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3D SCALAR IMAGING OF DIELECTRIC OBJECTS BURIED UNDER A 

ROUGH SURFACE  

SUMMARY 

Imaging of dielectric objects embedded in a layer, or beneath a rough surface is a 

popular subject of interest among remote sensing problems, and there are many 

studies that use microwaves for this purpose. In most of these studies, a rough 

surface separates two infinite half-spaces, and the object of interest lies in the 

inaccessible half-space. The area in which the object is presumed to be located is 

illuminated by transmitting antennas that are located in the accessible half-space, and 

the scattered field, which is the result of the interaction between the incident field 

and the irregularities in the medium, such as the unknown object and the layer it lies 

within, is measured by receiving antennas. The measured data is then used to obtain 

the unknown geometrical and material properties of the object. In the literature, the 

majority of the studies deal with layered media with planar interfaces, and 2D cases. 

Moreover, most of the studies on 3D cases dwell on only detection of dielectric 

objects, and very few deal with the imaging of dielectrics buried under a rough 

surface despite the importance of the problem from both theoretical and practical 

points of view. Nevertheless, none of these studies apply one of the well accepted 

nonlinear inversion techniques to a highly complicated case such as 3D case of 

imaging objects buried under a considerably rough surface, which is investigated 

here. 

In this thesis, a nonlinear tomographic approach for a 3D scalar case of microwave 

imaging of dielectric objects buried under a rough surface is presented. First, the 

imaging problem is reduced to a system of two integral equations, which requires the 

Green’s function of the background medium, including both the two half-spaces, and 

the rough surface. Therefore, the Green’s function of the background is obtained 

numerically by using Buried Object Approach (BOA), which involves obtaining the 

Green’s function of the two half-spaces with a planar interface, and then treating the 

roughness as a series of objects embedded in both half-spaces alternately. Then, the 

system of integral equations is solved for the contrast function via Contrast Source 

Inversion (CSI) method, which is one of the most successful nonlinear inversion 

techniques when the Green’s function of the background is known. The efficiency of 

the method is tested numerically, and successful results are achieved for different 

frequencies, permittivity and conductivity values of both the medium and the object, 

different heights of the roughness, different size and depth of the object, and for 

cases of multiple objects. 
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ENGEBELİ YÜZEY ALTINA GÖMÜLÜ DİELEKTRİK CİSİMLERİN ÜÇ 

BOYUTLU SKALER DURUMDA GÖRÜNTÜLENMESİ 

ÖZET 

Bir katmana ya da engebeli bir yüzeyin altına gömülü dielektrik cisimlerin 

görüntülenmesi, uzaktan algılama konuları arasında önemli bir yer tutmaktadır. 

Bunun sebebi, tahribatsız kontrol, mayın tespit, yer altı boru ve tünellerinin 

incelenmesi, tıbbi görüntüleme, jeofizik veya arkeolojik etütler gibi geniş bir 

uygulama alanına sahip olmasıdır. Bu durumların çoğunda, iki katman ya da yarı 

uzay, engebeli bir yüzey tarafından ayrılır. Erişilemeyen katmanda bulunan ve 

hakkında nerede olabileceğinden başka bir şey bilinmeyen bir cisim, erişilebilen 

katmanda bulunan verici antenler tarafından aydınlatılır. Gelen alanın ortam ve 

içinde yer alan engebeli yüzey ile bilinmeyen cisim arasındaki etkileşiminden doğan 

saçılan alan ise alıcı antenler tarafından ölçülür. Bu şekilde elde edilen saçılan alan, 

cismin bilinmeyen yeri ve şekli gibi geometrik özellikleri ve dielektrik geçirgenliği 

ile iletkenliği gibi malzeme özelliklerinin elde edilmesinde kullanılır. Literatürde bu 

konuyu iki ve üç boyutta inceleyen pek çok çalışma bulunmaktadır. Bu 

çalışmalardan bazıları cisim ile engebeli yüzey arasındaki etkileşimleri incelemekle 

yetinirken, bazıları sadece engebeli yüzey, ya da sadece cisim üzerine odaklanarak 

iki aşamalı yaklaşımlara temel sağlamışlardır. Bu gibi yaklaşımlarda önce frekans 

ortalamalı Wigner-Ville fonksiyonu ile engebeli yüzey filtrelenir, ya da korelasyon 

yöntemi ile yüzey yaklaşık olarak tahmin edilir, daha sonra ise Newton-Kantorovitch 

gibi iteratif algoritmalar ile cisim tespit ve karakterize edilir. Bunun yanında, yeraltı 

radarı, dalgacık eşiği algoritması, Monte Carlo simülasyonları gibi yöntemler, 

engebeli yüzey ile cismi birlikte ele alır, ve cismin yerini tespit etmekte ya da cismin 

bulunduğu ve bulunmadığı durumları karşılaştırıp aradaki farkı farklı cisimler ile 

karşılaştırarak gömülü cismin ne olabileceğine ilişkin fikir vemekte kullanılır. Ancak 

bunlar günümüzün ihtiyaçlarını karşılamakta yetersizdir, ve cismin geometrik ve 

malzeme özelliklerini ortaya çıkarmak gibi karmaşık problemleri çözebilecek 

yöntemlere ihtiyaç duyulmaktadır. Bu yöntemler arasında, sığ ve mayın benzeri 

cisimleri görüntülemekte kullanılan sentetik açıklıklı radar, Green fonksiyonuna 

gerek duymayan lineer örnekleme, bir hata fonksiyonelini iteratif olarak minimize 

etmeye odaklananzamanda geri dönme, yarı analitik mod uydurma gibi yöntemler ya 

da zayıf bir saçıcının olması durumunda Born yaklaşıklığı ve buna eşlik eden ters 

Fourier dönüşümü veya tekil değer dekompozisyonu gibi yöntemler sayılabilir. 

Ancak bu yöntemlerin kullanıldığı çalışmaların çoğunda iki ortam arasındaki yüzeyin 

ya düz olduğu, ya da düz denebilecek kadar hafif bir engebeye sahip olduğu durum 

göz önüne alınmıştır. Oysa pratikte, görüntülenmek istenen cismin gömülü olduğu 

ortamın yüzeyi ihmal edilemeyecek derecede engebelidir, ve bu durum probleme 

ciddi güçlükler getirmektedir. Hem teorik, hem de pratik açıdan son derece önemli 

olmasına rağmen literatürde engebeli bir yüzey altına gömülü cisimlerin üç boyutta 

ele alındığı, ve hem geometrik, hem de malzeme özelliklerinin belirlenmeye 

çalışıldığı çalışmalar yok denecek kadar azdır. Buna ek olarak, geniş bir dielektrik 
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geçirgenliği aralığında, farklı geometrik özelliklere sahip saçıcıların 

görüntülenmesinde oldukça etkin olduğu bilinen doğrusal olmayan inversiyon 

yöntemlerinin engebeli yüzey altına gömülü dielektrik cisimlerin üç boyutlu 

durumda görüntülenmesi probleminde kullanıldığı bir çalışma, bildiğimiz kadarıyla 

bulunmamaktadır.  

Bu tez çalışmasında, görüntülenmek istenen cismin arka planını teşkil eden uzaya ait 

Green fonksiyonunun bilinmesi halinde en etkili doğrusal olmayan inversiyon 

yöntemlerinden biri olarak kabul edilen Kontrast Kaynak İnversiyon (Contrast 

Source Inversion, CSI) yöntemi, engebeli bir yüzey altına gömülü dielektrik 

cisimlerin üç boyutlu durumda görüntülenmesi problemine uygulanmıştır. Bu 

amaçla, veri ve cisim denklemleri olarak adlandırılan, ve cismin dielektrik 

geçirgenliği ile iletkenliğini, cisim üzerinde bilinen sonlu bir uzayda alınan bir 

integral aracılığıyla sırasıyla ölçüm bölgesi ve cisim üzerindeki elektromanyetik 

alanlarla ilişkilendirilen Fredholm tipi integral denklemler yazılmıştır. Bu 

denklemlerin çekirdeğinde, engebeli yüzey de dahil olmak üzere cisim dışında kalan 

bütün yapıyı içeren uzaya ilişkin Green fonksiyonu yer almaktadır. Bu uzaya ilişkin 

Green fonksiyonununanalitik olarak hesaplanması mümkün olmamakla beraber, 

Gömülü Cisim Yaklaşımı (Buried Object Approach, BOA) olarak bilinen yöntem ile 

sayısal olarak elde edilebilir. Bu yaklaşıma göre engebeli yüzeyin girinti ve 

çıkıntıları, düzlemsel bir ara yüzle birbirinden ayrılmış iki parçalı uzaya gömülü 

cisimler olarak kabul edilir, ve ihtiyaç duyulan noktalara yerleştirilen noktasal 

kaynaklara ilişkin alanlar, Momentler Yöntemi (Method of Moments, MoM) ile 

sentetik olarak elde edilir. Bu alan büyüklükleri, Green fonksiyonunun aranan 

noktalardaki değerleridir. Arka planın Green fonksiyonunun hesaplanmasında gerekli 

olan iki parçalı uzaya ait Green fonksiyonu ise çekirdeğinde spektral yansıma ve 

iletim katsayılarının bulunduğu sonsuz integraller şeklinde yazılır, ve bu integraller 

sayısal olarak hesaplanır.  

