

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND

ESTIMATION WITH GPU COMPUTING

Ph.D. THESIS

Halil Ertürk ESEN

Department of Computational Science and Engineering

Computational Science and Engineering Programme

JUNE 2016

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND

ESTIMATION WITH GPU COMPUTING

Ph.D. THESIS

Halil Ertürk ESEN

(702062002)

Department of Computational Science and Engineering

Computational Science and Engineering Programme

JUNE 2016

Thesis Advisor: Prof. Dr. Burç ÜLENGİN

Thesis Co-advisor: Prof. Dr. M. Serdar ÇELEBİ

İSTANBUL TEKNİK ÜNİVERSİTESİ  BİLİŞİM ENSTİTÜSÜ

YENİ BİR ÇOK DEĞİŞKENLİ STOKASTİK OYNAKLIK MODELİ VE GPU

TABANLI HESAPLAMA İLE KESTİRİMİ

DOKTORA TEZİ

Halil Ertürk ESEN

(702062002)

Hesaplamalı Bilim ve Mühendislik Anabilim Dalı

Hesaplamalı Bilim ve Mühendislik Programı

HAZİRAN 2016

Tez Danışmanı: Prof. Dr. Burç ÜLENGİN

Tez Eş Danışmanı: Prof. Dr. M. Serdar ÇELEBİ

vi

vii

FOREWORD

First and foremost I would like to thank my advisor Prof. Dr. Burç ÜLENGİN whose

precious guidance and mentorship guided me through not only this study but also my

whole doctoral journey and helped me for surviving and reaching to this point. I am

also grateful to my co-advisor Prof. Dr. M. Serdar ÇELEBİ who provided great

support and motivation in this study and inspired me with his enthusiasm for the field

of computational sciences from the beginning. As I feel very lucky for being their

students, I would like to let them know that their kindness and understanding are

greatly appreciated.

I would also like to thank my committee member and professor, Prof. Dr. Metin

DEMİRALP whom I learned really too much, from both his solid courses and his

wisdom.

I would also like to thank my committee members Prof. Dr. Hasan DAĞ and Prof.

Dr. Oktay TAŞ who provided valuable opinions, comments and advice which

significantly contributed in developing and shaping the study.

For her unique patience and great help, I would like to thank my loving wife Ayla

who always stands by me and special thanks to my son Arda whose unbelievable

pace of growth motivated and reminded me that I must go on and speed up when

things get slower.

As it has always been, I have constantly felt the blessings of my mother and hearty

support of my father and sisters which kept me stronger in this journey too.

June 2016 Halil Ertürk ESEN

viii

ix

TABLE OF CONTENTS

Page

FOREWORD .. vii

TABLE OF CONTENTS .. ix

ABBREVIATIONS .. xi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

SUMMARY .. xvii

ÖZET .. xix

1. INTRODUCTION .. 1

2. THEORETICAL AND MATHEMATICAL BACKGROUND 7

2.1 Stochastic Volatility Modeling .. 7

2.1.1 Overview of stochastic volatility models .. 7

2.1.2 A novel multivariate stochastic volatility model (MSV-D) 12

2.2 Estimation Algorithms for Stochastic Volatility Models 16

2.2.1 Stochastic volatility models as nonlinear state space models 16

2.2.1.1 Densities implied by the MSV-D model 17

2.2.1.2 Filtering, prediction and smoothing .. 19

2.2.1.3 Mean, variance and likelihood .. 22

2.2.2 Overview of the estimation methods ... 22

2.2.3 Estimation with Markov Chain Monte Carlo (MCMC) methods ... 27

2.2.3.1 Preliminaries on the MCMC methods 27

2.2.3.2 MCMC based estimation algorithms for the MSV-D 29

MCMC with EM algorithm for the MSV-D 29

Bayesian MCMC for the MSV-D ... 33

2.2.4 Estimation with sparse grid integration (SGI) method 43

2.2.4.1 Preliminaries on the SGI method .. 43

2.2.4.2 SGI based estimation algorithms for the MSV-D 45

3. COMPUTATIONAL IMPLEMENTATION .. 51

3.1 Computational Aspects of Estimation Algorithms 51

3.2 Parallelization Approaches for the MCMC Based Algorithms 57

3.3 Parallelization Approach for the SGI Based Algorithms 58

3.4 Notes on the GPU Implementation .. 60

4. METHODOLOGY .. 63

4.1 Software Programs and Hardware ... 63

4.2 Assessment of the MSV-D Model ... 64

4.3 Assessment of the Estimation Algorithms ... 68

5. RESULTS ... 71

5.1 MSV-D Model on Simulated Returns Data ... 71

5.2 MSV-D Model on Empirical Data ... 84

5.3 Comparative Simulations for Estimation Algorithms 89

5.4 SGI Based Estimation Algorithms on Empirical Data 94

x

5. CONCLUSION .. 99

REFERENCES ... 103

APPENDICES .. 107

CURRICULUM VITAE .. 125

xi

ABBREVIATIONS

AR : Autoregressive

ARCH : Autoregressive Conditional Heteroskedasticity

EKF : Extended Kalman Filter

EM : Expectation Maximization

GARCH : Generalized Autoregressive Conditional Heteroskedasticity

GPU : Graphics Processing Unit

MCMC : Markov Chain Monte Carlo

MSV : Multivariate Stochastic Volatility

PCA : Principle Component Analysis

RMSE : Root Mean Squared Error

SGI : Sparse Grid Integration

SV : Stochastic Volatility

VaR : Value at Risk

xii

xiii

LIST OF TABLES

Page

Table 2.1 : Multidimensional grid sizes based on the trapezoid rule.......... 46

Table 4.1 : Implemented estimation algorithms.. 64

Table 5.1 : Static MSV-D model parameter estimation results of γi, φi, ζη,i 73

Table 5.2 : Static MSV-D model parameter estimation results of ρεε,ij ,
ρεη,ii, ρεη,ij.. 74

Table 5.3 : Static MSV-D model log-volatility estimation results.............. 76

Table 5.4 : Dynamic MSV-D model parameter estimation results of γi, φi,

ση,i ... 79

Table 5.5 : Dynamic MSV-D model parameter estimation results of δi...... 79

Table 5.6 : Dynamic MSV-D model parameter estimation results of θi... 80

Table 5.7 : Dynamic MSV-D model parameter estimation results of ζω,i.. 80

Table 5.8 : Dynamic MSV-D model log-volatility estimation results 81

Table 5.9 : Dynamic MSV-D model estimation results of the dynamic

correlations, ρεε,ij,t , ρεη,ii,t, ρεη,ij,t.. 81

Table 5.10 : MSV-D model parameter estimation results of γi, φi, ζη,i on

S&P500, IBM and Intel (INTC) returns.................................... 85

Table 5.11 : MSV-D model parameter estimation results of δi on S&P500,

IBM and Intel (INTC) returns... 85

Table 5.12 : MSV-D model parameter estimation results of θi on S&P500,

IBM and Intel (INTC) returns... 85

Table 5.13 : MSV-D model parameter estimation results of ζω,i on

S&P500, IBM and Intel (INTC) returns.................................... 86

Table 5.14 : GARCH model parameter estimates on S&P500, IBM and

Intel (INTC) returns... 86

Table 5.15 : Log-volatility estimates MSV-D vs. GARCH on S&P500,

IBM and Intel (INTC) returns... 87

Table 5.16 : Accuracy comparison of SGI and MCMC based estimation

algorithms.. 90

Table 5.17 : Parameter estimation accuracy comparison of the SGI and

MCMC based algorithms.. 91

Table 5.18 : Execution times of SGI and MCMC based estimation

algorithms.. 92

Table 5.19 : MSV-B parameter estimation results on EUR/TL and

USD/TL returns... 95

Table 5.20 : CCC-GARCH parameter estimation results on EUR/TL and

USD/TL returns... 96

Table 5.21 : Log-volatility estimation comparisons on EUR/TL and

USD/TL returns... 96

xiv

xv

LIST OF FIGURES

 Page

Figure 3.1 : Estimation algorithm dependencies... 52

Figure 3.2 : Sequential (i.e. on-line) vs. batch algorithm............................ 52

Figure 3.3 : Smoothing algorithm of MCMC with EM approach............... 53

Figure 3.4 : Smoothing algorithm of Bayesian MCMC approach.............. 54

Figure 3.5 : Filtering algorithm of SGI approach.. 55

Figure 3.6 : Parallel MCMC based smoothing algorithm........................... 57

Figure 3.7 : Parallel SGI based filtering algorithm..................................... 59

Figure 5.1 : Simulated series based on the static MSV-D model................ 72

Figure 5.2 : Log-volatility fits for the static MSV-D model....................... 75

Figure 5.3 : Simulated series based on the dynamic MSV-D model.......... 77

Figure 5.4 : Examples of simulated dynamic correlations based on the

dynamic MSV-D model... 78

Figure 5.5 : Log-volatility fits for the dynamic MSV-D model.................. 82

Figure 5.6 : Dynamic correlation fits for the dynamic MSV-D model....... 83

Figure 5.7 : Return series of S&P500, IBM and Intel (INTC).................... 84

Figure 5.8 : Log-volatility estimates of S&P500, IBM and Intel (INTC)... 87

Figure 5.9 : Correlations between returns of S&P500, IBM and Intel

(INTC)... 88

Figure 5.10 : Examples of dynamic leverage, cross-leverage and volatility

spillover estimates.. 89

Figure 5.11 : Accuracy comparison of SGI and MCMC based estimation

algorithms.. 90

Figure 5.12 : Execution times of serial and GPU accelerated estimation

algorithms.. 93

Figure 5.13 : Speed up by dimension in SGI and MCMC based algorithms 94

Figure 5.14 : Return series of EUR/TL and USD/TL................................... 95

Figure 5.15 : Log-volatility smoothing estimates on EUR/TRL and

USD/TRL returns... 97

Figure B.1 : Time varying correlation matrix construction mechanism of

the MSV-D model.. 109

xvi

xvii

A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND

ESTIMATION WITH GPU COMPUTING

SUMMARY

Modeling and estimation of volatilities of asset returns in financial markets have

been a major research area for the last three decades because of the prominent role of

volatility concept in mathematical and quantitative finance. Reliable volatility

estimates of asset returns are indispensible inputs to several mathematical models in

financial frameworks including but not limited to risk management and

measurement, option pricing, portfolio and asset management.

Volatilities of asset returns show several well studied and reported structural patterns

which are called stylized facts including time varying and persistent dynamics,

leverage effects and spillovers. Models and estimation methods for addressing those

stylized facts about volatility for asset returns are central to the contemporary

volatility estimation research.

Stochastic volatility (SV) models constitute a family of models considering the

conditional variance of returns as latent variables driven by a stochastic process

instead of explicitly modeling it as in the Autoregressive Conditional

Hetoreskadasticity (ARCH) models which constitute an other family of models in the

volatility modeling research field. By construction, SV models are quite flexible and

versatile in capturing the stylized facts, however because of their nonlinear

structures, linear approximations or computationally demanding numerical methods

are required for the associated estimation problems.

An appreciable amount of research composed of several multivariate model

specifications and parameterization addressing different and more complicated

stylized facts not only about volatility but also about co-volatility and their

multidimensional dynamics is available. In the multivariate stochastic volatility

(MSV) modeling research the control mechanisms and parameterizations of the

covariance and/or correlation matrices in MSV models and their handling in time-

varying settings are the core topics since almost all stylized facts are imposed

through the structure of those matrices which have special structures and restrictions

on their entries in MSV models. Addressing several stylized facts at the same time in

a single model is not a trivial task and requires appropriate mechanisms and most of

the available models in the literature address only a subset of stylized facts at the

same time. In this context, a novel MSV model referred as MSV-D is proposed as

one of the objectives of this thesis. The proposed MSV-D model can accommodate

most of the common stylized facts, namely correlations between asset returns,

leverage effect (i.e. asymmetry) cross-leverage effect and volatility spillovers and

furthermore it allows replacing the static versions of the listed stylized facts with the

time-varying (dynamic) counterparts completely or partially. The proposed MSV-D

model achieves this flexibility and generality by modeling the correlations as

xviii

separate stochastic processes like the volatilities. The proposed MSV-D model

includes a specially designed mechanism for handling the time-varying correlation

matrices and controlling the stochastic processes driving correlations. Having been

proposed a MSV model, its estimation algorithm based on the Markov Chain Monte

Carlo (MCMC) methods in a Bayesian setting is also developed. The proposed

MSV-D model and its Bayesian MCMC estimation method are illustrated on

simulated and empirical data and it is shown that the proposed MSV-D model and its

Bayesian estimation algorithm perform well in both static and dynamic settings.

As being nonlinear state space models, MSV models require estimation methods that

can handle high dimensional integrals for obtaining smoothing, filtering and

prediction estimates of log-volatilities and parameter estimates. Mainstream

estimation method for the MSV models are based on the MCMC methods including

the Gibbs sampling and Metropolis-Hastings algorithms. MCMC methods are not

affected by the high dimensionality in contrast with the any other alternative methods

available including other Monte Carlo based probabilistic methods such as

resampling, importance sampling and rejection sampling and exact methods such as

the numerical integration. Moreover, MCMC methods can be extended naturally in a

Bayesian setting where parameter estimation can also be performed by the sampling

schemes offered by MCMC without the need for explicit calculation and separate

routines for maximizing the log likelihood. The drawbacks with the MCMC method

are the issues in convergence and error control and selection of the proposal density

where the posterior density is not analytically tractable. Poor mixing chains with high

inefficiency factors are common in applications. In search of an alternative

estimation approach for the MSV models which would have better error control and

convergence properties and computational features competing with the MCMC

approach, Sparse Grid Integration (SGI) based estimation algorithms which have not

been studied for MSV models previously, are developed and evaluated for the second

objective of the study. SGI method is a smartly reshaped version of the conventional

numerical integration method for handling multi-dimensional integrals by

constructing multi-dimensional integration formulas in a way that the dimensionality

effect is decreased to a certain extent which allows practical implementation in

higher dimensional cases in contrast to the conventional numeric integration

methods.

The proposed SGI based estimation algorithms are illustrated on simulated and

empirical data and it is shown that the proposed algorithms perform as well as the

MCMC based algorithms and in certain conditions surpass the MCMC methods in

terms of both accuracy and computational performance. Although the issues with

dimensionality is significantly reduced with the SGI based approach, high

dimensional problems can still be problematic from the computational perspective.

The computational requirements of the both MCMC and SGI based algorithms are

quite high. In this context, computational improvements that can be achieved with

the usage of graphics processing unit (GPU) for estimation algorithms are evaluated

by developing and implementing parallelization approaches for MCMC and SGI

based estimation algorithms as the third objective of the study.

In the simulation study conducted implemented parallel GPU estimation algorithms

provided significant improvements in execution times with speed up values up to 16

for MCMC based algorithms and speed up values up to 25 for SGI based algorithms

on single GPU which are promising results for larger scale parallel architecture

implementations.

xix

YENİ BİR ÇOK DEĞİŞKENLİ STOKASTİK OYNAKLIK MODELİ VE GPU

TABANLI HESAPLAMA İLE KESTİRİMİ

ÖZET

Finansal oynaklık (ing: volatility) kavramının matematiksel ve sayısal finans

alanında oldukça önemli bir yeri olması sebebiyle finansal piyasalarda oynaklık

modellemesi ve kestirimi (ing: estimation), temel bir araştırma alanı olarak karşımıza

çıkmaktadır. Güvenilir oynaklık tahminleri, risk yönetimi, opsiyon fiyatlama, portföy

ve varlık yönetimi gibi birçok matematiksel model ve sayısal finans yaklaşımı için

vazgeçilmez derecede önemli girdilerdir.

Finansal varlık getirilerindeki oynaklık üzerinde yapılan bir çok araştırma ve çalışma

oynaklığın çeşitli yapısal desenler ve dinamikler gösterdiğini ortaya koymuştur.

Zaman içinde değişenlik, yer yer kalıcı özellikte dinamikler, getiriler ile oynaklık

arasındaki ilişkiyi ifade eden kaldıraç (asimetri) ve birden fazla getiri sözkonusu

olduğunda oynaklıklar arasındaki yayılma etkileri bu yapısal desenlerden önemli

olanlardır. Oynaklıkla ilgili bu yapısal desenleri yansıtabilecek matematiksel

modeller kurgulamak, bunlara ilişkin kestirim (ing: estimation) yöntemleri ve araçlar

geliştirmek ile bunlar ile getiri verileri üzerinde gerçekleştirilen analizler, güncel

oynaklık kestirim araştırmalarının ve çalışmalarının temel odağı durumundadır.

Stokastik oynaklık modelleri iki temel oynaklık modelleme yaklaşımından bir

tanesidir. Stokastik oynaklık modelleri getirilerin koşullu varyansını, diğer bir önemli

model ailesi olan Autoregressive Conditional Heteroskedasticity (ARCH)

modellerinde olduğu gibi açık biçimde modellemek yerine koşullu varyansı,

stokastik bir süreci takip eden örtülü (ing: latent) bir değişken olarak ele alan bir

model ailesidir. Stokastik oynaklık modelleri koşullu varyansların ayrı bir stokastik

süreç olarak ele alınışı dolayısıyla, oynaklıkla ilgili belirtilen yapısal desenleri ve

dinamikleri yakalama konusunda oldukça esnek ve yetenekli modellerdir. Ancak

doğrusal olmayan yapıları sebebiyle stokastik oynaklık modelleri, ilgili kestirim

problemleri için ya doğrusal yaklaştırıma dayalı yöntemler ya da yoğun hesaplama

ihtiyacı duyan sayısal yöntemler gerektirmektedirler.

Yazında, oynaklık ve oynaklığın çok boyutlu dinamikleri ile ilgili yapısal desenleri

gözeten ve modellemeye çalışan çok değişkenli modeller üzerine ciddi miktarda

çalışma ve araştıma bulunmaktadır. Çok değişkenli stokastik oynaklık (ÇDSO)

modelleme araştırmalarında, kovaryans ve korelasyon matrisleri hemen hemen tüm

yapısal desenlerin ve dianmiklerin belirlenmesinde anahtar bir araç olduğundan, özel

biçimlere sahip bu matrislerin zaman içinde değişken biçimde hareket etmelerine

olanak tanıyan mekanizma ve kontrol yöntemleri en önemli araştırma başlıklarından

bir tanesidir. Aynı anda birden fazla yapısal deseni tek bir çok değişkenli model

içinde kurgulamak, uygun mekanizma ve kontrol yöntemi gerektirmesi bakımından

çok kolay değildir ve bu zorluk sebebiyle yazında bulunan modellerin bir çoğunun

bahsedilen yapısal desenlerin sadece küçük bir bölümünü aynı anda yansıtabildikleri

xx

görülmektedir. Bu bağlamda, bu çalışmanın ilk amacı doğrultusunda yeni bir ÇDSO

modeli geliştirlmiş ve önerilmiştir. Önerilen model, çalışma içerisinde MSV-D

olarak anılmaktadır. Önerilen MSV-D modeli, yapısı itibariyle varlık getirileri

arasındaki korelasyon, varlık getirileri ve bunların oynaklıkları arasındaki ilişki

olarak ifade edilen kaldıraç etkisi ve çapraz kaldıraç etkileri ile oynaklıklar

arasındaki geçişkenliği ifade eden oynaklık yayılımı özelliklerini aynı anda

barındırabilmekte ve dahası bu özelliklerin zaman içinde değişebilen (dinamik)

karşılıklarının kısmi ya da bütün olarak modele dahil edilebilmesine olanak

tanımaktadır. Önerilen model, yazındaki mevcut dinamik modellerden farklı olarak

dinamik kaldıraç ve çapraz kaldıraç etkileri ile dinamik oynaklık yayılımı etkilerinin

modellenebilmesini sağlamaktadır. Önerilen model özelleştirilebilir genel bir yapıya

sahiptir ve araştırmacıya farklı niteliklerde modeller deneme esnekliği vermektedir.

Yazında bulunan temel ÇDSO modellerinin bir çoğu, önerilen MSV-D modelinin

özel bir hali olarak parametreleştirilebilmektedir.

Önerilen modelin genelliği ve esnekliği temel olarak korelasyonları, koşullu

varyanslara benzer şekilde, ayrı stokastik süreçler olarak ele alması fikrine dayanarak

elde edilmektedir. Önerilen model, korelasyon matrislerinin stokastik süreçler

vasıtasıyla zaman içerisinde değişimini sağlayan ve bu değişimler esnasında

korelasyon matrislerinin artı tanımlılığının ve diğer biçim özelliklerinin

korunabilmesini sağlayan özel olarak tasarlanmış bir mekanizma ve çift yönlü

matematiksel dönüşümler içermektedir.

Önerilen MSV-D modelinin pratik olarak uygulanabilmesi için, modelin yapısına

özel olarak Bayesian bir yaklaşım çerçevesinde kurgulanan Markov Chain Monte

Carlo (MCMC) yöntemine dayanan bir kestirim algoritması da çalışmanın bir parçası

olarak geliştirilmiştir. Kestirim algoritması önerilen MSV-D modelinin

parametrelerinin ve zaman içinde değişebilen örtülü oynaklık ve korelasyon

değişkenlerinin MCMC yöntemine dayalı örnekleme ile nasıl elde edileceğini

göstermektedir ve MSV-D modelinin yapısına özgüdür.

Önerilen MSV-D modeli ve bunun için geliştirilen Bayesian MCMC kestirim

yöntemi statik ve dinamik özellikler doğrultusunda simüle edilmiş getiri ve oynaklık

verileri ile gerçek hisse senedi ve endeks getiri serileri üzerinde uygulanmış ve

karşılaştırmalı olarak değerlendirilmiştir. Gerçekleştirilen uygulamalar, hem önerilen

MSV-D modelinin hem de geliştirilen çözüm yönteminin, statik ve dinamik

kurgularda yapısal desenleri yakalama konusunda iyi bir performans sergilediğini

göstermiştir.

ÇDSO modelleri, temelde doğrusal olmayan durum uzayı (ing: state space)

problemleri olmaları dolayısıyla, düzleme (ing: smoothing), filtreleme ve tahmin

(ing: prediction) kestirimleri ile parametre kestirimlerinin elde edilmesi

problemlerinde ortaya çıkan çok boyutlu tümlevler (ing: integral) ile başa çıkabilecek

sayısal yöntemlere ihtiyaç duymaktadırlar. Son dönemlerde hesaplama

teknolojisindeki ilerlemeler bu yöntemlerin uygulanabilirliğini arttırmıştır. ÇDSO

modellerinin kestiriminde kullanılan algoritmalar, içerisinde Gibbs örneklemesi ve

Metropolis-Hastings algoritması da bulunan MCMC yöntemlerine dayanmaktadır.

MCMC yöntemleri temel olarak, limit dağılımı hedefteki sonsal (ing: posterior)

dağılım olan bir Markov zinciri üzerinden bağımlı örneklemler üreterek sonsal

dağılımı elde etme esasına dayanır ve diğer rassal örneklemlere dayanan Monte

Carlo tabanlı yöntemlerden çok farklıdırlar. MCMC yöntemlerinin karmaşık

örnekleme mekanizmaları diğer Monte Carlo yöntemlerine göre genellikle daha çok

sayıda örneklem alınmasını gerektirir. MCMC yöntemleri kurguları itibariyle diğer

xxi

birçok Monte Carlo tabanlı yöntem de dahil olmak tüm alternatif yöntemlerden farklı

olarak yüksek boyutluluğun getirdiği zorluklardan etkilenmezler. Ayrıca, MCMC

yöntemleri parametre kestirimlerinin, en çok olabilirlik (ing: likelihood)

fonksiyonunun maksimizasyonuna ve dolayısıyla bu fonksiyonun değerinin açık

biçimde hesaplanmasına gerek duyulmadan örnekleme yolu ile gerçekleştirilmesine

olanak tanıyan Bayesian bir yaklaşıma doğal bir biçimde uyarlanabilmektedirler. Bu

özelliklerinden dolayı ÇDSO modelleri için MCMC tabanlı kestirim yöntemleri en

çok tercih edilen yöntemler haline gelmişlerdir. MCMC yöntemleri birçok iyi

özelliğine ve başarılı olmalarına karşın kusursuz yöntemler değillerdir. MCMC

yöntemlerinin hata kontrolü ve yakınsama ile ilgili kendine özgü bir takım kusurları

mevcuttur. MCMC yöntemlerinde yakınsamanın sağlanıp sağlanmadığı ya da ne

kadarlık bir efordan sonra sağlanacağı hem teorik hem de pratik açıdan cevabı henüz

net olarak verilememiş sorulardır. MCMC yöntemlerinde analitik olarak elde

edilemeyen sonsal (ing: posterior) dağılımlardan örnekleme gerçekleştirilmesinde

Metropolis-Hastings algoritması içerisinde kullanılan öneri (ing: proposal)

dağılımlarının oluşturulması da yönlendirme gerektirien ayrı bir zorluk olarak

karşımıza çıkmaktadır. Bu zorluklardan dolayı uygulamada etkin çalışmayan Markov

zincirleri ile sıklıkla karşılaşılmaktadır. Bu bağlamda, bu çalışmanın diğer bir amacı

doğrultusunda, daha iyi hata kontrolü ve yakınsama özelliklerine sahip, hesaplama

gereksinimleri açısından MCMC yöntemleri ile rekabet edebilecek, stokastik

oynaklık kestirimi alanında daha önce hiç kullanılmamış yeni bir yöntem olan sparse

grid integration (SGI) tabanlı kestirim algoritmaları geliştirilmiş ve

değerlendirilmiştir. SGI yöntemi, geleneksel nümerik tümlevleme yönteminin çok

boyutlu problemlere boyutsallığın olumsuz etkisinin azaltılarak genişletilmesi

esasına dayanan ve geleneksel nümerik tümlevleme yöntemlerinin aksine çok

boyutlu durumlarda uygulanabilen yöntemlerdir. Geleneksel nümerik tümlevleme

yöntemleri tek değişkenli stokastik oynaklık modelleri için birkaç çalışmada

incelenmiş olmakla beraber ÇDSO modelleri için nümerik tümlevleme yöntemleri,

çok boyutluluğun bu yöntemlerdeki sınırılamaları sebebiyle, yazında göz ardı edilmiş

ve yeterince incelenmemiştir. Doğrusal olmayan durum uzayı çalışmalarında

nümerik tümlevlemeye dayanan kestirim yöntemleri deterministik yapıları sebebiyle

yakınsama ile hata kontrol özellikleri, olasılıksal yöntemler olan MCMC ve diğer

Monte Carlo yöntemlerinden daha üstündürler ve bunun yansıması olarak kesin (ing:

exact) yöntemler olarak ifade edilirler. Önerilen SGI kestirim yaklaşımıyla, ÇDSO

modelleri için bahsedilen kesinliğin en azından belirli bir ölçüde yakalanması

amaçlanmıştır.

Stokastik oynaklık kestirimi için önerilen SGI tabanlı algoritmalar simüle edilmiş ve

gerçek piyasa verileri üzerinde uygulanmış ve karşılaştırmalı olarak

değerlendirilmiştir. Önerilen SGI tabanlı algoritmalar belirli koşullar altında MCMC

tabanlı yöntemlerin performansını yakalamış ve hatta geçmiştir. SGI yöntemi gibi

nümerik tümlevleme yöntemlerinin başta MCMC olmak üzere Monte Carlo tabanlı

yöntemlere alternatif olabileceği gösterilmiştir.

Stokastik oynaklık modellerin kestiriminde kullanılan hem MCMC tabanlı hem de

önerilen SGI tabanlı yöntemlerin işlem yoğunluğu ve hesaplama gereksinimleri

oldukça fazladır. Bu bağlamda, çalışmanın üçüncü ve son amacı doğrultusunda

incelenen MCMC ve SGI tabanlı kestirim algoritmaları için paralel hesaplama

yaklaşımları ve algoritmaları oluşturulmuş ve bu yaklaşımlar kullanılarak grafik

işlemciler (ing: graphics processing unit, GPU) üzerinde çalışan programlar

xxii

geliştirilerek bu cihazların hesaplama yönünden kestirim görevlerine katkıları

değerlendirilmiştir.

