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THE PROPERTIES OF NANOSTRUCTURED
BINARY METAL ALLOYS

SUMMARY

In this Thesis, a new semi-empirical and many-body type model potential for Cu-Ni
alloys was developed using embedded atom method (EAM) formalism based on a
modified charge density profile with an improved optimization technique. In the
process, the charge density profile for pure Cu and Ni elements was modified by
incorporating the 4s charge density contribution within the optimization. The adaptive
particle swarm optimization (APSO) methodwas utilized to search the parameter space
of the EAM functions. The technique was further optimized by implementing MPI
based parallel algorithms. The potential was furnished by fitting to experimental and
first-principle data for Cu, Ni, and Cu-Ni binary compounds, such as lattice constants,
cohesive energies, bulk modulus, elastic constants, diatomic bond lengths, and bond
energies. The generated potentials were then tested through computing a variety
of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy
mixing enthalpy, vibrational thermodynamical functions, equilibrium lattice structures,
vacancy formation, stacking and interstitial formation energies, and various diffusion
barriers on the (100) and (111) surfaces of Cu and Ni.

In general, modifications on the charge density profile of pure Cu and Ni resulted in
the phonon dispersion curves for pure Cu, Ni and Cu-Ni alloys of 25%, 50%, and
75% Ni concentrations in a good agreement with experimental and ab-initio findings.
The calculations on vacancy formation, stacking and interstitial fault energies led to
results that are in good agreement with the experimental and ab-initio data. These
promising results are a goodmeasure for the reliability of the potential when the system
is under deformation. The calculations of vibrational thermodynamical properties
within the harmonic approximation of lattice dynamics also produced results that
are in good agreement with the available experimental data. The thermodynamical
functions of specific heat capacity, free energy, and entropy were determined for
various concentrations of Cu-Ni alloys. Although for most properties of the alloy
systems, the electronic contributions are expected to be the driving element, for the
current case the dominant contribution to the thermodynamical properties was found
to be governed by the phonons of the system. The result for the vibrational properties
further indicated that Cu bonds get stronger with increasing Ni concentration in the
Cu-Ni alloys, that is usually attributed to the change in energy introduced by the sd
hybridization in such systems.

The potentials were further tested for the growth mechanisms of Ni, Cu nanostructures
on the Cu(111) surface both using molecular dynamic (MD) simulations and total
energy calculations. The main outcome of the simulations was that Cu atoms could
easily incorporate into the upper layers of Ni nano-clusters with mono and double

xxiii



layers on the substrate. The migration of Cu atoms to the upper layers of Ni islands
were found to be influenced by the number of layers in Ni islands: there was a
remarkable increase in Cu migration to above layers of double-layer Ni islands when
compared to single-layer Ni islands. As the diffusionmechanisms are important factors
in determining the growth characteristics on surfaces and have critical role in the
kinetics of the surface structures, the energy barriers were also calculated using nudged
elastic band method (NEB) for various diffusion mechanisms on Cu(111) surface. The
critical mechanism determining whether the island would be a pure Ni surrounded
by Cu atoms or Cu-Ni mixed island was found to be the dimer formation over the
Ni monolayer islands. The results also showed that nanostructures can have both
mixed and segregated phases for Cu-Ni islands on the surface and the heights of
these structures can differ by the type of formation. These findings can help one to
understand the experimental observations on the growth of single or double layer Ni
islands on Cu(111) surface.
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NANOYAPILI İKİLİ METAL ALAŞIMLARIN ÖZELLİKLERİ

ÖZET

Bu Tez çalışmasında, Gömülü Atom Yöntemi (GAY) kullanılarak Cu-Ni alaşımları
için yük yoğunluğu tanımlamaları yeniden düzenlenmiş ve bu tanım kullanılarak yarı
deneysel çok cisimli model potansiyeller üretilmiştir. Cu ve Ni saf elementleri için
yük yoğunluğu tanımı, 3d valans elektron yoğunluğuna 4s elektron yoğunluğunun
katkısı eklenerek sağlanmıştır. Potansiyel fonksiyon parametrelerinin ayarlanması için
uyumlu parçacık sürüsü optimizasyon (APSO) yönteminden yararlanılmış, yöntemin
hesaplama süresinin kısaltılması için ise MPI tabanlı paralel dağıtık algoritmalar
kullanılmıştır. Ayrıca, APSO yönteminde yerel minimumdurumlarından kaçınılmasını
sağlayan ’Elit Öğrenme’ süreci paralel programlama algoritmaları yardımıyla hem
dağıtık mimaride geliştirilmiş hem de birden fazla sayıda alınarak yakınsama hızının
arttırılması sağlanmıştır. Potansiyel fonksiyonlarının hem saf Cu ve Ni, hem de Cu-Ni
alaşımları için eğri ayarlanarak belirlenmesinde örgü sabiti, hacim modülü, elastik
sabitler, boşluk oluşturma enerjisi, ikili bağ uzunluğu ve enerjisi gibi deneysel ve
ilk-ilke değerleri kullanılmıştır. Üretilen potansiyellerin sınanması için ise saf Cu,
Ni ve çeşitli Cu-Ni alaşımlarının özellikleri hesaplanmıştır. Bu özellikler; erime
sıcaklıkları, alaşım oluşturma entalpisi, titreşim termodinamik fonksiyonları, denge
durumu örgü yapıları, alaşım boşluk oluşturma enerjisi, istifleme hatası ve çatlak
oluşma enerjileri ile (100) ve (111) yüzeylerinde Cu ve Ni ekatomları için hesaplanan
bir çok difüzyon engel değerleridir.

Üretilen potansiyelin yük yoğunluğuna getirdiği düzeltme, hesaplanan saf Cu, Ni
ve alaşım Cu-Ni özelliklerinin deney ve ilk-ilke sonuçlarıyla daha tutarlı olmasını
sağlamıştır. Hesaplamalardaki en çarpıcı iyileşme saf Cu, Ni ve %25, %50 ve %75
Ni katkılı Cu-Ni alaşımları için hesaplanan fonon dispersiyon eğrilerindedir. Üretilen
Cu-Ni GAY potansiyelinin alaşımlar için hem boyuna titreşim frekanslarındaki
ayrışmayı doğru betimlediği, hem de tüm titreşim frekans eğrilerinin karakterini
ilk-ilke sonuçlarıyla tutarlı ürettiği görülmüştür. Hesaplanan boşluk oluşturma
enerjileri, istif hatası ve çatlak oluşturma enerji değerlerinin ise yine deney ve ilk-ilke
sonuçlarıyla oldukça tutarlı olduğu görülür. Bu sonuçlar, deformasyona uğratılan
bir malzemenin modelenebilmesi için geliştirilen Cu-Ni potansiyelinin güvenilir
olduğunun bir göstergesidir. Cu ve Ni için (100) ve (111) yüzeylerinde yine Cu ve
Ni ekatom difüzyon engel enerjilerinin deneylerle ve daha önce geliştirilen etkileşim
potansiyelleriyle tutarlı olduğu bulunmuştur. Enerji engel değerlerinin tutarlılığı,
potansiyelin yüzey uygulamaları için elverişli olduğunu gösterir. Ayrıca, sıcaklığa
bağlı hiçbir özelliğin eğri ayarlamada kullanılmadığı düşünülürse, erime sıcaklığı ve
yüksek sıcaklıklarda karışım entalpi değerlerinin deney sonuçlarıyla tutarlı olması,
üretilen potansiyelin yüksek sıcaklık uygulamalarında da başarılı olacağını belirtir.
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Potansiyelin bir uygulaması olarak Cu-Ni alaşımları için titreşimsel termodinamik
fonksiyonlarının nasıl değiştiği hesaplanmıştır. Örgü dinamiğinin harmonik
yaklaşıklığında yapılan hesaplamaların var olan deney sonuçlarıyla uyumlu olduğu
bulunmuştur. Cu-Ni alaşımlarının tüm konsantrasyonları için titreşimsel ısı kapasitesi,
serbest enerji ve entropi değerleri belirlenmiştir. Termodinamik fonksiyonlara en
büyük katkının fononlar tarafından gerçekleştiği belirlenmesine rağmen Cu-Ni alaşım-
ları için elektronik durumlardan da katkı geldiği ve bu katkının düşük sıcaklıklarda
belirleyici olduğu sonucuna varılmıştır. Fonon durum yoğunluğu ve termodinamik
fonksiyonların sonuçları, Cu-Ni alaşımlarında Ni oranının arttırılmasıyla Cu bağlarının
kuvvetlendiğini gösterir.

Her ne kadar ısı kapasitesi hesaplamaları, titreşim durumlarının katkısının belirleyici
olduğunu açık bir şekilde gösterse de elektronik katkıların eklenmesiyle Ni zengin
Cu-Ni alaşımlarında deneylerle daha tutarlı sonuçlara ulaşılmıştır. Bu durum, Ni
katkısının Cu-Ni alaşımlarında elektronik durumu değiştirdiğini ve termodinamik
özelliklere düşük de olsa katkı sağlandığını gösterir. Isı kapasitesi hesaplamaları,
düşük sıcaklıklarda anharmonik etkinin daha az olduğuna, yüksek sıcaklıklarda
ise Ni için etkinin daha fazla olduğuna işaret eder. Cu-Ni alaşımları tüm Ni
konsantrasyonları için Cu ve Ni’in ayırt edilemediği yüzey merkezli kübik bir katı
karışımı oluşturur. Karışım yapılanma entropisi her konsantrasyon için pozitiftir
ve alaşım oluşturma entropisine daha çok katkı sağladığından Cu-Ni alaşımları
karışım oluşturma eğilimindedirler. Bununla birlikte hesaplanan alaşım oluşturma
entropi değerleri ise tüm konsantrasyonlar için negatif sonuç üretir. Bu durum faz
diyagramında Cu-Ni’in ayrıştığı bir alan oluşumuna katkı sağlar. Bu iki sonuç
deneylerle tutarlıdır: Cu-Ni düşük sıcaklıklarda farklı bölgeler oluşturacak şekilde
ayrışırlar ve yüksek sıcaklıklarda tek bir fazda karışım oluştururlar. Bir diğer
önemli sonuç ise yapılan hesaplamalarda %75 Ni konsantrasyonu civarında fonon
durum yoğunluklarının düzenli ve düzensiz alaşımlarda farklı olduğudur. Bu bulgu
Warren–Cowley kısa erimli düzen hesaplamalarıyla tutarlıdır. Ayrışmış ve düzenli
Cu-Ni yapıları için hesaplanan durum yoğunlukları, düzensiz yapıdakinden az farkla
da olsa değişir. Bu sonuç, kısa erimli düzenin %75 konsantrasyon civarında
oluşabileceğine işaret edebilir.

Bununla birlikte, geliştirilen potansiyelin sınanmasına yönelik olarak Cu(111) yüzeyi
üzerinde Cu ve Ni nanoyapılarının oluşum doğası araştırılmıştır. Yapılan çalışmada
toplam enerji hesaplamaları ve moleküler dinamik benzetimlerden yararlanılmıştır.
Model benzetimlerinin sonuçları, Cu atomlarının hem tek hem de çift katmanlı Ni
nanoyapılarının üst katmanlarına kolaylıkla geçebildiğini göstermiştir. Cu atomlarının
Ni adalarının üst katmanlarına gerçekleştirdikleri hareketin Ni adalarındaki tabaka
sayısı ile değiştiği gözlenmiştir. Çift katmanlı Ni adalarının üst katmanlarına olan Cu
hareketinin, tek katmanlıNi adalarına olandan 7.5 kat daha hızlı olduğu hesaplanmıştır.
Büyümenin doğasının anlaşılabilmesi ve yüzey yapılarının oluşumundaki kritik
süreçlerin belirlenebilmesi için çeşitli difüzyon engellerinin enerji değerleri dürtülü
elastik bant yöntemiyle hesaplanmıştır. Engel enerji değerleri incelendiğinde, ada
oluşumundaki kritik sürecin Ni adası üzerinde ikili öbek oluşumu olduğu saptanmıştır.
Bu süreç, adaların Cu atomlarıyla çevrilmiş saf Ni adaları mı yoksa Cu-Ni karışım
adaları şeklinde mi oluşacağını belirlemede önemli bir etkendir. Hesaplama sonuçları,
Cu(111) üzerinde oluşan nanoyapıların hem Cu ve Ni karışımlı alaşım adaları hem
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de Cu ve Ni bölgelerine ayrılmış alaşım adaları olduklarını ve bu adaların yüzeyden
farklı yüksekliklerde oluştuğunu göstermiştir. Diğer yandan Ni adalarının başlangıçta
nasıl çift katmanlı oluşabildiğini anlayabilmek için, Cu(111) yüzeyine Ni atom ekleme
benzetimleri yapılmıştır. 10ns−1 ve daha yavaş atom gönderilen yüzeylerde deneylerle
örtüşen altıgen yapıların oluştuğu bulunmuştur. Deneylerde ayrıca birden fazla ve
çeşitli büyüklüklerde altıgen nanoyapılar oluştuğundan, adaların nasıl büyüyebildikleri
yine benzetimler yoluyla araştırılmıştır. Bu benzetimlerde, Ni atomlarının yüzeye
eşit veya eşit olmayan zaman adımlarıyla gönderilmesinin ada yapısına olan etkisi
incelenmiştir. Benzetim sonuçları, yüzeye eşit olmayan sürelerde Ni atomları
göndermenin çeşitli büyüklükteki adaların oluşmasına katkı sağladığı yönündedir.
Elde edilen bu sonuçlar ile deneylerde gözlenen Cu(111) yüzeyi üzerindeki tek ve çift
katmanlı Ni adalarının oluşum doğası açıklanabilmiştir.
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1. INTRODUCTION

There has been a growing interest in developing reliable interaction potentials as they

provide an attractive alternative to Quantum Mechanical approaches for atomic-scale

simulations of materials that are crucial in understanding material structure evolution

under various thermodynamic conditions. Although QuantumMechanical calculations

are based on the first-principle and do not involve parametrization and thus provide the

most accurate results, these approaches are confined to the problems which require

relatively small computational cells (at most 100 atoms or less) and are limited by

the computational power. On the other hand, simulations for realistic problems

such as systems with extended defects, phase diagrams and epitaxial growth of

materials require relatively large enough computational cells and time up to length- and

time-scales comparable to those accessible in experiments. To this end, high quality

potentials might be a real choice to tackle down the problems on computational side

and thus to study static and dynamic properties of much larger systems.

There are various techniques for developing many-body types potentials:

Finnis-Sinclair Model (FSM) [1–3], the tight-binding approach (TBA) [4], the

effective-medium theory (EMT) [5], the force-matching method (FMM) [6] and

the embedded-atom method (EAM) [7–9]. In all these models the formalism is

based on the parametrization of the total energy of the system, and thereby fitting to

various properties or energetics of the interested elements or alloys such as lattice

constant, melting temperature, elastic constants, etc. Since the accuracy of these

potentials is mostly dictated by the fitting procedure for the parameter set and the

choice of fitted values, generation of EAM potentials for alloys is sometimes hindered

by lack of experimental data such as crystallographic structures, precise energetic

values, and elastic constants. In such cases, the conventional way to overcome this

drawback is to generate the data using highly accurate first-principle calculations

within density-functional theory (DFT) [10] formalism.
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In this Thesis, the highly optimized semi-empirical potentials were developed for bulk

Cu-Ni alloys based on an approach furnished by the embedded atom method [7, 8]

with improved optimization techniques. The parametrization involved an extensive set

of density functional calculations as well as experimental bulk properties. Although

there are several Cu-Ni alloy EAM potentials, they are mostly generated through

an optimization procedure based on a fitting to the properties of pure elements of

the alloy rather than to the properties of the alloy itself. In the formalism of the

very first EAM potentials− developed for 6 fcc metals of Ag, Cu, Ni, Au, Pt, Pd

and their alloys [8], for example, Cu-Ni alloy potentials were generated through a

global fitting process that optimizes the alloy properties not only for Cu-Ni alloy but

also for alloys of Cu and Ni with the other four elements. Since the procedure was

based on a simultaneous optimization of the potentials for six metals and their alloys

instead of optimization of the binary alloy alone, the potentials may have some issues

in reproducing the experimental results. In another study Foiles [9] also developed

an alloy Cu-Ni potential where the fitting included only Cu, Ni pure element and

Cu-Ni alloy properties. Although the potential successfully reproduces some surface

alloy properties such as segregation, surface energies and also some bulk properties

like mixing enthalpy and short-range ordering, there is still a need for betterment to

correctly describe the phonon dispersions for metals with unfilled d-bands [11, 12]. In

addition, Zhou et al. [13] have reported an alloy potential database using elemental

potentials, including Cu and Ni. In their formalism, an analytical expression [14] was

used in developing pair interaction for alloys that include only the element functions

with no parametrization and fitting to alloy properties. Such an approach might be quiet

reasonable in developing a general purpose alloy potential which may naturally pose

some challenges to correct observations of alloy properties. In this Thesis, thus the aim

was to develop an accurate and highly optimized Cu-Ni alloy potential which produces

reliable predictions for structural properties, energetics, phonons and thermodynamic

functions of the alloy.
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2. METHODS

In this chapter, the techniques used in this thesis to develop a reliable interaction

potential for Cu-Ni alloys were presented in separate sections. In this context, the

parallel implementation of Adaptive Particle Swarm Optimization(APSO) and the

optimized charge density for the Embedded AtomMethod (EAM) were the main focus

of this Thesis.

2.1 Time Independent Schrödinger Equation in Born-Oppenheimer Approxima-

tion

In the most general form, the Time Independent Schrödinger Equation (TISE), that

yields the electronic structure of a system constructed with electrons and nuclei, can

be written as following:

H = E (2.1)

where E is the electronic energy, is the wave function, and H is the Hamiltonian

operator defined with

H = − h̄2

2me i

2
i −

i,I

ZIe2∣∣∣!ri−!RI
∣∣∣
+
1
2 i%= j

e2∣∣!ri−!r j
∣∣

−
I

h̄2

2MI

2
I +

1
2 I %=J

ZIZJe2∣∣∣!RI−!RJ
∣∣∣
. (2.2)

Here, !R denotes the nuclear coordinates, MI is the mass of the nuclei and ZI is the

atomic mass of the nuclei, and!r represents the coordinate of the electrons and me is the

mass of the electron. The analytical solution to the above eigen-value problem exists

only for hydrogen-like atoms. Likewise, the exact numerical solutions are limited

to atoms or very small molecules. Full quantum mechanical formalism to solve the
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Eqn. 2.2 is almost infeasible [15]. The most important issue is the two-body nature

of the Coulomb interaction that makes the Schrödinger Equation inseparable. This

problem can be tackle down using Born-Oppenheimer Approximation (BOA) [16].

The approximation is based on the relative motions of electrons with respect to the

nuclei: since the motions of the electrons in a system are much faster than the heavier

ions (MI >> me ), the nuclei can be considered as static particle within the time scale

of the electronic motion. This suggestion is also known as adiabatic approximation

and in this formalism, TISE can be split into the ionic and the electronic parts.

