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3D SCALAR IMAGING OF DIELECTRIC OBJECTS BURIED UNDER A
ROUGH SURFACE

SUMMARY

Imaging of dielectric objects embedded in a layer, or beneath a rough surface is a
popular subject of interest among remote sensing problems, and there are many
studies that use microwaves for this purpose. In most of these studies, a rough
surface separates two infinite half-spaces, and the object of interest lies in the
inaccessible half-space. The area in which the object is presumed to be located is
illuminated by transmitting antennas that are located in the accessible half-space, and
the scattered field, which is the result of the interaction between the incident field
and the irregularities in the medium, such as the unknown object and the layer it lies
within, is measured by receiving antennas. The measured data is then used to obtain
the unknown geometrical and material properties of the object. In the literature, the
majority of the studies deal with layered media with planar interfaces, and 2D cases.
Moreover, most of the studies on 3D cases dwell on only detection of dielectric
objects, and very few deal with the imaging of dielectrics buried under a rough
surface despite the importance of the problem from both theoretical and practical
points of view. Nevertheless, none of these studies apply one of the well accepted
nonlinear inversion techniques to a highly complicated case such as 3D case of
imaging objects buried under a considerably rough surface, which is investigated
here.

In this thesis, a nonlinear tomographic approach for a 3D scalar case of microwave
imaging of dielectric objects buried under a rough surface is presented. First, the
imaging problem is reduced to a system of two integral equations, which requires the
Green’s function of the background medium, including both the two half-spaces, and
the rough surface. Therefore, the Green’s function of the background is obtained
numerically by using Buried Object Approach (BOA), which involves obtaining the
Green’s function of the two half-spaces with a planar interface, and then treating the
roughness as a series of objects embedded in both half-spaces alternately. Then, the
system of integral equations is solved for the contrast function via Contrast Source
Inversion (CSI) method, which is one of the most successful nonlinear inversion
techniques when the Green’s function of the background is known. The efficiency of
the method is tested numerically, and successful results are achieved for different
frequencies, permittivity and conductivity values of both the medium and the object,
different heights of the roughness, different size and depth of the object, and for
cases of multiple objects.
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ENGEBELI YUZEY ALTINA GOMULU DIELEKTRIK CiSIMLERIN UC
BOYUTLU SKALER DURUMDA GORUNTULENMESI

OZET

Bir katmana ya da engebeli bir yiizeyin altina gomiilii dielektrik cisimlerin
goriintiilenmesi, uzaktan algilama konulari arasinda O6nemli bir yer tutmaktadir.
Bunun sebebi, tahribatsiz kontrol, maymn tespit, yer alti boru ve tiinellerinin
incelenmesi, tibbi goriintiileme, jeofizik veya arkeolojik etiitler gibi genis bir
uygulama alanima sahip olmasidir. Bu durumlarin ¢ogunda, iki katman ya da yari
uzay, engebeli bir yiizey tarafindan ayrilir. Erisilemeyen katmanda bulunan ve
hakkinda nerede olabileceginden baska bir sey bilinmeyen bir cisim, erisilebilen
katmanda bulunan verici antenler tarafindan aydimnlatilir. Gelen alanin ortam ve
icinde yer alan engebeli ylizey ile bilinmeyen cisim arasindaki etkilesiminden dogan
sacilan alan ise alict antenler tarafindan olgtiliir. Bu sekilde elde edilen sagilan alan,
cismin bilinmeyen yeri ve sekli gibi geometrik 6zellikleri ve dielektrik gecirgenligi
ile iletkenligi gibi malzeme 6zelliklerinin elde edilmesinde kullanilir. Literatiirde bu
konuyu iki ve ii¢c boyutta inceleyen pek c¢ok calisma bulunmaktadir. Bu
caligmalardan bazilar1 cisim ile engebeli yiizey arasindaki etkilesimleri incelemekle
yetinirken, bazilar1 sadece engebeli yiizey, ya da sadece cisim iizerine odaklanarak
iki agamal1 yaklasimlara temel saglamislardir. Bu gibi yaklasimlarda 6nce frekans
ortalamalt Wigner-Ville fonksiyonu ile engebeli yiizey filtrelenir, ya da korelasyon
yontemi ile ylizey yaklasik olarak tahmin edilir, daha sonra ise Newton-Kantorovitch
gibi iteratif algoritmalar ile cisim tespit ve karakterize edilir. Bunun yaninda, yeralti
radar1, dalgacik esigi algoritmasi, Monte Carlo simiilasyonlart gibi yontemler,
engebeli ylizey ile cismi birlikte ele alir, ve cismin yerini tespit etmekte ya da cismin
bulundugu ve bulunmadigi durumlart karsilastirip aradaki farki farkli cisimler ile
karsilastirarak gomiilii cismin ne olabilecegine iliskin fikir vemekte kullanilir. Ancak
bunlar giiniimiizlin ihtiya¢larin1 karsilamakta yetersizdir, ve cismin geometrik ve
malzeme Ozelliklerini ortaya c¢ikarmak gibi karmagsik problemleri ¢ozebilecek
yontemlere ihtiya¢ duyulmaktadir. Bu yontemler arasinda, sig ve maym benzeri
cisimleri goriintiilemekte kullanilan sentetik agiklikli radar, Green fonksiyonuna
gerek duymayan lineer 6rnekleme, bir hata fonksiyonelini iteratif olarak minimize
etmeye odaklananzamanda geri dénme, yari analitik mod uydurma gibi yontemler ya
da zayif bir sagicinin olmasi durumunda Born yaklasiklig1 ve buna eslik eden ters
Fourier doniisiimii veya tekil deger dekompozisyonu gibi yontemler sayilabilir.
Ancak bu yontemlerin kullanildig1 ¢aligmalarin ¢ogunda iki ortam arasindaki yiizeyin
ya diiz oldugu, ya da diiz denebilecek kadar hafif bir engebeye sahip oldugu durum
g0z oniline alinmistir. Oysa pratikte, goriintiilenmek istenen cismin gémiilii oldugu
ortamin yiizeyi ihmal edilemeyecek derecede engebelidir, ve bu durum probleme
ciddi giicliikler getirmektedir. Hem teorik, hem de pratik agidan son derece onemli
olmasina ragmen literatlirde engebeli bir ylizey altina gémiilii cisimlerin {i¢ boyutta
ele alindigi, ve hem geometrik, hem de malzeme o6zelliklerinin belirlenmeye
calisildig1 calismalar yok denecek kadar azdir. Buna ek olarak, genis bir dielektrik
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gecirgenligi  araliginda, farkli  geometrik  Ozelliklere  sahip  sagicilarin
goriintiilenmesinde oldukca etkin oldugu bilinen dogrusal olmayan inversiyon
yontemlerinin engebeli ylizey altina gomilii dielektrik cisimlerin ii¢ boyutlu
durumda goériintiilenmesi probleminde kullanildigr bir ¢alisma, bildigimiz kadariyla
bulunmamaktadir.

Bu tez ¢aligmasinda, goriintiilenmek istenen cismin arka planini teskil eden uzaya ait
Green fonksiyonunun bilinmesi halinde en etkili dogrusal olmayan inversiyon
yontemlerinden biri olarak kabul edilen Kontrast Kaynak Inversiyon (Contrast
Source Inversion, CSI) yontemi, engebeli bir yiizey altina goémiilii dielektrik
cisimlerin ii¢ boyutlu durumda goriintiilenmesi problemine uygulanmistir. Bu
amagla, veri ve cisim denklemleri olarak adlandirilan, ve cismin dielektrik
gecirgenligi ile iletkenligini, cisim {izerinde bilinen sonlu bir uzayda alinan bir
integral araciligiyla sirasiyla 6l¢iim bolgesi ve cisim iizerindeki elektromanyetik
alanlarla iliskilendirilen Fredholm tipi integral denklemler yazilmistir. Bu
denklemlerin ¢ekirdeginde, engebeli ylizey de dahil olmak iizere cisim disinda kalan
biitiin yap1y1 igeren uzaya iliskin Green fonksiyonu yer almaktadir. Bu uzaya iligkin
Green fonksiyonununanalitik olarak hesaplanmasi miimkiin olmamakla beraber,
Gomiilii Cisim Yaklagimi (Buried Object Approach, BOA) olarak bilinen yontem ile
sayisal olarak elde edilebilir. Bu yaklasima gore engebeli yiizeyin girinti ve
cikintilari, diizlemsel bir ara yiizle birbirinden ayrilmig iki pargali uzaya gomiilii
cisimler olarak kabul edilir, ve ihtiya¢g duyulan noktalara yerlestirilen noktasal
kaynaklara iliskin alanlar, Momentler Yontemi (Method of Moments, MoM) ile
sentetik olarak elde edilir. Bu alan biyiiklikleri, Green fonksiyonunun aranan
noktalardaki degerleridir. Arka planin Green fonksiyonunun hesaplanmasinda gerekli
olan iki parcali uzaya ait Green fonksiyonu ise cekirdeginde spektral yansima ve
iletim katsayilarinin bulundugu sonsuz integraller seklinde yazilir, ve bu integraller
sayisal olarak hesaplanir.

