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MULTITEMPORAL CO-POLAR X-BAND SAR
DATA CLASSIFICATION AS A TOOL FOR
PADDY-RICE PHENOLOGY ESTIMATION

SUMMARY

Crop monitoring with remote sensing techniques become more important as the
demand of crops increases. Monitoring crop development, controlling their phenology,
checking for problems and yield prediction are some of the most popular applications
of remote sensing technology in precision agriculture. In those remote sensing
techniques, it is also possible to use the space based sensors thanks to the new sensors’
high spatial and temporal resolution. Usage of space based sensors also enables the
user to make global applications, which increases the importance of those technologies
even more.

Active remote sensing systems are used in this study which enables observation
without affecting from daylight or weather conditions. In this study, SAR images
are used which have been taken by TerraSAR-X, operating in X-band. Generally
electromagnetic modelling has been applied for phenology estimation with SAR
systems. Those modellings require too complex mathematical operations with
complex Physics background. In order to find alternative approaches, this study is
focused on determining and monitoring the phenological information of rice fields
with machine learning algorithms.

As classification algorithms, Support Vector Machines (SVM), k-Nearest Neighbours
(kNN) and Compact Decision Trees (CDT) were used in the experiments. In order
to control the parameters effecting the classification accuracy, different cases were
appended in the experiments with different number of classes, different features
sets and different clustering approaches. Two different datasets were used in the
experiments. One of them is images covering the rice fields around Seville, Spain
with ground information covering whole cultivation period. The second dataset used
in the experiments covers rice fields around Ipsala, Turkey but with limited ground
information, covering two thirds of the cultivation period with less amount of fields.
Therefore, all the experiments were done for Seville dataset and the best method was
applied for Ipsala dataset to control the applicability of the method.

First parameter to be controlled was class labelling, which also corresponds to the
precision of information obtained by classification. Four different class labelling cases
were appended with 3, 5, 6 and 10 classes, having different growth intervals. Without
making any supplementary achievement, the classification accuracies were higher than
70 %, which encouraged to keep the research.

Second parameter to be used was usage of feature sets. Using the two polarimetric
channels that the sensor has, 9 polarimetric and 8 gray level co-occurrence features
were calculated for the two channels. Then, classification performances with different
features sets were compared and observed that textural features have a contribution

xvii



to the classification accuracy. With this positive information, research was extended
to feature selection algorithms and the most important features were defined. It is
observed that the same classification performance could be achieved with 4 features in
stead of 25 features; which reduces the computational cost a lot.

Third parameter to be inspected was the evaluation of features using the pixels
within the fields. In order to deal with the non-homogeneity of fields and lack of
sampling data; different clustering approaches were produced and tested. In the end,
classification performance was increased by removing outlier pixels and increasing the
number of samples for the same ground information. To sum up, this paper explores
the performance of classification algorithms for multitemporal SAR images on rice
crops.

xviii



ÇELTİK TARLASI FENOLOJİ KESTİRİMİ
İÇİN ÇOK ZAMANLI CO-POLAR X-BANT SAR

VERİSİ ÜZERİNDE SINIFLANDIRMA YÖNTEMİ

ÖZET

Tahıl ürünlerine olan talebin global olarak artışına paralel olarak tahıl ürünlerinin
uzaktan algılama yöntemleriyle ekin takibinin yapılması da popüler bir hale gelmiştir.
Ekin gelişiminin takibi, fenoloji hakkında bilgi çıkartımı, hasat tahmini gibi çalışmalar
uzaktan algılama ile hassas tarımın birleştirildiği önemli çalışma konularındandır. Bu
konular üzerine hem yerküre tabanlı hem de uydu tabanlı çalışmalar yapılmaktadır.
Büyük tarım organizasyonları drone kullanmak, traktör üzerine sensör yerleştirmek
gibi yerel çözümler üzerine yoğunlaşırken global uygulamalar yapmak isteyen
uluslararası kuruluşlar veya devletlere bağlı araştırma merkezleri de uydu tabanlı
sensörler aracılığıyla uygulamalar geliştirmeye çalışmaktadır. Yeni nesil uydu
tabanlı sensörlerin mekansal ve zamansal çözünürlüğünün yüksekliği sayesinde tarım
uygulamalarında kullanımı gittikçe daha kolay hale gelmiştir.

Uydu tabanlı uzaktan algılama sistemlerinin global ve çok daha etkin bir biçimde
kullanılabilir olduğunu biliyoruz. Ayrıca, aktif uzaktan algılama sistemlerinin pasif
sistemlere göre çok daha kullanışlı, çevresel koşullardan etkilenmeyen ve daha
detaylı bilgi toplayabilen sistemler olduğunu da göz önünde bulundurarak daha fazla
önem taşıdığını rahatlıkla söyleyebiliriz. Bu gerekçeler göz önünde bulundurularak
bu çalışmada uydu tabanlı bir aktif uzaktan algılama sensörü olan TerraSAR-X
kullanılmıştır. TerraSAR-X, ikili polarizasyona sahip, co-polar, bir X-bant aktif
Yapay Açıklıklı Radar sensörüdür. SAR sistemlerinde genellikle çok karmaşık
matematiksel operasyonlar gerektiren, kompleks fizik altyapısı içeren gerisaçılım
teorileri kullanılmaktadır. Bu sistemler karmaşık olmasından dolayı veri işleme
yükünün de oldukça ağır olduğu çözümlerdir.

Bu karmaşık sistemlerden kaçınmak amacıyla bu çalışmada SAR verisi üzerinde
sınıflandırma algoritmaları kullanılmıştır. Sınıflandırma için kullanılan algoritmalar
Destek Vektör Makineleri , k-En Yakın Komşuluk ve Kompakt Karar Ağaçları
kullanılmıştır. Destek Vektör Makineleri kullanılırken çekirdek fonksiyonları
aracılığıyla hem doğrusal hem de doğrusal olmayan vektörler üretilmiş; sınıflandırma
hem doğrusal hem de doğrusal olmayan koşullara göre yapılmıştır. Sınıflandırma
başarısını etkileyen parametreleri kontrol etmek amacıyla değişik vakalar oluşturulmuş
ve tek tek incelenmiştir. Bu vakalar farklı sınıf sayıları ve sınıf aralıkları, farklı
öznitelik verileri ve verinin farklı kümelenme yöntemleri üzerine yoğunlaşmıştır.

Ayrıca, yapılan deneylerin global ölçekte kullanılabilir olup olmadığının kontrolü için
deneyler birbirinden tamamen bağımsız iki farklı veri seti üzerinde gerçekleştirilmiştir.
İlk veri seti İspanya’nın Seville şehrinin güneyinde bulunan çeltik tarlalarının
görüntülerini içermektedir. Bu veri seti tüm hasat dönemini kapsayan, aynı zamanda
12 adet tarlanın çeltiklerin gelişimine ait yersel ölçümleri de içeren 12 adet görüntüden
oluşmaktadır. İkinci veri seti ise Türkiye - Yunanistan sınırında bulunan İpsala
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kasabasının batısında bulunan çeltik tarlalarını kapsayan 6 adet görüntü ile 8 tarlanın
yersel ölçümden oluşmaktadır. İpsala veri setinin görüntülerinin tüm ekim dönemini
kapsamamasından ve yeterli sayıda yersel ölçümün de bulunmamasından dolayı tüm
deneyler Seville veri setinde yapılmış ve en uygun yöntem İpsala veri setinde denenip
işlevsel olduğu kanıtlanmıştır.

İncelenen ilk parametre sınıf sayısı ve sınıf aralıkları olmuştur. Sınıf sayısı
aynı zamanda ne kadar detaylı bir sınıflandırma yapılacağını da belirlediği için
kilit niteliğindedir. Çeltiğin gelişim evresini 3, 5, 6 ve 10 sınıfa bölerek dört
farklı değerlendirme yapılmıştır. Her ne kadar sınıf sayısı arttıkça sınıflandırma
performansında düşüş gözleniyor olsa da herhangi bir ek bilgi veya algoritmaları
geliştirici yöntem kullanmadan tüm vakalar için % 70’in üzerinde sınıflandırma
performansı elde edilmiştir. Bu sonuç araştırmanın geliştirilmesi açısından cesaret
vericidir.

