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NONLINEAR IMAGING OF DIELECTRIC OBJECTS BURIED UNDER A
ROUGH SURFACE

SUMMARY

Imaging of buried objects in a layered medium is a frequently encountared remote
sensing problem and the use of microwaves for this purpose has been dealt with in
many studies. In most of these studies, the inaccessible layer where an unknown
object is presumed to be buried is illuminated by microwave antennas located in the
accessible layer, and the scattered electromagnetic field that arises from the
interaction of the incident wave with the object, as well as with the layer that hosts
the object, is collected by receiving antennas. In the literature, there is a wide range
of approaches to determine the geometrical and/or the material properties of the
buried object by using the collected data. The vast majority of these approaches
consider layered media with planar interfaces. On the other hand, although the
problem is very important from both theoretical and practical points of view, very
few studies deal with the imaging of dielectrics buried under a rough surface, and
none of these studies apply one of the well accepted nonlinear inversion techniques
to the problem despite the fact that most of these techniques are capable of
reconstructing the dielectric profiles of inhomogeneous, even multiple, objects
having sizes and complex permittivities in a relatively wide range.

In this thesis,a nonlinear tomographic approach for microwave imaging of dielectric
objects buried under a rough surface is presented. The imaging problem is first
reduced to the solution of a coupled system of integral equations which requires the
knowledge of the Green’s function of the layered background medium with rough
interfaces. The required Green’s function, as well as the contribution of the
roughness to the total field, is calculated numerically via the Buried Object Approach
(BOA) which suggests considering the roughness as a series of objects located
alternately on both sides of a planar interface between two layers. The Green's
function of the layered medium with planar interfaces, which is required in the
application of the BOA, is accelerated through implementation of the two-level
Discrete Complex Images Method (DCIM). Then the system of integral equations is
solved for the contrast function associated with the object via the standard Contrast
Source Inversion (CSI) method which is proven to be one of the most successful
nonlinear inversion techniques when the Green's function of the background medium
is available.By making use of the strength of nonlinear inversion and fast and
accurate computation of the Green's function of the layered medium with rough
interfaces, superior results have been achieved in a feasible computational time for
dielectrics having constitutive parameters in a considerably wide range even if they
are inhomogeneous or buried under substantially large rough surfaces.
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ENGEBELI BiR YUZEY ALTINA GOMULU DIELEKTRIK CiSIMLERIN
DOGRUSAL OLMAYAN YONTEMLERLE GORUNTULENMESI

OZET

Katmanli bir ortama gdmiilii cisimlerin mikrodalgalar kullanilarak tespit edilmesi
uzaktan algilama uygulamalarimin 6nemli bir smifin1 olusturmaktadir. Jeofizik
etlitler, yeralti1 borularinin ve tiinellerin belirlenmesi, tahribatsiz kontrol, tibbi
gorlintiilleme ve mayin tespit ¢alismalar1 bu uygulamalarin baglica 6rnekleri olup,bir
¢ogunda, bilinmeyen cismin bulundugu erisilemeyen katman, erisilebilen bir
katmana yerlestirilen mikrodalga antenleriyle aydinlatilir ve gelen dalganin cisim ve
cismin bulundugu katman ile etkilesimi sonucu ortaya ¢ikan elektromagnetik alan
erisilebilir katmandaki alic1 antenler kullanilarak 6lgiiliir. Olgiilen bu alan,gdémiilii
cismin geometrik veya elektromagnetik 6zelliklerinin farkli yontemler araciligiyla
belirlenmesi i¢in kullanilir. Bu dogrultuda, sentetik aciklikli radar, dogrusal
ornekleme, gradyan tabanli optimizasyon yoOntemleri, genetik ve memetik
algoritmalar kullanilarak pek ¢ok calisma yapilmistir. Ancak, bu c¢aligmalarin
neredeyse tamaminda katmanlar arasindaki ylizeyin diizlemsel oldugu durum goz
ontine almmistir. Oysa ki pratikte, belirlenmek istenen cismin gomiilii oldugu
katmanin yiizeyi c¢ogunlukla engebelidir ve bu durum problemi ciddi Olcilide
etkileyerek goriintilleme islemine yeni giicliikler getirir. Hem teorik, hem de pratik
acidan son derece Onemli olmasima ragmen literatiirde engebeli bir ylizey altina
gomiilli cisimlerin ele alindig1 az sayida ¢alisma mevcuttur. Bu ¢calismalarin 6nemli
bir boliimiiniin amac1 gémiilii dielektrik veya metalik cisimlerin algilanmasiyla
sinirhiyken,daha az sayidaki bir grup calismadametalik cisimlerin goriintiilenmesi
icin yontemler Onerilmektedir. Gomiilii dielektrik cisimlerin geometrik ve
elektromagnetik 06zelliklerinin birlikte belirlenerek gortintiillenmesi problemiyle
ilgilenen calismalar ise yok denecek kadar azdir. Bu ¢alismalarda da gorece diisiik
dielektrik  sabitine sahip homojen cisimlerin hafif bir engebe altinda
goriintiilenebildigi smirli sonuglar elde edilmistir. Bildigimiz kadariyla, genis bir
kompleks dielektrik sabiti araliginda,farkli geometrik ozelliklere sahip homojen
olmayansagicilarin goriintiilenmesinde oldukg¢a etkin yontemler olduklar1 bilinen
dogrusal olmayan inversiyon yontemlerinin engebeli ylizey altina gomiilii dielektrik
cisimlerin goriintiilenmesi probleminde kullanildig1 bir ¢aligma bulunmamaktadir.

Bu tez caligmasinda, goriintiilenmek istenen cismin bulundugu uzaya ait Green
fonksiyonunun bilinmesi halinde en etkili dogrusal olmayan inversiyon
yontemlerinden birisi olarak kabul edilen Kontrast Kaynak Inversiyon (Contrast
Source Inversion, CSI) yonteminin engebeli yilizeyler altina gdmiilii dielektrik
cisimlerin goriintiilenmesi probleminde kullanilmasi saglanmistir.Bu amagla, veri ve
cisim denklemleri olarak adlandirilan ve bilinen bir uzayda bulunan cismin dielektrik
ozelliklerini cismin iizerinde alinan bir integral araciligiyla 6l¢iim bolgesindeki ve
cismin tiizerindeki elektromagnetik alanla iliskilendiren Fredholm tipi integral
denklemler, goriintiilenmek istenen cismin disinda kalan biitiin yapiyr arka plan
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olarak kabul ederek yazilmistir. Bu durumda cismin goriintiilenmesi problemi, bu iki
integral denklemden, sagicinin dielektrik parametrelerinin fonksiyonu olan ve
kontrast fonksiyonu adi verilen bir fonksiyonun elde edilmesi olarak ifade
edilebilecek bir ters sa¢ilma problemidir. Boylesi bir problem, kotii kurulmus (ill-
posed) ve dogrusal olmayan(nonlinear) bir problemdir ve literatiirde belirli
yaklasikliklara ve dogrusallagtirmalara dayali farkli ¢6ziim ydntemleri mevcuttur.
Kontrast Kaynak Inversiyon yontemi (CSI) bu amacgla onerilmis olan ve aranan
fonksiyonunbir hata fonksiyonelini minimize etmek {izere iteratif olarak
giincellendigi ve bir degere yakinsanmasi halinde iterasyonun sonlandirildigr bir
dogrusal olmayan optimizasyon uygulamasidir. Burada oncelikle integralin iginde
carpim seklinde bulunan kontrast ve alan ifadeleri kontrast kaynagi adiyla tek bir
degisken olarak tanimlanir. Veri denklemi bu tek degiskene gore dogrusal olmakla
birlikte, denklemin kotii kurulmus olmasi nedeniyle herhangi bir yontem ile kontrast
kaynag icin elde edilecek ¢dziimiin gercek ¢oziimden uzak olmasi beklenir. Ote
yandan, denklem sisteminin gergek bilinmeyenleri olan kontrast ve cismin iizerindeki
alan agisindan problemi ele aldigimizda da, cismin {izerindeki alanin kendisinin
kontrasta bagli olmasi nedeniyle problemin dogrusal olmayan (nonlinear) bir
problem oldugunu goriiriiz. Literatiirde Born yaklasikligi (Born approximation) adi
verilen yaklagima gore cismin lizerindeki alan gelen alana esit kabul edilirek
denklem kontrast i¢cin dogrusal hale getirilebilir. Ancak s6z konusu kabul ve
dogrusallastirma yalnizca zayif sacicilarda miimkiin olmaktadir. Dolayisiyla genis bir
kompleks dielektrik sabiti ve boyut bolgesinde ¢oziim verebilecek bir goriintiilleme
yaklagimi i¢in problemin dogrusal olmayan karakterinin goz ardi edilmemesi gerekir.
Bu ¢ergcevede CSI yonteminde, herhangi bir dogrusallastirma yapmaksizin,¢oziimii
ararken cisim denklemini de goz Oniine alarak bir minimizasyon gerceklestirmek
amaciyla, hata fonksiyoneli veri ve cisim denklemlerinin hatalarinin toplami seklinde
ifade edilir ve bu toplami birlikte minimize edecek kontrast kaynagi ve kontrast
biiyiikliikleri doniisiimlii olarak giincellenerek iterasyon gerceklestirilir.Boylesi bir
yontem, iterasyonun her adiminda diiz problemin ¢oziimiine ihtiya¢ duyulmamasi ve
her adima iliskin ifadeyi minimize eden kontrast biiyiikliiglinlin analitik olarak
belirleniyor olmasi ile benzer yontemlerden ayrilir ve literatiirde bilinen en etkili
dogrusal olmayan inversiyon yontemlerinden biridir. Ancak genel halde, s6z konusu
yontemin ¢Oziimiinii aradigi veri ve cisim denklemlerindeki integrallerin
cekirdeginde, cismin bulundugu arka plana iliskin Green fonksiyonu yer almaktadir
ve problem formiilasyonunun bu c¢alismada onerildigi gibi ifade edilmesi halinde,bu
arka planengebeli bir yiizey ile boliinmiis katmanli uzaydir. Bu uzaya iliskin Green
fonksiyonunun degerinin analitik olarak hesaplanmasi miimkiin olmamakla birlikte,
GoOmiili Cisim Yaklagimi (Buried Object Approach, BOA) adi verilen bir yaklasim
ile sayisal olarak ihtiya¢c duyulan Green fonksiyonu elde edilebilir. Buna gore,
engebeli yiizeyin girinti ve ¢ikintilari, diizlemsel bir arayiizle birbirinden ayrilmis iki
yari-uzaya gOmiilmiis cisimler gibi dislniilir ve ihtiya¢ duyulan noktalara
yerlestirilen noktasal kaynaklara iliskin alanlar Momentler Yontemi (Method of
Moments, MoM) kullanilarak sentetik olarak elde edilir. Bu alan
biiyiikliikleriaranilan Green fonksiyonunun degerleridir. Boylesi bir yaklagimin ise
diizlemsel bir araylizle ayrilmis katmanli uzaya iliskin Green fonksiyonuna ihtiyag
duydugu agiktir. Bu Green fonksiyonu, cekirdeginde spektral yansima ve iletim
katsayilarinin  yer aldigi sonsuz integraller seklinde yazilabilmektedir. Bu
integrallerin sayisal olarak hesaplanmasi miimkiin olsa da, integralin ¢ekirdegininin
mikrodalgalardaki agir1 salinimli ve yavas azalan yapisi nedeniyle bu, olduk¢a zaman
alic1 olmaktadir. Bu nedenle literatiirde,baz1 yaklagiklarla bu integralleri hesaplayan
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yontemler Onerilmistir. Ayrik Karmasik Goriintiiler Yontemi (Discrete Complex
Images Method, DCIM) bu yontemlerin en etkililerinden biri olup esas olarak
integralin ¢ekirdegindeki spektral katsayilarin karmasik iistel fonksiyonlarin toplami
olarak ifade edilmesi ve boylece hesaplanmak istenen Green fonksiyonunun, bos
uzay Green fonskiyonunun bilinen integral gosterilimi goz oniine alinarak, arglimani
kompleks terimler iceren bos uzay Green fonksiyonlarinin toplami olarak
yazilabilmesidir.

