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FOREWORD

This thesis is about modeling blood flow and vessel wall interaction for the stenosed
coronary arteries. Because of in vivo techniques are not enough, realistic computational
modeling and simulations can prevent lots of diseases. I want to thank a lot to my
thesis advisor M. Serdar Çelebi for all his helps, motivations and make me a part of this
research activity. I am glad to be a part of this important research group. Also thanks to
Şenol Pişkin, İbrahim Özküçük and our Computational Fluid Dynamics research group
for their support.

May 2014 Yağmur GÜLKANAT
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MODELING OF BLOOD FLOW AND VESSEL WALL INTERACTION
FOR STENOSED CORONARY ARTERIES

SUMMARY

Cardiovascular diseases, including infarction, thrombosis, atherosclerosis and aneurism,
are one of the most important health problems of the world. Because of the in vivo
techniques are not enough to prevent these diseases, computational modeling and
simulations have an important role to analyse the hemodynamic factors, like wall shear
stress, that lead to these diseases. So it is important to model the vessel and the flow and
get the velocity, pressure and wall shear stress results to compare, analyse and maybe
prevent the disease before it happens.

The aim of this study is to model blood flow and the vessel wall interaction and try
to understand the basic role and the impact of hemodynamic parameters. We have
two cases, for the first one, we will model the blood flow by assuming the vessel
wall is rigid, and for the second one we will model the blood flow and vessel wall
interaction (FSI case). For these cases, we have constructed three different geometries,
first is the vessel without stenosis, second is the vessel with stenosis and the third is
the vessel with stenosis and bypass. First, it will be shown that womersley velocity
profile gives more realistic results as an incoming blood flow condition. Second, it
will be demonstrated that non-Newtonian flow gives more realistic results compared to
Newtonian model because the blood exhibits non-Newtonian characteristics. Then for
all cases, non-Newtonian flow is used. For non-Newtonian flow, Bird-Carreau model is
used. The flow is modeled both laminar and turbulent. And for turbulent flow, k-ω shear
stress transform (STT) model is used. Hyperelastic solid mechanics model based on
Fung’s material parameters is used for the vessel wall. A nonNewtonianIcoFoam solver
is used for laminar case for rigid body, that solves incompressible non-Newtonian fluid.
For fluid-structure interaction, OpenFOAM has only icoFsiFoam solver, which we can
not use it because it does not solve non-Newtonian flow. So nonNewtonianIcoFsiFoam
solver has to be created by modifying nonNewtonianIcoFoam. And for turbulent case,
a simpleFoam solver is used for rigid body, that solves incompressible non-Newtonian
turbulent flow. For fluid-structure interaction case, simpleFsiFoam solver has to be
created by using simpleFoam solver. Results are obtained and compared for two cases.
Our results show that blood flow and vessel wall interaction gives more realistic results,
especially for the wall shear stress, where differences are up to % 50 percentage.
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TIKANIK KORONER DAMARLARDA KAN AKIŞI VE
DAMAR DUVARI MODELLEMESİ

ÖZET

Damar tıkanıklığı, kan pıhtılaşması, damar sertleşmesi ve damar genişlemesi
hastalıklarını içeren kardiyovasküler (kalp ve damarla ilgili) hastalıklar dünyadaki
en önemli sağlık sorunlarından biridir ve dünya genelinde ölümlerin çoğu bu hastalıklar
yüzünden meydana gelmektedir. Hastalar üzerinde uygulanılan teknikler bu hastalıkları
önlemekte yeterli olmadığı için, bu hastalıklara neden olan duvar kayma gerilmesi
(wall shear stress), basınç ve hız gibi hemodinamik (kan dolaşımsal) etkenleri analiz
etmekte hesaplamalı modelleme ve simülasyonlara önemli bir rol düşmektedir. Bu
nedenle damar duvarı ve kan akışını modelleyerek hız, basınç ve duvar kayma gerilmesi
sonuçlarını elde etmek, analiz etmek ve karşılaştırmak, olası sonuçları incelemek, belki
de bu hastalıkları meydana gelmeden önleyebileceği için çok önemlidir.

Bu çalışmanın amacı, kan akışı ve damar duvarı etkileşimini modelleyerek hemodinamik
etkenleri anlamaya ve analiz etmeye çalışmaktır. Bu çalışmada iki durum inmiştir, ilk
durumda damar duvarını hareketsiz kabul ederek, kan akışı modellenmiştir. İkinci
durumda ise kan akışı ve damar duvarının etkileşimi (FSI) modellenmiş ve iki durum
için aradaki hemodinamik farklılıklar incelenmiştir.

Modellemenin ilk adımı olan geometri oluşturma kısımında OpenFOAM yazılımı
kullanılarak üç farklı geometri oluşturuldu, ilk geometri tıkanık olmayan silindirik
damar, ikinci geometri ortasında simetrik bir tıkanıklık olan silindirik damar ve
üçüncü geometri ise tıkanıklık olan ve bypass uygulanmış silindirik damar şeklinde
oluşturuldu. Bu geometrilere altı yüzlü (hexahedral) ağ (mesh) atıldı. Başlangıç ve
sınır değer koşulları oluşturularak, çözücü (solver) ayarları yapıldı. Simülasyon sonucu
karşılaştırmaları için ilk olarak akışın giriş koşulu olarak Womersley hız profili ve sabit
hız profili verildi. Geometrilerin belirli bölgelerinden kesitler alınarak, belli noktalardaki
hemodinamik etkenlerin ve hızın zamana bağlı değişimi analiz edildi. Womersley hız
profilinin, gelişmiş bir akış profiline sahip olması ve üç boyutlu veri olması nedeniyle,
daha gerçekçi sonuçlar verdiği gösterildi. Bu nedenle daha sonraki simülasyonlar için
giriş hızı olarak hep Womersley hız profili verildi. İkinci adım olarak, akış koşulları
olarak Newtonian, Newtonian olmayan ve türbülanslı akış modeli kabulleri yapıldı.
Bu üç koşulun sonuçları tüm geometriler için belirli yerlerde kesitler alınarak bu
kesitlerin belli noktalarında zamana bağlı incelenerek karşılaştırıldı. Kan Newtonian
olmayan bir akış özelliğine sahip olduğu için, Newtonian olmayan akış modellemesinin
diğer modellemelere göre daha gerçekçi sonuçlar verdiği görüldü. Ayrıca tıkanıklık
ve bypassın olduğu bölgelerde akışın daha dar geometrilerden geçmesinden dolayı
dalgalanmalar meydana geldiği için, akışın Newtonian olmayan ve ve aynı zamanda
türbülanslı olan kabulunun bu bölgelerde daha gerçekçi sonuçlar verdiği ortaya konuldu.
Newtonian olmayan akış modellenirken, Newtonian olmayan Bird-Carreau model ve
parametreleri kullanıldı. Kan akışı, laminer ve türbülanslı olarak iki durumda çözüldü.
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Türbülanslı akış için k-ω kayma gerilimi taşınımı (SST) modeli ve parametreleri
kullanıldı.

Tüm bu hareketsiz damar ve kan akışı etkileşimi simülasyon sonuçları elde edildikten
sonra, hareketli damar ve kan akışı etkileşimi incelenmiştir. Akış için ayrı, damar duvarı
için ayrı geometriler oluşturulup, iki geometriye de altı yüzlü ve eşit sayıda ağ atılmıştır.
Damar duvarını modellerken, Fung’un madde parametrelerini baz alan hiperelastik
katı mekaniği modeli ve parametreleri kullanılmıştır. Başlangıç ve sınır şartları
belirlendikten sonra çözücü ayarları yapılmıştır. Hareketsiz damar modellenirken,
sıkıştırılamayan, Newtonian, laminer akışları çözen icoFoam çözücüsü, Newtonian
olmayan akışlar için, sıkıştırılamayan, laminer akışları çözen nonNewtonianIcoFoam
çözücüsü, türbülanslı akış için ise simpleFoam çözücüsü kullanılmıştır. OpenFOAM
yazılımı, akış ve hareketli damar duvarı etkileşimi modellemeleri için sadece laminer
ve Newtonian akış çözen icoFsiFoam çözücüsünü içermektedir, bu nedenle kan akışı ve
damar duvarı etkileşimi laminer ve Newtonian akış koşulları kabul ederek çözülmüştür.
FSI iki türlü bağlama (coupling) yöntemi içermektedir, bunlar gevşek bağlama (loose
coupling) ve sıkı bağlama (tight coupling) olarak adlandırılmaktadır. Bu çalışmada
kullanılan icoFsiFoam çözücüsü gevşek bağlama yöntemi ile FSI modellemesini
çözmektedir. Simülasyon için ilk deneme olarak Womersley giriş hız profili değil, sabit
giriş hız profili kullanılmıştır. Elde edilen sonuçlar, Newtonian, Newtonian olmayan
ve türbülanslı akış modellemelerin sabit giriş hız profili sonuçları ile karşılaştırılmıştır.
FSI modelinin, duvar kayma gerilmesi ve basınç hemodinamik etkenlerinde daha
gerçekçi sonuçlar verdiği gösterilmiştir. Özellikle, sabit damar modeli ve hareketli
damar modeli karşılaştırıldığında, duvar kayma gerilmeleri farkının % 50’ye kadar
çıkabildiği görülmüştür.

Bu çalışmalar, ilk adım olarak Womersley giriş profili eklenerek devam edecek ve
OpenFOAM yazılımının FSI için halihazırda bulunan çözücülerini değiştirerek devam
edecektir. Örneğin Newtonian olmayan FSI çözümlerini elde edebilmek için, Newtonian
akışı çözen icoFsiFoam çözücüsü değiştirilerek, Newtonian olmayan parametreler
eklenerek nonNewtonianIcoFsiFoam gibi, kendi problemimize yönelik yeni bir çözücü
oluşturulacaktır. Daha sonra bu çözücüye, Newtonian olmayan ve türbülanslı
olan modelleri çözen simpleFoam çözücüsü eklenerek türbülans modeli çözen
simpleFsiFoam gibi yeni bir çözücü oluşturmak gerekmektedir. Ayrıca icoFsiFoam
çözücüsü değiştirilerek sıkı bağlama (tight coupling) yapan bir çözücü oluşturup
icoFsiFoam çözücüsünden elde edilen sonuçlar ile karşılaştırılacaktır. Tüm bu çözücüler
oluşturulup simülasyonlar yapılarak sonuçlar karşılaştırılmalı ve hemodinamik etkenler
yorumlanmalıdır. Bu çalışmadan daha sonra parametrik çalışmalar yapılacaktır. Örneğin
tıkanıklığın derinliği, uzunluğu veya bypass için eklenen damarın giriş ve çıkış noktaları
ve uzunluğu gibi parametreler değiştirilerek elde edilen sonuçlar, tüm hemodinamik
faktörler için karşılaştırılacaktır ve yorumlanacaktır.

