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 Nowadays, many different devices and applications such as vehicles, smart 
home devices, mobile banking, automatic dictation programs, and legal 
surveillance comprise speech and Speaker Recognition (SR) systems. Noise is one 
of the most important factors that affect the performances of these systems. 
Therefore, reducing the susceptibilities of the systems to noise is very important.  

Two different methods are proposed within this thesis to reduce the 
negative effects of the noises for SR systems. One of these methods is creating 
impostor models by clustering speaker models. The other method is a Polynomial 
Regression (PR) based Voice Activity Detector (VAD), which aims to determine 
the high energy speech regions under additive noise. 

Recent, and widely used SR methods, and the proposed algorithms within 
this thesis were realized experimentally, and performance analyzes were made by 
comparatively presenting results of the case studies. 
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 Günümüzde arabalar, akıllı ev aletleri, telefon bankacılığı, otomatik dikta 
programları, adli telefon dinlemeleri gibi pek çok farklı araç ve uygulama 
bünyesinde konuşma ve Konuşmacı Tanıma (KT) sistemleri yer almaktadır. Bu 
sistemlerin performansını etkileyen en önemli faktörlerden biri gürültüdür. Bu 
nedenle sistemlerin gürültüye karşı hassaslığının azaltılması oldukça önemlidir.  

Bu tez kapsamında KT sistemleri için gürültülerin olumsuz etkilerini 
azaltmaya yönelik iki farklı yöntem önerilmiştir. Bu yöntemlerden biri, konuşmacı 
modellerinin gruplandırılarak taklitçi modelleri oluşturulması olup, diğer yöntem 
ise eklenebilir gürültü altında yüksek enerjili konuşma bölgelerini belirlemeye 
yönelik Polinom Regresyonu (PR) tabanlı Ses Aktivitesi Detektörü (SAD) 
yöntemidir.  

Literatürde güncel ve yaygın kullanılan konuşmacı tanıma metotları ile tez 
çalışmasında önerilenlerin algoritmalar deneysel olarak gerçekleştirilmiş olup, 
durum çalışmalarının sonuçları karşılaştırılmalı sunularak performansları analizleri 
yapılmıştır. 

 
Anahtar Kelimeler: Metinden bağımsız konuşmacı tanıma, Ses aktivitesi 

dedektörü, Polinom uydurma, Konuşmacı modeli kümeleme 
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EXTENDED ABSTRACT 
 

Mismatch between the training and testing utterances is one of the main 

reasons for degraded performance of Speaker Recognition (SR) systems. Although 

the usage of SR systems spreads with many practical applications, the mismatch 

problem is still an active research area. 

In this thesis, two different algorithms were developed to overcome the 

mismatch effects originated by additive noises, and channel mismatch, 

respectively. In general, additive noise can be defined as the sounds captured by 

the microphone other than the speaker’s voice. On the other hand, channel 

mismatch is more related to the hardware, such as microphone type, transmission 

line, etc. 

One of the proposed algorithms is the Polynomial Regression based Voice 

Activity Detector (PR-VAD), which is effective against additive noises. Usually, 

VADs aim to separate the speech and noise/silence regions of the utterances. Also, 

the VADs that use a fixed magnitude/energy threshold fail when the Signal-to-

Noise Ratio (SNR) of the utterances varies. The proposed PR-VAD algorithm 

includes a pseudo SNR estimation step to automatically adjust the threshold for a 

given utterance. Further, the proposed algorithm considers the noise presence 

besides the speech information. If a frame is dominated by the noise components, it 

is discarded even though some speech information may present in a few 

frequencies. Therefore, the harmful effects of the noise components are avoided. 

The core of the PR-VAD algorithm is the polynomial regression step, 

which is applied in each filter band independently. The main process of the PR-

VAD algorithm consists of k-means clustering, speech enhancement, and binary 

voting for the final decision. The PR-VAD is applied per utterance, and does not 

require a training session. 

The robustness of the PR-VAD was examined in text-independent speaker 

verification experiments. Five different noise types were considered with SNR 
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levels varying from -10 dB to 10 dB with 5 dB steps for each noise type. A recently 

proposed artificial neural network based VAD, and a noise tracking algorithm were 

used as baseline methods. Gender-dependent tests were made with both 

conventional, and state-of-the-art speaker modeling methods. The results verified 

that the PR-VAD algorithm had achieved better recognition performances than the 

baseline methods. 

The other method is the Speaker Model Clustering (SMC). In the 

conventional speaker modeling method, namely Gaussian Mixture Model-

Universal Background Model (GMM-UBM), only one impostor model is used, 

which is the UBM. In the SMC method, several background models are obtained 

by clustering the speaker models derived from the UBM by adaptation. Speakers in 

the same group share the related group’s background model in this approach. 

In the experiments, both matched, and mismatched channel conditions 

were considered to verify the performance of the SMC algorithm. The GMM-UBM 

method, and the state-of-the-art speaker modeling method i-vectors were used as 

baseline methods. The results proved that the SMC algorithm yields better 

recognition performances against the GMM-UBM method for both channel 

conditions, and all test utterance durations. Furthermore, comparable results were 

achieved against the i-vector method, without increasing the system’s complexity. 

Even better results were observed by including a handset score normalization. 
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1. INTRODUCTION 
 

Speech is the most natural and convenient way to communicate for 

humans. Various information can be obtained from speech signals, therefore 

speech processing has become an important research area in the last decades. 

According to (Hafen and Henry, 2012) information extracted from speech signals 

can be used in event detection, stress and emotion classification, speaker 

diarization and recognition, speech recognition, multilingual audio analysis, and 

acoustic fingerprinting. 

Among these topics, automatic Speaker Recognition (SR), which means 

using a machine to recognize a speaker’s identity by using his speech signal, has a 

special importance in terms of biometrics. The development, and accessibility of 

smart phones and internet gave people endless opportunities. By using their 

phones, people can access their social media accounts, made money transfers over 

bank accounts, start the conditioner at their home while they’re away, etc. These 

are just a few examples of what one can achieve by using his/her phone. However, 

the technology also brings many concerns, such as security.  

Many biometrics are offered to increase the security of various systems 

such as face, fingerprint, hand geometry, iris, and voice recognition (Jain et al., 

2006). The traditional verification methods such as signature, password, pin codes, 

etc. cannot satisfy the remote operation, or high security demands of the users. On 

the other hand, Speaker Verification (SV) systems are cheaper, and easily accepted 

by the users compared to the other systems. As an example, only a microphone to 

record the voice of a user is enough. Further, many commercial applications are 

already in use. Some of the banks around the world, and also mobile operators in 

Turkey are using voice biometrics. With this technology, users do not have to share 

their personal information, or memorize passwords. 

In general, SR can be split into two parts as verification and identification 

(Campbell, 1997; Furui, 1997). The verification is a one-to-one problem, where the 
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user claims an identity, and the system checks whether the user is really who 

he/she claims to be or not. The identification is a little bit more complicated 

problem, where the user’s identity is searched in a group of enrolled users. Usually, 

as the size of the group increases, identification performance of the systems 

decreases. On the other hand, the verification problem is not related to the group 

size (Furui, 1997).  

Both the verification and identification systems can be text-dependent, or 

text-independent. In the text-dependent case, the users of the system are restricted 

to utter few words (such as digits) or fixed phrases. For the text-independent case, 

the users can freely talk. Between them, text-independent verification is much 

harder, since there is no limitation on the users’ utterances. Therefore, all possible 

phonemes should be represented in the training data to build a feasible recognition 

system. Figure 1.1 shows the two types of SR with their working philosophy. 

 

Speaker 
Recognition

Speaker 
Verification

Speaker 
Identification

Who am 
I?

I am 
Batman.

Accept Reject Among 
the group

Out of the 
group  

Figure 1.1. Types and working principle of speaker recognition. 
 

SR systems consist of two processes called front-end, and back-end. The 

front-end process is where the signal processing techniques are applied to the 

speech signal. The core of this part is the feature extraction. The raw speech signal 

includes redundant data. In terms of SR, speaker specific information should be 

extracted from the speech, and the other information can be discarded.  By using 
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the extracted features and machine learning methods, speaker models are trained. 

The back-end process generally refers to these machine learning methods used to 

model/classify speakers, and scoring utterances in the training, and test phases, 

respectively. The trained speaker models are then used in the tests to score 

unknown utterances. 

SR researches can be tracked back to a few decades; between-speaker 

variations are discovered in spectral patterns by (Denes and Mathews, 1960), and 

further SR experiments are conducted in (Das and Mohn, 1971; Das, 1969; Li et 

al., 1966). 

 Despite the progress over the years, there is still space for improvements 

in many aspects. One of the fundamental problems of speech/speaker recognition 

systems is the robustness against noise. In general, speaker models are trained by 

using their respective training data. The training data are collected in controlled 

environments such as a recording room, an office, etc. Therefore, the records are 

“clean”, which indicates that there is no sound besides the speaker’s voice. Feature 

extraction and speaker model training methods are applied to this clean data. 

However, in the real-life experiments, the same training conditions may be 

impossible to replicate in the test stage. This situation leads to recognition 

performance degradations.  

Two main noise sources can be considered. The first one is the convolutive 

noise, which is the result of modifications applied to the signal in the transmission 

channel. Hence it is also called channel noise. When a device other than that used 

to collect training data is used in the test stage, a channel mismatch occurs (Gish et 

al., 1985). This mismatch occurred by using different channels degrades the 

performance of the SR systems (Li et al., 2017; Rao et al., 2016; Sahidullah and 

Saha, 2012a; Zhu et al., 2015). The second one is the additive noise, which can be 

considered as the sounds captured by the recording device other than the speaker’s 

voice. The other sound signals deteriorate the speaker specific information, hence 
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they negatively affect the recognition performance (Al-Kaltakchi et al., 2017; 

Edwards et al., 2017; Frankle and Ramachandran, 2016; May et al., 2012). 

In this thesis, a novel Polynomial Regression (PR) based Voice Activity 

Detector (VAD), and a Speaker Model Clustering (SMC) algorithm are developed, 

and their performances are tested experimentally. In the SMC algorithm, K-Means 

Clustering (K-MC) is applied to the conventional Gaussian Mixture Model-

Universal Background Model (GMM-UBM) method to obtain impostor models. 

Compared to the state-of-the-art i-vector method, better SV results are observed for 

both matched and mismatched channel conditions.  

The proposed VAD consists of PR, K-MC, spectral subtraction, and pseudo 

Signal-to-Noise Ratio (SNR) dependent thresholding. The performance of the 

proposed VAD is tested experimentally under five different noise types, and five 

different noise levels. Also, performance comparisons with a state-of-the-art 

Artificial Neural Networks (ANN) based VAD, and a Noise Tracking (NT) 

algorithm are presented. 

This thesis is organized as follows. 

In Chapter 2, the SR literature is reviewed in a few subtitles. Various 

feature extraction methods are mentioned with their pros and cons. Conventional 

and state-of-the-art modelling techniques are briefly described. Noise types, and 

their deteriorative effects are investigated. Most common methods to achieve 

robustness (i.e. VAD, robust features, robust classifiers, speech enhancement) are 

analyzed based on the recent publications. 

In Chapter 3, the feature and classifier types used in the thesis are 

explained in details. Then, the proposed algorithms to achieve robustness against 

channel noise, and additive noise are given. For a better understanding, block 

diagrams are provided besides the mathematical expressions. The database used in 

the experiments is also described. The proposed VAD is tested on a sample signal 

to analyze it visually by giving various spectra, and filter-bank magnitudes. At the 
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end of Chapter 3, the system configurations (both hardware, and software) for real-

time isolated word recognition is demonstrated. 

In the beginning of Chapter 4, performance metrics are defined, and then 

the experimental results of the proposed algorithms and performance comparisons 

with well-known methods are given. The performance of the proposed SMC 

algorithm is tested with both the conventional and state-of-the-art classifiers, and 

for both matched/mismatched channel conditions. The proposed VAD algorithm’s 

robustness against additive noise is tested by using five different noise types, and 

five different noise levels. Real-time isolated word recognition experiment results 

are also provided at the end of this chapter. 

In Chapter 5, results obtained from the proposed algorithms are discussed 

and their advantages/disadvantages are presented. In Chapter 6, the contributions of 

the thesis are summarized, and possible future research directions are given. 
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2. LITERATURE REVIEW 
 

In this chapter, a literature review of studies on SR is provided, with an 

emphasis on robustness issues. The most common feature and classifier types are 

mentioned. Then, the negative effects of the various noise sources are discussed, 

and some of the solutions provided in the literature for each noise source are given. 

 

2.1. Feature Extraction 
Feature extraction is the process where the redundant information in the 

raw speech signals are discarded. The analog speech signal is captured by a 

microphone, and sampled by an analog-to-digital converter. After the conversion, 

the digital speech signal can be processed with a computer, microcontroller, etc. 

There are numerous feature types in the literature. The most important point is to 

know the requirements of the specific applications. As mentioned in the 

introduction chapter, word, language, speaker, gender, emotion etc. information is 

present in the raw speech signal. As an example, if one seeks for the word 

information, then he should not extract emotion related features. So, for the SR 

case, the extracted features should be discriminative between speakers. Properties 

of an ideal feature are listed as the following (Kinnunen and Li, 2010; Wolf, 1972). 

 

- The feature should have large variations between speakers, and small 

variations within speaker. 

- The feature should be difficult to mimic for increased security. 

- The feature should occur frequently, and naturally in speech. Hence no 

special training, or effort is required to produce them. 

- The feature should be easy to obtain from the speech signal. 

- The feature should be robust against undesired effects such as noise. 

- The feature should not be affected by the speaker’s health or long-term 

variations such as aging. 
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Obviously, the ideal feature does not exist. Also, since the speech 

production system of the humans is a physiological system, deformations caused 

by health issues, or aging, affects the produced voice. As an example, when a 

person gets cold, even his family cannot recognize his voice. Therefore, it is a 

challenging, and unresolved problem to obtain features close to these 

specifications. Also, it is possible to fuse different types of features (Li et al., 2016; 

Venturini et al., 2014). One feature type should cover the information that the other 

feature type does not have. By this way, features are used in a complementary 

manner to increase the recognition performance of the systems.  

Features can be divided into categories such as short-term spectral, 

prosodic, high-level features, etc. Various feature types are proposed in each 

category. However, short-term features seem to be most popular for both research 

purposes, and practical applications due to their ease of implementation and good 

recognition performance. Short-term features’ aim is to capture vocal tract 

information. 

Speech is a highly non-stationary signal. However, in a short segment 

called frame (10-30 ms), it is assumed to be stationary. Short-term spectral features 

analyses these short frames. Usually, the frames are windowed to prevent 

frequency leakage. Although it is not critical, the Hamming window is the most 

preferred window type in the speech processing literature. Fast Fourier Transform 

(FFT) is then applied to obtain magnitude spectrum. Phase spectrum is usually 

discarded, however some studies given later in this chapter shows that it may be 

beneficial for increasing the robustness of the system.  

The magnitude spectrum captures the resonance properties of the vocal 

tract (Kinnunen and Li, 2010). Based on the human audio perception system, a 

filter-bank is used to combine energies of the neighbor frequency bands. Filters 

with narrow bandwidths are used in the lower frequency region, while larger 

bandwidths are used in the higher frequency region. The resulted coefficients are 

called sub-band energy, or filter-bank energy values, and used in many SR, and 
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speech recognition studies (Besacier et al., 2000; Besacier and Bonastre, 2000; 

Damper and Higgins, 2003; Erell and Weintraub, 1993; Kua et al., 2010; Tufekci 

and Gowdy, 2001). 

The filter-bank energy vectors usually have a high dimensionality. High 

dimension data make the model training and scoring processes longer. Therefore, 

researches have been investing much more compact feature vectors. One of the 

most popular feature types is the Mel-Frequency Cepstral Coefficients (MFCCs) 

(Davis and Mermelstein, 1980). MFCCs are obtained by using a triangular filter-

bank, and applying Discrete Cosine Transform (DCT) to the log-compressed filter-

bank energies. In general, 12-19 coefficients are extracted per frame in this 

method. Also, MFCCs are used as feature vectors in this thesis, due to their success 

and widespread usage in the literature. They are analyzed in detail in the next 

chapter. 

Besides MFCCs, many Linear Prediction (LP) based coefficients have been 

used for SR (Mammone et al., 1996). LP is used to obtain the spectrum of the 

signal, and generally predictor coefficients are further processed to observe more 

robust features. Linear prediction coefficients (Li et al., 2014), perceptual linear 

prediction cepstral coefficients (McLaren et al., 2013), linear predictive residual 

(Khan et al., 2012), and line spectral frequencies (Klein and Feldes, 2016) are 

among the examples of the LP based feature used in the speech related research. A 

more detailed analysis of the LP is presented in (Pati and Mahadeva Prasanna, 

2010). 

Wavelet Transform (WT) has become a powerful tool in the signal 

processing area. WT is used in numerous speech and image processing studies. 

Contrary to the Fourier Transform (FT), or its variant short-term FT, WT enables 

decompositions other than sinusoidal. WT also has the multi resolution property. 

Many wavelet basis functions have been developed to extract different features in 

the data. In terms of speech recognition, WT is used to extract robust features, 

replaced with FT in MFCC extraction scheme, or combined with other features to 
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increase recognition performance of the systems (Daqrouq and Al Azzawi, 2012; 

Jun Yao and Yuan-Ting Zhang, 2001; Malik and Afsar, 2009; Singhai and Singhai, 

2007; Srinivas et al., 2014; Turner et al., 2011). 

Many other short-term features are proposed in order to achieve better 

recognition, or robustness, (Jiang et al., 2015; Li and Huang, 2011; McLaren et al., 

2013; Plchot et al., 2013; Sadjadi and Hansen, 2015). However, MFCCs and LP 

based features’ popularity have not decreased. They are still used in many state-of-

the-art systems, and they provide baseline results for the researchers. 

Glottal source feature extraction is another segmental analysis, and can be 

used to capture speaker specific information. However, their extraction is much 

more complicated than the MFCCs, or LP based features (Drugman et al., 2014). 

Several SR studies investigated the effects of glottal excitation based features 

(Amin et al., 2014; Drugman and Dutoit, 2012; Gudnason and Brookes, 2008; 

Kinnunen and Alku, 2009; Ostrogonac et al., 2013; Yegnanarayana et al., 2001). 

As reported in (Drugman et al., 2014), these features alone do not perform better 

than vocal tract features. However, by combining them with the vocal tract 

features, better recognition performances can be achieved. 

Spectro-temporal clues such as energy variations, formant frequency 

transitions, etc. may also include speaker information. A very basic approach to 

obtain temporal dependencies is to extract time derivative estimate called delta 

features (Furui, 1981). Delta features are computed by using a few neighbor feature 

vectors. Usually, they are concatenated to the main feature vectors (i.e. MFCCs). 

Other spectro-temporal features can be found in the literature such as (Kockmann 

et al., 2011; Magrin-Chagnolleau et al., 2002), but using delta features has become 

a common practice. 

Prosodic and high-level features’ main difference from the short-term 

features is that they span over long durations such as phonemes, words, etc. They 

represent behavioral properties of the speaker. Speaking style, emotions, speaking 

rate, fundamental frequency (pitch), energy modulations, characteristic vocabulary, 



2. LITERATURE REVIEW                                                              Gökay DİŞKEN 

11 

etc. can be extracted from these features (Andrews et al., 2002; Daqrouq and 

Tutunji, 2015; Leung et al., 2006; Li Hui et al., 2006; Reynolds et al., 2003; Sarma 

and Sarma, 2013; Shriberg et al., 2005). These features are more robust than the 

short-term features, however they require complex extraction processes, and more 

training data (Kinnunen and Li, 2010). Therefore, they are mostly used as 

complementary features to the short-term features. 

