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AN APPROACH FOR THE CHEST TUBE DETECTION
IN CHEST RADIOGRAPHS
USING CONVOLUTIONAL NEURAL NETWORK

SUMMARY

The chest radiography is the most common radiological modality in practice.
Especially, it is very popular for scanning and screening purposes. Unfortunately, at
the same time it is one of the most difficult radiological modalities. It is known that
overlapping tissues cause highly complex projections in chest radiographs. In addition,
artificial objects, such as catheters, chest tubes, and pacemakers can appear on these
radiographs. It is important that anomaly detection algorithms are not confused by
these objects.

To achieve this goal, we propose an approach to train a Convolutional Neural Network
(CNN) to detect chest tubes present on radiographs. To better detect the chest tube
skeleton as the final output, non-uniform rational B-spline (NURBS) curves are used
to automatically fit to the CNN output.

We have chosen CNN method, as Neural Network (NN) model, because of its shift,
scale, and distortion invariance abilities and weight sharing property for reducing
number of free parameters of neural network. It is inspired by a modified version
of the vision system in vertebrate animals and it simulates some image processing,
feature extraction, and pattern recognition stages.

This is the first study conducted to automatically detect artificial objects in the
lung region of chest radiographs. Other automatic detection schemes work on the
mediastinum.

According to our initial tests, we decided to use the Gradient Descent and
Cross-Entropy algorithms with a sigmoid activation function with 5 layers. Our final
CNN architecture contains 2, 32, 32, 128, and 1 nodes for the successive layers.
Between layers, there are 32, 16, 128, and 1 links for each node in the layers. After a
series of tuning tests, the learning rate was selected as 0.1.

To feed the system with a greater input region without increasing the model complexity,
a multi-scale input with two scales was used. The input image blocks used by the input
layer and cropped from two whole images of a chest radiograph at multi-scale sizes of
1000x1000 and 250x250 pixels, are used without any registration. The input layer
contains two nodes with two input blocks of 13x13 pixels each.

During the training stage, blocks are selected from random training image sets with a
random block position. At three hidden layers, the output sizes are chosen as 5x5, 1x1
and 1x1. Finally, the output layer contains a single node that gives outputs of 1x1 in
size, which is used as a pixel in the resulting image at the proper location according to
the input block position.

The training set is solely constructed from our data set, and contains 62 radiographs.
13 of the images contain two chest tubes, 25 contain a single chest tube, and 24 out
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of 62 radiographs have no chest tube. We tested our model using two datasets. The
first dataset contains our test set, and it is constructed with 21 radiographs with similar
groupings. To distinguish the chest tubes from other artificial objects, our training
and testing sets contain 36 and 13 radiographs, respectively, including artificial objects
other than chest tubes. The second test set contains 247 images without chest tubes, and
it is publicly available; it was created by the Standard Digital Image Database Project
Team of the Scientific Committee of the Japanese Society of Radiological Technology
(JRST)

We evaluated the performance of the model using a pixel-based ROC analysis. Each
true positive, true negative, false positive and false negative pixel is counted and used
for calculating average accuracy, sensitivity, and specificity percentages. The results
were 99.99 % accuracy, 59 % sensitivity, and 99.99 % specificity.

The majority of errors come from our database images, which contain very bright
(dense) zones that result from overlapping ribs and/or pleural effusion. The results
reveal that there is no confusion between the chest tubes and other artificial objects.
The JRST database results do not have a False Positive or False Negative except for
only one image that had 347 False Positive pixels. These error values show that
the results are well aligned with the input images and are acceptable as an output.
Therefore, we obtained promising results on the detection of artificial objects.
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KATMANLI SINIR AGLARI KULLANILARAK
GOGUS RADYOGRAFILERINDE
GOGUS TUPU TESPITI iCiN BiR YAKLASIM

OZET

Diinya Saglik Orgiiti (WHO), 2030 yilinda diinyada 2.279.045 Kisinin akciger
kanserinden Olecegini tahmin etmektedir. Kanser en yaygin ikinci 6lum nedenidir.
Kanser ve bagka pek ¢ok hastali§in tespit ve takibinde radyolojik tetkikler gereklidir.

Geligstirilen onca yeni radyolojik tetkike ragmen Gogiis Radyografisi en yaygin
kullamlan radyolojik tetkiktir. Ozellikle tespit ve takip amacgh olarak ¢ok popiilerdir.
Ciinkii ucuz, bilgi yogun, ve hizhidir. Her yerde bulunabilir ve diisiik seviyede
radyasyon icerir. Bu sebeblerle yakin gelecekte tahtin1 kaybetmeyecekmis gibi
goriinmektedir.

Ne yazik ki aym zamanda yorumlanmasi en zor radyolojik tetkiklerden biridir. Ust
iste binen dokular, gogiis radyografilerinde ¢ok karmasik projeksiyonlar olusturur.
Ustelik, kateterler, gogiis tiipleri, kalp pili gibi insan yapimi nesneler de bu
radyografilerde goriilebilir.  Anormallik tespit eden algoritmalarin bu nesneler
sebebiyle sorun yasamamasi onemlidir. Bu hususta ¢alisma eksikligi bulundugu ve
calisma yapilmasina ihtiya¢ oldugu literatiirde de kabul edilmistir.

Bu amacla biz radyografilerde mevcut gogiis tiiplerini tespit etmek icin bir katmanlh
sinir ag1 (Ing. Convolutional Neural Network) egitmeyi 6neriyoruz. Gogiis tiipiiniin
iskeletini daha iyi tespit edebilmek i¢in sinir agiin ¢iktisi iizerine otomatik olarak
oturtulan nonuniform rational b-spline egrisi kullanilmistir.

Tim c¢alisma, C++ dilinde gelistirdigimiz yazilimlarla yapilmistir. Bu yazilim
bir kiitliphane seklinde tasarlanarak, degisik yontemlerin denemesine miisade eden
bir yapida hazirlanmistir. Yazilim gelistirmenin dogal bir parcas: olan yazilimin
dogrulugunun sinanmasi da yapilmis olup, bu amagla kullanilan yontemler de ¢alisma
kapsaminda agiklanmustir.

Katmanli sinir agi, kedi goziinden ilham alinmis bir yontemdir. En 6nemli
istiinliigi, Oriintli tanima (pattern recognition) yontemlerinde ¢cogunlukla uygulanmak
zorunda kalinan 6zellik ¢ikarimi (feature extraction) ve hassas hizalama/6l¢eklendirme
islemleri gerektirmemesi, agirlik paylasimi yoluyla serbest parametre sayisini diigiik
tutabilen yapisidir.

Ozellik cikarimi, gercek hayat verilerinin ¢ok boyutlu yapisi ile pek cok oriintii
tanima yonteminin bas edememesi sonucu gerekmektedir. Katmanlt sinir ag1 ise bu
soruna katlama (convolution) islemi ve agirlik paylasimi yoluyla serbest parametreleri
sinirlayarak, yiiksek boyutlu verinin olusturdugu karmagikligi agsmaktadir. Katlama
(convolution) islemi ayn1 zamanda hassas hizalama ihtiyacini da ortadan kaldirmak-
tadir. Gercek hayat verilerinin, dogal yasam formlarinin yapabildigi gibi sinir agi
algoritmalari tarafindan da bir 6nislemeye tabi tutulmadan kullanilabilmesine yonelik
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calismalar, derin 68renme (deep learning) baslig1 altinda aktif bir ¢alisma konusudur.
Katmanli sinir ag1 modeli bu konuda basarili ilk yontemdir.

Bu calisma, gogiis radyografilerinin akciger bolgesindeki yabanci cisimleri otomatik
olarak tespit etmeye yoOnelik ilk calismadir. Diger otomatik tespit algoritmalari
mediastinum iizerinde calismaktadir. Ayrica tam otomatik olarak calismasi ve erisime
acik bir gogiis radyografi bilgi bankas1 kullanilarak sinanmis olmasi, bu ¢alismanin
diger istiinliikleridir.

Yaptigimiz 6n c¢alismalar sonucunda Gradient Descent ve Cross-Entropy algorit-
malarini sigmoid aktivasyon fonksiyonu ile kullanmanin en iyi performans: verdigini
gordiik. Onerdigimiz katmanl sinir ag1 modelimizde, girdi ve ¢ikt1 dahil 5 katman
mevcuttur. Sirasiyla, her katmanda 2, 32, 32, 128, ve 1 diigim mevcuttur. Bu
katmanlar arasinda, yine sirasiyla 32, 16, 128, ve 1 adet baglanti mevcuttur. Ogrenme
katsayis1 olarak 0.1 degerini kullandik.

Goriilecegi gibi girdi katmaninda 2 diigim mevcuttur. Bu iki diigiim, aym
radyografinin iki farkli dl¢ekteki goriintiisii ile beslenir. Bu ise modelin boyutunu
cok biiyiitmeden girdi olarak alinan alam1 artirmanin bir yolu olarak ¢ok dlcekli girdi
tercih edilmesi sebebiyledir. Her girdi dii§iimii, girdi olarak kullanilacak radyografinin
1000x1000 ve 250x250 boyutlarindaki goriintiilerinden birinden ayni bolgeye ait
13x13 boyutlarinda bir parcay1 alir. Bu sekilde cok dl¢ekli girdi ile sinir ag1 beslenmisg
olur. Egitim sirasinda girdiler, rastgele radyografilerin rastgele kisimlarindan se¢ilerek
kullamldi. Ug ara katmanda cikti boyutlar1 5x5, 1x1 ve 1x1 seklinde secildi. Son
katmanda 1x1 boyutlarinda cikt: tireten tek bir diigiim mevcuttur. Bu sekilde modelin
her calistirilmasi sonu¢ goriintiiniin bir noktasini iiretir.