Dogrusal olmayan inversiyonun etkinligi ve engebeli bir araylize sahip katmanl
uzayin Green fonkiyonunun GOmiilii Cisim Yaklagimi (Buried Object Approach,
(BOA) ve Ayrik Karmasik Goriintiiler Yontemi (Discrete Complex Images Method,
DCIM) birlikte kullanilarak hizli ve dogru bir bi¢imde hesaplanmasi sayesinde,
Onerilen yontem ile, verinin ol¢lim diizeneginden kaynaklanan dogal eksikligine
ragmen ve makul bir siire i¢erisinde oldukga basarili sonuglar elde edilebilmektedir.
Farkl1 simiilasyonlarda goriilmiistiir ki, onerilen yontem, homojen olmayan dielektrik
cisimlerin genis bir bolgede degisiklik gosteren dielektrik parametrelerini elde
etmeye olanak vermektedir. Dahasi yontem, engebeli ylizeyin boyutlarindaki artistan
diger yontemlere gore ¢ok daha az etkilenmektedir ve oldukga yiiksek engebeli
yiizeylerin altindaki cisimler de basartyla goriintiilenebilmektedir. Simiilasyonlar tek
bir frekansta gergeklestirilmistir ve frekansin arzu edilen ¢oziiniirliigiinve cismin
boyutunun izin verdigi Ol¢iide azaltilmasi1 Ozellikle derindeki cisimler igin
goriintlileme sonuclarini iyilestirmektedir.
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1. INTRODUCTION

1.1 Purpose of the Thesis

Microwave detection or imaging of objects buried in a layered medium constitutes an
important class of problems in remote sensing applications such as geophysical
exploration, nondestructive testing, determination of underground pipes and tunnels,
medical imaging, mine detection, etc. In most of these applications,an inaccessible
layer in which an unknown object is presumed to be buried is illuminated by
microwave antennas located in another layer. Then, the scattered electromagnetic
field that arises from the interaction of the incident wave with the object, as well as
with the layer that hosts the object, is collected by receiving antennas located in the
accessible layer. The collected data are used to determine the geometrical and/or the
material properties of the object by using different approaches. Mostly, the objects to
be detectedare dielectric and buried in layered media having rough interfaces.
Hence,the purpose of this thesis is to give a fast and efficient methodology
fordetermination of both geometrical and electromagnetic properties of dielectric

objects buried in layered medium having rough interfaces.

1.2 Literature Review

A wide range of approaches, which use, among others, modified gradient method
[1], [2] standard or modified Born iterative methods [3], [4] first or higher order
Born approximations [5]-[7] distorted Born iterative method [8], [9], linear sampling
method [10], synthetic aperture technique [11], genetic or memetic algorithms [12]—
[14], have been introduced during the last two decades for determination of the
geometrical or material properties of objects buried in a layered medium. The vast
majority of these approaches consider layered media that contains planar interfaces
only. However,in most of thereal applications, objects to be reconstructedare buried
in layered media having rough interfaces. In such cases, the roughness of theinterface

significantly affects the scattering phenomena and brings new difficulties to the



imaging procedure. In the open literature, one can find some studies that deal with
the inverse scattering problem associated with objects buried under rough surfaces.
In [15], a method based on the determination of the surface impedance on the rough
interface through the standard impedance boundary condition is presented. Statistical
averages of Mueller and covariance matrix elements, which are obtained by direct
simulations for rough ground with and without buried objects, are used to determine
signatures of buried dielectrics in [16] and [17], respectively. The application of
angular correlation function processing when a metallic object is sought by ground
penetration radar is investigated in [18] while a method based on a correlation of the
scattered fields from two sets of data associated with two transmitters is given in
[19]. The works listed above are concerned with the detection of dielectric or
metallic objects. On the other hand, for buried conductors, some imaging approaches
such as the ones that use time reversal method [20] and synthetic aperture radar [21]

are proposed.

Although the problem is very important from both theoretical and practical points of
view, very few studies deal with the imaging of dielectrics buried under a rough
surface. In [22], an approach based on analytical continuation as well as on
reciprocity gap linear sampling method is applied for shape reconstruction and
localization of buried dielectrics under a slightly varying rough surface. Similarly, a
dielectric with a known permittivity is imaged by applying a level-set algorithm in
[23]. An iterative method based on the semi-analytic mode matching forward model
i1s proposed in [24]. The method allows reconstruction of a homogeneous object
having relatively low dielectric permittivity as well as of the roughness of the surface
when the surface has a very slight variation. An early attempt for inhomogeneous
dielectric profile reconstruction of buried objects is given in [25]. A very primitive
and basic method, i.e. an application of the Method of Moments (MoM) which is
mostly used in the solution of direct scattering problems, is applied to reconstruct the
objects. As might be expected, although noise-free data are used, the reconstruction

results are far from being satisfactory even for low permittivity dielectrics.

As far as we know, except [26] which is a preliminary study of our research group,
there is no study that applies one of the well accepted nonlinear inversion techniques
for imaging of dielectrics buried under a rough surface although most of these

techniques are capable of reconstructing the dielectric profiles of inhomogeneous,



even multiple, objects having sizes and complex permittivities in a relatively wide
range. In [26], the Distorted Born Iterative Method (DBIM) is applied in conjunction
with the Buried Object Approach (BOA) [27], which enables calculation of the
Green's function of layered media with rough interfaces by considering the
roughness as a series of objects located alternately on both sides of a planar interface
between two half-spaces. On the other hand, since the Green's function of the two-
layered media with a planar interface required in the application of the BOA is
computed by direct numerical integration of the spectral integrals of infinite extend
and the DBIM has many parameters whose particular selection has significant
impacts on the computational cost of the method as well as on the quality of the
reconstructions [28], the procedure given in [26] is impractical to be used in real
applications for a wide range of geometries and material properties. Hence, marginal
results are achieved in [26] even for considerably low values of the size of the

roughness as well as of the dielectric parameters of the soil and the object.

1.3 Significance of the Study

In this study, a nonlinear inversion technique is effectively applied to the problem of
microwave imaging of buried dielectrics under a rough surface for the first
time.More precisely,it has been made possible to efficiently apply the Contrast
Source Inversion (CSI) method, which is proven to be one of the most successful
nonlinear inversion techniques when the Green's function of the background medium
is available, to the problem. This has been achieved through the application of the
BOA in conjunction with an adaptation of the two-level Discrete Complex Images
Method (DCIM), which is an effective method that eliminates the need for numerical
integration required for the calculation of the Green's function of the two-layered

media with a planar interface.

By making use of the strength of nonlinear inversion and fast computation of the
Green's function of the layered media with rough interface, the proposed approach
yields superior results in a feasible computational time despite the incomplete data
resulting from the nature of the subsurface imaging problem. It has been confirmed
through various simulations that the approach is capable of reconstructing even
inhomogeneous dielectrics having constitutive parameters in a considerably wide

range. Moreover, it is much less affected by increased size of the roughness and



objects buried under substantially large rough surfaces are successfully imaged. The
simulations have been performed at single frequency and it has been observed that
lowering the operation frequency to an extent permitted by the size of the object and
the desired spatial resolution improves the performance of the method especially for
the objects in deeper locations.These results indicate that the proposed approach has
a strong potential to be adapted to real remote sensing applications from different
fields which require reconstruction of both the geometrical and material properties of

buried objects under a rough surface.