Gerçekleşitilen simülasyon çalışmasında GPU üzerinde çalışan parallel

algoritmaların işlem zamanlarını önemli biçimde azalttığı görülmüştür. Tek GPU

üzerinde MCMC tabanlı algoritmalarda 16 kata kadar ve SGI tabanlı algoritmalarda

25 kata kadar hızlanma kaydedilmiştir. Tek GPU üzerinde uygulama teorik hızlanma

sınırlarını ve ölçeklenebilirliği test etmek için yeterli olmamakla birlikte elde edilen

sonuçalar daha büyük paralel mimarilerde uygulamalar için umut vericidir. GPU

desteğinin, pratik stokastik oynaklık kestirimi uygulamaları için oldukça fark

yaratabilecek etkin ve ucuz bir çözüm olduğu gösterilmiştir.

1

1. INTRODUCTION

Modeling, analysis, and estimation of volatilities of asset returns in financial markets

have been a major research area for the last three decades because of the prominent

role of volatility concept in mathematical and quantitative finance. Reliable volatility

estimates of asset returns are indispensible inputs to several mathematical models in

financial frameworks including but not limited to risk management and

measurement, option pricing, portfolio and asset management. For example risk

metrics such as the value at risk (VaR) used by many financial institutions for

measuring the risk are directly calculated using the volatility forecasts. In option

pricing models including the famous model of Black and Scholes (1973) and

portfolio optimization models volatility and its estimates are direct inputs.

A considerably rich literature on volatility research showed that volatilities and

correlations regarding financial asset returns are time varying with persistent

dynamics. In addition to the time varying nature, various patterns and properties

inherent in asset returns and volatilities were well studied and reported in the

literature including leverage effects and volatility spillovers which are referred as

stylized facts. Analysis of time varying structures and tools for addressing the

stylized facts about volatility for asset returns are central to the contemporary

volatility estimation research.

Volatility modeling research field has two main branches having different modeling

approaches to address the mentioned stylized facts. First branch deals with models

which are called Autoregressive Conditional Hetoreskadasticity (ARCH) models

introduced by Engle (1982) and second branch deals with models so called

Stochastic Volatility (SV) models introduced by Taylor (1982). The essential feature

of ARCH type models is that they explicitly model the conditional variance of

returns given the past returns whereas the SV models consider the conditional

variance of returns as a separate stochastic process as latent variable instead of

explicitly modeling it. Because of the modeling approach, SV models are quite

flexible and versatile in capturing the stylized facts, however their nonlinear structure

2

bears computational challenges in estimation. SV models require linear

approximations or computationally demanding numerical methods for the associated

estimation problems. Despite their powerful features, the computational challenges in

estimation of SV models prevented them to be popular in practice and resulted in the

dominance of ARCH type models in the early research. However, with the advances

in computational resources allowing the usage of computationally intensive

algorithms and methods, SV models has started to draw attention in recent research.

Several extensions on the univariate SV models addressing the stylized facts have

been studied and proposed after the SV model of Taylor (1982) which dealt only

with volatility clustering. The first multivariate stochastic volatility (MSV) model

due to Harvey et al. (1994) is followed by an appreciable amount of research

composed of several multivariate model specifications addressing different and more

complicated stylized facts not only about volatility but also about co-volatility and

their multidimensional dynamics. The control mechanisms and parameterizations of

the covariance and/or correlation matrices in MSV models and their handling in

time-varying settings are the core topics of the MSV modeling research since almost

all stylized facts are imposed through the structure of those matrices in MSV models.

While addressing the stylized facts and flexibility in model specifications, another

objective was keeping the complexity under control and developing appropriate

estimation methods in those MSV modeling efforts since dimensionality brought

additional complexity on top of the inherent complexity due to the nonlinearity in SV

models. Being nonlinear state space models, even univariate SV models require

methods that can handle high dimensional integrals for obtaining smoothing, filtering

and prediction estimates of time-varying volatilities and parameter estimates. An

extra complexity is introduced in MSV models due to the dimensionality of latent

volatilities.

For the estimation, several early studies incorporated practical algorithms providing

either fast or simplified approximations based on the well-known Kalman filter and

its extensions, using Laplace approximations, variations of moment matching and

method of moments, and quasi likelihood methods. Although being fast and simple

those methods generally suffered from poor performance. Illustrations and examples

of these methods can be found in (Taylor, 1986), (Harvey et al., 1994), (Harvey &

Shephard, 1996) and (Galant & Hsieh, 1997).

3

Poor results of linear approximation based methods and challenges in the numerical

estimation of SV models incited the usage of computationally intensive simulation

based Monte Carlo methods for better estimations and approximations in parallel

with the advances in computational resources. Various Monte Carlo based methods

incorporating the algorithms such as resampling, particle filters, rejection sampling

and importance sampling have been proposed with examples in (Watanabe, 1999),

(Tanizaki, 1997), (Carlin et al., 1992) and (Sandman & Koopman, 1998).

A major breakthrough in SV estimation research was started with the works of

Tierney (1994), Chib and Greenberg (1995, 1996) which introduced the Markov

Chain Monte Carlo (MCMC) methods to the econometrics and SV fields. MCMC

methods including the influential Metropolis-Hastings and Gibbs sampling

algorithms quickly became central to the SV modeling and estimation studies, and a

vast amount of literature on the applications of different variations of MCMC

methods on various types of SV models, especially the MSV models was built up.

Particularly, MSV models have benefited from the MCMC methods since MCMC

methods are immune to the curse of dimensionality by construction unlike the other

Monte Carlo techniques and exact filter methods such as the numerical integration.

Another advantage of MCMC was the ease of implementation of these methods in

Bayesian settings where the parameter estimation can also be handled without a

maximization routine for the likelihood, hence without an explicit evaluation of the

likelihood function. These appealing features of MCMC methods made them a

natural first choice in MSV estimation studies. However, MCMC algorithms are not

flawless. They still require intense computational resources for complicated iterative

sampling schemes for estimation. Although having a quite different philosophy than

the other Monte Carlo methods they are still simulation based Monte Carlo methods,

thus are not exact methods. Furthermore, certain issues on error control and

convergence are inherent particularly for the MCMC methods. A detailed treatment

of MCMC methods can be found in (Chib, 2001).

Multidimensional integrals arising in estimation of SV models can be handled by

classical numerical integration methods as discussed in (Kitagawa, 1987) and

(Tanizaki, 1997) in a nonlinear state space modeling framework. Being exact

methods with a deterministic structure, convergence properties of classical numerical

integration methods are superior to simulation based Monte Carlo methods.

4

However, when the state-space dimension increases as in MSV models, these

methods become computationally infeasible since the number of dimensions

increases the complexity of these type of algorithms exponentially. Unsurprisingly,

studies on the application of the numerical integration methods to nonlinear state

space models and particularly MSV models are quite rare compared to the

approximation based methods and Monte Carlo simulation based methods including

the MCMC methods.

Sparse grid integration (SGI) method is a smartly reshaped version of classical

numerical integration method to handle multidimensional integrals by constructing

multi-dimensional integration formulas in a way that the dimensionality effect is

decreased to a certain extent which allows practical implementation in higher

dimensional cases in contrast to the classical numeric integration methods. Sparse

grid integration approach is based on the work of Smolyak (1963) and was applied

to some economic and financial problems with examples of discrete choice analysis

in (Bungarts and Griebel, 2004), collateral mortgage optimization problem in

(Gerstner and Griebel, 1998), derivative and option pricing in (Gerstner, 2007) and

asset liability in life insurance in (Holtz, 2010). However, estimation algorithms

based on the SGI approach for SV models have been neither studied nor mentioned

in the literature.

One of the mentioned advances in computational resources is the high performance

computing paradigm on massively parallel architectures such as graphic processing

units (GPUs) or compute processors hosting many processors. Advances in the

capabilities of GPUs and the introduction of easier to use platforms and tools for

programming such devices resulted in deployment of several scientific and industrial

applications benefiting from the cheap and efficient computing power provided by

those devices. Quantitative finance has always been one of the first fields quickly

adopting new technologies. In this context, the potential contributions of the high

performance computing paradigms on massively parallel architectures such as to the

computationally demanding task of SV estimation is one of the focus of this study.

The objectives of the study are summarized as follows. First objective of this study is

the search for alternative MSV model specifications that can capture the stylized

facts and dynamics of asset returns in a more realistic and flexible way than the

5

available models in the literature and contributions from the MSV modeling

perspective.

Second objective of the study is in the perspective of estimation methodology where

estimation algorithms based on a different approach than the popular MCMC

approach for the MSV models is studied to see whether it is possible or not to come

up with an estimation approach that does not have the drawbacks of MCMC and

provide better results. The SGI approach which is neglected in the SV field is the

approach under question in this perspective.

Third and final objective of the study is the evaluation and assessment of the possible

contributions and implications of the GPU computing and usage for easing the

excessive computational burden in MSV estimation problems.

Organization of the study is as follows. In section 2, mathematical and theoretical

background of the thesis is provided. After providing a brief overview of SV models,

a novel MSV model specification is given in accordance with the first objective of

the study. In the second part of section 2 an overview and background on estimation

algorithms are presented first followed by detailed treatment and presentation of the

MCMC based estimation algorithms and the proposed SGI based estimation

algorithms for the second objective of the study.

In section 3, important topics on practical implementation of the estimation

algorithms their computational aspects and parallelization approaches, particularly

implementation with GPUs are discussed in accordance with the third objective of

the study.

In section 4, the methodology followed in the study is presented. The section

provides information about the software and hardware used in numerical

applications, describes the simulation studies and analyses conducted and data sets

used in the study.

Section 5 provides the results of the numerical applications and analyses for the

proposed MSV model, proposed estimation algorithms and GPU implementations.

Section 6 concludes the study by compiling the important results followed by

concluding remarks, comments and further research directions.

6

7

2. THEORETICAL AND MATHEMATICAL BACKGROUND

In this section, starting with an overview of literature on the foundations of

mathematical construction of stochastic volatility models, a novel MSV model is

developed and proposed in the first subsection. In the second subsection, estimation

algorithms based on the MCMC method and the proposed SGI method for MSV

models are developed and presented in detail after a literature review and some

preliminaries on the MCMC and SGI methods.

To avoid confusion, the multiple integral notations and definitions regarding the

multidimensional integrals with respect to vectors, sets of vectors and matrices

frequently used throughout the study is provided in appendix A.

2.1 Stochastic Volatility Modeling

2.1.1 Overview of stochastic volatility models

SV model building has a natural flow starting from the construction of the basic

univariate model, followed by the extensions on the basic univariate model and then

construction of multivariate models with their extensions. Same flow is followed in

this section.

First univariate stochastic volatility model in the literature is due to Taylor (1982)

and detailed in (Taylor, 1986). The basic setup for modeling the changes in variance

is to regard innovations in the mean as being a sequence of independent and

identically distributed random variables, εt with zero mean and unit variance,

multiplied by a factor exp(2)t th  . The latent log-volatility, 2log()t th  , is

defined as a stationary first order autoregressive (AR(1)) process having an error

term, ηt, with zero mean and variance ση, leading to the state-space model,

 2

,th

t ty e  (2.1)

 1 .t t th h      (2.2)

8

Here, equation 2.1 is known as measurement or observation equation, and equation

2.2 is the transition or state equation of the state space model. In this model, the

measurements, yt, are observable while the states, ht, are unobservable (i.e. latent)

variables. The univariate SV model, which is given by equation 2.1 and equation 2.2,

is a state space model because it actually is a time varying parameter model.

Furthermore, the multiplicative structure of equation 2.1 makes the model nonlinear.

This basic univariate SV model, successfully captures the time varying variance and

volatility clusterings observed in asset return series. The latent structure of the log-

volatilities and the approach modeling the log-volatilities as a separate stochastic

process makes the SV models flexible and versatile in capturing the stylized facts of

asset return series. For further discussion on properties of the SV models see

(Ghysels et al., 1996).

Not long after the first univariate model described above, several extensions to the

basic univariate SV model were proposed in literature. An important extension to the

basic univariate SV model was addressing the stylized fact called asymmetry or

leverage effect. Leverage effect simply describes the negative correlation between

the asset returns and volatility shocks. To capture the leverage effect, SV models

with correlated errors were proposed and discussed in (Harvey and Shephard, 1996).

Correlated errors model to address the leverage effect is given by,

 2

1

2

,

,

10
N , .

0

th

t t

t t t

t

t

y e

h h



 



  



 





  

     
      
     



 (2.3)

In this specification, the parameter, ρ, is the correlation between εt and ηt

representing the leverage effect. Typically, negative correlation implies that a

negative return tends to increase the volatility of an asset price.

After the first multivariate stochastic volatility (MSV) model in the literature, given

in (Harvey et al., 1994), several model specifications addressing the stylized facts

such as correlated asset returns, leverage effects and volatility spillovers are

proposed with examples in (Asai and McAleer, 2006) and (Ishihara and Omori,

2012). The specification of a general MSV model based on these studies can be cast

as,

9

1 2

,

1

,

,

t y t t

t t t



  

y V ε

h γ φh η
 (2.4)

where,
1(,...,)t t pty y y is the p-dimensional vector of asset returns and

1(,...,)t t pth h h is the p-dimensional vector of log-volatilities,
1(,...,)t p  γ is the

intercept parameter vector, and  1diag ,..., p φ is the diagonal matrix of

persistence parameters. In equation 2.4, time-varying variances of returns are the

diagonal entries of the diagonal matrix
, 1diag(exp(),..,exp())y t t pth hV . The

innovations
1(,...,)t t pt  ε and the disturbances

1(,...,)t t pt  η in equation 2.4

are related with each other through,

0

N , and ,
0

t

t

   

   

       
        

       


Σ Σ Σ Σε

Σ
Σ Σ Σ Ση

 (2.5)

where, the covariance matrix, Ʃ defines the relationship between asset returns and

log-volatilities. Here, depending on the structure of the covariance matrix, Ʃ, the

model in equation 2.4 and equation 2.5 can address various stylized facts:

 If the off-diagonal elements of Ʃεε are nonzero then there is correlation

between asset returns.

 If the off-diagonal elements of Ʃηη are nonzero then there is volatility

spillover.

 If the diagonal elements of Ʃηε (and Ʃεη) are nonzero then there is leverage

effect.

 If the off-diagonal element of Ʃηε (and Ʃεη) is nonzero then there is cross-

leverage effect.

The general MSV model described in equation 2.4 and equation 2.5 will be referred

as the MSV-G model throughout this study. And the special case of the MSV-G

model with

0 00

N , and ,
0 00

t

t

 

 

       
        

       


Σ Σε

Σ
V Vη

 (2.6)

10

where, the asset returns are correlated with no leverage effects (i.e. Ʃηε = Ʃεη = 0) and

no volatility spillovers (i.e Ʃηη = Vηη is diagonal), will be referred as MSV-B

representing the basic multivariate case.

The MSV-G model becomes quite complicated in terms of number of parameters as

the dimension increases. To offer more parsimonious model structures, a class of

MSV models based on factor analysis were proposed in the literature. The additive

factor model was first introduced in (Harvey, Ruiz, and Shephard, 1994). Another

factor model can be found in (Jacquier et al., 1995). The basic idea in those MSV

models is originated from factor decomposition of covariance structures in

multivariate analysis, where returns are decomposed into additive or multiplicative

components. The additive K factor MSV model can be written as

 

 

 

, 2

, , ,

2

, 1 , , ,

 N 0, ,

 N 0,1 ,

 N 0, ,

i t

t t t t

h

i t i t i t

i t i i i t i t i t

f e

h h





 

    

 



  

y Df ς ς V





 (2.7)

where, ft is 1K  vector of factors (K < p) and D is a p K matrix of factor

loadings. In this model, 2 2

1diag(,...,)p  V and the variance of yt is given by

 ,f 
 V DΣ D V (2.8)

which is always positive definite by construction. While being parsimonious models

which is an important advantage, the main drawback of the factor models is the

difficulty in interpretability because of the implicit structure.

One of the consequences of the factor model given in equation 2.7 and equation 2.8

is that the conditional correlations of asset returns are actually time varying as well

as the variance (Asai et al., 2006). Based on that fact, a class of MSV models

capturing the time-varying correlations without factor structure were proposed and

studied. These studies let either the covariance (correlation) matrix, Ʃεε, in equation

2.5 or the covariance of asset returns, Ʃyy, vary in time, often in a dynamic

mechanism that ensure the positive definiteness and symmetry properties of the

covariance matrix.

Thus, the dynamic mechanisms used to handle the covariance matrices are the main

focus of these studies. Tsay (2002) and Lopes et al. (2011) are examples that use

11

Cholesky decomposition of the covariance matrix as such a mechanism by letting the

covariance matrix of asset returns, Ʃyy, dynamically change with the relation,

, ,yy t t t t

Σ L DL (2.9)

where, Lt is a lower triangular matrix and Dt is a diagonal matrix. Here the elements

of both Lt and Dt are obtained with separate autoregressive processes like the log-

volatilities in the MSV-B model. This approach directly models the covariance

matrix of asset returns and there is no separation between correlations and variances,

hence the log-volatilities are not explicitly modeled in autoregressive processes.

To achieve and keep the positive definiteness and symmetry, Asai and McAleer

(2009) and Ishihara et al. (2014) incorporated matrix exponential, which is defined

by

  
0

1
exp ,

!

s

s s





A A (2.10)

using the fact that for any real symmetric matrix A, exp(A) is also a symmetric

positive definite matrix. As in the Cholesky approach, this approach also directly

handles the covariance matrix and does not model log-volatilities with explicit

autoregressive processes, instead rotations found in principal component analysis

(PCA) is used to obtain log-volatilities.

Another specification for dynamic structure is given by Gourieroux et al. (2009)

accommodating Wishart autoregressive process which is an AR process constructed

on covariance matrices, thus satisfies the symmetry and positivity requirements.

All the approaches for dynamic structures in the literature usually restrict the

dynamic structure with covariance or correlation of asset returns. Because all of the

mechanisms ensuring positive definiteness and symmetry in the previous studies

either implicitly model the variance or do not separate the dynamics of all

correlations and variances, those approaches do not have the flexibility to address

more complicated dynamic structures such as leverage effects and volatility

spillovers. Thus, the model specifications and dynamic mechanisms proposed in the

previous studies are somewhat restrictive in terms of flexibility and versatility

considering the available options on dynamic components to be included in the

12

model. Based on this perspective, in section 2.1.2 a new MSV model specification is

proposed to overcome these drawbacks.

Models with distributions having thicker tails than the Gaussian distribution for the

observation disturbances, εt, in both univariate and multivariate settings are other

noteworthy contributions in the previous studies. The Student's t-distribution were

used to address leptokurtosis that arise in some financial series with examples in

(Galant et al., 1997), (Sandman and Koopman, 1998), (Ishihara and Omori, 2012)

and (Ishihara et al., 2014).

2.1.2 A novel multivariate stochastic volatility model (MSV-D)

In this section, a new MSV model specification is proposed based on the

considerations about the available model specifications in the literature mentioned in

section 2.1.1. The proposed model specification is a general specification that can

accommodate the following stylized facts:

 Correlations between asset returns,

 Leverage effects (i.e. correlation between a particular asset return and its

volatility),

 Cross-leverage effects (i.e. correlations between a particular asset and other

assets' volatilities,

 Volatility spillovers (i.e. correlations between log-volatilities),

with both constant and dynamic settings (or their mixtures) for each stylized fact,

which offers substantial flexibility, versatility and freedom in modeling preferences

without the restrictions inherent in the available models in the literature.

One of the main differences of the proposed model from the models discussed in

section 2.1.1 is the separation of variance and correlation components in the

modeling approach. This separation allows explicit modeling of time-varying

variance as in the MSV-G model while dynamic structures can still be incorporated

unlike the dynamic models in the literature discussed in section 2.1.1

Let 1(,...,)t t pty y y be p-dimensional vector of stock returns, then the proposed

MSV model starts with

13

   1 2 1 2N 0, , , 1,..., ,
t

t t t t t

t

t T
 

  
 


y

Σ Σ V PV
η

 (2.11)

where, the time-varying variance matrix is

1,

,
,

2

,1

2

,

0 0 0

0 0 0 0

0 0 0 0

0 0 0

t

p t

h

h
y t

t

p

e

e

 







  
 
      

       
   
 
      

   

V
V

V
, (2.12)

the time-varying correlation matrix is

, ,

, ,

,
yy t y t

t

y t t

P P
P

P P



 

 
  
 

 (2.13)

and the time-varying covariance matrix is

, ,

, ,

.
yy t y t

t

y t t



 

 
  
 

Σ Σ
Σ

Σ Σ
 (2.14)

The log-volatilities,
1(,...,)t t pth h h , are driven by the following AR(1) process:

  1 ,, N 0,t t t t t   h γ φh η η Σ (2.15)

for 1,..,t T where,
1(,...,)t p  γ is the intercept parameter vector,

1(,...,)t p  η is the vector of disturbances on the log-volatilities having zero mean

and covariance matrix, Ʃηη,t, and 1diag(,...,)p φ is the diagonal matrix of

persistence parameters. In equation 2.15, the process mean, μh is given by

  
1

,h


 μ I φ γ (2.16)

and the variance matrix of the process, Vh, satisfying the stationarity condition,

 ,h h  V φV φ V (2.17)

is given by

      
1

Vec = Vec .h 


 V I φ φ V (2.18)

14

To ensure the positive semi-definiteness and symmetry of the correlation matrices

through time periods the dynamic correlation matrix, Pt, is parameterized as follows.

Positivity is achieved by

 t t t
P B B (2.19)

where the  2 2p p matrix Bt can be obtained by Cholesky decomposition and is in

the form,

1,1, 1,2, 1,2 ,

2,1, 2,2,

2 ,1,

0
,

0 0

0 0 0

t t p t

t t

t

p t

b b b

b b

b

 
 

 
  
  
 

B (2.20)

with entries, bi,j,t, obtained by the relation,

    
1

, , , , , , , ,

1

cos sin , 0 π,
j

i j t i j t i k t i j t

k

b   




   (2.21)

where the angles αi,j,t, are the entries of the  2 2p p matrix, At, given by

1,1, 1,2 1,

2 1,1,

0

0 0
.

0 0 0

0 0 0 0

t p t

t

p t

 







 
 

  
 
 
 

A (2.22)

A suitable transformation which maps the angles, αi,j,t, which take value in the

interval [0, π], to the interval [-∞, ∞] is the logit function given by

 , ,

, ,

, ,

log
π-

i j t

i j t

i j t

q




 
   

 

, (2.23)

where qi,j,t are the entries of the  2 2p p matrix Rt in the form,

1,1, 1,2 1,

2 1,1,

0

0 0

0 0 0

0 0 0 0

t p t

t

p t

q q

q





 
 

  
 
 
 

R . (2.24)

15

If the nonzero entries of the matrix Rt are stacked column-wise in to a vector, and

letting (2 1)r p p   then the vector
1(,...,)t t rtq q q is obtained which has

(2 1)r p p   elements.

Another AR(1) process, driving the dynamic correlations through qt can then be

stated as

  1 , N 0,t t t t     q δ θq ω ω V (2.25)

where,
2 2

,1 ,diag(,...,)r   V is the diagonal variance matrix of the process error

vector,
1, ,(,...,)t t r t  ω ,

1(,...)r  δ are the intercept parameter vector and

1diag(,...,)r θ is the diagonal persistence parameter matrix. In equation 2.25 the

process mean is given by

  
1

q


 μ I θ δ , (2.26)

and the variance matrix of the process, Vq satisfying the stationarity condition,

 ,q q  V θV θ V (2.27)

is given by

      
1

Vec = Vec .q q


 V I θ θ V (2.28)

In this model, equation 2.15 drives the time varying volatilities of asset returns while

equation 2.25 is separately driving the time varying correlations between asset

returns and log-volatilities. The transformation starting from equation 2.19 to

equation 2.24 maps the correlation matrix, Pt, to the vector, qt, and furthermore this

mapping is one-to-one and reversible. A schematic illustration of the transformation

is given in Figure B.1 in appendix B. The parameterization of correlation matrix

from equation 2.19 to 2.22 is a modified version of the transformation given by

Robenato and Jäckel (2011) and Kercheval (2008) in a general perspective. Any

correlation matrix Pt can be transformed into a vector qt through this transformation

and moreover any real valued vector qt of dimension (2 1)p p  can be mapped to a

(2 2)p p unique correlation matrix, Pt, by reversing the transformation described in

equation 2.19 to equation 2.24 and incorporating the inverse logit,

16

, ,

, , ,
1i j t

i j t q
e








 (2.29)

for obtaining the angle mapping of a given vector qt.

In the model, positivity is achieved by equation 2.19 and the relation in equation 2.21

ensures entries in the diagonal of the resulting correlation matrix to be 1 and off

-diagonals to be in the (-1, 1) interval.

The proposed model described above is quite general and flexible since it is possible

to address several stylized facts while restricting some of them. Fixing some of the

entries of vector qt as constants instead of associating with an AR(1) process, allows

easy removal of dynamic components and replacement with static counterparts of

these components and setting some of the elements of vector qt to zero allows easy

removal of particular stylized facts mentioned from the model. For example, fixing

the vector, qt, by setting,

  1,...t r   q δ , (2.30)

reduces the model to the MSV-G model. And similarly if appropriate elements of qt ,

in equation 2.30 are set to zero then the MSV-B model can be obtained.

Parsimony can be kept under control by removing certain properties and replacing

dynamic structures with static counterparts through the structure of vector qt as

mentioned above. Another approach to keep the parsimony is putting restrictions on

the parameters of the AR(1) process given in equation 2.25 which essentially drives

the dynamic correlations. It is possible for example to set a single scalar value for the

persistence parameter vector
1diag(,...,)r θ by restricting its entries to be equal to

each other, which significantly decreases the number of parameters. The proposed

MSV model in this section will be referred as MSV-D in the next sections of this

study.

2.2 Estimation Algorithms for Stochastic Volatility Models

2.2.1 Stochastic volatility models as nonlinear state space models

Any given SV model such as the MSV-B, MSV-G or the proposed MSV-D models

are essentially nonlinear state space models since they are time varying parameter

models. For a given state space model, the main estimation problem regarding the

17

states (e.g. latent log-volatilities, ht and correlation states, qt in the MSV-D model) is

finding the conditional expectation of these states using the information (e.g. asset

returns, yt) set up to time s,
1{ ,..., }s sY y y . The estimation problem associated with

the log-volatilities, ht, and correlation states, qt, for the MSV-D model can be

formally stated as

    | |, E , | , ,t s t s t t s

    
 

h q h q Y Ω (2.31)

where  , , , , , Ω δ φ V δ θ V is the model parameter set.

Depending on the timing of the information set, Ys, the estimation problems

associated with the states given the parameters are as follows:

 If t = s then the estimation problem is called filtering,

 If t > s then the estimation problem is called prediction,

 If t < s then the estimation problem is called smoothing.

In addition to these three estimation problems another estimation problem is the

parameter estimation problem. Thus, there are essentially four fundamental problems

of estimation for any SV model.

In this section, density based estimation algorithms for the above estimation

problems of general MSV-D model are developed. The algorithms are developed

based on the common state space modeling and analysis approach for the univariate

cases that can be found in (Kitagawa, 1987) and (Tanizaki, 1997).

2.2.1.1 Densities implied by the MSV-D model

For notational simplicity let { , }h qΩ Ω Ω be the set of model parameters, where

{ , , }h Ω γ φ V and { , , }q Ω δ θ V are the separate parameter sets associated with

the log-volatilities ht and correlation states, qt respectively.

One step transition density of the log-volatilities, ht , from the state space model of

MSV-D is given by

18

 

     

       

1

1 2 1
2

, 1 , 1

1 2 1
2

1 1 1

| , ,

1
 2 | | exp ,

2

1
2 | | exp ,

2

h t t t h

p

t t t t t t

p

h h h h h

p

p

 





  

 

  



      
 

     
 

h h q Ω

Σ h φh γ Σ h φh γ

h V h μ V h μ

 (2.32)

for 1,.., 1t T  .

Similarly one step transition density of correlation states qt is given by

 

     

 

     

1

1 2 1
2

1 1

1

1 2 1
2

1 1

| ,

1
 2 | | exp ,

2

1
 2 | | exp ,

2

q t t q

r

t t t t

q

r

q q q q

p

p

 





  

 

  



      
 



 
   
 

q q Ω

V q θh δ V q θh δ

q

V q μ V q μ

 (2.33)

for 1,.., 1t T  .