Boylece, cismin goriintiilenmesi problemi, veri ve cisim denklemlerinden, cisim ile
icinde bulundugu ortamin dielektrik gecirgenlikleri ve iletkenlikleri arasindaki farki
ifade eden kontrast fonksiyonunun elde edilmesi olarak ifade edilen bir ters sagilma
problemidir. Bu problem, koétii kurulmus (ill-posed) ve dogrusal olmayan (nonlinear)
bir problemdir, ve ¢6ziimii igin kullanilabilecek baz1 yaklagikliklara ve
dogrusallagtirmalara dayali yontemler literatiirde mevcuttur. Bu ydntemlerden biri
olan Kontrast Kaynak Inversiyonu (CSI), dogrusal olmayan bir optimizasyon
uygulamasidir. Bunun igin oncelikle s6zii edilen integrallerin iginde ¢arpim halinde
bulunan kontrast fonksiyonu ve alan ifadeleri, kontrast kaynagi adi verilen tek bir
degisken olarak tanimlanir. Bu halde veri denklemi bu yeni degiskene gore dogrusal
hale gelir, ancak denklemin kotli kurulmus olmasi nedeniyle herhangi bir yontemle
kontrast kaynak i¢in elde edilecek ¢6ziimiin gergekten farkli olmasi beklenir. Halbuki
problem,denklem sisteminin asil bilinmeyenleri olan kontrast fonksiyonu ve cisim
tizerindeki alan acisindan ele alindiginda, cisim iizerindeki alanin kontrast
fonksiyonuna bagli olmasi nedeniyle problemin dogrusal olmayan bir problem
oldugu goriliir. Cismin zayif bir sagic1 olmasi halinde problem, cismin {lizerindeki
toplam alanin gelen alana esit kabul edildigi Born yaklagikligi kullanilarak dogrusal
hale getirilebilir. Ancak genis bir kompleks dielektrik sabiti ve cisim boyutu
bolgesinde ¢oziim verebilecek bir gorilintiileme yontemi ic¢in problemin dogrusal
olmayan dogasinin goz ardi edilmemesi gerekir. Kontrast Kaynak Inversiyonu
yonteminde herhangi bir dogrusallastirma yapilmaz.Veri ile cisim denklemlerinin
hatalarinin toplami seklinde ifade edilenbir hata fonksiyoneli tanimlanir, vebu
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fonksiyonel minimize edilecek sekilde kontrast kaynagi ve kontrast biiyiikliikleri
dontisimlii ve iteratif olarak gilincellenir. Bu yontem, iterasyonun her adiminda diiz
problem c¢Ozlimiine ihtiya¢ duymamasi, ve kontrast biyiikliigliiniin her adimda
analitik olarak belirleniyor olmasi sebebiyle benzer yontemlerden ayrilir.

Yontemin verimini test etmek amaciyla g¢esitli durumlar ig¢in simiilasyonlar
gerceklestirilmistir. Simiilasyonlarda tek frekans kullanilmis, ve problemin ii¢
boyutlu olmasindan kaynaklanan hesaplama yiikiinii azaltmak amaciyla goriintiileme
bolgesi, miimkiin oldugunca kii¢iik tutulmustur. Bu sekilde farkli frekanslar, hem
cisim, hem de i¢inde bulundugu ortam icin farkli dielektrik gecirgenlikleri ve
iletkenlikler, farkli yapidaki ve yiikseklikteki engebeli ylizeyler, farkli boyutta ve
derinliklerde bulunan cisimler, ve birden fazla cismi iceren ¢esitli durumlar
incelenmistir. Bu incelemeler sonucunda, problemin yiiksek karmagikliktaki
dogasina ragmen, elde edilen sonuglarin son derece tatmin edici oldugu, iginde
bulundugu ortamdan cismin net bir sekilde ayirdedilebildigi, ve malzeme
Ozelliklerinin ger¢ege yakin olarak elde edilebildigi gozlemlenmistir.
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1. INTRODUCTION

1.1 Purpose of the Thesis

Microwave detection or imaging of objects embedded in a layer, or beneath a rough
surface has been a popular subject of remote sensing due to its wide range of
application areas such as nondestructive testing, mine detection, examination of
underground pipes and tunnels, medical imaging, geophysical or archeological
exploration.In most of these cases, a rough surface separatestwo layers, and the
object of interest lies in the inaccessible layer beneath the rough surface, while the
transmitting and receiving antennas lie in the accessible layer, above the surface. In
order to image the object, a number of antennas illuminate the area in which the
object is presumed to be located. Then, the scattered electromagnetic field, which
arises from the interaction of the incident wave with the object and the layer it lies
within, is measured by receiving antennas.The measured data is then used to obtain
the unknown geometrical properties such as shape, location, and/or electromagnetic
properties of the object, namely, dielectric permittivity and conductivity. Therefore,
the purpose of this thesis is to give a fast and efficient methodology for
determination of both geometrical and electromagnetic properties of dielectric

objects buried under a rough surface.

1.2 Literature Review

There has been a wide range of approaches introduced to investigate, detect or image
the rough surface that separates layered media, and objects buried in the inaccessible
layer.[1] and [2] calculate and investigate the interactions between the object and a
rough surface by using Forward-Backward (FB) method, and Propagation-Inside-
Layer Expansion (PILE), respectively. The complexity observed in these studies led
some researches to deal with roughness and object separately. For example, [3]
focuses on the geometrical parameters of the layered media, such as rms height and
correlation length, as well as the physical parameters, which are dielectric



permittivity and conductivity of each layer by minimizing the difference between the
estimated and actual backscattering coefficients. Such reliable methods to estimate
the profile of the roughness made two-step methods possible.In [4], for example, the
object is detected by analyzing the frequency-averaged Wigner-Ville function to
filter out rough surface scattering, and then the object is characterized by an iterative
solution derived from the Newton-Kantorovitch algorithm. Moreover, [5] uses a
correlation procedure of the scattered field in order to estimate the roughness profile,
and then applies an iterative process based on a level-set formulation to obtain the

shape of the buried object.

On the other hand, many researches choose to deal with the object and the rough
profile of the layer they lie within, at the same time.Since the location of the object is
unknown, and the layer it lies within is assumed infinite, detecting and locating the
object is important. An application of angular correlation function to Ground
Penetrating Radar (GPR) data to detect metallic objects, and a correlation of the
scattered fields from two sets of data associated with two transmitters are given in
[6], and [7], respectively, and [8] presents an image segmentation based on a wavelet
thresholding algorithm applied to data gathered by Mid-Wavelength InfraRed
(MWIR).Furthermore, Monte Carlo Simulations are applied to statistical average of
Mueller and covariance matrix elements, which are obtained by simulations for
rough ground with and without buried objects in [9], [10], respectively, whereas
genetic and memetic algorithms use global optimization procedures [11-13].In
addition, observing the surface impedance, which is obtained from the impedance
boundary condition by using the electric field and its normal derivative on the

surface [14], [15] reveals the location of the object.