The Hamiltonian of the electronic system in this approximation is defined by

He =− h̄2

2me i

2
i −

i,I

ZIe2∣∣∣!ri−!RI
∣∣∣
+
1
2 i%= j

e2∣∣!ri−!r j
∣∣ . (2.3)

Here, first term is the kinetic energy of electrons, second term represent the interactions

of electrons with the external potential of ions located at the sites !RI , and the last term

is the interaction of electrons with each other.

2.2 Density Functional Theory (DFT)

The density functional theory (DFT) is a powerful method to solve the Schrödinger

Equation for non-interacting electrons of quantum many-body problem. DFT has

become the primary tool in condensed matter physics to solve the electronic structure

of widespread systems from bulk structures down to the finite structures such as

clusters or molecules. Theoretical foundation is based on the two important theorems

and an ansatz established by Hohenberg and Kohn [17] and Kohn and Sham [10],

respectively.

2.2.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn (HK) theorems applies to a system of interacting particles of

electrons and nuclei in an external potential vext(!r), where the Hamiltonian is given by

H =− h2

2me i

2
i +

i
vext(!ri)+

1
2 i%= j

e2

|!ri−!r j|
. (2.4)
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For such systems with interacting particles of electrons, the two fundamental theorems

are [17]:

Theorem I: For any given system of interacting electrons in an external potential

vext(!r), the potential vext(!r) can be determined by a unique functional of the

electronic density of ground state n0(!r), apart from a trivial additive constant.

Theorem II: Independent of vext(!r), there exist a universal functional of density,

F [n(!r)], such that the energy of the interacting particle system can be written as

EHK[n] = FHK[n]+
∫
vext(!r)n(!r)d!r (2.5)

and the exact ground state energy of the system is the global minimum of the

functional EHK[n] where the density n(!r) that minimizes the functional is the exact

ground state density n0(!r).

These two theorems can be simplified into a general corollary as follows: once the

ground state density n0(!r) of the given system is known, the functional EHK[n] is

sufficient in determining all the properties of the system completely, except a constant

shift in the energy. Although theorems provide mathematical basis for the solution of

full many-body Schrödinger Equation, they do not give any method on how to solve the

quantummany-body problem generally other than the original definition of many-body

wavefunctions in HK proofs [17]. To accomplish that Kohn-Sham propose an ansatz.

2.2.2 Kohn-Sham equations

In Kohn-Sham ansatz, the quantum many-body problem is replaced by an independent

particle problem by taking the ground state density of interacting system equal to the

ground state density of a reference auxiliary non-interacting system. Since the exact

kinetic energy of an interacting system can not be equal to that of the non-interacting

system, a missing energy is added to define the correlation contributions. In

the assumption of Kohn-Sham [10], the ground state energy of the electrons in

non-interacting system is given by

EHK[n] = TR[n]+Exc[n]+EHartree[n]+
∫
vext(!r)n(!r)d!r, (2.6)
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where TR[n] is the kinetic energy of non-interacting electrons in auxiliary reference

system, Exc[n] is the energy of exchange and correlation contributions, and EHartree[n]

is the energy of the classical electrostatic interaction for the electron density n(!r) with

itself and given by

EHartree[n] =
1
2

∫ ∫ n(!r)n(!r′)
|!r−!r′ |

d!rd!r′. (2.7)

Since the energy of the full interacting system in an external potential is given in terms

of HK functional FHK , the exchange and correlation term, Exc, can be defined by

Exc = FHK[n]−TR[n]−EHartree[n]. (2.8)

As seen in the Eqn. 2.8, the exchange and correlation energy is a functional of density

n(!r) for a true interacting many-body system in contrast to the non-interacting system

where the electron-electron interactions are replaced by Hartree energy. Therefore, if

the exact universal functional form of exchange-correlation energy, Exc, is at hand

the many-body interacting particles problem can be solved by using Kohn-Sham

formulation. In fact the exact form of Exc is rather complex and unknown. Therefore

one can only solve the existing problem with some approximations that will be

discussed in the next sections. The solution of the Kohn-Sham auxiliary system for

the ground state can be calculated using variational principle [18]

TR[n]
n(!r)

+ vKS(!r) = µ (2.9)

where µ is the chemical potential of non-interacting system which should coincide

with the chemical potential of interacting system [15]. In Eqn. 2.9, the reference

potential, vKS(!r), of the auxiliary system is given by

vKS(!r) = vext(!r)+ vHartree+ vxc

= vext(!r)+
∫ n(!r′)

|!r−!r′|d!r
′+

Exc[n]
n(!r)

. (2.10)
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Figure 2.1: Schematic representation of Khon-Sham Ansatz [15].

Using the variational principle to a fictitious auxiliary system of non-interacting

electrons in an external potential vKS(!r), the ground state density of the interacting

electron system, n0(!r), can be obtained by solving the following equation:

[
−1
2

2+ vKS(!r)
]

i(!r) = i i(!r). (2.11)

Here the ground state has one electron in each of the N orbitals i with the lowest

eigenvalues i. The density of the auxiliary system then can be calculated over all

orbitals:

n(!r) =
N

i

∗
i (!r) i(!r). (2.12)

The Equations 2.9, 2.10, and 2.11 are known as Kohn-Sham equations [10] and have

to be solved self-consistently with such a ground state density that will construct

vKS functional (See Fig. 2.1). Note that these equations are independent of any

exchange-correlation functional approximation to the ground state density.
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2.2.3 The approximation to exchange-correlation energy

If the exchange-correlation functional, Exc[n] defined in Eqn. 2.7 were known, then

exact ground state energy and density of the many-body electron problem could be

obtained by the solving the Kohn-Sham equations for independent-particles. The most

commonly used approaches to the exchange-correlation functional in DFT are the local

density approximation (LDA) and the generalized gradient approximation (GGA).

2.2.3.1 Local density approximation

The simplest and most widespread approximation is the local density approximation

which considers that the electron energy at each point in the system is the same

as that of a uniform electron gas of the same density. In this approach, the

exchange-correlation functional, Exc[n], can be defined as

ELDAxc [n] =
∫

hom
xc (n(!r))n(!r)d!r, (2.13)

where hom
xc (n) is the exchange correlation energy per particle of a uniform electron gas

of a density n. The exchange correlation potential is then given by

VLDA
xc [n(!r)] =

ELDAxc
n(!r)

= hom
xc (n)+n(!r)

hom
xc (n)
n

. (2.14)

xc can be split into exchange and correlation potentials, xc = x(n) + c(n). The

exchange contribution can be evaluated analytically [18], while the correlation part has

been obtained by parameterizing the results of Monte Carlo simulations [19–21]. LDA

is successful for many system, especially those where the electronic density is quite

uniform such as bulk metals, molecules, semiconductor and ionic crystal. LDA yields

a good accuracy in reproducing experimental structural and vibrational properties of

strongly bound systems. However, there is a number of features that the LDA is

known to fail to reproduce. For instance, it usually overestimates bonding energies

and under-estimates bond lengths [15].
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2.2.3.2 Generalized gradient approximation

An improvement to LDA is made through consideration of the gradient of the electron

density. This is called the generalized gradient approximation (GGA),

EGGAxc [n] =
∫

GGA
xc (n(!r), | n(!r)|)n(!r)d!r (2.15)

which depends also on the norm of the local density gradient, | n(!r)|. For the gradient

correction to the exchange and correlation part of the energy EGGAxc [n], there have

been several parametrization schemes such as Perdew andWang (PW91) [22], Perdew,

Burke, and Enzerhof (PBE) [23]. In comparison with LDA, GGA tends to improve the

total energies, atomization energies, energy barriers, and structural differences [15].

2.3 Embedded Atom Method (EAM)

Based on Density Functional Theory, described in the previous section 2.2, the

interactions between the atoms in a system can be defined as a unique functional of the

charge density of each atom in the crystal [10]. Hence, in such a crystal view, one can

even further assume each atom as a defect in a lattice embedded into the electron charge

density of the neighboring atoms [24] described by local density approximation [10].

Thus, one can write the energy of an ion at lattice site i for a given system as

Ei = Fi[ iii] (2.16)

whereFi is a nonlinear functional of the charge density iii at lattice site i in a crystal.

Furthermore, one can simply extract the charge density for a system by any suitable

ab-initio approximation, the functional F will still be far beyond to be defined by a

simple analytical expression without further approximations. One such example is a

jellium like uniform density approximation where the charge density around an atom

changes slightly. With uniform density approximation and an analytical form of charge

density function for each atom, F can be reduced to a plain function F( ). Another

important factor in correctly describing the interactions in a system is the ion-ion

interactions as these long-range interactions prevent the local effects to be dominant in
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the system. Thus, a realistic description of energy of an ion in a system requires both

the short- and long-range interactions.

In the embedded-atom method [7, 8] the energy of an ion in a system is given by

Ei = FZi( ¯i)+
1
2 i, j
i%= j

ZiZ j(ri j) (2.17)

and the total energy of the system can be calculated by taking the sum over all atoms:

Etot =
i
Ei. (2.18)

The equation defining the energy of the ion has two parts: first part, F( ¯i), is the

many-body function defining the energy needed to embed an ion i into the background

electron charge density at its specific site. Here, ¯i is the host charge density which is

taken to be superposition of electron densities of all ions of the Z jth type within the

cutoff radius, rcut , of the ion i and given by

¯i =
j

i%= j

Z j(ri j). (2.19)

The second part, ZiZ j(ri j), is the pair interaction between i and j ions separated by

ri j distance. The choice of and functions highlights the type of EAM formalism.

Among the various implementations, the three functional descriptions are the most

commonly used: 1) all the EAM functions, , and F , are defined with analytical

expressions [25], 2) and one of the and F are defined with an analytical expression

and the other ( and F) is approximated with a spline [26, 27], and 3) all of , and

F functions are defined in splines [28]. In all cases, the functions are parametrized and

smoothly cutoff at a rcut distance by fitting to the values in a database constructed with

experimental or the ab-initio results .

The following function is utilized to implement the cutoff for potential functions:

hsmooth(r) = h(r)−h(rcut)+
(rcut
m

)[
1−

(
r
rcut

)m](dh
dr

)

r=rcut
(2.20)

10



where m= 20 as in Ref. [29]. Here, Eqn. 2.20 keeps the potential function and its first

derivatives continuous, and thus provides the potential to generate values without any

non-physical basis at cutoff.

The fitting procedure of EAM functions, introduced by Foiles et al [8] involves the

following universal equation of state (EOS) [30].

E(x) =−Ecoh (1+ x(a))e−x(a) (2.21)

where

x(a) = (a/a0−1)(Ecoh/9 0B)−1/2 (2.22)

and the parameters a0, 0, B and Ecoh are the lattice constants, atomic volume, bulk

modulus, and cohesive energy, respectively, for the equilibrium fcc crystal at 0K. The

crystal energies for different lattice constants calculated with EOS are in most cases

directly used on the left hand side of Eqn. 2.17.

The fitting database in EAM is usually constructed with the experimental values for

the energetic and structural constants of the elements and alloys. In absence of

experimental results, the database is completed using ab-initio calculations. Mostly,

the database includes cohesive and minimum energies of several crystal structures,

lattice constants, bulk modulus, elastic constants, vacancy formation energies, adatom

or vacancy migration energies, phonon frequencies, stacking fault and interstitial

energies, surface energies and diatomic bond length and energy. Searching an optimum

set for the parameters is itself relatively time consuming process. Approximating the

EAM functions with splines, instead of an analytical expression, requires even a more

complex optimization technique as the splines need an optimum number of knots for

the fitting process. If the fitting process is carried out by not an optimal number of

knots, then the EAM functions may have an oscillating characteristics, and thus may

not correctly describe the other properties that are not involved in the database. The

desired solution to the problem is to define an analytical expression for each EAM

function with a physical background. Therefore, aside from the fitting procedure, the

testing of the functions is essential to maintain a reliable potential that produces results
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in agreement with the experiments and ab-initio calculations. Such tests should include

energetics and structural properties that are not used in the database like phonon

dispersion curves, surface and stacking fault energies, barriers for various diffusions

mechanisms in the bulk/on the surfaces, and thermodynamical properties at elevated

temperatures.

For generating an alloy potential in EAM, there are two approaches: First is to

simultaneously fit the potential to the properties and energies of the alloy and its pure

elements. However, the method generally fails in accurately reproducing the desired

elemental and the alloy properties [29]. The second and more accurate approach [29]

is to optimize the pure element potential functions first and then use them in alloy

potential generation without changing the fitted properties of the pure element part in

the potential. Therefore for a binary system of AB, first, the potential functions for pure

A and B element, AA, A, FA and BB, B, FB are fitted to determine the parameters

of functions and rcut for each element using Eqns. 2.17, 2.19, 2.20, 2.21, and 2.22

with Zi = Zj. In the second part involving generation of alloy potential, only is the

pair potential, AB, to be fitted to the properties of alloys. For that, the pair potentials

are constructed using the two types of transformations on the pure element potential

functions: shifting by

F ′
Z( ¯) = FZ( ¯ )+GZ ¯ (2.23a)
′
ZZ(r) = ZZ(r)−2GZ Z(r) (2.23b)

and scaling by

′
Z(r) = SZ Z(r) (2.24a)

F ′
Z( ¯) = FZ( ¯/SZ), (2.24b)

where Z stands for one of A or B element and SA, SB, GA, and GB are the fitting

parameters. Eqns. 2.23a, 2.23b, 2.24a and 2.24b ensure that the pure element energies

do not change under the transformations while the alloy energy does, and thus helps
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increasing the quality of the alloy potential in the fitting. It is also important to note

that the transformations are used in the order in which scaling is applied after shifting.

Since scaling the charge density of is sufficient for one of the element against the

other one, the parameter SA is generally chosen to be 1 in the alloy fitting. Similar to

the approach in the pure element potential fitting, the parameters of pair function AB

and the scaling and shifting parameters are fitted to the experimental or ab-initio results

for lattice constants, cohesive energies, bulk modulus, elastic constants of considered

A-B alloys, and also can be fitted to the bonding lengths and energies of A and B atoms

in various structures.

2.4 The Calculation of Structural Constants and Energies in EAM

For the calculation of structural constants and energies of a system in the formalism of

EAM, one should first, write the force in terms of EAM functions by taking derivatives

of Eqn. 2.17 with respect to!ri j

!Fi =− Ei(ri j) =−
(

Ei
rxi j

rxi j
ri j

+
Ei
ryi j

ryi j
ri j

+
Ei
rzi j

rzi j
ri j

)
(2.25)

which yields

Fmi =
j

i%= j

[
′
ZiZ j(ri j)+F ′

Zi( ¯i)
′
Z j(ri j)+F ′

Z j( ¯i)
′
Zi(ri j)

] rmi j
ri j

. (2.26)

Here rmi j is the component of separation between atom i and the neighboring atom

j along the direction m where m is the one of the Cartesian coordinates; x, y, z.

Fmi represents the force acting on the atom i in the same direction m. To find the

equilibrium configuration of the system, the atomic positions are optimized such that

the force on each atom is zero. Using this equilibrated structure, one can easily

calculate the minimum energy of the system or the energy of a configuration such

as stacking fault, interstitial site, surface.

In EAM method, the mechanical stress tensor for an individual atom i can be defined

by
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mn
i =

1
0 j, j %=i

[
1
2

′
ZiZ j +F ′

Zi( ¯i)
′
Z j(ri j)

] rmi jrni j
ri j

(2.27)

where m, and n are the tensor elements and can be one of 1, 2, or 3 representing x, y,

and z directions, respectively.

The elastic constants of an equilibrium crystal can be calculated by applying an

infinitesimal homogeneous strain ri j to the crystal. Using generalized Hooke’s law

for linear deformations, the stress tensor definition can also be written in the following

form [31]

mn =Cmnkl rkli j (2.28)

where Cmnkl is the elasticity tensor. Second derivative of the crystal energy in Eqn.

2.18 leads to elastic constant tensorCmnkl for the crystal:

Cmnkl =
(Etot/ 0)

rmn rkl
=

1
nb 0 i

[
Mmnkl
i +F ′

i ( ¯i)Nmnkli +F ′′
i ( ¯i)Lmni Lkli

]
(2.29)

where 0 is the atomic volume, nb is the number of basis defining the conventional

unit cell of the structure and

Mmnkl
i =

1
2 i%= j

[(
′′
ZiZ j(ri j)−

′
ZiZ j(ri j)
ri j

)
rmi jrni jrki jrli j
(ri j)2

]
, (2.30)

Nmnkli =
i%= j

[(
′′
Z j(ri j)−

′
Z j(ri j)
ri j

)
rmi jrni jrki jrli j
(ri j)2

]

, (2.31)

Lmni =
i%= j

′
Z j(ri j)

rmi jrni j
ri j

. (2.32)

Here, the fourth-order elastic tensorCmnkl has the following symmetries:

Cmnkl =Cnmkl =Cmnlk =Cnmlk (2.33)

Therefore, the only independent elements in the tensor are reduced to 21 elements from

81. Using Voigt’s notation [32], elastic tensor can be written as C , where and
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have values from 1 to 6 and define xx, yy, zz, yz, xz, and xy, respectively. The elements

can be further reduced using the symmetries defining the crystal. In a cubic lattice, the

symmetries impose that the stress contribution in any given direction is the same as

the other directions such as C11 =C22 =C33. Using the symmetry definitions and the

similarities, one can reduce the independent elements to C11, C12, and C44. This kind

of reduction can also be utilized for a hexagonal lattice for which C13, C33, and C66
elements are to be independent in addition to the tensor elements of cubic lattice.

The bulk modulus of a material can be calculated using the equation of state for an fcc

lattice given by Eqns. 2.21 and 2.22:

B= 0
2Ei
0
2 =

r2i j
9 0

2Ei
r2i j

. (2.34)

Both using Eqn. 2.34 and m
mm = 0 (the hydrostatic stress condition for an

equilibrium crystal) the bulk modulus can be expressed in terms of potential functions

as following

B=
1
9 0

[
1
2 j, j %=i

′′(ri j)(ri j)2+F ′( ¯)
j, j %=i

′′(ri j)(ri j)2+F ′′( ¯ )

(

j, j %=i

′(ri j)ri j

)]

.