İkincil olarak incelenen parametre ise sınıflandırmada kullanılan öznitelik setleridir.
Sensörün iki kanalından (yatay-yatay ve dikey-dikey) alınan verilerle toplamda 9
adet polarimetrik öznitelik verisi üretilmiştir. Ayrıca, tarlaların doku özelliklerini
incelemek amacıyla iki kanalın da ayrı ayrı Haralick öznitelik verileri çıkartılmış
ve doku öznitelik verileri olarak kullanılmıştır. Her ne kadar SAR verisi çeltik
tarlası gibi rastgele medyalarda doku özelliği taşımasa da problemin çokzamanlı
yapısından kaynaklı doku öznitelik verileri sınıflandırma performansını yükseltmiş; bu
da araştırmanın ilerletilmesi için motivasyon sağlamıştır. Sınıflandırma performansına
etkisi en fazla olan öznitelik verilerini belirlemek için farklı yaklaşımlara sahip üç
adet öznitelik seçme algoritması kullanılmıştır. Öznitelik seçme algoritmalarında
filtreleme , sarma ve gömülü yöntemler kullanan Kruskal-Wallis, Ayrık Bayesçi
Multinomial Biçimsel Regresyon ve Destek Vektör Makineleri Gereksiz Öznitelik
Elemesi yöntemleri kullanılmıştır. Deneyler sonucunda beklendiği üzere en önemli
öznitelik verileri polarimetrik veriler olarak belirlenmiştir. Ancak, şaşırtıcı biçimde
doku verilerinin çokzamanlı problemlerde sınıflandırma başarısını arttırabildiği
gözlenmiştir. Öznitelik seçme deneyleri aynı zamanda 9 polarimetrik ve her iki
kanal için 8 adet üretilmiş doku verileriyle toplamda 25 öznitelik verisiyle elde edilen
sınıflandırma performansının aynısını yalnızca 4 öznitelik verisiyle de elde edebilmiş;
işlem maliyetini ciddi bir biçimde azaltılabildiğini göstermiştir.

Üçüncü incelenen parametre ise öznitelik verilerinin nasıl üretildiğiydi. Sensörden
alınan veri piksel bazında olup sınıflandırma ise tarla bazındaydı. Yüksek mekansal
çözünürlük ve tarlaların boyutları göz önüne alındığında piksel ölçeğinden tarla
ölçeğine geçmenin incelenmesi gereken bir konu olduğuna karar verildi. Tarımsal
uygulamalarda önlenmesi çok zor birçok sorun nedeniyle tarla içindeki düzensizliğin
önüne geçmek, aynı zamanda sınırlı miktarda olan eğitim verisini arttırmak için üç
farklı kümeleme seçeneği belirlendi ve deneyler yapıldı. Aykırı piksel değerlerinden
kurtulmak için tarlaların yarıdan fazlasını içeren tek küme kullanımı olumlu sonuç
vermese de tarlaları farklı parçalara ayıran ve bunun yanında aykırı değerleri de
çıkartan bir algoritma sınıflandırma performansını oldukça iyileştirdi. Tüm bu
analizlerin ardından ise belirlenen en iyi sınıflandırma yöntemi ilk veri grubundan
tamamen bağımsız olan İpsala verisi üzerinde denenip yöntemin geçerliliği test edilmiş
ve başarılı sonuçlar alınmıştır.

Sonuç olarak; bu çalışmada SAR verisi üzerinde sınıflandırma algoritmaları kullanarak
çokzamanlı görüntülerde çeltik tarlalarının gelişim sürecinin takip edilebileceği
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gösterilmiş ve sınıflandırma performansının yeterince yüksek olduğu gözlenmiştir.
Neredeyse tüm deneylerin sonunda elde edilen sınıflandırma performansı Kappa
sayısı biriminde önemli derecede uyuşma olduğunu ortaya koymuştur. Bu sonuçlar
ışığında elbette ki geliştirilecek uygulamanın gereksinimlerine bağlı olmak koşuluyla
sınıflandırma algoritmalarının pirinç gelişim evrelerinin belirlenmesinde kullanılabilir
olduğunu söyleyebiliriz.
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1. INTRODUCTION

1.1 Motivation

From the beginning of the written history, people have been trying to control

and optimize the yields in farming. It forced people to make calculations, find

mathematical relations, even invent calenders. With the 5000 years of scientific

progress, we are now capable of controlling agricultural fields with various methods,

including space technology. Therefore, precision agriculture, which is a farming

management system from space, has become a cornerstone in sustainable agriculture.

One of the aspects of this kind of agronomy applications is phenology monitoring.

This is the reason that phenology monitoring in global scales with space based remote

sensing technologies is quite a hot topic to research and attracts a lot of researchers

with its importance and positive motivation for the Earth.

1.2 Objective

Although phenology estimation with SAR images is not a new application area; most

researchers have generally focused on complex electromagnetic theories that rely on

physical mechanics of the signals. Even though these methods are quite powerful, they

require high amount of calculations which could be even difficult for high performance

computer systems. The objective of this study is to determine the phenology of rice

without dealing with electromagnetic theory. Therefore, abilities of machine learning

algorithms were investigated on SAR data to classify the phenological development

of rice. Using polarimetric information as features for classification algorithms,

encouraging results were obtained, and the research was expanded on analysing the

effects of different parameters of the classification methods.

1.3 Literature Review

1



For many years, there has been many studies focusing on using SAR sensors in

agriculture. Thanks to their capability of detecting small changes without being

affected from the weather and time conditions, SAR sensors, which are elements of

active remote sensing systems, are quite favourable to be used in agriculture. Those

studies could be divided into two parts as deterministic and statistical studies.

Deterministic methods model the scattering mechanism of the signal within the target.

They depend on electromagnetic theory and the physical/geometric properties of the

target. Some examples of those studies could be seen in [6–8]. The main aim of

these studies is to build a function of scattering with physical parameters like canopy

height, leaf width, leaf area index, angle of leaves, density of leaves, and etc. However,

building those kind of functions require complex computational operations to generate

Monte Carlo simulations. Another aspect of deterministic methods are interferometric

SAR systems. They require two SAR images to control the change of scattering and

build interferograms. Some recent studies like [9,10] show that those methods are also

quite successful although there is still not any operational usage in agriculture.

Statistical methods, which are more simple than the deterministic ones, had also

been used in agricultural applications with SAR sensors as can be seen in [11].

By combining multiple polarizations, quite successful results can be obtained. In

[5, 12, 13], parameters obtained by multiple polarimeters were used by simple

thresholding methods for different band widths. However, some studies showed that

thresholding methods do not always give successful results [14]. Later, combination

of backscattering models and image processing was used in some studies. Phenology

estimation problem was tried to be solved by dynamic modellings like Kalman filtering

[15] and Particle filtering [16]. Those studies were also successful thanks to the high

temporal and spatial resolution of the new sensors.

In terms of using machine learning algorithms in remote sensing, various studies have

been done for active and passive sensors. Although the studies have started by using

passive remote sensing sensors [17–19], some active sensors are also used in various

types of machine learning algorithms [20–22]. Besides, there are various studies about

specific algorithms or specific combinations of some type of algorithms which have

been used for both active and passive systems [23]. As the dimensionality of the

2



data to be processed is getting bigger and the complicity of operations are increasing;

dependency of machine learning in any field of research is inevitable.

1.4 Structure of Thesis

This study is explained in four chapters in this thesis. In Chapter 1, an introduction

is given with the motivation of the study and the objectives to be reached followed

by the literature review for the research. Chapter 2 is devoted for the theoretical

background of the study and divided into two parts to explain SAR fundamentals

and machine learning fundamentals separately. In the part of SAR fundamentals, a

brief explanation of electromagnetic scattering mechanism is given. Then the methods

used for extraction of information, which is to be used as features in classification, are

explained in detail. In the second part of Chapter 2, machine learning fundamentals

that need to be known for the study are given under specific titles as classification,

feature selection and segmentation with necessary explanations. Chapter 3 gives

information about the experimental design and results obtained. Each parameter

affected the classification performance is explained with their definition, reasons and

results in specific subsections. Lastly, the thesis is concluded with Chapter 4 by making

a discussion on the experimental results and by pointing out possible future extension

of the study.
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2. THEORETICAL BACKGROUND

All the theoretical foundation of the study are given in this chapter, which is divided

into two sections as fundamentals of SAR and machine learning. First section

starts with a brief theoretical information about SAR basics, then continues with the

electromagnetic scattering mechanism and features extracted from SAR images with

their physical meanings.

Second section is divided into three subsections according to the type of machine

learning algorithms used in this study, which are classification, feature selection

and segmentation. First subsection is dedicated for SVM with linear and nonlinear

kernels, kNN and CDT are explained as classification algorithms, second subsection

is dedicated for KW, SVM-RFE and SBMLR are explained as feature selection

algorithms, and the last subsection is dedicated for clustering as a method for

segmentation.

2.1 SAR Fundamentals

Remote sensing sensors are divided into two parts as active and passive sensors.

Passive sensors measure only the radiated waves of an exterior energy source, while

active sensors measure the radiated waves of a specific energy source, which is the

electromagnetic wave of the sensor itself. Taking pictures without flash can be given

as an example of a passive system while taking a picture with a flash can be regarded

as an active system.

One of the most popular applications of active remote sensing systems are RAdio

Detection And Ranging (RADAR) systems. Today, it has still been named as radar

although different waves are being used including the radio waves. After this acronym

became popular and started being used in a lot of places, the capitalization of letters

were lost and today a lot of people use this acronym without knowing its meaning.
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In radar systems, the physical properties of the system like range, angle or velocity

of an object is determined by specific, discrete radio waves that named as signals.

Then, imaging can be done when this operation is repeated in multi dimensional space.

Another concept to be mentioned is depending on the way to provide the aperture,

radar systems are divided into two groups as Real Aperture Radar (RAR) and Synthetic

Aperture Radar (SAR).

2.1.1 Electromagnetic scattering mechanism for vegetation

TerraSAR-X is the name of the space-borne sensor that is used in this study. As it

can be understood from its name, the signals used to make the imaging are in X-band;

which has a wavelength range of 2.4 to 3.8 centimetres. Since the ability to detect the

changes is directly related with the range of wavelength; use of X-band sensors is quite

suitable to monitor the small changes of the crop.