However, reconstructing both geometrical and material properties of the object is
more challenging, and several techniques have been applied to several data types
throughout the years.Synthetic Aperture Radar (SAR) is used not only for imaging
shallow buried landmine-like objects [16], but also for facilitating target
identification by imaging different types of targets and obtaining a form of signature
for them [17].Linear Sampling is used with reciprocity gap functional, avoiding the
computation of the Green’s function, which brings an undesirable computational cost
[18], coupled with an analytic continuation [19].Furthermore, Time Reversal Method

(TSM) focuses on minimizing a cost functional. It is used in [20] to synthesize a



wave that focuses on the scatterer by improving the signal-to-clutter ratio, and in [21]
to image the rough surface first, under the assumption of free space, and then to
estimate the object by using the surface obtained in the first step, in iterations in
which both estimations are updated.In addition, Semi-Analytic Mode Matching
(SAMM) is used in conjunction with least-squares [22], or with Levenberg-
Marquardt algorithm, which uses a search direction between Gauss-Newton direction
and the steepest descent direction, in order to minimize a cost functional representing
the difference between estimated and real values of surface and constitutive
parameters of both ground and object [23], iteratively.The efficiency of minimizing a
cost functional depends on the choice of the step size and the direction, in which a
closer estimate is searched. [24] presents use of Modified Gradient Method to
reconstruct relative permittivity and conductivity maps within a search domain from
the iterative minimization of a cost functional, which consists of the errors both in

reproducing the data and the field inside this domain.

The nonlinear nature of the reconstruction process gives rise to a search for
approximations suitable to the physical reality of the problems at hand. In case of a
weak scatterer, whether it is the size of the object or the low contrast of its
constitutive parameters to those of the background, Born approximation, which
neglects the scattered field inside the object, is used. By linearizing the problem
through Born approximation, [25] and [26] reconstruct the object using inverse
Fourier transform, and Singular Value Decomposition (SVD), respectively, while
[27] uses Born approximation for obtaining an initial estimate of the object in its
iterative process. However, when the base requirements of the problem change due
to its complexity, the approximations need to change as well. First and higher order
extended Born approximations presented in [28] and [29], and distorted Born

iterative methods presented in [30] and [31] are examples for such cases.

1.3 Significance of the Study

In this thesis, Contrast Source Inversion (CSI) is efficiently applied to the 3D scalar
case of microwave imaging of buried dielectric objects under a rough surface for the
first time. Since CSI, which is proven to be one of the most efficient nonlinear
inversion techniques, requires the Green’s function of the background medium, it is

obtained numerically through the application of Buried Object Approach (BOA).



Therefore, the scalar Green’s function of the two half-spaces with a planar interface
is obtained as an infinite integral of spectral reflection and transmission coefficients,
and the integrals are numerically calculated.Then, the contribution of the rough
surface, which is assumed to be the field scattered by a series of objects buried in
both half-spaces, is obtained by Method of Moments (MoM).

In spite of the incomplete data due to the nature of the subsurface imaging, and the
complexity of the problem, as well as the high nonlinearity it holds, the proposed
method yields remarkable results. The method is analyzed through several series of
simulations in order to test the changes in several parameters of the configuration.
The numerical results show that the method yields efficient results for a wide band of
frequency, for a wide range of permittivity and conductivity values for both object
and the background medium, for high roughnesses, small objects or multiple objects

buried close to each other.

1.4 Organization of the Thesis

The organization of the thesis is as follows. The statement of the problem is given,
and geometry and formulation are explained in Section 2. While the calculation of
the Green’s function of the background medium is given in Section 3, Section 4 is
dedicated to the solution of the inverse problem. Several examples of numerical
simulations are presented in Section 5, and finally, the conclusion is given in Section
6.

Throughout the thesis, the exp —iwt time factor is considered and suppressed.



2. STATEMENT OF THE IMAGING PROBLEM

2.1 Geometry of the Problem

The problem of the imaging of an unknown object, which lies beneath a rough
surface, has been treated as a 3D scalar problem for computational simplicity. A
cross section of the configuration can be seen in Figure 2.1. In this configuration, the

two half-spaces are separated by a locally rough interface I'=f x,x, , where
f x,x, 1is a single valued function [32], differing from the planar surface over a
finite interval. The half-spaces x,>f x,x, and x,<f x,x, are composed of
simple materials with constitutive parameters ¢,0, and ¢,,0,, respectively. In the

lower half-space, an arbitrary shaped object with parameters ¢,;,o,,; is assumed to

obj ?
be located. All materials considered in this geometryare assumed to be nonmagnetic,

with magnetic permeability equal to free-space permeability ;.

1
€1, 0, Lo !

Figure 2.1: Cross section of the geometry of the problem

The region in which the object is assumed to be located is illuminated by microwave
point sources at points zj, j = 1,2,...,J on the surface T, and the total electric field

u; x =E, x;z; , where x= x,X,,% is the position vector in R3, is measured by

evenly spaced receivers located on the surface S for each illumination. Both surfaces

T and S lie above the rough surface, parallel to the x, =0 plane. The incident scalar



electric field function for each illumination is E X;z; :eikr/ which is time

drr’
harmonic with angular frequency «, and where r represents the distance between the
source and the observation points. The inverse scattering problem here is
reconstructing the unknown object’s location, shape and constitutive parameters by

using the total electric field u; x =E, x;z; , neS measured on the surface S.

j 1

2.2 Formulation of the Problem

The total field u, x can be considered as the sum of the background field u® x ,
the total field for the jth illumination in the absence of the object, and u} x , the

field scattered by the object.
u; X =ud X +uj X (2.1)

uj x can be obtained by using a computational electromagnetics technique, in this

case, BOA [33], which will be explained thoroughly in Section 3.1.In a source-free

region, u; x satisfies the homogeneous Helmholtz equation
AW x +kf x uf x =0 (2.2)

where k? x is the wavenumber of the background medium, whose square is given

by
2 k} =g, +ioouy, X > XX,
p X = 2 2 . (2.3)
K; =0 s,y +iwo, 1y, X < T X,X,
Similarly, the total field u; x satisfies
Au; x +k* xu; x =0 (2.4)

where k* x is the wavenumber of the whole geometry, including the object, and

given by



k? x =

{aﬂgobjyo +iwo, 1y, xeC (2.5)

k2 X, xeC

Finally, by adding the term k¢ x u; x —k7 x u; x to the left side of (2.4) and

using (2.2) and (2.1), we obtain the equation
AujS X +kZ x ujS x =—kZ X y X u; x (2.6)
where y x is called the object function or contrast function, and defined by

k? x

X =—
d k2 x

-1 2.7)

Since the contrast function is a function of frequency, it will be different for all
illuminations if they are performed in different frequencies. In order to avoid such
complication throughout this thesis, all illuminations are considered to operate at a

single frequency, and that is why, the index j is not used for the contrast 4.

In the inhomogeneous Helmholtz equation (2.6) that governs the propagation of the

scattered field, the object is represented with the source term —k; x » x u; x , and
the scattered field uj x is represented as a field radiating from this source in the

medium defined by k? x and also satisfies the Sommerfeld radiation condition

r—->wo

ou®
Iimr%[ “érx “ik, X US X J:o, r=|x (2.8)

In general, the Sommerfeld radiation condition states that the enerty radiated from
the sources must scatter to infinity [34]. This leads, in practice, to choosing the
outgoing wave from possible solutions of the Helmholtz equation, and therefore

ensuring the uniqueness of the solution to the scattering problem [35].

In order to solve the scattering problem given by the equations (2.6) and (2.8), one

needs the Green’s function of the background medium G, X,y , which is defined as

the total field due to a point source, which satisfies the differential equation



AG, X,y +k? X G, X,y =—6 X-y (2.9

as well as the radiation condition.By using the Green’s function G, X,y as proven
in [35], the scattered field u x that satisfies both (2.6) and (2.8) can be written in

an integral form as

S

i ox =ffje, xyk y zyu yady (2.10)
c

Using this equation, the field scattered from the object can be calculated at any
observation point x by integrating the source values y on the object. However, (2.10)
shows that in order to obtain the scattered field at any point, the values of the total

field u; on the object are required. Since u; x =uj x +u; x is valid at any point,

we can write the equation

u, x =up x +[[[e, xy ki y x yu; ydy, xeC (2.11)
C

From (2.10) and (2.11), the scattered field at any point can be obtained by using

Method of Moments (MoM) given in [36] for a known contrast function.