 

2.2. Speaker Modelling 
Speakers are enrolled into the recognition system via creating a model for 

his/her voice. The feature vectors extracted from a speaker’s training data is used to 

train speaker’s model, hence the back-end performance is highly dependent to the 

quality of the features. Each speaker has his/her own model, which is going to be 

involved in pattern matching process to compute a score in the tests. The speaker 

models are stored in the memory, contrary to the feature vectors which can be 

discarded once the speaker model is constructed. In this sub-section, some of the 

most used modelling approaches are reviewed, considering both the conventional, 

and state-of-the-art methods. 

One of the conventional template based methods is the Dynamic Time 

Warping (DTW). In the early ages of the SR studies, direct template matching 

methods were used (Luck, 1969; Pruzansky, 1963). The training and testing 

models’ distance to each other are computed using Euclidean distance, 

Mahalanobis distance, etc. As an example, the model for a speaker could be the 

mean of a set of training vectors. However, temporal variation is usually ignored in 

this modelling.  

DTW is actually introduced into word recognition to compensate temporal 

variability between training and testing utterances (Sakoe and Chiba, 1978). The 

DTW concept is used for text-dependent SR in (Furui, 1981). The core of the DTW 

concept is to expand, or shrink, feature vectors to find the best match between 

training and testing templates. Each vector of the test utterance is matched with the 
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closest vector of the training template (piece-wise linear mapping). Once all the 

testing vectors are matched, their distances are summed to obtain a final score. For 

long utterances, DTW becomes slower, since the number of feature vectors 

increases.  

Vector Quantization (VQ), which is another template-based method, is 

used to reduce the number of feature vectors by clustering. The cluster centers are 

concatenated to build a codebook. K-means is one of the most used clustering 

algorithm for codebook generation (Linde et al., 1980). VQ is used in many SR 

studies to model speakers (Burton, 1987; Hautamki et al., 2008; Singhai and 

Singhai, 2007; Soong et al., 1985). The k-means is a hard decision algorithm, 

which means that a feature vector may belong only to one cluster. Fuzzy c-means 

algorithm is introduced as a soft decision alternative to the k-means, and achieved 

better SR performance (Chatzis et al., 1999; Lin and Wang, 2006). Nearest 

neighbor method is also used for SR as an alternative to DTW and VQ (Higgins et 

al., 1993). 

Besides template based models which have dominated early research on 

speech processing, stochastic models such as Hidden Markov Model (HMM), and 

Gaussian Mixture Models (GMM) are developed to increase recognition 

performances. Consideration of the speaker model, stochastic methods measure the 

likelihood of the feature vectors. Hence, the probability that the observed feature 

vectors was generated by the given speaker model can be calculated. HMM, which 

is a fundamental method in speech recognition, used for SR in (Matsui and Furui, 

1992; Rosenberg and Parthasarathy, 1996). Using the training data, state transition 

probabilities, feature vector probability distributions, and initial state probabilities 

of HMM are learned.  

An important point in the back-end methods is using the GMM for speaker 

models (Reynolds, 1995; Reynolds and Rose, 1995; Rose and Reynolds, 1990).  A 

GMM consists of a number of multivariate Gaussians. GMMs can be thought as a 

single state HMM. Also, similar to the fuzzy c-means, a feature vector is associated 
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with each Gaussian, i.e. each Gaussian has a non-zero probability of generating 

each of the feature vectors. 

GMMs can model arbitrary shapes with a good accuracy, hence it 

outperformed uni-modal Gaussian (Gish et al., 1985), VQ (Soong et al., 1985), tied 

Gaussian mixture, and radial basis function (Oglesby and Mason, 1991) modeling 

techniques in text-independent SR (Reynolds and Rose, 1995). A GMM is defined 

by its mixture weights, mean vectors, and covariance matrices. Diagonal 

covariance matrices are preferred because of numerical and computational reasons. 

Estimating a full covariance matrix requires much more training data, and 

computational sources (Kinnunen and Li, 2010).  

Expectation maximization algorithm is used to train GMMs (Bilmes, 

1998). Monogaussian models, a single Gaussian with a full covariance matrix, is 

used as speaker models (Besacier et al., 2000; Besacier and Bonastre, 2000; Zilca, 

2002). They offer computational efficiency compared to the GMMs, in trade off 

recognition performance. 

To train a speaker’s GMM, sufficient amount of training data is required. 

In practical applications, collecting large amounts of data from each user may not 

be appropriate. If the GMMs are not well-trained, the system performance will 

indeed decrease. Another problem with the modelling methods in general is to 

obtain an anti-model, i.e. a model for the speakers that are not enrolled to the 

system (impostors). Traditionally, a model called cohort for each speaker is 

observed. Cohort speakers are chosen by a similarity measure between their models 

and the target speaker’s model (Reynolds, 1997). The cohort models increase the 

memory requirements, and they may not be beneficial for each speaker. A solution 

to this problem is to obtain speaker models via adaptation from a well-trained 

model. Universal Background Model (UBM) method is developed for this purpose 

(Reynolds et al., 2000). Actually, the UBM is just a GMM with a large number of 

Gaussians (512-2048).  
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The UBM is trained by pooling all available training data. It is also called 

as world model, because it aims to represent all available speakers, and is used as 

the impostor model. Speakers’ models are then adapted from the UBM by using 

their respective training data. All of the model parameters can be adapted, but it is 

shown that adapting only the means is sufficient (Reynolds et al., 2000). The 

adaptation process is visualized for 2-dimensional data in Figure 2.1 (Kinnunen 

and Li, 2010).  

The GMM-UBM method becomes the standard back-end for the text-

independent SR. Nevertheless, more recent back-end developments are based on 

this method. Therefore, they are utilized in the proposed methods. The 

mathematical expressions of GMM-UBM method, and its application details are 

given in the next chapter. 

 

 
Figure 2.1. UBM mixtures (blue), and adapted speaker model’s mixtures (red) for 

2-dimensional data (Kinnunen and Li, 2010) 
 

The adaptation process to derive speaker models also bounds the mixtures 

of the models, therefore gives a fast scoring opportunity in the testing stage. 
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Although the GMM-UBM method is faster in terms of training, and testing than the 

previous methods, speaker identification in a large population can still be time 

consuming. Several methods were proposed to achieve speed-ups. GMM hashing, 

where top scoring mixtures for each feature vector can be predicted by a GMM that 

is smaller than the UBM (Auckenthaler and Mason, 2001; McClanahan and De 

Leon, 2015; McClanahan and DeLeon, 2012).  

Hierarchically clustering the mixtures of UBM is investigated in (Bing 

Xiang and Berger, 2003; Saeidi et al., 2010). Speaker clustering at model level 

(Apsingekar and De Leon, 2009; Beigi et al., 1999; de Leon and Apsingekar, 

2007), and at feature level (Xiong et al., 2006) are also used as speed-up 

techniques. Although these studies provided some degree of speed-ups, there is a 

tradeoff between the identification accuracy and identification time. The reason for 

this tradeoff is that not all the mixtures are scored, or not all the speakers’ models 

are considered.  

Support Vector Machines (SVM) is another important machine learning 

algorithm, which successfully implemented into SR studies (Campbell et al., 

2006a, 2006b; Ferrer et al., 2007; Hou Fenglei and Wang Bingxi, 2001; Shriberg et 

al., 2005; Wan and Renals, 2005; Zhang et al., 2009). Unlike the GMMs, SVM is a 

discriminative classifier. It separates two class with a decision boundary. In terms 

of SR, one of the classes is the target speaker. The other class is the impostor 

speaker, i.e. all speakers other than the target speaker.  

The combination of the GMM and SVM is highly attractive. For this 

combination, means of the GMMs are stacked to construct a vector called 

supervector. The speakers are represented with these supervectors, and they are fed 

into SVM classifier. This combination beats the GMM-UBM approach in text-

independent SV experiments (Campbell et al., 2006b). 

The idea of using supervectors to define speaker space was actually 

proposed previously (Kenny et al., 2005; Kenny and Dumouchel, 2004). (Kuhn et 

al., 2000) proposed a rapid speaker adaptation method, where adapted models are 
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assumed to be a linear combination of few basis vectors. In that work, speakers are 

represented by a low dimensional vector named eigenvoice.  

The Joint Factor Analysis (JFA) is developed to model speaker, and 

session variabilities separately (Kenny, 2005). The UBM is also used in the JFA to 

obtain a speaker independent supervector. The speaker- and channel-dependent 

supervector is decomposed into speaker, and channel supervectors. Once the 

estimated channel supervector is discarded, the remaining supervector is used as 

the speaker model. Channel compensation is also achieved by this way. Compared 

with the GMM-UBM, and SVM methods, JFA achieved better recognition 

performance (Kinnunen and Li, 2010). 

Recently, it is found that the channel space has some speaker 

discriminative information. Therefore, instead of separately modeling speaker and 

channel spaces, a single low dimensional total variability space is introduced 

(Dehak et al., 2011b). The high dimensional GMM supervectors are represented 

with intermediate sized vectors, commonly known as i-vectors. Also, channel 

variability can be compensated in the i-vector space by using methods such as 

Linear Discriminant Analysis (LDA), Within Class Covariance Normalization 

(WCCN), and Nuisance Attribute Projection (NAP) (Dehak et al., 2011b).  

The i-vector method gained a high reputation due to its ability to represent 

variable-length utterances with a fixed low dimensional vector, and its superior SR 

performance. It is considered as the state-of-the-art speaker model for the text-

independent SR. Numerous research have been made on i-vectors to further 

improve its performance (Biswas et al., 2015; Cumani et al., 2014; Cumani and 

Laface, 2014, 2013; Kanagasundaram et al., 2014; Kua et al., 2013; Liu and Kang, 

2014; McLaren and van Leeuwen, 2012; Rao et al., 2015, 2016; Rao and Mak, 

2013; Tingting Liu et al., 2014; Verma and Das, 2015). Most of the studies focused 

on i-vector extraction in an efficient manner in terms of speed, and memory. Some 

of the studies considered channel compensation problem. The i-vector classifier 

methods are another research topic.  
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Besides SR, i-vectors are also used in accent recognition (Bahari et al., 

2013; Behravan et al., 2015), speaker age estimation (Bahari et al., 2014), language 

recognition (Vazquez-Machado et al., 2016), utterance verification  (Choi et al., 

2016). Refer to (Verma and Das, 2015) for a review of i-vectors in speech 

processing. 

Although the conventional GMM-UBM method, and advanced models 

based on the UBM (i.e. GMM-SVM, JFA, i-vectors) dominated the SR back-end, 

Artificial Neural Networks (ANN) gained a high interest in the last years. Actually, 

ANNs have been used for many years (Bennani and Gallinari, 1995; Farrell et al., 

1994; Murty and Yegnanarayana, 2006; Oglesby and Mason, 1990; Yegnanarayana 

et al., 2001). However, the GMM based methods dominated the area. Recent 

studies on speech recognition showed that Deep Neural Networks (DNN) 

outperforms the GMMs for acoustic modeling (Hinton et al., 2012). The ANN 

based methods in speech processing gained a huge interest thanks to the success of 

the DNNs.  

The DNNs, or ANNs more generally, utilized in many SR studies by the 

researchers. In (Garimella et al., 2012), speaker specific weights between third 

hidden layer and the output layer of the ANN is projected onto a subspace to obtain 

i-vectors. This study is improved in (Garimella and Hermansky, 2013) by applying 

a factor analysis to the weight matrix. (Lei et al., 2014) replaced the UBM with a 

DNN in i-vector extraction scheme, and achieved lower SR errors.  

(Bie et al., 2015) used a DNN to reconstruct clipped speech for SR. 

(Variani et al., 2014) used a DNN to extract speaker specific features called d-

vector. In the test phase, distances between speakers’ d-vectors are considered. D-

vector reportedly outperformed i-vector in text-dependent SV experiments.  

DNN based features are combined with MFCCs in (Ghalehjegh and Rose, 

2015) to increase SV accuracy. (Snyder et al., 2016) proposed an end-to-end text-

independent SV system, where test and training utterances are given to the network 
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at the same time. In (Richardson et al., 2015) investigated the use of a single DNN 

for both SR and language recognition.  

In conclusion, although the GMM based approaches are still dominating 

the back-end systems, recent ANN based systems are achieving comparable, even 

better results.   ANN based features are also increased system performances as 

reported in the literature. However, ANNs usually require a large amount of 

training data, and training time. In this thesis, the conventional GMM-UBM, and 

the state-of-the-art i-vector methods are preferred as to model speakers. Their 

theoretical frameworks, and implementation details are given in Chapter 3.    

 

2.3. Noise Sources 
In this sub-section, noise sources that affect the recognition performances 

of the systems are considered in three parts. First one is the channel noise, which is 

a result of the hardware effects. Additive noise is examined in the second part. The 

other sources are mentioned in the last part. Then, methods to achieve robustness 

against these noise types are explored.  

 

2.3.1. Channel Noise 
Channel noise, or convolutional noise, occurs due to the variable frequency 

characteristics of transmission channels, microphones, and hand-sets. Using 

different hardware in the training and testing stages creates a mismatch between the 

extracted features. This mismatch reduces the recognition accuracy of the systems.  

A simple solution to overcome the mismatch problems in general is to train 

the system with data that represent the operating conditions (channel types, 

environment, etc.) However, this may not be feasible in most practical applications. 

As an example, consider a phone banking system which includes an automatic SV 

stage. Consumers can be at any environment such as office, outdoor, traffic, 

airport, etc. Also, it is not possible to ask the users to use same mobile phone 
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model. Therefore, it is a nearly impossible task to obtain training data from every 

mobile phone model, and every possible place in the world.  

Normalization methods are provided in the literature to reduce the channel 

mismatch effects at the feature level, or score level. One of the standard methods is 

Cepstral Mean Normalization (CMN) (Furui, 1981). The main idea behind the 

CMN is that convolution becomes multiplication in the spectral domain. Then, it 

becomes additive in the log-spectral domain. A mean vector is calculated by using 

the extracted feature vectors. The mean vector is subtracted from the feature 

vectors, hence channel effects are diminished. 

Relative Spectra (RASTA) filtering is another normalization method, 

where slowly varying frequency signals are removed in the log-spectral domain. 

(Hermansky and Morgan, 1994). Feature warping is used to constrain the 

distribution of cepstral features to a standard distribution, reducing the noise effects 

(Lung et al., 2014). Short-time Gaussianization (Xiang et al., 2002), speaker model 

synthesis (Teunen et al., 2000), feature mapping (Reynolds, 2003), acoustic factor 

analysis (Hasan and Hansen, 2013), and various score normalization techniques 

(Auckenthaler et al., 2000; Reynolds et al., 2000) are among the other methods 

proposed to reduce channel mismatch. 

 

2.3.2. Additive Noise 
Additive noises can be summarized as the sounds captured by the 

recording device other than the speaker’s voice. Various additive noise sources can 

be listed for practical applications. Consider again a SV application over mobile 

phones. Users can be in a street so that the microphone may also capture the sounds 

of cars and people passing by, engine noises, wind, construction work, etc. The 

captured sounds will be added to the speaker’s voice, therefore the error rate of the 

system will be increased.  

Additive noises can be stationary such as the fan noise from computers, or 

nonstationary such as cars passing by, car horns, etc. The temporal and spectral 
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characteristics of the nonstationary noises constantly change. Hence, it is much 

harder to deal with the nonstationary noises.  

As the noise level increases, SNR decreases. At low SNRs, it is important 

to get rid of the noisy components to achieve a satisfactory recognition 

performance. A simple way to select speech-dominant frames is to use energy 

based VADs (Kinnunen and Li, 2010). However, a fixed energy threshold to detect 

speech activity is not suitable for nonstationary noises. Also, if the level of a 

stationary noise changes, the fixed threshold may harm the system’s performance. 

Therefore, many other methods have been proposed to robustly detect voice 

activity, as shown later in the literature review of VADs. 

The cepstral features’ performances in the controlled environments such as 

recording studio, quit office, etc. are decent. However, they are not robust to 

additive noises. Extraction of robust features, or increasing the robustness of the 

cepstral features, are another important research area (Alam et al., 2014; Sahidullah 

and Saha, 2012a). The robust features aim to cancel the deteriorative effects of the 

noises at the feature level.  

Compensating the noise at the model/classifier level is also possible (Gales 

and Young, 1995; Tufekci et al., 2006). However, noise statistics are required 

forehand in general. Same as the channel noises, it is not possible to know the 

statistics of every noise source. A common practice to overcome this issue is to 

estimate the noise statistics by using a noise estimation algorithm, or simply 

assuming that several frames in the beginning of a record includes only the noise 

signal.  

Speech enhancement is another way to reduce the noisy components of a 

signal. The basic approach is to detect the noise energy, and subtract it from the 

noisy speech signal (Boll, 1979). Another milestone for speech enhancement is to 

continuously track the noise signal (Martin, 1994). Usually, speech enhancement 

methods are used in hearing aids and cochlear implants. The main reason is that 

enhancement methods also increase the intelligibility of the signals. The 
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performance of the speech enhancement algorithms mostly depends on the 

estimation of the noise statistics. 

 

2.3.3. Other Mismatch Sources 
Speaking styles of humans may change due to their emotions. In general, 

neutral training data are used to obtain speaker models. However, the speaker may 

be angry, stressed, happy, etc. in the test phase. A mismatch occurs due to these 

emotional changes, which will affect the SR systems. This variability should be 

compensated for robustness. On the other hand, emotion recognition from speech is 

another research area by itself (Anagnostopoulos et al., 2015). 

Vocal effort mismatches may also be a problem for practical applications. 

Vocal effort determines the loudness of the speech. As an example, if a speaker 

whispers during the training, and shouts during the testing, the recognition 

performance is expected to be poor. Researchers even investigated effects of 

singing for speaker clustering systems (Mehrabani and Hansen, 2013). 

Reverberation is another mismatch source, which is not taken into account 

as much as the channel noise, or additive noise. Based on the acoustic environment, 

the effects of reverberation may decrease the recognition performance. The 

reverberation problem is addressed in many studies such as (Sadjadi and Hansen, 

2014; Zhao et al., 2015, 2014) 

 

2.4. Robust Speaker Recognition 
The main mismatch sources were given previously. In this sub-section, 

VADs, feature based methods, model/classifier based methods, and speech 

enhancement methods are explored as the main solutions to reduce the 

unintentional mismatch effects. 
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2.4.1. Voice Activity Detectors 
VADs are essential to separate voice from silence/noise regions. Since 

there is no speech information in the silence regions of an utterance, it will be 

beneficial to neglect these parts in terms of recognition performance, and 

computational load. For a high SNR speech signal, which is called as clean signal, 

a simple energy based VAD may be sufficient (Kinnunen and Li, 2010). However, 

as the noise level increases, the speech information is going to be vanished into 

noise. Therefore, a fixed energy based threshold will either eliminate low energy 

speech information, or falsely accept high energy noise signal as speech.  

Two different thresholds are used in to make a more reliable VAD decision 

(Woo et al., 2000). Also, a two-band scheme is proposed to prevent the low 

frequency noise cover the high frequency speech information. The first four frames 

are assumed to be noise only, and the noise statistics are recursively updated. 

