ISTANBUL TECHNICAL UNIVERSITY * INFORMATICS INSTITUTE

A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND
ESTIMATION WITH GPU COMPUTING

Ph.D. THESIS

Halil Ertirk ESEN

Department of Computational Science and Engineering

Computational Science and Engineering Programme

JUNE 2016






ISTANBUL TECHNICAL UNIVERSITY * INFORMATICS INSTITUTE

A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND
ESTIMATION WITH GPU COMPUTING

Ph.D. THESIS

Halil Ertirk ESEN
(702062002)

Department of Computational Science and Engineering

Computational Science and Engineering Programme

Thesis Advisor: Prof. Dr. Bur¢ ULENGIN
Thesis Co-advisor: Prof. Dr. M. Serdar CELEBI

JUNE 2016






ISTANBUL TEKNIiK UNIiVERSITESI % BiLiSiM ENSTITUSU

YENI BiR COK DEGISKENLIi STOKASTIK OYNAKLIK MODELI VE GPU
TABANLI HESAPLAMA ILE KESTIRIMIi

DOKTORA TEZI

Halil Ertirk ESEN
(702062002)

Hesaplamali Bilim ve Miihendislik Anabilim Dal

Hesaplamal Bilim ve Miihendislik Program

Tez Damismam: Prof. Dr. Bur¢ ULENGIN
Tez Es Damsmani: Prof. Dr. M. Serdar CELEBI

HAZIRAN 2016






Halil Ertirk ESEN, a Ph.D. student of ITU Informatics Institute student ID
702062002, successfully defended the thesis/dissertation entitled “A NOVEL
MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND ESTIMATION
WITH GPU COMPUTING”, which he prepared after fulfilling the requirements
specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Bur¢ ULENGIN
Istanbul Technical University

Co-adyvisor : Prof.Dr. M. Serdar CELEBI
Istanbul Technical University

Jury Members : Prof.Dr. Metin DEMIRALP
Istanbul Technical University

Prof.Dr. Hasan DAG
Kadir Has University

Prof.Dr. Oktay TAS
Istanbul Technical University

Prof.Dr. Kerem SENEL
Istanbul Commerce University

Assoc.Prof.Dr. Cumhur E. EKINCI
Istanbul Technical University

Date of Submission : 18 January 2016
Date of Defense : 06 June 2016






FOREWORD

First and foremost I would like to thank my advisor Prof. Dr. Bur¢ ULENGIN whose
precious guidance and mentorship guided me through not only this study but also my
whole doctoral journey and helped me for surviving and reaching to this point. I am
also grateful to my co-advisor Prof. Dr. M. Serdar CELEBI who provided great
support and motivation in this study and inspired me with his enthusiasm for the field
of computational sciences from the beginning. As | feel very lucky for being their
students, | would like to let them know that their kindness and understanding are
greatly appreciated.

I would also like to thank my committee member and professor, Prof. Dr. Metin
DEMIRALP whom | learned really too much, from both his solid courses and his
wisdom.

I would also like to thank my committee members Prof. Dr. Hasan DAG and Prof.
Dr. Oktay TAS who provided valuable opinions, comments and advice which
significantly contributed in developing and shaping the study.

For her unique patience and great help, |1 would like to thank my loving wife Ayla
who always stands by me and special thanks to my son Arda whose unbelievable
pace of growth motivated and reminded me that | must go on and speed up when
things get slower.

As it has always been, | have constantly felt the blessings of my mother and hearty
support of my father and sisters which kept me stronger in this journey too.

June 2016 Halil Ertiirk ESEN

Vi






TABLE OF CONTENTS

Page

FOREWORD ..ottt bbbt vii
TABLE OF CONTENTS ..ottt iX
ABBREVIATIONS ..o Xi
LIST OF TABLES ..o s Xiii
LIST OF FIGURES .......ooiiiiieiee e XV
SUMMARY ettt ettt e re e eneas XVii
(@ )74 = OO U R OTR RO Xix
1. INTRODUCTION ..ottt 1
2. THEORETICAL AND MATHEMATICAL BACKGROUND ............ 7
2.1 Stochastic Volatility Modeling .........cccocoviiiniiiniiiieee e 7
2.1.1 Overview of stochastic volatility models ...........c.ccocevvviiieiieenne, 7
2.1.2 A novel multivariate stochastic volatility model (MSV-D) ............ 12

2.2 Estimation Algorithms for Stochastic Volatility Models ....................... 16
2.2.1 Stochastic volatility models as nonlinear state space models ......... 16
2.2.1.1 Densities implied by the MSV-D model .........c.ccoevviiiiinnnnnn 17
2.2.1.2 Filtering, prediction and Smoothing .........c.cccccvevvvivivniiicceennn, 19
2.2.1.3 Mean, variance and likelihood ............cccooooiiiiiiiiiiiis 22

2.2.2 Overview of the estimation Methods ............ccocvvvienenenieniinns 22
2.2.3 Estimation with Markov Chain Monte Carlo (MCMC) methods ... 27
2.2.3.1 Preliminaries on the MCMC methods .........ccccooviiieniieninnnnn 27
2.2.3.2 MCMC based estimation algorithms for the MSV-D .............. 29
MCMC with EM algorithm for the MSV-D ........cccccooviivviieiienn 29
Bayesian MCMC for the MSV-D ........cccooviiniiiiieee e 33

2.2.4 Estimation with sparse grid integration (SGI) method .................... 43
2.2.4.1 Preliminaries on the SGI method ..........ccccoeveiiiiiiiinieiciies 43
2.2.4.2 SGI based estimation algorithms for the MSV-D .................... 45

3. COMPUTATIONAL IMPLEMENTATION ...ccoooiiiiieieieee e 51
3.1 Computational Aspects of Estimation Algorithms ............cccccceevnenee. 51
3.2 Parallelization Approaches for the MCMC Based Algorithms .............. 57
3.3 Parallelization Approach for the SGI Based Algorithms ....................... 58
3.4 Notes on the GPU Implementation ............ccocvvvininieienenene e 60
4. METHODOLOGY ...ooiiiiiieie sttt 63
4.1 Software Programs and Hardware ...........ccccooeerinininiennnene e 63
4.2 Assessment of the MSV-D Model ..o 64
4.3 Assessment of the Estimation Algorithms ..........ccoceveiiiiininiins 68
5. RESULTS ottt 71
5.1 MSV-D Model on Simulated Returns Data ...........cccoevverveveeiveriennnenn 71
5.2 MSV-D Model on Empirical Data ........cccccoeeiiiiiiiinieneeese e 84
5.3 Comparative Simulations for Estimation Algorithms ............ccccceevvvnnns 89
5.4 SGI Based Estimation Algorithms on Empirical Data ..............cccceneee. 9



5. CONCLUSION .ot 99

REFERENCES ... 103
APPENDICES ... 107
CURRICULUM VITAE ..o 125



ABBREVIATIONS

AR
ARCH
EKF
EM
GARCH
GPU
MCMC
MSV
PCA
RMSE
SGI

SV
VaR

: Autoregressive

: Autoregressive Conditional Heteroskedasticity
: Extended Kalman Filter

: Expectation Maximization

: Generalized Autoregressive Conditional Heteroskedasticity
: Graphics Processing Unit

: Markov Chain Monte Carlo

: Multivariate Stochastic Volatility

: Principle Component Analysis

: Root Mean Squared Error

: Sparse Grid Integration

: Stochastic Volatility

: Value at Risk

Xi






LIST OF TABLES

Table 2.1
Table 4.1
Table 5.1
Table 5.2

Table 5.3
Table 5.4

Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10
Table 5.11
Table 5.12
Table 5.13
Table 5.14
Table 5.15
Table 5.16
Table 5.17
Table 5.18
Table 5.19
Table 5.20

Table 5.21

Multidimensional grid sizes based on the trapezoid rule..........
Implemented estimation algorithms..........c.cccoovviiiieiciennn
Static MSV-D model parameter estimation results of yi, @i, o,
Static MSV-D model parameter estimation results of p.; ,
Peniis Pen,ijererereersnesi
Static MSV-D model log-volatility estimation results..............
Dynamic MSV-D model parameter estimation results of v;, g;,

Dynamic MSV-D model parameter estimation results of d;......
Dynamic MSV-D model parameter estimation results of ;...
Dynamic MSV-D model parameter estimation results of o, ;..
Dynamic MSV-D model log-volatility estimation results ........
Dynamic MSV-D model estimation results of the dynamic
correlations, Pee ity Peniits Peniitreseeeseereresesessrrrnmnmsmnnnninns
MSV-D model parameter estimation results of i, ¢i, 6, on
S&P500, IBM and Intel (INTC) returns........cccevvevveeivenveeennnnn
MSV-D model parameter estimation results of ¢; on S&P500,
IBM and Intel (INTC) returns........ccccceeeeveeieiieneese e e
MSV-D model parameter estimation results of 6; on S&P500,
IBM and Intel (INTC) returns........ccoceeveeieeieeieeiieseese e
MSV-D model parameter estimation results of 4, on
S&P500, IBM and Intel (INTC) returns.........cccoceveveieeireriennnnn
GARCH model parameter estimates on S&P500, IBM and
INtel (INTC) FEtUMNS......eovieie e
Log-volatility estimates MSV-D vs. GARCH on S&P500,
IBM and Intel (INTC) returns........ccccevveieeieieeneese e
Accuracy comparison of SGI and MCMC based estimation
AlGOMTENMS.....eece e
Parameter estimation accuracy comparison of the SGI and
MCMC based algorithms...........ccccoveviiieiiieieccceece e
Execution times of SGI and MCMC based estimation
AlQOITtNMS.....eoiic
MSV-B parameter estimation results on EUR/TL and
USD/TL FEEUINS.....eeiiiiiiiiie ettt
CCC-GARCH parameter estimation results on EUR/TL and
USD/TL FEEUINS.....ceiiiiiiieiie et
Log-volatility estimation comparisons on EUR/TL and
USD/TL FEEUINS.....eeitiiieiiieieeie et

Xiii

73

74
76

79
79
80
80
81
81
85
85
85
86
86
87
90
91
92
95

96






LIST OF FIGURES

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15

Figure B.1

Page
Estimation algorithm dependencies..........cccocevvvvirenvnieiinienn, 52
Sequential (i.e. on-line) vs. batch algorithm..............cccveneneen. 52
Smoothing algorithm of MCMC with EM approach............... 53
Smoothing algorithm of Bayesian MCMC approach.............. 54
Filtering algorithm of SGI approach.........ccccceeviiiiiiiinnnn, 55
Parallel MCMC based smoothing algorithm.............cccceeenee. 57
Parallel SGI based filtering algorithm.............ccccoovniinnn 59
Simulated series based on the static MSV-D model................ 72
Log-volatility fits for the static MSV-D model....................... 75
Simulated series based on the dynamic MSV-D model.......... 77
Examples of simulated dynamic correlations based on the
dynamic MSV-D model.........ccccevveieiieireie e 78
Log-volatility fits for the dynamic MSV-D model.................. 82
Dynamic correlation fits for the dynamic MSV-D model....... 83
Return series of S&P500, IBM and Intel (INTC)........ccceee. 84

Log-volatility estimates of S&P500, IBM and Intel (INTC)... 87
Correlations between returns of S&P500, IBM and Intel

(INTC) et e s 88
Examples of dynamic leverage, cross-leverage and volatility
SPIIOVETr €SHIMALES......eivieiieieiere e 89
Accuracy comparison of SGI and MCMC based estimation
AlGOMTENMS.....eeec e 90
Execution times of serial and GPU accelerated estimation
AlGOMTtNMS.....eeec e 93
Speed up by dimension in SGI and MCMC based algorithms 94
Return series of EUR/TL and USD/TL........ccccccvevvivieiniiennn, 95
Log-volatility smoothing estimates on EUR/TRL and
USD/TRL FELUINS....c.viiiieiieeie et 97
Time varying correlation matrix construction mechanism of
the MSV-D mMOdel........cccvoiiieiie e 109

XV






A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND
ESTIMATION WITH GPU COMPUTING

SUMMARY

Modeling and estimation of volatilities of asset returns in financial markets have
been a major research area for the last three decades because of the prominent role of
volatility concept in mathematical and quantitative finance. Reliable volatility
estimates of asset returns are indispensible inputs to several mathematical models in
financial frameworks including but not limited to risk management and
measurement, option pricing, portfolio and asset management.

Volatilities of asset returns show several well studied and reported structural patterns
which are called stylized facts including time varying and persistent dynamics,
leverage effects and spillovers. Models and estimation methods for addressing those
stylized facts about volatility for asset returns are central to the contemporary
volatility estimation research.

Stochastic volatility (SV) models constitute a family of models considering the
conditional variance of returns as latent variables driven by a stochastic process
instead of explicitly modeling it as in the Autoregressive Conditional
Hetoreskadasticity (ARCH) models which constitute an other family of models in the
volatility modeling research field. By construction, SV models are quite flexible and
versatile in capturing the stylized facts, however because of their nonlinear
structures, linear approximations or computationally demanding numerical methods
are required for the associated estimation problems.

An appreciable amount of research composed of several multivariate model
specifications and parameterization addressing different and more complicated
stylized facts not only about volatility but also about co-volatility and their
multidimensional dynamics is available. In the multivariate stochastic volatility
(MSV) modeling research the control mechanisms and parameterizations of the
covariance and/or correlation matrices in MSV models and their handling in time-
varying settings are the core topics since almost all stylized facts are imposed
through the structure of those matrices which have special structures and restrictions
on their entries in MSV models. Addressing several stylized facts at the same time in
a single model is not a trivial task and requires appropriate mechanisms and most of
the available models in the literature address only a subset of stylized facts at the
same time. In this context, a novel MSV model referred as MSV-D is proposed as
one of the objectives of this thesis. The proposed MSV-D model can accommodate
most of the common stylized facts, namely correlations between asset returns,
leverage effect (i.e. asymmetry) cross-leverage effect and volatility spillovers and
furthermore it allows replacing the static versions of the listed stylized facts with the
time-varying (dynamic) counterparts completely or partially. The proposed MSV-D
model achieves this flexibility and generality by modeling the correlations as

XVii



separate stochastic processes like the volatilities. The proposed MSV-D model
includes a specially designed mechanism for handling the time-varying correlation
matrices and controlling the stochastic processes driving correlations. Having been
proposed a MSV model, its estimation algorithm based on the Markov Chain Monte
Carlo (MCMC) methods in a Bayesian setting is also developed. The proposed
MSV-D model and its Bayesian MCMC estimation method are illustrated on
simulated and empirical data and it is shown that the proposed MSV-D model and its
Bayesian estimation algorithm perform well in both static and dynamic settings.

As being nonlinear state space models, MSV models require estimation methods that
can handle high dimensional integrals for obtaining smoothing, filtering and
prediction estimates of log-volatilities and parameter estimates. Mainstream
estimation method for the MSV models are based on the MCMC methods including
the Gibbs sampling and Metropolis-Hastings algorithms. MCMC methods are not
affected by the high dimensionality in contrast with the any other alternative methods
available including other Monte Carlo based probabilistic methods such as
resampling, importance sampling and rejection sampling and exact methods such as
the numerical integration. Moreover, MCMC methods can be extended naturally in a
Bayesian setting where parameter estimation can also be performed by the sampling
schemes offered by MCMC without the need for explicit calculation and separate
routines for maximizing the log likelihood. The drawbacks with the MCMC method
are the issues in convergence and error control and selection of the proposal density
where the posterior density is not analytically tractable. Poor mixing chains with high
inefficiency factors are common in applications. In search of an alternative
estimation approach for the MSV models which would have better error control and
convergence properties and computational features competing with the MCMC
approach, Sparse Grid Integration (SGI) based estimation algorithms which have not
been studied for MSV models previously, are developed and evaluated for the second
objective of the study. SGI method is a smartly reshaped version of the conventional
numerical integration method for handling multi-dimensional integrals by
constructing multi-dimensional integration formulas in a way that the dimensionality
effect is decreased to a certain extent which allows practical implementation in
higher dimensional cases in contrast to the conventional numeric integration
methods.

The proposed SGI based estimation algorithms are illustrated on simulated and
empirical data and it is shown that the proposed algorithms perform as well as the
MCMC based algorithms and in certain conditions surpass the MCMC methods in
terms of both accuracy and computational performance. Although the issues with
dimensionality is significantly reduced with the SGI based approach, high
dimensional problems can still be problematic from the computational perspective.

The computational requirements of the both MCMC and SGI based algorithms are
quite high. In this context, computational improvements that can be achieved with
the usage of graphics processing unit (GPU) for estimation algorithms are evaluated
by developing and implementing parallelization approaches for MCMC and SGI
based estimation algorithms as the third objective of the study.

In the simulation study conducted implemented parallel GPU estimation algorithms
provided significant improvements in execution times with speed up values up to 16
for MCMC based algorithms and speed up values up to 25 for SGI based algorithms
on single GPU which are promising results for larger scale parallel architecture
implementations.
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YENI BiR COK DEGIiSKENLI STOKASTiIK OYNAKLIK MODELI VE GPU
TABANLI HESAPLAMA ILE KESTIRIMi

OZET

Finansal oynaklik (ing: volatility) kavraminin matematiksel ve sayisal finans
alaninda olduk¢a 6nemli bir yeri olmasi sebebiyle finansal piyasalarda oynaklik
modellemesi ve kestirimi (ing: estimation), temel bir arastirma alani olarak karsimiza
¢ikmaktadir. Giivenilir oynaklik tahminleri, risk yonetimi, opsiyon fiyatlama, portfoy
ve varlik yonetimi gibi birgcok matematiksel model ve sayisal finans yaklagimi igin
vazgecilmez derecede 6nemli girdilerdir.

Finansal varlik getirilerindeki oynaklik (izerinde yapilan bir ¢ok arastirma ve ¢alisma
oynakligin ¢esitli yapisal desenler ve dinamikler gosterdigini ortaya koymustur.
Zaman iginde degisenlik, yer yer kalici 6zellikte dinamikler, getiriler ile oynaklik
arasindaki iliskiyi ifade eden kaldirag (asimetri) ve birden fazla getiri s6zkonusu
oldugunda oynakliklar arasindaki yayilma etkileri bu yapisal desenlerden onemli
olanlardir. Oynaklikla ilgili bu yapisal desenleri yansitabilecek matematiksel
modeller kurgulamak, bunlara iliskin kKestirim (ing: estimation) yontemleri ve araclar
gelistirmek ile bunlar ile getiri verileri {izerinde gergeklestirilen analizler, glncel
oynaklik kestirim aragtirmalarinin ve ¢alismalarinin temel odagi durumundadir.

Stokastik oynaklik modelleri iki temel oynaklik modelleme yaklagimindan bir
tanesidir. Stokastik oynaklik modelleri getirilerin kosullu varyansini, diger bir 6nemli
model ailesi olan Autoregressive Conditional Heteroskedasticity (ARCH)
modellerinde oldugu gibi agik bigcimde modellemek yerine kosullu varyansi,
stokastik bir streci takip eden Ortllu (ing: latent) bir degisken olarak ele alan bir
model ailesidir. Stokastik oynaklik modelleri kosullu varyanslarin ayr1 bir stokastik
stireg olarak ele alinig1 dolayisiyla, oynaklikla ilgili belirtilen yapisal desenleri ve
dinamikleri yakalama konusunda oldukca esnek ve yetenekli modellerdir. Ancak
dogrusal olmayan yapilar1 sebebiyle stokastik oynaklik modelleri, ilgili Kestirim
problemleri i¢in ya dogrusal yaklastirima dayali yontemler ya da yogun hesaplama
ihtiyac1 duyan sayisal yontemler gerektirmektedirler.

Yazinda, oynaklik ve oynakligin ¢ok boyutlu dinamikleri ile ilgili yapisal desenleri
gozeten ve modellemeye calisan ¢ok degiskenli modeller Uzerine ciddi miktarda
caligma ve arastima bulunmaktadir. Cok degiskenli stokastik oynaklik (CDSO)
modelleme arastirmalarinda, kovaryans ve korelasyon matrisleri hemen hemen tim
yapisal desenlerin ve dianmiklerin belirlenmesinde anahtar bir ara¢ oldugundan, 6zel
bi¢imlere sahip bu matrislerin zaman i¢inde degisken bicimde hareket etmelerine
olanak tanityan mekanizma ve kontrol yontemleri en 6nemli arastirma basliklarindan
bir tanesidir. Ayn1 anda birden fazla yapisal deseni tek bir ¢ok degiskenli model
icinde kurgulamak, uygun mekanizma ve kontrol yontemi gerektirmesi bakimindan
cok kolay degildir ve bu zorluk sebebiyle yazinda bulunan modellerin bir gogunun
bahsedilen yapisal desenlerin sadece kiglk bir boluminl ayn1 anda yansitabildikleri
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gorilmektedir. Bu baglamda, bu ¢aligmanin ilk amaci dogrultusunda yeni bir CDSO
modeli gelistirlmis ve Onerilmistir. Onerilen model, c¢alisma icerisinde MSV-D
olarak anilmaktadir. Onerilen MSV-D modeli, yapisi itibariyle varlik getirileri
arasindaki korelasyon, varlik getirileri ve bunlarin oynakliklar1 arasindaki iliski
olarak ifade edilen kaldirag etkisi ve c¢apraz kaldira¢ etkileri ile oynakliklar
arasindaki geciskenligi ifade eden oynaklik yayillimi O6zelliklerini ayni1 anda
barindirabilmekte ve dahasi bu ozelliklerin zaman iginde degisebilen (dinamik)
karsiliklarinin kismi ya da butin olarak modele dahil edilebilmesine olanak
tamimaktadir. Onerilen model, yazindaki mevcut dinamik modellerden farkli olarak
dinamik kaldira¢ ve ¢apraz kaldirag etkileri ile dinamik oynaklik yayilimi etkilerinin
modellenebilmesini saglamaktadir. Onerilen model 6zellestirilebilir genel bir yapiya
sahiptir ve aragtirmaciya farkli niteliklerde modeller deneme esnekligi vermektedir.
Yazinda bulunan temel CDSO modellerinin bir ¢ogu, dnerilen MSV-D modelinin
0zel bir hali olarak parametrelestirilebilmektedir.

Onerilen modelin genelligi ve esnekligi temel olarak korelasyonlari, kosullu
varyanslara benzer sekilde, ayr1 stokastik siirecler olarak ele almasi fikrine dayanarak
elde edilmektedir. Onerilen model, korelasyon matrislerinin stokastik stirecler
vasitastyla zaman igerisinde degisimini saglayan ve bu degisimler esnasinda
korelasyon matrislerinin arti tanimhiligimin  ve diger bigim 06zelliklerinin
korunabilmesini saglayan 0zel olarak tasarlanmig bir mekanizma ve cift yonli
matematiksel donistimler icermektedir.

Onerilen MSV-D modelinin pratik olarak uygulanabilmesi igin, modelin yapisina
Ozel olarak Bayesian bir yaklasim g¢er¢evesinde kurgulanan Markov Chain Monte
Carlo (MCMC) yontemine dayanan bir kestirim algoritmasi da ¢aligmanin bir pargasi
olarak  gelistirilmistir.  Kestirim  algoritmasi  Onerilen MSV-D modelinin
parametrelerinin ve zaman i¢inde degisebilen Ortiilii oynaklik ve korelasyon
degiskenlerinin MCMC yontemine dayali ornekleme ile nasil elde edilecegini
g6stermektedir ve MSV-D modelinin yapisina 6zgiidiir.

Onerilen MSV-D modeli ve bunun icin gelistirilen Bayesian MCMC kestirim
yontemi statik ve dinamik 6zellikler dogrultusunda simiile edilmis getiri ve oynaklik
verileri ile gercek hisse senedi ve endeks getiri serileri iizerinde uygulanmis ve
karsilagtirmali olarak degerlendirilmistir. Gergeklestirilen uygulamalar, hem 6nerilen
MSV-D modelinin hem de gelistirilen ¢6zim yodnteminin, statik ve dinamik
kurgularda yapisal desenleri yakalama konusunda iyi bir performans sergiledigini
gostermistir.