Tüm bu analizler, damar tıkanıklığı, kan pıhtılaşması, damar sertleşmesi ve damar
genişlemesi gibi kardiyovasküler hastalıkları meydana getiren etkenleri incelemek,
yorumlamak ve anlamak için yapılmaktadır. Bu analiz ve modellemeler, bu
alandaki teorik bilgilere dayanılarak uygulama olarak yapılmaktadır. Önce yapay
geometriler oluşturarak başlayan çalışmalar, son yıllarda dünya çapında yapılan
modellemelerde, hastanelerden alınan gerçek hasta verileri ile yapılmakta ve hastaya
özgü sonuçlar üretilebilmektedir. Bu şekilde hesaplamalı modellemeler ile hastalıkların
çözümünde ilerlemeler kaydedilmesi beklenmektedir. Hatta bu çalışmadaki bypass
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simülasyonlarından elde edilen sonuçların yorumlanması ile, bypass ameliyatlarında
eklenen damarın hangi noktalardan, ne kadar uzunlukta ve ne kadar açıyla eklendiğinde
daha iyi sonuçlar verdiği, kanın akışının hangi koşullarda en iyi şekilde olduğu
incelenebilir ve en iyi koşul seçilerek, hastanın ömrünü daha fazla uzatmak bu şekilde
olası olabilir. Bu nedenle hesaplamalı modelleme, simülasyon ve analiz, uygulamalı
bilimler için önemli bir araştırma dalıdır.
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1. INTRODUCTION

In this thesis, blood flow and vessel wall interaction is studied with the stenosed

coronary arteries to study the hemodynamic flow characteristics. Hemodynamic factors

are known to affect a number of cardiovascular disease, so it is important to understand

the relations between cardiovascular diseases and hemodynamic factors. Because of

the in vivo measurement techniques capabilities are not enough, computer modeling is

important. For a long time, researchers studied the blood flow by assuming the vessel

wall is rigid but then some techniques are developed and fluid-structure interactions

(FSI) are included into the simulations. Rigid and FSI models are compared and it

is showed that FSI modeling gives more realistic results. Here in this study, initially

the vessel wall is assumed as rigid and blood flow is modeled with rigid vessel wall

interaction. Then fluid-structure interaction is modeled between the blood flow and

vessel wall. In our simulations, blood flow is assumed as non-Newtonian flow based on

Carreau model and considered as mild-turbulent flow based on k-ω SST (shear strees

transform) turbulence model. Finally results are compared to show that FSI model gives

more realistic results.

1.1 Thesis Objective

Our main objective is to model the blood flow and vessel wall interaction for the

stenosed coronary arteries. Three dimensional stenosed vessel geometries are created

by OpenFOAM, a free, open source CFD software package. Womersley velocity profile

is used as input at the inlet of the stenosed vessel. The vessel wall is modeled as

hyper elastic model and its coupled effects with blood flow is included in our model.

The strong-coupling model is used for the blood flow and vessel wall interaction. A

quadrilateral mesh is used for the surface and hexahedral mesh is used for volume of

stenosis geometry. Minimum mesh size is obtained by using converging criteria for

modeling blood flow physics and for vessel wall geometry to model the actual physical

phenomena properly. By using this model, our aim is both to identify the actual flow
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dynamics parameters for resulting early defections in stenosed geometry, and to model

blood flow in rigid wall and implement fluid-structure interaction (FSI) for the blood

flow and stenosed vessel then comparing the results. By this way, it will be showed that

FSI approach gives more realistic results for the hemodynamic factors that is tested.

1.2 Literature Review

Cardiovascular disease (CVD) including infarction, thrombosis, atherosclerosis, stenosis

and aneurism is one of the most important health problem for the people all around

the world. [1–3]. And hemodynamic factors are known to affect a number of CVD

including atherosclerosis and aneurysm. Because of the in vivo measurement techniques

capabilities are not enough, computer modeling is playing an important role for a better

understanding of the relations between the CVD and hemodynamic factors. In recent

years, researchers, who wants to simulate blood flow in three-dimensional model of

arteries, have widely used the computational techniques. These techniques applied to

model blood flow in arteries examined only the velocity field, not pressure field, vessel

walls treated as rigid [4–8] or considered significantly simplified or reduced geometries

of deformable wall models [9, 10]. Also flow analysis are studied of three dimensional

arteries using realistic geometry and numerical blood flow simulation with predefined

artery movement is studied by Piskin et al. [11, 12] and three dimensional blood flow

simulation at the geometry of thirteen main arteries are studied by Aribas et al. [13].

For more details, for example in [4], Taylor et al. solved three-dimensional, transient

flow equations in deforming blood vessels with arbitrary Lagrangian-Eulerian (ALE)

description of continuous media in which the fluid and solid domains are allowed to

move to follow the distensible vessels and deforming fluid domain. And as a first

approximation, the vessel walls are treated as being rigid, in diseased vessels which

are often the subject of interest, the arteries are even less compliant and wall motion is

further reduced. And they assumed the flow as Newtonian fluid flow. For the inlet profile,

they used Womersley solution for fully developed pulsatile flow in a straight circular

cylinder. The Adaptive Modeling Language (AML), the knowledge-based engineering

and object modeling software used to create the integrated system. Quantities of interest

including pressure and velocity fields, wall shear stress distributions, and particle

residence times are studied. And they got all result by assuming the vessel wall as rigid.
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Also in [5], Oshima et al. constructed three-dimensional solid model from the computed

tomography (CT) angiography raw data. The finite element method (FEM) is used

in order to simulate flow in a complicated geometry. Blood flow is considered to

be Newtonian. The simulation is conducted to investigate hemodynamics of blood

flow in the carotid siphon under real flow conditions measured by Doppler ultrasound

velocimetry technique. Hexahedral meshes are used created by ICEM CFD software.

Pulsatile boundary condition is prescribed on the infow boundary. In reality, the

artery walls are elastic but here, the walls are assumed rigid walls with no-slip

boundary conditions. The results are visualized for a better understanding of the

flow characteristics such as distributions of the flow pattern and the wall shear stress

in the carotid siphon. See the Figure 1.1 for instantaneous distributions of velocity

in the particular cross-sections. The distribution of the wall shear stress showed high

magnitudes in the area where the carotid siphon starts to bend. The distribution varied

with the cardiac cycle, and its variation in time tended to become large in the areas of

high shear stress. It was found that secondary flow becomes quite large downstream of

the carotid siphon due to curvature. The numerical results showed that the magnitudes

of secondary flow velocity downstream area were 10-20% of that of axial velocity.

Figure 1.1: Instantaneous distributions of velocity in the particular cross-sections. [5]
(The vectors indicate the flow patterns of secondary flow while the color
contours indicate the distributions of axial velocity.)
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In [6], Cebral et al. studied on image-based methodology for constructing

patient-specific models of the cerebral circulation. This methodology combines

anatomical and physiologic imaging techniques with computer simulation technology

and illustrated with a finite element model constructed from magnetic resonance image

data of a normal volunteer. They used unstructured grids composed of tetrahedral

elements because of their geometrical flexibility, see in Figure 1.2. A CFD simulation

was then performed using the non-Newtonian model of Casson. Periodicity in the

pulsatile flow field was achieved in less than two cardiac cycles. Blood is mathematically

modeled as a time-dependent viscous incompressible fluid.

Figure 1.2: Detail of the surface of the finite-element grids generated using sources (a)
and adaptive background grids (b) to specify the element size distribution
[6].

In [7], Shojima et al. analyzed the magnitude and distribution of the WSS in and around

human middle cerebral artery (MCA) aneurysms using the method of computational

fluid dynamics (CFD). Twenty mathematical models of MCA vessels with aneurysms

were created by 3-dimensional computed tomographic angiography. Blood was assumed

to be an incompressible isothermal Newtonian fluid with a specific gravity of 1000

kg/m3 and a viscosity of 4.0x10−3N/m2 per second. The viscoelastic properties of the

vessel wall were neglected and a rigid wall with no-slip condition was applied. For

the inlet condition, a pulsatile flow with a Womersley velocity profile was simulated.

CFD calculations were performed by using their original finite-element solver with the

assumption of Newtonian fluid property for blood and the rigid wall property for the
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vessel and the aneurysm. As a result, they showed that in contrast to the pathogenic

effect of a high WSS in the initiating phase, a low WSS may facilitate the growing phase

and may trigger the rupture of a cerebral aneurysm by causing degenerative changes in

the aneurysm wall, see in Figure 1.3. The WSS of the aneurysm region may be of some

help for the prediction of rupture.

Figure 1.3: Velocity field and WSS distribution of 2 ruptured aneurysms. The velocity
field in cross-sectional plane (upper) and the WSS distribution in 3-D
geometry (lower) are shown. Black arrowheads indicate the site of
moderately elevated WSSs in the aneurysm region. Yellow arrows and
lines show the site of a markedly low WSS area and the flow stasis with
recirculating zones at the tip of the aneurysm, respectively. The numbers
near the arrows indicate the magnitude of WSSs at the sites [7].

In [8], Salmon et al. studied about saccular aneurisms, see Figure 1.4. They assumed

vessel wall to be rigid and used the finite element method for numerical simulations,

performed in three-dimensional aneurisms. A geometrical model is obtained to be

meshed for a finite element use. The pulsatile flow of incompressible Newtonian blood

is illustrated by numerical simulations carried out in two saccular aneurism types, a

side- and a terminal-aneurism. High pressure zones are observed in the aneurism cavity,
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especially in the terminal one. As a result, they suppose that there is a risk of wall

rupture where the aneurism pressure is high, assuming that the within-wall high stress

concentration is correlated to high pressure.