The log energy distribution is modelled with a bi-Gaussian in (Bimbot et 

al., 2004). Gaussian with the highest mean indicated the speech regions. Based on a 

relative change criteria, GMMs are used in (Sun et al., 2010) as VAD. A VAD 

based on three discriminative features is proposed for real-time applications 

(Moattar and Homayounpour, 2009). 

Statistical model based methods are proposed to construct VAD classifiers 

(Gorriz et al., 2008; Jongseo Sohn et al., 1999; Joon-Hyuk Chang et al., 2006; 

Ramirez et al., 2005, 2004; Yong Duk Cho and Kondoz, 2001). Likelihood ratio 

test is applied to the features for final VAD decision. Generally, it is assumed that 

the noise and speech spectra obey the Gaussian distribution. It is shown that 

Gamma, and Laplacian distributions can be effective than Gaussian distribution 

(Joon-Hyuk Chang et al., 2006). (Kim et al., 2007) developed a new decision rule, 

which compares the magnitude of noisy spectral component to a threshold, and 

improvements over (Jongseo Sohn et al., 1999) are observed. These methods 

assume that first few frames of an utterance are nonspeech signal. Ying et.al. 
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proposed an unsupervised approach by using sequential GMM, and updating the 

models for each frame (Ying et al., 2011). 

The VAD used in G.729 standard uses line spectral frequency features, full 

band energy, low band energy, long-term minimum energy, and zero-crossing rate. 

This VAD has become a standard baseline for VAD researches. Zero-crossing rate 

and short-term energy are among the popular VAD features (Jing Pang, 2017; 

Yiming and Rui, 2015) 

Another standard VAD is based on the long-term spectral envelope 

(Ramı́rez et al., 2004). It assumes that the voice activity can be detected on the 

spectrum magnitude. The VAD decision based on the long-term signal 

probabilities is assigned to the frame that is in the middle of a long segment. 

(Ghosh et al., 2011) also used long-term signal variability for VAD, but the final 

decision is obtained over long windows. 

(Kotnik, 2003) used a time-domain based VAD, and a frequency-domain 

based VAD. In the time-domain, short-term energy, and zero-crossing rate are 

utilized. In the frequency-domain, an SNR value, corresponding to the difference 

between short-term and long-term log energy estimates, is compared with a 

threshold. 

Features extracted from the raw utterances can also be used in VADs 

(Hongzhi Wang et al., 2011; In-Chul Yoo et al., 2015; Rabiner and Sambur, 1977). 

(Sadjadi and Hansen, 2013) used three time-domain features (harmonicity, clarity, 

prediction gain) and two frequency domain features (periodicity, perceptual 

spectral flux). Principal component analysis is used to map these features to a one-

dimensional space. In addition to the features used in this work, MFCCs and two 

pitch trackers are used in (Drugman et al., 2016). 

Edge detection is  utilized to detect beginning and ending edges, 

considering the raising and descending edges on the energy contours of utterances 

(Qi Li et al., 2002). Vowel-like regions are used for SV in (Prasanna and Pradhan, 

2011). Vowels, semivowels, and diphthongs are less affected by degradations. 
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Improvements over a fixed energy threshold VAD baseline are observed. This 

work is enhanced in (Pradhan and Prasanna, 2013) by considering non-vowel-like 

regions. (Vuppala and Rao, 2013) extracted features from steady vowel regions for 

speaker identification. 

Many examples of ANNs used as VADs can be found in the literature. 

(Zhang and Wu, 2013) used deep belief networks, where multiple acoustic features 

are concatenated and used as input. (Drugman et al., 2016) used a single layer with 

32 neurons ANN, where the input features are mentioned in the previous 

paragraphs. Neural fuzzy networks (Wu and Lin, 2000), long short-term memory 

recurrent neural networks (Eyben et al., 2013), recurrent neural networks (Hughes 

and Mierle, 2013), convolutional neural networks (Thomas et al., 2014) are among 

the examples of the ANNs used to detect speech activity. Comparison of 

robustness between deep learning VADs can be found in (Tong et al., 2016). 

(Mak and Yu, 2014) compared several VADs for robust SV and proposed a 

GMM based VAD. The frames are sorted in ascending order of energy, then 99% 

of the frames are discarded. Only the frames that are assumed to be correctly 

classified as speech, or nonspeech, are used to train the GMMs. Another 

comparison of VADs for SR is given in (Sahidullah and Saha, 2012b). It is 

reported that bi-Gaussian modeling is the best performing VAD among the state-

of-the-art VAD methods. 

 

2.4.2. Robust Features 
Extracting features that are less effected from the noises are highly 

demanded. Since the model/classifier performance are mainly determined by the 

quality of the features, it is very important have features with less variability under 

different noise types and levels. Numerous papers in the literature justified the need 

for robust features. In this sub-section, the latest of them are summarized. 

(Garreton and Yoma, 2012) modelled the channel distortion as a p-th order 

polynomial function, where p is smaller than the number of cepstral coefficients. 
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Compared to a baseline system, RASTA, and CMN methods, the proposed method 

achieved better results, although the processing time is increased. 

Cepstral features and phonetically discriminative features are combined in 

(Sarkar et al., 2014). The discriminative features are extracted by a multilayer 

perceptron. Feature dimension reduction techniques are also applied, and compared 

to the baseline system, 50% relative improvement is achieved. 

Locally normalized cepstral coefficients, based on Seneff’s generalized 

synchrony detector, are proposed in (Poblete et al., 2015). Compensating the 

spectral tilt provided by the channel response is the main goal of these features. It 

is reported that these features are also effective against fast varying channels. Also, 

they can be supported by conventional methods such as CMN, or RASTA. 

Normalized dynamic features, which are modified spectral features, are 

proposed (Chougule and Chavan, 2015). The conventional dynamic features are 

warped to obtain Gaussian distribution. It is shown that these features achieved 

higher recognition accuracy then the MFCCs and LP cepstral coefficients. 

(Ambikairajah et al., 2015) considered channel bandwidth problem. To use 

speaker information above 4 kHz, spectral shifting method is proposed. The main 

idea is to get rid of the frequency band that does not have significant speaker 

information, then fill this band by shifting the higher frequency parts. By this way, 

it is assumed that all the speaker information is in the channel bandwidth. 

Invariant integration features are used in SV experiments to overcome 

channel mismatch and additive noises (Alimohad et al., 2014). Improvements over 

the MFCCs are observed, further performance boost is achieved by fusing both 

features. 

A main drawback for the conventional cepstral features is the noisy 

spectrum estimation. In (Hanilci et al., 2012), regularized linear prediction is 

utilized to reduce the mismatch. It is a parametric spectral modeling, where rapid 

changes in the spectral envelopes is penalized, and smooth spectra are obtained 

without changing the formant positions. Compared to the standard Fourier 
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transform and LP methods, better results are reported. To eliminate noise effects, 

two-dimensional auto-regressive spectra are used in (Ganapathy et al., 2014). Two 

LP analysis are applied to the speech signal. Constant spectral regions are de-

emphasized by dividing a higher order envelope with a lower order one. Cepstral 

coefficients are then extracted. 

Hilbert envelope of gamma-tone filter-bank outputs are used in (Sadjadi 

and Hansen, 2015). Short-term spectral representation is obtained by windowing 

smoothed Hilbert envelope frames. Logarithmic compression of the conventional 

MFCC scheme is replaced with a power-law compression. Results indicated that 

the proposed features are less susceptible to noise than the MFCCs. 

The standard Fourier transform results in a high variance spectrum 

estimation, which affects the recognition accuracy. Low variance spectrum 

estimates are observed with multi-tapers (i.e. multiple window functions) 

(Kinnunen et al., 2012). Theoretical and experimental proves of the variance 

reduction are reported. Under additive noise, improvements against the Hamming 

window are achieved. 

Ideal Binary Mask (IBM) can be used to segregate the noisy frames (Wang 

and Brown, 2006). The noisy features can then be recovered or neglected 

(marginalized). By estimating local SNR of components in the time-frequency 

matrix representation, An IBM  is constructed (May et al., 2012). Feature 

reconstruction by using sub-bands are examined (Yan et al., 2014). Compared with 

the full-band method of (May et al., 2012), a higher performance gain is earned.  

The performance of the IBM is mostly depending on the accurate noise 

estimation. In (Ribas González and Calvo de Lara, 2014), several complementary 

features that are extracted from the spectrum are used to obtain the IBM. The 

reliable and noisy features are detected by a Bayesian classifier, which is trained 

with these features. The recognition performance is increased, on the other hand, 

the computational load is also increased. Multilayer perceptron network is trained 

to create the IBM in (Zhao et al., 2012). Gamma-tone filter-bank based features are 



2. LITERATURE REVIEW                                                              Gökay DİŞKEN 

27 

derived. Also, combining the reconstruction and marginalization modules achieved 

the best performance. 

To avoid the effects of the noisy spectrum on the coefficients, a new 

feature based on the magnitude difference at two frequency point is developed 

(Roy et al., 2012). All possible pairs are considered, therefore, Adaboost algorithm 

is used to choose the most discriminative ones. These features gave better 

recognition performance than the MFCCs under additive white and pink noises. 

The noisy spectrum problem tackled in (Sahidullah and Saha, 2012a) by applying a 

block transformation similar to the DCT. The data divided into blocks to avoid 

contribution of all sub-band energies for cepstral conversion, then a linear 

transformation is utilized. 

A non-inversible transform is replaced with the Fourier transform of the 

conventional MFCC framework (Montalvão and Rodrigues Araujo, 2012). Instead 

of summing weighted energies around a frequency bin, maximum values are 

chosen to eliminate noise components. Although the computational load is 

increased, significant performance enhancements are reported. Fractional Fourier 

transform is utilized in (Ajmera and Holambe, 2013), which is a more suitable 

transform for non-stationary signals. It is shown that it is more effective than the 

traditional Fourier transform. 

Usually, the speaker and the noise source are in different locations. This 

spatial difference can be used in multi-channel records. A nonlinear transformation 

that is effective against nonlinear noises is proposed (Squartini et al., 2012). Prior 

to the transformation, the noisy cumulative density function is estimated for each 

channel separately. 

Methods do not require prior knowledge about the noise distribution are 

also studied in the literature. A clean vector is estimated from a noisy test vector, 

by deriving a conditional probability distribution function from a GMM. Higher 

performance improvements are obtained when clean and noisy vectors are 

concatenated to train the GMM. Coefficients with a small amplitude are assumed 
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to be noise features in (Govindan et al., 2014). A dual threshold shrinkage function 

is used to truncate the coefficients lower than the below threshold, and to retain the 

ones higher than the upper threshold. The coefficients between these thresholds are 

piece-wise linear suppressed. 

Multi-style training is considered for an alpha-GMM classifier (Venturini 

et al., 2014). The multi-style training corrupts the clean training signals to reduce 

the mismatch between testing features and training features. MFCCs are fused with 

discrete wavelet transform based features and pH features (Sant’Ana et al., 2006). 

Speech enhancement methods are also used to further reduce recognition errors. 

Based on peripheral auditory system models, a sigmoidal nonlinearity 

function is used, which is optimized to discriminate between the noisy and clean 

parts of an utterance (Poblete et al., 2014). The speech signal is passed to a Seneff 

filter-bank, then sigmoidal compression is applied to the logarithm of the filter 

outputs. Nevertheless, sigmoidal functions are not effective if the speech and noise 

spectra are close to each other. 

Noisy frames are recovered with the aid of neighboring frames (Huang et 

al., 2015). To minimize the mismatch between a clean utterance and its degraded 

version, a transformation matrix is trained. MFCCs, prosodic features, articulatory 

features, and bigrams are combined to achieve better performance than the MFCCs 

alone (Drgas and Dabrowski, 2015). It is also reported that the articulatory 

features’ contribution to the performance are less than the other features. In 

(Daqrouq and Al Azzawi, 2012), wavelet transform is utilized, following LP 

coefficients calculations for the sub-signals. Average of the frames are taken to 

reduce the dimensionality. 

Vocal effort mismatch problem is tackled by using time-weighted LP 

modelling (Pohjalainen et al., 2014). LP method with the power spectrum 

compression/expansion is also shown to be effective against vocal effort mismatch 

(Saeidi et al., 2016). 
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2.4.3. Robust Models 
Increasing the robustness of speaker models, or classifiers, can also be 

beneficial for recognition performance in adverse environments. One of the most 

popular model based compensation method is Parallel Model Combination (PMC) 

proposed in (Gales and Young, 1995). The core of the PMC is modelling the 

effects of additive noise based on the noise statistics. Vector Taylor Series (VTS) is 

another method used to characterize the unknown noises (Moreno et al., 1996). 

Reliable estimation of the noise statistics is required for these methods to be 

effective. Other drawbacks are computational loads and requirements of high 

amount of training data. 

In (Moreno et al., 1998), statistical re-estimation algorithms are presented. 

Similar to the PMC method, it is assumed that the noise effects can be represented 

as an additive factor to the means and variances of the feature vectors. Once the 

correction factors are calculated, clean speech vectors can be estimated from the 

noisy vectors. Another clean speech vector estimation is proposed in (Li Deng et 

al., 2001), which is independent from any stationarity assumption. Clean feature 

vectors can be generated from its noisy counterparts of Gaussian components in 

this method. 

The methods mentioned in the previous paragraph associates the clean 

feature space and the noisy feature space with a bias vector for each GMM 

component. For multiple types of environment in the noisy space, estimates based 

on a single GMM may not suffice. In (Buera et al., 2004), noisy features are 

modeled with individual GMMs by dividing into several environments. The 

correction vectors are computed for each environment. 

Instead of independently modelling noise and speech signals, some 

researchers suggested using joint probability models. Joint vectors are obtained in 

these methods by concatenating noisy and clean training vectors. Then, a single 

GMM is used to model the joint vectors. A clean test vector is estimated by using 

the GMM and the given noisy test vector. Standard joint probability model based 
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methods are stereo based stochastic mapping and trajectory based stochastic 

mapping methods (Afify et al., 2009; Zen et al., 2009). Comparisons of these 

model based methods for SV can be found in  (Sarkar and Sreenivasa Rao, 2014). 

Joint factor analysis and i-vector methods are fused to achieve robustness 

against channel mismatch (Reza et al., 2014). Probabilistic LDA (PLDA) is applied 

to the i-vectors in (Dehak et al., 2011a) to achieve a SV system without 

conditioning to a channel type. Multi-condition training is applied to the i-vector 

extractor and to the PLDA, and robustness against mismatch is achieved (Rajan et 

al., 2013). 

A set of SNR dependent PLDA models are fused in (Pang and Mak, 2015). 

This work is extended by training mixtures of PLDA with utterances degraded by 

noise at different SNRs (Mak et al., 2016). Acoustic factor analysis is used instead 

of the UBM, and more robust i-vectors are extracted (Hasan and Hansen, 2014). 

Vector Taylor series are integrated in the i-vector extraction framework to model 

nonlinear distortions (Lei et al., 2013). This work is improved in (Martinez et al., 

2014) by replacing the Taylor series with an unscented transform, and better 

recognition results are obtained with multi-style PLDA.  

LDA is replaced by non-parametric discriminant analysis in (Sadjadi et al., 

2014), where the between and within class variations are estimated with a nearest 

neighbor rule. The UBM is replaced by an ANN to extract sufficient statistics for 

the i-vector (McLaren et al., 2014). Using the prior knowledge about clean i-

vectors distribution, a noise compensation method is applied in the i-vector space 

in (Ben Kheder et al., 2015). It is reported that the proposed method outperformed 

multi-style training, but the computational load is increased. 

 

2.4.4. Speech Enhancement 
Speech enhancement methods’ goal is to improve the intelligibility and 

quality of noisy speech signal. This is achieved by reducing the background noise, 

hence these methods also known as noise suppression algorithms. 
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One of the first speech enhancement method is the spectral subtraction 

(Boll, 1979). In this method, the noise spectrum is estimated, and simply subtracted 

from the noisy speech spectrum. The remaining spectrum is the clean speech 

spectrum. The noise spectrum can also be updated during speech absence regions, 

assuming stationary noise characteristics. 

Various algorithms have been developed over the basic subtraction 

scheme. In the original subtraction algorithm, if the noise spectrum is bigger than 

the noisy speech spectrum, the result is set to zero (since the spectrum cannot be 

negative). This situation introduces an artifact known as musical noise. In (Berouti 

et al., 1979), an overestimate of the noise spectrum is used, while a spectral floor is 

utilized as the minimum value threshold for the subtraction result. Modulation 

domain is also considered for spectral subtraction in (Paliwal et al., 2010). 

Most noise types affect the speech spectrum nonuniformly. Therefore, the 

same subtraction factor for all frequency bands may deteriorate the results. Multi-

band spectral subtraction is introduced to compensate this problem, and shown to 

be more effective than the original method (Kamath and Loizou, 2002). 

Wiener filtering is another approach for speech enhancement (Abd El-

Fattah et al., 2014, 2008; Lim and Oppenheim, 1979; Xia and Bao, 2014). It is a 

linear filter utilized to recover clean speech signal from the noisy one by 

minimizing the mean square error between them. Correlation of adjacent frames 

are also considered with Wiener filter in (Fischer and Gerkmann, 2016). To reduce 

the noise in multi-channel records, multi-channel Wiener filters are used (Doclo et 

al., 2007; Spriet et al., 2004). 

A DNN architecture is used to map noisy speech to clean speech in (Xu et 

al., 2014), using multi-condition training with a large amount of training data. 

Transfer learning approach is utilized in a DNN for speech enhancement in (Wang 

et al., 2017). 

Constrained low-rank and sparse matrix decomposition is used for speech 

enhancement in (Sun et al., 2014). It is assumed that the noise spectrogram is in a 
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low-rank subspace, and speech signals are relatively sparse in the time-frequency 

domain. Also, contrary to the conventional methods, this approach does not require 

a noise estimation. 

The estimation of the noise statistics is vital for the enhancement 

performance. An obvious method is using a VAD to separate speech and noise 

frames, then the noise statistics can be calculated, or updated, by using only the 

noise frames. Some researchers proposed NT algorithms, which eliminates the 

need for the VAD.  

A classical NT algorithm is the minimum statistics (Martin, 1994). It 

assumes that the speech and noise are statistically independent, and the noise 

spectrum can be estimated by tracking the minimum of the noisy signal’s spectrum. 

The author improved the algorithm’s accuracy for nonstationary noise in (Martin, 

2001). Some of the bias compensation methods for minimum statistics is reviewed 

in (Martin, 2006). 

A fast adapting NT algorithm is proposed in (Rangachari and Loizou, 

2006). In addition to the minimum statistic methods, speech presence probability is 

considered. Compared to several other methods, it is reported that much faster 

adaptation to the noise is achieved. The adaptation time is further reduced in 

(Hendriks et al., 2008), however, the computational load is increased. 

A minimum mean-squared error estimation is utilized in (Hendriks et al., 

2010). Although a prior SNR estimate is given in this method, a second SNR 

estimation is required for bias compensation. In (Gerkmann and Hendriks, 2012), 

the previous work is modified with a soft speech presence probability decision. A 

comparison between several noise estimation algorithms can be found in (Taghia et 

al., 2011). 

 

2.5. Conclusions 
The speaker literature is reviewed in this chapter under several sub-

sections. For the front-end, the MFCCs are still widely used by the researchers. The 
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recent review papers about the feature extraction supports this situation (Dişken et 

al., 2017c; Tirumala et al., 2017). Therefore, MFCCs are preferred in this thesis as 

the features to be extracted from the speech signals. To model the speakers, both 

the conventional GMM-UBM and the state-of-the-art i-vector methods are 

considered. 