CDSO modelleri, temelde dogrusal olmayan durum uzayi (ing: state space)
problemleri olmalar1 dolayisiyla, dizleme (ing: smoothing), filtreleme ve tahmin
(ing: prediction) kestirimleri ile parametre kestirimlerinin elde edilmesi
problemlerinde ortaya ¢ikan ¢ok boyutlu timlevler (ing: integral) ile basa ¢ikabilecek
sayisal ~yontemlere ihtiyag duymaktadirlar. Son dOnemlerde hesaplama
teknolojisindeki ilerlemeler bu yontemlerin uygulanabilirligini arttirmistir. ¢DSO
modellerinin kestiriminde kullanilan algoritmalar, igerisinde Gibbs 6rneklemesi ve
Metropolis-Hastings algoritmasi da bulunan MCMC yo6ntemlerine dayanmaktadir.
MCMC yontemleri temel olarak, limit dagilimi hedefteki sonsal (ing: posterior)
dagilim olan bir Markov zinciri iizerinden bagimli Orneklemler iireterek sonsal
dagilimi elde etme esasina dayanir ve diger rassal orneklemlere dayanan Monte
Carlo tabanli yontemlerden ¢ok farklidirlar. MCMC yontemlerinin karmagik
ornekleme mekanizmalari diger Monte Carlo yontemlerine gore genellikle daha ¢ok
saylida orneklem alinmasini gerektirir. MCMC yontemleri kurgular itibariyle diger
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bircok Monte Carlo tabanli yontem de dahil olmak tiim alternatif yontemlerden farkli
olarak yiiksek boyutlulugun getirdigi zorluklardan etkilenmezler. Ayrica, MCMC
yontemleri parametre Kkestirimlerinin, en c¢ok olabilirlik (ing: likelihood)
fonksiyonunun maksimizasyonuna ve dolayisiyla bu fonksiyonun degerinin agik
bi¢imde hesaplanmasina gerek duyulmadan 6rnekleme yolu ile gergeklestirilmesine
olanak taniyan Bayesian bir yaklasima dogal bir bigimde uyarlanabilmektedirler. Bu
ozelliklerinden dolayt CDSO modelleri i¢in MCMC tabanli kestirim yontemleri en
cok tercih edilen yontemler haline gelmislerdir. MCMC yontemleri bircok iyi
ozelligine ve basarili olmalarina karsin kusursuz yontemler degillerdir. MCMC
yontemlerinin hata kontrolli ve yakinsama ile ilgili kendine 6zgii bir takim kusurlari
mevcuttur. MCMC yontemlerinde yakinsamanin saglanip saglanmadigi ya da ne
kadarlik bir efordan sonra saglanacagi hem teorik hem de pratik agidan cevabi1 heniiz
net olarak verilememis sorulardir. MCMC yontemlerinde analitik olarak elde
edilemeyen sonsal (ing: posterior) dagilimlardan 6rnekleme gergeklestirilmesinde
Metropolis-Hastings algoritmasi igerisinde kullanilan Oneri (ing: proposal)
dagilimlarinin olusturulmas1 da yonlendirme gerektirien ayr1 bir zorluk olarak
karsimiza ¢ikmaktadir. Bu zorluklardan dolayr uygulamada etkin ¢alismayan Markov
zincirleri ile siklikla karsilagilmaktadir. Bu baglamda, bu ¢alismanin diger bir amaci
dogrultusunda, daha iyi hata kontrolii ve yakinsama o6zelliklerine sahip, hesaplama
gereksinimleri agisindan MCMC yontemleri ile rekabet edebilecek, stokastik
oynaklik kestirimi alaninda daha 6nce hi¢ kullanilmamis yeni bir yontem olan sparse
grid integration (SGI) tabanli kestirim algoritmalar1  gelistirilmis  ve
degerlendirilmistir. SGI yontemi, geleneksel nimerik tiimlevieme yonteminin ¢ok
boyutlu problemlere boyutsalligin olumsuz etkisinin azaltilarak genisletilmesi
esasina dayanan ve geleneksel nlimerik tiimlevleme yontemlerinin aksine cok
boyutlu durumlarda uygulanabilen yontemlerdir. Geleneksel nimerik timlevlieme
yontemleri tek degiskenli stokastik oynaklik modelleri igin birka¢ ¢alismada
incelenmis olmakla beraber CDSO modelleri i¢in niimerik tiimlevleme yontemleri,
cok boyutlulugun bu yontemlerdeki sinirilamalar1 sebebiyle, yazinda gz ardi edilmis
ve yeterince incelenmemistir. Dogrusal olmayan durum uzayr calismalarinda
nlimerik tlimlevlemeye dayanan kestirim yontemleri deterministik yapilar1 sebebiyle
yakinsama ile hata kontrol o6zellikleri, olasiliksal yontemler olan MCMC ve diger
Monte Carlo yontemlerinden daha tstlindirler ve bunun yansimasi olarak kesin (ing:
exact) yontemler olarak ifade edilirler. Onerilen SGI kestirim yaklagimiyla, CDSO
modelleri i¢in bahsedilen kesinligin en azindan belirli bir 6l¢lide yakalanmasi
amaclanmistir.

Stokastik oynaklik kestirimi igin onerilen SGI tabanli algoritmalar simiile edilmis ve
gercek piyasa verileri {izerinde uygulanmis Vve karsilagtirmali  olarak
degerlendirilmistir. Onerilen SGI tabanli algoritmalar belirli kosullar alttnda MCMC
tabanli yontemlerin performansini yakalamig ve hatta gecmistir. SGI yontemi gibi
nliimerik tiimlevleme yontemlerinin basta MCMC olmak iizere Monte Carlo tabanh
yontemlere alternatif olabilecegi gosterilmistir.

Stokastik oynaklik modellerin kestiriminde kullanilan hem MCMC tabanli hem de
onerilen SGI tabanli yontemlerin islem yogunlugu ve hesaplama gereksinimleri
oldukca fazladir. Bu baglamda, ¢alismanin iigiincii ve son amaci dogrultusunda
incelenen MCMC ve SGI tabanli kestirim algoritmalar1 ig¢in paralel hesaplama
yaklagimlart ve algoritmalart olusturulmus ve bu yaklagimlar kullanilarak grafik
islemciler (ing: graphics processing unit, GPU) iizerinde c¢alisan programlar
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gelistirilerek bu cihazlarin hesaplama yoniinden Kestirim gorevlerine katkilart
degerlendirilmistir.

Gergeklesitilen  simiilasyon ¢alismasinda GPU  {izerinde c¢alisan parallel
algoritmalarin islem zamanlarim1 onemli bigimde azalttigi gorilmiistir. Tek GPU
tizerinde MCMC tabanli algoritmalarda 16 kata kadar ve SGI tabanli algoritmalarda
25 kata kadar hizlanma kaydedilmistir. Tek GPU Uzerinde uygulama teorik hizlanma
smirlarini ve dlgeklenebilirligi test etmek i¢in yeterli olmamakla birlikte elde edilen
sonucalar daha blylk paralel mimarilerde uygulamalar icin umut vericidir. GPU
desteginin, pratik stokastik oynaklik kestirimi uygulamalar i¢in olduk¢a fark
yaratabilecek etkin ve ucuz bir ¢6ziim oldugu gdsterilmistir.

XXil



1. INTRODUCTION

Modeling, analysis, and estimation of volatilities of asset returns in financial markets
have been a major research area for the last three decades because of the prominent
role of volatility concept in mathematical and quantitative finance. Reliable volatility
estimates of asset returns are indispensible inputs to several mathematical models in
financial frameworks including but not limited to risk management and
measurement, option pricing, portfolio and asset management. For example risk
metrics such as the value at risk (VaR) used by many financial institutions for
measuring the risk are directly calculated using the volatility forecasts. In option
pricing models including the famous model of Black and Scholes (1973) and

portfolio optimization models volatility and its estimates are direct inputs.

A considerably rich literature on volatility research showed that volatilities and
correlations regarding financial asset returns are time varying with persistent
dynamics. In addition to the time varying nature, various patterns and properties
inherent in asset returns and volatilities were well studied and reported in the
literature including leverage effects and volatility spillovers which are referred as
stylized facts. Analysis of time varying structures and tools for addressing the
stylized facts about volatility for asset returns are central to the contemporary

volatility estimation research.

Volatility modeling research field has two main branches having different modeling
approaches to address the mentioned stylized facts. First branch deals with models
which are called Autoregressive Conditional Hetoreskadasticity (ARCH) models
introduced by Engle (1982) and second branch deals with models so called
Stochastic Volatility (SV) models introduced by Taylor (1982). The essential feature
of ARCH type models is that they explicitly model the conditional variance of
returns given the past returns whereas the SV models consider the conditional
variance of returns as a separate stochastic process as latent variable instead of
explicitly modeling it. Because of the modeling approach, SV models are quite

flexible and versatile in capturing the stylized facts, however their nonlinear structure



bears computational challenges in estimation. SV models require linear
approximations or computationally demanding numerical methods for the associated
estimation problems. Despite their powerful features, the computational challenges in
estimation of SV models prevented them to be popular in practice and resulted in the
dominance of ARCH type models in the early research. However, with the advances
in computational resources allowing the usage of computationally intensive

algorithms and methods, SV models has started to draw attention in recent research.

Several extensions on the univariate SV models addressing the stylized facts have
been studied and proposed after the SV model of Taylor (1982) which dealt only
with volatility clustering. The first multivariate stochastic volatility (MSV) model
due to Harvey et al. (1994) is followed by an appreciable amount of research
composed of several multivariate model specifications addressing different and more
complicated stylized facts not only about volatility but also about co-volatility and
their multidimensional dynamics. The control mechanisms and parameterizations of
the covariance and/or correlation matrices in MSV models and their handling in
time-varying settings are the core topics of the MSV modeling research since almost
all stylized facts are imposed through the structure of those matrices in MSV models.

While addressing the stylized facts and flexibility in model specifications, another
objective was keeping the complexity under control and developing appropriate
estimation methods in those MSV modeling efforts since dimensionality brought
additional complexity on top of the inherent complexity due to the nonlinearity in SV
models. Being nonlinear state space models, even univariate SV models require
methods that can handle high dimensional integrals for obtaining smoothing, filtering
and prediction estimates of time-varying volatilities and parameter estimates. An
extra complexity is introduced in MSV models due to the dimensionality of latent

volatilities.

For the estimation, several early studies incorporated practical algorithms providing
either fast or simplified approximations based on the well-known Kalman filter and
its extensions, using Laplace approximations, variations of moment matching and
method of moments, and quasi likelihood methods. Although being fast and simple
those methods generally suffered from poor performance. Illustrations and examples
of these methods can be found in (Taylor, 1986), (Harvey et al., 1994), (Harvey &
Shephard, 1996) and (Galant & Hsieh, 1997).



Poor results of linear approximation based methods and challenges in the numerical
estimation of SV models incited the usage of computationally intensive simulation
based Monte Carlo methods for better estimations and approximations in parallel
with the advances in computational resources. Various Monte Carlo based methods
incorporating the algorithms such as resampling, particle filters, rejection sampling
and importance sampling have been proposed with examples in (Watanabe, 1999),
(Tanizaki, 1997), (Carlin et al., 1992) and (Sandman & Koopman, 1998).

A major breakthrough in SV estimation research was started with the works of
Tierney (1994), Chib and Greenberg (1995, 1996) which introduced the Markov
Chain Monte Carlo (MCMC) methods to the econometrics and SV fields. MCMC
methods including the influential Metropolis-Hastings and Gibbs sampling
algorithms quickly became central to the SV modeling and estimation studies, and a
vast amount of literature on the applications of different variations of MCMC
methods on various types of SV models, especially the MSV models was built up.
Particularly, MSV models have benefited from the MCMC methods since MCMC
methods are immune to the curse of dimensionality by construction unlike the other
Monte Carlo techniques and exact filter methods such as the numerical integration.
Another advantage of MCMC was the ease of implementation of these methods in
Bayesian settings where the parameter estimation can also be handled without a
maximization routine for the likelihood, hence without an explicit evaluation of the
likelihood function. These appealing features of MCMC methods made them a
natural first choice in MSV estimation studies. However, MCMC algorithms are not
flawless. They still require intense computational resources for complicated iterative
sampling schemes for estimation. Although having a quite different philosophy than
the other Monte Carlo methods they are still simulation based Monte Carlo methods,
thus are not exact methods. Furthermore, certain issues on error control and
convergence are inherent particularly for the MCMC methods. A detailed treatment
of MCMC methods can be found in (Chib, 2001).

Multidimensional integrals arising in estimation of SV models can be handled by
classical numerical integration methods as discussed in (Kitagawa, 1987) and
(Tanizaki, 1997) in a nonlinear state space modeling framework. Being exact
methods with a deterministic structure, convergence properties of classical numerical

integration methods are superior to simulation based Monte Carlo methods.



However, when the state-space dimension increases as in MSV models, these
methods become computationally infeasible since the number of dimensions
increases the complexity of these type of algorithms exponentially. Unsurprisingly,
studies on the application of the numerical integration methods to nonlinear state
space models and particularly MSV models are quite rare compared to the
approximation based methods and Monte Carlo simulation based methods including
the MCMC methods.

Sparse grid integration (SGI) method is a smartly reshaped version of classical
numerical integration method to handle multidimensional integrals by constructing
multi-dimensional integration formulas in a way that the dimensionality effect is
decreased to a certain extent which allows practical implementation in higher
dimensional cases in contrast to the classical numeric integration methods. Sparse
grid integration approach is based on the work of Smolyak (1963) and was applied
to some economic and financial problems with examples of discrete choice analysis
in (Bungarts and Griebel, 2004), collateral mortgage optimization problem in
(Gerstner and Griebel, 1998), derivative and option pricing in (Gerstner, 2007) and
asset liability in life insurance in (Holtz, 2010). However, estimation algorithms
based on the SGI approach for SV models have been neither studied nor mentioned

in the literature.

One of the mentioned advances in computational resources is the high performance
computing paradigm on massively parallel architectures such as graphic processing
units (GPUs) or compute processors hosting many processors. Advances in the
capabilities of GPUs and the introduction of easier to use platforms and tools for
programming such devices resulted in deployment of several scientific and industrial
applications benefiting from the cheap and efficient computing power provided by
those devices. Quantitative finance has always been one of the first fields quickly
adopting new technologies. In this context, the potential contributions of the high
performance computing paradigms on massively parallel architectures such as to the

computationally demanding task of SV estimation is one of the focus of this study.

The objectives of the study are summarized as follows. First objective of this study is
the search for alternative MSV model specifications that can capture the stylized

facts and dynamics of asset returns in a more realistic and flexible way than the



available models in the literature and contributions from the MSV modeling

perspective.

Second objective of the study is in the perspective of estimation methodology where
estimation algorithms based on a different approach than the popular MCMC
approach for the MSV models is studied to see whether it is possible or not to come
up with an estimation approach that does not have the drawbacks of MCMC and
provide better results. The SGI approach which is neglected in the SV field is the

approach under question in this perspective.

Third and final objective of the study is the evaluation and assessment of the possible
contributions and implications of the GPU computing and usage for easing the

excessive computational burden in MSV estimation problems.

Organization of the study is as follows. In section 2, mathematical and theoretical
background of the thesis is provided. After providing a brief overview of SV models,
a novel MSV model specification is given in accordance with the first objective of
the study. In the second part of section 2 an overview and background on estimation
algorithms are presented first followed by detailed treatment and presentation of the
MCMC based estimation algorithms and the proposed SGI based estimation

algorithms for the second objective of the study.

In section 3, important topics on practical implementation of the estimation
algorithms their computational aspects and parallelization approaches, particularly
implementation with GPUs are discussed in accordance with the third objective of

the study.

In section 4, the methodology followed in the study is presented. The section
provides information about the software and hardware used in numerical
applications, describes the simulation studies and analyses conducted and data sets

used in the study.

Section 5 provides the results of the numerical applications and analyses for the

proposed MSV model, proposed estimation algorithms and GPU implementations.

Section 6 concludes the study by compiling the important results followed by

concluding remarks, comments and further research directions.






2. THEORETICAL AND MATHEMATICAL BACKGROUND

In this section, starting with an overview of literature on the foundations of
mathematical construction of stochastic volatility models, a novel MSV model is
developed and proposed in the first subsection. In the second subsection, estimation
algorithms based on the MCMC method and the proposed SGI method for MSV
models are developed and presented in detail after a literature review and some
preliminaries on the MCMC and SGI methods.

To avoid confusion, the multiple integral notations and definitions regarding the
multidimensional integrals with respect to vectors, sets of vectors and matrices

frequently used throughout the study is provided in appendix A.

2.1 Stochastic Volatility Modeling

2.1.1 Overview of stochastic volatility models

SV model building has a natural flow starting from the construction of the basic
univariate model, followed by the extensions on the basic univariate model and then
construction of multivariate models with their extensions. Same flow is followed in

this section.

First univariate stochastic volatility model in the literature is due to Taylor (1982)
and detailed in (Taylor, 1986). The basic setup for modeling the changes in variance
is to regard innovations in the mean as being a sequence of independent and

identically distributed random variables, & with zero mean and unit variance,
multiplied by a factor o, =exp(h/2) . The latent log-volatility, h =log(c?), is

defined as a stationary first order autoregressive (AR(1)) process having an error

term, #, with zero mean and variance o, leading to the state-space model,

y, =g, (2.1)

ht+1 = 7/+¢h[ +77t' (22)



Here, equation 2.1 is known as measurement or observation equation, and equation
2.2 is the transition or state equation of the state space model. In this model, the
measurements, y;, are observable while the states, h;, are unobservable (i.e. latent)
variables. The univariate SV model, which is given by equation 2.1 and equation 2.2,
is a state space model because it actually is a time varying parameter model.
Furthermore, the multiplicative structure of equation 2.1 makes the model nonlinear.
This basic univariate SV model, successfully captures the time varying variance and
volatility clusterings observed in asset return series. The latent structure of the log-
volatilities and the approach modeling the log-volatilities as a separate stochastic
process makes the SV models flexible and versatile in capturing the stylized facts of
asset return series. For further discussion on properties of the SV models see
(Ghysels et al., 1996).

Not long after the first univariate model described above, several extensions to the
basic univariate SV model were proposed in literature. An important extension to the
basic univariate SV model was addressing the stylized fact called asymmetry or
leverage effect. Leverage effect simply describes the negative correlation between
the asset returns and volatility shocks. To capture the leverage effect, SV models
with correlated errors were proposed and discussed in (Harvey and Shephard, 1996).

Correlated errors model to address the leverage effect is given by,

y, = e

t?

h=y+oh+nm, (23)
W6, )
z 0)\po, o,

In this specification, the parameter, p, is the correlation between & and #;
representing the leverage effect. Typically, negative correlation implies that a

negative return tends to increase the volatility of an asset price.

After the first multivariate stochastic volatility (MSV) model in the literature, given
in (Harvey et al., 1994), several model specifications addressing the stylized facts
such as correlated asset returns, leverage effects and volatility spillovers are
proposed with examples in (Asai and McAleer, 2006) and (Ishihara and Omori,
2012). The specification of a general MSV model based on these studies can be cast

as,
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Yi :V;/,t &,

(2.4)
h,,=7+o¢h +n,

where, 'y, =(Yy,.-,Y,) IS the p-dimensional vector of asset returns and
h, =(hy,....h,)" is the p-dimensional vector of log-volatilities, y, = (y,,...,,)"is the

intercept parameter vector, and ¢ =diag(,...,) is the diagonal matrix of

persistence parameters. In equation 2.4, time-varying variances of returns are the

diagonal entries of the diagonal matrix V, =diag(exp(h,),...exp(h,)) . The
innovations g, = (&,....&,)" and the disturbances n, = (,...,77,)" in equation 2.4

are related with each other through,

0 pM x X x>
(stJ’v N [ j’[ && ST]J and 2:[ poroy C’]J, (2.5)
N 0 Zns Znn Zns z“1777

where, the covariance matrix, X defines the relationship between asset returns and
log-volatilities. Here, depending on the structure of the covariance matrix, X, the

model in equation 2.4 and equation 2.5 can address various stylized facts:

e If the off-diagonal elements of X, are nonzero then there is correlation
between asset returns.

o |If the off-diagonal elements of X,, are nonzero then there is volatility
spillover.

e If the diagonal elements of X,, (and X,) are nonzero then there is leverage
effect.

o If the off-diagonal element of X,, (and X,,) is nonzero then there is cross-

leverage effect.

The general MSV model described in equation 2.4 and equation 2.5 will be referred
as the MSV-G model throughout this study. And the special case of the MSV-G

model with
at 0 255 O J LZ&‘ O J
~N , and = : (2.6)
(nt] (LOJ [ 0 Vim 0 V77'7



where, the asset returns are correlated with no leverage effects (i.e. X, = X,, = 0) and
no volatility spillovers (i.e X,, = V,, is diagonal), will be referred as MSV-B
representing the basic multivariate case.

The MSV-G model becomes quite complicated in terms of number of parameters as
the dimension increases. To offer more parsimonious model structures, a class of
MSV models based on factor analysis were proposed in the literature. The additive
factor model was first introduced in (Harvey, Ruiz, and Shephard, 1994). Another
factor model can be found in (Jacquier et al., 1995). The basic idea in those MSV
models is originated from factor decomposition of covariance structures in
multivariate analysis, where returns are decomposed into additive or multiplicative

components. The additive K factor MSV model can be written as

y, =Df, +¢ C_,t~N(0,Vg),
f, =e"g, &, ~N(0,1), 2.7)

it

hoa=a+éh +nm,. 7~ N(ngj).

where, f; is Kx1 vector of factors (K < p) and D is a pxK matrix of factor

loadings. In this model, V, =diag(a?, ..., af)) and the variance of y; is given by
V=DX,D+V, (2.8)

which is always positive definite by construction. While being parsimonious models
which is an important advantage, the main drawback of the factor models is the

difficulty in interpretability because of the implicit structure.

One of the consequences of the factor model given in equation 2.7 and equation 2.8
is that the conditional correlations of asset returns are actually time varying as well
as the variance (Asai et al., 2006). Based on that fact, a class of MSV models
capturing the time-varying correlations without factor structure were proposed and
studied. These studies let either the covariance (correlation) matrix, X, in equation
2.5 or the covariance of asset returns, X, vary in time, often in a dynamic
mechanism that ensure the positive definiteness and symmetry properties of the

covariance matrix.

Thus, the dynamic mechanisms used to handle the covariance matrices are the main
focus of these studies. Tsay (2002) and Lopes et al. (2011) are examples that use
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Cholesky decomposition of the covariance matrix as such a mechanism by letting the

covariance matrix of asset returns, Xy, dynamically change with the relation,

| Sl e )

x,. =LDL, (2.9)

where, L is a lower triangular matrix and Dy is a diagonal matrix. Here the elements
of both L; and D, are obtained with separate autoregressive processes like the log-
volatilities in the MSV-B model. This approach directly models the covariance
matrix of asset returns and there is no separation between correlations and variances,

hence the log-volatilities are not explicitly modeled in autoregressive processes.

To achieve and keep the positive definiteness and symmetry, Asai and McAleer

(2009) and Ishihara et al. (2014) incorporated matrix exponential, which is defined

by

exp(A)= i—AS, (2.10)

s=0 S*

using the fact that for any real symmetric matrix A, exp(A) is also a symmetric
positive definite matrix. As in the Cholesky approach, this approach also directly
handles the covariance matrix and does not model log-volatilities with explicit
autoregressive processes, instead rotations found in principal component analysis

(PCA) is used to obtain log-volatilities.

Another specification for dynamic structure is given by Gourieroux et al. (2009)
accommodating Wishart autoregressive process which is an AR process constructed

on covariance matrices, thus satisfies the symmetry and positivity requirements.

All the approaches for dynamic structures in the literature usually restrict the
dynamic structure with covariance or correlation of asset returns. Because all of the
mechanisms ensuring positive definiteness and symmetry in the previous studies
either implicitly model the variance or do not separate the dynamics of all
correlations and variances, those approaches do not have the flexibility to address
more complicated dynamic structures such as leverage effects and volatility
spillovers. Thus, the model specifications and dynamic mechanisms proposed in the
previous studies are somewhat restrictive in terms of flexibility and versatility

considering the available options on dynamic components to be included in the
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model. Based on this perspective, in section 2.1.2 a new MSV model specification is

proposed to overcome these drawbacks.

Models with distributions having thicker tails than the Gaussian distribution for the
observation disturbances, &, in both univariate and multivariate settings are other
noteworthy contributions in the previous studies. The Student's t-distribution were
used to address leptokurtosis that arise in some financial series with examples in
(Galant et al., 1997), (Sandman and Koopman, 1998), (Ishihara and Omori, 2012)
and (Ishihara et al., 2014).

2.1.2 A novel multivariate stochastic volatility model (MSV-D)

In this section, a new MSV model specification is proposed based on the
considerations about the available model specifications in the literature mentioned in
section 2.1.1. The proposed model specification is a general specification that can
accommodate the following stylized facts:

e Correlations between asset returns,

e Leverage effects (i.e. correlation between a particular asset return and its
volatility),

o Cross-leverage effects (i.e. correlations between a particular asset and other
assets' volatilities,

o Volatility spillovers ( i.e. correlations between log-volatilities),

with both constant and dynamic settings (or their mixtures) for each stylized fact,
which offers substantial flexibility, versatility and freedom in modeling preferences
without the restrictions inherent in the available models in the literature.

One of the main differences of the proposed model from the models discussed in
section 2.1.1 is the separation of variance and correlation components in the
modeling approach. This separation allows explicit modeling of time-varying
variance as in the MSV-G model while dynamic structures can still be incorporated
unlike the dynamic models in the literature discussed in section 2.1.1

Let y, =(Yy,-- Yp) be p-dimensional vector of stock returns, then the proposed

MSV model starts with
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[ytj~N(O,Et), T VPPV, t=1..T, (2.12)
n,

where, the time-varying variance matrix is

g™ 0 0 0
V 0 Y .
v, =| o _| 0 e 0 01 2.12)
0O V,JJo - 0 o - O
0 0 0 o-,f'p
the time-varying correlation matrix is
P P
P :( o y’”], (2.13)
P’I)’!t Rm,t
and the time-varying covariance matrix is
p X
>:t=( e y’“J. (2.14)
Zﬂyvt E77'7:t

The log-volatilities, h, = (hy,...,h,)", are driven by the following AR(1) process:

ho,=y+oh +n, m~N(OX, ) (2.15)

for t=1.,T where, v,=(y,..,7,) is the intercept parameter vector,
n, =(1,,---,77,)"is the vector of disturbances on the log-volatilities having zero mean
and covariance matrix, X,,:, and ¢ =diag(¢,...,¢,) is the diagonal matrix of

persistence parameters. In equation 2.15, the process mean, uy is given by

1

p,=(1-9) v, (2.16)
and the variance matrix of the process, Vy, satisfying the stationarity condition,

Vi =0V,0+V,, (2.17)

IS given by

Vee(V,)=(1-0®¢) " Vec(V,). (2.18)
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To ensure the positive semi-definiteness and symmetry of the correlation matrices
through time periods the dynamic correlation matrix, P, is parameterized as follows.

Positivity is achieved by
P, =B,B; (2.19)

where the (2p><2p) matrix B; can be obtained by Cholesky decomposition and is in

the form,

bl,l,t b1,2,t ' b1,2p,t

b b -0
B, = 2.,1,t 2,.2,t . o | (2.20)
b,y 0 0 0

with entries, b;;;, obtained by the relation,
1
b, =cos(e; )| [sin(cty, ). O<ej <m (2.21)
k=1

where the angles o, are the entries of the (2 px2 p) matrix, A, given by

Qat o Gopay 0
0 0
A = . (2.22)
gy 0 0 0
0 0 0 0

A suitable transformation which maps the angles, a;j:, which take value in the

interval [0, «t], to the interval [-o0, o] is the logit function given by

g, =log (&]’ (2.23)

n-ai'j’t

where g; j; are the entries of the (2px2p) matrix R in the form,

ql,l,t ) qu p-1Lt 0
0 0
R, = . (2.24)
g, p-11t 0 0 0
0 0 0 0
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If the nonzero entries of the matrix R; are stacked column-wise in to a vector, and

letting r=px(2p—1) then the vector g, =(q,....q,) iS obtained which has
r=px(2p-1) elements.