In the inverse scattering problem, on the other hand, the constitutional parameters as

well as the location C of the object are unknown, while the total field u; x , and
therefore u} x on the measurement points on the surface S are known.Since the

contrast function y in (2.7) vanishes for x¢C , we perform the integrations in (2.10)

and (2.11) on a reconstruction domain D which is large enough to contain the

unknown object as shown in Figure 2.1. In this case, the total field u; that appears in

the integrals isredefined for xeD, and the resulting integral equations can be

symbolically written as

u =w+G%u;, xeD, j=12..] (2.12)

ujS =GSZUJ—, xeS, j=12..,] (2.13)



where GP and G° are integral operatorsmapping from > D to L° D and L” D

to L* S , respectively, and given by
Gy x szb x,ykiyw ydy, xeDS (2.14)
D

Equations (2.12) and (2.13) are known as the object and data equations, respectively,

and the imaging problem at hand can be expressed as the reconstruction of » from
these equations since its real and imaginary parts are related to the dielectric
permittivity ¢,, x , and the conductivity o, x of the object. This problem is
nonlinear with respect to y, and the ContrastSource Inversion (CSI) method [37]

given in Section 4 is used to solve it.
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3. THE GREEN’S FUNCTION OF THE BACKGROUND MEDIUM

3.1 Buried Object Approach

Solving the inverse scattering problem given by (2.12) and (2.13) requires the

Green’s function of the background, G, x,y for necessary pairs of x and y.In this

study, this is achieved by Buried Object Approach (BOA), which considers the
roughness as a series of scatterers whose constitutive parameters differ according to

their position. The parameters of the sections Bj, Bs,... Bon.1, that lie in the x, <0
half space and the sections B, Bs,... Boy that lie in the x, > 0region which are shown

in Figure 3.1 are ¢,,0, and ¢,,0,, respectively.

X3

Figure 3.1: Cross-sectional representation of the geometry according to the BOA.

G, X,y ,the Green’s function of the background can be expressed as the sum of the

contributions of its two components,
G, X,y =G5 X,y +G, X,y (3.2)

where G, x,y is the Green’s function of the two-part space with a planar interface,
and G; x,y is the contribution of the roughness.G; x,y can also be considered as

the field scattered from the objects that form the roughness due to a point source with

unit strength and is located at y, andG, x,y andG, x,y are the incident and total

11



fields, respectively. In this case, the integral equation of such a scattering problem

can be written as
-2 Gy X,y =£G, X,y (3.2)
where the integral operator £ is defined by

£G xy =|[[6, xz[K z -K z |6 z,y dz (3.3)
C

In (3.3), k, z isthe wave number of the two-part space with planar interface, and its

square is defined as

k? z , X, >0
ks 2 ={ ; ’ (3.4)
k; z, X, <0

Equation (3.2) can be solved for G, x,y by using the forward solution procedure

given in [36].

3.2 Green’s Function of the Two Half-Spaces with a Planar Interface

In order to solve (3.2), G, x,y , which can be considered as the total field due to a

point source of unit strength that is located at y in the two-part space with a planar
interface. The geometry in question is shown in Figure 3.2.

G, X,y satisfies the Helmholtz equation
AG, X,y +kl X G, X,y =8 x-y (3.5)

and the boundary conditions at x, =0

0|x2=0+§ = G0|x2=0—g’ ! é: -0
oG, _ 4G, e (3.6)
5‘X3 Xp=0+& 3X3 X, =0-&

as well as the Sommerfeld radiation condition.

12



€1, 01, g

€, 02, Ho

Figure 3.2: Cross-section of two half-spaces with a planar interface
Having the discontinuity of the geometry in the Oxs-direction, we take the Fourier
transform of (3.5) twice, with respect to X3, and X», so that we deal with the problem
only in the Oxs-direction. Thus, we obtain

%G,
Xy

— V2 +0E—kE G, =—e e s X, —y, (3.7)

where G, is the double Fourier transform of G, defined by

Gy ULy XY = I _[Go X)Xy, Xg; Y €7 e e dxd X, (3.8)

—00 —00

In this case, G, satisfies the boundary conditions at x, =0, which are given in (3.6),

G| =G, N E0
3 3 (3.9)
i e |
6X3 Xo =0+ 3 Xo=0—-¢
and also the boundary conditions at x, =y,, which are
. & 0
GO X =Yy +& GO X =Y,=¢ 5 -
0G, 3G, _ emen £L50 (3.10)
0%, 0Xq
X =Yy +& X =Y,=¢

13



(3.7) can be solved for G, by using (3.9), (3.10), and the Sommerfeld radiation

condition, and after applying the inverse Fourier transform, which is defined by
1 2 oW 0 n . .
Gy XXy, X} Y {—j [ ]Gy 010,y e e dudu, (3.11)
2r) =

the Green’s function of the two-part space with planar interface G, can be found as

G Xy G, Xy, X, >0,y,>0
G, X,y , X, <0,y,>0
G, X,y =1 ° o (3.12)
G, Xy, X, >0,y, <0
G Xy G XxXvy, X, <0,y,<0

where G, is the direct part while G, and G;, are the reflected and transmitted parts
of the Green’s function. G, can be written as

eiko\x—y\

(3.13)

1

B 4z|x—y|

On the other hand, there are no explicit expressions for G,,,, that is why they are

obtained by taking the inverse double Fourier transform of

s

G, :4i Ry_llzkp‘]o kp|xp N yp| g R dkﬂ’ X >0,y,>0
o
1 iy =7 Y3+yoX
GsZE T%fkp‘]o kp|xp_yp| g y“dkp’ X3<0’y3>0
’ g (3.14)
G4 - 4_ Ty%kao kp |Xp - yp| e_ylxa+72y3dkp’ g > 0, Y5 < 0
T
65:4i F;_Zzlkp\]o kp|xp_yp| . dkp’ X; <0,¥; <0
7Ty

where

\X,,—y,,\=\/x1—y1 -y, (3.15)

14



_71"'72 (316)
R21272_71 T. = 27,
it it7,

and

A=V KL =V K here v’ =0} +U} (3.17)

The square root functions in (3.17) are defined on the complex o-plane under the

conditions
7, v =—ik, q=12 (3.18)
AIm{v}
k
K, 2
CR
© Re{vV}
-k
1
_k2

Figure 3.3: The integration path of the infinite integral on complex domain.
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4. SOLUTION OF THE INVERSE SCATTERING PROBLEM

4.1 Properties of the Inverse Scattering Problem

Jacques Hadamard defined mathematical models of physical phenomena as well-
posed problem if they satisfy three conditions such as a solution exists, the solution is
unique, and the solution’s behavior changes continuously with the initial conditions
[38]. If at least one of these conditions are not satisfied, the problem is defined as ill-
posed. The problem defined in (2.10) and (2.11) is well-posed as shown in [35],
which means that the scattered field for a known object exists, is unique, and
continuously depends on the constitutive parameters of the object. However,an
inverse problem, involves reconstructing the material properties of an unknown
object by using a scattered field obtained through a finite number of measurements
under a finite number of illuminations, and realistically contaminated by

noise.Although the data equation is linear with respect to the product of yu, which
are both unknown, it is highly nonlinear with respect to the contrast function y,

which is the main focus of the inverse problem because u itself depends on .
The nonlinearity can be seen by rewriting (2.12) in the inverse form as

u=1-G% (4.1)

]

where | is the identity operator, and by substituting it into (2.13)
-1
uszS[gg | -G°y uj’} (4.2)

Several methods deal with this nonlinearity through different approximations. For
example, in case of a weak scatterer, whether it is the size, or the values of its

constitutive parameters, approximating the inverse operator by

1-GPy I (4.3)

17



In other words, neglecting the contribution of the scatterer to the total field and

assuming u, =u'leads to Born approximation, and through this approximation, the

data equation in (4.2) will be linear.On the other hand, in iterative methods where

%, 1s reconstructed, approximations are made considering the iteration steps, such

as

1

-1 _

|-GPy, ~ |-Gy, (4.4)
leads to the iterative Born method [39], and linearization of
-1 -1

-Gz ~[1-GP 201G 40— 2o | (4.5)

using Ay, = x., — x..» namely,
p_ 1 D -1 -p D -1
I_Gj Zn z|:|‘+' I_Gj X Gj AZn:| I_Gj Ant (4.6)

to the Newton-Kantorovich method [40,41]. While these iterative methods require
direct scattering problem to be solved at each iterative step, Contrast Source
Inversion method, which is the main component of this study, focuses on minimizing
a cost functional that consists of normalized data and object errors without solving

the direct problem.