(2.35)

In EAM formalism vacancy formation energy is defined as follows

E f
vac =−1

2 j
+

j

[
F( ¯ − j)−F( ¯)

]
+Erelax. (2.36)

Here the sum is over the atoms in the vicinity of the vacancy site. The first

term represents the decrease in pair potentials of the neighboring atoms around the

vacant site, whereas the second term is the change in the embedding energies of the

neighboring atoms introduced by existence of vacancy. Erelax is the relaxation energy

of the neighboring atoms in the absence of an atom in a lattice site. For metals, this

energy is relatively small [33] and is around 0.01 eV [7] which is in the error bars

of vacancy energy in the optimization procedure, and thus is usually ignored in the

expression.
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2.5 Phonon Dispersions

In lattice dynamics, one needs to solve the equations of motion for ions in the unit cell:

Mi
2 !Ric
t

= !Fic =− Etot
!Ric

. (2.37)

Here !Ric is the equilibrium position of atom i in the unit cell c and !Fic is the total force

acting on the atom in the system with a potential energy Etot . For a dynamic crystal,

where all atoms vibrate around their respective equilibrium positions, the position

vector of an ion is time-dependent:

!ric(t) = !Ric+ !uic(t), (2.38)

where !uic(t) is the displacement of atom i from its equilibrium position of !Ric in the

unit cell. If the displacements of the atoms are small in comparison with the lattice

spacing a0, then the potential energy Etot of the system can be expanded around the

equilibrium state:

Etot(!ric) = Etot( !Ric)+
ic

Etot
!uic

!uic+
ic

2Etot
!uic !u jc′

!uic !u jc′ . . . (2.39)

Under equilibrium conditions where the total force on the system is zero, the second

term vanishes. For small displacements, the potential energy of the perturbed system

is relatively close to the equilibrium energy. Thus, the second-order term in Eqn. 2.39

is to be the dominant contribution to the lattice dynamics when the higher-order terms

are neglected. Under such approximation, the form of the energy turns into that of a

series of harmonic oscillators and this approach is called harmonic approximation.

In harmonic approximation of the lattice dynamics, the solution of Eqn. 2.37 has a

traveling wave form:

!uic =M1/2
i Ũic(!q)ei(!q·!ric−wt) (2.40)
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where !q is the wave vector, w is the angular frequency, and Ũic is the amplitude of the

wave. With substitution of uic in Eqn. 2.37, the equation of motion takes the following

form

−w2Ũm
ic (!q)+

c c′

1
(MiMj)1/2

mn
i j exp

(
iq · (ric− r jc′)

) ˜Un
jc′ = 0. (2.41)

As the distance between the two atoms in the system is given by

!ric = a0+(!uic− !u jc′) (2.42)

where ric− r jc′ = !ri j, the second derivative involved in the term mn
i j can be expressed

in terms of relative distances

2Etot
!uic !u jc′

=
2Etot
!ric !r jc′

. (2.43)

The phonon frequencies then can be calculated by diagonalizing the dynamical matrix

Dmn,i j =
1

(MiMj)1/2 c′

mn
i j exp

(
iq · (ric− r jc′)

)
. (2.44)

Here, mn
i j is the force constant and given by

mn
i j =

Etot
rmi j rni j

=− mn fi j(ri j)
ri j

−
[

′′
ZiZ j(ri j)−

′
ZiZ j(ri j)
ri j

]
rmi jrni j
(ri j)2

− F ′
Zi( ¯i)

[
′′
Z j(ri j)−

′
Z j(ri j)
ri j

]
rmi jrni j
(ri j)2

− F ′
Z j( ¯ j)

[
′′
Zi(ri j)−

′
Zi(ri j)
ri j

] rmi jrni j
(ri j)2

+ F ′′
Z j( ¯ j)

′
Zi(ri j)Q

n
j
rmi j
ri j

−F ′′
Zi( ¯i)

′
Z j(ri j)Q

m
i
rni j
ri j

+
i%=k, j

F ′′
Zk( ¯k)

′
Zi(rik)

′
Z j(r jk)

rmikr
n
jk

rikr jk
. (2.45)

(2.46)

where
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Qnj =
s %= j

′
Zs(rs j)

rns j
rs j

, (2.47)

fi j = ZiZ j(ri j)+F ′
Zi( ¯i)

′
Z j(ri j)+F ′

Z j( ¯ j)
′
Zi(ri j), (2.48)

and Etot is sum over all ionic energy in Eqn. 2.17. Mi, Mj are the masses of atoms

labeled i, j in the reference unit cell c and the sum in Eqn. 2.44 is over all the

neighboring c′ unit cells.

2.6 Molecular Dynamic Simulations (MD)

Molecular Dynamic Simulation (MD) is an iterative method based on classical

mechanics that gives the time evolution of a system of atoms in a time interval dictated

by the interaction potential. In MD, the time evolution of a system is provided by

solving Newton’s equation of motion for each individual atom in an isolated system

consisting N atoms with constant volume (V) and constant total energy (E). Such an

isolated system in statistical mechanics is known as microcanonical ensemble (NVE).

In NVE, the position update of an atom i is calculated from the force on the atom, !Fi,

which is the first derivative of the total energy with respect to atomic position:

!Fi(t) = m!̈ ir(t) =− U(!rN)
!ri

· (2.49)

where!̈ri is the acceleration of atom i with mass m, and U is the interatomic potential

describing the interactions between the atoms in the system. The positions of the atoms

are then evaluated by numerically taking simultaneous integration of the equation of

motion of each atom and for each time step, the new configuration of the system is

obtained through an iterative solution of the Eqn. 2.49. In T=0K simulations where

atoms have been set with initial-zero velocities, the total energy of the system is

simply equal to the potential energy of the system. However, for elevated temperature

simulations where atoms have non-zero initial velocities specific to the assigned

temperature, total energy involves kinetic energy contribution as well. In such systems,

the kinetic energy of each atom at every integration step can be calculated by
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EKi (t) =
1
2
m(!̇ri(t))2 =

[!pi(t)]2

2m
· (2.50)

where!r(t) and !p(t) are the position and the momentum of the atom i, respectively. In

a system, as the motions of atoms are not independent of each other, the equations of

motion for the atoms are coupled. Therefore, one needs to count on numerical methods

to solve theses coupled differential equations. In this study, the integration algorithm

performed in MD simulations is based on the Verlet finite difference method [34]. In

the method, using Taylor series expansion the atomic positions!r(t+ 2 t), !r(t+ t),

!r(t− t), and!r(t−2 t) can be given in the following forms,

!r(t+2 t) = !r(t)+2!̇r(t) t+
!̈r(t)(2 t)2

2!
+

...
!r (t)(2 t)3

3!
+ · · ·

!r(t+ t) = !r+!̇r(t) t+
!̈r(t)( t)2

2!
+

...
!r (t)( t)3

3!
+ · · ·

!r(t− t) = !r(t)−!̇r(t) t+
!̈r(t)( t)2

2!
−
...
!r (t)( t)3

3!
· · ·

!r(t−2 t) = !r(t)−2!̇r(t) t+
!̈r(t)(2 t)2

2!
−
...
!r (t)(2 t)3

3!
· · · (2.51)

By reorganizing the above set of equations, one obtains the following expression for

the velocity:

12!̇r(t) t = 8[!r(t+ t)−!r(t− t)]− [!r(t+2 t)−!r(t−2 t)]+O( t 4)· (2.52)

Using the Eqn. 2.51, the velocity of an atom becomes

!̇r(t) =
!̇r(t+ t/2)+!̇r(t− t/2)

2
+

t
12

[r̈(t− t)−!̈r(t+ t)]+O( t4) (2.53)

and the position associated with the atom is then calculated as follows

r(t+ t) = r(t)+ ṙ(t) t+
4F(t)−F(t− t)

6m
t2· (2.54)

At thermodynamic equilibrium, the total energy of the system in the phase space is

given by
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E = EK(pN)+U(rN) = constant. (2.55)

In the NVE simulations, since the kinetic energy as well as the potential energy

oscillate around the equilibrium condition of the system, the kinetic energy of the

system is the average of the oscillations within a time interval;

〈EK〉= lim
t→

1
t

∫ t0+t

t0
EK(pN)d =

3
2
NkBT. (2.56)

where t is the integration time step, t0 is the initial time, N is the total number of atoms,

kB is the Boltzman constant, and T is absolute temperature. The key step in performing

realistic MD simulations is to choose an appropriate time-step ( t), as the accuracy

of the above numerical derivations are dictated by the time-step. In general, smaller

time-steps close to machine precisions leads to senseless results and unnecessary cost

to computations. On the other hand, large time-steps may lead to inconsistent evolution

of the systems where the motion of atoms is rather fast compared to the change in the

total energy. In this study, the simulation time unit is taken in the order of picoseconds

and the time-step of 1 femtosecond is found to be sufficient to produce consistent

modeling of the material characteristics.

In this Thesis, the other studied statistical ensemble is the canonical ensemble, where

the number of atoms N, the volume V, and the temperature T in the system are held

constant (NVT). In NVT simulations, the atoms in the system are initially started with

a random velocity and then the system is thermalized with a thermal reservoir. The

evaluation of the system at a temperature T can also be performed by keeping the total

energy constant (NVE simulation). For all MD simulations performed in this thesis,

the temperature is maintained fixed through a Nose-Hoover thermostat [35, 36].

2.7 Nudged Elastic Band Method (NEB)

While an atom or a group of atoms moves from one stable configuration to another, its

reaction path always has the lowest energy in the process. This path is known as the

minimum energy path (MEP) and is used to define a reaction coordinate for transitions

from one configuration to another as in diffusion processes in solids. The highest
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Figure 2.2: Illustration of the NEB method: (a) The images are generated along the
blue line interpolation between initial state, R0, and final state, RN . The
NEBmethod apply FNEBi force during the optimization to relax the images
on to the true MEP. (b) The force components along the reaction path:
FNEBi is the nudged elastic band force, F⊥

i is the perpendicular force of Fi
due to the V (R) potential, FS||

i shows the spring force parallel to tangent
î [38, 39].

potential energy obtained along the MEP is the saddle point energy which is also the

activation energy barrier for the transition state. Among all the other methods [37], the

nudged elastic band (NEB) technique has proven to be quite accurate and efficient in

determining the minimum energy path, and thus the activation energy barriers for the

diffusion processes once the initial and final states of the process are known [38, 39].

The method generates the chain of states or in other words the images of the system

for the intermediate states in the configurational space. In the method, each state (or

image) corresponds to a specific atomic configuration of the system in between the

initial state and the final state. The minimum energy path is then identified by carrying

out a simultaneous optimization procedure throughout all these intermediate images.

In the method, the set of N + 1 images, indicated by [!R0,!R1,!R2, ....,!RN], generates

an elastic band with the spring constant kS (See Fig. 2.2) . While the end-points,

R0 and RN , are kept fixed at given initial and final states, the remaining intermediate

images are adjusted by the optimization algorithm. The minimization of the elastic

band is carried out by projecting the perpendicular component of the spring force and
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the parallel component of the true force Fi in all images. The effective force on the

image i is then given by

!FNEBi = !F⊥
i +!FS‖i · . (2.57)

Since î is the unit tangent along the path at each image, the perpendicular component

of true force then is to be evaluated as

!F⊥
i =−! V (!Ri)+! V (!Ri) · ˆi î, (2.58)

where ! V (!Ri) is the gradient of the energy with respect to the atomic coordinates in

each image of the system. The spring forces between the images of system, on the

other hand, is formed by

!FS‖i = kS(
∣∣∣!Ri+1−!Ri

∣∣∣−
∣∣∣!Ri−!Ri−1

∣∣∣) î (2.59)

where the same spring constant, kS, is used for all the springs acting on neighboring

images. The projection, here, including the perpendicular component of true force and

the parallel component of the spring force is referred as nudging. This nudging action

is applied by the NEB force FNEBi , during the optimization procedure until the initial

chain of states is fall on to the MEP passing through the saddle point with minimum

energy (See Fig. 2.2(a)).

2.8 Real Space Green’s Function Method for Vibrational Local Density of States

Investigating vibrational or electronic states of a solid involve calculations of the

eigenvalue problem, Hu = Eu, or equivalently the Green’s functions corresponding

to the Hamiltonian, H. In the case of vibrational density of states of a solid, one

may directly diagonalize the dynamical matrix portraying the interactions between the

atoms in N layers of slab instead of finding the Green’s function corresponding to

the Hamiltonian. This approach is called the slab method and is the most commonly

used technique to obtain the frequency spectrum for a solid with or without surface in

k-space. In many cases the calculations are easily be carried out for systems with high
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symmetries such as bulk systems with no defects. On the other hand, for systems with

reduced symmetries which require large computational cells, slab method calculations

become costly. If ones interest lies in calculating vibrational spectrum for a local region

of interest in real space, then one has to obtain the Green’s function corresponding

to the Hamiltonian. However, for large systems, systems with atoms of the order of

thousands, obtaining the Green’s function is a formidable task, as the interaction matrix

H is order of 3Nx3N, where N is the number of atoms in the system and the Green’s

function associated with it is defined as G = (zI −H)−1. The continued fraction

method proposed by Haydock [40] is the pioneering recursive method to circumvent

such problems for complex systems requiring big interaction matrix H. Although

the continued fraction method is a local approach in real space, it is not an efficient

technique to follow, as the Green’s function corresponding to predefined locality is

written in a continued fraction form and one has to enforce a truncation for the level

of coefficients of the continued fraction which in turn leads to the inaccuracies in the

calculations.

Another local approach in real space is the real space Green’s function (RSGF) method

[41] . In this method one can focus on any local region according to ones need and

analyse the effect of the rest of the system on that particular region. Also there is no

need for the system to be periodic and it is, thus, particularly suitable for studying local

vibrational density of states in complex systems with defects, disorder, and reduced

symmetry. The only prerequisite is that the interatomic potential between the atoms in

the system be of finite range, as it is then possible to write the force constant matrix

in a block-tridiagonal form in which the sub-matrices along the diagonal represent

interactions between atoms within a chosen local region and the sub-matrices in the

’off-diagonal’ corresponds to interactions between neighboring localities. Thus, the

method allows one to work with much smaller matrices, whose dimensions are defined

by the subsystems, rather than the interaction matrices for entire system. Since an

infinite/semi-infinite system is converted quite naturally into an infinite/semi-infinite

set of local regions, there is no a priori truncation on the system size, as would be the

case for matrix diagonalization methods based on k-space. The RSGF method also

has an advantage over the continued fraction method as it does not involve truncation
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schemes to determine the recursion coefficients, rather a more general and simpler

recursive scheme is applied.

Using the resolvent matrix method [42] in RSGF, the force constant matrix of a system

can be given by block-tridiagonal form as following

H =





. . .
vi, j−1 hi vi, j+1

vi+1, j−1 hi+1 vi+1, j+1
. . .




(2.60)

where the sub-matrix hi involves the interactions of the atoms within the local region,

and vi,i+1 is the one between the local region and the neighboring regions. Then, the

Green’s functions associated with the H matrix is given by the resolvent operator,

G(z) = (zI − H)−1, for the eigenstates where z = w2 + i , being the width of

Lorentzian representing the delta function at w2, and I is a unit matrix of the same

size as that of H. The diagonal(ii) and off-diagonal(ii′) elements of Green’s functions

leading the formal solution of the problem are obtained by Dy, Wu, and Spratlin [42]

as

Gii(z) = [(zIi−hi)− vi,i+1 +
i+1vi+1,i

−vi,i−1 −
i−1vi−1,i]

−1,

Gii′(z) = Giivi,i±1 ±
i±1 · · ·vi′±1,i′

±
i′ , (i

′ ≶ i), (2.61)
±
i (a) =

[
(zIi−hi)− vi,i±1 ±

i±1vi±1,i
]−1

.

In addition, the relation between the diagonal elements of the Green’s function matrix

Gii and Gi±1,i±1 defined by

Gii = ∓
i + ∓

i vi,i±1Gi±1, i±1vi±1,i
∓
i . (2.62)

Here, Eqns. 2.61 and Eqn. 2.62 reduce the calculation of Green’s function to a series

of inversions and multiplications of matrices that determine the interactions of atoms

in the local region. Using the equations recursively, the Green’s functions can be
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calculated in an accuracy of a desired tolerance. Once the Green’s function of the

local region of interest is calculated, then the normalized vibrational density of states

(DOS) is obtained through

Ni( ) = 2 gi( 2) (2.63)

where w is the vibrational frequency and the function gi( 2) satisfies the equation

gi( 2) =− 1
3Ni

lim
x→

{Im[Tr(Gii( 2+ i ))]} (2.64)

Here, Gii is the Green’s function sub-matrix associated with locality i and Ni is the

number of atoms in this locality.

2.9 Adaptive Particle Swarm Optimization (APSO)

The adaptive particle swarm optimization (APSO) is an improved version of the

particle swarm optimization method (PSO) [43] developed by Kennedy et al. in 1995.

In PSO, the minimum of a given function or function set is searched in a procedure

that mimics the behavior of the swarm such as groups of flocks or fishes. Like other

evolution based algorithms such as genetic algorithm, PSO binds individuals to a

community. The functions that determine the behavior of the individuals have to be

evaluated numerous times repeatedly. Each individual is taken as a parameter set of

the desired function to be minimized and dedicated to a particle in the solution space

whose dimensions are constrained with the number of parameters. The basic idea of

PSO algorithms is to evolve each particle towards the optimum of the parameter space

using two contributions; 1) their best fitted parameters in the past, pBest and 2) the

best fitted particle in the swarm, gBest given by the iterative algorithm:

vdi = vdi + c1Rd1
(
pBestdi − xdi

)
+ c2Rd2

(
gBestdi

)
,

xdi = xdi + vdi , (2.65)

where xdi and vdi are the position and the velocity components in d dimension (d =

1,2,3, . . . ,D) of the ith particle, respectively. Moreover in Eqn. 2.65, , is the
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weighting factor for the previous velocities, c1 and c2 are the factors of cognitive

and social parts of the equation, and R1 and R2 are the random numbers between

[0,1] in each step of generation. The optimization is carried out with typically

hundreds of particles each treated as a parameter set where Xi = [x1i ,x2i ,x3i , . . . ,xdi ] is

the position vector and Vi = [v1i ,v2i ,v3i , . . . ,vdi ] is the velocity vector that is initialized

randomly in the D dimension parameter space. The previous best position of a particle

and the globally the best particle are respectively the self and the social learning

parts of the individuals in a society. Here, what PSO algorithm does is to simply

provide the learning mechanism for each individual in the swarm. In the early PSO

implementations, the learning parameters c1, c2 and the weighting factor are taken

as fixed numbers through all the steps of the optimization. Determining the weights of

the two learning contributions are generally hard to get a better fitting of the functions

and the parameters generally change according to the type of the problem that is to be

solved [44]. Therefore, the fixed evolution rates and the simplicity of PSO hinders the

swarm to escape from local minimum in small number of generation steps.

To circumvent the drawbacks of PSO algorithm, adaptive particle swarm optimization

(APSO) technique is introduced by Zhan et al. in 2009 [45]. In APSO method, the

early convergence to false minimum is avoided through the use of fuzzy logic circuits

and adaptive evolution algorithms. The adaptive weighting factor, c1 and c2 evolution

rates are determined by the evolutionary states estimation (ESE) procedure and the

evolution factor, f . In each step, the ESE stage is evaluated before the position and

velocity vectors are calculated. In this stage, the state of the swarm is constructed

on four different scenarios: S1, exploration, S2, exploitation, S3, convergence and S4,

jump-out. The states are calculated by taking the average distances of particles in the

swarm using Euclidian metric

di =
1

N−1

N

j=1
j %=i

√√√√
D

k=1

(
xki − xkj

)2
(2.66)

where D and N are the number of dimensions in the parameter space and the number

of particles in the swarm, respectively. The evolutionary factor, on the other hand, is

determined by using
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Figure 2.3: The compared distances for g and P1 particles to the others in (a)
exploration, (b) exploitation, convergence, and (c) jump-out states, where
g is the globally the best particle in the swarm with P1,P2, . . . ,P5 [45].
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Figure 2.4: S1 exploration, S2 exploitation, S3 convergence and S4 jump-out state
membership for evolutionary factor [45].

f =
dg−dmin
dmax−dmin

(2.67)

where dg is the average distance of all particles to the best particle, dmin and dmax are

the minimum and the maximum distances of particles to each particle in the swarm

(See Fig. 2.3).