Another AR(1) process, driving the dynamic correlations through g; can then be

stated as

¢ ) :6+9qt +0, O -~ N(01 Vw) (2.25)

where, V, :diag(af,vl,...,ajyr) is the diagonal variance matrix of the process error
vector, o, =(a,,...o,,) , 8=(5,,..6,) are the intercept parameter vector and
0 =diag(4,...,6,) is the diagonal persistence parameter matrix. In equation 2.25 the

process mean is given by
n,=(1-6)"3, (2.26)
and the variance matrix of the process, V satisfying the stationarity condition,
V,=0V,0+V,, (2.27)
IS given by
Vec(V, )=(1-0©0) " Vec(V,). (2.28)

In this model, equation 2.15 drives the time varying volatilities of asset returns while
equation 2.25 is separately driving the time varying correlations between asset
returns and log-volatilities. The transformation starting from equation 2.19 to
equation 2.24 maps the correlation matrix, P, to the vector, q; and furthermore this
mapping is one-to-one and reversible. A schematic illustration of the transformation
is given in Figure B.1 in appendix B. The parameterization of correlation matrix
from equation 2.19 to 2.22 is a modified version of the transformation given by
Robenato and Jackel (2011) and Kercheval (2008) in a general perspective. Any
correlation matrix P; can be transformed into a vector g; through this transformation

and moreover any real valued vector g; of dimension px(2p—1) can be mapped to a
(2px2p) unique correlation matrix, Py, by reversing the transformation described in

equation 2.19 to equation 2.24 and incorporating the inverse logit,
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Vs
Qi = et 1’ (2.29)

for obtaining the angle mapping of a given vector g.

In the model, positivity is achieved by equation 2.19 and the relation in equation 2.21
ensures entries in the diagonal of the resulting correlation matrix to be 1 and off
-diagonals to be in the (-1, 1) interval.

The proposed model described above is quite general and flexible since it is possible
to address several stylized facts while restricting some of them. Fixing some of the
entries of vector g; as constants instead of associating with an AR(1) process, allows
easy removal of dynamic components and replacement with static counterparts of
these components and setting some of the elements of vector g; to zero allows easy
removal of particular stylized facts mentioned from the model. For example, fixing
the vector, g, by setting,

!
i)

q,=8=(3,,..5,) (2.30)

reduces the model to the MSV-G model. And similarly if appropriate elements of q;,

in equation 2.30 are set to zero then the MSV-B model can be obtained.

Parsimony can be kept under control by removing certain properties and replacing
dynamic structures with static counterparts through the structure of vector q; as
mentioned above. Another approach to keep the parsimony is putting restrictions on
the parameters of the AR(1) process given in equation 2.25 which essentially drives
the dynamic correlations. It is possible for example to set a single scalar value for the

persistence parameter vector @ =diag(4,, ..., 6,) by restricting its entries to be equal to

each other, which significantly decreases the number of parameters. The proposed
MSV model in this section will be referred as MSV-D in the next sections of this

study.

2.2 Estimation Algorithms for Stochastic Volatility Models

2.2.1 Stochastic volatility models as nonlinear state space models

Any given SV model such as the MSV-B, MSV-G or the proposed MSV-D models
are essentially nonlinear state space models since they are time varying parameter

models. For a given state space model, the main estimation problem regarding the
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states (e.g. latent log-volatilities, hy and correlation states, g; in the MSV-D model) is
finding the conditional expectation of these states using the information (e.g. asset

returns, y;) set up to time s, Y, ={y,,...,y.}. The estimation problem associated with

the log-volatilities, h;, and correlation states, q; for the MSV-D model can be
formally stated as

(htls’qtls )’ = E((ht’qt )I | YS,Q), (231)

where Q = {6, 9V,,9,0, Vm} is the model parameter set.

Depending on the timing of the information set, Y, the estimation problems

associated with the states given the parameters are as follows:

e Ift = s then the estimation problem is called filtering,
e Ift > s then the estimation problem is called prediction,

e If t <sthen the estimation problem is called smoothing.

In addition to these three estimation problems another estimation problem is the
parameter estimation problem. Thus, there are essentially four fundamental problems

of estimation for any SV model.

In this section, density based estimation algorithms for the above estimation
problems of general MSV-D model are developed. The algorithms are developed
based on the common state space modeling and analysis approach for the univariate
cases that can be found in (Kitagawa, 1987) and (Tanizaki, 1997).

2.2.1.1 Densities implied by the MSV-D model

For notational simplicity let Q={Q,,Q }be the set of model parameters, where
Q, ={y,9,V, }and Q, ={5,0,V, }are the separate parameter sets associated with

the log-volatilities h; and correlation states, g; respectively.

One step transition density of the log-volatilities, h; , from the state space model of
MSV-D is given by
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Py (ht+l|ht'qt19h):

(27) 2%, [** exp(—%(hm —¢h, —v) X1 (b, —oh, —v)j, (2.32)
b, (h) = (27) % |V, [ exp(—%(hl ) Vi (h, _ph)j,
fort=1.,T-1.
Similarly one step transition density of correlation states g is given by
Py (A 10, 2, ) =
(2;;)‘5 Vv, [ exp(—%(qm ~6h,-5) V.'(q,,, —6h, —5)),
Py (G)=

(2”)_% |Vq |_1/2 GXD(—%(ql—Hq) Vq_l(‘ll—llq )j,

(2.33)

fort=1.,T-1.

One step conditional density of y; implied by the state space representation of the
MSV-D model is given by

py (yt |ht+17ht'qt’9h) -

_p B 1 o (234)
(27[) 2 |Zy|77,t | ]/2 exp[_z(yt _uy\n,t> Zy|117,t (yt _uy|77,t ))’
where,
5 z{zw,t -x, TE if t<T (2.35)
AR D Jif t=T,
and
- (b, —oh —y) if t<T (2.36)
o if t=T. '
fort=1.,T-1.

One step joint density of log-volatilities h; and correlation states, g; can be obtained

from equation 2.32 and equation 2.33 as

p(ht+1'qt+1 | ht’qt’ﬂ) =

(2.37)
Py (ht+1 | ht’qt’ﬂh) P, (qt+l |qt’9q)'
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Let Y, ={y,,...,Y .} be the observation up to time s, H, ={h,,...,h }be the set of log-

volatility state vectors up to time s, and Q, ={q,,...,q.} be the set of correlation state

vectors up to time s, then, using the one step transition density given in equation

2.32, the conditional density of log-volatilities over a fixed periods of time is given

by
t-1

Py (H 1Q,.2,) = p, (b)) ] pr (s D, q,. 2,). (2.38)
s=1

Similarly, based on the one step transition density given in equation 2.33, conditional

density of the correlation states over a fixed periods of time is given by

t-1

pQ (Qt | Qq ) = pq (ql)H pq (qs+l | qs, Qq ) (239)

Finally, based on the one period density given in equation 2.34, conditional density
of the observations over a fixed periods of time is given by

Py (YtlHt’Qt’ﬂh):

1 (2.40)
py (yt | ht’qt’Qh)H py (YS | hs+11hs’qs’gh )
s=1

Several conditional joint densities of interest can be built upon the densities provided
so far. One of them is the joint density of log-volatilities H; and correlation states, Q

which can be obtained from equation 2.38 and equation 2.39 as
p(Ht’Qtlg):pQ(Qtlgq)pH (Ht|Qt’Qh)' (2-41)

Another important density used in estimation algorithms is the joint density of log-
volatilities, H; and correlation states, Q; which can be obtained as

p(Ht’Qt’Yt |Q)= pQ(Qt |Qq)pH (Ht |Qt'Qh)pY(Yt |Ht'Qt'Qh)' (2'42)

2.2.1.2 Filtering, prediction and smoothing

Using the one step densities in equation 2.32 to equation 2.37 which are obtained
from the state space representation of the MSV-D model and letting
p,(h,[hy, 0, 7,9, V,)=p,(h) and p,(9,]|q,8,0,V,)=p,(q,) density based
filtering algorithm for the log-volatilities of MSV-D model can be constructed as a

recursive algorithm as,
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p(h,.a, Y. Q)=
[[on(hIhsa0.2,) P (a9 0.2, (b 1 Y, 1, Q)dh, dg,
p(h,.a, 1Y, Q)= (2.43)
[, (v Inha.2,) py (b g, ) p(heq, | Y, 2)dh,
[[[p,(y.Ih.iha,.2,)p, (b, [h.q,2,)p(h,.q | Y., 2)dh,dhdg,

for t = 1,..T. A non-recursive equivalent form of the filtering algorithm in equation

2.43 can be stated as

p(H.Q 1Y, Q)=
Po(Q.12,) by (H,1Q,.2,) py (Y, |H,,Q,.Q,)
[[ro(Ql,)py (H Q. 2,)p, (Y, |H,Q,.Q,)dH dQ,
p(h.a, 1Y, 2)=[p(H.Q|Y..2)p, (b, b, q,2,)dH, dQ, ,dh,,.

(2.44)

Starting with the filtering density obtained in equation 2.43 for time t, density based

L-step ahead prediction algorithm is obtained recursively by

p(ht+L’qt+L | Yt’g) =
J‘J. P (hm_ | P O Qh) Py (qt+L | Qe Qq) (2.45)
p (ht+L—1’ qt+L—1 | Yt ! Q) dht+L—1dqt+L—l'

And equivalently prediction algorithm in equation 2.45 can be expressed in a non-

recursive version as

P(H.,Qu I Y, Q)=
Py (Yo H Q12 ) Po (Qu 192,) Py (Hi Q1 2,)
[[p (Y 1H,Q1.2,) o (Qu 12,) Py (H, 1Q,.. 2, )dH,, dQ,,,
P(hi Gy 1Y, 2)= [ [ p(H Q| Y, 2)dH,, ,dQ,, ;.

. (2.46)

Based on the filtering density at time t, obtained in equation 2.43, recursive

algorithm for the smoothing density can be constructed as
p(ht’qt IYT’Q):
p(h.a. 1Y, Q)x (2.47)

J‘ p(ht+l’qt+1 | YT ,Q) ph (ht+1 |ht’qt’gh) pq (qt+l |qt’Qq)
p(ht+1’qt+l|Y’(’Q)

dht+1dqt+l '
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for t=T—- 1T - 2,...,.1 which is a backward recursion. Let H, ={h,,..,h,_,,h,,...h;}
and Q, ={q,,-.9, ,,9,.,--0 } be the set of all state vectors from t = 1,...,T excluding the

state vector at time t, then the non-recursive version of the smoothing algorithm can

be expressed as

p(ht’qt |YT’Q):
P, (Yr [H: Q. 2,) o (Qr 12,) Py (H; [Q;,2,)dH,dQ,,  (2.48)
-[pY (YT | HT'QT’Qh) pQ(QT |QG|) P (HT |QT’Qh)dHTdQT

The algorithms for the filtering, prediction and smoothing developed for MSV-D
model are general and cover the models such as the MSV-B and MSV-G and their
variations as well. For example, the recursive filtering algorithm in equation 2.43

reduces to

p(ht |Yt—1’9) = J. Py (ht |ht—1’gh) p(ht—l | Yt—l'gh )dht—l’

p(h, Y, Q)= p, (v Ih. ) p(h Y0, 2,) (2.49)
y .[pY(yt|ht’qt’9h)p(ht|Yt_l,9h)dht

for the MSV-B model where the dynamic components and associated terms with the

correlation states, q, are dropped with the parameter set €, ={5,0,V, }, and the
only parameter set €, has become Q, ={y,¢,V,,8} where ¢ is the constant

parameter for the correlations between asset returns in place of dynamic correlation
states q:. In equation 2.49, another simplification is due to the lack of leverage effect
in MSV-B which removes the temporal dependence between the asset returns y; and
log-volatilities hi.s, thus the densities representing this dependence and associated
differentials in the integrals are dropped as well. Similarly, for the MSV-G model
algorithms can be obtained by only dropping the dynamic components as described
above for the MSV-B. So density based estimation algorithms of most of the MSV
models exhibiting any constant or dynamic correlation, leverage effects and volatility
spillovers are special cases of the estimation algorithms developed in this section.

Factor models or models implicitly modeling the log-volatilities are exceptions.
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2.2.1.3 Mean, variance and likelihood

Once the density of interest (i.e. filtering, prediction or smoothing) is obtained with
one of the algorithms described in the previous section, estimation of statistical

properties such as the mean and the variance of a function f(h,,q,) can be obtained

with the expectation,

(f (hV’qV | II v’qv v’qv |Ys)dhvdqvl (250)

where, (v,s)=(t,t), (t+L,t), (T,T) for smoothing, filtering, and prediction
respectively. For example, to obtain the vector of mean filtering estimates at time t,

f(h,.q,) = (h,.q,)"is used.

The log-likelihood function which plays an important role in parameter estimation

for the MSV-D model can be obtained sequentially by

Iog( p(Y: | Q)) -
Iog J'J'J" py Y Iheq. 0, 2 ) (ht+l | ht'qtlgh) (2.51)
ht’qt 'Y, 1’Q)dht+ldh dq, 1

which is in fact readily available from the denominator of the second equation in the

filtering algorithm given in equation 2.43 or equivalently,

log(p(Y; |Q))=

252
10g(] [ Py (Q:192,) P (H,1Qu.2,) b, (Y% | H,.Q,.2,)dH,dQ, ). (2.52)

which is the denominator of the second equation in the filtering algorithm given in
equation 2.44. Thus, the log-likelihood is a byproduct of the filtering algorithm for

the current parameter set.

As is the case for estimation algorithms of section 2.2.1.2, the log-likelihood
algorithms are also general.

2.2.2 Overview of the estimation methods

As it can be seen from the developed estimation algorithms in section 2.2.1, MSV
models require handling of many high dimensional integrals arising in all kinds of
estimation problems. To obtain estimates for the states (i.e. log-volatilities or
correlation states in MSV-D), these states must be integrated out from the integral of
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expressions composed of conditional densities or it is necessary to find ways to
sample directly from the densities of interest. In addition to the high dimensionality,
nonlinear nature of SV models makes it inefficient to use linear filters which offer
closed-form solutions and quick algorithms. The high dimensional integrals and
nonlinearity exists even in the univariate case and multivariate cases come with extra

challenges.

Some of the first studies on estimation of SV models incorporated simplistic
approximation methods based on the methods of moments and different versions of

moment matching techniques with examples and references in (Ghysels et al., 1996).

A group of studies incorporated algorithms, providing fast approximations for log-
volatility estimations based on the well-known Kalman filter and its extensions. An
approach is modifying the state space model of the MSV so that the model becomes
linear with distorted distributional structure. Applying the classical Kalman filter or
the extended Kalman filter (EKF) on this transformed model can be used to obtain
approximated estimates as discussed in (Harvey et al., 1994), (Tanizaki, 1997).
Although being linear resulting in unsatisfactory approximations, Kalman filter
based estimates provide good basis or starting points for more advanced methods.

For the general MSV-G model (and for MSV-D) the linearization is obtained by
taking the square and then logarithms of the both side of the observation equation

given in equation 2.4,
log(y?)=h, +log(e?), (2.53)
and obtaining the transformed observation equation as
z,=h +¢&, (2.54)

where z, =log(y’) +1.2703 is the transformed observations vector, and &, = log(s’)

is the transformed error term of the observation equation. The transformation

completes with the assumption that & is normally distributed with zero mean and

covariance matrix, )255:4.9339><):‘

g !

then the required transformation on the
covariance matrices in equation 2.5 can be formally stated as

¥.=SE.S, X . =X .S and X, =S¥ (2.55)

ént

23



where S=diag(2.22126) is the diagonal matrix of standard deviations of the

transformed random variable log(s?) . Here, the mean and variance of log(e’) are

known to be -1.27 and /2 = 4.93 as stated in (Harvey et al., 1994) and can also

easily be obtained numerically.

With the above transformation and setting, filtering estimates of states, h,, and their
covariance X, for the MSV-G and MSV-D models can be obtained with the
following iterative algorithm:

D, = Zh,t|t—1 + Zgg,t
ht|t = ht|t—l + Zh,qtletil (Zt - ht|t—1)
Zh,t|t = Eh,t|t—1 - Eh,t|t—1D;th,t|t—l

f (2.56)
K= <(P2‘h,t|t71(|) )Dtl
ht+l|t =0 (Pht|t—1 +K, (Zt _ht|t—1)
Zh,t+l|t = (pzh,ﬂt—lq)' + Em],t yr KtDth"
L-step predictions based on the Kalman filter algorithm can be obtained by
h e =v+oh,
t+LJt t+ Lt (2.57)

!
Zh,t+L|t = (PZh,HL—:ut(P + Znn,t'

after the filtering algorithm is executed. Smoothing estimates based on the Kalman

filter algorithm is given by

Dy =X g + Xy

K, =(9Z, 10+, )D;"

L =¢-K,

u_, =D+L/UL, (2.58)

Rl
U =D + X a8y
ht|T = htlt—l + Zh,t|t—1ut—1
Zh,t|T = Zh,t|t—1 - Zh,tlt—lUt—th,tlt—l'

In the above Kalman filter based algorithms, if the model is static (i.e. MSV-G) then
the time subscripts of Xs:,, X,:, and X,,, are omitted since they stay constant over

time.

The log-likelihood function based on the Kalman filter algorithm can be obtained by,
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T

T 14 1
log p(Y; )= —Elog(Zyz)—E;Iog | D, |—52(zt ~hy) (2.59)

t=1

which can be used in parameter estimation. On the Kalman filter based algorithms
given above, extended Kalman filter (EKF) modifications observation and can also
be added for better approximations. See further discussions on the usage of Kalman
filter based algorithms in (Harvey et al.,1994), (Harvey and Shephard, 1996), and
(Tanizaki, 1997) for the SV models.

Although being fast and simple the methods described so far generally suffered from
poor performance (Shephard and Andersen 2009), (Watanabe 1999). The mentioned
challenges in the estimation problems of MSV models and advances in the
computational capabilities quickly incited the usage of computationally intensive
Monte Carlo simulation based methods to improve the estimation performance.
Several Monte Carlo based algorithms incorporating resampling, particle filters,
rejection sampling and importance sampling algorithms have been proposed both in
nonlinear state space modeling and SV literature. Monte Carlo simulation based
methods were proved to be better methods than the mentioned simplistic
approximations or linearizations, however they come with their own disadvantages
and limitations regarding error control, convergence, computational complexity, and
curse of dimensionality for particular types of algorithms. Examples and detailed
discussions of Monte Carlo simulation based methods can be found in (Watanabe,
1999), (Tanizaki, 1997), (Carlin et al., 1992) , and (Sandman and Koopman, 1998).

A major breakthrough in SV literature was the introduction of Markov Chain Monte
Carlo (MCMC) methods to the econometrics and SV fields by the studies of Tanner
and Wong (1987), Tierney (1994), Chib and Greenberg (1995, 1996), and Jacquier et
al., 1994). MCMC methods including the influential Metropolis-Hastings and Gibbs
sampling algorithms quickly became central to the SV modeling and estimation
studies, and an appreciable amount of literature on the applications of different
variations of MCMC methods on several types of SV models, particularly for the
MSV models was built up. Theoretically, MCMC methods are immune to the curse
of dimensionality by construction, and they can easily be implemented in a Bayesian
setting where the parameter estimation can also be handled without a maximization
routine for the likelihood, hence without an explicit evaluation of the likelihood

function as described in (Jacquier et al. 1994). The appealing characteristics of
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MCMC methods made them a natural first choice in MSV estimation studies.
However, MCMC algorithms are not flawless. They still require intense
computational resources for complicated iterative sampling schemes for estimation.
They are not exact as being Monte Carlo simulation based methods, and additional
issues on error control and convergence are inherent particularly for MCMC
methods. Poor mixing chains, correlated samples, identification of convergence,
diagnosis, selection of suitable proposal densities are some of the named challenges
of MCMC methods.

Multi-dimensional integrals arising in estimation of SV models can be handled by
classical numerical integration methods. Being an exact method with a deterministic
nature, convergence properties of classical numerical integration methods are
superior to simulation methods. However, when the problem dimension increases
these methods become computationally infeasible since the number of dimensions
increases the complexity of these type of algorithms exponentially. Unsurprisingly,
studies on the application of the numerical integration methods to nonlinear state
space models and particularly MSV models are quite rare compared to the
approximation based methods and Monte Carlo simulation based methods including
the MCMC. One of the studies incorporated numerical integration for the univariate
case is (Kitagawa, 1987) and a brief discussion on numerical integration can be
found in (Tanizaki, 1997). Most of the studies in the MSV estimation literature

mention but exclude the numerical integration methods.

Sparse grid integration (SGI) method is a smartly reshaped version of conventional
numerical integration method to handle multidimensional integrals by constructing
multi-dimensional integration formulas in a way that the dimensionality effect is
decreased to a certain extent which allows practical implementation in high
dimensional cases in contrast to the conventional numeric integration methods.
Sparse grid integration approach starts with work of Smolyak (1963) and detailed
treatment of the methods based on the idea is available in (Heiss & Winschel, 2006)
and (Bungarts and Griebel, 2004). The sparse grid integration approach was applied
to some economics and financial problems (E.g., discrete choice analysis in by
Bungarts & Griebel (2004), collateral mortgage optimization problem by Gerstner
and Griebel (1998), derivative and option pricing in Gerstner (2007) and asset

liability in life insurance in (Holtz, 2010). However, estimation algorithms based on
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the sparse grid integration methods for SV models have been neither studied nor
mentioned in the literature. In this context, one of the objectives of this study is to fill
this gap by applying sparse grid integration method to the estimation algorithms of
MSV models.

2.2.3 Estimation with Markov Chain Monte Carlo (MCMC) methods

In this section, implementations of the MCMC methods including the well known
Metropolis-Hastings and Gibbs sampling algorithms to the estimation problems of
MSV-D model will be presented after a brief background on MCMC methods.

2.2.3.1 Preliminaries on MCMC methods

The idea behind the MCMC methods is to produce variates from a given multivariate
density by repeatedly sampling a Markov Chain whose invariant distribution is the
target density of interest. Although being a Monte Carlo method, MCMC method is
completely different than the classical Monte Carlo techniques because the variates
are not generated randomly instead they follow a Markov Chain. To approximate the

integral,
Ih(x) f (x)x (2.60)

where f is a density function, classical Monte Carlo methods seek ways to obtain
direct independent samples from the density f whereas MCMC methods obtain
dependent samples using transition kernels through an ergodic Markov chain with

stationary distribution f.

The idea of incorporating a Markov chain to sample the target distribution is first
proposed by Metropolis et al. (1953) and generalized by Hastings (1970) so the
method is known as Metroplis-Hastings algorithm and originates from statistical
physics. Later on several variations and extensions are adopted in many fields

including the econometrics and SV literature.

Metropolis-Hastings algorithm is one of the main building blocks of MCMC
methods. The algorithm starts with the target density f and selection of a conditional
density q(y|x) which is called the proposal density. Given the sample X;, at iteration i,

algorithm proceeds as follows:

1. Generate candidate Y, ~q(y| X,),
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2. Take,

« Y,  with probability p(X;.Y,)
"X, with probability 1-p(X,,Y,),

where, p(x,y)=min{w,,,,1} and wmy is the Metropolis-Hastings ratio

(weight) calculated by

(2.61)

In this algorithm, first step generates a candidate sample from the proposal density
q(y|x) based on the current sample. The candidate sample is accepted as the new
sample if the criteria calculated using the Metropolis-Hastings ratio is met, otherwise
current sample is kept as the new sample. Using this algorithm several hard-to-
sample densities can be sampled. The proposal density, q(y|x) plays the critical role
in the algorithm by determining the structure of the chain and by adjusting the
perturbations performed on the current sample. The convergence of algorithm,
strictly depends on the choice of the proposal density and its parameters. There is a
vast literature on the selection of proposal densities. A good reference on the on
Metropolis-Hastings algorithm is (Chib and Greenberg, 1995) and (Chib, 2001).

The Gibbs sampling algorithm is another milestone in the evolution of MCMC
methods. Gibbs sampling provides a step by step approach for sampling from
multivariate densities using conditional densities of lower dimensions (usually one

dimension) than the target density. Starting with the sample i which is a, p-
dimensional random variable, X =(X{",..., X{"), each sweep of Gibbs sampling is

performed by the sampling step

X~ 8 (1 X, X X X ) (262)

] p

for all j=1,..,p. One sweep of the sampler is completed in p steps if conditional
densities f; are univariate and after a complete sweep, sample i+1 ,
X = (X, X8) | is obtained. In the Gibbs sampling algorithm described
above, the full conditional densities f; are the only densities used for simulation.

Thus, even in high dimensional problems such as the MSV models, all of the

simulation may be univariate.
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2.2.3.2 MCMC based estimation algorithms for the MSV-D

There are two main approaches for applying the MCMC methods to the estimation
algorithms developed and discussed in section 2.2.1 for the MSV models.

First approach incorporates Gibbs sampling and Metropolis-Hastings algorithm for
obtaining the smoothing densities of the log-volatilities H; and the correlation states,
Qy, first, then uses these densities for filtering, prediction and parameter estimation.
In this approach filtering is performed by repeatedly executing smoothing for each
time step, prediction is performed by other Monte Carlo methods such as resampling
and parameter estimation is performed by a Expectation Maximization (EM)
algorithm based on the smoothing densities. This approach is referred as MCMC
with EM Algorithm

Second approach uses MCMC methods for obtaining both the smoothing densities of
states and parameters at the same time with a Bayesian approach augmenting the
parameter space to the state space which eliminates the need for a separate
maximization step for parameter estimation and explicit likelihood evaluation. In this
approach filtering and prediction is performed in similar to the first approach. This
approach is referred as Bayesian MCMC in the study.

In this section algorithms based on the MCMC methods are developed for the MSV-

D model for both approaches summarized above.

MCMC with EM algorithm for the MSV-D
This approach incorporates MCMC methods to obtain smoothing estimates of the

log-volatilities, h; and the correlation states, q; by directly sampling from the

conditional density p(H,,Q;|Y;,€) by sampling p(Q;|H,,Y;, ) and
p(H; [Qr, Y, €2,). In this approach, given the current parameter set Q={Q,,Q },

one sweep of a Gibbs sampler is performed by the following two main steps:
1. Sample from p(Q; |H;,Y;, ),
2. Sample from p(H; |Q;,Y;,L,).

At each step of the above Gibbs sampler, sampling from p(Q; |H-,Y;,€), and
p(H; |Q;,Y;,L,) is performed by other Gibbs samplers sampling from
p(, | H;, Q. Y;,€2) and p(h, |H,;,Q;Y;, ) fort =1,.,T. And at each time step,
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Metropolis-Hastings algorithm is used. N sweeps of the two step Gibbs sampler
completes the algorithm and M samples are discarded as burn-in samples and
smoothing densities are obtained.