1.4 Organization of the Thesis

The organization of the thesis is as follows. The statement of the imaging problem is
given in Section 2. Section 3 is devoted to the calculation of the Green's function of
the background medium while the inversion procedure is explained in Section 4.
Some numerical results and conclusions are presented in Section 5 and Section 6

respectively.

Throughout the thesis, the exp(-imt) time factor is suppressed, vectors are denoted by

bold letters and complex conjugate is denoted by overbar.



2. STATEMENT OF THE IMAGING PROBLEM

2.1 Geometry of the Problem

In the case that the geometry is uniform along the Oxs-direction, the problem of
imaging an unknown object which is known to lie under a rough surface can be
treated as a two-dimensional problem on the Ox,x, plane as shown in Figure 2.1. In
this configuration, two half-spaces are separated by a locally rough interface I' whose
coordinates (x!,x}) can be determined through the relation

> o, xl eR\ L

where f is a single valued function and subset L R is the finite interval over which
the interface deviates from a flat surface. The homogeneous half-spaces x, > f(x;)
and x, < f(x,) are composed of simple materials with constitutive parameters &, 0,
and &,, o, respectively. In the lower half-space, an infinitely long cylindrical object
having a cross-section C with the Ox;x, plane is located. The dielectric permittivity
and the conductivity of the inhomogeneous object are £;(x) and g.(x) respectively,
where x = (xy,%;) is the position vector in RZ? Note that, the magnetic
permeabilities of the half-spaces and the object areequal to the vacuum permeability

Ho-

In the imaging approach given here, the region in which the objects are assumed to
be located is successively illuminated by microwave sources at the points z;,
j =1,2,...,], on line T and for each illumination the total electric field vector is
measured on line S (seeFigure 2.1). The electric field vector of each incident wave,
which is time-harmonic with angular frequency w, is E i(x; zj) = u;(x; z;) egwhere
e3is the unit vector in the Oxs-direction. Then, the problem can be reduced to a
scalar one in terms of the field function w;(x) which represents the total electric field

vector E(x;z;) = u(x; z;)es in R? for the jth illumination. The inverse scattering



problem considered here is to determine the location and shape as well as the
constitutive parameters of the object by using the measured field, namely u;(x) for
x € S.Although there is no objection to the extension of the proposed approach to
more general 3D and multi-layered structures, for the sake of simplicity, we restrict

our attention to 2D and two-layered structures in this study.

€1, 07, Ho
T
S - . o« T
L L 4 L ] L 2 L ] [ 2 [ 2
R, S

&2, 0o, Uy

D

Figure 2.1 :Geometry of the problem.
2.2 Formulation of the Problem

The total field u;(x)can be consideredas u;(x) = up;(x) + u,;j(x), where the
background field u,, ;(x)is the total field for the jth illumination in the absence of the
object and u j(x) is the field scattered from the object. u, j(x)could be obtained

through a simulation performed by using a computational electromagnetics technique
or, if possible,through a pre-measurement performed in the absence of the object.In

the source-free region, this field satisfies the homogeneous Helmholtz equation
Dy, () + kpy* (), ;(x) = 0 2.2)

where kj,(x)is the wave-number of the background medium in the absence of the

object, and its square is given by



ki = wlepy +iwopg, x> f(xq)
ky?(x) = (2.3)
ki = w’epig + iw0a X, < f(xq).

On the other hand, the total field u; satisfies
Au;(x) + K> (x)u;(x) = 0 (2.4

in the source-free region. In this case, the propagation medium includes the object,

and hence the square of the wave-number k(x) is

w2ec (X + iwac (g, x€C
k?(x) = 2.5)
ky?(x), x€&C.

By adding the term kj,° ()u;(x) — k> (x)u;(x) to the left side of (2.4), and with the

aid of (2.2) and u;(x) = uy, j(x) + u, ;(x), we obtain

Aug j(2) + kp” () ug j(x) = —kp (1) ¥ (D) (x) (2.6)
where y(x) is the contrast function related to the object and is defined by

k? ()

_ 2.
ey (x) @7

x(x) =

Note that, if the illuminations were performed in different frequencies the value of
the contrast function at any point x would change with the illuminations since it is a
function of the frequency. However, single frequency is considered in this study and
thus the contrast function is same for all illuminations. For this reason, the index j is
not used for the contrast y throughout the thesis. Equation (2.6) is the
inhomogeneous Helmholtz equation thatgoverns the propagation of the scattered
field. Here, the object is represented with the source term —ky % (x) x(x)u;(x), and
the scattered field u, ;j(x) is represented as a field radiating from this source in the

medium defined by kj,(x). This field also satisfies the Sommerfeld radiation



condition

lim r1/2

du, ;(x)
or

— ikb(x)us,]-(x)) =0, r= |x|, 2.8)
which in general states that the energyradiated from the sources must scatter to
infinity [29] and in practice ensures the uniqueness of the solution to the scattering
problemby choosing the outgoing wave from possible solutions of the Helmholtz

equation [30].

In order to solve the scattering problem given by(2.6) and (2.8), the Green's function
of the background medium G, (x;y) is defined as the total field due to a line source,

which satisfies

AGy(x:Y) + kp* ()G, (x5 ) = —5(x — ). 2.9)

as well as the radiation condition. In [30] it is proved that through the Green's
function G, (x;y), one can write the scattered field ug ;(x) that satisfies both (2.6)

and (2.8) in an integral form as

us (%) = f fc G, (5 koM X D (W) dy, 2.10)

which enables to obtain the field scattered from the object at any pointxby
integrating the “source” values on the object. On the other hand, it is clear from

(2.10) that the values of the total field u; on the object are required. Since (2.10) is

valid at any point and u;(x) = u,, j(x) + us ;(x), we can write the equation

(1) = up, (1) + ffc GGV Xy, xeC, @11

which is known as the Lippmann-Schwinger equation. From (2.10) and (2.11), one
can obtain the scattered field at any point by applying the Method of Moments
(MoM) procedure given in [34] when the contrast function y, namely the constitutive

parameters of the object, are known.



In the inverse scattering problem, which is the subject of this study, both the
dielectric property values and the cross-section C of the object are unknown while
the total field u;(x) and consequently ug ;(x), on the measurement line S are known.
In this case, regarding the fact that the contrast function y given in (2.7) vanishes for
x € C, we can consider a reconstruction domain D which is chosen large enough to
contain the unknown object as shown in Figure 2.1 and perform the integrations in
(2.10) and (2.11) on D instead of C. Accordingly, the total field u; appearing in the
integrals is needed to be defined for x € D. The resulting integral equations can be

symbolically written as
w=u,;+ G°yw;, x€D, j=12.,] 2.12)
ug; = G°yu;, xeS, j=12.,] (2.13)

where GP is an integral operator mapping from L?(D) into L?(D) and G° is an

operator mapping from L?(D) into L?(S). These operators are given by

(G Y)(x) = f f G, Vk,>OY(y)dy, x€D,S. (2.14)

Equations (2.12) and (2.13) are known as the object and data equations, respectively
and the imaging problem can be expressed as the extraction of y from these
equations since its real and imaginary parts are related to the constitutive parameters
of the object, namely &.(x) and g.(x). This problem is nonlinear with respect to y,
and a solution through the Constrast Source Inversion (CSI) method [33] is given in
Section 4. Before going further, it is convenient to give a method for fast and

accurate computation of G, (x; y) appearing in (2.12) and (2.13).
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3. THE GREEN'S FUNCTION OF THE BACKGROUND MEDIUM

3.1 Buried Object Approach

In order to solve the inverse scattering problem given by (2.12) and (2.13), one needs
to know the Green's function of the background, namely G, (x;y), for relevant pairs
of x and y. This could be achieved by the application of the Buried Object Approach
(BOA). According to this approach, the elevations of the rough surface are
considered as N cylindrical objects lying in the x, > 0 half-space with cross-sections
By,Bs,...,Boy_1 and constitutive parameters &,, g, as shown in Figure 3.1.
Similarly, the depressions of the ground are treated as N cylindrical objects lying in
the x, < 0 half-space with cross-sections B,, By, ..., B,y and constitutive parameters
€1, 07. In other words, the entire roughness is considered as a scatterer whose

constitutive parameters vary with position in the region B = B; U B, ... U B,y.

&, 05 Mo

&5, 07

21

o

Figure 3.1:Representation of the background medium according to the BOA.

In this case, G, (x; y) can be obtained by separating it into two components as

11



Gp(x;y) = Gg(x;y) + Gi2(x;y) (3.1

where Gq,(x;y) is the Green's function of the two-layered media with a planar
interface while Gz (x;y) is the contribution of the roughness. Here, Gg(x;y) can be
considered as the scattered field from the so-called objects that represent the
roughness due to a line source of unit strength located at point y. Accordingly, we
can write the integral equation for the Green's function of the background, i.e.
G, (x;y), considering it as the total field due to a line source of unit strength located
at point y. In this case, G;,(x;y) will be the incident field while Gg(x;y) is the
scattered field from the so-called objects that represent the roughnes. The

integralequation governing such a scattering process can be written as

Gp(x;y) = G(x;y) + ﬂ- G12(x; 2) (kbz(z) - k%z(z)) Gp(x;y)dz.  (3.2)
B

From (3.1) and (3.2), Gg(x; y) satisfies the integral equation

(I - Q)Gp(x;y) = QG12(x; y) (3.3)

where the integral operator Q is defined by

@0 = [[ 6062 (0@ - k@) 6@z G

In (3.4), k,,(x) is the wave-number of the two-layered media with a planar interface

and its square is given by

k2, x, >0
k$,(x) = (3.5)
k2, x, < 0.