4.2 Solution of the Inverse Scattering Problem via the CSI

Since the total field u and the contrast function » appear as a product in data and

object equations, the quantity
W =24, (4.7)

which is called a contrast source, is introduced, since u, satisfies the Helmholtz

equation

2 2 2
Vo+k® Uy =-kw; incC. (4.8)

Using (4.7), the data equation becomes

18



f,=Gjw, j=12..J (4.9)
And the object equation becomes

JU =W, _ZGJPWj’ j =12,...,J (410)

Therefore, the cost functional which CSI intends to minimize can be defined as

- Sl ol S o opul,

> Il 2

(4.11)

2
S

where ||||§ and ||||E represent the normson L, S and L, D , respectively, and they

are defined as
Juill.« =<uv“j>fs (4.12)
and
(U)o = fo,s“i X Vj X dX (4.13)

where the overbar denotes complex conjugate.The first term of the cost functional
represents the error in the data equations in (4.9), and the second term represents the
error in the object equations in (4.10) for each illumination. The normalization of the

two terms is carried out so that both terms would be equal to one if w,=0. As

mentioned in [37], the iterations will be carried out in two main steps. First, the

contrast sources w; will be constructed by using the Conjugate Gradient (CG)

method so that they would minimize the whole cost functional, and then by using the

updated value of w;, the object function »" will be determined to minimize the

second part of the cost functional. The process will continue in the following manner,
until the difference between the cost functionals of two consecutive iterations go

below a predetermined value:

The data and object errors are defined as

19



Pin = fj,n _GJ'SWi,n (4.14)

Fin = Zaljn = Win (4.15)
respectively, where

Uj, =Uj +GPw, (4.16)
If w, ., and y, , are known, then w; is updated as

Wj,n :Wj,n—l +aj,nvj,n (417)

where the step sizes «;, are constants, and the update directions v, , are functions of
position.

The update directions v, are chosen to be the Polak-Ribiere conjugate gradient
directions, and defined as

Vi, =0

<gj,nvgj,n - gj,n-1>D
<gj,n—1! gj,n—1>D

N1 (4.18)

Vj,n = gj,n + Vj,n—l’

where g, is the gradient (Frechet derivative) of the cost functional with respect to

w; evaluated at w;,,, z,,,and can be expressed as

S* D* —
_ Gj pj,nfl . I’-j,n—lej Zn—lrj,zn—l (419)

g',n_ .
SN L S I P

Zn—luk

D

where G;” and G;” are adjoints of G; and G; mappingL, S into L, D and

L, D into L, D , respectively, and they are defined as
G, = HDC_; y;x v, ydy, xeD (4.20)

and

20



GJ'v, = J'LG y;x v, ydy, xeD (4.21)

After determining the update directions v, , the step size «;, is determined to

minimize the cost functional F w.

jin-1

+a. v, inanexplicit form

jntjn

2

F:Zj”fi _GJ'SWJ',n Z +Zj
2
DI 2,

Zn—luj,n _Wj,n
2

D

inc

Zn—luj

D

(4.22)
_ Zj”pj,n—l _aj,nstvj,n 2 + Zj rj,n—:L _aj,n Vj,n _zn—lGJPVj,n Z
Zj||fj|z Zj Zﬂ—luiinc 2D
and is obtained as
o = {<p1nl’GJSVJn >S 4 <rj,n—1'Vj,n _Zn—lGjDVj,n>D ]

jin 2 .2

L X oY PRI
(4.23)

-1
||stvj,n z Vj,n _Zn—lGJPVj,n 2D

X 2 + 112
Zk” 1Ek”s Zk Xl o

After w,  is obtained, the total field u;  inside D can be updated using (4.16) and

(4.17) as

U =u._ . +a G°v. (4.24)

jn T Fin-l i Y

In the second part of an iteration, the contrast y, which minimizes the second term

of the cost functional

2

£ (4.25)

2
D Zj

Znuj,n _Wj,n
2

Znuj,n

D

is to be found. However,as presented in [37], using simpler functional

2
Znuj,n _Wj,n D

Fo=3

(4.26)
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instead of (4.25) would lead to guarantee that the process is always error reducing,

and allows easy implementation of a priori information or constraints on .

-

Equation (4.26) can be rewriten as

Re w. O

Y LT

j.n

u.

5N

5n

2

Im w; U, :

| — = 2y,
b

2

, 12 Z Re w; .U,
, U2
Zj|uj,n

r 2 (4.27)

| 2
N i2|u , 12 Z mWJan +Z Re inljn
x jloin , 12 j |U
Zj|ujvn j.n

:.[D Zr ZJ’|UJ”

Y Re @, Jnj Z{ o Jn? (Y, Im @, ,nj do
Z |an J |u Zj|uj,n

j.n

Without any a priori information on », F', can be minimized by choosing

ZRewJan i Zlm w, 0, ,

Zn Xn =
Xl

Xl

(4.28)

If we have a priori information that y"and ' are positive, which for the application

at hand they are, then using this information to write (4.27) as

) 1
Re w, U ?
_ ,1(2;[ jn-i, JJ
D Zz |uj,n

o= [{x|| 1 ZI in
21
z Rew T, ||
2 Z{Z[#]} _22 Re WJn j.n

J.n

2
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(4.29)

1 | 2
+2 Zj|um2 2 Z’(%J —szlm w, T, [pdo

5,n

Although the first option that comes to mind to minimize F', is choosing 7" and »'

to be zero, the appearance of 1/4"* and 1/ in this expression makes it

unreasonable. Furthermore, we can see from (4.26) that y =0wheneverw, =0

.Therefore, since the Schwarz inequality ensures that

| =

Re w. U

2
zj[&] Y Rew,,i, >

Jy

5,n

N

(4.30)

\4
o

Zj|uj,n 2

And

e 2
> Jul 2 Z,[%] ~YIm w0, 20 (4.31)

5.n

7" and #' are chosen to minimize the factors multiplying 7" and y', as

Im w0 /|uJn

in¥jn

2,

Z Re w, T, /|an

o = Tn =

20y

(4.32)

u;

jn jn

If further information on y"or #' is known a priori, then this known value can be
used in equations (4.28) or (4.32) for further restriction of the reconstruction during

the iterations.

Using the path we take during this procedure leads us to a reasonable choice of the

starting values of w,,. Observing from (4.11) that starting iterations with w,, =0
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would cause y; =y, =0, and and the cost functional would be undefined. Therefore,

the values

v g |2
l&i" il
bp _ I "Jlib s*

A -, 4.33
ereril -

that are obtained by backpropagation are chosen. This completes the CSI procedure.
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5. NUMERICAL SIMULATIONS

In order to test the efficiency of the method, several numerical simulations have been
performed for various cases.Throughout the simulations, all materials are assumed to

be nonmagnetic, with free-space magnetic permeability »,. The upper half-space

x, >0 is assumed to be free-space, and unless otherwise stated, the lower half-space

x, <0 is assumed to be dry soil, with constitutive parameters ¢, =3.6 and o, =10"*

oil
.Equally spaced point sources and measurement points are located on surfaces,

whose area are defined by -0.54,, <x <054, and -0.51, <x, <054, , in the

oil

upper half-space, 0.24, and 0.14

soil

above the maximum height of the roughness,

respectively.

