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A NOVEL MULTIVARIATE STOCHASTIC VOLATILITY MODEL AND 

ESTIMATION WITH GPU COMPUTING 

SUMMARY 

Modeling and estimation of volatilities of asset returns in financial markets have 

been a major research area for the last three decades because of the prominent role of 

volatility concept in mathematical and quantitative finance. Reliable volatility 

estimates of asset returns are indispensible inputs to several mathematical models in 

financial frameworks including but not limited to risk management and 

measurement, option pricing, portfolio and asset management. 

Volatilities of asset returns show several well studied and reported structural patterns 

which are called stylized facts including time varying and persistent dynamics, 

leverage effects and spillovers. Models and estimation methods for addressing those 

stylized facts about volatility for asset returns are central to the contemporary 

volatility estimation research.  

Stochastic volatility (SV) models constitute a family of models considering the 

conditional variance of returns as latent variables driven by a stochastic process 

instead of explicitly modeling it as in the Autoregressive Conditional 

Hetoreskadasticity (ARCH) models which constitute an other family of models in the 

volatility modeling research field. By construction, SV models are quite flexible and 

versatile in capturing the stylized facts, however because of their nonlinear 

structures, linear approximations or computationally demanding numerical methods 

are required for the associated estimation problems. 

An appreciable amount of research composed of several multivariate model 

specifications and parameterization addressing different and more complicated 

stylized facts not only about volatility but also about co-volatility and their 

multidimensional dynamics is available. In the multivariate stochastic volatility 

(MSV) modeling research the control mechanisms and parameterizations of the 

covariance and/or correlation matrices in MSV models and their handling in time-

varying settings are the core topics since almost all stylized facts are imposed 

through the structure of those matrices which have special structures and restrictions 

on their entries in MSV models. Addressing several stylized facts at the same time in 

a single model is not a trivial task and requires appropriate mechanisms and most of 

the available models in the literature address only a subset of stylized facts at the 

same time. In this context, a novel MSV model referred as MSV-D is proposed as 

one of the objectives of this thesis. The proposed MSV-D model can accommodate 

most of the common stylized facts, namely correlations between asset returns, 

leverage effect (i.e. asymmetry) cross-leverage effect and volatility spillovers and 

furthermore it allows replacing the static versions of the listed stylized facts with the 

time-varying (dynamic) counterparts completely or partially. The proposed MSV-D 

model achieves this flexibility and generality by modeling the correlations as 
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separate stochastic processes like the volatilities. The proposed MSV-D model 

includes a specially designed mechanism for handling the time-varying correlation 

matrices and controlling the stochastic processes driving correlations. Having been 

proposed a MSV model, its estimation algorithm based on the Markov Chain Monte 

Carlo (MCMC) methods in a Bayesian setting is also developed. The proposed 

MSV-D model and its Bayesian MCMC estimation method are illustrated on 

simulated and empirical data and it is shown that the proposed MSV-D model and its  

Bayesian estimation algorithm perform well in both static and dynamic settings. 

As being  nonlinear state space models, MSV models require estimation methods that 

can handle high dimensional integrals for obtaining smoothing, filtering and 

prediction estimates of log-volatilities and parameter estimates. Mainstream 

estimation method for the MSV models are based on the MCMC methods including 

the Gibbs sampling and Metropolis-Hastings algorithms. MCMC methods are not 

affected by the high dimensionality in contrast with the any other alternative methods 

available including other Monte Carlo based probabilistic methods such as 

resampling, importance sampling and rejection sampling and exact methods such as 

the numerical integration. Moreover, MCMC methods can be extended naturally in a 

Bayesian setting where parameter estimation can also be performed by the sampling 

schemes offered by MCMC without the need for explicit calculation and separate 

routines for maximizing the log likelihood. The drawbacks with the MCMC method 

are the issues in convergence and error control and selection of the proposal density 

where the posterior density is not analytically tractable. Poor mixing chains with high 

inefficiency factors are common in applications. In search of an alternative 

estimation approach for the MSV models which would have better error control and 

convergence properties and computational features competing with the MCMC 

approach, Sparse Grid Integration (SGI) based estimation algorithms which have not 

been studied for MSV models previously, are developed and evaluated for the second 

objective of the study. SGI method is a smartly reshaped version of the conventional 

numerical integration method for handling multi-dimensional integrals by 

constructing multi-dimensional integration formulas in a way that the dimensionality 

effect is decreased to a certain extent which allows practical implementation in 

higher dimensional cases in contrast to the conventional numeric integration 

methods.  

The proposed SGI based estimation algorithms are illustrated on simulated and 

empirical data and it is shown that the proposed algorithms perform as well as the 

MCMC based algorithms and in certain conditions surpass the MCMC methods in 

terms of both accuracy and computational performance. Although the issues with 

dimensionality is significantly reduced with the SGI based approach, high 

dimensional problems can still be problematic from the computational perspective. 

The computational requirements of the both MCMC and SGI based algorithms are 

quite high. In this context, computational improvements that can be achieved with 

the usage of graphics processing unit (GPU) for estimation algorithms are evaluated 

by developing and implementing parallelization approaches for MCMC and SGI 

based estimation algorithms as the third objective of the study. 

In the simulation study conducted implemented parallel GPU estimation algorithms 

provided significant improvements in execution times with speed up values up to 16 

for MCMC based algorithms and speed up values up to 25 for SGI based algorithms 

on single GPU which are promising results for larger scale parallel architecture 

implementations. 
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YENİ BİR ÇOK DEĞİŞKENLİ STOKASTİK OYNAKLIK MODELİ VE GPU 

TABANLI HESAPLAMA İLE KESTİRİMİ  

ÖZET 

Finansal oynaklık (ing: volatility) kavramının matematiksel ve sayısal finans 

alanında oldukça önemli bir yeri olması sebebiyle finansal piyasalarda oynaklık 

modellemesi ve kestirimi (ing: estimation), temel bir araştırma alanı olarak karşımıza 

çıkmaktadır. Güvenilir oynaklık tahminleri, risk yönetimi, opsiyon fiyatlama, portföy 

ve varlık yönetimi gibi birçok matematiksel model ve sayısal finans yaklaşımı için 

vazgeçilmez derecede önemli girdilerdir.  

Finansal varlık getirilerindeki oynaklık üzerinde yapılan bir çok araştırma ve çalışma 

oynaklığın çeşitli yapısal desenler ve dinamikler gösterdiğini ortaya koymuştur. 

Zaman içinde değişenlik, yer yer kalıcı özellikte dinamikler, getiriler ile oynaklık 

arasındaki ilişkiyi ifade eden kaldıraç (asimetri) ve birden fazla getiri sözkonusu 

olduğunda oynaklıklar arasındaki yayılma etkileri bu yapısal desenlerden önemli 

olanlardır. Oynaklıkla ilgili bu yapısal desenleri yansıtabilecek matematiksel 

modeller kurgulamak, bunlara ilişkin kestirim (ing: estimation) yöntemleri ve araçlar 

geliştirmek ile bunlar ile getiri verileri üzerinde gerçekleştirilen analizler, güncel 

oynaklık kestirim araştırmalarının ve çalışmalarının temel odağı durumundadır. 

Stokastik oynaklık modelleri iki temel oynaklık modelleme yaklaşımından bir 

tanesidir. Stokastik oynaklık modelleri getirilerin koşullu varyansını, diğer bir önemli 

model ailesi olan Autoregressive Conditional Heteroskedasticity (ARCH) 

modellerinde olduğu gibi açık biçimde modellemek yerine koşullu varyansı, 

stokastik bir süreci takip eden örtülü (ing: latent) bir değişken olarak ele alan bir 

model ailesidir. Stokastik oynaklık modelleri koşullu varyansların ayrı bir stokastik 

süreç olarak ele alınışı dolayısıyla, oynaklıkla ilgili belirtilen yapısal desenleri ve 

dinamikleri yakalama konusunda oldukça esnek ve yetenekli modellerdir. Ancak 

doğrusal olmayan yapıları sebebiyle stokastik oynaklık modelleri, ilgili kestirim 

problemleri için ya doğrusal yaklaştırıma dayalı yöntemler ya da yoğun hesaplama 

ihtiyacı duyan sayısal yöntemler gerektirmektedirler.  

Yazında, oynaklık ve oynaklığın çok boyutlu dinamikleri ile ilgili yapısal desenleri 

gözeten ve modellemeye çalışan çok değişkenli modeller üzerine ciddi miktarda 

çalışma ve araştıma bulunmaktadır. Çok değişkenli stokastik oynaklık (ÇDSO) 

modelleme araştırmalarında, kovaryans ve korelasyon matrisleri hemen hemen tüm 

yapısal desenlerin ve dianmiklerin belirlenmesinde anahtar bir araç olduğundan, özel 

biçimlere sahip bu matrislerin zaman içinde değişken biçimde hareket etmelerine 

olanak tanıyan mekanizma ve kontrol yöntemleri en önemli araştırma başlıklarından 

bir tanesidir. Aynı anda birden fazla yapısal deseni tek bir çok değişkenli model 

içinde kurgulamak, uygun  mekanizma ve kontrol yöntemi gerektirmesi bakımından 

çok kolay değildir ve bu zorluk sebebiyle yazında bulunan modellerin bir çoğunun 

bahsedilen yapısal desenlerin sadece küçük bir bölümünü aynı anda yansıtabildikleri 
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görülmektedir. Bu bağlamda, bu çalışmanın ilk amacı doğrultusunda yeni bir ÇDSO 

modeli geliştirlmiş ve önerilmiştir. Önerilen model, çalışma içerisinde MSV-D 

olarak anılmaktadır. Önerilen MSV-D modeli, yapısı itibariyle varlık getirileri 

arasındaki korelasyon, varlık getirileri ve bunların oynaklıkları arasındaki ilişki 

olarak ifade edilen kaldıraç etkisi ve çapraz kaldıraç etkileri ile oynaklıklar 

arasındaki geçişkenliği ifade eden oynaklık yayılımı özelliklerini aynı anda 

barındırabilmekte ve dahası bu özelliklerin zaman içinde değişebilen (dinamik) 

karşılıklarının kısmi ya da bütün olarak modele dahil edilebilmesine olanak 

tanımaktadır. Önerilen model, yazındaki mevcut dinamik modellerden farklı olarak 

dinamik kaldıraç ve çapraz kaldıraç etkileri ile dinamik oynaklık yayılımı etkilerinin 

modellenebilmesini sağlamaktadır. Önerilen model özelleştirilebilir genel bir yapıya 

sahiptir ve araştırmacıya farklı niteliklerde modeller deneme esnekliği vermektedir. 

Yazında bulunan temel ÇDSO modellerinin bir çoğu, önerilen MSV-D modelinin 

özel bir hali olarak parametreleştirilebilmektedir.   

Önerilen modelin genelliği ve esnekliği temel olarak korelasyonları, koşullu 

varyanslara benzer şekilde, ayrı stokastik süreçler olarak ele alması fikrine dayanarak 

elde edilmektedir. Önerilen model, korelasyon matrislerinin stokastik süreçler 

vasıtasıyla zaman içerisinde değişimini sağlayan ve bu değişimler esnasında 

korelasyon matrislerinin artı tanımlılığının ve diğer biçim özelliklerinin 

korunabilmesini sağlayan özel olarak tasarlanmış bir mekanizma ve çift yönlü 

matematiksel dönüşümler içermektedir.  

Önerilen MSV-D modelinin pratik olarak uygulanabilmesi için, modelin yapısına 

özel olarak Bayesian bir yaklaşım çerçevesinde kurgulanan Markov Chain Monte 

Carlo (MCMC) yöntemine dayanan bir kestirim algoritması da çalışmanın bir parçası 

olarak geliştirilmiştir. Kestirim algoritması önerilen MSV-D modelinin 

parametrelerinin ve zaman içinde değişebilen örtülü oynaklık ve korelasyon 

değişkenlerinin MCMC yöntemine dayalı örnekleme ile nasıl elde edileceğini 

göstermektedir ve MSV-D modelinin yapısına özgüdür. 

Önerilen MSV-D modeli ve bunun için geliştirilen Bayesian MCMC kestirim 

yöntemi statik ve dinamik özellikler doğrultusunda simüle edilmiş getiri ve oynaklık 

verileri ile gerçek hisse senedi ve endeks getiri serileri üzerinde uygulanmış ve 

karşılaştırmalı olarak değerlendirilmiştir. Gerçekleştirilen uygulamalar, hem önerilen 

MSV-D modelinin hem de geliştirilen çözüm yönteminin, statik ve dinamik 

kurgularda yapısal desenleri yakalama konusunda iyi bir performans sergilediğini 

göstermiştir. 

ÇDSO modelleri, temelde doğrusal olmayan durum uzayı (ing: state space) 

problemleri olmaları dolayısıyla, düzleme (ing: smoothing), filtreleme ve tahmin 

(ing: prediction) kestirimleri ile parametre kestirimlerinin elde edilmesi 

problemlerinde ortaya çıkan çok boyutlu tümlevler (ing: integral) ile başa çıkabilecek 

sayısal yöntemlere ihtiyaç duymaktadırlar. Son dönemlerde hesaplama 

teknolojisindeki ilerlemeler bu yöntemlerin uygulanabilirliğini arttırmıştır. ÇDSO 

modellerinin kestiriminde kullanılan algoritmalar, içerisinde Gibbs örneklemesi ve 

Metropolis-Hastings algoritması da bulunan MCMC yöntemlerine dayanmaktadır. 

MCMC yöntemleri temel olarak, limit dağılımı hedefteki sonsal (ing: posterior) 

dağılım olan bir Markov zinciri üzerinden bağımlı örneklemler üreterek sonsal 

dağılımı elde etme esasına dayanır ve diğer rassal örneklemlere dayanan Monte 

Carlo tabanlı yöntemlerden çok farklıdırlar. MCMC yöntemlerinin karmaşık 

örnekleme mekanizmaları diğer Monte Carlo yöntemlerine göre genellikle daha çok 

sayıda örneklem alınmasını gerektirir. MCMC yöntemleri kurguları itibariyle diğer 
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birçok Monte Carlo tabanlı yöntem de dahil olmak tüm alternatif yöntemlerden farklı 

olarak yüksek boyutluluğun getirdiği zorluklardan etkilenmezler. Ayrıca, MCMC 

yöntemleri parametre kestirimlerinin, en çok olabilirlik (ing: likelihood) 

fonksiyonunun maksimizasyonuna ve dolayısıyla bu fonksiyonun değerinin açık 

biçimde hesaplanmasına gerek duyulmadan örnekleme yolu ile gerçekleştirilmesine 

olanak tanıyan Bayesian bir yaklaşıma doğal bir biçimde uyarlanabilmektedirler. Bu 

özelliklerinden dolayı ÇDSO modelleri için MCMC tabanlı kestirim yöntemleri en 

çok tercih edilen yöntemler haline gelmişlerdir. MCMC yöntemleri birçok iyi 

özelliğine ve başarılı olmalarına karşın kusursuz yöntemler değillerdir. MCMC 

yöntemlerinin hata kontrolü ve yakınsama ile ilgili kendine özgü bir takım kusurları 

mevcuttur. MCMC yöntemlerinde yakınsamanın sağlanıp sağlanmadığı ya da ne 

kadarlık bir efordan sonra sağlanacağı hem teorik hem de pratik açıdan cevabı henüz 

net olarak verilememiş sorulardır. MCMC yöntemlerinde analitik olarak elde 

edilemeyen sonsal (ing: posterior) dağılımlardan örnekleme gerçekleştirilmesinde 

Metropolis-Hastings algoritması içerisinde kullanılan öneri (ing: proposal) 

dağılımlarının oluşturulması da yönlendirme gerektirien ayrı bir zorluk olarak 

karşımıza çıkmaktadır. Bu zorluklardan dolayı uygulamada etkin çalışmayan Markov 

zincirleri ile sıklıkla karşılaşılmaktadır. Bu bağlamda, bu çalışmanın diğer bir amacı 

doğrultusunda, daha iyi hata kontrolü ve yakınsama özelliklerine sahip, hesaplama 

gereksinimleri açısından MCMC yöntemleri ile rekabet edebilecek, stokastik 

oynaklık kestirimi alanında daha önce hiç kullanılmamış yeni bir yöntem olan sparse 

grid integration (SGI) tabanlı kestirim algoritmaları geliştirilmiş ve 

değerlendirilmiştir. SGI yöntemi, geleneksel nümerik tümlevleme yönteminin çok 

boyutlu problemlere boyutsallığın olumsuz etkisinin azaltılarak genişletilmesi 

esasına dayanan ve geleneksel nümerik tümlevleme yöntemlerinin aksine çok 

boyutlu durumlarda uygulanabilen yöntemlerdir. Geleneksel nümerik tümlevleme 

yöntemleri tek değişkenli stokastik oynaklık modelleri için birkaç çalışmada 

incelenmiş olmakla beraber ÇDSO modelleri için nümerik tümlevleme yöntemleri, 

çok boyutluluğun bu yöntemlerdeki sınırılamaları sebebiyle, yazında göz ardı edilmiş 

ve yeterince incelenmemiştir. Doğrusal olmayan durum uzayı çalışmalarında 

nümerik tümlevlemeye dayanan kestirim yöntemleri deterministik yapıları sebebiyle 

yakınsama ile hata kontrol özellikleri, olasılıksal yöntemler olan MCMC ve diğer 

Monte Carlo yöntemlerinden daha üstündürler ve bunun yansıması olarak kesin (ing: 

exact) yöntemler olarak ifade edilirler. Önerilen SGI kestirim yaklaşımıyla, ÇDSO 

modelleri için bahsedilen kesinliğin en azından belirli bir ölçüde yakalanması 

amaçlanmıştır. 

Stokastik oynaklık kestirimi için önerilen SGI tabanlı algoritmalar simüle edilmiş ve 

gerçek piyasa verileri üzerinde uygulanmış ve karşılaştırmalı olarak 

değerlendirilmiştir. Önerilen SGI tabanlı algoritmalar belirli koşullar altında MCMC 

tabanlı yöntemlerin performansını yakalamış ve hatta geçmiştir. SGI yöntemi gibi 

nümerik tümlevleme yöntemlerinin başta MCMC olmak üzere Monte Carlo tabanlı 

yöntemlere alternatif olabileceği gösterilmiştir. 

Stokastik oynaklık modellerin kestiriminde kullanılan hem MCMC tabanlı hem de 

önerilen SGI tabanlı yöntemlerin işlem yoğunluğu ve hesaplama gereksinimleri 

oldukça fazladır. Bu bağlamda, çalışmanın üçüncü ve son amacı doğrultusunda 

incelenen MCMC ve SGI tabanlı kestirim algoritmaları için paralel hesaplama 

yaklaşımları ve algoritmaları oluşturulmuş ve bu yaklaşımlar kullanılarak grafik 

işlemciler (ing: graphics processing unit, GPU) üzerinde çalışan programlar 
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geliştirilerek bu cihazların hesaplama yönünden kestirim görevlerine katkıları 

değerlendirilmiştir. 

Gerçekleşitilen simülasyon çalışmasında GPU üzerinde çalışan parallel 

algoritmaların işlem zamanlarını önemli biçimde azalttığı görülmüştür. Tek GPU 

üzerinde MCMC tabanlı algoritmalarda 16 kata kadar ve SGI tabanlı algoritmalarda 

25 kata kadar hızlanma kaydedilmiştir. Tek GPU üzerinde uygulama teorik hızlanma 

sınırlarını ve ölçeklenebilirliği test etmek için yeterli olmamakla birlikte elde edilen 

sonuçalar daha büyük paralel mimarilerde uygulamalar için umut vericidir. GPU 

desteğinin, pratik stokastik oynaklık kestirimi uygulamaları için oldukça fark 

yaratabilecek etkin ve ucuz bir çözüm olduğu gösterilmiştir. 
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1.  INTRODUCTION 

Modeling, analysis, and estimation of volatilities of asset returns in financial markets 

have been a major research area for the last three decades because of the prominent 

role of volatility concept in mathematical and quantitative finance. Reliable volatility 

estimates of asset returns are indispensible inputs to several mathematical models in 

financial frameworks including but not limited to risk management and 

measurement, option pricing, portfolio and asset management. For example risk 

metrics such as the value at risk (VaR) used by many financial institutions for 

measuring the risk are directly calculated using the volatility forecasts. In option 

pricing models including the famous model of Black and Scholes (1973) and 

portfolio optimization models volatility and its estimates are direct inputs. 

A considerably rich literature on volatility research showed that volatilities and 

correlations regarding financial asset returns are time varying with persistent 

dynamics. In addition to the time varying nature, various patterns and properties 

inherent in asset returns and volatilities were well studied and reported in the 

literature including leverage effects and volatility spillovers which are referred as 

stylized facts. Analysis of time varying structures and tools for addressing the 

stylized facts about volatility for asset returns are central to the contemporary 

volatility estimation research. 

Volatility modeling research field has two main branches having different modeling 

approaches to address the mentioned stylized facts. First branch deals with models 

which are called Autoregressive Conditional Hetoreskadasticity (ARCH) models 

introduced by Engle (1982) and second branch deals with models so called 

Stochastic Volatility (SV) models introduced by Taylor (1982). The essential feature 

of ARCH type models is that they explicitly model the conditional variance of 

returns given the past returns whereas the SV models consider the conditional 

variance of returns as a separate stochastic process as latent variable instead of 

explicitly modeling it. Because of the modeling approach, SV models are quite 

flexible and versatile in capturing the stylized facts, however their nonlinear structure 
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bears computational challenges in estimation. SV models require linear 

approximations or computationally demanding numerical methods for the associated 

estimation problems. Despite their powerful features, the computational challenges in 

estimation of SV models prevented them to be popular in practice and resulted in the 

dominance of ARCH type models in the early research. However, with the advances 

in computational resources allowing the usage of computationally intensive 

algorithms and methods, SV models has started to draw attention in recent research.  

Several extensions on the univariate SV models addressing the stylized facts have 

been studied and proposed after the SV model of Taylor (1982) which dealt only 

with volatility clustering. The first multivariate stochastic volatility (MSV) model 

due to Harvey et al. (1994) is followed by an appreciable amount of research 

composed of several multivariate model specifications addressing different and more 

complicated stylized facts not only about volatility but also about co-volatility and 

their multidimensional dynamics. The control mechanisms and parameterizations of 

the covariance and/or correlation matrices in MSV models and their handling in 

time-varying settings are the core topics of the MSV modeling research since almost 

all stylized facts are imposed through the structure of those matrices in MSV models.   

While addressing the stylized facts and flexibility in model specifications, another 

objective was keeping the complexity under control and developing appropriate 

estimation methods in those MSV modeling efforts since dimensionality brought 

additional complexity on top of the inherent complexity due to the nonlinearity in SV 

models.  Being nonlinear state space models, even univariate SV models require 

methods that can handle high dimensional integrals for obtaining smoothing, filtering 

and prediction estimates of time-varying volatilities and parameter estimates. An 

extra complexity is introduced in MSV models due to the dimensionality of latent 

volatilities.    

For the estimation, several early studies incorporated practical algorithms providing 

either fast or simplified approximations based on the well-known Kalman filter and 

its extensions, using Laplace approximations, variations of moment matching and 

method of moments, and quasi likelihood methods. Although being fast and simple 

those methods generally suffered from poor performance. Illustrations and examples 

of these methods can be found in (Taylor, 1986), (Harvey et al., 1994), (Harvey & 

Shephard, 1996) and (Galant & Hsieh, 1997). 
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Poor results of linear approximation based methods and challenges in the numerical 

estimation of SV models incited the usage of computationally intensive simulation 

based Monte Carlo methods for better estimations and approximations in parallel 

with the advances in computational resources. Various Monte Carlo based methods 

incorporating the algorithms such as resampling, particle filters, rejection sampling 

and importance sampling have been proposed with examples in (Watanabe, 1999), 

(Tanizaki, 1997), (Carlin et al., 1992) and (Sandman & Koopman, 1998).  