The membership of the swarm is initialed with S1, (exploration) state, evolved with

the sequence S1 → S2 → S3 → S4 → S1 → . . . , and determined by fuzzy classification

of evolutionary factor f . The membership for each f value is classified in the fuzzy

logic scheme (See Fig. 2.4). The membership is determined by "singleton" method

that chooses the function with the highest value for f factor. For example, if a swarm

is in S1 state and the calculated f is 0.45, then the following state will be S2. However,

in case where the swarm is in S4 state then with the same factor the state will change to

S1 in the fuzzy logic scheme. With the determination of the states, APSO modifies

c1 and c2 values adaptively using ESE procedure in states shown in Fig. 2.5. In

exploration state, since the initial swarm is not settled near the best value of the

parameter space and each particle is not well fitted yet, the self learning rate c1 is

increased and social learning rate c2 is decreased to provide a search for the nearby

27



Figure 2.5: The swarm distribution in various evolutionary states of an optimiza-
tion for two dimensional problem. (a)Exploration, (b)Exploitation,
(c)Convergence, (d)Jump-out.

minimum. In exploitation state, the evolutionary factor is the indicator of how much

the swarm tends to move towards a minimum determined by the best particle in the

swarm. To provide a better search procedure, c1 is increased and c2 is decreased

slightly. Such a change in the rates will provide a slow search towards the minimum

so far. In the case of convergence state, both c1 and c2 rates are increased slightly.

The increase in the social learning rate will first supply a positive bias towards the best

fitted particle but increasing the values further will do an opposite action on the c1 and

c2 parameters; the values of c1 and c2 will be decreased. The convergence procedure

includes an additional searching algorithm called elitist learning stage (ELS). In ELS,

one of the dimension Pd of the best particle gBest in the swarm is randomly selected

and perturbed using a Gaussian function by

Pd = Pd+
(
Xdmax−Xdmin

)
·Gaussian(µ, ) (2.68)
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Figure 2.6: The flow chart of (a) main APSO algorithm, (b) Evolutionary state
estimation, (c) Elitist learning [45].

where Xdmax and Xdmin are the search boundaries [Xdmin,Xdmax] of d dimension and the

Gaussian distribution with a µ = 0 mean and with an adaptive standard deviation

given by

= max− ( max− min)
g
G
. (2.69)

In Eqn. 2.69, min = 0.1 and max = 1.0 with g and G are the generation step and

the total number of generations, respectively. ELS is applied in convergence state

until a better fitting position is achieved, where gBest particle value is substituted

with the best value found by the procedure. In such a case, the swarm will produce a

higher evolutionary factor for which the algorithm tends to switch to jump-out state.

In jump-out , c2 is increased and c1 is decreased so that the swarm follows the new

best fitted particle and escape from the local minimum. With the relatively high social

bias, each particle forgets their previous best fits and the exploration state is initialized

again. In the optimization procedure, the above evolutionary state cycle is carried out

until the total generation number is reached.
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In all generation steps of the APSO algorithm, the following constrains are

implemented: c1 and c2 values are kept in range of [1.5− 2.5] and the sum of c1
and c2 values are enforced to stay within the range [3.0−4.0] by using

ci =
4.0ci
c1+ c2

, i= 1,2. (2.70)

On the other hand, c1 and c2 values are increased or decreased with the following rule

|ci(g+1)− ci(g)| ≤ , i= 1,2 (2.71)

where is a random acceleration rate in the range of [0.05,0.1]. In exploitation and

convergence states c1 and c2 are slightly increased/decreased by 0.5 values. The

overall flow chart for the APSO algorithm is presented in Fig. 2.6.
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3. CALCULATIONS ON Cu NANOWIRES

In this Thesis, the preliminary total energy and structure calculations were performed

on several Cu nanowires using the existing EAM potential before developing our own

many-body type model potential for Cu-Ni alloys and then performing total energy and

MD calculations on these binary alloy systems.

3.1 Atomic Relaxations on Cu Nanowires

For structures with a high surface-to-volume ratio like nanowires the key question

concerning the equilibrium configuration of the crystal is closely related to the

rearrangement of electronic and ionic structure induced by loss of symmetry. For

nanowires, this effect is expected to be dramatic in radial direction and thus different

characteristics in individual atomic relaxations are more likely. In a related study,

Ma and Xu investigated the atomic relaxations on Cu nanowires with <100> axial

orientation and defined the multilayer relaxations on these systems [46, 47]. However,

the local atomic environments for atoms at both surface skin and cross-sectional area

of a nanowire are rather different. This effect is even more pronounced on the nanowire

with smaller cross-sectional area. Hence, during the energy minimization procedure

each atom is expected to relax accordingly, thus to show varying characteristics. The

question then arises regarding whether one can really define multilayer relaxations

for nanowires. Thus, the goal in this part of the Thesis is to explore any size effect

on atomic relaxations and the energetics of Cu nanowires. For that a comparative

investigation on Cu nanowires with the axial direction of <100> and <110> were

carried out.

3.2 Computational Details

The model systems for examining the size effect on atomistic processes and

relaxations, the <100> and <110> axially oriented copper nanowires are constructed
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Figure 3.1: Cross-sectional (on the left) and perspective view (on the right) of the
<100> axially oriented nanowire with 7×7 number of atoms along the
diagonals. The darker and lighter yellow spheres show the atoms in A and
B type stacking of Cu(100) crystal. For the N(100)×(100) type nanowires,
the distance between the atoms along the diagonal is nn (nearest neighbor
distance).

Figure 3.2: Cross-sectional (on the left) and perspective view (on the right) of the
<110> axially oriented nanowire with 7×7 number of atoms along the
diagonals. The darker and lighter yellow spheres show the atoms in A and
B type stacking of Cu(110) crystal. For the N(110)×(111) type nanowires,
the distances between the atoms along the short and long diagonals are nn
(nearest neighbor distance) and a0 lattice constant, respectively.
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by top-down process, which involves extraction of the nanowire from a slab with the

associated surface orientation. The nanowires with a <100> surface skin orientations

are fabricated by cutting the (100) slab through the (100) walls of a square. A

similar procedure is conducted for <110> axial oriented nanowires by cutting the

(110) oriented slab through the (111) walls of a diamond. Here, a compact notation is

introduced to easily visualize the structure of both rectangular and diamond nanowires

with the same four surface skin orientations and the same number of atoms along both

diagonals of the cross-sectional area. This notation is similar to that proposed by Lang

et al for visualizing the stepped surfaces [48]. In this notation the nanowire structure

is given by in general form of N(hakala) × (hsksls), where (hakala) and (hsksls) are the

Miller indices for the cross-sectional plane (or for the axial direction) and surface skin

orientations, respectively and N represents the number of atoms along the diagonals,

n×n, of the cross-sectional area of the nanowire. Here, the investigated nanowires are

ranging from 3×3 to 19×19 number of atoms along the diagonals of the cross-sectional

plane.

In this Thesis, the y and z axes are taken to lie in the cross-sectional plane and x

being along the axial direction of the nanowire, as shown in figure 3.1 and 3.2. For

atomic relaxation calculations, the atoms at the cross-sectional plane of the wire are

labeled A1, A2, A3 and B1, B2, B3, representing the atoms, with different coordination

numbers, of A and B type stacking of Cu(100) and Cu(110) crystal. Each supercell

representing the nanowire with <100> and <111> surface skin orientations contains 24

layers of atoms along the axial direction. The cross-sectional plane dimensions of Ny
and Nz are the number of atoms along the y and z directions and defined by the number

of atoms along the diagonals, N. Periodic boundary condition is applied along the

x-direction to simulate an infinitely long nanowire, while no such constraint is imposed

along the y and z directions. In this work, the interactions between the atoms are

describe within the system using many-body type model potentials obtained from the

embedded atom method (EAM) [8,49] that are already tested and proven to be reliable

for examining the energetics, structure and dynamics of low-coordinated surfaces and

nano-structured materials [50–55]. Once the model systems are constructed in their

bulk terminated geometries, the standard conjugate gradient [56] method is used to
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minimize the total energy of the system and thus to relax the atoms in their 0K

equilibrium configuration, and to determine the atomic relaxations and the total energy

for the final stable state.

3.3 Results & Discussions

The influence of varying cross-sectional area of N(100)× (100) type nanowire on

atomic relaxations are examined by investigating the structural relaxations of the

same type of nanowires with the cross-sectional area ranging from 5×5 to 15×15

number of atoms along the diagonals. The individual relaxations of each atom at the

cross-sectional plane of 5×5 and 15×15 are shown in figure 3.3. Relaxation of each

atom of nanowires shows similar characteristics to those of the surface atoms on vicinal

surfaces [51, 57, 58]: the atom with the lowest coordination number relaxes the most.

As seen in figure 3.3, the atomA1 is the least-coordinated atom (5) and relaxes towards

the remainder of the wire the most so that it increases its effective coordination number.

Note that atoms in the cross-sectional plane have different local atomic environment;

the coordination number for atoms A1, A2, A3, B1, B2, and B3 are 5, 12, 8, 8, 8, and

12, respectively. As a consequence of varying coordinations, the force fields in the

region of these atoms are expected to be nonuniform and thus resulting in relaxation

patterns that are not uniform in both magnitude and direction. For example, the relative

displacements of the atoms A1, A2, and B1 on 5×5 type nanowire - from their bulk

terminated positions - are 0.22, 0.07, and 0.06, respectively, and are oriented in various

directions whereas on 15×15 the corresponding displacements are 0.02 , 0.005 (almost

zero), and 0.006 (almost zero) (see figure 3.3), indicating that the effect of the lower

coordination on atomic relaxations diminishes as the cross-sectional area increases.

In a related computational study, Ma and Xu have investigated the multilayer

relaxations on the same type of copper, silver, iridium, and nickel nanowires and

found an increase in the outmost interlayer relaxation of copper nanowires as the

cross-sectional area decreases [46, 47]. They conduct the calculations using the

interatomic potentials obtained from the modified embedded atom method (MEAM).

These potentials are empirical extensions of the original EAM potentials that include

the angular bonding through the angular dependence of atomic electron density. For
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Figure 3.3: The atomic relaxations, with respect to bulk terminated positions, at the
cross-sectional plane of (a) 5(100)×(100) and (b) 15(100)×(100) type
nanowires. (b) shows atomic displacements only on the left corner of the
15×15 nanowire. The displacements are magnified by a factor 4.5 in both
(a) and (b). Here C represents the atom at the center of cross-sectional
plane. The labeled atoms of A and B represent the atoms of A and B type
stacking of Cu(100) crystal. Note that the magnitudes of the relaxations of
atoms around the edges of nanowire diminish as the cross-sectional area
increases.

Cu, the angular forces are not likely to be as significant as they are in silicon. Hence,

both MEAM and EAM potentials are expected to exhibit similar characteristics on the

multilayer relaxations of copper systems, albeit of differing in numerical values. In

fact, for Cu(100) both potentials predict an inward relaxation for the first interlayer

separation and damping characteristic in the interlayer relaxations away from the

surface into the bulk [7, 8, 46, 47, 59]. Here, however, the question is raised if one can

really define the multilayer relaxations for nanowires. The multilayer relaxations for a

system with a surface are defined as percentage-wise changes in the distances between

the two consecutive layers (towards the bulk) with respect to the corresponding

interlayer separations in the bulk and given by

di,i+1 = 100
[zi,i+1−db]

db
, (3.1)

where zi,i+1 is the distance between the ith and (i+1)th layer in the relaxed structure

and db is the interlayer separation in the bulk and it is 1.8075 for the Cu(100) planes.

When a bulk system is cut along a direction to create a system with a surface of desired

orientation, atoms of each layer relax collectively to the new equilibrium positions
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which minimize the energy of the system. Since each atom of the same layer has the

same local atomic environment and the same symmetry along the directions parallel

to the surface plane, the whole layer is expected to relax to the new equilibrium

position in the normal direction to the surface, unless the surface is reconstructed.

However, as already discussed in previous paragraph, the case for nanowires is rather

different. When a nanowire is constructed by cutting a slab, the symmetry along the

radial direction is broken. That leads to varying local atomic environments and thus

to individual relaxation patterns for the atoms of the cross-sectional plane, as shown

in figure 3.3. For the rectangular nanowires, one of the rectangular surface skin forms

the first layer, the next atomic plane parallel to the first one is the second layer, and

so forth. For the first layer atoms of A1, B1, and A3 on the 5×5 type nanowires

(see figure 3.3(a)), the vertical relaxations (relaxations in z-direction) are not uniform

in magnitude and are found to be 0.15Å 0.04Å and 0.02Å respectively, whereas for

15×15 type nanowires the corresponding relaxations are 0.01Å 0.006Å and 0.003Å

indicating that for nanowires with smaller cross-sectional area the finite size effect

on atomic relaxations are dramatic and leads to varying inward relaxations of the

atoms forming the outmost layer, with a pronounced relaxation of the corner atoms.

Thus, defining the z-position of the first layer (z1) of the nanowires (in particular with

smaller cross-sectional area) in the relaxed system as defined for infinitely extending

flat surfaces, in which case the relaxation of all surface atoms are expected to be

the same both in magnitude and direction, is not conceivable. However, for relaxed

nanowires one may define an average z-position of the outmost layer. In that case, the

z-position of the top layer of the nanowires with smaller cross-sectional area would be

dictated mostly by the corner atoms and that might cause the reported increase in the

inward relaxation for d1,2.

The stability of the wires is yet another crucial aspect when dealing with axially

deformed nanowires. To explore the structural stabilies of the wires total energy

calculations were employed for both <100> and <110> axial oriented nanowires under

the axial strain. Deformation were imposed through a linearly varying displacement

profile between the layers along the axial direction. In each increment, the separation

between the consecutive layers in the wires is increased or decreased by %1. The
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Figure 3.4: The relative energy profiles of various elongation steps for (a) <100> and
(b) <110> oriented nanowires with respect to bulk cohesive energy. The
bulk energy profile is shown for comparison.

Figure 3.5: The cross-sectional area of <100> nanowire under (a) %36 and (b) %37
contraction.

average energy per atom in the bulk is subtracted from that per atom in each nanowire

and the regarding differences were plotted in Fig. 3.4. The defect formation

and reconstruction in a structure under the deformations generally lead to unstable

configurations, that are easily identified with a sharp change in the total energies. Such

a change in the energy for the wires were found below -0.37 strain values. For 13×13

and 19×19 nanowires, high compressive strain is further found to lead to dislocations

in the wires (See Fig. 3.5). There is also a minimum energy state for the wires of <100>

axial orientation with smaller cross-sectional area at about %30 contraction (See Fig.

3.4a). Interestingly, for the wires with <110> axial orientation, the energy profile does

not lead to such a metastable phase (See Fig. 3.4b).
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In short, the energetics and atomic relaxations on the <100> and <110> axially oriented

copper nanowires are examined and the effect of varying cross-sectional area and

varying layer distance along axial direction are considered. From an investigation

of atomic relaxations on <100> rectangular nanowires, it is found that each atom

at the cross-sectional plane shows varying relaxation patterns and thus find it rather

problematic to define multilayer relaxations on nanowires especially with smaller

cross-sectional area. Since local relaxations very often manifest themselves in novel

characteristics like modifications in local force fields and localized modes [50], an

investigation of local vibrational properties of specific atoms, like corner atoms, on

these nanowires would be very interesting to see the influence of broken symmetry

on the local phonon spectra. On the other hand, investigation of the stability of the

nanowires under axial deformation results in existence of a metastable state for the

wires with <100> axial orientation and smaller cross-sectional area with respect to the

11×11 whereas no such a state is observed for the <110> axial oriented nanowires.
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4. CHARGE CORRECTED EAM POTENTIAL FOR Cu-Ni ALLOYS

The development of highly optimized semi-empirical potentials for bulk Cu-Ni alloys

based on the embedded atom method [7, 8] is the main focus of this Thesis. Although

there has been several Cu-Ni alloy EAM potentials, they are mostly generated through

an optimization procedure based on a fitting to the properties of pure elements of

the alloy rather than to the properties of the alloy itself. In the formalism of the

very first EAM potentials− developed for 6 fcc metals of Ag, Cu, Ni, Au, Pt, Pd

and their alloys [8], for example, the Cu-Ni alloy potentials are generated through a

global fitting process that optimizes the alloy properties not only for Cu-Ni alloy but

also for alloys of Cu and Ni with the other four elements. Since the procedure is

based on a simultaneous optimization of the potentials for six metals and their alloys

instead of optimization of the binary alloy alone, the potentials may have some issues

in reproducing the experimental results.

In another study Foiles [9] also developed an alloy Cu-Ni potential where the

formalism included only Cu, Ni pure element and Cu-Ni alloy properties. Although the

potential successfully reproduces some surface alloy properties such as segregation and

surface energies and also some bulk properties like mixing enthalpy and short-range

ordering, there is still a need for betterment to correctly describe the phonon

dispersions for metals with unfilled d-bands [12].

Zhou et al. [13] have also reported an alloy potential database using elemental

potentials, including Cu and Ni. In their formalism, an analytical expression [14] is

used in developing pair interaction for alloys that include, only the element functions

with no parametrization and fitting to alloy properties. Such an approach might be

quiet reasonable in developing a general purpose alloy potential which may naturally

pose some challenges to correct observations of alloy properties.
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The goal in this Thesis is, thus, to develop an accurate and highly optimized Cu-Ni

alloy potential which produces reliable predictions for structural properties, energetics,

phonons of the alloy.