It is clear that VADs play a fundamental role to achieve robustness, 

especially under the additive noise. Basically, VADs can be used to separate noise 

and noisy speech frames. Then, only the noisy speech frames can be used for SV. 

Also, noise frames can be used to estimate noise statistics, hence a speech 

enhancement algorithm can be used for further reduce the noise effects. 

Considering the advantages of a robust VAD, a PR based VAD algorithm is 

developed in this thesis work. The next chapter gives the details of the proposed 

algorithms.      
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3. MATERIAL AND METHODS  
 

In this chapter, the speaker, and the noise databases used in the SV 

experiments are introduced. Then, the performance metrics used to examine the 

performances of the methods are explained. The details of selected feature 

extraction (MFCC) and speaker modeling (GMM-UBM, i-vector) methods are 

given.  

The proposed algorithms are introduced after these fundamental concepts. 

First, SMC to obtain impostor models are described, then the VAD based on the 

PR is demonstrated. Two methods, selected for performance comparison under the 

additive noise, from the literature are explained briefly. One of them is a VAD that 

uses ANN, the other is a NT algorithm with short adaptation delay. The NT 

algorithm is used to enhance the speech, then a simple energy based VAD is used 

for a fair comparison. 

A real-time text-dependent SV system is realized on a single board 

computer, Banana Pi. This real-time system is briefly explained as a case study. 

 

3.1. Database and Toolkits 
National Institute of Standards and Technology (NIST) of United States 

organized Speaker Recognition Evaluation (SRE) series, which are highly 

contributed to the research interest in text-independent SR since 1996. For each 

evaluation, a speaker database is distributed to the participants. Each year, different 

aspects were emphasized, such as channel mismatch, duration mismatch, language 

recognition, multi-speaker recognition etc.  

In this thesis, NIST SRE 1998 database is used (Doddington et al., 2000). 

This database consists of 250 speakers for each gender. For each speaker, 

approximately five minutes of training data is available.  

 Also, channel mismatch is present between some of the speakers’ training 

and testing data. The channel mismatch is due to the different microphone types 
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used in the training and testing sessions. The microphone types are electret, and 

carbon. So, if a speaker’s training and testing data are recorded with the same 

microphone type, there is no microphone mismatch. However, if the microphone 

types changes, a channel mismatch occurs. 

Testing data includes 3, 10, and 30 seconds durations. Therefore, it is 

possible to observe the proposed methods performances for different speech 

durations. For each test duration, there are 1308 test speech files for male speakers, 

and 1379 test speech files for female speakers in the matched handset condition. 

For the mismatched handset condition and for each test duration, there are 1192 

test speech files for male speakers, and 1121 test speech files for female speakers 

Also, for each test file, there is one trial for the target speaker, and nine trials for 

the non-target speakers. The target speaker’s speech data is used as an impostor 

data for these non-target speakers’ models. 

Additive noises are chosen from the widely used noise database named 

NOISEX-92 (Varga and Steeneken, 1993). Five different noises (F16, Lynx, Car, 

Babble, and Stitel) are added to the test speech files. The SNR values are varied 

from -10 dB to 10 dB with 5 dB steps.  

A short utterance spoken by a male speaker is chosen from the NOIZEUS 

corpus as a sample speech signal (Hu and Loizou, 2007). This sample signal is 

used to analyze the proposed VAD algorithm’s working principle, which is given 

later. The selected signal is clean, i.e. no additive noise is present. It is degraded by 

Lynx noise in the case studies, and some of the VAD steps are illustrated for a 

better understanding. 

Hidden Markov Model Toolkit, known as HTK, is a trusted toolkit for 

feature extraction, HMM training, and GMM training purposes (Young et al., 

2000). In this thesis, it is used to extract MFCC features from the speech signals. A 

Linux based operation system, Ubuntu, is used. The features extracted by the HTK 

are used in the proposed speaker clustering algorithm. Except the MFCC 
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extraction, all other processes (UBM training, model adaptation, clustering, 

scoring) are done with the codes written in the C++ programming language. 

The proposed VAD algorithm is realized in the MATLAB program. The 

MFCC extraction, and operations related with the VAD are written in MATLAB. 

MSR Identity Toolbox is used for the GMM-UBM and i-vector back-end methods. 

 

3.2. Performance Metrics 
A performance criterion must be defined to examine the recognition 

system’s accuracy. Several metrics can be found in the literature, however, two of 

the most widely accepted metrics are selected for this thesis. One of them is the 

Equal Error Rate (EER), which is a very popular metric in biometric 

authentication. The other is the Detection Cost Function (DCF), which is an 

important metric for the NIST SREs.  

Equal Error Rate (EER) can be defined as the point where false acceptance 

rate and false rejection rates are equal. In terms of SV, the false acceptance means 

the impostor speakers falsely accepted as claimed speakers. Contrary, the false 

rejection indicates the genuine speakers misclassified as impostors. A test utterance 

is scored by using the claimed speaker’s model, and if the score is bigger than the 

EER threshold score, the unknown speaker is verified. If the score is less than the 

EER threshold score, the unknown speaker is rejected.  

In practical applications, if the security is main concern, the threshold can 

be set to a higher value than the EER. This way, the system will be more robust to 

impostor attacks. Nevertheless, the probability of rejecting true speakers will also 

be increased. The EER concept is visualized in Figure 3.1. 
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Figure 3.1: Visual representation of EER 
 

The DCF is defined as given in Equation (3.1) below. 

 ��� = �������|��� + �������|��� (3.1) 

 

Where PFAR|N is the False Acceptance Rate (FAR), PFRR|T is the False 

Rejection Rate (FRR), cost of the false acceptance is CFA=10, cost of the false 

rejection is CFR=1, the prior probability of target tests is PT=0.1, and the prior 

probability of nontarget tests is PN=0.9. This cost function penalizes the false 

acceptance of the impostors. The minimum of the DCF is used as the performance 

metric (minDCF). A lower value of both EER and minDCF indicates a high 

recognition performance. Therefore, when comparing different systems, their 

performances will be compared based on the EER, or minDCF, value. 

 

3.3. Mel-Frequency Cepstral Coefficients 
Mel-Frequency Cepstral Coefficients (MFCCs) are widely used in speech 

processing area, despite the fact that they are proposed a few decades ago. The 

recent literature review on feature extraction methods prove that MFCCs’ 

popularity is yet to be deceased (Dişken et al., 2017c; Tirumala et al., 2017). In this 
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thesis, MFCCs are chosen as the features to be extracted. Therefore, it will be 

beneficial to summarize the conventional MFCC extraction framework. 

As with the most short-term features, to extract the MFCCs the raw speech 

signal is divided into overlapping frames. These frames’ durations are typically 

between 10 and 30 milliseconds. In this range, the speech signal is assumed to be 

stationary. A window function such as Hamming is applied to these frames. The 

main purpose of the windowing is to reduce frequency leakage when taking the 

Fourier Transform (FT). 

The FT is used to transform the time domain signal into the frequency 

domain. Although several studies benefited from the phase spectrum, it is 

neglected in the conventional scheme. The magnitude spectrum is passed to a bank 

of overlapping band-pass filters. The MFCCs specialty is due to this filter-bank. 

The filters are linearly placed in the Mel scale. The Mel scale is constructed to 

mimic the human auditory system, which is linear up to 1 kHz, and logarithmic at 

the higher frequencies. The mathematical relation between the Mel scale and Hertz 

is given in Equation (3.2). 

 � = 2595�����(1 + �700) 
(3.2) 

 

where f is the frequency in Hertz, and m is the Mel scale. The Mel scale filter-bank 

allows the representation of the lower frequencies with a higher resolution. In 

terms of the conventional spectrum, filters with narrow bandwidth are placed in the 

lower frequencies, and higher bandwidth filters are placed in the higher 

frequencies. 

The magnitudes, or energies, inside the filters are summed, and then 

compressed with log operation to mimic human’s audio perception. Finally, 

Discrete Cosine Transform (DCT) is applied to the log filter-bank values to de-

correlate the coefficients. This step can be interpreted as taking the spectrum of the 
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spectrum. In the literature, this new spectrum is named as cepstrum. The zeroth 

coefficient is related to the signal energy. Usually it is discarded, and some of the 

following coefficients are used. Nevertheless, some researchers use the logarithm 

of the zeroth coefficients. Mathematical expression for the given operations are 

shown in Equation (3.3). 

 

�� = ������(�)� cos ���� �� − 12�� ,    � = 1, … ,��
�  

(3.3) 

 

where Y(m) denotes the output of M-channel filter-bank, M is the number of filters 

used in the filter-bank, m is the filter-bank index, c denotes the static coefficients, 

and n is the coefficient index. 

After these operations, static coefficients are obtained. To decrease the 

negative effects of slowly varying channel noises, and to incorporate temporal 

information, additive processes such as delta features can be appended to the static 

coefficients. The delta features can be calculated by using Equation (3.4). 

 �� = ∑ �(���� − ����)����2∑ �2��=1  
(3.4) 

 

where dt is the delta coefficient of frame t, N is the number of neighbor frames, and 

c is the static feature. Double delta, or delta-delta, features can be also calculated 

with the same equation. To calculate delta-delta features, the static coefficients 

must be replaced with the delta coefficients. 

The conventional MFCC extraction scheme is summarized as a block 

diagram in Figure 3.2 below. In the experiments, 13 coefficients excluding the 

zeroth, and their deltas are used as the feature vector. 
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Figure 3.2. Conventional MFCC extraction scheme (Dişken et al., 2017c) 
 

Figure 3.3 shows examples of MFCC features. The HTK toolkit is used to 

extract these features from the sample speech signal taken from the NOIZEUS 

corpora. Figure 3.4 is the configuration file, which is given to the HTK. It consists 

of the parameters to be used in the MFCC extraction process. As an example, the 

first line of the configuration file indicates that zeroth coefficient is added to the 

static coefficients. The previous figure verifies this fact, as the last coefficients are 

bigger than the others.  

The HTK toolkit offers various parameters to modify. In the given 

example, frame length, frame shift, number of filters in the filter-bank, number of 

statics coefficients, window type, lowest and highest frequencies of the filter-bank, 

format of the raw speech signal, etc. are shown. If a parameter is not written in the 

configuration file, its default value is used. 

Since the toolkit does not have a graphical user interface, all commands are 

executed via command line. The MFCC values are given here as an example to 

illustrate how the toolkit is used. Although the HTK toolkit is a trusted program for 

speech recognition, it lacks the state-of-the-art SR methods. Also, it lacks 

visualization oppurtunities. Therefore, MATLAB is also used besides the HTK 

toolkit. 
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Figure 3.3. MFCC features of the first eighteen frames, extracted with the HTK 

toolkit 
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Figure 3.4. Configuration parameters of the MFCCs extracted with the HTK toolkit 
 

Some of the outputs obtained within the MFCC extraction steps are 

visualized in Figure 3.5, by using one of the test data is chosen from the NIST SRE 

1998 corpus. The 1000th frame is chosen for the analysis Figure 3.5(a). Figure 

3.5(b) shows the magnitudes of the Fourier transform. Figure 3.5(c) is the result of 

filter-bank aplied to the magnitude spectrum. Finally, Figure 3.5(d) illustrates the 

static MFCC coefficients.  

The MFCCs take smaller values as the coefficient index increases. Note 

that twenty-six filters are used in the filter-bank, but only thirteen MFCC 

coefficients are extracted, excluding the zeroth. The reason is for this situation is 

that the smaller coefficients’ impact on the recognition accuracy is neglegible.   
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Figure 3.5. a) 1000th frame of the clean speech signal, b) Magnitude spectrum 

obtained with Fourier transform, c) Mel filter-bank magnitudes, d) 
MFCC coefficientsexcluding the zeroth 

 

To illustrate the effects of the additive noise on the MFCCs, the same 

speech signal is degraded by the Lynx noise, taken from the NOISEX-92 database. 

Figure 3.6 illustrates the speech signal (top), and the degraded signal with a 10 dB 

overall SNR. As seen in the figure, the regions with high amplitudes preserved 

their shapes. However, lower amplitudes are vanished in the noise signal. 
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Figure 3.6. Clean speech signal (top), and the same signal degraded with the Lynx 

noise (bottom) 
  

Figure 3.7 shows the 1000th frame, taken from the clean speech signal, and 

the MFCCs extracted from it. The signal seems to be a periodic one, and has high 

amplitudes. Therefore, the frame is clearly dominated by speech information. 
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Figure 3.7. 1000th frame of the clean speech signal (top), and its MFCC 

coefficients (bottom) 
 

Since the frame shown in Figure 3.7 is a high energy frame, the negative 

effects of the additive noise will be modest. To prove this fact, the same frame 

(1000th) under the additive noise is given in Figure 3.8. As seen in the figures, the 

shape of the signals is almost the same. As a consequence, the extracted MFCCs 

are very similar. These figures prove the usefulness of the high energy speech 

frames for the recognition. 
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Figure 3.8. 1000th frame of the noisy speech signal (top), and its MFCC 

coefficients (bottom) 
 

The low energy signals on the other hand, are much more effected from the 

additive noise. Figure 3.9 shows the 900th frame of the same signal (top), and its 

respective MFCC coefficients (bottom). This frame is not seem like a periodic 

signal, and has a lower amplitude compared to the signal given in Figure 3.7. This 

frame has a high probability to be a silence frame, or a low energy speech frame 

such as unvoiced phoneme. 
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Figure 3.9. 900th frame of the clean speech signal (top), and its MFCC coefficients 

(bottom) 
 

The same frame (900th) under the additive noise is given in Figure 3.10. 

The effects of the additive noise can be clearly observed. The signal’s temporal 

shape is completely changed. Further, the MFCCs extracted from the same frame is 

highly disturbed. This mismatch between the coefficients degrades the recognition 

performance of the systems. The novel VAD proposed in this thesis aims to detect 

the less affected, high energy speech regions to reduce the mismatch between the 

clean training signals and the noisy testing signals. 
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Figure 3.10. 900th frame of the noisy speech signal (top), and its MFCC 

coefficients (bottom) 
 

3.4. Universal Background Model 
The conventional speaker modeling method known as GMM-UBM is a 

fundamental tool that has been the state-of-the-art back-end for text-independent 

SR. Further, the recent developments are mostly based on the UBM, as discussed 

in the literature review chapter. Also, the speaker modeling method proposed in 

this thesis is an extension to the traditional GMM-UBM method. Therefore, details 

of the UBM method is given in this sub-section. 

A GMM is defined by its mixture parameters, i.e. mixture weights, mean 

vectors, and covariance matrices. An M mixtures model can be notated as given in 

Equation (3.5). 
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� = ���,���⃗ �,Σ��    � = 1, … ,�    (3.5) 

 

where λ is the GMM model, pi is the weight, �⃗� is the mean vector, and �� is the 

covariance matrix of mixture i, respectively. The covariance matrix is usually 

diagonal, which reduces the computational loads. Also, using a full covariance 

matrix does not make substantial performance differences (Reynolds, 1995). Also, 

the weights in a GMM must sum to one (Equation (3.6)). 

 

����
��� = 1 

(3.6) 

 

Let �⃗ be a D-dimensional observation vector. Its Gaussian density for the i-

th mixture, bi(�⃗), can be calculated by using Equation (3.7) given below 

 ��(�⃗) = 1(2�)�/�|Σ�| ��� �−12 (�⃗ − �����⃗ )′Σ���(�⃗ − �����⃗ )� (3.7) 

 

 The mixture density is then found as the weighted sum of all component 

densities (Equation (3.8)). 

 

�(�⃗|�) = �����(�⃗)�
���  

(3.8) 

 

where �(�⃗|�) denotes the mixture density of the observation vector �⃗, given the 

model λ. 

 A UBM model can be trained by using the expressions given above. The 

UBM is intended to represent the acoustic space of all available speakers, so it is 

speaker independent. In many practical situations, a speaker’s data may not be 
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sufficient for effectively training his/her own GMM. The speaker’s model can be 

adapted from the well-trained UBM by using the available speaker dependent data. 

The mathematical expressions used for speaker adaptation are given in the 

following. 

 Let � = {�⃗�, �⃗�, �⃗�, … , �⃗�} be the speaker dependent training feature 

vectors, where T is the frame index. The probabilistic alignment of these vectors 

into the UBM components are calculated by using Equation (3.9). 

 �(�|(�⃗�) = ����(�⃗�)∑ ����(�⃗�)����  
(3.9) 

 

The sufficient statistics for the weight, mean, and variance parameters are 

calculated as given in Equations (3.10)-(3.12). 

 

�� = ��(�|�⃗�)�
���  

(3.10) 

 

��(�⃗) = 1����(�|�⃗�)�⃗��
���  

(3.11) 

 

��(�⃗�) = 1����(�|�⃗�)�⃗���
���  

(3.12) 

 

These statistics are used to update the UBM statistics for the i-th mixture, 

hence an adapted model is created. All of the mixture parameters, i.e. weights, 

means, and variances) can be adapted. However, it is shown that adapting only the 

mean vectors are found to be more effective (Reynolds et al., 2000). Therefore, the 

adopted approach in the SR literature is to adapt the mean vectors, and use the 
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same weights and variances of the UBM mixtures in the speaker’s model. Equation 

(3.13) is used to calculate the adapted mean parameters (�̂) of the speaker model. 

 �̂ = ����(�⃗) + (1− ��) �����⃗  (3.13) 

 

where α represents a data-dependent adaptation coefficient, which controls the 

balance between the UBM means and the estimated means. It is calculated by using 

Equation (3.14) given below. 

 �� = ���� + � (3.14) 

 

where r is a fixed relevance factor parameter, usually 16. This adaptation creates a 

relation between the UBM and the speaker models. The UBM is used as the model 

of all possible impostors. In the test stage, an unknown utterance is first scored 

with the UBM. Mixtures with the highest scores are detected. Indexes of a few 

number of top scoring mixtures are determined, usually top five mixtures. Then, 

the unknown utterance is scored with only these mixtures of the speaker’s model.  

As an example, if the models have M mixtures, M+5 mixtures are 

considered instead of 2M. Therefore, the adaptation process offers a fast scoring 

scheme. If the score of the UBM is higher, the unknown speaker is rejected, and 

vice versa. 

 

3.5. I-vector 
Initially proposed in (Dehak et al., 2011b), the i-vector modelling method 

has become very popular in speech processing research, especially for the text-

independent SR. The i-vector method assumes that speaker and channel variability 

can be modelled in a low dimensional space called total variability space. In 

another view, the i-vector is a compressed form of the supervector. A supervector 
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is obtained by concatenating the mean vectors of a GMM. If the feature vector 

dimension is D, and the number of components in the GMM is M, then the resulted 

supervector’s is MDx1. Considering that there are usually 1024-2048 mixtures in 

the UBM, and the feature vector length varies between 20 and 60, the resulted 

supervector’s dimension becomes very high.  

The compression applied to the supervector enables a much lower 

dimensional representation. The new representation is named as intermediate sized 

vector, hence i-vector. Researchers usually prefer i-vector lengths between 100 and 

1000. This approach gives the opportunity to map an unknown length utterance to a 

low dimensional space. As an example, two different utterances with 3-seconds, 

and 1-minute durations can be both modelled as 200-dimensional i-vectors.  