One step conditional density of yt implied by the state space representation of the

MSV-D model is given by

 

     

1

1 2 1
2

| , | , | , | ,

| , , ,

1
 2 | | exp ,

2

y t t t t h

p

y t t y t y t t y t

p

   



  



 
   
 

y h h q Ω

Σ y μ Σ y μ
 (2.34)

where,

1

,

| ,

,

, if

, if ,

yy t y y

y t

yy t

t T

t T

  



  
 



Σ Σ Σ Σ
Σ

Σ
 (2.35)

and

 1

, , 1

| ,

, if

0 , if .

y t t t t

y t

t T

t T

 





   

 


Σ Σ h φh γ
μ (2.36)

for 1,.., 1t T  .

One step joint density of log-volatilities ht and correlation states, qt can be obtained

from equation 2.32 and equation 2.33 as

 

   
1 1

1 1

, | , ,

 | , , | , .

t t t t

h t t t h q t t q

p

p p

 

 

h q h q Ω

h h q Ω q q Ω
 (2.37)

19

Let
1{ ,..., }s sY y y be the observation up to time s,

1{ ,..., }s sH h h be the set of log-

volatility state vectors up to time s, and
1{ ,..., }s sQ q q be the set of correlation state

vectors up to time s, then, using the one step transition density given in equation

2.32, the conditional density of log-volatilities over a fixed periods of time is given

by

      
1

1 1

1

| , | , , .
t

H t t h h h s s s h

s

p p p






 H Q Ω h h h q Ω (2.38)

Similarly, based on the one step transition density given in equation 2.33, conditional

density of the correlation states over a fixed periods of time is given by

      
1

1 1

1

| | , .
t

Q t q q q s s q

s

p p p






 Q Ω q q q Ω (2.39)

Finally, based on the one period density given in equation 2.34, conditional density

of the observations over a fixed periods of time is given by

 

   
1

1

1

| , ,

 | , , | , , , .

Y t t t h

t

y t t t h y s s s s h

s

p

p p










Y H Q Ω

y h q Ω y h h q Ω
 (2.40)

Several conditional joint densities of interest can be built upon the densities provided

so far. One of them is the joint density of log-volatilities Ht and correlation states, Qt

which can be obtained from equation 2.38 and equation 2.39 as

      , | | | , .t t Q t q H t t hp p pH Q Ω Q Ω H Q Ω (2.41)

Another important density used in estimation algorithms is the joint density of log-

volatilities, Ht and correlation states, Qt which can be obtained as

        , , | | | , | , , .t t t Q t q H t t h Y t t t hp p p pH Q Y Ω Q Ω H Q Ω Y H Q Ω (2.42)

2.2.1.2 Filtering, prediction and smoothing

Using the one step densities in equation 2.32 to equation 2.37 which are obtained

from the state space representation of the MSV-D model and letting

1 0 0 1(| , , , ,) ()h hp p h h q γ φ V h and 1 0 1(| , , ,) ()q qp p q q δ θ V q density based

filtering algorithm for the log-volatilities of MSV-D model can be constructed as a

recursive algorithm as,

20

 

     

 

     

     

1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

, | ,

 | , , | , , | , ,

, | ,

| , , , | , , , | ,

| , , , | , , , | ,

t t t

h t t t h q t t q t t t t t

t t t

y t t t t h h t t t h t t t t

y t t t t h h t t t h t t t t t t

p

p p p d d

p

p p p d

p p p d d d



       

   

   





 





h q Y Ω

h h q Ω q q Ω h q Y Ω h q

h q Y Ω

y h h q Ω h h q Ω h q Y Ω h

y h h q Ω h h q Ω h q Y Ω h h q
,

 

 (2.43)

for t = 1,..T. A non-recursive equivalent form of the filtering algorithm in equation

2.43 can be stated as

 

     

     

     1 1 1 1

, | ,

| | , | , ,

| | , | , ,

, | , , | , | , , .

t t t

Q t q H t t h Y t t t h

Q t q H t t h Y t t t h t t

t t t t t t h t t t h t t t

p

p p p

p p p d d

p p p d d d   





 



H Q Y Ω

Q Ω H Q Ω Y H Q Ω

Q Ω H Q Ω Y H Q Ω H Q

h q Y Ω H Q Y Ω h h q Ω H Q h

 (2.44)

Starting with the filtering density obtained in equation 2.43 for time t, density based

L-step ahead prediction algorithm is obtained recursively by

 

   

 

1 1 1

1 1 1 1

, | ,

 | , , | ,

 , | , .

t L t L t

h t L t L t L h q t L t L q

t L t L t t L t L

p

p p

p d d

 

       

       



 

h q Y Ω

h h q Ω q q Ω

h q Y Ω h q

 (2.45)

And equivalently prediction algorithm in equation 2.45 can be expressed in a non-

recursive version as

 

     

     

    1 1

, | ,

| , , | | ,
 ,

| , , | | ,

, | , , | , .

t L t L t

Y t t t h Q t L q H t L t L h

Y t t t h Q t L q H t L t L h t L t L

t L t L t t L t L t t L t L

p

p p p

p p p d d

p p d d

 

  

    

       





 

 

H Q Y Ω

Y H Q Ω Q Ω H Q Ω

Y H Q Ω Q Ω H Q Ω H Q

h q Y Ω H Q Y Ω H Q

 (2.46)

Based on the filtering density at time t, obtained in equation 2.43, recursive

algorithm for the smoothing density can be constructed as

 

 

     
 

1 1 1 1

1 1

1 1

, | ,

 , | ,

, | , | , , | ,
 ,

, | ,

t t T

t t t

t t T h t t t h q t t q

t t

t t t

p

p

p p p
d d

p

   

 

 







h q Y Ω

h q Y Ω

h q Y Ω h h q Ω q q Ω
h q

h q Y Ω

 (2.47)

21

for 1, 2,...,1t T T   which is a backward recursion. Let
1\ 1 1{ ,.., , ..., }t t t T H h h h h

and
1\ 1 1{ ,.., , ..., }t t t T Q q q q q be the set of all state vectors from t = 1,...,T excluding the

state vector at time t, then the non-recursive version of the smoothing algorithm can

be expressed as

 

     

     

\ \

, | ,

| , , | | ,
 .

| , , | | ,

t t T

Y T T T h Q T q H T T h T T

Y T T T h Q T q H T T h T T

p

p p p d d

p p p d d

 



h q Y

Y H Q Ω Q Ω H Q Ω H Q

Y H Q Ω Q Ω H Q Ω H Q

 (2.48)

The algorithms for the filtering, prediction and smoothing developed for MSV-D

model are general and cover the models such as the MSV-B and MSV-G and their

variations as well. For example, the recursive filtering algorithm in equation 2.43

reduces to

     

 
   

   

1 1 1 1 1

1

1

| , | , | , ,

| , | ,
| , .

| , , | ,

t t h t t h t t h t

y t t h t t h

t t

y t t t h t t h t

p p p d

p p
p

p p d

    













h Y Ω h h Ω h Y Ω h

y h Ω h Y Ω
h Y Ω

y h q Ω h Y Ω h

 (2.49)

for the MSV-B model where the dynamic components and associated terms with the

correlation states, qt, are dropped with the parameter set { , , }q Ω δ θ V , and the

only parameter set Ωh has become { , , , }h Ω γ φ V δ where δ is the constant

parameter for the correlations between asset returns in place of dynamic correlation

states qt. In equation 2.49, another simplification is due to the lack of leverage effect

in MSV-B which removes the temporal dependence between the asset returns yt and

log-volatilities ht+1, thus the densities representing this dependence and associated

differentials in the integrals are dropped as well. Similarly, for the MSV-G model

algorithms can be obtained by only dropping the dynamic components as described

above for the MSV-B. So density based estimation algorithms of most of the MSV

models exhibiting any constant or dynamic correlation, leverage effects and volatility

spillovers are special cases of the estimation algorithms developed in this section.

Factor models or models implicitly modeling the log-volatilities are exceptions.

22

2.2.1.3 Mean, variance and likelihood

Once the density of interest (i.e. filtering, prediction or smoothing) is obtained with

one of the algorithms described in the previous section, estimation of statistical

properties such as the mean and the variance of a function (,)u uf h q can be obtained

with the expectation,

       E , | , , , | ,v v s v v v v s v vf f p d d  h q Y Ω h q h q Y h q (2.50)

where, (,) (,), (,), (,)v s t t t L t T T  for smoothing, filtering, and prediction

respectively. For example, to obtain the vector of mean filtering estimates at time t,

(,) (,)v v t tf h q h q is used.

The log-likelihood function which plays an important role in parameter estimation

for the MSV-D model can be obtained sequentially by

  

   

 

1 1

1 1 1

log |

| , , , | , ,
 log ,

, | ,

T

T
y t t t t h h t t t h

t t t t t t t

p

p p

p d d d

 

  



  
  

  
  

  

Y Ω

y h h q Ω h h q Ω

h q Y Ω h h q

 (2.51)

which is in fact readily available from the denominator of the second equation in the

filtering algorithm given in equation 2.43 or equivalently,

  

      

log |

 log | | , | , , ,

T

Q t q H t t h Y t t t h t t

p

p p p d d



 

Y Ω

Q Ω H Q Ω Y H Q Ω H Q
 (2.52)

which is the denominator of the second equation in the filtering algorithm given in

equation 2.44. Thus, the log-likelihood is a byproduct of the filtering algorithm for

the current parameter set.

As is the case for estimation algorithms of section 2.2.1.2, the log-likelihood

algorithms are also general.

2.2.2 Overview of the estimation methods

As it can be seen from the developed estimation algorithms in section 2.2.1, MSV

models require handling of many high dimensional integrals arising in all kinds of

estimation problems. To obtain estimates for the states (i.e. log-volatilities or

correlation states in MSV-D), these states must be integrated out from the integral of

23

expressions composed of conditional densities or it is necessary to find ways to

sample directly from the densities of interest. In addition to the high dimensionality,

nonlinear nature of SV models makes it inefficient to use linear filters which offer

closed-form solutions and quick algorithms. The high dimensional integrals and

nonlinearity exists even in the univariate case and multivariate cases come with extra

challenges.

Some of the first studies on estimation of SV models incorporated simplistic

approximation methods based on the methods of moments and different versions of

moment matching techniques with examples and references in (Ghysels et al., 1996).

A group of studies incorporated algorithms, providing fast approximations for log-

volatility estimations based on the well-known Kalman filter and its extensions. An

approach is modifying the state space model of the MSV so that the model becomes

linear with distorted distributional structure. Applying the classical Kalman filter or

the extended Kalman filter (EKF) on this transformed model can be used to obtain

approximated estimates as discussed in (Harvey et al., 1994), (Tanizaki, 1997).

Although being linear resulting in unsatisfactory approximations, Kalman filter

based estimates provide good basis or starting points for more advanced methods.

For the general MSV-G model (and for MSV-D) the linearization is obtained by

taking the square and then logarithms of the both side of the observation equation

given in equation 2.4,

    2 2log log ,t t t y h ε (2.53)

and obtaining the transformed observation equation as

 ,t t t z h ξ (2.54)

where 2log() 1.2703t t z y is the transformed observations vector, and 2log()t tξ ε

is the transformed error term of the observation equation. The transformation

completes with the assumption that tξ is normally distributed with zero mean and

covariance matrix, 4.9339   Σ Σ , then the required transformation on the

covariance matrices in equation 2.5 can be formally stated as

 , and .       Σ SΣ S Σ Σ S Σ SΣ (2.55)

24

where  diag 2.22126S is the diagonal matrix of standard deviations of the

transformed random variable 2log()tε . Here, the mean and variance of 2log()tε are

known to be -1.27 and π
2
/2 = 4.93 as stated in (Harvey et al., 1994) and can also

easily be obtained numerically.

With the above transformation and setting, filtering estimates of states,
|t th and their

covariance , |h t tΣ for the MSV-G and MSV-D models can be obtained with the

following iterative algorithm:

 

 

 

, | 1 ,

1

| | 1 , | 1 | 1

1

, | , | 1 , | 1 , | 1

1

, | 1

1| | 1 | 1

, 1| , | 1 , .

t h t t t

t t t t h t t t t t t

h t t h t t h t t t h t t

t h t t t

t t t t t t t t

h t t h t t t t t t









  



  





  

 

 

  

 



   

  

D Σ Σ

h h Σ D z h

Σ Σ Σ D Σ

K φΣ φ D

h γ φh K z h

Σ φΣ φ Σ K D K

 (2.56)

L-step predictions based on the Kalman filter algorithm can be obtained by

| 1|

, | , 1| , ,

t L t t L t

h t L t h t L t t

  

  

 

 

h γ φh

Σ φΣ φ Σ
 (2.57)

after the filtering algorithm is executed. Smoothing estimates based on the Kalman

filter algorithm is given by

 
, | 1 ,

1

, | 1 ,

1

1

1

1 , | 1 1

| | 1 , | 1 1

, | , | 1 , | 1 1 , | 1.

t h t t t

t h t t t t

t t

t t t t t

t t h t t t

t T t t h t t t

h t T h t t h t t t h t t

















  

  

   

 

 

 

 

 

 

 

D Σ Σ

K φΣ φ Σ D

L φ K

u D L U L

U D Σ u

h h Σ u

Σ Σ Σ U Σ

 (2.58)

In the above Kalman filter based algorithms, if the model is static (i.e. MSV-G) then

the time subscripts of Ʃξξ,t, Ʃηξ,t, and Ʃηη,t are omitted since they stay constant over

time.

The log-likelihood function based on the Kalman filter algorithm can be obtained by,

25

      | 1

1 1

1 1
log log 2 log | |

2 2 2

T T

T t t t t

t t

T
p  

 

     Y D z h (2.59)

which can be used in parameter estimation. On the Kalman filter based algorithms

given above, extended Kalman filter (EKF) modifications observation and can also

be added for better approximations. See further discussions on the usage of Kalman

filter based algorithms in (Harvey et al.,1994), (Harvey and Shephard, 1996), and

(Tanizaki, 1997) for the SV models.

Although being fast and simple the methods described so far generally suffered from

poor performance (Shephard and Andersen 2009), (Watanabe 1999). The mentioned

challenges in the estimation problems of MSV models and advances in the

computational capabilities quickly incited the usage of computationally intensive

Monte Carlo simulation based methods to improve the estimation performance.

Several Monte Carlo based algorithms incorporating resampling, particle filters,

rejection sampling and importance sampling algorithms have been proposed both in

nonlinear state space modeling and SV literature. Monte Carlo simulation based

methods were proved to be better methods than the mentioned simplistic

approximations or linearizations, however they come with their own disadvantages

and limitations regarding error control, convergence, computational complexity, and

curse of dimensionality for particular types of algorithms. Examples and detailed

discussions of Monte Carlo simulation based methods can be found in (Watanabe,

1999), (Tanizaki, 1997), (Carlin et al., 1992) , and (Sandman and Koopman, 1998).

A major breakthrough in SV literature was the introduction of Markov Chain Monte

Carlo (MCMC) methods to the econometrics and SV fields by the studies of Tanner

and Wong (1987), Tierney (1994), Chib and Greenberg (1995, 1996), and Jacquier et

al., 1994). MCMC methods including the influential Metropolis-Hastings and Gibbs

sampling algorithms quickly became central to the SV modeling and estimation

studies, and an appreciable amount of literature on the applications of different

variations of MCMC methods on several types of SV models, particularly for the

MSV models was built up. Theoretically, MCMC methods are immune to the curse

of dimensionality by construction, and they can easily be implemented in a Bayesian

setting where the parameter estimation can also be handled without a maximization

routine for the likelihood, hence without an explicit evaluation of the likelihood

function as described in (Jacquier et al. 1994). The appealing characteristics of

26

MCMC methods made them a natural first choice in MSV estimation studies.

However, MCMC algorithms are not flawless. They still require intense

computational resources for complicated iterative sampling schemes for estimation.

They are not exact as being Monte Carlo simulation based methods, and additional

issues on error control and convergence are inherent particularly for MCMC

methods. Poor mixing chains, correlated samples, identification of convergence,

diagnosis, selection of suitable proposal densities are some of the named challenges

of MCMC methods.

Multi-dimensional integrals arising in estimation of SV models can be handled by

classical numerical integration methods. Being an exact method with a deterministic

nature, convergence properties of classical numerical integration methods are

superior to simulation methods. However, when the problem dimension increases

these methods become computationally infeasible since the number of dimensions

increases the complexity of these type of algorithms exponentially. Unsurprisingly,

studies on the application of the numerical integration methods to nonlinear state

space models and particularly MSV models are quite rare compared to the

approximation based methods and Monte Carlo simulation based methods including

the MCMC. One of the studies incorporated numerical integration for the univariate

case is (Kitagawa, 1987) and a brief discussion on numerical integration can be

found in (Tanizaki, 1997). Most of the studies in the MSV estimation literature

mention but exclude the numerical integration methods.

Sparse grid integration (SGI) method is a smartly reshaped version of conventional

numerical integration method to handle multidimensional integrals by constructing

multi-dimensional integration formulas in a way that the dimensionality effect is

decreased to a certain extent which allows practical implementation in high

dimensional cases in contrast to the conventional numeric integration methods.

Sparse grid integration approach starts with work of Smolyak (1963) and detailed

treatment of the methods based on the idea is available in (Heiss & Winschel, 2006)

and (Bungarts and Griebel, 2004). The sparse grid integration approach was applied

to some economics and financial problems (E.g., discrete choice analysis in by

Bungarts & Griebel (2004), collateral mortgage optimization problem by Gerstner

and Griebel (1998), derivative and option pricing in Gerstner (2007) and asset

liability in life insurance in (Holtz, 2010). However, estimation algorithms based on

27

the sparse grid integration methods for SV models have been neither studied nor

mentioned in the literature. In this context, one of the objectives of this study is to fill

this gap by applying sparse grid integration method to the estimation algorithms of

MSV models.

2.2.3 Estimation with Markov Chain Monte Carlo (MCMC) methods

In this section, implementations of the MCMC methods including the well known

Metropolis-Hastings and Gibbs sampling algorithms to the estimation problems of

MSV-D model will be presented after a brief background on MCMC methods.

2.2.3.1 Preliminaries on MCMC methods

The idea behind the MCMC methods is to produce variates from a given multivariate

density by repeatedly sampling a Markov Chain whose invariant distribution is the

target density of interest. Although being a Monte Carlo method, MCMC method is

completely different than the classical Monte Carlo techniques because the variates

are not generated randomly instead they follow a Markov Chain. To approximate the

integral,

    h x f x dx (2.60)

where f is a density function, classical Monte Carlo methods seek ways to obtain

direct independent samples from the density f whereas MCMC methods obtain

dependent samples using transition kernels through an ergodic Markov chain with

stationary distribution f.

The idea of incorporating a Markov chain to sample the target distribution is first

proposed by Metropolis et al. (1953) and generalized by Hastings (1970) so the

method is known as Metroplis-Hastings algorithm and originates from statistical

physics. Later on several variations and extensions are adopted in many fields

including the econometrics and SV literature.

Metropolis-Hastings algorithm is one of the main building blocks of MCMC

methods. The algorithm starts with the target density f and selection of a conditional

density q(y|x) which is called the proposal density. Given the sample Xi , at iteration i,

algorithm proceeds as follows:

1. Generate candidate  |i iY q y X ,

28

2. Take,

 
 1

with probability ,

with probability 1 , ,

i i i

i

i i i

Y p X Y
X

X p X Y



 



where, MH(,) min{ ,1}p x y w and wMH is the Metropolis-Hastings ratio

(weight) calculated by

   

   

|

|
MH

f y q x y
w

f x q y x
 . (2.61)

In this algorithm, first step generates a candidate sample from the proposal density

q(y|x) based on the current sample. The candidate sample is accepted as the new

sample if the criteria calculated using the Metropolis-Hastings ratio is met, otherwise

current sample is kept as the new sample. Using this algorithm several hard-to-

sample densities can be sampled. The proposal density, q(y|x) plays the critical role

in the algorithm by determining the structure of the chain and by adjusting the

perturbations performed on the current sample. The convergence of algorithm,

strictly depends on the choice of the proposal density and its parameters. There is a

vast literature on the selection of proposal densities. A good reference on the on

Metropolis-Hastings algorithm is (Chib and Greenberg, 1995) and (Chib, 2001).

The Gibbs sampling algorithm is another milestone in the evolution of MCMC

methods. Gibbs sampling provides a step by step approach for sampling from

multivariate densities using conditional densities of lower dimensions (usually one

dimension) than the target density. Starting with the sample i which is a, p-

dimensional random variable,
() () ()

1(,...,)i i i

pX XX , each sweep of Gibbs sampling is

performed by the sampling step

            1

1 2 1 1| , ,.., , ,..,
i i i i i i

j j j j j pX f x X X X X X


  (2.62)

for all 1,..,j p . One sweep of the sampler is completed in p steps if conditional

densities fj are univariate and after a complete sweep, sample 1i  ,

(1) (1) (1)

1(,...,)i i i

pX X  X , is obtained. In the Gibbs sampling algorithm described

above, the full conditional densities fj are the only densities used for simulation.

Thus, even in high dimensional problems such as the MSV models, all of the

simulation may be univariate.

29

2.2.3.2 MCMC based estimation algorithms for the MSV-D

There are two main approaches for applying the MCMC methods to the estimation

algorithms developed and discussed in section 2.2.1 for the MSV models.

First approach incorporates Gibbs sampling and Metropolis-Hastings algorithm for

obtaining the smoothing densities of the log-volatilities Ht and the correlation states,

Qt, first, then uses these densities for filtering, prediction and parameter estimation.

In this approach filtering is performed by repeatedly executing smoothing for each

time step, prediction is performed by other Monte Carlo methods such as resampling

and parameter estimation is performed by a Expectation Maximization (EM)

algorithm based on the smoothing densities. This approach is referred as MCMC

with EM Algorithm

Second approach uses MCMC methods for obtaining both the smoothing densities of

states and parameters at the same time with a Bayesian approach augmenting the

parameter space to the state space which eliminates the need for a separate

maximization step for parameter estimation and explicit likelihood evaluation. In this

approach filtering and prediction is performed in similar to the first approach. This

approach is referred as Bayesian MCMC in the study.

In this section algorithms based on the MCMC methods are developed for the MSV-

D model for both approaches summarized above.

MCMC with EM algorithm for the MSV-D

This approach incorporates MCMC methods to obtain smoothing estimates of the

log-volatilities, ht and the correlation states, qt by directly sampling from the

conditional density (, | ,)T T Tp H Q Y Ω by sampling (| , ,)T T Tp Q H Y Ω and

(| , ,)T T T hp H Q Y Ω . In this approach, given the current parameter set { , }h qΩ Ω Ω ,

one sweep of a Gibbs sampler is performed by the following two main steps:

1. Sample from  | , ,T T Tp Q H Y Ω ,

2. Sample from  | , ,T T T hp H Q Y Ω .

At each step of the above Gibbs sampler, sampling from (| , ,)T T Tp Q H Y Ω , and

(| , ,)T T T hp H Q Y Ω is performed by other Gibbs samplers sampling from

\(| , , ,)t T T Tp q H Q Y Ω and \(| , ,)t T T Tp h H Q Y Ω for t = 1,..,T. And at each time step,

30

Metropolis-Hastings algorithm is used. N sweeps of the two step Gibbs sampler

completes the algorithm and M samples are discarded as burn-in samples and

smoothing densities are obtained.

In step 1, to sample from \(| , , ,)t T T Tp q H Q Y Ω , the kernel to be sampled at each

time period t can be obtained by using the densities constructed in section 2.2.1 and

using equation 2.42 as follows

 
 

 

     

     

       

\

1 1 1 1

, , |
| , , =

, , |

| , | | , ,

| , | | , ,

| , , | , | , | , , , ,

T T T h

t T T T

T T T h t

H T T h Q T q Y T T T h

H T T h Q T q Y T T T h t

h t t t h q t t q q t t q y t t t t h

p
p

p d

p p p

p p p d

p p p p t T

p

   










H Q Y Ω
q H Q Y Ω

H Q Y Ω q

H Q Ω Q Ω Y H Q Ω

H Q Ω Q Ω Y H Q Ω q

h h q Ω q q Ω q q Ω y h h q Ω

   1| , | , , , .q t t q y T T T hp t T






q q Ω y h q Ω

 (2.63)

The kernel density obtained in equation 2.63 is not in a simple form that allows

direct sampling so Metropolis-Hastings algorithm is applied where the Metropolis-

Hasting ratio is given by

         

         

     

     

MH

1 1 1 1

1 1 1 1

1

1

| , , | , | , | , , ,
, ,

| , , | , | , | , , ,

| , | , ,
,

| , | , ,

h t t t h q t t q q t t q y t t t t h t

h t t t h q t t q q t t q y t t t t h t

q t t q y T T T h t

q t t q y T T T h t

w

p p p p p
t T

p p p p p

p p p
t

p p p

   

    



    

 

 



 







h h q Ω q q Ω q q Ω y h h q Ω q

h h q Ω q q Ω q q Ω y h h q Ω q

q q Ω y h q Ω q

q q Ω y h q Ω q
.T












 (2.64)

In equation 2.64, ()tp q is the proposal density and t


q is the candidate generated

by the proposal density. According to the Metropolis-Hastings algorithm, the

candidate is accepted with probability min(,1)MHw , otherwise previous sample is

kept.

One of the options for the proposal density is the density obtained from the state

equation of correlation states 1(| ,)q t t qp q q Ω given in equation 2.33 with appropriate

time indices given by

    1| ,t q t t qp p q q q Ω , (2.65)

31

where a candidate
t


q is generated based on qt-1. Another option is the density

obtained from AR(1) missing data problem approach where,

   

      

 

1
1 1 1 1

1 1

1
1 1

, with

,

.

t p p

p t t

p

p N

   

 




   

 


 

    

 

q μ V

μ V θV θ V θq δ θV q δ

V V θV θ

 (2.66)

In these densities a scalar c as a coefficient for variance/covariance matrices can be

used as a tuning parameter. Several other proposal densities can also be constructed

such as random-walk proposal. In the numerical applications of this study, the

proposal density obtained with AR(1) missing data problem approach is used.

In step 2, to sample from \(| , ,)t T T Tp h H Q Y Ω , the kernel to be sampled at each time

period, t, can be obtained by using the densities constructed in section 2.2.1 and

using equation 2.42 as follows:

 
 

 

     

     

     1 1 1 1 1

\

, , |
| , , =

, , |

| , | | , ,

| , | | , ,

| , , | , , | , , , | ,

T T T h

t T T T

T T T h t

H T T h Q T q Y T T T h

H T T h Q T q Y T T T h t

h t t t h h t t t h y t t t t h y t t t

p
p

p d

p p p

p p p d

p p p p    









H Q Y Ω
h H Q Y Ω

H Q Y Ω q

H Q Ω Q Ω Y H Q Ω

H Q Ω Q Ω Y H Q Ω h

h h q Ω h h q Ω y h h q Ω y h h 

     

1 1

1 1 1 1 1

, , ,

| , , | , , | , , , ,

t h

h t t t h y T T T h y t t t t h

t T

p p p

 

    



q Ω

h h q Ω y h q Ω y h h q Ω t T




 

 (2.67)

The kernel density obtained in equation 2.67 is also sampled using Metropolis-

Hastings algorithm with the Metropolis-Hasting ratio is given by

         

         

MH

1 1 1 1 1

1 1 1 1 1

| , , | , , | , , , | , , ,
,

| , , | , , | , , , | , , ,

h t t t h h t t t h y t t t t h y t t t t h t

h t t t h h t t t h y t t t t h y t t t t h t

w

p p p p p

p p p p p

   

     



     





h h q Ω h h q Ω y h h q Ω y h h q Ω h

h h q Ω h h q Ω y h h q Ω y h h q Ω h

       

     

1 1 1

1 1 1

| , , | , , | , , ,

| , , | , , | , , ,

h t t t h y T T t h y t t t t h t

h t t t h y T T t h y t t t t h

t T

p p p p

p p p

  

   

  



h h q Ω y h q Ω y h h q Ω h

h h q Ω y h q Ω y h h q Ω  
, ,

t

t T
p 














h

 (2.68)

where ()tp h is the proposal density and t


h is the candidate generated by the

proposal density. According to the Metropolis-Hastings algorithm, the candidate is

accepted with probability min(,1)MHw , otherwise previous sample is kept.