The theory behind the SAR sensors are one of the most complex topics in remote

sensing since it needs a strong knowledge about a wide variety of topics from

mathematics to physics. The distribution of the values in a dataset can be analysed

mathematically while the mechanics of the scattering can be studied in terms of

electromagnetic theory, which extends from physics. It is possible to detect anomalies

of an area by using statistical operations on a data even though the physical dynamics of

the system is unknown. If physical background of the interactions are to be analysed;

the subject shifts to electromagnetic theory. In order to understand the polarimetric

dynamics, extensive experience on electromagnetic theory is required. Very briefly,

due to the interaction between the signal and the object, propagation of the signal,

which is a sinusoidal movement in 2-dimension, changes in terms of phase and

direction. Those directions are defined by the names of the channels of the sensors.

Depending on the direction of the sent and received signals; channels are named as

HH, VV, HV and VH where H and V represents horizontal and vertical directions,

respectively. First letter of the channel code gives the direction of the transmitter, and

the second gives the direction of the receiver. The information extracted about the

object can be increased by using multiple channels. In this study, only HH and VV

channels are used.
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Another important topic to mention is scattering. Scattering is divided into three types

as surface, volume and multiple volume-surface scattering; depending on the physical

and geometrical mechanism of the scatter. In surface scattering, it is assumed that

scattering can only be seen between the object and the surface; which is a mechanism

of reflection depending on the characteristics and geometry of the surface. In volume

scattering, signal partially penetrates into a volumetric media with particles having

a size around the wavelength. Lastly, in cases of having both of the scattering

mechanisms, the concept of multiple scattering occurs. To explain the case in this

study in a very brief way, the dominant scattering mechanism was in a change of

surface to volume scattering; as the fields were under water, followed by another

surface scattering because of the body of the crop as small vertical structures and

volumetric scattering as crop gets a volumetric shape. During this progress, not only

backscattering values but also polarization properties are effected during penetration;

which gives the possibility to detect small changes of the crop.

2.1.2 Features extracted and their physical meanings

Features that used in the experiments can be divided into two groups as Polarimetric

and Textural features. While polarimetric features were calculated by the polarimetric

responses of each of the two channels, textural features were calculated by spatial

variation of some of these polarimetric features.

2.1.2.1 Polarimetric features

Nine polarimetric parameters were calculated and used as feature in the classification

by using the two channels of the sensor. As the first step, the noisy data was

smoothed by a boxcar filter. Briefly, boxcar filters give an averaged value to each

pixel considering its neighbours. Dimension of the box was selected as 11 x 11 pixels

since the data were quite noisy.

First feature to be mentioned is backscattering values. Since the sensor used in

the study is a dual-pol sensor, there are two different channels to be investigated.

Backscattered values from the signals from HH and VV channel are calculated as

shown in Equation (2.1). In Equation (2.1), hht and vvt represents the smoothed

complex values received by the HH and VV channels respectively and ⊗ represents
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conjugation.

CHH = 10∗ log(hht⊗hht) and CVV = 10∗ log(vvt⊗ vvt) (2.1)

Another important parameter that used as a feature for classification in the study is the

ratio of backscattered values of the two channels, formulated in Equation (2.2).

RHV = 10∗ log(CHH)−10∗ log(CVV ) (2.2)

In order to obtain backscattering values in a more distinguishable way, those values

were also calculated in another space. Pauli channels are highly popular in studies

in electromagnetic theory and first Pauli channel is calculated by the difference of

backscattering values while second Pauli channel is calculated by the summation of

them. Backscattering coefficients in Pauli channels are shown in Equation (2.3).

T11 =
|CHH−CVV |

2
and T22 =

|CHH +CVV |
2

(2.3)

Another parameter that used as a feature is the coherence between the channels.

Equation of the parameter is shown in Equation (2.4).

Cohr =
(hht⊗ vvt)√

(hht⊗hht)∗ (vvt⊗ vvt)
(2.4)

Since attenuation is expected to be different in each of the two channels, the phase

difference between the channels is an important parameter to be used in the study.

Formulation of the parameter is given in Equation (2.5).

Pdi f = arctan
(

hht⊗ vvt
CHH ∗CVV

)
(2.5)

Last two polarimetric features used are entropy (H) and alpha angle (α). Those

parameters are produced by a modified version of a special decomposition method

called entropy/anisotropy/alpha angle (H/A/α) Decomposition. This decomposition

is done to the Hermitian averaged coherency matrix, T3. Since the sensor used in this

study has two channel, the decomposition is limited with H/α Decomposition and

calculations are done in a Hermitian matrix (T2) of 2x2 rather than 3x3, as shown in

Equation (2.6).

T2 =

[
(hht + vvt)⊗ (hht + vvt) (hht + vvt)⊗ (hht− vvt)
(hht− vvt)⊗ (hht + vvt) (hht− vvt)⊗ (hht− vvt)

]
(2.6)
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Figure 2.1 : Temporal trend of polarimetric features in one field of Sevilla Dataset.

After calculating the eigenvalues (λ ) and the eigenvectors υ of T2, the probabilities

(P1) are calculated as shown in Equation (2.7).

P1 =
λ1

λ1 +λ2
(2.7)

Following this step, H and α can be calculated like shown on Equations (2.8) and (2.9),

respectively.

H =−P1 ∗ log
(

P1

2

)
+(1−P1)∗ log

(
1−P1

2

)
(2.8)

α = P1 ∗ arccos(|υ(1)|)+(1−P1)∗ arccos(|υ(2)|) (2.9)

Normalized versions of the temporal trends of the polarimetric features with respect to

the BBCH values for one field in Sevilla dataset are shown in Fig. 2.1. As seen from

the figure, separability of features is quite difficult considering the temporal similarity

of the features.

2.1.2.2 Textural features

Textures of the received signals are also used as features in classifications. Although

vegetative structures completely have random backscattering, means no persistence of

texture, those parameters are calculated. Since the target does not reflect much textural

behaviour, the operations for extraction of features were done with the smallest size

of neighbouring cells, with a window size of 3x3. Eight of the Haralick’s features

were calculated for each channel. Those parameters are also called as gray-level

co-occurrence parameters since all the variables are fit in a distinct gray levels to be

used in imaging. Haralick’s features are listed with their equations in Table 2.1, and

their notation is also explained below.
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Table 2.1 : Equations of the Haralick’s features.

Mean = 1
IJ ∑

i
∑
j

p(i, j) Entropy = −∑
i

∑
j

p(i, j)log(p(i, j))

Variance = ∑
i

∑
j
(i−µ)2 p(i, j) Second moment = ∑

i
∑
j
{p(i, j)}2

Homogeneity = ∑
i

∑
j

1
1+(i− j)2 p(i, j) Correlation =

∑
i

∑
j
(i j)p(i, j)−µxµy

σxσy

Contrast =
Ng−1

∑
n=0

n2
{ Ng

∑
i=1

Ng

∑
j=1

p(i, j)
}

Dissimilarity =
Ng−1

∑
n=0

n
{ Ng

∑
i=1

Ng

∑
j=1

p(i, j)
}

• R : number of neighbouring resolution cell pairs (area of the box).

• p(i, j) : the (i, j) value of the normalized gray-level matrix, P(i, j)/R.

• Ng : number of discrete gray levels to be used in imaging.

• n = |i− j|

• {} the operation of calculating angular second moment.

• µx, µy : mean values of px and py.

• σx, σy : standard deviations of px and py.

All the features were calculated for each channel separately. Therefore, twenty five

features were produced to be used as features in machine learning applications that are

nine polarimetric, eight HH texture and eight VV texture. Normalized values of the

temporal trends of the textural features with respect to BBCH values are given in Fig.

2.2. Note that, the trends of the features are not very distinctive but it might be possible

to obtain distinguishable feature sets with a good selection of features.

2.2 Machine Learning Fundamentals

The second half of the study is based on machine learning applications. Since remote

sensing applications always cover big issues, researchers always face with big data

problems that cannot be handled by manual operations. Moreover, most of the

important mathematical operations are too complex to be solved manually. Therefore,

it is a must to use a computer technology to perform mathematical expressions in

remote sensing applications. Several studies have been done in machine learning

to handle problems raised in remote sensing and geographic information systems

[17, 19, 21, 24–26]. The algorithms that are used in this study as machine learning
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Figure 2.2 : Temporal trend of textural features in one field of Sevilla Dataset.

methods can be grouped as classification, feature selection, feature extraction and

segmentation algorithms; which have been explained in the following subsections.

2.2.1 Classification algorithms

Supervised classification methods were used which require class labels of the data

in the learning process. The features explained in Sections 2.1.2.1 and 2.1.2.2

are calculated for each field whose ground information about their phenological

development has already been known. Afterwards, they were labelled, in other words

classified based on their ground information to be used in ML algorithms. Basically, a

phenomena is being learned by a machine depending on some properties, features, and

their identities, class labels, to be able to classify new data having the same features.

Three popular and prospering supervised classification algorithms were used in this

study that are Support Vector Machines (SVM), k-Nearest Neighbours (kNN) and

Compact Decision Trees (CDT).