Equation(3.3) can be solved for Gz (x;y) by adaptingthe forward solution procedure
given in [34].

12



3.2 The Green's Function of theTwo-Layered Media with a Planar Interface
3.2.1 Integral represantation of the Green’s function

It is clear that the solution of (3.3) requires G;,(x; y) which is the total field due to a
line source of unit strength located at point yin the two-layered media with a planar

interface shown in Figure 3.2.

&1, 07, Uy

&2, 02, Ho

Figure 3.2 :The two-layered media with a planar interface.

By definition, G,,(x; y) satisfies the Helmholtz equation

AG1 (3% Y) + kip° ()G, (6 y) = —8(x — y), (3.6)

along with the boundary conditions at x, = 0 which are given as

G2 X,=0+& = Gyz] X =0—§ as ¢ -0y,
dG, _ dG, as £ - 0
= +
axz x2=0+f axz x2=0—§

3.7

and the Sommerfeld radiation condition.
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Since the discontinuity of the medium is along Ox,-direction, we take the Fourier
transform of (3.6) with respect to x; in order to deal with the problem in the Ox,-

direction only and obtain

dx2

— (v* - k122)612 = —e""15(x, — y2), (3.8

where G, is the Fourier transform of G,,defined by

co

Cro (v, %25 Y) = f G1o (X y)e~ 1 dx,. (3.9)

— 00

In this case, from (3.8), we have boundary conditions at x, = y, for G;,which are

A~ ~

G12| Xp=y,+& - Glzl X2=Y,—¢& as f - O+’
06, | 0G| — eigs £ 50,
axz X2=y2+¢& axz X2=y2—¢§

(3.10)

In addition, at x, = 0, G, satisfies the Fourier transforms of the conditions given in

(3.7) which are

~ ~

G12| x2=0+$ = GlZ| x2=0_$ as E - O+)
aG aG
12 _ 001 as £ 0,.
dx, dx,
x,=0+& x,=0-¢ (3.11)

By using (3.10) and (3.11) along with the Sommerfeld radiation condition, (3.8) can
be solved for G, and, after applying the inverse Fourier transform,G;,can be written

as

14



(Go(x;y) + Gi(x;y), x,>0,y,>0

G, (x;y), x,<0,y,>0
G1,(x;y) = 1
G3(x;y), x;,>0,y,<0

\Go(x;¥) + G,(x;y), x,<0,y,<0
(3.12)

where G, is the direct part of the Green's function of the two-layered media with a
planar interface while G;, and G,3 are the reflected and the transmitted parts

respectively. Gycan be written as

Go(x:9) = 7 H" (kio ()l = y1) (3.13)

with Hél) being the zero order Hankel function of the first kind. On the other hand,
there are no closed-form expressions for G, 4, and G, 3 which are obtained by taking

the inverse Fourier transforms

1 S
Gpy(x;y) === Gpe™dv, p= 1,2,3,4. (3.14)
2m e,
Here, @p representsthe reflected or transmitted parts of G;, depending on the regions

of both the observation and source points. These parts are explicity obtained as

Gl = ZL y, (v)e—n(xz+yz)e—ivy1’
Y1

~ 1 .
G, =—Y,(v; ERERET- A4
2= 90, 2 (v xa)e e

A 1 ,
Gz = —W;(v; x,)e¥2Yze™Vr1
2= 5 W)

~

1 .
G, = —W,(v)er2(xaty2)e=ivy1
2y

(3.15)

where
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with

y1(v) = /VZ - k%.

Y1(v) =2 (v)

v,(v) = V) 7,0
V) = e
Y3 (v;xz) = #ﬁgm e 1z,

v, () = 22 ) =y (v)

yi(v) + v (v)’

v.(v) = /VZ — k2.

(3.16)

(3.17)

The square root functions appearing in (3.17) are defined in the complex v-plane

with the conditions

¥q(0) = =ik, q=12.

The integration path Cy of the infinite integral (3.14) is given in Figure 3.3.

Imv

S

Cr

Figure 3.3 :The integration path Crof the infinite integral.
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Note that, (3.14) cannot be evaluated analytically and in most cases, direct evaluation
of the integral with any numerical quadrature technique is computationally very
expensive and is not robust due to the highly oscillatory and slowly converging
behavior of the integrand especially for the reflected parts. In order to overcome this
difficulty, many different approaches are proposed in the literature [35], [36]. The
Discrete Complex Images Method (DCIM) [37] is one of the most efficient of these

approaches and hence has been adapted to the problem as summarized below.
3.2.2 Two-level discrete complex images method

According to the Discrete Complex Images Method (DCIM) , an appropriate part of
the spectral integrand is sampled along the integration path and approximated in
terms of complex exponentials by using an exponential fitting algorithm such as the
Generalized Pencil of Function (GPOF) method [38]. Then, one can obtain
approximate closed-form expressions in the spatial-domain through the integral
representation of the scalar free space Green's function. In an improved version of
this method, which is given in detail in [31], [32], the integration path is split into
two parts over which separate exponential approximations are performed in a semi-
independent manner. This two-level approach is implemented in the present

problemand ¥, functions given in (3.16) are approximated as a sum of two series of

exponentials as

{1} {2}
Nﬁ Np
W= a,einera + Z CppeidnpTa (3.19)
n=1 n=1

provided ¢ = 1 for p = 1,2 and q = 2 for p = 3,4. Here, a,, by and ¢, , d;, ,, are
the coefficients obtained from the approximations performed along the first and

second parts of the integration path, respectively, while the corresponding numbers
of exponentials are Nél}, Néz}. Then, by considering the integral representation of the

Hankel function, namely

+00

i 1 1 ;

HO(lx=y) = 5= [ poemuvlereigy, g =12 G20
q
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the infinite spectral integrals in (3.14) can be approximated as

s N
i
Gp(x,y) =7 z anpHS” (kqpl) + Z enpHS (kepls) | G:21)
n=1 n=1

where

( . 2
(1 =y + (I + y2l —ibny)", p=14
ay _
pn,p =1
. 2
\\/(xl - y1)2 + (|y2| - lbn,p) ’ p= 213
( 2 ; 2 _
\/(x1 —-y1)?+ (|x2 + ¥l — ldn,p) , p=14
{2} _
pn,p -
) 2
k\/(xl —y1)* + (|YZ| - ldn,p) ) p=23

(3.22)

providedq = 1 forp = 1,2 and g = 2 forp = 3,4.

It should be noted that, since the terms ¥; and W,, which are related to the reflected
parts of Green’s functions, are independent of spatial coordinates, they can be
approximated only once and corresponding closed form expressions of G; and G4 can
be used for any pair of source and observation points. On the other hand, the
transmitted terms ¥, and W5 are needed to be approximated for each discrete value
of x,. Therefore, the computational efficiency of applying the DCIM for the

calculation of ; and G, is considerably high compared to G,and G5.

With the implementation of the two-level approach, the approximation becomes
much faster since the number of samples and exponentials are dramatically reduced.
Besides, an intense investigation of the function behavior to decide on the
approximation parameters is not required, hence the approximation is more robust
[31]. To demonstrate the performance of the two-level DCIM approach, a two-
layered media where the upper half-space x, > 0 is air and the lower half-space
x, < 0 is dry soil with constitutive parameters &, ¢,;; = 3.6 and gg,;; = 107> S/m at

300 MHz is considered.
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First, the variation of G; on a measurement line 0.3 m above the interface 1is
calculated at 100 equidistant points due to a line source located at (0,0.4) m by using
both the DCIM and the direct numerical integration through trapezoidal rule. It has
been observed that, with the increasing number of samples, the numerical integration
approaches the DCIM. Figure 3.4(a) demonstrates the magnitude of G, obtained by
numerical integration with 5 X 10* and 5 X 10> sampling points and the two-level

DCIM with 200 sampling points for which the resulting exponential numbers are
Ngl} =5 and NIEZ} = 10. As seen in the figure, the magnitude obtained by the

numerical integration with 5 x 10° sampling points barely converges to the one
obtained by the two-level DCIM with 15 exponentials. The DCIM is tested also for
the transmitted term G, by considering the same medium, and the field values due to
a line source located at (0,0.04) m are computed at 100 equidistant points on the line
segment defined by —1.5 < x, < 0 and y, = —1.3 which is the lower boundary of
the rectangular reconstruction domain in the vast majority of the numerical
applications given in Section 5. The number of sampling points required for the
numerical integration in this case is much less than it is in the computation of G, as
seen in Figure 3.4(b). However, the two-level DCIM is still more effective, since the
numerical integration converges to the values obtained by the DCIM with 5000
sampling points. These results clearly indicate the strength of the two-level DCIM
approach while the degree of benefit may vary according to the behaviour of the

integrand for given frequency and material properties.
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4. SOLUTION OF THE INVERSE SCATTERING PROBLEM

4.1 Properties of the Inverse Scattering Problem

In mathematical physics, a problem is defined as well-posed if it satisfies three
postulates proposed by Hadamard: a solution should exist, the solution should be
unique, and the solution should depend continuously on the data [39]. If a problem
fails to satisfy any of these three requirements, then it is called i//-posed. It is shown
in [30] that the direct obstacle scattering problem given by (2.10) and (2.11) is well-
posed which ensures that for a known object, the scattered field is unique and
continuously dependent on the constitutive parameters of the object. On the other
hand,for the inverse problem in which the material properties of an unknown object
are desired to be reconstructed through some scattered field data, the uniqueness of
the solution is a subject of ongoing research. In R3 and for plane wave incidence, it
is known that, if ug is measured exactly on S for every incident direction then there is
only one y(x) that will give rise to these uy; that is there is a unique solution of the
inverse problem [30]. No results are available if u; is known on § for only a finite
number of incidence directions. Moreover, the uniqueness property has not been
established even if u, is known for all incidence directions in R? [40]. In practice,
both illuminations and measurementsare performed on finite number of discrete
points. Then, the integral equation governing the scattering procedure will turn into
an ill-conditioned matrix equation in which small errors in the data cause large errors
in the solution. Since the measurement data contain also unavoidable noises, solution
of the data equation for the source term defining the object requires regularization

[30] and even in that case may not be the appropriate physical solution [40].