32

One of the good options for the proposal density ()tp h is the density obtained from

the Kalman filter smoothing algorithm given in equation 2.58 as

    , | , |,t h t T h t Tp N c h μ Σ (2.69)

where
, |h t Tμ is the mean and

, |h t TΣ is the covariance matrix obtained from the

Kalman smoother algorithm given in equation 2.58 and c is a scalar tuning

parameter. Other proposal densities can also be used such as the density from log-

volatility equation or density from AR(1) missing data problem. In the applications

of this study, the density from the Kalman filter is used.

Having the joint conditional smoothing density (, | ,)T T Tp H Q Y Ω with the above

MCMC algorithm, the parameter estimation is performed by maximizing the

expected log-likelihood,

  

    

      
 

, | ,

()

log , , |

log , , | , | ,

log | | , | , ,

 , | ,

1
log |

T T T

T T T T T T T T

Q T q H T T h Y T T t h

T T T T T

i

Q T

E p

p p d d

p p p

p d d

p
N M

   












H Q Y Ω H Q Y Ω

H Q Y Ω H Q Y Ω H Q

Q Ω H Q Ω Y H Q Ω

H Q Y Ω H Q

Q      () () ()

1

| , | , ,
N

i i i

q H T t h Y t T T h

i M

p p
 

 Ω H Q Ω Y H Q Ω

 (2.70)

with respect to the parameter set Ω in an EM algorithm where the smoothing density

(, | ,)T T Tp H Q Y Ω is repeatedly executed with the current parameter set obtained by

the maximization of the expectation in equation 2.70 until a particular convergence

criteria is met. As an optimization routine several alternatives are available, one of

the general purpose nonlinear optimization method can be used. Well known

Newton's method, derivative free search algorithms such as Nelder-Mead, or quasi-

Newton methods such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) are some of

the examples. Using derivative free optimization methods can significantly improve

computational performance however methods that provide the exact or an

approximated Hessian at the likelihood readily provides the Fisher information

matrix which directly gives the standard errors of parameter estimates. In the

numerical applications in this study Newton's method and Nelder-Mead algorithms

are used.

33

In this approach, filtering densities and estimates are obtained by simply using the

exact same procedure described above for smoothing with only change in the time

indices, for each time step t = 1,...,T the smoothing procedure is repeated and

filtering estimates are obtained. Obviously, filtering with MCMC method is

computationally much more demanding than the smoothing.

Prediction estimates can be obtained recursively using resampling (with N samples)

for approximating the prediction algorithm given equation 2.45 as

 

     () () () () ()

1 1 1 1 1

1

, | ,

| , , | , , | , ,

t L t L t

N
j j j j j

h t L t L t L h q t L t L q t L t L t

j

p

p p p

 

           







h q Y Ω

h h q Ω q q Ω h q Y Ω
 (2.71)

based on the filtering density () ()(, | ,)i i

t t tp h q Y Ω .

Bayesian MCMC for the MSV-D

Bayesian approach for the estimation of MSV models is probably the most studied

topic in SV literature with examples in (Jacquier et al. 1994), (Gourieroux et. al.

2009), (Asai and McAleer, 2009), (Ishihara, 2012), (Ishihara et al., 2014).

In the Bayesian approach the parameters of the MSV-D model,

{ , , , , , } Ω γ φ V δ θ V are considered to be random variables with prior distributions

and their space is augmented to the state space and MCMC methods are used to

sample from the joint distribution of states and parameters given the observations,

(, , , , , , , |)T T Tp  H Q γ φ V δ θ V Y . In this approach there is no need for a separate log-

likelihood maximization routine since parameter estimates are also obtained through

the implemented sampling scheme. This also means that there is no need for explicit

calculation of the log-likelihood function or its expectation. However, appropriate

prior distributions for the parameters and efficient sampling mechanisms from their

posterior distributions must be developed in this approach. Thus models with

different specification usually have different implementations. In this section a

customized Bayesian MCMC algorithm is developed for the MSV-D.

The MCMC based algorithm to sample from (, , , , , , , |)T T Tp  H Q γ φ V δ θ V Y is

performed with the following Gibbs sampler at each step sampling from a different

posterior density:

1. Sample from  | , , , , , , ,T T Tp  δ H Q Y γ φ V θ V ,

34

2. Sample from  | , , , , , , ,T T Tp  θ H Q Y γ φ V δ V ,

3. Sample from  | , , , , , , ,T T Tp  V H Q Y γ φ V δ θ ,

4. Sample from  | , , , , , , ,T T Tp  Q H Y γ φ V δ θ V ,

5. Sample from  | , , , , , , ,T T Tp  γ H Q Y φ V δ θ V ,

6. Sample from  | , , , , , , ,T T Tp  φ H Q Y γ V δ θ V ,

7. Sample from  | , , , , , , ,T T Tp  V H Q Y γ φ δ θ V ,

8. Sample from  | , , , , , , ,T T Tp  H Q Y γ φ V δ θ V .

Here, the densities at steps 1, 2, 3, 5, 6 and 7 are posterior densities of the

parameters, and the densities at steps 4 and 8 are posterior densities of the states.

Here the eight step Gibbs sampling sweep is repeated N times and joint density of the

states and parameters are obtained at once. At each step, the conditional posterior

density of interest is multi-dimensional and some of them do not allow direct

sampling so Metropolis-Hastings algorithm is used in such cases.

At step 1 of the above Gibbs sampler, the posterior is,

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| , ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

 

  

 









δ H Q Y γ φ V θ V

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V δ

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ     

           

   

   

   

, | , , , | , , , ,

| , , ,

| , , ,

 | , , , .

Q T q Y t t t

Q T q

Q T q

Q T q

p p

p p p p p p d

p p

p p d

p p

  

 















φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V δ

Q Ω δ θ V δ

Q Ω δ θ V δ δ

Q Ω δ θ V δ

 (2.72)

If a diffuse prior for δ (i.e. p(δ) α 1) is assumed then the posterior obtained in

equation 2.72 becomes

35

 

 

   

 
   

   

 

1

1 1

1

1

1 11 1
2

2 2
1

1

1 1

1

| , , , , , , ,

| , , ,

| , , ,

1

2
2π exp

1

2

; , .

T T T

Q T q

T

q q t t

t

q q qT
rT

q T

t t t t

t

N

p

p

p p

f

 









 









 




 







 
    
 
     
 







δ H Q Y γ φ V θ V

Q Ω δ θ V

q q q δ θ V

q μ V q μ

V V

q θq δ V q θq δ

δ μ Σ

 (2.73)

which is a normal distribution with the mean and covariance given by

 
1

1

1

1
,

1

1
.

1

T

t t

tT

T



 







 





μ q θq

Σ V

 (2.74)

Thus, sampling from (| , , , , , , ,)T T Tp  δ H Q Y γ φ V θ V can be directly performed from

a normal distribution with the parameters given in equation 2.74.

At step 2 of the above Gibbs sampler, the posterior is,

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

 

  

 









θ H Q Y γ φ V δ V

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V θ

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ     

           

   

   

   

, , | , , , | , , , ,

| , , ,

| , , ,

 | , , , .

Q T q Y t t t

Q T q

Q T q

Q T q

p p

p p p p p p d

p p

p p d

p p

  

 















φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V θ

Q Ω δ θ V θ

Q Ω δ θ V θ θ

Q Ω δ θ V θ

 (2.75)

A beta prior for each θi can be used for i = 1,...,r. Then, the prior distribution of θ

becomes,

36

  
1

1
; ,

2

r
i

B i i

i

p f


 


 
  

 
θ , (2.76)

With this prior density, the posterior in equation 2.75 is not in a simple form

allowing direct sampling, thus it can be sampled by Metropolis-Hastings algorithm

with the ratio,

     

     

| , , ,

| , , ,

Q T q

MH

Q T q

p p p
w

p p p





 








Q Ω δ V θ θ θ

Q Ω δ V θ θ θ
, (2.77)

where an appropriate proposal density, ()p θ , can be obtained from

(| , , ,)Q T qp Q Ω δ V θ , by letting
, 1diag(,...,)q t t rtD q q and θv be the vector

composed of the diagonal entries of the diagonal matrix θ, as follows:

 

   

 

   

   

 

1

1 1

1

1 1
2

2 2

1

1 1

1
1 1 1 1 1

, 1 , , , , 1 ,

1

| , , ,

| , , ,

2π

1

2
 exp

1

2

; , .

Q T q

T

q q t t

t

T
rT

q

q q q

T

q t t v q t q t q t q t t v q t

t

N v

p

p p

f









 







 




    

 





 

 
    
 

 
    

 





Q Ω δ V θ

q q q δ θ V

V V

q μ V q μ

D q θ D δ D V D D q θ D δ

θ μ Σ

 (2.78)

The density obtained in equation 2.78 is a normal distribution with covariance and

mean given by

 

 

 

1
1

1
1

1
1

1

1 1

,

,

A= , diag ,
T T

t t t t

t t

 

 














 





    
 

 

Σ V A

μ V A b

q q b q q δ V



 (2.79)

where  is the Hadamard product. Then a suitable proposal density  p θ is given

by the following truncated normal density with a truncation interval [0, 1]:

    ; , ,0,1TN vp f   θ θ μ Σ . (2.80)

 At step 3 of the above Gibbs sampler, the posterior is,

37

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| , ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

  

  

 







V H Q Y γ φ V δ θ

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V V

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ φ     

           

   

   

   

, | , , , | , , , ,

| , , ,

| , , ,

 | , , , .

Q T q Y t t t

Q T q

Q T q

Q T q

p p

p p p p p p d

p p

p p d

p p

  

  

 

  

 









V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V V

Q Ω δ θ V V

Q Ω δ θ V V V

Q Ω δ V θ V

 (2.81)

and if an inverse gamma prior for each σω,i is assumed, then the prior distribution of

Vω becomes,

    2

, 0 0

1

; , .
r

IG i i i

i

p f   


V (2.82)

With this prior, posterior density in equation 2.81 becomes

 

   

   

 
   

   

 
 

0

0

1

1 1

1

1

1 11 1

22 2
1

1

1 1

1

2 10 0
, 2

0 ,

| , , , , , , ,

| , , ,

| , , ,

1

2
2π exp

1

2

 exp
i

i

T T T

Q T q

T

q q t t

t

q q qrT T

q T

t t t t

t

i i
i

i i

p

p p

p p

 

 














 


 









 




 



 





 
    
  
     
 

 
  





V H Q Y γ φ V δ θ

Q Ω δ θ V V

q q q δ θ V

q μ V q μ

V V

q θq δ V q θq δ

 

 

0

1

1
2

1 0 , 1 ,2 1
2 1

, 2
1 ,

2

, 1 1

1

exp

; , .

i

r

i

T

T i i t i i t ir
t

i

i i

r

IG i i i

i

q q

f









  




  





     
 







 
   

  
 
 
 










 (2.83)

38

The density obtained in equation 2.83 is also an inverse gamma density with

parameters

 

1 0

1
2

1 1 , 1 ,

1

1
1 , 1,.., ,

2

1
, 1,.., .

2

i i

T

i i i t i i t i

t

T
i r

q q i r

 

   






 
     

 

    
 (2.84)

Thus, sampling from (| , , , , , , ,)T T Tp  V H Q Y γ φ V δ θ can be directly performed from

an inverse gamma distribution with the parameters given equation 2.84.

At step 4, sampling from (| , , , , , , ,)T T Tp  Q H Y γ φ V δ θ V is performed by sampling

from the kernel density \(| , , ,)t T T Tp q H Q Y Ω as described in the previous section

using the Metropolis-Hastings algorithm with the Metropolis-Hastings ratio given in

equation 2.64 and the proposal density given in equation 2.66.

At step 5 of the above Gibbs sampler, the posterior is,

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| , ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

 

  

 







γ H Q Y φ V δ θ V

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V γ

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ φ     

           

     

     

 

, | , , , | , , , ,

| , , , | , , , ,

| , , , | , , , ,

| , , , | , ,

Q T q Y t t t

H t t Y t t t

H t t Y t t t

H t t Y t t t

p p

p p p p p p d

p p p

p p p d

p p

  

 

 

 











V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V γ

H Q γ φ V Y H Q γ φ V γ

H Q γ φ V Y H Q γ φ V γ γ

H Q γ φ V Y H Q   , , .pγ φ V γ (2.85)

If a diffuse prior for γ (i.e. p(γ) α 1) is assumed then the posterior obtained in

equation 2.85 becomes

39

 

     

     

     

  

1

1 1 1

1 1

1
1

1 , 1

1

1 | ,

| , , , , , , ,

 | , , , | , , , ,

 | , , , , | , , , , ,

1
exp

2

T T T

H t t Y t t t

T T

h h t t t y t t t t

t t

T

t t t t t

t

t t y t

p

p p p

p p p

 

 

 



 



 

 




 









  
   

  

 
      




  

 



γ H Q Y φ V δ θ V

H Q γ φ V Y H Q γ φ V γ

h h h q γ φ V y h h q γ φ V

γ h φh Σ γ h φh

γ h φh μ Σ   

 

1 1 1

, | , , , 1 |

; , .

y t y t y t t t t y

Nf

    

 

 




   





Σ Σ Σ Σ γ h φh μ

γ μ Σ

 (2.86)

which is a normal distribution with covariance and mean given by

 

 

 

1
1 1 1 1

, , , | , , ,

1

1

, 1

1

1 1 1 1

, , | , , , 1 , , .

T

t t y t y t y t t

t

T

t t t

t

t y t y t y t t t t t y t t

      

  

      




   









   



 

   

 





Σ Σ Σ Σ Σ Σ Σ

Σ h φh

Σ Σ Σ Σ Σ h φh Σ Σ y

 (2.87)

Thus, sampling from (| , , , , , , , ,)T T Tp  γ H Q Y γ φ V δ θ V can be directly performed

from a normal distribution with the parameters given in equation 2.87.

At step 6 of the above Gibbs sampler, the posterior is,

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| , , ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

 

  

 







φ H Q Y γ V δ θ V

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V φ

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ φ V     

           

     

     

 

| , , , | , , , ,

| , , , | , , , ,

| , , , | , , , ,

 | , , , | ,

Q T q Y t t t

H t t Y t t t

H t t Y t t t

H t t Y t t t

p p

p p p p p p d

p p p

p p p d

p p

  

 

 

 











Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V φ

H Q γ φ V Y H Q γ φ V φ

H Q γ φ V Y H Q γ φ V φ φ

H Q γ φ V Y H Q   , , , pγ φ V φ

 (2.88)

If a beta prior for each φi , i = 1,..., p , the prior distribution of φ becomes,

40

  
1

1
; , .

2

p

i
B i i

i

p f


 


 
  

 
φ (2.89)

With this prior distribution, the posterior in equation 2.88 can be sampled by

Metropolis-Hastings algorithm with the ratio,

       

       

| , , , | , , , ,

| , , , | , , , ,

H t t Y t t t

MH

H t t Y t t t

p p p p
w

p p p p

 

 

  








H Q γ φ V Y H Q γ φ V φ φ

H Q γ φ V Y H Q γ φ V φ φ
 (2.90)

By letting
, 1diag(,...,)h t t ptD h h and φv be the vector composed of the diagonal

entries of the diagonal matrix φ, an appropriate proposal density, ()p φ , can be

obtained from the conditional (, | , , ,)t t tp Y H Q γ φ V as follows:

 

   

     

     

1

1 1 1

1 1

1
1 1 1

, 1 , , , , 1

1

, | , , ,

| , , , | , , , ,

| , , , , | , , , , ,

1
exp

2

t t t

H t t Y t t t

T T

h h t t t y t t t t

t t

T

v h t t h t t h t v h t t

t

p

p p

p p p



 

 





 

 


  

 





  
   

  

 
     



 



Y H Q γ φ V

H Q γ φ V Y H Q γ φ V

h h h q γ φ V y h h q γ φ V

φ D h γ D Σ D φ D h γ

  

  
 

1 1 1 1 1

, 1 , , , , | , , ,

1 1

, 1 , ,

 +

; , .

v h t t t y t t t y t y t y t t

v h t t t y t t

N vf

      

 

 

    



 




   

  



φ D h γ Σ Σ y Σ Σ Σ Σ Σ

φ D h γ Σ Σ y

φ μ Σ

 (2.91)

The density obtained in equation 2.91 is a normal density with the covariance and

mean given by

  
1

1 1 1 1

, , , , | , , ,

1 1

, ,
T T

t t t y t y t y t t t t

t t

         



   

 

 
    
 
 Σ Σ Σ Σ Σ Σ Σ Σ A μ Σ b (2.92)

where,

 

 
 

1

1 ,

1 1 1

1 , , , , | , , ,

,

 ,

diagonal .

t t t

t t t t

t t t y t t t y t y t y t t

t t



      





  





  


 



A h h

B h h γ Σ

h h γ Σ Σ y Σ Σ Σ Σ Σ

b B

 (2.93)

41

Then, a suitable proposal density,  p φ is given by the following truncated normal

density with a truncation interval [0, 1]:

    ; , ,0,1 ,TN vp f   φ φ μ Σ (2.94)

At step 7 of the above Gibbs sampler, the posterior is,

 

 
 

     
           

| , , , , , , ,

, , , , , , , ,

, , , , , , , ,

| , , , | , , , | , , , ,

| ,

T T T

T T T

T T T

H t t Q T q Y t t t

H t t

p

p

p d

p p p

p p p p p p

p

 

 

  

  

 







V H Q Y γ φ δ θ V

H Q Y γ φ V δ θ V

H Q Y γ φ V δ θ V V

H Q γ φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V

H Q γ     

           

     
     

, , | , , , | , , , ,

| , , , | , , , ,

| , , , | , , , ,

Q T q Y t t t

H t t Y t t t

H t t Y t t t

p p

p p p p p p d

p p p

p p p d

  

  

  

   







φ V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V V

H Q γ φ V Y H Q γ φ V V

H Q γ φ V Y H Q γ φ V V V

     

| , , , | , , , , .H t t Y t t tp p p   H Q γ φ V Y H Q γ φ V V (2.95)

If an inverse gamma prior for each ση,i is assumed, then the prior distribution of Vη

becomes

    2

, 0 0

1

; ,
p

IG i i i

i

p f   


V (2.96)

With this prior distribution, the posterior in equation 2.95 can be sampled by

Metropolis-Hastings algorithm with the ratio,

       
       

| , , , | , , , ,

| , , , | , , , ,

H t t Y t t t

MH

H t t Y t t t

p p p p
w

p p p p

   

  

  








H Q γ φ V Y H Q γ φ V V V

H Q γ φ V Y H Q γ φ V φ V
 (2.97)

Letting , 1, ,diag(,...,)t t p t  D and ,1 ,(1/ ,...,1/)p    s then a suitable proposal

density,  p  V can be constructed from the conditional (, | , , ,)t t tp Y H Q γ φ V as

follows:

42

 

   

     

01

1

1 1 1

1 1

1
2 1

2

,

1

1 1 1 20
, , , , , |2

,

, | , , ,

| , , , | , , , ,

| , , , , | , , , , ,

1
 exp

2

t t t

H t t Y t t t

T T

h h t t t y t t t t

t t

Tp

i

i

i
t t t y t y t y

i

p

p p

p p p



 

 





    











 

 

 
   
 



 



  
   

  



  

 



Y H Q γ φ V

H Q γ φ V Y H Q γ φ V

h h h q γ φ V y h h q γ φ V

s D P P P V Σ 

0

1
1 1 2 1

, , , , ,

1 1

1
1 1 2 1 1 1 2 1

, , , , | , | , , , , ,

1

1
1

| ,

1

1
2 1

2

,

 exp

 exp

i

p T

t y t y t t t

i t

T

t t y t y t y t t t y t y t y t t t

t

T

t y t t

t

T

i

    

         








 

 


   








 
   
 

  
     

 
  

 

 
 

 



 





V P P D s

s D P P V Σ y y Σ V P P D s

y Σ y

 

   

,1 ,2
11 ,

2

, 1 1, ,1 ,

1

exp ,...,

; , ,..., .

p p

ii
p

ii i

p

IG i i i p

i

f

f f

 



  

 


    





 
  
 

 
  
 





A

 (2.98)

where,

  

  

1
1 1 1 2 1 1 2 1

, , , , | , , , ,

1

1 1

,

.

T

t t y t y t y t y t y t t t

t

t t t t t

     


   



 

 

    

 A P P P V Σ V P P B

B h φh γ h φh γ

 (2.99)

Then, the first part of the posterior in equation 2.98 which is the multiplication of

inverse gamma densities can be used as a proposal density ()p  V where the

parameters are given by

1 0

1

1 0

1

1
1

2

1

2

i i

T

i i ii

t

T
 

 




 
    

 

  A

 (2.100)

At step 8 of the Gibbs sampler, sampling from (| , , , , , , ,)T T Tp  H Q Y γ φ V δ θ V is

performed by sampling from the kernel density \(| , , ,)t T T Tp h H Q Y Ω as described in

the previous section using the Metropolis-Hastings algorithm with the Metropolis-

Hastings ratio given in equation 2.68 and the proposal density given in equation

2.69.

43

In both MCMC based estimation approaches for the MSV-D model, if dynamic

components and associated terms with the correlation states, qt, are dropped along

with the parameter set { , , }q Ω δ θ V , then the only parameter set Ωh becomes

{ , , , }h Ω γ φ V δ where δ is the constant parameter for the correlations between

asset returns in place of dynamic correlation states qt. Then the simplified versions of

the algorithms can be used for the MSV-G or MSV-B model. For example the two

steps Gibbs sampler for the MCMC with EM algorithm, reduces to a single step and

eight-steps Gibbs sampler for the Bayesian MCMC, reduces to five steps and

posteriors stays almost same with simplifications.

2.2.4 Estimation with sparse grid integration (SGI) method

In this section, development of the estimation algorithms based on the sparse grid

integration (SGI) method for the MSV-D model will be presented after a brief

background on the method.

2.2.4.1 Preliminaries on the SGI method

Similar to classical numerical integration methods, sparse grid integration methods

are also based on integration formulas which are simply represented by a set of

function evaluation points and corresponding weights. These points and weights are

then used to evaluate the integral of a given function with,

     

1

,
lN

d

il il

i

I f f d w f


  x x x (2.101)

where, d is the dimension, l is the level, xil are the p-dimensional vectors representing

points, wil are the weights and Nl is the number of points in the integration formula

represented by

  ()

1

.
lN

d

l il il

i

Q f w f


 x (2.102)

In equation 2.101 and equation 2.102, level l = 1, 2, .. determines the number of

points, Nl, in the formula. The relationship between the level l and the number of

points, Nl, depends on the type of the formula. For the well known univariate iterated

trapezoid rule for open interval given by

44

  
1

1

2 1

1 3 1 3
.

1 2 1 1 2

lN

l

l

il l l l

Ni
Q f f f f

N N N N



 

      
                 

 (2.103)

The relationship between the number of points Nl and the level l can be cast as

 2 1l

lN   . (2.104)

The trapezoid rule given in equation 2.103 is a nested rule where the points in a

given level are kept in the upper levels with addition of extra points at each

increment in level.

In the conventional numerical integration approach multivariate integration formulas

such as the one in equation 2.102 are constructed from univariate rules with the

tensor product,

    
1 2 1 1 1 1

1

(1) (1)

1 1

... ,...., .
l li d

d d d d

d

N N

l l i l i l i l i l

i i

Q Q f w w f x x
 

    (2.105)

Thus, the integrand is evaluated at the points of a product grid where the resulting

multidimensional weights are the products of the corresponding one dimensional

weights. Classical product quadrature methods with this approach achieve an

accuracy of

    r dN O N  (2.106)

for the computation of multivariate integrals with N evaluations of the integrand at

each dimension of the grid boundary for functions with bounded mixed derivatives

up to order r. In conventional numerical integration approach as d increase the

convergence deteriorates rapidly and computational burden increases exponentially

which is the curse of dimensionality in this approach.

Instead of the tensor product grid in equation 2.105, multivariate sparse grid

integration rules can be obtained by construction of a regular sparse grid with the

telescoping sum,

      

1

1

1 1

1

,
d

d

l k k

l d

Q
  

  
k

 (2.107)

where ()d

lQ is an integration formula of dimension d and level l, 1(,...,)dk k k is a

d-dimensional vector and |·|r is the r-norm operator. In equation 2.107, (1)

ik are the

45

difference formulas which are also integration formulas obtained from the univariate

integration formulas (1)

lQ of different levels with

      1 1 1

1 .
i i ik k kQ Q    (2.108)

The grid construction approach in equation 2.107 uses the products whose sum of

indices are smaller than a constant l + d - 1 out of all possible tensor products.

Classical construction of multivariate integration formula given in equation 2.105

would be obtained if |k|1 < l + d - 1 , is replaced by |k|∞ < l in equation 2.107, then

the complete tensor grid used in classical approach would be obtained. The

construction in equation 2.107 is known as Smolyak's construction (Smolyak, 1963).

The regular sparse grid obtained using the construction in equation 2.107 has an

accuracy of

    
  1 (1)

log
d rrN O N N
  (2.109)

with N points in one dimension of the grid at the boundary for functions with

bounded mixed partial derivatives of order up to r.

The regular sparse grid constructed in equation 2.107 involves  
 1

O(log)
d

N N


degrees of freedom whereas the full tensor product grid involves O(N
d
) degrees of

freedom. As a result, although not completely, SGI method significantly helps for

relaxing the limitation imposed by the number of dimensions in conventional

numerical integration approach. Table 2.1 shows the required number of grid points

for different number of dimensions and levels of regular sparse grid and full tensor

product grid constructed from the trapezoid rule given in equation 2.103 where the

dependence on dimension can be seen clearly.

2.2.4.2 SGI based estimation algorithms for the MSV-D

At time t, if the state spaces of ht and qt are augmented then the total dimension of

the resulting state space becomes
22d p . Let ()d

lQ be the d-dimensional and ()p

lQ

be the p-dimensional sparse grid quadrature rules constructed from the choice of a

univariate quadrature rule, (1)

lQ of level l. Although it is not necessary, it is assumed

that the level l stays constant through time periods 1,..,t T for notational

46

simplicity. Let  1,2,..f FG N and  1,2,..h HG N be the sets of sparse grid point

indices of the formulas ()d

lQ and ()p

lQ respectively. Then, each point
fi G in the first

grid is characterized by a d-dimensional vector () () ()

,1 ,(,..,)i i i

f f f dc c c and each point

hi G in the second grid is characterized by a p-dimensional vector

() () ()

,1 ,(,..,)i i i

h h h pc c c representing the raw grid coordinates of the points and

corresponding weights ()i

Fw , ()i

Hw .

Table 2.1 : Multi-dimensional grid sizes based on the trapezoid rule.

Level Dimension
Complete Tensor

Product Grid

Regular Sparse

Grid

2 1 3 3

2 5 243 5

2 10 59,049 21

2 20 3.48x10
9

41

3 1 7 7

3 5 16807 71

3 10 282,475,249 241

3 20 7.97×10
16

881

4 1 15 15

4 5 795,375 351

4 10 5.76×10
11

2,001

4 20 3.32×10
23

13,201

5 1 31 31

5 5 28,629,151 1,471

5 10 8.19×10
14

13,441

5 20 6.71×10
29

154,881

The constructed sparse grid can be applied to the state space model of MSV-D by

providing the suitable integration intervals for each dimension of the state vectors

1(,...,)t t pth h h and 1(,...,)t t rtq q q for t = 1,...,T. Once the integration intervals

provided, raw grid coordinates, ()i

fc and ()i

hc , of points can be converted to actual

point coordinates as

     

   

() () () () () () () () ()

,1 , 1 1 (2 1),

() () () () () ()

,1 , 1

,.., , ,.., , ,.., , i

,.., ,.., , i .

i i i i i i i i i

f f f d t t t pt t p p t F

i i i i i i

h h h d t t pt H

c c h h q q G

c c h h G



 
   

 
   

c h q

c h

 (2.110)

with corresponding weights ()i

Fw , ()i

Hw .