2.2.1.1 Support vector machines

SVM is a classifier that builds a separating hyperplane between two classes and makes

classification according to that separating hyperplane [1, 27, 28]. To explain this in

a simple way; let’s assume that we have data with two features and two classes that

can be separated linearly. If the hyperplane passes from the origin, the equation of the

hyperplane could be written as wT x = 0 where w is the function of the linear line and x

is the location of the samples in Fig. 2.3. In case of shifting the hyperplane from origin,
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Figure 2.3 : Separating hyperplane and
the margins [1].

Figure 2.4 : Errors for the separating
hyperplane [1].

a constant, b, should be added into the equation of hyperplane, resulting in wT x+b =

0. In order to minimize the misclassification, which is due to misplacement of the

separating hyperplane that leaves the samples in wrong sides, the optimum place for

the hyperplane should be found by adjusting the parameters w and b. To minimize the

misclassification, the hyperplane should be located as far as possible from the nearest

samples, which are named as support vectors, while keeping all the samples in the

correct side. We can continue by defining a margin with a distance d and placing it to

the both side of the hyperplane, as shown with the dotted lines in Fig. 2.3. Now, the

objective is to maximize the distance d, whose equation is wT x+b =±1. In order to

achieve this, all the samples should satisfy Equation (2.10) where yi is the label of the

sample xi.

yi[wT xi +b]≥ 1 where yi ∈ {+1,−1} (2.10)

Since the margin is expressed as d = 1/||w||2, the maximization problem is converted

to a minimization problem and then solved by using Lagrangian multipliers. Now the

new equation is (2.11) as shown below:

Lp = ||w||2 subject to yi[wT xi +b]≥ 1 (2.11)

Generally, Equation (2.11) can not be satisfied because of the irregularity of the data.

Therefore, an error term called slack variable is introduced to the Equation (2.11),

yielding a new optimization problem:

Lp = ||w||2 +C
N

∑
i=1

ξi subject to yi[wT xi +b]≥ 1−ξi (2.12)
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The setting of the margins is named as hard-margining and soft-margining depending

on the permit of error or not. In other words; if small errors is permitted, ξ is

greater than 0, the problem is handled as soft-margining. Even it is possible to make

classification with hard-margining, without the error term, it is not guaranteed to

have a better classification performance than the soft-margining approach. Since ξ

corresponds to the errors inside the margin as shown in Fig. 2.4, which is a distance in

analytic terms in the two featured example, ξ can not be less than 0. For the samples

inside the margin, 0 < ξ < 1 should be satisfied. As the samples approach outside

of the margin, ξ converges to 0 while ξ greater than 1 for the misclassified cases. In

order to optimize the problem between maximization of the margin and minimization

of the errors, a penalty coefficient named as C is added in Equation (2.12). Since it is

a classical constrained optimization problem, Lagrange optimization procedure can be

applied by using several Lagrange multipliers, αi. Equation (2.12) is converted into its

dual problem to be maximized as shown below in Equation (2.13).

Ld =−1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jxi
T x j +

N

∑
i=1

αi (2.13)

In Equation (2.13), 0 ≥ αi ≥ C and ∑
i

αiyi = 0, should be satisfied. By manipulating

the Equation (2.13) based on Karush-Kuhn-Tucker conditions, optimization could be

solved by using quadratic optimization programming and some samples having αi = 0

are named as Support Vectors.

Since most of the natural phenomenons can not be separated linearly, before applying

the procedure stated above, the data might need to be moved into a higher dimensional

space by applying a nonlinear kernel function. To do so, the operations would be done

with φ(xi) rather than xi, where φ(·) is the mapping function. A variety of kernel

functions are available in literature like Radial Basis Function (RBF), Polynomial and

Hyperbolic Tangent Functions. In RBF, which is used in this study, the Kernel function

for two samples x and x′ can be calculated by Equation (2.14):

K(x,x
′
) = exp

(
− ||x−x′||2

2σ2

)
(2.14)

By using the transformation matrix K(x,x′) in Equation (2.13), the same dual problem

can be obtained as shown in Equation (2.15).

Ld =−1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jK(x,x
′
)+

N

∑
i=1

αi (2.15)
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The C parameter in Equation (2.12) and the σ parameter, which is the kernel width, in

Equation (2.14) should be tuned using cross validation strategy to be able to build an

efficient separating hyperplane in terms of classification performance.

SVM is designed as a binary classification method. Therefore, it is worth to note

that different classification strategies should be used for the classification of multi

class data. The procedure explained above should be done for many times with

binary conditions and the majority of the results of the binary classifications is the

ultimate value for classification. The common strategies used in the literature are

one-against-one and one-against-all approaches. In one-against-one classification,

classification is done for all possible binary class cases. However, in one-against-all

classification, same procedure is done for each of the classes with an artificial class that

covers the rest. After the labelling with all cases, actual class label is found is found

with the majority vote.

2.2.1.2 K-nearest neighbours

The second classification algorithm to be used is kNN. The general name for this

classification method is nearest neighbour classifier. k-nearest neighbour classifier

assigns the most frequent label of the k nearest labelled samples with respect to the

proximity of the samples which is defined by distance functions [29, 30]. Those

distance functions could be depended on the numerical or categorical attributes of the

data, depending on the dataset. Some of the most common distance measures are

Euclidean, Hamming, Manhattan or Chebychev measures.

One thing to be optimized in kNN is the number of neighbours, k. In order to find

the optimum k, classification is done with kNN classifier having different number of

k’s based on the validation dataset. The k value providing the highest classification

accuracy is selected and the test data, whose labels are not known, are labelled. In

terms of computational complexity, kNN is much more simple than SVM. However,

this does not mean that kNN is not an accurate classifier. Thus, it should not be

forgotten that performance of the classifiers always depend on the data to be classified.

A visual example could be shown as Fig. 2.5 for a 2 featured dataset. The sample with

the ? is classified with different number of neighbours as k = 1,2 and 3, respectively.

2.2.1.3 Compact decision trees
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Figure 2.5 : kNN with k = 1,2 and 3, respectively.

The last algorithm used in classification is compact decision tree (CDT). The tree is

assisted according to the loss functions of related branches, then decision was made

accordingly [31–33]. Depending on the probabilities and distribution of the data,

prunes are provided. As shown in Fig. 2.6, algorithm defines prunes step by step

depending on the distinctive features with their distinctive values.

Figure 2.6 : Classification tree with threshold values of the distinctive features.

2.2.2 Feature selection algorithms

It is a very important thing to consider that number of features is not necessarily

related with the classification performance. Depending on the properties of the dataset,

sometimes it is enough to get the same classification performance with less number of

features. Moreover, it is even possible to have less performance with the excessive

number of features; which is a phenomena called ’Curse of Dimensionality’.

Dimensionality reduction (DR) is the general name of the operations in order to

overcome this problem. DR operations are divided into two categories as feature

selection (FS) and feature extraction. In FS, a new subset of the existing features

are selected with respect to their contribution to classification accuracy from the most
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distinctive features of the dataset to make a better classification. The most important

property of FS is that original features are not modified but kept the same. In feature

extraction algorithms, new features are developed from the original features in order to

have more distinctive ones. Principal component analysis, linear discriminant analysis

or canonical correlation analysis are one of the most important examples of feature

extraction analysis. However, it should be underlined that data is manipulated with

feature extraction methods, which can cause some loss of physical reality in the dataset.

In this study, since the features are derived from real physical interactions; feature

selection methods are used in order not to lose the information of physical reality in

the dataset. Feature selection algorithms are divided into three types depending on their

method as wrapper, filter and embedded methods. One feature selection algorithm was

used from each of those methods in this study, which are explained in the coming

subsections.

2.2.2.1 Kruskal-wallis

Kruskal-Wallis (KW) is a filtering method developed by Kruskal & Wallis in 1952

to build new feature sets from the existing ones [34]. Filter models evaluate the

importance of each feature considering their distinctive characters. As a result, they

filter the redundant features as shown in Fig. 2.7. Depending on their simplicity,

convergence in terms of classification accuracy of those methods can be slower than

the other methods although overfitting problems do not occur frequently. Filter models

can be divided into two types as univariate and multivariate models. Univariate models

evaluate each feature individually while multivariate models evaluate features with

subsets having one or more features. As a result, univariate methods are much faster

than multivariate methods but limited in defining redundant features. Although it is not

very convenient to make generalization about feature selection methods, it can be said

that filtering methods have the most simple computational background but the least

efficient ones in terms of selecting the most important features in first orders. As a

univariate filtering method, KW ranks the features using medians of each classes and

gives a feature importance order accordingly.

Figure 2.7 : Diagram of a general filtering algorithm.
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2.2.2.2 Support vector machines recursive feature elimination

Support Vector Machines recursive feature elimination (SVM-RFE) is a wrapper

method depended on the w vector of the hyperplane in SVM [35]. Wrapper methods

select the best subset of features in two consecutive steps as generating subset of

features by clustering and measuring their usefulness in a learning algorithm as

shown in Fig 2.8. Since this iterative approach does not stop until a good quality is

reached, wrapper methods have much more computational cost than filtering methods.