Böylece, cismin görüntülenmesi problemi, veri ve cisim denklemlerinden, cisim ile 

içinde bulunduğu ortamın dielektrik geçirgenlikleri ve iletkenlikleri arasındaki farkı 

ifade eden kontrast fonksiyonunun elde edilmesi olarak ifade edilen bir ters saçılma 

problemidir. Bu problem, kötü kurulmuş (ill-posed) ve doğrusal olmayan (nonlinear) 

bir problemdir, ve çözümü için kullanılabilecek bazı yaklaşıklıklara ve 

doğrusallaştırmalara dayalı yöntemler literatürde mevcuttur. Bu yöntemlerden biri 

olan Kontrast Kaynak İnversiyonu (CSI), doğrusal olmayan bir optimizasyon 

uygulamasıdır. Bunun için öncelikle sözü edilen integrallerin içinde çarpım halinde 

bulunan kontrast fonksiyonu ve alan ifadeleri, kontrast kaynağı adı verilen tek bir 

değişken olarak tanımlanır. Bu halde veri denklemi bu yeni değişkene göre doğrusal 

hale gelir, ancak denklemin kötü kurulmuş olması nedeniyle herhangi bir yöntemle 

kontrast kaynak için elde edilecek çözümün gerçekten farklı olması beklenir. Halbuki 

problem,denklem sisteminin asıl bilinmeyenleri olan kontrast fonksiyonu ve cisim 

üzerindeki alan açısından ele alındığında, cisim üzerindeki alanın kontrast 

fonksiyonuna bağlı olması nedeniyle problemin doğrusal olmayan bir problem 

olduğu görülür. Cismin zayıf bir saçıcı olması halinde problem, cismin üzerindeki 

toplam alanın gelen alana eşit kabul edildiği Born yaklaşıklığı kullanılarak doğrusal  

hale getirilebilir. Ancak geniş bir kompleks dielektrik sabiti ve cisim boyutu 

bölgesinde çözüm verebilecek bir görüntüleme yöntemi için problemin doğrusal 

olmayan doğasının göz ardı edilmemesi gerekir. Kontrast Kaynak İnversiyonu 

yönteminde herhangi bir doğrusallaştırma yapılmaz.Veri ile cisim denklemlerinin 

hatalarının toplamı şeklinde ifade edilenbir hata fonksiyoneli tanımlanır, vebu 
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fonksiyonel minimize edilecek şekilde kontrast kaynağı ve kontrast büyüklükleri 

dönüşümlü ve iteratif olarak güncellenir. Bu yöntem, iterasyonun her adımında düz 

problem çözümüne ihtiyaç duymaması, ve kontrast büyüklüğünün her adımda 

analitik olarak belirleniyor olması sebebiyle benzer yöntemlerden ayrılır.  

Yöntemin verimini test etmek amacıyla çeşitli durumlar için simülasyonlar 

gerçekleştirilmiştir. Simülasyonlarda tek frekans kullanılmış, ve problemin üç 

boyutlu olmasından kaynaklanan hesaplama yükünü azaltmak amacıyla görüntüleme 

bölgesi, mümkün olduğunca küçük tutulmuştur. Bu şekilde farklı frekanslar, hem 

cisim, hem de içinde bulunduğu ortam için farklı dielektrik geçirgenlikleri ve 

iletkenlikler, farklı yapıdaki ve yükseklikteki engebeli yüzeyler, farklı boyutta ve 

derinliklerde bulunan cisimler, ve birden fazla cismi içeren çeşitli durumlar 

incelenmiştir. Bu incelemeler sonucunda, problemin yüksek karmaşıklıktaki 

doğasına rağmen, elde edilen sonuçların son derece tatmin edici olduğu, içinde 

bulunduğu ortamdan cismin net bir şekilde ayırdedilebildiği, ve malzeme 

özelliklerinin gerçeğe yakın olarak elde edilebildiği gözlemlenmiştir.  
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1.  INTRODUCTION 

1.1 Purpose of the Thesis 

Microwave detection or imaging of objects embedded in a layer, or beneath a rough 

surface has been a popular subject of remote sensing due to its wide range of 

application areas such as nondestructive testing, mine detection, examination of 

underground pipes and tunnels, medical imaging, geophysical or archeological 

exploration.In most of these cases, a rough surface separatestwo layers, and the 

object of interest lies in the inaccessible layer beneath the rough surface, while the 

transmitting and receiving antennas lie in the accessible layer, above the surface. In 

order to image the object, a number of antennas illuminate the area in which the 

object is presumed to be located. Then, the scattered electromagnetic field, which 

arises from the interaction of the incident wave with the object and the layer it lies 

within, is measured by receiving antennas.The measured data is then used to obtain 

the unknown geometrical properties such as shape, location, and/or electromagnetic 

properties of the object, namely, dielectric permittivity and conductivity. Therefore, 

the purpose of this thesis is to give a fast and efficient methodology for 

determination of both geometrical and electromagnetic properties of dielectric 

objects buried under a rough surface. 

1.2 Literature Review 

There has been a wide range of approaches introduced to investigate, detect or image 

the rough surface that separates layered media, and objects buried in the inaccessible 

layer.[1] and [2] calculate and investigate the interactions between the object and a 

rough surface by using Forward-Backward (FB) method, and Propagation-Inside-

Layer Expansion (PILE), respectively. The complexity observed in these studies led 

some researches to deal with roughness and object separately. For example, [3] 

focuses on the geometrical parameters of the layered media, such as rms height and 

correlation length, as well as the physical parameters, which are dielectric 



2 

permittivity and conductivity of each layer by minimizing the difference between the 

estimated and actual backscattering coefficients. Such reliable methods to estimate 

the profile of the roughness made two-step methods possible.In [4], for example, the 

object is detected by analyzing the frequency-averaged Wigner-Ville function to 

filter out rough surface scattering, and then the object is characterized by an iterative 

solution derived from the Newton-Kantorovitch algorithm. Moreover, [5] uses a 

correlation procedure of the scattered field in order to estimate the roughness profile, 

and then applies an iterative process based on a level-set formulation to obtain the 

shape of the buried object.  

On the other hand, many researches choose to deal with the object and the rough 

profile of the layer they lie within, at the same time.Since the location of the object is 

unknown, and the layer it lies within is assumed infinite, detecting and locating the 

object is important. An application of angular correlation function to Ground 

Penetrating Radar (GPR) data to detect metallic objects, and a correlation of the 

scattered fields from two sets of data associated with two transmitters are given in 

[6], and [7], respectively, and [8] presents an image segmentation based on a wavelet 

thresholding algorithm applied to data gathered by Mid-Wavelength InfraRed 

(MWIR).Furthermore, Monte Carlo Simulations are applied to statistical average of 

Mueller and covariance matrix elements, which are obtained by simulations for 

rough ground with and without buried objects in [9], [10], respectively, whereas 

genetic and memetic algorithms use global optimization procedures [11-13].In 

addition, observing the surface impedance, which is obtained from the impedance 

boundary condition by using the electric field and its normal derivative on the 

surface [14], [15] reveals the location of the object. 