47

Here, two regular sparse grids are constructed, sparse grid of the augmented ht and qt

states is the first and second is the sparse grid of ht which is a sub-grid of the first

one with adjusted weights and different indices.

Equipped with the sparse grid points, corresponding weights and sets of their indices

for the two sparse grids, the integrals in the filtering algorithm given in equation 2.43

in section 2.2.1.2 can be handled numerically as,

 

     

 

     

() ()

1

() () () () () () () ()

1 1 1 1 1 1

() ()

() () () () () () () () ()

1 1 1

, | ,

| , , | , , | , ,

, | ,

| , , , | , , , | ,

F

i i

t t t

i j j i j j j j

h t t t h q t t q t t t f F

j G

i i

t t t

k i i k i i i i k

y t t t t h h t t t h t t t h

k G

p

p p p w i G

p

p p p w



     



  











h q Y Ω

h h q Ω q q Ω h q Y Ω

h q Y Ω

y h h q Ω h h q Ω h q Y Ω

     () () () () () () () () () ()

1 1 1

.
| , , , | , , , | ,

H

F H

k i i k i i i i k i

y t t t t h h t t t h t t t h f

i G k G

p p p w w  

 



  y h h q Ω h h q Ω h q Y Ω

 (2.111)

Similarly, density based L-step ahead prediction algorithm given in equation 2.45 in

section 2.2.1.2 can be obtained using the sparse grid integration as

 

   

 

() ()

() () () () ()

1 1 1

() () ()

1 1

, | ,

| , , | ,

 , | , , ,

F

i i

t L t L t

i j j i j

h t L t L t L h q t L t L q

j G

j j j

t L t L t F F

p

p p

p w i G

 

       



   







h q Y Ω

h h q Ω q q Ω

h q Y Ω

 (2.112)

based on the filtering density obtained in equation 2.111.

The recursive smoothing density algorithm given in equation 2.47 in section 2.2.1.2

can be numerically approximated as

 

 

     
 

() ()

() ()

() () () () () () ()

1 1 1 1 ()

() ()

1 1

, | ,

 , | ,

, | , | , , | ,
, ,

, | ,
F

i i

t t T

i i

t t t

j j j i i j i

t t T h t t t h q t t q i

f Fj j
i G t t t

p

p

p p p
w j G

p

   

  

 





h q Y

h q Y Ω

h q Y Ω h h q Ω q q Ω

h q Y Ω

 (2.113)

for t = T-1, T-2,...,1.

The expectation of a function  ,u uf h q given in equation 2.50 can be numerically

approximated by

48

       () () () () ()E , | , , , | ,
F

i i i i i

v v s v v v v s F

i G

f f p w


h q Y Ω h q h q Y (2.114)

and finally, for the parameter estimation, the log-likelihood function in equation 2.51

can be approximated as

  

   

 

() () () () ()

1 1

() () () ()
1

1

log |

| , , , | , ,
log ,

, | ,H F

T

k i i k i i
T

y t t t t h h t t t h

i i i k
t k G i G

t t t f h

p

p p

p w w

 

  




 
 
 
 

  

Y Ω

y h h q Ω h h q Ω

h q Y Ω

 (2.115)

which is readily available from the denominator of the filtering algorithm given in

equation 2.111.

The algorithms based on the SGI method are general and in the cases of static MSV-

G and simpler MSV-B models, the algorithms presented here get simpler too. For

example the filtering algorithm for the MSV-B model simplifies to

     

 
   
   

() () () () ()

1 1 1 1

() ()

1()

() () ()

1

| , | , | , , ,

| , | ,
| , ,

| , | ,

H

F

i i j j j

t t h t t h t t f H

j G

i i

y t t h t ti

t t i i i

y t t h t t h

i G

p p p w i G

p p
p

p p w

   









 







h Y Ω h h Ω h Y Ω

y h Ω h Y Ω
h Y Ω

y h Ω h Y Ω

 (2.116)

with { , , , }h Ω γ φ V δ , where only the sparse grid for the states ht is used since the

dynamic elements qt are dropped and δ is included in the parameter set for

correlations.

A method for identifying suitable integration intervals for the states, ht, is

incorporating the estimates form the Kalman filter and setting integration intervals as

  | | |,t s t s t sz z h d h d (2.117)

where |t sh is the state estimates and |t sd is the vector composed of square roots of the

diagonal elements of the covariance estimate, , |h t sΣ (i.e., standard deviation estimates

of the states ht) obtained with the Kalman filter algorithms given in section 2.2.2

with equations 2.56, equation 2.57 and equation 2.58. In equation 2.117 z is a scalar

tuning parameter greater than 1. Identifying the integration intervals for the states qt

can be challenging. One of the options is using a generic interval such as [-2π, 2π]

covering most of the interval in accordance with the transformation in equation 2.23

or a smarter approach would be fitting a static version of the model and then using

49

the parameter estimates for the constant correlations as the mean of the integration

interval for the dynamic case and identifying a symmetric interval, where maximum

for the upper bound is set to 2π and minimum for the lower bound is -2π, leading to

integration intervals that are narrowed down for better precision.

50

51

3. COMPUTATIONAL IMPLEMENTATION

In this section important topics on the practical implementation of the estimation

algorithms, their computational aspects and parallelization approaches, particularly

implementation with the graphics processing unit (GPU), which is one of the

research objectives of this study, are discussed.

3.1 Computational Aspects of Estimation Algorithms

In a typical practical application of volatility estimation main purpose is forecasting

the future volatilities for decision making given the past information. Long and mid-

term predictions are usually composed of several periods whereas the short term

forecasting usually refers the next single period or a couple of next periods. The

models and estimation algorithms presented in this study are suitable for short term

predictions because models do not include components which are common in mid-

term to long term forecasting methods (such as external regressors, leading indicators

etc.). Although it is trivial to include such components the focus of the study is short

term forecasts which is often considered as the next period.

For the main practical objective of producing forecasts, all the prediction algorithms

rely on other estimation algorithms namely, filtering, smoothing and parameter

estimation in quite different ways for the MCMC and SGI methods because of the

computational and algorithmic differences in these approaches. It is important to

consider the ordering and prioritization of estimation algorithms and their

dependencies for correct evaluation of performance in a practical implementation.

Figure 3.1 illustrates the dependence and ordering of different estimation algorithms

for practical implementations of the MCMC and SGI based approaches for

estimation. MCMC based estimation algorithms mainly rely on the smoothing

algorithm whereas the SGI based algorithms rely on filtering algorithm. Filtering

algorithm for the MCMC approach and smoothing algorithm for the SGI approach

are not required for prediction and parameter estimation algorithms. In a typical

implementation, MCMC based approaches require frequent (each period) execution

52

of prediction and smoothing algorithms whereas SGI based approach requires

execution of filtering and prediction algorithms.

Another important difference between the MCMC based estimation algorithms and

SGI based algorithms is the batch versus sequential structure which is also related

with the algorithm dependency differences discussed above. As illustrated in Figure

3.2, sequential algorithms use the estimation from the previous step and the current

information set to make estimations whereas the batch algorithms needs all the

information in the past and does not use any estimations from the history.

Figure 3.2 : Sequential (i.e. on-line) vs. batch algorithm.

Figure 3.1 : Estimation algorithm dependencies.

53

The algorithms based on the MCMC methods all have a batch structure inherited

from the underlying logic and structure of the MCMC methods which put the

smoothing algorithm at the basis. The estimation algorithms based on sparse grid

integration method are sequential methods since they all rely on filtering algorithm.

The advantage of sequential algorithms is that the computational burden can be split

across time periods which can be a critical advantage in practical applications.

For both MCMC with EM and Bayesian MCMC approaches presented in section

2.2.3.2 the smoothing algorithm is the main algorithm used by all other estimation

algorithms. The illustration of the smoothing algorithms for the MCMC with EM and

the Bayesian MCMC approaches are given in Figure 3.3 and Figure 3.4 respectively.

The basic structure of the smoothing algorithms in these approaches is composed of

two main loops where the outer loop constructs samples based on the previous

sample by running a inner loop computing the state estimates over time periods with

addition of parameter estimates to the inner loop for the Bayesian case.

Let P be the number of parameters then it can be seen form Figure 3.3 and Figure 3.4

that T N computations for the MCMC with EM approach and ()T P N 

computations for the Bayesian MCMC approach are required, where each

computation involves random number generation, density function evaluation and

Figure 3.3 : Smoothing algorithm of MCMC with EM approach.

54

matrix operations including the inversion and determinant for matrices in size of

maximum (2 1) (2 1)p p p p   .

The filtering algorithms for the MCMC based approaches are computationally more

intensive than the smoothing algorithms since filtering basically executes the

smoothing algorithm repeatedly over time periods. Then the computational

requirement for the both MCMC based methods for filtering becomes N×T×(T-1)/2.

The prediction algorithm for the MCMC based methods given in equation 2.71 is a

resampling algorithm has an additional computational burden of L×N. For the

parameter estimation Bayesian MCMC approach does not introduce additional

computational burden on top of the smoothing algorithm requiring ()T P N 

computations whereas MCMC with EM algorithm introduces the additional

computational requirement on the inherited computational requirement of smoothing

resulting a z T N  computations where z represents the complexity of the EM

algorithm which depends on the state space dimension thus the number of model

parameters and the choice of the optimization routine.

As depicted in Figure 3.1, the filtering algorithm given in equation 2.111 is the main

algorithm required by all other estimation algorithms. In Figure 3.5, the filtering

algorithm for the SGI based approach is illustrated.

Figure 3.4 : Smoothing algorithm of Bayesian MCMC approach.

55

Figure 3.5 : Filtering algorithm of SGI approach.

The filtering algorithm based on the SGI methods is composed of two main loops

where the outer loop constructs the estimates for time periods using two inner loops

enumerating the sparse grids of previous and next time periods. In Figure 3.5, it can

be more clearly seen that, this filtering algorithm is sequential in the time domain in

contrast with the MCMC based algorithms.

The filtering algorithm given in equation 2.111 and illustrated in Figure 3.5 requires

2 2()F F HT N N N   computations where NF and NH are the number of points in the

sparse grids GF and GH which have dependency on the level l of the underlying

univariate integration formula and the dimension of the associated state space. See

Table.2.1 for the number of sparse grid points with the trapezoid rule as the

underlying formula. GF is the sparse grid of the augmented state space of qt and ht

which has maximum 22 p dimensions in the complete dynamic MSV-D case and

minimum p dimensions in the static MSV-D case (i.e. MSV-B and MSV-G models).

GH is the sparse grid for the state space of ht which has p dimensions. Thus, under

the static specifications (i.e. MSV-G and MSV-B) GF reduces to GH and

computational burden can be represented as 2 3()H HT N N  . There is an extra

reduction in the computational requirement of the MSV-B model due to the lack of

temporal dependency on the next time step then the resulting computational burden

56

becomes 2 2()H HT N N  for the MSV-B model. Although, the curse of dimension is

overcome to a certain degree, polynomial increase in the dimension of the augmented

state-space of qt and ht makes it still hard for SGI to be used in models where the

number of assets is high and complete dynamic structure is imposed, however SGI

based filtering is still feasible for multidimensional models with static structures or

restricted dynamic structures. The smoothing algorithm given in equation 2.113 has

an additional requirement of 2

FT N computations and the prediction algorithm in

equation 2.112 requires 2

FL N computations. In the SGI based approach, each

computation involves density function evaluation and matrix operations including

inversion and determinant for matrices in size of maximum    2 1 2 1p p p p   for

the complete dynamic structure and minimum 4p
2
 for the static specifications such as

the MSV-G and MSV-B. In the SGI approach, parameter estimation incorporates

filtering algorithm depicted in Figure 3.4, thus it inherits the computational

requirement of filtering algorithm and resulting computational burden becomes

2 3()H Hz T N N   where z depends on the state space dimension, thus the number of

model parameters, and the choice of the optimization routine.

It is noteworthy that the computational burden of the algorithms provided above can

be split among time periods and one-step computational burden of the estimation

algorithms reduces by 1/T of the requirements presented above for the SGI approach

since SGI based algorithms are sequential which is not the case for MCMC based

methods as discussed before.

In the implementation of SGI based estimation algorithms a complication is the

accumulation of numerical errors as a result of the recursive nature of the

algorithms. To overcome this complication, a correction satisfying the requirement

    () () (), | , , | , 1
F

i i i

t t s t t t t s F

i G

p d d p w


  h q Y Ω h q h q Y Ω (3.1)

from the basic property of probability density functions should be implemented with

an extra computational cost of recomputing (, | ,)t t sp h q Y Ω .

A final note about the implementation is the task of construction of the regular sparse

grid used in the SGI based methods. The construction of regular sparse girds which

involves calculation of the weights and raw coordinates of points for an arbitrary

57

level l and arbitrary dimension d for a given univariate integration formula requires a

separate algorithm which does not have fixed loops (see appendix C.2 for the C

functions used in the construction of regular sparse grids based on the trapezoid

rule). For high dimensions and high values of integration rule levels, construction of

the sparse grid has its own computational burden however the regular sparse grids for

all time periods can be constructed in advance and kept in memory so computational

requirement for the construction of the sparse grid does not necessarily increase the

computational requirement of the overall estimation algorithm if the total size of the

resulting grids are not problematic for memory usage.

3.2 Parallelization Approaches for the MCMC Based Algorithms

The smoothing algorithm for the MCMC with EM approach illustrated in Figure 3.3

has dependencies both in the spatial and temporal domain in a batch structure at each

sample and time step. A parallelization can be achieved by decomposing the inner

loop (i.e. the time domain) for concurrency as illustrated in Figure 3.6.

Figure 3.6 : Parallel MCMC based smoothing algorithm.

In this approach, if the computations for each time step of each sample is considered

as a process then the maximum number of total processes that can be executed in

parallel is given by,

58

 

2 , if T is even,

1 2 , if T is odd.

T
np

T


 


 (3.2)

after the first three time steps of the first sample and before the last three time steps

of the last sample. All the estimation algorithms using the smoothing algorithm (see

Figure 3.1) can benefit from the accelerated smoothing algorithm described here for

the MCMC with EM approach.

The parallelization approach for the MCMC with EM approach illustrated in Figure

3.6 can not be applied to the smoothing algorithm of the Bayesian MCMC approach

illustrated in Figure 3.4 because of the additional dependency on the parameters

which are out of the temporal domain preventing the decomposition illustrated in

Figure 3.6. MCMC based estimation methods such as the Bayesian MCMC where

the parameter space and state space are augmented are known to be hard to parallel

algorithms (Rosenthal, 2000). An option is using parallel independent chains, each

same as the serial version illustrated in Figure 3.4 with different random number

sequences and then combining the samples. The main drawback of this approach is

the burn-in samples (i.e first M samples) which are discarded out of the N samples.

There is not an exact theoretical number but burn-in samples are usually the 20%-

30% percent of the all samples in most of the studies. The parallelization with the

parallel chains requires that either generating M burn-in samples for each chain or

generating the M burn-in sample in one process and then splitting up the remaining

samples in parallel where in either case there is a limit on the maximum theoretical

speed-up which is N/M.

Filtering algorithms based on the MCMC methods uses the smoothing algorithm for

the MCMC with EM approach repeatedly for t = 1,...,T, thus the parallelization

approach described for smoothing automatically inherited by the filtering algorithm

however an additional acceleration can be achieved by decomposing the runs of

smoothing algorithm for each t, since they are independent.

3.3 Parallelization Approach for the SGI Based Estimation Algorithms

In the filtering algorithm based on the SGI method illustrated in Figure 3.5 the

computations at each grid node for a given time step has dependency only to the

previous step in the time domain. An highly efficient parallelization can be achieved

59

by decomposing the sparse grid nodes of each time step to processes. The parallel

filtering algorithm based on SGI method is illustrated in Figure 3.7. In this approach,

if computations at each grid node for a given time step is considered as a process,

then maximum number of processes that be executed in parallel equals the sparse

grid size NF.

Figure 3.7 : Parallel SGI based filtering algorithm.

All other estimation algorithms based on the SGI method are sequential and does not

possess dependencies within a time step so the described parallelization approach is

valid for them as well.

Although the discussion on the parallel algorithms presented can be extended to the

distributed memory and processors systems by addressing the obvious intense

communication overhead required by the algorithms and their memory complexity,

this study is limited with the shared memory multi processor systems such as GPUs

or modern many-core computers. The parallel algorithms described above achieve

the most efficient parallelism by exploiting the advantage of shared memory systems.

And the memory requirements of the algorithms presented above are not beyond the

resource limits of modern computers and GPUs thus is not a bottleneck in

implementation.

60

3.4 Notes on the GPU Implementation

In this study, parallel MCMC smoothing algorithm and parallel SGI filtering

algorithm described in section 3.3 and illustrated in Figure 3.6 and Figure 3.7 are

implemented on GPU.

In a typical GPU implementation, parallel execution is achieved by device kernel

functions which require number of blocks and total number of threads in each block

in the function call along with other usual arguments such as pointers and data

structures. The number of blocks nblocks and block size nsize depend on each other and

are limited by the specification of the device used. The number of blocks for the

device kernel calls can be obtained by

1threads size

blocks

size

n n
n

n

 
 (3.3)

where the number of threads nthreads depends on the parallel algorithm. In

implementation of the parallel MCMC smoothing algorithm in Figure 3.6 each

computation at time t and sample i is considered as a single thread and the number of

threads that can be executed in parallel is set equal to the number of processes that

can be executed parallel, np, given in equation 3.2.

In a similar approach the parallel implementation of the parallel SGI filtering

algorithm is performed by setting the number of threads that can be executed in

parallel nthreads to the number of processes that can be executed in parallel, Fnp N .

Although GPU architectures and designs are much more suitable and provide tools

for exploiting lower level and more granular parallelism constructed on simpler but

repeated computations, the approach considering a set of more complex

computations composed of random number generation, density function evaluations

and matrix operations as a single thread works quite well too in terms of performance

with only the cost of considerable coding effort involving the development of all the

device counterparts of the serial functions used in the computations. See appendix

C.3 for the example codes on GPU functions, kernels and their usage.

In the implementation of MCMC algorithms, random number generation is an

important consideration and use of robust custom libraries and implementations are

61

required. In GPU implementations, parallel handling capability of random number

generation provided by the used library is important.

Some other details regarding the implementation can be found in section 4.1 where

the software and hardware used in the study are summarized as part of the

methodology.

62

63

4. METHODOLOGY

In this section the methodology followed in the study is presented. The methodology

of the study considers the following main objectives:

a. Illustrate and evaluate the proposed model (i.e. MSV-D model) and its

developed estimation method based on Bayesian MCMC,

b. Compare the performance of the the proposed estimation approach (i.e. SGI

based approach) for MSV models with the MCMC based approach,

c. Evaluate the implications of GPU acceleration support on the estimation

algorithms for the MSV models,

With these objectives, the methodology consists of computational studies and

analyses conducted on simulated and empirical data sets.

This chapter is organized as follows. Section 4.1 provides details of the software

programs and hardware used in the computational studies. Section 4.2 describes the

methodology used for illustration and evaluation of the proposed model, MSV-D.

And in section 4.3 the methodology used to assess and compare the SGI based

estimation algorithms with the MCMC based algorithms and to evaluate the

implications of GPU support in estimation algorithms are presented together.

4.1 Software Programs and Hardware

The estimation algorithms used in computational studies are implemented using the

C programming language for both the serial and parallel implementations.

NVIDIA™ CUDA
®

 4.0 platform is used for the development and programming of

the parallel algorithms for GPUs.

Table 4.1 provides the summary of the estimation algorithms and their

implementations.

64

Table 4.1 : Implemented estimation algorithms.

Approach Serial CPU Parallel GPU

Kalman Filter Smoothing

 Filtering

 Prediction

MCMC Smoothing Smoothing

 Filtering

 Prediction

 Parameter Estimation

SGI Smoothing Filtering

 Filtering

 Prediction

 Parameter Estimation

As discussed in section 3, the smoothing algorithm for the MCMC approach and the

filtering algorithm for the SGI approach are base algorithms which other algorithms

depend on, thus parallel implementations of these two algorithms automatically make

other algorithms parallel too.

In implementations of the algorithms, the random number generation in the serial

programs is performed with a C implementation of LAPACK _larnv routines and in

GPU programs, CURAND library is used.

In the parameter estimation algorithms of the MCMC with EM and SGI approaches,

NLopt C library is used for non linear optimization methods.

Computational studies and numerical applications are performed on a computer with

Intel Core I7-920 processor, 16 GB memory and NVIDIA™ Tesla C1060 compute

processor as the GPU.

For comparison purposes, in some of the parts of the computational studies GARCH

models are used and they are fitted in R verison 3.1.0 with rugarch, rmgarch and

ccgarch packages.

4.2 Assessment of the MSV-D Model

To illustrate and evaluate the proposed model, namely the MSV-D model, and its

Bayesian MCMC estimation algorithm, two simulated data sets and an empirical data

set are used.

Two simulated data sets of five asset returns are generated with known parameters

for T = 5,000 time periods. First data set is constructed with a static specification

65

which is equivalent to the MSV-G model whereas the second simulated data set has a

complete dynamic structure based on the MSV-D model. It is noteworthy that, the

static specification which is equivalent to the MSV-G model, is essentially a special

case of the MSV-D model parameterized with the proposed approach.

First set of simulated data is obtained by setting the parameters of the AR(1) process

of the log-volatilities, ht, as

 2

,0.25, 0.97, 0.04, 1,..,5i i i i      (4.1)

and the static correlation structure is determined by the correlation matrix,

1 0.6 0.6 0.6 0.6 0.4 0.3 0.3 0.3 0.3

0.6 1 0.6 0.6 0.6 0.3 0.4 0.3 0.3 0.3

0.6 0.6 1 0.6 0.6 0.3 0.3 0.4 0.3 0.3

0.6 0.6 0.6 1 0.6 0.3 0.3 0.3 0.4 0.3

0.6 0.6 0.6 0.6 1 0.3 0.3 0.3 0.3 0.4

0.4 0.3 0.3 0.3 0.3 1 0.6 0.6 0.6 0.6

    

    

    

    

    


    
P

0.3 0.4 0.3 0.3 0.3 0.6 1 0.6 0.6 0.6

0.3 0.3 0.4 0.3 0.3 0.6 0.6 1 0.6 0.6

0.3 0.3 0.3 0.4 0.3 0.6 0.6 0.6 1 0.6

0.3 0.3 0.3 0.3 0.4 0.6 0.6 0.6 0.6 1

 
 
 
 
 
 
 
 
 
     
 
     

 
    

 
      

 . (4.2)

In the second simulated data set, instead of the static correlation matrix P, a dynamic

structure is introduced by AR(1) processes of qt with the parameters,

2

,0.97, 0.01i i   (4.3)

and taking the matrix,

1 0.81 0.78 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.81 1 0.78 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.78 0.78 1 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.75 0.75 0.75 1 0.71 0.66 0.60 0.54 0.46 0.38

0.71 0.71 0.71 0.71 1 0.66 0.60 0.

    

    

    

    

  
P

54 0.46 0.38

0.66 0.66 0.66 0.66 0.66 1 0.60 0.54 0.46 0.38

0.60 0.60 0.60 0.60 0.60 0.60 1 0.54 0.46 0.38

0.54 0.54 0.54 0.54 0.54 0.54 0.54 1 0.46 0.38

0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 1 0.38

0.38 0.38 0.38 0.38

 

    

    

    

    

    0.38 0.38 0.38 0.38 0.38 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (4.4)

as the mean to obtain the process intercept δ using the transformations in equation

2.19 to equation 2.24 of MSV-D model specification.

66

On the two sets of simulated asset returns data, static and dynamic models are fitted

using the Bayesian MCMC estimation approach developed in section 2.2.3.2. The

prior density parameters for the Bayesian MCMC estimation approach for the static

model are set as follows:

 

 

   

1

2

, 0 0 0 0

1

1

1
; , , 20, 1

2

; , , 2.5, 0.025

p

i
B i i i i

i

p

IG i i i i i

i

p

p f

p f 


   

    







 
   

 

  





γ

φ

V

 (4.5)

where ()Bf  is the beta distribution, ()IGf  is the inverse gamma distribution. In

addition to the densities above the prior densities,

 

 

   

1

2

, 0 0 0 0

1

1

1
; , , 20, 1

2

; , , 2.5, 0.025

r
i

B i i i i

i

r

IG i i i i i

i

p

p f

p f 


   

    







 
   

 

  





δ

θ

V

 (4.6)

are considered for the dynamic model. For sampling the log-volatilities, ht, the

density in equation 2.69 is used with the tuning scalar parameter c = 6.

With these settings, the results composed of the parameter and smoothing estimates

and their standard errors are obtained which constitute a basis for comparison with

the true values of parameters and log-volatilities providing statistical evidence on the

how the proposed MSV-D model and its Bayesian MCMC estimation algorithm

work in capturing the patterns.

Parameter estimates and 95% credible intervals are computed from the resulting

samples representing the posterior distributions of parameters obtained from the

executed Bayesian MCMC algorithm.

The comparison of the estimated and actual log-volatilities are performed based on

the root mean squared error (RMSE) as the criteria. RMSE of the log-volatility series

ht is computed as,

  
2

|

1

1
RMSE

1

T

t s t

tST t 

 
 

h h h (4.7)

67

where (s, tS) = (T, 1) and |t sh are the smoothing estimates obtained by the Bayesian

MCMC estimation algorithm and ht is the actual log-volatility at time t in the

simulated data. T is the number of time periods which is 5,000. Similarly, for the

dynamic setting, RMSEs of a time varying parameter such as the dynamic correlation

coefficient is calculated by replacing |t Th

and ht with the estimate and actual value of

the parameter at time t in equation 4.7.

An inefficiency factor which is a diagnostic measure indicating how well the MCMC

mixes is computed by calculating the ratio of the numerical variance of the posterior

mean to the variance of the sample mean based on uncorrelated draws. The

inefficiency factor shows how many times the number of uncorrelated samples must

be drawn for reliable estimates. See details on inefficiency factor as a diagnostic

measure in (Chib, 2001). The results of the applications of MSV-D models are

shown in section 5.1.

An empirical analysis was also conducted to illustrate how the MSV-D model and its

Bayesian MCMC estimation algorithm work on real data. The data include the price

series of S&P500 index, IBM and Intel Corporation (INTC) stock price series from

January 1, 1996 to August 31, 2015 including 4,951 observations excluding the days

when the markets are closed due to holidays, weekends and other special days. The

data are dividend adjusted.

Asset returns are defined as the log-differences of price series and the price series are

converted to return series accordingly. The returns data are checked for the AR(1)

effects and removed from the data. The data were tested for the heteroskedasticity

using Ljung-Box test on the squared returns data series resulting with p < 0.01 for all

asset return series, rejecting the null hypothesis of homoskedasticity and

independence.

A complete dynamic specifications of MSV-D model was fit on the data using the

Bayesian MCMC estimation approach described in section 2.2.3.2 with the priors

given in equation 4.5 and equation 4.6.

The log-volatility and time varying correlation estimations are compared with

estimations from an exponential version of the Dynamic Conditional Correlation

GARCH (DCC-GARCH) model of Engle (2002). DCC-EGARCH (1,1) model is

given by

68

    , , 1 1 1 , 1log() log(), 0,i t i i i t i t t i i t t th z z E z h N      
       z P (4.8)

where the dynamic correlation matrix Pt is modeled by

   

 

1 2 1 2

1 1 11 , 1 and , 0

t t t t

t t t ta b a a b a b

 

  



       

P Q I Q Q I

Q Q z z Q

 
 (4.9)

In equation 4.9, Q is the sample covariance matrix of zt. The DCC-EGARCH model

is fitted in R with the rmgarch package.

The results of the empirical application are shown in section 5.2.

4.3 Assessment of the Estimation Algorithms

In order to compare the proposed SGI based estimation algorithms with MCMC

based estimation algorithms in terms of accuracy and computational requirements a

simulation study was designed as follows.

The simulation study is based on repeated generation of artificial return series using

the MSV-B model specification with known parameter values,

 , ,

20.25, 0.95, 0 0.6,.04, 1,..,i i iji i p       (4.10)

with qt = δ is obtained with the transformations from equation 2.19 to equation 2.24

of MSV-D model specification based on the correlation matrix
,()ij P .

