configuration are

given in Table 3.1. Recognition rates are very promising considering the moderate

Table 3.1: Face recognition rates for Yale B Database. Performances of the other
methods were taken from [16].

Methods Subset 1-2 Subset 3 Subset 4
Correlation 100 76.7 26.4
Eigenfaces 100 74.2 24.3

Linear Subspaces 100 100 85
Cones-attached 100 100 91.4

Cones-cast 100 100 100
9PL 100 100 97.2

Spherical Harmonics 100 99.7 96.9
CDFA 100 99.2 95

requirements for the bootstrap and the training. CDFA is trained by a single image for

each identity unlike methods Cones-attached, Cones-cast, and 9PL which need number

of images between 5 and 9. Compared to the spherical harmonics, CDFA is a more

generic approach since it is not related to the physical aspects of the variation. The

behavior of the CDFA with increasing number of gallery images is demonstrated in

Table 3.2. Random images from subsets 1 and 2 are selected as gallery images for

each test. The increase in the recognition performance makes the proposed method

more comparable to other methods.

3.3 Classification Performance against Facial Expressions

As a second set of experiments, the performance of the CDFA with facial expressions

was analyzed. For this purpose, three databases were selected: Cohn-Kanade

AU-Coded facial expression database (CK+) [43], Japanese female facial expression

database (JAFFE) [44], and CMU AMP face expression database [45]. Several

example images of these databases are given in Figure 3.3.
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Table 3.2: Recognition error rates for Yale B Database with multiple gallery images.

# images Subset 1-2 Subset 3 Subset4
1 0.0 0.8 5.0
2 0.0 0.2 1.4
3 0.0 0.1 0.6
4 0.0 0.0 0.3
5 0.0 0.0 0.1
6 0.0 0.0 0.0

(a) CMU AMP

(b) CK+

(c) JAFFE

Figure 3.3: Several images from expression databases.

CK+ database is a collection of video sequences starting with a neutral pose and ending

with a peak expression. 7 universal expressions [46] are included in the database: (1)

surprise, (2) anger, (3) happiness, (4) sadness, (5) disgust, (6) contempt, and (7) fear.

The contempt expression was discarded since only a few identities had this expression.

This database is used as a common bootstrap gallery. 4 images were sampled from

each sequence. Including one additional neutral image, at most 25 different images per

person (24 images corresponding to 6 expression and 1 neutral image) were collected.

The manifold dimension was determined to be 20.

Two groups of tests were performed using databases JAFFE and CMU AMP. JAFFE

includes 213 images of 10 Japanese women with number of facial expressions varying

between 20 and 23. These expressions can be different from the expressions which

exist in the bootstrap database. Therefore, the ability of the method with handling novel

variations was verified. CMU AMP have 13 identities with 75 different expressions.
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Expressions present in this database are extremely severe as they also cause slight pose

changes along with changes in face geometries.

CDFA is compared against two state-of-art techniques CS [30] and SRC [29]. To make

fair comparisons, we followed the same scenarios with the compared methods, and the

gallery selection procedure and the structure of random tests were kept same. Image

size was set to be 32× 32 since the compared methods had selected to use such a

small image size. For each identity, several gallery images were selected randomly,

and the remaining images were used as probes. Images were used after zero mean-unit

variance normalization. Results of two classical subspace techniques, PCA and LPP,

are also analyzed to understand the marginal improvements. The transformation

matrices for PCA and LPP are obtained using the CK+ bootstrap database. LPP is

trained in kNN mode with distances being calculated by the heat kernel. Table 3.3 and

Table 3.4 show test results for JAFFE and CMU AMP. Results for CS and SRC were

taken from [30]. To give an impression of the significance of the presented results, the

second columns list the number of actual recognition attempts for each experiment.

These values are simply calculated as (the number of test images × the number of

random trials).

CDFA steadily outperforms others for both databases. However, the main intention

here is to highlight that the same framework can be utilized for different types of

variation without any modification in the base configuration. Indeed, these databases

happend to be trivial although they include severe variations. Even a classical approach

like PCA can achieve high recognition rates on them.

Table 3.3: Average face recognition rates on JAFFE database. 40 trials with randomly
chosen gallery images were performed for each row.