However, they are generally more successful than filtering methods but overfitting

problems may occur during the process. In SVM-RFE, the best feature subset is found

depending on the separating hyperplane w, found in SVM. In other types of wrapper

methods, maximum likelihood criteria, k-means or similar statistical tests can be used

in order to produce a subset of feature.

Figure 2.8 : Diagram of a general wrapper algorithm.

2.2.2.3 Sparse bayesian multinomial logistic regression

Sparse Bayesian multinomial logistic regression (SBMLR) is an embedded feature

selection method depending on Bayesian regularization with a Laplace prior [36].

Embedded methods build subset of features by clustering methods like wrappers but

they do not make a cross validation in order to measure the usefulness of the feature

subsets. The search of subset features are guided by the learning process, as seen in

Fig. 2.9. Therefore computationally, they are less expensive than wrapper methods

and have less tendency for overfitting. SBMLR is an advanced version of Sparse

Logistic Regression. Basically, it eliminates some terms of the logistic regression

by using Bayesian regularisation using a Laplace prior. Besides the advantages of

embedded methods, SBMLR stops iteration after classification accuracy is converged

to its maximum value; which gives additional computational efficiency. In other
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words, SBMLR stops listing the features after finding the most important features and

converge to the maximum accuracy in classification.

Figure 2.9 : Diagram of a general embedded algorithm.

2.2.3 Segmentation algorithms

Since fields are contained of big numbers of pixels and classification is done in

field scale, treatment of the pixels becomes an important point. Signals can vary

dramatically, which totally effects the features to be used, due to presence of some

man-made object during the acquisition of the images or inhomogeneities in the fields

due to agricultural problems or environmental factors. Another problem of the dataset

was the lack of samples. Also using all the pixels inside the fields in order to have a

representative value for the features is not consistent with the definition of BBCH scale,

which is explained in Section 3.1. Therefore three different cases were implemented

using k-means clustering in the experiments for the usage of the values in the pixels

to calculate samples. The details of the application are given in Section 3.4 while the

theory is explained in the coming paragraphs.

k-means clustering, which is also known as Lloyd’s algorithm, is basically an iteration

in order to divide the data into k clusters [37]. Iteration starts with selecting random

samples as centroids of each cluster. Then, for each centroid, the nearest individual

sample is found as another member of the cluster and the centroid of each cluster is

updated accordingly. In Fig. 2.10, which is taken from [2], a randomly generated

dataset and it’s clustered version is shown with the cluster centroids.
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Figure 2.10 : An example of clustering a random dataset with two clusters [2].
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3. EXPERIMENTS AND RESULTS

This chapter is focused on giving information about the experiments conducted with

the algorithms explained theoretically in Chapter 2 . Firstly, the study sites, details

of the datasets and experimental setup is defined in Section 3.1. Afterwards, each

of the specially inspected topic is explained and results are provided. Effects of

labelling is mentioned in Section 3.2, effects of features to be used is analysed deeply

in Section 3.3, effects of segmentation is explained in Section 3.4 and lastly, large scale

implementations depending on the results of the previous experiments is provided in

Section 3.5 to show the applicability of the method in big data and different study sites.

3.1 Study Sites, Data and Experimental Setup

In the experiments, two completely independent dataset were used. Those datasets

contain multitemporal X-band SAR images acquired by TerraSAR-X on HH and VV

channels whose operating frequency is 9.6 GHz. Temporal resolution of the images,

which is quite important to be able to detect the changes of the crop, is 11 days.

This temporal resolution is suitable enough to detect the phenological changes of rice

considering its growth speed. Parallel to the acquisitions, ground measurements for

phenological information of some spatially independent fields are also valid.

The scale of the phenology information is an important subject to be mentioned.

Phenology information is provided with a widely used growth information scale called

Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH),

which is defined by agronomist in order to define a global scale for mono- and

dictyledonous plant species like cereal, rice, maize, sunflower, bean, potato, coffee,

cotton and so on [38]. This is a discrete scale from 0 to 99, divided into 10 principal

growth stages and each of those growth stages are again divided into 10 parts as

secondary growth stages. According to the definition of BBCH scale, the appended

BBCH value should be valid for at least half of the field in order to overcome with the

inhomogeneity of the fields. The features calculated for the parcels using the acquired
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images were labelled according to their BBCH values as explained in Section 3.2 and

dataset is produced to be used in machine learning applications.

The independence of the datasets is very important since the differences between

different farms are quite big to effect any algorithms. The reason of the differences of

the information to be extracted from satellite images can be because of the agricultural

practices, climate and soil conditions. In terms of agricultural practices, cultivation

method including texture of sowing, sowing date and water level, type of rice species

sowed and presence of other plants are some of the important factors that effects the

study site. In terms of climate conditions, precipitation rates, temperature and wind

regime of the region, irrigation and flooding cases are important factors that change

the data. In terms of soil conditions, fertilization and mineral content of the soil can

make differences between different agricultural sites.

The first study site is in Spain, located around Guadalquivir river and Isla Major which

is south west of Seville, Spain. The cultivation period starts on May with the random

sowing of rice on flooded fields and generally lasts until October. The dataset is the

same one that is used in [12] and [16], which contains 12 co-polar TerraSAR-X images

with an incidence angel of 30◦. The study are is shown in Fig. 3.1 with its location in

Spain and a closer look from Google Earth. Those 12 images cover all the cultivation

period of 2009, which makes it possible to make an extensive analysis for the whole

cultivation process. Those 12 images are supported by ground information in BBCH

scale for 12 spatially independent fields. To sum up, 144 samples are suitable to be

used with their phenology information in the experiments for the first dataset.

Figure 3.1 : Study area of Seville, Spain.
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The second study site is in Turkey, located around Meriç (Evros or Meritsa) river and

Ipsala, which is just on the eastern side of the border between Turkey and Greece.

The study area is shown in Fig. 3.2 using the map provided in [3]. The cultivation

period starts on May with again sowing randomly and lasts until September. The same

dataset, which covers some of the cultivation period of 2014, is partially used in [39]

as well as some other studies. Unfortunately, the images for Ipsala dataset do not cover

all the cultivation period since there is only 6 images with ground information for 8

spatially independent fields. The dataset covers the first two stages of the main three

stages in cultivation; vegetation and reproductive stages. To make it clear, 48 samples

are available to be used in the statistical tests from the Ipsala dataset covering two

thirds of the cultivation period.

Figure 3.2 : Study area of Ipsala, Turkey [3].

The number of samples makes it quite challenging to make an extensive machine

learning analysis. Besides the lack of samples, another thing to make the problem

more challenging is the inhomogeneous distribution of the samples. In Fig. 3.3, the

distribution of samples in accordance to their BBCH values are shown for both Sevilla

and Ipsala dataset. Each sample is shown with red lines with their corresponding

BBCH value while BBCH scale from 0 to 99 is shown in the lowest row. In Fig. 3.3(a),

the first row corresponds to the most general and widely accepted three vegetative stage

of the crop which is defined by agronomists [40], while the row above BBCH scale

shows the principal growth stages defined by BBCH [38]. The rows between the ’Three

Main Stages’ and ’Principal Growth Stages’ of Fig. 3.3(a) are going to be explained
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in Section 3.2. the distribution of data is obviously inhomogeneous considering the

principal growth stages of BBCH scale. In Ipsala dataset, not only the lack of data

but also the inhomogeneity becomes more dramatic as can be seen in Fig. 3.3(b).

Therefore the extensive analysis is done in Sevilla dataset and Ipsala dataset was used

as a control for the robustness of the selected framework.
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Figure 3.3 : Distribution of the samples having ground information with time [4].

In this study, since the phenology estimation of rice was done with supervised

classification techniques on multitemporal images, ground information of the fields

should be used as class labels for the samples, where the values coming from

electromagnetic scattering are used as features of the samples. Polarimetric features

are calculated in IDL while textural features were calculated in ENVI. After calculating

each feature explained in Section 2.1.2 for the fields, each of them is labelled according

to their phenological information taken from in-situ surveys. After the labelling,

datasets become suitable to be used in supervised classification methods and inspected

in detail. All those machine learning analysis were done in MatLab environment. Also,

LibSVM package is used for SVM [41] and algorithms of KW and SBMLR are built

on the codes of [42]. For the statistical tests, each dataset is divided into two equal

parts randomly to be used as a training and testing dataset. In order to have robust

results from those random generations, each dataset is divided into 100 times and all

the experiments were done for 100 times with those random generations. Therefore all

the results in the coming sections are given with their standard deviations. Each of the

inspected variable is explained in the coming sections separately.
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In this study, the optimization of the penalty parameter, C, of SVM for linear and

nonlinear cases and the kernel width, σ , of RBF kernel function are optimized by grid

search from 2−8 to 28 in logarithmic scale. Also it should be noted that one-against-one

approach is used to adapt the SVM algorithms for multi-class classification in the

experiments. In order to calculate the distances between samples for kNN, Euclidean

distance measure is used for kNN in the experiments. Lastly, for CDT, 13 to 17 child

nodes were developed in the trees with different realizations by the algorithm in order

to make the decision.

3.2 Effect of Labelling

As explained in the previous section, phenological evolution, which is a continuous

variable of crops is defined in a discrete scale called BBCH. With this scale,

phenological evolution of the fields in a multitemporal dataset is defined numerically.