The scattered field data are obtained synthetically by solving the direct scattering
problem given by (3.1) and (3.2) for an object buried under a rough surface via
Method of Moments (MoM), using Buried Object Approach (BOA) given in sections
2 and 3. In order to avoid inverse crime, cubical cells of size

A 130 x A

s0il soil

/30 x A

50il

/30 are used for the production of the scattered field,

while the Green’s function which is used in the inversion procedure is calculated for

i27ry

a reconstruction domain consisting of larger cells.5% random noise n|u, (€™, is

U ;

added to the scattered field, where 7 is the noise level, and r, is a uniformly

distributed random variable between 0 and 1, and therefore the corresponding signal-
to-noise ratio is SNR=-20log,,7. At each simulation, the iterative process is
performed by considering the positivity constraint for the contrast, and stopped at
500 iterations. The reconstruction results are given in their own color scales since
using the same color scale for both the original and reconstructed profiles may not be

enough for visual interpretation when the values are underestimated.

For the first set of simulations, the rough surface shown in Figure 5.1 is considered.

The roughness covers a 1.74,, x1.74,, area in xx, plane, and the height, the

difference between its maximum and minimum values on x,axis is 0.24,,. A
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sphericalobject with a 0.1257 :

radius,dielectric  permittivity ¢, =55, and

=0.01 is centeredat 0,0,-0.275

soil  *

conductivity o,

The configuration is
illuminated by 16 point sources operating at different frequencies, changing between
100MHz to 3 GHz, for each example, and the scattered field is measured at 64
points. The inversion procedure is carried out in a reconstruction domain consisting

of cubical cells of size 4, /25 on each side.

The first example is carried out at 100 MHz frequency. The profile of the real and

reconstructed values in the cross-section at x, =0 of the reconstruction domain are

given in Figure 5.2. Figure 5.2 (a) and (c) show that the profile of the reconstructed
relative dielectric permittivity of the domain is very well determined, and the shape
and the location of the object is clear, although the object looks slightly bigger than
its real size. Similarly, the conductivity profile of the domain that can be seen in
Figure 5.2 (b) and (d) shows that the reconstructed value is very close to the real
value, and location of the object is very clear, but it looks smaller than it really is.

For the second example is carried out at 300 MHz frequency. Figure 5.3 shows the
real and reconstructed values of both relative permittivity and conductivity profile of
the reconstruction domain, at x, =0. The reconstructed values of both are very well
determined, and the shape and location of the object are distinctive. However, in both
Figure 5.3 (c) and (d), the object seems slightly mislocated, and it looks bigger than

its real size in (c) while it looks smaller in (d).

05 05
05 x, 0

Figure 5.1:Rough surface profile for the first set of simulations that are investigated
through Figure 5.2-5.7
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Figure 5.2:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile

at x;=0 for frequency test atf = 100 MHz.
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Figure 5.3:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile

at x;=0 for frequency test at f = 300 MHz.
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Figure 5.4 shows the results of the third example, ran at 600 MHz operating
frequency. The reconstructed values of both relative permittivity and conductivity
shown in (c) and (d), respectively, are close to the real ones shown in (a) and (b), but
the reconstructed value of conductivity is slightly over its real value. Although the
shape and location of the object seen in Figure 5.4 (c) is very clear and matches the
real one, only the upper part of the object seems distinct in the conductivity profile in
Figure 5.4 (d).

The results of the fourth example, which was ran at 900 MHz frequency can be seen
in Figure 5.5. As it was in the previous example, the values in the reconstructed
relative dielectric permittivity profile in Figure 5.5 (c) are close to the real ones in
Figure 5.5 (a), and both the shape and the location of the object are clear and matches
the real profile. However, the values in the reconstructed conductivity profile in
Figure 5.5 (d) are higher than the real values shown in Figure 5.5 (b), and again, only
the top of the object seems distinct.
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-0.08 -0.08
01 01
012 ’ 012
-0.14 ’ -0.14
-0.16 -0.16
. 33
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Figure 5.4:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for frequency test at f = 600 MHz.
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Figure 5.5:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for frequency test at f = 900 MHz.

5
-0.01 0.
-0.02 -0,
-0.03 . 0.
-0.04 : 0.
-0.05 -0,
-0.06 0.
-0.07 0.
-0.08 i
-NNA n nna :
€))
‘ : 0.04
001 0.
: 0.035
002 0.
0,03
003 ; -0
004 3 -0, :
0.02
005 ; 0.
-0.06 : -0 )
0.01
007 : 0.
: 0.005
008 )
-0.05 0 0.05 ) -0.05 0 0.05
c d

Figure 5.6:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x,=0 for frequency test at f = 1.2 GHz.
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Figure 5.7:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for frequency test at f = 3 GHz.
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The results of the fifth and the sixth examples that are shown in Figure 5.6 and
Figure 5.7, respectively, are in line with the ones in the previous example. While the
real and reconstructed relative permittivity profiles in (a) and (c) in both figures
match, the values seen in Figure 5.6 (d) and Figure 5.7 (d) are higher than the real
ones in Figure 5.6 (b) and Figure 5.7 (b), and although the object is detectable, only

the top of the objects seem visible in both figures.

The first set of simulations, which are performed at operating frequencies from 100
MHz to 3 GHz, show that the method is very effective for reconstructing the relative
dielectric permittivity profile of the domain, considering boththe values in the
profile, and the distinctivity of the shape and location of the object.However, when
the reconstructed values of the conductivity in the domain are considered, although
the simulations performed at lower frequencies yield satisfactory results, the values
reconstructed at higher frequencies exceed the real values in the profile. Furthermore,
although the object looks slightly misplaced in the conductivity profiles at lower
frequencies, they are sufficiently distinctive, but at higher frequencies, only the top
of the object seems visible.

30



For the second set of simulations, the0.21

s0il

high rough surface, which lies in
-0.854; <% <0.854,, —0.854, <X, <0.854,, -0.14,, <x, <0.14,, is considered,
and shown in Figure 5.8. Circular objects with a radius of 0.1254,, having different

constitutive paramters at each example, are centered at 0,0,-0.354,, . 16 source an

soil

64 measurement points are used in the simulations, and the inversion is carried out in

a reconstruction domain which consists of cubical cells of size A, /24 on each side.

The effect of the object’s conductivity is investigated in the next three simulations,
by using objects with the same dielectric permittivity, but different conductivities.

First example is carried out with an object with relative permittivity ¢, =7¢,, and
conductivity o, =0.05. The real and reconstructed profiles of permittivity, which

can be seen in Figure 5.9 (a) and (c), respectively, show that the reconstructed values
are close to the real ones, and the shape and location of the object are clear.
Furthermore, the conductivity of the object is successfully estimated, and the top of

the object is visible in Figure 5.9 (d), hence the location of the object is also clear.

Figure 5.8:Rough surface profile for the simulations whose results are shown
through Figure 5.9-5.21
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Figure 5.9:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for conductivity test for an object with gqnj=7¢€0, Gobj=0.05.
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Figure 5.10:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x,=0 for conductivity test for an object with gqpj=7¢g, 6opj=0.1.
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In the next example, an object with the same permittivity as the previous one, and a

conductivity of o, =0.1 is used, and the real and reconstructed profiles are shown in

Figure 5.10. It is observed that the shape and location of the object are clear in Figure
5.10 (c), and the values are estimated very well. On the other hand, in Figure 5.10
(d), the values of the conductivity profile are slightly overestimated, but the top of
the object is visible; therefore, the location of the object is clear. However, the object
having a relatively high conductivity increases the problem’s nonlinearity, and

causes some reflections on both profiles.
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Figure 5.11:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for conductivity test for an object with gqnj=7¢€g, Gobj=0.5.