# Gallery
Images

Recognition
Attempts

CDFA CS SRC PCA LPP

2 7720 93.04 89.94 90.1 85.84 83.84
3 7320 94.50 93.22 92.1 89.1 89.32
4 6920 96.17 95.12 95.13 91.62 91.33
5 6520 96.33 96.12 96.01 93.54 93.87
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Table 3.4: Average face recognition rates on CMU AMP database. 10 trials with
randomly chosen gallery images were performed for each row.

# Gallery
Images

Recognition
Attempts

CDFA CS SRC PCA LPP

4 9230 99.92 98.95 98.9 99.6 99.91
5 9100 100 99.91 99.8 99.66 99.71
6 8970 99.99 99.97 99.75 99.68 99.84
7 8840 100 100 99.74 99.71 99.75
8 8710 100 100 99.87 99.89 99.87
9 8580 100 100 100 99.94 99.97
10 8450 100 100 99.49 99.85 99.95

3.4 Classification Performance against Pose

Experiments are performed using Multi-PIE database [41]. Example images are

illustrated in Figure 3.4. Pose variations result in highly nonlinear geometries. Without

using a preprocessing or keypoint identification step, a single image can not be

employed effectively during the training to perform recognition with both 0o and±90o

probe images. Therefore, several gallery images of an identity are required during the

basis recovery.

Figure 3.4: Example face images under different view point conditions.

In Table 3.5, the recognition performances with single gallery images are given. One

pose is picked for training, and all remainings are used for testing. The reliability of

the method fails with severe pose differences.

This behavior can be improved by using multiple gallery images. To demonstrate this

behavior, several images which can model the variation in an appropriate manner were

sampled. Recognition rates with different number of gallery images are given in Table

3.6. It was examined that the number of gallery images is not the main parameter

determining the final rates. The ability of the gallery set to represent the whole

population is a more important factor. This fact requires us to select gallery poses with

a high range. The recognition rates in Table 3.6 are not reliable enough although
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Table 3.5: Initial face recognition rates (%) with changing poses. A single image is
selected as a gallery image and recognition rates for ±22.5o, ±67.5o and
±90o are given. Tests are performed with 50 identities in the gallery.

Gallery Image / Probe Images ±22.5o ±67.5o ±90o

50.0 10.0 10.0

52.0 51.0 28.0

51.0 55.0 24.0

23.0 43.0 54.0

17.0 55.0 38.0

Table 3.6: Initial face recognition rates (%) with changing poses. Multiple images are
selected as gallery images and recognition rates for ±22.5o, ±67.5o and
±90o are given. Tests are performed with 50 identities in the gallery.

Gallery Image / Probe Images ±22.5o ±67.5o ±90o

80.0 83.0 31.0

28.0 78.0 83.0

74.0 90.0 77.0

several images were used. The main reason is the quality of the basis recovery.

Equations in (2.50) include weighted averages over gallery samples. This average

observation can not represents the multiple samples since the appearance differences

among different poses are critical.

Considering the fact with the pose variation, we develop another recovery approach

that is an alternative to the MAP estimate. The approach is designed over the

optimization problem defined in 2.52. This new scheme can be employed during basis
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recovery when multiple observations per subjects are present. The final recognition

rates using the new approach are given in Table 3.7. The new method has a better

representation power compared to the previous MAP estimate.

Table 3.7: New results with the proposed basis recovery scheme. Multiple images are
selected as gallery images and recognition rates for ±22.5o, ±67.5o and
±90o are given. Tests are performed with 50 identities in the gallery.

Gallery Image / Probe Images ±22.5o ±67.5o ±90o

81.0 92.0 45.0

28.0 79.0 82.0

89.0 94.0 89.0

3.5 Scalability

Further experiments were performed to examine the scalability of the proposed

method. Two relatively large databases were selected for the testing: CMU Multi-PIE

Database [41] and CAS-PEAL Database [47]. Subsets of databases consisting

of 249 identities for Multi-PIE and 267 identities for CAS-PEAL were collected.

CAS-PEAL was used for the evaluation against facial expressions and Multi-PIE

for the illumination. Multi-PIE includes 20 different illumination conditions, and

CAS-PEAL serves 5 facial expressions for each identity. Several example images are

shown in Figure 3.5.

The behavior of a classical subspace method against the increasing number of gallery

identities is demonstrated in Figure 3.6 (a). LDA against illumination was used for the

demonstration. All tests were performed on Multi-PIE with 2 random images of each

identity being selected as the gallery and the remaining 18 images as probes.
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(a) CAS-PEAL

(b) CMU Multi-PIE

Figure 3.5: Several images from CAS-PEAL and CMU Multi-PIE databases.