On the other hand, even the data equation is linear with respect to the product of the
two unknows, yu, it is highly nonlinear with respect to the contrast function y whose
reconstruction is the main purpose of the inverse problem. This nonlinearity is due to
the fact that u itself is dependent on y. This may be seen by writing the formal

inverse of (2.12) as
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= —-G"x) uy; 4.1

where [ denotes the identity operator. Substituting it into the data equation (2.13)
yields

us; = GS[x(U — GPx) " wy, 4.2)

wherein the nonlinearity is clearly exposed. On the other hand, if ||GPy|| < 1, the

inverse operator (I — GP )™ can be expanded into a Neumann series as

(I =620 = ) (@" 43)
n=0

In practice, the norm||GPy|| is not known, but it will depend on the geometrical
dimensions of the scatterer, the frequency w and the contrast y [40]. In [42] the term
degree of nonlinearity is suggested for ||GPy|| since it can be argued that the
nonlinearity ofthe relationship between the unknown of the inverse problem, i.e the
contrast y, and the scattered field u ; is ruled by this norm. If [|G® || « 1, one can
approximate the inverse operator as(I — GPy)™! = I by truncating (4.3) at n =0
and write u; = u,, ; in D, which is the well-known first Born approximation. Note
that, through this approximation the data equation (4.2) is linearised with respect to
x. However, this is valid only for weak scatterers which have constitutive parameters
close to the ones of the background or very small in size [40]. For a wide range of
scatterers,the nonlinearity of the problem with respect to y should be taken into
account without applying a linearization during the solution procedure. In the
literature, this has been done by recasting the inverse problem as an optimization
problem of iteratively finding y to minimise the error in the data of (2.13), subject to
the constraint that the object equation (2.12) is satisfied in some sense. One can find
a detailed review of such nonlinear inversion techniquesin [40]. However, most of
these techniques require solution of the forward problem at each step of the
iterations. Hence, in this study, the Contrast Source Inversion method which is based
on minimization of a cost functional that consists of errors of both the data and the

object equations without solving the forward problem is applied as given below.
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4.2 Solution of the Inverse Scattering Problem via the CSI

Since the contrast and the field inside the reconstruction domain occur as a product,
many workers have introduced the quantity w = yu which is called a contrast source

since u; satisfies the inhomogeneous Helmholtz equation

Au;i(x) + kbz(x)uj(x) = —kbz(x)wj(x). 4.9

Then, the system of integral equations(2.12) and (2.13) can be rewritten for the

contrast source as
uJ = ub,] + GDij j = 1; 2; "'1_]1 (4‘5)
Ug,j = GSWj, ] =1, 2,...,]. (4.6)

The CSI depicts the inverse problem as a minimization problem in which one seeks
the contrast sources as well as the contrast function to minimize a cost functional that
consists of two terms: Sums of the residual norms in both the object equation(4.5)and
the data equation (4.6)for each illumination. The explicit expression of this cost

functional for the given formulation of the problem is

2 2
_ Sillusj = Swills  Zjllrws,; —wi + xGPwi|l

2 2
Bjllus i il I

“.7)

where ||.|ls and ||.||, denote the norms on L?(S) and L?(D) respectively. These

norms are defined as

sl = )5 (4.8)

with the inner product

(Uj, vj)D,S = fL Suj (x)17] (x)dx (4.9)
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where the overbar denotes complex conjugate. The normalization in (4.7) is chosen

so that both terms are equal to one if w; = 0. According to the CSI method [33],

contrast sources Wj"are constructed by the Conjugate Gradient (CG) method [41]

such that the contrast sources minimize the whole cost functional for the nth
iteration. Then, the object function y™ corresponding to the nth iteration is
determined to minimize the second part of the cost functional using the updated
value of w;. The process is stopped when the difference between the cost functionals
of two consecutive iterations is smaller than a predetermined value. The details of the

iterative process is as follows:

The data and object errors are defined as

(4.10)
pF =ug;" — GSw;™
;" = x"u" —w;" 4.11)
respectively, where
" =uy; + GPwn 4.12)
When w;""*and ™ 'are known, w; is updated as
w™ = w" !+ o;d;" (4.13)

where the step size a;" is constant and the update directions djn are functions of
position. The update directions are chosen as Polak-Ribiére conjugate gradient

directions [41]

d;° =0 (4.14)

(9,97 = 39" o
n—-1 ,n—1
(g] ) .g] )D

d" = g;" "t nx=1 (4.15)
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where g;" is the gradient (Frechet derivative) of the cost functional with respect to

w; evaluated at w;"~1, y™~1. Explicitly this is found to be
j j

~ GS*pJT-l_l (p}’l—l_ GD*()—(n—l(p}’l—l)

Zk”us,k”z Zk”)(kn_lub,k”;

n

gj =

(4.16)

where G°* and GP* are the adjoints of G° and GP mapping L?(S) into L?(D) and
L*>(D) into L?(D), respectively. These adjoint operators are defined through the

relations
v, G"P;)p = (G”v, ;)p, 4.17)

(v, G2 Pj)s = (G7v,))p. (4.18)

Substituting (2.14) into the left-hand sides of (4.17) and (4.18) and interchanging

integrations, it follows that

VS f f Gpy(y; )v;(»)dy, x€D, (4.19)
D

and

Gy = f L G,(y; x)vj(y)dy, x€D. (4.20)

After the update directions dj" are determined, the step size @;"is chosen so as to

minimize F(w;"~! 4+ a;"d;") which can explicity be written as

2 2
I O R A

2 2
Tillusll; Sl un i

CSillep -6 Sllet - o - 6P|

2 2
Tjllusll; il un

4.21)
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While during an application of the conjugate gradient method, the step size could be
determined through an iterative minimization scheme, for the above given functional,

it can be analytically determined as

(P71, G df)s s (@t d" =} 6 d])p

2 )
sl sl

n —

J

lesarlly lla" —xaPaMll,

2 2
2jllus Il Tl w1

4.22)

Once w;™ is obtained,u;", the total field inside the domain, can be updated via (4.12)

and (4.13) as
U.jn = uj"_l + Gden (4.23)

In the second part of an iteration step, since the first term of F is independent of y,
we seek the contrast y; to minimize the second term of the cost functional which is
explicitly

Sl = wrll]

= , (4.24)

2
Zilbaatll,

D

for the determined values of w;" and u;™. On the other hand, in [33], it is suggested

to minimize the simpler functional

£y = 3l —will, (4.25)

instead of more complicated (4.24). It is observed that, this simplification retains the
error reducing nature of the processfor the numerical examples treated in this study
and allows easy implementation of some a priori information or constraints on y;.

Equation (4.25) can be rewritten as
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1 Z,Re(w”u”) 1’
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; 2.1
+ |2 @Dz -

zjlm(wjzaj")'z by, (Re(w 7, ))
(Zjlu}ll )V/2 |

[u7|

- BRTEIE 5, (Im(wn ")> [2;1m<w,“ﬁj")]2} )

A [+ 2kl

(4.26)

In the absence of any a priori information on , it is clear that F}) is minimized by

choosing

Y jRe(wj'u) i = > iim(w'u;")
- e 00 N M
| %’

rn —

4.27)

However, if we have a priori information that " and ' are positive, then we may

use this information and rewrite (4.26) as

112
r_ r r |2\ 1 Re(wun)zz
r= [ der| sl - (FZ" (lu—}“l> )

Re( n—n 272 -
¥ ( | | ) — 2 jRe(w;'@")
]

112

. . s (1 (ImwEM\

Re(WJnﬂfn) I n=n
]

2. 1
+2(35[wt| )

+2(21| | )2

(4.28)
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One might consider minimizing F}, by choosing ™ and ' to be zero; however,
x # 0 whenever w; # 0. Hence, in [33] " and x‘are chosen so as to minimize the

factors multiplying " and y‘. Since the Schwarz inequality ensures that

1

1 Re(w™ @)\ |2 (4.29)
O e [Zj (W) ] — XjRe(w/'w™) 20
]

and

N

[ (Imwlra™))?
| BE [z,- <M> ] = X Im(w/'g") >0 (4.30)

[

the factors multiplying ¥ and y* are minimized by choosing

o = {Z j(Re(w @™ /|ur DZ}EXM _ {Zj(lm(w]ﬁaj”)/ )’ 5. 431)

2 2
¥l ¥l

If " or ' is known a priori, then we can use this known value during the iterations
and restrict the reconstruction procedure to the other part by using the related

formula given in (4.27) or (4.31).

Finally, the starting values Wjo are needed to be specified. Note that the iterations can

not be started with WjO = 0 since then )(r'OZ )(i’OZ 0 and the cost functional (4.7) is

undefined for n = 1. Therefore, the constant values

S
0 _ (us,j; G] 1)5
Wi =" sz (4.32)
671l
S
that minimize the data error are chosen as the starting values for the constrast
source.This completes the description of the CSI algorithm which is summarized in

Table 4.1 below.
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Table 4.1 :CSI in the absence of a priori information.

i) Determine the initial values as follows:

_ (us,jr G151>S
=—
671l

0
W;j

0 — D 0
u]' —ub,j+G Wj

0=0
o Ziwiu)

2
Zj |u}Q|

ii) N being the maximum number of iterations, perform the following

iteration for n=1,2... N:
1) Determine g;"and then update direction d]-n.
2) Determine step size ;™ that minimizes F along d;".
3) Update the contrast source as w;™ = w;" ™! + o;"d;".