A major breakthrough in SV estimation research was started with the works of 

Tierney (1994),  Chib and Greenberg (1995, 1996) which introduced  the Markov 

Chain Monte Carlo (MCMC) methods to the econometrics and SV fields. MCMC 

methods including the influential Metropolis-Hastings and Gibbs sampling 

algorithms quickly became central to the SV modeling and estimation studies, and a 

vast amount of literature on the applications of different variations of MCMC 

methods on various types of SV models, especially the MSV models was built up. 

Particularly, MSV models have benefited from the MCMC methods since MCMC 

methods are immune to the curse of dimensionality by construction unlike the other 

Monte Carlo techniques and exact filter methods such as the numerical integration. 

Another advantage of MCMC was the ease of implementation of these methods in 

Bayesian settings where the parameter estimation can also be handled without a 

maximization routine for the likelihood, hence without an explicit evaluation of the 

likelihood function. These appealing features of MCMC methods made them a 

natural first choice in MSV estimation studies. However, MCMC algorithms are not 

flawless. They still require intense computational resources for complicated iterative 

sampling schemes for estimation. Although having a quite different philosophy than 

the other Monte Carlo methods they are still simulation based Monte Carlo methods, 

thus are not exact methods. Furthermore, certain issues on error control and 

convergence are inherent particularly for the MCMC methods. A detailed treatment 

of MCMC methods can be found in (Chib, 2001). 

Multidimensional integrals arising in estimation of SV models can be handled by 

classical numerical integration methods as discussed in (Kitagawa, 1987) and 

(Tanizaki, 1997) in a nonlinear state space modeling framework. Being exact 

methods with a deterministic structure, convergence properties of classical numerical 

integration methods are superior to simulation based Monte Carlo methods. 
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However, when the state-space dimension increases as in MSV models, these 

methods become computationally infeasible since the number of dimensions 

increases the complexity of these type of algorithms exponentially. Unsurprisingly, 

studies on the application of the numerical integration methods to nonlinear state 

space models and particularly MSV models are quite rare compared to the  

approximation based methods and Monte Carlo simulation based methods including 

the MCMC methods. 

Sparse grid integration (SGI) method is a smartly reshaped version of classical 

numerical integration method to handle multidimensional integrals by constructing 

multi-dimensional integration formulas in a way that the dimensionality effect is 

decreased to a certain extent which allows practical implementation in higher 

dimensional cases in contrast to the classical numeric integration methods. Sparse 

grid integration approach is based on the work of  Smolyak (1963) and was applied 

to some economic and financial problems with examples of discrete choice analysis 

in (Bungarts and Griebel, 2004), collateral mortgage optimization problem in 

(Gerstner and Griebel, 1998),  derivative and option pricing in (Gerstner, 2007) and 

asset liability in life insurance in (Holtz, 2010). However, estimation algorithms 

based on the SGI approach for SV models have been neither studied nor mentioned 

in the literature.  

One of the mentioned advances in computational resources is the high performance 

computing paradigm on massively parallel architectures such as graphic processing 

units (GPUs) or compute processors hosting many processors. Advances in the 

capabilities of GPUs and the introduction of easier to use platforms and tools for 

programming such devices resulted in deployment of several scientific and industrial 

applications benefiting from the cheap and efficient computing power provided by 

those devices. Quantitative finance has always been one of the first fields quickly 

adopting new technologies. In this context, the potential contributions of the high 

performance computing paradigms on massively parallel architectures such as to the 

computationally demanding task of SV estimation is one of the focus of this study.  

The objectives of the study are summarized as follows. First objective of this study is 

the search for alternative MSV model specifications that can capture the stylized 

facts and dynamics of asset returns in a more realistic and flexible way than the 
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available models in the literature and contributions from the MSV modeling 

perspective. 

Second objective of the study is in the perspective of estimation methodology where 

estimation algorithms based on a different approach than the popular MCMC 

approach for the MSV models is studied to see whether it is possible or not to come 

up with an estimation approach that does not have the drawbacks of MCMC and 

provide better results. The SGI approach which is neglected in the SV field is the 

approach under question in this perspective. 

Third and final objective of the study is the evaluation and assessment of the possible 

contributions and implications of the GPU computing and usage for easing the 

excessive computational burden in MSV estimation problems. 

Organization of the study is as follows.  In section 2, mathematical and theoretical 

background of the thesis is provided. After providing a brief overview of SV models, 

a novel MSV model specification is given in accordance with the first objective of 

the study. In the second part of section 2 an overview and background on estimation 

algorithms are presented first followed by detailed treatment and presentation of the 

MCMC based estimation algorithms and the proposed SGI based estimation 

algorithms for the second objective of the study.  

In section 3, important topics on  practical implementation of the estimation 

algorithms their computational aspects and parallelization approaches, particularly 

implementation with GPUs are discussed in accordance with the third objective of 

the study. 

In section 4, the methodology followed in the study is presented. The section 

provides information about the software and hardware used in numerical 

applications, describes the simulation studies  and analyses conducted and data sets 

used in the study. 

Section 5 provides the results of the numerical applications and analyses for the 

proposed MSV model, proposed estimation algorithms and GPU implementations. 

Section 6 concludes the study by compiling the important results followed by 

concluding remarks, comments and  further research directions. 
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2.  THEORETICAL AND MATHEMATICAL BACKGROUND 

In this section, starting with an overview of literature on the foundations of 

mathematical construction of stochastic volatility models, a novel MSV model is 

developed and proposed in the first subsection. In the second subsection, estimation 

algorithms based on the MCMC method and the proposed SGI method for MSV 

models are developed and presented in detail after a literature review and some 

preliminaries on the MCMC and SGI methods. 

To avoid confusion, the multiple integral notations and definitions regarding the 

multidimensional integrals with respect to vectors, sets of vectors and matrices 

frequently used throughout the study is provided in appendix A. 

2.1 Stochastic Volatility Modeling 

2.1.1 Overview of stochastic volatility models 

SV model building has a natural flow starting from the construction of the basic 

univariate model, followed by the extensions on the basic univariate model and then 

construction of multivariate models with their extensions. Same flow is followed in 

this section. 

First univariate stochastic volatility model in the literature is due to Taylor (1982) 

and detailed in (Taylor, 1986). The basic setup for modeling the changes in variance 

is to regard innovations in the mean as being a sequence of independent and 

identically distributed random variables, εt with zero mean and unit variance, 

multiplied by a factor exp( 2)t th  . The latent log-volatility, 2log( )t th  , is 

defined as a stationary first order autoregressive (AR(1)) process having an error 

term, ηt, with zero mean and variance ση, leading to the state-space model, 

  
 2

,th

t ty e    (2.1) 

 1 .t t th h        (2.2) 
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Here, equation 2.1 is known as measurement or observation equation,  and equation 

2.2 is the transition or state equation of the state space model. In this model, the 

measurements, yt, are observable while the states, ht, are unobservable (i.e. latent) 

variables. The univariate SV model, which is given by equation 2.1 and equation 2.2, 

is a state space model because it actually is a time varying parameter model. 

Furthermore, the multiplicative structure of  equation 2.1 makes the model nonlinear. 

This basic univariate SV model, successfully captures the time varying variance and 

volatility clusterings observed in asset return series. The latent structure of the log-

volatilities and the approach modeling the log-volatilities as a separate stochastic 

process makes the SV models flexible and versatile in capturing the stylized facts of 

asset return series. For further discussion on properties of the SV models see 

(Ghysels et al., 1996). 

Not long after the first univariate model described above, several extensions to the 

basic univariate SV model were proposed in literature. An important extension to the 

basic univariate SV model was addressing the stylized fact called asymmetry or 

leverage effect. Leverage effect simply describes the negative correlation between 

the asset returns and volatility shocks. To capture the leverage effect, SV models 

with correlated errors were proposed and discussed in (Harvey and Shephard, 1996). 

Correlated errors model to address the leverage effect is given by, 
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In this specification, the parameter, ρ, is the correlation between εt and ηt 

representing the leverage effect. Typically, negative correlation implies that a 

negative return tends to increase the volatility of an asset price. 

After the first multivariate stochastic volatility (MSV) model in the literature, given 

in (Harvey et al., 1994), several model specifications addressing the stylized facts 

such as correlated asset returns, leverage effects and volatility spillovers are 

proposed with examples in (Asai and McAleer, 2006) and (Ishihara and Omori, 

2012). The specification of a general MSV model based on these studies can be cast 

as, 
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where, 
1( ,..., )t t pty y y  is the p-dimensional vector of asset returns and 

1( ,..., )t t pth h h  is the p-dimensional vector of log-volatilities, 
1( ,..., )t p  γ is the 

intercept parameter vector, and  1diag ,..., p φ is the diagonal matrix of 

persistence parameters. In equation 2.4, time-varying variances of returns are the 

diagonal entries of the diagonal matrix
, 1diag(exp( ),..,exp( ))y t t pth hV . The 

innovations 
1( ,..., )t t pt  ε  and the disturbances 

1( ,..., )t t pt  η  in equation 2.4 

are related with each other through, 
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where, the covariance matrix, Ʃ defines the relationship between asset returns and 

log-volatilities. Here, depending on the structure of the covariance matrix, Ʃ, the 

model in equation 2.4 and equation 2.5 can address various stylized facts: 

 If the off-diagonal elements of Ʃεε are nonzero then there is correlation 

between asset returns. 

 If the off-diagonal elements of Ʃηη are nonzero then there is volatility 

spillover. 

 If the diagonal elements of Ʃηε (and Ʃεη) are nonzero then there is leverage 

effect. 

 If the off-diagonal element of Ʃηε (and Ʃεη) is nonzero then there is cross-

leverage effect. 

The general MSV model described in equation 2.4 and equation 2.5 will be referred 

as the MSV-G model throughout this study. And the special case of the MSV-G 

model with 
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where, the asset returns are correlated with no leverage effects (i.e. Ʃηε = Ʃεη = 0) and 

no volatility spillovers (i.e Ʃηη = Vηη is diagonal), will be referred as MSV-B 

representing the basic multivariate case.  

The MSV-G model becomes quite complicated in terms of number of parameters as 

the dimension increases. To offer more parsimonious model structures, a class of 

MSV models based on factor analysis were proposed in the literature. The additive 

factor model was first introduced in (Harvey, Ruiz, and Shephard, 1994). Another 

factor model can be found in (Jacquier et al., 1995). The basic idea in those MSV 

models is originated from factor decomposition of covariance structures in 

multivariate analysis, where returns are decomposed into additive or multiplicative 

components. The additive K factor MSV model can be written as  
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where, ft is 1K   vector of factors (K < p) and D is a p K  matrix of factor 

loadings. In this model, 2 2

1diag( ,..., )p  V  and the variance of yt is given by 

 ,f 
 V DΣ D V   (2.8) 

which is always positive definite by construction. While being parsimonious models 

which is an important advantage, the main drawback of the factor models is the 

difficulty in interpretability because of the implicit structure.  

One of the consequences of the factor model given in equation 2.7 and equation 2.8 

is that the conditional correlations of asset returns are actually time varying as well 

as the variance (Asai et al., 2006). Based on that fact, a class of MSV models 

capturing the time-varying correlations without factor structure were proposed and 

studied. These studies let either the covariance (correlation) matrix, Ʃεε, in equation 

2.5 or the covariance of asset returns, Ʃyy, vary in time, often in a dynamic 

mechanism that ensure the positive definiteness and symmetry properties of the 

covariance matrix.  

Thus, the dynamic mechanisms used to handle the covariance matrices are the main 

focus of these studies. Tsay (2002) and Lopes et al. (2011) are examples that use 
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Cholesky decomposition of the covariance matrix as such a mechanism by letting the 

covariance matrix of asset returns, Ʃyy, dynamically change with the relation, 

 
, ,yy t t t t

Σ L DL   (2.9) 

where, Lt is a lower triangular matrix and Dt is a diagonal matrix. Here the elements 

of both Lt and Dt are obtained with separate autoregressive processes like the log-

volatilities in the MSV-B model. This approach directly models the covariance 

matrix of asset returns and there is no separation between correlations and variances, 

hence the log-volatilities are not explicitly modeled in autoregressive processes. 

To achieve and keep the positive definiteness and symmetry, Asai and McAleer 

(2009) and Ishihara et al. (2014) incorporated matrix exponential, which is defined 

by   

  
0

1
exp ,
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A A   (2.10) 

using the fact that for any real symmetric matrix A, exp(A) is also a symmetric 

positive definite matrix. As in the Cholesky approach, this approach also directly 

handles the covariance matrix and does not model log-volatilities with explicit 

autoregressive processes, instead rotations found in principal component analysis 

(PCA) is used to obtain log-volatilities.  

Another specification for dynamic structure is given by Gourieroux et al. (2009) 

accommodating Wishart autoregressive process which is an AR process constructed 

on covariance matrices, thus satisfies the symmetry and positivity requirements. 

All the approaches for dynamic structures in the literature usually restrict the 

dynamic structure with covariance or correlation of asset returns. Because all of the 

mechanisms ensuring positive definiteness and symmetry in the previous studies 

either implicitly model the variance or do not separate the dynamics of all 

correlations and variances, those approaches do not have the flexibility to address 

more complicated dynamic structures such as leverage effects and volatility 

spillovers. Thus, the model specifications and dynamic mechanisms proposed in the 

previous studies are somewhat restrictive in terms of flexibility and versatility 

considering the available options on dynamic components to be included in the 
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model. Based on this perspective, in section 2.1.2 a new MSV model specification is 

proposed to overcome these drawbacks.  

Models with distributions having thicker tails than the Gaussian distribution for the 

observation disturbances, εt, in both univariate and multivariate settings are other 

noteworthy contributions in the previous studies. The Student's t-distribution were 

used to address leptokurtosis that arise in some financial series with examples in 

(Galant et al., 1997), (Sandman and Koopman, 1998), (Ishihara and Omori, 2012) 

and (Ishihara et al., 2014). 

2.1.2 A novel multivariate stochastic volatility model (MSV-D) 

In this section, a new MSV model specification is proposed based on the 

considerations about the available model specifications in the literature mentioned in 

section 2.1.1. The proposed model specification is a general specification that can 

accommodate the following stylized facts: 

 Correlations between asset returns, 

 Leverage effects (i.e. correlation between a particular asset return and its 

volatility), 

 Cross-leverage effects (i.e. correlations between a particular asset and other 

assets' volatilities, 

 Volatility spillovers ( i.e. correlations between log-volatilities), 

with both constant and dynamic settings (or their mixtures) for each stylized fact, 

which offers substantial flexibility, versatility and freedom in modeling preferences 

without the restrictions inherent in the available models in the literature. 

One of the main differences of the proposed model from the models discussed in 

section 2.1.1 is the separation of variance and correlation components in the 

modeling approach. This separation allows explicit modeling of time-varying 

variance as in the MSV-G model  while dynamic structures can still be incorporated 

unlike the dynamic models in the literature discussed in section 2.1.1 

Let 1( ,..., )t t pty y y  be p-dimensional vector of stock returns, then the proposed 

MSV model starts with 
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where, the time-varying variance matrix is 
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the time-varying correlation matrix is 
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and the time-varying covariance matrix is 
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The log-volatilities, 
1( ,..., )t t pth h h , are driven by the following AR(1) process: 

  1 ,,      N 0,t t t t t   h γ φh η η Σ   (2.15) 

for 1,..,t T  where, 
1( ,..., )t p  γ is the intercept parameter vector, 

1( ,..., )t p  η is the vector of disturbances on the log-volatilities having zero mean 

and covariance matrix, Ʃηη,t, and 1diag( ,..., )p φ  is the diagonal matrix of 

persistence parameters. In equation 2.15, the process mean, μh is given by 

  
1

,h


 μ I φ γ   (2.16) 

and the variance matrix of the process, Vh, satisfying the stationarity condition, 

 ,h h  V φV φ V  (2.17) 

is given by 

      
1

Vec = Vec .h 


 V I φ φ V   (2.18) 
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To ensure the positive semi-definiteness and symmetry of the correlation matrices 

through time periods the dynamic correlation matrix, Pt, is parameterized as follows. 

Positivity is achieved by 

 t t t
P B B   (2.19) 

where the  2 2p p  matrix Bt can be obtained by Cholesky decomposition and is in 

the form, 

 

1,1, 1,2, 1,2 ,

2,1, 2,2,

2 ,1,

0
,

0 0

0 0 0

t t p t

t t

t

p t

b b b

b b

b

 
 

 
  
  
 

B  (2.20) 

with entries, bi,j,t, obtained by the relation, 

    
1

, , , , , , , ,

1

cos sin ,      0 π,
j

i j t i j t i k t i j t

k

b   




     (2.21) 

where the angles αi,j,t, are the entries of the  2 2p p  matrix, At,  given by 

 

1,1, 1,2 1,

2 1,1,

0

0 0
.

0 0 0

0 0 0 0

t p t

t

p t

 







 
 

  
 
 
 

A   (2.22) 

A suitable transformation which maps the angles, αi,j,t, which take value in the 

interval [0, π], to the interval [-∞, ∞] is the logit function given by 

 , ,

, ,

, ,

log
π-

i j t

i j t

i j t

q




 
   

 

, (2.23) 

where qi,j,t are the entries of the  2 2p p  matrix Rt in the form, 

 

1,1, 1,2 1,

2 1,1,

0

0 0

0 0 0

0 0 0 0

t p t

t

p t

q q

q





 
 

  
 
 
 

R . (2.24) 
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If the nonzero entries of the matrix Rt  are stacked column-wise in to a vector, and 

letting (2 1)r p p   then the vector 
1( ,..., )t t rtq q q  is obtained which has 

(2 1)r p p    elements. 

Another AR(1) process, driving the dynamic correlations through qt can then be 

stated as 

  1 ,      N 0,t t t t     q δ θq ω ω V   (2.25) 

where, 
2 2

,1 ,diag( ,..., )r   V  is the diagonal variance matrix of the process error 

vector, 
1, ,( ,..., )t t r t  ω , 

1( ,... )r  δ  are the intercept parameter vector and 

1diag( ,..., )r θ  is the diagonal persistence parameter matrix. In equation 2.25 the 

process mean is given by 

  
1

q


 μ I θ δ , (2.26) 

and the variance matrix of the process, Vq satisfying the stationarity condition, 

 ,q q  V θV θ V   (2.27) 

is given by  

      
1

Vec = Vec .q q


 V I θ θ V   (2.28) 

In this model, equation 2.15 drives the time varying volatilities of asset returns while 

equation 2.25 is separately driving the time varying correlations between asset 

returns and log-volatilities. The transformation starting from equation 2.19 to 

equation 2.24 maps the correlation matrix,  Pt, to the vector, qt, and furthermore this 

mapping is one-to-one and reversible. A schematic illustration of the transformation 

is given in Figure B.1 in appendix B. The parameterization of correlation matrix 

from equation 2.19 to 2.22 is a modified version of the transformation given by 

Robenato and Jäckel (2011) and Kercheval (2008) in a general perspective. Any 

correlation matrix Pt can be transformed into a vector qt  through this transformation 

and moreover any real valued vector qt of dimension (2 1)p p   can be mapped to a 

(2 2 )p p  unique correlation matrix, Pt, by reversing the transformation described in 

equation 2.19 to equation 2.24 and incorporating the inverse logit, 
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, ,

, , ,
1i j t

i j t q
e








  (2.29) 

for obtaining the angle mapping of a given vector qt.  

In the model, positivity is achieved by equation 2.19 and the relation in equation 2.21 

ensures entries in the diagonal of the resulting correlation matrix to be 1 and off 

-diagonals to be in the (-1, 1) interval. 

The proposed model described above is quite general and flexible since it is possible 

to address several stylized facts while restricting some of them. Fixing some of the 

entries of vector qt as constants instead of associating with an AR(1) process, allows 

easy removal of dynamic components and replacement with static counterparts of 

these components and setting some of the elements of vector qt  to zero allows easy 

removal of particular stylized facts mentioned from the model. For example, fixing 

the vector, qt, by setting, 

  1,...t r   q δ ,  (2.30) 

reduces the model to the MSV-G model. And similarly if appropriate elements of qt , 

in equation 2.30 are set to zero then the MSV-B model can be obtained. 

Parsimony can be kept under control by removing certain properties and replacing 

dynamic structures with static counterparts through the structure of vector qt as 

mentioned above. Another approach to keep the parsimony is putting restrictions on 

the parameters of the AR(1) process given in equation 2.25 which essentially drives 

the dynamic correlations. It is possible for example to set a single scalar value for the 

persistence parameter vector 
1diag( ,..., )r θ by restricting its entries to be equal to 

each other, which significantly decreases the number of parameters. The proposed 

MSV model in this section will be referred as MSV-D in the next sections of this 

study. 

2.2 Estimation Algorithms for Stochastic Volatility Models 

2.2.1 Stochastic volatility models as nonlinear state space models 

Any given SV model such as the MSV-B, MSV-G or the proposed MSV-D models 

are essentially nonlinear state space models since they are time varying parameter 

models. For a given state space model, the main estimation problem regarding the 
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states (e.g. latent log-volatilities, ht and correlation states, qt in the MSV-D model) is 

finding the conditional expectation of these states using the information (e.g. asset 

returns, yt) set up to time s, 
1{ ,..., }s sY y y . The estimation problem associated with 

the log-volatilities, ht, and correlation states, qt, for the MSV-D model can be 

formally stated as 

    | |, E , | , ,t s t s t t s

    
 

h q h q Y Ω  (2.31) 

where  , , , , , Ω δ φ V δ θ V is the model parameter set. 

Depending on the timing of the information set, Ys, the estimation problems 

associated with the states given the parameters are as follows: 

 If t = s then the estimation problem is called filtering, 

 If t > s then the estimation problem is called prediction, 

 If t < s then the estimation problem is called smoothing. 

In addition to these three estimation problems another estimation problem is the 

parameter estimation problem. Thus, there are essentially four fundamental problems 

of estimation for any SV model.  

In this section, density based estimation algorithms for the above estimation 

problems of general MSV-D model are developed. The algorithms are developed 

based on the common state space modeling and analysis approach for the univariate 

cases that can be found in (Kitagawa, 1987) and (Tanizaki, 1997). 

2.2.1.1 Densities implied by the MSV-D model 

For notational simplicity let { , }h qΩ Ω Ω be the set of model parameters, where 

{ , , }h Ω γ φ V and { , , }q Ω δ θ V are the separate parameter sets associated with 

the log-volatilities ht and correlation states, qt respectively.  

One step transition density of the log-volatilities, ht , from the state space model of 

MSV-D is given by 
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  (2.32) 

for 1,.., 1t T  .  

Similarly one step transition density of correlation states qt is given by  
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q q Ω

V q θh δ V q θh δ

q

V q μ V q μ

  (2.33) 

for 1,.., 1t T  .  

One step conditional density of yt implied by the state space representation of the 

MSV-D model is given by 

 

 

     

1

1 2 1
2
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1
         2 | | exp ,
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y h h q Ω

Σ y μ Σ y μ
  (2.34) 

where,  

 
1

,

| ,

,

, if   

, if   ,

yy t y y

y t

yy t

t T

t T

  



  
 



Σ Σ Σ Σ
Σ

Σ
  (2.35) 

and 

 
 1

, , 1

| ,

, if  

0 , if  .

y t t t t

y t

t T

t T

 





   

 


Σ Σ h φh γ
μ   (2.36) 

for 1,.., 1t T  . 

One step joint density of log-volatilities ht and correlation states, qt can be obtained 

from equation 2.32 and equation 2.33 as  

 
 

   
1 1

1 1

, | , ,

             | , , | , .

t t t t

h t t t h q t t q

p

p p

 

 

h q h q Ω

h h q Ω q q Ω
  (2.37) 
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Let 
1{ ,..., }s sY y y be the observation up to time s, 

1{ ,..., }s sH h h be the set of log-

volatility state vectors up to time s, and 
1{ ,..., }s sQ q q  be the set of correlation state 

vectors up to time s, then, using the one step transition density given in equation 

2.32, the conditional density of log-volatilities over a fixed periods of time is given 

by 

      
1

1 1

1

| , | , , .
t

H t t h h h s s s h

s

p p p






 H Q Ω h h h q Ω   (2.38) 

Similarly, based on the one step transition density given in equation 2.33, conditional 

density of the correlation states over a fixed periods of time is given by 

      
1

1 1

1

| | , .
t

Q t q q q s s q

s

p p p






 Q Ω q q q Ω   (2.39) 

Finally, based on the one period density given in equation 2.34, conditional density 

of the observations over a fixed periods of time is given by 

 

 

   
1

1

1

| , ,

           | , , | , , , .