Another important aspect of the i-vector is that each utterance is considered 

as coming from a different speaker. Therefore, to model a speaker, i-vectors are 

extracted for each of his records. Then, their average is taken, and the resulted i-

vector represents the speaker. 

The main mathematical expressions are given below. Consider a trained 

UBM model, � = {��, �⃗�, Σ�}    � = 1, … ,�, as described previously, and an 

utterance from speaker S with a T frame feature sequence as � = {�⃗�, �⃗�, �⃗�, … , �⃗�}. 

By using the UBM, the zeroth (Nm), and the centered first order (�⃗�) statistics can 

be calculated as following equations, respectively. 

 

�� = ��(�|�⃗�,�)�
���  

(3.15) 

 

�⃗� = ��(�|�⃗�,�)(�⃗� − �⃗�)�
���  

(3.16) 
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where m is the mixture index, and �(�|�⃗�,�) is the probability of obtaining the 

given feature vector from the mixture m. The centered mean supervector ��  is 

obtained by concatenating �⃗� for all mixtures. The goal of the i-vector analysis is 

to project this supervector on a low rank factor loading matrix, T, following the 

factor analysis framework. T is a rectangular matrix sized MFxK, where K<<MD. 

T is also called i-vector extractor, or total variability matrix. The training process 

of the T matrix is the same as training the eigenvoice matrix given in (Kenny et al., 

2005). Usually, T is iteratively updated in 20 iterations. Once the centered mean 

supervector, and total variability matrix are obtained, the i-vector is computed as 

follows. 

 �⃗ = (�+ �������)���������� (3.17) 

 

where N is a diagonal matrix of MDxMD whose diagonal blocks are NmI, I is the 

identity matrix, Σ is the diagonal covariance matrix of dimension MDxMD 

estimated in the total variability matrix training. Its purpose is to model the residual 

variabilities that are not captured by the total variability matrix. 

Several channel compensation methods can be applied to reduce the 

channel variability (Dehak et al., 2011b). In this thesis, Linear Discriminant 

Analysis (LDA) is used within the MSR Identity toolbox. LDA is mainly used for 

dimensionality reduction. Orthogonal axes between classes that maximize 

between-class variance, and minimize intra-class variance are detected. The data 

are then projected on the new dimensional space, separating the classes from each 

other. 

The LDA can be summarized in a few steps. First, scatter matrices for 

between-class and within-class are computed, and corresponding eigenvectors and 

eigenvalues are calculated for each matrix. A number of eigenvectors with the 

largest eigenvalues are selected to form a matrix, where every column represents 
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an eigenvector. The obtained matrix is simply multiplied by the feature matrix, 

hence the samples are transformed into a lower subspace. 

In the test phase, an unknown utterance’s i-vector is scored with the 

claimed speaker’s i-vector. Probabilistic LDA is used for this purpose, which is 

analogous to the LDA method. The i-vector is assumed to be generated from a 

Gaussian density. 

 

3.6. Speaker Model Clustering  
The conventional GMM-UBM method uses one model (UBM) to represent 

all of the impostor speakers. However, using several impostor models may increase 

the recognition accuracy. For this purpose, speaker models are clustered, and 

impostor models are created for each cluster. This process can be viewed as 

dividing the space represented by the UBM into several subspaces. Hence, the 

proposed speaker clustering method is an extension of this conventional modelling 

approach. 

The adapted speaker models are clustered with the well-known K-MC 

algorithm. Assume that a UBM is trained, and speaker models are derived from it 

by adapting the mean vectors. Once the speaker models are obtained, their mean 

vectors are element-wise divided by their respective standard deviation vectors for 

normalization as shown in Equation (3.18), 

 ���,� = �⃗�,��⃗�  
(3.18) 

 

where i is the mixture index, s is the speaker index, ���,� is the normalized mean 

vector of the i-th mixture for speaker s, and �⃗� is the standard deviation vector of 

the i-th mixture. Note that the standard deviation vector is speaker independent. 

Since the speaker models are derived by adaptation from the UBM, they share the 

same standard deviation vector. 
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 Mean supervectors are constructed for each speaker by concatenating the 

normalized mean vectors of the models for each mixture, ��� = {���,�,���,�, … , ���,�}. 

These supervectors, which represent speaker models, are clustered by using the 

traditional k-means algorithm. The similarity measure used in the clustering is the 

Euclidean distance. The formal expression of clustering is given in Equation (3.19) 

 

��,� = � ||��� − �⃗�||��
���  

(3.19) 

 

where c is the cluster index, �⃗� is the vector representing the centroid of cluster c, ��� is the mean supervector of speaker s, S is the total number of speakers, and Js,c 

represents the distance of speaker s to the cluster c. The distances of each speaker 

to each of the clusters can be calculated by this way. Each speaker is then assigned 

to the cluster which gives the minimum distance value. Once all the speakers are 

assigned to the closest cluster, the centroids of the clusters are calculated by using 

Equation (3.20) 

 

�⃗� = 1������,���
���  

(3.20) 

 

where Nc is the number of speakers assigned to the cluster c, and ���,� is the mean 

supervector of the speakers assigned to the same cluster. The initial values of the 

cluster centroids are chosen from the speaker supervectors, depending on the 

number of clusters. As an example, if the speakers are going to be clustered into 

two classes, two speaker supervectors are chosen as the initial cluster centroids. 

Then, by using equations (3.19) and (3.20), the centroids are recalculated 

iteratively.  
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 Once the cluster centroids are fixed (i.e. when negligible changes occur 

between iterations, or a predetermined number of iterations are executed) final 

values of cluster centroids (�⃗�) are decomposed into mixture mean vectors. Also, a 

piece-wise multiplication by the standard deviation vector of their respective 

components is applied (Equation (3.21)). 

 �⃗�,� = �⃗�,��⃗� (3.21) 

 

where �⃗�,� is the i-th mixture’s mean vector of cluster c, �⃗�,� is the final (de-

normalized) values for the i-th mixture’s mean vector of cluster c. The expectation 

of these process is gathering the speakers sharing the similar acoustic space in the 

same group by clustering their supervector models. This shared acoustic space will 

be the impostor model for the speakers in that group. The scoring phase of the 

proposed method is given in Figure 3.11 with the conventional UBM approach for 

comparison. 

 

 
Figure 3.11. Scoring algorithms of the UBM (solid line), and the proposed 

clustering method (dashed line) (Dişken et al., 2017a) 
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The proposed algorithm can be viewed as a combination of the UBM and 

cohort methods. The cohort models, which are used to detect impostors, can be 

generated by combining the speakers closest to the target speaker’s acoustic space. 

In this approach, a cohort model for each individual speaker is constructed. It is 

clear that this method needs more memory to store cohort models, and the scoring 

of test utterances may not be fair (since a speaker’s cohort model may not 

accurately define the acoustic space around him.).  

As reported in (Reynolds, 1997), the UBM method performs better than the 

cohort modeling. Therefore, it is extensively used in the literature, as it offers some 

other benefits discussed previously. However, cohort impostor models are still 

investigated by the researchers (McLaren et al., 2010; Zhu et al., 2011). 

Nevertheless, combining the UBM and the cohort is considered in the score space 

by utilizing the SVM to find an optimum decision value (Brew and Cunningham, 

2010, 2009). However, the conventional GMM-UBM scoring framework is used in 

the proposed method. It is argued that if the performance of the traditional method 

is increased, it is also possible to achieve a higher performance gain with more 

complicated methods (i.e. SVM with mean supervectors, i-vectors, etc.) 

The cluster centroids (impostor models) represent the acoustic space 

defined by the speakers in the cluster, not the acoustic space of all possible 

speakers, which is the case with the UBM. By this approach, a cohort-like 

representation is therefore achieved. Another advantage is that there is no need to 

create impostor models for each speaker, since an impostor model is shared 

between the speakers in the same cluster. The computational and memory loads are 

also reduced with the proposed clustering approach. Figure 3.12 shows the 

proposed clustering algorithm as a block diagram. 

Speaker clustering algorithms generally used to achieve speed ups in 

speaker identification, as discussed in the introduction chapter. There is a trade-off 

between the speed and the identification accuracy. The main reason of this trade-

off is that some of the speakers, or mixtures, are not considered in the scoring 
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phase. In the proposed method on the hand, speed is not the main concern. Since 

only the claimed speaker’s model, besides the impostor model, is taken into 

account, all the model mixtures can be scored, hence no trade-off occurs.  

 

 
Figure 3.12. Block diagram of the proposed speaker clustering algorithm (Dişken 

et al., 2017a) 
 

The proposed clustering approach is not suitable for speaker identification. 

Since the imposter models used for speakers vary, the identification process will 

take longer time. However, since an identity must be claimed in SV, there is no 

difference in the scoring time copmared to the UBM. As the cluster of the claimed 

speaker is known from the training phase, the impostor model of the respective 

cluster is used as the UBM. 

When an impostor that has a voice characteristics similar to the claimed 

speaker, the system will probabily misclassify his identity. The reason for this 

misclassification is the distance between the mean vectors of the UBM and the 
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adapted speaker model. The speaker’s model is likely to represent the impostor’s 

voice more accurately. On the other hand, the proposed clustering approach 

reduces the distance between the speaker’s model, and its respective cluster’s 

background model. It is clear that this clustering offers a more accurate 

representation of speakers with similar voice characteristics. So, the cluster-

dependent background models have a higher chance to detect the impostors that 

cannot be detected by the UBM. 

 

3.7. Polynomial Regression Based VAD 
The literature review chapter summarized the general methods to achieve 

robust SR systems. As a reminder, the methods can be roughly separated as feature 

domain methods, model domain methods, VADs, and speech enhancement 

methods. In this thesis, a novel VAD algorithm is proposed for robustness. 

Although the feature type used in this work is the MFCC, the VAD can be 

combined with any other short-term feature. Also, speech enhancement is 

implemented via spectral subtraction method. 

Usually, VADs use parameters such as harmonicity, periodicity, long-term 

variability, or energy to detect voice activity. Based on these parameters, a frame-

based speech/non-speech decision is made. It should be noted that some VAD 

methods assign the decisions to a few frames, but frame-based decisions are more 

common.  

The aforementioned parameters may be sufficient for the voiced phonemes. 

The voiced phonemes have a relatively high energy, and harmonic structure. On 

the other hand, the unvoiced phonemes do not possess harmonic content, and have 

less energy value. Therefore, the unvoiced phonemes may be treated as a noise 

signal, and misclassified by the VADs. 

The proposed VAD’s main decision parameter is the filter-bank magnitude, 

which can be related to the filter-bank energy. The problem with the energy based 

VADs is that a high energy noise signal can be falsely detected as a speech signal. 
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Also, a low energy speech signal can be misclassified as a noise signal. To 

overcome this situation, a PR is used to group frames together, and each group is 

represented by its average energy. 

The regression is applied to the filter-bank outputs of the Mel scale 

spectrum. Hence, it can be integrated to the conventional MFCC extraction scheme 

seamlessly. The frame range to be grouped is chosen as a minimum of five, and a 

maximum of ten frames. For a 25 ms frame length with a 10 ms overlap, this range 

is equal to 65-115 ms, which covers the average duration of a vowel-like (i.e. 

vowel, semivowel, and diphthong) regions in a continuous speech (Prasanna and 

Pradhan, 2011). 

The temporal contour of the speech energy of a filter-bank output 

approximately resembles a bell-like shape in the spectrum, which is another 

motivation behind the proposed VAD. In general, speech energy starts rising with 

the beginning of the utterance, and falls to the noise/silence level at the end of the 

utterance. With a fixed energy threshold, only the regions that exceeds the 

threshold level are accepted as speech. However, the frames that are near to the 

beginning-ending edges may also contain speech information. The PR is used to 

connect these frames with the nearest high energy frames, based on a minimum 

error criterion. This edge phenomenon was also utilized in (Qi Li et al., 2002). In 

that study, the rising and falling energy levels, named as beginning and ending 

edges, respectively, used for end point detection. 

The proposed VAD algorithm can also be thought as an energy boost for 

the low energy frames in a speech region. The low energy frames, especially the 

unvoiced phonemes, are likely to be suppressed in the low SNR values. When a 

group of frames are represented by their average energy, it indicates that the lower 

energy frames are supported by the higher energy frames. 

Another advantage of the proposed VAD is that avoiding misclassification 

of sudden energy ripples. The ripples occur when a noise frame with a higher 

energy than its neighbor noise frames, or a speech frame with a lower energy than 



3. MATERIAL AND METHODS                                                     Gökay DİŞKEN 

62 

its neighbor speech frames. In a traditional fixed energy based VAD, these ripples 

may be misclassified as a speech frame, and a noise frame, respectively. 

As an important note on the working principle of the proposed VAD, it is 

not expected from a single polynomial to capture the entire bell-like shape of a 

speech segment. It may not be possible due to the frame range limitations 

(minimum of five, and maximum of ten frames). Instead, the expectation is to 

capture at least the rising edge, the falling edge, and (if exists) the steadier peak 

regions. 

General PR equations with least squares sense are given as a reminder in 

the following. A k-th order polynomial is defined as �� + ���� +⋯+ �����, where 

xi is the intermediate variable, i is the frame index, and ‘a’s are the coefficients of 

the polynomial. The summed difference (error, E) between the observed value and 

the estimated value is minimized in the least squares method. The error can be 

defined as in Equation (3.22), 

  

� = �[�� − (�� + ���� +⋯+ �����)]��
���  

(3.22) 

 

where i is the frame index, yi is the observation vector (filter-bank magnitude 

vector for a given band), n is the length of the vector (number of frames considered 

for regression). It should be noted that for the proposed VAD, xi = i, where i can 

take values between 1 and 10. By taking the partial derivative of the error, E, with 

respect to a coefficient, the optimum value of the coefficient can be found 

(Equation (3.23)). 
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����� = −2���� − ��� + ���� + ⋯+ ������� = 0�
��� ⋮����� = −2���� − ��� + ���� + ⋯+ ���������� = 0�

���
 

 

(3.23) 

 

Taking the terms with y to one side, a matrix form representation can be 

possible as in Equation (3.24). 

 

⎣⎢⎢
⎢⎢⎢
⎡ � ∑ ������ ⋯ ∑ �������∑ ������ ∑ ������� … ∑ ���������⋮ ⋮ ⋮ ⋮∑ ������� ∑ ��������� ⋯ ∑ �������� ⎦⎥⎥

⎥⎥⎥
⎤
⎣⎢⎢
⎢⎢⎢
⎡����⋮��⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎡ ∑ ������∑ ��������⋮∑ ��������� ⎦⎥⎥

⎥⎥⎥
⎤
  

 

(3.24) 

 

This equation can be written in a compact format as ����⃗ = ���⃗, where 

X is defined as in Equation (3.25), �⃗ is the coefficients vector, and �⃗ is the 

observation vector. The coefficients of the polynomial then can be found as �⃗ = (���)�����⃗. 

 

� =
⎣⎢⎢
⎢⎢⎢
⎡1 �� ��� ⋯ ���1 �� ��� … ���⋮ ⋮ ⋮ ⋮ ⋮1 �� ��� ⋯ ���⎦⎥⎥

⎥⎥⎥
⎤
  

 

(3.25) 

 

The order of the polynomial, k, is selected as two in the experiments. A 

first order polynomial is a straight line and cannot accurately capture the variations 

of the speech signals. As the order of the polynomial increases, the error decreases, 

but the computational load also increases. In the SV experiments, the order is 
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chosen as two, since an approximation of the general trend over the frames is 

sufficient. Nevertheless, preliminary experiments showed that no substantial 

advantage was found by using a third-degree polynomial. 

Smoothed Mel spectrum filter-bank magnitudes are directly subjected to 

the regression. The regression is applied in each band of the Mel spectrum 

separately. In fact, the conventional spectrum can be used, but the increased 

number of frequency bins will affect the computation time. Moreover, the Mel 

spectrum is a part of the traditional MFCC extraction process. The proposed VAD 

can be integrated to the MFCC extraction module. 

Consider a noisy speech signal at frame t and filter m. Let S(t,m) denote its 

filter-bank output. The filter-bank outputs are smoothed to reduce the ripples as in 

Equation (3.26), 

 

��(�,�) = � ���(� + �,�)�
����  

(3.26) 

 

where ��(�,�) is the smoothed filter-bank output, pn is the smoothing coefficient 

with p-2 = p2 = 0.1, p-1 = p1 = 0.2, and p0 = 0.4.  

The second order PR is applied to the smoothed filter-bank outputs in each 

filter band independently. Equation (3.27) gives the regression error, which is 

defined as the normalized distance between the smoothed filter-bank outputs and 

the fitted polynomial. 

 

��,� = �∑ (��(� + �,�)− ��(� + �,�))������� �  

(3.27) 

 

Where FN(t,m) is the value of the fitted polynomial at frame t and filter m. 

N is the number of the frames used for regression (N=5,6,…,10), and eN,m is the 
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error observed for N-length fitting. The adjacent frames which gave the minimum 

eN,m are grouped, and groups are represented by their respective average 

magnitudes. Therefore, if a noise frame with a higher magnitude than its neighbor 

noise frames is present, the average magnitude representation prevents its 

misclassification. Similarly, if a speech frame with a lower magnitude than its 

neighbor frames exists, the neighbors’ magnitudes boost this speech frame. Hence, 

the errors that may occur with a fixed threshold and a frame based decision is 

tackled with the proposed average magnitude representation. 

Once N frames are grouped, the same process starts from the next 

ungrouped frame, and continues until all frames have been grouped and 

represented by its respective average polynomial magnitude.  

For a better understanding, consider the first 25 frames of an utterance. F is 

calculated from the 1st frame to 5th, then 1st to 6th, and goes on this way up to 1st to 

10th. If the minimum error is assumed to be found in the range of 7 frames, the 

frames 1, 2…,7 are grouped. Average magnitudes of these frames are calculated to 

represent them. Next, F is calculated from the 8th frame to 12th, then from 8th to 

13th, and so on.  

Once all the frames are grouped, the number of data is at most TF/5, where 

TF is the total number of the frames. Note that the proposed method also reduces 

the data that are going to be used in the clustering. If the utterance durations are not 

so long, such as less then several minutes, simple clustering algorithms are 

expected to give sufficient results. This is due to the facts that only two clusters are 

needed, and the relatively low amount of data to be clustered. 

The clustering algorithm is therefore chosen as the conventional k-means. 

This selection is inspired from the success of the bi-Gaussian modeling approach 

(Sahidullah and Saha, 2012b). If the weights and the variances of Gaussian mixture 

models are assumed to be equal, it can be simplified into the difference of the given 

data and the cluster means, which is also calculated in the k-means algorithm. 
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Therefore, the k-means algorithm can be viewed as a simplified version of the 

GMMs.  

The initial cluster centroids are chosen randomly and updated iteratively. 

The k-means algorithm results in two magnitude levels as the class centroids. The 

assumption is that the frames who belong to the higher magnitude class speech-

dominant frames. On the other hand, speech regions with a low magnitude 

contribute to the lower magnitude class. Therefore, the lower magnitude centroid is 

selected as the fixed threshold of the given filter band. Only the frames below this 

threshold are treated as noise-dominant frames. As the overall SNR of an utterance 

is decreased (due to a low speech energy, or a high noise energy), it is expected 

that the cluster centroids will come closer. This situation will aid  

The frames below the threshold are also used to estimate the average noise 

magnitude of the band. Then, the spectral subtraction method used this average 

noise magnitude to enhance the speech. A magnitude floor is included in the 

subtraction to avoid the spectrum becoming too small, which may lead to 

numerical problems in the log compression step. Equation (3.28) shows the 

subtraction expression, 

 ��(�,�) = max (��(�,�)− ��(�), 0.001��(�,�)) (3.28) 

 

where ��(�,�) is the enhanced speech signal, and ��(�) is the estimated noise 

energy for the m-th filter.  