Sinir aginin ¢iktisinda gogiis tiipiiniin opak ¢izgisine karsilik gelen bir egri olusmasi
amaglanmaktadir.  Ancak c¢ogu zaman bu egri kesintisiz ve giiriiltiisiiz elde
edilemediginden, c¢ikti resmi {izerine otomatik olarak nonuniform rational b-spline
egrisi oturtularak, kesintisiz ve giiriiltiisiiz bir egri elde edilmesi amac¢lanmaktadir.
Bu egri oturtma islemi i¢in gereken kontrol noktalari, mevcut ¢ikti iizerindeki en
belirgin nokta iizerinde ilerlenirken rastlanilan kiigiik bosluklarin egrinin istikameti
yoniinde atlanarak gecilmesi ile secilmektedir. Bu sekilde ayni zamanda egri
izerinde olmayan giiriiltiilerden de kurtulunmusg olunur. Kontrol noktalarinin sayisini
sinirlamak amaciyla, 36 noktada bir nokta secilmektedir.

Egitim seti tamamen bizim veri tabanmimizdaki goriintiilerden olusmaktadir ve 62
radyografi icermektedir. Bunlardan 13 tanesi cift, 25 tanesi tek gogiis tiipii igerir.
24 tanesi ise hi¢ gogiis tiipli icermemektedir. Sonuglart sinamak iginse, iki farkl
veri tabam kullamldi. IIk veri tabani bizim kendi veri tabanimizdir ve 21 radyografi
icerir. Modelimizin diger yapay cisimlerle gogiis tiipiinii birbirinden ayirabilmesinin
saglanmasi i¢in egitim setinde 36 tane, sinama setinde 13 tane radyografi, gogiis
tiipii disindaki diger yapay cisimlerden icerecek sekilde secilmistir. Ikinci sinama
seti ise Standard Digital Image Database Project Team of the Scientific Committee
of the Japanese Society of Radiological Technology (JRST) tarafindan olusturulmus
ve herkese acik olan 247 radyografiden olusan JRST veri setidir. Bu set yapay cisimler
icerse de gogiis tiipii icermez.

Modelin performansini piksel tabanlit ROC analizi ile test ettik. Herbir gercek pozitif,
gercek negatif, hatali pozitif, hatali negatif sayildi ve ortalama accuracy, sensitivity,
specificity, yiizdelerini hesaplamak icin kullanildi. Sonug¢ olarak % 99.99 dogruluk
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(accuracy), % 59 hassasiyet(sensitivity), % 99.99 6zgiinliik(specificity) degerleri elde
edildi.

Sonuglarimizdaki hatalarin ¢ogu {ist liste binmis kaburgalar yada plevral efiizyon
sebebiyle olusan son derece yogun (radyografide agik renkte olan) bolgelerde
olusmaktadir. Testlerde yapay cisimler, gogiis tiipii ile hi¢ karigtirllmamigtir. JRST
veri setinde olusan tiim hatalar tek bir goriintiide olusan 347 hatal1 pozitif noktadan
ibarettir. Hic¢ hatali negatif nokta olusmamustir. Testler, tiim sonu¢ goriintiilerinin
girdi radyografileri ile ayn1 hizalanmigtir. Elde edilen bu sonuglara gére, yabanci cisim
tespitinde onerilen modelin kullanimi1 umut vadetmektedir.
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1. INTRODUCTION

1.1 Problem Definition

1.1.1 The Lung Cancer and Lung Related Deaths

Worldwide, 1.549.121 new lung cancer cases and 1.351.034 lung cancer deaths are
estimated in 2007 [1]. The cancer is the second leading cause of death. Lower
respiratory infections, chronic obstructive pulmonary disease, and tuberculosis are
other lung related causes in top 10 death causes [1]. Also, World Health Organization

(WHO) estimates 2.279.045 lung cancer deaths in 2030 (Baseline scenario, [2]).

Beside, the high mortality rate of lung cancer, there is another problem: the high miss
rate for detection of lung cancer nodules. This is one of most frequent reasons for

malpractice lawsuits against radiologist [3].

1.1.2 The Chest Radiography

For scanning of lung cancer and other lung related diseases, the chest radiography has
been widely used. Even now, the chest radiography (Figure 1.1) is the most common
radiological modality in the practice [4,5]. In short term, it seems that modern imaging
techniques are not going to replace the chest radiography [5]. Because, it is fast, dense,
cheap, and accessible than most of the modern imaging techniques such as Magnetic
Resonance (MR) or Computed Tomography (CT) [6]. Also, the chest radiography is

using less radiation than some of the modern imaging techniques like CT [6].

However, most important problem of these modern techniques is huge amount of data
obtained [7]. CT and MR are volumetric methods. This means radiologists must
investigate up to 1500 slices per patient [7] and up to 300 per thorax [8]. However,
the chest radiography produces just a single image. Because of these reasons, the chest

radiography is very popular for scanning and screening purposes. Even patients of the



intensive care unit are monitored by doctors who daily use the chest radiography [9].

On the average 236 chest radiographs are performed to 1000 patients per year [4].

Figure 1.1: A normal chest radiography.

1.1.3 The Computerized Analysis of Radiographs

The researchers are motivated by the high mortality and high miss rates to find an easy
and dependable way of the detection of lung cancer. A possible solution might be
computerized analysis of radiographs. The computerized analysis of radiographs for
anomaly detection became an active research area with two main branches. First of
all, Computer Aided Diagnosis (CAD) model, gives suggestions to the doctors, is an
important and active research area. Moreover, the importance of CAD is increased with
the widespread use of a picture archiving and communication system (PACS) [10].
Automated Diagnosis (AD), is the other branch, and more difficult than CAD [10].

However, both of them need robust anomaly detection schemes.

A major part of this research effort is focusing on the chest radiography, because it is

the most common radiological modality in the practice. Especially, it is very popular



Figure 1.2: An example for artificial object at the chest radiography. 1) Oxygen
cannula. 2) Connected EKG electrode. 3) Non-connected EKG electrode.
4) Chest tube.

for scanning purposes. Unfortunately, at the same time it is one of the most difficult
radiological modalities [11, 12]. The overlapping tissues cause a highly complex
projection. In addition, artificial objects such as catheters, chest tube, pacemaker,

and/or even cloths might be presented at this projection image (Figures 1.2 and 1.3).

1.1.4 The Artificial Object Problem

Clinical practice shows that the presence of an artificial object in radiography is
common and creates further complexities. The abnormal findings in chest radiography
are studied by MacMahon et al. [13]. They report that the second common abnormal
finding is catheter (33% of chest radiographs contains a catheter) [13]. In our
investigations, we found that chest radiography databases also contain artificial
objects. For example, The Japanese Society of Radiological Technology (JSRT)
chest radiography database with and without chest lung nodules [14], contains 247
images. Four of them (JPCLN140, JPCLN147, JPCNN044, JPCNNOS83) have at least



Flgure 1 .3: Another example for artificial object at the chest radiography. 5) Stapler
6)Endotracheal tube. 7) Some electronic device. 8, 9, 10) Metal wires.

an artificial object (Figure 1.4). Also, The Reference Image Database to Evaluate
Response (RIDER) Pilot Project database, contains 17 chest radiographs [15]. Except
only one image, all images contain at least one artificial object. These databases are

consisting of selected images, natural frequency might be different.

When a researcher attempts to develop a robust CAD approach that works for chest
radiography, he or she must be certain that each and every algorithm works properly
for all chest radiographs containing foreign objects. Therefore, the anomaly detection

algorithm should not be confused by artificial objects.

There are only few papers known discussing the presence of artificial objects. Kuhlman
et al. mention about artificial objects such as pacemaker might cause artifacts in
the dual-energy subtraction chest radiography [16]. Another study reports that 20%
percent (23 of 120) of the test data of the study is selected from chest radiographs
which contains artificial object such as electrocardiographic wire and central venous

catheter [17]. However, it has been not discussed about the correlation between



Figure 1.4: A chest radiography that contains artificial object from the JSRT database.

artificial objects and detection errors. Arzhaeva et al. [18] report that their data set

selected by discarding images, which contain any artificial object.

Many techniques used in CAD papers are possibly susceptible to artificial objects. For
example; both temporal and contralateral subtraction techniques used for suppressing
unchanged part of radiography. These techniques assume image differences show
abnormal progress of a disease [5]. However, if only one of radiographs, which was
subtracted, contains an artificial object, this assumption will be violated. Also, contour
fitting algorithms that used finding segmentation borders such as rib segmentation,
might be failed. Because the literature does not mention a possible artificial object
weakness, it is not possible to list the definitely sensitive algorithms. However, any
CAD solution is a collection of different algorithms, and if it is wanted to develop

a CAD solution that robustly works for chest radiography, it should be found a way



to be sure that every algorithm is safe about overlapping foreign objects. Hence, the
detecting and even better than detecting, the removing foreign object as a preprocessing

module is very meaningful for CAD research.

1.1.5 Chest Tube

Fortunately, the majority of medical objects such as catheters and chest tubes (Artificial
Object nr. 4, Figure 1.2) are long, thin, mostly constant in shape, and not totally

opaque. These features make them easily detectable by the radiologist.

Despite these helpful features, automatic detection of the chest tube figure is very
difficult. The reason is the different parts of chest tube show different characteristics
and also having discontinuities (Figure 1.2). Firstly, the head of the chest tube is
not identical to the body of the tube. After slightly rounded head, there is also a
discontinuity at opaque line. Even the body, itself, might be a source of the problem
because of that the crosscut of tube contains opaque part and non-opaque parts.
Unfortunately, according to the crosscut of tube, the position and width of opaque
line is different. Finally, it must be mentioned the width of chest tube is a variable in

the practice.

1.2 Literature Review

Detecting foreign objects is a critical issue for CAD research. However, a survey by
Van Ginneken et al. [S] reported that the detection of artificial objects is one of the
unsolved problems of CAD. Only a few studies in the CAD literature have focused on

the detection of artificial objects in chest radiography.

Four prominent studies can be highlighted. First, a semi-automated method for
tracking the location of naso-gastric tubes, endo-tracheal tubes, chest tubes, PICC
and central venous catheters using five chest radiographs was proposed by Keller et
al. [19]. This method requires two seed points specified by user. Second and third
studies have investigated the automatic detection of tubes that are located only in
the mediastinum. A method for automatic detection and positioning of endotracheal,
feeding and nasogastric tubes using 107 chest radiographs was studied by Sheng et

al. [20]. Additionally, Ramakrishna et al. [21,22], worked on the automatic detection



of endotracheal and nasogastric tubes. All of these automatic methods work for objects

located in the mediastinum only (Figure 1.5).
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Figure 1.5: Mediastinum Region of the Chest.