Figure 1.4: Streamlines in the terminal aneurism (A1 model, left) and in side aneurism
(A2M3 model, right) at phase 2 [8].

After all studies that assume the vessel wall rigid, to find more realistic results,

researchers studied more about fluid-structure interaction (FSI) because the blood

flow depends on the arterial geometry, and the deformation of the arterial wall depends

on the blood flow. The equations governing the blood flow and arterial deformation need

to be solved simultaneously, with proper kinematic and dynamic conditions coupling

the two physical systems.

In [9], Tezduyar et al. applied the stabilized space–time fluid–structure interaction

(SSTFSI) techniques developed by the Team for Advanced Flow Simulation and

Modeling (T?AFSM) to FSI modelling in arterial fluid mechanics. Test computations

are presented for cerebral and abdominal aortic aneurysms and carotid-artery bifurcation,

where the arterial geometries used in the computations are close approximations to

the patient-specific image-based data, see in Figure 1.5. Test computations with

the continuum element are carried out for both linearly elastic and hyperelastic

(Mooney–Rivlin) materials. With the test computations presented, they showed that the

new SSTFSI techniques can successfully deal with different types of arterial problems

and structural models.
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Figure 1.5: Carotid-artery bifurcation. Flow field at various instants. Velocity vectors
coloured by magnitude [9].

And also in [10], Bazilevs et al. presented a fully-coupled monolithic formulation

of the fluid-structure interaction of an incompressible fluid on a moving domain

with a nonlinear hyperelastic solid. The arbitrary Lagrangian–Eulerian description

is utilized for the fluid subdomain and the Lagrangian description is utilized for the

solid subdomain. Particular attention is paid to the derivation of various forms of

the conservation equations; the conservation properties of the semi-discrete and fully

discretized systems; a unified presentation of the generalized-α time integration method

for fluid-structure interaction; and the derivation of the tangent matrix, including the

calculation of shape derivatives. A NURBS-based isogeometric analysis methodology

is used for the spatial discretization and three numerical examples are presented which

demonstrate the good behavior of the methodology, see in Figure 1.6.

Under normal conditions, wall deformability doesn’t significally change the velocity

field and because of coupling blood flow and vessel wall was very difficult to solve,

the rigid-wall approximation widely used for a long time as it’s seen in [9]. But this

approximation is valid when the wall motion is small. And when the deformation is

larger, rigid-wall approximation gives us the wrong results of the hemodynamic factors

as wall shear stress (WSS), one of the most studied quantity because it is connected
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Figure 1.6: Flow in a patient-specific abdominal aorta with aneurysm. (a)
Patient-specific imaging data; (b) Skeleton of the NURBS mesh; (c)
Smoothed and truncated NURBS model and mesh. In c, every NURBS
patch is assigned a different color [10].

with the origination and progression of CVD [14, 15].

In [14], Shaaban et al. describes the importance of wall shear stress. As a result, they

established the relation between wall shear stress and the development and progression

of atherosclerosis. They showed that, low and oscillating wall shear stress seems to favor

the development of atherosclerosis as determined by the inverse relation between wall

shear stress and arterial wall thickness. Wall shear stress also seems to depend on age,

blood pressure, and body mass index. The value of wall shear stress is subject-specific

and vessel-specific. Wall shear stress varies along the same vessel and around the vessel

circumference.

In [15], Sforza et al. review recent progress on the basic mechanisms of aneurysm

formation and evolution, with a focus on the role of hemodynamic patterns, see

in Figure 1.7. As a result, they showed that the role of blood-flow physiological

parameters regulating aneurysm morphology and natural history is poorly understood.

It is necessary to model intra-aneurysmal hemodynamics using realistic aneurysm

geometries because aneurysm geometry is one of the most important factors determining

aneurysm flow patterns and WSS distributions that influence aneurysm progression.

Most models tend to oversimplify the complex flow patterns observed in aneurysms

in vivo. The difficulty of developing reliable in vitro and animal models has
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hampered an accurate evaluation of those physiologic parameters. Furthermore, better

understanding of the mechanisms of aneurysmal growth requires the study of the

interaction among hemodynamics, wall mechanobiology, wall biomechanics, and

contacts with the peri-aneurysmal environment (PAE) structures. This will help improve

patient evaluation and treatment.

Figure 1.7: (a) Aneurysms with concentrated inflow jet and regions of locally elevated
wall shear stress (WSS) (top panels) and with diffuse inflow jet and WSS
uniformly lower than the parent artery (bottom panels). (b) Aneurysms
with large (top panels) and small (bottom panels) impingement regions
compared to the aneurysm size [15].

The high WSS have important effects to the formation of aneurisms [16–18], while the

low WSS may lead to the growth and rupture of them [7, 19, 20].

We can obtain such hemodynamic quantities of interest from pure computational fluid

dynamics (CFD) simulations. However, very recent studies showed that the elastic

motion of the arterial wall has a significant effect on the hemodynamic quantities of

interest [9, 10, 21–37].

In [22], Wolters et al. studied on abdominal aortic aneurysm (AAA). In order to

facilitate the incorporation of fluid/structure interaction (FSI) in the assessment of AAA

wall stress, a method for generating patient-specific hexahedral finite element meshes

of the AAA lumen and wall has been presented. The method of mesh generation

provides a flexible, semi-automated approach for generating patient-specific hexahedral

meshes of the AAA lumen and wall with pre-defined element distributions. The
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combined fluid/solid mesh allows for simulations of AAA blood dynamics and AAA

wall mechanics and the interaction between the two. And the presented method provides

a basis for the development of models for studying the role of blood/wall interaction

in processes associated with AAA formation such as wall adaptation and thrombus

formation. Results are in Figure 1.8.

Figure 1.8: Wall shear stress in the deforming geometry at end-diastole (a), peak-systole
(b), late-systole (c), end-systole (d), and mid-diastole (e) in the fourth
period [22].

In [23], A NURBS (non-uniform rational B-splines)-based isogeometric fluid–structure

interaction formulation, coupling incompressible fluids with non-linear elastic solids,

and allowing for large structural displacements, is developed by Bazilevs et al. and

applied to problems of arterial blood flow modeling and simulation. See Figure 1.9.

The approach is compared with representative benchmark problems, yielding very good

results. Computation of a patient-specific abdominal aorta is also performed, giving

qualitative agreement with computations by other researchers using similar models.

Torii et al. have a lot of studies about FSI. For example in [24], they carried out a

computational fluid–structure interaction analysis of the blood flow in arteries with

cerebral aneurysm. They have observed that the arterial-wall deformation has a

significant influence on the WSS distribution, which is an important factor in creation,

growth and rupture of cerebral aneurysm. This influence depends on whether the large

displacements and the large WSS occur in the same area. Their simulations illustrate

that the arterial geometry plays an important role on that. See Figure 1.10. In [25], they

developed a computer modeling technique for cardiovascular hemodynamic simulations.
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Figure 1.9: Patient-specific abdominal aorta mesh consisting of 52,420 quadratic
NURBS elements [23].

With this modeling technique, patient-specific 3D geometry of an artery can be analyzed.

They take into account some of the important factors in human body for the purpose

of demonstrating in vivo situations in a virtual world. The interaction between the

blood flow and the deformation of the arterial walls is a factor that they are specifically

focusing on. For such fluid–structure interactions, they have developed a computer

modeling tool based on the deforming-spatial-domain/stabilized space–time (DSD/SST)

formulation. This simulation tool is applied to a patient-specific model under pulsatile

blood flow conditions. The simulations show that the flow behavior with compliant

arterial walls is different from what we see with rigid arterial walls in Figure 1.11 and

Figure 1.12. Consequently, the distribution of the wall shear stress on the compliant

arterial walls is significantly different from that on the rigid arterial walls.

In [26], they applied the technique to a patient-specific arterial model showed the effect

of wall deformation on the WSS distribution, Figure 1.13. They compute the interaction

between the blood flow and the arterial wall for a patient-specific cerebral aneurysm

with various hemodynamic conditions, such as hypertension. They focus on the effects

of hypertensive blood pressure on the interaction and the WSS, because hypertension

is reported to be a risk factor in rupture of aneurysms. The transient behavior of the

blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal
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Figure 1.10: Flow velocity in Model 2 (left: elastic wall, right: rigid wall). (a)
Cutting plane for Section A. (b) Velocity vectors at Section A. (c) Velocity
magnitude at Section B. (d) Velocity magnitude at Section C [24].

Figure 1.11: Transient behavior of the velocity distribution in Section A for the elastic
wall model [25].
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Figure 1.12: Transient behavior of the velocity distribution in Section A for the rigid
wall model [25].

wall, are significantly affected by hypertension. The results imply that hypertension

affects the growth of an aneurysm and the damage in arterial tissues.

Figure 1.13: Instantaneous principal-stress distributions [26].

In [28], Bazilevs et al. focus on a patient-specific configuration in which the

left ventricular assist device (LVAD) is implanted in the descending thoracic aorta.
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They perform computations for three pump settings and report our observations for

several quantities of hemodynamic interest. They present the first three-dimensional,

patient-specific fluid–structure interaction simulation of LVADs.

In [29], fluid–structure interaction (FSI) simulations of a cerebral aneurysm with the

linearly elastic and hyper-elastic wall constitutive models are carried out to investigate

the influence of the wall-structure model on patient-specific FSI simulations by Torii et

al. High flow velocities due to the interaction between the blood flow and aneurysmal

wall are seen to be independent of the wall model. The present results indicate that both

linearly elastic and hyper-elastic models can be useful to investigate aneurysm FSI.

In [33], a new anisotropic material model of abdominal aortic aneurysm (AAA) was

applied to FSI numerical models of patient based AAA geometries for calculating the

ensuing stresses developing within the aneurismal wall in order to develop a more

reliable predictor for its risk of rupture by Rissland et al.. Results clearly indicate

larger stress values for the anisotropic material and a broader range of stress values, as

compared to the isotropic material. While the locations of high and low stresses are

consistent between both material models, the differences between the anisotropic and

isotropic models become pronounced at large values of strain–a range that becomes

critical when the AAA risk of rupture is imminent.