However, reconstructing both geometrical and material properties of the object is 

more challenging, and several techniques have been applied to several data types 

throughout the years.Synthetic Aperture Radar (SAR) is used not only for imaging 

shallow buried landmine-like objects [16], but also for facilitating target 

identification by imaging different types of targets and obtaining a form of signature 

for them [17].Linear Sampling is used with reciprocity gap functional, avoiding the 

computation of the Green’s function, which brings an undesirable computational cost 

[18], coupled with an analytic continuation [19].Furthermore, Time Reversal Method 

(TSM) focuses on minimizing a cost functional. It is used in [20] to synthesize a 
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wave that focuses on the scatterer by improving the signal-to-clutter ratio, and in [21] 

to image the rough surface first, under the assumption of free space, and then to 

estimate the object by using the surface obtained in the first step, in iterations in 

which both estimations are updated.In addition, Semi-Analytic Mode Matching 

(SAMM) is used in conjunction with least-squares [22], or with Levenberg-

Marquardt algorithm, which uses a search direction between Gauss-Newton direction 

and the steepest descent direction, in order to minimize a cost functional representing 

the difference between estimated and real values of surface and constitutive 

parameters of both ground and object [23], iteratively.The efficiency of minimizing a 

cost functional depends on the choice of the step size and the direction, in which a 

closer estimate is searched. [24] presents use of Modified Gradient Method to 

reconstruct relative permittivity and conductivity maps within a search domain from 

the iterative minimization of a cost functional, which consists of the errors both in 

reproducing the data and the field inside this domain. 

The nonlinear nature of the reconstruction process gives rise to a search for 

approximations suitable to the physical reality of the problems at hand. In case of a 

weak scatterer, whether it is the size of the object or the low contrast of its 

constitutive parameters to those of the background, Born approximation, which 

neglects the scattered field inside the object, is used. By linearizing the problem 

through Born approximation, [25] and [26] reconstruct the object using inverse 

Fourier transform, and Singular Value Decomposition (SVD), respectively, while 

[27] uses Born approximation for obtaining an initial estimate of the object in its 

iterative process. However, when the base requirements of the problem change due 

to its complexity, the approximations need to change as well. First and higher order 

extended Born approximations presented in [28] and [29], and distorted Born 

iterative methods presented in [30] and [31] are examples for such cases. 

1.3 Significance of the Study 

In this thesis, Contrast Source Inversion (CSI) is efficiently applied to the 3D scalar 

case of microwave imaging of buried dielectric objects under a rough surface for the 

first time. Since CSI, which is proven to be one of the most efficient nonlinear 

inversion techniques, requires the Green’s function of the background medium, it is 

obtained numerically through the application of Buried Object Approach (BOA). 
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Therefore, the scalar Green’s function of the two half-spaces with a planar interface 

is obtained as an infinite integral of spectral reflection and transmission coefficients, 

and the integrals are numerically calculated.Then, the contribution of the rough 

surface, which is assumed to be the field scattered by a series of objects buried in 

both half-spaces, is obtained by Method of Moments (MoM).  

In spite of the incomplete data due to the nature of the subsurface imaging, and the 

complexity of the problem, as well as the high nonlinearity it holds, the proposed 

method yields remarkable results. The method is analyzed through several series of 

simulations in order to test the changes in several parameters of the configuration. 

The numerical results show that the method yields efficient results for a wide band of 

frequency, for a wide range of permittivity and conductivity values for both object 

and the background medium, for high roughnesses, small objects or multiple objects 

buried close to each other. 

1.4 Organization of the Thesis 

The organization of the thesis is as follows. The statement of the problem is given, 

and geometry and formulation are explained in Section 2. While the calculation of 

the Green’s function of the background medium is given in Section 3, Section 4 is 

dedicated to the solution of the inverse problem. Several examples of numerical 

simulations are presented in Section 5, and finally, the conclusion is given in Section 

6.  

Throughout the thesis, the exp i t  time factor is considered and suppressed. 
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2.  STATEMENT OF THE IMAGING PROBLEM 

2.1 Geometry of the Problem 

The problem of the imaging of an unknown object, which lies beneath a rough 

surface, has been treated as a 3D scalar problem for computational simplicity. A 

cross section of the configuration can be seen in Figure 2.1. In this configuration, the 

two half-spaces are separated by a locally rough interface 1 2,f x x , where 

1 2,f x x  is a single valued function [32], differing from the planar surface over a 

finite interval.The half-spaces 3 1 2,x f x x  and 3 1 2,x f x x  are composed of 

simple materials with constitutive parameters 1 1,  and 2 2, , respectively. In the 

lower half-space, an arbitrary shaped object with parameters ,obj obj  is assumed to 

be located. All materials considered in this geometryare assumed to be nonmagnetic, 

with magnetic permeability equal to free-space permeability 0 . 

 

Figure 2.1: Cross section of the geometry of the problem 

The region in which the object is assumed to be located is illuminated by microwave 

point sources at points zj, j = 1,2,…,J on the surface T, and the total electric field 

zj n ju E ;x x , where 1 2 3, ,x x xx  is the position vector in 
3
, is measured by 

evenly spaced receivers located on the surface S for each illumination. Both surfaces 

T and S lie above the rough surface, parallel to the 3x 0  plane. The incident scalar 
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electric field function for each illumination is z
4

ikr

i j
eE ;

r
x , which is time 

harmonic with angular frequency , and where r represents the distance between the 

source and the observation points. The inverse scattering problem here is 

reconstructing the unknown object’s location, shape and constitutive parameters by 

using the total electric field zj n ju E ;x x , n S  measured on the surface S.  

2.2 Formulation of the Problem 

The total field 
ju x  can be considered as the sum of the background field 0

ju x , 

the total field for the jth illumination in the absence of the object, and S

ju x , the 

field scattered by the object. 

0 S

j j ju u ux x x
 (2.1) 

0

ju x  can be obtained by using a computational electromagnetics technique, in this 

case, BOA [33], which will be explained thoroughly in Section 3.1.In a source-free 

region, 0

ju x  satisfies the homogeneous Helmholtz equation  

0 2 0 0j b ju k ux x x
 (2.2) 

where 2

bk x  is the wavenumber of the background medium, whose square is given 

by 

2 2

1 1 0 1 0 3 1 22

2 2

2 2 0 2 0 3 1 2

,      ,

,      ,
b

k i x f x x
k

k i x f x x
x

 

(2.3) 

Similarly, the total field 
ju x  satisfies 

2 0j ju k ux x x
 (2.4) 

where 2k x  is the wavenumber of the whole geometry, including the object, and 

given by 
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2

0 02

2

,      

,                             

obj obj

b

i C
k

k C

x
x

x x
 

(2.5) 

Finally, by adding the term 2 2

b j b jk u k ux x x x  to the left side of (2.4) and 

using (2.2) and (2.1), we obtain the equation 

2 2S S

j b j b ju k u k ux x x x x x
 (2.6) 

where x  is called the object function or contrast function, and defined by 

2

2
1

b

k

k

x
x

x
. 

(2.7) 

Since the contrast function is a function of frequency, it will be different for all 

illuminations if they are performed in different frequencies. In order to avoid such 

complication throughout this thesis, all illuminations are considered to operate at a 

single frequency, and that is why, the index j is not used for the contrast . 

In the inhomogeneous Helmholtz equation (2.6) that governs the propagation of the 

scattered field, the object is represented with the source term 2

b jk ux x x , and 

the scattered field S

ju x  is represented as a field radiating from this source in the 

medium defined by 2

bk x  and also satisfies the Sommerfeld radiation condition 

1
2lim 0,        

S

j S

b j
r

u
r ik x u r x

r

x
x

 

(2.8) 

In general, the Sommerfeld radiation condition states that the enerty radiated from 

the sources must scatter to infinity [34]. This leads, in practice, to choosing the 

outgoing wave from possible solutions of the Helmholtz equation, and therefore 

ensuring the uniqueness of the solution to the scattering problem [35]. 