Y t t t h

t

y t t t h y s s s s h

s

p

p p










Y H Q Ω

y h q Ω y h h q Ω
  (2.40) 

Several conditional joint densities of interest can be built upon the densities provided 

so far. One of them is the joint density of log-volatilities Ht and correlation states, Qt 

which can be obtained from equation 2.38 and equation 2.39 as 

      , | | | , .t t Q t q H t t hp p pH Q Ω Q Ω H Q Ω   (2.41) 

Another important density used in estimation algorithms is the joint density of log-

volatilities, Ht and correlation states, Qt which can be obtained as 

        , , | | | , | , , .t t t Q t q H t t h Y t t t hp p p pH Q Y Ω Q Ω H Q Ω Y H Q Ω   (2.42) 

2.2.1.2 Filtering, prediction and smoothing 

Using the one step densities in equation 2.32 to equation 2.37 which are obtained 

from the state space representation of the MSV-D model and letting 

1 0 0 1( | , , , , ) ( )h hp p h h q γ φ V h  and 1 0 1( | , , , ) ( )q qp p q q δ θ V q  density based 

filtering algorithm for the log-volatilities of MSV-D model can be constructed as a 

recursive algorithm as, 
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  (2.43) 

for t = 1,..T. A non-recursive equivalent form of the filtering algorithm in equation 

2.43 can be stated as 
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 (2.44) 

Starting with the filtering density obtained in equation 2.43 for time t, density based 

L-step ahead prediction algorithm is obtained recursively by 
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  (2.45) 

And equivalently prediction algorithm in equation 2.45 can be expressed in a non-

recursive version as 
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  (2.46) 

Based on the filtering density at time t, obtained in equation 2.43, recursive 

algorithm for the smoothing density can be constructed as 
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for  1,  2,...,1t T T    which is a backward recursion. Let 
1\ 1 1{ ,.., , ..., }t t t T H h h h h

and 
1\ 1 1{ ,.., , ..., }t t t T Q q q q q be the set of all state vectors from t = 1,...,T excluding the 

state vector at time t, then the non-recursive version of the smoothing algorithm can 

be expressed as 
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  (2.48) 

The algorithms for the filtering, prediction and smoothing developed for MSV-D 

model are general and cover the models such as the MSV-B and MSV-G and their 

variations as well. For example, the recursive filtering algorithm in equation 2.43 

reduces to 
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y h Ω h Y Ω
h Y Ω

y h q Ω h Y Ω h

  (2.49) 

for the MSV-B model where the dynamic components and associated terms with the 

correlation states, qt, are dropped with the parameter set { , , }q Ω δ θ V , and the 

only parameter set Ωh has become { , , , }h Ω γ φ V δ  where δ is the constant 

parameter for the correlations between asset returns in place of dynamic correlation 

states qt. In equation 2.49, another simplification is due to the lack of leverage effect 

in MSV-B which removes the temporal dependence between the asset returns yt  and 

log-volatilities ht+1, thus the densities representing this dependence and associated 

differentials in the integrals are dropped as well. Similarly, for the MSV-G model 

algorithms can be obtained by only dropping the dynamic components as described 

above for the MSV-B. So density based estimation algorithms of most of the MSV 

models exhibiting any constant or dynamic correlation, leverage effects and volatility 

spillovers are special cases of the estimation algorithms developed in this section. 

Factor models or models implicitly modeling the log-volatilities are exceptions.  
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2.2.1.3 Mean, variance and likelihood 

Once the density of interest (i.e. filtering, prediction or smoothing) is obtained with 

one of the algorithms described in the previous section, estimation of statistical 

properties such as the mean and the variance of a function ( , )u uf h q  can be obtained 

with the expectation, 

       E , | , , , | ,v v s v v v v s v vf f p d d  h q Y Ω h q h q Y h q   (2.50) 

where, ( , ) ( , ),  ( , ),  ( , )v s t t t L t T T   for smoothing, filtering, and prediction 

respectively. For example, to obtain the vector of mean filtering estimates at time t, 

( , ) ( , )v v t tf h q h q is used. 

The log-likelihood function which plays an important role in parameter estimation 

for the MSV-D model can be obtained sequentially by 
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  (2.51) 

which is in fact readily available from the denominator of the second equation in the 

filtering algorithm given in equation 2.43 or equivalently, 
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Q t q H t t h Y t t t h t t

p
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Y Ω

Q Ω H Q Ω Y H Q Ω H Q
  (2.52) 

which is the denominator of the second equation in the filtering algorithm given in 

equation 2.44. Thus, the log-likelihood is a byproduct of the filtering algorithm for 

the current parameter set.  

As is the case for estimation algorithms of section 2.2.1.2, the log-likelihood 

algorithms are also general. 

2.2.2 Overview of the estimation methods 

As it can be seen from the developed estimation algorithms in section 2.2.1, MSV 

models require handling of many high dimensional integrals arising in all kinds of 

estimation problems. To obtain estimates for the states (i.e. log-volatilities or 

correlation states in MSV-D), these states must be integrated out from the integral of 
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expressions composed of conditional densities or it is necessary to find ways to 

sample directly from the densities of interest. In addition to the high dimensionality, 

nonlinear nature of SV models makes it inefficient to use linear filters which offer 

closed-form solutions and quick algorithms. The high dimensional integrals and 

nonlinearity exists even in the univariate case and multivariate cases come with extra 

challenges. 

Some of the first studies on estimation of SV models incorporated simplistic 

approximation methods based on the methods of moments and different versions of 

moment matching techniques with examples and references in (Ghysels et al., 1996). 

A group of studies incorporated algorithms, providing fast approximations for log-

volatility estimations based on the well-known Kalman filter and its extensions. An 

approach is modifying the state space model of the MSV so that the model becomes 

linear with distorted distributional structure. Applying the classical Kalman filter or 

the extended Kalman filter (EKF) on this transformed model can be used to obtain 

approximated estimates as discussed in (Harvey et al., 1994), (Tanizaki, 1997). 

Although being linear resulting in unsatisfactory approximations, Kalman filter 

based estimates provide good basis or starting points for more advanced methods.  

For the general MSV-G model (and for MSV-D) the linearization is obtained by 

taking the square and then logarithms of the both side of the observation equation 

given in equation 2.4,  

    2 2log log ,t t t y h ε  (2.53) 

and obtaining the transformed observation equation as 

 ,t t t z h ξ   (2.54) 

where 2log( ) 1.2703t t z y  is the transformed observations vector, and 2log( )t tξ ε

is the transformed error term of the observation equation. The transformation 

completes with the assumption that tξ  is normally distributed with zero mean and 

covariance matrix, 4.9339   Σ Σ , then the required transformation on the 

covariance matrices in equation 2.5  can be formally stated as 

 ,         and    .       Σ SΣ S Σ Σ S Σ SΣ   (2.55) 
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where  diag 2.22126S  is the diagonal matrix of standard deviations of the 

transformed random variable 2log( )tε . Here, the mean and variance of 2log( )tε are 

known to be -1.27 and π
2
/2 = 4.93 as stated in (Harvey et al., 1994) and can also 

easily be obtained numerically. 

With the above transformation and setting, filtering estimates of states, 
|t th  and their 

covariance , |h t tΣ  for the MSV-G and MSV-D models can be obtained with the 

following iterative algorithm:  
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  (2.56) 

L-step predictions based on the Kalman filter algorithm can be obtained by 
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after the filtering algorithm is executed. Smoothing estimates based on the Kalman 

filter algorithm is given by 
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h h Σ u
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  (2.58) 

In the above Kalman filter based algorithms, if the model is static (i.e. MSV-G) then 

the time subscripts of Ʃξξ,t, Ʃηξ,t, and Ʃηη,t are omitted since they stay constant over 

time.  

The log-likelihood function based on the Kalman filter algorithm can be obtained by, 
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which can be used in parameter estimation. On the Kalman filter based algorithms 

given above, extended Kalman filter (EKF) modifications observation and can also 

be added for better approximations. See further discussions on the usage of Kalman 

filter based algorithms in  (Harvey et al.,1994), (Harvey and Shephard, 1996), and 

(Tanizaki, 1997) for the SV models.  

Although being fast and simple the methods described so far generally suffered from 

poor performance (Shephard and Andersen 2009), (Watanabe  1999). The mentioned 

challenges in the estimation problems of MSV models and advances in the 

computational capabilities quickly incited the usage of computationally intensive 

Monte Carlo simulation based methods to improve the estimation performance. 

Several Monte Carlo based algorithms incorporating resampling, particle filters, 

rejection sampling and importance sampling algorithms have been proposed both in 

nonlinear state space modeling and SV literature. Monte Carlo simulation based 

methods were proved to be better methods than the mentioned simplistic 

approximations or linearizations, however they come with their own disadvantages 

and limitations regarding error control, convergence, computational complexity, and 

curse of dimensionality for particular types of algorithms. Examples and detailed 

discussions of Monte Carlo simulation based methods can be found in (Watanabe, 

1999), (Tanizaki, 1997), (Carlin et al., 1992) , and (Sandman and Koopman, 1998). 

A major breakthrough in SV literature was the introduction of Markov Chain Monte 

Carlo (MCMC) methods  to the econometrics and SV fields by the studies of Tanner 

and Wong (1987), Tierney (1994), Chib and Greenberg (1995, 1996), and Jacquier et 

al., 1994). MCMC methods including the influential Metropolis-Hastings and Gibbs 

sampling algorithms quickly became central to the SV modeling and estimation 

studies, and an appreciable amount of literature on the applications of different 

variations of MCMC methods on several types of SV models, particularly for the 

MSV models was built up. Theoretically, MCMC methods are immune to the curse 

of dimensionality by construction, and they can easily be implemented in a Bayesian 

setting where the parameter estimation can also be handled without a maximization 

routine for the likelihood, hence without an explicit evaluation of the likelihood 

function as described in (Jacquier et al. 1994). The appealing characteristics of 
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MCMC methods made them a natural first choice in MSV estimation studies. 

However, MCMC algorithms are not flawless. They still require intense 

computational resources for complicated iterative sampling schemes for estimation. 

They are not exact as being  Monte Carlo simulation based methods, and additional 

issues on error control and convergence are inherent particularly for MCMC 

methods. Poor mixing chains, correlated samples, identification of convergence, 

diagnosis, selection of suitable proposal densities are some of the named challenges 

of MCMC methods. 

Multi-dimensional integrals arising in estimation of SV models can be handled by 

classical numerical integration methods. Being an exact method with a deterministic 

nature, convergence properties of classical numerical integration methods are 

superior to simulation methods. However, when the problem dimension increases 

these methods become computationally infeasible since the number of dimensions 

increases the complexity of these type of algorithms exponentially. Unsurprisingly, 

studies on the application of the numerical integration methods to nonlinear state 

space models and particularly MSV models are quite rare compared to the  

approximation based methods and Monte Carlo simulation based methods including 

the MCMC. One of the studies incorporated numerical integration for the univariate 

case is (Kitagawa, 1987) and a brief discussion on numerical integration can be 

found in (Tanizaki, 1997). Most of the studies in the MSV estimation literature 

mention but exclude the numerical integration methods. 

Sparse grid integration (SGI) method is a smartly reshaped version of conventional 

numerical integration method to handle multidimensional integrals by constructing 

multi-dimensional integration formulas in a way that the dimensionality effect is 

decreased to a certain extent which allows practical implementation in high 

dimensional cases in contrast to the conventional numeric integration methods. 

Sparse grid integration approach starts with work of Smolyak (1963) and detailed 

treatment of the methods based on the idea is available in (Heiss & Winschel, 2006) 

and (Bungarts and Griebel, 2004).  The sparse grid integration approach was applied 

to some economics and financial problems (E.g., discrete choice analysis in by 

Bungarts & Griebel (2004), collateral mortgage optimization problem by Gerstner 

and Griebel (1998),  derivative and option pricing in Gerstner (2007) and asset 

liability in life insurance in (Holtz, 2010). However, estimation algorithms based on 
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the sparse grid integration methods for SV models have been neither studied nor 

mentioned in the literature. In this context, one of the objectives of this study is to fill 

this gap by applying sparse grid integration method to the estimation algorithms of 

MSV models. 

2.2.3 Estimation with Markov Chain Monte Carlo (MCMC) methods 

In this section, implementations of the MCMC methods including the well known 

Metropolis-Hastings and Gibbs sampling algorithms to the estimation problems of 

MSV-D model will be presented  after a brief background on MCMC methods. 

2.2.3.1 Preliminaries on MCMC methods 

The idea behind the MCMC methods is to produce variates from a given multivariate 

density by repeatedly sampling a Markov Chain whose invariant distribution is the 

target density of interest. Although being a Monte Carlo method, MCMC method is 

completely different than the classical Monte Carlo techniques because the variates 

are not generated randomly instead they follow a Markov Chain. To approximate the 

integral, 

    h x f x dx   (2.60) 

where f is a density function, classical Monte Carlo methods seek ways to obtain 

direct independent samples from the density f whereas MCMC methods obtain 

dependent samples using transition kernels through an ergodic Markov chain with 

stationary distribution  f.   

The idea of incorporating a Markov chain to sample the target distribution is first 

proposed by Metropolis et al. (1953) and generalized by Hastings (1970) so the 

method is known as Metroplis-Hastings algorithm and originates from statistical 

physics. Later on several variations and extensions are adopted in many fields 

including the econometrics and SV literature. 

Metropolis-Hastings algorithm is one of the main building blocks of MCMC 

methods. The algorithm starts with the target density f and selection of a conditional 

density q(y|x) which is called the proposal density. Given the sample Xi , at iteration i, 

algorithm proceeds as follows: 

1. Generate candidate  |i iY q y X , 
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2. Take,  

 
 1

with probability   ,

with probability   1 , ,

i i i

i

i i i

Y p X Y
X

X p X Y



 


 

where, MH( , ) min{ ,1}p x y w  and wMH is the Metropolis-Hastings ratio 

(weight) calculated by 

 
   

   

|

|
MH

f y q x y
w

f x q y x
 . (2.61) 

In this algorithm, first step generates a candidate sample from the proposal density 

q(y|x) based on the current sample. The candidate sample is accepted as the new 

sample if the criteria calculated using the Metropolis-Hastings ratio is met, otherwise 

current sample is kept as the new sample. Using this algorithm several hard-to-

sample densities can be sampled. The proposal density, q(y|x) plays the critical role 

in the algorithm by determining the structure of the chain and by adjusting the 

perturbations performed on the current sample. The convergence of algorithm, 

strictly depends on the choice of the proposal density and its parameters. There is a 

vast literature on the selection of proposal densities. A good reference on the on 

Metropolis-Hastings algorithm is (Chib and Greenberg, 1995) and (Chib, 2001). 

The Gibbs sampling algorithm is another milestone in the evolution of MCMC 

methods. Gibbs sampling provides a step by step approach for sampling from 

multivariate densities  using conditional densities of lower dimensions (usually one 

dimension) than the target density. Starting with the sample i which is a, p-

dimensional random variable, 
( ) ( ) ( )

1( ,..., )i i i

pX XX , each sweep of Gibbs sampling is 

performed by the sampling step 

 
            1

1 2 1 1| , ,.., , ,..,
i i i i i i

j j j j j pX f x X X X X X


    (2.62) 

for all 1,..,j p . One sweep of the sampler is completed in p steps if conditional 

densities fj are univariate and after a complete sweep, sample 1i  ,

( 1) ( 1) ( 1)

1( ,..., )i i i

pX X  X  , is obtained. In the Gibbs sampling algorithm described 

above, the full conditional densities fj are the only densities used for simulation. 

Thus, even in high dimensional problems such as the MSV models, all of the 

simulation may be univariate.  
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2.2.3.2 MCMC based estimation algorithms for the MSV-D  

There are two main approaches for applying the MCMC methods to the estimation 

algorithms developed and discussed in section 2.2.1 for the MSV models.  

First approach incorporates Gibbs sampling and Metropolis-Hastings algorithm for 

obtaining the smoothing densities of the log-volatilities Ht and the correlation states, 

Qt, first, then uses these densities for filtering, prediction and parameter estimation. 

In this approach filtering is performed by repeatedly executing smoothing for each 

time step, prediction is performed by other Monte Carlo methods such as resampling 

and parameter estimation is performed by a Expectation Maximization (EM) 

algorithm based on the smoothing densities. This approach is referred as MCMC 

with EM Algorithm 

Second approach uses MCMC methods for obtaining both the smoothing densities of 

states and parameters at the same time with a Bayesian approach augmenting the 

parameter space to the state space which eliminates the need for a separate 

maximization step for parameter estimation and explicit likelihood evaluation. In this 

approach filtering and prediction is performed in similar to the first approach. This 

approach is referred as Bayesian MCMC in the study. 

In this section algorithms based on the MCMC methods are developed for the MSV-

D model for both approaches summarized above. 

MCMC with EM algorithm for the MSV-D 

This approach incorporates MCMC methods to obtain smoothing estimates of the 

log-volatilities, ht and the correlation states, qt by directly sampling from the 

conditional density ( , | , )T T Tp H Q Y Ω  by sampling ( | , , )T T Tp Q H Y Ω and 

( | , , )T T T hp H Q Y Ω . In this approach, given the current parameter set { , }h qΩ Ω Ω , 

one sweep of  a Gibbs sampler is performed by the following two main steps: 

1. Sample from  | , ,T T Tp Q H Y Ω , 

2. Sample from  | , ,T T T hp H Q Y Ω . 

At each step of the above Gibbs sampler, sampling from ( | , , )T T Tp Q H Y Ω , and 

( | , , )T T T hp H Q Y Ω is performed by other Gibbs samplers sampling from 

\( | , , , )t T T Tp q H Q Y Ω  and \( | , , )t T T Tp h H Q Y Ω  for t = 1,..,T.  And at each time step, 
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Metropolis-Hastings algorithm is used. N sweeps of the two step Gibbs sampler 

completes the algorithm and M samples are discarded as burn-in samples and 

smoothing densities are obtained.  

In step 1, to sample from \( | , , , )t T T Tp q H Q Y Ω , the kernel to be sampled at each 

time period t can be obtained by using the densities constructed in section 2.2.1 and 

using equation 2.42 as follows 
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  (2.63) 

The kernel density obtained in equation 2.63 is not in a simple form that allows 

direct sampling so Metropolis-Hastings algorithm is applied where the Metropolis-

Hasting ratio is given by 
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  (2.64) 

In equation 2.64,  ( )tp q  is the proposal density and t


q  is the candidate generated 

by the proposal density. According to the Metropolis-Hastings algorithm, the 

candidate is accepted with probability min( ,1)MHw , otherwise previous sample is 

kept.  

One of the options for the proposal density is the density obtained from the state 

equation of correlation states 1( | , )q t t qp q q Ω given in equation 2.33 with appropriate 

time indices given by 

    1| ,t q t t qp p q q q Ω ,  (2.65) 



31 

 

where a candidate 
t


q  is generated based on qt-1. Another option is the density 

obtained from AR(1) missing data problem approach where, 
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q μ V

μ V θV θ V θq δ θV q δ

V V θV θ

  (2.66) 

In these densities a scalar c as a coefficient for variance/covariance matrices can be 

used as a tuning parameter. Several other proposal densities can also be constructed 

such as random-walk proposal. In the numerical applications of this study, the 

proposal density obtained with AR(1) missing data problem approach is used. 

In step 2, to sample from \( | , , )t T T Tp h H Q Y Ω , the kernel to be sampled at each time 

period, t, can be obtained by using the densities constructed in section 2.2.1 and 

using equation 2.42 as follows: 
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The kernel density obtained in equation 2.67 is also sampled using Metropolis-

Hastings algorithm with the Metropolis-Hasting ratio is given by 

 

         

         

MH

1 1 1 1 1

1 1 1 1 1

| , , | , , | , , , | , , ,
,

| , , | , , | , , , | , , ,

                                             

h t t t h h t t t h y t t t t h y t t t t h t

h t t t h h t t t h y t t t t h y t t t t h t

w

p p p p p

p p p p p

   

     



     





h h q Ω h h q Ω y h h q Ω y h h q Ω h

h h q Ω h h q Ω y h h q Ω y h h q Ω h

       

     

1 1 1

1 1 1

                                                                                              

| , , | , , | , , ,

| , , | , , | , , ,

h t t t h y T T t h y t t t t h t

h t t t h y T T t h y t t t t h

t T

p p p p

p p p

  

   

  



h h q Ω y h q Ω y h h q Ω h

h h q Ω y h q Ω y h h q Ω  
,                            ,

t

t T
p 














h

  (2.68) 

where ( )tp h  is the proposal density and t


h  is the candidate generated by the 

proposal density. According to the Metropolis-Hastings algorithm, the candidate is 

accepted with probability min( ,1)MHw , otherwise previous sample is kept. 
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One of the good options for the proposal density ( )tp h is the density obtained from 

the Kalman filter smoothing algorithm given in equation 2.58 as 

    , | , |,t h t T h t Tp N c h μ Σ   (2.69) 

where 
, |h t Tμ  is the mean and 

, |h t TΣ   is the covariance matrix obtained from the 

Kalman smoother algorithm given in equation 2.58 and c is a scalar tuning 

parameter. Other proposal densities can also be used such as the density from log-

volatility equation or density from AR(1) missing data problem. In the applications 

of this study, the density from the Kalman filter is used. 

Having the joint conditional smoothing density ( , | , )T T Tp H Q Y Ω with the above 

MCMC algorithm, the parameter estimation is performed by maximizing the 

expected log-likelihood, 
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  (2.70) 

with respect to the parameter set Ω in an EM algorithm where the smoothing density 

( , | , )T T Tp H Q Y Ω  is repeatedly executed with the current parameter set obtained by  

the maximization of the expectation in equation 2.70 until a particular convergence 

criteria is met. As an optimization routine several alternatives are available, one of 

the general purpose nonlinear optimization method can be used. Well known 

Newton's method, derivative free search algorithms such as Nelder-Mead, or quasi-

Newton methods such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) are some of 

the examples. Using derivative free optimization methods can significantly improve 

computational performance however methods that provide the exact or an 

approximated  Hessian at the likelihood readily provides the Fisher information 

matrix which directly gives the standard errors of parameter estimates. In the 

numerical applications in this study Newton's method and Nelder-Mead algorithms 

are used. 
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In this approach, filtering densities and estimates are obtained by simply using the 

exact same procedure described above for smoothing with only change in the time 

indices, for each time step t = 1,...,T the smoothing procedure is repeated and 

filtering estimates are obtained. Obviously, filtering with MCMC method is 

computationally much more demanding than the smoothing.  

Prediction estimates can be obtained recursively using resampling (with N samples) 

for approximating the prediction algorithm given equation 2.45 as 

 

 

     ( ) ( ) ( ) ( ) ( )

1 1 1 1 1

1

, | ,

| , , | , , | , ,

t L t L t

N
j j j j j

h t L t L t L h q t L t L q t L t L t

j

p

p p p

 

           







h q Y Ω

h h q Ω q q Ω h q Y Ω
  (2.71) 

based on the filtering density ( ) ( )( , | , )i i

t t tp h q Y Ω  . 

Bayesian MCMC for the MSV-D 

Bayesian approach for the estimation of MSV models is probably the most studied 

topic in SV literature with examples in (Jacquier et al. 1994), (Gourieroux et. al. 

2009), (Asai and McAleer, 2009),  (Ishihara, 2012),  (Ishihara et al., 2014). 

In the Bayesian approach the parameters of the MSV-D model, 

{ , , , , , } Ω γ φ V δ θ V are considered to be random variables with prior distributions 

and their space is augmented to the state space and MCMC methods are used to 

sample from the joint distribution of states and parameters given the observations, 

( , , , , , , , | )T T Tp  H Q γ φ V δ θ V Y . In this approach there is no need for a separate log-

likelihood maximization routine since parameter estimates are also obtained through 

the implemented sampling scheme. This also means that there is no need for explicit 

calculation of the log-likelihood function or its expectation. However, appropriate 

prior distributions for the parameters and efficient sampling mechanisms from their 

posterior distributions must be developed in this approach. Thus models with 

different specification usually have different implementations. In this section a 

customized Bayesian MCMC algorithm is developed for the MSV-D. 

