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FEBRUARY 2015
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AN APPROACH FOR THE CHEST TUBE DETECTION
IN CHEST RADIOGRAPHS

USING CONVOLUTIONAL NEURAL NETWORK

SUMMARY

The chest radiography is the most common radiological modality in practice.
Especially, it is very popular for scanning and screening purposes. Unfortunately, at
the same time it is one of the most difficult radiological modalities. It is known that
overlapping tissues cause highly complex projections in chest radiographs. In addition,
artificial objects, such as catheters, chest tubes, and pacemakers can appear on these
radiographs. It is important that anomaly detection algorithms are not confused by
these objects.

To achieve this goal, we propose an approach to train a Convolutional Neural Network
(CNN) to detect chest tubes present on radiographs. To better detect the chest tube
skeleton as the final output, non-uniform rational B-spline (NURBS) curves are used
to automatically fit to the CNN output.

We have chosen CNN method, as Neural Network (NN) model, because of its shift,
scale, and distortion invariance abilities and weight sharing property for reducing
number of free parameters of neural network. It is inspired by a modified version
of the vision system in vertebrate animals and it simulates some image processing,
feature extraction, and pattern recognition stages.

This is the first study conducted to automatically detect artificial objects in the
lung region of chest radiographs. Other automatic detection schemes work on the
mediastinum.

According to our initial tests, we decided to use the Gradient Descent and
Cross-Entropy algorithms with a sigmoid activation function with 5 layers. Our final
CNN architecture contains 2, 32, 32, 128, and 1 nodes for the successive layers.
Between layers, there are 32, 16, 128, and 1 links for each node in the layers. After a
series of tuning tests, the learning rate was selected as 0.1.

To feed the system with a greater input region without increasing the model complexity,
a multi-scale input with two scales was used. The input image blocks used by the input
layer and cropped from two whole images of a chest radiograph at multi-scale sizes of
1000x1000 and 250x250 pixels, are used without any registration. The input layer
contains two nodes with two input blocks of 13x13 pixels each.

During the training stage, blocks are selected from random training image sets with a
random block position. At three hidden layers, the output sizes are chosen as 5x5, 1x1
and 1x1. Finally, the output layer contains a single node that gives outputs of 1x1 in
size, which is used as a pixel in the resulting image at the proper location according to
the input block position.

The training set is solely constructed from our data set, and contains 62 radiographs.
13 of the images contain two chest tubes, 25 contain a single chest tube, and 24 out

xvii



of 62 radiographs have no chest tube. We tested our model using two datasets. The
first dataset contains our test set, and it is constructed with 21 radiographs with similar
groupings. To distinguish the chest tubes from other artificial objects, our training
and testing sets contain 36 and 13 radiographs, respectively, including artificial objects
other than chest tubes. The second test set contains 247 images without chest tubes, and
it is publicly available; it was created by the Standard Digital Image Database Project
Team of the Scientific Committee of the Japanese Society of Radiological Technology
(JRST)

We evaluated the performance of the model using a pixel-based ROC analysis. Each
true positive, true negative, false positive and false negative pixel is counted and used
for calculating average accuracy, sensitivity, and specificity percentages. The results
were 99.99 % accuracy, 59 % sensitivity, and 99.99 % specificity.

The majority of errors come from our database images, which contain very bright
(dense) zones that result from overlapping ribs and/or pleural effusion. The results
reveal that there is no confusion between the chest tubes and other artificial objects.
The JRST database results do not have a False Positive or False Negative except for
only one image that had 347 False Positive pixels. These error values show that
the results are well aligned with the input images and are acceptable as an output.
Therefore, we obtained promising results on the detection of artificial objects.
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KATMANLI SİNİR AĞLARI KULLANILARAK
GÖĞÜS RADYOGRAFİLERİNDE

GÖĞÜS TÜPÜ TESPİTİ İÇİN BİR YAKLAŞIM

ÖZET

Dünya Sağlık Örgütü (WHO), 2030 yılında dünyada 2.279.045 kişinin akciğer
kanserinden öleceğini tahmin etmektedir. Kanser en yaygın ikinci ölum nedenidir.
Kanser ve başka pek çok hastalığın tespit ve takibinde radyolojik tetkikler gereklidir.

Geliştirilen onca yeni radyolojik tetkike rağmen Göğüs Radyografisi en yaygın
kullanılan radyolojik tetkiktir. Özellikle tespit ve takip amaçlı olarak çok popülerdir.
Çünkü ucuz, bilgi yoğun, ve hızlıdır. Her yerde bulunabilir ve düşük seviyede
radyasyon içerir. Bu sebeblerle yakın gelecekte tahtını kaybetmeyecekmiş gibi
görünmektedir.

Ne yazık ki aynı zamanda yorumlanması en zor radyolojik tetkiklerden biridir. Üst
üste binen dokular, göğüs radyografilerinde çok karmaşık projeksiyonlar oluşturur.
Üstelik, kateterler, göğüs tüpleri, kalp pili gibi insan yapımı nesneler de bu
radyografilerde görülebilir. Anormallik tespit eden algoritmaların bu nesneler
sebebiyle sorun yaşamaması önemlidir. Bu hususta çalışma eksikliği bulunduğu ve
çalışma yapılmasına ihtiyaç olduğu literatürde de kabul edilmiştir.

Bu amaçla biz radyografilerde mevcut göğüs tüplerini tespit etmek için bir katmanlı
sinir ağı (İng. Convolutional Neural Network) eğitmeyi öneriyoruz. Göğüs tüpünün
iskeletini daha iyi tespit edebilmek için sinir ağının çıktısı üzerine otomatik olarak
oturtulan nonuniform rational b-spline eğrisi kullanılmıştır.

Tüm çalışma, C++ dilinde geliştirdiğimiz yazılımlarla yapılmıştır. Bu yazılım
bir kütüphane şeklinde tasarlanarak, değişik yöntemlerin denemesine müsade eden
bir yapıda hazırlanmıştır. Yazılım geliştirmenin doğal bir parçası olan yazılımın
doğruluğunun sınanması da yapılmış olup, bu amaçla kullanılan yöntemler de çalışma
kapsamında açıklanmıştır.

Katmanlı sinir ağı, kedi gözünden ilham alınmış bir yöntemdir. En önemli
üstünlüğü, örüntü tanıma (pattern recognition) yöntemlerinde çoğunlukla uygulanmak
zorunda kalınan özellik çıkarımı (feature extraction) ve hassas hizalama/ölçeklendirme
işlemleri gerektirmemesi, ağırlık paylaşımı yoluyla serbest parametre sayısını düşük
tutabilen yapısıdır.

Özellik çıkarımı, gerçek hayat verilerinin çok boyutlu yapısı ile pek çok örüntü
tanıma yönteminin baş edememesi sonucu gerekmektedir. Katmanlı sinir ağı ise bu
soruna katlama (convolution) işlemi ve ağırlık paylaşımı yoluyla serbest parametreleri
sınırlayarak, yüksek boyutlu verinin oluşturduğu karmaşıklığı aşmaktadır. Katlama
(convolution) işlemi aynı zamanda hassas hizalama ihtiyacını da ortadan kaldırmak-
tadır. Gerçek hayat verilerinin, doğal yaşam formlarının yapabildiği gibi sinir ağı
algoritmaları tarafından da bir önişlemeye tabi tutulmadan kullanılabilmesine yönelik
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çalışmalar, derin öğrenme (deep learning) başlığı altında aktif bir çalışma konusudur.
Katmanlı sinir ağı modeli bu konuda başarılı ilk yöntemdir.

Bu çalışma, göğüs radyografilerinin akciğer bölgesindeki yabancı cisimleri otomatik
olarak tespit etmeye yönelik ilk çalışmadır. Diğer otomatik tespit algoritmaları
mediastinum üzerinde çalışmaktadır. Ayrıca tam otomatik olarak çalışması ve erişime
açık bir göğüs radyografi bilgi bankası kullanılarak sınanmış olması, bu çalışmanın
diğer üstünlükleridir.

Yaptığımız ön çalışmalar sonucunda Gradient Descent ve Cross-Entropy algorit-
malarını sigmoid aktivasyon fonksiyonu ile kullanmanın en iyi performansı verdiğini
gördük. Önerdiğimiz katmanlı sinir ağı modelimizde, girdi ve çıktı dahil 5 katman
mevcuttur. Sırasıyla, her katmanda 2, 32, 32, 128, ve 1 düğüm mevcuttur. Bu
katmanlar arasında, yine sırasıyla 32, 16, 128, ve 1 adet bağlantı mevcuttur. Öğrenme
katsayısı olarak 0.1 değerini kullandık.

Görüleceği gibi girdi katmanında 2 düğüm mevcuttur. Bu iki dügüm, aynı
radyografinin iki farklı ölçekteki görüntüsü ile beslenir. Bu ise modelin boyutunu
çok büyütmeden girdi olarak alınan alanı artırmanın bir yolu olarak çok ölçekli girdi
tercih edilmesi sebebiyledir. Her girdi düğümü, girdi olarak kullanılacak radyografinin
1000x1000 ve 250x250 boyutlarındaki görüntülerinden birinden aynı bölgeye ait
13x13 boyutlarında bir parçayı alır. Bu şekilde çok ölçekli girdi ile sinir ağı beslenmiş
olur. Eğitim sırasında girdiler, rastgele radyografilerin rastgele kısımlarından seçilerek
kullanıldı. Üç ara katmanda çıktı boyutları 5x5, 1x1 ve 1x1 şeklinde seçildi. Son
katmanda 1x1 boyutlarında çıktı üreten tek bir düğüm mevcuttur. Bu şekilde modelin
her çalıştırılması sonuç görüntünün bir noktasını üretir.

Sinir ağının çıktısında göğüs tüpünün opak çizgisine karşılık gelen bir eğri oluşması
amaçlanmaktadır. Ancak çoğu zaman bu eğri kesintisiz ve gürültüsüz elde
edilemediğinden, çıktı resmi üzerine otomatik olarak nonuniform rational b-spline
eğrisi oturtularak, kesintisiz ve gürültüsüz bir eğri elde edilmesi amaçlanmaktadır.
Bu eğri oturtma işlemi için gereken kontrol noktaları, mevcut çıktı üzerindeki en
belirgin nokta üzerinde ilerlenirken rastlanılan küçük boşlukların eğrinin istikameti
yönünde atlanarak geçilmesi ile seçilmektedir. Bu şekilde aynı zamanda eğri
üzerinde olmayan gürültülerden de kurtulunmuş olunur. Kontrol noktalarının sayısını
sınırlamak amacıyla, 36 noktada bir nokta seçilmektedir.

Eğitim seti tamamen bizim veri tabanımızdaki görüntülerden oluşmaktadır ve 62
radyografi içermektedir. Bunlardan 13 tanesi çift, 25 tanesi tek göğüs tüpü içerir.
24 tanesi ise hiç göğüs tüpü içermemektedir. Sonuçları sınamak içinse, iki farklı
veri tabanı kullanıldı. İlk veri tabanı bizim kendi veri tabanımızdır ve 21 radyografi
içerir. Modelimizin diğer yapay cisimlerle göğüs tüpünü birbirinden ayırabilmesinin
sağlanması için eğitim setinde 36 tane, sınama setinde 13 tane radyografi, göğüs
tüpü dışındaki diğer yapay cisimlerden içerecek şekilde seçilmiştir. İkinci sınama
seti ise Standard Digital Image Database Project Team of the Scientific Committee
of the Japanese Society of Radiological Technology (JRST) tarafından oluşturulmuş
ve herkese açık olan 247 radyografiden oluşan JRST veri setidir. Bu set yapay cisimler
içerse de göğüs tüpü içermez.