In step 1, to sample from p(q, |H;,Q;,Y;.L), the kernel to be sampled at each

time period t can be obtained by using the densities constructed in section 2.2.1 and

using equation 2.42 as follows

p(H, Q. Y, |2,)

p(H;.Q:.Y; |Q,)dq,

P (HO1Qr2) P (@ 12,) by (Y [H;.Qr 2,)

_IpH (H; |QT,Qh) Po (QT |Qq) p, (Y; | H;,Q;,Q,)dg, (2.63)

p(a, | HT,Q\TYT,Q)=I

P (e 11000 2,) Py (a0 19012, ) Py (s |02, ) Py (¥, By b g, 2,), E<T
oC
pq(qthtfl’gq)py(yTlhT'qT’Qh)l t=T

The kernel density obtained in equation 2.63 is not in a simple form that allows
direct sampling so Metropolis-Hastings algorithm is applied where the Metropolis-

Hasting ratio is given by

Wyn =
B (M 1000 2 ) P (07 100 20 ) Py (@ 10022 ) 0y (e [Bsohya 2, ) P (a) g
B (P 1,00 20) Py (0 1000 2,) Py (0 1002 ) 0y (3, B bog, ) (a) (2.64)
P, (0 1012 ) Py (7 IBr .07, ) p. (q,) -
pq(qtht—l’gq)py(yT |hT'qT'Qh)p*(q:)’ .

In equation 2.64, p,(q,) is the proposal density and q; is the candidate generated
by the proposal density. According to the Metropolis-Hastings algorithm, the

candidate is accepted with probability min(w,,,,1) , otherwise previous sample is
kept.

One of the options for the proposal density is the density obtained from the state

equation of correlation states p,(q,,, | d,,€2,) given in equation 2.33 with appropriate

time indices given by

p.(q)=p (9 19, 2,), (2.65)
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where a candidate g, is generated based on q.;. Another option is the density

obtained from AR(1) missing data problem approach where,

p.(a,)~N(n,.V,) with
n, =(V, +0v,'0) " (V. (0q,, +8)+0V," (q,,~5)), (2.66)

V,=(V,t+0v,'e)"

p

In these densities a scalar ¢ as a coefficient for variance/covariance matrices can be
used as a tuning parameter. Several other proposal densities can also be constructed
such as random-walk proposal. In the numerical applications of this study, the
proposal density obtained with AR(1) missing data problem approach is used.

In step 2, to sample from p(h, |H,;,Q; Y;,€2), the kernel to be sampled at each time

period, t, can be obtained by using the densities constructed in section 2.2.1 and

using equation 2.42 as follows:

p(HT’QT'YT |Qh)
Ip(HT’QT'YT |Qh)dqt
_ pH(HT|QT|Qh)pQ(QT|Qq)pY(YT|HT,QT’Qh)
J-pH (HT IQT'Qh) pQ (QT |Qq)pY (YT IHT’QTth)dht (2.67)

p(ht | H\T’QTYT’Q):

Py (hm | hthtlgh) Py (ht |ht—llqt—l7gh) py (Yt |ht+l’ht1qt’9h) py (YH | ht7ht—l7qt—1’gh)7
oc t<T

Pr (ht |ht—l’q1—1lgh) Py (YT | hy qu’Qh) P, (Y1-1 |ht'ht—1!qt—1’gh)’ t=T

The kernel density obtained in equation 2.67 is also sampled using Metropolis-
Hastings algorithm with the Metropolis-Hasting ratio is given by

W, =

MH
P (ht+1 | h;‘,q‘,Qh) Py (h: | hqutlQh) Py (Yt |ht+1’h:lqtlgh) py (Yxf1 | h:’htfl’qt’gh) P. (h‘)
ph(hz+1 | h[,q[,Qh) Py (ht |ht—1’qt’9h) py (Yz | ht+1'ht’qt’gh) p, (yt—l | ht’ht—l’qtlgh) p. (h:)

(2.68)

P (h: | ht—l'qllgh) py (YT |h‘T"qI’Qh) py (Yta | h:'hl—l’qt’gh) p. (ht)
Pn (hl | ht—llqtlﬂh) py(YT |thqt'Qh) py(Yt—l | ht’ht—llqtlgh) p*(h:) Y

where p,(h,) is the proposal density and h; is the candidate generated by the
proposal density. According to the Metropolis-Hastings algorithm, the candidate is

accepted with probability min(w,,,,1), otherwise previous sample is kept.

31



One of the good options for the proposal density p,(h,)is the density obtained from

the Kalman filter smoothing algorithm given in equation 2.58 as
P. (ht) ~N (uh,tlT  CLp v ) (2.69)

where p, . is the mean and X, . is the covariance matrix obtained from the

Kalman smoother algorithm given in equation 2.58 and c¢ is a scalar tuning
parameter. Other proposal densities can also be used such as the density from log-
volatility equation or density from AR(1) missing data problem. In the applications
of this study, the density from the Kalman filter is used.

Having the joint conditional smoothing density p(H,,Q; | Y;,€) with the above

MCMC algorithm, the parameter estimation is performed by maximizing the
expected log-likelihood,

EH,Q\Y,Q [Iog( p(HT’QT’YT |Q))] =
= [log(p(H;.Qr. Y; 12))p(H;,Qr | Y;, Q) dH, dQ;
= [1og(po Qs 1€2,) Py (H; 1Qr, ;) by (Y; |H;, Q. 2,)) (2.70)
p(H;,Q; | Y;,Q)dH, dQ,
1

c i (o (@12 pu (0 12,0, ) (v 19002,

with respect to the parameter set Q in an EM algorithm where the smoothing density

p(H;,Q; | Y;, L) is repeatedly executed with the current parameter set obtained by

the maximization of the expectation in equation 2.70 until a particular convergence
criteria is met. As an optimization routine several alternatives are available, one of
the general purpose nonlinear optimization method can be used. Well known
Newton's method, derivative free search algorithms such as Nelder-Mead, or quasi-
Newton methods such as Broyden—Fletcher—Goldfarb—Shanno (BFGS) are some of
the examples. Using derivative free optimization methods can significantly improve
computational performance however methods that provide the exact or an
approximated Hessian at the likelihood readily provides the Fisher information
matrix which directly gives the standard errors of parameter estimates. In the
numerical applications in this study Newton's method and Nelder-Mead algorithms

are used.
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In this approach, filtering densities and estimates are obtained by simply using the
exact same procedure described above for smoothing with only change in the time
indices, for each time step t = 1,...,T the smoothing procedure is repeated and
filtering estimates are obtained. Obviously, filtering with MCMC method is

computationally much more demanding than the smoothing.

Prediction estimates can be obtained recursively using resampling (with N samples)

for approximating the prediction algorithm given equation 2.45 as

p(ht+L’qt+L | Y“Q) ~

N . . . . -
=2 Py (hm_ I ait s Qh) Pq (qm_ lqi s, Qq) P(hfi)w acl .Y, Q)v
1

i

(2.71)

based on the filtering density p(h"”,q®" | Y,,<) .

Bayesian MCMC for the MSV-D

Bayesian approach for the estimation of MSV models is probably the most studied
topic in SV literature with examples in (Jacquier et al. 1994), (Gourieroux et. al.
2009), (Asai and McAleer, 2009), (Ishihara, 2012), (Ishihara et al., 2014).

In the Bayesian approach the parameters of the MSV-D model,

Q:{y,(p,Vﬂ,a,e,Vw}are considered to be random variables with prior distributions

and their space is augmented to the state space and MCMC methods are used to
sample from the joint distribution of states and parameters given the observations,

p(H;,Q:;,v,9,V,,8,0,V,|Y;). In this approach there is no need for a separate log-

likelihood maximization routine since parameter estimates are also obtained through
the implemented sampling scheme. This also means that there is no need for explicit
calculation of the log-likelihood function or its expectation. However, appropriate
prior distributions for the parameters and efficient sampling mechanisms from their
posterior distributions must be developed in this approach. Thus models with
different specification usually have different implementations. In this section a

customized Bayesian MCMC algorithm is developed for the MSV-D.

The MCMC based algorithm to sample from p(H;,Q;,v,9,V,

n?

0,0,V |Y;) is

performed with the following Gibbs sampler at each step sampling from a different

posterior density:

1. Sample from p(6 |H,,Q,,Y, ,y,(p,Vn,G,Vw),
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Sample from p(0|H;,Q;,Y;,Y,0,V,,d,V,
V,|H:,Q:, Y:,7,0,V,,8,0
Q; [H:.Y;,7,9,V,,5,0,V,

P )
P ),
P o)
sample from p(y |HT,QT, ¢,V,.8,0,V,),
JC )
P ).
p(H o)

Sample from
Sample from
Sample from |H;,Q:,Y:,7,V,,8,0,V,
V |HT’QT’YT!Y $,6,0,V,

Q. Y1.7,9.V,,8,0,V,

Sample from

O N o g A~ WD

Sample from

Here, the densities at steps 1, 2, 3, 5, 6 and 7 are posterior densities of the
parameters, and the densities at steps 4 and 8 are posterior densities of the states.
Here the eight step Gibbs sampling sweep is repeated N times and joint density of the
states and parameters are obtained at once. At each step, the conditional posterior
density of interest is multi-dimensional and some of them do not allow direct

sampling so Metropolis-Hastings algorithm is used in such cases.

At step 1 of the above Gibbs sampler, the posterior is,

p(31H,,Qr Y5 7,0,V,,0.V, ) =
p(HTlQT:YTy'Y,(P V,7,6 0,V )
[p(H:.Q:.Y;.7.0,V,,5,0,V,)dd
(P (H 1Qu7.0.V,) po (Qr 1€2,,8,0,V,) by (Y, |H, Q. 7.9.V,)

p(v)p(®)P(V,)P(3)p(8)P(V,))

= (2.72)
I|oH(H 1QuT.0.V,) P (Qr 1€2,,8,0,V, ) py (Y, | H,,Q.7.9,V, )

p(v)p(®)p(V,)P(8)p(8) p(V,)dd

_ Po(Qr19,8,6.V,)p(3)
[ po(Qr 192,80V, ) p(3)ds
o Po(Qr 192,,5,0,V, ) p(3).

If a diffuse prior for & (i.e. p(6) o 1) is assumed then the posterior obtained in

equation 2.72 becomes
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P(8|H,Q;,Y,,7,0,V,.0,V,)
* Py (Q; 12,,8,0,V,)

T-1
= pq (ql)H pq (qt |qt_116191Vw) (273)
t=1
1 _
rT/Z _E(ql_uq) Vq (ql_p‘q)_
=(2n) "7V, [ 2 |V|Ze><pTll .
Z 2 (qt+1 q; _6) Vc; (qt+l _eqt _6)
t=1

o« f (6;]15,25).

which is a normal distribution with the mean and covariance given by

T-1

1 Z qt+l eqt
= (2.74)

T
X.=—V.
& T—l 2]

Rs =

Thus, sampling from p(8|H;,Q;,Y;,7,0,V,,0,V,)can be directly performed from

a normal distribution with the parameters given in equation 2.74.

At step 2 of the above Gibbs sampler, the posterior is,

p(e|HT’QT’YT"Y1(P’V77’6’V(U):
p(H:.Qr. Y:.7.9.V,,8,0,V,)
j (H;.Q:r.Y;.7,9,V,,8,0,V,,)do
(P (H 1Qu7.0.V,) Po (Qr 1€2,,8,0,V,) p, (Y, |H,Q,.7.9.V,)
p(v)p(e)p(V,)P(8)p(8)P(V.))
Py (H 1Q.7.9.V,) Po (Qr 12,.8,0,V,)p, (Y, |H,,Q,.7.9,V,)
p(r)p(e)p(V,)P(3)p(8) p(V,)do

J

(2.75)

_ Po(Q19,80.V,)p(0)
[ Po(Qr12,,8,0.V, ) p(0)do
o Po(Qr 192,,8,0,V, ) p(0).

A beta prior for each &; can be used for i = 1,...,r. Then, the prior distribution of &

becomes,
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i=1

p(0)=[Tt[ % a5, (2.76)

With this prior density, the posterior in equation 2.75 is not in a simple form
allowing direct sampling, thus it can be sampled by Metropolis-Hastings algorithm

with the ratio,

— Po (QT |QQ’6’Vw’6*) p(ﬁ*) p*ée) (2.77)

 Po(Qr192,,8,V,.0)p(8) p.(07)

where an appropriate proposal density, p,(0) , can be obtained from

WMH

Po(Qr 1€2,,8,V,,0) , by letting D, =diag(qy,....d,) and 6 be the vector
composed of the diagonal entries of the diagonal matrix 0, as follows:
Po (Q+12,.8.V,.0)

T-1
=p, (a)[ [ p, ( 10,,.8.6,V,)
t=1
-rT/2 = L
=(2n) "IV 2V [ 2 (2.78)
1 7 _ il
_E(ql_p’q) Vql(ql_u’q)_
eXp| 1 ’
ZE(D;iqt+l _ev _D;,lt(s) Dq,tVa:qu,t (D;,ltqm _Bv _Dq_,lta)
t=1

afy (0,1 2,).

The density obtained in equation 2.78 is a normal distribution with covariance and

mean given by
z,=(V,'0A)",
n,=(V,'0A) b, (2.79)

T T-1 ,
A=)q,q;, b=diag (th (G —9) Vglj,
t=1 t=1

where © is the Hadamard product. Then a suitable proposal density p*(ﬂ)is given

by the following truncated normal density with a truncation interval [0, 1]:

P. (9) = i ((‘)V;pg,zg,o,l) . (2.80)

At step 3 of the above Gibbs sampler, the posterior is,
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p(V, H:. Q. Y:,7.9.V,,8,0)
p(H:.Q:.Y:.7.9.,V,.8,0,V,)
[p(Hr.Qr. Y;.7.0,,,8,0,V,)dV,
(P (H1Qu7.0.V,) Po (Q: 12,,8.6,V, ) py (Y, |H,.Q.7.0.V,)

p(v)p(e)p(V,)P(3)p(8)p(V,))

_ (2.81)
J|0H(HIQAHPV)DQ(QTIQ 8,0,V,)p, (Y, |H,,Q,.7.9.V,)

p(v)p(e)p(V,)P(3)P(8)P(V,)AV,

_ Po(@r 12,80V, )p(V.)
IpQ(QT |QQ’6’G’V(o)p(Vw)de
o« Po (Qr 19,,8,V,,,0) p(V,,).

and if an inverse gamma prior for each o,,; is assumed, then the prior distribution of

V,, becomes,
p(Va))=H fie (O'az),i;aowﬂm ) (2.82)

With this prior, posterior density in equation 2.81 becomes

p(V, H:.Q;.Y;.7.9.V,.5,0)
< Pq (QT |Qq’6’0’vw) p(V‘”)

T-1
=py(a)] ] p, (9 10.4.8.0.V,)
t=1

!

T 4 _E(ql )Vgl(ql_FQ)_
() S | 2 |
ZZ(QM Oqt_ﬁ) Va_)l(qt+l_0qt_6)
t=1

r 0;0i ot ﬂi
12t A
0i

,i

T4
r (% +71+1) Boi + Z(qi,t+1 -0, -6 )2
oc Haw, exp| — t=1 g

ol (2.83)

r

oc H fie (O-j),i iy B )

i=1
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The density obtained in equation 2.83 is also an inverse gamma density with

parameters

0(1' :_(a0|+TT_1+1ja izll"lrl
(2.84)

T-1

1 .
By =181i+§Z<qi,t+l_9iqi,t_5i)2’ I=1.,r
t=1

Thus, sampling from p(V, [H;,Q;,Y;,v,9,V,,8,0) can be directly performed from
an inverse gamma distribution with the parameters given equation 2.84.

At step 4, sampling from p(Q; [H,,Y;,v,9,V,,8,0,V,) is performed by sampling
from the kernel density p(q, |H;,Q\,Y;,€) as described in the previous section

using the Metropolis-Hastings algorithm with the Metropolis-Hastings ratio given in

equation 2.64 and the proposal density given in equation 2.66.
At step 5 of the above Gibbs sampler, the posterior is,
p(vIH;,Q;,Y;,9.V,,8,0,V,)

p(HTfQT’YT,'Y,(P,VU,&B,V(U)
Ip(HT,QT,YT,y,(p,Vn,ﬁ,B,Vw)dy

(P (H Q1 7.0V, ) po (Qr 12,,8,0,V,) p, (Y, | H,,Q,7,0.V,)
p(r)p(e)p(V,)P(3)P(0)P(V,))

IpH (H1Q.7.9.V,) 0o (Q; 12,.8.0.V, ) p, (Y, | H,Q,.7.9.V,)
p(v) (@) P(V,)P(3)P(8) P(V,)dy

_ pu(HIQur.eV,)p (Y I H, Q. 1.0V, ) p(v)
[pu (HIQuv.0.V,)p, (Y IH,Q.7.0.V,) p()dy

< py (H 1Qu7.9.V,) by (Y, [ H, Q.. 7.0, V, ) p(7). (2.85)

If a diffuse prior for y (i.e. p(y) o 1) is assumed then the posterior obtained in

equation 2.85 becomes
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p(vIH;,Q;,Y;,0,V,,8,6,V,)
< py (H,[Qu1.0,V,) by (Y. [ H,.Q..7.0,V, ) p(7)

T-1 T
= Py (hl)(l_[ P (Do | ht,qt,v,q),V,,)j(H p, (¥ [h b g, 7.0, V, )j
t=1 t=1

11 . (2.86)
o exp(_EZ((y _(ht+l —(Ph )) Zmyt (y _(ht+1 _(pht )) +
t=1
('Y_(ht+1 — ¢h, _uym)) 27717t217ytz;|];] tzyqtzmlﬂ ('Y_(hnl —¢h, —lly|,,))]
o 1y (Y;u}"zy)'
which is a normal distribution with covariance and mean given by
T -1
Z - Z(Zmllt + Erm thytEnly tzyn tznjz t)
t=1
.
:ZyZ( it t+l_(Pht)+ (2.87)

t=1

'y yly yt (hHl—(pht—Zwt):;rly’tyt)).

Sy tSaly t S yn t=nn t

Thus, sampling from p(y|H;,Q;,Y;,v,9,V,,8,0,V, ) can be directly performed

from a normal distribution with the parameters given in equation 2.87.

At step 6 of the above Gibbs sampler, the posterior is,

p(¢|H;.Q;.Y;.1.V,.56.,V,)
p(HT,QT,YT,y,(p,V 60V)

sz(HT,QT,YT,y,w,V,],a 0,V,)de
(pH(HtIQ“v,w,V,,)pQ(QTIﬂq,aev) , (Y, 1H,.Q,.7.9.V,)

9)p(V,)p(3)p(6)p(V.)
~ pe(HIQureV )pQ(QTlnq,f)eV) b ( tlHt,Qt,w ) | o
j p(v)p(e)p(V,)p(8)P(0)p(V,)de
_ pu(HIQur.eV,)p (Y H.Q.1.0.V,)p(e)
[pi(H1Qur.0.V,) b, (Y. H,.Q,7.0.V,) p(0)do

o Py (H1Qu1.0.V,) by (Y. I H, Q. 7.0,V,) p(0)

If a beta prior for each ¢, 1=1,..., p, the prior distribution of ¢ becomes,
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JOR [%”aﬂ) (289)

With this prior distribution, the posterior in equation 2.88 can be sampled by

Metropolis-Hastings algorithm with the ratio,

_Pu(HIQuren V) e (M H.QuyeY, Jp(er)p(0) -, o

e (HQure.V,) by (Y [H,.Q.7.0.V,) p(9) p.(¢)

By letting D, =diag(h,,....h ) and ¢, be the vector composed of the diagonal

entries of the diagonal matrix ¢, an appropriate proposal density, p,(¢) , can be

obtained from the conditional p(Y,,H,|Q,,v,9,V,) as follows:

p(Y.H. 1Quv.0.V,)
= Py (Ht |Qt!7!(PIV;7)pY (Yt |Ht!Qt'Y!(p!Vr;)

T-1 T
= Py (h1)(H Ph (ht+l | ht1qt’y1(P’Vr7 )j[H Py (Yt |ht+l1ht’qt’yv(P!Vf7 )j
t=1 t=1

1 T-1 ~ ’ - ~
o exp(_E;(q’v _Dh,lt (ht+1 _7)) Dh,tzn:;,ch,t ((Pv _Dh,lt (ht+1 - 7)) (2-91)
1 -1 "1 -1 -1
+((PV - Dh,t (ht+l - ’Y - Em],tzyq,tyt )) Em],tzny,tzrﬂy,tzyn,tzrm,t ’
((pv - Da,lt (ht+l - y - Zm;,tz;jptyt )))
o fN ((pv;u(p’2¢)'
The density obtained in equation 2.91 is a normal density with the covariance and

mean given by

T -1 T
-1 -1 -1 -1
z, {Z(zw +Z,. +Z,m,thy,t2,7|y,t2yn,th,t)GAIJ Con, =z¢,;bt, (2.92)

=
where,
A, =hh,
B,=h,(h.,—v) £}, +

nnt

, (2.93)
M (Mo =7 =2, Epy ¥ ) Zm oy Z Egn o

=y Sy t S yp tSgn b
b, = diagonal (B, ).
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Then, a suitable proposal density, p, ((p)is given by the following truncated normal

density with a truncation interval [0, 1]:
p.(0)= fry (@sim,. E,,0.1), (2.94)
At step 7 of the above Gibbs sampler, the posterior is,

p(V,] | HT,QTvYT'Y!(pvﬁie’Vw)

_ p(HT'QT'YTaYa(PquaﬁaG,Vw)
[p(H:.Qr. ;. 7.0.V,.8,0,V,)dV,

(P (H 1Q07.0.V,) Po (Qr 1€2,,3,0,V, ) p, (Y, |H,.Q..7.0,V,)
p(v)p(e)p(V,)P(3)p(0) p(V,))
Py (Ht IQt'Y'(p'Vrz) Po (QT |QQ’6’G’V0)) Py (Y‘ |H"Q"Y’(p'v’7)
p(v)p(0)p(V,)p(3)p(6)p(V,)aV,

]

_ Py (H 1Qu7.0.V,) 0, (Y. |H, Q. 7.0,V,)p(V,)
[pu (H1Qu7.0.Y,) P, (Y IH,.Q.7.0.V,) p(V,)aV,

< py (H 1Qu.7.9.V,) b, (Y, [H. Q.. 7.0V, ) p(V, ). (2.95)

If an inverse gamma prior for each g, ; is assumed, then the prior distribution of V,

becomes

p

p(V,]):H fie (O-j,i;aOi’ﬂOi) (2.96)

i=1

With this prior distribution, the posterior in equation 2.95 can be sampled by

Metropolis-Hastings algorithm with the ratio,

b (HIQure W, ) e (VI HLQ.v.0V; ) p(Vy ) p.(V,)

_ 2.97
Py (H Q7. 0.V, ) by (% | H,. Q7. 0.V, ) p(0) p. (¥, ) (297

MH

Letting D, =diag(7,,,.-.77,,)and s, =/ o,,,...1/ o, )’ then a suitable proposal

density, p, (V,])can be constructed from the conditional p(Y,,H,|Q,,v,9,V,) as

follows:
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p(Y..H,1Q.7.9.V,)
= pu (H1Qu1.0.V,) by (Y I H, Q. 7.0.V,)

T-1 T
= Py (hl)[H Py (ht+l | ht’qt"Y’(P’Vq )j{H py (Yt |ht+l’ht’qt’y!(p!V77 )J
t=1

p —2(0(014-—4—1}

1o,

T-1
exp —Z P —ls ( D, (Pori + PPy ViiE VP, P )DMJSUJ

nn.t nntt oyt yin.t Tyt oyntt mnt
i=1 (7 t=1

n—_nt onntt oyt Yint Tyt Tyttt gttty

exp ZSD PP Vs Y+ VT ViiP P D sj
t=1

T-1
exp ZyiiyﬁmytJ
p 2a0,+—l+1 PA
[ oo 52 ()

- o (2.98)
p
=(H fo (02t ﬂ“)j @A
i=1
where,
< p-1 -1 12 12 -1
A:t (( mit+PmitP77ytV EnlytVythntPnnt)GBt)’ (2.99)

Bt = (ht+1 —h, _Y)(ht+1 —¢h, _Y) .
Then, the first part of the posterior in equation 2.98 which is the multiplication of
inverse gamma densities can be used as a proposal density p,(V,) where the

parameters are given by

T-1
oy = —((lm +T+1J

1 T—l

fu=Futy LA

(2.100)

At step 8 of the Gibbs sampler, sampling from p(H,[Q;,Y;,v,9,V,,8,0,V,) is
performed by sampling from the kernel density p(h, |H,;,Q;,Y;,€) as described in

the previous section using the Metropolis-Hastings algorithm with the Metropolis-
Hastings ratio given in equation 2.68 and the proposal density given in equation
2.69.
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In both MCMC based estimation approaches for the MSV-D model, if dynamic
components and associated terms with the correlation states, q;, are dropped along

with the parameter set , ={6,0,V,}, then the only parameter set Qn becomes
Q, ={y,9,V,,8} where ¢ is the constant parameter for the correlations between

asset returns in place of dynamic correlation states g;. Then the simplified versions of
the algorithms can be used for the MSV-G or MSV-B model. For example the two
steps Gibbs sampler for the MCMC with EM algorithm, reduces to a single step and
eight-steps Gibbs sampler for the Bayesian MCMC, reduces to five steps and

posteriors stays almost same with simplifications.

2.2.4 Estimation with sparse grid integration (SGI) method

In this section, development of the estimation algorithms based on the sparse grid
integration (SGI) method for the MSV-D model will be presented after a brief

background on the method.

2.2.4.1 Preliminaries on the SGI method

Similar to classical numerical integration methods, sparse grid integration methods
are also based on integration formulas which are simply represented by a set of
function evaluation points and corresponding weights. These points and weights are
then used to evaluate the integral of a given function with,

1 = [t (x)dx:iwi, f (%), (2.101)

where, d is the dimension, | is the level, x; are the p-dimensional vectors representing
points, w; are the weights and N, is the number of points in the integration formula

represented by

N,
QU =D w f(x). (2.102)
i=1
In equation 2.101 and equation 2.102, level | = 1, 2, .. determines the number of

points, N;, in the formula. The relationship between the level | and the number of
points, N;, depends on the type of the formula. For the well known univariate iterated

trapezoid rule for open interval given by
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W 1 E 1 Nt i g NI
QTf= N, +1[2 f(N, +1J+i22: f[Nl +1j+2 f(N,J]' (2.103)

The relationship between the number of points N, and the level | can be cast as
N, =2'-1. (2.104)

The trapezoid rule given in equation 2.103 is a nested rule where the points in a
given level are kept in the upper levels with addition of extra points at each

increment in level.