The decision of the number of classes and their intervals have a vital importance for

the performance of classifiers since the classifiers’ performances are dependent on the

separability of features between classes. The multitemporal evolution of some of the

features can be found in [12]. The division of the class boundaries should be done

by considering both the features’ separability and the important stages for farming

applications.

Four different class number case is selected to be inspected. As the most rough one,

3-class case was used with the BBCH intervals defined in [40]. To make the study

more precise, another case with 5 classes is also used. The boundaries of the classes

are defined in [12] which also uses the same dataset for Sevilla. To increase the

precision more, another case having 6 classes was defined by dividing the reproductive

and maturative stages into three classes as defined in [21]. Lastly another case having

10 classes was defined depending the principal growth stages of BBCH [38], which

could be one of the best cases for the farming applications. All the intervals of the

BBCH values can be seen in Fig. 3.3(a) with respect to classes.

The classification performance of the classifiers are given in Table 3.1. While the

overall classification accuracies (Acc.) are given in the upper rows, the kappa values

(κ) are given in the lower rows of each case. For each classification case, the best

classifier is shown with bold case. Nonlinear SVM and kNN achieved to get a
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Table 3.1 : Classification performances of the classifiers on different labelling cases.

Nonlinear SVM Linear SVM kNN CDT

3-class
Acc. 89.9 ± 3.8 85.1 ± 3.2 88.2 ± 3.8 82.3 ± 5.6

κ 78.7 ± 7.7 67.6 ± 6.4 75.5 ± 7.3 61.9 ± 11.6

5-class
Acc. 84.0 ± 4.0 80.8 ± 3.9 83.4 ± 3.8 79.3 ± 4.9

κ 79.1 ± 5.3 74.5 ± 5.2 78.4 ± 4.9 73.0 ± 6.2

6-class
Acc. 81.1 ± 4.4 77.5 ± 4.4 81.2 ± 4.1 73.2 ± 5.0

κ 75.9 ± 5.5 71.0 ± 5.7 76.2 ± 5.1 65.9 ± 6.1

10-class
Acc. 77.3 ± 4.3 74.4 ± 3.7 75.4 ± 4.6 67.0 ± 5.6

κ 73.3 ± 5.1 69.5 ± 4.4 71.1 ± 5.4 61.2 ± 6.4

classification accuracy higher than 80% except the 10-class case. Linear SVM and

CDT are also compatible with the other two classification methods. The reason of

the slightly lower performance of Linear SVM is its disability to adapt nonlinear

problems well. In CDT, the reason of the lower performance could be the high number

of branches of the decision. However, it has to be underlined that performance of

the classifiers strongly depends on the data, which is against generalization about the

performance of classification algorithms.

Regardless of the classifier, as the number of classes increase the classification

performance decrease as expected. One of the important reasons of this point is

the similarity in the SAR signatures in different classes. However, the results are

quite encouraging considering that in all cases a substantial agreement is achieved,

which requires a kappa value greater than 60%. The biggest reason of the lower

accuracy in 10-class case is the limited inhomogeneously distributed dataset. However,

even in 10-class case classification accuracy could be obtained higher than 75%.

From the four different class labelling cases, 6-class case gives the most successful

performance considering the classification performance of the classifiers and the

operational capacity of agricultural applications with the information produced by this

case. Therefore, the study is extended to further ways by using the 6-class labelling

case.

Classification performance of the classifiers for 6-class case can be seen in detail in

Table 3.2. In Table 3.2, first class wise accuracies, then overall accuracies and lastly

kappa agreements are given for each classification algorithm in (%). As done in Table

3.1, the best value obtained for each class is shown with bold text in the Table 3.2.

According to the Table 3.2, the easiest class to be determined is the first class, which is
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Table 3.2 : Class wise performances of different classification algorithms for 6-class
case.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Overall κ

Nonl. SVM 92.2 ± 7.3 75.0 ± 17.5 87.9 ± 8.1 77.2 ± 22.7 48.1 ± 22.3 68.8 ± 17.4 81.1 ± 4.4 75.9 ± 5.5
Lin. SVM 87.1 ± 8.6 72.3 ± 19.1 92.9 ± 6.7 42.3 ± 19.8 11.4 ± 14.9 91.6 ± 9.8 77.5 ± 4.4 71.0 ± 5.7

kNN 91.1 ± 7.1 78.4 ± 17.2 87.6 ± 7.1 80.6 ± 15.9 59.6 ± 19.5 60.4 ± 14.3 81.2 ± 4.1 76.2 ± 5.1
CDT 91.4 ± 5.9 53.8 ± 20.9 80.9 ± 12.1 48.8 ± 24.4 51.8 ± 26.2 59.2 ± 17.8 73.2 ± 5.0 65.9 ± 6.1

expected. Since the fields are under water in the first class due to agricultural practices,

SAR signatures are quite distinguishable than the other ones which are not completely

flooded. Following the first class, third class is also an easy class to be determined

since crops have a vertically dominated structure. Thanks to that vertical structure, the

two channels of the sensor changes in unique ways. While backscattering values of

the HH channel are higher than the other stages because of the double bounce effect,

signals from VV channel gets effected from the attenuation of the signal in the vertical

structure. The other classes are not that easy to detect. SAR signatures of the other

classes are quite similar since the crop is in a transition stage [12]. Besides, the variance

of the features are quite higher in the last stages compared to the first ones [10].

3.3 Effect of Features

After the number of classes to be estimated is defined; the effects of features and their

contribution on classification performance is analysed. It is an important point to be

analysed about the contribution of the features to classification. Besides, since all the

25 features were calculated from only 2 channels, it is very likely to have redundant

features that might reduce the performance of classifiers. In order to analyse the effects

of the features, two different analysis is done. Firstly, classification accuracies using

different feature sets were compared. Then some special feature selection algorithms

were used in order to see the importance of each feature individually.

In order to compare effects of different feature sets, features were grouped into three

parts as Polarimetric, HH texture and VV texture. With that feature set, all possible

combinations of feature sets were used in classification algorithms. Classification with

only textural features did not give any successful results, which is expected since

agricultural targets are so random that they do not have any textural formation. To

sum up, four different feature set is used as polarimetric, polarimetric & HH texture,
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polarimetric & VV and polarimetric with HH & VV texture features. The number of

features in those sets are 9, 17, 17 and 25, respectively.

The classification performance of the classifiers using those feature sets are shown

in Table 3.3 with overall accuracies (Acc.) and Kappa agreements (κ) and the best

feature set for each classifier is written in bold. As can be seen from the table, usage of

textural features, especially in VV channel, increases the classification accuracy up to

5% although fields do not have a textural formation. The reason of this contribution is

the temporal trend of the textural features even though they do not give any information

in a single time, t. However, neither which of the textural features contribute to the

classification nor the importance order of features could not be clarified with this

analysis. Therefore, feature selection algorithms are used in order to check each of

the features individually.

Table 3.3 : Classification accuracies for different feature sets.

Nonl. SVM Lin. SVM kNN RT

Polarimetric
Acc. 76.8 ± 4.8 73.4 ± 4.2 78.4 ± 4.4 72.7 ± 4.5

κ 70.5 ± 6.0 65.9 ± 5.2 72.6 ± 5.5 65.3 ± 5.6

Polarimetric + HH texture
Acc. 79.1 ± 4.8 74.9 ± 4.2 79.6 ± 4.3 71.8 ± 4.6

κ 73.3 ± 6.1 67.7 ± 5.3 74.2 ± 5.4 64.1 ± 5.6

Polarimetric + VV texture
Acc. 81.3 ± 4.7 76.9 ± 4.3 81.5 ± 4.4 73.2 ± 4.9

κ 76.2 ± 6.0 70.3 ± 5.5 76.6 ± 5.4 65.8 ± 6.0

Polarimetric + HH & VV texture
Acc. 81.1 ± 4.4 77.5 ± 4.4 81.2 ± 4.1 73.2 ± 5.0

κ 75.9 ± 5.5 71.0 ± 5.7 76.2 ± 5.1 65.9 ± 6.1

Three feature selection algorithm were used as feature selection algorithms as

KW, SVM-RFE and SBMLR. Each of them are selected from different modelling

approaches as explained in Section 2.2.2. By using those feature selection algorithms,

feature importance rankings and classification accuracies with those features are

obtained.

Overall classification accuracies obtained with kNN for 6-class case are shown in Fig.

3.4 with the increasing number of features. Here it should be underlined that SBMLR

stops iteration after the classification performance is converged to its maximum value,

after 7 or 8 features depending on the dataset realization. The other classifiers did

not needed to be placed since they all have the similar trend. The feature to be

used is selected by each of the feature selection algorithm separately. As seen from
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Fig. 3.4, a satisfactory classification can be done by using 4 or 5 features that

are selected by wrapper or embedded methods. KW converges slower than other

methods as expected, since it is a general drawback of the filtering feature selection

algorithms. Classification performance could be even increased slightly by discarding

the redundant features. Another benefit of using only the necessary features, is the

decrease in computational cost. The saving for computation could be higher than

expected since producing of the features are also quite costly.
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Figure 3.4 : Overall classification accuracies for kNN with increasing number of
features using different FS algorithms [4].