Modelin performansını piksel tabanlı ROC analizi ile test ettik. Herbir gerçek pozitif,
gerçek negatif, hatalı pozitif, hatalı negatif sayıldı ve ortalama accuracy, sensitivity,
specificity, yüzdelerini hesaplamak için kullanıldı. Sonuç olarak % 99.99 doğruluk

xx



(accuracy), % 59 hassasiyet(sensitivity), % 99.99 özgünlük(specificity) değerleri elde
edildi.

Sonuçlarımızdaki hataların çoğu üst üste binmiş kaburgalar yada plevral efüzyon
sebebiyle oluşan son derece yoğun (radyografide açık renkte olan) bölgelerde
oluşmaktadır. Testlerde yapay cisimler, göğüs tüpü ile hiç karıştırılmamıştır. JRST
veri setinde oluşan tüm hatalar tek bir görüntüde oluşan 347 hatalı pozitif noktadan
ibarettir. Hiç hatalı negatif nokta oluşmamıştır. Testler, tüm sonuç görüntülerinin
girdi radyografileri ile aynı hizalanmıştır. Elde edilen bu sonuçlara göre, yabancı cisim
tespitinde önerilen modelin kullanımı umut vadetmektedir.
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1. INTRODUCTION

1.1 Problem Definition

1.1.1 The Lung Cancer and Lung Related Deaths

Worldwide, 1.549.121 new lung cancer cases and 1.351.034 lung cancer deaths are

estimated in 2007 [1]. The cancer is the second leading cause of death. Lower

respiratory infections, chronic obstructive pulmonary disease, and tuberculosis are

other lung related causes in top 10 death causes [1]. Also, World Health Organization

(WHO) estimates 2.279.045 lung cancer deaths in 2030 (Baseline scenario, [2]).

Beside, the high mortality rate of lung cancer, there is another problem: the high miss

rate for detection of lung cancer nodules. This is one of most frequent reasons for

malpractice lawsuits against radiologist [3].

1.1.2 The Chest Radiography

For scanning of lung cancer and other lung related diseases, the chest radiography has

been widely used. Even now, the chest radiography (Figure 1.1) is the most common

radiological modality in the practice [4,5]. In short term, it seems that modern imaging

techniques are not going to replace the chest radiography [5]. Because, it is fast, dense,

cheap, and accessible than most of the modern imaging techniques such as Magnetic

Resonance (MR) or Computed Tomography (CT) [6]. Also, the chest radiography is

using less radiation than some of the modern imaging techniques like CT [6].

However, most important problem of these modern techniques is huge amount of data

obtained [7]. CT and MR are volumetric methods. This means radiologists must

investigate up to 1500 slices per patient [7] and up to 300 per thorax [8]. However,

the chest radiography produces just a single image. Because of these reasons, the chest

radiography is very popular for scanning and screening purposes. Even patients of the
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intensive care unit are monitored by doctors who daily use the chest radiography [9].

On the average 236 chest radiographs are performed to 1000 patients per year [4].

Figure 1.1: A normal chest radiography.

1.1.3 The Computerized Analysis of Radiographs

The researchers are motivated by the high mortality and high miss rates to find an easy

and dependable way of the detection of lung cancer. A possible solution might be

computerized analysis of radiographs. The computerized analysis of radiographs for

anomaly detection became an active research area with two main branches. First of

all, Computer Aided Diagnosis (CAD) model, gives suggestions to the doctors, is an

important and active research area. Moreover, the importance of CAD is increased with

the widespread use of a picture archiving and communication system (PACS) [10].

Automated Diagnosis (AD), is the other branch, and more difficult than CAD [10].

However, both of them need robust anomaly detection schemes.

A major part of this research effort is focusing on the chest radiography, because it is

the most common radiological modality in the practice. Especially, it is very popular
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Figure 1.2: An example for artificial object at the chest radiography. 1) Oxygen
cannula. 2) Connected EKG electrode. 3) Non-connected EKG electrode.
4) Chest tube.

for scanning purposes. Unfortunately, at the same time it is one of the most difficult

radiological modalities [11, 12]. The overlapping tissues cause a highly complex

projection. In addition, artificial objects such as catheters, chest tube, pacemaker,

and/or even cloths might be presented at this projection image (Figures 1.2 and 1.3).

1.1.4 The Artificial Object Problem

Clinical practice shows that the presence of an artificial object in radiography is

common and creates further complexities. The abnormal findings in chest radiography

are studied by MacMahon et al. [13]. They report that the second common abnormal

finding is catheter (33% of chest radiographs contains a catheter) [13]. In our

investigations, we found that chest radiography databases also contain artificial

objects. For example, The Japanese Society of Radiological Technology (JSRT)

chest radiography database with and without chest lung nodules [14], contains 247

images. Four of them (JPCLN140, JPCLN147, JPCNN044, JPCNN083) have at least
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Figure 1.3: Another example for artificial object at the chest radiography. 5) Stapler.
6)Endotracheal tube. 7) Some electronic device. 8, 9, 10) Metal wires.

an artificial object (Figure 1.4). Also, The Reference Image Database to Evaluate

Response (RIDER) Pilot Project database, contains 17 chest radiographs [15]. Except

only one image, all images contain at least one artificial object. These databases are

consisting of selected images, natural frequency might be different.

When a researcher attempts to develop a robust CAD approach that works for chest

radiography, he or she must be certain that each and every algorithm works properly

for all chest radiographs containing foreign objects. Therefore, the anomaly detection

algorithm should not be confused by artificial objects.

There are only few papers known discussing the presence of artificial objects. Kuhlman

et al. mention about artificial objects such as pacemaker might cause artifacts in

the dual-energy subtraction chest radiography [16]. Another study reports that 20%

percent (23 of 120) of the test data of the study is selected from chest radiographs

which contains artificial object such as electrocardiographic wire and central venous

catheter [17]. However, it has been not discussed about the correlation between

4



Figure 1.4: A chest radiography that contains artificial object from the JSRT database.

artificial objects and detection errors. Arzhaeva et al. [18] report that their data set

selected by discarding images, which contain any artificial object.

Many techniques used in CAD papers are possibly susceptible to artificial objects. For

example; both temporal and contralateral subtraction techniques used for suppressing

unchanged part of radiography. These techniques assume image differences show

abnormal progress of a disease [5]. However, if only one of radiographs, which was

subtracted, contains an artificial object, this assumption will be violated. Also, contour

fitting algorithms that used finding segmentation borders such as rib segmentation,

might be failed. Because the literature does not mention a possible artificial object

weakness, it is not possible to list the definitely sensitive algorithms. However, any

CAD solution is a collection of different algorithms, and if it is wanted to develop

a CAD solution that robustly works for chest radiography, it should be found a way
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to be sure that every algorithm is safe about overlapping foreign objects. Hence, the

detecting and even better than detecting, the removing foreign object as a preprocessing

module is very meaningful for CAD research.

1.1.5 Chest Tube

Fortunately, the majority of medical objects such as catheters and chest tubes (Artificial

Object nr. 4, Figure 1.2) are long, thin, mostly constant in shape, and not totally

opaque. These features make them easily detectable by the radiologist.

Despite these helpful features, automatic detection of the chest tube figure is very

difficult. The reason is the different parts of chest tube show different characteristics

and also having discontinuities (Figure 1.2). Firstly, the head of the chest tube is

not identical to the body of the tube. After slightly rounded head, there is also a

discontinuity at opaque line. Even the body, itself, might be a source of the problem

because of that the crosscut of tube contains opaque part and non-opaque parts.

Unfortunately, according to the crosscut of tube, the position and width of opaque

line is different. Finally, it must be mentioned the width of chest tube is a variable in

the practice.

1.2 Literature Review

Detecting foreign objects is a critical issue for CAD research. However, a survey by

Van Ginneken et al. [5] reported that the detection of artificial objects is one of the

unsolved problems of CAD. Only a few studies in the CAD literature have focused on

the detection of artificial objects in chest radiography.

Four prominent studies can be highlighted. First, a semi-automated method for

tracking the location of naso-gastric tubes, endo-tracheal tubes, chest tubes, PICC

and central venous catheters using five chest radiographs was proposed by Keller et

al. [19]. This method requires two seed points specified by user. Second and third

studies have investigated the automatic detection of tubes that are located only in

the mediastinum. A method for automatic detection and positioning of endotracheal,

feeding and nasogastric tubes using 107 chest radiographs was studied by Sheng et

al. [20]. Additionally, Ramakrishna et al. [21, 22], worked on the automatic detection
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of endotracheal and nasogastric tubes. All of these automatic methods work for objects

located in the mediastinum only (Figure 1.5).

Figure 1.5: Mediastinum Region of the Chest.

Fourth, the detection and removal of simulated chest tubes from radiographs were also

studied in our previous work [23].

1.3 Aim of the dissertation

In this dissertation, we proposed a scheme basically focusing on detecting a chest tube

figure (as an example of an artificial object might be presented at the radiography) from

Postero-Anterior (PA) Chest Radiography.

A Convolutional Neural Network (CNN) that takes the chest tube containing x-ray

image as an input and gives an artificial image with a chest tube skeleton as an output

is studied. The trained CNN is used together with non-uniform rational B-splines

(NURBS) to automatically detect the presence of chest tubes in chest radiographs

(Figure 1.6).
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Although there are some medical image processing and CAD that work on chest

radiographs and use a CNN such as segmentation of bones [24], and detection of cancer

on chest radiographs [25, 26], there are any artificial object detection schemes which

use a CNN, in the literature.

Moreover, our proposed model is the first study conducted to automatically detect

artificial objects in the lung region of chest radiographs. Other automatic detection

schemes work on the mediastinum.

In our research, we noted that in some cases, the CNN output of the form of the

detected chest tube skeleton was not clear and had short and long discontinuities. To

overcome this problem, we introduced a NURBS-based curve fitting algorithm that

was applied to the detected chest tube image to obtain a better chest tube skeleton as a

final output.

Figure 1.6: Simplified Flowchart of the proposed system.

It has chosen the CNN method as a Neural Network (NN) model, due to the shifting,

scaling, and distortion invariance abilities, and weight sharing property for reducing

number of free parameters of neural network [27]. It is inspired by a modified version

of the vision system in vertebrate animals and it simulates all image processing, feature

extraction, and pattern recognition stages for working on images. CNN takes pictures
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as input, without a need for a feature extraction stage. Therefore, in order to detect the

chest tube figure, we have decided to use the CNN method trained with chest images

containing chest tubes as an input and chest tube skeleton as a target (Figure 1.6).
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2. CONVOLUTIONAL NEURAL NETWORK (CNN)

The CNN is a neural network method inspired by biological visual systems [28] and

it can handle some of image processing problems internally such as shift, scale, and

distortion variations and it reduces number of free parameters of neural network using

shared weights. It uses matrices, instead of scalars that are basically used by traditional

NN method (Figure 2.1). The main advantage of using matrices is that they work as

local receptive fields and protect local spatial neighborhoods. It allows to us simulate

some image processing, feature extraction and pattern recognition stages of the classic

scheme of the pattern recognition case [27, 28].