Fourth, the detection and removal of simulated chest tubes from radiographs were also

studied in our previous work [23].

1.3 Aim of the dissertation

In this dissertation, we proposed a scheme basically focusing on detecting a chest tube
figure (as an example of an artificial object might be presented at the radiography) from

Postero-Anterior (PA) Chest Radiography.

A Convolutional Neural Network (CNN) that takes the chest tube containing x-ray
image as an input and gives an artificial image with a chest tube skeleton as an output
is studied. The trained CNN is used together with non-uniform rational B-splines
(NURBS) to automatically detect the presence of chest tubes in chest radiographs
(Figure 1.6).



Although there are some medical image processing and CAD that work on chest
radiographs and use a CNN such as segmentation of bones [24], and detection of cancer
on chest radiographs [25, 26], there are any artificial object detection schemes which

use a CNN, in the literature.

Moreover, our proposed model is the first study conducted to automatically detect
artificial objects in the lung region of chest radiographs. Other automatic detection

schemes work on the mediastinum.

In our research, we noted that in some cases, the CNN output of the form of the
detected chest tube skeleton was not clear and had short and long discontinuities. To
overcome this problem, we introduced a NURBS-based curve fitting algorithm that
was applied to the detected chest tube image to obtain a better chest tube skeleton as a

final output.

Training stage Testing stage
The input The input
_— 7 — ™
Training the CNN |||} | The feed trained CNN

M . — vy
—_—— P —_— ™

The target _

The curve fitting
\ — J
T
The output

Figure 1.6: Simplified Flowchart of the proposed system.

It has chosen the CNN method as a Neural Network (NN) model, due to the shifting,
scaling, and distortion invariance abilities, and weight sharing property for reducing
number of free parameters of neural network [27]. It is inspired by a modified version
of the vision system in vertebrate animals and it simulates all image processing, feature

extraction, and pattern recognition stages for working on images. CNN takes pictures

8



as input, without a need for a feature extraction stage. Therefore, in order to detect the
chest tube figure, we have decided to use the CNN method trained with chest images

containing chest tubes as an input and chest tube skeleton as a target (Figure 1.6).
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2. CONVOLUTIONAL NEURAL NETWORK (CNN)

The CNN is a neural network method inspired by biological visual systems [28] and
it can handle some of image processing problems internally such as shift, scale, and
distortion variations and it reduces number of free parameters of neural network using
shared weights. It uses matrices, instead of scalars that are basically used by traditional
NN method (Figure 2.1). The main advantage of using matrices is that they work as
local receptive fields and protect local spatial neighborhoods. It allows to us simulate
some image processing, feature extraction and pattern recognition stages of the classic

scheme of the pattern recognition case [27,28].

Although the CNN architecture is often used for pattern recognition purpose [11,27,
29, 30], the work of Browne and Ghidary [28] is first and the only paper that CNN is
used for image processing, except for a few variants of CNN. Especially, for pattern

recognition purpose, CNN papers show very successful results.

However, CNN is not a popular method. Simard et al. [29] argued that the main reason
for that was the complexity of CNN. In addition, our experience also showed us that

another potential reason was imperfect documentation of CNN.

There is a group of research papers that contains small parts of the method with
multiple variations [27,29]. A nice alternative for these papers is a manuscript [28]
that explains the simplified and unusable version of CNN formulation assuming to
work with vectors (1D) but not with matrices (2D). After that, we focused obtaining

formula by ourselves.

2.1 Obtaining Formula

The training of a CNN works at two main steps: feedforward and backward steps.
At the feedforward step, NN calculates outputs from inputs. Backward step is the

optimization of free parameters of the model.

11



Weight 1

Input 1 []
gl E

1x1
Weight 2
Input 2 []
> 1
1x1
Weight 3
Input 3 []

O
1x1

Output
Act []

1x1

(a) The Traditional Node: Scalar Inputs are multiplied with scalar weights. Whole parameters are scalar

numbers.
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(b) The CNN Node: The Convolution operation works on Matrix Inputs with the Matrix Weights.

Whole parameters are matrices.

Figure 2.1: The Difference Between Traditional Neural Network Node and CNN

Node.



Neural
Network

>
Training ‘

Figure 2.2: Details of a CNN architecture for image processing. The input frame has
been taken from a picture. Then, the result is going to be copied to the
output picture.

A CNN requires training with many image pairs. An image pair is composed of a chest
image, which contains a chest tube as an input, and a map image, which contains a line
representing the opaque line of a chest tube as the target. After the training stage for
a given x-ray image that contains a chest tube, the CNN output will be a map image

containing the chest tube.

2.1.1 Feedforward Step

Let define a CNN architecture that contains L number of layers. There are three types
of layers according to layer order: input layer (I = 1), output layer (I = L), and hidden
layers (1 </ < L). The input layer is an abstract layer that only contains the input data
without any calculations. Hidden and Output layers differing in calculations will be

explained at following sections.

2.1.1.1 Feedforward step of the output layer

Let net;, denote the kth output image of the output layer of our neural network that
contains L layer (in other words, output of the kth node of output layer). O; denote

the jth image group which is the output of the jth node at layer L — 1, and let J be the

13



number of such groups.

J
nety = b+ Y 0 xxWy; 2.1
J
where x denotes the two-dimensional (2D) convolution (Figure 2.3) and W ; denotes

the kernel of weights connecting the jth group in the (L — 1)th layer to the kth group
in the (L)th layer. Also b; shows the bias value of the kth node.

The width § of the weight kernel W, the step size m of the kernel at horizontal
direction, and the width H(") of the output image O; of layer L — 1 defines the width

H®) of the output image Oy, of layer L:

() _
o) _ HI =S+m 2.2)

m
also, the same equation is valid for the height:

(jh) _
= H7"-T+n (2.3)

n

We try to separate each entry of the matrix nety: net,lfw’kh means the element at column

kw th and row kh th of the image net;.

iw h
LS L ((k J khj
net,lfth +Z ZZW 0 wim)+s),((khxn)—+t) (2.4)
j st
Then, net; used for calculating Oy, :

The f() is the transfer function that we select.

2.1.1.2 Feedforward step of hidden layers

Nearly, same equations are valid for hidden layers with little differences. Let net;
denote the jth output image of the /th layer of our neural network that contains L
layers (in other words, output of the jth node of I/th layer). O; denote the ith image

group which is the output of the ith node at layer [ — 1, and let / be the number of such

groups.
1
netj = b+ Y 0;xxWj; (2.6)
i
iw ih
f—"\“/—"\ﬁ
Jjw.jh wy A((jwem')+u),((jhen)+v)
net]"" = b; +Z ZZW 0 (2.7)

14



Convolution Operation

Input Matrix
i) [ [ i Kernel Matrix Output Matrix
i [ [ i W | w | w out| out|out
i [ [ i | “|w w | w|~ |out out out
I N N W ww out| out out
i [ [ [
ixw ixw ixw| i i Start with first element of Output
IXW  iXw ixw i i W W | W Z(ixw)
ixw ixw ixw|] i T w ow w7
i [ i i wlwl!lw
i [ [ [
i | ixw | ixw I Continue with moving a step size
i fixw ixw ixw| | W w | w > (iw) Z(ixw)
I lixw  ixw ixw] | “tw w w|~
i i i i W w | w
i i [ i

Figure 2.3: Details of the convolution operation. A block of input is multiplied
element wise with the kernel matrix. Then, the result is going to be stored
as an element of the output matrix.
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O§W’jh :f(netjj_'w-,jh) : j=1,--,J 2.8)

The width U of the weight kernel Wj;, the step size m’ of the kernel at horizontal
direction and the width H(™) of the output image O; of layer [ — 1 defines the width

HU") of the output image O; of layer [:

) H(iw) U /
HW o tm (2.9)
also, same equation is valid for the height:
, H _y Ly
H = S tn (2.10)

2.1.2 Backpropagation

The training of a neural network is an optimization process of weights of the neurons

according to an error formula of the neural network. Our error function is:

1 K Hkw) g (kh)

E=-Y ¥ Y """ -0y (2.11)

k kw kh

and total node count K in output layer, width H (kw) and height H (kh) sizes of output

nodes define single output count, and each output 0£w’kh produces a local error,

according to itself target value t,];mkh.

Instead of the specific solution per neural network, the backpropagation method
obtains a general solution to update weights per layer [31]. From output layer to first

hidden layer, calculations of each layer depend on previous calculations of next layers.

2.1.2.1 Backpropagation step of the output layer

First step of the backpropagation is calculating weight update for nodes of the output
layer:
JE

AWS7,[ == —’rl—
k )t
J IV,

(2.12)

that will be used for new weights. Delta rule for gradient decent method can be given

as an example:
WS’.[ (new) Ws,t(Old) JoE

J
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Then, we will convert formula from matrix derivative form to entry derivative version

[32]:

JoE JE Onety,

St ot

oW, dnety, oW,
| kw) gy(kh) aE

- Z Z fw,kh Wksjt

kw  kh het

lkw,kh
net;

_ ghwkh

kw,kh

8net 0 ((kwxm)+s'),((khxn)+t")
Tk = (b + 0
8W,fj’ oW ,j]’ ¢ Z Z )

o ((kw*m)+s),((kh*n)+t) R A A
— 0] ) (]—],S—S,t—t)-

P JE
%

ai’le tkw,kh

E oM
a Okw kh a kw kh

— _ ( kwkh _ Okah) f ( t]]((th)

Slfw,kh — (tl/:W,k/’l Olljw,kl’l) f (netllccw,kh)

kw) g
AWkst =1 Z Z 5kw,kh kw*m)%s),((kh*n)ﬂ)
kw

2.1.2.2 Backpropagation step of hidden layers

Most imported part of backprobagation method is obtained at this section:

0E

AW =N gy

Ji
E B JE Onet;
aw;;” N dnet; aWjL;"V

- Z Z W, jh uv
Lo bt el Wﬂ
—
751W"jh
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



Equation 2.25 is the most important part of backpropagation method. The

jW jh =
Z]