LDA can perform steadily in terms of recognition rate with its usual configuration.

The subspace is re-constructed with each new identity, and the subspace dimension

becomes (ni− 1) where ni is the number identities. However, as new identities are

introduced, LDA needs to be re-trained to get a promising recognition rate. This

behavior is illustrated in Figure 3.6 (a) with "No bootstrap" label. One may eliminate

such a training requirement by using a bootstrap database. In this new setting, the

subspace is constructed only once by using the bootstrap database, yet the recognition

rate decreases as the number of gallery identities is increased. Moreover, different

bootstrap databases may result in significantly different recognition rates.

CDFA framework can improve the scalability as shown in Figure 3.6 (b). The

method was tested with several scenarios both for illumination and facial expressions.

When Yale1 or CK+ was used as the bootstrap database, all settings like manifold

dimensionality were kept same as the ones in Section 3.2 and Section 3.3. We observe

that the final recognition rates are not affected significantly as bootstrap databases

are switched. The largest performance difference caused by changing the bootstrap

database was between 1%−2%.

The results in Figure 3.6 (b) also suggest that it is possible to fix the template manifold

for a certain type of variation since same bootstrap database can be used in different

tests: CK+ was employed successfully in tests with CAS-PEAL, JAFFE, and CMU

AMP while the Yale database is compatible both for Multi-PIE and Yale itself.

1There are two different Yale databases used during tests: Yale B Database [19] and Extended Yale
Face Database [42]. However, when a common name ’Yale’ is mentioned, it means that an augmented
database which is established by concatenating two is used.
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(a)

(b)

Figure 3.6: (a) Behavior of LDA against the illumination with increasing number
of identities. Three scenarios were tried: with no bootstrap, with a
bootstrap drawn from Multi-PIE, and with a bootstrap drawn from Yale.
(b) Behavior of CDFA against illumination and facial expressions. Yale &
Multi-PIE means that the bootstrap set is from Yale and the evaluation set
is from Multi-PIE.

Figure 3.7 gives recognition rates of several methods with increasing number of

identities in the gallery. CDFA was compared with PCA [2], LDA [4], and Tied

Factor Analysis (TFA) [25] since they share very common aspects with CDFA, in

terms of subspace analysis. The method in [25] was initially developed to handle

the pose variation; however, the authors proposed the algorithm as a generic factor

analysis framework just like CDFA. Multi-PIE and CAS-PEAL were used for testing

against illumination and facial expression, respectively. To provide a fair comparison,

a common bootstrap database with 50 identities was collected to learn the subspace
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(a)

(b)

Figure 3.7: Recognition performance of different methods on (a) Multi-PIE illu-
mination database and (b) CAS-PEAL expression database. Values in
parentheses shows the number of gallery images.

parameters for all methods. For tests with Multi-PIE, the bootstrap includes 1000

images while this value is 250 for the tests with CAS-PEAL. Subspace dimensions

were optimized individually for each method.

For both tests, bootstrap and the training/testing images were drawn from the same

databases. Therefore, the manifold dimension was 4 for tests with CAS-PEAL since

there are 5 different expressions in database, and the upper bound is limited by the

number of expressions. In both sets of experiments, the image size was 100× 90.

Images were normalized with zero mean-unit variance normalization.
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For CDFA and TFA, a single gallery image was selected and all remaining images were

used as probes. Then, for a test having N gallery identities, 19×N recognition attempts

were performed for Multi-PIE and 4×N recognition attempts were performed for

CAS-PEAL. These attempts were repeated for each random gallery image selection,

and the averages were noted.

The recognition rates tend to decrease with other methods whereas CDFA performs

steadily as the number of identities increases. This fact is depicted in Figure 3.7.

3.6 Real Life Performance

Figure 3.8 represents some real life recognition results. We employed our face

detection / recognition system to get these results. The face detection system finds the

surrounding rectangle and then, feature detection is run inside the rectangle. Detected

features are only used for alignment and cropping. Their location information is not

favored for recognition purposes. During the training, multiple images of people are

used. Gallery includes 115 identities among them are 105 identities from Multi-PIE

database. For each identity 10−12 images taken on poses between±45o are collected.