In order to solve the scattering problem given by the equations (2.6) and (2.8), one 

needs the Green’s function of the background medium ,bG x y , which is defined as 

the total field due to a point source, which satisfies the differential equation 
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2, ,b b bG k G -x y x x y x y
 (2.9) 

as well as the radiation condition.By using the Green’s function ,bG x y  as proven 

in [35], the scattered field S

ju x  that satisfies both (2.6) and (2.8) can be written in 

an integral form as 

2,S

j b b j

C

u G k u dx x y y y y y

 
(2.10) 

Using this equation, the field scattered from the object can be calculated at any 

observation point x by integrating the source values y on the object. However, (2.10) 

shows that in order to obtain the scattered field at any point, the values of the total 

field ju  on the object are required. Since 0 S

j j ju u ux x x  is valid at any point, 

we can write the equation 

0 2,      j j b b j

C

u u G k u dx x x y y y y y, x C

 
(2.11) 

From (2.10) and (2.11), the scattered field at any point can be obtained by using 

Method of Moments (MoM) given in [36] for a known contrast function.  

In the inverse scattering problem, on the other hand, the constitutional parameters as 

well as the location C of the object are unknown, while the total field 
ju x , and 

therefore S

ju x  on the measurement points on the surface S are known.Since the 

contrast function  in (2.7) vanishes for x C , we perform the integrations in (2.10) 

and (2.11) on a reconstruction domain D which is large enough to contain the 

unknown object as shown in Figure 2.1. In this case, the total field ju  that appears in 

the integrals isredefined for x D , and the resulting integral equations can be 

symbolically written as  

0 ,      ,      1,2,...,JD

j j ju u G u D jx
 (2.12) 

,              ,      1,2,...,JS S

j ju G u S jx
 (2.13) 
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where DG  and SG  are integral operatorsmapping from 2L D  to 2L D  and 2L D  

to 2L S , respectively, and given by 

, 2,      ,D S

b b

D

G G k d D Sx x y y y y, x

 
(2.14) 

Equations (2.12) and (2.13) are known as the object and data equations, respectively, 

and the imaging problem at hand can be expressed as the reconstruction of  from 

these equations since its real and imaginary parts are related to the dielectric 

permittivity 
obj x , and the conductivity 

obj x  of the object. This problem is 

nonlinear with respect to , and the ContrastSource Inversion (CSI) method [37] 

given in Section 4 is used to solve it. 
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3.  THE GREEN’S FUNCTION OF THE BACKGROUND MEDIUM 

3.1 Buried Object Approach 

Solving the inverse scattering problem given by (2.12) and (2.13) requires the 

Green’s function of the background, ,bG x y  for necessary pairs of x and y.In this 

study, this is achieved by Buried Object Approach (BOA), which considers the 

roughness as a series of scatterers whose constitutive parameters differ according to 

their position. The parameters of the sections B1, B3,… B2N-1, that lie in the 3 0x

half space and the sections B2, B3,… B2N that lie in the 
3 0x region which are shown 

in Figure 3.1 are 
1 1,  and 

2 2, , respectively. 

 

Figure 3.1: Cross-sectional representation of the geometry according to the BOA. 

,bG x y , the Green’s function of the background can be expressed as the sum of the 

contributions of its two components, 

0, , ,b SG G Gx y x y x y
 (3.1) 

where 0 ,G x y  is the Green’s function of the two-part space with a planar interface, 

and ,SG x y  is the contribution of the roughness. ,SG x y  can also be considered as 

the field scattered from the objects that form the roughness due to a point source with 

unit strength and is located at y, and 0 ,G x y and ,bG x y are the incident and total 
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fields, respectively. In this case, the integral equation of such a scattering problem 

can be written as 

0, ,SI G Gx y x yL L
 (3.2) 

where the integral operator L  is defined by 

2 2

0 0, , ,b

C

G G k k G dzx y x z z z z yL

 
(3.3)   

In (3.3), 0k z  is the wave number of the two-part space with planar interface, and its 

square is defined as 

2

1 22

0 2

2 2

,        x 0

,        x 0

k
k

k

z
z

z
 

(3.4) 

Equation (3.2) can be solved for ,SG x y  by using the forward solution procedure 

given in [36]. 

3.2 Green’s Function of the Two Half-Spaces with a Planar Interface 

In order to solve (3.2), 0 ,G x y , which can be considered as the total field due to a 

point source of unit strength that is located at y in the two-part space with a planar 

interface. The geometry in question is shown in Figure 3.2. 

0 ,G x y  satisfies the Helmholtz equation 

2

0 0 0, ,G k Gx y x x y x y
 (3.5) 

and the boundary conditions at 3 0x  

2 2

2 2

0 00 0

0 0

3 30 0

,             0

,        0

x x

x x

G G

G G

x x
 

(3.6) 

as well as the Sommerfeld radiation condition. 



13 

 

Figure 3.2: Cross-section of two half-spaces with a planar interface 

Having the discontinuity of the geometry in the Ox3-direction, we take the Fourier 

transform of (3.5) twice, with respect to x1, and x2, so that we deal with the problem 

only in the Ox3-direction. Thus, we obtain 

1 1 2 2

2
2 2 20
1 2 0 0 3 32

3

ˆ
ˆ i y i yG

k G e e x y
x  

(3.7) 

where 0Ĝ  is the double Fourier transform of 
0G  defined by 

1 1 2 2

0 1 2 3 0 1 2 3 1 2
ˆ , , ; , x , ; xi x i xG x G x x e e dx dy y

 
(3.8) 

In this case, 0Ĝ  satisfies the boundary conditions at 3 0x , which are given in (3.6), 

2 2

2 2

0 0
0 0

0 0

3 30 0

ˆ ˆ ,             0

ˆ ˆ
,        0

x x

x x

G G

G G

x x
 

(3.9) 

and also the boundary conditions at 3 3x y , which are 

2 2 2 2

1 1 2 2

2 2 2 2

0 0

0 0

3 3

ˆ ˆ ,                                     0

ˆ ˆ
,        0

x y x y

i y i y

x y x y

G G

G G
e e

x x
 

(3.10) 
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(3.7) can be solved for 0Ĝ  by using (3.9), (3.10), and the Sommerfeld radiation 

condition, and after applying the inverse Fourier transform, which is defined by 

1 1 2 2

2

0 1 2 3 0 1 2 3 1 2

1 ˆ,x , ; , , ;
2

i x i xG x x G x e e d dy y

 

(3.11) 

the Green’s function of the two-part space with planar interface 
0G  can be found as 

1 2 3 3

3 3 3

0

4 3 3

1 5 3 3

, , ,        0, y 0

, ,                      0, y 0
,

, ,                      0, y 0

, , ,        0, y 0

G G x

G x
G

G x

G G x

x y x y

x y
x y

x y

x y x y
 

(3.12) 

where 
1G  is the direct part while 2,5G  and 3,4G  are the reflected and transmitted parts 

of the Green’s function. 
1G  can be written as 

0

1
4

ik
e

G
x y

x y
. 

(3.13) 

On the other hand, there are no explicit expressions for 2,3,4,5G , that is why they are 

obtained by taking the inverse double Fourier transform of 

1 3 312

1

12 1 3 2 3

1

21 1 3 2 3

2

2 3 321

2

2 0 3 3

0

3 0 3 3

0

4 0 3 3

0

5 0

1
,        0, 0

4

1
,        0, 0

4

1
,        0, 0

4

1
,

4

x yR

T y x

T x y

x yR

G k J k x y e dk x y

G k J k x y e dk x y

G k J k x y e dk x y

G k J k x y e dk 3 3

0

       0, 0x y

 

(3.14) 

where  

2 2

1 1 2 2x y x y x y
 

(3.15) 
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1 2 1
12 12

1 2 1 2

2 1 2
21 12

1 2 1 2

2
,        T

2
,        T

R

R

 

(3.16) 

and  

2 2 2 2

1 1 2 2,        k k
, where 2 2 2

1 2  (3.17) 

The square root functions in (3.17) are defined on the complex υ-plane under the 

conditions 

,        1,2q qik q
 (3.18) 

 

Figure 3.3: The integration path of the infinite integral on complex domain. 
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4.  SOLUTION OF THE INVERSE SCATTERING PROBLEM 

4.1 Properties of the Inverse Scattering Problem 

Jacques Hadamard defined mathematical models of physical phenomena as well-

posed problem if they satisfy three conditions such as a solution exists, the solution is 

unique, and the solution’s behavior changes continuously with the initial conditions 

[38]. If at least one of these conditions are not satisfied, the problem is defined as ill-

posed. The problem defined in (2.10) and (2.11) is well-posed as shown in [35], 

which means that the scattered field for a known object exists, is unique, and 

continuously depends on the constitutive parameters of the object. However,an 

inverse problem, involves reconstructing the material properties of an unknown 

object by using a scattered field obtained through a finite number of measurements 

under a finite number of illuminations, and realistically contaminated by 

noise.Although the data equation is linear with respect to the product of u , which 

are both unknown, it is highly nonlinear with respect to the contrast function , 

which is the main focus of the inverse problem because u  itself depends on . 

