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SPACE TIME ADAPTIVE PROCESSING (STAP) IN MULTI INPUT MULTI 

OUTPUT (MIMO) RADAR 

SUMMARY 

A system that uses electromagnetic waves to detect, locate and measure the velocity 

of reflecting objects like aircraft, ships, spacecraft, automobile, people, weather 

formations and terrain, called RADAR. It broadcast the electromagnetic waves into 

territory and receives the repetition reflected from objects. Applying signal processing 

algorithms on the reflected waveform, detected the reflecting objects. Furthermore, the 

position and the velocity of the objects can also be approximate. Initial radar 

development was particularly driven by military and military is still the prevalent user 

and planner of radar technology. Military utilization include surveillance, navigation, 

and weapon guidance. However, now extended radar applications include 

meteorological precipitation, measuring ocean surface waves, air traffic control, police 

detection of speeding traffic, sports radar speed guns, and preventing car or ship 

collisions. 

The original contribution of this thesis is a multiple-input multiple-output (MIMO) 

generalization of space-time adaptive processing (STAP) to mitigate spread Doppler 

clutter returns in radar. Multi input multi output (MIMO) radar is a radar system with 

multiple receive and transmit antennas, that can transmit independent waveforms on 

each transmit elements. Although many traditional multi-antenna radar concepts such 

as phased- array, receive beamforming, synthetic aperture radar (SAR), polarimetry  

and interferometry can be seen as special cases of MIMO radar, the distinct advantage 

of a multi-antenna radar system with independent transmit waveforms is the increased 

number of degrees of freedom leading to improved resolution and performance in 

detection and parameter estimation tasks. 

MIMO radar obtains important potentials for fading reduction, resolution 

augmentation, and interference and jamming elimination. Exploiting these potentials 

can reaction in greatly improved target detection, parameter estimation, target tracking 

and recognition performance. Uses MIMO technology in RADAR has quickly drawn 

remarkable attention from many researchers. Various advantages of MIMO radar have 

been recognized by many different scientists like enhanced diversity of the target data, 

superior interference rejection sufficiency, improved parameter identifiability, and 

increase flexibility for transmit beampattern layout. The degrees of freedom 

introduced by MIMO radar develop the performance of the radar schemes in many 

distinct aspects. Although, it also turn out some issues. It increases the number of 

dimensions of the received signals. As a consequence, this increases the complexity of 

the receiver. Furthermore, the MIMO radar transmits an incoherent waveform on each 

of the transmitting antennas. This approximately reduces the processing gain related 

to the phased array radar. The numerous ideal waveforms also affects the range and 

Doppler resolution of the radar system. 

A promising application of MIMO radar is the identification of slowly moving targets 

using airborne MIMO radar platforms. The advantage of using MIMO in this 

configuration is its ability to synthesize a larger virtual array with relatively fewer 

antennas. This allows higher spatial resolution and better separation of returns from 

ground clutter and targets. The space-time adaptive processing (STAP) methods 

originally developed for Single-input, Multiple-output (SIMO) radar are applicable to 
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MIMO radar systems after proper pre-processing of the received signals. The 

performance of STAP algorithm critically hinges on the structure of the clutter 

covariance matrix; therefore, MIMO STAP methods will benefit greatly from 

theoretical and empirical study of the clutter statistics. 

Of specific concern is clutter subject to multipath distribution between receive and 

transmit arrays. Considerable multipath clutter can appear in over-the-horizon (OTH) 

radar info when ocean or ground surface reflects undergo multiple ionospheric 

scattering that cause significant wavenumber spreads and Doppler frequency. In such 

situation, traditional single-input multi-output (SIMO) STAP cannot relieve Doppler 

spread mainlobe clutter without repressing the target.      

With a little remodeling, space time adaptive processing methods expanded basically 

for the single input multiple output radar systems (phased array radar) can also be 

utilized in multiple input multiple output radar system. Although, in the MIMO radar 

system, the rank of the interference subspace becomes extra-large, particularly the 

jammer and clutter subspace. It impress both the convergence and complexity the of 

the STAP performance. 

After reconsidering the advantages and drawbacks of the extended MIMO-STAP, 

namely the sample matrix inversion (SMI) and eigencanceller (EC), fast approximated 

power iteration (FAPI) algorithms, we propose fast and stable YAST algorithm  the 

range recursive algorithm as an alternative to resolve the convergence and complexity 

problems. 

YAST algorithm novelty is the lower computational cost and the extension to minor 

subspace tracking. Although, the initial performance of the YAST algorithm suffered 

from a numerical balance issue (the subspace weighting matrix moderately loses its 

orthonormality). Hence in this thesis we applied a novel execution of YAST, whose 

stability is fixed theoretically and tested via computer simulation in space time 

adaptive processing in MIMO radar. This algorithm fuses all the favor confidants for 

a subspace tracker: significantly linear complexity, lowest steady state error, high 

convergence rate and numerical stability concerning the orthonormality of the 

subspace weighting matrix. 