In the conventional numerical integration approach multivariate integration formulas
such as the one in equation 2.102 are constructed from univariate rules with the

tensor product,

Ny Ny

(QY @ @QP) f =" +> Wiy Wiy T (X ronom X, ) (2.105)

=1 ig=l

Thus, the integrand is evaluated at the points of a product grid where the resulting
multidimensional weights are the products of the corresponding one dimensional
weights. Classical product quadrature methods with this approach achieve an

accuracy of
£(N)=0(N") (2.106)

for the computation of multivariate integrals with N evaluations of the integrand at
each dimension of the grid boundary for functions with bounded mixed derivatives
up to order r. In conventional numerical integration approach as d increase the
convergence deteriorates rapidly and computational burden increases exponentially

which is the curse of dimensionality in this approach.

Instead of the tensor product grid in equation 2.105, multivariate sparse grid
integration rules can be obtained by construction of a regular sparse grid with the

telescoping sum,

Q=Y A(k?@...@A(kt)), (2.107)

k|, <I+d-1

where Q) is an integration formula of dimension d and level I, k = (k,,...,k,)"is a

d-dimensional vector and |-|; is the r-norm operator. In equation 2.107, A(k?) are the
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difference formulas which are also integration formulas obtained from the univariate
integration formulas Q of different levels with

AY =

(@¥-Q,). (2.108)

The grid construction approach in equation 2.107 uses the products whose sum of
indices are smaller than a constant | + d - 1 out of all possible tensor products.
Classical construction of multivariate integration formula given in equation 2.105
would be obtained if |k|y <+ d- 1, isreplaced by [k|, < I in equation 2.107, then
the complete tensor grid used in classical approach would be obtained. The

construction in equation 2.107 is known as Smolyak's construction (Smolyak, 1963).

The regular sparse grid obtained using the construction in equation 2.107 has an

accuracy of
&(N)=0(N" (logN)" ™) (2.109)

with N points in one dimension of the grid at the boundary for functions with

bounded mixed partial derivatives of order up to r.

The regular sparse grid constructed in equation 2.107 involves O(N (log N)(dfl))

degrees of freedom whereas the full tensor product grid involves O(N%) degrees of
freedom. As a result, although not completely, SGI method significantly helps for
relaxing the limitation imposed by the number of dimensions in conventional
numerical integration approach. Table 2.1 shows the required number of grid points
for different number of dimensions and levels of regular sparse grid and full tensor
product grid constructed from the trapezoid rule given in equation 2.103 where the

dependence on dimension can be seen clearly.

2.2.4.2 SGI based estimation algorithms for the MSV-D

At time t, if the state spaces of h; and q; are augmented then the total dimension of
the resulting state space becomes d =2p”. Let Q be the d-dimensional and Q®

be the p-dimensional sparse grid quadrature rules constructed from the choice of a

univariate quadrature rule, Q® of level I. Although it is not necessary, it is assumed

that the level | stays constant through time periods t=1,..,T for notational
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simplicity. Let G, ={1,2,..N.} and G, ={1,2,..N,, } be the sets of sparse grid point
indices of the formulas Q> and Q™ respectively. Then, each point i € G, in the first
grid is characterized by a d-dimensional vector c{’ =(c{’,..,c!’,)" and each point
ieG, in the second grid is characterized by a p-dimensional vector

¢ =(c{,...c’) representing the raw grid coordinates of the points and

corresponding weights w® , w{.

Table 2.1 : Multi-dimensional grid sizes based on the trapezoid rule.

. . Complete Tensor Regular Sparse
Level Dimension Product Grid Grid
2 1 3 3
2 5 243 5
2 10 59,049 21
2 20 3.48x10° 41
3 1 7 7
3 5 16807 71
3 10 282,475,249 241
3 20 7.97x10% 881
4 1 15 15
4 5 795,375 351
4 10 5.76x10" 2,001
4 20 3.32x10% 13,201
5 1 31 31
5 5 28,629,151 1,471
5 10 8.19x10™ 13,441
5 20 6.71x10%° 154,881

The constructed sparse grid can be applied to the state space model of MSV-D by
providing the suitable integration intervals for each dimension of the state vectors

h, = (hy,....,h,)" and g, =(q,..,q,)" for t = 1,..,T. Once the integration intervals
provided, raw grid coordinates, ¢\’ and ¢, of points can be converted to actual

point coordinates as

! !
) _ (M () (ORF ORI ENO) (OB U] () i
C _(Cf,l""cf,d) _)(ht 3k )—( t ""hpt » Ot ""qp(Zp—l),t) , 1€G

" (2.110)
i’ =(chciy) >h =(h?...h) 1€y

with corresponding weights w®, w.
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Here, two regular sparse grids are constructed, sparse grid of the augmented h; and q;
states is the first and second is the sparse grid of h; which is a sub-grid of the first

one with adjusted weights and different indices.

Equipped with the sparse grid points, corresponding weights and sets of their indices
for the two sparse grids, the integrals in the filtering algorithm given in equation 2.43

in section 2.2.1.2 can be handled numerically as,

p(h(l)lqt | Yeas )z
Z ph(htI |htil’qtll’gh)pq(qt(i)|qt(ji)L’Qq)p(h(Jl’qt1| t-17 )Wg‘j)i ieGe

j€Ge

p(h".q"1Y,.Q)= (2.111)
kZG: py (yt |hl+1’ t ’qtl)’g ) ( '[+1|h'( ’(lt(l)’g2 )p(hfl),qt | t-17 )
;kZG) p, (v 1h¥.h?,a®,2, ) p, () h,q", 2, ) p(h",q" | Y., Q) wOw

Similarly, density based L-step ahead prediction algorithm given in equation 2.45 in

section 2.2.1.2 can be obtained using the sparse grid integration as

p(hg)uqﬂr)L Y, ,Q) ~
z Py (h(') +L 1’qt(4j-?_ 11 ) pq (qt(f,_ |qt(4j-?_ 1,9 ) (2112)
jeGg
p(h_.a’, Y, @)W, ieG,
based on the filtering density obtained in equation 2.111.

The recursive smoothing density algorithm given in equation 2.47 in section 2.2.1.2

can be numerically approximated as

p(h? 60 |Y;.0) -

p(h®.q?|Y,.Q)- (2.113)
p(hi.ac | Yr. @) py (e [ a2 ) po (ai [0 )
2 e )ph((héf,qsf; .0 )h) A0S e,

fort=T-1,T-2,...,1.

The expectation of a function f (h,,q,) given in equation 2.50 can be numerically

approximated by
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E(f(h,a,)Y, @)= f(h".q")p(hQ.q¥ | Y, ), (2.114)
ieGp

and finally, for the parameter estimation, the log-likelihood function in equation 2.51
can be approximated as

Iog(p(YT |Q)):

p, (v 1h%,h?.q®. @, ) p, (b, [h®,q", Q)]  (2115)
Z_l:kEZGH ,EZGF (ht(l)1qtl) Y, Q)w("w‘k) !

t-1?

which is readily available from the denominator of the filtering algorithm given in
equation 2.111.

The algorithms based on the SGI method are general and in the cases of static MSV-
G and simpler MSV-B models, the algorithms presented here get simpler too. For
example the filtering algorithm for the MSV-B model simplifies to

(h(l)| t-1 ) th(h(l)lhtl’ ) (h(nl t-11 ) J) iEGH’

jeGy

p, (v, Ih.2,)p(n® Y, ,.Q) (2.116)

0) ~
p(h 1Y)~ > p, (v, [h",2,) p(h® Y, ,.2)w’

ieGp

with @, ={y,¢,V,,8}, where only the sparse grid for the states h is used since the
dynamic elements q; are dropped and & is included in the parameter set for

correlations.

A method for identifying suitable integration intervals for the states, hy, is

incorporating the estimates form the Kalman filter and setting integration intervals as
(hy —zd,., h+zd,, ) (2.117)

where hy, is the state estimates and d,, is the vector composed of square roots of the
diagonal elements of the covariance estimate, 2, . (i.e., standard deviation estimates

of the states h;) obtained with the Kalman filter algorithms given in section 2.2.2
with equations 2.56, equation 2.57 and equation 2.58. In equation 2.117 z is a scalar
tuning parameter greater than 1. Identifying the integration intervals for the states q;
can be challenging. One of the options is using a generic interval such as [-2x, 27|
covering most of the interval in accordance with the transformation in equation 2.23

or a smarter approach would be fitting a static version of the model and then using
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the parameter estimates for the constant correlations as the mean of the integration
interval for the dynamic case and identifying a symmetric interval, where maximum
for the upper bound is set to 2z and minimum for the lower bound is -2z, leading to

integration intervals that are narrowed down for better precision.
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3. COMPUTATIONAL IMPLEMENTATION

In this section important topics on the practical implementation of the estimation
algorithms, their computational aspects and parallelization approaches, particularly
implementation with the graphics processing unit (GPU), which is one of the

research objectives of this study, are discussed.

3.1 Computational Aspects of Estimation Algorithms

In a typical practical application of volatility estimation main purpose is forecasting
the future volatilities for decision making given the past information. Long and mid-
term predictions are usually composed of several periods whereas the short term
forecasting usually refers the next single period or a couple of next periods. The
models and estimation algorithms presented in this study are suitable for short term
predictions because models do not include components which are common in mid-
term to long term forecasting methods (such as external regressors, leading indicators
etc.). Although it is trivial to include such components the focus of the study is short

term forecasts which is often considered as the next period.

For the main practical objective of producing forecasts, all the prediction algorithms
rely on other estimation algorithms namely, filtering, smoothing and parameter
estimation in quite different ways for the MCMC and SGI methods because of the
computational and algorithmic differences in these approaches. It is important to
consider the ordering and prioritization of estimation algorithms and their
dependencies for correct evaluation of performance in a practical implementation.
Figure 3.1 illustrates the dependence and ordering of different estimation algorithms
for practical implementations of the MCMC and SGI based approaches for
estimation. MCMC based estimation algorithms mainly rely on the smoothing
algorithm whereas the SGI based algorithms rely on filtering algorithm. Filtering
algorithm for the MCMC approach and smoothing algorithm for the SGI approach
are not required for prediction and parameter estimation algorithms. In a typical

implementation, MCMC based approaches require frequent (each period) execution
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of prediction and smoothing algorithms whereas SGI based approach requires

execution of filtering and prediction algorithms.

Bayesian MCMC

MCMC with EM

SGl

Model Building & Diagnostics

Occasional execution

Filtering

T

Forecasting

Frequent execution

Prediction

i

Smoothing/ Parameter Estimation

Filtering 4~ Par‘ame.ter +--»] Prediction
Estimation
Smoothing

Smoothing 41 Par‘ame.ter H--»] Prediction
Estimation
Filtering

Figure 3.1 : Estimation algorithm dependencies.

Another important difference between the MCMC based estimation algorithms and

SGI based algorithms is the batch versus sequential structure which is also related

with the algorithm dependency differences discussed above. As illustrated in Figure

3.2, sequential algorithms use the estimation from the previous step and the current

information set to make estimations whereas the batch algorithms needs all the

information in the past and does not use any estimations from the history.

l l l l Information
v
1 2 T1 T
I i 1 ! I I ! Time
Sequential >
(i.e. on-line) _———>
Algorithm | - -
—-——D
Batch .y g
Algorithm R U N -
o - ——
— _: [ +

-

Figure 3.2 : Sequential (i.e. on-line) vs.
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The algorithms based on the MCMC methods all have a batch structure inherited
from the underlying logic and structure of the MCMC methods which put the
smoothing algorithm at the basis. The estimation algorithms based on sparse grid
integration method are sequential methods since they all rely on filtering algorithm.
The advantage of sequential algorithms is that the computational burden can be split

across time periods which can be a critical advantage in practical applications.

For both MCMC with EM and Bayesian MCMC approaches presented in section
2.2.3.2 the smoothing algorithm is the main algorithm used by all other estimation
algorithms. The illustration of the smoothing algorithms for the MCMC with EM and
the Bayesian MCMC approaches are given in Figure 3.3 and Figure 3.4 respectively.
The basic structure of the smoothing algorithms in these approaches is composed of
two main loops where the outer loop constructs samples based on the previous
sample by running a inner loop computing the state estimates over time periods with

addition of parameter estimates to the inner loop for the Bayesian case.

Time
1 t-1 t t+1 T
h; hes h, hey h;
> Completed
q; A1 q: L 11 qr
Required for current computatior
sample . Being computed
1 T R e e A
N T A e A
=
i1 22022 >0 s
/ B v
]
i >4 > 1> S
a £
o ®©
. oW
i+1 T
5
o]
4
N

>

Inner loop over time periods

Figure 3.3 : Smoothing algorithm of MCMC with EM approach.

Let P be the number of parameters then it can be seen form Figure 3.3 and Figure 3.4
that TxN computations for the MCMC with EM approach and (T +P)xN

computations for the Bayesian MCMC approach are required, where each

computation involves random number generation, density function evaluation and
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matrix operations including the inversion and determinant for matrices in size of

maximum p(2p-1)x p(2p-1).

Time
Parameters
1 t1 ] t |t T
hy | v [ hg | b | oy
Qq Qh - Completed
0 o | G [ G | G |- qr
Required for current computatior
Sample . Being computed

9 9 9 i i Waiting

N2 2 BN A
YivibiJ

s
[ ]
COEE

N
BN
i-1 -
>

samples

i+1

Outer loop over MCMC

Inner loop over time periods

Figure 3.4 : Smoothing algorithm of Bayesian MCMC approach.

The filtering algorithms for the MCMC based approaches are computationally more
intensive than the smoothing algorithms since filtering basically executes the
smoothing algorithm repeatedly over time periods. Then the computational
requirement for the both MCMC based methods for filtering becomes NxTx(T-1)/2.
The prediction algorithm for the MCMC based methods given in equation 2.71 is a
resampling algorithm has an additional computational burden of LxN. For the
parameter estimation Bayesian MCMC approach does not introduce additional

computational burden on top of the smoothing algorithm requiring (T +P)xN

computations whereas MCMC with EM algorithm introduces the additional
computational requirement on the inherited computational requirement of smoothing
resulting a zxT xN computations where z represents the complexity of the EM
algorithm which depends on the state space dimension thus the number of model

parameters and the choice of the optimization routine.

As depicted in Figure 3.1, the filtering algorithm given in equation 2.111 is the main
algorithm required by all other estimation algorithms. In Figure 3.5, the filtering

algorithm for the SGI based approach is illustrated.
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Figure 3.5 : Filtering algorithm of SGI approach.

The filtering algorithm based on the SGI methods is composed of two main loops
where the outer loop constructs the estimates for time periods using two inner loops
enumerating the sparse grids of previous and next time periods. In Figure 3.5, it can
be more clearly seen that, this filtering algorithm is sequential in the time domain in
contrast with the MCMC based algorithms.

The filtering algorithm given in equation 2.111 and illustrated in Figure 3.5 requires
Tx(NZ+NZxN,,) computations where Nr and Ny are the number of points in the
sparse grids Gg and Gy which have dependency on the level | of the underlying
univariate integration formula and the dimension of the associated state space. See

Table.2.1 for the number of sparse grid points with the trapezoid rule as the

underlying formula. G is the sparse grid of the augmented state space of g; and h;
which has maximum 2p* dimensions in the complete dynamic MSV-D case and

minimum p dimensions in the static MSV-D case (i.e. MSV-B and MSV-G models).
Gy is the sparse grid for the state space of h; which has p dimensions. Thus, under
the static specifications (i.e. MSV-G and MSV-B) Gg reduces to Gy and

computational burden can be represented as T x(NZ+N?>) . There is an extra

reduction in the computational requirement of the MSV-B model due to the lack of

temporal dependency on the next time step then the resulting computational burden
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becomes T x(N? +N/) for the MSV-B model. Although, the curse of dimension is
overcome to a certain degree, polynomial increase in the dimension of the augmented
state-space of g: and h; makes it still hard for SGI to be used in models where the
number of assets is high and complete dynamic structure is imposed, however SGI
based filtering is still feasible for multidimensional models with static structures or
restricted dynamic structures. The smoothing algorithm given in equation 2.113 has

an additional requirement of T x N2 computations and the prediction algorithm in
equation 2.112 requires LxNZ computations. In the SGI based approach, each

computation involves density function evaluation and matrix operations including

inversion and determinant for matrices in size of maximum p(2p—1)>< p(2p—1) for

the complete dynamic structure and minimum 4p? for the static specifications such as
the MSV-G and MSV-B. In the SGI approach, parameter estimation incorporates
filtering algorithm depicted in Figure 3.4, thus it inherits the computational

requirement of filtering algorithm and resulting computational burden becomes

zxT x (N7 +N?)where z depends on the state space dimension, thus the number of

model parameters, and the choice of the optimization routine.

It is noteworthy that the computational burden of the algorithms provided above can
be split among time periods and one-step computational burden of the estimation
algorithms reduces by 1/T of the requirements presented above for the SGI approach
since SGI based algorithms are sequential which is not the case for MCMC based

methods as discussed before.

In the implementation of SGI based estimation algorithms a complication is the
accumulation of numerical errors as a result of the recursive nature of the

algorithms. To overcome this complication, a correction satisfying the requirement

J. p(ht 1O |Ys’g>dhtdqt ~ Z p(ht(i)!qt(i) |Ys!Q)W|(:i) =1 (3.1)

ieGp

from the basic property of probability density functions should be implemented with

an extra computational cost of recomputing p(h,,q, | Y,,€).

A final note about the implementation is the task of construction of the regular sparse
grid used in the SGI based methods. The construction of regular sparse girds which

involves calculation of the weights and raw coordinates of points for an arbitrary
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level | and arbitrary dimension d for a given univariate integration formula requires a
separate algorithm which does not have fixed loops (see appendix C.2 for the C
functions used in the construction of regular sparse grids based on the trapezoid
rule). For high dimensions and high values of integration rule levels, construction of
the sparse grid has its own computational burden however the regular sparse grids for
all time periods can be constructed in advance and kept in memory so computational
requirement for the construction of the sparse grid does not necessarily increase the
computational requirement of the overall estimation algorithm if the total size of the

resulting grids are not problematic for memory usage.

3.2 Parallelization Approaches for the MCMC Based Algorithms

The smoothing algorithm for the MCMC with EM approach illustrated in Figure 3.3
has dependencies both in the spatial and temporal domain in a batch structure at each
sample and time step. A parallelization can be achieved by decomposing the inner

loop (i.e. the time domain) for concurrency as illustrated in Figure 3.6.

Time

1 t1 t-1 t t+1 T

h1 ht—z htrl ht hm hT -------
| 3 | Completed

q L %] e 9, ¥ ar tamsss
! i Required for current computatior

Sample ' Being computed
1 Si S>>l > S>> 1S | § waiting

samples

Outer loop over MCMC

»

Inner loop over time periods

Figure 3.6 : Parallel MCMC based smoothing algorithm.

In this approach, if the computations for each time step of each sample is considered
as a process then the maximum number of total processes that can be executed in

parallel is given by,
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T/2, if T is even,
p= (3.2)

(T+1)/2, if Tisodd.

after the first three time steps of the first sample and before the last three time steps
of the last sample. All the estimation algorithms using the smoothing algorithm (see
Figure 3.1) can benefit from the accelerated smoothing algorithm described here for
the MCMC with EM approach.

The parallelization approach for the MCMC with EM approach illustrated in Figure
3.6 can not be applied to the smoothing algorithm of the Bayesian MCMC approach
illustrated in Figure 3.4 because of the additional dependency on the parameters
which are out of the temporal domain preventing the decomposition illustrated in
Figure 3.6. MCMC based estimation methods such as the Bayesian MCMC where
the parameter space and state space are augmented are known to be hard to parallel
algorithms (Rosenthal, 2000). An option is using parallel independent chains, each
same as the serial version illustrated in Figure 3.4 with different random number
sequences and then combining the samples. The main drawback of this approach is
the burn-in samples (i.e first M samples) which are discarded out of the N samples.
There is not an exact theoretical number but burn-in samples are usually the 20%-
30% percent of the all samples in most of the studies. The parallelization with the
parallel chains requires that either generating M burn-in samples for each chain or
generating the M burn-in sample in one process and then splitting up the remaining
samples in parallel where in either case there is a limit on the maximum theoretical

speed-up which is N/M.

Filtering algorithms based on the MCMC methods uses the smoothing algorithm for
the MCMC with EM approach repeatedly for t = 1,...,T, thus the parallelization
approach described for smoothing automatically inherited by the filtering algorithm
however an additional acceleration can be achieved by decomposing the runs of

smoothing algorithm for each t, since they are independent.

3.3 Parallelization Approach for the SGI Based Estimation Algorithms

In the filtering algorithm based on the SGI method illustrated in Figure 3.5 the
computations at each grid node for a given time step has dependency only to the

previous step in the time domain. An highly efficient parallelization can be achieved
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by decomposing the sparse grid nodes of each time step to processes. The parallel
filtering algorithm based on SGI method is illustrated in Figure 3.7. In this approach,
if computations at each grid node for a given time step is considered as a process,

then maximum number of processes that be executed in parallel equals the sparse

grid size Ng.
Time
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h1 ht—l h( htu |"T !r“J_,__i Completed
q, Oy.q q, iy - E“J,“E Temporarily calculated

.‘
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. Being computed
v
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1 ! Waiting
i
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Inner loop over grid nodes
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NF! NH

>

Outer loop over time periods

Figure 3.7 : Parallel SGI based filtering algorithm.

All other estimation algorithms based on the SGI method are sequential and does not
possess dependencies within a time step so the described parallelization approach is

valid for them as well.

Although the discussion on the parallel algorithms presented can be extended to the
distributed memory and processors systems by addressing the obvious intense
communication overhead required by the algorithms and their memory complexity,
this study is limited with the shared memory multi processor systems such as GPUs
or modern many-core computers. The parallel algorithms described above achieve
the most efficient parallelism by exploiting the advantage of shared memory systems.
And the memory requirements of the algorithms presented above are not beyond the
resource limits of modern computers and GPUs thus is not a bottleneck in

implementation.
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3.4 Notes on the GPU Implementation

In this study, parallel MCMC smoothing algorithm and parallel SGI filtering
algorithm described in section 3.3 and illustrated in Figure 3.6 and Figure 3.7 are

implemented on GPU.

In a typical GPU implementation, parallel execution is achieved by device kernel
functions which require number of blocks and total number of threads in each block
in the function call along with other usual arguments such as pointers and data
structures. The number of blocks npecks @and block size ngj,e depend on each other and
are limited by the specification of the device used. The number of blocks for the

device kernel calls can be obtained by

1

n + Ngjpe — (33)

threads
n =

blocks
n

size

where the number of threads ngreags depends on the parallel algorithm. In
implementation of the parallel MCMC smoothing algorithm in Figure 3.6 each
computation at time t and sample i is considered as a single thread and the number of
threads that can be executed in parallel is set equal to the number of processes that

can be executed parallel, np, given in equation 3.2.

In a similar approach the parallel implementation of the parallel SGI filtering
algorithm is performed by setting the number of threads that can be executed in

parallel nireads to the number of processes that can be executed in parallel, np= N .

Although GPU architectures and designs are much more suitable and provide tools
for exploiting lower level and more granular parallelism constructed on simpler but
repeated computations, the approach considering a set of more complex
computations composed of random number generation, density function evaluations
and matrix operations as a single thread works quite well too in terms of performance
with only the cost of considerable coding effort involving the development of all the
device counterparts of the serial functions used in the computations. See appendix

C.3 for the example codes on GPU functions, kernels and their usage.

In the implementation of MCMC algorithms, random number generation is an

important consideration and use of robust custom libraries and implementations are
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required. In GPU implementations, parallel handling capability of random number

generation provided by the used library is important.

Some other details regarding the implementation can be found in section 4.1 where
the software and hardware used in the study are summarized as part of the

methodology.
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4. METHODOLOGY

In this section the methodology followed in the study is presented. The methodology

of the study considers the following main objectives:

a. Illustrate and evaluate the proposed model (i.e. MSV-D model) and its
developed estimation method based on Bayesian MCMC,

b. Compare the performance of the the proposed estimation approach (i.e. SGI
based approach) for MSV models with the MCMC based approach,

c. Evaluate the implications of GPU acceleration support on the estimation
algorithms for the MSV models,

With these objectives, the methodology consists of computational studies and

analyses conducted on simulated and empirical data sets.

This chapter is organized as follows. Section 4.1 provides details of the software
programs and hardware used in the computational studies. Section 4.2 describes the
methodology used for illustration and evaluation of the proposed model, MSV-D.
And in section 4.3 the methodology used to assess and compare the SGI based
estimation algorithms with the MCMC based algorithms and to evaluate the
implications of GPU support in estimation algorithms are presented together.

4.1 Software Programs and Hardware

The estimation algorithms used in computational studies are implemented using the
C programming language for both the serial and parallel implementations.
NVIDIA™ CUDA® 4.0 platform is used for the development and programming of
the parallel algorithms for GPUs.

Table 4.1 provides the summary of the estimation algorithms and their

implementations.
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Table 4.1 : Implemented estimation algorithms.

Approach Serial CPU Parallel GPU
Kalman Filter Smoothing
Filtering
Prediction
MCMC Smoothing Smoothing
Filtering
Prediction
Parameter Estimation
SGl Smoothing Filtering
Filtering
Prediction
Parameter Estimation

As discussed in section 3, the smoothing algorithm for the MCMC approach and the
filtering algorithm for the SGI approach are base algorithms which other algorithms
depend on, thus parallel implementations of these two algorithms automatically make

other algorithms parallel too.

In implementations of the algorithms, the random number generation in the serial
programs is performed with a C implementation of LAPACK _larnv routines and in
GPU programs, CURAND library is used.

In the parameter estimation algorithms of the MCMC with EM and SGI approaches,

NLopt C library is used for non linear optimization methods.

Computational studies and numerical applications are performed on a computer with
Intel Core 17-920 processor, 16 GB memory and NVIDIA™ Tesla C1060 compute
processor as the GPU.

For comparison purposes, in some of the parts of the computational studies GARCH
models are used and they are fitted in R verison 3.1.0 with rugarch, rmgarch and

ccgarch packages.

4.2 Assessment of the MSV-D Model

To illustrate and evaluate the proposed model, namely the MSV-D model, and its
Bayesian MCMC estimation algorithm, two simulated data sets and an empirical data

set are used.

Two simulated data sets of five asset returns are generated with known parameters

for T = 5,000 time periods. First data set is constructed with a static specification
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which is equivalent to the MSV-G model whereas the second simulated data set has a
complete dynamic structure based on the MSV-D model. It is noteworthy that, the
static specification which is equivalent to the MSV-G model, is essentially a special

case of the MSV-D model parameterized with the proposed approach.