Bootstrap tasks were performed against only pose variation. Therefore, the system is

variant to illumination changes. This fact can be observed in Figure 3.9. Nevertheless,

a system trained against only pose variations may handle minor facial expressions.

Figures 3.10 and 3.11 show this fact promisingly. Again, no information on facial

expressions was employed during the bootstrap. The real life performance against the

facial expressions are much robuster than that of illumination.

3.7 Computational Aspects

The proposed framework consists of four successive tasks: (1) manifold Learning, (2)

bootstrap, (3) training, and (4) testing.

The manifold learning includes two main calculations. First, a graph is constructed and

the distance of each edge is calculated (2.10). Then, a generalized eigenvalue problem

is solved for this graph (2.12). Beside, there exist several column summations and

one matrix-matrix subtraction to calculate matrices D and L in (2.12). As a final step,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Several real life recognition results with pose variations.

lower dimensional coordinates are calculated by (2.8) which consists of a matrix-vector

multiplication.

In the bootstrap, equation (2.27) is solved for each basis vector. There are several

outer products, one matrix-matrix subtraction, one matrix-vector product and other

minor calculations for this equation. Then the mean vector and the covariance matrix
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(a) (b)

Figure 3.9: When the system is trained only against the pose variation, it is variant to
the illumination changes. Recognition is failed when the position of the
light is reversed.

(a) (b)

Figure 3.10: Unlike illumination, the system is promisingly invariant to the facial
expressions although no such information is introduced during the
bootstrap.

is calculated for these basis vectors by regular calculations, (2.28) and (2.29). Statistics

for the error term are obtained after a matrix-vector product and a vector-vector

subtraction as in (2.30). If one wants to employ the probabilistic interpretation of

Section 2.3.3, the fixed point iteration defined in (2.41) and (2.42) is required to be

solved.

For the training, the main calculation is the solution of the system of linear equations

defined in (2.46). To construct the system, one outer product, one matrix inversion, one

matrix-vector product and summation of matrices and vectors are required. Since the
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.11: Another set of examples to demonstrate the invariance to the facial
expressions.

size of the system relatively low depending on the dimension of the variation manifold,

both the matrix inversion and the solution of the system are easy tasks.

Testing is the final step and the only part that affects the real-life performance of the

framework. All previous calculations are performed offline. The main calculation

is the vector norm defined in (2.53). The synthetic image, xgk is calculated by one
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matrix-vector product and one matrix-matrix product. This is repeated for each gallery

identity, then the minimum value of (2.53) is selected.

3.8 Complexity of the Framework

The determination of the complexity of the framework is divided into two sections:

(1) offline complexity, (2) online complexity. Offline complexity includes calculations

which are performed only once during the model learning or during introducing new

identities. These calculations do not affect the real-life performance of the framework.

Online complexity consists of calculations which are performed for each probe image,

continuously. Online complexity totally determines the real-time capability of a

recognition system.

3.8.1 Offline complexity

Let’s assume we have N bootstrap identities, each having K images corresponding K

variation values. The number of features (pixels in an image) is n. The dimension

of the variation manifold is fixed as d, which means that d minimum eigenvalues and

their corresponding eigenvectors are calculated. During training, the complexity of

introducing one gallery identity with a single gallery image is considered.

For the manifold learning (see Section 2.3.1), (N∗K)!
(N∗K−2)!2! distance calculations are

performed, which are simple vector norms, resulting in O
(

(N∗K)!
(N∗K−2)!2!n

)
complexity.

The final generalized eigenvalue problem has a size of n×n. Therefore, the complexity

is assumed to be between O
(
n2) and O

(
n3) depending on the algorithm used. The

repetition factor d is omitted since it is usually too small (like 9 or 20) compared to n.

Basis vectors corresponding to each identity are calculated individually. Each basis

calculation requires matrix subtractions and matrix-vector multiplications. Therefore,

the complexity is O
(
n2). Again the calculations are repeated for each dimensions (d)

and for each identity (N). Finally, obtaining statistics over vectors results in another

O
(
n2) complexity.

In the training, the size of the system is d × d. In the worst case, the complexity

is O
(
d3). Since the calculations are repeated for each feature (i.e. image pixels),
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final complexity is O
(
nd3). To calculate the lower dimensional coordinates of the

probe image, one matrix-vector multiplication with a matrix of size d×n is performed.

Hence, there is another O(nd) complexity.