Different artificial return series are generated for different number of assets (i.e.

dimension of the state space of log-volatilities) p ={1,2,3}, for fixed T = 1,000

periods.

Then, on each simulated return series data, both the SGI and MCMC based

estimation algorithms are used to calculate smoothing, filtering, one-step ahead

prediction estimates of log-volatilities and estimates of parameters. In the application

of SGI based estimation algorithms, integration levels l = {4, 5, 6} and in the

application of MCMC based estimation algorithms sample sizes N ={100,000,

200,000, 400,000} are used.

The procedure of generating simulated data and estimation described above is

repeated R = 100 times to capture the statistics on estimations comparing with the

69

true values of the parameters and log-volatilities. The accuracy of the parameter

estimates is measured by the root mean squared error (RMSE) calculated by

    

2

1

1 ˆRMSE
R

i i

h h

iR 

 Ω Ω Ω (4.11)

where R = 100 is the number of repeats and
 ˆ i

hΩ is the particular parameter estimate

and
 i
hΩ is the true value of the particular parameter used to generate the data at

repeat i.

The accuracy of the log-volatility estimates is measured by the root mean squared

error (RMSE) calculated by

    

2

, | ,

1 1

1 1 1
RMSE

1
S

p T R
i i

j t s j t

j t t js

h h
p T t R  

 
 

 h (4.12)

where T = 1,000 is the number of periods, R = 100 is the number of repeats, p is

dimension of the state-space,
 
, |

i

j t sh is the log-volatility estimate and
 
,

i

j th is the true

value of the log-volatility from the simulated data at repeat i. Depending on the type

of the estimate, the indices become (s, tS) = (t, 1) for filtering, (s, tS) = (T, 1) for

smoothing and (s, tS) = (2, t-1) for one-step ahead prediction.

Computational requirements and assessments regarding the GPU acceleration were

obtained by measuring the execution times of the estimation algorithms for both

serial CPU implementations and parallel GPU implementations and calculating the

speed up defined as the ratio of the serial execution time to parallel execution time.

Multiple measurements of executions are averaged and single measurements are

reported in some serial cases that take too much time. The results of the simulation

study are given in section 5.3.

4.4 Illustration of SGI Based Estimation Algorithms on Empirical Data

Proposed SGI based algorithms are applied on empirical data to illustrate how SGI

based estimation algorithms perform on real data. The data includes foreign-

exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish

Lira(TRL) from March 1, 2001 to September 30, 2015. There are 3,669 trading days

for each series. The returns are defined by the log-difference of each series. The

70

return series were checked for AR(1) effects and those effects were removed from

the series.

The data is tested for the heteroskedasticity using Ljung-Box test on the squared

returns data series resulting with p < 0.01 for all asset return series rejecting the null

hypothesis of homoskedasticity and independence.

For illustration purposes three models are fitted to the data two of which are actually

the same MSV-B model but estimated with SGI based and MCMC based estimation

algorithms and a diagonal CCC-GARCH model of Bollerslev (1990) given by

  2 1/2

, , 1 , 1 , , ,, , 0,i t i i i t i i t i t i t i t th h h z N         z P (4.13)

The CCC-GARCH model is fitted in R with the ccgarch package.

In fitting the MSV-B model using the SGI based estimation algorithms , trapezoid

rule of level l = 8 is used as the basis univariate integration formula which results in a

two dimensional sparse grid having 1,793 points for each time period. For the

MCMC based algorithms, sample size of N = 400,000 is used and 25% of them are

discarded as burn-in samples. For the covariance of the proposal distribution of log-

volatilities in MCMC and for identifying the integration intervals in SGI scalar

tuning parameter c = 6 and z = 6 are used in equation 2.69 and equation 2.117

respectively.

Model fit statistics standard error of estimates of parameters and RMSE of log-

volatilities are used for evaluation. RMSE of the log-volatility series are calculated

by equation 4.7 setting (s, tS) = (T, 1) for smoothing and (s, tS) = (2, t-1) for one-

step predictions. The results of the empirical analysis are given in section 5.4.

71

5. RESULTS

In this section the results of the computational studies and numerical applications

described in section 4 regarding the proposed MSV-D model and its Bayesian

MCMC estimation method, proposed SGI based estimation algorithms and

computational implications of GPU usage in estimation of MSV models are

presented.

5.1 MSV-D Model on Simulated Returns Data

The proposed MSV-D model and its Bayesian MCMC estimation method were

applied on two sets of simulated asset returns data as described in section 4.2 for

illustration and evaluation purposes.

First simulated data set is based on the static specification equivalent to the MSV-G

model and is a special case of the MSV-D model parameterized with the proposed

approach.

Figure 5.1 shows the simulated return series and log-volatilities of five assets with

the static specifications given by equation 4.1 and equation 4.2. In Figure 5.1,

volatility clusterings, co-movements of asset returns and co-movement of log-

volatilities are visible from the charts.

The simulated return series parts of the simulated data are used to fit a static model to

the returns data using the Bayesian MCMC estimation algorithm developed for the

MSV-D model in section 2.2.3.2 which produces both the parameter estimates and

smoothing estimates of the log-volatilities at the same time.

In the estimation algorithm sample size of N = 400,000 is used and 25% of them are

discarded as burn-in samples. The parameter estimates and log-volatility estimates

obtained are then compared with the true values of parameters and log-volatilities

which are used to simulate the data to see how the MSV-D model and its estimation

algorithm perform.

72

Figure 5.1 : Simulated series based on the static MSV-D model.

Parameter estimation results of the parameters of the log-volatility process, γi, φi, ζη,i

are given in Table 5.1. In Table 5.1, it can be observed that in general posterior

means of the parameter estimates are sufficiently close to the true parameter values

with 95% intervals containing the true values.

The intervals in the estimates for the persistence parameters, φi are relatively

narrower than the intercept, γi and standard deviations of the error term, ζη,i. Higher

inefficiency factors are observed in ζη,i when compared to other parameters followed

by φi (Table 5.1).

73

Table 5.1 : Static MSV-D model parameter estimation results of γi, φi, ζη,i.

 True i Mean 95% interval Inefficiency

γi 0.25

1 -0.261 [-0.322,-0.201] 129

2 -0.242 [-0.313,-0.171] 190

3 -0.239 [-0.303,-0.175] 206

4 -0.264 [-0.329,-0.199] 169

5 -0.241 [-0.304,-0.178] 102

φi 0.97

1 0.961 [0.952, 0.971] 365

2 0.976 [0.967, 0.985] 340

3 0.966 [0.957, 0.975] 272

4 0.963 [0.954, 0.972] 314

5 0.974 [0.965, 0.983] 324

ζη,i 0.2

1 0.208 [0.177, 0.239] 386

2 0.194 [0.165, 0.223] 351

3 0.203 [0.171, 0.235] 408

4 0.188 [0.160, 0.216] 430

5 0.191 [0.161, 0.221] 381

Parameter estimation results of the correlation matrix entries, ρεε,ij , ρεη,ii, ρεη,ij are

given in Table 5.2 for the static MSV-D model. It can be observed from Table 5.2

that the MSV-D model and its estimation algorithm performs well in estimating the

static correlation matrix, P, with estimations close to the true values which are within

95% intervals.

It is seen from both Table 5.1 and Table 5.2 that the inefficiency factors, the

indicator of how the chain mixes, are high when compared to the benchmarks in the

literature especially for the parameters ζη,i, ρεη,ii, ρεη,ij, ρηη,ij, with values well above

300. This indicates the requirement of large sample sizes and justifies the sample size

choice of N = 400,000 which is quite high when compared to examples in the

literature. Although the developed Bayesian MCMC estimation algorithm is not

highly efficient, it performs well enough for the objectives of this study.

The efficiency of the MCMC algorithm can be altered by implementing alternative

sampling techniques such as the multi-move sampler as discussed in (Ishihara &

Omori, 2012) without the loss of generality of the developed MCMC algorithm.

74

Table 5.2 : Static MSV-D model parameter estimation results of ρεε,ij , ρεη,ii, ρεη,ij.

 True i/ij Estimate 95% interval Inefficiency

ρεε,ij 0.6

12 0.581 [0.467, 0.695] 27

13 0.609 [0.529, 0.689] 41

14 0.587 [0.477, 0.697] 33

15 0.580 [0.483, 0.677] 41

23 0.593 [0.506, 0.680] 24

31 0.591 [0.509, 0.673] 39

32 0.612 [0.523, 0.701] 40

34 0.596 [0.498, 0.694] 28

35 0.605 [0.485, 0.725] 26

45 0.597 [0.498, 0.696] 18

ρεη,ii -0.4

11 -0.431 [-0.541, -0.321] 395

22 -0.412 [-0.552, -0.272] 414

33 -0.378 [-0.502, -0.254] 425

44 -0.381 [-0.498, -0.264] 306

55 -0.385 [-0.514, -0.256] 368

ρεη,ij -0.3

12 -0.289 [-0.418, -0.160] 416

13 -0.271 [-0.387, -0.155] 444

14 -0.283 [-0.380, -0.186] 332

15 -0.276 [-0.362, -0.190] 346

21 -0.329 [-0.411, -0.247] 218

23 -0.311 [-0.410, -0.212] 338

24 -0.291 [-0.418, -0.164] 427

25 -0.275 [-0.356, -0.194] 255

23 -0.332 [-0.427, -0.237] 431

31 -0.293 [-0.376, -0.210] 231

32 -0.280 [-0.411, -0.150] 229

34 -0.316 [-0.396, -0.236] 373

35 -0.321 [-0.419, -0.222] 300

41 -0.329 [-0.434, -0.224] 444

42 -0.288 [-0.395, -0.181] 289

43 -0.294 [-0.418, -0.170] 275

45 -0.318 [-0.399, -0.237] 273

51 -0.325 [-0.432, -0.218] 422

52 -0.279 [-0.396, -0.162] 276

53 -0.286 [-0.404, -0.168] 398

54 -0.267 [-0.364, -0.169] 415

ρηη,ij 0.6

11 0.648 [0.545, 0.751] 625

12 0.622 [0.487, 0.757] 704

13 0.637 [0.522, 0.754] 451

14 0.619 [0.487, 0.751] 698

15 0.594 [0.501, 0.688] 562

23 0.611 [0.484, 0.738] 717

31 0.631 [0.536, 0.726] 653

32 0.589 [0.492, 0.686] 748

34 0.590 [0.468, 0.712] 469

35 0.587 [0.495, 0.679] 487

45 0.627 [0.522, 0.732] 721

The charts in Figure 5.2 shows the estimated and actual log-volatilities for

comparison. Log-volatility estimation results for the static MSV-D model are

summarized in Table 5.3.

75

Figure 5.2 : Log-volatility fits for the static MSV-D model.

In the charts in Figure 5.2 the match between the patterns of the estimates and true

values are visually seen. In Table 5.3, it can be seen that the estimated means for the

log-volatilities and their true values are quite close with acceptable values of RMSE

values for all five return series.

76

Table 5.3 : Static MSV-D model log-volatility estimation results.

Series (i) True Mean Estimated Mean RMSEh

1 -8.454 -8.424 0.311

2 -8.523 -8.476 0.305

3 -8.515 -8.485 0.302

4 -8.446 -8.393 0.315

5 -8.474 -8.448 0.314

It can be concluded that log-volatility estimates are sufficiently close to the true

values and that the proposed MSV-D model, its parameterization and its custom

Bayesian MCMC estimation algorithm perform sufficiently well for the static case.

Second simulated data set regarding the assessment of MSV-D model is based on the

complete dynamic specification using the proposed MSV-D model.

Figure 5.3 shows the simulated data including the five asset returns and

corresponding log-volatility series for the complete dynamic MSV-D model. In the

charts of Figure 5.3, volatility clusterings and co-movements of the asset returns and

volatilities are observable.

In the complete dynamic MSV-D specification, the correlations are also time varying

and in Figure 5.4 some of the correlations between different components indicating

various dynamic stylized facts are plotted.

In Figure 5.4, first chart is an example of correlations between the asset returns,

second chart is an example of dynamic leverage effect, third chart is an example of

dynamic cross-leverage effect and fourth chart is an example of dynamic volatility

spillover which are all addressable with the flexible structure of the proposed MSV-

D model.

Using the Bayesian MCMC estimation algorithm developed in section 2.2.3.2,

estimates of parameters, log-volatilities and correlations are obtained.

Dynamic MSV-D estimation results for the log-volatility process parameters, γi, φi,

ζη,i are given in Table 5.4. It can be observed that the true values are close to the

parameter estimates with 95% intervals including the true values.

77

Figure 5.3 : Simulated series based on the dynamic MSV-D model.

Dynamic MSV-D estimation results for parameter δi which is the intercept parameter

of the AR(1) process driving the dynamic correlations are given in Table 5.5. In

Table 5.6, dynamic MSV-D estimation results for the parameters θi which is the

persistence parameter of the AR(1) process driving the dynamic correlations are

given. Table 5.7 shows the dynamic MSV-D estimation results for parameter σω,i. In

Table 5.5, Table 5.6 and Table 5.7, results show that the parameter estimates are

sufficiently close to the true values and true values fall into the 95% intervals. The

parameter estimates of ζη,i given in Table 5.4 and ζω,i, in Table 5.7 have relatively

large estimation intervals and inefficiency factors are quite high for those parameters.

The dynamic MSV-D specification has too many parameters to estimate and

dimensionality is high and this result is in fact expected. Obviously larger sample

sizes would be better for the dynamic setting.

78

Figure 5.4 : Examples of simulated dynamic correlations based on the dynamic

MSV-D model.

Dynamic MSV-D model parameter estimation results of the log-volatilities are given

in Table 5.8 where the RMSE values are all at acceptable levels with close means of

estimations and true values.

The charts in Figure 5.5 plot the log-volatility estimates and their actual values for all

time periods and it can be seen that the log-volatility estimates successfully follow

the patterns of the actual values.

79

Table 5.4 : Dynamic MSV-D model parameter estimation results of γi, φi, ζη,i.

 True i Mean 95% interval Inefficiency

γi -0.25

1 -0.267 [-0.397, -0.137] 251

2 -0.268 [-0.398, -0.138] 270

3 -0.243 [-0.383, -0.103] 265

4 -0.256 [-0.376, -0.136] 189

5 -0.264 [-0.404, -0.124] 259

φi 0.97

1 0.979 [0.959, 0.998] 365

2 0.971 [0.952, 0.991] 340

3 0.959 [0.938, 0.979] 272

4 0.961 [0.941, 0.980] 314

5 0.979 [0.959, 0.998] 324

ση,i 0.2

1 0.191 [0.122, 0.260] 431

2 0.215 [0.152, 0.278] 436

3 0.214 [0.145, 0.283] 422

4 0.194 [0.124, 0.264] 410

5 0.197 [0.125, 0.269] 396

Table 5.5 : Dynamic MSV-D model parameter estimation results of δi.

True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.

0.015 1 0.019 [0.013, 0.024] 342 -0.015 24 -0.016 [-0.021, -0.010] 341

0.015 2 0.013 [0.007, 0.018] 338 0.015 25 0.009 [0.004, 0.016] 360

0.015 3 0.017 [0.011, 0.022] 393 0.015 26 0.010 [0.005, 0.017] 329

0.015 4 0.017 [0.012, 0.022] 362 0.015 27 0.016 [0.010, 0.022] 340

0.015 5 0.019 [0.013, 0.024] 331 0.015 28 0.008 [0.002, 0.016] 338

-0.015 6 -0.009 [-0.017, -0.005] 388 0.015 29 0.019 [0.013, 0.025] 332

-0.015 7 -0.017 [-0.022, -0.011] 379 -0.015 30 -0.016 [-0.021, -0.010] 322

-0.015 8 -0.020 [-0.026, -0.014] 339 0.015 31 0.014 [0.008, 0.019] 323

-0.015 9 -0.019 [-0.025, -0.013] 389 0.015 32 0.020 [0.014, 0.025] 327

0.015 10 0.019 [0.013, 0.025] 352 0.015 33 0.021 [0.014, 0.028] 359

0.015 11 0.017 [0.011, 0.022] 395 0.015 34 0.020 [0.014, 0.025] 336

0.015 12 0.021 [0.014, 0.027] 368 0.015 35 0.011 [0.005, 0.016] 351

0.015 13 0.012 [0.006, 0.018] 352 -0.015 36 -0.018 [-0.024, -0.012] 320

0.015 14 0.016 [0.011, 0.020] 322 -0.015 37 -0.019 [-0.024, -0.014] 367

-0.015 15 -0.019 [-0.024, -0.013] 337 -0.015 38 -0.015 [-0.020, -0.009] 329

-0.015 16 -0.021 [-0.028, -0.013] 356 -0.015 39 -0.008 [-0.013, -0.003] 364

-0.015 17 -0.021 [-0.026, -0.014] 401 -0.015 40 -0.019 [-0.024, -0.013] 351

0.015 18 0.019 [0.012, 0.024] 389 -0.015 41 -0.013 [-0.018, -0.007] 386

0.015 19 0.015 [0.009, 0.021] 358 -0.015 42 -0.017 [-0.022, -0.011] 349

0.015 20 0.012 [0.006, 0.018] 368 -0.015 43 -0.009 [-0.016, -0.003] 375

0.015 21 0.009 [0.005, 0.016] 373 -0.015 44 -0.017 [-0.022, -0.012] 403

0.015 22 0.009 [0.004, 0.016] 345 -0.015 45 -0.009 [-0.017, -0.001] 337

-0.015 23 -0.014 [-0.019, -0.008] 383

80

Table 5.6 : Dynamic MSV-D model parameter estimation results of θi.

True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.

0.97

1 0.979 [0.962, 0.996] 376

0.97

24 0.975 [0.957, 0.993] 410

2 0.983 [0.966, 0.999] 356 25 0.983 [0.965, 0.999] 410

3 0.963 [0.945, 0.980] 394 26 0.960 [0.943, 0.976] 425

4 0.969 [0.951, 0.986] 395 27 0.976 [0.958, 0.993] 411

5 0.965 [0.947, 0.982] 389 28 0.970 [0.952, 0.987] 426

6 0.978 [0.960, 0.995] 356 29 0.958 [0.940, 0.975] 363

7 0.968 [0.950, 0.985] 423 30 0.965 [0.947, 0.982] 352
8 0.965 [0.948, 0.981] 367 31 0.964 [0.947, 0.981] 417

9 0.976 [0.959, 0.992] 416 32 0.963 [0.944, 0.981] 357

10 0.959 [0.941, 0.976] 356 33 0.980 [0.962, 0.997] 393

11 0.964 [0.946, 0.981] 397 34 0.967 [0.949, 0.984] 362
12 0.976 [0.957, 0.994] 364 35 0.969 [0.951, 0.987] 372

13 0.96 [0.942, 0.978] 372 36 0.978 [0.959, 0.996] 358

14 0.972 [0.954, 0.989] 373 37 0.976 [0.959, 0.992] 372

15 0.966 [0.947, 0.984] 361 38 0.963 [0.944, 0.981] 404
16 0.961 [0.943, 0.979] 351 39 0.975 [0.958, 0.992] 355

17 0.981 [0.962, 0.998] 396 40 0.969 [0.951, 0.987] 407

18 0.958 [0.940, 0.976] 397 41 0.972 [0.956, 0.989] 389

19 0.973 [0.954, 0.991] 425 42 0.978 [0.960, 0.995] 359
20 0.978 [0.961, 0.994] 376 43 0.973 [0.954, 0.992] 416

21 0.956 [0.937, 0.974] 364 44 0.956 [0.939, 0.973] 388

22 0.969 [0.951, 0.986] 407 45 0.969 [0.952, 0.986] 369

23 0.979 [0.961, 0.996] 374

Table 5.7 : Dynamic MSV-D model parameter estimation results of ζω,i.

True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.

0.01

1 0.008 [0.0009, 0.0154] 548

0.01

24 0.014 [0.0008, 0.0201] 468

2 0.018 [0.0005, 0.0253] 534 25 0.021 [0.0004, 0.0275] 466

3 0.021 [0.0008, 0.0281] 478 26 0.013 [0.0005, 0.0205] 544

4 0.014 [0.0004, 0.0210] 506 27 0.007 [0.0004, 0.0141] 475

5 0.011 [0.0005, 0.0178] 502 28 0.022 [0.0004, 0.0282] 552

6 0.008 [0.0004, 0.0151] 456 29 0.013 [0.0009, 0.0205] 489

7 0.015 [0.0008, 0.0220] 468 30 0.022 [0.0008, 0.0284] 477

8 0.018 [0.0005, 0.0242] 536 31 0.010 [0.0005, 0.0162] 444

9 0.012 [0.0008, 0.0191] 468 32 0.015 [0.0006, 0.0213] 534

10 0.018 [0.0004, 0.0242] 481 33 0.014 [0.0007, 0.0211] 496

11 0.017 [0.0005, 0.0243] 558 34 0.013 [0.0005, 0.0196] 432

12 0.019 [0.0006, 0.0256] 540 35 0.019 [0.0009, 0.0251] 499

13 0.011 [0.0007, 0.0171] 460 36 0.007 [0.0009, 0.0132] 433

14 0.017 [0.0005, 0.0239] 474 37 0.015 [0.0005, 0.0223] 556

15 0.007 [0.0005, 0.0136] 535 38 0.013 [0.0006, 0.0195] 431

16 0.011 [0.0009, 0.0177] 537 39 0.020 [0.0006, 0.0275] 534

17 0.017 [0.0004, 0.0232] 479 40 0.016 [0.0005, 0.0220] 520

18 0.007 [0.0004, 0.0137] 452 41 0.020 [0.0008, 0.0261] 514

19 0.020 [0.0008, 0.0261] 512 42 0.013 [0.0004, 0.0203] 511

20 0.011 [0.0008, 0.0165] 462 43 0.017 [0.0004, 0.0239] 495

21 0.009 [0.0005, 0.0164] 460 44 0.017 [0.0007, 0.0231] 480

22 0.015 [0.0004, 0.0224] 513 45 0.008 [0.0005, 0.0152] 431

23 0.011 [0.0009, 0.0172] 541

81

Table 5.8 : Dynamic MSV-D model log-volatility estimation results.

i True Mean Estimated Mean RMSE

1 -8.324 -8.322 0.281

2 -8.371 -8.368 0.273

3 -8.281 -8.284 0.275

4 -8.287 -8.284 0.276

5 -8.483 -8.477 0.280

Dynamic MSV-D model estimation results of the dynamic correlations are shown in

Table 5.9. Mean of the actual correlation coefficients and the estimated values are

quite close with acceptable RMSE values (Table 5.9). In Figure 5.6, actual

correlation coefficients and their estimates for all time periods for some of the

correlation components representing dynamic correlations between asset returns (1),

dynamic leverage effect (2), dynamic cross-leverage effect (3) and dynamic volatility

spillover effects (4) are plotted. In all charts it can be seen that estimations follow

the actual patterns successfully.

Table 5.9 : Dynamic MSV-D model estimation results of the dynamic correlations,

ρεε,ij,t , ρεη,ii,t, ρεη,ij,t.

 ij
True

Mean

Est.

Mean
RMSE ij

True

Mean

Est.

Mean
RMSE

ρεε,ij,t

12 0.545 0.513 0.084

ρεη,ij,t

11 -0.457 -0.438 0.085

13 0.560 0.528 0.083 12 -0.434 -0.416 0.085

14 0.516 0.488 0.091 13 -0.457 -0.441 0.084

15 0.531 0.504 0.085 14 -0.394 -0.385 0.086

23 0.545 0.516 0.082 15 -0.289 -0.285 0.094

24 0.530 0.506 0.084 21 -0.478 -0.458 0.085

25 0.516 0.494 0.088 22 -0.501 -0.480 0.082

34 0.522 0.493 0.083 23 -0.435 -0.421 0.087

35 0.559 0.533 0.079 24 -0.413 -0.404 0.087

45 0.526 0.502 0.082 25 -0.310 -0.307 0.092

 31 -0.517 -0.494 0.082

ρηη,ij,t

12 0.797 0.768 0.073 32 -0.505 -0.483 0.081

13 0.439 0.424 0.088 33 -0.459 -0.445 0.083

14 0.404 0.393 0.086 34 -0.408 -0.395 0.085

15 0.354 0.348 0.088 35 -0.359 -0.355 0.088

23 0.456 0.441 0.074 41 -0.461 -0.443 0.087

24 0.426 0.414 0.084 42 -0.467 -0.449 0.086

25 0.365 0.361 0.087 43 -0.421 -0.406 0.085

34 0.379 0.371 0.077 44 -0.396 -0.387 0.084

35 0.355 0.351 0.086 45 -0.325 -0.322 0.086

45 0.297 0.296 0.090 51 -0.491 -0.474 0.092

 52 -0.483 -0.465 0.083

 53 -0.476 -0.460 0.085

 54 -0.416 -0.409 0.084
 55 -0.379 -0.376 0.086

82

Figure 5.5 : Log-volatility fits for the dynamic MSV-D model.

83

Figure 5.6 : Dynamic correlation fits for the dynamic MSV-D model.

In the complete dynamic MSV-D model, one of the important drawbacks is the

significantly increased number of parameters due to the additional AR(1) processes

driving the correlation coefficients each having three parameters and total number of

parameters increase polynomially in dimension. This reflects into the convergence of

the MCMC algorithms with significantly increased inefficiency factors which are

indicators of slow convergence.

84

5.2 MSV-D Model on Empirical Data

A complete dynamic MSV-D model specification is applied to the return series of

S&P500 index, IBM and Intel (INTC) stock returns as described in section 4.2.

The return series are plotted in Figure 5.7 where the volatility clusterings and co-

movements of asset returns are visible.

Figure 5.7 : Return series of S&P500, IBM and Intel (INTC).

MSV-D model parameter estimation results of the log-volatility process parameters,

γi, φi, ζη,i are given in Table 5.10. And MSV-D model parameter estimation results for

the correlation process parameters δi, θi and ζω,i are given in Table 5.11, Table 5.12

and Table 5.13 respectively.

85

Table 5.10 : MSV-D model parameter estimation results of γi, φi, ζη,i on S&P500,

IBM and Intel(INTC) returns.

 i Mean 95% interval Inefficiency

γi

1 -0.149 [-0.079, -0.220] 209

2 -0.175 [-0.088, -0.261] 215

3 -0.074 [-0.013, -0.138] 204

φi

1 0.984 [0.974, 0.993] 322

2 0.979 [0.967, 0.991] 311

3 0.990 [0.987, 0.999] 251

ζη,i

1 0.187 [0.125, 0.248] 384

2 0.203 [0.144, 0.262] 405

3 0.136 [0.081, 0.194] 354

Table 5.11 : MSV-D model parameter estimation results of δi on S&P500, IBM and

Intel(INTC) returns.

 i Estimate 95% interval Inefficiency

δi

1 0.0116 [0.009, 0.014] 208

2 0.0096 [0.007, 0.012] 166

3 0.0164 [0.012, 0.020] 169

4 -0.0156 [-0.011, -0.021] 283

5 -0.0119 [-0.008, -0.015] 156

6 0.0128 [0.009, 0.016] 207

7 0.0191 [0.014, 0.024] 169

8 0.0074 [0.005, 0.009] 152

9 -0.0164 [-0.012, -0.021] 257

10 0.0694 [0.051, 0.087] 173

11 0.0248 [0.019, 0.030] 287

12 0.0224 [0.016, 0.028] 213

13 -0.0235 [-0.016, -0.031] 245

14 -0.0154 [-0.012, -0.018] 157

15 -0.0174 [-0.013, -0.022] 261

Table 5.12 : MSV-D model parameter estimation results of θi on S&P500, IBM and

Intel(INTC) returns.

 i Estimate 95% interval Inefficiency

θi

1 0.961 [0.942, 0.978] 376

2 0.960 [0.942, 0.978] 318

3 0.963 [0.946, 0.979] 375

4 0.968 [0.951, 0.988] 371

5 0.972 [0.954, 0.990] 354

6 0.958 [0.940, 0.974] 349

7 0.964 [0.947, 0.981] 279

8 0.958 [0.940, 0.975] 269

9 0.965 [0.948, 0.982] 290

10 0.952 [0.934, 0.968] 274

11 0.958 [0.941, 0.976] 262

12 0.965 [0.947, 0.983] 275

13 0.965 [0.948, 0.982] 376

14 0.968 [0.951, 0.985] 281

15 0.965 [0.947, 0.983] 372

86

Table 5.13 : MSV-D model parameter estimation results of ζω,i on S&P500, IBM

and Intel(INTC) returns.

 i Estimate 95% interval Inefficiency

ζω,i 1 0.008 [0.004, 0.011] 348

 2 0.007 [0.004, 0.010] 402

 3 0.019 [0.011, 0.027] 384

 4 0.008 [0.005, 0.012] 390

 5 0.008 [0.004, 0.011] 336

 6 0.007 [0.004, 0.011] 404

 7 0.021 [0.011, 0.031] 333

 8 0.006 [0.003, 0.009] 366

 9 0.010 [0.005, 0.014] 336

 10 0.004 [0.002, 0.007] 324

 11 0.006 [0.003, 0.009] 379

 12 0.006 [0.003, 0.008] 404

 13 0.008 [0.005, 0.012] 320

 14 0.009 [0.005, 0.013] 325

 15 0.010 [0.006, 0.014] 379

To compare the log-volatility estimates obtained from the fitted MSV-D model a

DCC-EGARCH model is also fitted to the data. DCC-EGARCH model parameter

estimation results are given in Table 5.14.