The MCMC based algorithm to sample from ( , , , , , , , | )T T Tp  H Q γ φ V δ θ V Y is 

performed with the following Gibbs sampler at each step sampling from a different 

posterior density: 

1. Sample from  | , , , , , , ,T T Tp  δ H Q Y γ φ V θ V , 
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2. Sample from  | , , , , , , ,T T Tp  θ H Q Y γ φ V δ V , 

3. Sample from  | , , , , , , ,T T Tp  V H Q Y γ φ V δ θ , 

4. Sample from  | , , , , , , ,T T Tp  Q H Y γ φ V δ θ V , 

5. Sample from  | , , , , , , ,T T Tp  γ H Q Y φ V δ θ V , 

6. Sample from  | , , , , , , ,T T Tp  φ H Q Y γ V δ θ V , 

7. Sample from  | , , , , , , ,T T Tp  V H Q Y γ φ δ θ V , 

8. Sample from  | , , , , , , ,T T Tp  H Q Y γ φ V δ θ V . 

Here, the densities at steps 1, 2, 3, 5, 6 and 7 are posterior densities of the 

parameters, and the densities at steps 4 and 8 are posterior densities of the states. 

Here the eight step Gibbs sampling sweep is repeated N times and joint density of the 

states and parameters are obtained at once. At each step, the conditional posterior 

density of interest is multi-dimensional and some of them do not allow direct 

sampling so Metropolis-Hastings algorithm is used in such cases.  

At step 1 of the above Gibbs sampler, the posterior is, 
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  (2.72) 

If a diffuse prior for δ (i.e. p(δ) α 1) is assumed then the posterior obtained in 

equation 2.72 becomes  
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  (2.73) 

which is a normal distribution with the mean and covariance given by 
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Thus, sampling from ( | , , , , , , , )T T Tp  δ H Q Y γ φ V θ V can be directly performed from 

a normal distribution with the parameters given in equation 2.74. 

At step 2 of the above Gibbs sampler, the posterior is, 
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 (2.75) 

A beta prior for each θi can be used for i = 1,...,r. Then, the prior distribution of θ 

becomes,  
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With this prior density, the posterior in equation 2.75 is not in a simple form 

allowing direct sampling, thus it can be sampled by Metropolis-Hastings algorithm 

with the ratio, 
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where an appropriate proposal density, ( )p θ , can be obtained from 

( | , , , )Q T qp Q Ω δ V θ , by letting 
, 1diag( ,..., )q t t rtD q q  and θv be the vector 

composed of the diagonal entries of the diagonal matrix θ, as follows: 
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The density obtained in equation 2.78 is a normal distribution with covariance and 

mean given by 
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where   is the Hadamard product. Then a suitable proposal density  p θ is given 

by the following truncated normal density with a truncation interval [0, 1]: 

    ; , ,0,1TN vp f   θ θ μ Σ . (2.80) 

 At step 3 of the above Gibbs sampler, the posterior is, 
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and if an inverse gamma prior for each σω,i is assumed, then the prior distribution of 

Vω becomes, 
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With this prior, posterior density in equation 2.81 becomes 
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The density obtained in equation 2.83 is also an inverse gamma density with 

parameters 
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  (2.84) 

Thus, sampling from ( | , , , , , , , )T T Tp  V H Q Y γ φ V δ θ can be directly performed from 

an inverse gamma distribution with the parameters given equation 2.84. 

At step 4, sampling from ( | , , , , , , , )T T Tp  Q H Y γ φ V δ θ V  is performed by sampling 

from the kernel density \( | , , , )t T T Tp q H Q Y Ω as described in the previous section 

using the Metropolis-Hastings algorithm with the Metropolis-Hastings ratio  given in 

equation 2.64 and the proposal density given in equation 2.66. 

At step 5 of the above Gibbs sampler, the posterior is, 
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V Q Ω δ θ V Y H Q γ φ V

γ φ V δ θ V γ

H Q γ φ V Y H Q γ φ V γ
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H Q γ φ V Y H Q   , , .pγ φ V γ   (2.85) 

If a diffuse prior for γ (i.e. p(γ) α 1) is assumed then the posterior obtained in 

equation 2.85 becomes  
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which is a normal distribution with covariance and mean given by 
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  (2.87) 

Thus, sampling from ( | , , , , , , , , )T T Tp  γ H Q Y γ φ V δ θ V can be directly performed 

from a normal distribution with the parameters given in equation 2.87. 

At step 6 of the above Gibbs sampler, the posterior is, 
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  (2.88) 

If  a beta prior for each φi , i = 1,..., p , the prior distribution of φ becomes,  
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With this prior distribution, the posterior in equation 2.88 can be sampled by 

Metropolis-Hastings algorithm with the ratio, 
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  (2.90) 

By letting 
, 1diag( ,..., )h t t ptD h h  and φv be the vector composed of the diagonal 

entries of the diagonal matrix φ, an appropriate proposal density, ( )p φ  , can be 

obtained from the conditional ( , | , , , )t t tp Y H Q γ φ V  as follows: 
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The density obtained in equation 2.91 is a normal density with the covariance and 

mean given by 
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where, 
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Then, a suitable proposal density,  p φ is given by the following truncated normal 

density with a truncation interval [0, 1]: 

    ; , ,0,1 ,TN vp f   φ φ μ Σ   (2.94) 

At step 7 of the above Gibbs sampler, the posterior is, 
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If an inverse gamma prior for each ση,i is assumed, then the prior distribution of Vη 

becomes 
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With this prior distribution, the posterior in equation 2.95 can be sampled by 

Metropolis-Hastings algorithm with the ratio, 
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H Q γ φ V Y H Q γ φ V V V

H Q γ φ V Y H Q γ φ V φ V
  (2.97) 

Letting , 1, ,diag( ,..., )t t p t  D and ,1 ,(1/ ,...,1/ )p    s  then a suitable proposal 

density,  p  V can be constructed from the conditional ( , | , , , )t t tp Y H Q γ φ V as 

follows: 
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where, 
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  (2.99) 

Then, the first part of the posterior in equation 2.98 which is the multiplication of  

inverse gamma densities can be used as a proposal density ( )p  V  where the 

parameters are given by 
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  (2.100) 

At step 8 of the Gibbs sampler, sampling from ( | , , , , , , , )T T Tp  H Q Y γ φ V δ θ V  is 

performed by sampling from the kernel density \( | , , , )t T T Tp h H Q Y Ω as described in 

the previous section using the Metropolis-Hastings algorithm with the Metropolis-

Hastings ratio  given in equation 2.68 and the proposal density given in equation 

2.69. 
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In both MCMC based estimation approaches for the MSV-D model, if dynamic 

components and associated terms with the correlation states, qt, are dropped along 

with the parameter set { , , }q Ω δ θ V , then the only parameter set Ωh becomes 

{ , , , }h Ω γ φ V δ  where δ is the constant parameter for the correlations between 

asset returns in place of dynamic correlation states qt. Then the simplified versions of 

the algorithms can be used for the MSV-G or MSV-B model. For example the two 

steps Gibbs sampler for the MCMC with EM algorithm, reduces to a single step and 

eight-steps Gibbs sampler for the Bayesian MCMC, reduces to five steps and 

posteriors stays almost same with simplifications. 

2.2.4 Estimation with sparse grid integration (SGI) method 

In this section, development of the estimation algorithms based on the sparse grid 

integration (SGI) method for the MSV-D model will be presented after a brief 

background on the method. 

2.2.4.1 Preliminaries on the SGI method 

Similar to classical numerical integration methods, sparse grid integration methods 

are also based on integration formulas which are simply represented by a set of 

function evaluation points and corresponding weights. These points and weights are 

then used to evaluate the integral of a given function with, 
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  x x x   (2.101) 

where, d is the dimension, l is the level, xil are the p-dimensional vectors representing 

points, wil are the weights and Nl is the number of points in the integration formula 

represented by 

  ( )

1

.
lN

d

l il il

i

Q f w f


 x   (2.102) 

In equation 2.101 and equation 2.102, level l = 1, 2, .. determines the number of 

points, Nl, in the formula. The relationship between the level l and the number of 

points, Nl, depends on the type of the formula. For the well known univariate iterated 

trapezoid rule for open interval given by 
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The relationship between the number of points Nl and the level l can be cast as 

 2 1l

lN   . (2.104) 

The trapezoid rule given in equation 2.103 is a nested rule where the points in a 

given level are kept in the upper levels with addition of extra points at each 

increment in level.  

In the conventional numerical integration approach multivariate integration formulas 

such as the one in equation 2.102  are constructed from univariate rules with the 

tensor product, 
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      (2.105) 

Thus, the integrand is evaluated at the points of a product grid where the resulting 

multidimensional weights are the products of the corresponding one dimensional 

weights. Classical product quadrature methods with this approach achieve an 

accuracy of 

    r dN O N    (2.106) 

for the computation of multivariate integrals with N evaluations of the integrand at 

each dimension of the grid boundary for functions with bounded mixed derivatives 

up to order r. In conventional numerical integration approach as d increase the 

convergence deteriorates rapidly and computational burden increases exponentially 

which is the curse of dimensionality in this approach. 

Instead of the tensor product grid in equation 2.105, multivariate sparse grid 

integration rules can be obtained by construction of a regular sparse grid with the 

telescoping sum, 
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where ( )d

lQ  is an integration formula of dimension d and level l, 1( ,..., )dk k k is a 

d-dimensional vector and |·|r is the r-norm operator. In equation 2.107, (1)

ik are the 
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difference formulas which are also integration formulas obtained from the univariate 

integration formulas (1)

lQ of different levels with 

 
      1 1 1

1 .
i i ik k kQ Q      (2.108) 

The grid construction approach in equation 2.107 uses the products whose sum of 

indices are smaller than a constant l + d - 1 out of all possible tensor products. 

Classical construction of multivariate integration formula given in equation 2.105 

would be obtained if  |k|1 < l + d - 1 , is replaced by |k|∞ < l in equation 2.107, then 

the complete tensor grid used in classical approach would be obtained. The 

construction in equation 2.107 is known as Smolyak's construction (Smolyak, 1963). 

The regular sparse grid obtained using the construction in equation 2.107 has an 

accuracy of 

    
  1 ( 1)

log
d rrN O N N
    (2.109) 

with N points in one dimension of the grid at the boundary for functions with 

bounded mixed partial derivatives of order up to r.  

The regular sparse grid constructed in equation 2.107 involves  
 1

O( log )
d

N N


degrees of freedom whereas the full tensor product grid involves O(N
d
) degrees of 

freedom. As a result, although not completely, SGI method significantly helps for 

relaxing the limitation imposed by the number of dimensions in conventional 

numerical integration approach. Table 2.1 shows the required number of grid points 

for different number of  dimensions and levels of regular sparse grid and full tensor 

product grid constructed from the trapezoid rule given in equation 2.103 where the 

dependence on dimension can be seen clearly. 

2.2.4.2  SGI based estimation algorithms for the MSV-D 

At time t, if the state spaces of ht and qt are augmented then the total dimension of 

the resulting state space becomes 
22d p . Let ( )d

lQ  be the d-dimensional and ( )p

lQ  

be the p-dimensional sparse grid quadrature rules constructed from the choice of a 

univariate quadrature rule, (1)

lQ  of level l. Although it is not necessary, it is assumed 

that the level l stays constant through time periods 1,..,t T  for notational 
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simplicity. Let  1,2,..f FG N  and  1,2,..h HG N be the sets of sparse grid point 

indices of the formulas ( )d

lQ and ( )p

lQ respectively. Then, each point 
fi G in the first 

grid is characterized by a d-dimensional vector ( ) ( ) ( )

,1 ,( ,.., )i i i

f f f dc c c and each point 

hi G  in the second grid is characterized by a p-dimensional vector 

( ) ( ) ( )

,1 ,( ,.., )i i i

h h h pc c c  representing the raw grid coordinates of the points and 

corresponding weights ( )i

Fw , ( )i

Hw . 

Table 2.1 : Multi-dimensional grid sizes based on the trapezoid rule. 

Level Dimension 
Complete Tensor 

Product Grid 

Regular Sparse 

Grid 

2 1 3 3 

2 5 243 5 

2 10 59,049 21 

2 20 3.48x10
9 

41 

    

3 1 7 7 

3 5 16807 71 

3 10 282,475,249 241 

3 20 7.97×10
16 

881 

    

4 1 15 15 

4 5 795,375 351 

4 10 5.76×10
11 

2,001 

4 20 3.32×10
23 

13,201 

    

5 1 31 31 

5 5 28,629,151 1,471 

5 10 8.19×10
14 

13,441 

5 20 6.71×10
29 

154,881 

The constructed sparse grid can be applied to the state space model of MSV-D by 

providing the suitable integration intervals for each dimension of the state vectors 

1( ,..., )t t pth h h  and 1( ,..., )t t rtq q q  for t = 1,...,T. Once the integration intervals 

provided, raw grid coordinates, ( )i

fc and ( )i

hc , of points can be converted to actual 

point coordinates as  
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  (2.110) 

with corresponding weights ( )i

Fw , ( )i

Hw .  
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Here, two regular sparse grids are constructed, sparse grid of the augmented ht and qt 

states is the first and second is the sparse grid of ht which is a sub-grid of the first 

one with adjusted weights and different indices. 

Equipped with the sparse grid points, corresponding weights and sets of their indices 

for the two sparse grids, the integrals in the filtering algorithm given in equation 2.43 

in section 2.2.1.2 can be handled numerically as, 

 

 

     

 

     

( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

, | ,

| , , | , , | , ,   

, | ,

| , , , | , , , | ,

F

i i

t t t

i j j i j j j j

h t t t h q t t q t t t f F

j G

i i

t t t

k i i k i i i i k

y t t t t h h t t t h t t t h

k G

p

p p p w i G

p

p p p w



     



  











h q Y Ω

h h q Ω q q Ω h q Y Ω

h q Y Ω

y h h q Ω h h q Ω h q Y Ω

     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

.
| , , , | , , , | ,

H

F H

k i i k i i i i k i

y t t t t h h t t t h t t t h f

i G k G

p p p w w  

 



  y h h q Ω h h q Ω h q Y Ω

  (2.111) 

Similarly, density based L-step ahead prediction algorithm given in equation 2.45 in 

section 2.2.1.2 can be obtained using the sparse grid integration as 
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based on the filtering density obtained in equation 2.111.  

The recursive smoothing density algorithm given in equation 2.47  in section 2.2.1.2 

can be numerically approximated as  
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for t = T-1, T-2,...,1. 

The expectation of a function  ,u uf h q  given in equation 2.50 can be numerically 

approximated by 



48 

 

       ( ) ( ) ( ) ( ) ( )E , | , , , | ,
F

i i i i i

v v s v v v v s F

i G

f f p w


h q Y Ω h q h q Y   (2.114) 

and finally, for the parameter estimation, the log-likelihood function in equation 2.51 

can be approximated as  
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which is readily available from the denominator of the filtering algorithm given in 

equation 2.111. 

The algorithms based on the SGI method are general and in the cases of static MSV-

G and simpler MSV-B models, the algorithms presented here get simpler too. For 

example the filtering algorithm for the MSV-B model simplifies to 
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with { , , , }h Ω γ φ V δ , where only the sparse grid for the states ht is used since the 

dynamic elements qt are dropped and δ is included in the parameter set for 

correlations. 

A method for identifying suitable integration intervals for the states, ht, is 

incorporating the estimates form the Kalman filter and setting integration intervals as  

  | | |,t s t s t sz z h d h d   (2.117) 

where |t sh  is the state estimates and |t sd  is the vector composed of square roots of the 

diagonal elements of the covariance estimate, , |h t sΣ  (i.e., standard deviation estimates 

of the states ht) obtained with the Kalman filter algorithms given in section 2.2.2 

with equations 2.56, equation 2.57 and equation 2.58.  In equation 2.117 z is a scalar 

tuning parameter greater than 1. Identifying the integration intervals for the states qt 

can be challenging. One of the options is using a generic interval such as [-2π, 2π] 

covering most of the interval in accordance with the transformation in equation 2.23 

or a smarter approach would be fitting a static version of the model and then using 
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the parameter estimates for the constant correlations as the mean of the integration 

interval for the dynamic case and identifying a symmetric interval, where maximum 

for the upper bound is set to 2π and minimum for the lower bound is -2π, leading to 

integration intervals that are narrowed down for better precision.  
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3.  COMPUTATIONAL IMPLEMENTATION 

In this section important topics on the practical implementation of the estimation 

algorithms, their computational aspects and parallelization approaches, particularly 

implementation with the graphics processing unit (GPU), which is one of the 

research objectives of this study,  are discussed. 

3.1 Computational Aspects of Estimation Algorithms 

In a typical practical application of volatility estimation main purpose is forecasting 

the future volatilities for decision making given the past information. Long and mid-

term predictions are usually composed of several periods whereas the short term 

forecasting usually refers the next single period or a couple of next periods. The 

models and estimation algorithms presented in this study are suitable for short term 

predictions because models do not include components which are common in mid-

term to long term forecasting methods (such as external regressors, leading indicators 

etc.). Although it is trivial to include such components the focus of the study is short 

term forecasts which is often considered as the next period.  

For the main practical objective of producing forecasts, all the prediction algorithms 

rely on other estimation algorithms namely, filtering, smoothing and parameter 

estimation in quite different ways for the MCMC and SGI methods because of the 

computational and algorithmic differences in these approaches. It is important to 

consider the ordering and prioritization of estimation algorithms and their 

dependencies for correct evaluation of performance in a practical implementation. 

Figure 3.1 illustrates the dependence and ordering of different estimation algorithms 

for practical implementations of the MCMC and SGI based approaches for 

estimation. MCMC based estimation algorithms mainly rely on the smoothing 

algorithm whereas the SGI based algorithms rely on filtering algorithm. Filtering 

algorithm for the MCMC approach and smoothing algorithm for the SGI approach 

are not required for prediction and parameter estimation algorithms. In a typical 

implementation, MCMC based approaches require frequent (each period) execution 
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of prediction and smoothing algorithms whereas SGI based approach requires 

execution of filtering and prediction algorithms.  

 

Another important difference between the MCMC based estimation algorithms and 

SGI based algorithms is the batch versus sequential structure which is also related 

with the algorithm dependency differences discussed above. As illustrated in Figure 

3.2,  sequential algorithms use the estimation from the previous step and the current 

information set to make estimations whereas the batch algorithms needs all the 

information in the past and does not use any estimations from the history.  

 

 

 

 

 

 

Figure 3.2 : Sequential (i.e. on-line) vs. batch algorithm. 

 

Figure 3.1 : Estimation algorithm dependencies. 
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The algorithms based on the MCMC methods all have a batch structure inherited 

from the underlying logic and structure of the MCMC methods which put the 

smoothing algorithm at the basis. The estimation algorithms based on sparse grid 

integration method are sequential methods since they all rely on filtering algorithm. 

The advantage of sequential algorithms is that the computational burden can be split 

across time periods which can be a critical advantage in practical applications. 

For both MCMC with EM and Bayesian MCMC approaches presented in section 

2.2.3.2 the smoothing algorithm is the main algorithm used by all other estimation 

algorithms. The illustration of the smoothing algorithms for the MCMC with EM and 

the Bayesian MCMC approaches are given in Figure 3.3 and Figure 3.4 respectively. 

The basic structure of the smoothing algorithms in these approaches is composed of 

two main loops where the outer loop constructs samples based on the previous 

sample by running a inner loop computing the state estimates over time periods with 

addition of parameter estimates to the inner loop for the Bayesian case. 

 

 

 

 

 

 

 

 

 

 

 

Let P be the number of parameters then it can be seen form Figure 3.3 and Figure 3.4 

that T N  computations for the MCMC with EM approach and ( )T P N 

computations for the Bayesian MCMC approach are required, where each 

computation involves random number generation, density function evaluation and 

 

Figure 3.3 : Smoothing algorithm of MCMC with EM approach. 
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matrix operations including the inversion and determinant for matrices in size of 

maximum (2 1) (2 1)p p p p   . 

 

 

 

 

 

 

 

 

 

 

 

The filtering algorithms for the MCMC based approaches are computationally more 

intensive than the smoothing algorithms since filtering basically executes the 

smoothing algorithm repeatedly over time periods. Then the computational 

requirement for the both MCMC based methods for filtering becomes N×T×(T-1)/2. 

The prediction algorithm for the MCMC based methods given in equation 2.71 is a 

resampling algorithm has an additional computational burden of  L×N. For the 

parameter estimation Bayesian MCMC approach does not introduce additional 

computational burden on top of the smoothing algorithm requiring ( )T P N 

computations whereas MCMC with EM algorithm introduces the additional 

computational requirement on the inherited computational requirement of smoothing 

resulting a z T N   computations where z represents the complexity of the EM 

algorithm which depends on the state space dimension thus the number of model 

parameters and the choice of the optimization routine. 

As depicted in Figure 3.1, the filtering algorithm given in equation 2.111 is the main 

algorithm required by all other estimation algorithms. In Figure 3.5, the filtering 

algorithm for the SGI based approach is illustrated. 

 

Figure 3.4 : Smoothing algorithm of Bayesian MCMC approach. 
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Figure 3.5 : Filtering algorithm of SGI approach. 

The filtering algorithm based on the SGI methods is composed of two main loops 

where the outer loop constructs the estimates for time periods using two inner loops 

enumerating the sparse grids of previous and next time periods. In Figure 3.5, it can 

be more clearly seen that, this filtering algorithm is sequential in the time domain in 

contrast with the MCMC based algorithms. 

The filtering algorithm given in equation 2.111 and illustrated in Figure 3.5 requires 

2 2( )F F HT N N N    computations where NF and NH are the number of points in the 

sparse grids GF and GH which have dependency on the level l of the underlying 

univariate integration formula and the dimension of the associated state space. See 

Table.2.1 for the number of sparse grid points with the trapezoid rule as the 

underlying formula. GF is the sparse grid of the augmented state space of qt and ht 

which has maximum 22 p  dimensions in the complete dynamic MSV-D case and 

minimum p dimensions in the static MSV-D case (i.e. MSV-B and MSV-G models). 

GH is the sparse grid for the state space of ht which has p dimensions. Thus, under 

the static specifications (i.e. MSV-G and MSV-B) GF reduces to GH and 

computational burden can be represented as 2 3( )H HT N N  . There is an extra 

reduction in the computational requirement of the MSV-B model due to the lack of 

temporal dependency on the next time step then the resulting computational burden 

 



56 

 

becomes 2 2( )H HT N N  for the MSV-B model. Although, the curse of dimension is 

overcome to a certain degree, polynomial increase in the dimension of the augmented 

state-space of qt and ht makes it still hard for SGI to be used in models where the 

number of assets is high and complete dynamic structure is imposed, however SGI 

based filtering is still feasible for multidimensional models with static structures or 

restricted dynamic structures. The smoothing algorithm given in equation 2.113 has 

an additional requirement of 2

FT N computations and the prediction algorithm in 

equation 2.112 requires 2

FL N  computations. In the SGI based approach, each 

computation involves density function evaluation and matrix operations including 

inversion and determinant for matrices in size of maximum    2 1 2 1p p p p   for 

the complete dynamic structure and minimum 4p
2
 for the static specifications such as 

the MSV-G and MSV-B. In the SGI approach, parameter estimation incorporates 

filtering algorithm depicted in Figure 3.4, thus it inherits the computational 

requirement of filtering algorithm and resulting computational burden becomes 

2 3( )H Hz T N N   where z depends on the state space dimension, thus the number of 

model parameters, and the choice of the optimization routine. 

It is noteworthy that the computational burden of the algorithms provided above can 

be split among time periods and one-step computational burden of the estimation 

algorithms reduces by 1/T of the requirements presented above for the SGI approach 

since SGI based algorithms are sequential which is not the case for MCMC based 

methods as discussed before. 