First set of simulated data is obtained by setting the parameters of the AR(1) process

of the log-volatilities, h, as
7, =025 ¢ =0.97, a,f]i =0.04, i=1.,5 (4.1)

and the static correlation structure is determined by the correlation matrix,

1 06 06 06 06 -04 -03 -03 -03 -03
0.6 1 06 06 06 -03 -04 -03 -03 -03
06 06 1 06 06 -03 -03 -04 -0.3 -03
06 06 06 1 06 -03 -03 -03 -04 -03
06 06 06 06 1 -03 -03 -03 -03 -04
P= -04 -03 -03 -03 -0.3 1 06 06 06 06 - (42)
-0.3 -04 -03 -03 -03 06 1 06 06 06
-03 -03 04 -03 -03 0.6 0.6 1 06 06
-0.3 -03 -03 -04 -03 06 06 06 1 06

-03 03 -03 -03 04 06 06 06 06 1

In the second simulated data set, instead of the static correlation matrix P, a dynamic

structure is introduced by AR(1) processes of g; with the parameters,
6 =0.97, aj,yi =0.01 (4.3)

and taking the matrix,

1 081 078 075 071 -066 -060 -054 -046 -0.38

0.81 1 078 075 071 -066 -0.60 -054 -0.46 -0.38

0.78 0.78 1 075 071 066 -0.60 -054 -046 -0.38

0.75 075 0.75 1 071 066 -060 -054 -046 -0.38

b 071 071 071 0.71 1 066 -0.60 -0.54 -0.46 -0.38 (4.4)

-0.66 -0.66 -0.66 -0.66 -0.66 1 060 054 046 0.38
-0.60 -0.60 -0.60 -0.60 -0.60 0.60 1 054 046 0.38
-0.54 -054 054 054 -054 054 054 1 046 0.38
-0.46 -046 -046 -0.46 -046 046 046 0.46 1 038
-0.38 -038 -038 -038 -038 038 038 038 038 1

as the mean to obtain the process intercept 6 using the transformations in equation
2.19 to equation 2.24 of MSV-D model specification.
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On the two sets of simulated asset returns data, static and dynamic models are fitted
using the Bayesian MCMC estimation approach developed in section 2.2.3.2. The
prior density parameters for the Bayesian MCMC estimation approach for the static

model are set as follows:

p(y)ocl

P
o(p) Hf5£¢|+1 j o, =20, B =1 (4.5)

p

p(vfl) :H fIG( ﬂl’aOUlBOl) Oy = 251 ﬂoi =0.025

where f;(-) is the beta distribution, f(-) is the inverse gamma distribution. In

addition to the densities above the prior densities,
p(d)ecl
p(6) Hf (9” . J a =20, =1 (4.6)

(Vu) = H fie (Gj),i;aowﬂm)’ ay, = 2.5, By =0.025

are considered for the dynamic model. For sampling the log-volatilities, h;, the

density in equation 2.69 is used with the tuning scalar parameter ¢ = 6.

With these settings, the results composed of the parameter and smoothing estimates
and their standard errors are obtained which constitute a basis for comparison with
the true values of parameters and log-volatilities providing statistical evidence on the
how the proposed MSV-D model and its Bayesian MCMC estimation algorithm
work in capturing the patterns.

Parameter estimates and 95% credible intervals are computed from the resulting
samples representing the posterior distributions of parameters obtained from the

executed Bayesian MCMC algorithm.

The comparison of the estimated and actual log-volatilities are performed based on
the root mean squared error (RMSE) as the criteria. RMSE of the log-volatility series

h; is computed as,

t=1

1 T
RMSE, = \/mZ(hus —h, )2 (4.7)
S
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where (s, ts ) = (T, 1) and h, are the smoothing estimates obtained by the Bayesian

tls
MCMC estimation algorithm and h; is the actual log-volatility at time t in the
simulated data. T is the number of time periods which is 5,000. Similarly, for the

dynamic setting, RMSEs of a time varying parameter such as the dynamic correlation

coefficient is calculated by replacing h,; and h; with the estimate and actual value of

the parameter at time t in equation 4.7.

An inefficiency factor which is a diagnostic measure indicating how well the MCMC
mixes is computed by calculating the ratio of the numerical variance of the posterior
mean to the variance of the sample mean based on uncorrelated draws. The
inefficiency factor shows how many times the number of uncorrelated samples must
be drawn for reliable estimates. See details on inefficiency factor as a diagnostic
measure in (Chib, 2001). The results of the applications of MSV-D models are

shown in section 5.1.

An empirical analysis was also conducted to illustrate how the MSV-D model and its
Bayesian MCMC estimation algorithm work on real data. The data include the price
series of S&P500 index, IBM and Intel Corporation (INTC) stock price series from
January 1, 1996 to August 31, 2015 including 4,951 observations excluding the days
when the markets are closed due to holidays, weekends and other special days. The
data are dividend adjusted.

Asset returns are defined as the log-differences of price series and the price series are
converted to return series accordingly. The returns data are checked for the AR(1)
effects and removed from the data. The data were tested for the heteroskedasticity
using Ljung-Box test on the squared returns data series resulting with p < 0.01 for all
asset return series, rejecting the null hypothesis of homoskedasticity and

independence.

A complete dynamic specifications of MSV-D model was fit on the data using the
Bayesian MCMC estimation approach described in section 2.2.3.2 with the priors

given in equation 4.5 and equation 4.6.

The log-volatility and time varying correlation estimations are compared with
estimations from an exponential version of the Dynamic Conditional Correlation
GARCH (DCC-GARCH) model of Engle (2002). DCC-EGARCH (1,1) model is
given by
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Iog(hi,t) =t Zi,tfl +7i (|Zt—1|_ E|:|Zt—1|])+ﬂi Iog(hi,t—l)’ Zt ~N (O' Pt) (4-8)
where the dynamic correlation matrix P; is modeled by

Pt _ (Qt o I)—J/z Qt (Qt o I)—l/z

(4.9)
Q,=(1-a-b)Q+az_z;,+8Q., a+b<landab>0

In equation 4.9, Q is the sample covariance matrix of z.. The DCC-EGARCH model
is fitted in R with the rmgarch package.

The results of the empirical application are shown in section 5.2.

4.3 Assessment of the Estimation Algorithms

In order to compare the proposed SGI based estimation algorithms with MCMC
based estimation algorithms in terms of accuracy and computational requirements a

simulation study was designed as follows.

The simulation study is based on repeated generation of artificial return series using

the MSV-B model specification with known parameter values,
7 =025 ¢ =095 o.,=004, p, ;=06 i=1.,p (4.10)

with g; = & is obtained with the transformations from equation 2.19 to equation 2.24

of MSV-D model specification based on the correlation matrix P, =(p,, ;) -

Different artificial return series are generated for different number of assets (i.e.
dimension of the state space of log-volatilities) p ={1,2,3}, for fixed T = 1,000

periods.

Then, on each simulated return series data, both the SGI and MCMC based
estimation algorithms are used to calculate smoothing, filtering, one-step ahead
prediction estimates of log-volatilities and estimates of parameters. In the application
of SGI based estimation algorithms, integration levels | = {4, 5, 6} and in the
application of MCMC based estimation algorithms sample sizes N ={100,000,
200,000, 400,000} are used.

The procedure of generating simulated data and estimation described above is

repeated R = 100 times to capture the statistics on estimations comparing with the
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true values of the parameters and log-volatilities. The accuracy of the parameter

estimates is measured by the root mean squared error (RMSE) calculated by

RMSE,, = \/%ZR:(Q@ o)y (4.11)

where R = 100 is the number of repeats and fzﬁ? is the particular parameter estimate

and QS) is the true value of the particular parameter used to generate the data at

repeat i.

The accuracy of the log-volatility estimates is measured by the root mean squared
error (RMSE) calculated by

1 T Y
RMSE, :—Z\/T . +1EZZ(h§,3|S—hJ(J)) (4.12)

P = totg j-1

where T = 1,000 is the number of periods, R = 100 is the number of repeats, p is

dimension of the state-space, hj(ft)ls is the log-volatility estimate and hf'z is the true

value of the log-volatility from the simulated data at repeat i. Depending on the type
of the estimate, the indices become (s, ts ) = (t, 1) for filtering, (s, ts ) = (T, 1) for

smoothing and (s, ts) = (2, t-1) for one-step ahead prediction.

Computational requirements and assessments regarding the GPU acceleration were
obtained by measuring the execution times of the estimation algorithms for both
serial CPU implementations and parallel GPU implementations and calculating the
speed up defined as the ratio of the serial execution time to parallel execution time.
Multiple measurements of executions are averaged and single measurements are
reported in some serial cases that take too much time. The results of the simulation

study are given in section 5.3.

4.4 lustration of SGI Based Estimation Algorithms on Empirical Data

Proposed SGI based algorithms are applied on empirical data to illustrate how SGI
based estimation algorithms perform on real data. The data includes foreign-
exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish
Lira(TRL) from March 1, 2001 to September 30, 2015. There are 3,669 trading days

for each series. The returns are defined by the log-difference of each series. The
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return series were checked for AR(1) effects and those effects were removed from

the series.

The data is tested for the heteroskedasticity using Ljung-Box test on the squared
returns data series resulting with p < 0.01 for all asset return series rejecting the null

hypothesis of homoskedasticity and independence.

For illustration purposes three models are fitted to the data two of which are actually
the same MSV-B model but estimated with SGI based and MCMC based estimation
algorithms and a diagonal CCC-GARCH model of Bollerslev (1990) given by

i i it Sit?

h, = +ai8i2,tfl+ﬂ'hi,t—1’ Eir = hz z.~N (0’ P) (4.13)

The CCC-GARCH model is fitted in R with the ccgarch package.

In fitting the MSV-B model using the SGI based estimation algorithms , trapezoid
rule of level | = 8 is used as the basis univariate integration formula which results in a
two dimensional sparse grid having 1,793 points for each time period. For the
MCMC based algorithms, sample size of N = 400,000 is used and 25% of them are
discarded as burn-in samples. For the covariance of the proposal distribution of log-
volatilities in MCMC and for identifying the integration intervals in SGI scalar
tuning parameter ¢ = 6 and z = 6 are used in equation 2.69 and equation 2.117

respectively.

Model fit statistics standard error of estimates of parameters and RMSE of log-
volatilities are used for evaluation. RMSE of the log-volatility series are calculated
by equation 4.7 setting (s, ts ) = (T, 1) for smoothing and (s, ts) = (2, t-1) for one-

step predictions. The results of the empirical analysis are given in section 5.4.
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5. RESULTS

In this section the results of the computational studies and numerical applications
described in section 4 regarding the proposed MSV-D model and its Bayesian
MCMC estimation method, proposed SGI based estimation algorithms and
computational implications of GPU usage in estimation of MSV models are

presented.

5.1 MSV-D Model on Simulated Returns Data

The proposed MSV-D model and its Bayesian MCMC estimation method were
applied on two sets of simulated asset returns data as described in section 4.2 for

illustration and evaluation purposes.

First simulated data set is based on the static specification equivalent to the MSV-G
model and is a special case of the MSV-D model parameterized with the proposed

approach.

Figure 5.1 shows the simulated return series and log-volatilities of five assets with
the static specifications given by equation 4.1 and equation 4.2. In Figure 5.1,
volatility clusterings, co-movements of asset returns and co-movement of log-

volatilities are visible from the charts.

The simulated return series parts of the simulated data are used to fit a static model to
the returns data using the Bayesian MCMC estimation algorithm developed for the
MSV-D model in section 2.2.3.2 which produces both the parameter estimates and

smoothing estimates of the log-volatilities at the same time.

In the estimation algorithm sample size of N = 400,000 is used and 25% of them are
discarded as burn-in samples. The parameter estimates and log-volatility estimates
obtained are then compared with the true values of parameters and log-volatilities
which are used to simulate the data to see how the MSV-D model and its estimation

algorithm perform.
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Figure 5.1 : Simulated series based on the static MSV-D model.

Parameter estimation results of the parameters of the log-volatility process, yi, i, o,
are given in Table 5.1. In Table 5.1, it can be observed that in general posterior
means of the parameter estimates are sufficiently close to the true parameter values

with 95% intervals containing the true values.

The intervals in the estimates for the persistence parameters, ¢; are relatively
narrower than the intercept, y; and standard deviations of the error term, ¢,;. Higher
inefficiency factors are observed in ¢, ; when compared to other parameters followed
by ¢; (Table 5.1).
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Table 5.1 : Static MSV-D model parameter estimation results of y;, i, 6,,..

True 1 Mean 95% interval  Inefficiency
1 -0.261 [-0.322,-0.201] 129
2 -0.242 [-0.313,-0.171] 190
P 025 3 -0.239 [-0.303,-0.175] 206
4 -0.264 [-0.329,-0.199] 169
5 -0.241 [-0.304,-0.178] 102
1 0961 [0.952,0.971] 365
2 0976 [0.967,0.985] 340
i 097 3 0966 [0.957,0.975] 272
4 0963 [0.954,0.972] 314
5 0974 [0.965, 0.983] 324
1 0208 [0.177,0.239] 386
2 0194 [0.165, 0.223] 351
Oyi 02 3 0203 [0.171,0.235] 408
4 0.188 [0.160, 0.216] 430
5 04191 [0.161, 0.221] 381

Parameter estimation results of the correlation matrix entries, p..; , penii Peni are
given in Table 5.2 for the static MSV-D model. It can be observed from Table 5.2
that the MSV-D model and its estimation algorithm performs well in estimating the
static correlation matrix, P, with estimations close to the true values which are within

95% intervals.

It is seen from both Table 5.1 and Table 5.2 that the inefficiency factors, the
indicator of how the chain mixes, are high when compared to the benchmarks in the
literature especially for the parameters o,;, peyii Penii Py, With values well above
300. This indicates the requirement of large sample sizes and justifies the sample size
choice of N = 400,000 which is quite high when compared to examples in the
literature. Although the developed Bayesian MCMC estimation algorithm is not
highly efficient, it performs well enough for the objectives of this study.

The efficiency of the MCMC algorithm can be altered by implementing alternative
sampling techniques such as the multi-move sampler as discussed in (Ishihara &
Omori, 2012) without the loss of generality of the developed MCMC algorithm.
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Table 5.2 : Static MSV-D model parameter estimation results of p..;, pey,iis Peni.

True i/ij Estimate 95% interval Inefficiency

12 0.581 [0.467, 0.695] 27

13 0.609 [0.529, 0.689] 41

14 0.587 [0.477,0.697] 33

15 0.580 [0.483, 0.677] 41

) 0.6 23 0.593 [0.506, 0.680] 24
Peci : 31 0.591 [0.509, 0.673] 39
32 0.612 [0.523, 0.701] 40

34 0.596 [0.498, 0.694] 28

35 0.605 [0.485, 0.725] 26

45 0.597 [0.498, 0.696] 18

11 -0.431 [-0.541, -0.321] 395

22 -0.412 [-0.552, -0.272] 414

Pensi -0.4 33 -0.378 [-0.502, -0.254] 425
44 -0.381 [-0.498, -0.264] 306

55 -0.385 [-0.514, -0.256] 368

12 -0.289 [-0.418, -0.160] 416

13 -0.271 [-0.387, -0.155] 444

14 -0.283 [-0.380, -0.186] 332

15 -0.276 [-0.362, -0.190] 346

21 -0.329 [-0.411, -0.247] 218

23 -0.311 [-0.410, -0.212] 338

24 -0.291 [-0.418, -0.164] 427

25 -0.275 [-0.356, -0.194] 255

23 -0.332 [-0.427, -0.237] 431

31 -0.293 [-0.376, -0.210] 231

Pen,i -0.3 32 -0.280 [-0.411, -0.150] 229
34 -0.316 [-0.396, -0.236] 373

35 -0.321 [-0.419, -0.222] 300

41 -0.329 [-0.434, -0.224] 444

42 -0.288 [-0.395, -0.181] 289

43 -0.294 [-0.418,-0.170] 275

45 -0.318 [-0.399, -0.237] 273

51 -0.325 [-0.432, -0.218] 422

52 -0.279 [-0.396, -0.162] 276

53 -0.286 [-0.404, -0.168] 398

54 -0.267 [-0.364, -0.169] 415

11 0.648 [0.545, 0.751] 625

12 0.622 [0.487,0.757] 704

13 0.637 [0.522, 0.754] 451

14 0.619 [0.487, 0.751] 698

15 0.594 [0.501, 0.688] 562

Prnsi 0.6 23 0.611 [0.484, 0.738] 717
31 0.631 [0.536, 0.726] 653

32 0.589 [0.492, 0.686] 748

34 0.590 [0.468, 0.712] 469

35 0.587 [0.495, 0.679] 487

45 0.627 [0.522, 0.732] 721

The charts in Figure 5.2 shows the estimated and actual log-volatilities for
comparison. Log-volatility estimation results for the static MSV-D model are

summarized in Table 5.3.
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Figure 5.2 : Log-volatility fits for the static MSV-D model.

In the charts in Figure 5.2 the match between the patterns of the estimates and true
values are visually seen. In Table 5.3, it can be seen that the estimated means for the
log-volatilities and their true values are quite close with acceptable values of RMSE

values for all five return series.
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Table 5.3 : Static MSV-D model log-volatility estimation results.

Series (i) True Mean Estimated Mean RMSE,
1 -8.454 -8.424 0.311
2 -8.523 -8.476 0.305
3 -8.515 -8.485 0.302
4 -8.446 -8.393 0.315
5 -8.474 -8.448 0.314

It can be concluded that log-volatility estimates are sufficiently close to the true
values and that the proposed MSV-D model, its parameterization and its custom

Bayesian MCMC estimation algorithm perform sufficiently well for the static case.

Second simulated data set regarding the assessment of MSV-D model is based on the

complete dynamic specification using the proposed MSV-D model.

Figure 5.3 shows the simulated data including the five asset returns and
corresponding log-volatility series for the complete dynamic MSV-D model. In the
charts of Figure 5.3, volatility clusterings and co-movements of the asset returns and

volatilities are observable.

In the complete dynamic MSV-D specification, the correlations are also time varying
and in Figure 5.4 some of the correlations between different components indicating

various dynamic stylized facts are plotted.

In Figure 5.4, first chart is an example of correlations between the asset returns,
second chart is an example of dynamic leverage effect, third chart is an example of
dynamic cross-leverage effect and fourth chart is an example of dynamic volatility
spillover which are all addressable with the flexible structure of the proposed MSV-

D model.

Using the Bayesian MCMC estimation algorithm developed in section 2.2.3.2,

estimates of parameters, log-volatilities and correlations are obtained.

Dynamic MSV-D estimation results for the log-volatility process parameters, v, ¢i,
o, are given in Table 5.4. It can be observed that the true values are close to the

parameter estimates with 95% intervals including the true values.
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Figure 5.3 : Simulated series based on the dynamic MSV-D model.

Dynamic MSV-D estimation results for parameter o; which is the intercept parameter
of the AR(1) process driving the dynamic correlations are given in Table 5.5. In
Table 5.6, dynamic MSV-D estimation results for the parameters 6; which is the
persistence parameter of the AR(1) process driving the dynamic correlations are
given. Table 5.7 shows the dynamic MSV-D estimation results for parameter 6. In
Table 5.5, Table 5.6 and Table 5.7, results show that the parameter estimates are
sufficiently close to the true values and true values fall into the 95% intervals. The
parameter estimates of ¢,; given in Table 5.4 and o,,;, in Table 5.7 have relatively
large estimation intervals and inefficiency factors are quite high for those parameters.
The dynamic MSV-D specification has too many parameters to estimate and
dimensionality is high and this result is in fact expected. Obviously larger sample

sizes would be better for the dynamic setting.
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Figure 5.4 : Examples of simulated dynamic correlations based on the dynamic
MSV-D model.

Dynamic MSV-D model parameter estimation results of the log-volatilities are given
in Table 5.8 where the RMSE values are all at acceptable levels with close means of

estimations and true values.

The charts in Figure 5.5 plot the log-volatility estimates and their actual values for all
time periods and it can be seen that the log-volatility estimates successfully follow

the patterns of the actual values.
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Table 5.4 : Dynamic MSV-D model parameter estimation results of y;, g, g,,;.

True 1 Mean 95% interval  Inefficiency
1 -0.267 [-0.397,-0.137] 251
2 -0.268 [-0.398, -0.138] 270
Yi -0.25 3 -0.243 [-0.383,-0.103] 265
4 -0.256 [-0.376, -0.136] 189
5 -0.264 [-0.404,-0.124] 259
1 0979 [0.959, 0.998] 365
2 0971 [0.952,0.991] 340
0i 097 3 0959 [0.938,0.979] 272
4 0961  [0.941, 0.980] 314
5 0979 [0.959, 0.998] 324
1 0191 [0.122,0.260] 431
2 0215 [0.152,0.278] 436
Oni 02 3 0214 [0.145,0.283] 422
4 0194  [0.124,0.264] 410
5 0197 [0.125, 0.269] 396

Table 5.5 : Dynamic MSV-D model parameter estimation results of ;.

True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.
0015 1 0.019  [0.013, 0.024] 342 0015 24 -0016 [-0.021,-0.010] 341
0015 2 0.013  [0.007, 0.018] 338 0015 25  0.009 [0.004,0.016] 360
0.015 3 0.017  [0.011, 0.022] 393 0.015 26 0010 [0.005,0.017] 329
0015 4 0.017  [0.012, 0.022] 362 0.015 27  0.016 [0.010,0.022] 340
0015 5 0.019  [0.013, 0.024] 331 0.015 28  0.008 [0.002,0.016] 338
-0.015 6  -0.009 [-0.017,-0.005] 388 0015 29 0019 [0.013,0.025] 332
0015 7 -0017 [-0.022,-0.011] 379 -0.015 30 0016 [-0.021,-0.010] 322
-0.015 8  -0.020 [-0.026,-0.014] 339 0.015 31 0014 [0.008,0.019] 323
0015 9 -0019 [-0.025 -0.013] 389 0015 32 0020 [0.014,0.025] 327
0015 10 0019 [0.013,0.025] 352 0015 33 0021 [0.014,0.028] 359
0015 11 0017 [0.011,0.022] 395 0015 34 0020 [0.014,0.025] 336
0.015 12 0021 [0.014,0.027] 368 0.015 35 0011 [0.005,0.016] 351
0015 13 0012 [0.006, 0.018] 352 -0.015 36 -0.018 [-0.024,-0.012] 320
0015 14 0016 [0.011,0.020] 322 -0.015 37 -0019 [-0.024,-0.014] 367
-0.015 15 0019 [-0.024,-0.013] 337 -0.015 38  -0.015 [-0.020,-0.009] 329
-0.015 16 0021 [-0.028,-0.013] 356 -0.015 39 -0.008 [-0.013,-0.003] 364
0015 17  -0021 [-0.026,-0.014] 401 0015 40 .0019 [-0.024,-0.013] 351
0015 18 0019 [0.012,0.024] 389 0015 41  .0013 [-0.018,-0.007] 386
0015 19 0015 [0.009, 0.021] 358 -0.015 42 0017 [-0.022,-0.011] 349
0015 20 0012 [0.006,0.018] 368 -0.015 43 -0.009 [-0.016,-0.003] 375
0015 21 0009 [0.005,0.016] 373 -0.015 44 0017 [-0.022,-0.012] 403
0015 22 0.009 [0.004,0.016] 345 -0.015 45 -0009 [-0.017,-0.001] 337
0015 23 0014 [-0.019,-0.008] 383
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Table 5.6 : Dynamic MSV-D model parameter estimation results of 6.

True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.
1 0.979 [0.962, 0.996] 376 24 0975 [0.957,0.993] 410
2 0983 [0.966,0.999] 356 25 0983 [0.965,0.999] 410
3 0963 [0.945,0.980] 394 26 0960 [0.943,0.976] 425
4 0969 [0.951,0.986] 395 27 0976 [0.958,0.993] 411
5 0965 [0.947,0.982] 389 28 0970 [0.952,0.987] 426
6 0978 [0.960,0.995] 356 29 0958 [0.940, 0.975] 363
7 0968 [0.950,0.985] 423 30 0965 [0.947,0.982] 352
8 0965 [0.948,0.981] 367 31 0964 [0.947,0.981] 417
9 0976 [0.959,0.992] 416 32 0963 [0.944,0.981] 357
10 0959 [0.941,0.976] 356 33 0980 [0.962,0.997] 393
11 0964 [0.946,0.981] 397 0.97 34 0967 [0.949,0.984] 362
097 12 0976 [0.957,0.994] 364 ' 35 0969 [0.951,0.987] 372
13 0.96 [0.942,0.978] 372 36 0978 [0.959,0.996] 358
14 0972 [0.954,0.989] 373 37 0976 [0.959,0.992] 372
15 0966 [0.947,0.984] 361 38 0963 [0.944,0.981] 404
16 0961 [0.943,0.979] 351 39 0975 [0.958,0.992] 355
17 0981 [0.962,0.998] 396 40 0969 [0.951,0.987] 407
18 0958 [0.940,0.976] 397 41 0972 [0.956,0.989] 389
19 0973 [0.954,0.991] 425 42 0978 [0.960,0.995] 359
20 0978 [0.961,0.994] 376 43 0973 [0.954,0.992] 416
21 0956 [0.937,0.974] 364 44 0956 [0.939,0.973] 388
22 0969 [0.951,0.986] 407 45 0.969 [0.952,0.986] 369
23 0979 [0.961,0.996] 374
Table 5.7 : Dynamic MSV-D model parameter estimation results of o,,;.
True i Mean 95% interval Ineff. True i Mean 95% interval Ineff.
1 0008 [0.0009,00154] 548 24 0014 [0.0008,0.0201] 468
2 0018 [0.0005,0.0253] 534 25 0021 [0.0004,0.0275] 466
3 0.021 [0.0008,00281] 478 26 0.013 [0.0005,0.0205] 544
4 0014 [0.0004,0.0210] 506 27 0007 [0.0004,0.0141] 475
5 0011 [0.0005,00178] 502 28 0022 [0.0004,00282] 552
6  0.008 [0.0004,00151] 456 29 0013 [0.0009,0.0205] 489
7 0015 [0.0008,0.0220] 468 30 0.022 [0.0008,0.0284] 477
8 0018 [0.0005,0.0242] 536 31 0010 [0.0005,00162] 444
9 0012 [0.0008,00191] 468 32 0015 [0.0006,0.0213] 534
10  0.018 [0.0004,0.0242] 481 33 0014 [0.0007,0.0211] 496
11 0.017 [0.0005,0.0243] 558 0oL 34 0013 [00005,00196] 432
001 12 0019 [0.0006,0.0256] 540 35 0.019 [0.0009,0.0251] 499
13 0011 [0.0007,0.0171] 460 36 0.007 [0.0009,00132] 433
14 0017 [0.0005 0.0239] 474 37 0.015 [0.0005,0.0223] 556
15 0.007 [0.0005,0.0136] 535 38 0.013 [0.0006,0.0195] 431
16 0.011 [0.0009,0.0177] 537 39 0.020 [0.0006,0.0275] 534
17 0.017 [0.0004,0.0232] 479 40 0.016 [0.0005,0.0220] 520
18 0.007 [0.0004,0.0137] 452 41 0020 [0.0008,00261] 514
19 0020 [0.0008,0.0261] 512 42 0013 [0.0004,0.0203] 511
20 0011 [0.0008,0.0165] 462 43 0017 [0.0004,0.0239] 495
21 0009 [0.0005,0.0164] 460 44 0017 [0.0007,0.0231] 480
22 0015 [0.0004,0.0224] 513 45 0008 [0.0005 00152] 431
23 0011 [0.0009,00172] 541
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Table 5.8 : Dynamic MSV-D model log-volatility estimation results.

i True Mean Estimated Mean RMSE
1 -8.324 -8.322 0.281
2 -8.371 -8.368 0.273
3 -8.281 -8.284 0.275
4 -8.287 -8.284 0.276
5 -8.483 -8.477 0.280

Dynamic MSV-D model estimation results of the dynamic correlations are shown in
Table 5.9. Mean of the actual correlation coefficients and the estimated values are
quite close with acceptable RMSE values (Table 5.9). In Figure 5.6, actual
correlation coefficients and their estimates for all time periods for some of the
correlation components representing dynamic correlations between asset returns (1),
dynamic leverage effect (2), dynamic cross-leverage effect (3) and dynamic volatility
spillover effects (4) are plotted. In all charts it can be seen that estimations follow

the actual patterns successfully.