4) Update the total field as w;,” = u;"~* + G d;".

. jwiah)
5) Determine the contrast as y"* = 1412
I

6) Calculate F™ and 6 = F*" 1 — F",

7) If 8 < € stop the iteration before N is reached.
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5. NUMERICAL SIMULATIONS

In order to test the performance of the proposed approach, some numerical
simulations are performed by using a regular PC with a CPU at 2.67 GHz and 16 GB
of RAM. Throughout the simulations, unless otherwise stated, 300 MHz is chosen as
the working frequency. 10 equally spaced line sources are located on a line above the
rough surface and the scattered field is measured at 40 discrete points for each
illumination since it has been observed that using more than 10 sources and 40
measurement points does not yield remarkably improved results for the examples
given here. The scattered field data are obtained synthetically by solving the direct
scattering problem for an object buried under a rough surface via the Finite Element
Method (FEM). Note that, the inversion procedure is based on the formulation of the
Method of Moments (MoM). Thus, the synthetic data obtained by using FEM can be
considered as noisy for the inversion procedure. Nevertheless, 10% random noise is
introduced to the scattered field. More precisely, a random term n|usl j|ei2"rd is
added to the data, where # is the noise level and r; is a uniformly distributed random
variable between 0 and 1. The corresponding signal to noise ratio is then SNR = -
20log;o 7. The Green's function of the background is obtained by solving the direct
problem given by(3.1)and (3.3)via the Method of Moments with cell size of As/14
XAsoil/ 14, where Aqi1 1s the wavelength in the soil. For the simulations given here, the
corresponding number of cells on the entire roughness B varies between 183 and
7574. In the application of the imaging method, the reconstruction domain Dis
chosen as a 1.5 m x 1 m rectangle and discretized with cells of size Ap/14 xAp/14.
Here, the approximate minimum wavelength Ap is determined by considering the
estimated maximum relative permittivity in domain D. Accordingly, the total number

of cells in domain D changes between 1350 and 14751 for the examples given here.

At each simulation, the iterative process in the application of the CSI, is performed
by choosing expression (4.32) as the initial estimate of the contrast source and unless
otherwise stated, by considering the positivity constraint for the contrast. The

computational time for the entire procedure, including the calculation of the Green's
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functions, as well as the iterative process, which is stopped at 500 iterations, changes
approximately between 0.5 and 45 minutes according to the operation frequency, the

constitutive parameters and the size of the roughness.

For the first set of simulations, the rough surface shown in Figure 5.1 is considered,
and the source and measurement points are located on lines x, = 0.4 m and x, = 0.3
m respectively. Initially, a kite-shaped object having relative permittivity &.. =5
and conductivity g, = 0.05 S/m is buried into a half-space composed of dry soil
with constitutive parameters &, 55 = 3.6 and 005 = 107> S/m at 300 MHz. The
entire imaging procedure is performed approximately in 9 min. Note that, it would
take days if numerical integration was applied instead of the DCIM. The original
relative permittivity and conductivity profiles are shown in Figure 5.1(a) and (b), in
which the reconstruction domain D is indicated with the red borders, while the
corresponding inversion results in the domain D are demonstrated in Figure 5.1(c)
and (d), respectively. It is observed that, the shape and location as well as the relative
permittivity of the object are quite well determined whereas the conductivity is
partially underestimated. Note that, the reconstruction results are given in their own
color scales since giving the reconstructed and the original profiles in the same scale
may not be illustrative enough for visual interpretation especially in the case that the

property values are significantly underestimated.

It may seem possible to image the object with the assumption that the interface
between the two half-spaces is planar. Such an approach is tested by using the data
obtained above. In this case, the inverse problem is solved via the CSI assuming that
the two-layered media has a planar interface. Highly inaccurate results given in
Figure 5.1(e) and (f) obviously indicate that, the rough surface significantly affects
the problem, and thus should certainly be taken into consideration during the

inversion procedure.

In order to test the performance of the proposed approach for multiple scatterers,
three objects with relative permittivities 5, 8, 10 and conductivities 0.04 S/m, 0.07
S/m, 0.1 S/m are buried into the medium described above, and imaged at 300 MHz.
The original and the reconstructed relative permittivity and conductivity profiles in
the domain D are shown in Figure 5.2. All three objects can be clearly distinguished

in the reconstruction results even though they appear to be slightly below their actual
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positions in the reconstructed relative permittivity profiles and their conductivities

are partially underestimated as in the previous example.

05
i
E
=, 08 >
g
A5
2 0

1 2
)

Ky (m

- 05 0
xy (m)
(c) (d)
& a .
E E |
-1 05 0 -1 05 a
iy ) 1y (m)
(€) (f)

Figure 5.1: (a) The original relative permittivity and (b) conductivity profiles of
the object and the background; (c) Reconstructed permittivity and (d)
conductivity profiles in the domain D when the roughness is taken
into consideration via the proposed approach; (e) Permittivity and (f)
conductivity profiles when the interface between the half-spaces is
assumed to be planar during the inversion procedure.
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Figure 5.2: (a) The original relative permittivity and (b) conductivity profiles of
multiple scatterers of different dielectric properties in the domain D;
(c) Reconstructed relative permittivity and (d) conductivity profiles.

The kite-shaped object used in the first simulation is enlarged as shown in Figure
5.3(a) and (b) in order to investigate the effect of the object size on the performance
of the imaging approach. The permittivity and conductivity profiles of the object
could not be successfully reconstructed at 300 MHz as seen in Figure 5.3(c) and (d).
Therefore, assuming that the constitutive parameters of both the object and the soil
are unchanged, the imaging simulation is repeated at 150 MHz. As clearly seen in
Figure 5.3(e) and (f), the quality of the reconstruction results is significantly
improved. It is due to the fact that the degree of nonlinearity of the problem
decreases with decreasing electrical size of the object[41]. It should also be noted
that the computational time for 300 MHz is approximately same with the previous

simulations while it reduces approximately to 0.5 min for 150 MHz.

To demonstrate the effect of the depth, the kite-shaped object used in the first
simulation is buried about 3 m below the rough surface as shown in Figure 5.4(a) and
(b). For the simulation performed at 300 MHz, inaccurate reconstruction results
given in Figure 5.4(c) and (d) are obtained. As in the previous example, the imaging
simulation is repeated at 150 MHz, and noticeably improved reconstruction results
are achieved as seen in Figure 5.4(e) and (f). However, as might be expected, thin

edges of the kite cannot be observed due to the fact that longer wavelengths reduce
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the spatial resolution of any imaging procedure. Therefore, while lowering the
operation frequency in order to improve the performance of the proposed approach

and to decrease the computational time, one should take this issue into consideration.
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Figure 5.3: (a) The original relative permittivity and (b) conductivity profiles of
a large object in the domain D; (c) Reconstructed permittivity and (d)
conductivity profiles in the domain D at 300 MHz; (e) Reconstructed
permittivity and (f) conductivity profiles at 150 MHz.

The reconstruction capability of the method at relatively high contrasts is tested in
the same medium for a buried object whose relative permittivity is &, = 40 and
conductivity is g; = 2 S/m as shown in Figure 5.5(a) and (b). Due to the high
permittivity of the object, the number of cells in the reconstruction domain D
increases, and accordingly the reconstruction time increases approximately to 34
min. Both the relative permittivity and conductivity of the object are significantly

underestimated in the reconstruction results given in Figure 5.5 (¢) and (d), but the
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object can still be localized. Here, the degree of nonlinearity of the problem increases

due to the high contrast between the object and the background [37].

5

2.4
-2.6
-2.8

45

%, (m)
}{2 (m)

%, (m)

., (m)

%, (M)
%, (1m)

¥ (m)
®

Figure 5.4: (a) The original relative permittivity and (b) conductivity profiles of
the object buried in a deeper domain D; (c) Reconstructed permittivity
and (d) conductivity profiles in the domain D at 300 MHz; (e)
Reconstructed permittivity and (f) conductivity profiles at 150 MHz.

In order to investigate the effect of the geometry of the roughness, a rough surface
with considerably larger depressions and elevations as shown in Figure 5.6is
considered in the second set of simulations, and the source and measurement points
are located on lines x, = 1.1 m and x, = 1.0 m, respectively. An arc-shaped object
with €. =7 and g, = 0.1 S/m is buried into a half-space composed of dry soil as
demonstrated in Figure 5.6(a) and (b). The proposed approach sufficiently
reconstructs the relative permittivity and conductivity profiles of the object in spite

of the roughness size as seen in Figure 5.6(c) and (d). On the other hand, since the
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number of cells used to discretize the roughness increases compared to the first

example, the computational time for the entire process increases to 11 min.
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Figure 5.5: (a) The original relative permittivity and (b) conductivity profiles of
an object of high contrast in the domain D; (c) Reconstructed relative
permittivity and (d) conductivity profiles.

Without changing the geometry of the roughness, the lower half-space is considered
to be composed of wet soil with constitutive parameters &, o5 = 10 and ogo; =
1073 S/m, and a simulation is performed for an object with &, = 25 and o, = 0.5
S/m at 300 MHz. Since the number of cells used to discretize both the roughness and
the domain D increases in accordance with the high constitutive parameters of the
wet soil and the object, the required computational time increases to 45 min. As seen
in Figure 5.7(c) and (d), increasing the constitutive parameters of the background
causes a decrease in the performance of the proposed approach for this application.
Improved reconstruction results given in Figure 5.7(e) and (f) are achieved when the
simulation is repeated at 150 MHz approximately in 5 min. This is an expected
result since it is known that higher operation frequency yields better resolution but

less penetration in a lossy media.
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(d)

Figure 5.6: (a) The original relative permittivity and (b) conductivity profiles of
the object and the background with a larger roughness; (c)
Reconstructed permittivity and (d) conductivity profiles in the domain
D.