Table 5.14 : GARCH model parameter estimates on S&P500, IBM and Intel(INTC)

returns.

 i Estimate Standard Error

ω

1 -0.210 0.002

2 -0.119 0.011

3 -0.084 0.004

α

1 -0.128 0.008

2 -0.055 0.013

3 -0.027 0.013

β

1 0.977 0.000

2 0.985 0.001

3 0.988 0.001

γ

1 0.132 0.008

2 0.169 0.024

3 0.114 0.005

ɑ 0.036 0.009

b 0.917 0.026

The fitted DCC-GARCH model can address static leverage effect with the

parameters ωi and γi and allows dynamic correlation between asset returns with

parameters ɑ and b .

87

The logarithms of the squared returns are considered as a reference for comparing the

log-volatility estimates from the MSV-D with the DCC-EGARCH model in terms of

the RMSEs of the log-volatility estimates. Log-volatility estimates from the MSV-D

model and DCC-EGARCH model are compared in Table 5.15 and plotted in Figure

5.8 with the logarithms of squared returns as reference.

Table 5.15 : Log-volatility estimates MSV-D vs. GARCH on S&P500, IBM and

Intel(INTC) returns.

Figure 5.8 : Log-volatility estimates of S&P500, IBM and Intel (INTC).

In Table 5.15, it can be seen that the MSV-D model provides lower RMSE values

than the DCC-EGARCH model indicating better performance in capturing the

patterns. Both models follows the general patterns of the reference (i.e logarithm of

i MSV-D RMSE GARCH RMSE

1 2.558 2.731

2 2.434 2.713

3 2.450 2.692

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

S&P500

Log-squared-returns
MSV-D log-volatilities

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

S&P500

Log-squared-returns
DCC-EGARCH log-volatilities

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

IBM

Log-squared-returns
MSV-D log-volatilities

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

IBM
Log-squared-returns
DCC-EGARCH log-volatilities

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

INTC

Log-squared-returns
MSV-D log-volatilities

-18

-15

-12

-9

-6

-3

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Time

INTC

Log-squared-returns
DCC-EGARCH log-volatilities

88

squared returns) but MSV-D model has a richer and better fit as seen from the charts

in Figure 5.8.

Both the DCC-EGARCH model and MSV-D model produce estimates for the

dynamic correlations between the asset returns as shown in Figure 5.9. Almost

similar patterns are captured for the dynamic correlations between asset returns in

both models.

Figure 5.9 : Correlations between returns of S&P500, IBM and Intel (INTC).

A main difference between the DCC-EGARCH and MSV-D model is the treatment

of the leverage effects. DCC-EGARCH model addresses the leverage effect through

the parameters ωi and γi in a static way whereas the MSV-D model produces time

varying correlations between assets and their volatility process errors. Furthermore,

MSV-D model produces dynamic cross-leverage and dynamic volatility spillover

estimates which are not available in DCC-GARCH and any other volatility models.

In Figure 5.10, examples of dynamic correlation estimates produced by the MSV-D

model are given. First chart in Figure 5.9 is an example of dynamic leverage effect,

second chart is an example of dynamic cross-leverage effect and third chart is an

example of dynamic volatility spillover.

89

Figure 5.10 : Dynamic leverage, cross-leverage and volatility spillover estimates.

5.3 Comparative Simulations for Estimation Algorithms

In this section the results of the simulation study described in section 4.3 for

comparing the proposed SGI and MCMC based estimation algorithms and

computational assessment of GPU implementation is presented.

Table 5.16 shows the comparison of SGI and MCMC based estimation algorithms in

terms of accuracy for different settings in terms of the state space dimension and

accuracy level which is the sample size for the MCMC based algorithms and level of

integration formula for the SGI based algorithms. In Table 5.16, the statistics used

for the accuracy is the RMSE computed by equation 4.12. Since it is too much time

90

consuming filtering with MCMC based methods are not included except one

measurement at dimension p = 3 and accuracy level N = 400,000.

Table 5.16 : Accuracy comparison of SGI and MCMC based estimation algorithms.

Dimension

(p)

Accuracy Level

(N/l)

Filtering

RMSE

Smoothing

RMSE

One-step

Prediction

RMSE

MCMC

1

50K 0.254 0.420

100K 0.190 0.319

200K 0.148 0.248

400K 0.131 0.213

2

50K 0.300 0.449

100K 0.236 0.353

200K 0.191 0.269

400K 0.164 0.230

3

50K 0.357 0.482

100K 0.277 0.374

200K 0.213 0.287

400K 0.203 0.182 0.246

SGI

1

4 0.632 0.607 0.675

5 0.408 0.395 0.455

6 0.255 0.228 0.297

7 0.161 0.129 0.203

2

4 0.740 0.710 0.779

5 0.465 0.439 0.504

6 0.286 0.258 0.330

7 0.179 0.162 0.224

3

4 0.833 0.797 0.877

5 0.524 0.508 0.568

6 0.320 0.296 0.361

7 0.199 0.177 0.239

In Figure 5.11 RMSEs of log-volatility smoothing estimates in different dimensions

and accuracy levels for both approaches are plotted.

Figure 5.11 : Accuracy comparison of SGI and MCMC based estimation algorithms.

91

In SGI based estimation algorithms error decreases faster with the increasing

accuracy level l where at each level l number of points in the integration formula

almost doubles for the trapezoid rule. In MCMC based estimation algorithms

doubling the sample size does not provide the same pace of decrease obtained by

SGI based algorithms. This is actually an expected result of MCMC being a

probabilistic method as discussed before. It is clear that it is easier to control the

error with SGI based algorithms. For the current simulation settings, as seen in

Table 5.16, l = 7 SGI estimation algorithms' accuracy surpass the sample size N =

400,000 MCMC estimation algorithms' accuracy in filtering smoothing and

prediction problems.

Increasing dimension affects the accuracy of SGI based algorithms more than the

MCMC methods. Theoretically MCMC methods are not affected by dimensionality,

but a negative effect of increasing dimension, although not too large, on accuracy in

MCMC based methods is observed in the simulation study. One of the reasons for

this result can be the correlated samples issue and lower acceptance rates in

Metropolis-Hastings steps becoming more severe in higher dimensions resulting in

higher inefficiency and requiring larger samples.

Table 5.17 shows the parameter estimation results of SGI with level l=7 and MCMC

with sample size N = 400.000 for the three dimensional case.

Table 5.17 : Parameter estimation accuracy comparison of the SGI and MCMC

based algorithms.

 SGI l =7 MCMC N=400K

 i True Estimate RMSE Estimate RMSE

γi -0.25

1 -0.25 -0.237 0.072 -0.260 0.067

2 -0.25 -0.248 0.029 -0.261 0.071

3 -0.25 -0.245 0.034 -0.231 0.096

φi 0.95

1 0.95 0.947 0.024 0.956 0.069

2 0.95 0.952 0.016 0.959 0.065

3 0.95 0.946 0.026 0.961 0.071

ση 0.02

1 0.02 0.209 0.045 0.206 0.040

2 0.02 0.191 0.042 0.207 0.054

3 0.02 0.205 0.037 0.214 0.067

ρij 0.6

12 0.6 0.605 0.053 0.592 0.059

13 0.6 0.594 0.041 0.590 0.073

23 0.6 0.606 0.039 0.592 0.058

92

In Table 5.17, it can be seen that SGI based parameter estimation algorithm and

MCMC based parameter estimation algorithm produce close estimates to the actual

values of the parameters with lower RMSEs in SGI based estimation algorithm in

most of the parameters except ζη,1.

The estimation results shows that, SGI based estimation algorithms perform as well

as the MCMC based estimation algorithms in terms of accuracy and can be

considered as an alternative method with its better convergence and error control

properties.

In Table 5.18, execution times of the SGI based filtering and MCMC based

smoothing algorithms with serial CPU and parallel GPU implementations in seconds

and calculated speed up values are shown. Filtering algorithm is the base algorithm

which is used by all other estimation algorithms in SGI approach and similarly

smoothing algorithm is the base algorithm for the MCMC approach as discussed in

section 3.1 and that is why the acceleration comparisons are made on these

algorithms in Table 5.18.

Table 5.18 : Execution times of SGI and MCMC based estimation algorithms.

Dimension
Accuracy

Level

Serial Time
GPU Accelerated

Time
Speed Up

MCMC

Smoothing

SGI

Filtering

MCMC

Smoothing

SGI

Filtering

MCMC

Smoothing

SGI

Filtering

1

50K/4 296.51 1.14 18.60 0.05 15.94 24.95

100K/5 596.96 4.86 38.17 0.20 15.64 24.79

200K/6 1,206.39 20.07 79.32 0.82 15.21 24.45

400K/7 2,394.89 81.56 161.06 3.38 14.87 24.13

2

50K/4 442.39 12.14 34.48 0.53 12.83 22.88

100K/5 892.17 84.15 71.60 3.73 12.46 22.59

200K/6 1,796.57 521.06 146.78 23.56 12.24 22.12

400K/7 3,603.20 2,990.38 296.56 137.30 12.15 21.78

3

50K/4 581.65 62.30 65.43 3.16 8.89 19.73

100K/5 1,186.06 623.00 135.70 31.98 8.74 19.48

200K/6 2,393.78 5,292.06 275.46 274.91 8.69 19.25

400K/7 4,798.50 40,071.01

554.74 2128.04 8.65 18.83

Figure 5.12 illustrates the serial and GPU accelerated execution times of the SGI

based filtering and MCMC based smoothing algorithms for different dimensions and

accuracy levels. Time axes are in logarithmic scale in the charts of Figure 5.12.

93

Figure 5.12 : Execution times of serial and GPU accelerated estimation algorithms.

SGI based filtering algorithm is a sequential algorithm as discussed in section 3 and

its computational burden can be split across time periods so single step filtering times

are included in Figure 5.12 for better comparison.

It can be seen that computational time increases faster when the accuracy level and

dimension increases in SGI based algorithms which are actually costs of faster error

decrease discussed previously. Increasing dimension and accuracy levels

significantly affects the SGI based algorithms and dimensions higher than 5 and

accuracy levels above 7 become prohibitive for SGI based algorithms run on

commodity computers in serial setting in batch mode. However, one of the advantage

of the SGI based algorithms is their sequential structure which allows them compete

with MCMC methods in a practical application where single time step performance

is critical. Single step serial execution times are well below the serial execution times

of MCMC based algorithms as seen in Figure 5.12 and there is room for additional

dimensions for the SGI based algorithms in single-step setting where SGI based

algorithms performs better than MCMC based algorithms.

Parallelization approaches described in section 3.2 and section 3.3 work well on

GPU implementations as seen in Table 5.18 with significantly decreased execution

times and speed up values between 18 and 25. Figure 5.13 shows the achieved speed

ups for the MCMC smoothing and SGI filtering algorithm implementations with

GPU.

94

Figure 5.13 : Speed up by dimension in SGI and MCMC based algorithms.

In Figure 5.13 it is observed that speed ups obtained for the SGI based estimation

algorithms are higher. In the parallelization approaches given in section 3.2 and

section 3.3, processes to be executed in parallel consist of complicated operations

for a typical GPU thread but it works with a possible loss of efficiency. In the

MCMC based algorithms, operations assigned to a parallel process are more

complicated than the SGI based algorithms. In the MCMC based algorithms, in

addition to the density function evaluations, random number generation and sampling

from certain distributions are required for each process which is one of the reasons

for lower speed up values for the MCMC based algorithms.

It is also noteworthy that although provided significant decrease in execution times

and made it possible to execute most of the analysis in the study, single GPU quickly

becomes overloaded with the size (i.e. accuracy levels and number of time periods)

of a typical problem and theoretical speed up values or speed up limits to be tested

are beyond the computational resources provided by a single GPU. However the

achieved speed up values and decreased execution times are quite promising for

larger scale computational settings.

5.4 SGI Based Estimation Algorithms on Empirical Data

In this section, the proposed sparse grid integration method is applied to the foreign-

exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish

Lira(TRL) composed of 3669 observations to fit a MSV-B model for illustrating the

proposed SGI based estimation approach on real data. For comparison purposes same

95

MSV-B model is fitted using the MCMC based algorithm and a CCC-GARCH

model is fitted to the data as described in section 4.4.

Return series of two foreign exchange rates are shown in Figure 5.14 where the co-

movement of the returns is visible with volatility clusterings.

Figure 5.14 : Return series of EUR/TL and USD/TL.

MSV-B model parameter estimation results obtained by the SGI based and the

MCMC based estimation algorithms are given in Table 5.19 and CCC-GARCH

model parameter estimation results are given in Table 5.20.

Table 5.19 : MSV-B parameter estimation results for EUR/TL and USD/TL.

 MSV-B SGI MSV-B MCMC

 i Mean Std. Error Mean Std. Error

γi
1 -0.289 0.027 -0.273 0.035

2 -0.378 0.033 -0.369 0.038

φi
1 0.971 0.0092 0.979 0.0099

2 0.962 0.0084 0.968 0.0095

ζη
1 0.188 0.019 0.176 0.024

2 0.184 0.023 0.171 0.031

ρij 12 0.649 0.018 0.646 0.026

In Table 5.19 it can be observed that the SGI based and MCMC based algorithms

generated close estimations for all parameters. Standard errors of the parameter

estimates with SGI method are slightly lower.

The correlation between asset returns, ρij, in all models including the CCC-GARCH

are consistent as seen in Table 5.19 and Table 5.20 . Both the MSV-B and the CCC-

GARCH model exhibits strong persistence in volatilities however the parameters

are not directly comparable since the structures of the models are different.

96

Table 5.20 : CCC-GARCH parameter estimation results for EUR/TL and USD/TL.

 CCC-GARCH

 i Estimate Std. Error

ωi
1 0.000 0.000

2 0.000 0.000

αi
1 0.107 0.041

2 0.122 0.039

βi
1 0.837 0.039

2 0.818 0.034

ρij 12 0.652 0.014

The comparison of the log-volatility estimates of the three fitted model are given in

Table 5.21. Here, the logarithms of the squared returns are used as reference for the

calculation of RMSEs as described in section 4.4.

Table 5.21 : Log-volatility estimation comparisons for EUR/TL and USD/TL.

In Table 5.21 it can be seen that SGI based MSV-B has the lowest RMSEs for both

smoothing and prediction. The choice of relatively a higher integration level, l = 8 is

probably the reason for the better fit for SGI based estimation algorithms. In Table

5.21 it is also observed that MSV-B model has lower RMSEs with both estimation

methods than the CCC-GARCH model which is an indication of a better

performance in capturing the patterns of the reference.

Figure 5.15 plots the log-volatility smoothing estimates obtained by the SGI based

estimation algorithm and MCMC based estimation algorithm for the MSV-B and

CCC-GARCH log-volatility fit along with the logarithm of the squared returns as the

reference. It can be seen from the charts in Figure 5.15 that the proposed SGI based

estimation algorithm successfully captures the patterns of the log-volatilities.

 i Smoothing

RMSE

 Prediction

RMSE

MSV-B MCMC
1 2.713 2.887

2 2.701 2.879

MSV-B SGI
1 2.658 2.843

2 2.620 2.806

CCC-GARCH
1 2.869 3.047

2 2.826 2.974

97

Figure 5.15 : Log-volatility smoothing estimates for EUR/TRL and USD/TRL.

98

99

6. CONCLUSION

The capabilities of the MSV models in capturing the stylized facts and dynamics of

volatilities and correlations are undisputable. Different model specifications and

parameterizations of MSV models can address almost any stylized facts and features

about the volatilites and correlations, however addressing several stylized facts and

features at the same time is not trivial since there is a requirement of efficient

mechanism and parameterizations for handling the correlation and covariance

matrices which have special structures and restrictions on their entries especially in

time varying setting. A general parametric MSV model which can accomodate both

the static and dynamic settings for leverage effects, cross-leverage effects, volatility

spillovers and co-movement of asset returns at the same time and furthermore

alowing usage of combinations of static and dynamic components in a single model

was proposed in this study and this parameterization was refferred as MSV-D. A

custom-built Bayesian MCMC estimation algorithm for the MSV-D model was also

developed.

The results in section 5.1 on simulated and the results in section 5.2 on empirical data

showed that the proposed MSV-D model successfully captures the stylized facts of

volatility and correlations in both static and dynamic settings. The proposed MSV-D

model can also address dynamic cross-leverage and dynamic volatility spillovers by

construction which is not an option in currently available MSV models. The

proposed MSV-D model can facilitate dynamic and static components at the same

time in a single model and providing a flexibility to the modeler. The results of

section 5.1 also show that the Bayesian MCMC algorithm developed for the MSV-D

model also does its job sufficiently well in estimation with a room for improving its

sampling efficiency especially in the complete dynamic setting where more efficient

ways for sampling the correlation states qt can be found with further research.

The main drawback of the proposed MSV-D model is the quick increase in the

number of parameters and dimension of the correlation state space in dynamic setting

due to the increasing size of the correlation matrix of returns and volatility errors

100

which is a common situation in most multivariate models in the literature. However,

using the dynamic components selectively and putting restrictions on the parameters

of dynamic correlation state processes can help for achieving parsimony.

SV models are nonlinear state space models which require computationally

demanding methods for satisfactory estimations. MCMC based estimation algorithms

are by far the most popular methods for estimation beacuse of their appealing

features. However there are issues on the error control and convergence inherent in

MCMC methods. As an alternative approach SGI based estimation algorithms which

are new to the SV field are developed and evaluated for the estimation problems of

MSV models in comparison with the MCMC based estimation algorithms.

Results in section 5.3 show that the SGI based estimation algorithms perform well by

achieving the accuracy of MCMC based estimation algorithms and even surpass

them in certain conditions. Better error control and convergence properties of SGI

methods are also shown in the results. It is showed that SGI methods, a type of

numerical integration method, can be used for multi dimensional problems as an

alternative to the MCMC based estimation algorithms. Despite the effect of

dimensionality is significantly decreased in SGI methods when compared to the

classical numerical integration methods, there is still some dependency on the

dimension and SGI method can struggle on very high dimensional problems.

However, the algorithms based on SGI are sequential (i.e on-line) algorithms in

contrast with the batch structure of the MCMC methods and this sequential structure

allows splitting the computational burden among time periods which is an important

consideration for practical implementations. Construction of sparse grid formulas

from other univariate formulas such as the Gaussian quadrature rules which probably

be more effective and suitable to MSV model density structures is one of the future

research direction for the SGI based approach. Another direction for improvement

for the SGI based approach would be constructing the sparse grid by adjusting the

integration formula level at each time step for better error control and computational

efficiency which can significantly improve the method from the algorithmic

perspective. Hybrid approaches combining Monte Carlo based methods with sparse

grid integration based methods for computational advantage and better convergence

could lead to further research.

101

The computational requirements of the both MCMC and SGI based algorithms are

high and it is showed that GPU implementation is an efficient and low-cost solution

in accelerating the execution times of the estimation algorithms. Altough the size of a

typical problem exceeds the resources provided by a single GPU and theoretical

speed up values could not be tested and scaling could not be observed, single GPU

results having speed up values up to 16 for MCMC based algorithms and speed up

values up to 25 for SGI based algorithms are obtained as shown by the results in

section 5.3. The contributions of the developed parallel approaches for the MCMC

and SGI based algorithms and their GPU implementations are clear from the results

which are promising for larger scale parallel architecture implementations.

Alternative parallelization and acceleration approaches for estimation algorithms and

extending the computing architecture and software programs to distributed and

cluster settings are further research directions in the computational aspect.

102

103

REFERENCES

Asai, M., & McAleer, M. (2006). Asymmetric multivariate stochastic volatility.

Econometric Reviews, 25 (2-3), 253-473.

Asai, M., & McAeer, M. (2009). The structure of dynamic correlations in

multivariate stochastic volatility models. Journal of Econometrics,

150, 182-192.

Asai, M., McAleer, M., & Yu, J. (2006). Multivariate stochastic volatility: A

review. Econometric Reviews, 25 (2-3), 145-175.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities.

The journal of political economy, 637-654.

Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates:

a multivariate generalized ARCH model. The Review of Economics

and Statistics, 498-505.

Bungarts, H. J., & Griebel, M. (2004). Sparse grids. Acta Numerica, 13, 1-123.

Carlin, B. P., Polson, N., & Stoffer, D. (1992). A Monte Carlo approach to

nonnormal and nonlinear state space modelling. Journal of American

Statistical Association, 87 (2), 493-500.

Chib, S. (2001). Markov chain Monte Carlo methods: computation and inference.

Handbook of econometrics, 5, 3569-3649.

Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings

algorithm. The American Statistician, 49 (4), 327-335.

Chib, S., & Greenberg, E. (1996). Markov Chain Monte Carlo simulation methods

in econometrics. Econometric Theory, 12 (3), 409-431.

Durham, G. B. (2006). Monte Carlo methods for estimating, smoothing and filtering

one and two factor stochastic volatiltiy models. Journal of

Econometrics, 133, 273-305.

Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of

United Kingdom inflation. Econometrica: Journal of the Econometric

Society, 987- 1007.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate

generalized autoregressive conditional heteroskedasticity models.

Journal of Business & Economic Statistics, 20 (3), 339-350.

Galant, A., Hsieh, D., & Tauchen, G. (1997). Estimation of stochastic volatility

models with diagnostics. Journal of Econometrics, 81, 159-192.

Gerstner, T. (2007). Sparse grid quadrature methods for computational finance.

(Habilitation), University of Bonn, Bonn.

104

Gerstner, T., & Griebel, M. (1998). Numerical integration using sparse grids.

Numerical Algorithms, 18, 209-232.

Ghysels, E., Harvey, A., & Renault, E. (1996). Stochastic volatility. In G. S.

Maddala, & C. R. Rao (Eds.), Handbook of Statistics (Vol. 14, pp.

119-191). Amsterdam: Elsevier.

Gourieroux, C., Jasiak, J., & Sufana, R. (2009). The Wishart autoregressive

process of multivariate stochastic volatility. Journal of Econometrics,

150, 167-181.

Harvey, A., & Shephard, N. (1996). Estimation of an asymmetric stochastic

volatility model for asset returns. Journal of Business and Economic

Statistics, 14 (4), 429-434.

Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance

models. Review of Economic Studies, 61, 247-264.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57 (1), 97-109.

Heiss, F., & Winschel, V. (2006). Estimation with numerical integration on sparse

grids. Munich: Technical Report, University of Munich.

Holtz, M. (2010). Sparse grid quadrature in high dimensions with applications in

finance and insurance (Vol. 77). Springer Science & Business Media.

Ishihara, T., & Omori, Y. (2012). Efficient Bayesian estimation of a multivariate

stochastic volatility model with cross leverage and heavy-tailed errors.

Computational Statistics & Data Analysis, 56 (11), 3674-3689.

Ishihara, T., Omori, Y., & Asai, M. (2014). Matrix exponential stochastic volatility

with cross leverage. Computational Statistics & Data Analysis, In

Press.

Jacquier, E., Polson, N., & Rossi, P. (1994). Bayesian analysis of stochastic

volatility models. Journal of Business and Economic Statistics, 12,

371-417.

Jacquier, E., Polson, N., & Rossi, P. (1995). Models and priors for multivariate

stochastic volatility. CIRANO Working paper, Montreal, 95s-18.

Kercheval, A. N. (2008) On Rebonato and Jackel's Parametrization Method for

Finding Nearest Correlation Matrices. International Journal of Pure

and Applied Mathematics, 45 (3), 383.

Kitagawa, G. (1987). Non-Gaussian state space modeling of nonstationary time

series. Journal of American Statistics Association, 82, 1032-1063.

Lopes, H. F., McCulloh, R. E., & Tsay, R. S. (2011). Cholesky stochastic

volatility. Discussion Paper.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.
(1953). Equation of state calculations by fast computing machines.

The journal of chemical physics, 21 (6), 1087-1092.

Rebonato, R., & Jäckel, P. (2011) The most general methodology to create a valid

correlation matrix for risk management and option pricing purposes.

Available at SSRN 1969689.

105

Rosenthal, J. S. (2000). Parallel computing and Monte Carlo algorithms. Far east

journal of theoretical statistics, 4 (2), 207-236.

Sandman, G., & Koopman, S. J. (1998). Estimation of stochastic volatility models

via Monte Carlo maximum likelihood. Journal of Econometrics, 87,

271-301.

Shephard, N., & Andersen, T. (2009). Stochastic volatility: origins and overview.

Berlin Heidelberg: Springer.

Smolyak, S. A. (1963). Quadrature and interpolation formulas for tensor products of

certain classes of functions. Soviet Mathematics Doklady, 4, 240-243.

Tanizaki, H. (1997). Nonlinear and nonnormal filters using Monte Carlo methods.

Computational Statistics and Data Analysis, 25 (4), 417-439.

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by

data augmentation. Journal of the American Statistical Association, 82

(398), 528-540.

Taylor, S. J. (1982). Financial returns modeled by the product of two stochastic

processes - A study of daily sugar prices 1961-79. In O. D. Anderson

(Ed.), Time Series Analysis: Theory and Practice 1 (pp. 203-226).

Amsterdam, North-Holland.

Taylor, S. J. (1986). Modelling financial time series. Chichester: John Wiley.

Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals

of Statistics, 22 (4), 1701-1728.

Tsay, R. (2002). Analysis of financial time series:Financial econometrics. New

York: John Wiley.

Watanabe, T. (1999). A non-ninear filtering approach to stochastic volatility models

with an application to daily stock returns. Journal of Applied

Econometrics, 14 (2), 101-121.

106

107

APPENDICES

APPENDIX A: Integral Notation Definitions

APPENDIX B: Construction of Time Varying Correlation Matrices

APPENDIX C: Important C Program Functions and Sample Codes

Appendix C.1: Correlation matrix parameterization and transformation functions

Appendix C.2: Sparse grid construction functions

Appendix C.3: Examples of GPU device kernels, device functions and their usage

108

APPENDIX A : Integral Notation Definitions

The definitions and representations of the multiple integral notations used throughout

the study is summarised as follows.

Integral with respect to a vector

Let  f x be a function of vector argument where dx and Let 1(,...,)dx x x be

a d-dimensional vector, then for the integral of  f x with repsect to the vector x the

following equalities hold:

   

 

 

1

1

1 1

.. ..

.. .

,.., .. .

d

d

d d

f d f dx dx

f dx dx

f x x dx dx







  





x x x

x (A.1)

Integral with respect to a set of vectors

Let  1,.. tf x x be a function of vector arguments where d

i x and 1{ ,.., }tX x x

be a set of vectors where
1, ,(,...) d

i i d ix x  x for 1,..,i t , then for the integral of

 f X with repsect to the set X, the following equalities hold:

   

 

 

1

1 1

1,1 ,1 1, , 1,1 ,1 1,

.. ..

,.., .. .