In the implementation of SGI based estimation algorithms a complication is the 

accumulation of numerical errors as a result of  the recursive nature of the 

algorithms. To overcome this complication, a correction satisfying the requirement  

    ( ) ( ) ( ), | , , | , 1
F

i i i

t t s t t t t s F

i G

p d d p w


  h q Y Ω h q h q Y Ω   (3.1) 

from the basic property of probability density functions should be implemented with 

an extra computational cost of recomputing ( , | , )t t sp h q Y Ω . 

A final note about the implementation is the task of construction of the regular sparse 

grid used in the SGI based methods. The construction of regular sparse girds which 

involves calculation of the weights and raw coordinates of points for an arbitrary 
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level l and arbitrary dimension d for a given univariate integration formula requires a 

separate algorithm which does not have fixed loops (see appendix C.2 for the C 

functions used in the construction of regular sparse grids based on the trapezoid 

rule). For high dimensions and high values of integration rule levels, construction of 

the sparse grid has its own computational burden however the regular sparse grids for 

all time periods can be constructed in advance and kept in memory so computational 

requirement for the construction of the sparse grid does not necessarily increase the 

computational requirement of the overall estimation algorithm if the total size of the 

resulting grids are not problematic for memory usage. 

3.2 Parallelization Approaches for the MCMC Based Algorithms  

The smoothing algorithm for the MCMC with EM approach illustrated in Figure 3.3 

has dependencies both in the spatial and temporal domain in a batch structure at each 

sample and time step. A parallelization can be achieved by decomposing the inner 

loop (i.e. the time domain) for concurrency as illustrated in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 : Parallel MCMC based smoothing algorithm. 

In this approach, if the computations for each time step of each sample is considered 

as a process then the  maximum number of total processes that can be executed in 

parallel is given by, 
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2 , if T is even,

1 2 , if T is odd.

T
np
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  (3.2) 

after the first three time steps of the first sample and before the last three time steps 

of the last sample. All the estimation algorithms using the smoothing algorithm (see 

Figure 3.1) can benefit from the accelerated smoothing algorithm described here for 

the MCMC with EM approach. 

The parallelization approach for the MCMC with EM approach illustrated in Figure 

3.6 can not be applied to the smoothing algorithm of the Bayesian MCMC approach 

illustrated in Figure 3.4 because of the additional dependency on the parameters 

which are out of the temporal domain preventing the decomposition illustrated in 

Figure 3.6. MCMC based estimation methods such as the Bayesian MCMC where 

the parameter space and state space are augmented are known to be hard to parallel 

algorithms (Rosenthal, 2000). An option is using parallel independent chains, each 

same as the serial version illustrated in Figure 3.4 with different random number 

sequences and then combining the samples. The main drawback of this approach is 

the burn-in samples (i.e first M samples) which are discarded out of the N samples. 

There is not an exact theoretical number but burn-in samples are usually the 20%-

30% percent of the all samples in most of the studies. The parallelization with the 

parallel chains requires that either generating M burn-in samples for each chain or 

generating the M burn-in sample in one process and then splitting up the remaining 

samples in parallel where in either case there is a limit on the maximum theoretical 

speed-up which is N/M.  

Filtering algorithms based on the MCMC methods uses the smoothing algorithm for 

the MCMC with EM approach repeatedly for t = 1,...,T, thus the parallelization 

approach described for smoothing automatically inherited by  the filtering algorithm 

however an additional acceleration can be achieved by decomposing the runs of 

smoothing algorithm for each t, since they are independent. 

3.3 Parallelization Approach for the SGI Based Estimation Algorithms 

In the filtering algorithm based on the SGI method illustrated in Figure 3.5 the 

computations at each grid node for a given time step has dependency only to the 

previous step in the time domain. An highly efficient parallelization can be achieved 
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by decomposing the sparse grid nodes of each time step to processes. The parallel 

filtering algorithm based on SGI method is illustrated in Figure 3.7. In this approach, 

if computations at each grid node for a given time step is considered as a process, 

then maximum number of processes that be executed in parallel equals the sparse 

grid size NF.  

 

 

 

 

 

 

 

 

 

Figure 3.7 : Parallel SGI based filtering algorithm. 

All other estimation algorithms based on the SGI method are sequential and does not 

possess dependencies within a time step so the described parallelization approach is 

valid for them as well. 

Although the discussion on the parallel algorithms presented can be extended to the 

distributed memory and processors systems by addressing the obvious intense 

communication overhead required by the algorithms and their memory complexity, 

this study is limited with the shared memory multi processor systems such as GPUs 

or modern many-core computers. The parallel algorithms described above achieve 

the most efficient parallelism by exploiting the advantage of shared memory systems. 

And the memory requirements of the algorithms presented above are not beyond the 

resource limits of modern computers and GPUs thus is not a bottleneck in 

implementation. 
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3.4 Notes on the GPU Implementation 

In this study, parallel MCMC smoothing algorithm and parallel SGI filtering 

algorithm described in section 3.3 and illustrated in Figure 3.6 and Figure 3.7  are 

implemented on GPU.  

In a typical GPU implementation, parallel execution is achieved by device kernel 

functions which require number of blocks and total number of threads in each block 

in the function call along with other usual arguments such as pointers and data 

structures. The number of blocks nblocks and block size nsize depend on each other and 

are limited by the specification of the device used. The number of blocks for the 

device kernel calls can be obtained by  

 
1threads size

blocks

size

n n
n

n

 
   (3.3) 

where the number of threads nthreads depends on the parallel algorithm. In 

implementation of the parallel MCMC smoothing algorithm in Figure 3.6 each 

computation at time t and sample i is considered as a single thread and the number of 

threads that can be executed in parallel is set equal to the number of processes that 

can be executed parallel, np, given in equation 3.2.  

In a similar approach the parallel implementation of the parallel SGI filtering 

algorithm is performed by setting the number of threads that can be executed in 

parallel nthreads to the number of processes that can be executed in parallel, Fnp N . 

Although GPU architectures and designs are much more suitable and provide tools 

for exploiting lower level and more granular parallelism constructed on simpler but 

repeated computations, the approach considering a set of more complex 

computations composed of random number generation, density function evaluations 

and matrix operations as a single thread works quite well too in terms of performance 

with only the cost of considerable coding effort involving the development of all the 

device counterparts of the serial functions used in the computations. See appendix 

C.3 for the example codes on GPU functions, kernels and their usage. 

In the implementation of MCMC algorithms, random number generation is an 

important consideration and use of robust custom libraries and implementations are 
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required. In GPU implementations, parallel handling capability of random number 

generation provided by the used library is important. 

Some other details regarding the implementation can be found in section 4.1 where 

the software and hardware used in the study are summarized as part of the 

methodology. 
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4.  METHODOLOGY 

In this section the methodology followed in the study is presented. The methodology 

of the study considers the following main objectives: 

a. Illustrate and evaluate the proposed model (i.e. MSV-D model) and its 

developed estimation method based on Bayesian MCMC, 

b. Compare the performance of the the proposed estimation approach (i.e. SGI 

based approach) for MSV models with  the MCMC based approach, 

c. Evaluate the implications of GPU acceleration support on the estimation 

algorithms for the MSV models, 

With these objectives, the methodology consists of computational studies and 

analyses conducted on simulated and empirical data sets.  

This chapter is organized as follows. Section 4.1 provides details of the software 

programs and hardware used in the computational studies. Section 4.2 describes the 

methodology used for illustration and evaluation of the proposed model, MSV-D. 

And in section 4.3 the methodology used to assess and compare the SGI based 

estimation algorithms with the MCMC based algorithms and to evaluate the 

implications of GPU support in estimation algorithms are presented together. 

4.1 Software Programs and Hardware 

The estimation algorithms used in computational studies are implemented using the 

C programming language for both the serial and parallel implementations. 

NVIDIA™ CUDA
®

 4.0 platform is used for the development and programming of 

the parallel algorithms for GPUs.  

Table 4.1 provides the summary of the estimation algorithms and their 

implementations. 
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Table 4.1 : Implemented estimation algorithms.  

Approach Serial CPU Parallel GPU 

Kalman Filter Smoothing  

 Filtering  

 Prediction  

MCMC  Smoothing Smoothing 

 Filtering  

 Prediction  

 Parameter Estimation  

SGI Smoothing Filtering 

 Filtering  

 Prediction  

 Parameter Estimation  

As discussed in section 3, the smoothing algorithm for the MCMC approach and the 

filtering algorithm for the SGI approach are base algorithms which other algorithms 

depend on, thus parallel implementations of these two algorithms automatically make 

other algorithms parallel too.  

In implementations of the algorithms, the random number generation in the serial 

programs is performed with a C implementation of LAPACK _larnv routines and in 

GPU programs, CURAND library is used.  

In the parameter estimation algorithms of the MCMC with EM and SGI approaches, 

NLopt C library is used for non linear optimization methods. 

Computational studies and numerical applications are performed on a computer with 

Intel Core I7-920 processor, 16 GB memory and NVIDIA™ Tesla C1060 compute 

processor as the GPU. 

For comparison purposes, in some of the parts of the computational studies GARCH 

models are used and they are fitted in R verison 3.1.0 with rugarch, rmgarch and 

ccgarch packages. 

4.2 Assessment of the MSV-D Model 

To illustrate and evaluate the proposed model, namely the MSV-D model, and its 

Bayesian MCMC estimation algorithm, two simulated data sets and an empirical data 

set are used.  

Two simulated data sets of five asset returns are generated with known parameters 

for T = 5,000 time periods. First data set is constructed with a static specification 
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which is equivalent to the MSV-G model whereas the second simulated data set has a 

complete dynamic structure based on the MSV-D model. It is noteworthy that, the 

static specification which is equivalent to the MSV-G model, is essentially a special 

case of the MSV-D model parameterized with the proposed approach. 

First set of simulated data is obtained by setting the parameters of the AR(1) process 

of the log-volatilities, ht, as 

 2

,0.25,    0.97,    0.04,    1,..,5i i i i        (4.1) 

and the static correlation structure is determined by the correlation matrix, 

 

1 0.6 0.6 0.6 0.6 0.4 0.3 0.3 0.3 0.3

0.6 1 0.6 0.6 0.6 0.3 0.4 0.3 0.3 0.3

0.6 0.6 1 0.6 0.6 0.3 0.3 0.4 0.3 0.3

0.6 0.6 0.6 1 0.6 0.3 0.3 0.3 0.4 0.3

0.6 0.6 0.6 0.6 1 0.3 0.3 0.3 0.3 0.4

0.4 0.3 0.3 0.3 0.3 1 0.6 0.6 0.6 0.6

    

    

    

    

    


    
P

0.3 0.4 0.3 0.3 0.3 0.6 1 0.6 0.6 0.6

0.3 0.3 0.4 0.3 0.3 0.6 0.6 1 0.6 0.6

0.3 0.3 0.3 0.4 0.3 0.6 0.6 0.6 1 0.6

0.3 0.3 0.3 0.3 0.4 0.6 0.6 0.6 0.6 1

 
 
 
 
 
 
 
 
 
     
 
     

 
    

 
      

 . (4.2) 

In the second simulated data set, instead of the static correlation matrix P, a dynamic 

structure is introduced by AR(1) processes of qt with the parameters, 

 
2

,0.97,    0.01i i     (4.3) 

and taking the matrix, 

 

1 0.81 0.78 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.81 1 0.78 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.78 0.78 1 0.75 0.71 0.66 0.60 0.54 0.46 0.38

0.75 0.75 0.75 1 0.71 0.66 0.60 0.54 0.46 0.38

0.71 0.71 0.71 0.71 1 0.66 0.60 0.

    

    

    

    

  
P

54 0.46 0.38

0.66 0.66 0.66 0.66 0.66 1 0.60 0.54 0.46 0.38

0.60 0.60 0.60 0.60 0.60 0.60 1 0.54 0.46 0.38

0.54 0.54 0.54 0.54 0.54 0.54 0.54 1 0.46 0.38

0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 1 0.38

0.38 0.38 0.38 0.38

 

    

    

    

    

    0.38 0.38 0.38 0.38 0.38 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (4.4) 

as the mean to obtain the process intercept δ using the transformations in equation 

2.19 to equation 2.24 of MSV-D model specification. 
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On the two sets of simulated asset returns data, static and dynamic models are fitted 

using the Bayesian MCMC estimation approach developed in section 2.2.3.2. The 

prior density parameters for the Bayesian MCMC estimation approach for the static 

model are set as follows: 
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where ( )Bf   is the beta distribution, ( )IGf    is the inverse gamma distribution. In 

addition to the densities above  the prior densities, 

 

 

 

   

1

2

, 0 0 0 0

1

1

1
; , ,    20,  1

2

; , ,   2.5,  0.025  

r
i

B i i i i

i

r

IG i i i i i

i

p

p f

p f 


   

    







 
   

 

  





δ

θ

V

  (4.6) 

are considered for the dynamic model. For sampling the log-volatilities, ht, the 

density in equation 2.69  is used with the tuning scalar parameter c = 6.  

With these settings, the results composed of the parameter and smoothing estimates 

and their standard errors are obtained which constitute a basis for comparison with 

the true values of parameters and log-volatilities providing statistical evidence on the 

how the proposed MSV-D model and its Bayesian MCMC estimation algorithm 

work in capturing the patterns.  

Parameter estimates and 95% credible intervals are computed from the resulting 

samples representing the posterior distributions of parameters obtained from the 

executed Bayesian MCMC algorithm. 

The comparison of the estimated and actual log-volatilities are performed based on 

the root mean squared error (RMSE) as the criteria. RMSE of the log-volatility series 

ht  is computed as, 

  
2

|

1

1
RMSE

1

T

t s t

tST t 

 
 

h h h   (4.7) 
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where (s, tS ) = (T, 1) and |t sh are the smoothing estimates obtained by the Bayesian 

MCMC estimation algorithm and ht is the actual log-volatility at time t in the 

simulated data. T is the number of time periods which is 5,000. Similarly, for the 

dynamic setting, RMSEs of a time varying parameter such as the dynamic correlation 

coefficient is calculated by replacing |t Th
 
and ht with the estimate and actual value of 

the parameter at time t in equation 4.7. 

An inefficiency factor which is a diagnostic measure indicating how well the MCMC 

mixes is computed by calculating the ratio of the numerical variance of the posterior 

mean to the variance of the sample mean based on uncorrelated draws. The 

inefficiency factor shows how many times the number of uncorrelated samples must 

be drawn for reliable estimates. See details on inefficiency factor as a diagnostic 

measure in (Chib, 2001). The results of the applications of MSV-D models are 

shown in section 5.1. 

An empirical analysis was also conducted to illustrate how the MSV-D model and its 

Bayesian MCMC estimation algorithm work on real data. The data include the price 

series of S&P500 index, IBM and Intel Corporation (INTC) stock price series from 

January 1, 1996 to August 31, 2015 including 4,951 observations excluding the days 

when the markets are closed due to holidays, weekends and other special days. The 

data are dividend adjusted.  

Asset returns are defined as the log-differences of price series and the price series are 

converted to return series accordingly. The returns data are checked for the AR(1) 

effects and removed from the data. The data were tested for the heteroskedasticity 

using Ljung-Box test on the squared returns data series resulting with p < 0.01 for all 

asset return series, rejecting the null hypothesis of homoskedasticity and 

independence. 

A complete dynamic specifications of MSV-D model was fit on the data using the 

Bayesian MCMC estimation approach described in section 2.2.3.2 with the priors 

given in equation 4.5 and equation 4.6.  

The log-volatility and time varying correlation estimations are compared with 

estimations from an exponential version of the Dynamic Conditional Correlation 

GARCH (DCC-GARCH) model of Engle (2002). DCC-EGARCH (1,1) model is 

given by 
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    , , 1 1 1 , 1log( ) log( ),    0,i t i i i t i t t i i t t th z z E z h N      
       z P   (4.8) 

where the dynamic correlation matrix Pt is modeled by 
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In equation 4.9, Q is the sample covariance matrix of zt. The DCC-EGARCH model 

is fitted in R with the rmgarch package. 

The results of the empirical application are shown in section 5.2. 

4.3 Assessment of the Estimation Algorithms 

In order to compare the proposed SGI based estimation algorithms with MCMC 

based estimation algorithms in terms of accuracy and computational requirements a 

simulation study was designed as follows. 

The simulation study is based on repeated generation of artificial return series using 

the MSV-B model specification with known parameter values, 

 , ,

20.25,    0.95,    0 0.6,.04,     1,..,i i iji i p         (4.10) 

with qt = δ is obtained with the transformations from equation 2.19 to equation 2.24 

of MSV-D model specification  based on the correlation matrix 
,( )ij P . 

Different artificial return series are generated for different number of assets (i.e. 

dimension of the state space of log-volatilities)  p ={1,2,3}, for fixed T = 1,000 

periods.  

Then, on each simulated return series data, both the SGI and MCMC based 

estimation algorithms are used to calculate smoothing, filtering, one-step ahead 

prediction estimates of log-volatilities and estimates of parameters. In the application 

of SGI based estimation algorithms, integration levels l = {4, 5, 6} and in the 

application of MCMC based estimation algorithms sample sizes  N ={100,000,  

200,000,  400,000} are used. 

The procedure of generating simulated data and estimation described above is 

repeated R = 100 times to capture the statistics on estimations comparing with the 
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true values of the parameters and log-volatilities. The accuracy of the parameter 

estimates is measured by the root mean squared error (RMSE) calculated by 

 
    

2

1

1 ˆRMSE
R

i i

h h

iR 

 Ω Ω Ω   (4.11) 

where R = 100 is the number of repeats and 
 ˆ i

hΩ  is the particular parameter estimate 

and 
 i
hΩ is the true value of the particular parameter used to generate the data at 

repeat i.  

The accuracy of the log-volatility estimates is measured by the root mean squared 

error (RMSE) calculated by 
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where T = 1,000 is the number of periods, R = 100 is the number of repeats, p is 

dimension of the state-space, 
 
, |

i

j t sh  is the log-volatility estimate and 
 
,

i

j th  is the true 

value of the log-volatility from the simulated data at repeat i. Depending on the type 

of the estimate, the indices become (s, tS ) = (t, 1) for filtering, (s, tS ) = (T, 1) for 

smoothing and (s, tS ) = (2, t-1) for one-step ahead  prediction. 

Computational requirements and assessments regarding the GPU acceleration were 

obtained by measuring the execution times of the estimation algorithms for both 

serial CPU implementations and parallel GPU implementations and calculating the 

speed up defined as the ratio of the serial execution time to parallel execution time. 

Multiple measurements of executions are averaged and single measurements are 

reported in some serial cases that take too much time. The results of the simulation 

study are given in section 5.3. 

4.4 Illustration of SGI Based Estimation Algorithms on Empirical Data 

Proposed SGI based algorithms are applied on empirical data to illustrate how SGI 

based estimation algorithms perform on real data. The data includes foreign-

exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish 

Lira(TRL) from March 1, 2001 to September 30, 2015. There are 3,669 trading days 

for each series. The returns are defined by the log-difference of each series. The 
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return series were  checked for AR(1) effects and those effects were removed from 

the series. 

The data is tested for the heteroskedasticity using Ljung-Box test on the squared 

returns data series resulting with p < 0.01 for all asset return series rejecting the null 

hypothesis of homoskedasticity and independence. 

For illustration purposes three models are fitted to the data two of which are actually 

the same MSV-B model but estimated with SGI based and MCMC based estimation 

algorithms and a diagonal CCC-GARCH model of Bollerslev (1990) given by 

  2 1/2

, , 1 , 1 , , ,,    ,    0,i t i i i t i i t i t i t i t th h h z N         z P   (4.13) 

The CCC-GARCH model is fitted in R with the ccgarch package. 

In fitting the MSV-B model  using the SGI based estimation algorithms , trapezoid 

rule of level l = 8 is used as the basis univariate integration formula which results in a 

two dimensional sparse grid having 1,793 points for each time period.  For the 

MCMC based algorithms, sample size of  N = 400,000 is used and 25% of them are 

discarded as burn-in samples. For the covariance of the proposal distribution of log-

volatilities in MCMC and for identifying the integration intervals in SGI scalar 

tuning  parameter c = 6 and z = 6 are used in equation 2.69 and equation 2.117 

respectively. 

Model fit statistics standard error of estimates of parameters and RMSE of log-

volatilities are used for evaluation. RMSE of the log-volatility series are calculated 

by equation 4.7  setting (s, tS ) = (T, 1) for smoothing and (s, tS ) = (2, t-1) for one-

step predictions. The results of the empirical analysis are given in section 5.4. 
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5.  RESULTS 

In this section the results of the computational studies and numerical applications 

described in section 4 regarding the proposed MSV-D model and its Bayesian 

MCMC estimation method, proposed SGI based estimation algorithms and 

computational implications of GPU usage in estimation of MSV models are 

presented.  

5.1 MSV-D Model on Simulated Returns Data 

The proposed MSV-D model and its Bayesian MCMC estimation method were 

applied on two sets of simulated asset returns data as described in section 4.2 for 

illustration and evaluation purposes.  

First simulated data set is based on the static specification equivalent to the MSV-G 

model and is a special case of the MSV-D model parameterized with the proposed 

approach.  

Figure 5.1 shows the simulated return series and log-volatilities of five assets with 

the static specifications given by equation 4.1 and equation 4.2. In Figure 5.1, 

volatility clusterings, co-movements of asset returns and co-movement of log-

volatilities are visible from the charts. 

The simulated return series parts of the simulated data are used to fit a static model to 

the returns data using the Bayesian MCMC estimation algorithm developed for the 

MSV-D model in section 2.2.3.2 which produces both the parameter estimates and 

smoothing estimates of the log-volatilities at the same time.  

In  the estimation algorithm sample size of N = 400,000 is used and 25% of them are 

discarded as burn-in samples.  The parameter estimates and log-volatility estimates 

obtained are then compared with the true values of parameters and log-volatilities 

which are used to simulate the data to see how the MSV-D model and its estimation 

algorithm perform. 
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Figure 5.1 : Simulated series based on the static MSV-D model. 

Parameter estimation results of the parameters of the log-volatility process, γi, φi, ζη,i 

are given in Table 5.1. In Table 5.1, it can be observed that in general posterior 

means of the parameter estimates are sufficiently close to the true parameter values 

with 95% intervals containing the true values.  

The intervals in the estimates for the persistence parameters, φi are relatively 

narrower than the intercept, γi and standard deviations of the error term, ζη,i. Higher 

inefficiency factors are observed in ζη,i when compared to other parameters followed 

by φi  (Table 5.1).  
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Table 5.1 : Static MSV-D model  parameter estimation results of γi, φi, ζη,i. 

 True i Mean 95% interval Inefficiency 

γi 0.25 

1 -0.261 [ -0.322,-0.201] 129 

2 -0.242 [ -0.313,-0.171] 190 

3 -0.239 [-0.303,-0.175] 206 

4 -0.264 [ -0.329,-0.199] 169 

5 -0.241 [-0.304,-0.178] 102 

      

φi 0.97 

1 0.961 [0.952, 0.971] 365 

2 0.976 [0.967, 0.985] 340 

3 0.966 [0.957, 0.975] 272 

4 0.963 [0.954, 0.972] 314 

5 0.974 [0.965, 0.983] 324 

      

ζη,i 0.2 

1 0.208 [0.177, 0.239] 386 

2 0.194 [0.165, 0.223] 351 

3 0.203 [0.171, 0.235] 408 

4 0.188 [0.160, 0.216] 430 

5 0.191 [0.161, 0.221] 381 

Parameter estimation results of the correlation matrix entries, ρεε,ij , ρεη,ii, ρεη,ij are 

given in Table 5.2 for the static MSV-D model. It can be observed from Table 5.2 

that the MSV-D model and its estimation algorithm performs well in estimating the 

static correlation matrix, P, with estimations close to the true values which are within 

95% intervals.  