In order to observe the performance of the method for negative contrasts, an object
whose constitutive parameters are equal to those of the air, i.e. &5 =1 and o5 =0
S/m, is buried in the medium considered in the previous example. The iterative
process in the CSI is performed without applying the positivity constraint. Although
the reconstruction results are not accurate enough to determine the material
properties of the object, it is still detectable especially in the reconstructed relative

permittivity profile in Figure 5.8(c).
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Figure 5.7: (a) The original relative permittivity and (b) conductivity profiles of
an object buried in wet soil in the domain D; (c¢) Reconstructed
permittivity and (d) conductivity profiles in the domain D at 300
MHz; (e) Reconstructed permittivity and (f) conductivity profiles at
150 MHz.

The effect of the size of the reconstruction domain D is investigated by enlarging the
domain as shown in Figure 5.9. The domain is chosen as the region between the
rough surface and the line x, = 1.5 m and the reconstruction is performed by using
the data of the first example given in 6. . As clearly seen in Figure 5.9 (a) and (b),
which are the real and the imaginary parts of the reconstructed contrast obtained at
300 MHz respectively, the quality of the results decreases in this case. Thus,
although the object can still be detected in the contrast figures, it is almost
undistinguishable in the corresponding permittivity profile given in Figure 5.9 (c).

On the other hand, much better results given in Figure 5.10 are achieved at 150 MHz

39



while the edges of the kite-shape are lost in the reconstructions as they were in the

previous examples at 150 MHz.
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Figure 5.8: (a) The original relative permittivity and (b) conductivity profiles of
an object of negative contrast in the domain D; (c) Reconstructed
relative permittivity and (d) conductivity profiles.

Finally, a simulation is performed to test whether the method is aplicable fora more
realistic case in which the lower half space is inhomogeneous. For this purpose, the
dielectric parameters of soil considered in the above applications is disturbed by 15%
random noise as shown in Figure 5.11(a) and (c) which are the permittivity and
conductivity distributions respectively. The total field, i.e.u(x) for x € S, is obtained
for a kite-shaped object buried into this inhomogeneous half-space. Then the
proposed approach is applied throughthe computation of the Green’s function as well
as of the background field for the homogeneous half space given in Figure 5.11(b)
and (d) which are the assumed permittivity and conductivity profilesrespectively. For
such a scenerio, the object can still be identified, despite a reduction in the quality of

the results given in Figure 5.12.
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Figure 5.9: (a) Real and (b) imaginary parts of the reconstructed contrast for a
larger domain; Corresponding (c) permittivityand (d) conductivity
profiles at 300 MHz.
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Figure 5.10: (a) Real and (b) imaginary parts of the reconstructed contrast for a

larger domain; Corresponding (c) permittivityand (d) conductivity
profiles at 150 MHz.
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Figure 5.11: (a) Exact and (b) assumed relative permittivity profiles for an

inhomogeneous lower half-space; (c) Exact and (d) assumed
conductivity profiles.
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Figure 5.12: (a) Relative permittiviy and (b) conductivity profiles in the

reconstruction domainD when the inversion is performed by
assuming the inhomogeneous lower half-spaceto be homogeneous.

In some of the above applications, objects appear to be slightly below their actual
positions although their property Svalues are reconstructed in a feasible accuracy. In
this case, any measure of the errors based on the pixel by pixel comparison of the
profiles may yield disproportionately high values. Thus, in order not to lead to an
unfair comparison of the results, it is preferred to give the exact and the reconstructed

profiles for visual interpretation without giving a measure of the error.
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8. CONCLUSIONS

A nonlinear tomographic approach for microwave imaging of dielectrics buried
under a rough surface is presented. The contribution of the roughness to the problem
is taken into consideration via the Buried Object Approach which assumes the
roughness as a series of objects located alternately on both sides of the planar
interface of a layered media. The Green's function of the two-layered media with a
planar interface is required in such an approach, and is computed fast and accurately
by the implementation of the two-level DCIM which makes the proposed approach
more practicable. Finally, the resulting integral equations that govern the scattering
from the buried object are solved for the contrast function by using the standard CSI

method.

Through the numerical simulations with noise added data, it has been shown that the
proposed approach yields good reconstructions despite the incompleteness of the
data. Even multiple scatterers of relatively small size can be distinguished by their
properly reconstructed constitutive parameters. Moreover, objects with higher
constitutive parameters are still detected and localized although the results are far
from high accuracy. Besides, we conclude from the simulations performed for
various roughness geometries, two of which are given in this paper, that the
geometry of the roughness does not considerably affect the quality of the
reconstructions. On the other hand, it is clear that, increasing the size of the
roughness in terms of the wavelength will increase the computational time, since the
proposed approach requires solution of the forward problem associated with the
roughness. It has been observed that lowering the operation frequency improves the
performance of the method and reduces the computational time for objects relatively
large in size or buried in a lossy medium such as wet soil. Such an improvement
with lowered operation frequency has also been observed for objects buried deep into
ground, even if the ground is nearly lossless. Nevertheless, while lowering the
operation frequency, one should take the reduction in the spatial resolution of the

reconstructions into consideration. Finally it is worth to note that applying the a
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priori information about the positivity of the contrast enhances the performance of
the method. On the other hand, in order to show that objects having negative contrast
values are still detectable without applying any a priori information during the
inversion procedure, an object whose constitutive parameters are equal to those of
the air is buried into the ground that consists of wet soil and imaged via the proposed
approach. The reconstruction results of this simulation can be interpreted that the
proposed approach is not only applicable for imaging of buried dielectrics but also

for determination of hollows or pipes in an inaccessible half-space.

The proposed approach can also be applied to multilayered media having more than
two layers. We note that the approach given here has two main computational steps:
i) the solution of the forward problems for G,(x;y)and u,(x), ii) the inversion
procedure via the CSI. In the case of more than two layers, the computational time
required for the CSI will not be affected since this step is related to the field values
on the reconstruction and measurement domains only. On the other hand, if the lower
layers have planar interfaces, the required computational time for the solution of the
forward problems will not be significantly affected since just more reflection and
transmission coefficients will be needed to be calculated analytically in this case.
However, if the layers have rough interfaces of similar sizes, the computational time

will increase approximately as a multiple of the number of interfaces.

Furthermore, there is no objection to the expansion of the method, which is
considered in 2D in this paper, to 3D. Future work is focused on such an expansion
and implementation of modified Contrast Source Inversion algorithms in order to

improve the quality of the reconstructions especially for high contrast values.

46



REFERENCES

[1]

Lambert, M., Lesselier, D., and Kooij, B. J. (1998). The retrieval of a buried
cylindrical obstacle by a constrained modified gradient method in the

Hpolarization case and for Maxwellian materials,/nverse Problems,
vol. 14, no. 5, 1265-1283.

Dubois, A., Belkebir,K., and Saillard, M. (2004). Localization and
characterization of two-dimensional targets buried in a cluttered
environment,/nverse Problems, vol. 20, no. 6,63-79.

Chaturverdi, P., and Plumb, R. G. (1995). Electromagnetic imaging of
underground  targets using  constrained  optimization,/EEE

Transactions on Geoscience and Remote Sensing, vol. 33, no. 3, 551-
561.

Yu, Y., Yu, T., and Carin, L. (2004). Three dimensional inverse scattering of a
dielectric target embedded in a lossy half-space, IEEE Transactions
on Geoscience and Remote Sensing, vol. 42, no. 5, 957-973.

Cui, T. J., Aydiner, A.A., Chew, W.C., Wright, D. L., and Smith, D.V.
(2003). Three-dimensional imaging of buried objects in very lossy
earth by inversion of VETEM Data, IEEE Transactions on Antennas
and Propagation, vol. 41, no. 10, 2197-2210.

Cui, T. J.,Qin, Y., Ye, Y., Wu, J., Wang G. L., andChew, W.C. (2000).
Efficient low-frequency inversion of 3D buried objects with large
contrasts,/EEE Transactions on Geoscience and Remote Sensing,vol.
44, no. 1, 3-9.

Vertiy, A. A., and Gavrilov, S. P. (1998). Modeling of Microwave Images of
Buried Cylindrical Objects,International Journal of Infrared and
Millimeter Waves, vol. 19, no. 9, 1201-1220.

Li, F., Liu, Q. H., and Song, L. (2004). Three-dimensional reconstruction of
objects buried in layered media using Born and Distorted Born

iterative methods,/EEE Geoscience and Remote Sensing Letters, vol.
1, no. 2, 107-111.

Cui, T. J., Chew, W. C., Aydiner, Chen, S. (2001). Inverse scattering of two-
dimensional dielectric objects buried in a lossy earth using the

distorted Born iterative method,/EEE Transactions on Geoscience and
Remote Sensing,vol. 39, no. 2, 339-346.

[10] Cakoni, F., Fares, M., and Haddar, H. (2006). Analysis of two linear

sampling methods applied to electromagnetic imaging of buried
objects, Inverse Problems, vol. 22, no. 3, 845-867.

47



[11] Morrow, I.L., and Genderen, P.V. (2002). Effective imaging of buried
dielectric objects,/EEE Transactions on Geoscience and Remote
Sensing,vol. 40, no. 4, 943-949.