The contribution of this work can be summarized in four parts. First, we present the 

basic review of the detection and ranging in radar system. Multistatic and Phased Array 

Radar scheme are explained and covered to compare those systems with MIMO Radar. 

Then, we totally covered the coherent MIMO radar systems and its difference with 

phased array radar or SIMO, signal model and advancement that coherent MIMO radar 

systems offer such as high resolution and parameter identifiability. In the third part we 

briefly explain space-time adaptive processing (STAP) in MIMO radar. Then we 

discuss about different algorithms of STAP in MIMO radar as if sample matrix 

inversion (SMI), eigencanceller (EC), fast approximated power iteration (FAPI) and 

fast and stable YAST. Ultimately we introduced outcomes of the simulations which 

have been performed in this thesis study and these simulations present STAP 

efficiency of various MIMO radar composition. 
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ÇOK GİRİŞLİ ÇOK ÇIKIŞLI  RADAR LARDA UZAY ZAMAN ADAPTİF 

İŞLEME 

ÖZET 

 

Radar elektromanyetik dalgaları kullanarak, uçaklar, gemiler, uzay araçlar, arabalar, 

insanlar, hava oluşumları, ve arazi gibi nesneleri tespit eden, konumunu ve hızını 

belirleyen bir sistemdir. Radar belirli bir alana elektromanyetik dalgalar iletir ve 

nesnelerden yansıyan yankı sinyalini alır. yansıyan dalgaya sinyal işleme algoritmaları 

uygulayarak, yansıtan nesneleri tespit edilebilir. Bundan başka, nesne hızını ve 

konumunu da tahmin edilebilir. Başlangıçta radar sadece askeri amaçla geliştirildi, ve 

hala en yaygın kullanıcı ve radar teknoloji geliştiricisi askeri birimlerdir. Askeri 

uygulamalara gözetim, navigasyon ve silah rehberliği dahildir. Ancak, radar artık 

meteorolojik yağış tespiti, okyanus yüzey dalgalarını ölçme, hava trafik kontrolü, 

trafik hızın polisi tespiti ve araç veya gemi çarpışmaları önleyen uygulamalar gibi daha 

geniş bir yelpazeye sahiptir. 

 

Bu tezin asıl katkısı çoklu giriş çoklu çıkış (MIMO) radarlarda yansıyan yayılmış 

doppler yığılmayı hafifletmek için uzay-zaman adaptif işleminin (STAP) 

genelleştirilmesidir. Çok girişli çok çıkışlı (MIMO) radar, birden fazla alıcı ve verici 

antenlerden oluşan ve her iletim elemanları üzerinde bağımsız dalga formları iletebilen 

bir radar sistemidir. Birçok geleneksel çoklu anten radar kavramları, fazlı-dizi, sentetik 

açıklıklı radar (SAR), polarimetri ve enterferometre gibi, MIMO radarın özel bir 

tasarım şekli gibi gözüksede, Bağımsız dalga iletebilen çok antenli radar sisteminin 

belirgin avantajı, serbestlik derecesi sayısının artışından kaynaklanan algılama ve 

parametre tahmin görevlerinde çözünürlük ve performansın Geliştirilmesidir. 

 

MIMO radar, solma azaltma, çözünürlük geliştirme, ve parazit bastırma gibi 

görevlerde önemli potansiyellere sahiptir. Bütün bu potansiyelerden faydalanarak 

hedef tespiti, parametre kestirimi, hedef izleme ve tanıma performansında önemli 

ölçüde geliştirilmeye neden olabilir. MIMO radar teknolojisi hızla birçok 

araştırmacının büyük ilgisini çekmiştir. MIMO radarın birçok avantajı, hedef 

bilgilerinin çeşitlilik artışı, mükemmel parazit ret yeteneği, parametre tanımlama 

gelişmesi ve gönderme beampattern tasarımı için esneklik sağlamak gibi birçok farklı 

araştırmacılar tarafından tespit edilmiştir. MIMO radar tarafından tanıtılan serbestlik 

dereceleri çok farklı yönlerde radar sistemlerinin performansını artırır. Ancak, aynı 

zamanda bazı sorunlar oluşturur. Bu alınan sinyaller boyutlarının sayısını artırır. 