To summarize, for the manifold learning and the bootstrap, the complexity is at most

O
(
n3). This seems to be a huge amount of calculations; however, they are performed

only once when the model is constructed. During the training, which is performed for

each identity that is wanted to be recognized, the complexity is only O
(
nd3). Although

the complexity is relatively small (depending on the dimension d), high wall clock

times are expected because to construct the system of linear equations, several readings

over memory are required to get covariance matrices etc. In other words, data access

may result in high waiting periods.

3.8.2 Online complexity

The real performance of the system is totally related to the testing phase. After

the model learning and the training are completed, the testing is performed for each

probe image, continuously. During testing, there exist one matrix-matrix and two

matrix-vector products followed by a vector norm. Hence, the complexity is O
(
n2).

Calculations are repeated for each gallery identity. This complexity does not change

as different methods are employed. Both likelihood and posterior distributions (see

Section 2.3.5) result in the same complexity values.

The main drawback of the proposed framework is its space complexity. For each

gallery identity, the whole subspace is defined. Compared to classical methods, which

store a low dimensional vector for each identity, storing a high dimensional matrix

requires more space. Moreover, the testing has relatively higher time complexity since

at least two matrix-vector products (MT xp and Wgck) are performed to make decision,

whereas the classical factor analysis only employs a norm calculation.

When speaking in terms of wall clock time, the training and the testing per image take

approximately 0.3 seconds and 40 milliseconds, respectively on a regular PC (Intel

Core 2 Duo 2.2 GHz and 3 GB RAM). These values are valid on a development
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environment. The real life performance is better with approximately 20 milliseconds

for testing on the same PC.
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4. CONCLUDING REMARKS

A linear generative model was developed to improve the general factor analysis

framework. The main novelty is the complete probabilistic structure that individualizes

manifold charts resulting in a class dependent design. Modeling nonlinear variations

like illumination and facial expression is achieved by incorporating a manifold

embedding technique to obtain a linear representation of the effective variation. This

is not a surprising approach considering the fact that such variations can be modeled

linearly on some geometries. For instance, illumination can be modeled as a linear

combination of spherical harmonics on a unit sphere.

A probabilistic framework that can be employed in general classification problems

when a problematic variation is exhibited on class samples is proposed. The only

assumption which is used implicitly is that the variation can be modeled on a

smooth manifold. If the nonlinear embedding fails, the resulting lower dimensional

coordinates may disturb the final performance.

The initial results are very promising indicating the potential of the proposed

framework as a replacement to regular subspace analysis methods. The proposed

approach defines a novel connection between the manifold embedding and the

probabilistic models.

Combining different variations is left as a future work. The first step towards this goal

may be using factor tensors instead of factor matrices.

4.1 Discussions on Experimental Results

Numerous experiments were performed to analyze the performance of the proposed

method against different variation types and with relatively large databases. In both

cases, the results are very promising.
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Several advantages of the method can be summarized as follows: (1) different types

of variation that lie on smooth manifolds can be handled by the method, (2) the

scalability of the classical factor analysis is improved by a class dependent scheme, (3)

the decision process is fully probabilistic, and posterior probabilities can be utilized

for large scale and domain specific real life applications by incorporating priors

on the identities, (4) bootstrap has less time complexity compared to 3D rendering

approaches, and finally (5) a single observation for each identity is sufficient to perform

reliable recognition while a way to use more images is also introduced.

4.2 Contributions

The proposed method is a generic framework that can be used for object recognition

under certain variations. In this view, a novel technique to derive a basis set of the

variation subspace related to the observations of an object under an operative variation

is defined.

A new framework, which is a class dependent derivative of the classical factor analysis,

is proposed and two different solution schemes are provided for the optimization of the

corresponding error functions. Both algebraic and probabilistic views are analyzed to

offer a complete understanding of the underlying logic.

Defining separate manifolds for different classes is not a new approach; nevertheless,

drawing a generic framework for such an approach is a novel and significant step.

Moreover, defining a hard link between the coordinate systems of the manifolds and

the variation is another improvement over the classical subspace techniques.

A novel connection between manifold learning and the probabilistic generative models

is introduced in this study. Such an connection results in relaxation over the

optimization problems defined by the technique while it also provides new geometric

interpretations related to the algebraic and probabilistic solutions. Deriving solutions

directly on the manifolds without embedding them into an Euclidean space can be a

promising future work.