,.., ,.., ,...,

t

t t

d t d t d t d

f d f d d

f d d

f x x x x dx dx dx dx







  





X X X x x

x x x x (A.2)

Integral with respect to a matrix

Let  f X be a function of diagonal matrix argument where dxdX and let

 1diag ,.., dx xX then then for the integral of  f X with repsect to the set X, the

following equalities hold:

   

 

 

1

1

1 1

.. ..

.. .

,.., .. .

d

d

d d

f d f dx dx

f dx dx

f x x dx dx







  





X X X

X (A.3)

109

APPENDIX B : Construction of Time Varying Correlation Matrices

Figure B.1 illustrates the mechanism that constructs valid correlation matrices based

on an AR(1) process in the proposed MSV-D model.

T

ttt BBP .

Symmetric
Positive-definite
Diagonal elements are

equal to 1
Off-diagonal elements are

between -1 and 1























000

00

0

,1,2

,21

,2,1,12,11

tp

t

tptt

t

b

b

bbb







B Cholesky
Decomposition


























0000

000

00

0

,1,12

,12,1,11

)22(

tp

tpt

ppt








A

  ij0

Matrix of angles

)sin().cos(,

1

1
., tik

j

k
tijtijb 







11, 1,2 1,

2 1,1,

0

0 0

0 0 0

0 0 0 0

t p t

t

p t

q q

q





 
 
 
 
 
 

R



 

 ijq

,

,

,

log
ij t

ij t

ij t

q


 

 
     1,

,



 tijqtij

e




 1 ttt ωθqδq 

 ~ N 0,t ω V

AR(1) process driving the
time varying correlations

Time varying
correlation matrix

Figure B.1 : Time varying correlation matrix construction mechanism of the MSV-D

model.

110

APPENDIX C : Important C Program Functions and Sample Codes

Appendix C.1: Correlation matrix parameterization and transformation functions

// Correlation matrix parameterization and transformation functions
// by Halil Erturk Esen

void corr_to_angle(int dim, float *cor, float *angle){
 int i, j, k, nn;
 float den, *element, *bmat, *temp1, *temp2;
 nn = dim*dim;
 element = (float *)malloc(sizeof(float)*nn);
 temp2 = (float *)malloc(sizeof(float)*nn);
 temp1 = (float *)malloc(sizeof(float)*nn);
 bmat = (float *)malloc(sizeof(float)*nn);
 //Elementary matrix
 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 if (i+j==dim-1){
 element[i+dim*j]=1.0;
 }
 else{
 element[i+dim*j]=0.0;
 }
 }
 }
 sqrmm(element, cor, dim, temp1); //Matrix multiplication
 sqrmm(temp1, element, dim, temp2);
 chol(temp2, dim, temp1); //Cholesky decomposition

 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 temp2[i+dim*j] = temp1[j+dim*i];
 }
 }
 sqrmm(element, temp2, dim, bmat);
 //Extract angles
 for (i=0;i<dim;i++){
 for (j=0;j<dim;j++){
 if(i+j<dim-1){
 den=1.0;
 for(k=0;k<j;k++){
 den = den*sin(angle[i+dim*k]);
 }
 angle[i+j*dim]=acos(bmat[i+j*dim]/den);
 }
 else{
 angle[i+j*dim]=0.0;
 }
 }
 }
 // free(...);
}

void angle_to_corr(int dim, float *angle, float *cor){
 int i, j, k, nn;
 float den, *rc, *bmat, *temp;
 nn=dim*dim;
 rc = (float *)malloc(sizeof(float)*nn);

111

 bmat = (float *)malloc(sizeof(float)*nn);
 temp = (float *)malloc(sizeof(float)*nn);
 for(i=0;i<dim;i++){
 for (j=0;j<dim;j++){
 if(i+j<dim){
 den=1.0;
 for(k=0;k<j;k++){
 den = den*sin(angle[i+dim*k]);
 }
 bmat[i+j*dim]=cos(angle[i+j*dim])*den;
 }
 else{
 bmat[i+j*dim]=0.0;
 }
 }
 }
 for(i=0;i<dim;i++){
 for (j=0;j<dim;j++){
 temp[i+dim*j] = bmat[j+dim*i];
 }
 }

 sqrmm(bmat, temp, dim, rc);

 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 cor[i+dim*j]=rc[i+dim*j];
 }
 }
 // free(...);
}

void q_to_angle(int dim, float *q, float *angle){
 int i, j;
 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 if(i+j<dim-1){
 angle[i+dim*j]= PI/(exp(-1*q[i+dim*j-
 (j*(j+1)/2)])+1);
 }
 else{
 angle[i+dim*j]=0.0;
 }
 }
 }
}

void angle_to_q(int dim, float *angle, float *q){
 int i, j;
 for(i=0;i<dim;i++){
 for(j=0;j<dim-1-i;j++){
 q[i+dim*j-(j*(j+1)/2)] = -1*log((PI/angle[i+dim*j])-1);
 }
 }
}

112

Appendix C.2 : Sparse grid construction functions

//Functions for the construction of the regular sparse grids
//for arbitrary dimension and accuracy level based
//on the trapezoid rule
//by Halil Erturk Esen

//Simplex size
int simsize(int dim, int level){
 int i, j=0, sm, cnt=0;
 int *ka;
 //printf("Dim = %d \n",dim);
 ka = (int *)malloc(sizeof(int)*(dim+1));
 for(i=0;i<=dim;i++){
 ka[i]=1;
 }
 while(j >= 0){
 j = dim;
 sm = level + dim;
 while(sm > level + dim - 1){
 ka[j] = 1;
 j = j - 1;

 if(j>=0){
 ka[j] = ka[j] + 1;
 }

 //printf("ka[%d]= %d \n", j, ka[j]);

 sm=0;
 for(i=0; i<dim; i++){
 sm = sm + ka[i];
 }
 }
 cnt=cnt+1;
 }
 free(ka);
 return cnt;
}

//Simplex construction
void simplexc(int dim, int level, int *splx){
 int i, j=0, sm, size, cnt=0;
 int *k;
 k = (int *)malloc(sizeof(int)*(dim+1));
 size = simsize(dim, level);

 for(i=0;i<=dim;i++){
 k[i]=1;
 }
 while(j >= 0){
 j = dim;
 sm = level + dim;
 while(sm > level + dim - 1){
 k[j] = 1;
 j = j - 1;
 if(j>=0){
 k[j] = k[j] + 1;
 }

113

 sm=0;
 for(i=0; i<dim; i++){
 sm = sm + k[i];
 }
 }
 for(i=0; i<dim; i++){
 splx[cnt+size*i] = k[i];
 }
 cnt=cnt+1;
 }
 free(k);
}
// Sparse grid size
int sparsegsize(int dim, int level){
 int i, j, gsize=1, qsize, fullsize=0, sims, cnt, mn, ss;
 int *quadn, *deltan, *deltans, *qngr, *dngr,
 *simplex, *simplexnnd;
 float *quadw, *deltaw, *deltaws;

 //Quadrature and delta rule nodes and weights-----;
 qngr=(int *)malloc(sizeof(int)*level);
 dngr=(int *)malloc(sizeof(int)*level);
 for(i=level;i>0;i--){
 qngr[i-1]=intpow(2,i)-1;
 }
 qsize=level*qngr[level-1];
 quadn=(int *)malloc(sizeof(int)*qsize);
 quadw=(float *)malloc(sizeof(float)*qsize);
 deltan=(int *)malloc(sizeof(int)*qsize);
 deltaw=(float *)malloc(sizeof(float)*qsize);
 deltans=(int *)malloc(sizeof(int)*qsize);
 deltaws=(float *)malloc(sizeof(float)*qsize);

 for(i=0;i<level;i++){ //Quadrature nodes and weights
 ss=(qngr[level-1]-qngr[i])/(qngr[i]+1);
 cnt=0;
 mn=0;
 for(j=0;j<qngr[level-1];j++){
 if(cnt<ss){
 quadn[i+level*j]=0;
 quadw[i+level*j]=0;
 cnt=cnt+1;
 }
 else{
 quadn[i+level*j]=1;
 if(mn==0 || mn==(qngr[i]-1)){
 quadw[i+level*j]=1.5f;
 }
 else{
 quadw[i+level*j]=1;
 }
 cnt=0;
 mn=mn+1;
 }
 }
 }

 for(i=0;i<level;i++){//Delta nodes and weights
 dngr[i]=0;

114

 for(j=0;j<qngr[level-1];j++){
 if(i==0){
 deltan[i+level*j]=quadn[i+level*j];
 deltaw[i+level*j]=quadw[i+level*j];
 }
 else{
 deltan[i+level*j]=quadn[i+level*j]-
 quadn[i-1+level*j];
 deltaw[i+level*j]=quadw[i+level*j]-
 quadw[i-1+level*j];
 }
 if(deltan[i+level*j]==0){
 deltaw[i+level*j]=0;
 }
 dngr[i]=dngr[i]+deltan[i+level*j];
 }
 }

 for(i=0;i<level;i++){//Stacked node indices and weight matrices
 for(j=0;j<qngr[level-1];j++){
 deltans[i+level*j]=0;
 deltaws[i+level*j]=0;
 }
 }

 for(i=0;i<level;i++){
 cnt=0;
 for(j=0;j<qngr[level-1];j++){
 if(deltan[i+level*j]==1){
 deltans[i+level*cnt]=j;
 deltaws[i+level*cnt]=deltaw[i+level*j];
 //printf("Check: %d \n", i+level*cnt);
 cnt=cnt+1;
 }
 }
 }

 //-------------End of difference rule nodes and weights-----;
 sims=simsize(dim, level);
 simplex=(int *)malloc(sizeof(int)*sims*dim);
 simplexnnd=(int *)malloc(sizeof(int)*sims*dim);
 simplexc(dim, level, simplex);
 for(i=0;i<sims;i++){//nnd vectors over simplex
 gsize=1;
 for(j=0;j<dim;j++){
 simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)];
 gsize=gsize*simplexnnd[i+sims*j];
 }
 fullsize=fullsize+gsize;
 }
 // free(...);
 return fullsize;
}

// Final sparse grid construction
void sparsegcon(int dim, int level, int *coords, float *weights){
 int h, g, i, j, v, gsize=1, sgsize, qsize, fullsize=0, sims, cnt,
 cond, mn, ss, lin, eq, eqcheck;
 int *quadn, *deltan, *deltans, *qngr, *dngr,

115

 *k, *prngr, *prntgr, *simplex, *simplexnnd, *nnd,
 *levd, *grid, *sgrid, *tempn, *gmind;
 float *quadw, *deltaw, *deltaws, *prwtgr, *prwv, *wvec,
 *cwvec, *swvec, tempw, cuweight;

 //Quadrature and delta rule nodes and weights-----;
 qngr=(int *)malloc(sizeof(int)*level);
 dngr=(int *)malloc(sizeof(int)*level);
 for(i=level;i>0;i--){
 qngr[i-1]=intpow(2,i)-1;
 }
 qsize=level*qngr[level-1];
 quadn=(int *)malloc(sizeof(int)*qsize);
 quadw=(float *)malloc(sizeof(float)*qsize);
 deltan=(int *)malloc(sizeof(int)*qsize);
 deltaw=(float *)malloc(sizeof(float)*qsize);
 deltans=(int *)malloc(sizeof(int)*qsize);
 deltaws=(float *)malloc(sizeof(float)*qsize);

 for(i=0;i<level;i++){ //Quadrature nodes and weights
 ss=(qngr[level-1]-qngr[i])/(qngr[i]+1);
 cnt=0;
 mn=0;
 for(j=0;j<qngr[level-1];j++){
 if(cnt<ss){
 quadn[i+level*j]=0;
 quadw[i+level*j]=0.0;
 cnt=cnt+1;
 }
 else{
 quadn[i+level*j]=1;
 if((qngr[i]-1)==0){
 quadw[i+level*j]=(2.0)/(qngr[i]+1);
 }
 else if(mn==0 || mn==(qngr[i]-1)){
 quadw[i+level*j]=(1.5)/(qngr[i]+1);
 }
 else{
 quadw[i+level*j]=(1.0)/(qngr[i]+1);
 }
 cnt=0;
 mn=mn+1;
 }
 }
 }

 for(i=0;i<level;i++){//Delta nodes and weights
 dngr[i]=0;
 for(j=0;j<qngr[level-1];j++){
 if(i==0){
 deltan[i+level*j]=quadn[i+level*j];
 deltaw[i+level*j]=quadw[i+level*j];
 }
 else{
 deltan[i+level*j]=quadn[i+level*j]-
 quadn[i-1+level*j];
 deltaw[i+level*j]=quadw[i+level*j]-
 quadw[i-1+level*j];
 }

116

 if(deltaw[i+level*j]!=0){
 deltan[i+level*j]=1;
 }
 dngr[i]=dngr[i]+deltan[i+level*j];
 }
 }

 for(i=0;i<level;i++){//Stacked node indices and weight matrices
 for(j=0;j<qngr[level-1];j++){
 deltans[i+level*j]=0;
 deltaws[i+level*j]=0;
 }
 }

 for(i=0;i<level;i++){
 cnt=0;
 for(j=0;j<qngr[level-1];j++){
 if(deltan[i+level*j]==1){
 deltans[i+level*cnt]=j;
 deltaws[i+level*cnt]=deltaw[i+level*j];
 cnt=cnt+1;
 }
 }
 }

 //-------------End of difference rule nodes and weights-----;

 //===
 //CONSTRUCTING THE GRID AND ASSOCIATED WEIGHTS
 //===
 //Simplex construction--------------------------------------;
 sims=simsize(dim, level);
 simplex=(int *)malloc(sizeof(int)*sims*dim);
 simplexnnd=(int *)malloc(sizeof(int)*sims*dim);
 simplexc(dim, level, simplex);

 for(i=0;i<sims;i++){//nnd vectors over simplex
 gsize=1;
 for(j=0;j<dim;j++){
 simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)];
 gsize=gsize*simplexnnd[i+sims*j];
 }
 fullsize=fullsize+gsize;
 }

 //Full grid
 grid=(int *)calloc(fullsize*dim, sizeof(int));
 wvec=(float *)calloc(fullsize, sizeof(float));
 cwvec=(float *)calloc(fullsize, sizeof(float));
 gmind=(int *)calloc(fullsize, sizeof(int));
 nnd=(int *)malloc(sizeof(int)*dim);
 levd=(int *)malloc(sizeof(int)*dim);

 //Loop over simplex combinations
 lin=0;
 for(v=0;v<sims;v++){
 for(i=0;i<dim;i++){
 nnd[i]=simplexnnd[v+sims*i];

117

 levd[i]=simplex[v+sims*i]-1;
 }
 //Product grid nodes primary construction--------;
 k = (int *)malloc(sizeof(int)*dim);
 gsize=1;
 for(i=0;i<dim;i++){
 k[i]=1;
 gsize=gsize*nnd[i];
 }
 prngr = (int *)malloc(sizeof(int)*gsize*dim);
 cnt=0;
 for(i=0;i<dim;i++){
 prngr[cnt+gsize*i]=k[i];
 }
 cnt=1;
 i=0;
 cond=0;
 while(cond == 0){
 k[i]=k[i]+1;
 cond=(k[dim-1] > nnd[dim-1]);
 if (k[i]>nnd[i]){
 k[i]=1;
 i = i + 1;
 }
 else{
 for(j=0; j<dim; j++){
 prngr[cnt+gsize*j]=k[j];
 }
 cnt=cnt+1;
 i=0;
 }
 }

 //------End of product grid nodes primary construction------;

 //Product grid transformed nodes and weights construction---;

 prntgr = (int *)malloc(sizeof(int)*gsize*dim);
 prwtgr = (float *)malloc(sizeof(float)*gsize*dim);
 prwv = (float *)malloc(sizeof(float)*gsize);
 for(i=0;i<gsize;i++){
 for(j=0; j<dim; j++){
 prntgr[i+gsize*j]= deltans[levd[j]+
 level*(prngr[i+gsize*j]-1)];
 prwtgr[i+gsize*j]= deltaws[levd[j]+
 level*(prngr[i+gsize*j]-1)];
 }
 }
 for(i=0;i<gsize;i++){
 prwv[i]=1;
 for(j=0; j<dim; j++){
 prwv[i]= prwv[i]*prwtgr[i+gsize*j];
 }
 }

 //Copy product nodes and weights components to grid matrix
 for(i=0;i<gsize;i++){
 for(j=0; j<dim; j++){
 grid[lin+fullsize*j]=prntgr[i+gsize*j];

118

 }
 wvec[lin]=prwv[i];
 lin=lin+1;
 }
 free(k);
 free(prngr);
 free(prntgr);
 free(prwtgr);
 free(prwv);
 }

 //Aggregate grid matrix for repeat nodes
 //Sort the grid matrix
 tempn=(int *)malloc(sizeof(int)*dim);
 for(h=1;h<fullsize-1;h++){
 for(g=0;g<fullsize-h;g++){
 eqcheck = 1;
 j=0;
 while(j<dim && eqcheck == 1){
 if(grid[g+fullsize*j] < grid[g+1+fullsize*j]){
 eq = 0;
 eqcheck = 0;
 }
 else if(grid[g+fullsize*j] >
 grid[g+1+fullsize*j]){
 eq = 1;
 eqcheck = 0;
 }
 else{
 eqcheck = 1;
 }
 j=j+1;
 }
 if(eq==1){
 for(j=0;j<dim;j++){
 tempn[j]=grid[g+fullsize*j];
 grid[g+fullsize*j]=grid[g+1+fullsize*j];
 grid[g+1+fullsize*j] = tempn[j];

 }
 tempw = wvec[g];
 wvec[g]=wvec[g+1];
 wvec[g+1]=tempw;
 }
 }
 }
 // Track the repeating nodes
 cnt=0;
 for(i=0;i<fullsize-1;i++){
 if(i==0){
 cuweight = wvec[i];
 cwvec[i] = cuweight;
 }
 eqcheck = 1;
 j=0;
 while(j<dim && eqcheck ==1){
 if (grid[i+1+fullsize*j] > grid[i+fullsize*j]){
 eq = 0;
 eqcheck = 0;

119

 }
 else{
 eq = 1;
 eqcheck = 1;
 }
 j=j+1;
 }
 if(eq==0){
 cnt = cnt + 1;
 cuweight = wvec[i+1];
 }
 else {
 cuweight=cuweight+wvec[i+1];
 }
 gmind[i+1]=cnt;
 cwvec[i+1] = cuweight;
 }

 sgsize = gmind[fullsize-1]+1;

 //Final sparse grid array

 sgrid=(int *)calloc(sgsize*dim, sizeof(int));
 swvec=(float *)calloc(sgsize, sizeof(float));
 h=0;
 for(i=0;i<fullsize-1;i++){
 if(gmind[i]!=gmind[i+1]){
 swvec[h]=cwvec[i];
 for(j=0;j<dim;j++){
 sgrid[h+sgsize*j]=grid[i+fullsize*j];
 }
 h=h+1;
 }
 }

 swvec[sgsize-1]=cwvec[fullsize-1];
 for(j=0;j<dim;j++){
 sgrid[sgsize-1+sgsize*j]=grid[fullsize-1+fullsize*j];
 }

 for(i=0; i<sgsize; i++){
 for(j=0; j<dim; j++){
 coords[i+sgsize*j]=sgrid[i+sgsize*j];
 }

 }
 for(i=0; i<sgsize; i++){
 weights[i]=swvec[i];
 }

 //free(quadn);

}

120

Appendix C.3: Examples of GPU device kernels, device functions and their usage

Examples of GPU device functions:

//Vector matrix multiplication on device
__device__ void gpu_sqrvm(float *a, float *b, int dim, float *c){
 int i, j;
 for(i=0;i<dim;i++){
 c[i]=0.0;
 for(j=0;j<dim;j++){
 c[i]+=a[j]*b[j+dim*i];
 }
 }
}

// Cholesky decomposition on device
__device__ void gpu_chol(float *a, int dim, float *b){
 int i, j, k;
 float rs;

 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 b[j+dim*i] = 0.0;
 }
 }

 for(i=0;i<dim;i++){
 for(j=0;j<dim;j++){
 if(i==j){
 rs = 0.0;
 for(k=0;k<j;k++){
 rs = rs + (b[k+dim*i]) * (b[k+dim*j]);
 }
 b[j+dim*i] = sqrt(a[i+dim*j]-rs);
 }
 else if(i>j){
 rs = 0.0;
 for(k=0;k<j;k++){
 rs = rs + (b[k+dim*i]) * (b[k+dim*j]);
 }
 b[j+dim*i] = (a[i+dim*j]-rs)/b[j+dim*j];
 }
 else{
 b[j+dim*i] = 0.0;
 }
 }
 }
}

The following is a simplified illustration of the GPU device kernel from the

implemented MCMC with EM smoothing algorithm device kernel.

__global__ void mcmc_kernel_s1(int k, int offs, int nt, int pcl_size, int
 ts_t, int dimh, float sc, float *ry, float *phi,
 float *gamma, float *theta, float *delta, float
 *vv_var, float *qq_var, float *yc, float *yp,
 float *hp, float *hc, float *hn, float *candid_h,
 float *qp, float *qc, float *qn, float *candid_q,

121

 float *transgridh, float *transgridq, float *h_ini,
 float *q_ini, float *h_sigmas,float *ch_qq, float
 *p_mu, float *p_vv, float *ch_p_vv, curandState_t
 *state, float *rrnd_h, float *rndsc_h, float *rrnd_q,
 float *rndsc_q, float *u, float *matf1, float *matf2,
 float *matf3, float *matf4, float *matf5, float
 *matrr, float *matvv, float *matvr, float *matrv,
 float *wrkh1, float *wrkh2, float *wrkh3, float *wrkh4,
 float *vech1, float *vech2, float *wrkq1, float *wrkq2,
 float *wrkq3, float *wrkq4, float *vecq1, float
 *vecq2){

 int j, m, trans_k, trans_l, term = 1, noterm = 0;
 float numerw, denomw, wght;
 int dimq = 2*dimh*(2*dimh-1)/2;
 int dimf = 2*dimh;
 int h_nn = dimh*dimh;
 trans_k = 2*pcl_size+ts_t-2; //Number of rows of transformed grid
 if(ts_t % 2 == 0){ //Number of columns of transformed grid
 trans_l = (int)(ts_t/2);
 }
 else{
 trans_l = (int)((ts_t+1)/2);
 }

 //GPU Thread id
 int tid = offs + threadIdx.x + blockIdx.x*blockDim.x;

 int vidh = dimh*tid;
 int vidq = dimq*tid;
 int midh = dimh*dimh*tid;
 int midq = dimq*dimq*tid;
 int midf = dimf*dimf*tid;

 // Assigning parts of device pointers to threads with thread id.
 // Random number generation on device with CURAND library.
 // Computations and operations with device functions gpu_*
 if(tid<nt+offs){
 //q: Candidate, prev, current, next
 for(j=0;j<dimq;j++){
 rrnd_q[j + vidq]=curand_normal(&state[tid]);
 }
 gpu_sqrmv(ch_qq, &rrnd_q[vidq], dimq, &rndsc_q[vidq]);

 for(j=0;j<dimq;j++){
 qp[j+vidq]=transgridq[k-1 +
 trans_k*tid+trans_k*trans_l*j];
 qc[j+vidq]=transgridq[k-2 + trans_k*tid +
 trans_k*trans_l*j];
 if(tid < trans_l -1){
 qn[j+vidq]=transgridq[k-1 + trans_k*(tid+1)+
 trans_k*trans_l*j];
 }
 }
 .
 .
 for(j=0;j<dimh;j++){
 hp[j+vidh]=transgridh[k-1 +
 trans_k*tid+trans_k*trans_l*j];

122

 hc[j+vidh]=transgridh[k-2 + trans_k*tid +
 trans_k*trans_l*j];
 if(tid < trans_l -1){
 hn[j+vidh]=transgridh[k-1 +
 trans_k*(tid+1) +
 trans_k*trans_l*j];
 }
 yc[j+vidh]=ry[2*tid+1+j*ts_t];
 yp[j+vidh]=ry[2*tid+j*ts_t];
 candid_h[j+vidh]=p_mu[j+vidh]+rndsc_h[j+vidh];
 }
 u[tid] = curand_uniform(&state[tid]);

 //Parallel execution with device functions

 if(tid==0){
 numerw =
 ..*gpu_cprnorm(dimh, &hc[vidh], &p_mu[midh],
 &p_vv[midh], &wrkh1[midh], &wrkh2[midh],
 &wrkh3[midh], &vech1[vidh], &vech2[vidh]);

 denomw = ...
 .
 else if (tid>0 && tid<trans_l-1){
 .
 }
 else {
 .
 }
 if(denomw>0){
 wght= numerw/denomw;
 if (wght>1){
 wght=1.0;
 }
 }
 else{
 wght=1.0;
 }

 // Updating device pointers from threads
 if(u[tid] <= wght){
 for(j=0;j<dimh;j++){
 transgridh[k + trans_k*tid + trans_k*trans_l*j]
 = candid_h[j + vidh];
 }
 for(j=0;j<dimq;j++){
 transgridq[k + trans_k*tid + trans_k*trans_l*j]
 = candid_q[j+vidq];
 }
 }
 else{
 for(j=0;j<dimh;j++){
 transgridh[k + trans_k*tid + trans_k*trans_l*j]
 = hc[j+vidh];
 }
 for(j=0;j<dimq;j++){
 transgridq[k + trans_k*tid + trans_k*trans_l*j]
 = qc[j+vidq];
 }

123

 }
 }
}

The following code is a simplified illustration of calling a GPU kernel such as the

one above from the host along with buffer transfers.

// Allocation of device buffers

cudaMalloc((void**)&dev_transgridh,trans_k*trans_l*dimh*sizeof(float));
cudaMalloc((void**)&dev_transgridq,trans_k*trans_l*dimq*sizeof(float));
cudaMalloc((void**)&dev_ry, h_tnn*sizeof(float));
.
.
// Data transfer to device memory
cudaMemcpy(dev_ry, ry, h_tnn*sizeof(float),cudaMemcpyHostToDevice);
.
.
offs = 0;
nt = (k-1)/2;
blocks_n =(int)(((k-1)/2+threadsize-1)/threadsize);

// Device kernel call for parallel execution
mcmc_kernel_s1<<<blocks_n, threadsize>>>(k, offs, nt, pcl_size, ts_t,
 dimh, ..., dev_transgridh, dev_transgridq,);
.
.

//Synchronization and blocking
cudaDeviceSynchronize();
.
.
//Data transfer back to host
cudaMemcpy(transgridh,dev_transgridh,trans_k*trans_l*dimh*sizeof(float),
 cudaMemcpyDeviceToHost);
cudaMemcpy(transgridq,dev_transgridq,trans_k*trans_l*dimq*sizeof(float),
 cudaMemcpyDeviceToHost);

124

125

CURRICULUM VITAE

Name-Surname : Halil Ertürk ESEN

Date and place of birth : 20.12.1976, Adana

E-mail : erturk.esen@gmail.com, eesen@itu.edu.tr

EDUCATION:

B.Sc. : 1999, Istanbul Technical University, Faculty of Management,

Industrial Engineering Department.

M.Sc. : 2002, Bogazici University, Institute for Graduate Studies in Science

and Engineering, Industrial Engineering Department.

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

 Esen, H. E., in press, 2016, Multivariate stochastic volatility estimation with
sparse grid integration, Journal of Mathematical Finance, 6, 68-81.

http://dx.doi.org/10.4236/jmf.2016.61009

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS :

 Akpinar, M. E., Kocak, I., Gurpinar, B., & Esen, H. E., 2011, Effects of soft
palate implants on acoustic characteristics of voice and articulation. Journal of

Voice, 25(3), 381-386.

 Akpınar, H., Tüfek, İ., Atuğ, F., Esen, H. E., & Kural, A. R., 2009, Doppler

ultrasonography-guided pelvic plexus block before systematic needle biopsy of

the prostate: A prospective randomized study. Urology, 74(2), 267-271.

 Tüfek, İ., Akpinar, H., Atuğ, F., Öbek, C., Esen, H. E., Keskin, M. S., & Kural,
A. R., 2012, The impact of local anesthetic volume and concentration on pain

during prostate biopsy: a prospective randomized trial. Journal of Endourology,

26(2), 174-177.

126