It is seen from both Table 5.1 and Table 5.2 that the inefficiency factors, the 

indicator of how the chain mixes, are high when compared to the benchmarks in the 

literature especially for the parameters ζη,i,  ρεη,ii,  ρεη,ij,  ρηη,ij, with values well above 

300. This indicates the requirement of large sample sizes and justifies the sample size 

choice of N = 400,000 which is quite high when compared to examples in the 

literature. Although the developed Bayesian MCMC estimation algorithm is not 

highly efficient, it performs well enough for the objectives of this study.  

The efficiency of the MCMC algorithm can be altered by implementing alternative 

sampling techniques such as the multi-move sampler as discussed in (Ishihara & 

Omori, 2012) without the loss of generality of the developed MCMC algorithm.  
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Table 5.2 : Static MSV-D model parameter estimation results of ρεε,ij , ρεη,ii, ρεη,ij. 

 True i/ij Estimate 95% interval Inefficiency 

ρεε,ij 0.6 

12 0.581 [0.467, 0.695] 27 

13 0.609 [0.529, 0.689] 41 

14 0.587 [0.477, 0.697] 33 

15 0.580 [0.483, 0.677] 41 

23 0.593 [0.506, 0.680] 24 

31 0.591 [0.509, 0.673] 39 

32 0.612 [0.523, 0.701] 40 

34 0.596 [0.498, 0.694] 28 

35 0.605 [0.485, 0.725] 26 

45 0.597 [0.498, 0.696] 18 

      

ρεη,ii -0.4 

11 -0.431 [-0.541, -0.321] 395 

22 -0.412 [-0.552, -0.272] 414 

33 -0.378 [-0.502, -0.254] 425 

44 -0.381 [-0.498, -0.264] 306 

55 -0.385 [-0.514, -0.256] 368 

      

ρεη,ij -0.3 

12 -0.289 [-0.418, -0.160] 416 

13 -0.271 [-0.387, -0.155] 444 

14 -0.283 [-0.380, -0.186] 332 

15 -0.276 [-0.362, -0.190] 346 

21 -0.329 [-0.411, -0.247] 218 

23 -0.311 [-0.410, -0.212] 338 

24 -0.291 [-0.418, -0.164] 427 

25 -0.275 [-0.356, -0.194] 255 

23 -0.332 [-0.427, -0.237] 431 

31 -0.293 [-0.376, -0.210] 231 

32 -0.280 [-0.411, -0.150] 229 

34 -0.316 [-0.396, -0.236] 373 

35 -0.321 [-0.419, -0.222] 300 

41 -0.329 [-0.434, -0.224] 444 

42 -0.288 [-0.395, -0.181] 289 

43 -0.294 [-0.418, -0.170] 275 

45 -0.318 [-0.399, -0.237] 273 

51 -0.325 [-0.432, -0.218] 422 

52 -0.279 [-0.396, -0.162] 276 

53 -0.286 [-0.404, -0.168] 398 

54 -0.267 [-0.364, -0.169] 415 

      

ρηη,ij 0.6 

11 0.648 [0.545, 0.751] 625 

12 0.622 [0.487, 0.757] 704 

13 0.637 [0.522, 0.754] 451 

14 0.619 [0.487, 0.751] 698 

15 0.594 [0.501, 0.688] 562 

23 0.611 [0.484, 0.738] 717 

31 0.631 [0.536, 0.726] 653 

32 0.589 [0.492, 0.686] 748 

34 0.590 [0.468, 0.712] 469 

35 0.587 [0.495, 0.679] 487 

45 0.627 [0.522, 0.732] 721 

The charts in Figure 5.2 shows the estimated and actual log-volatilities for 

comparison. Log-volatility estimation results for the static MSV-D model are 

summarized in Table 5.3. 
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Figure 5.2 : Log-volatility fits for the static MSV-D model. 

In the charts in Figure 5.2 the match between the patterns of the estimates and true 

values are visually seen. In Table 5.3, it can be seen that the estimated means for the 

log-volatilities and their true values are quite close with acceptable values of RMSE 

values for all five return series.  
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Table 5.3 : Static MSV-D model log-volatility estimation results. 

Series (i) True Mean Estimated Mean RMSEh 

1 -8.454 -8.424 0.311 

2 -8.523 -8.476 0.305 

3 -8.515 -8.485 0.302 

4 -8.446 -8.393 0.315 

5 -8.474 -8.448 0.314 

It can be concluded that log-volatility estimates are sufficiently close to the true 

values and that the proposed MSV-D model, its parameterization and its custom 

Bayesian MCMC estimation algorithm perform  sufficiently well for the static case. 

Second simulated data set regarding the assessment of MSV-D model is based on the 

complete dynamic specification using the proposed MSV-D model.  

Figure 5.3 shows the simulated data including the five asset returns and 

corresponding log-volatility series for the complete dynamic MSV-D model. In the 

charts of Figure 5.3, volatility clusterings and co-movements of the asset returns and 

volatilities are observable. 

In the complete dynamic MSV-D specification, the correlations are also time varying 

and in Figure 5.4 some of the correlations between different components indicating 

various dynamic stylized facts are plotted.  

In Figure 5.4, first chart is an example of correlations between the asset returns, 

second chart is an example of dynamic leverage effect, third chart is an example of 

dynamic cross-leverage effect and fourth chart is an example of dynamic volatility 

spillover which are all addressable with the flexible structure of the proposed MSV-

D model. 

Using the Bayesian MCMC estimation algorithm developed in section 2.2.3.2, 

estimates of parameters, log-volatilities and correlations are obtained.  

Dynamic MSV-D estimation results for the log-volatility process parameters, γi, φi, 

ζη,i are given in Table 5.4. It can be observed that the true values are close to the 

parameter estimates with 95% intervals including the true values.  
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Figure 5.3 : Simulated series based on the dynamic MSV-D model. 

Dynamic MSV-D estimation results for parameter δi which is the intercept parameter 

of the AR(1) process driving the dynamic correlations are given in Table 5.5. In 

Table 5.6, dynamic MSV-D estimation results for the parameters θi which is the 

persistence parameter of the AR(1) process driving the dynamic correlations are 

given. Table 5.7 shows the dynamic MSV-D estimation results for parameter σω,i. In 

Table 5.5, Table 5.6 and Table 5.7, results show that the parameter estimates are 

sufficiently close to the true values and true values fall into the 95% intervals. The 

parameter estimates of ζη,i given in Table 5.4 and ζω,i, in Table 5.7 have relatively 

large estimation intervals and inefficiency factors are quite high for those parameters. 

The dynamic MSV-D specification has too many parameters to estimate and 

dimensionality is high and this result is in fact expected. Obviously larger sample 

sizes would be better for the dynamic setting.  
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Figure 5.4 : Examples of simulated dynamic correlations based on the dynamic 

MSV-D model. 

Dynamic MSV-D model parameter estimation results of the log-volatilities are given 

in Table 5.8 where the RMSE values are all at acceptable levels with close means of 

estimations and true values.  

The charts in Figure 5.5 plot the log-volatility estimates and their actual values for all 

time periods and it can be seen that the log-volatility estimates successfully follow 

the patterns of the actual values. 
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Table 5.4 : Dynamic MSV-D model parameter estimation results of γi, φi, ζη,i. 

 True i Mean 95% interval Inefficiency 

γi -0.25 

1 -0.267 [-0.397, -0.137] 251 

2 -0.268 [-0.398, -0.138] 270 

3 -0.243 [-0.383, -0.103] 265 

4 -0.256 [-0.376, -0.136] 189 

5 -0.264 [-0.404, -0.124] 259 

      

φi 0.97 

1 0.979 [0.959, 0.998] 365 

2 0.971 [0.952, 0.991] 340 

3 0.959 [0.938, 0.979] 272 

4 0.961 [0.941, 0.980] 314 

5 0.979 [0.959, 0.998] 324 

      

ση,i 0.2 

1 0.191 [0.122, 0.260] 431 

2 0.215 [0.152, 0.278] 436 

3 0.214 [0.145, 0.283] 422 

4 0.194 [0.124, 0.264] 410 

5 0.197 [0.125, 0.269] 396 

 

Table 5.5 : Dynamic MSV-D model parameter estimation results of δi. 

True i Mean 95% interval Ineff.  True i Mean 95% interval Ineff. 

0.015 1 0.019 [0.013, 0.024] 342  -0.015 24 -0.016 [-0.021, -0.010] 341 

0.015 2 0.013 [0.007, 0.018] 338  0.015 25 0.009 [0.004, 0.016] 360 

0.015 3 0.017 [0.011, 0.022] 393  0.015 26 0.010 [0.005, 0.017] 329 

0.015 4 0.017 [0.012, 0.022] 362  0.015 27 0.016 [0.010, 0.022] 340 

0.015 5 0.019 [0.013, 0.024] 331  0.015 28 0.008 [0.002, 0.016] 338 

-0.015 6 -0.009 [-0.017, -0.005] 388  0.015 29 0.019 [0.013, 0.025] 332 

-0.015 7 -0.017 [-0.022, -0.011] 379  -0.015 30 -0.016 [-0.021, -0.010] 322 

-0.015 8 -0.020 [-0.026, -0.014] 339  0.015 31 0.014 [0.008, 0.019] 323 

-0.015 9 -0.019 [-0.025, -0.013] 389  0.015 32 0.020 [0.014, 0.025] 327 

0.015 10 0.019 [0.013, 0.025] 352  0.015 33 0.021 [0.014, 0.028] 359 

0.015 11 0.017 [0.011, 0.022] 395  0.015 34 0.020 [0.014, 0.025] 336 

0.015 12 0.021 [0.014, 0.027] 368  0.015 35 0.011 [0.005, 0.016] 351 

0.015 13 0.012 [0.006, 0.018] 352  -0.015 36 -0.018 [-0.024, -0.012] 320 

0.015 14 0.016 [0.011, 0.020] 322  -0.015 37 -0.019 [-0.024, -0.014] 367 

-0.015 15 -0.019 [-0.024, -0.013] 337  -0.015 38 -0.015 [-0.020, -0.009] 329 

-0.015 16 -0.021 [-0.028, -0.013] 356  -0.015 39 -0.008 [-0.013, -0.003] 364 

-0.015 17 -0.021 [-0.026, -0.014] 401  -0.015 40 -0.019 [-0.024, -0.013] 351 

0.015 18 0.019 [0.012, 0.024] 389  -0.015 41 -0.013 [-0.018, -0.007] 386 

0.015 19 0.015 [0.009, 0.021] 358  -0.015 42 -0.017 [-0.022, -0.011] 349 

0.015 20 0.012 [0.006, 0.018] 368  -0.015 43 -0.009 [-0.016, -0.003] 375 

0.015 21 0.009 [0.005, 0.016] 373  -0.015 44 -0.017 [-0.022, -0.012] 403 

0.015 22 0.009 [0.004, 0.016] 345  -0.015 45 -0.009 [-0.017, -0.001] 337 

-0.015 23 -0.014 [-0.019, -0.008] 383       
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Table 5.6 : Dynamic MSV-D model parameter estimation results of  θi. 

True i Mean 95% interval Ineff.  True i Mean 95% interval Ineff. 

0.97 

1 0.979 [0.962, 0.996] 376  

0.97 

24 0.975 [0.957, 0.993] 410 

2 0.983 [0.966, 0.999] 356  25 0.983 [0.965, 0.999] 410 

3 0.963 [0.945, 0.980] 394  26 0.960 [0.943, 0.976] 425 

4 0.969 [0.951, 0.986] 395  27 0.976 [0.958, 0.993] 411 

5 0.965 [0.947, 0.982] 389  28 0.970 [0.952, 0.987] 426 

6 0.978 [0.960, 0.995] 356  29 0.958 [0.940, 0.975] 363 

7 0.968 [0.950, 0.985] 423  30 0.965 [0.947, 0.982] 352 
8 0.965 [0.948, 0.981] 367  31 0.964 [0.947, 0.981] 417 

9 0.976 [0.959, 0.992] 416  32 0.963 [0.944, 0.981] 357 

10 0.959 [0.941, 0.976] 356  33 0.980 [0.962, 0.997] 393 

11 0.964 [0.946, 0.981] 397  34 0.967 [0.949, 0.984] 362 
12 0.976 [0.957, 0.994] 364  35 0.969 [0.951, 0.987] 372 

13 0.96 [0.942, 0.978] 372  36 0.978 [0.959, 0.996] 358 

14 0.972 [0.954, 0.989] 373  37 0.976 [0.959, 0.992] 372 

15 0.966 [0.947, 0.984] 361  38 0.963 [0.944, 0.981] 404 
16 0.961 [0.943, 0.979] 351  39 0.975 [0.958, 0.992] 355 

17 0.981 [0.962, 0.998] 396  40 0.969 [0.951, 0.987] 407 

18 0.958 [0.940, 0.976] 397  41 0.972 [0.956, 0.989] 389 

19 0.973 [0.954, 0.991] 425  42 0.978 [0.960, 0.995] 359 
20 0.978 [0.961, 0.994] 376  43 0.973 [0.954, 0.992] 416 

21 0.956 [0.937, 0.974] 364  44 0.956 [0.939, 0.973] 388 

22 0.969 [0.951, 0.986] 407  45 0.969 [0.952, 0.986] 369 

23 0.979 [0.961, 0.996] 374       

Table 5.7 : Dynamic MSV-D model parameter estimation results of ζω,i. 

True i Mean 95% interval Ineff.  True i Mean 95% interval Ineff. 

0.01 

1 0.008 [0.0009, 0.0154] 548  

0.01 

24 0.014 [0.0008, 0.0201] 468 

2 0.018 [0.0005, 0.0253] 534  25 0.021 [0.0004, 0.0275] 466 

3 0.021 [0.0008, 0.0281] 478  26 0.013 [0.0005, 0.0205] 544 

4 0.014 [0.0004, 0.0210] 506  27 0.007 [0.0004, 0.0141] 475 

5 0.011 [0.0005, 0.0178] 502  28 0.022 [0.0004, 0.0282] 552 

6 0.008 [0.0004, 0.0151] 456  29 0.013 [0.0009, 0.0205] 489 

7 0.015 [0.0008, 0.0220] 468  30 0.022 [0.0008, 0.0284] 477 

8 0.018 [0.0005, 0.0242] 536  31 0.010 [0.0005, 0.0162] 444 

9 0.012 [0.0008, 0.0191] 468  32 0.015 [0.0006, 0.0213] 534 

10 0.018 [0.0004, 0.0242] 481  33 0.014 [0.0007, 0.0211] 496 

11 0.017 [0.0005, 0.0243] 558  34 0.013 [0.0005, 0.0196] 432 

12 0.019 [0.0006, 0.0256] 540  35 0.019 [0.0009, 0.0251] 499 

13 0.011 [0.0007, 0.0171] 460  36 0.007 [0.0009, 0.0132] 433 

14 0.017 [0.0005, 0.0239] 474  37 0.015 [0.0005, 0.0223] 556 

15 0.007 [0.0005, 0.0136] 535  38 0.013 [0.0006, 0.0195] 431 

16 0.011 [0.0009, 0.0177] 537  39 0.020 [0.0006, 0.0275] 534 

17 0.017 [0.0004, 0.0232] 479  40 0.016 [0.0005, 0.0220] 520 

18 0.007 [0.0004, 0.0137] 452  41 0.020 [0.0008, 0.0261] 514 

19 0.020 [0.0008, 0.0261] 512  42 0.013 [0.0004, 0.0203] 511 

20 0.011 [0.0008, 0.0165] 462  43 0.017 [0.0004, 0.0239] 495 

21 0.009 [0.0005, 0.0164] 460  44 0.017 [0.0007, 0.0231] 480 

22 0.015 [0.0004, 0.0224] 513  45 0.008 [0.0005, 0.0152] 431 

23 0.011 [0.0009, 0.0172] 541       
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Table 5.8 : Dynamic MSV-D model log-volatility estimation results. 

i True Mean Estimated Mean RMSE 

1 -8.324 -8.322 0.281 

2 -8.371 -8.368 0.273 

3 -8.281 -8.284 0.275 

4 -8.287 -8.284 0.276 

5 -8.483 -8.477 0.280 

Dynamic MSV-D model estimation results of the dynamic correlations are shown in 

Table 5.9. Mean of the actual correlation coefficients and the estimated values are 

quite close with acceptable RMSE values (Table 5.9). In Figure 5.6, actual 

correlation coefficients and their estimates for all time periods for some of the 

correlation components representing dynamic correlations between asset returns (1), 

dynamic leverage effect (2), dynamic cross-leverage effect (3) and dynamic volatility 

spillover effects (4) are plotted. In all charts it can be  seen that estimations follow 

the actual patterns successfully. 

Table 5.9 : Dynamic MSV-D model estimation results of the dynamic correlations, 

ρεε,ij,t , ρεη,ii,t, ρεη,ij,t. 

 ij 
True 

Mean 

Est. 

Mean 
RMSE   ij 

True 

Mean 

Est. 

Mean 
RMSE 

ρεε,ij,t 

12 0.545 0.513 0.084  

ρεη,ij,t 

11 -0.457 -0.438 0.085 

13 0.560 0.528 0.083  12 -0.434 -0.416 0.085 

14 0.516 0.488 0.091  13 -0.457 -0.441 0.084 

15 0.531 0.504 0.085  14 -0.394 -0.385 0.086 

23 0.545 0.516 0.082  15 -0.289 -0.285 0.094 

24 0.530 0.506 0.084  21 -0.478 -0.458 0.085 

25 0.516 0.494 0.088  22 -0.501 -0.480 0.082 

34 0.522 0.493 0.083  23 -0.435 -0.421 0.087 

35 0.559 0.533 0.079  24 -0.413 -0.404 0.087 

45 0.526 0.502 0.082  25 -0.310 -0.307 0.092 

      31 -0.517 -0.494 0.082 

ρηη,ij,t 

12 0.797 0.768 0.073  32 -0.505 -0.483 0.081 

13 0.439 0.424 0.088  33 -0.459 -0.445 0.083 

14 0.404 0.393 0.086  34 -0.408 -0.395 0.085 

15 0.354 0.348 0.088  35 -0.359 -0.355 0.088 

23 0.456 0.441 0.074  41 -0.461 -0.443 0.087 

24 0.426 0.414 0.084  42 -0.467 -0.449 0.086 

25 0.365 0.361 0.087  43 -0.421 -0.406 0.085 

34 0.379 0.371 0.077  44 -0.396 -0.387 0.084 

35 0.355 0.351 0.086  45 -0.325 -0.322 0.086 

45 0.297 0.296 0.090  51 -0.491 -0.474 0.092 

      52 -0.483 -0.465 0.083 

      53 -0.476 -0.460 0.085 

      54 -0.416 -0.409 0.084 
      55 -0.379 -0.376 0.086 
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Figure 5.5 : Log-volatility fits for the dynamic MSV-D model. 
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Figure 5.6 : Dynamic correlation fits for the dynamic MSV-D model. 

In the complete dynamic MSV-D model, one of the important drawbacks is the 

significantly increased number of parameters due to the additional AR(1) processes 

driving the correlation coefficients each having three parameters and total number of 

parameters increase polynomially in dimension. This reflects into the convergence of 

the MCMC algorithms with significantly increased inefficiency factors which are 

indicators of slow convergence.  
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5.2 MSV-D Model on Empirical Data 

A complete dynamic MSV-D model specification is applied to the return series of 

S&P500 index, IBM and Intel (INTC) stock returns as described in section 4.2.  

The return series are plotted in Figure 5.7 where the volatility clusterings and co-

movements of asset returns are visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 : Return series of S&P500, IBM and Intel (INTC). 

MSV-D model parameter estimation results of the log-volatility process parameters, 

γi, φi, ζη,i are given in Table 5.10. And MSV-D model parameter estimation results for 

the correlation process parameters δi, θi and ζω,i  are given in Table 5.11, Table 5.12 

and Table 5.13 respectively. 
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Table 5.10 : MSV-D model parameter estimation results of γi, φi, ζη,i on S&P500, 

IBM and Intel(INTC) returns. 

 i Mean 95% interval Inefficiency 

γi 

1 -0.149 [-0.079, -0.220] 209 

2 -0.175 [-0.088, -0.261] 215 

3 -0.074 [-0.013, -0.138] 204 

φi 

1 0.984 [0.974, 0.993] 322 

2 0.979 [0.967, 0.991] 311 

3 0.990 [0.987, 0.999] 251 

ζη,i 

1 0.187 [0.125, 0.248] 384 

2 0.203 [0.144, 0.262] 405 

3 0.136 [0.081, 0.194] 354 

Table 5.11 : MSV-D model parameter estimation results of δi on S&P500, IBM and 

Intel(INTC) returns. 

 i Estimate 95% interval Inefficiency 

δi 

1 0.0116 [0.009, 0.014] 208 

2 0.0096 [0.007, 0.012] 166 

3 0.0164 [0.012, 0.020] 169 

4 -0.0156 [-0.011, -0.021] 283 

5 -0.0119 [-0.008, -0.015] 156 

6 0.0128 [0.009, 0.016] 207 

7 0.0191 [0.014, 0.024] 169 

8 0.0074 [0.005, 0.009] 152 

9 -0.0164 [-0.012, -0.021] 257 

10 0.0694 [0.051, 0.087] 173 

11 0.0248 [0.019, 0.030] 287 

12 0.0224 [0.016, 0.028] 213 

13 -0.0235 [-0.016, -0.031] 245 

14 -0.0154 [-0.012, -0.018] 157 

15 -0.0174 [-0.013, -0.022] 261 

Table 5.12 : MSV-D model parameter estimation results of θi on S&P500, IBM and 

Intel(INTC) returns. 

 i Estimate 95% interval Inefficiency 

θi 

1 0.961 [0.942, 0.978] 376 

2 0.960 [0.942, 0.978] 318 

3 0.963 [0.946, 0.979] 375 

4 0.968 [0.951, 0.988] 371 

5 0.972 [0.954, 0.990] 354 

6 0.958 [0.940, 0.974] 349 

7 0.964 [0.947, 0.981] 279 

8 0.958 [0.940, 0.975] 269 

9 0.965 [0.948, 0.982] 290 

10 0.952 [0.934, 0.968] 274 

11 0.958 [0.941, 0.976] 262 

12 0.965 [0.947, 0.983] 275 

13 0.965 [0.948, 0.982] 376 

14 0.968 [0.951, 0.985] 281 

15 0.965 [0.947, 0.983] 372 
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Table 5.13 : MSV-D model parameter estimation results of ζω,i  on S&P500, IBM 

and Intel(INTC) returns. 

 i Estimate 95% interval Inefficiency 

ζω,i 1 0.008 [0.004, 0.011] 348 

 2 0.007 [0.004, 0.010] 402 

 3 0.019 [0.011, 0.027] 384 

 4 0.008 [0.005, 0.012] 390 

 5 0.008 [0.004, 0.011] 336 

 6 0.007 [0.004, 0.011] 404 

 7 0.021 [0.011, 0.031] 333 

 8 0.006 [0.003, 0.009] 366 

 9 0.010 [0.005, 0.014] 336 

 10 0.004 [0.002, 0.007] 324 

 11 0.006 [0.003, 0.009] 379 

 12 0.006 [0.003, 0.008] 404 

 13 0.008 [0.005, 0.012] 320 

 14 0.009 [0.005, 0.013] 325 

 15 0.010 [0.006, 0.014] 379 

To compare the log-volatility estimates obtained from the fitted MSV-D model a 

DCC-EGARCH model is also fitted to the data. DCC-EGARCH model parameter 

estimation results are given in Table 5.14. 

Table 5.14 : GARCH model parameter estimates on S&P500, IBM and Intel(INTC) 

returns. 

 i Estimate Standard Error 

ω 

1 -0.210 0.002 

2 -0.119 0.011 

3 -0.084 0.004 

    

α 

1 -0.128 0.008 

2 -0.055 0.013 

3 -0.027 0.013 

    

β 

1 0.977 0.000 

2 0.985 0.001 

3 0.988 0.001 

    

γ 

1 0.132 0.008 

2 0.169 0.024 

3 0.114 0.005 

    

ɑ  0.036 0.009 

b  0.917 0.026 

The fitted DCC-GARCH model can address static leverage effect with the 

parameters ωi and γi and allows dynamic correlation between asset returns with 

parameters ɑ and b .  
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The logarithms of the squared returns are considered as a reference for comparing the 

log-volatility estimates from the MSV-D with the DCC-EGARCH model in terms of 

the RMSEs of the log-volatility estimates.  Log-volatility estimates from the MSV-D 

model and DCC-EGARCH model are compared in Table 5.15 and plotted in Figure 

5.8 with the logarithms of squared returns as reference. 