Although the CNN architecture is often used for pattern recognition purpose [11, 27,

29, 30], the work of Browne and Ghidary [28] is first and the only paper that CNN is

used for image processing, except for a few variants of CNN. Especially, for pattern

recognition purpose, CNN papers show very successful results.

However, CNN is not a popular method. Simard et al. [29] argued that the main reason

for that was the complexity of CNN. In addition, our experience also showed us that

another potential reason was imperfect documentation of CNN.

There is a group of research papers that contains small parts of the method with

multiple variations [27, 29]. A nice alternative for these papers is a manuscript [28]

that explains the simplified and unusable version of CNN formulation assuming to

work with vectors (1D) but not with matrices (2D). After that, we focused obtaining

formula by ourselves.

2.1 Obtaining Formula

The training of a CNN works at two main steps: feedforward and backward steps.

At the feedforward step, NN calculates outputs from inputs. Backward step is the

optimization of free parameters of the model.
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Figure 2.2: Details of a CNN architecture for image processing. The input frame has
been taken from a picture. Then, the result is going to be copied to the
output picture.

A CNN requires training with many image pairs. An image pair is composed of a chest

image, which contains a chest tube as an input, and a map image, which contains a line

representing the opaque line of a chest tube as the target. After the training stage for

a given x-ray image that contains a chest tube, the CNN output will be a map image

containing the chest tube.

2.1.1 Feedforward Step

Let define a CNN architecture that contains L number of layers. There are three types

of layers according to layer order: input layer (l = 1), output layer (l = L), and hidden

layers (1 < l < L). The input layer is an abstract layer that only contains the input data

without any calculations. Hidden and Output layers differing in calculations will be

explained at following sections.

2.1.1.1 Feedforward step of the output layer

Let netk denote the kth output image of the output layer of our neural network that

contains L layer (in other words, output of the kth node of output layer). O j denote

the jth image group which is the output of the jth node at layer L−1, and let J be the
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number of such groups.

netk = bk +
J

∑
j

O j ∗∗Wk j (2.1)

where ∗∗ denotes the two-dimensional (2D) convolution (Figure 2.3) and Wk j denotes

the kernel of weights connecting the jth group in the (L− 1)th layer to the kth group

in the (L)th layer. Also bk shows the bias value of the kth node.

The width S of the weight kernel Wk j, the step size m of the kernel at horizontal

direction, and the width H( jw) of the output image O j of layer L−1 defines the width

H(kw) of the output image Ok of layer L:

H(kw) =
H( jw)−S+m

m
(2.2)

also, the same equation is valid for the height:

H(kh) =
H( jh)−T +n

n
(2.3)

We try to separate each entry of the matrix netk: netkw,kh
k means the element at column

kw th and row kh th of the image netk.

netkw,kh
k = bk +

J

∑
j

S

∑
s

T

∑
t

W s,t
k j O

jw︷ ︸︸ ︷
((kw∗m)+s),

jh︷ ︸︸ ︷
((kh∗n)+t)

j (2.4)

Then, netk used for calculating Ok :

Okw,kh
k = f (netkw,kh

k ) , k = 1, · · · ,K (2.5)

The f () is the transfer function that we select.

2.1.1.2 Feedforward step of hidden layers

Nearly, same equations are valid for hidden layers with little differences. Let net j

denote the jth output image of the lth layer of our neural network that contains L

layers (in other words, output of the jth node of lth layer). Oi denote the ith image

group which is the output of the ith node at layer l−1, and let I be the number of such

groups.

net j = b j +
I

∑
i

Oi ∗∗Wji (2.6)

net jw, jh
j = b j +

I

∑
i

U

∑
u

V

∑
v

W u,v
ji O

iw︷ ︸︸ ︷
(( jw∗m′)+u),

ih︷ ︸︸ ︷
(( jh∗n′)+v)

i (2.7)
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O jw, jh
j = f (net jw, jh

j ) , j = 1, · · · ,J (2.8)

The width U of the weight kernel Wji, the step size m′ of the kernel at horizontal

direction and the width H(iw) of the output image Oi of layer l− 1 defines the width

H( jw) of the output image O j of layer l:

H( jw) =
H(iw)−U +m′

m′
(2.9)

also, same equation is valid for the height:

H( jh) =
H(ih)−V +n′

n′
(2.10)

2.1.2 Backpropagation

The training of a neural network is an optimization process of weights of the neurons

according to an error formula of the neural network. Our error function is:

E =
1
2

K

∑
k

H(kw)

∑
kw

H(kh)

∑
kh

(tkw,kh
k −Okw,kh

k )2 (2.11)

and total node count K in output layer, width H(kw) and height H(kh) sizes of output

nodes define single output count, and each output Okw,kh
k produces a local error,

according to itself target value tkw,kh
k .

Instead of the specific solution per neural network, the backpropagation method

obtains a general solution to update weights per layer [31]. From output layer to first

hidden layer, calculations of each layer depend on previous calculations of next layers.

2.1.2.1 Backpropagation step of the output layer

First step of the backpropagation is calculating weight update for nodes of the output

layer:

∆W s,t
k j =−η

∂E
∂W s,t

k j
(2.12)

that will be used for new weights. Delta rule for gradient decent method can be given

as an example:

W s,t
k j

(new)
=W s,t

k j
(old)−η

∂E
∂W s,t

k j
(2.13)
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Then, we will convert formula from matrix derivative form to entry derivative version

[32]:

∂E
∂W s,t

k j
=

∂E
∂netk

∂netk
∂W s,t

k j
(2.14)

=
H(kw)

∑
kw

H(kh)

∑
kh

∂E

netkw,kh
k︸ ︷︷ ︸

−δ
kw,kh
k

netkw,kh
k

W s,t
k j

(2.15)

∂netkw,kh
k

∂W s,t
k j

=
∂

∂W s,t
k j

(bk +
J

∑
j′

S

∑
s′

T

∑
t ′

W s,t
k j O((kw∗m)+s′),((kh∗n)+t ′)

j ) (2.16)

= O((kw∗m)+s),((kh∗n)+t)
j , ( j = j′,s = s′, t = t ′). (2.17)

δ
kw,kh
k = − ∂E

∂netkw,kh
k

(2.18)

= − ∂E

∂Okw,kh
k

∂Okw,kh
k

∂netkw,kh
k

(2.19)

= − − (tkw,kh
k −Okw,kh

k ) f ′(netkw,kh
k ) (2.20)

δ
kw,kh
k = (tkw,kh

k −Okw,kh
k ) f ′(netkw,kh

k ) (2.21)

∆W s,t
k j = η

H(kw)

∑
kw

H(kh)

∑
kh

δ
kw,kh
k O((kw∗m)+s),((kh∗n)+t)

j (2.22)

2.1.2.2 Backpropagation step of hidden layers

Most imported part of backprobagation method is obtained at this section:

∆W u,v
ji =−η

∂E
∂W u,v

ji
(2.23)

∂E
∂W u,v

ji
=

∂E
∂net j

∂net j

∂W u,v
ji

(2.24)

=
H( jw)

∑
jw

H( jh)

∑
jh

∂E

net jw, jh
j︸ ︷︷ ︸

−δ
jw, jh
j

net jw, jh
j

W u,v
ji

(2.25)
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Equation 2.25 is the most important part of backpropagation method. The ∂E
net jw, jh

j
=

−δ
jw, jh
j part of formula links the calculation of derivative of hidden layers to the

calculation of derivative of next layer. The good think is that the δ
jw, jh
j term makes

that backpropagation formulation is general. With using this term, we can calculate

any derivatives of NN, layer by layer, without the need of re-obtaining formulas.

∂net jw, jh
j

∂W u,v
ji

=
∂

∂W u,v
ji

(
bk +

I

∑
i′

U

∑
u′

V

∑
v′

W u,v
ji O(( jw∗m′)+u′),(( jh∗n′)+v′)

i

)
(2.26)

= O(( jw∗m′)+u),(( jh∗n′)+v)
i , (i = i′,u = u′,v = v′). (2.27)

δ
jw, jh
j = − ∂E

∂net jw, jh
j

(2.28)

= − ∂E

∂O jw, jh
j

∂O jw, jh
j

∂net jw, jh
j

(2.29)

− ∂E

∂O jw, jh
j

=
K

∑
k
− ∂E

∂netk

∂netk
∂O jw, jh

j

(2.30)

=
K

∑
k

H(kw)

∑
kw

H(kh)

∑
kh

−∂E

netkw,kh
k︸ ︷︷ ︸

δ
kw,kh
k

∂netkw,kh
k

∂O jw, jh
j

(2.31)

∂netkw,kh
k

∂O jw, jh
j

=
∂

O jw, jh
j

 J

∑
j′

S

∑
s

T

∑
t

W s,t
k j O

jw′︷ ︸︸ ︷
((kw∗m)+s),

jh′︷ ︸︸ ︷
((kh∗n)+t)

j′ +bk

 (2.32)

= W ( jw−(kw∗m)),( jh−(kh∗n))
k j ,( j = j′, jw = jw′, jh = jh′). (2.33)

O jw, jh
j

net jw, jh
j

= f ′(net jw, jh
j ) (2.34)

δ
jw, jh
j =

(
K

∑
k

H(kw)

∑
kw

H(kh)

∑
kh

δ
kw,kh
k W ( jw−(kw∗m)),( jh−(kh∗n))

k j

)
f ′(net jw, jh

j ) (2.35)
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∆W u,v
ji = η

H( jw)

∑
jw

H( jh)

∑
jh

δ
jw, jh
j O(( jw∗m′)+u),(( jh∗n′)+v)

i (2.36)

2.1.3 Subsampling

The subsampling is another important method of the CNN. It is mainly an averaging

operation with an only single weight parameter. The subsampling ensures that the

rotating and shifting invariance to NN, because the output of the node is not dependent

on the input location. Also, it reduces the parameter count dramatically, because of the

using single weight. The formulation of the subsampling is given as:

netkw,kh
k = bk +wk

J

∑
j

S

∑
s

T

∑
t

O

jw︷ ︸︸ ︷
((kw∗m)+s),

jh︷ ︸︸ ︷
((kh∗n)+t)

j (2.37)

If we remember the convolution formula:

netkw,kh
k = bk +

J

∑
j

S

∑
s

T

∑
t

W s,t
k j O

jw︷ ︸︸ ︷
((kw∗m)+s),

jh︷ ︸︸ ︷
((kh∗n)+t)

j (2.38)

we can observe that the convolution step intrinsically contains subsampling operation.