4.1 The Theoretical and Computational Details of Cu-Ni EAM Potential

4.1.1 Parametrization of alloy potential

In this Thesis, the parametrization of the pair potential, charge density and embedding

functions of the EAM potential are carried out by following the scheme presented

in Ref. [60]. The charge distribution, on the other hand, is defined using an

optimized charge for both 3d and 4s bands extracted from the Slater-type orbitals

with effective nuclear charge approximation. The radial probability distribution of

electrons in Slater-type orbitals [61] are given with hydrogen-like wave functions in

polar coordinates r by

R(r) = rn
∗−1e−(r(Z∗)/n∗) (4.1)

where n∗ is the effective quantum number in the field of effective nuclear charge Z∗,

the effective charge Z− s of the actual charge Z screened by s charge. Clementi et

al. [62,63] derived the screening constants for each orbital from ab initio calculations,

using the Slater-type orbital approximation. The radial probability of a single electron

in 3d and 4s orbitals for Cu and Ni, resulting from the optimized effective charges, are

presented in Fig. 4.1a. As clearly seen in the figure, contrary to the 3d bands, 4s bands

are relatively far from the ion. The total charge densities of 3d and 4s orbitals obtained

from Self Consistent Field (SCF) calculations [63] are also plotted in Fig. 4.1b. Here,

the optimized linear orbital charge distributions of Cu and Ni are presented for the

electronic configurations, 3d104s1 and 3d84s2, respectively. The main difference in

the charge densities for Cu and Ni is that, 4s band density is slightly higher for Ni

atom compared to Cu atom. However, no such major difference can be noticed in 3d

bands.
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Figure 4.1: The electron charge distributions for Cu and Ni. (a) The probability
distributions for 3d and 4s Slater-type orbitals for effective nuclear
charges, (b) The total charge distribution for 3d and 4s from SCF
calculations of Clementi et al. [62, 63]

Within the current EAM formalism, the charge distribution, Z j , is modified so that

similar effects in radial distribution of the electron densities for Cu and Ni can be

represented. It is taken to be spherically symmetric as in the former EAM formalisms

and has the following form:

Z j(r) =tanh(20r
2){r6

(
e− r+29e−2 r

)
+

(1)

µ(1)RB
e−

1
2 [µ(1)(r−RB)]

2

−0.1 (1)CZje
− 1
2 [µ(1)(r−(RB+0.5))]

2
+ (2)e−

1
2µ

(2)(r−RA)2}.
(4.2)

In the present EAM formalism, the contributions from both 3d and 4s orbital of

effective nuclear charge [61] (See Fig. 4.1a) represented by gaussians in the additional

3 terms that provide a more pronounced 4s orbital. If there is no any additional

charge in the range of 4s band for the metal under investigation, the optimization

will cancel out the first two gaussians and the last gaussian function will be shifted

in the main part of the charge. Such 4s contribution were usually neglected in previous

implementations of EAM by using two common approaches: 1) a general charge is

described for all elements [7], 2) a spline is defined without a physical background

[28].

In the optimizations, the parameters (2), µ(2), and RA in Eqn. 4.2 were taken to be

fixed andCZj were chosen to be
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CCu =1.0

CNi =
1.0

µ(1)(RB+0.5)
,

(4.3)

whereas , (1), µ(1), RB were fitting parameters. Tangent hyperbolic functions were

utilized to preserve the 3d orbital shape in r = [0−1] range. The pair interaction, on

the other hand, were taken to be Morse type potential

(r) = DM

[
1− e M(r−RM)

]2
−DM. (4.4)

Here DM , M, and RM were the fitting parameters. Morse type pair potentials were

proven to characterise the long-range interactions for both Cu [27], Ni [60] pure

element and also for Ni-Al alloy [29] very well. On the other hand, the embedding

energy function F( ¯ ) is defined through cubic splines and directly calculated with the

EOS (See Section 2.3).

4.1.2 Ab-initio calculations

In this Thesis, for the first-principles calculations, the structure and total energies of

the systems were calculated in the plane-wave basis approach in generalized gradient

approximation (GGA) within the Kohn-Sham formalism of the density functional

theory (DFT) [10] using Quantum Espresso [64] package program. For a further

detailed description of DFT method see Section 2.2. Perdew-Burke-Ernzerhof (PBE)

parametrization [23] of spin density approximation was specified in electron exchange

and correlation. Vanderbilt ultrasoft pseudopotentials [65] were chosen to represent

core electron states of atoms in the system. The potentials were developed by Dal

Corso et al. [66] with the scalar relativistic calculations including nonlinear core

corrections and supplied with Quantum Espresso package. Spin-polarization effects

was only considered for Ni and Cu-Ni alloy structures. For pure Cu systems,

spin-restrict calculations were carried out. The spin-polarization was contributed

by choosing an initial magnetic moment on Ni ions and let the system converge in

self-consistent calculations. Series of calculations were exercised to obtain a cutoff

energy and proper selection of k-points in the geometry optimizations for total energy
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conversions. The cutoff energy was determined as Ecut=50Ry and k-points were

selected using 12×12×12 Monkhorst and Pack [67] grid.

In DFT calculations, regardless of the technique used in the exchange and

correlation function, the local density approximation(LDA) or the generalized gradient

approximation(GGA), both the calculated energies and lattice constants for the desired

structures are generally underestimated or overestimated [66]. Furthermore, since

DFT does not involve any direct-fitting to produce the desired experimental values

as in the case of model interatomic potentials, the results generally deviate from the

experimental values. A well-adapted technique [6, 28], that provides an avenue for a

meaningful comparison between the experimental results and DFT calculations, is to

shift the equilibrium structure energies (Ẽ), calculated with the ab-initio method, to a

reference E0 energy, where E0 is the energy of the equilibrium structure for the element

measured from the experiments [6,28]. Here in this study, the reference energy for the

elemental potentials was chosen to be the cohesive energy of the pure Cu and Ni atom

in fcc structures. Therefore, the energies from the ab-initio calculations are compared

by

E(a0)∼ E0− Ẽ0+ Ẽ(ã0) (4.5)

where, a0 and ã0 are the lattice constants for the equilibrium structure measured from

the experiment and calculated with ab-initio method, respectively. Since the lattice

constants calculated with ab-initio can also deviate from the experimental results, a

more accurate comparison should be qualified by scaling the lattice constant ã0 of the

structure calculated with DFT method to the reference value from the experiment [28].

To accomplish this, a scaling factor is introduced with the respective ratio of ã0/a0
for each reference structure and the comparison is furnished by

E(a0)∼ E0− Ẽ0+ Ẽ( a0). (4.6)

We also adopted the same approach for the alloy energies and extended it to yield the

following form:
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Table 4.1: Experimental lattice constants for Cu-Ni alloys and unit cell dimensions
for the representative crystal structures for ab-initio calculations. The
experimental values for each desired concentration were the interpolated
values of the experimental concentrations taken from Ref. [68], [69].

Alloy Exp. a0 Rep. Crystal a b c

Cu75Ni25 3.587 L12 3.6302 3.6302 3.6302
Cu75Ni25 3.587 L13 3.6469 3.6469 3.5896
Cu50Ni50 3.566 L10 3.5594 3.5594 3.6483
Cu50Ni50 3.566 L11 3.5848 3.5848 3.5848
Cu25Ni75 3.545 L12 3.5510 3.5510 3.5510
Cu25Ni75 3.545 L13 3.5292 3.5292 3.5935

ECu−Ni(a)∼ ẼCu−Ni( na)− (1−n)
[
ECu− ẼCu

]
−n

[
ENi− ẼNi

]
(4.7)

where ECu and ENi are the experimental cohesive energies for Cu and Ni respectively

and n is determined by the experimental lattice constants given in Table 4.1 for each

alloy with a specific Ni concentration of n. The experimental lattice constants for

25%, 50% and 75% Ni alloys were determined by taking a linear interpolation to the

available 3.578 Å, 3.564 Å, and 3.529 Å lattice constant results for 37%, 51.5% and

93.5% Ni concentrations, respectively [68].

Following the above scheme, ab-initio calculations for the reference structure, fcc, of

pure Cu and Ni elements were carried out. The predicted equilibrium lattice constant

of 3.521Å for Ni is in excellent agreement with experimental value of 3.52Å whereas

the calculated lattice constant of 3.677Å for Cu deviates from the experimental value

of 3.615Å by %1.73Å . However, the results for cohesive energies exhibit different

trends: an overestimate of %7 for Ni and an underestimate of %1 for Cu (the respective

calculated and experimental values are 4.83 eV and 4.45 eV for Ni and 3.50 eV

and 3.54 eV for Cu). For Cu-Ni alloys, determination of the structures were rather

complex, since the experimental measurements indicate that the Cu-Ni alloys have

continuous solid-solution fcc structure in all concentrations of Ni [70]. For alloys with

disordered phase, an approach would be to carry out ab-initio calculations and adopt an

average ordered crystal structure over randomly chosen ordered crystals [71]. Another

approach would be to proceed with an ordered crystal phase as an approximation to

the disordered phase, only if the selected phase is a structure close to the average
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ordered crystal with the lattice constants that do not change in all directions of the

unit-cell. One should note that the possibility for each type of atom to settle on an

available lattice site in a continuous single phase solid-solution be almost equal in this

assumption. Here, the second approach was adopted : extensive ab-initio calculations

were performed for the ordered fcc phases of Cu-Ni alloys. To identify the stable

structures of the alloys, three types of Cu concentration was portrayed: 1) 75% Cu

and 25% Ni solid-solutions, 2) 50% Cu and 50% Ni solid-mixture, and 3) 25% Cu

and 75% Ni random-solution. The crystal structures for the respective compounds

were determined through total energy calculations using ab-initio technique. Although

Cu-Ni is known to have a continuous disordered fcc structure, for our purpose of

accomplishing predictive power for the structure and the energetics of the alloy,

ordered fcc phases of L10, L11, L12, and L13 were utilized to represent local orders

in a continuous fcc structure. In order to avoid the magnetization effects of Ni at high

concentrations [72], no more than 50% Ni were utilized in the process of fitting the

model potentials. In ab-initio calculations, the unit cells describing the crystals and the

symmetries contain typically 32 atoms for the regarded fcc crystals and solid-solutions.

The lattice constants for each alloy with a different Ni percentage were calculated using

L10, L11, L12, and L13 crystal structures and tabulated in Table 4.1. While the lattice

constant for L11 and L12 structures are the same in each direction, the unit cell vectors

for L10 and L13 deviate more than 2%. Since L11 and L12 tend to have more stable fcc

structures and 1% lower minimum energies than L10 and L13 in ab-initio calculations,

the lattice constants and energies for Cu-Ni alloys were taken to be those corresponding

to the former crystal structures.

4.2 Optimization and Fitting Procedure of Cu-Ni Potentials

In this study an efficient global searching method, adaptive particle swarm

optimization (APSO) [45] (See Section 2.9) was adopted to search the parameter

space for EAM potentials. Using our developed parallel version of APSO method,

the optimization was carried out with 800 particles each treated as a parameter set that

was initialized randomly in the parameter space. In the method, the swarmwas avoided

to fall in false minimums through an inner random search algorithm "Elitist Learning"
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based on the fuzzy logic circuits and the jumping-out processes. Developing EAM

potentials using optimization methods is rather knotty as the analytical expressions

do not always produce accurate derivations of the energies for all parameters that

hinders or fails the optimization and results in bogus data. To avoid such a failure,

an inner protocol was implemented in the optimization that controls the parameter

sets by returning highest error when such numerical error is encountered. This may

allow one to span a wide range of parameter space. A modified MPI based parallel

version of APSO was also constructed to implement timely efficient algorithm as these

optimization techniques usually requires high computational times. The parallelization

of the algorithm was constructed not only on the distribution of particles of the swarm

to the processes but also on the distribution of increased total number of specialized

elitist learning procedures to each process. The details of the implementation of the

APSO is given in Section 2.9.

Using the developed parallel APSO code, in the first phase, pure Cu and Ni EAM

potential function parameters were fitted by minimizing the weighted mean squared

deviations of selected Cu and Ni properties from the experimental values or ab-initio

calculation results. The fitting of the potential is a nonuniform optimization and the

error is defined with a least-squares function D of error between the results of EAM

potential and the results of experiment or ab-initio calculations. Here, D is defined as

D= Da0+DEc +D X +DED +DRD +DC (4.8)

and each term in the sum is given by

Dµ = µ
(EEAM−EEXP)2

E2EXP
(4.9)

where Dµ can be the lattice constant (a0), cohesive energy (Ec), phonon frequency

at the zone boundary ( X ), diatomic energy (ED) and bond length (RD), and elastic

constants (C). In the optimization procedure, the errors from the experimental values

were weighted with low or heigh µ for a better fitting to the desired properties of

the elements and the alloy (See Table 4.3). The minimizations were carried out inside

the broadest parameter range of the physical boundaries of the potential functions in all
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initial runs of the optimization code. Whenever a suitable parameter set was converged

within the tolerance of 10−10 between each optimization iterations after 1000 steps,

the optimization was reinitialized within the narrow boundaries near the minimum

parameter set. In general, the second cycle increases the speed of convergence to the

minimum parameter set. The optimizations for each Cu and Ni elements and for Cu-Ni

alloy were repeated more than 10 times and the parameter sets were selected from the

parameter database.

The set of fitted parameters for pure Cu and Ni was presented in Table 4.2. The element

properties that were calculated with this parameter sets were tabulated in Table 4.3. In

the second phase, the Cu-Ni alloy EAM potential parameters were fitted using the pure

elemental functions and alloy potential transformations. The fitted alloy parameters

were tabulated in Table 4.2 and the properties of alloy that were calculated and used in

fitting were given in Table 4.4.

The fitting database for pure Cu and Ni part includes equilibrium lattice constant,

cohesive energy, bulk modulus, elastic constants, the vacancy formation and migration

energy for face-centered cubic (fcc) structure with the phonon frequencies of fcc

Brillouin zone-boundary at the point of X in (00q) direction and diatomic bond energy

and length. In the second phase, using pure element functions and alloy potential

transformations described in Section 2.3, the Cu-Ni alloy EAM potential parameters

were fitted. In the fitting database, this time, the equilibrium lattice constants, cohesive

energies, bulk modulus and elastic constants of L11 and L12 Cu-Ni alloy structure were

used. In Table 4.2, the fitted alloy parameters were also tabulated and the properties of

alloy that were calculated and used in fitting were given in Table 4.4.

4.3 The Results and Discussions for Cu-Ni EAM Potential

The Cu-Ni alloy EAMpotential developed in this Thesis involves three fitting functions

( (r), (r), and F( ¯ )) and two transformations (scaling and shifting) with total of

22 adjustable parameters that were listed in Table4.2. Figure 4.2 shows the resulting

functions for the pair interaction, the charge density and the embedding energy. Note

that the effective charge density for Ni differs from that for Cu in that it posses a

shoulder between the ranges of 1.8Å and 4.4Å from the atom, reflecting importance
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Table 4.2: Optimized and fitted parameters for pure Cu, Ni elements and Cu-Ni alloy.

Parameter Cu Ni Cu-Ni

DM 2.04175 2.21365 1.93942
M 2.09230 2.21271 2.22280

RM 1.30694 1.29030 1.32926
rcut 6.28795 6.39433 6.33084

3.46031 3.48630 -
(1) 0.03014 0.23447 -

µ(1) 0.93108 0.90905 -
RA 2.39580 1.88793 -
S 1.0 0.54043 -
G -2.30876 0.69228 -
(2) 0.0 0.4 -

µ(2) - 10.0 -
RB - 1.0 -

of the contributions from 4s band valance electrons as mentioned in Section 4.1.1.

Let us remind that in EAM formalism, the energy of an ion is determined using the

charge densities at its own site due to all host atoms and thus even minute variances

in charge densities are expected to show significant impact on the energy of the ion.

The curves for pair interactions of pure elements and the alloy show more or less

similar characteristics with a single minimum that is shifted for one pair potential to

the other. The potentials developed in the thesis have quiet long range with a cutoff

radius of 6.288Å, 6.394Å and 6.331Å for Cu, Ni, and Cu-Ni alloy, respectively.

The atoms within these cutoff ranges of developed alloy potential have up to the 5th

coordination shell and one should note that even small forces coming from atoms in

these coordination shells contribute significantly to the elastic constants and phonon

dispersion curves.

The reliability and the performance of an alloy interaction potential requires an

accurate prediction of the associated experimental and ab-initio values for the

properties of both pure elements of the alloy and the alloy itself. Therefore, Cu-Ni alloy

potential was tested for various properties including energies and constants for several

crystal structures, phonon dispersions, mixing energies, melting points, energetics of

diffusion mechanisms and structural properties with/without deformation.
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Figure 4.2: Cu-Ni EAM potential functions: (a) pair interaction function, (b) electron
charge density function, and (c) embedding energy function.
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4.3.1 The structural and total energy calculations

For testing the pure part of Cu-Ni alloy EAM potential, the lattice properties, lattice

defects, surface energies, and phonon dispersions for fcc crystal structure and the

lattice constant and cohesive energies for various crystal structures were investigated

using the formalism described in Section 2.4 and 2.5. In Table 4.3, the calculated

values of elastic constants, vacancy formation and migration energies, diatomic bond

length, diatomic bond energy and phonon frequencies for both Cu and Ni pure element

potentials, together with available experimental and calculated ab-initio data were

presented. Note that, since the lattice constant, cohesive energy and bulk modulus

of fcc structure were directly used in the optimization procedure within the formalism

of EOS, EAM potentials reproduce these properties with a very high consistency (See

Table4.3). As seen in the table, the predictive power of the current pure Cu and Ni

potential is better compared to the other EAM potentials.

In Table 4.4, the calculated properties for Cu-Ni alloys with several structural

formations were presented with the available experimental values and calculated

ab-initio data. The agreement for vacancy formation energies of Cu and Ni in Cu-Ni

alloys and diatomic properties are encouraging for a correct representation of Cu-Ni

alloy properties as these properties were not included in the fitting procedure. Surely,

correct prediction of elastic constants are crucial for properly describing the material

when it is under deformation. Another vital aspect of a deformed system is the lattice

defect energies and calculations for structural defect energies such as stacking faults

and interstitial sites are critical to further test the potential. The interlayer fault energies

of (111) stable and non-stable stacking faults, twining fault were determined using

total energy calculations on the supercell shown in Fig. 4.3. The periodic boundary

conditions were applied in all directions while no such constraint was imposed in the

z- direction. The system with two surface (See Fig. 4.3b) was fully optimized to find

the corresponding minimum energy configuration using standard conjugate gradient

method.

To calculate the stable (SF) and unstable (US) stacking faults, the atoms at the half of

the supercell above a <111> layer were incrementally shifted in a block with respect

to the other half of the crystal in <112> direction until the next prefect fcc stacking site
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Table 4.3: Lattice constants, cohesive energies, bulk modulus, elastic constants,
diatomic bond lengths and bond energies, vacancy formation energies and
phonons at X , L, and K for Cu and Ni predicted by the current EAM
potential, together with the available experimental data and other EAM
potentials. † Fitted with low weight. ∗ Fitted with high weight.