—SJJW’]h part of formula links the calculation of derivative of hidden layers to the

calculation of derivative of next layer. The good think is that the 6} " term makes
that backpropagation formulation is general. With using this term, we can calculate

any derivatives of NN, layer by layer, without the need of re-obtaining formulas.

al’lelj:th 8 ( I UV / . / /
J Ry (jwxm)+u'),((jhxn')+V)
— = b+Y Y Y W of (2.26)
oW ow;;” r

o (wsm') ) ((jhxn') +v)

i 9

(i=iu=u,v="). (2.27)

JE

i
5j - Ineri™ (2.28)
J
i
N oE 007"
= — — — (2.29)
207" net! "
J J
JE K 0E Oner,
T Ajwih Z Inet i (2.30)
d0; T et 90
K HOHED - ap o) etkw,kh
= X Z Z Tow ki Wil (2.31)
k kw etk ’ an J
S:W.,kh
w ir
anetkw,kh 0 J S T /—*/%/—:H
J'ijh - w,jh Z ZZW 0 ,kw m)+s), (k) ) ~+ by 2.32)
8017 0 ’ Jos ot
— e GG = = i), (233)

ijvjh

neﬂw Jh =/ (netjw Jh) (2.34)

Hw) g

ih (i Z Z k kh —(k ), (jh—(kh ))) ih
JW’J 5" W) URZUIR)) Y ! (eI (2.35)
J
kw
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HUw) g(ih)
AW =1 Z Yy, simhoUrem (ke (2.36)
jw  jh

2.1.3 Subsampling

The subsampling is another important method of the CNN. It is mainly an averaging
operation with an only single weight parameter. The subsampling ensures that the
rotating and shifting invariance to NN, because the output of the node is not dependent
on the input location. Also, it reduces the parameter count dramatically, because of the

using single weight. The formulation of the subsampling is given as:

w h
J ST /—i\ﬂf—h/]\ﬁ
netllzw,kh —bk+wkz ZZ 0 kwxm)+s),((kh*n)—+t) (2.37)
j st
If we remember the convolution formula:
iw ih
kwkh _ L v ((k J +)((kh1)+t)
w, l w*m S *n
nety™™" = b+, Z;W ¥ o\ (2.38)
_] N

we can observe that the convolution step intrinsically contains subsampling operation.

2.1.3.1 Backpropagation step of the subsampling method at the output layer

First step of the backpropagation is to calculate the weight update for nodes of the
output layer:

Awy = —n 2= (2.39)

that will be used for new weights. For example; delta rule for the gradient decent

method is:
(otd) _ o IE.

8wk

(new)

Wy = wy (2.40)

Then, we will convert it’s from matrix derivative to entry derivative version [32]:

JE  JE OJnen 2.41)
8wk B 8netk 8Wk )
H(kw) gy (ki) OE ne tll:w kh
= X L kwkh (2.42)
kw kh het, k
——
75]5%”1
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kw,kh

8net d J kw*m )+5"),((khxn)+t")

J ST , /
=YYy 0§(kw*m)+s>’((kh*")+’), (j=j,s=5.1=1)(2.44)

j/ S/ t/

JoE
kwkh
6k wW. — anetkw T (2.45)
kw,kh
= - alfv kh aOkkw kh (2.46)
20, dner,™
_ ( (tllccwkh Ollimkh)) f( et]fwkh> (2.47)
Slfw,kh _ (tllccw,kh_ OIIEW,kh) f( t}l{cw,kh) (2.48)

H (kw) g (ki)

Awp =1 Z Z akw,kh Z ZZ 0 kwxm)+s'),((kh*n)+t') (2.49)

kw  kh s/

2.1.3.2 Backpropagation step of the subsampling method at hidden layers

oE
JE JE OJnet;
- = 2.51
ow; 8netj ow; (2.51)
H(Jh) aE netjw,jh
- Z Z jw,jh . (2.52)
jh €tj ’ Wj
——
_6jw.jh
J
8netj-wjh 0 I UV : / / el 1y
_ ((wsm')+u'),((jhsn")+v')
v, aw, (b"+w-"; ZZ’O"] J ) 239

I UV (jh
= ZZZO ()4}, (] *n)+v), (i=iu=u,v=1)2.54)

il / /

1 u v

g — __9E (2.55)
anetjwj
E o aor
_ __9F 9 (2.56)

DO dner] "
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J0E B f JE Odnety
goh G dnet golt

kw kh
K HUw) gykh) _JE 8netkah

- Z Z Z kw,kh aOJW_]I’l

kw kh net;

H,_/
kw,kh
8](

J w jh/

8netkah d J ST ’_A“’_A“
_ g bk+WkZ ZZO ((kwsxm)+s),((khxn)+t)
g gt L
= Wg.
iw, jh
/ jwijh
netjw’jh =7 (netj )
K H(kw)

ajjw,jh: Z kz: Z 6kwkh (netj/.'w,jh)

2.2 Custom Code for CNN

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

We developed a custom CNN library using C++ language to easily modify the

architecture. As a result, deploying a CNN algorithm with custom input/output sizes

and links is has been more practical.

int layerCount = 5;

base_ann *vl = new base_ann(layerCount);

vl —>archFeedForwardSigmoidCE () ;

vl—>feedForwardLayer (0, Ipnode[0], O, Ipnode[l],
Insize [0][0], Insize[O][1]);

vl —>feedForwardLayer (1, lpnode[1l], lpnode[O], lpnode[2],

Insize [1][0], Insize[1][1], 2, 2);

vl —>feedForwardLayer (2, Ipnode[2], lpnode[l], Ipnode[3],

Insize [2][0], Insize[2][1], 2, 2);

vl —>feedForwardLayer (3, lpnode[3], lpnode[2], lpnode[4],

Insize [3][0], Insize[3][1]);
vl —>feedForwardLayer (4, lpnode[4], lpnode[3], O,
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Insize [4][0], lInsize[4][1]);

// Setting initial weight values
vl—>setKernelsAutoIlnit () ;

// Setting Learning Rate
vl —>setLearningRate (eta, maxepoch);
vl—>init () ;

// Link nodes

vl—>layer (0).setFullLinkTo () ;

for (int z = 1; z < (layerCount — 2); z++) {
vl—>layer(z).setPerLinkTo (linkcount[z]);

}
vl—>layer (layerCount — 2).setFullLinkTo () ;

Loading an input/target images set:

// Random Chest Radiography selection
/1l Getting first input image for first input node
inbtrain. getPic(0).init(inputlist[rasgele], irmin, irmax,
Insize [0][0], Insize[O][1], 1, 1,
(Insize [0][0]/ 2) % (olc — 1),
(Insize [O][1] / 2) % (olc — 1), 1
+ ((Insize [O][O] / 2) * (olc — 1)), 1
+ ((Insize [O][1] / 2) % (olc — 1)), true);

/1l Getting second input image for second input node

inbtrain.getPic(1).init(inputlist2[rasgele], irmin, irmax,
Insize [0][O], Ilnsize[O][1], 1, 1, O, O, O, O,
true , olc, olc);

/! Getting target image for output node

tarbtrain. getPic (0).init(targetlist[rasgele], rmin, rmax, 1, 1, 1,
1, (Insize[0][O0] / 2) *x olc, (lnsize[O][1] / 2) *x olc,
(Insize [0][0] / 2) * olc, (lInsize[O][1] / 2) % olc, true);

Training CNN for an input/target images set:

/" Training using this random input

/' scount = How many samples will be taken
// inbtrain = input images
// tarbtrain = target image

train_err =
vl —>trainLoopMergedRandErrorAround (scount ,
inbtrain , tarbtrain);

Testing CNN for an input/target images set:

// Testing with a radiograph

// "output.pgm" = output image name

/' rmin = treshhold for 0 value at output image
// rmax = treshhold for 255 value at output image
// inbtest = input images

/] tarbtest = target image

// outb = output image
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test_err =
vl—>bigPictureRun ("output.pgm", rmin, rmax,
inbtest [0], tarbtest[0], outb);

Major functions used to construct a CNN are defined at base_ann class (Appendix A).

2.3 Validation of the Formula and the Code

The NN is known as a very robust method, even though using buggy codes and
a formula that contains discrepancies. It can be considered that this is the major
advantage of NN method. However, from the software implementation perfective,
this is not an advantage. It causes some serious difficulties at the debugging stage of
the software. Observing calculations manually for big models such as CNN is very

difficult.

In order to check the accuracy of the results, an alternative approach would be to use
the another numerical differentiation techniques such as finite (central) differences that

is very convenient and simple technique [33].

The derivatives of the perturbation weights, net sums (net), and inputs are evaluated

with the finite difference formulation as follows:

OE  EW[ +e)—EWS —e)

7= +9(e?) (2.63)
oWt 2¢
JE E (net,lzw’kh +¢e)—E (net,fw’kh —€) 5
- 0 2.64
Inet, M 2¢ +9(€) (2:64)

OE  E(0™"ye)—E(0!"" —¢)

— = +9(€?) (2.65)
Jh
d0M 2¢

Perturbing tests of weights, net sums (net), and inputs, gave us correct result for a lower
bound of the values within the € = 10~’. Sample outputs of these tests are presented
at Tables 2.1, 2.2, and 2.3. At our software environment, the double data type has 16
digits precision. Test results showed that difference of all output have a maximum 14

digits accuracy.

Therefore, we investigated the potential the reason of loosing two digits precision on

these calculations. We tried same evaluation technique for activation function f().
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Table 2.1: Input Perturbing Results.