Handling different variations by employing a generic framework also suggests initial

steps towards combining different types of variations. Utilizing factor tensors and
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exploiting multilinear algebra decomposition techniques can be a first choice on this

task.

These contributions are introduced and explained in the following publications.

Table 4.1: Contributions of the study and related publications

Construction of coordinate systems for variation manifolds [48, 49]
Introduction of Class Dependent Factor Analysis (CDFA) model [50, 51]
Algebraic solution to CDFA [52]
Probabilistic solution to CDFA [53]

4.3 Future Works

In this work, a generic framework that can be used against different types of variation

is introduced. However, handling multiple variation types at once is left as a major

future work. This may be managed by employing factor tensors instead of matrices,

yet in its initial formulation such a task seems to be difficult mainly due to the fact that

each possible variation has to be modeled explicitly, that with the inclusion of several

variation types either through tensors or some other mathematical tool the manifold

dimensionality quickly becomes unmanageable.

Another important improvement can be achieved by inclusion of a dynamic kernel that

is optimized for each variation type automatically. The current formulation considers

raw pixel values; however, it is a well known fact that the recognition rates can be

boosted by employing different kernels or transformations for different variation types.

Partitioning the face into subregions is a must to accomplish a promising real life

performance. Similarly, automatic feature detection can be very useful to make

robuster and more reliable decisions. By this way, the recognition can be performed

locally, and several decisions from subregions or areas around features points can be

fused to obtain better results. Indeed, a feature point detection procedure seems to be

an obligation to perform reliable pose invariant recognition.
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APPENDIX A.1

For the unconstrained minimization problem, we again consider factor loadings, W,
as a basis set of the variation subspace. Therefore, factors, ck, are assumed to be
coordinates i.e. linear combination coefficients.

Let’s assume that we have K images of an identity i in the bootstrap database. Then
the total reconstruction error for the identity i is

E =
K

∑
k=1
‖xik−Wick‖2

=
K

∑
k=1
‖xik−wi1ck1−wi2ck2−·· ·−winckn‖2 , (A.1)

where wi j indicates jth column of the matrix Wi, and ck j is jth element of vector ck.
The error can be minimized by equating the derivatives with respect to unknown basis
vectors, wi j, to zero.

Normalization constraints ‖wi j‖ = 1 are not introduced, since the scaling factors ck j
are already known and fixed. Thus, relaxations on the norms of the vectors are required
to assure a global minimum. Similarly, orthogonality is not considered.

The optimization problem can be restated by a trace minimization as in

E = Tr[
(
X− c1wT

1 −·· ·− cnwT
n
)T (X− c1wT

1 −·· ·− cnwT
n
)
]

= Tr(XT X)−2Tr(XT c1wT
1 )−·· ·−2Tr(XT cnwT

n )

+ Tr(w1cT
1 c1wT

1 )+2Tr(w1cT
1 c2wT

2 )+ · · ·+2Tr(w1cT
1 cnwT

n )

+ 2Tr(w2cT
2 c1wT

1 )+Tr(w2cT
2 c2wT

2 )+ · · ·+2Tr(w2cT
2 cnwT

n )

+ . . .

+ 2Tr(wncT
n c1wT

1 )+2Tr(wncT
n c2wT

2 )+ · · ·+Tr(wncT
n cnwT

n ). (A.2)

to simplify calculations where the notation is changed slightly. The matrix X has the
vector xik as its kth row. The vector c j is the collection of constants ck j. The index i of
vectors wi j is dropped for the clarity. The objective functional is

E = Tr(XT X)−2cT
1 Xw1−·· ·−2cT

n Xwn

+ cT
1 c1wT

1 w1 +2cT
1 c2wT

1 w2 + · · ·+2cT
1 cnwT

1 wn

+ 2cT
2 c1wT

2 w1 + cT
2 c2wT

2 w2 + · · ·+2cT
2 cnwT

2 wn

+ . . .

+ 2cT
n c1wT

n w1 + · · ·+ cT
n cnwT

n wn . (A.3)

Derivatives with respect to each basis vector yield a set of linear equations as

−XT c1 + cT
1 c1w1 + · · ·+ cT

1 cnwn = 0 ,
...

−XT cn + cT
n c1w1 + · · ·+ cT

n cnwn = 0. (A.4)

In the matrix form,
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
cT

1 c1 cT
1 c2 . . . cT

1 cn
cT

2 c1 cT
2 c2 . . . cT

2 cn
...