In [34], a fully coupled fluid-structural simulation approach is reviewed, and main

aspects of mesh generation in support of patient-specific vascular FSI analyses are

presented. Quantities of hemodynamic interest such as wall shear stress and wall

tension are studied to examine the relevance of FSI modeling as compared to the rigid

arterial wall assumption. They demonstrate the importance of including the flexible

wall modeling in vascular blood flow simulations by performing a comparison study

that involves four patient-specific models of cerebral aneurysms varying in shape and

size.

In [35], a computational vascular fluid–structure interaction framework for the

simulation of patient-specific cerebral aneurysm configurations is presented by Bazilevs

et al. A new approach for the computation of the blood vessel tissue prestress is also

described. Simulations of four patient-specific models are carried out, and quantities of

hemodynamic interest such as wall shear stress and wall tension are studied to examine
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the relevance of fluid–structure interaction modeling when compared to the rigid arterial

wall assumption. The blood flow is governed by the Navier–Stokes equations of

incompressible flow posed on a moving domain. The Arbitrary Lagrangian–Eulerian

(ALE) formulation is used. They demonstrate that flexible wall modeling plays an

important role in accurate prediction of patient-specific hemodynamics. Discussion of

the clinical relevance of our methods and results is provided.

The rigid-wall assumption overestimates WSS, precludes pressure wave propagation in

blood vessels, and most importantly, disregards stresses in the wall tissue. Wall tissue

stress information is critical for the assessment of rupture risk, because rupture occurs

when wall stress exceeds its strength [38,39]. As a result, in order to determine accurate

criteria for predicting aneurysm formation, growth and rupture, it is important to model

vascular flow in conjunction with vessel wall deformation, which leads to coupled

fluid–structure interaction (FSI) modeling. The mechanical behavior of blood vessel

tissue is well described by means of large-deformation three-dimensional solid or shell

modeling [40, 41]. Modeling the fluid–structure interaction (FSI) between the blood

and the arterial wall is a challenging task. The research in this field is developing fast

concerning both modeling aspects and computational efficiency. Taking into account

the compliance of the vessels can be achieved by introducing a 3D or 2D elastic

structure, using a Lagrangian [42], Eulerian [43] or Arbitrary Lagrangian Eulerian

(ALE) formulation [44–46]. Studies of Tezduyar [47, 48] and Farhat [49, 50] describes

the development and applications of ALE methods. In recent years, significant progress

has been made in solving blood flow problems in deformable domains using ALE

methods [51–54]. More knowledge and theoretical analysis of the ALE method can

be found in [55, 56]. But considering large models, ALE methods are computationally

expensive and not very robust. There are also other formulations that includes the wall

deformation based on immersed boundary method [57, 58], transpiration techniques

based on linearization principles [59, 60] or the coupled momentum method [21, 61].

As it is seen from other studies, rigid wall assumption gives us wrong results. So

implementing fluid-structure interaction is inevitable to obtain realistic results. So here

in this study, the rigid wall modeling and the fluid structure modeling will be compared.

Like in most of other studies, it will be used Womerley inlet profile. The blood flow

will be assumed as non-Newtonian flow based on Carreau model and will be considered
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as mild-turbulent flow based on k-ω SST (shear strees transform) turbulence model.

The vessel wall will be modeled as hyperelastic model. The loose-coupling model will

be used for the blood flow and vessel wall interaction. Aim of this study is to obtain

hemodynamic factors and comparing them in two cases, rigid wall assumption and

fluid-structure coupling, and showing that FSI case gives us the more realistic results

than the rigid vessel wall assumption.
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2. BLOOD FLOW MODELING

2.1 Introduction

Blood flow modeling is an important issue to prevent cardiovascular disease (CVD) as

the details has been given in the literature review section. To understand the details of

blood flow modeling, blood features, types of flows, boundary conditions, turbulent

flow mechanics and modeling techniques has to be well understood.

2.2 Constituents of Human Blood

Blood accounts for 7% of the human body weight, with an average density of

approximately 1060 kg/m3, very close to pure water’s density of 1000 kg/m3. The

average adult has a blood volume of roughly 5 liters (1.3 gal), which is composed of

plasma and several kinds of cells. These blood cells (which are also called corpuscles or

"formed elements") consist of erythrocytes (red blood cells, RBCs), leukocytes (white

blood cells), and thrombocytes (platelets). By volume, the red blood cells constitute

about 45% of whole blood, the plasma about 54.3%, and white cells about 0.7%.

Whole blood (plasma and cells) exhibits non-Newtonian fluid dynamics; its flow

properties are adapted to flow effectively through tiny capillary blood vessels with

less resistance than plasma by itself. In addition, if all human hemoglobin were free

in the plasma rather than being contained in RBCs, the circulatory fluid would be too

viscous for the cardiovascular system to function effectively.

Blood is circulated around the body through blood vessels by the pumping action of the

heart. In humans, blood is pumped from the strong left ventricle of the heart through

arteries to peripheral tissues and returns to the right atrium of the heart through veins.

It then enters the right ventricle and is pumped through the pulmonary artery to the

lungs and returns to the left atrium through the pulmonary veins. Blood then enters the

left ventricle to be circulated again. Arterial blood carries oxygen from inhaled air to

all of the cells of the body, and venous blood carries carbon dioxide, a waste product
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Figure 2.1: Blood features.

of metabolism by cells, to the lungs to be exhaled. However, one exception includes

pulmonary arteries, which contain the most deoxygenated blood in the body, while the

pulmonary veins contain oxygenated blood.

2.3 Navier-Stokes Equations

In physics, the Navier–Stokes equations describe the motion of fluid substances. These

equations arise from applying Newton’s second law to fluid motion, together with the

assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional

to the gradient of velocity) and a pressure term - hence describing viscous flow.

Following equation is the Navier-Stokes equation tensor notation.

ρ
∂

∂ t
(u j)︸ ︷︷ ︸

Local rate of
change

of j-directed
momentum

+ρuk
∂

∂xk
(u j)︸ ︷︷ ︸

Advection of
j-directed

momentum

= − ∂P
∂x j︸ ︷︷ ︸

j-directed
pressure
gradient

force

+ µ
∂2

∂xi∂xi
(u j)︸ ︷︷ ︸

j-directed
force due to
fluid stress

(i.e., viscous force)

+ ρ f j︸︷︷︸
j-directed
body force

(e.g., gravity)

(2.1)

2.3.1 Velocity field

The Navier–Stokes equations dictate not position but rather velocity. A solution of the

Navier–Stokes equations is called a velocity field or flow field, which is a description of

the velocity of the fluid at a given point in space and time. Once the velocity field is
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solved for, other quantities of interest (such as flow rate or drag force) may be found.

This is different from what one normally sees in classical mechanics, where solutions

are typically trajectories of position of a particle or deflection of a continuum. Studying

velocity instead of position makes more sense for a fluid; however for visualization

purposes one can compute various trajectories.

2.3.2 Turbulence

Turbulence is the time-dependent chaotic behavior seen in many fluid flows. It is

generally believed that it is due to the inertia of the fluid as a whole: the culmination

of time dependent and convective acceleration; hence flows where inertial effects are

small tend to be laminar (the Reynolds number quantifies how much the flow is affected

by inertia). It is believed, though not known with certainty, that the Navier–Stokes

equations describe turbulence properly.

The numerical solution of the Navier–Stokes equations for turbulent flow is extremely

difficult, and due to the significantly different mixing-length scales that are involved

in turbulent flow, the stable solution of this requires such a fine mesh resolution that

the computational time becomes significantly infeasible for calculation (see Direct

numerical simulation). Attempts to solve turbulent flow using a laminar solver typically

result in a time-unsteady solution, which fails to converge appropriately. To counter

this, time-averaged equations such as the Reynolds-averaged Navier–Stokes equations

(RANS), supplemented with turbulence models, are used in practical computational

fluid dynamics (CFD) applications when modeling turbulent flows. Some models

include the Spalart-Allmaras, k-ω (k-omega), k-ε (k-epsilon), and SST models which

add a variety of additional equations to bring closure to the RANS equations. In this

study, mild-turbulent k-ω SST model is used.

2.3.3 Applicability

Together with supplemental equations (for example, conservation of mass) and well

formulated boundary conditions, the Navier–Stokes equations seem to model fluid

motion accurately; even turbulent flows seem (on average) to agree with real world

observations.
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The Navier–Stokes equations assume that the fluid being studied is a continuum (it is

infinitely divisible and not composed of particles such as atoms or molecules), and is not

moving at relativistic velocities. At very small scales or under extreme conditions, real

fluids made out of discrete molecules will produce results different from the continuous

fluids modeled by the Navier–Stokes equations.

Another limitation is simply the complicated nature of the equations. Time tested

formulations exist for common fluid families, but the application of the Navier–Stokes

equations to less common families tends to result in very complicated formulations

which are an area of current research. For this reason, these equations are usually

written for Newtonian fluids. Studying such fluids is "simple" because the viscosity

model ends up being linear; truly general models for the flow of other kinds of fluids

(such as blood) do not.

2.3.3.1 Continuity equation

Regardless of the flow assumptions, a statement of the conservation of mass is generally

necessary. This is achieved through the mass continuity equation, given in its most

general form as:
∂ρ

∂ t
+∇ · (ρv) = 0 (2.2)

or, using the substantive derivative:

Dρ

Dt
+ρ(∇ ·v) = 0 (2.3)

2.4 Viscous and Inviscid Flow

Viscous problems are those in which fluid friction has significant effects on fluid motion.

The Reynolds number, which is a ratio between inertial and viscous forces, can be used

to evaluate whether viscous or inviscid equations are appropriate to problem.

Stokes flow is flow at very low Reynolds numbers, Re«1 , such that inertial forces can

be neglected compared to viscous forces.