Epsilon ([E+]-[E-])/2 Epsilon | input Difference The result
0.000000001 | -0.000079486417 -0.000079493935 | 0.00000000751785 not passed
0.000000010 | -0.000716165460 -0.000716165400 | 0.00000000005995 not passed
0.000000100 | 0.000639053310 0.000639053257 | 0.00000000005238 not passed
Test Results are not correct for the values out of the lower bound of € = 10~/
0.000001000 | -0.000447143133 -0.000447143136 | 0.000000000002700 | passed
0.000010000 | -0.000163595652 -0.000163595653 | 0.000000000000525 | passed
0.000100000 | 0.000538057734 0.000538057734 | 0.000000000000093 | passed
0.001000000 | -0.000622696962 -0.000622696985 | 0.000000000022999 | passed
0.010000000 | -0.000053653760 -0.000053653524 | 0.000000000236161 | passed
0.100000000 | 0.000168174450 0.000167966391 | 0.000000208058993 | passed
0.000100000 | 0.000364155993 0.000384254499 | 0.000020098505333 | passed
0.001000000 | 0.000020931019 0.000693037434 | 0.000672106414911 | passed
Table 2.2: Net Sum (net) Perturbing Results.
Epsilon ([E+]-[E-])/2 Epsilon ‘ delta ‘ Difference The result
0.0000000010 | -0.177685366420 -0.177685355259 | 0.000000011161 | not passed
0.0000000100 | 0.147506491743 0.147506489943 | 0.000000001799 | not passed
0.0000001000 | -0.003295744428 -0.003295744424 | 0.000000000003 | not passed
Test Results are not correct for the values out of the lower bound of € = 10~/
0.0000010000 | -0.270490333048 -0.270490333072 | 0.000000000023 | passed
0.0000100000 | 0.212703600508 0.212703600512 | 0.000000000004 | passed
0.0001000000 | 0.162735418196 0.162735418367 | 0.000000000170 | passed
0.0010000000 | -0.258074055308 -0.258074100766 | 0.000000045457 | passed
Table 2.3: Weight perturbing Results. NP: not passed.
Epsilon ([E+]-[E-])/2 Eps. Weight Difference The result
0.000000001 | 0.26026451827032 | 0.26026454051157 | 0.00000002224124 | NP
0.000000010 | -0.00490656665687 | -0.00490656664767 | 0.00000000000920 | NP
0.000000100 | -0.03905583908364 | -0.03905583910458 | 0.00000000002094 | NP
Test Results are not correct for the values out of the lower bound of € = 10~
0.000001000 | 0.03816106281754 | 0.03816106281635 | 0.00000000000119 | passed
0.000010000 | 0.01230801236543 | 0.01230801236545 | 0.00000000000002 | passed
0.000100000 | -0.00751168860717 | -0.00751168861326 | 0.00000000000609 | passed
0.001000000 | 0.04911920939557 | 0.04911920973274 | 0.00000000033717 | passed
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Table 2.4: Activation Function Perturbing Results. NP: not passed.

Epsilon ([Act+]-[Act-])/2 Eps. | Derivative Difference The result
0.000000001 | 1.02568442628125 1.02568444088404 | -0.00000001460278 | NP
0.000000010 | 1.02568444293460 1.02568444088404 | 0.00000000205055 | NP
0.000000100 | 1.02568444071415 1.02568444088404 | -0.00000000016989 | NP
Test Results are not correct for the values out of the lower bound of € = 10~
0.000001000 | 1.02568444088069 1.02568444088404 | -0.00000000000335 | passed
0.000010000 | 1.02568444086403 1.02568444088404 | -0.00000000002001 | passed
0.000100000 | 1.02568443983541 1.02568444088404 | -0.00000000104863 | passed
0.001000000 | 1.02568433605326 1.02568444088404 | -0.00000010483078 | passed
double hiddennode:: activation(const double x)
{
return (1.7159%tanh (2.0%xx)/3.0));
}
Perturbing activation function:
x+¢€)—flx—e¢

2€

The results reveals that the precision loss may caused from the activation function

specifically ranh() function (see Table 2.4).

2.4 Fine Tuning

Training a NN is commonly named as a black art, instead of a science. The source of
this opinion is the performance of the NN is very dependent on the training parameters
and the data set. There are a lot of small tricks that help to success of NN [29, 30, 34,
35]. To obtain a better training, some of these tricks are implemented in our model,

described as below.

2.4.1 Intrinsic subsampling:

By selecting the step size equal to two at layer-2 and layer-3, the subsampling is

implemented implicitly [29].

2.4.2 Stochastic learning and shuffling the examples:

We train the NN with a single sample at per training epoch (i.e. stochastic training)

and shuffle samples for better training performance.
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2.4.3 Normalizing the inputs:

When all inputs are positive, then all weights will be updated to the same direction.
Thus, the NN requires a greater bias, which is proportional to the signs and values of
inputs to shifting system. Reaching to a greater bias value takes time (i.e. iteration),
as a result of this, the performance of training is reduced. To avoid this problem, the

average of input samples are shifted to zero and the covariance scaled to one.

Covariance of inputs calculated by [34]:

1 &
G=-Y (0" 2.67
Pp—l( t) ( )

2.4.4 Narrowing initial weights:

Toward to borders of the activation function, activation function gives a flat output. The
activation function takes the sum of the all input that is multiplied by their own weights
as a parameter. We should also remember that the training is the process of finding the
weight values. As a result of this, selecting good initial weights is an important process
that directly effects the resulting converting rates. To initialize the weights, we use the

following Equation 2.68 that is refined formula of Lecun et al. [27]:

0.3 2.4
VAR |Winie| < E (2.68)

where M is the number of inputs that feed the node. +0.3/M part of the equation is

added for avoiding of initial weights too close to zero.

2.4.5 Selecting the activation function:

Same as all positive inputs described above, all positive outputs also reduce the training
performance. The input of the next layer is the output of the previous layer. Then,
selecting an activation function, that the middle of its ranges is zero, helps to normalize
the inputs of the next layer. Therefore, ranh() function is selected as an activation

function primarily in which its output ranges from -1 to +1.

2.4.6 Defining target ranges:

As mentioned above item, the activation function gives a flat output at borders.

Therefore, the target values are scaled between -0.9 and 0.9.
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2.4.7 Proper learning rate:
In our study, we use two different learning rate techniques:

First, Setting different learning rate for every node: Derivative of an error function used
by weight update, is smaller at lower layers and bigger at higher layers. To eliminate
this factor, different learning rates are selected for every node (1)) using following
Equation:

1
; m2n¢

=07

(2.69)

where m is the number of inputs feeding the node, [ is the layer number, and ¢ is the

global learning rate.

The second learning rate technique is Automatically decreasing learning rate: To avoid
the local minima, we used a learning rate decreasing approach given by following

equation [30]:

nlb ;

! = n,begin

Mnnow = T % ‘ (2.70)
R/2 max(l,(jof%";s?}gsm))

where r],ll,now is the current learning rate and nrll begin is the initial learning rate for this

node, r is the current training epoch, and R is total number of training epochs.

27



28



3. INITIAL EXPERIMENTS

In this dissertation, it is preferred to present our numerical experiments in a time order

and naturally, from simple one to more complex ones.

3.1 Removing ’U’ from the Chest Radiography

We have tried to run a test case to find and test the suitable model size and architecture
of the chest tube detecting case. A Postero-Anterior (PA) chest radiography image is
selected, and small size U letters are embedded to the images which are seen in Figure

3.1(b).

(a) Input image. (b) Zoom to Input. (C) Target image.

Figure 3.1: Not An Easy Training Case (Object Removing).

In our model, this artificially contaminated image is used as an input image (Figure
3.1(a)) and uncontaminated (original) chest radiography image is used as a target
image (Figure 3.1(c)). The work plan of the model is simple: First feed the NN
with contaminated chest image, and than train to get uncontaminated (original) image

(Figure 3.2 ).

We started to solve this test case as an example of artificial object removing case (in
fact, this type of image reconstruction is named as the inpainting). The letter U’
embedded to the chest x-ray image is tried to remove. This test case is intentionally

selected in a way that it represents nearly as hard as our target case in terms of
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architecture, but also as easy as possible in terms of data requirement (Figure 3.3 ).

We tried from 1 to 3 hidden layers, and 1 to 150 nodes and lots of parameter variations.
It is known that the NN training success depends on the data set and algorithm as much
as architecture. After certain number of experiment on the data set and architecture, we

were ready to test some algorithm modifications such as different training techniques.

3.1.1 Using more dense data set

Initial studies reveal that results given in Figures 3.1 and 3.3 are not correct. However,
errors mainly coming from the removing letter "U" part of the process. Inputs that do

not contain letter "U", were seem to be accurately produced in our results.

As a result of this observation, we thought that our data set does not contain enough
number of letter "U" for the learning process to remove. After using the new data set
that contains more densely letter "U" (Figure 3.4), our results were very promisingly

corrected and displayed in numbers (Figure 3.5), but it should be noted that there are

g

some striping marks which may be observed by eye (Figure 3.6).

Neural
Network
Training

u
|é ‘* th:l.r?rlk o

Figure 3.2: The work plan for Removing *U’ Test Case.
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(b) Output Image.

(a) Input image.

(c) Zoom to Output.

Figure 3.3: Removing U’ Case Training Results.

Table 3.1: Best results of removing *U’ with using sparse dataset. Each of Input
and Output Layers contains one node. N.: Nodes, I.W.:Initial Weights,
L.R.:Learning Rate.

Input | Hidden 1 | Hidden 2 Hidden 3 LW. | L.R. | Best Results
(IN) | 4N)

11x11 | 7x7 5x5 (12N.) | 3x3 (20N.) | 0.01 | 0.02 | 0.000148918
11x11 | 9x9 5x5 (12N.) | 3x3 (20N.) | 0.01 | 0.02 | 0.000155617
11x11 | 7x7 3x3 (12N.) | 1x1 (20N.) | 0.01 | 0.02 | 0.000161590
17x17 | 5x5 5x5(12N.) | 1x1 (S0N.) | 0.01 | 0.02 | 0.000168466
15x15 | 11x11 5x5(12N.) | 3x3 (16 N.) | 0.01 | 0.02 | 0.000171094
17x17 | 9x9 5x5 (12N.) | 3x3 (20N.) | 0.01 | 0.02 | 0.000171929
15x15 | 11x11 5x5(4N.) |[3x3(20N.) | 0.01 |0.02 | 0.000172323
15x15 | 11x11 5x5 (12 N.) | 3x3 (20N.) | 0.005 | 0.02 | 0.000172638
15x15 | 11x11 5x5(12N.) | 3x3(8N.) | 0.01 | 0.02 | 0.000173310
15x15 | 15x15 5x5(12N.) | 3x3 (12N.) | 0.01 | 0.02 | 0.000173821
17x17 | 9x9 5x5 (12N.) | 3x3 (20N.) | 0.01 | 0.02 | 0.000174136
15x15 | 11x11 5x5(4N.) | 3x3(20N.) | 0.01 | 0.02 | 0.000174679

LILIL LI LU U U D L DU LT D u uu
LU UL UYL UL UY U UUY WU Y DY O g uug

SSRUUL U ULUDY U UL U UYL LY UG U
SHU UL DU DU U WU U U LY DU DY DY by g

SHUULUUULUI LU LD UL L UL UYLk

SUUL LU U LU U U UL U U UL U

SO UL U ULY U U UL U DY U D
AU UUU UL UUY UL UL DY U b i"

(b) Zoom to Image.
Figure 3.4: The Dense Data Set.