The nonlinearity can be seen by rewriting (2.12) in the inverse form as 

1
0D

j ju I G u
 

(4.1) 

where I is the identity operator, and by substituting it into (2.13) 

1
0S S D

j ju G I G u
. 

(4.2) 

Several methods deal with this nonlinearity through different approximations. For 

example, in case of a weak scatterer, whether it is the size, or the values of its 

constitutive parameters, approximating the inverse operator by 

1
D

jI G I
 

(4.3) 
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In other words, neglecting the contribution of the scatterer to the total field and 

assuming  0

j ju u leads to Born approximation, and through this approximation, the 

data equation in (4.2) will be linear.On the other hand, in iterative methods where 

n  is reconstructed, approximations are made considering the iteration steps, such 

as  

1 1

1

D D

j n j nI G I G
 

(4.4) 

leads to the iterative Born method [39], and linearization of  

1 1

1 1

D D D

j n j n j n nI G I G G
 

(4.5) 

using
1n n n
, namely, 

1 1 1

1 1

D D D D

j n j n j n j nI G I I G G I G
 

(4.6) 

to the Newton-Kantorovich method [40,41]. While these iterative methods require 

direct scattering problem to be solved at each iterative step, Contrast Source 

Inversion method, which is the main component of this study, focuses on minimizing 

a cost functional that consists of normalized data and object errors without solving 

the direct problem. 

4.2 Solution of the Inverse Scattering Problem via the CSI 

Since the total field u  and the contrast function  appear as a product in data and 

object equations, the quantity  

j jw u
 (4.7) 

which is called a contrast source, is introduced, since ju satisfies the Helmholtz 

equation  

2 2 2

j jk u k w
 in C. (4.8) 

Using (4.7), the data equation becomes  
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,        1,2,...,S

j j jf G w j J
 (4.9) 

And the object equation becomes 

,        1,2,...,inc D

j j j ju w G w j J
 (4.10) 

Therefore, the cost functional which CSI intends to minimize can be defined as 

2 2

2 2

S inc D

j j j j j j jj jS D

inc

j jj jS S

f G w u w G w
F

f u
 

(4.11) 

where 
2

S
 and 

2

D
 represent the norms on 2L S  and 2L D , respectively, and they 

are defined as 

1/2

, ,
,j j jD S D S

u u u
 

(4.12) 

and 

, ,
,j j j jD S D S

u v u v dx x x  (4.13) 

where the overbar denotes complex conjugate.The first term of the cost functional 

represents the error in the data equations in (4.9), and the second term represents the 

error in the object equations in (4.10) for each illumination. The normalization of the 

two terms is carried out so that both terms would be equal to one if 0jw . As 

mentioned in [37], the iterations will be carried out in two main steps. First, the 

contrast sources n

jw  will be constructed by using the Conjugate Gradient (CG) 

method so that they would minimize the whole cost functional, and then by using the 

updated value of n

jw , the object function n  will be determined to minimize the 

second part of the cost functional. The process will continue in the following manner, 

until the difference between the cost functionals of two consecutive iterations go 

below a predetermined value: 

The data and object errors are defined as 
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, , ,

S

j n j n j j nf G w
 (4.14) 

, , ,j n n j n j nr u w
 (4.15) 

respectively, where 

0

, ,

D

j n j j j nu u G w
 (4.16) 

If , 1j nw  and 
1n
 are known, then jw  is updated as 

, , 1 , ,j n j n j n j nw w v
 (4.17) 

where the step sizes ,j n  are constants, and the update directions ,j nv  are functions of 

position. 

The update directions ,j nv  are chosen to be the Polak-Ribière conjugate gradient 

directions, and defined as 

,0

, , , 1

, , , 1

, 1 , 1

0

,
, 1

,

j

j n j n j n D
j n j n j n

j n j n D

v

g g g
v g v n

g g
 

(4.18) 

where ,j ng  is the gradient (Frechet derivative) of the cost functional with respect to 

jw  evaluated at , 1j nw , 1n , and can be expressed as 

D**
, 1 1 , 1, 1

, 2 2

1

S
j n j n j nj j n

j n
inc

k n kSk k D

r G rG
g

f u
 

(4.19) 

where *S

jG  and D*

jG  are adjoints of S

jG  and D

jG  mapping 2L S  into 2L D  and 

2L D  into 2L D , respectively, and they are defined as  

D* ; ,        j j j
D

G v G v d x Dy x y y
 

(4.20) 

and  
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* ; ,        S

j j j
S

G v G v d x Dy x y y
 

(4.21) 

After determining the update directions ,j nv , the step size ,j n  is determined to 

minimize the cost functional 
, 1 , ,j n j n j nF w v  in an explicit form  

2 2

, 1 , ,

2 2

1
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, 1 , , 1 ,, 1 , ,

2 2

1

   

S

j j j n n j n j nj j DS
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j n j n j n n j j nj n j n j j n jj S D

inc
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f G w u w
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(4.22) 

and is obtained as 

, 1 , , 1 , 1 ,

, 2 2

1

1
2 2

, , 1 ,

2 2

1

, ,

          

S D

j n j j n j n j n n j j nS D
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j n jj jS D

S D

j j n j n n j j nS D
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k n kSk k D

G v r v G v

f u

G v v G v
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(4.23) 

After ,j nw  is obtained, the total field ,j nu  inside D can be updated using (4.16) and 

(4.17) as 

, , 1 , ,

D

j n j n j n j j nu u G v
 (4.24) 

In the second part of an iteration, the contrast , which minimizes the second term 

of the cost functional 

2

, ,

2

,

n j n j nj D

D

n j nj D

u w
F

u
 

(4.25) 

is to be found. However,as presented in [37], using simpler functional 

2

, ,'D n j n j nj D
F u w

 
(4.26) 
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instead of (4.25) would lead to guarantee that the process is always error reducing, 

and allows easy implementation of a priori information or constraints on . 

Equation (4.26) can be rewriten as 

2 2
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(4.27) 

Without any a priori information on , 'DF  can be minimized by choosing 

, , , ,

2 2

, ,

Re Im
          

j n j n j n j nj jr i

n n

j n j nj j

w u w u

u u
 

(4.28) 

If we have a priori information that r and i  are positive, which for the application 

at hand they are, then using this information to write (4.27) as 

2
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Although the first option that comes to mind to minimize 'DF  is choosing r and i  

to be zero, the appearance of 1 21 i  and 1 21 r  in this expression makes it 

unreasonable. Furthermore, we can see from (4.26) that 0 whenever 0jw

.Therefore, since the Schwarz inequality ensures that 

1
2 21

2 , ,2

, , ,

,

Re
Re 0

j n j n

j n j n j nj j j

j n

w u
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(4.30) 

And 

1
2 21

2 , ,2

, , ,

,

Im
Im 0

j n j n

j n j n j nj j j

j n

w u
u w u

u
 

(4.31) 

r and i  are chosen to minimize the factors multiplying r and i , as 

1 1
2 22 2

, , , , , ,

2 2

, ,

Re Im
          

j n j n j n j n j n j nj jr i

n n

j n j nj j

w u u w u u

u u
 

(4.32) 

If further information on r or i  is known a priori, then this known value can be 

used in equations (4.28) or (4.32) for further restriction of the reconstruction during 

the iterations.  

Using the path we take during this procedure leads us to a reasonable choice of the 

starting values of 
,0jw . Observing from (4.11) that starting iterations with 

,0 0jw
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would cause 0 0 0r i , and and the cost functional would be undefined. Therefore, 

the values  

2
*

*

,0 2
*

S

j jbp SD
j j j

S S

j j j S

G f
w G f

G G f
 

(4.33) 

that are obtained by backpropagation are chosen. This completes the CSI procedure.  
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5.  NUMERICAL SIMULATIONS 

In order to test the efficiency of the method, several numerical simulations have been 

performed for various cases.Throughout the simulations, all materials are assumed to 

be nonmagnetic, with free-space magnetic permeability
0
. The upper half-space 

3 0x  is assumed to be free-space, and unless otherwise stated, the lower half-space

3 0x  is assumed to be dry soil, with constitutive parameters 3.6rsoil and 410soil

.Equally spaced point sources and measurement points are located on surfaces, 

whose area are defined by 10.5 0.5soil soilx  and 20.5 0.5soil soilx , in the 

upper half-space, 0.2 soil
 and 0.1 soil

 above the maximum height of the roughness, 

respectively. 