The rankings of the features obtained by each feature selection algorithm are shown

in Fig. 3.5. In Fig. 3.5, feature ranking for each random generalization is shown

with colours in rows of the figures while the mode of each rank is shown in the x-axis

of the figures. Therefore, it is expected to see the same colour vertically in case of

total robustness. Another thing to be mentioned for the figure is in the cases of quick

convergence for SBMLR, the unnecessary pixels left blanc in the figure. As seen

from the noise in the figures, feature selection algorithms are very sensitive to data.

Although the results are obtained from sub-datasets generated from the same data, the

results vary in different generations. However it is still possible to observe a general

trend in the experiments.

Blueish tones represent polarimetric features, greenish ones represent HH texture and

lastly yellowish ones represent VV textures. The overall ranking of the features can

be seen by colours in a rough way while specific ranking can be seen in the x-axis of
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the figures. As easily seen from the tones, polarimetric features are the most important

ones, followed by VV texture features. For the overall rankings shown in the x-axis

of the figures, the values vary within the algorithms since all of them have different

modelling approaches. However still the first ones are the polarimetric features. For

the most important textural features, it can be said that mean and the entropy values of

the Haralick features. Another important point about Fig. 3.5 is that, in KW, entropy

of VV texture is selected to be the most important feature. This is because of the

modelling dynamics of KW and the consequences of this ranking can be seen in the

poorer classification performance obtained by the order of KW in Fig. 3.4.
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3.4 Effect of Segmentation

Since the classification is done in field-scale but it is possible to calculate the features

in pixel-scale, the calculation of features for fields becomes another important point to

be analysed. In Seville, fields cover 6000 to 25000 pixels and in Ipsala, fields cover

1500 to 10000 pixels; which are big enough to effect the calculations. Moreover, it

is a well-known fact that generally fields do not grow homogeneously due to varieties

of problems [5]. In Fig. 3.6, which is taken from [5], a field in the same study area

having a cultivation problem can be seen. As a result, removal of the outlier pixels

have a great importance in the calculation of the representative features in field-scale.

To analyse this issue, three cases were defined in order to calculate representative

feature values for fields. Those cases were dependent on segmentation with are done

with k-means clustering, which is explained in Section 2.2.3. The clustering is done

with respect to backscattering values of HH and VV channels, their ratio and phase

difference between channels.

Figure 3.6 : An inhomogeneous field from the study area having a cultivation
problem [5].

In the first case, the easiest and the most classic approach was implemented as taking

the median values of all pixels within the fields, which is named as ’No Cluster’ in

the study. The previous experiments were also done with this approach. In the second

case, in order to have more pure samples, the definition of BBCH scale is applied to
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feature calculation in field scale [38]. To do so, a cluster that has more than half of

the pixels within the field with the maximum number of clusters should be found. An

iteration starting from 6 clusters with decreasing number of clusters is programmed

and checked the dimension of the biggest cluster. The first biggest cluster that has the

majority of the pixels within the field is selected as representative pixels. Then, the

median values of the features of those pixels are used as a representative values for

field-level data. This case is named as ’One Cluster’.

In the third approach, the aim of making a segmentation was not only have pure

samples but also increase the number of them. In order to do that, fields were divided

into 10 clusters and the biggest 6 of them were used as six different samples within the

field. After calculating median values of the features for each cluster, samples were

labelled according to the BBCH value of the whole field by using their median values.

By doing so, both outlier pixels of the fields were separated and number of samples to

be used in classification algorithms were increased although ground information was

the same. This case is named as ’Six Cluster’.

The performance of the classifiers are shown in Table 3.4 with overall classification

accuracies (Acc.) and kappa values (κ). The highest performance obtained for each

classifier was shown in bold. Although the definition of BBCH was applied in the One

Cluster case, classification performance was not better than the other methods. The

most likely reason for this problem is the loss of statistical reliability of SAR signals

considering the wide distribution of the values of the signals within pixels. However,

in Six Cluster case, the classification accuracies are increased up to 5%. Although

performance of kNN was still higher in No Cluster case, all other classifiers have higher

accuracies than the case of kNN in Six Cluster case. The reason for this increase in

performance is the increased number of samples. The need of more samples can also

be seen with the standard deviations of the results. As number of samples increased for

6 times, standard deviation of the performances of all classifiers decrease significantly.

3.5 Large Scale Implementations

In order to check the applicability of the method in different study areas, the best

framework obtained in Sevilla is implemented into a completely different dataset
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Table 3.4 : Classification accuracies for different segmentation cases.

Nonlinear SVM Linear SVM kNN CDT

No Cluster
Acc. 81.1 ± 4.4 77.5 ± 4.4 81.2 ± 4.1 73.2 ± 5.0

κ 75.9 ± 5.5 71.0 ± 5.7 76.2 ± 5.1 65.9 ± 6.1

One Cluster
Acc. 78.1 ± 4.3 75.3 ± 3.8 77.8 ± 3.8 72.7 ± 5.1

κ 72.0 ± 5.5 68.1 ± 4.7 71.7 ± 4.7 65.4 ± 6.2

Six Cluster
Acc. 86.9 ± 1.5 81.0 ± 1.4 78.2 ± 1.3 81.4 ± 2.4

κ 83.4 ± 1.8 75.6 ± 1.8 72.1 ± 1.7 76.3 ± 3.0

which is located in Ipsala. As explained before, the difference between the datasets

are coming from various aspects like environmental conditions, agricultural practices

and climate. As explained in Section 3.1, Ipsala dataset do not cover all the cultivation

period. Therefore only the best method obtained from the Sevilla dataset is applied for

the Ipsala dataset, which is using all of the 25 features with Six Cluster segmentation

case with a labelling case of 6-classes.

Table 3.5 : Classification performances of different classification algorithms in Ipsala
dataset.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Overall κ

Nonl. SVM 80.3 ± 10.0 78.6 ± 7.6 75.5 ± 7.2 45.8 ± 18.7 - - 75.9 ± 3.6 65.4 ± 5.2
Lin. SVM 70.6 ± 11.8 75.9 ± 8.8 79.0 ± 6.9 16.6 ± 19.7 - - 71.9 ± 3.4 58.8 ± 5.1

kNN 72.6 ± 9.6 80.9 ± 8.7 68.2 ± 6.6 22.3 ± 17.2 - - 70.9 ± 2.5 57.6 ± 3.5
CDT 85.1 ± 8.4 73.7 ± 9.4 73.1 ± 8.6 45.8 ± 19.6 - - 74.6 ± 4.7 63.6 ± 6.7

Classification performance of Ipsala dataset with this setup is shown in Table 3.5. Even

the accuracies obtained for Ipsala dataset is a bit lower than the Sevilla dataset, the

results are quite satisfactory. It is possible to have an overall classification accuracy of

more than 75% with a substantial kappa agreement. Since the scattering mechanism

is the same, the same explanations done in Section 3.2 is still valid and it is expected

to have the same trend in Tables 3.2 and Table 3.5. Although there is not any data

available for the fifth and sixth class for Ipsala, the lowest performance is obtained for

Class 4; which is the most difficult class for Ipsala dataset. Another reason for this

poor result is the uneven distribution of the dataset, as shown in Fig. 3.3(b).

After being sure about the applicability of classification algorithms on phenology

retrieval, the proposed framework was applied to the whole study area for both

Seville and Ipsala datasets. 250 randomly selected fields within the study area were

classified for the whole cultivation period with nonlinear SVM for 6-class case using
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Figure 3.7 : Histogram of appended classes for the thematic applications on both
datasets [4].

25 features calculated by Six Cluster segmentation approach. The classification model

built using all the labelled data. Since there is not any ground information about

those randomly selected fields, statistical performance analysis was impossible for

those results. However, it is still possible to have some idea about the accuracy of

classification by inspecting the temporal trends of the fields, which should be parallel

to the general phenological development of rice.

The results are shown in thematic maps in Fig. 3.8 and Fig. 3.9 for Seville and Ipsala

datasets, respectively. Each class is assigned with a specific colour and the outlier

pixels chosen by the Six Cluster algorithm are shown in gray in order to show them

separately. In order to summarise the information in the thematic maps, histograms

of appended classes on each image for both of the datasets are provided in Fig. 3.7.

The results are in agreement with the classification accuracies found with the statistical

tests. Although there are some obvious misclassification like assigning the forth stage

in the early season or assigning the first stages in the late season, especially after seeing

third classes; the results are quite encouraging. Since those obvious mistakes could

be overcome by applying simple modifications on the classification framework, the

framework could be seen satisfactory. In this study, mathematical calculations are

presented without any modification since the main idea is to prove the applicability of

the framework.

35



Cl
as

s 
1

Cl
as

s 
2

Cl
as

s 
3

Cl
as

s 
4

Cl
as

s 
5

Cl
as

s 
6

No
t A

ss
ig

ne
d

Do
Y 

13
7

Do
Y

14
8

Do
Y 

15
9

Do
Y 

17
0

Do
Y 

18
1

Do
Y 

19
2

Do
Y 

20
3

Do
Y 

21
4

Do
Y 

22
5

Do
Y 

23
6

Do
Y 

24
7

Do
Y 

25
8

Fig
. 4

. M
ap

pi
ng

 o
f p

he
no

lo
gi

ca
l s

ta
ge

s 
fo

r 2
50

fie
ld

s 
in

 S
ev

ill
e 

da
ta

se
t

11

Fi
gu

re
3.