(a) Input image.
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Figure 3.5: The Comparison Graph of Sparse and Dense Data Set. Same architecture,
different data sets: 11x11 (1 node), 7x7 (4 nodes), 5x5 (12 nodes), 3x3 (20
nodes), 1x1 (1 node), 0.01, and 0.02.

(a) Result image. (b) Zoom to Image.

Figure 3.6: The Dense Data Set Results.
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Figure 3.7: The Incorrect Part of the Input Image.

We found that some incorrectly generated input files may cause these stripes (Figure

3.7).

After the correction of these input files, the problem of stripes related to the training
dataset were removed from our final results. Results show that the performance of NN

is very dependent on the training dataset [29].

3.1.2 Results of the removing U’ case using dense data set

We have tried 1000 run with 100 different architectures and techniques. The
performance of these NNs is very different, and generally all tuning tips gave small

gain. The best result is obtained from a composition of these whole small tricks. Due

(a) The Best Result. (b) Input Image for Testing. (C) Target Image for Testing.

Figure 3.8: The Best Result and Test Images.
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Table 3.2: Best Results of Removing U’ Case. Each of Input and Output Layers
contains one node. N.: Nodes.

Input | Hidden 1 Hidden 2 Hidden 3 Learn.Rate | Best Result
15x15 | 6x6 (23 N.) | 3x3 (23 N.) Ix1 (23N.) | 0.7 0.00001714
15x15 | 6x6 (23 N.) | 3x3 (23 N.) Ix1 (23N, | 1.0 0.00001725
15x15 | 6x6 (23 N.) | 3x3 (37 N.) Ix1 (23N.) | 0.9 0.00001780
15x15 | 6x6 (37 N.) | 3x3 (37 N.) Ix1 37N.) | 0.5 0.00001824
15x15 | 6x6 (23 N.) | 3x3 (23 N.) Ix1 (23N.) | 0.9 0.00001825
15x15 | 6x6 (23 N.) | 3x3 (37 N.) Ix1 (23N.) | 1.0 0.00001831
15x15 | 6x6 (23 N.) | 3x3 (23 N.) Ix1 (23N.) | 0.8 0.00001849
15x15 | 6x6 (23 N.) | 3x3 (23 N.) Ix1 (23N.) | 0.6 0.00001858
15x15 | 6x6 (SON.) | 3x3 (50 N.) Ix1 (SON.) | 0.9 0.00001861
15x15 | 6x6 (17 N.) | 3x3 (23 N.) Ix1 (17N.) | 0.8 0.00001930
15x15 | 6x6 (17 N.) | 3x3 (23 N.) Ix1 (17N.) | 1.0 0.00001958
13x13 | 5x5 (50 N.) | 2x2 (50 N.) I1x1 (50N.) | 0.8 0.00002007
13x13 | 5x5 (25 N.) | 2x2 (50 N.) Ix1 25N.) | 0.6 0.00002069
3x13 | 6x6 (4 N.) | 3x3Sub(4 N.) | 1x1 (8 N.) | 0.08 0.00004769
11x11 | 4x4 (4 N.) | 2x2 (12 N.) Ix1 (20N.) | 0.8 0.00004993
11x11 | 4x4 (4 N.) | 2x2 (12N.) 1x1 (20N.) | 0.7 0.000 05058

to the difficulty of showing the whole study at this dissertation, the best results and

some characteristic examples are given in the Table 3.2.

After all small fine tunings are applied, our synthetic case results gave us very good
performance given in Table 3.2, Figure 3.8, and Figure 3.9. In order to compare our
results with the literature, we found only limited papers on image inpainting. However,
the inpainting literature generally uses a gap map to select which part of the image will
be inpainting. However, in our method, CNN recognize letter "U" (object recognition),

then, automatically remove and fill the gap (image reconstruction/image inpainting).

Similar to some of the previous literatures [28, 29], we found that the separate
subsampling layer does not useful for better performance. We concluded that
the selecting step size greater than one at convolution layer, intrinsically does the

subsampling with a better performance (Table 3.2).
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Figure 3.9: The Comparison Graph of Sparse, Dense Data Set and Best Result of
Removing U’ Case. Same architecture, different data sets: 11x11 (1
node), 7x7 (4 nodes), 5x5 (12 nodes), 3x3 (20 nodes), 1x1 (1 node),
0.01, and 0.02. The Architecture of the Best Result is different: 15x15
(1 node), 6x6 (23 nodes), 3x3 (23 nodes), 1x1 (23 nodes), 1x1 (1 node),
Auto Weights, and 0.7.
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4. CNN FOR DETECTION OF CHEST TUBES

The CNN architecture for detection of chest tubes, has some differences from the
architecture of our initial experiments. The changes required because of the complexity

of chest tube detection process.

4.1 Training and Testing Datasets

Two different sources of the chest radiography used to obtain images as used for
training and testing datasets (Table 4.1). All images converted to 8 bits gray scale
color depth to obtain a standard intensity range, because of different x-ray machines

have different intensity range such as 10, 12, 14 bits.

The training set is solely constructed from our data set, and contains 62 radiographs.
As seen in Table 4.1, 13 of the images contain two chest tubes, 25 contain a single
chest tube, and 24 out of 62 radiographs have no chest tube. We tested our model
using two datasets. The first dataset contains our test set, which is constructed with 21
radiographs with similar groupings. To distinguish the chest tubes from other artificial
objects, our training and testing sets contain 36 and 13 radiographs, respectively,
including artificial objects other than chest tubes. The second test set contains 247
images without chest tubes, which is publicly available; it was created by the Standard
Digital Image Database Project Team of the Scientific Committee of the Japanese

Society of Radiological Technology (JRST) 6.3.

Table 4.1: Training and testing data sets.

Radiographs Our Testing Images

Content(s) Training Our Test JRST Testing
Set Set Database Total

No chest tube 24 8 247 255

Single chest tube 25 11 0 11

Two chest tubes 13 2 0 2

Other artificial object(s) 36 13 4 17

Total 62 21 247 268
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- 13x13 input block from 1000x1000 x-ray

Figure 4.1: Two Scales of Input Blocks.
4.2 CNN Architecture

To detect the chest tubes in chest radiographs, a CNN architecture containing L = 5
layers is used (Figure 4.2). There are three types of layers; these layers are the input
layer (I = 1), the output layer (! = L), and the hidden layers (1 </ < L). The input
layer is an abstract layer that contains only the input data without any calculations.
Different numbers of node combinations of hidden layers, including 8, 16, 32, 64, 128
and 256, were tested using different learning rates, such as 0.1, 0.01, 0.001, 0.0001,

and a gradient descent with a ranh activation function in the hidden layers.

We also tested the Stochastic Diagonal Levenberg-Marquardt (SDLM) update rule and
the Cross-Entropy (CE) method. On our tests and the results of Simard et al. [29] show
that CE gives best performance. According to these findings, we decided to use the
Gradient Descent and Cross-Entropy algorithms with a sigmoid activation function.
Our final CNN architecture contains 2, 32, 32, 128, and 1 nodes for the successive
layers. Between layers, there are 32, 16, 128, and 1 links for each node in the layers.

After a series of tuning tests, the learning rate was selected as 0.1.

To feed the system with a greater input region without increasing the model complexity,
a multi-scale input with two scales was used. The input image blocks used by the

input layer, cropped from two whole images of a chest radiograph at multi-scale sizes
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Figure 4.2: The Final CNN for Detection of Chest Tubes.

of 1000x1000 and 250x250 pixels, are used without any registration. The input layer
contains two nodes with two input blocks of 13x13 pixels each (Figure 4.1). During
the training stage, blocks are selected from random training image sets with a random
block position. At three hidden layers, the output sizes are chosen as 5x5, 1x1 and 1x1.
Finally, the output layer contains a single node that gives outputs of 1x1 in size, which
is used as a pixel in the resulting image at the proper location according to the input

block position.

The results of the stage of the CNN for chest tube detection, are presented in Figures

4.3,4.4,4.5, and 4.6.
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Figure 4.3: Selected successful results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.

40



Figure 4.4: Selected successful results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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Figure 4.5: Selected erroneous results from our test data set. The left side images are
inputs of the CNN model. The right side images are the outputs of the
CNN model.
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Figure 4.6: Selected erroneous results from our test data set. The left side images are

inputs of the CNN model. The right side images are the outputs of the
CNN model.
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5. NURBS CURVES

5.1 The Noise and the Continuity

In some cases, the output of the CNN algorithm provides an unclear and interrupted
chest tube skeleton that is not practical for use. Therefore, we introduced an adaptive

curve-fitting approach to the output images of our CNN model to obtain a final

continuous chest tube skeleton (Figure 5.1).

S

. Curve
] Fitting

Figure 5.1: The stages of our model. The left image is the input, the middle image is
the output of the CNN, and the right image is the result of the curve fitting

process.

The output of the CNN contains sparse single positive pixels and some small group of
positive pixels. These are easily cleanable by scanning output. We clean these small

residues before curve fitting. But all noises cannot be removed by scanning.
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To eradicate the all noise and enhance the output, we apply the curve fitting algorithm
(Algorithm 1). The algorithm starts with the strongest (darkest in the image) and
longest continuous line segment, and follows the line in both directions. While
following the strongest output, the algorithm searches longest continuous line segment
from beginning point in the range of 60 degrees. The longest continuous line segment
is followed until 36 pixels long. When length of line segment reaches the 36 pixels,
or it reaches a discontinuity (a space), the last pixel is selected as a control points to
reduce the number of control points that are used for curve fitting. Then again the
algorithm searches a new longest continuous line segment from the last control point

in the range of 60 degrees.