The scattered field data are obtained synthetically by solving the direct scattering 

problem given by (3.1) and (3.2) for an object buried under a rough surface via 

Method of Moments (MoM), using Buried Object Approach (BOA) given in sections 

2 and 3. In order to avoid inverse crime, cubical cells of size 

/ 30 / 30 / 30soil soil soil  are used for the production of the scattered field, 

while the Green’s function which is used in the inversion procedure is calculated for 

a reconstruction domain consisting of larger cells.5% random noise 2

s,
di r

ju e , is 

added to the scattered field, where  is the noise level, and dr  is a uniformly 

distributed random variable between 0 and 1, and therefore the corresponding signal-

to-noise ratio is 1020logSNR . At each simulation, the iterative process is 

performed by considering the positivity constraint for the contrast, and stopped at 

500 iterations. The reconstruction results are given in their own color scales since 

using the same color scale for both the original and reconstructed profiles may not be 

enough for visual interpretation when the values are underestimated. 

For the first set of simulations, the rough surface shown in Figure 5.1 is considered. 

The roughness covers a 1.7 1.7soil soil  area in 1 2x x  plane, and the height, the 

difference between its maximum and minimum values on 3x axis is 0.2 soil . A 
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sphericalobject with a 0.125 soil
radius,dielectric permittivity 05obj  and 

conductivity 0.01obj  is centeredat 0,0, 0.275 soil . The configuration is 

illuminated by 16 point sources operating at different frequencies, changing between 

100MHz to 3 GHz, for each example, and the scattered field is measured at 64 

points. The inversion procedure is carried out in a reconstruction domain consisting 

of cubical cells of size / 25soil
 on each side. 

The first example is carried out at 100 MHz frequency. The profile of the real and 

reconstructed values in the cross-section at 
1 0x  of the reconstruction domain are 

given in Figure 5.2. Figure 5.2 (a) and (c) show that the profile of the reconstructed 

relative dielectric permittivity of the domain is very well determined, and the shape 

and the location of the object is clear, although the object looks slightly bigger than 

its real size. Similarly, the conductivity profile of the domain that can be seen in 

Figure 5.2 (b) and (d) shows that the reconstructed value is very close to the real 

value, and location of the object is very clear, but it looks smaller than it really is. 

For the second example is carried out at 300 MHz frequency. Figure 5.3 shows the 

real and reconstructed values of both relative permittivity and conductivity profile of 

the reconstruction domain, at 1 0x . The reconstructed values of both are very well 

determined, and the shape and location of the object are distinctive. However, in both 

Figure 5.3 (c) and (d), the object seems slightly mislocated, and it looks bigger than 

its real size in (c) while it looks smaller in (d). 

 

Figure 5.1:Rough surface profile for the first set of simulations that are investigated 

through Figure 5.2-5.7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.2:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test atf = 100 MHz. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.3:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test at f = 300 MHz. 
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Figure 5.4 shows the results of the third example, ran at 600 MHz operating 

frequency. The reconstructed values of both relative permittivity and conductivity 

shown in (c) and (d), respectively, are close to the real ones shown in (a) and (b), but 

the reconstructed value of conductivity is slightly over its real value. Although the 

shape and location of the object seen in Figure 5.4 (c) is very clear and matches the 

real one, only the upper part of the object seems distinct in the conductivity profile in 

Figure 5.4 (d). 

The results of the fourth example, which was ran at 900 MHz frequency can be seen 

in Figure 5.5. As it was in the previous example, the values in the reconstructed 

relative dielectric permittivity profile in Figure 5.5 (c) are close to the real ones in 

Figure 5.5 (a), and both the shape and the location of the object are clear and matches 

the real profile. However, the values in the reconstructed conductivity profile in 

Figure 5.5 (d) are higher than the real values shown in Figure 5.5 (b), and again, only 

the top of the object seems distinct. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test at f = 600 MHz. 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 5.5:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test at f = 900 MHz. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.6:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test at f = 1.2 GHz. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.7:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for frequency test at f = 3 GHz. 

The results of the fifth and the sixth examples that are shown in Figure 5.6 and 

Figure 5.7, respectively, are in line with the ones in the previous example. While the 

real and reconstructed relative permittivity profiles in (a) and (c) in both figures 

match, the values seen in Figure 5.6 (d) and Figure 5.7 (d) are higher than the real 

ones in Figure 5.6 (b) and Figure 5.7 (b), and although the object is detectable, only 

the top of the objects seem visible in both figures. 

The first set of simulations, which are performed at operating frequencies from 100 

MHz to 3 GHz, show that the method is very effective for reconstructing the relative 

dielectric permittivity profile of the domain, considering boththe values in the 

profile, and the distinctivity of the shape and location of the object.However, when 

the reconstructed values of the conductivity in the domain are considered, although 

the simulations performed at lower frequencies yield satisfactory results, the values 

reconstructed at higher frequencies exceed the real values in the profile. Furthermore, 

although the object looks slightly misplaced in the conductivity profiles at lower 

frequencies, they are sufficiently distinctive, but at higher frequencies, only the top 

of the object seems visible.  
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For the second set of simulations, the 0.2 soil
 high rough surface, which lies in 

10.85 0.85soil soilx , 
20.85 0.85soil soilx , 

30.1 0.1soil soilx , is considered, 

and shown in Figure 5.8. Circular objects with a radius of 0.125 soil
, having different 

constitutive paramters at each example, are centered at 0,0, 0.35 soil . 16 source an 

64 measurement points are used in the simulations, and the inversion is carried out in 

a reconstruction domain which consists of cubical cells of size / 24soil
 on each side. 

The effect of the object’s conductivity is investigated in the next three simulations, 

by using objects with the same dielectric permittivity, but different conductivities. 

First example is carried out with an object with relative permittivity 07obj , and 

conductivity 0.05obj .  The real and reconstructed profiles of permittivity, which 

can be seen in Figure 5.9 (a) and (c), respectively, show that the reconstructed values 

are close to the real ones, and the shape and location of the object are clear. 

Furthermore, the conductivity of the object is successfully estimated, and the top of 

the object is visible in Figure 5.9 (d), hence the location of the object is also clear.  

 

Figure 5.8:Rough surface profile for the simulations whose results are shown 

through Figure 5.9-5.21  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for conductivity test for an object with εobj=7ε0, σobj=0.05. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.10:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for conductivity test for an object with εobj=7ε0, σobj=0.1. 
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In the next example, an object with the same permittivity as the previous one, and a 

conductivity of 0.1obj  is used, and the real and reconstructed profiles are shown in 

Figure 5.10. It is observed that the shape and location of the object are clear in Figure 

5.10 (c), and the values are estimated very well.  On the other hand, in Figure 5.10 

(d), the values of the conductivity profile are slightly overestimated, but the top of 

the object is visible; therefore, the location of the object is clear. However, the object 

having a relatively high conductivity increases the problem’s nonlinearity, and 

causes some reflections on both profiles. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.11:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for conductivity test for an object with εobj=7ε0, σobj=0.5. 

Another object, with the same dielectric permittivity, 07obj , but a higher 

conductivity, 0.5obj  is used in the next example, whose simulation results can be 

seen in Figure 5.11.The reconstructed profiles of both relative permittivity and 

conductivity in Figure 5.11 (c) and (d), respectively, show the location of the object 

clearly, but the shape of the object is not recognizable. The relative permittivity of 

the object is overestimated in Figure 5.11 (c), while the value of the conductivity is 

estimated exactly as the real value in Figure 5.11 (d), which suggests that the high 

value of the conductivity dominates the contrast of the object, leading to a highly 
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nonlinear problem, and favouring the conductivity in the inversion of the contrast 

function. 