On the contrary, high Reynolds numbers indicate that the inertial forces are more

significant than the viscous (friction) forces. Therefore, we may assume the flow to be

an inviscid flow, an approximation in which we neglect viscosity completely, compared

to inertial terms.
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This idea can work fairly well when the Reynolds number is high. However, certain

problems such as those involving solid boundaries, may require that the viscosity be

included. Viscosity often cannot be neglected near solid boundaries because the no-slip

condition can generate a thin region of large strain rate (known as Boundary layer)

which enhances the effect of even a small amount of viscosity, and thus generating

vorticity. Therefore, to calculate net forces on bodies (such as wings) we should use

viscous flow equations.

Figure 2.2: Laminar flow of an incompressible fluid of viscosity η through a tube of
length l and radius r.

Blood is a viscous flow so, viscous flow conditions will be used in this study. In the

Figure 2.3 below shows viscosity curves for two apparently healthy males.

Figure 2.3: Human blood viscosity varies dynamically during each cardiac cycle. At
systole, blood is thinner, while at diastole, blood is 2-5 times thicker.

2.5 Laminar and Turbulent Flow

Turbulence is flow characterized by recirculation, eddies, and apparent randomness.

Flow in which turbulence is not exhibited is called laminar. It should be noted, however,
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that the presence of eddies or recirculation alone does not necessarily indicate turbulent

flow—these phenomena may be present in laminar flow as well. Mathematically,

turbulent flow is often represented via a Reynolds decomposition, in which the flow is

broken down into the sum of an average component and a perturbation component.

Figure 2.4: Laminar vs. turbulent flow in a pipe.

It is believed that turbulent flows can be described well through the use of

the Navier–Stokes equations. Direct numerical simulation (DNS), based on the

Navier–Stokes equations, makes it possible to simulate turbulent flows at moderate

Reynolds numbers.

When the air flow is smooth and the velocity rises evenly through the boundary layer,

the air flow is known as “laminar flow.” Uneven flow through the boundary layer is

called “turbulent flow.” Turbulent flow creates a larger boundary area and thus more

drag than laminar flow. The boundary layer will tend to have laminar flow initially as

the air moves across or down the object.

Figure 2.5: Reynolds number for laminar and turbulent flow in a pipe.
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Laminar and turbulent flows can be characterized and quantified using Reynolds number.

Reynolds number for a flow in a pipe or tube is:

Re =
ρvDH

µ
=

vDH

ν
=

QDH

νA
(2.4)

where DH is the hydraulic diameter of the pipe; its characteristic travelled length, L,

(m). Q is the volumetric flow rate (m3/s). A is the pipe cross-sectional area (m2). v is

the mean velocity of the fluid (SI units: m/s). µ is the dynamic viscosity of the fluid

(Pa.s or N. s/m2 or kg/(m.s)). ν is the kinematic viscosity (ν = µ /ρ) (m2/s). ρ is the

density of the fluid (kg/m3).

When units are considered Re is dimensionless. It should be noted that Reynolds number

directly proportional to velocity and inversely proportional to viscosity.

2.5.1 K-ω sst turbulence model

The k-ω SST turbulence model (Menter 1993) is a two-equation eddy-viscosity model

which has become very popular. The shear stress transport (SST) formulation combines

the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary

layer makes the model directly usable all the way down to the wall through the viscous

sub-layer, hence the SST k-ω model can be used as a Low-Re turbulence model without

any extra damping functions. The SST formulation also switches to a k-ε behaviour

in the free-stream and thereby avoids the common k-ω problem that the model is too

sensitive to the inlet free-stream turbulence properties. Authors who use the SST k-ω

model often merit it for its good behaviour in adverse pressure gradients and separating

flow. The SST k-ω model does produce a bit too large turbulence levels in regions with

large normal strain, like stagnation regions and regions with strong acceleration. This

tendency is much less pronounced than with a normal k-ε model though.

Kinematic Eddy Viscosity:

νT =
a1k

max(a1ω,SF2)
(2.5)
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Turbulence Kinetic Energy:

∂k
∂ t

+U j
∂k
∂x j

= Pk−β
∗kω +

∂

∂x j

[
(ν +σkνT )

∂k
∂x j

]
(2.6)

Specific Dissipation Rate:

∂ω

∂ t
+U j

∂ω

∂x j
=αS2−βω

2+
∂

∂x j

[
(ν +σωνT )

∂ω

∂x j

]
+2(1−F1)σω2

1
ω

∂k
∂xi

∂ω

∂xi
(2.7)

Closure Coefficients and Auxilary Relations:

F2 = tanh

[max

(
2
√

k
β ∗ωy

,
500ν

y2ω

)]2


Pk = min
(

τi j
∂Ui

∂x j
,10β

∗kω

)

F1 = tanh


{

min

[
max

( √
k

β ∗ωy
,
500ν

y2ω

)
,

4σω2k
CDkωy2

]}4


CDkω = max
(

2ρσω2
1
ω

∂k
∂xi

∂ω

∂xi
,10−10

)
φ = φ1F1 +φ2(1−F1)

α1 =
5
9
,α2 = 0.44

β1 =
3

40
,β2 = 0.0828

β
∗ =

9
100

σk1 = 0.85,σk2 = 1

σω1 = 0.5,σω2 = 0.856 (2.8)

2.6 Newtonian and Non-Newtonian Fluids

A non-Newtonian fluid is a fluid whose flow properties differ in any way from those

of Newtonian fluids. Most commonly the viscosity (the measure of a fluid’s ability

to resist gradual deformation by shear or tensile stresses) of non-Newtonian fluids

is dependent on shear rate or shear rate history. Some non-Newtonian fluids with

shear-independent viscosity, however, still exhibit normal stress-differences or other

non-Newtonian behavior. Many salt solutions and molten polymers are non-Newtonian
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fluids, as are many commonly found substances such as ketchup, custard, toothpaste,

starch suspensions, paint, blood, and shampoo. In a Newtonian fluid, the relation

between the shear stress and the shear rate is linear, passing through the origin, the

constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid,

the relation between the shear stress and the shear rate is different and can even be

time-dependent. Therefore, a constant coefficient of viscosity cannot be defined.

Figure 2.6: Shear/strain relationship for a Newtonian fluid.

In this thesis, blood flow will be modeled as non-Newtonian fluid. Blood density will

be taken as 1060 kg/m3 and non-Newtonian dynamic viscosity will be denoted by the

Carreau model.

2.6.1 Non-Newtonian Carreau model

The Carreau model attempts to describe a wide range of fluids by the establishment of

a curve-fit to piece together functions for both Newtonian and shear-thinning (n < 1)

non-Newtonian laws. Viscosity, µeff, depends upon the shear rate, γ̇ , by the following

equation:

The Carreau blood model constitutive law and its parameters will be as following:

µeff(γ̇) = µinf +(µ0−µinf)
(

1+(λ γ̇)2
) n−1

2 (2.9)
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where µ0, µinf, λ and n are material coefficients that:

µ0 = viscosity at zero shear rate (Pa.s)

µinf = viscosity at infinite shear rate (Pa.s)

λ = relaxation time (s)

n = power index

Bird Carreau model parameters that used in this study are in the table:

Table 2.1: Bird-Carreau model constitutive law parameters

µ0 3.03E-02
µin f 3.67E-03
Power law index n 3.37E-01
λ 9.73E-01

Following figure shows the variation of viscosity with shear rate according to the

Carreau model.

Figure 2.7: Variation of viscosity with shear rate according to the Carreau model.

More detailed studies about non-Newtonian and Newtonian blood viscosity models are

in [62].
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3. VESSEL WALL

3.1 Introduction

One of the most important components of the circulatory system is the blood vessels.

In order to better understand how the vessels within the circulatory system work, we

must understand the basic structure of the vessels.

There are three major types of blood vessels found in the body; arteries, veins and

capillaries. Arteries are thicker, containing muscular and elastic tissue making the vessel

strong and resilient, capable of withstanding the high blood pressure that accompanies

the bursts of blood released from the heart into the arteries. Arteries are efferent vessels,

meaning they are responsible for carrying blood away from the heart. Veins are much

more flaccid, containing less muscular and elastic tissue and are capable of expanding

greatly to accommodate increased blood pressure and flow. Lastly, capillaries are much

smaller vessels which serve as the site for transfer of nutrients, hormones and substances

between the tissues and bloodstream.

Figure 3.1: Structure of blood vessels walls.
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Arteries and veins are similar to one another in the composition of their walls. Arteries

and veins both contain three layers known as tunics. By thinking of these tunics as

layers of clothing (much like the type of "tunic" most are familiar with) these three

layers are easier to remember.

The first layer of the vessel wall is known as the tunica interna. This layer is sometimes

referred to as the tunica intima. The tunica interna is the innermost of the tunics,

forming the circular space through which blood flows. The tunica interna is composed

of simple squamous epithelium known as the endothelium. The endothelium acts as a

semi-permeable membrane allowing the passage and retention of certain substances.

The endothelium found within the tunica interna is also responsible for the secretion of

hormones that directly control and influence vasomotion; the dilation and constiction

of the vessels. Additionally, the endothelium is also capable of repelling the blood

cells and other substances within the blood due to the flat, slick nature of the cells it

is composed of. This repulsion allows the blood to flow freely through the vessels

without sticking to the sides of he vessel walls or forming clots. If the endothelium is

damaged, however, the blood will respond, forming a clot and sending immune cells to

the damaged site.

The second layer of a blood vessel is known as the tunica media. The tunica media is the

thickest of the three layers and is composed of smooth muscle, collagen, and in certain

vessels, elastic tissue. The tunica media is a strengthening layer, providing a vessel with

the ability to withstand the force of increased blood pressure, thus preventing vessels

from rupturing when blood volume or pressure increases. Additionally, the muscles

found within the tunica media is responsible for carrying out vasomotion, signalled by

the hormones secreted by the endothelium of the tunica interna.

The final layer of the vessel walls is known as the tunica externa, the most external

layer of the vessel walls. The tunica externa is sometimes referred to as the tunica

adventitia. The tunica externa is composed of loose connective tissue, responsible

for strengthening and reinforcing the vessel even further. The tunica externa often

converges with neighboring vessels, organs and tissues. The tunica externa is also

responsible for securing the placement of the vessel within the body among neighboring

tissues and structures.
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Capillary walls differ from the walls of arteries and veins, as capillary walls are only

one endothelial cell thick, allowing for the passage of substances through this wall. This

especially thin wall makes the capillaries much more fragile and susceptible to injury,

however, the thin nature of the capillaries is necessary for the transfer of substances

between the bloodstream and surrounding tissues.