Algorithm 1 Pseudo code for selecting control points of the NURBS curve.

repeat
repeat
repeat
Save current position as a control point,
for all do—30,—-25,-20,...0...20,25,30 degrees
Search the end of the connected pixels in this angular direction,
end for
Select the angle of the longest continuous line,
until Walk 36 continuous pixels ahead or end of the connected pixels,
Try to find new connected pixel group in the same direction,
until No new connected pixels,
for all —30,—25,-20,...0...20,25,30 degrees do
Search a gap followed by a continuous line in this angular direction,
end for
Select the angle of the shortest gap followed by a continuous line,
Save the end of the gap as a control point,
until No new gap followed by a continuous line,
Use control points for curve fitting.

The control point selection process is conducted by walking over the entire output
chest tube curve and it selects control points with an interval of 36 pixels. During
this walking process, when the process meets to any discontinuity on a curve, it is
forced to jump to the point where the next continuous line segment starts (Figure 5.2).
When a new line segment is continued at same direction of previous line segment, the

continuous line segment search begins again.

For example, in Figure 4.3, NURBS-based piece wise curves are fitted over segmented

lines on the output images of our proposed CNN model and are shown at right side
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The range of search angle is limited to 60 degrees
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Figure 5.2: The Selection of the Control Points.

images. The pseudo code for fitting NURBS over the output image is given in
Algorithm 1. The main idea behind the curve-fitting process is to capture the whole

chest tube figure on the x-ray image regardless of any mis-interpretation or confusion.

5.2 The NURBS Curve Formula

Nonuniform Rational B-Spline (NURBS) Curves, P(t), are used for curve fitting.

n+1

P(t) =Y BiRix(1) (5.1)
i=1
where the B;’s are the control polygon vertices, and the R; ¢(t)’s are the rational basis
functions.
hiN; ;. (t
RM@):—7erLL— (5.2)
Zizl hiNz}k(t)

where the N;(¢)’s are the basis functions, and the /;’s are homogeneous weighting

factors [36].

The control point selection process filters noise and provides clean and discontinuous
line segments. This line segments will be transformed to the continuous curve after the

NURBS curve fitting.

This approach eliminates the possibility of small artifacts in the output images. Sample
input-output merged images of our proposed model are presented in Figures 6.1, 6.2,

and 6.3.
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6. RESULTS AND EVALUATION

6.1 Model Performance Evaluation

We evaluated the performance of the model using a pixel-based Receiver Operating
Characteristic (ROC) analysis, which is defined very well by Fawcett [37]. Each true
positive, true negative, false positive and false negative pixel was counted and average
true positive (Nyp), true negative (Ny,,), false positive (Ny),), and false negative (Ny,)
values per image were determined. These values were used to calculate the accuracy

(y), sensitivity (S,), and specificity (S,) using the following formulas [37]:

v = th + Nin (6.1
N,
Sy=—>P (6.2)
th +an
and
Nin
S, = _m (6.3)
]th +pr

6.2 Results

We tested our model using two datasets (Table 4.1). The first dataset contains our test
set, including artificial objects and chest tubes, as previously mentioned (Figures 6.1
and 6.2). The second test set contains 247 images without chest tubes, and it is publicly
available; it was created by the Standard Digital Image Database Project Team of the

Scientific Committee of the Japanese Society of Radiological Technology (JSRT) [14].

The results of our test set show the average Root Mean Square (RMS) errors of the raw

output of the Neural Network are summarized in Table 6.1.
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Table 6.1: Pixel-based average RMS error values of the raw output of the Neural
Network. All of the results are obtained by using CNN in 5 layers (2, 32,
32, 128, 1 nodes per layer; 32, 16, 128, 1 links per node).

Radiographs Our Test Set JSRT Test Set
Content Rads. RMS Err. Rads. RMS Err.
No chest tube 8 0.01857 247 0.006238
Chest tube(s) 13 0.03716 0 NA
Other artificial obj(s). 13 0.03142 4 0,005366
Total 21 0.03008 247 0.006238

Figure 6.1: Selected successful results from our test data set. The backgrounds are
input x-rays. X’ marks show the outputs of the proposed model.
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Table 6.2: Pixel-based average ROC values per image. TP: true positive, TN: true
negative, FP: false positive, FN: false negative.

Our test set  JSRT Database All test sets

Image Count 21 247 268
Pixels/image 1000000 1000000 1000000
TP/image 1120 0 88
TN/image 997341 999999 999790
FP/image 765 1 61
FN/image 774 0 60
Accuracy (%)  99.85 99.99 99.99
Sensitivity (%) 59.13 NAN 59.46
Specificity (%) 99.92 99.99 99.99

The raw outputs of the neural network refined by our proposed curve-fitting process.
The result of our tests using all of the 268 test images was a 99.99% Accuracy, a 59%
Sensitivity, and a 99.99% Specificity with 61 False Positive pixels/image and 60 False
Negative pixels/image (Table 6.2).

The JSRT database results do not have a False Positive or False Negative except for
only one image that had 347 False Positive pixels. These error values show that the
results are well aligned with the input images and are acceptable as an output. Some

examples of the JSRT database results are shown in Figure 6.3.

Our study is published with title "An approach for chest tube detection in chest

radiographs" at Image Processing, IET journal [38].
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Figure 6.2: Selected erroneous results from our test data set. The backgrounds are
input x-rays. X’ marks show the outputs of the proposed model.
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A
Figure 6.3: Selected examples from the JSRT test data set results. Because there is no

chest tube present, the chest tube markers are not present in these images.
The backgrounds are input x-rays.
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7. DISCUSSION AND CONCLUSIONS

7.1 Discussion

In our study, the chest tube is chosen as an artificial object that spans almost the whole
chest. In this way, the area of interest for searching and the differentiation of this area
are increased. Specifically, ribs can create a pattern that is easily mixed with tubes.
Moreover, while the density on the radiograph images increases with the overlapping
ribs at the sides, at the same time, there could be zones in which the image density
fluctuates with an increase in the rib clearance toward the center of the lung. In spite

of this difficulty, we obtained promising results in our study.

While a 99.99% Accuracy, and a 99.99% Specificity were calculated from our results, a
59% Sensitivity is looks like inconsistent. Accuracy, and Specificity values calculated
by using TN value, and TN value is very high and because of this reason, it is very
dominant (Table 6.2). But Sensitivity value calculated by not using TN value, and as a

result FN value reduces the Sensitivity ratio.

7.1.1 Limitations and Source of Errors

The results reveal that there is no confusion between the chest tubes and other artificial
objects (Figures 6.1 and 6.2 ). In our work, we found that the largest source of error is
the high-density zones, where the possible location of a chest tube is very difficult to

track. These high density zones are formed by overlapping ribs and/or pleural effusion.

Also an other major error source is the presence of radiographs, which contains
multiple chest tubes. Our curve fitting method is depending on the longest and darkest
line segment is a part of chest tube assumption. But this assumption brings implicitly a
deficiency which is our method only can detect one chest tube per radiograph. Because
of the "longest and darkest line segment" statement defines a single object. As a result,
all radiaographs, which contains more than one chest tubes, generates errors. Both

false negative and false positive errors are produced. When one of chest tubes is
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detected, others will be undetected, and their pixels are marked as false negatives.
Sometimes, two of these chest tubes overlaps, and at overlapping area, our algorithm
confused to follow the detected one, it follows other chest tube, and these pixels are

marked as false positives.

7.1.2 Parallelization

Processing a radiograph using our testing process, runs 3 minutes on the server, which
has dual socket, single core 3.4GHz CPU with 16KB L1 cache, IMB L2 cache and
AMDG64 architecture with 4GB RAM. Training stage for all training dataset, requires
approximately one week. We tried parallelization to reduce one-week wall clock
time, but stochastic learning makes parallelization very difficult due to recalculation
of the weights for every iteration. For overcoming these difficulties, we tried to
parallelized our algorithm by decoupling the training and testing processes. But this
approach was not useful, because of unbalanced wall-clock times of training and
testing processes. The testing process is quickly finished, and wastefully occupies

CPU without calculation.

Also there is an other issue against this type of parallelization: Single training run is
not enough to decide about performance of any configuration, because of the random
initial parameters. We run five different training instances with randomly selected
initial weights. The best result is selected. Because of that, instead of idling CPU’s,
we preferred to run the algorithm based on Single Program Multiple Data (SPMD)

model which is a simple but effective parallel model.

7.1.3 To clean the output of CNN and Curve Fitting

To cleaning output of the CNN, we firstly scan the output for sparse positive (black)
pixels. These are false outputs of CNN. But sometimes, some of them are true outputs
but not connected to main chest tube skeleton. Because of this reason excessive

cleaning is not help to better results.

Also, curve-fitting process requires some tricky settings. Firstly selecting control
points as more than 36 pixels long, cause unfairly located control points. Straight
parts of chest tube, will be represented with few control points, and curvy parts

will be presented with many of control points. The fitted curve, using unevenly
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selected control points, is not aligned onto original chest tube skeleton. Therefore,
we empirically obtained 36 pixels as a threshold for maximum length of single line
segment. With using this threshold, all line segments will be short, and fitted curve

exactly aligned.

The fitted curve was calculated as a fourth order polynomial. The flexibility of the
chest tubes requires higher order polynomials, but higher order polynomials tend to
wiggle excessively. Our test showed that representing the NURBES curve as a fourth

order polynomial was an optimal selection for better alignment.

7.1.4 Usability in medical practice

It is important to note that the detection of artificial objects in medical images has
critical importance in the medical image analysis field. Detecting the existence of an
artificial object and its location on radiographs has three critically important aspects.
First, this capability helps practitioners to detect the locations of these objects. Second,
artificial objects can be identified in the images for a PAC system. Finally, taking the
required measurements for other CAD methods will not be affected by the existence

of an artificial object.