Cu Ni

Property Exper. Present M. [27] FBD [8] Exper. Present M. [28] VC [28] FBD [8]

a0 (Å) 3.615 [73] 3.615 3.615 3.615 3.52 [73] 3.52 3.52 3.52 3.52
Ecoh (eV) -3.54 [74] -3.54 -3.54 -3.54 -4.45 [74] -4.45 -4.45 -4.45 -4.45
B (1011 Pa) 1.383 [75] 1.383 1.383 1.38a 1.81 [75] 1.81 1.81 1.81 1.804a
C11 (1011 Pa)∗ 1.700 [75] 1.701 1.699 1.67 2.47 [75] 2.470 2.47 2.44 2.33
C12 (1011 Pa)∗ 1.225 [75] 1.225 1.226 1.24 1.47 [75] 1.480 1.48 1.49 1.54
C44 (1011 Pa)∗ 0.758 [75] 0.758 0.762 0.76 1.25 [75] 1.255 1.25 1.26 1.28
ED (eV)† -2.02 [76], -2.02 -1.93 -2.068 [77], -2.19 1.94 [60]

-2.05 [78] -2.119 [76]
RD (Å)† 2.2 [77], 2.09 2.18 2.155 [76], 2.21 2.23 [60]

2.2195 [78] 2.20 [77]

E f
v (eV)∗ 1.27 [79], 1.281 1.272 1.281 1.60 [80] 1.581 1.60 1.56 1.63

1.28 [81]
Emv (eV) 0.65 [81], 0.66 0.689 0.72 1.04 [82], 0.83 1.29 0.98 1.08

0.71 [81] 1.30 [80]
TMelt (K) 1357 [83] 1278 1325 [84] 1280 [85] 1728 [83] 1646
L(X) (THz)∗ 7.38 [86] 7.38 7.82 7.62b 8.55 [87] 8.59 8.71 10.03 9.95
T (X) (THz)† 5.16 [86] 5.15 5.20 5.07b 6.27 [87] 6.24 6.38 6.68 6.76
L(L) (THz) 7.44 [86] 7.38 7.78 7.56b 8.88 [87] 8.84 8.53 10.04 9.84
T (L) (THz) 3.41 [86] 3.09 3.32 3.17b 4.24 [87] 4.05 4.31 4.37 4.32
L(K) (THz) 5.90 [86] 5.85 6.22 6.10b 7.30 [87] 6.86 6.98 8.08 8.00
T1(K) (THz) 4.60 [86] 4.65 4.65 4.54b 5.78 [87] 5.70 5.68 6.04 6.08
T2(K) (THz) 6.70 [86] 6.76 7.17 7.02b 7.93 [87] 7.84 8.04 9.23 9.18
a fitted to different experimental values, see Ref. [7].
b calculated with the EAM potential in Ref. [8].
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Table 4.4: Lattice constants, cohesive energies, bulk modulus, elastic constants,
vacancy formation energies and diatomic bond lengths and bond energies
for Cu-Ni alloys predicted by the current EAM potential compared with the
available experimental and ab-initio data. † Fitted with low weight. ∗ Fitted
with high weight.

Representative Crystal
Structure / Diatomic Alloy Experiment Present
Formation Property or ab-initio• EAM

CuNi L11 a0 (Å)∗ 3.566 [68] 3.576
Ecoh (eV)† -3.99• -3.974

B (1011 Pa)∗ 1.618 [88] 1.615
C11 (1011 Pa)∗ 2.049 [88] 2.079
C12 (1011 Pa)∗ 1.402 [88] 1.383
C44 (1011 Pa)∗ 0.991 [88] 1.031
E f
v (Cu) (eV) 1.36• 1.25
E f
v (Ni) (eV) 1.61• 1.77

Cu3Ni L12 a0 (Å)∗ 3.587 [68] 3.609
Ecoh (eV)† -3.694• -3.749

B (1011 Pa)∗ 1.467 [88] 1.544
C11 (1011 Pa)∗ 1.869 [88] 1.873
C12 (1011 Pa)∗ 1.311 [88] 1.276
C44 (1011 Pa)∗ 0.878 [88] 0.855
E f
v (Cu) (eV) 1.31• 1.30
E f
v (Ni) (eV) 1.59• 1.82

CuNi L10 a0 (Å) 3.566 [68] 3.591
Ecoh (eV) -3.95• -3.969

Cu3Ni L13 a0 (Å) 3.587 [68] 3.603
Ecoh (eV) -3.700• -3.751

Cu-Ni Diatom ED (eV) -2.05 [77] -1.92
RD (Å) 2.23 [89] 2.23
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was found. In each increment, the system was fully relaxed in <111> direction and the

total energy of the system was calculated. To calculate the energy of the layer fault, the

energy difference with respect to the unperturbed configuration was divided to the area

of the layer. The energies along the path was presented in the Fig. 4.4 and the stable

stacking fault configuration was given in Fig. 4.3c. The stable stacking fault energy

is the minimum energy difference at the hexagonal-closed pack stacking site of the

shifting. The shifted layers are shown with yellow and red atoms above unperturbed

layers represented by orange and blue atoms. The stacking fault layers are the layers

of red and blue atoms (See Fig. 4.3c). Similar calculations were also carried out for

twining fault energy of (111) stacking. To obtain a twining structure, first the layers

above the 8th layer from the bottom were shifted towards <112> and then the layers

above the 10th layer shifted back to the correct fcc stacking sites that leads to the two

twining layers in between the blue and red layers (See Fig. 4.3d). The energy of the

twining fault was then calculated by fully relaxing the supercell and taking the energy

differences between the fault structure and the relaxed unperturbed fcc super cell with

(111) surfaces on each side. The surface energies S for all flat surfaces of an fcc

crystal (100), (110), and (111) were also calculated using total energy optimization.

First, the computational slabs with two surfaces were let to relax to their equilibrium

configurations. This time the energy minimization was carried out to relax all atoms

in all three cartesian directions without any constrain. The surface energies is then

obtained by dividing the energy difference, between the bulk structure and the surface

slab, by the two surface areas. The surface energies for Cu and Ni solid phases at

925K and 1060K were calculated through constant number of atoms, pressure and

temperature (NPT) simulations for 1 nanosecond.

The other structural defects such as the interstitial site defects of (100) dumbbell,

tetrahedra and octahedra sites on an fcc crystal were studied using a supercell with

20×20×20 atoms (See Fig. 4.4a). Periodic boundary conditions were applied in all

cartesian coordinated and cells were relaxed to their minimum energy configurations

using conjugate gradient method. In Fig. 4.4b-d, the dumbbell (D fcc), tetrahedra

(Th) and octahedra (Oh) defect structures were presented and varying colors indicate

varying cohesive energy of each atom in the crystal. A dumbbell defect is a dimer

53



Figure 4.3: The atomic configurations for (a) the non-defect structure of fcc bulk
crystal from top view of (111) orientation, (b) side view of the defect free
structure, (c) (111) stacking fault structure in between the layers of blue
and red atoms, (d) the two (111) twining fault structure in between the
layers of blue and red atoms.
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Figure 4.4: The atomic configurations for (a) the defect free structure of fcc bulk
crystal from top view of (001) orientation, (b) dumbbell (red atoms)
structure, (c) (111) stacking fault structure in between the layers of blue
and red atoms, (d) the two (111) twining fault structure in between the
layers of blue and red atoms. The colors represent the cohesive energies
in between the minimum -3.54eV (blue) and maximum -2.89eV (red).

settled on a lattice site along (100) direction, whereas an octahedra defect is on a

4-fold site in between the neighboring fcc unitcells. A tetrahedra defect site is, on

the other hand, located in between the nearest neighbor atoms which are the basis of

an fcc unitcell. As seen from the varying colors in the figures 4.4(b-d) the interstitial

defects generally perturbate the lattice crystal up to the third nearest neighbor from the

defect atom(s). The formation energies E f of the defects were calculated using

Ef = Ede f ect − [(N+1)/N]E0, (4.10)

where, N and E0 are the total number of atoms and the total energy of the pure

equilibrium crystal, and Ede f ect is the total energy of the same reference structure

with the defect atom in the desired position. In Table4.5, the calculated stacking fault

and interstitial defect energies were presented together with the experimental/ab-initio

values and predictions of other EAM potentials. The agreement between predictions

of the current Cu-Ni potential and the experimental data are promising. Note also that

although the present Cu-Ni EAM potential predicts the stable and non-stable stacking
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Table 4.5: Energies (mJ/m2) for surface formation, planar defects and energies (eV)
of interstitials for Cu, Ni elements calculated by the current EAM potentials
compared with available experimental data.

Cu Ni

Defect Experiment Present M. [27] Experiment Present M. [28] Voter [60]
or TB EAM or ab-initio EAM

SF 45 [90] 45 44.4 125 [91] 129 125 58
US 162d 162 158 269 [92] 281 366 225
T 24 [91] 23 22.2 43 [91] 67 63 30
S(100) (Relaxed 0K) 2149d 1978 1345 3551 1878 1754
S(110) (Relaxed 0K) 2335d 2099 1475 3422 2049 1977
S(111) (Relaxed 0K) 1889d 1860 1239 3311 1629 1621
Average S (Rel.0K) 2124d 1979 1353 3427 1852 1784
Average S (925K) 1790a 1513
Average S (1060K) 2280a 3316
E f
I (Oh)(eV) 2.8-4.2 [82] 3.123 3.063 4.893 5.86 4.91

E f
I (Th)(eV) 3.7-3.89 [93] 3.374 4.427

E f
I (Dfcc)(eV) 2.51b 2.962 3.063 4.07c,4.08 [93] 3.746 4.91 4.64
a For average orientation, see Ref. [94] and [91].
b Tight-Binding (TB) calculation, see Ref. [95].
c DFT calculation, see Ref. [96] and [95].
d Tight-Binding (TB) calculation, see Ref. [27].

faults, and the twin faults in consistent with available experimental and other EAM

potential data, it overestimates the surface energies of the pure elements of Cu and Ni.

In simulations under pressure or strain the equilibrium lattice structure will eventually

take a form of non-equilibrium phases such as hexagonal closed pack (hcp),

body-centered cubic (bcc), simple cubic (sc), and diamond cubic (dc) structures. The

developed Cu and Ni pure element potentials and Cu-Ni alloy potential were also tested

for the structural constants of several lattices and the results were presented in Table

4.6. The predicted structural constants of both the pure element and the alloy lattice

structures are in good agreement with the experimental values and the results of other

EAM type potentials.

Additionally, the alloy mixing enthalpies were calculated for both solid phases at 0K

and 973K to compare with experimental curves at regarding temperatures. A series of

molecular dynamic (MD) simulations were preformed to compute enthalpy of Cu-Ni

alloys with various Ni concentration at different temperatures. For each specific Ni
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Table 4.6: Energies per atom (mJ/m2) for several selected crystal structures of Cu, Ni
calculated by the current EAM potentials and compared with ab-initio data.

Cu Ni

ab-initio EAM ab-initio EAM
Structure a0 Ecoh a0 Ecoh a0 Ecoh a0 Ecoh
fcc 3.615 -3.540 3.615 -3.540 3.520 -4.450 3.520 -4.450
hcp 2.557a -3.528 2.560b -3.532 2.487c -4.420 2.492d -4.429
bcc 2.873 -3.496 2.899 -3.509 2.800 -4.300 2.780 -4.374
sc 2.395 -2.996 2.373 -3.093 2.334 -3.440 2.333 -3.905
dc 5.348 -2.293 5.289 -2.411 5.095 -2.510 5.221 -3.163
a c/a=1.633
b c/a=1.640
c c/a=1.637
d c/a=1.630

concentration, several Cu-Ni alloy super cells were formed by utilizing Cu and Ni

atoms randomly in their bulk terminated positions so that an accurate statistics can be

carried out. The supercell representing the systems were constructed with about 5000

atoms and was carefully designed to circumvent the size effects in the simulations.

For each test, the atoms in the supercell first optimized to their minimum energy

configurations and then heated to the desired temperature by using constant number

of atoms, pressure and temperature (NPT) ensemble for 500 ps. The average enthalpy

and total energies for each Ni concentration of n were used in

HCu−Ni = HTotal(Cu,Ni)− (1−n) [HCu]−n [HNi] (4.11)

to calculate the alloy mixing enthalpy. The present calculated results for alloy mixing

energy are in good agreement with experimental data (See Fig. 4.5). Comparing

with the other EAM potentials, the current alloy potential has a better prediction

competency in producing the alloy mixing energy. Experimental results generally

shows a pick around 60% Ni in mixing Cu-Ni alloy. This slightly shifted mixing

enthalpy character towards high Ni concentrations is considered originating from the

fulfillment of the 3d orbital electron holes of Ni with the extra electron of Cu from 4s

bands [97].
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Figure 4.5: Mixing enthalpy for Cu-Ni alloy in various concentrations of Ni calculated
with the current EAM potential. The experimental values from Ref. [97],
[98] and the values of other EAM type potentials from Ref. [8], [9], and
[99] are shown for comparison.

4.3.2 Phonon dispersions for Cu, Ni and Cu-Ni alloys

To further test the developed potentials, phonon dispersion curves for Cu and Ni pure

elements and Cu-Ni alloy were also calculated with dynamical matrix approach (See

Section 2.5 for details.) using both the developed potential and the ab-initio method.

The ab-initio calculations were carried out by using GGA approximation with 10−14Ry

tolerance by taking 16×16×16 k-point grid first, and second using 4×4×4 q-point

grid to gather the force constants of the dynamical matrix.

As seen in Fig. 4.6 the phonon dispersion curves of fcc Cu and Ni crystals, calculated

using the fitted EAM potentials, are in very good agreement with both experimental

and ab-inito results. Note also that only the phonon frequencies at zone-boundary point

X were included in the fitting, the frequencies at the other k-points were predicted by

the potentials. The present Ni potential slightly underestimates the phonons close to

W point for frequencies lower than 6 THz.

Since no experimental data for phonon dispersion curves of any binary Cu-Ni alloy

are available, the phonon spectrum was calculated using DFT based ab-initiomethods
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for a chosen ordered crystal phase of Cu-Ni alloy. Note that it is not the intend here to

determine any crystal phase of Cu-Ni alloy. Thus the force constant matrix was formed

corresponding to the chosen compound structure of Cu-Ni alloy instead of forming an

average force constant matrix by carrying out several ab-initio calculations for various

Ni concentrations in Cu-Ni alloys which is the traditional way for determining any

existing crystal phase of an alloy [71]. The main objective here is to test the accuracy

of the new model Cu-Ni alloy potential by comparing the predicted optical modes for

such a model alloy crystal structure with that obtained from DFT calculations.

The present DFT results led to two suitable model representation for Cu-Ni alloys,

L11 and L12, that were discussed in previous sections. Due to the simplicity of the unit

cell, L11 model alloy crystal was chosen for Cu50Ni50 alloy and L12 for Cu25Ni75 and

Cu75Ni25. L11 can be represented by an fcc unit cell with two base atoms, one base

for Cu and one for Ni, along [111] direction separated by 1
4 [111]. On the other hand,

L12 can be represented by an fcc alloy that one type of atom sit at corner sites and

the others occupy face centers. Figure 4.7 shows the phonon dispersion calculations

for both ab-initio and the current Cu-Ni alloy EAM potential. It is worthwhile to note

that although the developed alloy potentials do not involve any direct fitting to the

alloy phonon frequencies, the agreement between EAM and ab-initio results for both

acoustic and optic modes is quite satisfactory. Furthermore, while EAM predicts optic

modes slightly higher for frequencies over 7 THz, the splitting in the optic modes

at X and M k points and in between were successfully predicted by the optimized

alloy potential. The separation of these frequencies is a clear evidence for a strong

dependence to the force constants between Cu-Ni atoms. As the force constants are

the second derivatives of the total energy of the system closely related to the elastic

constants, such a correct reproduction of the interaction is a clear indication of the

quality of the current Cu-Ni alloy potential.

4.3.3 The energy barriers of various diffusion mechanisms for Cu, Ni adatoms on

Cu or Ni surfaces

To further test the newly developed potential for the kinetics of materials constructed

with Cu and Ni, the energy barriers for various self-surface diffusion mechanisms
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Figure 4.6: Phonon dispersion curves (a) for Cu and (b) for Ni: solid line stands for the
values obtained from current EAM, dashed line from ab-initiomethod and
hollow circles from the experiment at 80K for Cu [86], 296K for Ni [87].
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Figure 4.7: Phonon dispersion curves (a) for L12 Cu3Ni, (b) for L11 CuNi, (c) for L12
Ni3Cu: solid line represent the values obtained from the current potential,
dashed line from ab-initio method, and dotted line from Foiles EAM
potential [9].

61



Table 4.7: Diffusion energy barriers (eV) for Cu and Ni adatoms on various Cu and Ni
surfaces calculated with the Cu-Ni alloy EAM potential and compared with
available experimental, ab-initio, or model potential data in Ref. [100].

Present
Mechanism Experiment ab-initio Model Pot. EAM

Hopping
Cu/Cu(111) 0.03-0.06 0.05 0.029-0.044 0.040
Ni/Ni(111) 0.22-0.33 0.16 0.036-0.07 0.031
Cu/Ni(111) - - 0.05 0.025
Ni/Cu(111) - - 0.045 0.025
Cu/Cu(100) 0.48 0.50 0.44-0.70 0.493
Ni/Ni(100) 0.60-0.63 - 0.63-0.70 0.608
Cu/Ni(100) 0.35 - 0.407-0.62 0.428
Ni/Cu(100) - - 0.439-0.64 0.528

Exchange
Cu/Cu(111) - 1.455 1.12-1.42 1.361
Ni/Ni(111) - 2.0 1.633-2.15 1.375
Cu/Ni(111) - - - 1.579
Ni/Cu(111) - - - 1.266
Cu/Cu(100) - - 0.18-0.85 0.634
Ni/Ni(100) 0.59 - 0.47-1.307 0.787
Cu/Ni(100) - - 1.23 1.043
Ni/Cu(100) - - 0.57 0.439

were calculated on the Cu and Ni surfaces with (100) and (111) orientations, using the

Nudged Elastic Band [38, 39] method based on the optimized Cu-Ni alloy potential.

For each adatom diffusion mechanism, the two types of diffusion process were

examined: hopping and exchange. In Table 4.7, the calculated activation energy

barriers for several Cu and Ni single atom diffusion mechanisms on the (100) and

on (111) surfaces are tabulated. The available experimental, ab-initio and model

potential results were also included in the table to provide a basis for comparison.

A quick glance to the table shows that the predictions from our potential are in perfect

agreement with the experimental and ab-initio data except for the barriers for Ni

adatom diffusion on Ni(111) surface.
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5. VIBRATIONAL THERMODYNAMICS OF Cu-Ni ALLOYS

There has been a growing interest in understanding the vibrational thermodynamical

properties of the intermetallic alloys with disordered solid solution phase as these

properties can sometimes differentiate the chemical order-disorder transitions in the

alloys [101–103]. One of the thermodynamical properties that is found to be important

in determining the phases of the alloys is the vibrational entropy. Experiments in binary

intermetallic alloys [104] show that in many cases the ordering in the alloys decreases

the vibrational entropy and disordering does vice versa, since ordering between unlike

atoms tend to have stronger bonds. However, V-Fe alloy was observed to be exception

as the ordering in the alloy increase the entropy of the system [101].

One of the intermetallic alloys that exhibit continuous random solid solution at elevated

temperatures and immiscible at low temperatures is Cu-Ni. The compound has been

the focus of several theoretical [105] and experimental [106] studies. Although these

studies were in general devoted to determining the change in the thermodynamical

properties, magnetic contributions [106], and phase segregation [105] in Cu-Ni alloys,

they do not investigate how the lattice dynamics affect mixing or unmixing of Cu

and Ni elements. Cu-Ni alloys were investigated with both disorder and order

phases in fcc structures to determine the effect of temperature dependent vibrational

thermodynamical properties. Since transition metals tend to change electronic density

of states (DOS) [107,108] in alloys, the electronic contributions to the thermodynamic

properties of Cu-Ni were also considered.