The simulations of the next three examples, whose results are shown through Figures 

5.12 - 5.14,  are performed to observe the change in relative permittivity of the 

object. In each of them, objects with the same conductivity, 0.001obj , but different 

permittivities, changing from 5 to 20 are used. Figure 5.12 (a) and (c) show the real 

and reconstructed profiles of relative dielectric permittivity for the first example, in 

which an object with a permittivity 05obj  is used. Reconstructed permittivity 

profile shows a close estimate of the values inside the object, and its shape and 

location are perfectly recovered. Moreover, Figure 5.12 (d) shows the location of the 

object clearly although only the top of the object is visible, and the values are 

overestimated. 

Similarly, an object with 010obj  is used in the next example. Similar to the 

previous example, the values of the reconstructed permittivity profile in Figure 5.13 

(c) are very close to the ones of the real profile in Figure 5.13 (a), and the shape and 

location of the object is perfectly reconstructed. However, the object in the 

conductivity profile Figure 5.13 (d) is not recognizable, and its value is 

overestimated. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 5.12:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for permittivity test for an object with εobj=5ε0, σobj=10
-3

. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.13:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for permittivity test for an object with εobj=10ε0, σobj=10
-3

. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 5.14:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for permittivity test for an object with εobj=20ε0, σobj=10
-3

. 

When the difference between the dielectric permittivity of the object, which is 

020obj  in the next example, and the one of the medium is higher, the 

reconstruction fails as shown in Figure 5.14. The values of both the permittivity and 

the conductivity of the object are extremely overestimated, and the shape of the 

object is not recognizable. However, it is still detected in both profiles, in Figure 5.14 

(c) and (d).  

Figures 5.12 – 14 show that the method successfully reconstructs the object within a 

certain amount of contrast range, and even when the contrast exceeds this range, the 

object can still be detected. 

A contrast, within the range of successful reconstruction is tested for different 

medium and object parameters.An object with a dielectric permittivity 010obj  and 

a conductivity 0.01obj is buried in a medium with parameters 07obj and

410obj . The reconstruction results in Figure 5.15 are consistent with previous 

reconstructions with similar contrast. The relative dielectric permittivity profile of 

the domain is successfully reconstructed in Figure 5.15 (c), with clear shape and 

location of the object, and the values are closely estimated. Similarly, the 

conductivity profile in Figure 5.15 (d) presents overestimated values, but provides 

with the location of the object, by showing the top of it. 

The examples shown so far present the situation of the contrast when the parameters 

of the object are higher than the parameters of the medium. The next example is 

performed to test the contrast in a reversed situation. In this case, the object is 

assumed to be air, with free space parameters 0obj  and 0obj , and is buried in a 

medium with a dielectric permittivity 03.6obj  and a conductivity 410obj
.  The 

simulation results of the example are shown in Figure 5.16. The reconstructed 

relative permittivity profile in Figure 5.16 (c) presents a good estimation of the 

objects shape and location, besides the values close to the real ones. Moreover, 

although the values in the conductivity profile are not in line with the real profile, the 

shape and location of the object are still clear. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.15:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for an object with εobj=10ε0, σobj=0.01 that is buried in a medium with ε2=7ε0, 

σ2=10
-4

. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.16:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for negative contrast test for an object with εobj=ε0, σobj=0. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.17:(a)Original relative dielectric permittivity (b)Original conductivity 

(c)Reconstructed relative dielectric permittivity (d) Reconstructed conductivity 

profile at x1=0 for size test for a cubical object with a side length 0.2λsoil, and 

εobj=5ε0, σobj=0.01. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.18:(a)Original relative dielectric permittivity (b)Original conductivity 

(c)Reconstructed relative dielectric permittivity (d) Reconstructed conductivity 

profile at x1=0 for size test for a cubical object with a side length 0.1λsoil, and 

εobj=5ε0, σobj=0.01. 
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Two cubical objects with 05obj  dielectric permittivity and 0.1obj  conductivity 

are centered at 0,0, 0.3 soil , one with 0.2 soil
, and another 0.1 soil

 side length, 

whose simulation results can be seen in Figure 5.17 and Figure 5.18, respectively. 

Relative permittivity profiles in both figures present a good image of the object’s 

shape and location, and its values are sufficiently estimated although the estimated 

value of the permittivity is closer to the real one for the bigger object. Similarly, both 

Figure 5.17 (d) and Figure 5.18 (d) present the location of the object by recovering 

its top, and the value appears closer to the real one for the bigger object, as expected.  

The following three simulations are performed on objects buried at different depths 

under the rough surface. A spherical object, with 05obj  dielectric permittivity, 

0.01obj  and a radius of 0.125 soil is centered at 0,0, 0.275 soil , 0.05 soil
 below the 

lowest point of the rough interface. The simulation results in Figure 5.19 show a 

clear image of the object in the permittivity profile, as well as a close value for the 

permittivity. However, the conductivity profile presents the location of the object by 

showing the top of the object, and its value is overestimated.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.19:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for depth test for an object buried 0.05λsoil below the surface. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.20:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for depth test for an object buried 0.5λsoil below the surface. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.21:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for depth test for an object buried 0.75λsoil below the surface. 
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Another object, with the same properties, is centered at 0,0, 0.725 soil , 0.5 soil
 

below the lowest point of the rough interface. The values in Figure 5.20 (c) are 

slightly underestimated, and overestimated in Figure 5.20 (d). While the permittivity 

profile in (c) shows the shape and location of the object, although it is slightly 

misplaced, the conductivity profile in (d) shows its reflections, in addition to the 

object itself. 

Another object with the same parameters is centered at an even deeper location, 

0,0, 0.975 soil . The simulation results can be seen in Figure 5.21. The permittivity 

profile in Figure 21. (c) show a weaker image of the object, and reflections start to 

emerge, although its shape and location are still clear. However, the conductivity 

profile presents even higher values for the object’s conductivity, and the reflections 

appear as strong as the object itself, making it impossible to distinguish the object 

from its reflections.  

The following four simulations are run in order to observe the effect of the 

roughness’s height. A spherical object with a radius 0.125 soil  and constitutive 

parameters 7obj , and 0.01obj  is buried 0.05 soil
 below the lowest point of the 

roughness for each example. The medium was illuminated by 16 point sources, and 

the scattered field is obtained synthetically for 64 points on surfaces mentioned 

before. The reconstruction domain was divided into cubical cells with a side length 

24soil . For all four simulations, the same roughness profile is used, with different 

heights, which is defined as the difference between the highest and the lowest points 

of the surface.  
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Figure 5.22:Surface profile with 0.1λsoil height, which is used for the simulation 

shown in Figure 5.23. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.23:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for roughness height of 0.1λsoil. 

The roughness with a height 0.1 soil
, which is shown in Figure 5.22, is used for the 

first example. The image of the reconstructed profile of relative dielectric 

permittivity in Figure 5.23 (c) show the object clearly but slightly mislocated, with a 

very good estimation of its value. Moreover, the conductivity profile in Figure 5.23 

(d) show the location of the object, revealing only the top, and estimates the value 

roughly. 

The roughness with a 0.2 soil  height, which is used for the second example, can be 

seen in Figure 5.24. The simulation results in Figure 5.25 show that in the relative 

permittivity profile, the shape and location of the object is clear, yet slightly 

mislocated, its value is close to the real one, yet not as much as the one in the 

previous example. Expectedly, the conductivity profile, again, shows the top of the 

object, which reveals its location, and the value is roughly estimated. 
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Figure 5.24:Surface profile with 0.2λsoil height, which is used for the simulation 

shown in Figure 5.25. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.25:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for roughness height of 0.2λsoil. 

The third example is performed using the rough surface shown in Figure 5.26, which 

is 0.3 soil  high, and its results can be seen in Figure 5.27. The reconstructed relative 

permittivity and conductivity profiles in Figure 5.27 (c) and (d), respectively, support 

the results in the previous examples. The object itself is clear in (c) and its top in (d). 
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The values are still close to the real ones, but the estimation is weaker, due to the 

increase in the height of the roughness, which is expected. 

 

Figure 5.26:Surface profile with 0.3λsoil height, which is used for the simulation 

shown in Figure 5.27. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.27:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for roughness height of 0.3λsoil. 