3.2 Governing Equations

Solids and fluids are both continua, whose behaviour can be described by the same

continuity and momentum equations. There are no simplifying assumptions in the

momentum and continuity equations for fluids and solids and both are treated as

compressible. Only the constitutive laws are different. Therefore, this will be presented

separately. Details can be found in most continuum mechanics test books, such as

Malvern (1969) and Segel (1977). The constitutive law for vessel wall presented here

assumes an incompressible hyperelastic material by using Fung’s material parameters.

3.2.1 Constitutive equations for hyperelastic material

In physics and engineering, a constitutive equation is a relation between two physical

quantities (especially kinetic quantities as related to kinematic quantities) that is specific

to a material or substance, and approximates the response of that material to external

stimuli, usually as applied fields or forces. They are combined with other equations

governing physical laws to solve physical problems; for example in fluid mechanics the

flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field,

or in structural analysis, the connection between applied stresses or forces to strains or

deformations. Constitutive relations are modified to account for the rate of response

of materials and their non-linear behavior. The first constitutive equation (constitutive

law) was developed by Robert Hooke and is known as Hooke’s law. It deals with the

case of linear elastic materials. In its simplest form, the law defines the spring constant

constant (or elasticity constant) k in a scalar equation, stating the tensile/compressive

force is proportional to the extended (or contracted) displacement x:

Fi =−kxi (3.1)
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meaning the material responds linearly. Equivalently, in terms of the stress σ , Young’s

modulus E, and strain ε (dimensionless):

σ = E ε (3.2)

In general, forces which deform solids can be normal to a surface of the material (normal

forces), or tangential (shear forces), this can be described mathematically using the

stress tensor:

σi j =Ci jkl εkl 
 εi j = Si jkl σkl (3.3)

where C is the elasticity tensor and S is the compliance tensor.

One solid-state deformation in elastic material is, hyperelastic deformation. A

hyperelastic material is a type of constitutive model for ideally elastic material for

which the stress-strain relationship derives from a strain energy density function. The

hyperelastic material is a special case of a Cauchy elastic material. Hyperelasticity

provides a means of modeling the stress-strain behavior of materials. Ronald Rivlin

and Melvin Mooney developed the first hyperelastic models, the Neo-Hookean and

Mooney–Rivlin solids. Many other hyperelastic models have since been developed.

Other widely used hyperelastic material models include the Ogden model and the

Arruda–Boyce model. The Fung’s material will be used in this study as hyperelastic

material.

3.2.1.1 Fung-elastic material

Fung developed a constitutive equation for preconditioned soft tissues which is

W =
1
2

[
q+ c

(
eQ−1

)]
(3.4)

with

q = ai jklEi jEkl Q = bi jklEi jEkl (3.5)

quadratic forms of Green-Lagrange strains Ei j and ai jkl , bi jkl and c material constants.
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ω is the strain energy function per volume unit, which is the mechanical strain energy

for a given temperature.

The Fung-model, simplified with isotropic hypothesis (same mechanical properties in

all directions) is written as follows. This form of equation is written in respect of the

principal stretches (λi):

W =
1
2

[
a(λ 2

1 +λ
2
2 +λ

2
3 −3)+b

(
ec(λ 2

1 +λ 2
2 +λ 2

3−3)−1
)]

, (3.6)

where a, b and c are constants.

An experiment is conducted by [63] M. S. Celebi to obtain material coefficients of a

soft tissue using Inverse Finite Element Method.
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4. FLUID-STRUCTURE COUPLING MODELS

4.1 Introduction

Fluid–structure interaction (FSI) is the interaction of some movable or deformable

structure with an internal or surrounding fluid flow. Fluid–structure interactions can be

stable or oscillatory. In oscillatory interactions, the strain induced in the solid structure

causes it to move such that the source of strain is reduced, and the structure returns to

its former state only for the process to repeat. There are two major FSI coupling in the

literature, these are called monolithic and partitioned.

4.2 Monolithic

In monolithic coupling also called strongly-coupled, governing equations for both

fluid and structure subdomains are cast in terms of the same primitive variables. In

other words, a new governing equations are derived by using both fluid equations

and structure equations which would then be applied on the same level of discretized

mesh interface. Consequently, the equations of fluid, structure and mesh moving are

solved simultaneously at the same time step. In order to accomplish that Arbitrary

Lagrangian-Eulerian (ALE) formulation can be used. To use ALE formulation in a FSI

problem, advanced mesh update techniques must be deployed in order to adapt changing

boundaries of the domains as well as depending on the discretization parameters,

special predictor-multicorrector algorithms and interface projection techniques for

non-matching fluid and structure interface discretizations must also be implemented.

For further information about ALE and its FSI techniques, see (Bazilevs, Takizawa, &

Tezduyar, 2013e), (Bazilevs, Takizawa, & Tezduyar, 2013c) and (Bazilevs, Takizawa, &

Tezduyar, 2013b).

Due to fully-coupled fashion, the strongly-coupled solvers are more robust than

partitioned-coupled solvers. However, strongly-coupled solver must be designed from

scratch by virtually precluding fluid and structure solvers. There are three categories
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of coupling techniques in strongly-coupled FSI methods which are block-iterative,

quasi-direct and direct-coupling. In all three coupling techniques, iterations are

performed within a time-step to simultaneously converge the solutions of all the

equations involved. For further informations about the techniques, see (Bazilevs,

Takizawa, & Tezduyar, 2013a)

4.3 Partitioned

In partitioned coupling, both fluid and structure domains are modeled and discretized

seperately. On the fluid part, traditional CFD techniques are used for the flow properties.

On the structure part, finite element on structural mechanics are applied. Therefore,

existent fluid solvers and structure solvers can be used which make this approach very

flexible and desirable. However, stress and displacement terms must be transfered

across the domain interface. Moreover, this coupling between fluid solver and structure

solver must produce accurate results without deteriorating the convergence of the system

too much. Meeting with those criteria are the hardest part of partitioned coupling in

FSI. There are two main techniques under partitioned-coupling: loose-coupling and

tight-coupling.

4.3.1 Loose-coupling

In loose-coupling, the equations of fluid mechanics, structural mechanics and mesh

moving are solved sequentially as in Figure 4.1.

As can be seen from the Figure 4.1,

• Dynamic mesh solver updates the mesh according to the displacement at the structure

part and velocity at the interface is extrapolated from the rate of displacement.

• Fluid mechanics equations are solved by using that received values from the

extrapolation.

• Structural mechanics equations with the updated fluid mechanics interface traction

are solved.

• By using the new displacements from structure solver, mesh moving algorithm

updates the meshes.
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Figure 4.1: Loose-Coupling solver sequence.

Although this solver looks very promising, there is a significant stability issue that must

be handled carefully. The origin of the problem is if the following equality holds or not?

up = u (4.1)

In other words, the new fluid forces are calculated by using the predicted(extrapolated)

displacements instead of the actual displacements due to the mesh update at the end of

the solver. Consequently, an artificial added mass problem is encountered during the

solutions. Inaccuracy of the extrapolation approximation of the displacements, fluid

flow solver encounters with an added mass input to the system which in turn affects

the convergence significantly. Moreover, decreasing time step does not improve the

stability derived from the added mass. According to the previous works, when

fluid density
solid density

>= 1 (4.2)

significant instabilities on the solution were observed.

4.3.2 Tight-coupling

In tight-coupling, an outer fixed-point iteration is used in order to ensure the convergence

at every given time-step. In order to accomplish this, well-known Aitken Method which
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is an under-relaxation factor injected into the fixed-point interation as can be seen

from the Figure 3 is used. By using an under-relaxation multiplier the effects of the

extrapolation is minimized so that the stability and the rate of convergence are improved.

The algorithm of the tightly-coupled solver can be described as:

• Solve the mesh equation

• Transfer interface velocity to fluid solver

• Solve the flow equations

• Transfer interface pressures into structure solver

• Solve the structure equations

• Restrict new interface deformations by using under-relaxation

• Check the residuals between the last time step and the new one

Figure 4.2: Tight-Coupling solver sequence with fixed point iteration with
under-relaxation.
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5. NUMERICAL SIMULATIONS AND RESULTS

5.1 Introduction

In this section, a cylindrical pipe without stenosis, artificially generated stenosed

coronary artery and bypassed artery are constructed. Uniform and Womersley incoming

flows are used for Newtonian, non-Newtonian and turbulent flows.

5.2 Pre-processing for Simulations

Pre-processing is very important part of the blood flow simulation process. Because if

geometry and mesh does not constructed good enough, the results will be wrong and

even flow won’t move inside of the geometry. For obtaining good and converged results,

mesh have to be constructed good, solver settings have to be set properly, boundary

conditions have to be physical and the models that we select to solve the problem has to

be the right one.

Firs of all geometry and mesh will be constructed. Our first case is cylindrical

pipe without stenosis, second case is cylindirical pipe with stenosis and third case

is cylindrical stenosed pipe with bypass. For all cases, we will compare the results for

newtonian and non-newtonian models. Also for velocity profile, the constant inlet value

and Womersley velocity profile are used and compared.

All geometries are constructed in OpenFOAM software, and then meshed with

blockMesh utility inside of the software.

IcoFoam solver is used for Newtonian flow model, nonNewtonianIcoFoam solver is

used for non-Newtonian flow model, simpleFoam solver is used for turbulent flow

model and finally icoFsiFoam is used for fluid-structure interaction model.

The geometry and mesh for the fluid part of cylindrical pipe without stenosis is in

Figure 5.1 and 5.2. Figure 5.3 shows the mesh of solid part for fluid structure interaction

model.
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Figure 5.1: Cylindrical pipe without stenosis.

Figure 5.2: Inlet of the cylindrical pipe.

Figure 5.3: Mesh of solid part for FSI.
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The geometry of stenosed pipe is in Figure 5.4.

Figure 5.4: Stenosed pipe.

The mesh of stenosed pipe is in Figure 5.5.

Figure 5.5: Grid for the stenosis reginion.