2.1.3.1 Backpropagation step of the subsampling method at the output layer

First step of the backpropagation is to calculate the weight update for nodes of the

output layer:

∆wk =−η
∂E
∂wk

(2.39)

that will be used for new weights. For example; delta rule for the gradient decent

method is:

wk
(new) = wk

(old)−η
∂E
∂wk

(2.40)

Then, we will convert it’s from matrix derivative to entry derivative version [32]:

∂E
∂wk

=
∂E

∂netk

∂netk
∂wk

(2.41)

=
H(kw)

∑
kw

H(kh)

∑
kh

∂E

netkw,kh
k︸ ︷︷ ︸

−δ
kw,kh
k

netkw,kh
k
wk

(2.42)
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∂netkw,kh
k

∂wk
=

∂

∂wk
(bk +wk

J

∑
j′

S

∑
s′

T

∑
t ′

O((kw∗m)+s′),((kh∗n)+t ′)
j ) (2.43)

=
J

∑
j′

S

∑
s′

T

∑
t ′

O((kw∗m)+s′),((kh∗n)+t ′)
j , ( j = j′,s = s′, t = t ′).(2.44)

δ
kw,kh
k = − ∂E

∂netkw,kh
k

(2.45)

= − ∂E

∂Okw,kh
k

∂Okw,kh
k

∂netkw,kh
k

(2.46)

= −
(
−(tkw,kh

k −Okw,kh
k )

)
f ′(netkw,kh

k ) (2.47)

δ
kw,kh
k = (tkw,kh

k −Okw,kh
k ) f ′(netkw,kh

k ) (2.48)

∆wk = η

H(kw)

∑
kw

H(kh)

∑
kh

δ
kw,kh
k

J

∑
j′

S

∑
s′

T

∑
t ′

O((kw∗m)+s′),((kh∗n)+t ′)
j (2.49)

2.1.3.2 Backpropagation step of the subsampling method at hidden layers

∆w j =−η
∂E
∂w j

(2.50)

∂E
∂w j

=
∂E

∂net j

∂net j

∂w j
(2.51)

=
H( jw)

∑
jw

H( jh)

∑
jh

∂E

net jw, jh
j︸ ︷︷ ︸

−δ
jw, jh
j

net jw, jh
j

w j
(2.52)

∂net jw, jh
j

∂w j
=

∂

∂w j

(
bk +w j

I

∑
i′

U

∑
u′

V

∑
v′

O(( jw∗m′)+u′),(( jh∗n′)+v′)
i

)
(2.53)

=
I

∑
i′

U

∑
u′

V

∑
v′

O(( jw∗m′)+u′),(( jh∗n′)+v′)
i , (i = i′,u = u′,v = v′).(2.54)

δ
jw, jh
j = − ∂E

∂net jw, jh
j

(2.55)

= − ∂E

∂O jw, jh
j

∂O jw, jh
j

∂net jw, jh
j

(2.56)
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− ∂E

∂O jw, jh
j

=
K

∑
k
− ∂E

∂netk

∂netk
∂O jw, jh

j

(2.57)

=
K

∑
k

H(kw)

∑
kw

H(kh)

∑
kh

−∂E

netkw,kh
k︸ ︷︷ ︸

δ
kw,kh
k

∂netkw,kh
k

∂O jw, jh
j

(2.58)
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∂
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S

∑
s

T

∑
t

O

jw′︷ ︸︸ ︷
((kw∗m)+s),

jh′︷ ︸︸ ︷
((kh∗n)+t)

j′

 (2.59)

= wk. (2.60)

O jw, jh
j

net jw, jh
j

= f ′(net jw, jh
j ) (2.61)

δ
jw, jh
j =

(
K

∑
k

H(kw)

∑
kw

H(kh)

∑
kh

δ
kw,kh
k wk

)
f ′(net jw, jh

j ) (2.62)

2.2 Custom Code for CNN

We developed a custom CNN library using C++ language to easily modify the

architecture. As a result, deploying a CNN algorithm with custom input/output sizes

and links is has been more practical.
i n t l a y e r C o u n t = 5 ;
/ / D e f i n i n g l a y e r c o u n t
base_ann ∗ v l = new base_ann ( l a y e r C o u n t ) ;

/ / D e f i n i n g A r c h i t e c t u r e
vl−>archFeedForwardSigmoidCE ( ) ;

/ / D e f i n i n g node c o u n t and node o u t p u t s i z e s
vl−>f e e d F o r w a r d L a y e r ( 0 , l pn od e [ 0 ] , 0 , l pn od e [ 1 ] ,

l n s i z e [ 0 ] [ 0 ] , l n s i z e [ 0 ] [ 1 ] ) ;

v l−>f e e d F o r w a r d L a y e r ( 1 , l pn od e [ 1 ] , l pn od e [ 0 ] , l pn od e [ 2 ] ,
l n s i z e [ 1 ] [ 0 ] , l n s i z e [ 1 ] [ 1 ] , 2 , 2 ) ;

v l−>f e e d F o r w a r d L a y e r ( 2 , l pn od e [ 2 ] , l pn od e [ 1 ] , l pn od e [ 3 ] ,
l n s i z e [ 2 ] [ 0 ] , l n s i z e [ 2 ] [ 1 ] , 2 , 2 ) ;

v l−>f e e d F o r w a r d L a y e r ( 3 , l pn od e [ 3 ] , l pn od e [ 2 ] , l pn od e [ 4 ] ,
l n s i z e [ 3 ] [ 0 ] , l n s i z e [ 3 ] [ 1 ] ) ;

v l−>f e e d F o r w a r d L a y e r ( 4 , l pn od e [ 4 ] , l pn od e [ 3 ] , 0 ,
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l n s i z e [ 4 ] [ 0 ] , l n s i z e [ 4 ] [ 1 ] ) ;

/ / S e t t i n g i n i t i a l we ig h t v a l u e s
vl−> s e t K e r n e l s A u t o I n i t ( ) ;

/ / S e t t i n g L e a r n i n g Rate
vl−>s e t L e a r n i n g R a t e ( e t a , maxepoch ) ;
v l−> i n i t ( ) ;

/ / Link nodes
vl−> l a y e r ( 0 ) . s e t F u l l L i n k T o ( ) ;
f o r ( i n t z = 1 ; z < ( l a y e r C o u n t − 2) ; z ++) {

vl−> l a y e r ( z ) . s e t P e r L i n k T o ( l i n k c o u n t [ z ] ) ;
}
vl−> l a y e r ( l a y e r C o u n t − 2) . s e t F u l l L i n k T o ( ) ;

Loading an input/target images set:
/ / Random Ches t Rad iography s e l e c t i o n
/ / G e t t i n g f i r s t i n p u t image f o r f i r s t i n p u t node
i n b t r a i n . g e t P i c ( 0 ) . i n i t ( i n p u t l i s t [ r a s g e l e ] , i rmin , irmax ,

l n s i z e [ 0 ] [ 0 ] , l n s i z e [ 0 ] [ 1 ] , 1 , 1 ,
( l n s i z e [ 0 ] [ 0 ] / 2 ) ∗ ( o l c − 1) ,
( l n s i z e [ 0 ] [ 1 ] / 2 ) ∗ ( o l c − 1) , 1
+ ( ( l n s i z e [ 0 ] [ 0 ] / 2 ) ∗ ( o l c − 1) ) , 1
+ ( ( l n s i z e [ 0 ] [ 1 ] / 2 ) ∗ ( o l c − 1) ) , t r u e ) ;

/ / G e t t i n g second i n p u t image f o r second i n p u t node
i n b t r a i n . g e t P i c ( 1 ) . i n i t ( i n p u t l i s t 2 [ r a s g e l e ] , i rmin , irmax ,

l n s i z e [ 0 ] [ 0 ] , l n s i z e [ 0 ] [ 1 ] , 1 , 1 , 0 , 0 , 0 , 0 ,
t r u e , o lc , o l c ) ;

/ / G e t t i n g t a r g e t image f o r o u t p u t node
t a r b t r a i n . g e t P i c ( 0 ) . i n i t ( t a r g e t l i s t [ r a s g e l e ] , rmin , rmax , 1 , 1 , 1 ,

1 , ( l n s i z e [ 0 ] [ 0 ] / 2 ) ∗ olc , ( l n s i z e [ 0 ] [ 1 ] / 2 ) ∗ olc ,
( l n s i z e [ 0 ] [ 0 ] / 2 ) ∗ olc , ( l n s i z e [ 0 ] [ 1 ] / 2 ) ∗ olc , t r u e ) ;

Training CNN for an input/target images set:
/ / T r a i n i n g u s i n g t h i s random i n p u t
/ / s c o u n t = How many samples w i l l be t a k e n
/ / i n b t r a i n = i n p u t images
/ / t a r b t r a i n = t a r g e t image

t r a i n _ e r r =
vl−>t ra inLoopMergedRandEr ro rAround ( scoun t ,
i n b t r a i n , t a r b t r a i n ) ;

Testing CNN for an input/target images set:
/ / T e s t i n g wi th a r a d i o g r a p h
/ / " o u t p u t . pgm" = o u t p u t image name
/ / rmin = t r e s h h o l d f o r 0 v a l u e a t o u t p u t image
/ / rmax = t r e s h h o l d f o r 255 v a l u e a t o u t p u t image
/ / i n b t e s t = i n p u t images
/ / t a r b t e s t = t a r g e t image
/ / ou tb = o u t p u t image
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t e s t _ e r r =
vl−>b i g P i c t u r e R u n ( " o u t p u t . pgm" , rmin , rmax ,
i n b t e s t [ 0 ] , t a r b t e s t [ 0 ] , ou tb ) ;

Major functions used to construct a CNN are defined at base_ann class (Appendix A).

2.3 Validation of the Formula and the Code

The NN is known as a very robust method, even though using buggy codes and

a formula that contains discrepancies. It can be considered that this is the major

advantage of NN method. However, from the software implementation perfective,

this is not an advantage. It causes some serious difficulties at the debugging stage of

the software. Observing calculations manually for big models such as CNN is very

difficult.

In order to check the accuracy of the results, an alternative approach would be to use

the another numerical differentiation techniques such as finite (central) differences that

is very convenient and simple technique [33].

The derivatives of the perturbation weights, net sums (net), and inputs are evaluated

with the finite difference formulation as follows:

∂E
∂W s,t

k j
=

E(W s,t
k j + ε)−E(W s,t

k j − ε)

2ε
+ϑ(ε2) (2.63)

∂E

∂netkw,kh
k

=
E(netkw,kh

k + ε)−E(netkw,kh
k − ε)

2ε
+ϑ(ε2) (2.64)

∂E

∂O jw, jh
i

=
E(O jw, jh

i + ε)−E(O jw, jh
i − ε)

2ε
+ϑ(ε2) (2.65)

Perturbing tests of weights, net sums (net), and inputs, gave us correct result for a lower

bound of the values within the ε = 10−7. Sample outputs of these tests are presented

at Tables 2.1, 2.2, and 2.3. At our software environment, the double data type has 16

digits precision. Test results showed that difference of all output have a maximum 14

digits accuracy.

Therefore, we investigated the potential the reason of loosing two digits precision on

these calculations. We tried same evaluation technique for activation function f ().
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Table 2.1: Input Perturbing Results.