Table 5.9 : Dynamic MSV-D model estimation results of the dynamic correlations,
paa,ij,t ’ psn,ii,to psn,ij,t-

| e | RS
12 0545 0513 0.084 11 -0457 -0.438  0.085
13 0560 0528 0.083 12 -0434 -0416  0.085
14 0516 0.488  0.091 13 0457 -0.441  0.084
15 0531 0504 0.085 14  -0394 -0.385  0.086
23 0545 0516  0.082 15 -0289 -0.285  0.094
Pi 24 0530 0506 0084 21 0478 -0458  0.085
25 0516 0.494 0.088 22 .0501 -0.480  0.082
34 0522 0493 0.083 23 .0435 -0.421  0.087
35 0559 0533 0.079 24 .0413 -0.404  0.087
45 0526 0502 0.082 25 .0310 -0.307  0.092
31  .0517 -0.494  0.082

12 0797 0768 0.073 32 0505 -0483  0.081
13 0439 0424 0.088 Peniic 33 -0.459 -0.445  0.083
14 0404 0393 0.086 34  .0408 -0395  0.085
15 0354 0348 0.088 35 0359 -0.355  0.088
23 0456 0441 0074 41 0461 -0443  0.087
Pmit 24 0426 0414 0084 42 0467 -0449  0.086
25 0365 0361 0.087 43 0421 -0406  0.085
34 0379 0371 0077 44 0396 -0.387  0.084
35 0355 0351 0.086 45 0325 -0.322  0.086
45 0297 0296 0.090 51  -0491 -0.474  0.092

52 -0.483 -0.465 0.083
53  -0476 -0.460 0.085
54 -0416 -0.409 0.084
55  -0379 -0.376 0.086
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Figure 5.5 : Log-volatility fits for the dynamic MSV-D model.
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Figure 5.6 : Dynamic correlation fits for the dynamic MSV-D model.

In the complete dynamic MSV-D model, one of the important drawbacks is the
significantly increased number of parameters due to the additional AR(1) processes
driving the correlation coefficients each having three parameters and total number of
parameters increase polynomially in dimension. This reflects into the convergence of
the MCMC algorithms with significantly increased inefficiency factors which are

indicators of slow convergence.
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5.2 MSV-D Model on Empirical Data

A complete dynamic MSV-D model specification is applied to the return series of
S&P500 index, IBM and Intel (INTC) stock returns as described in section 4.2.

The return series are plotted in Figure 5.7 where the volatility clusterings and co-

movements of asset returns are visible.
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Figure 5.7 : Return series of S&P500, IBM and Intel (INTC).

MSV-D model parameter estimation results of the log-volatility process parameters,
Yi, @i, oyiare given in Table 5.10. And MSV-D model parameter estimation results for
the correlation process parameters d;, 6; and o,,; are given in Table 5.11, Table 5.12

and Table 5.13 respectively.
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Table 5.10 : MSV-D model parameter estimation results of y;, ¢i, o,; on S&P500,
IBM and Intel(INTC) returns.

i Mean 95% interval Inefficiency
1 -0.149 [-0.079, -0.220] 209
7 2 -0.175  [-0.088, -0.261] 215
3 -0.074 [-0.013,-0.138] 204
1 0984 [0.974, 0.993] 322
oi 2 0979 [0.967, 0.991] 311
3 099 [0.987, 0.999] 251
1 0.187 [0.125, 0.248] 384
Opi 2 0.203 [0.144, 0.262] 405
3 0.136 [0.081, 0.194] 354

Table 5.11 : MSV-D model parameter estimation results of ¢; on S&P500, IBM and
Intel(INTC) returns.

i Estimate 95% interval Inefficiency
1 0.0116 [0.009, 0.014] 208
2 0.0096 [0.007, 0.012] 166
3 0.0164 [0.012, 0.020] 169
4 -0.0156 [-0.011, -0.021] 283
5 -0.0119 [-0.008, -0.015] 156
6 0.0128 [0.009, 0.016] 207
7 0.0191 [0.014, 0.024] 169
i 8 0.0074 [0.005, 0.009] 152
9 -0.0164 [-0.012, -0.021] 257
10 0.0694 [0.051, 0.087] 173
11 0.0248 [0.019, 0.030] 287
12 0.0224 [0.016, 0.028] 213
13 -0.0235 [-0.016, -0.031] 245
14 -0.0154 [-0.012, -0.018] 157
15 -0.0174 [-0.013, -0.022] 261

Table 5.12 : MSV-D model parameter estimation results of 6; on S&P500, IBM and
Intel(INTC) returns.

i Estimate 95% interval Inefficiency
1 0.961 [0.942,0.978] 376
2 0.960 [0.942,0.978] 318
3 0.963 [0.946, 0.979] 375
4 0.968 [0.951, 0.988] 371
5 0.972 [0.954, 0.990] 354
6 0.958 [0.940, 0.974] 349
7 0.964 [0.947,0.981] 279
6 8 0.958 [0.940, 0.975] 269
9 0.965 [0.948, 0.982] 290
10 0.952 [0.934, 0.968] 274
11 0.958 [0.941, 0.976] 262
12 0.965 [0.947,0.983] 275
13 0.965 [0.948, 0.982] 376
14 0.968 [0.951, 0.985] 281
15 0.965 [0.947,0.983] 372
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Table 5.13 : MSV-D model parameter estimation results of ,,; on S&P500, IBM
and Intel(INTC) returns.

i Estimate 95% interval Inefficiency
Coi 1 0.008 [0.004, 0.011] 348
2 0.007 [0.004, 0.010] 402
3 0.019 [0.011, 0.027] 384
4 0.008 [0.005, 0.012] 390
5 0.008 [0.004, 0.011] 336
6 0.007 [0.004, 0.011] 404
7 0.021 [0.011, 0.031] 333
8 0.006 [0.003, 0.009] 366
9 0.010 [0.005, 0.014] 336
10 0.004 [0.002, 0.007] 324
11 0.006 [0.003, 0.009] 379
12 0.006 [0.003, 0.008] 404
13 0.008 [0.005, 0.012] 320
14 0.009 [0.005, 0.013] 325
15 0.010 [0.006, 0.014] 379

To compare the log-volatility estimates obtained from the fitted MSV-D model a
DCC-EGARCH model is also fitted to the data. DCC-EGARCH model parameter

estimation results are given in Table 5.14.

Table 5.14 : GARCH model parameter estimates on S&P500, IBM and Intel(INTC)

returns.
i Estimate Standard Error
1 -0.210 0.002
w 2 -0.119 0.011
3 -0.084 0.004
1 -0.128 0.008
o 2 -0.055 0.013
3 -0.027 0.013
1 0.977 0.000
B 2 0.985 0.001
3 0.988 0.001
1 0.132 0.008
y 2 0.169 0.024
3 0.114 0.005
a 0.036 0.009
b 0.917 0.026

The fitted DCC-GARCH model can address static leverage effect with the
parameters w; and y; and allows dynamic correlation between asset returns with

parametersaand b .
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The logarithms of the squared returns are considered as a reference for comparing the
log-volatility estimates from the MSV-D with the DCC-EGARCH model in terms of
the RMSEs of the log-volatility estimates. Log-volatility estimates from the MSV-D
model and DCC-EGARCH model are compared in Table 5.15 and plotted in Figure

5.8 with the logarithms of squared returns as reference.

Table 5.15 : Log-volatility estimates MSV-D vs. GARCH on S&P500, IBM and
Intel(INTC) returns.

i MSV-D RMSE GARCH RMSE
1 2.558 2.731
2 2.434 2.713
3 2.450 2.692
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Figure 5.8 : Log-volatility estimates of S&P500, IBM and Intel (INTC).

In Table 5.15, it can be seen that the MSV-D model provides lower RMSE values
than the DCC-EGARCH model indicating better performance in capturing the
patterns. Both models follows the general patterns of the reference (i.e logarithm of

87



squared returns) but MSV-D model has a richer and better fit as seen from the charts

in Figure 5.8.

Both the DCC-EGARCH model and MSV-D model produce estimates for the
dynamic correlations between the asset returns as shown in Figure 5.9. Almost
similar patterns are captured for the dynamic correlations between asset returns in

both models.
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Figure 5.9 : Correlations between returns of S&P500, IBM and Intel (INTC).

A main difference between the DCC-EGARCH and MSV-D model is the treatment
of the leverage effects. DCC-EGARCH model addresses the leverage effect through
the parameters w; and y; in a static way whereas the MSV-D model produces time
varying correlations between assets and their volatility process errors. Furthermore,
MSV-D model produces dynamic cross-leverage and dynamic volatility spillover
estimates which are not available in DCC-GARCH and any other volatility models.
In Figure 5.10, examples of dynamic correlation estimates produced by the MSV-D
model are given. First chart in Figure 5.9 is an example of dynamic leverage effect,
second chart is an example of dynamic cross-leverage effect and third chart is an

example of dynamic volatility spillover.
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Figure 5.10 : Dynamic leverage, cross-leverage and volatility spillover estimates.
5.3 Comparative Simulations for Estimation Algorithms

In this section the results of the simulation study described in section 4.3 for
comparing the proposed SGI and MCMC based estimation algorithms and

computational assessment of GPU implementation is presented.

Table 5.16 shows the comparison of SGI and MCMC based estimation algorithms in
terms of accuracy for different settings in terms of the state space dimension and
accuracy level which is the sample size for the MCMC based algorithms and level of
integration formula for the SGI based algorithms. In Table 5.16, the statistics used

for the accuracy is the RMSE computed by equation 4.12. Since it is too much time
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consuming filtering with MCMC based methods are not included except one

measurement at dimension p = 3 and accuracy level N =400,000.

Table 5.16 : Accuracy comparison of SGI and MCMC based estimation algorithms.

Dimension  Accuracy Level Filtering Smoothing FS :gi-(?:ﬁ)pn
(p) (N/1) RMSE RMSE RMSE
50K 0.254 0.420
100K 0.190 0.319
200K 0.148 0.248
400K 0.131 0.213
50K 0.300 0.449
100K 0.236 0.353
MCMC 2 200K 0.191 0.269
400K 0.164 0.230
50K 0.357 0.482
3 100K 0.277 0.374
200K 0.213 0.287
400K 0.203 0.182 0.246
4 0.632 0.607 0.675
5 0.408 0.395 0.455
6 0.255 0.228 0.297
7 0.161 0.129 0.203
4 0.740 0.710 0.779
5 0.465 0.439 0.504
SCl 2 6 0.286 0.258 0.330
7 0.179 0.162 0.224
4 0.833 0.797 0.877
3 5 0.524 0.508 0.568
6 0.320 0.296 0.361
7 0.199 0.177 0.239

In Figure 5.11 RMSEs of log-volatility smoothing estimates in different dimensions

and accuracy levels for both approaches are plotted.

Figure 5.11 : Accuracy comparison of SGI and MCMC based estimation algorithms.
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In SGI based estimation algorithms error decreases faster with the increasing
accuracy level | where at each level | number of points in the integration formula
almost doubles for the trapezoid rule. In MCMC based estimation algorithms
doubling the sample size does not provide the same pace of decrease obtained by
SGI based algorithms. This is actually an expected result of MCMC being a
probabilistic method as discussed before. It is clear that it is easier to control the
error with SGI based algorithms. For the current simulation settings, as seen in
Table 5.16, | = 7 SGI estimation algorithms' accuracy surpass the sample size N =
400,000 MCMC estimation algorithms' accuracy in filtering smoothing and

prediction problems.

Increasing dimension affects the accuracy of SGI based algorithms more than the
MCMC methods. Theoretically MCMC methods are not affected by dimensionality,
but a negative effect of increasing dimension, although not too large, on accuracy in
MCMC based methods is observed in the simulation study. One of the reasons for
this result can be the correlated samples issue and lower acceptance rates in
Metropolis-Hastings steps becoming more severe in higher dimensions resulting in

higher inefficiency and requiring larger samples.
Table 5.17 shows the parameter estimation results of SGI with level I=7 and MCMC

with sample size N = 400.000 for the three dimensional case.

Table 5.17 : Parameter estimation accuracy comparison of the SGI and MCMC
based algorithms.

SGI =7 MCMC N=400K

i True Estimate RMSE Estimate RMSE

1 -0.25 -0.237 0.072 -0.260 0.067

y -025 2  -0.25 -0.248 0.029 -0.261 0.071
3  -0.25 -0.245 0.034 -0.231 0.096

0.95 0.947 0.024 0.956 0.069

pi 0.95 2 0.95 0.952 0.016 0.959 0.065
3 0.95 0.946 0.026 0.961 0.071

1 0.02 0.209 0.045 0.206 0.040

o, 0.02 2 0.02 0.191 0.042 0.207 0.054
3 0.02 0.205 0.037 0.214 0.067

12 0.6 0.605 0.053 0.592 0.059

pij 0.6 13 0.6 0.594 0.041 0.590 0.073
23 0.6 0.606 0.039 0.592 0.058
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In Table 5.17, it can be seen that SGI based parameter estimation algorithm and
MCMC based parameter estimation algorithm produce close estimates to the actual
values of the parameters with lower RMSEs in SGI based estimation algorithm in

most of the parameters except o, ;.

The estimation results shows that, SGI based estimation algorithms perform as well
as the MCMC based estimation algorithms in terms of accuracy and can be
considered as an alternative method with its better convergence and error control

properties.

In Table 5.18, execution times of the SGI based filtering and MCMC based
smoothing algorithms with serial CPU and parallel GPU implementations in seconds
and calculated speed up values are shown. Filtering algorithm is the base algorithm
which is used by all other estimation algorithms in SGI approach and similarly
smoothing algorithm is the base algorithm for the MCMC approach as discussed in
section 3.1 and that is why the acceleration comparisons are made on these

algorithms in Table 5.18.

Table 5.18 : Execution times of SGI and MCMC based estimation algorithms.

GPU Accelerated

Simension Accuracy Serial Time Time Speed Up

Level MCMC SGI MCMC SGI MCMC SGl
Smoothing  Filtering  Smoothing Filtering Smoothing Filtering
50K/4 296.51 1.14 18.60 0.05 15.94 24.95
1 100K/5 596.96 4.86 38.17 0.20 15.64 24.79
200K/6 1,206.39 20.07 79.32 0.82 15.21 24.45
400K/7 2,394.89 81.56 161.06 3.38 14.87 24.13
50K/4 442.39 12.14 34.48 0.53 12.83 22.88
) 100K/5 892.17 84.15 71.60 3.73 12.46 22.59
200K/6 1,796.57 521.06 146.78 23.56 12.24 22.12
400K/7 3,603.20  2,990.38 296.56  137.30 12.15 21.78
50K/4 581.65 62.30 65.43 3.16 8.89 19.73
3 100K/5 1,186.06 623.00 135.70 31.98 8.74 19.48
200K/6 2,393.78  5,292.06 275.46 27491 8.69 19.25
400K/7 4,798.50 40,071.01 554.74  2128.04 8.65 18.83

Figure 5.12 illustrates the serial and GPU accelerated execution times of the SGI
based filtering and MCMC based smoothing algorithms for different dimensions and

accuracy levels. Time axes are in logarithmic scale in the charts of Figure 5.12.
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Figure 5.12 : Execution times of serial and GPU accelerated estimation algorithms.

SGI based filtering algorithm is a sequential algorithm as discussed in section 3 and
its computational burden can be split across time periods so single step filtering times

are included in Figure 5.12 for better comparison.

It can be seen that computational time increases faster when the accuracy level and
dimension increases in SGI based algorithms which are actually costs of faster error
decrease discussed previously. Increasing dimension and accuracy levels
significantly affects the SGI based algorithms and dimensions higher than 5 and
accuracy levels above 7 become prohibitive for SGI based algorithms run on
commodity computers in serial setting in batch mode. However, one of the advantage
of the SGI based algorithms is their sequential structure which allows them compete
with MCMC methods in a practical application where single time step performance
is critical. Single step serial execution times are well below the serial execution times
of MCMC based algorithms as seen in Figure 5.12 and there is room for additional
dimensions for the SGI based algorithms in single-step setting where SGI based
algorithms performs better than MCMC based algorithms.

Parallelization approaches described in section 3.2 and section 3.3 work well on
GPU implementations as seen in Table 5.18 with significantly decreased execution
times and speed up values between 18 and 25. Figure 5.13 shows the achieved speed
ups for the MCMC smoothing and SGI filtering algorithm implementations with
GPU.
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Figure 5.13 : Speed up by dimension in SGI and MCMC based algorithms.

In Figure 5.13 it is observed that speed ups obtained for the SGI based estimation
algorithms are higher. In the parallelization approaches given in section 3.2 and
section 3.3, processes to be executed in parallel consist of complicated operations
for a typical GPU thread but it works with a possible loss of efficiency. In the
MCMC based algorithms, operations assigned to a parallel process are more
complicated than the SGI based algorithms. In the MCMC based algorithms, in
addition to the density function evaluations, random number generation and sampling
from certain distributions are required for each process which is one of the reasons

for lower speed up values for the MCMC based algorithms.

It is also noteworthy that although provided significant decrease in execution times
and made it possible to execute most of the analysis in the study, single GPU quickly
becomes overloaded with the size (i.e. accuracy levels and number of time periods)
of a typical problem and theoretical speed up values or speed up limits to be tested
are beyond the computational resources provided by a single GPU. However the
achieved speed up values and decreased execution times are quite promising for

larger scale computational settings.

5.4 SGI Based Estimation Algorithms on Empirical Data

In this section, the proposed sparse grid integration method is applied to the foreign-
exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish
Lira(TRL) composed of 3669 observations to fit a MSV-B model for illustrating the

proposed SGI based estimation approach on real data. For comparison purposes same
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MSV-B model is fitted using the MCMC based algorithm and a CCC-GARCH

model is fitted to the data as described in section 4.4.

Return series of two foreign exchange rates are shown in Figure 5.14 where the co-

movement of the returns is visible with volatility clusterings.
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Figure 5.14 : Return series of EUR/TL and USD/TL.

MSV-B model parameter estimation results obtained by the SGI based and the
MCMC based estimation algorithms are given in Table 5.19 and CCC-GARCH
model parameter estimation results are given in Table 5.20.

Table 5.19 : MSV-B parameter estimation results for EUR/TL and USD/TL.

MSV-B SGI MSV-B MCMC

i Mean Std. Error Mean Std. Error
_ 1 -0.289 0.027 -0.273 0.035
n 2 -0.378 0.033 -0.369 0.038
_ 1 0.971 0.0092 0.979 0.0099
oi 2 0.962 0.0084 0.968 0.0095
1 0.188 0.019 0.176 0.024
O 2 0.184 0.023 0.171 0.031
Pij 12 0.649 0.018 0.646 0.026

In Table 5.19 it can be observed that the SGI based and MCMC based algorithms
generated close estimations for all parameters. Standard errors of the parameter

estimates with SGI method are slightly lower.

The correlation between asset returns, pj;, in all models including the CCC-GARCH
are consistent as seen in Table 5.19 and Table 5.20 . Both the MSV-B and the CCC-
GARCH model exhibits strong persistence in volatilities however the parameters

are not directly comparable since the structures of the models are different.
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Table 5.20 : CCC-GARCH parameter estimation results for EUR/TL and USD/TL.

CCC-GARCH

i Estimate Std. Error
1 0.000 0.000
w9 0.000 0.000
. 1 0.107 0.041
i 2 0.122 0.039
5 1 0.837 0.039
| 2 0.818 0.034
pi 12 0.652 0.014

The comparison of the log-volatility estimates of the three fitted model are given in
Table 5.21. Here, the logarithms of the squared returns are used as reference for the

calculation of RMSEs as described in section 4.4.

Table 5.21 : Log-volatility estimation comparisons for EUR/TL and USD/TL.

i Smoothing Prediction
RMSE RMSE

1 2.713 2.887
MSV-B MCIE™ 2.701 2.879

1 2.658 2.843
MSV-B SGI 2 2.620 2.806

1 2.869 3.047
CCC-GARCH 2 2.826 2.974

In Table 5.21 it can be seen that SGI based MSV-B has the lowest RMSEs for both
smoothing and prediction. The choice of relatively a higher integration level, | =8 is
probably the reason for the better fit for SGI based estimation algorithms. In Table
5.21 it is also observed that MSV-B model has lower RMSEs with both estimation
methods than the CCC-GARCH model which is an indication of a better

performance in capturing the patterns of the reference.

Figure 5.15 plots the log-volatility smoothing estimates obtained by the SGI based
estimation algorithm and MCMC based estimation algorithm for the MSV-B and
CCC-GARCH log-volatility fit along with the logarithm of the squared returns as the
reference. It can be seen from the charts in Figure 5.15 that the proposed SGI based

estimation algorithm successfully captures the patterns of the log-volatilities.
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Figure 5.15 : Log-volatility smoothing estimates for EUR/TRL and USD/TRL.
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6. CONCLUSION

The capabilities of the MSV models in capturing the stylized facts and dynamics of
volatilities and correlations are undisputable. Different model specifications and
parameterizations of MSV models can address almost any stylized facts and features
about the volatilites and correlations, however addressing several stylized facts and
features at the same time is not trivial since there is a requirement of efficient
mechanism and parameterizations for handling the correlation and covariance
matrices which have special structures and restrictions on their entries especially in
time varying setting. A general parametric MSV model which can accomodate both
the static and dynamic settings for leverage effects, cross-leverage effects, volatility
spillovers and co-movement of asset returns at the same time and furthermore
alowing usage of combinations of static and dynamic components in a single model
was proposed in this study and this parameterization was refferred as MSV-D. A
custom-built Bayesian MCMC estimation algorithm for the MSV-D model was also

developed.

The results in section 5.1 on simulated and the results in section 5.2 on empirical data
showed that the proposed MSV-D model successfully captures the stylized facts of
volatility and correlations in both static and dynamic settings. The proposed MSV-D
model can also address dynamic cross-leverage and dynamic volatility spillovers by
construction which is not an option in currently available MSV models. The
proposed MSV-D model can facilitate dynamic and static components at the same
time in a single model and providing a flexibility to the modeler. The results of
section 5.1 also show that the Bayesian MCMC algorithm developed for the MSV-D
model also does its job sufficiently well in estimation with a room for improving its
sampling efficiency especially in the complete dynamic setting where more efficient

ways for sampling the correlation states g; can be found with further research.

The main drawback of the proposed MSV-D model is the quick increase in the
number of parameters and dimension of the correlation state space in dynamic setting

due to the increasing size of the correlation matrix of returns and volatility errors
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which is a common situation in most multivariate models in the literature. However,
using the dynamic components selectively and putting restrictions on the parameters

of dynamic correlation state processes can help for achieving parsimony.

SV models are nonlinear state space models which require computationally
demanding methods for satisfactory estimations. MCMC based estimation algorithms
are by far the most popular methods for estimation beacuse of their appealing
features. However there are issues on the error control and convergence inherent in
MCMC methods. As an alternative approach SGI based estimation algorithms which
are new to the SV field are developed and evaluated for the estimation problems of

MSV models in comparison with the MCMC based estimation algorithms.

Results in section 5.3 show that the SGI based estimation algorithms perform well by
achieving the accuracy of MCMC based estimation algorithms and even surpass
them in certain conditions. Better error control and convergence properties of SGI
methods are also shown in the results. It is showed that SGI methods, a type of
numerical integration method, can be used for multi dimensional problems as an
alternative to the MCMC based estimation algorithms. Despite the effect of
dimensionality is significantly decreased in SGI methods when compared to the
classical numerical integration methods, there is still some dependency on the
dimension and SGI method can struggle on very high dimensional problems.
However, the algorithms based on SGI are sequential (i.e on-line) algorithms in
contrast with the batch structure of the MCMC methods and this sequential structure
allows splitting the computational burden among time periods which is an important
consideration for practical implementations. Construction of sparse grid formulas
from other univariate formulas such as the Gaussian quadrature rules which probably
be more effective and suitable to MSV model density structures is one of the future
research direction for the SGI based approach. Another direction for improvement
for the SGI based approach would be constructing the sparse grid by adjusting the
integration formula level at each time step for better error control and computational
efficiency which can significantly improve the method from the algorithmic
perspective. Hybrid approaches combining Monte Carlo based methods with sparse
grid integration based methods for computational advantage and better convergence

could lead to further research.
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The computational requirements of the both MCMC and SGI based algorithms are
high and it is showed that GPU implementation is an efficient and low-cost solution
in accelerating the execution times of the estimation algorithms. Altough the size of a
typical problem exceeds the resources provided by a single GPU and theoretical
speed up values could not be tested and scaling could not be observed, single GPU
results having speed up values up to 16 for MCMC based algorithms and speed up
values up to 25 for SGI based algorithms are obtained as shown by the results in
section 5.3. The contributions of the developed parallel approaches for the MCMC
and SGI based algorithms and their GPU implementations are clear from the results
which are promising for larger scale parallel architecture implementations.
Alternative parallelization and acceleration approaches for estimation algorithms and
extending the computing architecture and software programs to distributed and
cluster settings are further research directions in the computational aspect.
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APPENDIX A : Integral Notation Definitions

The definitions and representations of the multiple integral notations used throughout
the study is summarised as follows.