The aforementioned k-means process separates the filter-bank magnitudes 

into one of the two classes, indicating the reliable and unreliable components, 

similar to the missing data approaches as mentioned before. A binary 

representation of the utterance is obtained by using ones for each frame in the 

groups above the threshold and using zeros for each frame in the groups below the 

threshold. This binary matrix is used in a voting scheme that aids the final decision 

on the frames. 
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For a frame in the binary matrix, if ones dominate the frame, it is likely to 

be a speech frame. However, as the noise level increases, the number of ones are 

also expected to increase, which is a result of misclassifying the noise frames as 

speech frames in the bands. Therefore, a fixed threshold is not suitable for all SNR 

levels. To tackle this problem, a pseudo SNR-dependent threshold called clarity 

level is defined, which takes the cluster centroids into account. The operations 

described above to obtain the binary matrix representation of the frames are 

summarized as a block diagram in Figure 3.13. 

 

Filter bank 
output of a 

band

Polynomial 
regression 

over frames

Group frames that 
gave minimum 

regression error

Represent groups 
by their average 

energies

Apply 2-class 
k-means 

Use the lower 
energy centroid as 

a threshold

Binary 
representation of 

the band

Estimate average 
noise energy of 

the band

Spectral 
subtraction

Enhanced speech 
information in the 

band  
Figure 3.13. Speech enhancement and binary representation of the frames in a 

given band as a block diagram (Dişken et al., 2017b) 
 

The clarity level uses the k-means cluster centroids to estimate the pseudo 

SNR. It is based on the fact that as the overall SNR of the utterance decreases, the 

cluster centroids are expected to become closer. Equation (3.29) shows the formal 

definition of the clarity level. 

 

� = ∑ �����( ���(�)����(�))���� �  

(3.29) 
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where L is the clarity level, ���(�) is the centroid of the speech-dominant cluster, 

and ����(�) is the centroid of the noise-dominant cluster of the m-th filter, and M 

is the total number of filters in the filter-bank. Note that ����(�) is used as the 

threshold described previously. 

As the noise level increases, the L gets smaller values. The main reason for 

this situation is that speech signal vanishes into the noise signal as it increases. 

Since the boarders of the signals gets vague as the noise level increases, the 

clustering algorithm cannot define two distinct clusters. The resulting cluster 

centroids are expected to become closer. 

The pseudo SNR term is preferred to emphasize that the goal is not to 

estimate the actual SNR value. Rather, the clarity level gives hint about how noisy 

the signal is. The relation between the SNR and clarity level calculations are 

obvious. The formal expression for the SNR is given in Equation (3.30), where Srms 

is the root-mean square of the speech signal, and Nrms is the root-mean square of 

the noise signal. 

 ��� (��) = 20log (��������) 
(3.30) 

 

The clarity level expression used cluster centroids instead of the root-mean 

square values. The SNR is based on the speech and the noise energy ratio. A 

similar relation between the cluster centroids can be found in Equation (3.29). 

Therefore, the clarity level can be defined as a pseudo SNR estimation. 

For the final output decision of the proposed VAD, the binary matrix and 

the clarity level are combined in a voting scheme. As a consequence of the clarity 

level’s definition, the signal is treated as a high SNR signal if its clarity level is 

high, and, vice versa. In the binary matrix, the ones indicate the speech activity, 

and zeros indicate the noise presence. To label a frame as a speech-dominant 

frame, the number of ones must be more than the number of zeros. If a signal’s 
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clarity level is high, one can assume that the signal is relatively clean. Therefore, 

speech activity (ones) in a few bands may be sufficient to confidently say the frame 

is a speech-dominant frame. 

On the other hand, if a signal’s clarity level is low, then one must expect 

that some of the noise components may be misclustered as speech signals. Then, 

more evidence is needed to label a frame as the speech. It means that the number of 

ones in a given frame must be increased, compared to a signal with a high clarity 

level value. 

A final decision threshold, called sufficient speech evidence, is developed 

according to the relations mentioned in the previous paragraph. The proposed 

threshold is a linear line between the best and worst SNR cases. The calculation of 

the threshold is given in Equation (3.31), 

 

�� = ⎩⎪⎨
⎪⎧ 7, � > 0.8�����(28.36− 25.45 ∗ �),   0.8 ≥ � ≥ 0.2523, � < 0.25  

(3.31) 

 

where Ls is the sufficient speech evidence, i.e. minimum number of ones required 

for a frame to be labeled as speech-dominant. Note that equations (3.29) and (3.31) 

calculated per utterance. Therefore, the proposed VAD eliminates the need for 

priori information about the noise type, or the actual SNR estimate. 

The sufficient limit for the best-case scenario is chosen as seven. If the 

clarity level exceeds 0.8, it indicates that the signal of interest is a relatively clean 

signal (SNR > 15 dB). So, if the number of ones for a frame of the binary matrix is 

equal to, or greater than, seven, the frames are labeled as speech-dominant, and it 

can be subjected to the feature extraction process. Frames whose summation are 

less than seven are ignored, since they do not convey any useful speech 

information. 
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The best-case limit, seven, is determined by assuming that the speech 

signal should cover at least several bands. Nevertheless, the best-case limit is not as 

critical as the worst-case limit, as found with preliminary experiments. Similar SV 

results were obtained by choosing 6, 7, and 8 as the best-case limit values. 

The worst-case limit (L<0.25) indicates a severely degraded signal, hence 

more evidence is needed to label a frame as speech-dominant. 18 and 23 were 

investigated as the worst-case limits. It is found that when the worst-case limit is 

23, a 10% absolute EER reduction was obtained, compared to 18. Therefore, 23 is 

preferred as the worst-case limit, and 7 is preferred as the best-case limit. The 

threshold between these limits is simply the linear line passing through these 

points. Also, it should be noted that the worst-case limits were not reached for the 

SNR levels used in the SV experiments. The worst-case limit rather adjusts the 

slope of the threshold line. 

Another important point is that the L values are determined on the sample 

signal, taken from the NOIZEUS corpora. This sample speech signal is not 

included in the verification experiments. Hence, the parameters are not tuned for a 

specific database. However, a preliminary test is suggested to verify that these 

values are suitable for the data type of interest. 

The second part of the VAD algorithm, which consists of the calculations 

for the clarity level (L), sufficient speech evidence (Ls), and final output decision, is 

summarized as a block diagram in Figure 3.14. 

The proposed VAD algorithm is tested on the sample signal to illustrate its 

effectiveness. Lynx noise is added to the sample signal taken from the NOIZEUS 

corpora. The overall SNR is 5 dB in this case. Figure 3.15 illustrates the Mel 

spectrum of both clean speech, and noisy speech signals. Comparing the spectra, 

the effect of the noise can be easily observed. The speech signals with relatively 

high magnitudes (red regions) remain in both spectra. However, the lower 

magnitudes are vanished into the noise. 
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Figure 3.14. Final decision process of the proposed VAD algorithm as a block 

diagram (Dişken et al., 2017b) 
 

 
Figure 3.15. Mel spectrum of the cleans sample signal (top), and the degraded 

signal with a 5 dB overall SNR (bottom) 
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The results of the PR are given in Figure 3.16, along with the cluster 

centroids found by the k-means algorithm. The blue lines are the smoothed filter-

bank magnitudes. The red line shows the average magnitudes of the frames in the 

same group, as observed from the horizontal parts. The straight solid line is the 

centroid of high magnitude cluster. The dashed line is the centroid of the low 

magnitude cluster, which is also used as the threshold level for this band. As 

observed from the figure, the average magnitude representation closely follows the 

original filter-bank magnitudes. 

 

 
Figure 3.16. Polynomial regression and clustering results for the 1st filter of the 

filter-bank 
 

Figure 3.17 illustrates the same analysis for the 8th filter of the filter-bank. 

A small region with a relatively very high magnitude stands out, and considered as 

a class by itself. This region implies that the proposed VAD algorithm is not 
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suitable for non-stationary noises. In fact, dealing with the non-stationary noises is 

a very challenging problem that is yet to be solved.  

On the other hand, this figure supports the idea of using the lower 

magnitude cluster centroid as the threshold. If the frames were directly clustered as 

the noise frames and speech frames, then only a few frames should be detected as 

speech in this band, which will be an obvious error. By using the centroid as a 

threshold level, this error is admirably avoided. Another solution may be adding a 

minimum number of membership to the clusters. This solution however, may affect 

the clarity level calculation since it will change the cluster centroid levels.  

 

 
Figure 3.17. Polynomial regression and clustering results for the 8th filter of the 

filter-bank 
 

Figure 3.18 and Figure 3.19 illustrates the results for the 16th and 24th 

filters, respectively. As discussed before, the cluster centroids come closer as the 
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speech energy decreases. This fact can be clearly observed by comparing the 

distance between centroids of the 24th filter to the others’. The 24th filter covers 

the high frequencies, where speech energy is lesser than the lower frequencies. The 

distance between the centroids are therefore decreased. As the overall SNR 

decreases for an utterance, the expectation is that the centroids of the other filters 

also get closer. Hence, the clarity level parameter can estimate how noisy the 

utterance is, as explained above. 

 

 
Figure 3.18. Polynomial regression and clustering results for the 16th filter of the 

filter-bank 
 

The frames under the threshold (dashed lines) are shown with zeros, and 

the others are shown with ones. The binary matrix is build this way. Average noise 

magnitudes are calculated by considering only the frames that are below the 

threshold. Spectral subtraction is then used to enhance the speech. Finally, clarity 
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level and sufficient speech evidence values are calculated for the final VAD output 

decision. 

 

 
Figure 3.19. Polynomial regression and clustering results for the 24th filter of the 

filter-bank 
 

Spectra of the noisy utterance, enhanced utterance, and the frames detected 

as speech by the VAD are given together in Figure 3.20, for the 5 dB overall SNR. 

The noise artifacts are clearly seen at the top spectrum. The result of spectral 

subtraction is given in the middle. The noise effects are almost completely 

removed in this case. The final VAD outputs are shown at the bottom of the figure. 

It should be noted that only the frames selected as speech are shown, and only 

these frames are used in the further processes.  
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Figure 3.20. Noisy speech signal with a 5 dB overall SNR (top), enhanced speech 

signal (middle), and final output of the proposed VAD (bottom) 
 

Same spectra are illustrated in Figure 3.21 for the 0 dB overall SNR. In this 

case, the noise effects are visible in the enhanced speech. However, the final VAD 

output still successfully captures the high magnitude speech regions. Note that the 

number of frames at the output is around 100 in this case. 
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Figure 3.21. Noisy speech signal with a 0 dB overall SNR (top), enhanced speech 

signal (middle), and final output of the proposed VAD (bottom) 
 

Finally, Figure 3.22 shows the spectra for the -5 dB overall SNR. Note that 

despite the increased noise artifacts, the proposed VAD algorithm determines the 

speech region thanks to the sufficient speech evidence thresholding.  
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Figure 3.22. Noisy speech signal with a -5 dB overall SNR (top), enhanced speech 

signal (middle), and final output of the proposed VAD (bottom) 
 

These figures prove that the proposed VAD can effectively calculate a 

threshold that is suitable for the SNR of the signal. The high energy regions are 

extracted successfully in each case. 

 

3.8. Methods Selected for Performance Comparison 
Two methods from the literature are selected to compare the performance 

of the proposed VAD algorithm. One of these methods is a NT algorithm proposed 

in (Rangachari and Loizou, 2006), and the other is a ANN based VAD proposed in 

(Drugman et al., 2016). 

The NT algorithm (called Rangachari’s method from here on), is chosen 

due to its continuous noise spectrum update property, which can be beneficial for 

non-stationary environments, although only stationary noise types are considered in 
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this thesis. The speech enhancement methods’ success depends on the accuracy of 

the noise estimation. Rangachari’s method offers a fast adapting NT, which 

considers the speech presence probability in each frequency bin. Compared with 

several other noise estimation techniques, including the minimum statistics, better 

estimation results were reported. Formal listening tests were also included, where 

the listeners preferred Rangachari’s method over the other algorithms (Rangachari 

and Loizou, 2006). 

To make a fair comparison, Rangachari’s method is modified to operate on 

the Mel scale, similar to the proposed regression based VAD. Since the noise 

estimation algorithm does not label the frames as VADs do, a fixed threshold is 

applied once the speech is enhanced via spectral subtraction. The intention here is 

that if the true noise spectrum can be estimated and subtracted from the noisy 

speech signal, only the clean speech signal lefts. Then, a simple energy based 

threshold can be applied to eliminate silence frames. Frames that have an energy 

higher than the average energy of all enhanced frames are accepted as speech 

frames. Only these accepted frames are subjected to the feature extraction process. 

Rangachari’s method is independent from the noise type and does not require any 

training, similar to the proposed VAD. Rangachari’s method is implemented in 

MATLAB, using the parameters given in the related publication. 

The other method is a recently proposed VAD (called Drugman’s method 

from here on) (Drugman et al., 2016). An ANN with a single layer of 32 neurons is 

used to obtain posterior speech probabilities of the frames. Besides the MFCCs, 

four voicing measures, and two pitch trackers are used as the features. The ANN is 

trained on 1500 speech files degraded by noises chosen from the NOISEX-92 

database. The author kindly shares his MATLAB codes in his website 

(http://tcts.fpms.ac.be/~drugman/Toolbox/ Accessed 8 January 2018). Since the 

same noise database is used in this thesis work, and due to the lack of another 

speech/speaker database to train an ANN, the author’s trained ANN is used in the 

SV experiments. Once the posterior speech probabilities are obtained, a threshold 

http://tcts.fpms.ac.be/~drugman/Toolbox/
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is applied to eliminate non-speech frames. Also, to make a fair comparison, 

spectral subtraction is also included, where the average noise energy is calculated 

by considering the non-speech frames. 

The reasons for choosing Drugman’s method for comparison are a) it is 

one of the recently published VADs, b) it is reported that it outperformed state-of-

the-art VADs including (Ghosh et al., 2011; Jongseo Sohn et al., 1999). However, 

a disadvantage of Drugman’s method may be the requirement of the ANN training. 

Nevertheless, a general problem with the supervised methods is that their 

performances are expected to drop in an unseen environment. 

The mathematical details of these algorithms are not given here, since no 

significant modifications were made. They are implemented with the parameters 

given in their respective publications, hence interested readers may refer them. 

 

3.9. Real-Time Text-Dependent Speaker Verification 
A real-time SV application is written in C++ programming language, and 

realized on a single-board computer as a case study. Banana-Pi (BPI-M1 model) 

single-board computer is used, which has an ARM A7 dual-core processor, 1 GB 

SDRAM, GPIO pins, audio output, video input/output, USB ports, and many other 

specifications. The single-board computers can be used as a light-weight, low cost 

computer with a suitable operating system. Furthermore, they can be configured as 

a conventional microcontroller via the GPIO pins. 

The purpose of this real-time application is to develop a baseline system 

which can be improved in the future works. The system can be modified for hands-

free applications, security systems, etc. However, it is limited to text-dependent 

SV, and is a part of a project supported by the scientific research projects 

coordination unit of Adana Science and Technology University, with the project 

number 17103031. In the project, the goal is to develop a speaker-independent 

isolated word recognition to control an elevator via speech commands. As this 

thesis focuses on the SV, the real-time system is modified to recognize the speaker. 
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The MFCC features are also used in the real-time system, due to its ease of 

implementation, and high performances in the controlled environments. Since the 

vocabulary of the system is limited to a few words, each word is modelled by a 

GMM, whose details were given previously. When the system starts recording, the 

initial 200 milliseconds are used as a silence level threshold, and a energy based 

VAD is implemented, which considers the energies of ten adjacent frames. If the 

frames’ energies are over the threshold, the system stores the recorded data until 

another ten adjacent frames’ energies stay below the threshold. Then, the stored 

sound is subjected to feature extraction. 

Figure 3.23 shows the equipment used to build the recognition system. A 

Linux based operation system, UBUNTU MATE, is used to execute the necessary 

C++ language commands. Note that the Banana Pi is connected to the monitor, 

mouse, and keyboard. These connections are not necessary once the recognition 

program is developed. It can be configured as a start-up application, hence 

whenever the board is opened, the recognition can start automatically. Also, note 

that an external microphone is used, since Banana Pi does not have an internal 

microphone. The microphone is connected via the USB port. Advanced Linux 

Sound Architecture (ALSA) is used to configure the recording parameters.  

The vocabulary of the system consists of the digits, and four commands in 

Turkish language. The vocabulary is chosen as suitable words to control an 

elevator. Therefore, the command words are yes, no, close, and open in Turkish 

language. Twenty-four volunteer individuals uttered these words, ten times for 

each word. Seven of these utterances are used to train word models. The remaining 

three words are used to test the system. A total of 1008 test speech files are used.  

For the SV, all speakers’ training data are used to construct an UBM. The 

target speaker’s (the author of this thesis) data is used to train the speaker model. In 

the test stage, the unknown speaker’s utterance is scored with both models. If the 

speaker’s model gives a higher score, the unknown speaker is verified, else, 

rejected. 



3. MATERIAL AND METHODS                                                     Gökay DİŞKEN 

82 

 
Figure 3.23. Real-time speaker recognition system implemented on a single-board 

computer 
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4. EXPERIMENTAL RESULTS 
 

In this chapter, the SV results for the proposed algorithms are given. First, 

the speaker clustering method’s performance is investigated. The results of the 

robust SV experiments are given after. Finally, the real-time SV system’s 

performance is analyzed. The experimental setups are described in each subsection 

for completeness, although most of the parameters are same, such as MFCCs. 

 

4.1. Speaker Verification with Speaker Model Clustering 
The SMC method was tested with the male speakers of the NIST SRE 

1998 database. It was reported that the performance difference between the male 

and female speakers is fairly small for this database (Doddington et al., 2000). 

Hence, female speakers were ignored in this case. All available training data for the 

male speakers were pooled to train a UBM, which consists of 1024 Gaussians. 

Then, the speaker models were derived by adaptation form the UBM with a 

relevance factor of 16. Only the mean vectors were adapted, as in the conventional 

approach.  

All the test data durations were considered, i.e. 3, 10, and 30 seconds. As 

described before, two microphone types are available in this dataset, namely, 

electret, and carbon-button. Therefore, a same-handset condition implies that the 

training and testing records for a speaker were both collected by using the same 

microphone type. A different-handset condition indicates that the microphone types 

were changed between the training and testing records. As an example, if the 

training data was recorded with an electret type, then the testing data is recorded 

with a carbon-button type. 

For each test utterance duration, there were 1308 speech files for the same-

handset condition, and 1192 speech file for the different-handset condition. For 

each of these test files, there was one trial for the target speaker, and nine trials for 
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the non-target speakers. Hence, the total number of trials in each utterance duration 

was 13080 for the same-handset, and 11920 for the different-handset conditions. 

The HTK toolkit was used to extract MFCCs from the utterances. A 

Hamming window with a 25 ms length, and a 10 ms shift was utilized. The filter-

bank consists of 26 triangular bandpass filters. Twelve static coefficients, 

excluding the zeroth coefficient, were extracted, and the normalized log-energy 

was appended to them. The cepstral mean subtraction was also used to suppress the 

slowly varying signals, which are mainly related to the channel effects. The final 

feature vector dimension was 26 with delta coefficients. The other operations such 

as training a UBM model, speaker model adaptation, model clustering, scoring, etc. 

were implemented using the C++ programming language. 