Epsilon ([E+]-[E-])/2 Epsilon input Difference The result

0.000000001 -0.000079486417 -0.000079493935 0.00000000751785 not passed
0.000000010 -0.000716165460 -0.000716165400 0.00000000005995 not passed
0.000000100 0.000639053310 0.000639053257 0.00000000005238 not passed

Test Results are not correct for the values out of the lower bound of ε = 10−7

0.000001000 -0.000447143133 -0.000447143136 0.000000000002700 passed
0.000010000 -0.000163595652 -0.000163595653 0.000000000000525 passed
0.000100000 0.000538057734 0.000538057734 0.000000000000093 passed
0.001000000 -0.000622696962 -0.000622696985 0.000000000022999 passed
0.010000000 -0.000053653760 -0.000053653524 0.000000000236161 passed
0.100000000 0.000168174450 0.000167966391 0.000000208058993 passed
0.000100000 0.000364155993 0.000384254499 0.000020098505333 passed
0.001000000 0.000020931019 0.000693037434 0.000672106414911 passed

Table 2.2: Net Sum (net) Perturbing Results.

Epsilon ([E+]-[E-])/2 Epsilon delta Difference The result

0.0000000010 -0.177685366420 -0.177685355259 0.000000011161 not passed
0.0000000100 0.147506491743 0.147506489943 0.000000001799 not passed
0.0000001000 -0.003295744428 -0.003295744424 0.000000000003 not passed

Test Results are not correct for the values out of the lower bound of ε = 10−7

0.0000010000 -0.270490333048 -0.270490333072 0.000000000023 passed
0.0000100000 0.212703600508 0.212703600512 0.000000000004 passed
0.0001000000 0.162735418196 0.162735418367 0.000000000170 passed
0.0010000000 -0.258074055308 -0.258074100766 0.000000045457 passed

Table 2.3: Weight perturbing Results. NP: not passed.

Epsilon ([E+]-[E-])/2 Eps. Weight Difference The result

0.000000001 0.26026451827032 0.26026454051157 0.00000002224124 NP
0.000000010 -0.00490656665687 -0.00490656664767 0.00000000000920 NP
0.000000100 -0.03905583908364 -0.03905583910458 0.00000000002094 NP

Test Results are not correct for the values out of the lower bound of ε = 10−7

0.000001000 0.03816106281754 0.03816106281635 0.00000000000119 passed
0.000010000 0.01230801236543 0.01230801236545 0.00000000000002 passed
0.000100000 -0.00751168860717 -0.00751168861326 0.00000000000609 passed
0.001000000 0.04911920939557 0.04911920973274 0.00000000033717 passed
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Table 2.4: Activation Function Perturbing Results. NP: not passed.

Epsilon ([Act+]-[Act-])/2 Eps. Derivative Difference The result

0.000000001 1.02568442628125 1.02568444088404 -0.00000001460278 NP
0.000000010 1.02568444293460 1.02568444088404 0.00000000205055 NP
0.000000100 1.02568444071415 1.02568444088404 -0.00000000016989 NP

Test Results are not correct for the values out of the lower bound of ε = 10−7

0.000001000 1.02568444088069 1.02568444088404 -0.00000000000335 passed
0.000010000 1.02568444086403 1.02568444088404 -0.00000000002001 passed
0.000100000 1.02568443983541 1.02568444088404 -0.00000000104863 passed
0.001000000 1.02568433605326 1.02568444088404 -0.00000010483078 passed

/ / A c t i v a t i o n f u n c t i o n o f h i dd en nodes
do ub l e h iddennode : : a c t i v a t i o n ( c o n s t d ou b l e x )
{

r e t u r n ( 1 . 7 1 5 9∗ t a n h ( 2 . 0 ∗ x ) / 3 . 0 ) ) ;
}

Perturbing activation function:

f ′(x) =
f (x+ ε)− f (x− ε)

2ε
+ϑ(ε2) (2.66)

The results reveals that the precision loss may caused from the activation function

specifically tanh() function (see Table 2.4).

2.4 Fine Tuning

Training a NN is commonly named as a black art, instead of a science. The source of

this opinion is the performance of the NN is very dependent on the training parameters

and the data set. There are a lot of small tricks that help to success of NN [29, 30, 34,

35]. To obtain a better training, some of these tricks are implemented in our model,

described as below.

2.4.1 Intrinsic subsampling:

By selecting the step size equal to two at layer-2 and layer-3, the subsampling is

implemented implicitly [29].

2.4.2 Stochastic learning and shuffling the examples:

We train the NN with a single sample at per training epoch (i.e. stochastic training)

and shuffle samples for better training performance.
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2.4.3 Normalizing the inputs:

When all inputs are positive, then all weights will be updated to the same direction.

Thus, the NN requires a greater bias, which is proportional to the signs and values of

inputs to shifting system. Reaching to a greater bias value takes time (i.e. iteration),

as a result of this, the performance of training is reduced. To avoid this problem, the

average of input samples are shifted to zero and the covariance scaled to one.

Covariance of inputs calculated by [34]:

Ci =
1
P

P

∑
p=1

(Op
i )

2. (2.67)

2.4.4 Narrowing initial weights:

Toward to borders of the activation function, activation function gives a flat output. The

activation function takes the sum of the all input that is multiplied by their own weights

as a parameter. We should also remember that the training is the process of finding the

weight values. As a result of this, selecting good initial weights is an important process

that directly effects the resulting converting rates. To initialize the weights, we use the

following Equation 2.68 that is refined formula of Lecun et al. [27]:

0.3
M

< |Winit|<
2.4
M

. (2.68)

where M is the number of inputs that feed the node. ±0.3/M part of the equation is

added for avoiding of initial weights too close to zero.

2.4.5 Selecting the activation function:

Same as all positive inputs described above, all positive outputs also reduce the training

performance. The input of the next layer is the output of the previous layer. Then,

selecting an activation function, that the middle of its ranges is zero, helps to normalize

the inputs of the next layer. Therefore, tanh() function is selected as an activation

function primarily in which its output ranges from -1 to +1.

2.4.6 Defining target ranges:

As mentioned above item, the activation function gives a flat output at borders.

Therefore, the target values are scaled between -0.9 and 0.9.
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2.4.7 Proper learning rate:

In our study, we use two different learning rate techniques:

First, Setting different learning rate for every node: Derivative of an error function used

by weight update, is smaller at lower layers and bigger at higher layers. To eliminate

this factor, different learning rates are selected for every node (η l
n) using following

Equation:

η
l
n =

m
1
2 ηG

20 l
, (2.69)

where m is the number of inputs feeding the node, l is the layer number, and ηG is the

global learning rate.

The second learning rate technique is Automatically decreasing learning rate: To avoid

the local minima, we used a learning rate decreasing approach given by following

equation [30]:

η
l
n,now =

η l
n,begin

r
R/2 +

50
max(1,(50−max(0,50(r−0.65R))

(1−0.65)R ))

. (2.70)

where η l
n,now is the current learning rate and η l

n,begin is the initial learning rate for this

node, r is the current training epoch, and R is total number of training epochs.
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3. INITIAL EXPERIMENTS

In this dissertation, it is preferred to present our numerical experiments in a time order

and naturally, from simple one to more complex ones.

3.1 Removing ’U’ from the Chest Radiography

We have tried to run a test case to find and test the suitable model size and architecture

of the chest tube detecting case. A Postero-Anterior (PA) chest radiography image is

selected, and small size U letters are embedded to the images which are seen in Figure

3.1(b).

(a) Input image. (b) Zoom to Input. (c) Target image.

Figure 3.1: Not An Easy Training Case (Object Removing).

In our model, this artificially contaminated image is used as an input image (Figure

3.1(a)) and uncontaminated (original) chest radiography image is used as a target

image (Figure 3.1(c)). The work plan of the model is simple: First feed the NN

with contaminated chest image, and than train to get uncontaminated (original) image

(Figure 3.2 ).

We started to solve this test case as an example of artificial object removing case (in

fact, this type of image reconstruction is named as the inpainting). The letter ’U’

embedded to the chest x-ray image is tried to remove. This test case is intentionally

selected in a way that it represents nearly as hard as our target case in terms of
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architecture, but also as easy as possible in terms of data requirement (Figure 3.3 ).

We tried from 1 to 3 hidden layers, and 1 to 150 nodes and lots of parameter variations.

It is known that the NN training success depends on the data set and algorithm as much

as architecture. After certain number of experiment on the data set and architecture, we

were ready to test some algorithm modifications such as different training techniques.

3.1.1 Using more dense data set

Initial studies reveal that results given in Figures 3.1 and 3.3 are not correct. However,

errors mainly coming from the removing letter "U" part of the process. Inputs that do

not contain letter "U", were seem to be accurately produced in our results.

As a result of this observation, we thought that our data set does not contain enough

number of letter "U" for the learning process to remove. After using the new data set

that contains more densely letter "U" (Figure 3.4), our results were very promisingly

corrected and displayed in numbers (Figure 3.5), but it should be noted that there are

some striping marks which may be observed by eye (Figure 3.6).

Figure 3.2: The work plan for Removing ’U’ Test Case.
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(a) Input image. (b) Output Image. (c) Zoom to Output.

Figure 3.3: Removing ’U’ Case Training Results.

Table 3.1: Best results of removing ’U’ with using sparse dataset. Each of Input
and Output Layers contains one node. N.: Nodes, I.W.:Initial Weights,
L.R.:Learning Rate.

Input Hidden 1 Hidden 2 Hidden 3 I.W. L.R. Best Results

(1 N.) (4 N.)
11x11 7x7 5x5 (12 N.) 3x3 (20 N.) 0.01 0.02 0.000148918
11x11 9x9 5x5 (12 N.) 3x3 (20 N.) 0.01 0.02 0.000155617
11x11 7x7 3x3 (12 N.) 1x1 (20 N.) 0.01 0.02 0.000161590
17x17 5x5 5x5 (12 N.) 1x1 (50 N.) 0.01 0.02 0.000168466
15x15 11x11 5x5 (12 N.) 3x3 (16 N.) 0.01 0.02 0.000171094
17x17 9x9 5x5 (12 N.) 3x3 (20 N.) 0.01 0.02 0.000171929
15x15 11x11 5x5 (4 N.) 3x3 (20 N.) 0.01 0.02 0.000172323
15x15 11x11 5x5 (12 N.) 3x3 (20 N.) 0.005 0.02 0.000172638
15x15 11x11 5x5 (12 N.) 3x3 (8 N.) 0.01 0.02 0.000173310
15x15 15x15 5x5 (12 N.) 3x3 (12 N.) 0.01 0.02 0.000173821
17x17 9x9 5x5 (12 N.) 3x3 (20 N.) 0.01 0.02 0.000174136
15x15 11x11 5x5 (4 N.) 3x3 (20 N.) 0.01 0.02 0.000174679

(a) Input image. (b) Zoom to Image.

Figure 3.4: The Dense Data Set.
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Figure 3.5: The Comparison Graph of Sparse and Dense Data Set. Same architecture,
different data sets: 11x11 (1 node), 7x7 (4 nodes), 5x5 (12 nodes), 3x3 (20
nodes), 1x1 (1 node), 0.01, and 0.02.

(a) Result image. (b) Zoom to Image.

Figure 3.6: The Dense Data Set Results.
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Figure 3.7: The Incorrect Part of the Input Image.

We found that some incorrectly generated input files may cause these stripes (Figure

3.7).

After the correction of these input files, the problem of stripes related to the training

dataset were removed from our final results. Results show that the performance of NN

is very dependent on the training dataset [29].

3.1.2 Results of the removing ’U’ case using dense data set

We have tried 1000 run with 100 different architectures and techniques. The

performance of these NNs is very different, and generally all tuning tips gave small

gain. The best result is obtained from a composition of these whole small tricks. Due

(a) The Best Result. (b) Input Image for Testing. (c) Target Image for Testing.