The details of the geometry and mesh of stenosed pipe with and without bypass are

presented in Figure 5.4, 5.5, 5.6, 5.7. and 5.8.

Figure 5.6: Numerical grid used for the stenosed bypass simulation.
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Figure 5.7: Inlet of the stenosed pipe with bypass.

Figure 5.8: Intersection region as seen from the inside of the broad branch.

As it’s seen from the figures, hexahedral meshes are used and icoFOAM solver is used

for solving the case.

5.3 Test Cases

5.3.1 Fixed model

5.3.1.1 Flow in cylindrical pipe without stenosis

In this case, first of all, constant inlet value = 1 m/s and Womersley velocity profile

are compared. After that Womersley velocity profile is used for all simulations,

40



because it gives more realistic results. Secondly, blood flow is assumed Newtonian and

non-Newtonian. Results are compared for both cases.

Figure 5.9 shows the velocity and Figure 5.10 show the pressure on the pipe.

Figure 5.9: Velocity in cylindrical pipe without stenosis.

Figure 5.10: Pressure in cylindrical pipe without stenosis.

Figure 5.11 shows the residuals of the flow for constant inlet velocity 1 m/s. It can ben

concluded that flow velocities are computed with an acceptable accuracy and converged

to an exact value.

Figure 5.11: Residuals of the flow.

When we change the constant inlet velocity value to Womersley velocity profile, we get

more realistic results. Womersley velocity profile is shown in Figure 5.12 and Figure

5.13 shows the residuals of the flow.
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Figure 5.12: Womersley velocity inlet profile.

Figure 5.12 is the physiological flow rate in the artery for two cardiac cycles. The unit

of flow rate is cm3/s and the time is dimensionless (dividing real time by one cardiac

cycle period, T = 0.743s). (Senol Piskin, M. Serdar Celebi, 2013. [64])

Figure 5.13: Residuals of the flow.

When we take a slice in the middle of the cylinder, we can see the difference between

the constant inlet value and womersley velocity profile. Figure 5.14 and 5.15 show the

differences between velocities.

When we compare Figure 5.14 and Figure 5.15, we understand that first one is

undeveloped flow and the second one is developed flow. Blood flow is developed

flow, so Womersley velocity profile will give more realistic results for our problem.

Because of that, Womersley velocity profile will be used for all simulations.
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Figure 5.14: Velocity profile for constant value inlet.

Figure 5.15: Velocity profile for womersley inlet profile.

Now, the difference between Newtonian, non-Newtonian and turbulent flow will be

compared for the flow in cylindrical pipe without stenosis. A slice will be taken in the

middle of the cylinder as in Figure 5.16. Then for a point that we choose on the top

of the slice like in Figure 5.17, the pressure and wall shear stress distribution will be

compared for Newtonian, non-Newtonian and turbulence models. Because of this point

is on the wall and on the wall, velocity value is zero because of the no-slip boundary

condition, the velocity profile can not be compared at this point. So velocity distribution

results will be compared for Newtonian, non-Newtonian and turbulence models at a

point that is chosen at the center of this slice.
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Figure 5.16: Taking a point at the center of the slice that took in the middle of the
vessel.

Figure 5.17: The point on the top of the slice (pink one).

For non-Newtonian flow, blood density will be taken as 1060 kg/m3 and non-Newtonian

dynamic viscosity will be denoted by the Carreau model. The Carreau blood model

constitutive law and its parameters will be as following:

µe f f (γ) = µin f +(µ0−µin f )(1+(λ γ̇)2)
n−1

2 (5.1)

Table 5.1: Bird-Carreau model parameters.

µ0 3.03E-02
µin f 3.67E-03
Power law index n 3.37E-01
λ 9.73E-01

Figure 5.18, Figure 5.19 and Figure 5.20 show the difference between wall shear stress,

pressure and velocity of Newtonian, non-Newtonian and turbulent flow models.
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Results show that, there is a good agreement in velocity and shear stress distributions.

But, on the other hand, there is an important difference (% 200-250) in pressure

distributions between Newtonian and non-Newtonian models.

Figure 5.18: Comparison of wall shear stress distribution.

Figure 5.19: Comparison of pressure distribution.
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Figure 5.20: Comparison of velocity distribution.

5.3.1.2 Flow in cylindrical stenosed pipe

For the stenosed pipe, results are compared at three different slice points like in Figure

5.21.

Figure 5.21: Slices that analyzed on the stenosed pipe.

At these slices a point has chosen on the top and on the middle of the slices. And

at these points, hemodynamic factors like wall shear stress, velocity and pressure is

calculated. Calculation and simulation results are below shown in figures.

Results showed that for Slice1, there is a good agreement in velocity and wall shear

stress, like in cylindrical pipe without stenosis. But at Slice2 and Slice3 the differences

are getting bigger. Especially at Slice3, after stenosis, there is a big difference between

wall shear stress distibutions because of the vortexes of flow. Also for all slices, there is

an important difference (% 200-250) in pressure distributions between Newtonian and

non-Newtonian models.
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Figure 5.22, Figure 5.23 and Figure 5.24 show the results for the Slice 1.

Figure 5.22: Comparison of wall shear stress distribution.

Figure 5.23: Comparison of pressure distribution.

Figure 5.24: Comparison of velocity distribution.
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Figure 5.25, Figure 5.26 and Figure 5.27 show the results for the Slice 2.

Figure 5.25: Comparison of wall shear stress distribution.

Figure 5.26: Comparison of pressure distribution.

Figure 5.27: Comparison of velocity distribution.

48



Figure 5.28, Figure 5.29 and Figure 5.30 show the results for the Slice 3.

Figure 5.28: Comparison of wall shear stress distribution.

Figure 5.29: Comparison of pressure distribution.

Figure 5.30: Comparison of velocity distribution.
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After comparing flow results for three slices at cylindrical stenosed pipe, now we will

compare the results for cylindrical stenosed pipe with bypass.

5.3.1.3 Flow in cylindrical stenosed pipe with bypass

And for the stenosed pipe with bypass, results are compared at ten different slice points

like in the Figure 5.31.

Figure 5.31: Slices that are analyzed on the stenosed pipe.

Figure 5.32, Figure 5.33 and Figure 5.34 show the results for Slice 1 of bypass.

Figure 5.32: Comparison of wall shear stress distribution.
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Figure 5.33: Comparison of pressure distribution.

Figure 5.34: Comparison of velocity distribution.

Results for Slice1 showed that wall shear stress distributions are close to each other with

Newtonian and non-Newtonian models like in Slice1 for stenosed pipe case. Because

of that there is not a stenosis before Slice1, there is nothing to disturb the flow. So

wall shear stress and velocity distributions are in a good agreement. On the other

hand, still there is a big difference between pressure distributions for Newtonian and

non-Newtonian models.
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Figure 5.35, Figure 5.36 and Figure 5.37 show the results for the Slice 2.

Figure 5.35: Comparison of wall shear stress distribution.

Figure 5.36: Comparison of pressure distribution.

Results for Slice2 showed that, the difference between wall shear stress distributions

for Newtonian and non-Newtonian models are getting bigger. Because of Slice2 is after

the head of bypass part, flow creates vortexes after seperating to bypass vessel. So it is

acceptable that wall shear stress differences are getting bigger. Velocity distributions are

in a good agreement for all models. And still there is a big difference between pressure

distributions for Newtonian and non-Newtonian models.
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Figure 5.37: Comparison of velocity distribution.

Figure 5.38, Figure 5.39 and Figure 5.40 show the results for the Slice 3.

Results for Slice3 showed that like in Slice1, there is a good agreement between wall

shear stress and velocity distributions for Newtonian and non-Newtonian models. It

is because, like in the Slice1, there is nothing to disturb the flow and create large

vortexes. And for the pressure distribution, there is still a big difference (% 200-250)

for Newtonian and non-Newtonian models. It can be because of non-Newtonian

parameters affects the pressure more than Newtonian model.

Figure 5.38: Comparison of wall shear stress distribution.
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Figure 5.39: Comparison of pressure distribution.

Figure 5.40: Comparison of velocity distribution.

Now we will analyze the simulation results for Slice4. It is the slice at the stenosis part

like Slice2 in stenosed vessel geometry. It is expected to see that wall shear stress and

velocity distributions difference get bigger than Slice3 in this case.

And also like in all simulation results, it is expected to have big differences for pressure

distributions for Newtonian, non-Newtonian and turbulence models.

Figure 5.41, Figure 5.42 and Figure 5.43 show the results for the Slice 4.
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Figure 5.41: Comparison of wall shear stress distribution.

Figure 5.42: Comparison of pressure distribution.

Results for Slice4 showed that the differences between the wall shear stress and velocity

distributions are bigger than Slice3, as expected. Because of the geometry of vessel is

getting narrower at the stenosed part, it is expected to see that differences are getting

bigger. And still there is a big difference for pressure distribution (% 200-250) for

Newtonian, non-Newtonian and turbulence models.
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Figure 5.43: Comparison of velocity distribution.

Figure 5.44, Figure 5.45 and Figure 5.46 show the results for the Slice 5.

At Slice5, it is expected to see the results like in Slice3 at the stenosed vessel geometry.

Because of the Slice5 is after the stenosed part, the wall shear stress and velocity

distributions are expected to get bigger. Because of the vortexes after stenosis.

Figure 5.44: Comparison of wall shear stress distribution.
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Figure 5.45: Comparison of pressure distribution.

Figure 5.46: Comparison of velocity distribution.

Results for Slice5 showed that difference between wall shear stress and velocity

distributions are getting bigger than the results of Slice4. It is because of that Slice5 is

after the stenosis part and at stenosis part, velocity is getting bigger and create some

vortex parts. So we see that there is a large difference between the wall shear stress

distributions. And still there is a large difference between the pressure distributions for

Newtonian, non-Newtonian and turbulence models as expected.
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Figure 5.47, Figure 5.48 and Figure 5.49 show the results for the Slice 6.

Figure 5.47: Comparison of wall shear stress distribution.

Figure 5.48: Comparison of pressure distribution.

Results for Slice6 showed that difference between wall shear stress and velocity

distributions are not bigger than the results of Slice5, but still there is a large difference.