In the scoring phase, a test file was first scored with the UBM. Top scoring 

5 mixtures were detected for each feature vector. Then, the same mixtures of the 

speaker models were scored using the respective feature vector. The baseline 

results obtained by the conventional GMM-UBM method is given in the third row 

of Table 4.1. The EER values increased as the utterance duration decreased. Also, 

the negative effect of the channel mismatch is obvious.  

The validity of the proposed clustering algorithm was tested with 2, 3, 4, 

and 5 clusters. The speaker models adapted from the baseline UBM were used in 

the clustering. As seen in the table, all the impostor models obtained by the 

clustering showed improved recognition performance compared to the baseline 

system. 
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Table 4.1. EER(%) values obtained for the conventional GMM-UBM method, and 
the proposed clustering method 

 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

UBM 11.21 5.3 3.58 25.57 20.31 16.12 

2-cluster 10.23 4.89 3.22 25.38 19.99 16.09 

3-cluster 10.54 4.73 3.18 24.15 18.53 14 

4-cluster 10.38 4.96 3.29 24.05 18.75 14.16 

5-cluster 11 4.92 3.35 23.98 19.13 14.29 

 

The relative EER reductions are shown in Table 4.2, where the best 

improvements were obtained by 3-cluster, except the 3-seconds cases. The average 

EER reductions are calculated as 4.85%, 9.22%, 7.92%, and 6.44% for 2-, 3-, 4-, 

and 5-cluster, respectively. 

 

Table 4.2. Relative EER reductions compared to the baseline UBM method. 
 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

2-cluster 8.71% 7.69% 10.19% 0.76% 1.56% 0.17% 

3-cluster 5.98% 10.73% 11.13% 5.57% 8.76% 13.17% 

4-cluster 7.34% 6.41% 8.05% 5.93% 7.66% 12.13% 

5-cluster 1.89% 7.05% 6.39% 6.23% 5.78% 11.32% 

 

The Detection Error Tradeoff (DET) curves are given for the GMM-UBM 

system, and the best performing clusters of the proposed method in Figure 4.1 for 

the same-handset condition, and Figure 4.2 for the different-handset condition. 

Note that the other clusters’ curves are not shown to avoid confusing illustrations 

since the curves highly interfere with each other. As observed from the figures, the 

impostor models obtained by the SMC highly reduced the false negatives for the 

different-handset condition. 
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Figure 4.1. DET curves of the GMM-UBM and the best performing clusters for the 

same-handset condition (Dişken et al., 2017a) 
 

 
Figure 4.2. DET curves of the GMM-UBM and the best performing clusters for the 

different-handset condition (Dişken et al., 2017a) 
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Re-adapting the speaker models from their respective impostor models 

were also investigated. This type of adaptation can be considered as subsets of the 

baseline GMM-UBM method. The results of this approach are shown in Table 4.3. 

The relative improvements over the baseline method are given in Table 4.4. Similar 

to the previous case, 3-cluster gave the best overall performance improvement with 

an average of 7.24% EER reduction. The other average reductions are 5.02%, 

6.9%, and 6.15%, for 2-, 4-, and 5-cluster, respectively. Although improvements 

over the baseline can be observed, this method is less effective than the UBM 

adapted speaker models under channel mismatch conditions. 

 

Table 4.3. EER(%) values for the speaker models adapted from their respective 
impostor models 

 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

2-cluster 10.38 4.85 3.12 25.32 20.12 16.07 

3-cluster 10.22 4.85 3.20 24.26 19.45 15.25 

4-cluster 10.32 4.85 3.16 24.41 19.70 15.11 

5-cluster 10.61 4.85 3.27 24.81 19.33 14.92 

 

Table 4.4. Relative EER reductions for the re-adapted models compared to the 
baseline UBM method. 

 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

2-cluster 7.34% 7.84% 12.79% 0.98% 0.91% 0.29% 

3-cluster 10.22% 7.84% 10.66% 5.13% 4.21% 5.37% 

4-cluster 7.95% 7.84% 11.85% 4.54% 2.98% 6.24% 

5-cluster 5.30% 7.84% 8.53% 2.98% 4.81% 7.45% 

 

The GMM-UBM approach is recently outperformed by the i-vector 

approach. To compare the proposed speaker clustering method with the i-vectors, 

MSR Identity toolkit is utilized in the MATLAB. The baseline UBM and pooled 
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training data were used to train the i-vector extractor in twenty iterations. 100 

dimensional i-vectors were extracted from each utterance. LDA was used to reduce 

the channel mismatch effects, and probabilistic LDA was employed for scoring the 

i-vectors.  

As the i-vector approach includes the LDA for channel compensation, 

handset normalization (Reynolds, 1997) was added to the proposed method in 

order to make a fair comparison. Handset normalization technique is a score 

normalization process to reduce the channel mismatch. The handset normalization 

is achieved by detecting the response of the models to the different channel types. 

Then, during the testing, the test utterance’s channel type is detected, and its score 

is normalized by the scores obtained for the same channel type. This operation 

restricts the speaker models to produce zero mean and unit standard deviation 

scores. Hence, the handset characteristics are reduced. 

In Table 4.5, the EERs for the i-vector and the proposed method are given. 

The results indicated that the impostor models created by the proposed clustering 

model can achieve state-of-the-art SV results. Only 5-cluster at 30-seconds 

utterance duration performed worse than the i-vectors. The relative improvements 

are given in Table 4.6. a relative improvement as high as 23.62% was achieved by 

using two clusters.  

 

Table 4.5. EER(%) values for i-vectors and the proposed method with handset 
normalization 

 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

i-vector 11 4.70 3.02 24.65 18.69 14.42 

2-cluster 8.40 4.34 2.97 22.64 16.43 13.91 

3-cluster 8.81 4.11 2.93 21.88 16.09 13.33 

4-cluster 8.86 4.25 3 21.95 16.18 13.05 

5-cluster 8.94 4.19 3.20 21.71 16.09 12.74 
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Table 4.6. Relative EER reductions compared to the i-vector baseline 
 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

2-cluster 23.62% 7.58% 1.68% 8.16% 12.11% 3.55% 

3-cluster 19.84% 12.45% 3.08% 11.22% 13.9% 7.61% 

4-cluster 19.45% 9.56% 0.56% 10.96% 13.45% 9.49% 

5-cluster 18.68% 10.83% 5.89% 11.9% 13.9% 11.69% 

 

On the average, significant performance improvement over the i-vector 

was obtained with the proposed clustering method. The 5-cluster yielded the best 

average performance improvement with a 12.14% average relative EER reduction. 

The average reductions for the 2-, 3-, and 4-cluster were 9.45%, 11.35%, and 

10.58%, respectively. Figure 4.3 shows the DET curves for the same-handset 

condition, and Figure 4.4 shows the DET curves for the different-handset 

condition. 

 

 
Figure 4.3. DET curves of the baseline i-vector, and the best performing clusters 

for the same-handset condition (Dişken et al., 2017a) 



4. EXPERIMENTAL RESULTS                                                      Gökay DİŞKEN 

90 

 
Figure 4.4. DET curves of the baseline i-vector, and the best performing clusters 

for the same-handset condition (Dişken et al., 2017a) 
 

The performance of the proposed clustering algorithm showed better 

performances than the conventional GMM-UBM method, and the state-of-the-art i-

vector method. The EERs and the DET curves proved that the using several 

impostor models, instead of only one, can improve the system performance, 

without highly increasing the computational complexity, or storage requirements. 

On the other hand, the EERs were close to each other. Therefore, a 

statistical significance test is also provided to further support the proposed 

method’s performance. McNemar’s test is utilized, which is used in speech 

recognition area before (Gillick and Cox, 1989; Pallet et al., 1990). 

Consider two classifiers named A, and B, which are tasted with the same 

data, and the following variables are counted. 

 

- N00: Number of examples misclassified by both A, and B 

- N01: Number of examples misclassified by A, but not B 
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- N10: Number of examples misclassified by B, but not A 

- N11: Number of examples misclassified by neither A, nor B 

 

The null hypothesis expects that the two algorithms have the same error 

rate, i.e. N01=N10. McNemar’s test is given in Equation (4.1). 

 �� = (|�01−�10|− 1)��01 +�10  
(4.1) 

 

Under the null hypothesis, X2 has a chi-square distribution with 1 degree of 

freedom. The value of test at 5% significance level for 1 degree of freedom is 3.84. 

Hence, if the test is greater than this value, the null hypothesis is rejected, which 

implies that the classifiers have different performances. In Table 4.7, the proposed 

clusters were compared with the i-vector, based on the EER values given in Table 

4.5. Except the 30-second case, significant performance differences are observed. 

The highest differences were found in the 3-second cases, which indicates that the 

proposed method is more suitable for the short utterance durations. 

 

Table 4.7. X2 values obtained by using the proposed method and the i-vector 
 Same-handset coniditon Different-handset condition 

Duration 3-s 10-s 30-s 3-s 10-s 30-s 

2-cluster 54.98 7.42 1.5 24.44 17.73 9.07 

3-cluster 36.16 14.6 2.18 26.78 25.74 16.2 

4-cluster 34.41 10 1.12 25.41 23.9 20.33 

5-cluster 31.33 11.84 0.0017 30.82 25.58 28.83 

 

The reason behind the similarity occurred in the 30-second same-handset 

condition may be due to the better i-vector representations acquired as the utterance 

duration increases. In general, 3-cluster showed the best verification performance, 
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based on the results given in the tables. Hence, a straightforward solution to 

increase the performance of the conventional GMM-UBM method is verified. 

 

4.2. Speaker Verification Under Additive Noise 
The proposed PR based VAD’s performance was examined with both male 

and female data of the NIST SRE 1998 corpus. 30-second length test utterances 

were used. Different-handset condition is ignored in this case, the focus is solely on 

the additive noise artifacts. There were 1308 test speech files for the male speakers, 

and 1379 test speech files for the female speakers. A simple energy based VAD as 

given in (Kinnunen and Li, 2010) was applied to the clean training data to 

eliminate silence regions. The type of VAD won’t make much difference on the 

verification, since the training data is relatively clean. 26 dimensional MFCCs (13 

static excluding the zeroth coefficient, and their deltas) were extracted as feature 

vectors from each utterance.  

The proposed VAD, and the other methods selected for comparison were 

only applied to the noisy test files. In the test stage, MFCCs were extracted from 

the frames that are detected as speech-dominant.  

For the back-end, both the conventional GMM-UBM method, and the 

state-of-the-art i-vectors were considered. All methods were implemented in the 

MATLAB environment. The parameters for the back-end systems were the same as 

in the previous experiments. 

The test data were degraded with Lynx, F16, car, babble, and Stitel noises 

from the NOISEX-92 noise database. Overall SNR levels were changed from -10 

dB to 10 dB with 5 dB steps. 

Table 4.8 shows verification results for the male data, with GMM-UBM 

back-end method, where minDCF values are shown in parenthesis.  
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Table 4.8. Speaker verification results for the male speakers with UBM method in 
terms of percent EER (minDCF) 

Noise 
Type 

SNR Level 
(dB) 

Proposed 
Algorithm 

Drugman’s VAD  Rangachari’s 
Noise Tracking  

 
 

Lynx 

-10 34.25 (0.64) 46.10 (0.85) 47.4 (0.87) 
-5 25.30 (0.47) 32.18 (0.60) 39.22 (0.72) 
0 15.29 (0.28) 14.60 (0.27) 22.47 (0.42) 
5 8.41 (0.15) 8.41 (0.15) 13.45 (0.24) 

10 5.42 (0.10) 6.50 (0.12) 9.93 (0.18) 
 
 

F16 

-10 41.28 (0.78) 48.31 (0.88) 48.16 (0.89) 
-5 31.88 (0.60) 41.82 (0.80) 45.18 (0.84) 
0 20.87 (0.39) 24.38 (0.46) 33.4 (0.60) 
5 11.85 (0.22) 11.54 (0.21) 18.19 (0.34) 

10 6.95 (0.13) 7.8 (0.14) 12.46 (0.23) 
 
 

Car 

-10 5.96 (0.10) 6.27 (0.11) 8.94 (0.16) 
-5 4.74 (0.08) 5.88 (0.10) 8.35 (0.15) 
0 4.35 (0.08) 5.50 (0.10) 8.18 (0.15) 
5 4.05 (0.07) 5.27 (0.09) 7.95 (0.14) 

10 4.05 (0.07) 5.12 (0.09) 7.95 (0.14) 
 
 

Babble 

-10 36.85 (0.69) 48.08 (0.87) 47.85 (0.88) 
-5 26.83 (0.50) 38.45 (0.72) 43.94 (0.87) 
0 17.50 (0.33) 19.49 (0.36) 28.28 (0.51) 
5 10.01 (0.18) 10.16 (0.18) 14.52 (0.27) 

10 6.72 (0.12) 7.26 (0.13) 10.93 (0.20) 
 
 

Stitel 

-10 42.66 (0.79) 47.17 (0.86) 45.18 (0.84) 
-5 33.71 (0.62) 37.23 (0.69) 37.15 (0.69) 
0 19.95 (0.37) 19.26 (0.36) 20.41 (0.38) 
5 9.40 (0.17) 9.71 (0.18) 11.62 (0.21) 

10 5.96 (0.11) 6.95 (0.12) 9.32 (0.17) 
 

The proposed VAD showed superior performances compared to the 

baseline methods, especially at the lower SNR levels. Except four cases, the 

proposed method produced lower errors than the others. Also, the performance is 

not dependent on the noise type, or noise level.Table 4.9 Table 4.9 shows the 

relative EER reductions obtained by the proposed VAD, compared to the baseline 

methods. 
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Table 4.9. Relative percent EER reductions for the male speakers with UBM back-
end. A: Proposed VAD. B: Drugmans’s method. C: Rangachari’s 
method 

Noise 
Type 

SNR Level 
(dB) 

((B-A)/B) * 100  ((C-A)/C) * 100 

 
 

Lynx 

-10 25.70 27.74 
-5 21.38 35.49 
0 -4.72 31.95 
5 0 37.47 
10 16.61 45.41 

 
 

F16 

-10 14.55 14.28 
-5 23.77 29.43 
0 14.40 37.51 
5 -2.68 34.85 
10 10.89 44.22 

 
 

Car 

-10 4.94 33.33 
-5 19.38 43.23 
0 20.91 46.82 
5 23.15 49.05 
10 20.90 49.05 

 
 

Babble 

-10 23.35 22.98 
-5 30.22 42.84 
0 10.21 38.11 
5 1.47 31.06 
10 7.44 38.51 

 
 

Stitel 

-10 9.56 5.57 
-5 9.45 9.26 
0 -3.58 2.25 
5 3.19 19.10 
10 14.24 36.05 

 

Results for the verification experiment with the GMM-UBM back-end for 

the female speakers are given in Table 4.10 For the female data, the proposed 

VAD’s performance dropped below the baseline methods only one time, i.e. car 

noise at -10 dB overall SNR. Similar to the male data, the proposed algorithm is 

especially effective at lower SNR levels.  
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Table 4.10. Speaker verification results for the female speakers with UBM method 
in terms of percent EER (minDCF) 

Noise 
Type 

SNR Level 
(dB) 

Proposed 
Algorithm 

Drugman’s 
VAD  

Rangachari’s 
Noise Tracking  

 
 

Lynx 

-10 36.91 (0.69) 43.80 (0.82) 47.71 (0.88) 
-5 27.55 (0.52) 34.51 (0.64) 41.40 (0.78) 
0 16.67 (0.31) 18.63 (0.34) 28.86 (0.53) 
5 9.86 (0.18) 10.80 (0.20) 17.76 (0.32) 

10 6.60 (0.12) 7.61 (0.14) 11.16 (0.20) 
 
 

F16 

-10 42.13 (0.79) 47.50 (0.88) 48.73 (0.89) 
-5 33.57 (0.63) 42.78 (0.79) 46.62 (0.86) 
0 23.71 (0.45) 29.51 (0.55) 37.63 (0.69) 
5 13.63 (0.25) 15.15 (0.28) 23.93 (0.44) 

10 8.41 (0.15) 8.77 (0.16) 13.92 (0.26) 
 
 

Car 

-10 6.89 (0.12) 5.94 (0.11) 8.70 (0.16) 
-5 5.14 (0.09) 5.57 (0.10) 8.33 (0.15) 
0 4.78 (0.08) 5.51 (0.10) 8.12 (0.15) 
5 4.49 (0.08) 5.58 (0.10) 8.04 (0.15) 

10 4.56 (0.08) 5.58 (0.10) 8.12 (0.14) 
 
 

Babble 

-10 37.05 (0.69) 46.33 (0.86) 48.22 (0.89) 
-5 27.70 (0.52) 38.50 (0.70) 44.01 (0.81) 
0 18.05 (0.33) 22.84 (0.42) 33.43 (0.62) 
5 11.38 (0.21) 12.25 (0.23) 20.66 (0.38) 

10 7.25 (0.13) 8.19 (0.15) 12.18 (0.23) 
 
 

Stitel 

-10 41.55 (0.78) 45.68 (0.86) 46.84 (0.87) 
-5 30.96 (0.58) 36.26 (0.68) 40.24 (0.76) 
0 19.50 (0.36) 21.32 (0.40) 27 (0.5) 
5 10.95 (0.20) 11.89 (0.22) 16.24 (0.30) 

10 6.67 (0.12) 8.48 (0.16) 10.51 (0.20) 
 

Table 4.11 shows the relative percent EER reduction for the female data, 

compared to the baseline methods. High EER reductions, especially at the lower 

SNR levels are achieved. 
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Table 4.11. Relative percent EER reductions for the female speakers with UBM 
back-end. A: Proposed VAD. B: Drugmans’s method. C: Rangachari’s 
method 
Noise 
Type 

SNR Level 
(dB) 

((B-A)/B) * 100  ((C-A)/C) * 100 

 
 

Lynx 

-10 15.73 22.63 
-5 20.16 33.45 
0 10.52 42.23 
5 8.70 44.48 

10 13.27 40.86 
 
 

F16 

-10 11.30 13.54 
-5 21.52 27.99 
0 19.65 36.99 
5 10.03 43.04 

10 4.10 39.58 
 
 

Car 

-10 -15.99 20.80 
-5 7.72 38.29 
0 13.24 41.13 
5 19.53 44.15 

10 18.28 43.82 
 
 

Babble 

-10 20.03 23.16 
-5 28.05 37.06 
0 20.97 46 
5 7.10 44.91 

10 11.47 40.47 
 
 

Stitel 

-10 9.04 11.29 
-5 14.61 23.06 
0 8.53 27.77 
5 7.90 32.57 

10 21.34 36.53 
 

The SNR based average relative percent EER reduction rates for the 

GMM-UBM back-end are given in Table 4.12. As seen in the table, a minimum of 

12.59% average relative EER reduction was achieved with the proposed VAD. 