Another object, with the same dielectric permittivity, &

[o]

o = 1€, but a higher
conductivity, o, =0.5 is used in the next example, whose simulation results can be

seen in Figure 5.11.The reconstructed profiles of both relative permittivity and
conductivity in Figure 5.11 (c) and (d), respectively, show the location of the object
clearly, but the shape of the object is not recognizable. The relative permittivity of
the object is overestimated in Figure 5.11 (c), while the value of the conductivity is
estimated exactly as the real value in Figure 5.11 (d), which suggests that the high

value of the conductivity dominates the contrast of the object, leading to a highly
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nonlinear problem, and favouring the conductivity in the inversion of the contrast

function.

The simulations of the next three examples, whose results are shown through Figures
5.12 - 5.14, are performed to observe the change in relative permittivity of the

object. In each of them, objects with the same conductivity, o, =0.001, but different

permittivities, changing from 5 to 20 are used. Figure 5.12 (a) and (c) show the real
and reconstructed profiles of relative dielectric permittivity for the first example, in

which an object with a permittivity ¢, =5s, is used. Reconstructed permittivity

profile shows a close estimate of the values inside the object, and its shape and
location are perfectly recovered. Moreover, Figure 5.12 (d) shows the location of the
object clearly although only the top of the object is visible, and the values are

overestimated.

Similarly, an object with &, =10¢, is used in the next example. Similar to the

previous example, the values of the reconstructed permittivity profile in Figure 5.13
(c) are very close to the ones of the real profile in Figure 5.13 (a), and the shape and
location of the object is perfectly reconstructed. However, the object in the
conductivity profile Figure 5.13 (d) is not recognizable, and its value is

overestimated.
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Figure 5.12:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for permittivity test for an object with eopj=5g0, Gopj=10".
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Figure 5.13:(a)Original relative dielectric permittivity (b)OrlglnaI conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for permittivity test for an object with gqp=10%, Gobj210'3.
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Figure 5.14:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x,=0 for permittivity test for an object with eopj=20gg, Go,=10".

When the difference between the dielectric permittivity of the object, which is

g4 =208, in the next example, and the one of the medium is higher, the

reconstruction fails as shown in Figure 5.14. The values of both the permittivity and
the conductivity of the object are extremely overestimated, and the shape of the
object is not recognizable. However, it is still detected in both profiles, in Figure 5.14
(c) and (d).

Figures 5.12 — 14 show that the method successfully reconstructs the object within a
certain amount of contrast range, and even when the contrast exceeds this range, the

object can still be detected.

A contrast, within the range of successful reconstruction is tested for different

medium and object parameters.An object with a dielectric permittivity &,, =10s, and
a conductivity o,, =0.01is buried in a medium with parameterss,, =7¢,and
04 =107, The reconstruction results in Figure 5.15 are consistent with previous

reconstructions with similar contrast. The relative dielectric permittivity profile of
the domain is successfully reconstructed in Figure 5.15 (c), with clear shape and
location of the object, and the values are closely estimated. Similarly, the
conductivity profile in Figure 5.15 (d) presents overestimated values, but provides

with the location of the object, by showing the top of it.

The examples shown so far present the situation of the contrast when the parameters
of the object are higher than the parameters of the medium. The next example is
performed to test the contrast in a reversed situation. In this case, the object is

assumed to be air, with free space parameters ¢,; =&, and o, =0, and is buried in a
medium with a dielectric permittivity &,, =3.65, and a conductivity o, =10". The

simulation results of the example are shown in Figure 5.16. The reconstructed
relative permittivity profile in Figure 5.16 (c) presents a good estimation of the
objects shape and location, besides the values close to the real ones. Moreover,
although the values in the conductivity profile are not in line with the real profile, the

shape and location of the object are still clear.
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Figure 5.15:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at X,=0 for an object with qhj=10g0, 6opj=0.01 that is buried in a medium with &,=7¢,
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Figure 5.16:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for negative contrast test for an object with gop=€o, Gobj=0.
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Figure 5.17:(a)Original relative dielectric permittivity (b)Original conductivity
(c)Reconstructed relative dielectric permittivity (d) Reconstructed conductivity
profile at x,=0 for size test for a cubical object with a side length 0.2, and
€obj=3€0, Oobj=0.01.
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Figure 5.18:(a)Original relative dielectric permittivity (b)Original conductivity
(c)Reconstructed relative dielectric permittivity (d) Reconstructed conductivity
profile at x;=0 for size test for a cubical object with a side length 0.1, and
SOijSSO, Gobj:0-01-
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Two cubical objects with ¢, =5, dielectric permittivity and o, =0.1 conductivity

and another 0.1,

s0il

one with 0.2

s0il 7

are centered at 0,0,-0.34,

ol 1 side length,
whose simulation results can be seen in Figure 5.17 and Figure 5.18, respectively.
Relative permittivity profiles in both figures present a good image of the object’s
shape and location, and its values are sufficiently estimated although the estimated
value of the permittivity is closer to the real one for the bigger object. Similarly, both
Figure 5.17 (d) and Figure 5.18 (d) present the location of the object by recovering

its top, and the value appears closer to the real one for the bigger object, as expected.

The following three simulations are performed on objects buried at different depths

under the rough surface. A spherical object, with ¢,, =5¢, dielectric permittivity,

is centered at 0,0,-0.2754

soil !

o =0.01 and a radius of 0.1254,

ol 0.054, below the
lowest point of the rough interface. The simulation results in Figure 5.19 show a
clear image of the object in the permittivity profile, as well as a close value for the
permittivity. However, the conductivity profile presents the location of the object by

showing the top of the object, and its value is overestimated.
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Figure 5.19:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x,=0 for depth test for an object buried 0.05A below the surface.
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Figure 5.20:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for depth test for an object buried 0.5\ below the surface.
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Figure 5.21:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for depth test for an object buried 0.75\i below the surface.
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0.54

S0il

Another object, with the same properties, is centered at 0,0,-0.7254

soil 7
below the lowest point of the rough interface. The values in Figure 5.20 (c) are
slightly underestimated, and overestimated in Figure 5.20 (d). While the permittivity
profile in (c) shows the shape and location of the object, although it is slightly
misplaced, the conductivity profile in (d) shows its reflections, in addition to the

object itself.

Another object with the same parameters is centered at an even deeper location,

0,0,-0.9754

i - The simulation results can be seen in Figure 5.21. The permittivity
profile in Figure 21. (c) show a weaker image of the object, and reflections start to
emerge, although its shape and location are still clear. However, the conductivity
profile presents even higher values for the object’s conductivity, and the reflections
appear as strong as the object itself, making it impossible to distinguish the object

from its reflections.

The following four simulations are run in order to observe the effect of the

roughness’s height. A spherical object with a radius 0.1254, and constitutive

soil
parameters ¢,, =7, and o, =0.01 is buried 0.054,, below the lowest point of the
roughness for each example. The medium was illuminated by 16 point sources, and
the scattered field is obtained synthetically for 64 points on surfaces mentioned
before. The reconstruction domain was divided into cubical cells with a side length
A /24 . For all four simulations, the same roughness profile is used, with different
heights, which is defined as the difference between the highest and the lowest points

of the surface.
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Figure 5.22:Surface profile with 0.1 height, which is used for the simulation
shown in Figure 5.23.
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Figure 5.23:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for roughness height of 0.1 ;.

The roughness with a height 0.1, which is shown in Figure 5.22, is used for the

il 1
first example. The image of the reconstructed profile of relative dielectric
permittivity in Figure 5.23 (c) show the object clearly but slightly mislocated, with a
very good estimation of its value. Moreover, the conductivity profile in Figure 5.23
(d) show the location of the object, revealing only the top, and estimates the value

roughly.

The roughness with a 0.24,, height, which is used for the second example, can be
seen in Figure 5.24. The simulation results in Figure 5.25 show that in the relative
permittivity profile, the shape and location of the object is clear, yet slightly
mislocated, its value is close to the real one, yet not as much as the one in the

previous example. Expectedly, the conductivity profile, again, shows the top of the
object, which reveals its location, and the value is roughly estimated.
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Figure 5.24:Surface profile with 0.2 height, which is used for the simulation
shown in Figure 5.25.
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Figure 5.25:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for roughness height of 0.2A;.
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The third example is performed using the rough surface shown in Figure 5.26, which

Is 0.3, high, and its results can be seen in Figure 5.27. The reconstructed relative

permittivity and conductivity profiles in Figure 5.27 (c) and (d), respectively, support

the results in the previous examples. The object itself is clear in (c) and its top in (d).
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The values are still close to the real ones, but the estimation is weaker, due to the
increase in the height of the roughness, which is expected.