... . . . ...
cT

n c1 cT
n c2 . . . cT

n cn




w1
w2
...

wn

=


XT c1
XT c2

...
XT cn

 .

The size of the system is relatively small depending on the dimension of the subspace.
The rank of the coefficient matrix is usually n provided that a linearly independent
set of vectors, ci, exists. Hence, there is a unique solution for the problem. As the
complete basis set Wi of each identity i in the bootstrap database is calculated, the
covariance matrix for the distribution p(w) can be estimated by the empirical formula

Ω =
1
N

N

∑
i=1

(wi−w)(wi−w)T , (A.5)

where w is the mean value. One should be careful with this notation. Here, the form
defined in (2.4) is employed. Therefore, the vector wi is a row (not a column) of the
matrix Wi. After calculating the matrices Wi for all identities in the bootstrap gallery,
the same procedure as defined in Section 2.3.2 is followed to obtain required statistics.
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APPENDIX A.2

The recognition rates in Table 3.6 are not reliable enough although several images are
used. The main reason is the quality of the basis recovery. Equations in (2.50) include
weighted averages over gallery samples. Such an average observation can not represent
the multiple samples since pose changes cause critical appearance differences. Thus,
the improvement in basis recovery is not linear with increasing number gallery images.

At this point, another recovery approach that does not try to find a basis set which is
good for averages but can synthesize each observation individually is developed. Let’s
asssume that there exist K different images of an identity g. The main formulation is
then an optimization scheme with several constraints, xgk = wT ck. The cost functional
is

E =−1
2
(w−µ)T

Ω
−1(w− µ)+

K

∑
k

λk(xgk−wT ck), (A.6)

where the coefficients λk are the unknown Lagrange multipliers. A straight forward
optimization is applied and derivatives with respect to unknown variables w and λk are
taken to get a solution by

∂E

∂w
= 0⇒

Ω
−1w = Ω

−1
µ +

K

∑
k

λkck⇒

w = µ +
K

∑
k

λkΩck , (A.7)

∂E

∂λk
= 0⇒

cT
k w = xgk . (A.8)

If both sides of the equation (A.7) are multiplied by cT
j and the identity defined in

equation (A.8) is employed, equations

cT
j w = cT

j µ +
K

∑
k

λkcT
j Ωck ,

xg j− cT
j µ =

K

∑
k

λkcT
j Ωck , ( j = 1, . . . ,K), (A.9)

emerge. The resulting set of equations can be solved by the matrix identity
cT

1 Ωc1 cT
1 Ωc2 . . . cT

1 Ωc2
cT

2 Ωc1 cT
2 Ωc2 . . . cT

2 Ωc2
... . . .

. . . ...
cT

KΩc1 cT
KΩc2 . . . cT

KΩc2




λ1
λ2
...

λK

=


xg1− cT

1 µ

xg2− cT
2 µ

...
xgK− cT

Kµ

 , (A.10)
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to determine the Lagrange multipliers. Then, the optimum wg vector can be calculated
by equation (A.7). In the case of single observation, the optimum wg is

w = Ωck
(xgk− cT

k µ)

cT
k Ωck

. (A.11)

To analyze the result, (A.11) can be plugged into the prior p(w) as

ln p(w) ∼ −(w−µ)T
Ω
−1(w−µ)

= −(x− cT µ)

cT Ωc
cT

ΩΩ
−1

Ωc
(x− cT µ)

cT Ωc

= −(x− cT µ)2

cT Ωc
∼ ln p(x).

In other words, the more probable the observation x is drawn from the distribution
p(x), the more appropriate the recovered basis w in terms of compatibility to its prior
distribution p(w).
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Adato Consulting, İstanbul, Turkey 2004 – 2005
CRM Engineer
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B. Tunç, V. Dağlı, M. Gökmen, Class-Specific Factor Analysis For Object
Recognition, In the Procs. of Conference on Signal Processing and Communications
Applications (SIU), Turkey, 2011

B. Tunç, M. Gökmen, Face Recognition with Multimodal Subspace Analysis, In the
Procs. of Conference on Signal Processing and Communications Applications (SIU),
Turkey, 2010.

B. Tunç, M. Gökmen, Illumination Invariant Face Recognition on Nonlinear
Manifolds, AAAI Fall Symposium on Manifold Learning and its Applications, USA,
2009.

70