Also, note that improvements for the male and female speakers were similar for the 

compared methods. Hence, it is clear that the proposed VAD is also do not affected 

by the gender differences. 
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Table 4.12. SNR based relative percent EER reduction rates for the GMM-UBM 
back-end 

 MALE FEMALE 

SNR 

Level 

(dB) 

Compared to 

Drugman’s 

method 

Compared to 

Rangachari’s 

method 

Compared to 

Drugman’s 

method 

Compared to 

Rangachari’s 

method 

-10 15.62 20.78 8.02 18.28 

-5 20.84 32.05 18.41 31.97 

0 7.44 31.33 14.58 38.82 

5 5.02 34.31 10.65 41.83 

10 14.02 42.65 13.69 40.25 

Average 12.59 32.22 13.07 34.23 

 

EER values averaged over all noise types are also given as bar graphs for 

visual analysis in Figure 4.5. The proposed VAD (blue bar) remained lower than 

the baseline methods at all SNR levels. Although the Drugman’s method gave 

similar results at high SNR levels, it fell behind the proposed VAD at low SNR 

levels. 

 

 
Figure 4.5. EERs averaged over all noise types for the male data (left), and the 

female data (right) 
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Before giving the results for the i-vector back-end, it may be beneficial to 

verify that the PR was the main reason for the performance of the proposed VAD. 

To this end, the K-MC algorithm was directly applied to the filter-bank outputs, 

without grouping them with the regression. All other parts of the algorithm remain 

the same. Table 4.13 shows the results for the female data degraded by the Lynx 

noise.  

 

Table 4.13. Verification results with and without the polynomial regression, using 
the UBM back-end 

SNR Level 

(dB) 

With polynomial regression Without polynomial regression 

-10 36.91 (0.69) 43.36 (0.81) 

-5 27.55 (0.52) 34.08 (0.64) 

0 16.67 (0.31) 20.30 (0.37) 

5 9.86 (0.18) 11.38 (0.21) 

10 6.60 (0.12) 7.61 (0.14) 

 

The benefits of the PR are clearly seen in the table. Directly clustering the 

frames yielded worse verification than the Drugman’s VAD. Hence, the 

performance of the proposed VAD can be mainly attributed to the PR. 

The experimental results with the i-vector back-end are given below. Table 

4.14 shows the verification results for the male speakers. The proposed VAD 

showed superior performance, compared to the other methods. As in the UBM 

method, the proposed VAD’s performance was much better at the lower SNR 

levels, independent from the noise type. 
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Table 4.14. Speaker verification results for the male speakers with i-vector method 
in terms of percent EER (minDCF) 

Noise 
Type 

SNR Level 
(dB) 

Proposed 
Algorithm 

Drugman’s VAD  Rangachari’s Noise 
Tracking  

 
 

Lynx 

-10 30.04 (0.55) 43.57 (0.81) 43.57 (0.81) 
-5 17.58 (0.33) 28.36 (0.53) 29.51 (0.55) 
0 9.48 (0.17) 14.37 (0.27) 17.43 (0.32) 
5 5.58 (0.09) 8.25 (0.14) 11.39 (0.21) 
10 3.90 (0.06) 5.35 (0.09) 7.72 (0.14) 

 
 

F16 

-10 38.60 (0.73) 48.16 (0.89) 48.93(0.89) 
-5 27.44 (0.52) 38.07 (0.71) 37.08 (0.70) 
0 15.82 (0.30) 21.71 (0.40) 23.39 (0.43) 
5 8.48 (0.15) 11.31 (0.21) 14.98 (0.27) 
10 5.35 (0.09) 7.41 (0.13) 10.16 (0.18) 

 
 

Car 

-10 3.74 (0.06) 4.66 (0.08) 6.04 (0.11) 
-5 3.28 (0.05) 4.43 (0.07) 3.66 (0.06) 
0 2.98 (0.05) 4.20 (0.06) 5.58 (0.09) 
5 3.13 (0.05) 4.05 (0.06) 5.65 (0.09) 
10 3.13 (0.04) 3.97 (0.06) 5.58 (0.09) 

 
 

Babble 

-10 31.88 (0.60) 47.24 (0.87) 47.09 (0.88) 
-5 19.95 (0.37) 32.95 (0.61) 42.66 (0.80) 
0 10.85 (0.19) 18.19 (0.34) 20.18 (0.38) 
5 5.65 (0.10) 9.25 (0.17) 12.00 (0.22) 
10 4.35 (0.07) 6.11 (0.11) 8.56 (0.15) 

 
 

Stitel 

-10 37.53 (0.71) 46.56 (0.87) 45.87 (0.86) 
-5 22.24 (0.42) 32.11 (0.60) 31.72 (0.60) 
0 11.23 (0.20) 17.35 (0.32) 15.75 (0.29) 
5 5.81 (0.11) 9.17 (0.17) 10.24 (0.19) 
10 4.05 (0.07) 6.34 (0.11) 7.41 (0.13) 

 

Table 4.15 shows the relative improvements over the baseline methods. 

The i-vector back-end further improved the proposed VAD’s verification 

performance, compared to the UBM back-end. The Rangachari’s NT algorithm 

yielded the worst scores similar to the previous case. 
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Table 4.15. Relative percent EER reductions for the male speakers with i-vector 
back-end. A: Proposed VAD. B: Drugmans’s method. C: Rangachari’s 
method 
Noise 
Type 

SNR Level 
(dB) 

((B-A)/B) * 100  ((C-A)/C) * 100 

 
 

Lynx 

-10 31.05 31.05 
-5 38.01 40.42 
0 34.03 45.61 
5 32.36 51 

10 27.10 49.48 
 
 

F16 

-10 19.85 21.11 
-5 27.92 26 
0 27.13 32.36 
5 25.02 43.39 

10 27.8 47.34 
 
 

Car 

-10 19.74 38.08 
-5 25.95 10.38 
0 29.04 46.59 
5 22.71 44.60 

10 21.15 43.90 
 
 

Babble 

-10 32.51 32.3 
-5 39.45 53.23 
0 40.35 46.23 
5 38.92 52.91 

10 28.80 49.18 
 
 

Stitel 

-10 19.39 18.18 
-5 30.73 29.88 
0 35.27 28.7 
5 36.64 43.26 

10 36.12 45.34 
 

Results for the female data are given in Table 4.16. As expected, the 

proposed algorithm gave the best verification results, independent from the noise 

type, or noise level. Table 4.17 shows the relative EER reduction rates. 
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Table 4.16. Speaker verification results for the female speakers with i-vector back-
end in terms of percent EER (minDCF) 

Noise 
Type 

SNR Level 
(dB) 

Proposed 
Algorithm 

Drugman’s 
VAD  

Rangachari’s 
Noise Tracking  

 
 

Lynx 

-10 31.32 (0.58) 41.84 (0.78) 44.52 (0.84) 
-5 20.16 (0.38) 29.44 (0.55) 36.76 (0.86) 
0 11.82 (0.22) 15.80 (0.30) 23.93 (0.44) 
5 6.81 (0.12) 8.34 (0.15) 14.35 (0.26) 

10 4.13 (0.07) 4.85 (0.08) 9.64 (0.18) 
 
 

F16 

-10 38.79 (0.71) 46.26 (0.85) 47.71 (0.88) 
-5 27.99 (0.52) 37.63 (0.70) 42.20 (0.78) 
0 17.4 (0.33) 24.43 (0.46) 31.54 (0.59) 
5 9.93 (0.18) 11.89 (0.22) 19.29 (0.36) 

10 5.87 (0.10) 6.16 (0.11) 12.54 (0.23) 
 
 

Car 

-10 3.62 (0.06) 3.77 (0.06) 6.74 (0.12) 
-5 2.82 (0.05) 3.19 (0.05) 6.23 (0.11) 
0 2.75 (0.04) 3.12 (0.05) 6.09 (0.11) 
5 2.75 (0.04) 3.04 (0.05) 6.02 (0.11) 

10 2.75 (0.04) 3.04 (0.05) 6.09 (0.11) 
 
 

Babble 

-10 33.21 (0.63) 44.81 (0.84) 46.12 (0.84) 
-5 21.68 (0.40) 34.15 (0.63) 40.32 (0.75) 
0 12.98 (0.24) 20.08 (0.37) 27.19 (0.51) 
5 6.89 (0.12) 9.42 (0.17) 16.75 (0.31) 

10 4.06 (0.07) 5.07 (0.09) 10.73 (0.19) 
 
 

Stitel 

-10 33.21 (0.63) 46.04 (0.85) 45.17 (0.83) 
-5 26.83 (0.50) 34.37 (0.64) 35.53 (0.65) 
0 15.08 (0.28) 18.92 (0.35) 22.33 (0.42) 
5 8.12 (0.14) 10.37 (0.19) 13.77 (0.26) 

10 4.20 (0.07) 6.23 (0.11) 8.99 (0.17) 
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Table 4.17. Relative percent EER reductions for the female speakers with i-vector 
back-end. A: Proposed VAD. B: Drugmans’s method. C: Rangachari’s 
method 
Noise 
Type 

SNR Level 
(dB) 

((B-A)/B) * 100  ((C-A)/C) * 100 

 
 

Lynx 

-10 25.14 29.65 
-5 31.52 45.15 
0 25.19 50.60 
5 18.34 52.54 

10 14.84 57.15 
 
 

F16 

-10 16.14 18.69 
-5 25.61 33.67 
0 28.77 44.83 
5 16.48 48.52 

10 4.70 53.19 
 
 

Car 

-10 3.97 47.29 
-5 11.59 54.73 
0 11.86 54.84 
5 9.54 54.32 

10 9.54 54.82 
 
 

Babble 

-10 25.88 27.99 
-5 36.51 46.23 
0 35.35 52.26 
5 26.85 58.86 

10 19.92 62.16 
 
 

Stitel 

-10 27.86 26.47 
-5 21.93 24.48 
0 20.29 32.46 
5 21.69 41.03 

10 32.58 53.28 
 

Table 4.18 gives the averaged results over the noise types. The minimum 

improvement rate was increased to 20.88% with the i-vector method. The frames 

detected as speech-dominant with the proposed VAD gives the opportunity to 

estimate the i-vectors more accurately than the other methods. 
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Table 4.18. SNR based relative percent EER reduction rates for the i-vector back-
end 

 MALE FEMALE 

SNR 

Level 

(dB) 

Compared to 

Drugman’s 

method 

Compared to 

Rangachari’s 

method 

Compared to 

Drugman’s 

method 

Compared to 

Rangachari’s 

method 

-10 24.50 28.14 19.79 30.01 

-5 32.41 31.98 25.43 40.85 

0 33.16 40.13 24.29 46.99 

5 31.13 47.03 18.58 51.05 

10 28.19 47.04 16.31 56.12 

Average 29.87 38.86 20.88 45 

 

The averaged EER values are illustrated in Figure 4.6. The proposed VAD 

outperformed the other methods at each SNR level, and for both genders. The 

performance differences between the proposed VAD and the others were increased 

as the SNR level decreases. This fact indicates that the linear thresholding of the 

proposed VAD was effective against low SNRs. 

 

 
Figure 4.6. EERs averaged over all noise types for the male data (left), and the 

female data (right) 
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4.3. Real-Time Speaker Verification 
The MFCCs (13 static features and their deltas) were used as the feature 

vectors. GMMs with 16 Gaussians were trained per word. A UBM model was 

trained by pooling all available training data. The purpose of this UBM was act as a 

garbage model, which aims to detect out of the vocabulary words. An unknown 

utterance was scored with each word model, and with the UBM. If the highest 

score was obtained by the UBM, the utterance is ignored. 

To detect the speech activity in real-time, the initial 200 ms of the 

recording when the system starts to operate was used to estimate the average 

silence/noise energy of the environment. Then, the data storage was started/stopped 

as described in the previous chapter. 

As the system is intendent to be used in a project, where an elevator 

controlled via voice commands will be realized, the system’s speaker-independent 

isolated word recognition results are presented below in Table 4.19.  
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Table 4.19. Off-line test results for speaker independent isolated word recognition 
Uttered 

Word 

# of Correct 

Recognition 

# of Missed 

Recognition 

0 71 1 

1 71 1 

2 71 1 

3 70 2 

4 69 3 

5 72 0 

6 72 0 

7 72 0 

8 70 2 

9 71 1 

Evet (yes) 71 1 

Hayır (no) 70 2 

Kapan 

(close) 
71 

1 

Açıl (open) 68 4 

 

Note the results given in Table 4.19 are the off-line results, where three 

utterances for each word from twenty-four individuals were used. Only nineteen 

utterances were misclassified. Also, the UBM can effectively capture the out of the 

vocabulary words, if they are not consisted of phonemes that are very similar to the 

vocabulary words’. 

SV is also realized to recognize the author’s identity. Since the database is 

very limited, and no other speaker was enrolled to the system, a meaningful 

performance metric cannot be assigned. However, the following figures illustrate 

example results obtained by the author’s voice, and an impostor’s voice. 
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Figure 4.7. Display of an accepted speaker in real-time speaker verification 

 

Figure 4.7 shows the output displayed when the unknown speaker is 

verified. In this example, the uttered words were six, and five. The utterances were 

scored with the UBM and the claimed speaker’s model. For the first case, where 

the uttered word was six, the difference between the model scores was 0.335627. In 

the other case, the difference was 0.455849. Since the positive values indicates that 

the speaker’s model produced a higher score, the unknown speaker was verified. 
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Figure 4.8. Display of a rejected speaker in real-time speaker verification 
 

Figure 4.8 shows the example outputs for a rejected speaker. The 

differences between the models become negative in this case. Therefore, the 

unknown speaker is labeled as an imposter, and rejected.  
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5. DISCUSSION 
 

The experimental results given in the previous chapter proved that the 

proposed algorithms increased the performance of the SV systems. In this chapter, 

the results will be analyzed in a more detailed manner. 

The SMC method achieved an improved performance over the 

conventional GMM-UBM, and the state-of-the-art i-vector methods. The 

improvement is mainly due to a better estimation of the impostor models, as 

expected from the proposed algorithm.  

The algorithm can be viewed as a combination of UBM and the cohort 

methods. DET curves supported this idea. For a given FRR, the proposed algorithm 

produces lower FARs as observed from the DET curves. This fact can be seen 

especially in the short duration utterances (3- and 10-second), and for different-

handset conditions. This property makes the proposed method favorable for 

practical applications. A phone banking system, which verifies the clients 

(speakers) over phone calls, can be considered as an example. Any enrolled 

speaker may use different phones at different times, which will create a channel 

mismatch and also speakers probably want to be verified with a few words, or short 

phrases. Therefore, a short verification time is preferred. Further, the statistical 

significance of the verification performances implies that the results found in the 

experiments were not by coincidence.  

Separating the speakers into three clusters yielded the best performance 

based on the average EER reductions. Nevertheless, the performances of the others 

were close to each other. This situation is a kind of expected since only the speaker 

model means were considered for the clustering. As explained before, the speaker 

model uses the mean vectors of a mixture of the UBM if there is not enough 

speaker data related to the same mixture. 

The speaker clustering method is a simple alternative to achieve 

verification performances close, or even better, to the I-Vector method. It is 
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effective either in the matched or mismatched channel conditions. Also, it does not 

require complex training procedures or excessive storage. 

The robustness against additive noise is achieved by the novel VAD 

algorithm, which includes several parts such as PR, K-MC, speech enhancement, 

binary voting scheme with a linear thresholding. Compared to the two other 

methods, the proposed VAD achieved superior verification performances under 

different noise types and different noise levels. Also, it was shown that I-Vector 

method increased all competitors’ performances, but the proposed VAD benefits 

from the I-Vectors more than the others. 

The higher verification performance obtained by the proposed VAD could 

be due to the accurately separating the speech-dominant frames from the noisy 

signal. Further, some of the low magnitude regions should be recovered by the 

average magnitude representation if their respective group’s average magnitude 

exceeds the threshold.  

Also, some of the frames with high magnitudes speech in a few bands can 

be discarded if the noise is presented in most of the bands, which are expected to 

decline the verification performance. The utilization of a linear function as a 

threshold to determine the sufficient speech evidence was proved to be a good 

approximation to separate speech-dominant frames under noise.  

Drugman’s VAD method detects speech regions, but as a conventional 

VAD principle, does not give any hint about the usefulness of the detected frames. 

The verification performance is expected to decrease if noise is also highly affected 

the frames. It was verified that a conventional VAD framework did not produce 

higher verification performances than the proposed method in this thesis.  

According to the experimental results, Rangachari’s NT algorithm gave the 

worst results. In the implementation of this algorithm, the enhanced speech was 

treated as a clean speech. The frames having an energy value higher than the 

average energy of the utterance were used in the further process. A more suitable 

threshold to detect speech-dominant regions may increase the verification results. 
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Since the purpose of this algorithm is also to track the noise, even under the speech 

activity, the speech/speaker information may be degraded while estimating the 

noise characteristics. In fact, in (Ramı́rez et al., 2004) it is stated that while these 

kind of algorithms can quickly update the noise statistics, they usually capture 

signal energy during the speech regions. 
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6. CONCLUSION 
 

The mismatch between the training and testing utterances due to the 

channel, and additive noises has been a challenging problem that reduces the 

performances of speech processing systems. In this thesis, two different methods 

were proposed to overcome this problem for SV systems. 

One of the proposed algorithms was the SMC, which is an extension over 

the conventional GMM-UBM method. The proposed SMC algorithm divides the 

speaker space of UBM by clustering the speaker models. The cluster centroids 

were used to create cluster-dependent impostor models. Since each cluster own an 

impostor model, speakers out of a given cluster could be detected more accurately 

with this method. 

The experimental results showed that the SMC algorithm performed better 

than the GMM-UBM method at different utterance durations. Also, SV 

performance was increased for both matched, and mismatched channel conditions. 

Moreover, the SMC gave comparable SV performances against the state-of-the-art 

i-vector method. By adding a handset normalization, even better results were 

achieved. 

The performance of the proposed SMC algorithm could be mainly 

attributed to a more accurate impostor modeling. Despite the improved SV 

performance, the SMC algorithm does not require a high computational power as 

the i-vectors do. 

The other algorithm proposed in this thesis was the PR based VAD. Its 

main purpose was to estimate the average noise magnitudes in each filter 

separately, and enhance the speech information by using the spectral subtraction. 

The sufficient speech evidence thresholding was proposed to consider the noise 

bands along with the speech bands in a given frame. This threshold was used to 

extract the most useful frames, i.e. less affected from the additive noise. 
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The performance of the proposed VAD was examined under five different 

noise types, and five different SNR levels for each noise type. The proposed 

algorithm was compared to a state-of-the-art ANN based VAD, and a highly 

adaptive noise estimation algorithm. For a fair comparison, the spectral subtraction 

was used for all the methods. 

Compared to the others, the proposed VAD achieved better SV results, 

especially at low SNR levels for both male, and female speakers. The main reason 

behind its performance is the PR step. As shown in the experiments, the SV 

performance of the proposed VAD was decreased without the PR.  

Besides, the average noise magnitude could be more accurately estimated 

with the PR. Also, eliminating the noisy speech frames at the final VAD output 

decision could be the reason for the high performance at lower SNR levels. This 

elimination was achieved by the linear thresholding step of the proposed method. 

As the noise level increased, the threshold was also increased to extract the most 

useful speech information. Since the SV performance depends on the quality of the 

frames, this fact explains the better performance observed at lower SNR levels. 

Several improvements for each method can be considered in the future 

works. For the SMC algorithm, sufficient statistics for the i-vectors can be 

extracted from the impostor models, instead of the UBM.  

The linear threshold used in the proposed VAD can be replaced by an 

exponential function, other speech enhancement algorithms such as Wiener 

filtering can be added, and different clustering methods can be examined instead of 

the K-MC. 
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