Figure 5.26:Surface profile with 0.3\ height, which is used for the simulation
shown in Figure 5.27.
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Figure 5.27:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x,=0 for roughness height of 0.3A;.

The simulation results of the fourth example, which is done using the roughness with

a height of 0.44_, in Figure 2.28, can be seen in Figure 2.29. Although the shape and

il

location of the object are revealed as expected in both profiles in (c) and (d), and the

estimated values in these profiles are less close to the real values, they do not seem to
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be very different from the previous example. It suggests that the nonlinearity the
rough surface brings to the problem does not increase linearly, which means while
the change in smaller values of its height has more visible effects on the

reconstruction than the same change in larger values.
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Figure 5.28:Surface profile with 0.4As height, which is used for the simulation
shown in Figure 5.29.
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Figure 5.29:(a)Original relative dielectric permittivity (b)Original conductivity (c)
Reconstructed relative dielectric permittivity (d) Reconstructed conductivity profile
at x;=0 for roughness height of 0.4A;.
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In the following examples, a more challenging situation, the situation that involves
two objects is investigated. Two identical spherical objects with a relative dielectric

permittivity e, =7, conductivity o, =0.2, and a radius 0.054, are placed 0.054,

below the lowest point of the 0.154_, high rough surface shown in Figure 5.30. The

medium was illuminated by 25 point sources, and the scattered field was obtained
synthetically at 81 measurement points. The reconstruction domain was divided into

cubical cells with side length A, /18.

Figure 5.30:Surface profile used for the next three simulations, shown through
Figure 5.31-5.33.

Figure 5.31 shows the simulation results of the case when the two objects mentioned

are placed 0.754,, apart from each other. The relative permittivity profile in Figure

5.31 (b) shows a close estimation of the value, and the shape and location of the
objects explicitly, although some mislocation and reflections are also observed, due
to the high conductivity of the object. On the other hand, although the values of
conductivity in Figure 5.31 (d) are not sufficiently estimated and reflections are

present, the location of the objects are very clear.

The same objects are placed closer, 0.54

. apart from each other for the next
example. The simulation results in Figure 5.32 are very similar to the ones in the
previous example. The estimated values of both relative permittivity and
conductivity profiles are almost the same, both objects are clearly visible, and
reflections are observed, as in the previous example. However, the objects in the
permittivity profile appear to be beginning to merge with each other, which suggests

that the 054, distance between them is the lower limit to distinguish them

separately.
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Figure 5.31:(a)Original relative dielectric permittivity (b)Reconstructed relative
dielectric permittivity(c)Original conductivity (d) Reconstructed conductivity profile
at x,=0 for resolution test for two spherical objects withegnj=7€0, Gorj=0.2, lying
0.75)s0i apart from each other.
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Figure 5.32:(a)Original relative dielectric permittivity (b)Reconstructed relative
dielectric permittivity(c)Original conductivity (d) Reconstructed conductivity profile
at x;=0 for resolution test for two spherical objects witheonj=7¢€0, Gobj=0.2, lying
0.5)\s0i apart from each other.
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Figure 5.33:(a)Original relative dielectric permittivity (b)Reconstructed relative
dielectric permittivity (c)Original conductivity (d) Reconstructed conductivity profile
at x;=0 for resolution test for two spherical objects witheonj=7¢€0, Gobj=0.2, lying

0.2%50i1 apart from each other.
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In order to test this, and investigate further what happens when the two objects are

even closer, another simulation, in which they are placed 0.2, apart from each

other, is performed. The results of the simulation, which are shown in Figure 5.33,
show that the two objects are no longer visible as separate objects, but they appear to
be one bigger object, whose location is clear in both relative permittivity and
conductivity profiles, having weaker reflections than before. Moreover, although the
estimated value of the object’s conductivity is still insufficient, values in both
profiles are now closer to the real one, which supports findings in earlier examples

that the estimations are more accurate for bigger objects.

Figure 5.34: Surface profile used for the next simulation, shown through in Figure
5.35.

Another example is performed for two objects having different constitutive

parameters. Two spherical objects with a 0.054

soil

radius, one with constitutive
parameters ¢,,, =5, o,,; =0.1, and the other &, =7, o,,,=0.2 are located 0.754
apart from each other, and 0.054, below the lowest point of the rough surface,
which is 0.24, high, and shown in Figure 5.34. The medium is illuminated by 36
sources, and the scattered field is evaluated for 121 points, and the reconstruction
domain is divided into cubical cells with side length A, /16. The conductivity

profile in Figure 5.35 (d) fails to estimate the values while it still shows where the
objects are located in spite of the reflections. However, the relative permittivity
profile in Figure 5.35 (b), although reflections are present, shows the shape and
location of the objects, and a close estimation of the values.
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For the last example in this section, the 0.24_, high rough surface shown in Figure

5.36, and two identical objects in the shape of rectangular prism with side lengths

0.2 x0.24,, x0.44, , and constitutive parameters ¢, =7 ando,, =0.01, are used.
One object was placed horizontally, and the other vertically, 0.754_, apart from each

other, and 0.05/,

soil

below the lowest point of the rough surface. 25 illuminations and

81 measurement points were used, and the reconstruction domain was divided into
cubical cells with side length A, /21. The relative permittivity profile in Figure 5.37
(b) shows the location of the objects clearly. Although the shape is not as clear as
desired, it still gives an idea. It also gives an acceptable, but insufficient estimation of
the values. On the other hand, the conductivity profile gives only an approximate
location of the objects, and it fails to present the shape and an acceptible estimate of

the values.
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%

Figure 5.36:Surface profile used for the last simulation, shown in Figure 5.37.
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6. CONCLUSIONS

A nonlinear tomographic approach for a 3D scalar case of microwave imaging of
dielectric objects buried under a rough surface is presented. The contribution of the
rough surface to the background of the object is obtained via the Buried Object
Approach (BOA), which involves obtaining the Green’s function of the two half-
spaces with a planar interface, and then treating the roughness as a series of objects
embedded in both half-spaces alternately. The resulting system of integral equations

is solved for the contrast function via Contrast Source Inversion (CSI) method.

The efficiency of the medhod has been tested through numerical simulations with
noise added data, and despite the physical obstacles of the subsurface imaging such
as limited illumination and measurement, it has been shown that the approach yields
good reconstructions. The method has proven to be effective in a large band of
frequencies. Different sets of constitutive parameters for both the object and the
medium it lies within have been tested, and the values have been very well
reconstructed. In fact, even the objects with higher constitutive parameters were
detected, if not clearly reconstructed. The method has also proven to successfully
detect and reconstruct objects with a significantly small size. It has been observed
that the geometry of the roughness does not considerably affect the quality of the
reconstuctions. However, although sufficient results have been obtained even for
considerably high roughnesses and objects that are buried relatively deep, the
reconstuctions have been more satisfactory for shallow objects buried under slight
roughnesses. In the cases when multiple objects are involved, as long as they are at
least half the wavelength of the medium apart from each other, even if they have
different constitutive parameters or shapes, they have been clearly distinguished and
effectively reconstructed.It should be noted that a priori information about the
positivity of the contrast has been applied in order to enhance the performance of the
method. However, it has been shown that even an object with negative contrast
values, such as one whose constitutive parameters are equal to those of air buried

into dry soil, has been successfully reconstructed without applying any a priori
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information during the inversion procedure. Therefore, the simulations show that the
proposed method is applicable for imaging of buried dielectric objects under rough

surface, but also detection and determination of pipesor tunnels.

Further studies are planned to extend the proposed approach to 3Dvectoral case of
imaging dielectric objects buried under a rough surface for more realistic
applications, and to employ computation algorithms in order to overcome the

computational complexity and time.
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