8
:T

he
m

at
ic

m
ap

s
ob

ta
in

ed
fo

rS
ev

ill
e

re
gi

on
[4

].

36



Do
Y 

16
0

Do
Y 

17
1

Do
Y 

18
2

Do
Y 

19
3

Do
Y 

20
4

Do
Y 

21
5

11

Fi
gu

re
3.

9
:T

he
m

at
ic

m
ap

s
ob

ta
in

ed
fo

rI
ps

al
a

re
gi

on
[4

].

Do
Y 

16
0

Do
Y 

17
1

Do
Y 

18
2

Do
Y 

19
3

Do
Y 

20
4

Do
Y 

21
5

Fig
. 7

. D
et

ai
le

d
fil

ed
s 

fo
r t

he
 p

he
no

lo
gi

ca
l s

ta
ge

 e
st

im
at

io
n 

in
 Ip

sa
la

 d
at

as
et

11

Fi
gu

re
3.

10
:D

et
ai

le
d

vi
ew

of
so

m
e

fie
ld

s
of

Ip
sa

la
re

gi
on

ob
ta

in
ed

fo
rt

he
th

em
at

ic
m

ap
s

[4
].

37



Do
Y 

13
7

Do
Y 

14
8

Do
Y 

15
9

Do
Y 

17
0

Do
Y 

18
1

Do
Y

19
2

Do
Y 

20
3

Do
Y 

21
4

Do
Y 

22
5

Do
Y 

23
6

Do
Y 

24
7

Do
Y 

25
8

Fig
. 5

. D
et

ai
le

d 
vi

ew
 fo

r s
om

e
fie

ld
s 

fo
r t

he
 p

he
no

lo
gi

ca
l s

ta
ge

 e
st

im
at

io
n 

in
 S

ev
ill

e 
da

ta
se

t

11

Fi
gu

re
3.

11
:D

et
ai

le
d

vi
ew

of
so

m
e

fie
ld

s
of

Se
vi

lle
re

gi
on

ob
ta

in
ed

fo
rt

he
th

em
at

ic
m

ap
s

[4
].

38



The outcomes of Six Cluster case can be seen in the zoomed version of the thematic

maps. In Fig. 3.10 and Fig. 3.11, smaller areas of the study sites are shown, which

allow to see the differences within fields. It can be seen from the figures that, some

parts of the fields were appended outlier and didn’t classified, which are shown in gray.

Also it is possible to see the different labelled parts within the fields. However, each

of the fields has a dominant class having majority of pixels which makes the same

definition with BBCH scale.
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4. DISCUSSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES

In this study, machine learning methods were implemented to map the growth stages

of the rice crop using the multitemporal dual-pol SAR images. The aim of this paper is

to built a convenient classification schema providing a high classification accuracy and

more reliable thematic map. Through this process, there are several important points

encountered in implementing ML methods, and they need to be discussed in detail.

In the following sections, a brief discussion of the study will be given in Section 4.1

and will be concluded with some feature research recommendations in Section 4.2.

4.1 Discussions

The main aim of this study was to monitor the temporal evolution of rice fields using

SAR images in machine learning algorithms. The purpose of the study is to detect

the phenology of the crops without dealing with electromagnetic radiation theory, but

using statistical methods of machine learning. In order to analyse the parameters

and propose a concrete framework with this study, different evaluation methods

were inspected separately in one dataset, Seville dataset, and the best approach was

conducted on another, totally independent dataset, Ipsala dataset. Since machine

learning methods are quite dependent on dataset, a generalization for a concrete

framework is quite difficult. However, it is shown that using machine learning in

temporal image classification is applicable in monitoring the evolution of rice fields.

The first point to be underlined is class labelling. Since classification algorithms

are used in the study, class labels have a vital impact on the algorithm. Besides,

those class labels correspond to the phenological stages of the crops which means

that the important phenological stages of the crop and needs of cultivators should be

considered. In terms of capability of detecting changes, with their wavelength of 3

centimetres, X-band SAR sensors are quite capable to detect the changes of the crop

since SAR signals can detect the changes within the range of their wavelengths. In
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terms of machine learning, it is also certain that classification algorithms could be

successful with sufficient amount of learning data using representative features.

In order to check the performance of classifiers with different number of classes; four

different labelling cases were appended, starting from 3-classes to 10-classes. In those

cases not only number of classes but also the ranges of the classes were important.

Since classification is dependent on the separability of features in each class; intervals

of classes are very important. Temporal trends of important features could be seen

in [12]. Another thing to be considered depending on the class labelling is distribution

of data. Learning algorithms need sufficient amount of training data to understand the

pattern of classification. However, as can be seen in Fig. 3.3; even for the Seville

dataset there is an obvious lack of data for training and testing the performances

of classification algorithms. For the Ipsala dataset, as mentioned before, there is

not ground information for whole cultivation period; which restricts the research for

further analyses.

When the performances of classifiers are inspected in detail; as shown in Table 3.1;

the results are satisfactory considering that more than 80 % of classification accuracy

is obtained for 3-, 5- and 6-class cases. Another measure of the performance is

Kappa agreements; which is between 60 to 80 % for all cases that indicated moderate

agreement. Although it is not very convenient to propose classifiers since they are

strongly dependent on the data to be classified; it can be said that classifiers that

can work on nonlinear problems perform better than the linear ones. In this study,

classification with 6-classes is chosen considering the maximum number of classes

with a classification accuracy higher than 80 % and research was extended with this

class labelling case. As shown in Table 3.2, class 2, 5 and 6 are more difficult to

distinguish due to the features nonseparable nature and limited data.

The second point to be underlined in this study is the effects of features. Even though

vegetation is regarded as random media in SAR systems and textural formation is not

expected; using the temporal trends of the textural features with the other polarimetric

features can contribute the classification accuracy. As shown in Table 3.3, usage

of textural features contribute to the classification accuracy. This is an important

information to be used in the future studies of multitemporal image classification

for agricultural applications. Although textural information is not sufficient to
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make a successful classification, usage of textural information with polarimetric

information helps to increase classification accuracy thanks to the temporal trend of

these informations. To extend the study in inspecting the feature sets, feature selection

algorithms were used. As shown in Fig. 3.4, the classification accuracy could be

maximized by using 4 features instead of 25 features depending on the feature selection

algorithm. The most important features were also shown in Fig. 3.5. It is obvious

that polarimetric features have higher importance but at the same time some textural

features like mean values of gray level co-occurrence values of VV channel.

The third point to be underlined is the contribution of samples in classification. With

clustering approaches, different ways for calculating representative features for the

samples and number of samples were analysed. According to the results that are

summarized in Table 3.4, it is possible to increase the classification accuracy by

producing more samples within the pixels of the fields. By using the ’Six Cluster’

approach which calculates 6 different samples for one field while excluding the outlier

pixels of the fields, classification performance could be increased by up to 5 %. This

can be a powerful solution for the cases that do not have sufficient amount of data.

4.2 Recommendations

With this study, it is obviously shown that classification could be used in order to

monitor the phenological development of crops on SAR images. However, there are

certain points to extend the study. First of all, with more data available with ground

information, the study could be extended for different years and different study areas.

The more type of data to be used, the more global the study is. Moreover, it could

be interesting to model the development of the crops in one year and classify the

development of another year for the same region. Also the same classification could

be done for different type of crops and different type of sensors.

Secondly, the research about the classification algorithms could be extended. More

different classification techniques could also be appended like semi supervised

classification techniques. With semi supervised classification, algorithms might be

more accurate with limited number of training samples. Another point about the

classification algorithms is the fuzziness of ground information. Since BBCH values

are dependent on the majority of the crops within the field and appended by visual
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inspection, a fuzziness in those values are expected. Considering the samples on the

class boundaries; this fuzziness could lead dramatic changes for the classification of

the samples. To deal with this problem, soft classification techniques might be used

although it is not that easy considering that the sensor used has only two channels to

obtain information.
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E-Mail: cagkucuk@gmail.com

B.Sc.: Civil Engineering, Middle East Technical University

M.Sc.: Geographical Information Technologies, Istanbul Technical University

Professional Experience: 04/2014-09/2015 - Research Assistant in TUBITAK
Project ID: 113Y446

List of Publications:
“Paddy-Rice Phenology Classification Based on Machine-Learning Methods Using

Multitemporal Co-Polar X-Band SAR Images,” in IEEE Journal of Selected Topics in
Applied Earth Observation and Remote Sensing, PP(99), 1–11

“Co-polar SAR data classification as a tool for real time paddy-rice monitoring,”
in Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International,
2015, pp. 4141–4144

"Remote sensing image classification by non-parallel SVMs," in Geoscience and
Remote Sensing Symposium (IGARSS), 2014 IEEE International, 2014, pp.1269-1272

"Recursive feature selection based on non-parallel SVMs and its application to
hyperspectral image classification," in Geoscience and Remote Sensing Symposium
(IGARSS), 2014 IEEE International, 2014, pp.3558-3561

49