5.1 The Theoretical and Computational Details

In thermodynamics, the free energy of a system is described by F = E −TS, where

E is the internal energy, S is the entropy and T is the temperature of the system. In a

crystal, the free energy from lattice dynamics is expected to be the leading component

for the most temperature regime [109].
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In harmonic approximation, once the standard partition function is defined, the

thermodynamic functions for the vibrational free energy Fvib, the vibrational entropy

Svib, and the lattice heat capacity at constant volumeCv are given by [50],

Fvib = 3kBT
∫

max

0
ln
[
2sinh

(
h̄
2kBT

)]
N( )d , (5.1)

Svib = 3kB
∫

max

0

{
h̄
2kBT

coth
(

h̄
2kBT

)
− ln

[
2sinh

(
h̄
2kBT

)]}
N( )d , (5.2)

CvibV = 3kB
∫

max

0

(
h̄
2kBT

)2 1

sinh2
(

h̄
2kBT

)N( )d , (5.3)

where kB is the Boltzmann constant, N( ) is the normalized total vibrational density

of states (VDOS) of the harmonic crystal. In this Thesis, the VDOS of the system was

determined using the real-space Green’s function (RSGF) [41] technique (See Section

2.8). The vibrational thermodynamic properties of Cu-Ni alloys were calculated within

the harmonic approximation of lattice dynamics using the developed potential that was

tested accurately reproducing the phonons of both pure Cu, Ni and Cu-Ni alloy fcc

structures. To have a comparable investigation, these functions were also calculated

using the other available alloy EAM potentials (see Chapter 4). The calculations of the

VDOS were carried out for both disordered and ordered phases of Cu-Ni fcc alloys.

To represent the disordered crystals for each Ni concentration of Cu-Ni alloys,

the supercells were first constructed by randomly distributing Ni atoms in a bulk

terminated Cu slab and then optimized to the corresponding minimum energy

configurations. On the other hand, for ordered crystals, L10 and L11 binary structures

were chosen to represent 50% Cu-Ni alloys whereas L12 and L13 were picked

to construct 25% and 75% concentrations, respectively (See Section 4.1.2). For

examining the segregation of Cu and Ni atoms in the Cu-Ni alloy, a model system

of Cu25Ni75 was constructed by filling 1/4 of the crystal with Cu along (100) layers

surrounded by Ni atoms in a periodic structure.

Although the vibrational contributions to the thermodynamical functions are

significant in a crystal, the anharmonic and electronic contributions can sometimes

be the governing effect. For example, in the case of alloys the electronic effects may

play an important role in formation of the crystal structure since mixing of elements
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can change electronic nature of the structure [108]. Therefore, the change in the free

energy to form a binary alloy can be given as following [102]

F = E0+T
(
Scon f + Svib+ Selec+ SA

)
(5.4)

where Scon f is the configurational entropy, Svib is the vibrational entropy, Selec is the

electronic contributions to the entropy, and SA is the contributions from anharmonic

effects. In an ideal mixture of an alloy, the change of the configurational entropy is

given by [110]

Smixcon f =−kB [xlnx+(1− x) ln(1− x)] (5.5)

where x (0 < x < 1) is the concentration of the mixing element. Since the entropy

change in Eqn. 5.5 is always positive, mixing unlike atoms increase the entropy of the

system compared to unmixing or ordering. On the other hand, the electronic entropy

is given by

Selec =−kB
∫
n( ) [ f ( )ln f ( )+(1− f ( )) ln(1− f ( ))]d (5.6)

where n( ) is the density of electronic states for energy state, , and f ( ) is the

Fermi-Dirac distribution given by [102]

f ( ) =
e− ( − F )

1+ e− ( − F)
(5.7)

where = 1/kBT and F is the Fermi energy. In Eqn. 5.6, the formalism is similar

to the ideal mixing entropy, since electrons can occupy or not occupy each with

the probability given by the Fermi-Dirac distribution in Eqn. 5.7. To determine

the electronic structure and DOS of Cu-Ni alloys, ab-initio calculations were carried

out for 25%, 50% and 75% Ni concentrations for ordered binary alloys described in

Section 4.1.2.
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Figure 5.1: VDOS for (a) Cu and Ni (inset) (b) Cu-Ni alloys calculated with the
current EAM potential. The experimental curves for pure Cu and Ni from
Ref. [111] and [112] are shown for comparison.

5.2 The Vibrational Density of States of Cu-Ni Alloys

Our calculated results for normalized vibrational density of states for pure Cu and Ni

are in good agreement with the experimental data presented in Fig. 5.1a. Although

major pick at high frequency of pure Ni was accurately reproduced, the peak at around

6.8 THz for pure Cu was found to be slightly lower than the experimental data. To

examine the change of phonon states in the Cu-Ni alloys with respect to pure Cu

and Ni, the VDOS of various concentrations of Ni were calculated for random solid

solutions and presented in Fig. 5.1b. The VDOS for pure Cu and Ni were also

presented for comparison. For Cu-Ni alloys, the major low and high frequency peaks

shift towards high frequencies as the Ni concentration increases. In an experimental

study on specific heat capacity of Cu-Ni alloys, Loram et al. [106] proposed a scaling

factor f to estimate the VDOS of the alloy using pure Cu VDOS as the reference. In

this Thesis, using VDOS of the alloys with varying Ni concentration and the VDOS

of pure Cu, the real scaling factors were calculated and presented in Table 5.1 together

with the proposed scaling factors in the experiment. The calculated f EAM values were

3-3.5% smaller than f Exp assumptions for 36%-48% Ni concentrations. It is also clear

from the table that proposing scaling factors to estimate the VDOS of an alloy using a

respective pure-element VDOS might be misleading.

To determine the partial VDOS for Cu and Ni elements in the alloys, the projected

phonon states on every atom were averaged over individual element type. Although
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Figure 5.2: The calculated partial VDOS for (a) Cu and (b) Ni in the alloy.

increasing Ni concentration in Cu-Ni alloy enhances the stiffening in VDOS for both

Cu and Ni, the stiffening of Cu atoms is more pronounced than Ni atoms at all

concentrations in the binary alloys (See Fig. 5.2). It is also interesting to note that

the partial phonon DOS of Cu in Ni-rich concentrations of above 80%, the DOS at

the high frequency longitudinal modes is more than the Ni DOS for bulk longitudinal

modes. It is also worth to note that although Cu and Ni lattice constants, atomic radii

differ only by 3% and atomic masses vary by 8%, the overall stiffening of Cu DOS

at Cu10Ni90 is more than 18% with respect to pure Cu. Such result indicates that

Ni impurity in Cu crystal substantially changes the force constants between Cu-Cu

atoms and Cu-Ni atoms in the solid solution. A similar local stiffening characteristic

between Au-Au and Au-Fe bonds had recently been observed for Au-Fe alloys [101].

In the same study, the electronic structure was also calculated by ab-initio methods

and the stiffening in partial phonon DOS of Au was attributed to the charge transfer to

the nearly free band of s electrons, and stronger s-d hybridization with increasing Fe

concentration.

To analyze the VDOS change in ordering and unmixing, the vibrational DOS of order

phases for 25%, 50%, and 75% Ni concentration were calculated. The resulting VDOS

for each ordered and segregated systems were presented in Fig. 5.3 together with the

disordered Cu-Ni crystal results. Although the change in VDOS curves for 25% and

50% Ni ordered alloys was small, those of ordered 75% Ni alloys differ considerably.

As seen in Fig. 5.3, the ordering tends to increase the contributions of transverse

DOS with the additional peaks and generally decreases DOS for longitudinal modes.
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Figure 5.3: The vibrational DOS for ordered (a) Cu75Ni25, (b) Cu50Ni50, and (c)
Cu25Ni75 alloys calculated with the current EAM potential together with
the disordered and segregated Cu-Ni alloys VDOS.
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Table 5.1: The VDOS shifting factor f for Cu-Ni alloy with respect to the pure Cu
phonon spectrum.

XNi(%) Proposed Scaling
Factor [106]

Present EAM f Exp− f EAM

25 1.080 1.0417 3.55%
36 1.108 1.0795 2.57%
41 1.118 1.0883 2.97%
48 1.133 1.1029 2.66%
50.5 1.138 1.1058 3.22%
53 1.143 1.1087 3.43%
70 1.179 1.1262 5.28%
100 1.240 1.1874 5.26%

In contrast to ordered alloy DOS, states for longitudinal modes increase moderately

in the segregated solid solution while almost no change happens in transverse DOS.

A similar behaviour was reported by Alam et al. [113] for Fe-Cr alloys via analysis

of short-range ordering where the change in transverse mode DOS was found to lie

on ordering or segregation in the alloy. For the ordered structure of Fe-Cr, the low

frequency DOS of transverse mode increases and the high frequency DOS decreases,

for segregated phases, on the other hand, the DOS changes slightly in the opposite way.

5.3 Heat Capacity of Cu-Ni Alloys

The vibrational heat capacity at constant volume for pure Cu and Ni elements was

presented in Fig. 5.4a, together with the estimated electronic contributions, calculated

by [12]

CelecV (T ) =
2

3
n( F)k2BT, (5.8)

and experimental curves [114]. As seen in the figure, the characteristics of specific

heat for both elements were substantially governed by the lattice vibrations until 150K

above which both electronic and anharmonic effects become noticeable. Furthermore,

both the electronic and anharmonic effects were more pronounced for Ni than Cu. For

Ni, on the other hand, magnetic effects are expected to be important for temperatures

above 500K.
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Figure 5.4: The vibrational heat capacity calculated with the current EAM potential
(a) for pure Cu and Ni (inset) (b) for various Cu-Ni alloys in addition to the
excess vibrational heat capacity calculated with the current EAM potential
(c) for various Cu-Ni alloys (d) when the electronic contributions were
accounted. The experimental values for pure elements from Ref. [114]
and for Cu-Ni alloys from Ref. [106] are shown for comparison.

In Fig. 5.4b, the heat capacity for Cu-Ni alloys with various concentrations was plotted

and the experimental curves were also presented [106]. Note that the experimental

curves were measured at constant pressure, CP, and involve both anharmonic and

electronic effects. The results for higher temperatures could not be compared as the

experimental values were available only for the temperature range between 0-200K.

It is clear from the figure that for the disordered alloys of all concentrations, the

vibrational contribution completely determines the nature of the specific heat that is

consistent with the observation for pure Cu and Ni.

In Fig. 5.4c, the excess vibrational specific heat per temperature, Cv/T , for several

Ni concentrations in comparison with the experimental results of excess C/T was

plotted. Here, the excess thermodynamic quantities of the alloy were determined with
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respect to the heat capacity of pure Cu. As seen in the figure, the characteristics of CV
around 0K were mostly governed by the other contributions rather than phonons. With

increasing temperatures the curve was largely controlled by the lattice vibrations. Even

the position of the peak around 55K was determined by the phonons. As temperature

increases to 200K, probably, the electronic or magnetic effects pull the curve towards

the 0 value ofCV or above. Although the agreement on the excess Cu-Ni heat capacity

curves of EAM calculations and experimental values was overall satisfactory for 25%

and 36% Ni concentrations in 60K-100K range, the deviation from the experimental

values were more pronounced for 53% and 100% concentrations.

Further calculations were performed to see the effect of electronic states, excess

specific heat using Eqn. 5.8 and the results were presented in Fig. 5.4d. There is a

clear betterment in the agreement between the experimental and the calculated heat

capacity once the electronic contribution was added.

5.4 Free Energy and Entropy Calculations for Cu-Ni Alloys

To further analyze the thermodynamics of Cu-Ni, vibrational free energy and entropy

were also calculated with the developed EAM potential. Using Eqn. 5.1, the

vibrational free energies for various Cu-Ni compounds were calculated and plotted in

Fig. 5.5a. The concentration weighted excess free energies for Cu-Ni alloys were also

presented in Fig. 5.5b. The free energies of Cu-Ni alloys increased with increasing Ni

concentration in the solid solution which is expected as addition of Ni atoms in Cu-Ni

alloy stiffens the bonds of Cu-Cu and Cu-Ni. The concentration weighted excess free

energies of various Cu-Ni alloys were calculated by

Fvib = Fxvib− (1− x)FCuvib − xFNivib (5.9)

where x is the Ni concentration in the alloy and presented in Fig. 5.5. As seen in

the figure, for all temperatures the excess free energy exhibited a maximum at about

46% Ni concentration and the excess free energy of the compound increased with

increasing temperature. When compared to the mixing enthalpy (See Fig. 5.5c), the
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vibrational excess free energy is rather small which shows that governing contribution

to the excess energy is coming from the electrostatic interactions in the Cu-Ni alloys.

In this Thesis, the vibrational entropy of the disordered and the ordered Cu-Ni alloys

for various Ni concentrations was also calculated. The results for the partial entropy

of Cu and Ni in the alloys and the total entropy of Cu-Ni compounds for each Ni

concentrations were presented in Fig. 5.5d and Fig.5.5e, respectively. As seen in the

figures, increasing Ni concentration in the alloy decreases the partial entropy for both

elements which may be traced back to the observed stiffening in the respective VDOS

for Cu and Ni. The calculated entropy values of 3.97 and 3.42 kB/Atom at 300K are

in consistent with the experimental results of 3.90 and 3.40 kB/Atom for Cu and Ni,

respectively [104, 115]. Although there is more or less a linear dependence for Cu

in all concentrations, for Ni the slope of the partial entropy changes slightly and then

followed by a sharp change at 75% Ni concentration.

The partial entropies of Cu and Ni in the ordered crystal and the total entropy of the

alloy in the ordered phase were also calculated, using Eqn.5.2. The difference between

the partial entropy of the Cu in the ordered and disordered crystal of Cu25Ni75 is

observed to be larger, with 0.04 kB/Atom, but its end contribution to the change in

the total entropy of the alloy is just 0.01 kB/Atom. Such decrease in the entropy is too

low for a phase transition in the alloy since experimental results for Ni-Al, Cu-Au, and

Ni-Pt alloys [102,104,110] show that the change in the entropy needs to be in the order

of 0.07-0.2 kB/Atom for a phase transition to occur. Although ordering tends to change

the entropy significantly in alloys [104], the current simulations for Cu-Ni alloys do

not show similar characteristics. This may indicate that transition of disordered phase,

ordered phases can locally be occurred and easily dissolved in the solid solution.

To investigate the disordered phase of Cu-Ni one should calculate the mixing entropy:

Svib(xNi) = (1− xNi)SCuvib(xNi)+ xNiSNivib(xNi), (5.10)

where xNi is the Ni concentration in the alloy and Stvib is given by

Stvib(xNi) = Stvib(xNi)−Stvib. (5.11)
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Figure 5.5: (a) The vibrational free energy for Cu-Ni alloys, (b) the concentration
weighted excess free energy, (c) mixing enthalpy, (d) the partial and (e)
total vibrational entropy for various Cu-Ni alloys and ordered phases
calculated with the current EAM potential.
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Here, Stvib is the vibrational entropy of pure element t. To compare the results

with configurational entropy Scon f for ideal solution and the experimental results, the

concentration weighted vibrational entropy of Cu-Ni is presented in Fig. 5.6a and

Fig. 5.6b, respectively. As seen in figure, the results are in good agreement with

the experiments at 300K with negative values in all the concentration range. While

vibrational entropy curve generally gives the trend of mixing entropy at 300K, the

minimum about 35-40% can be predicted to be around 43%. For Cu-Ni alloys, while

vibrational contribution is important at low temperatures, it is predicted to be less

dominant at elevated temperatures. Although an increase in temperature decreases

mixing entropy by 0.1 J mol−1 K−1, it is not sufficient to match the calculated mixing

entropy curve with the experimental one at high temperatures.

To see if the effect of the electronic contribution to the mixing entropy is significant,

further calculation was performed using Eqn. 5.6 for Cu-Ni alloys with 25, 50 and 75%

Ni concentrations and the results were presented in Fig. 5.6b. The vibrational entropy

has an order of magnitude higher contribution than the electronic one. However, the

concentration weighted mixing entropy for higher temperatures above 300K exhibited

distinct results for electronic contributions. At 700K, the results were in comparable

with the vibrational contributions with negative mixing values and above 700K the

electronic contributions were slightly more pronounced than vibrational contributions.

Notice that the total contribution of electronic and vibrational entropy was almost

coincide with the experimental values at 1000K. However, as seen in Fig. 5.6 these

values were significantly small compared to configurational entropy. Keep in mind

that mixing is always favored in fcc by configurational entropy. Therefore, Cu-Ni

alloys have always tend to construct a disordered solid solution in all concentrations.

However, the vibrational and electronic entropy favor unmixing with negative values

[101] and contribute to the miscibility gap of Cu-Ni phase diagram [105]. At elevated

temperatures electronic entropy contributions to the unmixing were more pronounced.

The electronic contribution to unmixing is a well-known fact in Cu-Ni alloys and

experimental and theoretical results show that the magnetic effects are also important

in the determination of the miscibility gap [105].
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Figure 5.6: The vibrational excess entropy compared (a) to the partial and
configurational entropies and (b) to the experimental results from Ref. [98]
at 298K and Ref. [97] at 1000K.
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6. THE GROWTH OF Ni AND Cu-Ni NANOSTRUCTURES ON Cu(111)
SURFACE

In this Chapter of the Thesis, it was aimed to perform Molecular Dynamic simulations

to further test the alloy potential for the pure Ni and Cu-Ni island growth on the

Cu(111) surface upon Ni deposition and then to determine the kinetic nature of the

growth by calculating energy barriers for various diffusion processes using NEB

method.

6.1 The Evolution of Ni and Cu Add/Vacancy Islands on Cu(111)

The molecular dynamic simulations were build on the two experimental observations

[116]: 1) the motions of the islands on Cu(111) surface and 2) the growth of

nanostructures with deposition of Ni adatoms. Monolayer and vacancy Cu islands were

constructed side-by-side with mono or double layer Ni islands on top of a substrate as

presented in Figs. 6.1a, 6.2a, 6.3a, and 6.4a. The supercells representing the systems

on Cu(111) surface were constructed with a slab of 24 layers where each layer contains

768 atoms corresponding to approximately 72x61Å2 surface area which is big enough

to minimize the boundary and end effects on the system. An infinitely extended surface

was constructed by imposing periodic boundary conditions only along the directions

parallel to the surface of the slab. To provide the experimental conditions of vacuum

chamber, the temperature of the system was raised to the desired temperature with an

incremental steps of 50K through NVT simulations after equilibrating the slab at 0K.

Each NVT simulation of 100 picosecond (ps) was followed by an NPT simulation of

100 ps at 0 atm. After thermalization, the systems were allowed to evolve to their final

configurations using constant energy (NVE) simulations. Although the experiments

were carried out at room temperature, the simulations were run at 700K so that growth

characteristics in the simulations could be observed in a reasonable time scale. The

evolution of the islands were recorded until 250 ps after the formation of a stable

island in the simulations. In the first scenario where both of Cu and Ni adatom islands
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had a height of monolayer, Cu atoms from the adatom island migrated to the upper

layers of Ni island and covered the whole Ni layer in 1300 nanoseconds (See Fig.