It is because of that Slice6 is after the Slice5 where the differences are largest and before

the Slice7 that near the toe of the bypass. So it is expected to see that differences are big

for the wall shear stress and velocity distributions. And for the pressure distributions,

still there is a big difference (% 200-250) for Newtonian and non-Newtonian models.
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Figure 5.49: Comparison of velocity distribution.

Figure 5.50, Figure 5.51 and Figure 5.52 show the results for the Slice 7.

Slice7 is at the place after the toe of the bypass. So it is expected to see that the large

differences between the wall shear stress and velocity distributions are getting smaller

at this slice.

Figure 5.50: Comparison of wall shear stress distribution.
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Figure 5.51: Comparison of pressure distribution.

Figure 5.52: Comparison of velocity distribution.

Results for Slice7 showed that differences between the wall shear stress and velocity

distributions are getting smaller as expected. The reason is as explained above, Slice7

is after the place of the toe of the bypass. So the large differences that comes from the

Slice6 is getting smaller. Also still the difference between the pressure distributions are

big (% 200-250) like in other simulation results between Newtonian and non-Newtonian

models.
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Figure 5.53, Figure 5.54 and Figure 5.55 show the results for the Slice 8.

Slice8 is at the place after the head of the bypass, so we expect that flow create vortex

parts here and it will make a big differences between the wall shear stress and velocity

distribution.

Figure 5.53: Comparison of wall shear stress distribution.

Figure 5.54: Comparison of pressure distribution.
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Figure 5.55: Comparison of velocity distribution.

Results for Slice8 showed that the difference between the wall shear stress and the

velocity distribution is getting bigger as expected. And it is because of that the place

of Slice8 as explained above. Also there are still a big difference between the pressure

distributions (% 300-500) for Newtonian, non-Newtonian and turbulence models.

Figure 5.56, Figure 5.57 and Figure 5.58 show the results for the Slice 9.

Figure 5.56: Comparison of wall shear stress distribution.
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Figure 5.57: Comparison of pressure distribution.

Figure 5.58: Comparison of velocity distribution.

The results for Slice9 showed that the differences between the wall shear stress and the

pressure distributions are getting smaller than the results of Slice8. It is because of that

the Slice8 was near the head of the bypass but there is not a place to disturb the flow

near the Slice9. And Slice9 is at the middle of the bypass vessel, so the differences are

getting smaller. And still the difference of the pressure distribution is large (% 500-700)

for Newtonian, non-Newtonian and turbulence models.
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Figure 5.59, Figure 5.60 and Figure 5.61 show the results for the Slice 10.

Slice10 is the last slice and it is on the place before the toe of the bypass. So it is

expected that the differences between the wall shear stress and the pressure distribution

is getting bigger.

Figure 5.59: Comparison of wall shear stress distribution.

Figure 5.60: Comparison of pressure distribution.
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Figure 5.61: Comparison of velocity distribution.

Results for the Slice10 showed that there is a big difference between the wall shear

stress and velocity distributions for the Newtonian and non-Newtonian models. It is

because of the reason that the place of the Slice10, that we explained above. And for

pressure distribution, difference between the Newtonian and non-Newtonian models are

still very large (% 200-300).

All simulation results for the slices showed that, near the stenosis or bypass parts,

differences between the wall shear stress and velocity distributions are getting bigger

than other parts because of the flow creates vortex parts. And for all simulations

we showed that pressure distributions have very large differences between the

Newtonian, non-Newtonian and turbulence models. It is because of the parameters

of non-Newtonian models that Newtonian model does not have. All results for the

simulations are acceptable and as we expected.

Now we will create blood flow and vessel wall interaction model and we will compare

the results for this case. We aim to show the simulation results for wall shear stress,

velocity and pressure distributions and compare them with the blood flow and rigid wall

interaction model.

5.3.2 FSI model

Two different meshes are constructed for FSI case, as shown in Figure 5.2 and 5.3

at pre-processing part. And Figure 5.16 shows the place where we take the slice for
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the calculations, it is in the middle of the vessel. And the point is taken at the top

of the slice for comparing wall shear stress and pressure distributions for Newtonian,

non-Newtonian and turbulence models. Initial and boundary conditions are set carefully.

Blood flow-vessel wall interaction case is studied only for fixed inlet velocity profile.

Wall shear stress and pressure distributions results are obtained and compared with

the rigid wall case for Newtonian model, Turbulence & non-Newtonian model and

Fluid-Structure Interaction model. Figure 5.62 and 5.63 show the results.

Figure 5.62: Comparison of wall shear stress distribution.

Figure 5.63: Comparison of pressure distribution.
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Results of the fluid structure interaction model for the chosen slice showed that there is

a difference between wall shear stress distribution for Newtonian, non-Newtonian and

turbulence models. FSI results are close to Newtonian results. It can be because of FSI

flow is Newtonian and there is not stenosis at the geometry to disturb the flow. So these

results are acceptable and as expected. And also for pressure distribution, there is a

large difference between Newtonian, non-Newtonian and turbulence models. Between

FSI and Newtonian model, there is % 6 difference and between FSI and turbulence

model, there is % 14 difference. Results show that FSI model give more realistic results

compared to Newtonian, non-Newtonian and turbulence models.

Because of the inlet velocity profile is constant, the difference between the velocity

profiles could not be compared. After implementing the Womersley velocity profile,

results for the velocity distribution will be compared for all models too.

Studies are ongoing for implementing Womersley inlet profile for FSI. And also FSI

solvers are being modified for non-Newtonian and turbulence flows. Then all results

will be compared for all models. Then parametric studies will be continued, for example

the depth or length of the stenosis and the distance and length of the bypass. After

that simulation results will be compared for all parameters and the best options of

parameters will be found for the patient.

5.4 Results and Discussions

We modeled the blood flow in coronary artery with and without stenosis and bypassed

and without bypassed. All results are compared for Newtonian, non-Newtonian,

turbulent flow. We showed the importance of non-Newtonian flow assumption in

the blood flow simulations. Bird-Carreau model is used for non-Newtonian flow. Our

results reveal that near the stenosis region, there is a strong need for low-Reynolds

number turbulence model such as k−ω SST or kkl-omega transient RANS Model.

We used k−ω SST model for turbulent case. For better simulation of bypass model,

moving geometry (blood flow-vessel wall interaction) is required due to the fact that

blood wave pressure distorts the vessel wall, vessel wall constrained the blood flow near

the boundary layer. So we implemented loose-coupling fluid-structure interaction model

between blood flow and vessel wall. Results showed that fluid structure interaction gives

more realistic results, especially for wall shear stress. Fluid structure interaction model
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is implemented for the cylindrical pipe without stenosis and constant velocity profile is

used. Womersley velocity profile implementation to FSI for OpenFOAM studies are

still in progress. And also fluid structure interaction model will be implemented for

stenosed and bypass cases. Strongly-coupled model will be implemented and compared

with loosely-coupled model. OpenFOAM has only icoFsiFoam solver for FSI models,

so icoFsiFoam solver has to be modified and non-Newtonian and turbulence models has

to be implemented to solve these cases and compare with the rigid wall case.

For future study, there is a need for wide range of tests for different stenosis and bypass

parameters as shown in Figure 5.64, 5.65 and 5.66. And also there is a need for wide

range of tests for flow conditions such as different velocities and viscosities (fixed and

FSI cases).

Figure 5.64: L: Length of the vessel, l: Length of stenosis region.

Figure 5.65: d1: Diameter of the vessel, d2: Diameter of stenosis region, l1: Length of
stenosis region, l2: Length of stenosis.
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Figure 5.66: L: Length of bypass, a1,a2: Angle of bypass inlet and outlet, d1,d2:
Distance of bypass inlet and outlet from the stenosis region.

Also different low-Reynolds turbulence models should be extensively tested. For

non-Newtonian and turbulence models in FSI simulations, the solvers in OpenFOAM

should be modified and the solvers developed for non-FSI case should be included in

the FSI models.
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6. CONCLUSION

In this study, three different artificial vessel geometries are constructed by using

OpenFOAM sofware, first one is a cylindrical pipe without stenosis, second one is

a cylindrical pipe with stenosis and the third one is a cylindrical stenosed pipe with

bypass. Hexahedral mesh is created for all cases. Inlet velocity profile is implemented

for constant and Womersley inlet profile and results are compared. Results showed that

Womersley profile is a developed flow and for blood flow it gives more realistic results.

So we used Womersley profile for all simulations. Flow is assumed as Newtonian,

non-Newtonian and turbulent flow. For Newtonian model, icoFoam solver, which

is a transient solver for incompressible, laminar flow of Newtonian fluids, is used.

Bird-Carreau model is used for non-Newtonian flow and nonNewtonianIcoFoam solver,

which is a transient solver for incompressible, laminar flow of non-Newtonian fluids,

is used. k-ω SST turbulence model is used for turbulent flow and simpleFoam solver,

which is a steady-state solver for incompressible, turbulent flow, is used. After boundary

conditions and solvers are set carefully, the results of the simulations are obtained. All

results are compared for Newtonian, non-Newtonian and turbulent flow models. Results

showed that non-Newtonian model gives more realistic results than Newtonian model,

but near the stenosis regions, turbulent model gives more realistic results because of at

this regions, flow creates vortexes.

After these results, blood flow-vessel wall interaction model is studied. Fluid and solid

meshes are created as hexahedral and boundary conditions are set between fluid and

solid part. Inlet velocity profile is assumed as constant. icoFsiFoam solver is used which

solves fluid-structure interaction by loose-coupling model. After the simulation results,

wall shear stress and pressure values are compared with Newtonian, non-Newtonian

and turbulence models. Results showed that FSI coupling approach gives more realistic

results for the hemodynamic factors. Especially for wall shear stress and pressure

distributions, it is analyzed that there is a large difference (% 6-20) between the

fluid-structure interaction and rigid wall assumption models.
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Studies are still ongoing for cylindrical stenosed pipe and cylindrical stenosed pipe

with bypass. And also Womersley velocity implemention is being studied. But still

there is a need of wide range of tests for different stenosis and bypass parameters. Also

icoFsiFoam solver has to be modified and non-Newtonian and turbulence models has to

be included to this solver.
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