Figure 3.8: The Best Result and Test Images.
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Table 3.2: Best Results of Removing ’U’ Case. Each of Input and Output Layers
contains one node. N.: Nodes.

Input Hidden 1 Hidden 2 Hidden 3 Learn.Rate Best Result

15x15 6x6 (23 N.) 3x3 (23 N.) 1x1 (23 N.) 0.7 0.00001714
15x15 6x6 (23 N.) 3x3 (23 N.) 1x1 (23 N.) 1.0 0.00001725
15x15 6x6 (23 N.) 3x3 (37 N.) 1x1 (23 N.) 0.9 0.00001780
15x15 6x6 (37 N.) 3x3 (37 N.) 1x1 (37 N.) 0.5 0.00001824
15x15 6x6 (23 N.) 3x3 (23 N.) 1x1 (23 N.) 0.9 0.00001825
15x15 6x6 (23 N.) 3x3 (37 N.) 1x1 (23 N.) 1.0 0.00001831
15x15 6x6 (23 N.) 3x3 (23 N.) 1x1 (23 N.) 0.8 0.00001849
15x15 6x6 (23 N.) 3x3 (23 N.) 1x1 (23 N.) 0.6 0.00001858
15x15 6x6 (50 N.) 3x3 (50 N.) 1x1 (50 N.) 0.9 0.00001861
15x15 6x6 (17 N.) 3x3 (23 N.) 1x1 (17 N.) 0.8 0.00001930
15x15 6x6 (17 N.) 3x3 (23 N.) 1x1 (17 N.) 1.0 0.00001958
13x13 5x5 (50 N.) 2x2 (50 N.) 1x1 (50 N.) 0.8 0.00002007
13x13 5x5 (25 N.) 2x2 (50 N.) 1x1 (25 N.) 0.6 0.00002069
3x13 6x6 (4 N.) 3x3Sub (4 N.) 1x1 (8 N.) 0.08 0.00004769
11x11 4x4 (4 N.) 2x2 (12 N.) 1x1 (20 N.) 0.8 0.00004993
11x11 4x4 (4 N.) 2x2 (12 N.) 1x1 (20 N.) 0.7 0.000 05058

to the difficulty of showing the whole study at this dissertation, the best results and

some characteristic examples are given in the Table 3.2.

After all small fine tunings are applied, our synthetic case results gave us very good

performance given in Table 3.2, Figure 3.8, and Figure 3.9. In order to compare our

results with the literature, we found only limited papers on image inpainting. However,

the inpainting literature generally uses a gap map to select which part of the image will

be inpainting. However, in our method, CNN recognize letter "U" (object recognition),

then, automatically remove and fill the gap (image reconstruction/image inpainting).

Similar to some of the previous literatures [28, 29], we found that the separate

subsampling layer does not useful for better performance. We concluded that

the selecting step size greater than one at convolution layer, intrinsically does the

subsampling with a better performance (Table 3.2).
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Figure 3.9: The Comparison Graph of Sparse, Dense Data Set and Best Result of
Removing ’U’ Case. Same architecture, different data sets: 11x11 (1
node), 7x7 (4 nodes), 5x5 (12 nodes), 3x3 (20 nodes), 1x1 (1 node),
0.01, and 0.02. The Architecture of the Best Result is different: 15x15
(1 node), 6x6 (23 nodes), 3x3 (23 nodes), 1x1 (23 nodes), 1x1 (1 node),
Auto Weights, and 0.7.
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4. CNN FOR DETECTION OF CHEST TUBES

The CNN architecture for detection of chest tubes, has some differences from the

architecture of our initial experiments. The changes required because of the complexity

of chest tube detection process.

4.1 Training and Testing Datasets

Two different sources of the chest radiography used to obtain images as used for

training and testing datasets (Table 4.1). All images converted to 8 bits gray scale

color depth to obtain a standard intensity range, because of different x-ray machines

have different intensity range such as 10, 12, 14 bits.

The training set is solely constructed from our data set, and contains 62 radiographs.

As seen in Table 4.1, 13 of the images contain two chest tubes, 25 contain a single

chest tube, and 24 out of 62 radiographs have no chest tube. We tested our model

using two datasets. The first dataset contains our test set, which is constructed with 21

radiographs with similar groupings. To distinguish the chest tubes from other artificial

objects, our training and testing sets contain 36 and 13 radiographs, respectively,

including artificial objects other than chest tubes. The second test set contains 247

images without chest tubes, which is publicly available; it was created by the Standard

Digital Image Database Project Team of the Scientific Committee of the Japanese

Society of Radiological Technology (JRST) 6.3.

Table 4.1: Training and testing data sets.

Radiographs Our Testing Images
Content(s) Training Our Test JRST Testing

Set Set Database Total
No chest tube 24 8 247 255
Single chest tube 25 11 0 11
Two chest tubes 13 2 0 2
Other artificial object(s) 36 13 4 17
Total 62 21 247 268
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Figure 4.1: Two Scales of Input Blocks.

4.2 CNN Architecture

To detect the chest tubes in chest radiographs, a CNN architecture containing L = 5

layers is used (Figure 4.2). There are three types of layers; these layers are the input

layer (l = 1), the output layer (l = L), and the hidden layers (1 < l < L). The input

layer is an abstract layer that contains only the input data without any calculations.

Different numbers of node combinations of hidden layers, including 8, 16, 32, 64, 128

and 256, were tested using different learning rates, such as 0.1, 0.01, 0.001, 0.0001,

and a gradient descent with a tanh activation function in the hidden layers.

We also tested the Stochastic Diagonal Levenberg-Marquardt (SDLM) update rule and

the Cross-Entropy (CE) method. On our tests and the results of Simard et al. [29] show

that CE gives best performance. According to these findings, we decided to use the

Gradient Descent and Cross-Entropy algorithms with a sigmoid activation function.

Our final CNN architecture contains 2, 32, 32, 128, and 1 nodes for the successive

layers. Between layers, there are 32, 16, 128, and 1 links for each node in the layers.

After a series of tuning tests, the learning rate was selected as 0.1.

To feed the system with a greater input region without increasing the model complexity,

a multi-scale input with two scales was used. The input image blocks used by the

input layer, cropped from two whole images of a chest radiograph at multi-scale sizes
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Figure 4.2: The Final CNN for Detection of Chest Tubes.

of 1000x1000 and 250x250 pixels, are used without any registration. The input layer

contains two nodes with two input blocks of 13x13 pixels each (Figure 4.1). During

the training stage, blocks are selected from random training image sets with a random

block position. At three hidden layers, the output sizes are chosen as 5x5, 1x1 and 1x1.

Finally, the output layer contains a single node that gives outputs of 1x1 in size, which

is used as a pixel in the resulting image at the proper location according to the input

block position.

The results of the stage of the CNN for chest tube detection, are presented in Figures

4.3, 4.4, 4.5, and 4.6.
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Figure 4.3: Selected successful results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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Figure 4.4: Selected successful results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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Figure 4.5: Selected erroneous results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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Figure 4.6: Selected erroneous results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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5. NURBS CURVES

5.1 The Noise and the Continuity

In some cases, the output of the CNN algorithm provides an unclear and interrupted

chest tube skeleton that is not practical for use. Therefore, we introduced an adaptive

curve-fitting approach to the output images of our CNN model to obtain a final

continuous chest tube skeleton (Figure 5.1).

Figure 5.1: The stages of our model. The left image is the input, the middle image is
the output of the CNN, and the right image is the result of the curve fitting
process.

The output of the CNN contains sparse single positive pixels and some small group of

positive pixels. These are easily cleanable by scanning output. We clean these small

residues before curve fitting. But all noises cannot be removed by scanning.
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To eradicate the all noise and enhance the output, we apply the curve fitting algorithm

(Algorithm 1). The algorithm starts with the strongest (darkest in the image) and

longest continuous line segment, and follows the line in both directions. While

following the strongest output, the algorithm searches longest continuous line segment

from beginning point in the range of 60 degrees. The longest continuous line segment

is followed until 36 pixels long. When length of line segment reaches the 36 pixels,

or it reaches a discontinuity (a space), the last pixel is selected as a control points to

reduce the number of control points that are used for curve fitting. Then again the

algorithm searches a new longest continuous line segment from the last control point

in the range of 60 degrees.

Algorithm 1 Pseudo code for selecting control points of the NURBS curve.
repeat

repeat
repeat

Save current position as a control point,
for all do−30,−25,−20, ...0...20,25,30 degrees

Search the end of the connected pixels in this angular direction,
end for
Select the angle of the longest continuous line,

until Walk 36 continuous pixels ahead or end of the connected pixels,
Try to find new connected pixel group in the same direction,

until No new connected pixels,
for all −30,−25,−20, ...0...20,25,30 degrees do

Search a gap followed by a continuous line in this angular direction,
end for
Select the angle of the shortest gap followed by a continuous line,
Save the end of the gap as a control point,

until No new gap followed by a continuous line,
Use control points for curve fitting.

The control point selection process is conducted by walking over the entire output

chest tube curve and it selects control points with an interval of 36 pixels. During

this walking process, when the process meets to any discontinuity on a curve, it is

forced to jump to the point where the next continuous line segment starts (Figure 5.2).

When a new line segment is continued at same direction of previous line segment, the

continuous line segment search begins again.

For example, in Figure 4.3, NURBS-based piece wise curves are fitted over segmented

lines on the output images of our proposed CNN model and are shown at right side

46



Figure 5.2: The Selection of the Control Points.

images. The pseudo code for fitting NURBS over the output image is given in

Algorithm 1. The main idea behind the curve-fitting process is to capture the whole

chest tube figure on the x-ray image regardless of any mis-interpretation or confusion.

5.2 The NURBS Curve Formula

Nonuniform Rational B-Spline (NURBS) Curves, P(t), are used for curve fitting.

P(t) =
n+1

∑
i=1

BiRi,k(t) (5.1)

where the Bi’s are the control polygon vertices, and the Ri,k(t)’s are the rational basis

functions.

Ri,k(t) =
hiNi,k(t)

∑
n+1
i=1 hiNi,k(t)

(5.2)

where the Ni,k(t)’s are the basis functions, and the hi’s are homogeneous weighting

factors [36].

The control point selection process filters noise and provides clean and discontinuous

line segments. This line segments will be transformed to the continuous curve after the

NURBS curve fitting.

This approach eliminates the possibility of small artifacts in the output images. Sample

input-output merged images of our proposed model are presented in Figures 6.1, 6.2,

and 6.3.
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6. RESULTS AND EVALUATION

6.1 Model Performance Evaluation

We evaluated the performance of the model using a pixel-based Receiver Operating

Characteristic (ROC) analysis, which is defined very well by Fawcett [37]. Each true

positive, true negative, false positive and false negative pixel was counted and average

true positive (Nt p), true negative (Ntn), false positive (N f p), and false negative (N f n)

values per image were determined. These values were used to calculate the accuracy

(ψ), sensitivity (Sn), and specificity (Sp) using the following formulas [37]:

ψ =
Nt p +Ntn

Nt p +Ntn +N f p +N f n
, (6.1)

Sn =
Nt p

Nt p +N f n
(6.2)

and

Sp =
Ntn

Ntn +N f p
. (6.3)

6.2 Results

We tested our model using two datasets (Table 4.1). The first dataset contains our test

set, including artificial objects and chest tubes, as previously mentioned (Figures 6.1

and 6.2). The second test set contains 247 images without chest tubes, and it is publicly

available; it was created by the Standard Digital Image Database Project Team of the

Scientific Committee of the Japanese Society of Radiological Technology (JSRT) [14].