6.1). In the simulations, Cu atoms of the island first migrated to a second nearest

neighbor separation of Ni island and built a bridge between the two islands at about

450ns. Once the first contact with Ni island was established, Cu atoms surrounded Ni

island. Within about 200 ns simulation time, the Cu atoms in the periphery of the Ni

island started jump attempts to upper layers of Ni. The average attempt frequency was

calculated to be 23.5ns−1 before a dimer formation occurred at 728ns (See Fig.6.1i).

On the average, a single Cu atom that jumped to the upper layer of Ni island before any

dimer formation, stayed on the Ni island about 5 ns. Interestingly, after the formation

of second chain around Ni periphery by the migrating Cu atoms, the average attempt

frequency was raised up to 5 ns−1 , which was about 5 times higher than the overall

attempt frequency in the whole 1.6 microsecond simulation time. With growing Cu

chains around the periphery of Ni island, Cu atoms could stay up to 10 ns on the

top of Ni island, which was the twice the average time for a single atom motion on

the Ni island. As shown in Fig.6.1i, after two jump attempts of Cu atoms with 5ns−1

frequency, a dimer formation was observed. Although the attempt frequency decreased

after formation of a dimer, every jumping Cu atom eventually merged into the cluster

and stayed there until the Ni island was completely covered. Further simulations were

carried out for islands separated by 2, 4, and 6 nearest-neighbor (nn) to observe if a

threshold separation for the merge of the heterogeneous islands existed. The results

showed that for 2 and 4 nn separations, Cu islands could cover the Ni islands, while

no such covering happens for the separations over 6nn even for the simulations over

500ns (See Fig.6.2). This threshold of 1.5nm length seems to be reasonable as the

smallest separation of the islands without any contact in the experimental work can be

estimated to be within 1-3 nanometers (See Fig.1 both in Ref. [116] and Ref. [117]).

The second scenario included a double layer Ni island near a mono layer Cu island.

The dynamics of the process was as following: Cu atoms directly migrated to the

upper layers skipping the decoration of periphery of bottom layer and covered the

first layer within 175ns time (See Fig.6.3). Although in both scenarios, Ni islands did

not move and change the shape on the surface within the simulations time of 1.6µs
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Figure 6.1: The snapshots of the evolution for monolayer Ni (blue) and Cu (yellow)
islands on Cu(111) surface (1st layer: orange, 2nd layer: red). (a) Initial
configuration, (b)-(p) the snapshots of the system at the end of every
100ns, except (f), (i) and (p) where the first one shows the formation of
the bridge at 450ns, the second one shows dimer formation at 728ns and
the last one shows the final configuration at 1690ns.

Figure 6.2: (a) The initial and (b) the final configuration after 840ns simulation of
monolayer Ni (blue) and Cu (yellow) islands with 6nn separation on
Cu(111) surface (1st layer: orange, 2nd layer: red).
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Figure 6.3: (a) The initial and (b-h) configurations after each 25ns simulations of
double-layer Ni (bottom:blue, top:white) and Cu (yellow) islands on
Cu(111) surface (1st layer: orange, 2nd layer: red).

(See Figs.6.1 and 6.4), the nature of migration of Cu island as a whole could show

different characteristics depending on the nearby Ni island formation. In addition, the

coverage of Ni islands by Cu atoms increased about 7.5 times when the Ni island had

double layers. Interestingly, Ni atoms, together with the migrating Cu atoms, were

also observed to jump to the upper layer (See blue atoms at the top layers in Fig. 6.1

and 6.3).

The other MD simulations involved Cu vacancy islands near mono and double layer

Ni islands. The snapshots of these processes were shown in Fig.6.4 and 6.5. The

migration of Cu atoms at the periphery of the vacancy islands to the very close

proximity of the Ni island happened for both cases whereas Cu atoms could cover

the top of the first layer when the Ni island had two layers. It seems that existence of

second layer in Ni island helps Cu atoms directly migrate to the top of the first layer

before surrounding the periphery of the island. Although Cu atoms had some jumping

attempts to the top of the single-layer Ni island, complete coverage of the island did not

occur even for a simulation of 1000ns (See Fig. 6.5). In the presence of single-layer

Ni island, the jump attempt frequency for the Cu atoms of the mono-layer vacancy

island was calculated to be 63ns−1, that was less than half of the attempt frequency
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Figure 6.4: The (a) initial configuration and (b-f) configurations after each 100ns
simulation steps of double-layer Ni (bottom: blue, top: white) and vacancy
Cu islands on Cu(111) surface (1st layer: orange, 2nd layer: red).

of Cu atoms of single-layer island. Such a low jump rate might be due to the low

concentration of Cu atoms around the Ni island.

In the recent scanning tunneling microscopy (STM) experiments, it was observed that

in addition to the pure Ni islands, Cu-Ni islands were also assembled upon under one

monolayer Ni deposition on Cu(111) surface [116–118]. The main outcome from the

experiments were that Cu atoms from the Cu(111) surface decorate the upper layers of

Ni islands. The resulting configurations of coarsening simulations were generally well

agrees with these experiments, where Cu decorations to the upper layers of Ni islands

were observed. Simulations showed that whenever there were enough Cu atoms free to

move in the close vicinity of Ni islands (about 4nn), Cu atoms could decorate or cover

the islands. The final configurations of Ni and Cu-Ni islands were also similar to the

islands observed in the experiments. The composition and the growth of the islands

are very often correlated with the strong magnetic moment of the Ni nano-structures

on Cu(111) [118]. However, the current simulations can not point any such magnetic

dependency as the developed interatomic potential does not include spin effects to

the charge density. Under 0.3 ML deposition the effect of the magnetic moment is

measured to be quite low [118], suggesting a non-magnetic nature in the very first

stages of the growth. Interestingly, the experimental results for the formation of Ni
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Figure 6.5: (a) The initial and (b-f) the configurations after each 200ns simulation
steps of monolayer Ni (blue) and Cu vacancy islands on Cu(111) surface
(1st layer: orange, 2nd layer: red).

islands above 0.3ML deposition rates still are in very good agreement with current MD

simulations. These findings show that Ni islands on Cu(111) under 1 ML deposition

have not a strong dependence on the magnetization.

6.2 Sub-Monolayer Ni Deposition on Cu(111)

Simulations for Ni deposition on Cu(111) surface was carried out using the Cu(111)

slab shown in Fig. 6.1. The supercell was first optimized to its minimum energy

configuration. Then the temperature was increased up to 300K. During deposition the

system was held at this temperature using constant-temperature (NVT) simulations.

Two deposition regimes were considered: a uniform deposition with fixed time

intervals and a nonuniform deposition with random time intervals. For uniform regime,

five different deposition rates were considered; 0.5, 1, 2, 5, and 10 nanoseconds. In

the simulations, 85 Ni atoms ( 0.1 ML) were deposed on the Cu surface. Ni islands

generally grow in 3-dimension for the deposition rates of 5ns or faster. On the other

hand, for 10ns and slower deposition rates, Ni islands tend to grow 2-dimension in a

more hexagonal shape monolayer island structures.

For nonuniform regime, the depositions were carried out in random intervals between

2ns and 5ns. More than one Ni islands were formed with 2-dimensional characteristics
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Figure 6.6: The snapshots of the final configurations of Ni atoms (top: green, middle:
white, bottom: blue) on Cu(111) surface (1st layer: orange, 2nd layer: red)
for (a) 500ps uniform, (b) 5ns uniform, (c) 10ns uniform and (d) 2-5ns
nonuniform Ni deposition simulations.

that were similar to the characteristics of islands formed in 5ns uniform deposition

rate.

6.3 The Structural Properties of Ni and Cu-Ni Islands on Cu(111)

In the STM experiments, the height of the pin along a profile both on pure Ni and

Cu-Ni islands were also measured to investigate the geometric characteristics of the

Cu-Ni mixing [116–120]. The first layers of islands were measured to be unexpectedly

low about 1.3Å height for monolayer islands constructed with pure Ni or Cu-Ni alloy.

In contrast, the height of 1 ML Ni island covering Cu(111) surface was found to be

around 2.1Å in the experimental studies [116–120]. Moreover, the experimental results

showed that the bilayer island heights differed quite a lot about 0.7Å with 3.3Å and

4.0Å for pure Ni and Cu-Ni alloy islands, respectively.

To have an estimate on the heights of the layers, two types of Ni and Cu-Ni islands

were constructed (see Fig.6.7a). Here, the island sizes were chosen to mimic the

experimental results. Both Ni and Cu-Ni islands were first optimized to the minimum

83



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

P rof ile (Å)
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Figure 6.7: The average heights for the predefined profile on (a) double-layer Cu-Ni
islands (inset shows top view of the supercell where blue and yellow atoms
represent Ni and Cu, respectively) and (b) monolayer Ni island.

energy configurations and then the systems were heated up to 300K with two-step

process: a 200ps NVT followed by a 200ps NPT simulation. As STM experiments

were carried out at temperatures 5K-40K, the supercells at 300K were cooled down to

40K with additional 200ps NVT simulations. The positions of the highest atoms in a

predefined profile in the final configurations were averaged over an additional 100ps

NVT simulations and the resulting height profile was presented in Fig.6.7b.

As seen in the figure, the average height of the double layer island is in good agreement

with the experimental results. In MD simulations, the height of the monolayer islands

was found to be lower than the height of a single-layer Ni island on Cu surface which

was consistent with the results in the experiments. Furthermore, the second layer

heights of Cu-Ni islands were also found to have different heights (See Fig. 6.7b)

in agreement with the experiments. The main reason for such low monolayer heights

and different second layer heights were that Ni islands relaxed downward more than

Cu ones on Cu(111) surface.

6.4 The Kinetics of Ni, Cu Adatoms on Cu(111)

To understand the nature of Cu decoration in the Ni islands on Cu(111), the energy

barriers for the possible diffusion mechanisms in the simulation were investigated

using nudged-elastic band (NEB) [38, 39] method. A brief list of the energy

barriers for the possible diffusion mechanisms were given in Table 6.1. Here, two
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types of diffusion mechanisms were considered for the adatom diffusions: hopping

and exchange. For the downward processes for monolayer islands, the exchange

mechanism had rather smaller energy barriers in contrast to hopping in all conditions

for both Cu and Ni adatoms, which was an expected result. However adding a second

layer to the islands, the energy barrier for the exchange processes were doubled for Ni

islands and increased 4 times for Cu islands. Therefore, by increasing the layer in the

steps, the adatom diffusion from the step of the island turned out to be a formidable

task. Another interesting result was that the energy barriers for upward diffusions were

decreased for both Cu and Ni adatoms at Cu step, but it was more pronounced for Cu

atoms at the vicinity of Ni step, where Cu migration to the upper layers of Ni islands

was generally biased by this process. The energy barrier for Cu adatom diffusion with

exchange mechanism to the upper Ni layer was almost comparable with the downward

energy barrier of Cu and Ni adatoms. Therefore, one can conclude that the jump up

probability of Cu adatoms at the vicinity of the step edge increase when the island has

a second layer nearby.

On the other hand, the dimer formation energy for Cu atoms is quiet small compared

to the hopping energy on Cu(111) surface, the dimer formation is expected to

immediately take place when the two Cu atoms are in close proximity with each

other on the surface. Since the energy barriers do not change for trimer formation,

an adatom can easily participate to the cluster formation. Therefore, the process of Cu

cluster formation on Ni monolayer islands can be explained with these mechanisms.

Whenever Cu atoms can overcome the energy barrier 0.33 eV of upward exchange,

there will be a chance for a dimer formation. Once there is a dimer formation on the

island every jumping Cu atoms towards the dimer are expected to participate within

and stay attached to the cluster. Increasing the size of the cluster on the upper layer of

island relatively decreases the energy barriers for upward diffusion processes. Since

the energy barriers for the mechanisms in opposite direction are increased by couple

of times, the upward process turns to be a one way process. Therefore, the critical

mechanism determining whether the island would be a pure Ni surrounded by Cu

atoms or Cu-Ni mixed island is found to be the dimer formation over the Ni monolayer

islands.
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Table 6.1: The energy barriers for various diffusion mechanisms of Ni and Cu on
Cu(111). Abbreviations: St: step, ML: monolayer, DL: doublelayer, M:
monomer, H: hopping, E: exchange. +X represents X chains of Cu or Ni
atoms at the step, A/ represents adatom on the surface or island layer where
A can be one of Cu or Ni. The values in brackets ( ) are up barriers for
hopping and exchange diffusion mechanisms and detachment barriers from
dimer and trimer.

Dif. Mech. Ni/Ni-layer Ni/Cu-layer Cu/Cu-layer Cu/Ni-layer

M. ML St. H. 0.57(1.40) 0.54(1.68) 0.48(1.39) 0.56(1.21)
M. ML St. E. 0.33(0.88) 0.16(1.28) 0.14(0.91) 0.32(0.60)
M. ML St.+1
E.

0.33(0.99) 0.02(1.10) 0.07(0.76) 0.33(0.72)

M. ML St.+2
E.

0.38(1.23) 0.17(0.95) 0.16(0.66) 0.33(0.87)

M. DL St. E. 0.89(0.69) 0.70(0.88) 0.69(0.72) 0.99(0.50)
M. DL St.+1
E.

0.79(0.74) - - 0.79(0.60)

Dimer 0.01(0.38) 0.14(0.14) 0.01(0.38) 0.03(0.33)
Cu-Ni Dimer 0.02(0.36) 0.001(0.42) - 0.02(0.36)
Cu-Cu Trimer - 0.10(0.14) 0.01(0.28) -
Ni-Ni Trimer - 0.08(0.13) 0.003(0.27) -
Cu-Ni Trimer - 0.003(0.27) 0.02(0.26) -
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7. CONCLUSION

In this Thesis, a new and highly optimized Cu-Ni model potential within the formalism

of EAMwas developed. The optimization of the potential was designed to involve both

experimental and ab-initio data not only for the pure elements of Cu and Ni but also for

the Cu-Ni alloy. To control the parameters for a better fitting, selected properties of the

elements and the alloy were treated with different weight. The potential reproduced

both fitted and predicted properties with a reasonable precision, including elastic

constants, phonon frequencies, melting points, alloy mixing enthalpy, lattice-defect

energies and energies of alternate structures, and energetics on the flat surfaces of

Cu and Ni. Given that the potential provided reliable results for surface energetics and

energy barriers of various diffusion mechanisms, the current alloy potential is expected

to correctly describe the characteristics of Ni growth on Cu surfaces or vice versa. The

fact that no temperature dependent properties were included in the fitting database

and yet the potential predicts the melting temperatures and alloy mixing enthalpy in

good agreement with experiment affirms the transferability of the potential for higher

temperature applications.

To further analyze the higher temperature capabilities of the current Cu-Ni potential,

the thermodynamical properties of disordered and ordered Cu-Ni alloys were

investigated. The entropy change between disordered and ordered crystals was found

to be almost negligible. Although the configurational entropy favors the mixing and

contributes to the solid solution phase, the negative mixing entropy of the phonons and

electronic states for Cu-Ni alloys favors unmixing and contributes to the miscibility

gap. The dominant contribution to Cu-Ni thermodynamic properties were calculated

to be vibrational whereas the concentration weighted mixing entropy showed a strong

dependence on electronic states. The partial phonon DOS for Cu stiffens with

increasing Ni concentration of Cu-Ni alloys.
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Furthermore, the energetics of the nanostructures and the growth mechanisms were

investigated both using MD simulations and total energy calculations to understand

the nature of the growth for Ni and Cu on Cu(111) surface. The simulation cells were

constructed to involve mono and double layer Ni islands with Cu adatom and vacancy

islands. From the simulations it was found that Cu atoms could migrate to Ni islands

and decorate and even cover the upper layers of Ni islands. The formation of the islands

was found to be governed by the nature of the decoration process. For the double-layer

Ni islands, the migration of Cu atoms to the upper layers were predicted to be 7.5 times

faster than those Cu atoms around monolayer Ni islands. The low concentrations of

Cu atoms near the Ni islands led to decorations of only the first layers. The energy

barriers were also calculated using NEB method for various diffusion mechanisms

on Cu(111) surface. Since the calculated energy barrier for forming a dimer was

found to be considerably low compared to all other investigated mechanisms, dimer

formation was predicted to be the critical mechanism for the formation of Cu-Ni

islands. While for monolayer Ni islands, the second layers were formed as a mixture

of Cu and Ni elements, for double layer Ni islands, the upper layers were built with

a segregated structure where Ni atoms were surrounded by Cu atoms. From the

deposition simulations it was found that Ni islands tend to grow in hexagonal shape

when the deposition rates were grater than 10ns−1 which was in good agreement

with the results of under 1ML Ni deposition experiments where the nanostructures

on Cu(111) surface generally have hexagonal like shapes with monolayer heights.
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[58] Yıldırım, H. and Durukanoğlu, S. (2004). Structural relaxations of Cu vicinals,
Surf. Sci., 557, 190.

[59] Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G. and Fan, X.Q. (1999). Surface
relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb,
Modelling Simul. Mater. Sci. Eng., 7, 189, references therein.

[60] Voter, A.F. and Chen, S.P. (1987). Accurate Interatomic Potentials for Ni, Al, and
Ni3Al,Mat. Res. Soc. Symp. Proc., 82, 175.

[61] Slater, J.C. (1930). Atomic Shielding Constants, Phys. Rev., 36, 57.

92



[62] Clementi, E. and Raimondi, D.L. (1963). Atomic Screening Constants from SCF
Functions, J. Chem. Phys., 38, 2686.

[63] Clementi, E., Raimondi, D.L. and Reinhardt, W.P. (1967). Atomic Screening
Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, J.
Chem. Phys., 47, 1300.

[64] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D.,
de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U.,
Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari,
N.,Mauri, F.,Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L.,
Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov,
A.,Umari, P. andWentzcovitch, R.M. (2009). QUANTUMESPRESSO:
a modular and open-source software project for quantum simulations of
materials, J. Phys. Condens. Matter, 21, 39550.

[65] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism, Phys. Rev. B, 41, 7892.

[66] Corso, A.D. and de Gironcoli, S. (1999). Ab initio phonon dispersions of Fe and
Ni, Phys. Rev. B, 62, 273.

[67] Monkhorst, H.J. and Pack, J.D. (1976). Special points for Brillouin-zone
integrations, Phys. Rev. B, 13, 5188.

[68] Clarke, J.K.A. and Spooner, T.A. (1971). The formation of homogeneous
copper-nickel alloy films in ultra-high vacuum, J. Phys. D: Appl. Phys.,
4, 1196.

[69] Wagner, W., Poerschke, R., Axmann, A. and Schwahn, D. (1980).
Neutron-scattering studies of an electron-irradiated 62Ni-41.4-at.%-65Cu
alloy, Phys. Rev. B, 21, 3087.

[70] Chakrabarti, D.J., Laughlin, D.E., Chen, S.W. and Chang, Y.A., (1994). Phase
Diagrams of Binary Copper Alloys, ASM International, Materials Park,
OH, in: p. subramanian, d. chakrabarti, d. laughlin (eds.) edition.
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