The simulation results of the fourth example, which is done using the roughness with 

a height of 0.4 soil  in Figure 2.28, can be seen in Figure 2.29. Although the shape and 

location of the object are revealed as expected in both profiles in (c) and (d), and the 

estimated values in these profiles are less close to the real values, they do not seem to 
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be very different from the previous example. It suggests that the nonlinearity the 

rough surface brings to the problem does not increase linearly, which means while 

the change in smaller values of its height has more visible effects on the 

reconstruction than the same change in larger values. 

 

Figure 5.28:Surface profile with 0.4λsoil height, which is used for the simulation 

shown in Figure 5.29. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.29:(a)Original relative dielectric permittivity (b)Original conductivity (c) 

Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile 

at x1=0 for roughness height of 0.4λsoil. 
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In the following examples, a more challenging situation, the situation that involves 

two objects is investigated. Two identical spherical objects with a relative dielectric 

permittivity 7obj , conductivity 0.2obj , and a radius 0.05 soil
 are placed 0.05 soil

 

below the lowest point of the 0.15 soil
 high rough surface shown in Figure 5.30. The 

medium was illuminated by 25 point sources, and the scattered field was obtained 

synthetically at 81 measurement points. The reconstruction domain was divided into 

cubical cells with side length 18soil
. 

 

Figure 5.30:Surface profile used for the next three simulations, shown through 

Figure 5.31-5.33. 

Figure 5.31 shows the simulation results of the case when the two objects mentioned 

are placed 0.75 soil
 apart from each other. The relative permittivity profile in Figure 

5.31 (b) shows a close estimation of the value, and the shape and location of the 

objects explicitly, although some mislocation and reflections are also observed, due 

to the high conductivity of the object. On the other hand, although the values of 

conductivity in Figure 5.31 (d) are not sufficiently estimated and reflections are 

present, the location of the objects are very clear. 

The same objects are placed closer, 0.5 soil  apart from each other for the next 

example. The simulation results in Figure 5.32 are very similar to the ones in the 

previous example. The estimated values of both relative permittivity and 

conductivity profiles are almost the same, both objects are clearly visible, and 

reflections are observed, as in the previous example. However, the objects in the 

permittivity profile appear to be beginning to merge with each other, which suggests 

that the 0.5 soil  distance between them is the lower limit to distinguish them 

separately. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.31:(a)Original relative dielectric permittivity (b)Reconstructed relative 

dielectric permittivity(c)Original conductivity (d) Reconstructed conductivity profile 

at x1=0 for resolution test for two spherical objects withεobj=7ε0, σobj=0.2, lying 

0.75λsoil apart from each other. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.32:(a)Original relative dielectric permittivity (b)Reconstructed relative 

dielectric permittivity(c)Original conductivity (d) Reconstructed conductivity profile 

at x1=0 for resolution test for two spherical objects withεobj=7ε0, σobj=0.2, lying 

0.5λsoil apart from each other. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.33:(a)Original relative dielectric permittivity (b)Reconstructed relative 

dielectric permittivity (c)Original conductivity (d) Reconstructed conductivity profile 

at x1=0 for resolution test for two spherical objects withεobj=7ε0, σobj=0.2, lying 

0.2λsoil apart from each other. 
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In order to test this, and investigate further what happens when the two objects are 

even closer, another simulation, in which they are placed 0.2 soil
 apart from each 

other, is performed. The results of the simulation, which are shown in Figure 5.33, 

show that the two objects are no longer visible as separate objects, but they appear to 

be one bigger object, whose location is clear in both relative permittivity and 

conductivity profiles, having weaker reflections than before. Moreover, although the 

estimated value of the object’s conductivity is still insufficient, values in both 

profiles are now closer to the real one, which supports findings in earlier examples 

that the estimations are more accurate for bigger objects. 

 

Figure 5.34: Surface profile used for the next simulation, shown through in Figure 

5.35. 

Another example is performed for two objects having different constitutive 

parameters. Two spherical objects with a 0.05 soil
 radius, one with constitutive 

parameters 1 15,  0.1obj obj , and the other 2 27,  0.2obj obj  are located 0.75 soil  

apart from each other, and 0.05 soil  below the lowest point of the rough surface, 

which is 0.2 soil  high, and shown in Figure 5.34. The medium is illuminated by 36 

sources, and the scattered field is evaluated for 121 points, and the reconstruction 

domain is divided into cubical cells with side length 16soil . The conductivity 

profile in Figure 5.35 (d) fails to estimate the values while it still shows where the 

objects are located in spite of the reflections. However, the relative permittivity 

profile in Figure 5.35 (b), although reflections are present, shows the shape and 

location of the objects, and a close estimation of the values. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.35:(a)Original relative dielectric permittivity (b)Reconstructed relative 

dielectric permittivity (c)Original conductivity (d) Reconstructed conductivity profile 

at x1=0 for two spherical objects withεobj1=5ε0, σobj1=0.1, and εobj2=7ε0, σobj2=0.2, 

lying 0.75λsoil apart from each other. 
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For the last example in this section, the 0.2 soil
 high rough surface shown in Figure 

5.36, and two identical objects in the shape of rectangular prism with side lengths 

0.2 0.2 0.4soil soil soil
, and constitutive parameters 7obj  and 0.01obj , are used. 

One object was placed horizontally, and the other vertically, 0.75 soil
 apart from each 

other, and 0.05 soil
 below the lowest point of the rough surface. 25 illuminations and 

81 measurement points were used, and the reconstruction domain was divided into 

cubical cells with side length 21soil
. The relative permittivity profile in Figure 5.37 

(b) shows the location of the objects clearly. Although the shape is not as clear as 

desired, it still gives an idea. It also gives an acceptable, but insufficient estimation of 

the values. On the other hand, the conductivity profile gives only an approximate 

location of the objects, and it fails to present the shape and an acceptible estimate of 

the values. 

 
Figure 5.36:Surface profile used for the last simulation, shown in Figure 5.37. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.37:(a)Original relative dielectric permittivity (b)Reconstructed relative 

dielectric permittivity(c)Original conductivity (d) Reconstructed conductivity profile 

at x1=0 for two objects in the shape of a rectangular prism with

0.2 0.2 0.4soil soil soil size, andεobj=7ε0, σobj=0.01. 
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6.  CONCLUSIONS 

A nonlinear tomographic approach for a 3D scalar case of microwave imaging of 

dielectric objects buried under a rough surface is presented. The contribution of the 

rough surface to the background of the object is obtained via the Buried Object 

Approach (BOA), which involves obtaining the Green’s function of the two half-

spaces with a planar interface, and then treating the roughness as a series of objects 

embedded in both half-spaces alternately. The resulting system of integral equations 

is solved for the contrast function via Contrast Source Inversion (CSI) method. 

The efficiency of the medhod has been tested through numerical simulations with 

noise added data, and despite the physical obstacles of the subsurface imaging such 

as limited illumination and measurement, it has been shown that the approach yields 

good reconstructions. The method has proven to be effective in a large band of 

frequencies. Different sets of constitutive parameters for both the object and the 

medium it lies within have been tested, and the values have been very well 

reconstructed. In fact, even the objects with higher constitutive parameters were 

detected, if not clearly reconstructed. The method has also proven to successfully 

detect and reconstruct objects with a significantly small size. It has been observed 

that the geometry of the roughness does not considerably affect the quality of the 

reconstuctions. However, although sufficient results have been obtained even for 

considerably high roughnesses and objects that are buried relatively deep, the 

reconstuctions have been more satisfactory for shallow objects buried under slight 

roughnesses. In the cases when multiple objects are involved, as long as they are at 

least half the wavelength of the medium apart from each other, even if they have 

different constitutive parameters or shapes, they have been clearly distinguished and 

effectively reconstructed.It should be noted that a priori information about the 

positivity of the contrast has been applied in order to enhance the performance of the 

method. However, it has been shown that even an object with negative contrast 

values, such as one whose constitutive parameters are equal to those of air buried 

into dry soil, has been successfully reconstructed without applying any a priori 
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information during the inversion procedure. Therefore, the simulations show that the 

proposed method is applicable for imaging of buried dielectric objects under rough 

surface, but also detection and determination of pipesor tunnels. 

Further studies are planned to extend the proposed approach to 3Dvectoral case of 

imaging dielectric objects buried under a rough surface for more realistic 

applications, and to employ computation algorithms in order to overcome the 

computational complexity and time.  
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