Table 5.15 : Log-volatility estimates MSV-D vs. GARCH on S&P500, IBM and 

Intel(INTC) returns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 : Log-volatility estimates of S&P500, IBM and Intel (INTC). 

In Table 5.15, it can be seen that the MSV-D model provides lower RMSE values 

than the DCC-EGARCH model indicating better performance in capturing the 

patterns. Both models follows the general patterns of the reference (i.e logarithm of 

i MSV-D RMSE GARCH RMSE 

1 2.558 2.731 

2 2.434 2.713 

3 2.450 2.692 
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squared returns) but  MSV-D model has a richer and better fit as seen from the charts 

in Figure 5.8. 

Both the DCC-EGARCH model and MSV-D model produce estimates for the 

dynamic correlations between the asset returns as shown in Figure 5.9. Almost 

similar patterns are captured for the dynamic correlations between asset returns in 

both models.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 : Correlations between returns of S&P500, IBM and Intel (INTC). 

A main difference between the DCC-EGARCH and MSV-D model is the treatment 

of the leverage effects. DCC-EGARCH model addresses the leverage effect through 

the parameters ωi and γi in a static way whereas the MSV-D model produces time 

varying correlations between assets and their volatility process errors. Furthermore, 

MSV-D model produces dynamic cross-leverage and dynamic volatility spillover 

estimates which are not available in DCC-GARCH and any other volatility models. 

In Figure 5.10, examples of dynamic correlation estimates produced by the MSV-D 

model are given. First chart in Figure 5.9 is an example of dynamic leverage effect, 

second chart is an example of dynamic cross-leverage effect and third chart is an 

example of dynamic volatility spillover. 
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Figure 5.10 : Dynamic leverage, cross-leverage and volatility spillover estimates. 

5.3 Comparative Simulations for Estimation Algorithms 

In this section the results of the simulation study described in section 4.3 for 

comparing the proposed SGI and MCMC based estimation algorithms and 

computational assessment of GPU implementation is presented. 

Table 5.16 shows the comparison of SGI and MCMC based estimation algorithms in 

terms of accuracy for different settings in terms of the state space dimension and 

accuracy level which is the sample size for the MCMC based algorithms and level of 

integration formula for the SGI based algorithms. In Table 5.16, the statistics used 

for the accuracy is the RMSE computed by equation 4.12.  Since it is too much time 
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consuming filtering with MCMC based methods are not included except one 

measurement at dimension p = 3 and accuracy level  N = 400,000. 

Table 5.16 : Accuracy comparison of SGI and MCMC based estimation algorithms. 

 
Dimension 

(p) 

Accuracy Level 

(N/l) 

Filtering 

RMSE 

Smoothing 

RMSE 

One-step 

Prediction 

RMSE 

MCMC 

1 

50K  0.254 0.420 

100K  0.190 0.319 

200K  0.148 0.248 

400K  0.131 0.213 

     

2 

50K  0.300 0.449 

100K  0.236 0.353 

200K  0.191 0.269 

400K  0.164 0.230 

     

3 

50K  0.357 0.482 

100K  0.277 0.374 

200K  0.213 0.287 

400K 0.203 0.182 0.246 

      

SGI 

1 

4 0.632 0.607 0.675 

5 0.408 0.395 0.455 

6 0.255 0.228 0.297 

7 0.161 0.129 0.203 

     

2 

4 0.740 0.710 0.779 

5 0.465 0.439 0.504 

6 0.286 0.258 0.330 

7 0.179 0.162 0.224 

     

3 

4 0.833 0.797 0.877 

5 0.524 0.508 0.568 

6 0.320 0.296 0.361 

7 0.199 0.177 0.239 

In Figure 5.11 RMSEs of log-volatility smoothing estimates in different dimensions 

and accuracy levels for both approaches are plotted. 

 

 

 

 

 

Figure 5.11 : Accuracy comparison of SGI and MCMC based estimation algorithms. 
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In SGI based estimation algorithms error decreases faster with the increasing 

accuracy level l where at each level l number of points in the integration formula 

almost doubles for the trapezoid rule. In MCMC based estimation algorithms 

doubling the sample size does not provide the same pace of decrease obtained by 

SGI based algorithms. This is actually an expected result of MCMC being a 

probabilistic method as discussed before. It is clear that it is easier to control the 

error with SGI based algorithms. For  the current simulation settings, as seen in 

Table 5.16, l = 7 SGI estimation algorithms' accuracy surpass the sample size N = 

400,000 MCMC estimation algorithms' accuracy in filtering smoothing and 

prediction problems. 

Increasing dimension affects the accuracy of SGI based algorithms more than the 

MCMC methods. Theoretically MCMC methods are not affected by dimensionality, 

but  a negative effect of increasing dimension, although not too large, on accuracy in 

MCMC based methods is observed in the simulation study. One of the reasons for 

this result can be the correlated samples issue and lower acceptance rates in 

Metropolis-Hastings steps becoming more severe in higher dimensions resulting in 

higher inefficiency and requiring larger samples. 

Table 5.17 shows the parameter estimation results of  SGI with level l=7 and MCMC 

with sample size N = 400.000 for the three dimensional case.  

Table 5.17 : Parameter estimation accuracy comparison of the SGI and MCMC 

based algorithms. 

    SGI l =7   MCMC N=400K 

  i True Estimate RMSE  Estimate RMSE 

γi -0.25 

1 -0.25 -0.237 0.072  -0.260 0.067 

2 -0.25 -0.248 0.029  -0.261 0.071 

3 -0.25 -0.245 0.034  -0.231 0.096 

         

φi 0.95 

1 0.95 0.947 0.024  0.956 0.069 

2 0.95 0.952 0.016  0.959 0.065 

3 0.95 0.946 0.026  0.961 0.071 

         

ση 0.02 

1 0.02 0.209 0.045  0.206 0.040 

2 0.02 0.191 0.042  0.207 0.054 

3 0.02 0.205 0.037  0.214 0.067 

         

ρij 0.6 

12 0.6 0.605 0.053  0.592 0.059 

13 0.6 0.594 0.041  0.590 0.073 

23 0.6 0.606 0.039  0.592 0.058 
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In Table 5.17, it can be seen that SGI based parameter estimation algorithm and 

MCMC based parameter estimation algorithm produce close estimates to the actual 

values of the parameters with lower RMSEs in SGI based estimation algorithm  in 

most of the parameters except ζη,1. 

The estimation results shows that, SGI based estimation algorithms perform as well 

as the MCMC based estimation algorithms in terms of accuracy and can be 

considered as an alternative method with its better convergence and error control 

properties. 

In Table 5.18, execution times of the SGI based filtering and MCMC based 

smoothing algorithms with serial CPU and parallel GPU implementations in seconds 

and calculated speed up values are shown. Filtering algorithm is the base algorithm 

which is used by all other estimation algorithms in SGI approach and similarly 

smoothing algorithm is the base algorithm for the MCMC approach as discussed in 

section 3.1 and that is why the acceleration comparisons are made on these 

algorithms in Table 5.18. 

Table 5.18 : Execution times of SGI and MCMC based estimation algorithms. 

Dimension 
Accuracy 

Level 

Serial Time 
GPU Accelerated 

Time 
Speed Up 

MCMC 

Smoothing 

SGI 

Filtering 

MCMC 

Smoothing 

SGI 

Filtering 

MCMC 

Smoothing 

SGI 

Filtering 

1 

50K/4 296.51 1.14 18.60 0.05 15.94 24.95 

100K/5 596.96 4.86 38.17 0.20 15.64 24.79 

200K/6 1,206.39 20.07 79.32 0.82 15.21 24.45 

400K/7 2,394.89 81.56 161.06 3.38 14.87 24.13 

2 

50K/4 442.39 12.14 34.48 0.53 12.83 22.88 

100K/5 892.17 84.15 71.60 3.73 12.46 22.59 

200K/6 1,796.57 521.06 146.78 23.56 12.24 22.12 

400K/7 3,603.20 2,990.38 296.56 137.30 12.15 21.78 

3 

50K/4 581.65 62.30 65.43 3.16 8.89 19.73 

100K/5 1,186.06 623.00 135.70 31.98 8.74 19.48 

200K/6 2,393.78 5,292.06 275.46 274.91 8.69 19.25 

400K/7 4,798.50 40,071.01
 

554.74 2128.04 8.65 18.83 

Figure 5.12 illustrates the serial and GPU accelerated execution times of the SGI 

based filtering and MCMC based smoothing algorithms for different dimensions and 

accuracy levels. Time axes are in logarithmic scale in the charts of Figure 5.12. 
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Figure 5.12 : Execution times of serial and GPU accelerated estimation algorithms. 

SGI based filtering algorithm is a sequential algorithm as discussed in section 3 and 

its computational burden can be split across time periods so single step filtering times 

are included in Figure 5.12 for better comparison. 

It can be seen that computational time increases faster when the accuracy level and 

dimension increases in SGI based algorithms which are actually costs of faster error 

decrease discussed previously. Increasing dimension and accuracy levels 

significantly affects the SGI based algorithms and dimensions higher than 5 and 

accuracy levels above 7 become prohibitive for SGI based algorithms run on 

commodity computers in serial setting in batch mode. However, one of the advantage 

of the SGI based algorithms is their sequential structure which allows them compete 

with MCMC methods in a practical application where single time step performance 

is critical. Single step serial execution times are well below the serial execution times 

of MCMC based algorithms as seen in Figure 5.12 and there is room for additional 

dimensions for the SGI based algorithms in single-step setting where SGI based 

algorithms  performs better than  MCMC based algorithms. 

Parallelization approaches described in section 3.2 and section 3.3 work well on 

GPU implementations as seen in Table 5.18 with significantly decreased execution 

times and speed up values between 18 and 25. Figure 5.13 shows the achieved speed 

ups for the MCMC smoothing and SGI filtering algorithm implementations with 

GPU.  
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Figure 5.13 : Speed up by dimension in SGI and MCMC based algorithms. 

In Figure 5.13 it is observed that speed ups obtained for the SGI based estimation 

algorithms are higher. In the parallelization approaches given in section 3.2 and 

section 3.3,  processes to be executed in parallel consist of complicated operations 

for a typical GPU thread but it works with a possible loss of efficiency. In the 

MCMC based algorithms, operations assigned to a parallel process are more 

complicated than the SGI based algorithms. In the MCMC based algorithms, in 

addition to the density function evaluations, random number generation and sampling 

from certain distributions are required for each process which is one of the reasons 

for lower speed up values for the MCMC based algorithms. 

It is also noteworthy that although provided significant decrease in execution times 

and made it possible to execute most of the analysis in the study, single GPU quickly 

becomes overloaded with the size (i.e. accuracy levels and number of time periods) 

of a typical problem and theoretical speed up values or speed up limits to be tested 

are beyond the computational resources provided by a single GPU. However the 

achieved speed up values and decreased execution times are quite promising for 

larger scale computational settings. 

5.4 SGI Based Estimation Algorithms on Empirical Data 

In this section, the proposed sparse grid integration method is applied to the foreign-

exchange rate series of Euro(EUR)/Turkish Lira(TRL) and US Dollar(USD)/Turkish 

Lira(TRL) composed of 3669 observations to fit a MSV-B model for illustrating the 

proposed SGI based estimation approach on real data. For comparison purposes same 
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MSV-B model is fitted using the MCMC based algorithm and a CCC-GARCH 

model is fitted to the data as described in section 4.4. 

Return series of two foreign exchange rates are shown in Figure 5.14 where the co-

movement of the returns is  visible with volatility clusterings. 

 

 

 

 

Figure 5.14 : Return series of EUR/TL and USD/TL. 

MSV-B model parameter estimation results obtained by the SGI based and the 

MCMC based estimation algorithms are given in Table 5.19 and CCC-GARCH 

model parameter estimation results are given in Table 5.20. 

Table 5.19 : MSV-B parameter estimation results for EUR/TL and USD/TL. 

  MSV-B SGI  MSV-B MCMC 

 i Mean Std. Error  Mean Std. Error 

γi 
1 -0.289 0.027  -0.273 0.035 

2 -0.378 0.033  -0.369 0.038 

       

φi 
1 0.971 0.0092  0.979 0.0099 

2 0.962 0.0084  0.968 0.0095 

       

ζη 
1 0.188 0.019  0.176 0.024 

2 0.184 0.023  0.171 0.031 

       

ρij 12 0.649 0.018  0.646 0.026 

In Table 5.19 it can be observed that the SGI based and MCMC based algorithms 

generated close estimations for all parameters. Standard errors of the parameter 

estimates with SGI method are slightly lower.  

The correlation between asset returns, ρij, in all models including the CCC-GARCH 

are consistent as seen in Table 5.19 and Table 5.20 .  Both the MSV-B  and the CCC-

GARCH  model exhibits strong persistence in volatilities  however the parameters 

are not directly comparable since the structures of the models are different. 
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Table 5.20 : CCC-GARCH parameter estimation results for EUR/TL and USD/TL. 

  CCC-GARCH 

 i Estimate Std. Error 

ωi 
1 0.000 0.000 

2 0.000 0.000 

    

αi 
1 0.107 0.041 

2 0.122 0.039 

    

βi 
1 0.837 0.039 

2 0.818 0.034 

    

ρij 12 0.652 0.014 

The comparison of the log-volatility estimates of the three fitted model are given in 

Table 5.21. Here, the logarithms of the squared returns are used as reference for the 

calculation of  RMSEs as described in section 4.4. 

Table 5.21 : Log-volatility estimation comparisons for EUR/TL and USD/TL. 

 

 

 

 

 

 

In Table 5.21 it can be seen that SGI based MSV-B has the lowest RMSEs for both 

smoothing and prediction. The choice of relatively a higher integration level,  l = 8 is 

probably the reason for the better fit for SGI based estimation algorithms. In Table 

5.21 it is also observed that MSV-B model has lower RMSEs with both estimation 

methods than the CCC-GARCH model which is an indication of a better 

performance in capturing the patterns of the reference.  

Figure 5.15 plots the log-volatility smoothing estimates obtained by the SGI based 

estimation algorithm and MCMC based estimation algorithm for the MSV-B and 

CCC-GARCH log-volatility fit along with the logarithm of the squared returns as the 

reference. It can be seen from the charts in Figure 5.15 that the proposed SGI based 

estimation algorithm successfully captures the patterns of  the log-volatilities.  

 i Smoothing 

RMSE 

 Prediction 

RMSE 

MSV-B MCMC 
1 2.713 2.887 

2 2.701 2.879 

    

MSV-B SGI 
1 2.658 2.843 

2 2.620 2.806 

    

CCC-GARCH 
1 2.869 3.047 

2 2.826 2.974 
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Figure 5.15 : Log-volatility smoothing estimates for EUR/TRL and USD/TRL. 
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6.  CONCLUSION 

The capabilities of the MSV models in capturing the stylized facts and dynamics of 

volatilities and correlations are undisputable. Different model specifications and 

parameterizations of MSV models can address almost any stylized facts and features 

about the volatilites and correlations, however addressing several stylized facts and 

features at the same time is not trivial since there is a requirement of efficient 

mechanism and parameterizations for handling the correlation and covariance 

matrices which have special structures and restrictions on their entries especially in 

time varying setting. A general parametric MSV model which can accomodate both 

the static and dynamic settings for leverage effects, cross-leverage effects, volatility 

spillovers and co-movement of asset returns at the same time and furthermore 

alowing usage of combinations of static and dynamic components in a single model 

was proposed in this study and this parameterization was refferred as MSV-D. A 

custom-built Bayesian MCMC estimation algorithm for the MSV-D model was also 

developed. 

The results in section 5.1 on simulated and the results in section 5.2 on empirical data 

showed that the proposed MSV-D model successfully captures the stylized facts of 

volatility and correlations in both static and dynamic settings. The proposed MSV-D 

model can also address dynamic cross-leverage and dynamic volatility spillovers by 

construction which is not an option in currently available MSV models. The 

proposed MSV-D model can facilitate dynamic and static components at the same 

time in a single model and providing a flexibility to the modeler. The results of 

section 5.1 also show that the Bayesian MCMC algorithm developed for the MSV-D 

model also does its job sufficiently well in estimation with a room for improving its 

sampling efficiency especially in the complete dynamic setting where more efficient 

ways for sampling the correlation states qt can be found with further research.  

The main drawback of the proposed MSV-D model is the quick increase in the 

number of parameters and dimension of the correlation state space in dynamic setting 

due to the increasing size of the correlation matrix of returns and volatility errors 
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which is a common situation in most multivariate models in the literature. However, 

using the dynamic components selectively and putting restrictions on the parameters 

of dynamic correlation state processes can help for achieving parsimony. 

SV models are nonlinear state space models which require computationally 

demanding methods for satisfactory estimations. MCMC based estimation algorithms 

are by far the most popular methods for estimation beacuse of their appealing 

features. However there are issues on the error control and convergence inherent in 

MCMC methods. As an alternative approach SGI based estimation algorithms which 

are new to the SV field are developed and evaluated for the estimation problems of 

MSV models in comparison with the MCMC based estimation algorithms.  

Results in section 5.3 show that the SGI based estimation algorithms perform well by 

achieving the accuracy of MCMC based estimation algorithms and even surpass 

them in certain conditions. Better error control and convergence properties of SGI 

methods are also shown in the results. It is showed that SGI methods, a type of 

numerical integration method, can be used for multi dimensional problems as an 

alternative to the MCMC based estimation algorithms. Despite the effect of 

dimensionality is significantly decreased in SGI methods when compared to the 

classical numerical integration methods, there is still some dependency on the 

dimension and SGI method can struggle on very high dimensional problems. 

However, the algorithms based on SGI are sequential (i.e on-line) algorithms in 

contrast with the batch structure of the MCMC methods and this sequential structure 

allows splitting the computational burden among time periods which is an important 

consideration for practical implementations. Construction of sparse grid formulas 

from other univariate formulas such as the Gaussian quadrature rules which probably 

be more effective and suitable to MSV model density structures is one of the future 

research direction for the SGI based approach. Another direction for improvement 

for the SGI based approach would be constructing the sparse grid by adjusting the 

integration formula level at each time step for better error control and computational 

efficiency which can significantly improve the method from the algorithmic 

perspective. Hybrid approaches combining Monte Carlo based methods with sparse 

grid integration based methods for computational advantage and better convergence 

could lead to further research. 
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The computational requirements of the both MCMC and SGI based algorithms are 

high and it is showed that GPU implementation is an efficient and low-cost solution 

in accelerating the execution times of the estimation algorithms. Altough the size of a 

typical problem exceeds the resources provided by a single GPU and theoretical 

speed up values could not be tested and scaling could not be observed, single GPU 

results having speed up values up to 16 for MCMC based algorithms and speed up 

values up to 25 for SGI based algorithms are obtained as shown by the results in 

section 5.3. The contributions of the developed parallel approaches for the MCMC 

and SGI based algorithms and their GPU implementations are clear from the results 

which are promising for larger scale parallel architecture implementations. 

Alternative parallelization and acceleration approaches for estimation algorithms and 

extending the computing architecture and software programs to distributed and 

cluster settings are further research directions in the computational aspect. 
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APPENDIX A : Integral Notation Definitions 

The definitions and representations of the multiple integral notations used throughout 

the study is summarised as follows. 

Integral with respect to a vector 

Let  f x  be a function of vector argument where dx  and Let 1( ,..., )dx x x  be 

a d-dimensional vector, then for the integral of  f x  with repsect to the vector x the 

following equalities hold: 
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Integral with respect to a set of vectors 

Let  1,.. tf x x  be a function of vector arguments where d

i x and 1{ ,.., }tX x x

be a set of vectors where 
1, ,( ,... ) d

i i d ix x  x for 1,..,i t , then for the integral of 

 f X  with repsect to the set X, the following equalities hold: 
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Integral with respect to a matrix 

Let  f X be a function of diagonal matrix argument where dxdX and let 

 1diag ,.., dx xX  then then for the integral of  f X  with repsect to the set X, the 

following equalities hold: 
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APPENDIX B : Construction of Time Varying Correlation Matrices 

Figure B.1 illustrates the mechanism that constructs valid correlation matrices based 

on an AR(1) process in the proposed MSV-D model. 
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APPENDIX C : Important C Program Functions and Sample Codes 

Appendix C.1: Correlation matrix parameterization and transformation functions 
 
// Correlation matrix parameterization and transformation functions 
// by Halil Erturk Esen 
 
void corr_to_angle(int dim, float *cor, float *angle){ 
 int i, j, k, nn; 
 float den, *element, *bmat, *temp1, *temp2; 
 nn = dim*dim; 
 element = (float *)malloc(sizeof(float)*nn); 
 temp2 = (float *)malloc(sizeof(float)*nn); 
 temp1 = (float *)malloc(sizeof(float)*nn); 
 bmat = (float *)malloc(sizeof(float)*nn); 
 //Elementary matrix 
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   if (i+j==dim-1){ 
    element[i+dim*j]=1.0; 
   } 
   else{ 
    element[i+dim*j]=0.0; 
   } 
  } 
 } 
 sqrmm(element, cor, dim, temp1); //Matrix multiplication 
 sqrmm(temp1, element, dim, temp2); 
 chol(temp2, dim, temp1); //Cholesky decomposition 
 
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   temp2[i+dim*j] = temp1[j+dim*i]; 
  } 
 } 
 sqrmm(element, temp2, dim, bmat); 
 //Extract angles  
 for (i=0;i<dim;i++){                            
  for (j=0;j<dim;j++){ 
   if(i+j<dim-1){ 
    den=1.0; 
    for(k=0;k<j;k++){ 
     den = den*sin(angle[i+dim*k]); 
    } 
    angle[i+j*dim]=acos(bmat[i+j*dim]/den); 
   } 
   else{ 
    angle[i+j*dim]=0.0; 
   } 
  } 
 } 
 // free(...); 
} 
 
void angle_to_corr(int dim, float *angle, float *cor){ 
 int i, j, k, nn; 
 float den, *rc, *bmat, *temp; 
 nn=dim*dim; 
 rc = (float *)malloc(sizeof(float)*nn); 



 

111 

 

 bmat = (float *)malloc(sizeof(float)*nn); 
 temp = (float *)malloc(sizeof(float)*nn); 
 for(i=0;i<dim;i++){                            
  for (j=0;j<dim;j++){ 
   if(i+j<dim){ 
    den=1.0; 
    for(k=0;k<j;k++){ 
     den = den*sin(angle[i+dim*k]); 
    } 
    bmat[i+j*dim]=cos(angle[i+j*dim])*den; 
   } 
   else{ 
    bmat[i+j*dim]=0.0; 
   } 
  } 
 } 
 for(i=0;i<dim;i++){                            
  for (j=0;j<dim;j++){ 
   temp[i+dim*j] = bmat[j+dim*i]; 
  } 
 } 
 
 sqrmm(bmat, temp, dim, rc); 
 
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   cor[i+dim*j]=rc[i+dim*j]; 
  } 
 } 
 // free(...); 
} 
 
void q_to_angle(int dim, float *q, float *angle){ 
 int i, j;  
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   if(i+j<dim-1){ 
     angle[i+dim*j]= PI/(exp(-1*q[i+dim*j-  
        (j*(j+1)/2)])+1); 
   } 
   else{ 
    angle[i+dim*j]=0.0; 
   } 
  } 
 } 
} 
 
void angle_to_q(int dim, float *angle, float *q){ 
 int i, j; 
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim-1-i;j++){ 
   q[i+dim*j-(j*(j+1)/2)] = -1*log((PI/angle[i+dim*j])-1); 
  } 
 } 
} 
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Appendix C.2 : Sparse grid construction functions 

 
//Functions for the construction of the regular sparse grids  
//for arbitrary dimension and accuracy level based  
//on the trapezoid rule 
//by Halil Erturk Esen 
 