The results of our test set show the average Root Mean Square (RMS) errors of the raw

output of the Neural Network are summarized in Table 6.1.
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Table 6.1: Pixel-based average RMS error values of the raw output of the Neural
Network. All of the results are obtained by using CNN in 5 layers (2, 32,
32, 128, 1 nodes per layer; 32, 16, 128, 1 links per node).

Radiographs Our Test Set JSRT Test Set
Content Rads. RMS Err. Rads. RMS Err.
No chest tube 8 0.01857 247 0.006238
Chest tube(s) 13 0.03716 0 NA
Other artificial obj(s). 13 0.03142 4 0,005366
Total 21 0.03008 247 0.006238

Figure 6.1: Selected successful results from our test data set. The backgrounds are
input x-rays. ’X’ marks show the outputs of the proposed model.
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Table 6.2: Pixel-based average ROC values per image. TP: true positive, TN: true
negative, FP: false positive, FN: false negative.

Our test set JSRT Database All test sets
Image Count 21 247 268
Pixels/image 1000000 1000000 1000000
TP/image 1120 0 88
TN/image 997341 999999 999790
FP/image 765 1 61
FN/image 774 0 60
Accuracy (%) 99.85 99.99 99.99
Sensitivity (%) 59.13 NAN 59.46
Specificity (%) 99.92 99.99 99.99

The raw outputs of the neural network refined by our proposed curve-fitting process.

The result of our tests using all of the 268 test images was a 99.99% Accuracy, a 59%

Sensitivity, and a 99.99% Specificity with 61 False Positive pixels/image and 60 False

Negative pixels/image (Table 6.2).

The JSRT database results do not have a False Positive or False Negative except for

only one image that had 347 False Positive pixels. These error values show that the

results are well aligned with the input images and are acceptable as an output. Some

examples of the JSRT database results are shown in Figure 6.3.

Our study is published with title "An approach for chest tube detection in chest

radiographs" at Image Processing, IET journal [38].
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Figure 6.2: Selected erroneous results from our test data set. The backgrounds are
input x-rays. ’X’ marks show the outputs of the proposed model.
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Figure 6.3: Selected examples from the JSRT test data set results. Because there is no
chest tube present, the chest tube markers are not present in these images.
The backgrounds are input x-rays.
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7. DISCUSSION AND CONCLUSIONS

7.1 Discussion

In our study, the chest tube is chosen as an artificial object that spans almost the whole

chest. In this way, the area of interest for searching and the differentiation of this area

are increased. Specifically, ribs can create a pattern that is easily mixed with tubes.

Moreover, while the density on the radiograph images increases with the overlapping

ribs at the sides, at the same time, there could be zones in which the image density

fluctuates with an increase in the rib clearance toward the center of the lung. In spite

of this difficulty, we obtained promising results in our study.

While a 99.99% Accuracy, and a 99.99% Specificity were calculated from our results, a

59% Sensitivity is looks like inconsistent. Accuracy, and Specificity values calculated

by using TN value, and TN value is very high and because of this reason, it is very

dominant (Table 6.2). But Sensitivity value calculated by not using TN value, and as a

result FN value reduces the Sensitivity ratio.

7.1.1 Limitations and Source of Errors

The results reveal that there is no confusion between the chest tubes and other artificial

objects (Figures 6.1 and 6.2 ). In our work, we found that the largest source of error is

the high-density zones, where the possible location of a chest tube is very difficult to

track. These high density zones are formed by overlapping ribs and/or pleural effusion.

Also an other major error source is the presence of radiographs, which contains

multiple chest tubes. Our curve fitting method is depending on the longest and darkest

line segment is a part of chest tube assumption. But this assumption brings implicitly a

deficiency which is our method only can detect one chest tube per radiograph. Because

of the "longest and darkest line segment" statement defines a single object. As a result,

all radiaographs, which contains more than one chest tubes, generates errors. Both

false negative and false positive errors are produced. When one of chest tubes is
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detected, others will be undetected, and their pixels are marked as false negatives.

Sometimes, two of these chest tubes overlaps, and at overlapping area, our algorithm

confused to follow the detected one, it follows other chest tube, and these pixels are

marked as false positives.

7.1.2 Parallelization

Processing a radiograph using our testing process, runs 3 minutes on the server, which

has dual socket, single core 3.4GHz CPU with 16KB L1 cache, 1MB L2 cache and

AMD64 architecture with 4GB RAM. Training stage for all training dataset, requires

approximately one week. We tried parallelization to reduce one-week wall clock

time, but stochastic learning makes parallelization very difficult due to recalculation

of the weights for every iteration. For overcoming these difficulties, we tried to

parallelized our algorithm by decoupling the training and testing processes. But this

approach was not useful, because of unbalanced wall-clock times of training and

testing processes. The testing process is quickly finished, and wastefully occupies

CPU without calculation.

Also there is an other issue against this type of parallelization: Single training run is

not enough to decide about performance of any configuration, because of the random

initial parameters. We run five different training instances with randomly selected

initial weights. The best result is selected. Because of that, instead of idling CPU’s,

we preferred to run the algorithm based on Single Program Multiple Data (SPMD)

model which is a simple but effective parallel model.

7.1.3 To clean the output of CNN and Curve Fitting

To cleaning output of the CNN, we firstly scan the output for sparse positive (black)

pixels. These are false outputs of CNN. But sometimes, some of them are true outputs

but not connected to main chest tube skeleton. Because of this reason excessive

cleaning is not help to better results.

Also, curve-fitting process requires some tricky settings. Firstly selecting control

points as more than 36 pixels long, cause unfairly located control points. Straight

parts of chest tube, will be represented with few control points, and curvy parts

will be presented with many of control points. The fitted curve, using unevenly
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selected control points, is not aligned onto original chest tube skeleton. Therefore,

we empirically obtained 36 pixels as a threshold for maximum length of single line

segment. With using this threshold, all line segments will be short, and fitted curve

exactly aligned.

The fitted curve was calculated as a fourth order polynomial. The flexibility of the

chest tubes requires higher order polynomials, but higher order polynomials tend to

wiggle excessively. Our test showed that representing the NURBES curve as a fourth

order polynomial was an optimal selection for better alignment.

7.1.4 Usability in medical practice

It is important to note that the detection of artificial objects in medical images has

critical importance in the medical image analysis field. Detecting the existence of an

artificial object and its location on radiographs has three critically important aspects.

First, this capability helps practitioners to detect the locations of these objects. Second,

artificial objects can be identified in the images for a PAC system. Finally, taking the

required measurements for other CAD methods will not be affected by the existence

of an artificial object.

Even if our algoritm has a theoretical capability to detect the multiple chest tubes,

currently it is not automatically detecting more than one chest tube and this can be

considered as a weakness of our algorithm. But this situation does not makes the

algorithm useless. As future work this capability will be activated.

7.2 Concluding Remarks

7.2.1 Chest Tube Inpainting

Inpainting is to remove some image part, estimating possible replacement of the hole

remaining from removing operation. Chest tube inpainting is removing the chest tube

figure and estimating replacement part from removing image parts and their neighbors.

Chest tube detection is useful, but removing (i.e. inpainting) chest tube figure from the

chest tube radiograph image will be more useful. We tried to remove chest tubes using

CNN, and we obtain some promising results too.
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But, major problem about medical inpainting is ensuring accuracy of the replaced

parts. When inpainting ordinary image, replacement parts must only be visually

acceptable. But, in medical area, estimated parts must be physiologically and

pathologically correct. Certificating the correctness of the estimated parts nearly

impossible, due to highly variable nature of pathology.

As a result, we shifted our research focus from inpainting to detection of chest tubes.

By this way, our algorithm did not modified the originality of radiographs at hand.

7.2.2 CNN Architecture

CNN architecture is consist of multiple variations, and possible settings of parameters.

Layer counts, link directions and counts, learning rate changes, initial values of weights

are some of them. Each of them somehow affects success of the output.

When initial values of weights are close to zero, achieving correct weights takes more

iterations, and training process requires more cpu time.

Increasing count of layers, makes difficult to training CNN, because of backpropaga-

tion process transfers differentials of output error from next layer to previous layers.

Each transfer reduces affect of error. Increasing layer count requires more iteration for

training.

Also, increasing node counts of last layers, is act as high order polynomial curve fitting.

It fits very well to training dataset, but very poor for testing dataset. Because of this

reason, excessive node counts of last layers is a trap for success.

An other issue about CNN, is the symmetry. When all nodes and links are symmetric,

two half of CNN is tend to produce symmetric output. Thus, the performance of CNN

decreases by half, but computational complexity remains the same.

7.3 Conclusion

Specifically, the chest radiography of a human contains vital organs and could have

many different artificial components that target these organs. The researches that are

focused on the detection of artificial objects in chest radiography, are mostly limited to

the tubes in the mediastinum. It is critical to know that an artificial object can be found
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anywhere on the whole chest radiograph, and our proposed model is the first study for

automatically detecting artificial objects in the lung region.

7.3.1 Other Potential Usage of Method

It is critical to mention that the output of the our method will be automatically obtained

without specifying any region of interest on the x-ray image. It is very important that

the proposed model doesn’t require any human intervention in the detection process,

because of the human intervention could be potential source of error. Because of this

feature, our method will be useful for other artificial objects such as other catheter

types and stapler wires. Also some pathological patterns may be detectable by using

our method.

It should be noted that it is important not only to successfully detect an artificial

object but also correctly analyses and evaluate the radiographs that have no chest

tube. Adding the JSRT data set, we obtained a larger test set that includes different

pathological patterns and chest tube configurations. However, for more robust tests,

there is a need for openly accessible, larger datasets that include every type of artificial

object and diverse pathological patterns.

7.3.2 Future Work

Although, results are very promising, there are weaknesses of our proposed method

that need to be improved further. Some new methods for CNN, offers better

performance such as Deep Neural Networks (DNN) architecture [39], which is very

popular today.

Also, the multiple chest tube detection problem, requires some modification. It

seems to be a simple modification can handle multiple chest tubes, but like every

modifications, this modification requires additional tests and improvement cycles.

We do not filter regions of input images. The selection of a Region of Interest (ROI)

may increase the performance of the neural network and filter some high-density zones,

which could cause some errors.