[12] Li, F., Chen, X., and Huang, K.-M. (2008). Microwave imaging a buried
object by the GA and using the sll parameter,Progress In
Electromagnetics Research, vol. 85, 289-302.

[13] Chen, X., Huang K.-M., and Xu X.-B. (2005). Microwave imaging of buried
inhomogeneous objects using parallel genetic algorithm combined
with FDTD method,Progress In Electromagnetics Research, 53, 283-
298.

[14] Caorsi,S., Massa,A., Pastorino,M., Raffetto,M., and Randazzo,A. (2003).
Detection of buried inhomogeneous elliptic cylinders by a memetic
algorithm,/EEE Transactions on Antennas and Propagation, vol. 51,
no. 10, 2878-2884, 2003.

[15] Altuncu,Y., Akduman, 1., and Yapar,A. (2007). Detecting and Locating
Dielectric Objects Buried Under a Rough Interface,/EEE Geoscience
and Remote Sensing Letters, vol. 4, no. 2, 251-255.

[16] El-Shenawee,M. (2003). Remote sensing of penetrable objects buried beneath
two-dimensional random rough surfaces by use of the Mueller matrix
elements, Journal of the Optical Society of America A, 117, 183—194.

[17] EI-Shenawee,M. (2004). Polarimetric scattering from two-layered two-
dimensional random rough surfaces with and without buried
objects,/EEE Transactions on Geoscience and Remote Sensing, vol.

42, no. 1, 67-76.

[18] O’NeillLK. (2000). Broadband bistatic coherent and incoherent detection of
buried objects beneath randomly rough surfaces, IEEE Transactions
on Geoscience and Remote Sensing, vol. 38, no. 2, 891-898.

[19] Cmielewski,O., Saillard,M., and Tortel,H. (2006). Detection of buried objects
beneath a rough surface,Waves in Random and Complex Media, vol.
16, no. 4, 417-431.

[20] Zhu,X., Zhao, Z., Yang, W., Zhang, Y., Nie, Z.-P., and Liu, Q. H. (2011).
Iterative time-reversal mirror method for imaging the buried object

beneath rough ground surface,Progress In Electromagnetics Research,
vol. 117, 19-33.

[21] Wang,Y., Longstaff,I.D., and Leat,C.J. (2001). SAR imaging of buried
objects from MoM Modelled scattered field,/EE Proceedings Radar,
Sonar and Navigation,vol. 148, no. 3, 167-172.

[22] Ozdemir, O. and Haddar, H. (2010). Preprocessing the reciprocity gap
sampling method in buried-object imaging experiments,/EEE
Geoscience and Remote Sensing Letters, vol. 7, no. 4, 756-760.

[23] Cmielewski, O., Tortel, H., Litman, A., and Saillard, M. (2007). A two-step
procedure for characterizing obstacles under a rough surface from

bistatic measurements,/EEE Transactions on Geoscience and Remote
Sensing, vol. 45, no. 9, 2850-2858.

48



[24] Firoozabadi, R., Miller, E.L., Rappaport, Y.C.M., and Morgenthaler, A.W.
(2007). Subsurface sensing of buried objects under a randomly rough
surface using scattered electromagnetic field data,/EEE Transactions
on Geoscience and Remote Sensing, vol. 45, no. 1, 104-117.

[25] Altuncu, Y., Ozdemir, O., Akduman, 1., and Yapar, A. (2006). Imaging of
dielectric objects buried under an arbitrary rough surface, Proceedings
of thelEEE International Geoscience and Remote Sensing
Symposium,vol. 6,2954-2957, Denver, July

[26] Altuncu, Y., Akleman, F., Semerci, O., and Ozlem, C. (2008). Imaging of
dielectric objects buried under a rough surface via distorted born
iterative method,Journal of Physics: Conference Series,vol. 135, no.
1, Paris, Jun.

[27] Altuncu, Y., Yapar, A., and Akduman, I. (2007). Numerical computation of
the Green's function of a layered media with rough interfaces,
Microwave and Optical Technology Letters, vol. 49, no. 5, 1204-1209.

[28] Gilmore, C., Mojabi, P., and LoVetri, J. (2009). Comparison of an Enhanced
Distorted Born Iterative Method and the Multiplicative-Regularized
Contrast Source Inversion method,/EEE Transactions on Antennas
and Propagation, vol.57, no.8, 2341-2351.

[29] Sommerfeld, A. (1949).Partial Differential Equations in Physics, Academic
Press, New York.

[30] Colton, D., Kress, R. (1998). Inverse Acoustic and Electromagnetic Scattering
Theory, Springer, Berlin.

[31] Aksun, M. L. (1996). A robust approach for the derivation of closed-form
Green's functions,/EEE Transactions on Microwave Theory and
Techniques, vol. 44, no. 5, 651-658.

[32] Aksun, M. L.,Caliskan, F., and Gurel L. (2002). An efficient method for
electromagnetic characterization of 2-D geometries in stratified

media,/EEE Transactions on Microwave Theory and Techniques, vol.
50, no.5, 1264-1274.

[33] Van Den Berg, P. M.,and Kleinman, R.E. (1997). A contrast source inversion
method,/nverse Problems, vol. 13, no. 6, 1607-1620.

[34] Richmond, J. H. (1965). Scattering by a dielectric cylinder of arbitrary cross
section shape,/EEE Transactions on Antennas and Propagation, vol.
13, iss. 3, 334-341.

[35] Boix, R. R., Fructos, A. L., and Mesa, F. (2010). Closed-Form Uniform
Asymptotic Expansions of Green’s Functions in Layered Media,/EEE
Transactions on Antennas and Propagation, vol.58, n0.9, 2934-2945.

[36] Paulus, M., Gay-Balmaz, P., and Martin, O. J. F. (2000). Accurate and
efficient computation of the Green’s tensor for stratified
media,Physical Review E, vol.62, no.4, 5797-5807.

[37] Chow, Y. L., Yank, J. J., Fang, D. G., and Howard, G. E. (1991).A closed-
form spatial Green's function for the thick microstrip substrate,/EEE
Transactions on Microwave Theory and Techniques, vol. 39, 588-592.

49



[38] Hua,Y. andSarkar, T. K. (1989). Generalized pencil-of-function method for
extracting poles of an EM system from its transient response,/EEE
Transactions on Antennas and Propagation,vol.37, iss. 2, 229-234.

[39] Hackbusch, W. (1994).0terative Solution of Large Sparse Systems of
Equations, Springer, New York.

[40] Van Den Berg, P. (2001). Nonlinear scalar inverse scattering: Algorithms and
applications in Scattering, Eds. Pike R. and Sabatier P., Academic
Press, London.

[41] Chong, E. K. P. and Zak, S. H. (2001). Introduction to Optimization, Wiley,
New York.

[42] Bucci, O., Cardace, N., Crocco, L., and Isernia, T. (2001). Degree of
nonlinearity and a new solution procedure in scalar two-dimensional

inverse scattering problems,Journal of the Optical Society of America
A,vol. 18, no. 8, 1832-1843.

50



CURRICULUM VITAE

Name Surname:Tolga Ulas Gilirbiiz

Place and Date of Birth: Burdur,1980

E-Mail: tolgaulasg@gmail.com

B.Sc.:Electrical and Electronics Engineering, Yeditepe University

M.Sc.:Telecommunications Engineering, Istanbul Technical University

List of Publications and Patents:

Giirbiiz, T.U.,Aslanyiirek, B., Karabulut, E.P., and Akduman, I. (2014). An
Efficient Nonlinear Imaging Approach for Dielectric Objects Buried under a

Rough Surface, IEEE Transactions on Geoscience and Remote Sensing,vol.52,
1ss. 7, doi: 10.1109/TGRS.2013.2268662.

Giirbiiz, T.U.,Aslanyiirek, B., Yapar, A., Sahintiirk, H., and Akduman, 1., A
Nonlinear Microwave Breast Cancer through Realistic Body-Breast Modeling,
(under review)

Giirbiiz, T. U.,Aslanyiirek, B., and Akduman, 1. (2013). Efficient Imaging of 3D
Objects Located in a Layered Media with Rough Interfaces, Progress in
Electromagnetics Research Symposium, Stockholm, August.

Aslanyiirek, B., Giirbiiz, T. U.,and Sahintiirk, H. (2013). Shape Reconstruction of
a Dielectric Coated PEC through Generalized Impedance Boundary Conditions,
Progress in Electromagnetics Research Symposium, Stockholm, August.

Giirbiiz, T.U.,Aslanyiirek, B., Akduman, I.,Yapar, A., and Sahintiirk, H. (2011).
A contrast source imaging approach for microwave breast cancer detection,
Proceedings of13th ISMOT Int. Symp. Microwave Opt. Tech., Prague, June.

Akduman, I., Giirbiiz, T.U., Aslanyiirek, B., Giiren, O., Yapar, A., Ergene, L. T.,
and Sahintiirk, H. (2010). A novel two step procedure for microwave breast
cancer imaging, Proceedings of 6th Int. Workshop on Biological Effects of
Elecctromagnetic Fields, Bodrum, October.

51



PUBLICATIONS/PRESENTATIONS ON THE THESIS

» Giirbiiz, T. U.,Aslanyiirek, B., Karabulut, E. P., and Akduman, 1. (2014). An
Efficient Nonlinear Imaging Approach for Dielectric Objects Buried under a
Rough Surface, IEEE Transactions on Geoscience and Remote Sensing, vol.52,
iss. 7, doi: 10.1109/TGRS.2013.2268662.

» Aslanyiirek, B., Giirbiiz, T. U.,and Sahintiirk, H. (2013). Shape Reconstruction
of a Dielectric Coated PEC through Generalized Impedance Boundary Conditions,
Progress in Electromagnetics Research Symposium, Stockholm, August.

52