//Simplex size  
int simsize(int dim, int level){ 
 int i, j=0, sm, cnt=0; 
 int *ka; 
 //printf("Dim = %d \n",dim); 
 ka = (int *)malloc(sizeof(int)*(dim+1)); 
 for(i=0;i<=dim;i++){ 
  ka[i]=1; 
 } 
 while(j >= 0){ 
  j = dim; 
  sm = level + dim; 
  while(sm > level + dim - 1){ 
   ka[j] = 1; 
   j = j - 1; 
 
   if(j>=0){ 
    ka[j] = ka[j] + 1; 
   } 
 
   //printf("ka[%d]= %d \n", j, ka[j]); 
 
   sm=0; 
   for(i=0; i<dim; i++){ 
    sm = sm + ka[i]; 
   } 
  } 
  cnt=cnt+1; 
 } 
 free(ka); 
 return cnt; 
} 
 
//Simplex construction 
void simplexc(int dim, int level, int *splx){ 
 int i, j=0, sm, size, cnt=0; 
 int *k;  
 k = (int *)malloc(sizeof(int)*(dim+1)); 
 size = simsize(dim, level); 
  
 for(i=0;i<=dim;i++){ 
  k[i]=1; 
 } 
 while(j >= 0){ 
  j = dim; 
  sm = level + dim; 
  while(sm > level + dim - 1){ 
   k[j] = 1; 
   j = j - 1; 
   if(j>=0){ 
    k[j] = k[j] + 1; 
   } 
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   sm=0; 
   for(i=0; i<dim; i++){ 
    sm = sm + k[i]; 
   } 
  } 
  for(i=0; i<dim; i++){ 
   splx[cnt+size*i] = k[i]; 
  } 
  cnt=cnt+1; 
 } 
 free(k); 
} 
// Sparse grid size 
int sparsegsize(int dim, int level){ 
 int i, j, gsize=1, qsize, fullsize=0, sims, cnt, mn, ss; 
 int *quadn, *deltan, *deltans, *qngr, *dngr,  
  *simplex, *simplexnnd;  
 float *quadw, *deltaw, *deltaws; 
  
 //Quadrature and delta rule nodes and weights-----; 
 qngr=(int *)malloc(sizeof(int)*level); 
 dngr=(int *)malloc(sizeof(int)*level); 
 for(i=level;i>0;i--){ 
  qngr[i-1]=intpow(2,i)-1; 
 } 
 qsize=level*qngr[level-1]; 
 quadn=(int *)malloc(sizeof(int)*qsize); 
 quadw=(float *)malloc(sizeof(float)*qsize); 
 deltan=(int *)malloc(sizeof(int)*qsize); 
 deltaw=(float *)malloc(sizeof(float)*qsize); 
 deltans=(int *)malloc(sizeof(int)*qsize); 
 deltaws=(float *)malloc(sizeof(float)*qsize); 
 
 for(i=0;i<level;i++){ //Quadrature nodes and weights 
  ss=(qngr[level-1]-qngr[i])/(qngr[i]+1); 
  cnt=0; 
  mn=0; 
  for(j=0;j<qngr[level-1];j++){ 
   if(cnt<ss){ 
    quadn[i+level*j]=0; 
    quadw[i+level*j]=0; 
    cnt=cnt+1; 
   } 
   else{ 
    quadn[i+level*j]=1; 
    if(mn==0 || mn==(qngr[i]-1)){ 
     quadw[i+level*j]=1.5f; 
    } 
    else{ 
     quadw[i+level*j]=1; 
    } 
    cnt=0; 
    mn=mn+1; 
   } 
  } 
 } 
 
 for(i=0;i<level;i++){//Delta nodes and weights 
  dngr[i]=0; 
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  for(j=0;j<qngr[level-1];j++){ 
   if(i==0){ 
    deltan[i+level*j]=quadn[i+level*j]; 
    deltaw[i+level*j]=quadw[i+level*j]; 
   } 
   else{ 
    deltan[i+level*j]=quadn[i+level*j]- 
       quadn[i-1+level*j]; 
    deltaw[i+level*j]=quadw[i+level*j]- 
       quadw[i-1+level*j]; 
   } 
   if(deltan[i+level*j]==0){ 
    deltaw[i+level*j]=0; 
   } 
   dngr[i]=dngr[i]+deltan[i+level*j]; 
  } 
 } 
 
 for(i=0;i<level;i++){//Stacked node indices and weight matrices 
  for(j=0;j<qngr[level-1];j++){ 
   deltans[i+level*j]=0; 
   deltaws[i+level*j]=0; 
  } 
 } 
 
 for(i=0;i<level;i++){ 
  cnt=0; 
  for(j=0;j<qngr[level-1];j++){ 
   if(deltan[i+level*j]==1){ 
    deltans[i+level*cnt]=j; 
    deltaws[i+level*cnt]=deltaw[i+level*j]; 
    //printf("Check: %d \n", i+level*cnt); 
    cnt=cnt+1; 
   } 
  } 
 } 
  
 //-------------End of difference rule nodes and weights-----; 
 sims=simsize(dim, level); 
 simplex=(int *)malloc(sizeof(int)*sims*dim); 
 simplexnnd=(int *)malloc(sizeof(int)*sims*dim); 
 simplexc(dim, level, simplex);  
 for(i=0;i<sims;i++){//nnd vectors over simplex 
  gsize=1; 
  for(j=0;j<dim;j++){ 
   simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)]; 
   gsize=gsize*simplexnnd[i+sims*j];  
  } 
  fullsize=fullsize+gsize; 
 } 
 // free(...);  
 return fullsize; 
} 
 
// Final sparse grid construction 
void sparsegcon(int dim, int level, int *coords, float *weights){ 
 int h, g, i, j, v, gsize=1, sgsize, qsize, fullsize=0, sims, cnt, 
  cond, mn, ss, lin, eq, eqcheck; 
 int *quadn, *deltan, *deltans, *qngr, *dngr,  
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   *k, *prngr, *prntgr, *simplex, *simplexnnd, *nnd,  
   *levd, *grid, *sgrid, *tempn, *gmind;  
  float *quadw, *deltaw, *deltaws, *prwtgr, *prwv, *wvec,  
   *cwvec, *swvec, tempw, cuweight; 
  
 //Quadrature and delta rule nodes and weights-----; 
 qngr=(int *)malloc(sizeof(int)*level); 
 dngr=(int *)malloc(sizeof(int)*level); 
 for(i=level;i>0;i--){ 
  qngr[i-1]=intpow(2,i)-1; 
 } 
 qsize=level*qngr[level-1]; 
 quadn=(int *)malloc(sizeof(int)*qsize); 
 quadw=(float *)malloc(sizeof(float)*qsize); 
 deltan=(int *)malloc(sizeof(int)*qsize); 
 deltaw=(float *)malloc(sizeof(float)*qsize); 
 deltans=(int *)malloc(sizeof(int)*qsize); 
 deltaws=(float *)malloc(sizeof(float)*qsize); 
 
 for(i=0;i<level;i++){ //Quadrature nodes and weights 
  ss=(qngr[level-1]-qngr[i])/(qngr[i]+1); 
  cnt=0; 
  mn=0; 
  for(j=0;j<qngr[level-1];j++){ 
   if(cnt<ss){ 
    quadn[i+level*j]=0; 
    quadw[i+level*j]=0.0; 
    cnt=cnt+1; 
   } 
   else{ 
    quadn[i+level*j]=1; 
    if((qngr[i]-1)==0){ 
     quadw[i+level*j]=(2.0)/(qngr[i]+1); 
    } 
    else if(mn==0 || mn==(qngr[i]-1)){ 
     quadw[i+level*j]=(1.5)/(qngr[i]+1);  
    } 
    else{ 
     quadw[i+level*j]=(1.0)/(qngr[i]+1);  
    } 
    cnt=0; 
    mn=mn+1; 
   } 
  } 
 } 
  
 for(i=0;i<level;i++){//Delta nodes and weights 
  dngr[i]=0; 
  for(j=0;j<qngr[level-1];j++){ 
   if(i==0){ 
    deltan[i+level*j]=quadn[i+level*j]; 
    deltaw[i+level*j]=quadw[i+level*j]; 
   } 
   else{ 
    deltan[i+level*j]=quadn[i+level*j]- 
        quadn[i-1+level*j]; 
    deltaw[i+level*j]=quadw[i+level*j]- 
        quadw[i-1+level*j]; 
   } 
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   if(deltaw[i+level*j]!=0){ 
    deltan[i+level*j]=1; 
   } 
   dngr[i]=dngr[i]+deltan[i+level*j]; 
  } 
 } 
  
 for(i=0;i<level;i++){//Stacked node indices and weight matrices 
  for(j=0;j<qngr[level-1];j++){ 
   deltans[i+level*j]=0; 
   deltaws[i+level*j]=0; 
  } 
 } 
 
 for(i=0;i<level;i++){ 
  cnt=0; 
  for(j=0;j<qngr[level-1];j++){ 
   if(deltan[i+level*j]==1){ 
    deltans[i+level*cnt]=j; 
    deltaws[i+level*cnt]=deltaw[i+level*j]; 
    cnt=cnt+1; 
   } 
  } 
 } 
 
 //-------------End of difference rule nodes and weights-----; 
  
 //=========================================================== 
 //CONSTRUCTING THE GRID AND ASSOCIATED WEIGHTS 
 //=========================================================== 
 //Simplex construction--------------------------------------; 
 sims=simsize(dim, level); 
 simplex=(int *)malloc(sizeof(int)*sims*dim); 
 simplexnnd=(int *)malloc(sizeof(int)*sims*dim); 
 simplexc(dim, level, simplex); 
  
 for(i=0;i<sims;i++){//nnd vectors over simplex 
  gsize=1; 
  for(j=0;j<dim;j++){ 
   simplexnnd[i+sims*j]=dngr[(simplex[i+sims*j]-1)]; 
   gsize=gsize*simplexnnd[i+sims*j];  
  } 
  fullsize=fullsize+gsize; 
 } 
  
 //Full grid 
 grid=(int *)calloc(fullsize*dim, sizeof(int)); 
 wvec=(float *)calloc(fullsize, sizeof(float)); 
 cwvec=(float *)calloc(fullsize, sizeof(float)); 
 gmind=(int *)calloc(fullsize, sizeof(int)); 
 nnd=(int *)malloc(sizeof(int)*dim); 
 levd=(int *)malloc(sizeof(int)*dim); 
 
 //Loop over simplex combinations 
 lin=0; 
 for(v=0;v<sims;v++){ 
  for(i=0;i<dim;i++){ 
   nnd[i]=simplexnnd[v+sims*i]; 
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   levd[i]=simplex[v+sims*i]-1; 
  } 
  //Product grid nodes primary construction--------; 
  k = (int *)malloc(sizeof(int)*dim); 
  gsize=1; 
  for(i=0;i<dim;i++){ 
   k[i]=1; 
   gsize=gsize*nnd[i]; 
  } 
  prngr = (int *)malloc(sizeof(int)*gsize*dim); 
  cnt=0; 
  for(i=0;i<dim;i++){ 
   prngr[cnt+gsize*i]=k[i]; 
  } 
  cnt=1; 
  i=0; 
  cond=0; 
  while(cond == 0){ 
   k[i]=k[i]+1; 
   cond=(k[dim-1] > nnd[dim-1]); 
   if (k[i]>nnd[i]){ 
    k[i]=1; 
    i = i + 1; 
   } 
   else{ 
    for(j=0; j<dim; j++){ 
     prngr[cnt+gsize*j]=k[j]; 
    } 
    cnt=cnt+1; 
    i=0; 
   } 
  } 
   
  //------End of product grid nodes primary construction------;
   
  //Product grid transformed nodes and weights construction---; 
  
  prntgr = (int *)malloc(sizeof(int)*gsize*dim); 
  prwtgr = (float *)malloc(sizeof(float)*gsize*dim); 
  prwv = (float *)malloc(sizeof(float)*gsize); 
  for(i=0;i<gsize;i++){ 
   for(j=0; j<dim; j++){ 
    prntgr[i+gsize*j]= deltans[levd[j]+ 
       level*(prngr[i+gsize*j]-1)]; 
    prwtgr[i+gsize*j]= deltaws[levd[j]+ 
       level*(prngr[i+gsize*j]-1)]; 
   } 
  } 
  for(i=0;i<gsize;i++){ 
   prwv[i]=1; 
   for(j=0; j<dim; j++){ 
    prwv[i]= prwv[i]*prwtgr[i+gsize*j]; 
   } 
  } 
 
  //Copy product nodes and weights components to grid matrix 
  for(i=0;i<gsize;i++){ 
   for(j=0; j<dim; j++){ 
    grid[lin+fullsize*j]=prntgr[i+gsize*j]; 
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   } 
   wvec[lin]=prwv[i]; 
   lin=lin+1; 
  } 
  free(k); 
  free(prngr); 
  free(prntgr); 
  free(prwtgr); 
  free(prwv); 
 } 
 
 //Aggregate grid matrix for repeat nodes 
 //Sort the grid matrix 
 tempn=(int *)malloc(sizeof(int)*dim); 
 for(h=1;h<fullsize-1;h++){ 
  for(g=0;g<fullsize-h;g++){ 
   eqcheck = 1; 
   j=0; 
   while(j<dim && eqcheck == 1){ 
    if(grid[g+fullsize*j] < grid[g+1+fullsize*j]){ 
     eq = 0; 
     eqcheck = 0; 
    } 
    else if(grid[g+fullsize*j] >    
      grid[g+1+fullsize*j]){ 
     eq = 1; 
     eqcheck = 0; 
    } 
    else{ 
     eqcheck = 1; 
    } 
    j=j+1; 
   } 
   if(eq==1){ 
    for(j=0;j<dim;j++){ 
     tempn[j]=grid[g+fullsize*j]; 
     grid[g+fullsize*j]=grid[g+1+fullsize*j]; 
     grid[g+1+fullsize*j] = tempn[j];  
    
    } 
    tempw = wvec[g]; 
    wvec[g]=wvec[g+1]; 
    wvec[g+1]=tempw; 
   } 
  } 
 } 
 // Track the repeating nodes 
 cnt=0; 
 for(i=0;i<fullsize-1;i++){ 
  if(i==0){ 
   cuweight = wvec[i]; 
   cwvec[i] = cuweight; 
  } 
  eqcheck = 1; 
  j=0; 
  while(j<dim && eqcheck ==1){ 
   if (grid[i+1+fullsize*j] > grid[i+fullsize*j] ){ 
    eq = 0; 
    eqcheck = 0; 
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   } 
   else{ 
    eq = 1; 
    eqcheck = 1; 
   } 
   j=j+1; 
  } 
  if(eq==0){ 
   cnt = cnt + 1; 
   cuweight = wvec[i+1]; 
  } 
  else { 
   cuweight=cuweight+wvec[i+1]; 
  } 
  gmind[i+1]=cnt; 
  cwvec[i+1] = cuweight; 
 } 
 
 sgsize = gmind[fullsize-1]+1; 
 
 //Final sparse grid array 
   
 sgrid=(int *)calloc(sgsize*dim, sizeof(int)); 
 swvec=(float *)calloc(sgsize, sizeof(float)); 
 h=0; 
 for(i=0;i<fullsize-1;i++){ 
  if(gmind[i]!=gmind[i+1]){ 
   swvec[h]=cwvec[i]; 
   for(j=0;j<dim;j++){ 
    sgrid[h+sgsize*j]=grid[i+fullsize*j]; 
   } 
   h=h+1; 
  } 
 }  
  
 swvec[sgsize-1]=cwvec[fullsize-1]; 
 for(j=0;j<dim;j++){ 
  sgrid[sgsize-1+sgsize*j]=grid[fullsize-1+fullsize*j]; 
 } 
  
 for(i=0; i<sgsize; i++){ 
  for(j=0; j<dim; j++){ 
   coords[i+sgsize*j]=sgrid[i+sgsize*j]; 
  } 
   
 } 
 for(i=0; i<sgsize; i++){ 
  weights[i]=swvec[i]; 
 } 
 
 //free(quadn); 
  
} 
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Appendix C.3: Examples of GPU device kernels, device functions and their usage 

 

Examples of GPU device functions: 
 
//Vector matrix multiplication on device 
__device__ void gpu_sqrvm(float *a, float *b, int dim, float *c){ 
 int i, j; 
 for(i=0;i<dim;i++){ 
  c[i]=0.0; 
  for(j=0;j<dim;j++){ 
   c[i]+=a[j]*b[j+dim*i]; 
  } 
 } 
} 

 
// Cholesky decomposition on device 
__device__ void gpu_chol(float *a, int dim, float *b){ 
 int i, j, k; 
 float  rs; 
  
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   b[j+dim*i] = 0.0; 
  } 
 } 
  
 for(i=0;i<dim;i++){ 
  for(j=0;j<dim;j++){ 
   if(i==j){ 
    rs = 0.0; 
    for(k=0;k<j;k++){ 
     rs = rs + ( b[k+dim*i] ) * ( b[k+dim*j] ); 
    } 
    b[j+dim*i] = sqrt(a[i+dim*j]-rs); 
   } 
   else if(i>j){ 
    rs = 0.0; 
    for(k=0;k<j;k++){ 
     rs = rs + ( b[k+dim*i] ) * ( b[k+dim*j] ); 
    } 
    b[j+dim*i] = (a[i+dim*j]-rs)/b[j+dim*j]; 
   } 
   else{ 
    b[j+dim*i] = 0.0; 
   } 
  } 
 } 
} 

 

The following is a simplified illustration of the GPU device kernel from the 

implemented MCMC with EM smoothing algorithm device kernel. 

 
__global__ void mcmc_kernel_s1(int k, int offs, int nt, int pcl_size, int 
   ts_t, int dimh, float sc, float *ry, float *phi,  
   float *gamma, float *theta, float *delta, float  
   *vv_var, float *qq_var, float *yc, float *yp,  
   float *hp, float *hc, float *hn, float *candid_h,  
   float *qp, float *qc, float *qn, float *candid_q, 
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   float *transgridh, float *transgridq, float *h_ini,  
   float *q_ini, float *h_sigmas,float *ch_qq, float  
   *p_mu, float *p_vv, float *ch_p_vv, curandState_t  
   *state, float *rrnd_h,  float *rndsc_h, float *rrnd_q, 
   float *rndsc_q, float *u, float *matf1, float *matf2, 
   float *matf3, float *matf4,  float *matf5, float  
   *matrr, float *matvv, float *matvr, float *matrv,  
   float *wrkh1, float *wrkh2, float *wrkh3, float *wrkh4,  
   float *vech1, float *vech2, float *wrkq1, float *wrkq2, 
   float *wrkq3, float *wrkq4, float *vecq1, float  
   *vecq2){ 
  
 int j, m, trans_k, trans_l, term = 1, noterm = 0; 
 float numerw, denomw, wght; 
 int dimq =  2*dimh*(2*dimh-1)/2; 
 int dimf = 2*dimh; 
 int h_nn = dimh*dimh; 
 trans_k = 2*pcl_size+ts_t-2; //Number of rows of transformed grid 
 if(ts_t % 2 == 0){      //Number of columns of transformed grid 
  trans_l = (int)(ts_t/2); 
 } 
 else{ 
  trans_l = (int)((ts_t+1)/2); 
 } 
  
 //GPU Thread id 
 int tid = offs + threadIdx.x + blockIdx.x*blockDim.x;  
  
 int vidh = dimh*tid; 
 int vidq = dimq*tid; 
 int midh = dimh*dimh*tid; 
 int midq = dimq*dimq*tid; 
 int midf = dimf*dimf*tid; 
 
 // Assigning parts of device pointers to threads with thread id. 
 // Random number generation on device with CURAND library. 
 // Computations and operations with device functions gpu_* 
 if(tid<nt+offs){ 
  //q: Candidate, prev, current, next 
  for(j=0;j<dimq;j++){ 
   rrnd_q[j + vidq]=curand_normal(&state[tid]); 
  } 
  gpu_sqrmv(ch_qq, &rrnd_q[vidq], dimq, &rndsc_q[vidq]); 
 
  for(j=0;j<dimq;j++){ 
   qp[j+vidq]=transgridq[k-1 +     
     trans_k*tid+trans_k*trans_l*j]; 
   qc[j+vidq]=transgridq[k-2 + trans_k*tid +   
     trans_k*trans_l*j]; 
   if(tid < trans_l -1){ 
    qn[j+vidq]=transgridq[k-1 + trans_k*(tid+1)+  
     trans_k*trans_l*j]; 
    } 
   } 
   . 
   . 
   for(j=0;j<dimh;j++){ 
    hp[j+vidh]=transgridh[k-1 +    
      trans_k*tid+trans_k*trans_l*j]; 
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    hc[j+vidh]=transgridh[k-2 + trans_k*tid +  
        trans_k*trans_l*j]; 
    if(tid < trans_l -1){ 
     hn[j+vidh]=transgridh[k-1 +   
      trans_k*(tid+1) +    
    trans_k*trans_l*j]; 
    } 
   yc[j+vidh]=ry[2*tid+1+j*ts_t]; 
   yp[j+vidh]=ry[2*tid+j*ts_t];  
   candid_h[j+vidh]=p_mu[j+vidh]+rndsc_h[j+vidh]; 
   } 
   u[tid] = curand_uniform(&state[tid]); 
 
   //Parallel execution with device functions  
   
   if(tid==0){ 
    numerw = 
    ..*gpu_cprnorm(dimh, &hc[vidh], &p_mu[midh],  
     &p_vv[midh], &wrkh1[midh], &wrkh2[midh], 
     &wrkh3[midh], &vech1[vidh], &vech2[vidh]);
     
    denomw = ... 
    . 
   else if (tid>0 && tid<trans_l-1){ 
    . 
   } 
   else { 
    . 
   } 
   if(denomw>0){ 
    wght= numerw/denomw; 
    if (wght>1){ 
     wght=1.0; 
    }   
   } 
   else{ 
   wght=1.0; 
   } 
 
   // Updating device pointers from threads 
   if(u[tid] <= wght){ 
   for(j=0;j<dimh;j++){ 
    transgridh[k + trans_k*tid + trans_k*trans_l*j] 
        = candid_h[j + vidh]; 
   } 
   for(j=0;j<dimq;j++){ 
    transgridq[k + trans_k*tid + trans_k*trans_l*j] 
        = candid_q[j+vidq]; 
   } 
  } 
  else{ 
   for(j=0;j<dimh;j++){ 
    transgridh[k + trans_k*tid + trans_k*trans_l*j] 
         = hc[j+vidh];  
   } 
   for(j=0;j<dimq;j++){ 
    transgridq[k + trans_k*tid + trans_k*trans_l*j] 
         = qc[j+vidq];  
   } 
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  } 
 } 
} 
 
    

The following code is a simplified illustration of calling a GPU kernel such as the 

one above from the host along with buffer transfers. 

 
// Allocation of device buffers 
  
cudaMalloc((void**)&dev_transgridh,trans_k*trans_l*dimh*sizeof(float)); 
cudaMalloc((void**)&dev_transgridq,trans_k*trans_l*dimq*sizeof(float)); 
cudaMalloc((void**)&dev_ry, h_tnn*sizeof(float)); 
. 
. 
// Data transfer to device memory 
cudaMemcpy(dev_ry, ry, h_tnn*sizeof(float),cudaMemcpyHostToDevice); 
. 
. 
offs = 0; 
nt = (k-1)/2; 
blocks_n =(int)(((k-1)/2+threadsize-1)/threadsize); 
 
// Device kernel call for parallel execution 
mcmc_kernel_s1<<<blocks_n, threadsize>>>(k, offs, nt, pcl_size, ts_t,  
  dimh, ..., dev_transgridh, dev_transgridq, ....); 
. 
. 
 
//Synchronization and blocking 
cudaDeviceSynchronize(); 
. 
. 
//Data transfer back to host 
cudaMemcpy(transgridh,dev_transgridh,trans_k*trans_l*dimh*sizeof(float), 
       cudaMemcpyDeviceToHost); 
cudaMemcpy(transgridq,dev_transgridq,trans_k*trans_l*dimq*sizeof(float), 
       cudaMemcpyDeviceToHost); 
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