Testing to detecting other types of artificial objects and / or other radiographic imaging

techniques such as Magnetic Resonance (MR) or Computed Tomography (CT) , will
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also be a good candidates for future study, including orthopedic implant detection. But,

it should be noted that, all of these new implementations require some modifications

and new datasets for specific artificial objects.
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APPENDIX A : THE BASE_ANN CLASS

Major functions used to construct a CNN, defined at base_ann class:
/ / / \ f i l e mycnn_ann . h
/ / / \ a u t h o r Cem Ahmet MERCAN
/ / / \ b r i e f Bu dosya base_ann s i n i f i n i b i l d i r i y o r
# i f n d e f MYCNN_BASE_ANN
# d e f i n e MYCNN_BASE_ANN

# i n c l u d e " myc nn_base l aye r . h "
# i n c l u d e " m y c n n _ i n p u t l a y e r . h "
# i n c l u d e " m yc nn_ h i dde n l aye r . h "
# i n c l u d e " m y c n n _ o u t p u t l a y e r . h "
# i n c l u d e " m y c n n _ s i g m o i d _ o u t p u t l a y e r . h "
# i n c l u d e " m y c n n _ c e _ s i g m o i d _ o u t p u t l a y e r . h "
# i n c l u d e " m y c n n _ n o a c t _ o u t p u t l a y e r . h "
# i n c l u d e " m y c n n _ s u b s a m p l i n g _ h i d d e n l a y e r . h "
# i n c l u d e " m y c n n _ s u b s a m p l i n g _ o u t p u t l a y e r . h "
# i n c l u d e " mycnn_basenode . h "
# i n c l u d e " m y c n n _ m a t r i x _ a r r a y . h "
# i n c l u d e " m ycn n_m a t r i x_ g r id . h "
# i n c l u d e " mycnn_matr ix . h "
# i n c l u d e " mycnn_mvector . h "
# i n c l u d e " mycnn_sd lm_h idden laye r . h "
# i n c l u d e " m y c n n _ s d l m _ o u t p u t l a y e r . h "
# i n c l u d e " m y c n n _ s d l m _ c e _ s i g m o i d _ o u t p u t l a y e r . h "

u s i n g namespace s t d ;

namespace mycnn {

c l a s s base_ann {
p u b l i c :

v i r t u a l ~ base_ann ( ) ;
base_ann ( i n t l a y e r C o u n t ) ;
base_ann ( c o n s t c h a r ∗ f i l e n a m e ) ;

vo id f e e d F o r w a r d L a y e r ( c o n s t i n t layerNo , c o n s t i n t nodeCount ,
c o n s t i n t backLink , c o n s t i n t fo rwardLink ,
c o n s t i n t o u t p u t H e i g h t , c o n s t i n t ou tpu tWid th ,
c o n s t i n t s t e p S i z e H = 1 , c o n s t i n t s tepSizeW = 1 ,
c o n s t i n t w e i g h t H e i g h t = −1,
c o n s t i n t weigh tWid th = −1,
c o n s t i n t we igh tB lock = −1) ;

vo id s e t K e r n e l s A u t o I n i t ( ) ;
vo id s e t K e r n e l s I n i t ( d ou b l e randMin , d ou b l e randMax ,

do ub l e randAbsMin ) ;

vo id w e i g h t R e s c a l e ( ) ;

vo id s e t L e a r n i n g R a t e ( d ou b l e e t a ,
l ong i n t t o t a l E p o c h C o u n t = 100000) ;

vo id a rchFeedForward ( ) ;
vo id a rchFeedForwardS igmoid ( ) ;
vo id archFeedForwardSigmoidCE ( ) ;
vo id archFeedForwardSigmoidCE_SDLM ( ) ;
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vo id archFeedForward_SDLM ( ) ;
vo id a rchFeedForwardNoac t ( ) ;
vo id archCNN ( boo l s u b s a m p l i n g l ) ;
vo id a r c h S u b s a m p l i n g ( ) ;
vo id a r c h S u b s a m p l i n g R e v e r s e ( ) ;
vo id a r c h R e v e r s e ( ) ;
vo id a r c h F r o m S e t s ( ) ;
vo id i n i t ( ) ;

vo id s e t F u l l L i n k ( ) ;
vo id setCNNLink ( ) ;
boo l c h e c k S e t t i n g s ( ) ;
v i r t u a l vo id p r e U p d a t e L e a r n i n g R a t e ( b i g p i c _ a r r a y & inBP ,

b i g p i c _ a r r a y & tarBP , i n t loop , i n t ∗ mem) ;

do ub l e u p d a t e L e a r n i n g R a t e ( ) ; / / / < L e a r n i n g R a t e d e g i s t i r i r
vo id forwardRun ( ) ; / / / < node ’ l a r i c a l i s t i r m a k i c i n
vo id t r a i n O n c e ( ) ;
do ub l e loopMergedRandError ( i n t loop , i n t inNo , i n t t a rNo ) ;
do ub l e loopMergedRandError ( i n t loop , b i g p i c _ a r r a y & inBP ,

b i g p i c _ a r r a y & ta rBP ) ;

do ub l e t ra inLoopMergedRandErrXvs1 ( i n t x , i n t loop ,
b i g p i c _ a r r a y & inBP , b i g p i c _ a r r a y & ta rBP ) ;

do ub l e t r a inLoopMergedRandEr ro r ( i n t loop ,
b i g p i c _ a r r a y & inBP , b i g p i c _ a r r a y & ta rBP ) ;

do ub l e t r a inLoopMergedRandEr ro rAround ( i n t loop ,
b i g p i c _ a r r a y & inBP , b i g p i c _ a r r a y & tarBP ,
i n t n e s i z e =1) ;

do ub l e trainLoopMergedRandErrorSDLM ( i n t loop ,
b i g p i c _ a r r a y & inBP , b i g p i c _ a r r a y & tarBP ,
i n t ∗ mem) ;

do ub l e t r a i n L o o p M e r g e d R a n d E r r o r F i l t e r ( i n t loop ,
b i g p i c _ a r r a y & inBP , b i g p i c _ a r r a y & ta rBP ) ;

do ub l e t r a inLoopMergedRandEr ro r ( i n t loop , i n t p icCount ,
b i g p i c _ a r r a y ∗ inBP , b i g p i c _ a r r a y ∗ tarBP ,
i n t BPcount ) ;

do ub l e t r a inLoopMergedRandEr ro r ( i n t loop , i n t inNo ,
i n t t a rNo ) ;

do ub l e t ra inLoopMergedRandErrorO256 ( i n t loop , i n t inNo ,
i n t tarNo , dou b l e minv , do ub l e maxv ) ;

do ub l e t r a i n L o o p M e r g e d E r r o r ( i n t loop , i n t inNo , i n t tarNo ,
boo l r e t u r n t o p = f a l s e ) ;

vo id trainLoopMergedRandomInLRUpdate ( i n t loop , i n t inNo ,
i n t t a rNo ) ;

vo id t ra inLoopMergedRandomIn ( i n t loop , i n t inNo , i n t t a rNo ) ;
do ub l e b i g P i c t u r e R u n ( c o n s t s t r i n g & f i l e n a m e , d ou b l e pgmmin ,

do ub l e pgmmax , i n t bigInNo , i n t b igTarge tNo ,
i n t bigOutNo , boo l d i f i t = f a l s e ) ;
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do ub l e b i g P i c t u r e R u n ( c o n s t s t r i n g & f i l e n a m e , d ou b l e pgmmin ,
do ub l e pgmmax , b i g p i c _ a r r a y & b i g I n ,
b i g p i c _ a r r a y & bigTar , b i g p i c _ a r r a y & bigOut ,
boo l d i f i t = f a l s e ) ;

do ub l e b i g P i c t u r e R u n F u l l ( c o n s t s t r i n g & f i l e n a m e ,
do ub l e pgmmin , d oub l e pgmmax , b i g p i c _ a r r a y & b i g I n ,
b i g p i c _ a r r a y & bigTar , b i g p i c _ a r r a y & bigOut ,
boo l d i f i t = f a l s e ) ;

do ub l e b igP ic tu reRunO256 ( c o n s t s t r i n g & f i l e n a m e ,
do ub l e pgmmin , d oub l e pgmmax , i n t bigInNo ,
i n t b igTarge tNo , i n t bigOutNo , boo l d i f i t = f a l s e ) ;

vo id ca lcD2Net ( ) ; / / / < n e t e go re 2 t u r e v = d e l t a 2 SDLM i c i n
vo id calcD2W ( ) ; / / / < w e i g h t e go re k i s m i 2 t u r e v SDLM i c i n
vo id ca lcCk ( ) ; / / / < t a h m i n i w e i g h t e go re 2 t u r e v SDLM i c i n
vo id u p d a t e D e l t a ( boo l z e r o s = t r u e ) ; / / / < d e l t a u p d a t e y a p a r
vo id c a l c W e i g h t U p d a t e ( boo l z e r o s = t r u e ) ; / / / < w e i gh t d e g i s i m i
vo id upda t eWeigh t ( ) ; / / / < w e i gh t u p d a t e y a p a r
vo id s t a t u s ( c o n s t boo l s h o w l i n k s = f a l s e , boo l l o c k i t = t r u e ) ;
boo l saveNetwork ( c o n s t c h a r ∗ f i l e n a m e ) ;
boo l loadNetwork ( c o n s t c h a r ∗ f i l e n a m e , boo l r e s i z e = t r u e ) ;

boo l t e s t U s i n g W e i g h t ( i n t layerNo , d ou b l e E p s i l o n ,
do ub l e Goal , d oub l e HMin , d oub l e HMax , d ou b l e WMin,
do ub l e WMax, i n t R T e s t S i z e = 0) ;

boo l t e s t U s i n g N e t I n p u t ( i n t layerNo , d ou b l e E p s i l o n ,
do ub l e Goal , d oub l e HMin , d oub l e HMax , d ou b l e WMin,
do ub l e WMax, i n t R T e s t S i z e = 0) ;

do ub l e r e c u r s i v e J a c o b i a n ( c o n s t i n t l a y e r , c o n s t i n t snode ,
c o n s t i n t kh , c o n s t i n t kw , c o n s t i n t t l a y e r ,
c o n s t i n t tnode , c o n s t i n t tkh , c o n s t i n t tkw ) ;

boo l t e s t U s i n g I n p u t ( d ou b l e E p s i l o n , d ou b l e Goal , d ou b l e HMin ,
do ub l e HMax , d oub l e WMin, d oub l e WMax,
i n t R T e s t S i z e = 0) ;

vo id t e s t A l l ( ) ;
vo id f e e d I n p u t ( ) ;
b a s e l a y e r & l a y e r ( i n t l aye rNo ) ;
n o d e _ s e t t i n g s & s e t L a y e r ( i n t se tNo ) ;
vo id p r i n t A l l ( boo l html , c o n s t c h a r ∗ t i t l e ,

boo l t e k s a t i r = f a l s e , boo l b i r l i k t e = f a l s e ,
i n t g e n i s = 8 , o s t r e a m &yaz = c o u t ) c o n s t ;

vo id p r i n t A l l ( ) c o n s t ;
i n t l a y e r O r d e r ( i n t l a y e r i d ) ;
i n t l a y e r C o u n t ( ) {

r e t u r n LayerCount ;
}

boo l copyNodeSta teOnly ( base_ann ∗p ) ;
c o n s t mycnn : : base_ann& o p e r a t o r =( c o n s t mycnn : : base_ann &) ;
base_ann ( c o n s t mycnn : : base_ann &) ;
n o d e _ s e t t i n g s ∗ s e t s ;

p r o t e c t e d :
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b a s e l a y e r ∗∗ l a y e r s ;

i n t LayerCount ;
} ;
/ / end of base_ann c l a s s

} / / end o f name s p a c e mycnn
# e n d i f
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