Even if our algoritm has a theoretical capability to detect the multiple chest tubes,
currently it is not automatically detecting more than one chest tube and this can be
considered as a weakness of our algorithm. But this situation does not makes the

algorithm useless. As future work this capability will be activated.

7.2 Concluding Remarks

7.2.1 Chest Tube Inpainting

Inpainting is to remove some image part, estimating possible replacement of the hole
remaining from removing operation. Chest tube inpainting is removing the chest tube

figure and estimating replacement part from removing image parts and their neighbors.

Chest tube detection is useful, but removing (i.e. inpainting) chest tube figure from the
chest tube radiograph image will be more useful. We tried to remove chest tubes using

CNN, and we obtain some promising results too.
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But, major problem about medical inpainting is ensuring accuracy of the replaced
parts. When inpainting ordinary image, replacement parts must only be visually
acceptable. But, in medical area, estimated parts must be physiologically and
pathologically correct. Certificating the correctness of the estimated parts nearly

impossible, due to highly variable nature of pathology.

As a result, we shifted our research focus from inpainting to detection of chest tubes.

By this way, our algorithm did not modified the originality of radiographs at hand.

7.2.2 CNN Architecture

CNN architecture is consist of multiple variations, and possible settings of parameters.
Layer counts, link directions and counts, learning rate changes, initial values of weights

are some of them. Each of them somehow affects success of the output.

When initial values of weights are close to zero, achieving correct weights takes more

iterations, and training process requires more cpu time.

Increasing count of layers, makes difficult to training CNN, because of backpropaga-
tion process transfers differentials of output error from next layer to previous layers.
Each transfer reduces affect of error. Increasing layer count requires more iteration for

training.

Also, increasing node counts of last layers, is act as high order polynomial curve fitting.
It fits very well to training dataset, but very poor for testing dataset. Because of this

reason, excessive node counts of last layers is a trap for success.

An other issue about CNN, is the symmetry. When all nodes and links are symmetric,
two half of CNN is tend to produce symmetric output. Thus, the performance of CNN

decreases by half, but computational complexity remains the same.

7.3 Conclusion

Specifically, the chest radiography of a human contains vital organs and could have
many different artificial components that target these organs. The researches that are
focused on the detection of artificial objects in chest radiography, are mostly limited to

the tubes in the mediastinum. It is critical to know that an artificial object can be found
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anywhere on the whole chest radiograph, and our proposed model is the first study for

automatically detecting artificial objects in the lung region.

7.3.1 Other Potential Usage of Method

It is critical to mention that the output of the our method will be automatically obtained
without specifying any region of interest on the x-ray image. It is very important that
the proposed model doesn’t require any human intervention in the detection process,
because of the human intervention could be potential source of error. Because of this
feature, our method will be useful for other artificial objects such as other catheter
types and stapler wires. Also some pathological patterns may be detectable by using

our method.

It should be noted that it is important not only to successfully detect an artificial
object but also correctly analyses and evaluate the radiographs that have no chest
tube. Adding the JSRT data set, we obtained a larger test set that includes different
pathological patterns and chest tube configurations. However, for more robust tests,
there is a need for openly accessible, larger datasets that include every type of artificial

object and diverse pathological patterns.

7.3.2 Future Work

Although, results are very promising, there are weaknesses of our proposed method
that need to be improved further. Some new methods for CNN, offers better
performance such as Deep Neural Networks (DNN) architecture [39], which is very

popular today.

Also, the multiple chest tube detection problem, requires some modification. It
seems to be a simple modification can handle multiple chest tubes, but like every

modifications, this modification requires additional tests and improvement cycles.

We do not filter regions of input images. The selection of a Region of Interest (ROI)
may increase the performance of the neural network and filter some high-density zones,

which could cause some errors.

Testing to detecting other types of artificial objects and / or other radiographic imaging

techniques such as Magnetic Resonance (MR) or Computed Tomography (CT) , will
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also be a good candidates for future study, including orthopedic implant detection. But,
it should be noted that, all of these new implementations require some modifications

and new datasets for specific artificial objects.
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APPENDIX A : THE BASE_ANN CLASS

Major functions used to construct a CNN, defined at base_ann class:

//'/ \file mycnn_ann.h

/// \author Cem Ahmet MERCAN
/1] \brief Bu dosya base_ann
#ifndef MYCNN_BASE_ANN
#define MYCNN_BASE_ANN

sinifini bildiriyor

#include "mycnn_baselayer.h"
#include"mycnn_inputlayer.h"

#include "mycnn_hiddenlayer.h"
#include"mycnn_outputlayer.h"
#include"mycnn_sigmoid_outputlayer.h"
#include"mycnn_ce_sigmoid_outputlayer.h"
#include"mycnn_noact_outputlayer.h"
#include "mycnn_subsampling_hiddenlayer.h"
#include"mycnn_subsampling_outputlayer.h"
#include "mycnn_basenode .h"

#include "mycnn_matrix_array.h"
#include"mycnn_matrix_grid.h"

#include "mycnn_matrix .h"

#include "mycnn_mvector.h"

#include "mycnn_sdlm_hiddenlayer.h"
#include "mycnn_sdlm_outputlayer.h"
#include"mycnn_sdlm_ce_sigmoid_outputlayer.

using namespace std;

namespace mycnn {

class base_ann {

public:
virtual ~base_ann();
base_ann(int layerCount);
base_ann (const char xfilename);

void feedForwardLayer(const int layerNo,
const int backLink, const
const int outputHeight, const
const int stepSizeH = 1, const
const int weightHeight = —1,
const int weightWidth = —1,
const int weightBlock = —1);

void
void

setKernelsAutolInit () ;
setKernelsInit (double randMin,
double randAbsMin) ;

void weightRescale () ;

void setLearningRate (double eta,
long int totalEpochCount =

void
void
void
void

archFeedForward () ;
archFeedForwardSigmoid () ;
archFeedForwardSigmoidCE () ;
archFeedForwardSigmoidCE_SDLM () ;
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int

const

int nodeCount,

int forwardLink ,
int

outputWidth ,

100000) ;

stepSizeW = 1,

double randMax ,



void archFeedForward_SDLM () ;
void archFeedForwardNoact () ;
void archCNN(bool subsamplingl);
void archSubsampling () ;

void archSubsamplingReverse () ;
void archReverse () ;

void archFromSets () ;

void init();

void setFullLink () ;

void setCNNLink () ;

bool checkSettings () ;

virtual void preUpdateLearningRate(bigpic_array & inBP,
bigpic_array & tarBP, int loop, int % mem);

double updateLearningRate () ;

void forwardRun () ;

void trainOnce () ;

double loopMergedRandError(int loop, int inNo, int tarNo);

double loopMergedRandError(int loop, bigpic_array & inBP,
bigpic_array & tarBP);

double trainLoopMergedRandErrXvsl (int x, int loop,
bigpic_array & inBP, bigpic_array & tarBP);

double trainLoopMergedRandError(int loop,
bigpic_array & inBP, bigpic_array & tarBP);

double trainLoopMergedRandErrorAround(int loop,
bigpic_array & inBP, bigpic_array & tarBP,
int nesize =1);

double trainLoopMergedRandErrorSDLM (int loop,
bigpic_array & inBP, bigpic_array & tarBP,
int * mem);

double trainLoopMergedRandErrorFilter(int loop,
bigpic_array & inBP, bigpic_array & tarBP);

double trainLoopMergedRandError(int loop, int picCount,
bigpic_array * inBP,bigpic_array x tarBP,
int BPcount);

double trainLoopMergedRandError(int loop, int inNo,
int tarNo);

double trainLoopMergedRandErrorO256(int loop, int inNo,
int tarNo, double minv, double maxv);

double trainLoopMergedError(int loop, int inNo, int tarNo,
bool returntop = false);

void trainLoopMergedRandomInLRUpdate(int loop, int inNo,
int tarNo);

void trainLoopMergedRandomIn(int loop, int inNo, int tarNo);
double bigPictureRun(const string & filename , double pgmmin,
double pgmmax, int biglnNo, int bigTargetNo,
int bigOutNo, bool difit = false);
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double bigPictureRun(const string & filename , double pgmmin,
double pgmmax, bigpic_array & bigln,
bigpic_array & bigTar, bigpic_array & bigOut,
bool difit = false);

double bigPictureRunFull(const string & filename,
double pgmmin, double pgmmax, bigpic_array & bigln,
bigpic_array & bigTar, bigpic_array & bigOut,
bool difit = false);

double bigPictureRunO256(const string & filename ,
double pgmmin, double pgmmax, int bigInNo,
int bigTargetNo, int bigOutNo, bool difit = false);

void calcD2Net () ;

void calcD2W () ;

void calcCk () ;

void updateDelta(bool zeros = true);
void calcWeightUpdate (bool zeros = true);
void updateWeight();

void status (const bool showlinks = false, bool lockit =true);
bool saveNetwork(const char *x filename);
bool loadNetwork(const char *x filename , bool resize = true);

bool testUsingWeight(int layerNo, double Epsilon,
double Goal, double HMin, double HMax, double WMin,
double WMax, int RTestSize = 0);

bool testUsingNetlInput(int layerNo, double Epsilon,
double Goal, double HMin, double HMax, double WMin,
double WMax, int RTestSize = 0);

double recursiveJacobian(const int layer, const int snode,
const int kh, const int kw, const int tlayer,
const int tnode, const int tkh, const int tkw);

bool testUsinglnput(double Epsilon, double Goal, double HMin,
double HMax, double WMin, double WMax,
int RTestSize = 0);

void testAll();

void feedInput();

baselayer & layer(int layerNo);

node_settings & setLayer(int setNo);

void printAll(bool html, const char xtitle ,
bool teksatir = false, bool birlikte = false ,
int genis = 8, ostream &yaz = cout) const;

void printAll () const;
int layerOrder(int layerid);
int layerCount () {

return LayerCount;

}

bool copyNodeStateOnly (base_ann xp);

const mycnn::base_ann& operator=(const mycnn:: base_ann&);
base_ann(const mycnn:: base_ann&);

node_settings #*sets;

protected :
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baselayer x*xlayers;

int LayerCount;
}s
//end of base_ann class

}// end of name space mycnn
#endif
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