Integral with respect to a vector

Let f(x) be a function of vector argument where x e R’ and Let x=(x,...,X,)" be
a d-dimensional vector, then for the integral of f (x) with repsect to the vector x the

following equalities hold:

I (x)dx = IJ' X) dx,..dx,

= dx1 dx,. (A1)

Xy e Xg )X 0Xg

1l
'—-

Integral with respect to a set of vectors

Let f(x,,.x,) be a function of vector arguments where x, e R*and X={x,,..,x.}
be a set of vectors where x; = (x,;,...x,;)" € R for i =1,..,t, then for the integral of

f (X) with repsect to the set X, the following equalities hold:

I X)X = J‘J‘ X) dx,..dx,

dx .ax,. (A.2)

= 1’1

EI Xigoeor Xgarees Koo th)dxu Xy .. dx 0.

Integral with respect to a matrix

Let f(X) be a function of diagonal matrix argument where XeR™ and let
X =diag(x,,..,X4) then then for the integral of f (X) with repsect to the set X, the
following equalities hold:

I (X)X = _[ I X) dx,..dx,
= X )alx,...dx, . (A3)
Xy eor Xg )X,

Ml
'—.

108



APPENDIX B : Construction of Time Varying Correlation Matrices

Figure B.1 illustrates the mechanism that constructs valid correlation matrices based

on an AR(1) process in the proposed MSV-D model.

Time varying
correlation matrix
blLt blz,t T b1,2 p.t T
) — P =B,B
bth . 0 t t =t
Bt = A Cholesky
: 0 0 Decomposition | v Symmetric
b2 1t 0 0 0 v Positive-definite
P v’ Diagonal elements are
equalto 1
v’ Off-diagonal elements are
j-1 between -1 and 1
by = Cos(aij.t)'gSIn(aik,t)
Matrix of angles
A1y Tt Qapag 0
A 4 ' 0 0
t(2px2p) =
Ayp1yy O 0 0
0 0 0 0
0< ; <7
i ¢ T
qij,t - Iog Aijp = —0j t
T =0y e " +1
AR(1) process driving the
qm T ql,z p-Lt 0 time varying correlations
: ' 0 0
R, = .
O2paat 0 0 0 d,, =90+0q, + o,
<—
0 0 0 0
o, ~N(0,V,)
—0< qij < 00

Figure B.1 : Time varying correlation matrix construction mechanism of the MSV-D
model.
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APPENDIX C : Important C Program Functions and Sample Codes

Appendix C.1: Correlation matrix parameterization and transformation functions

// Correlation matrix parameterization and transformation functions
// by Halil Erturk Esen

void corr_to_angle(int dim, float *cor, float *angle){
int i, j, k, nn;
float den, *element, *bmat, *templ, *temp2;
nn = dim*dim;
element = (float *)malloc(sizeof(float)*nn);
temp2 = (float *)malloc(sizeof(float)*nn);
templ = (float *)malloc(sizeof(float)*nn);
bmat = (float *)malloc(sizeof(float)*nn);
//Elementary matrix
for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
if (i+j==dim-1){
element[i+dim*j]=1.0;
}

else{

}

element[i+dim*j]=0.0;

}
}

sqrmm(element, cor, dim, templ); //Matrix multiplication
sqrmm(templ, element, dim, temp2);
chol(temp2, dim, templ); //Cholesky decomposition

for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
temp2[i+dim*j] = templ[j+dim*i];
}
}
sqrmm(element, temp2, dim, bmat);
//Extract angles
for (i=0;i<dim;i++){
for (j=0;j<dim;j++){
if(i+j<dim-1){
den=1.0;
for (k=0;k<j;k++){
den = den*sin(angle[i+dim*k]);

}
angle[i+j*dim]=acos(bmat[i+j*dim]/den);
}
else{
angle[i+j*dim]=0.0;
}

}
}
// free(...);
}

void angle_to_corr(int dim, float *angle, float *cor){
int i, j, k, nn;
float den, *rc, *bmat, *temp;
nn=dim*dim;
rc = (float *)malloc(sizeof(float)*nn);
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bmat = (float *)malloc(sizeof(float)*nn);
temp (float *)malloc(sizeof(float)*nn);
for(i=0;i<dim;i++){
for (j=0;j<dim;j++){
if(i+j<dim){
den=1.0;
for(k=0;k<j;k++){
den = den*sin(angle[i+dim*k]);

}
bmat[i+j*dim]=cos(angle[i+j*dim])*den;
}
else{
bmat[i+j*dim]=0.0;
}

}
¥
for(i=0;i<dim;i++){
for (j=0;j<dim;j++){
temp[i+dim*j] = bmat[j+dim*i];
}
}

sqrmm(bmat, temp, dim, rc);

for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
cor[i+dim*jl=rc[i+dim*j];
}
}
// free(...);
}

void g_to_angle(int dim, float *q, float *angle){
int i, j;
for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
if(i+j<dim-1){
angle[i+dim*j]= PI/(exp(-1*q[i+dim*j-
(3*(3+1)/2)1)+1);
}
else{
angle[i+dim*j]=0.0;
}

}

void angle_to_q(int dim, float *angle, float *q){
int i, j;
for(i=0;i<dim;i++){
for(j=0;j<dim-1-i;j++){
gqli+dim*j-(j*(j+1)/2)] = -1*log((PI/angle[i+dim*j])-1);
}
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Appendix C.2 : Sparse grid construction functions

//Functions for the construction of the regular sparse grids
//for arbitrary dimension and accuracy level based

//on the trapezoid rule

//by Halil Erturk Esen

//Simplex size
int simsize(int dim, int level){
int i, j=0, sm, cnt=0;
int *ka;
//printf("Dim = %d \n",dim);
ka = (int *)malloc(sizeof(int)*(dim+1));
for(i=0;i<=dim;i++){

ka[i]=1;
}
while(j >= 0){
j = dim;
sm = level + dim;
while(sm > level + dim - 1){
ka[j] = 1;
j=3-1;
if(3>=0){
ka[j] = ka[J] + 1;
}
//printf("ka[%d]= %d \n", j, ka[jl]);
sm=0;
for(i=0; i<dim; i++){
sm = sm + ka[i];
}
}
cnt=cnt+1;
¥
free(ka);

return cnt;

}

//Simplex construction

void simplexc(int dim, int level, int *splx){
int i, j=0, sm, size, cnt=0;
int *k;
k = (int *)malloc(sizeof(int)*(dim+1));
size = simsize(dim, level);

for(i=0;i<=dim;i++){

k[i]=1;
}
while(j >= 0){
j = dim;

sm = level + dim;
while(sm > level + dim - 1){

k[j] = 1;
j=3-1
if(j>=0){

k[3] = k[3] + 1;
}
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sm=0;
for(i=0; i<dim; i++){
sm = sm + k[i];
}
¥
for(i=0; i<dim; i++){
splx[cnt+size*i] = k[i];

}
cnt=cnt+1;
}
free(k);

¥
// Sparse grid size
int sparsegsize(int dim, int level){
int i, j, gsize=1, qsize, fullsize=0, sims, cnt, mn, ss;
int *quadn, *deltan, *deltans, *qgngr, *dngr,
*simplex, *simplexnnd;
float *quadw, *deltaw, *deltaws;

//Quadrature and delta rule nodes and weights----- 3
gngr=(int *)malloc(sizeof(int)*level);
dngr=(int *)malloc(sizeof(int)*level);
for(i=level;i»0;i--){

gngr[i-1]=intpow(2,1i)-1;

gsize=level*qgngr[level-1];

quadn=(int *)malloc(sizeof(int)*qgsize);
quadw=(float *)malloc(sizeof(float)*qgsize);
deltan=(int *)malloc(sizeof(int)*qgsize);
deltaw=(float *)malloc(sizeof(float)*qgsize);
deltans=(int *)malloc(sizeof(int)*qgsize);
deltaws=(float *)malloc(sizeof(float)*qgsize);

for(i=0;i<level;i++){ //Quadrature nodes and weights
ss=(gngr[level-1]-qgngr[i])/(gngr[i]+1);
cnt=0;
mn=0;
for(j=0;j<qngr[level-1];j++){
if(cnt<ss){
quadn[i+level*j]=0;
quadw[i+level*j]=0;
cnt=cnt+1;

else{
quadn[i+level*j]=1;
if(mn==0 || mn==(gngr[i]-1)){
quadw[i+level*j]=1.5f;
}

else{
quadw[i+level*j]=1;

}
cnt=0;
mn=mn+1;

}

for(i=0;i<level;i++){//Delta nodes and weights
dngr[i]=0;
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for(j=0;j<gngr[level-1];j++){
if(i==0){
deltan[i+level*j]=quadn[i+level*j];
deltaw[i+level*j]=quadw[i+level*j];

}
else{
deltan[i+level*j]=quadn[i+level*j]-
quadn[i-1+level*j];
deltaw[i+level*j]=quadw[i+level*j]-
quadw[i-1+level*j];
}

if(deltan[i+level*j]==0){
deltaw[i+level*j]=0;

¥
dngr[i]=dngr[i]+deltan[i+level*j];

}

for(i=0;i<level;i++){//Stacked node indices and weight matrices
for(j=0;j<gngr[level-1];j++){
deltans[i+level*j]=0;
deltaws[i+level*j]=0;

}

for(i=0;i<level;i++){
cnt=0;
for(j=0;j<gngr[level-1];j++){
if(deltan[i+level*j]==1){

deltans[i+level*cnt]=7;
deltaws[i+level*cnt]=deltaw[i+level*j];
//printf("Check: %d \n", it+level*cnt);
cnt=cnt+1;

[/------------- End of difference rule nodes and weights----- 5
sims=simsize(dim, level);
simplex=(int *)malloc(sizeof(int)*sims*dim);
simplexnnd=(int *)malloc(sizeof(int)*sims*dim);
simplexc(dim, level, simplex);
for(i=0;i<sims;i++){//nnd vectors over simplex
gsize=1;
for(j=0;j<dim;j++){
simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)];
gsize=gsize*simplexnnd[i+sims*j];
¥
fullsize=fullsize+gsize;
¥
// free(...);
return fullsize;

}

// Final sparse grid construction
void sparsegcon(int dim, int level, int *coords, float *weights){
int h, g, i, j, v, gsize=1, sgsize, qsize, fullsize=0, sims, cnt,
cond, mn, ss, lin, eq, eqcheck;
int *quadn, *deltan, *deltans, *gngr, *dngr,

114



*k, *prngr, *prntgr, *simplex, *simplexnnd, *nnd,
*levd, *grid, *sgrid, *tempn, *gmind;

float *quadw, *deltaw, *deltaws, *prwtgr, *prwv, *wvec,
*cwvec, *swvec, tempw, cuweight;

//Quadrature and delta rule nodes and weights----- 5
gngr=(int *)malloc(sizeof(int)*level);
dngr=(int *)malloc(sizeof(int)*level);
for(i=level;i>@;i--){

gngr[i-1]=intpow(2,i)-1;

gsize=level*qgngr[level-1];

quadn=(int *)malloc(sizeof(int)*qgsize);
quadw=(float *)malloc(sizeof(float)*qgsize);
deltan=(int *)malloc(sizeof(int)*qgsize);
deltaw=(float *)malloc(sizeof(float)*qgsize);
deltans=(int *)malloc(sizeof(int)*qsize);
deltaws=(float *)malloc(sizeof(float)*gsize);

for(i=0;i<level;i++){ //Quadrature nodes and weights
ss=(gngr[level-1]-gngr[i])/(gqngr[i]+1);

cnt=0;
mn=0;
for(j=0;j<qngr[level-1];j++){
if(cnt<ss){
quadn[i+level*j]=0;
quadw[i+level*j]=0.0;
cnt=cnt+1;
}
else{
quadn[i+level*j]=1;
if((qngr[i]-1)==0){
quadw[i+level*j]=(2.0)/(qngr[i]+1);
}
else if(mn==0 || mn==(gngr[i]-1)){
quadw[i+level*j]=(1.5)/(gqngr[i]+1);
}
else{
quadw[i+level*j]=(1.0)/(gngr[i]+1);
}
cnt=0;
mn=mn+1;
}
}
}
for(i=0;i<level;i++){//Delta nodes and weights
dngr[i]=0;
for(j=0;j<qngr[level-1];j++){
if(i==0){
deltan[i+level*j]l=quadn[i+level*j];
deltaw[i+level*j]=quadw[i+level*j];
}
else{
deltan[i+level*j]=quadn[i+level*j]-
quadn[i-1+level*j];
deltaw[i+level*j]=quadw[i+level*j]-
quadw[i-1+level*j];
}
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if(deltaw[i+level*j]!=0){
deltan[i+level*j]=1;

}

dngr[i]=dngr[i]+deltan[i+level*j];

}

for(i=0;i<level;i++){//Stacked node indices and weight matrices
for(j=0;j<qngr[level-1];j++){
deltans[i+level*j]=0;
deltaws[i+level*j]=0;

}

for(i=0;i<level;i++){
cnt=0;
for(j=0;j<qngr[level-1];j++){
if(deltan[i+level*j]==1){
deltans[i+level*cnt]=j;
deltaws[i+level*cnt]=deltaw[i+level*j];

cnt=cnt+1;
}
}

}

//------------- End of difference rule nodes and weights----- 5
//:==========================================================
//CONSTRUCTING THE GRID AND ASSOCIATED WEIGHTS
//===========================================================
//Simplex construction--------------------- 5

sims=simsize(dim, level);

simplex=(int *)malloc(sizeof(int)*sims*dim);
simplexnnd=(int *)malloc(sizeof(int)*sims*dim);
simplexc(dim, level, simplex);

for(i=0;i<sims;i++){//nnd vectors over simplex
gsize=1;
for(j=0;j<dim;j++){
simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)];
gsize=gsize*simplexnnd[i+sims*j];
}

fullsize=fullsize+gsize;

}

//Full grid

grid=(int *)calloc(fullsize*dim, sizeof(int));
wvec=(float *)calloc(fullsize, sizeof(float));
cwvec=(float *)calloc(fullsize, sizeof(float));
gmind=(int *)calloc(fullsize, sizeof(int));
nnd=(int *)malloc(sizeof(int)*dim);

levd=(int *)malloc(sizeof(int)*dim);

//Loop over simplex combinations
1in=0;
for(v=0;v<sims;v++){
for(i=0;i<dim;i++){
nnd[i]=simplexnnd[v+sims*i];
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levd[i]=simplex[v+sims*i]-1;
}
//Product grid nodes primary construction-------- 5
k = (int *)malloc(sizeof(int)*dim);
gsize=1;
for(i=0;i<dim;i++){
k[i]=1;
gsize=gsize*nnd[i];
}
prngr = (int *)malloc(sizeof(int)*gsize*dim);
cnt=0;
for(i=0;i<dim;i++){
prngr[cnt+gsize*i]=k[i];

cnt=1;
i=0;
cond=0;
while(cond == 0){
k[i]=k[i]+1;
cond=(k[dim-1] > nnd[dim-1]);
if (k[i]>nnd[i]){
k[i]=1;
i=1+1;

}
else{
for(j=0; j<dim; j++){
prngr[cnt+gsize*jl=k[j];
}
cnt=cnt+1;
i=0;
}
}
//------ End of product grid nodes primary construction------ ;

//Product grid transformed nodes and weights construction---;

prntgr = (int *)malloc(sizeof(int)*gsize*dim);
prwtgr = (float *)malloc(sizeof(float)*gsize*dim);
prwv = (float *)malloc(sizeof(float)*gsize);
for(i=0;i<gsize;i++){
for(j=0; j<dim; j++){
prntgr[i+gsize*j]= deltans[levd[j]+
level*(prngr[i+gsize*j]-1)];
prwtgr[i+gsize*j]= deltaws[levd[j]+
level*(prngr[i+gsize*j]-1)];

¥
}
for(i=0;i<gsize;i++){
prwv[i]=1;
for(j=0; j<dim; j++){
prwv[i]= prwv[i]*prwtgr[i+gsize*j];
}
¥

//Copy product nodes and weights components to grid matrix
for(i=0;i<gsize;i++){
for(j=0; j<dim; j++){
grid[lin+fullsize*j]=prntgr[i+gsize*j];
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}

wvec[lin]=prwv[i];
lin=1in+1;

¥
free(k);
free(prngr);

free(prntgr);
free(prwtgr);

free(prwv);

}

//Aggregate grid matrix for repeat nodes
//Sort the grid matrix
tempn=(int *)malloc(sizeof(int)*dim);
for(h=1;h<fullsize-1;h++){
for(g=0;g<fullsize-h;g++){
eqcheck = 1;

j=0;

while(j<dim && eqcheck == 1){

if(grid[g+fullsize*j] < grid[g+l+fullsize*j]){
eq = 0;
eqcheck = 0;
}
else if(grid[g+fullsize*j] >
grid[g+l+fullsize*j]){

eq = 1;
eqcheck = 0;
}
else{
eqcheck = 1;
}
j=j+1;
}
if(eq==1){
for(j=0;j<dim;j++){
tempn[j]l=grid[g+fullsize*j];
grid[g+fullsize*j]=grid[g+1+fullsize*j];
grid[g+1l+fullsize*j] = tempn[j];
}
tempw = wvec[g];
wvec[g]=wvec[g+1];
wvec[g+l]=tempw;
}
}
}
// Track the repeating nodes
cnt=0;
for(i=0;i<fullsize-1;i++){
if(i==0){
cuweight = wvec[i];
cwvec[i] = cuweight;
}
eqcheck = 1;
j=0;

while(j<dim && eqcheck ==1){
if (grid[i+1+fullsize*j] > grid[i+fullsize*j] ){

eq = 0;
eqcheck = 0;
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}

else{
eq = 1;
eqcheck = 1;
}
J=3+1;
}
if(eq==0){
cnt = cnt + 1;
cuweight = wvec[i+1];
}
else {
cuweight=cuweight+wvec[i+1];
}

gmind[i+1]=cnt;
cwvec[i+1l] = cuweight;

}
sgsize = gmind[fullsize-1]+1;
//Final sparse grid array

sgrid=(int *)calloc(sgsize*dim, sizeof(int));

swvec=(float *)calloc(sgsize, sizeof(float));

h=0;

for(i=0;i<fullsize-1;i++){

if(gmind[i]!=gmind[i+1]){
swvec[h]=cwvec[i];
for(j=0;j<dim;j++){
sgrid[h+sgsize*j]=grid[i+fullsize*j];

}

h=h+1;

}

swvec[sgsize-1]=cwvec[fullsize-1];
for(j=0;j<dim;j++){
sgrid[sgsize-1+sgsize*j]=grid[fullsize-1+fullsize*j];

}

for(i=0; i<sgsize; i++){
for(j=0; j<dim; j++){
coords[i+sgsize*j]=sgrid[i+sgsize*]j];
}
}
for(i=0; i<sgsize; i++){
weights[i]=swvec[i];

}

//free(quadn);
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Appendix C.3: Examples of GPU device kernels, device functions and their usage

Examples of GPU device functions:

//Vector matrix multiplication on device
__device__ void gpu_sqrvm(float *a, float *b, int dim, float *c){
int i, j;
for(i=0;i<dim;i++){
c[i]=0.0;
for(j=0;j<dim;j++){
c[i]+=a[j]*b[j+dim*i];
}

}

// Cholesky decomposition on device

__device__ void gpu_chol(float *a, int dim, float *b){
int i, j, k;
float rs;

for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
b[j+dim*i] = 0.0;
}
}

for(i=0;i<dim;i++){
for(j=0;j<dim;j++){
if(i==3){
rs = 0.0;
for(k=0;k<j;k++){
rs = rs + ( b[k+dim*i] ) * ( b[k+dim*j] );

}
b[j+dim*i] = sqrt(a[i+dim*j]-rs);
}
else if(i>j){
rs = 0.0;
for(k=0;k<j;k++){
rs = rs + ( b[k+dim*i] ) * ( b[k+dim*j] );
}
b[j+dim*i] = (a[i+dim*j]-rs)/b[j+dim*j];
}
else{
b[j+dim*i] = 0.0;
}

}

The following is a simplified illustration of the GPU device kernel from the
implemented MCMC with EM smoothing algorithm device kernel.

__global _ void mcmc_kernel si(int k, int offs, int nt, int pcl_size, int
ts_t, int dimh, float sc, float *ry, float *phi,
float *gamma, float *theta, float *delta, float
*vv_var, float *qq_var, float *yc, float *yp,
float *hp, float *hc, float *hn, float *candid_h,
float *gp, float *qc, float *qn, float *candid_q,
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float *transgridh, float *transgridq, float *h_ini,
float *q_ini, float *h_sigmas,float *ch_qq, float
*p_mu, float *p_vv, float *ch_p_vv, curandState_t
*state, float *rrnd_h, float *rndsc_h, float *rrnd_gq,
float *rndsc_q, float *u, float *matfl, float *matf2,
float *matf3, float *matf4, float *matf5, float
*matrr, float *matvv, float *matvr, float *matrv,

float *wrkhl, float *wrkh2, float *wrkh3, float *wrkh4,
float *vechl, float *vech2, float *wrkql, float *wrkq2,
float *wrkq3, float *wrkq4, float *vecql, float
*vecq2){

int j, m, trans_k, trans_1l, term = 1, noterm = 0;

float numerw, denomw, wght;

int dimg = 2*dimh*(2*dimh-1)/2;

int dimf = 2*dimh;

int h_nn = dimh*dimh;

trans_k = 2*pcl_size+ts_t-2; //Number of rows of transformed grid

if(ts_t % 2 == 0){ //Number of columns of transformed grid
trans_1 = (int)(ts_t/2);

}

else{
trans_1 = (int)((ts_t+1)/2);

}

//GPU Thread id
int tid = offs + threadIdx.x + blockIdx.x*blockDim.x;

int vidh = dimh*tid;
int vidq = dimg*tid;
int midh = dimh*dimh*tid;
int midq = dimg*dimg*tid;
int midf = dimf*dimf*tid;

// Assigning parts of device pointers to threads with thread id.
// Random number generation on device with CURAND library.
// Computations and operations with device functions gpu_*
if(tid<nt+offs){

//q: Candidate, prev, current, next

for(j=0;j<dimq;j++){

rend_q[j + vidq]=curand_normal(&state[tid]);
}

gpu_sqgrmv(ch_qq, &rrnd_q[vidq], dimq, &rndsc_q[vidq]);

for(j=0;j<dimqg; j++){

gp[j+vidq]=transgridq[k-1 +
trans_k*tid+trans_k*trans_l1*j];

gc[j+vidq]=transgridq[k-2 + trans_k*tid +
trans_k*trans_1*j];

if(tid < trans_1 -1){

gn[j+vidq]=transgridq[k-1 + trans_k*(tid+1)+

trans_k*trans_1*j];

}

for(j=0;j<dimh;j++){
hp[j+vidh]=transgridh[k-1 +
trans_k*tid+trans_k*trans_1%*j];
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else{

hc[j+vidh]=transgridh[k-2 + trans_k*tid +
trans_k*trans_1*j];
if(tid < trans_1 -1){
hn[j+vidh]=transgridh[k-1 +
trans_k*(tid+1) +
trans_k*trans_1*j];
}
yc[j+vidh]=ry[2*tid+1+j*ts_t];
yp[j+vidh]=ry[2*tid+j*ts_t];
candid_h[j+vidh]=p_mu[j+vidh]+rndsc_h[j+vidh];
}
u[tid] = curand_uniform(&state[tid]);

//Parallel execution with device functions
if(tid==0){
numerw =
.. *gpu_cprnorm(dimh, &hc[vidh], &p_mu[midh],
&p_vv[midh], &wrkhl[midh], &wrkh2[midh],
&wrkh3[midh], &vechl[vidh], &vech2[vidh]);

denomw = ...

else if (tid>@ && tid<trans_1-1){

}

else {

if(denomw>0){
wght= numerw/denomw;
if (wght>1){

wght=1.0;

}

}

else{

wght=1.0;

}

// Updating device pointers from threads
if(u[tid] <= wght){
for(j=0;j<dimh;j++){
transgridh[k + trans_k*tid + trans_k*trans_1%*j]
= candid_h[j + vidh];
}
for(j=0;j<dimq; j++){
transgridq[k + trans_k*tid + trans_k*trans_1*j]
= candid_q[j+vidq];

for(j=0;j<dimh;j++){
transgridh[k + trans_k*tid + trans_k*trans_1*j]
= hc[j+vidh];
¥
for(j=0;j<dimqg;j++){
transgridq[k + trans_k*tid + trans_k*trans_1*j]
= qc[Jj+vidq];
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The following code is a simplified illustration of calling a GPU kernel such as the
one above from the host along with buffer transfers.

// Allocation of device buffers

cudaMalloc((void**)&dev_transgridh, trans_k*trans_l*dimh*sizeof(float));
cudaMalloc((void**)&dev_transgridq,trans_k*trans_l*dimg*sizeof(float));
cudaMalloc((void**)&dev_ry, h_tnn*sizeof(float));

// Data transfer to device memory
cudaMemcpy(dev_ry, ry, h_tnn*sizeof(float),cudaMemcpyHostToDevice);

offs = 0;
nt = (k-1)/2;
blocks n =(int)(((k-1)/2+threadsize-1)/threadsize);

// Device kernel call for parallel execution
mcmc_kernel _si<<<blocks_n, threadsize>>>(k, offs, nt, pcl_size, ts_t,
dimh, ..., dev_transgridh, dev_transgridq, ....);

//Synchronization and blocking
cudaDeviceSynchronize();

//Data transfer back to host

cudaMemcpy (transgridh,dev_transgridh,trans_k*trans_l*dimh*sizeof(float),
cudaMemcpyDeviceToHost);

cudaMemcpy(transgridq,dev_transgridqg,trans_k*trans_l*dimgq*sizeof(float),
cudaMemcpyDeviceToHost);
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