Sonuç olarak, bu alıcının karmaşıklığını artırır. Ayrıca, MIMO radar vericisi 

antenlerinden birbirinden tutarsız bir dalga biçimi iletir. Buda genellikte işlem 

kazancı,faz dizili radar ile karşılaştırıldığında azaltır. Birden fazla keyfi dalga şekilleri 

de radar sisteminin menzil ve Doppler çözünürlüğü etkiler. 
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MIMO radarın umut verici bir uygulaması uçuşan MIMO radar platformları kullanarak 

yavaş hareket hedeflerin belirlenmesidir.  Bu yapılandırmada MIMO kullanmanın 

avantajı, daha az antenler ile daha büyük bir sanal dizi sentezleme yeteneğidir. Bu 

yüksek uzaysal çözünürlüğü hemde zemin yığılma ile hedeflerden gelen yansımaların 

daha iyi ayrılmasını sağlar. başlangıçta Tek giriş, Çoklu-çıkış (SIMO) radar için 

geliştirilmiş  uzay-zaman adaptif işleme (STAP) yöntemleri, alınan sinyallerin doğru 

işlendikten sonra MIMO radar sistemleri için geçerlidir. STAP algoritmasının 

performansı kritik esas noktası kovaryans matrisinin yapısıdır; Bu nedenle, MIMO 

STAP yöntemleri dağınıklık istatistiklerinin teorik ve deneysel çalışmalarından büyük 

ölçüde yararlanacaktır. 

 

Özel ilgi konusu, dağınıklığın iletim ve alıcı dizilereden çok yönlü yayılmalara maruz 

kalmasıdır. Zemin ya da okyanus yüzeyinden yansiyan çoklu ionosferik saçılmaları 

ile, en önemli ufuk ötesi (OTH) çoklü dağınıklılık radar verileri elde edilebilir buda 

önemli yayılmış Doppler frekansı ve dalga sayılarına neden olur. Bu durumda, 

geleneksel tek-giriş çoklu çıkış (SIMO) STAP doppler yayılım mainlobunu belirli 

hedefi bastırmadan azaltamıyor. 

 

Hafif bir değişiklik yaparak başlangıçta tek giriş çoklu çıkış (SIMO) radar (faz dizili 

radar) da geliştirilen STAP yöntemleri MIMO radar da bile  kullanılabilir. Ancak, 

MIMO radar da, jammer-ve-clutter altuzayın rütbesi, çok büyük olur. Özellikle 

jammer alt uzay. Bu STAP algoritmasının karmaşıklığı ve yakınsamasını etkiler. 

Genişletilmiş MIMO-STAP avantaj ve dezavantajları tekrar ele aldıktan sonra yani 

örnek matris dönüşümü (SMI) ve eigencanceller (EC), hızlı yaklaştırılır güç iterasyon 

(FAPI) algoritmaları, Biz yakınsama ve karmaşıklığı sorunlarını çözmek için bir 

alternatif aralığı özyinelemeli algoritması olarak hızlı ve istikrarlı YAST algoritmasını 

önermişiz. 

 

YAST algoritması özelliği, düşük hesaplama maliyet (lineer eyer veri korelasyon 

matrisi son zamanlarda adlandırılan shift-değişmezlik özelliğini tatmin ediyorsa) ve 

küçük alt uzay izleme uzantısı idi.  Ancak, YAST algoritmasının orijinal uygulanması 

sayısal stabilite probleminden rahatsızdı. (Alt uzay ağırlık matrisi yavaşça 

orthonormalite kaybeder). Biz bu nedenle bu tezde istikrarlığı kurulmuş, teorik olarak 

ve sayısal simülasyonlar ile test edilmiş, yeni bir YAST uygulaması kullandık. Bu 

algoritma, bir alt uzay izci için istenen tüm özellikleri birleştiriyor: oldukça yüksek 

yakınsama hızı, düşük kararlı hal hatası, lineer karmaşıklığı ve alt uzay ağırlık matrisi 

ortonormallik ile ilgili sayısal stabiliti. 

 

Bu çalışmanın katkısı dört bölümden özetlenebilir. İlk olarak biz radar da hedef 

algılama va menzil belirleme temel değerlendirmesini sunucaz. Multistatik Radar 

Sistemleri incelenir ve okuyuculara MIMO Radar ve Phased Array Radar sistemlerini 

karşılaştırmak için Phased Array Radar anlatılacak.  İkincisi, biz tamamen tutarlı 

MIMO radar konseptini ve onun SIMO veya faz dizi radarı ile farkını, Sinyal modeli 

ve tutarlı MIMO radar sistemlerin, yüksek çözünürlük ve parametre tanımlanabilir gibi 
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özellikleri sunucaz.  Üçüncü bölümde ise kısaca MIMO radar uzay-zaman uyarlamalı 

işlemi (STAP) açıklanacak. Sonra biz MMO radar larda farklı STAP algoritmalarını, 

örnek matris dönüşümü (SMI), eigencanceller (EC), hızlı yaklaştırılır güç iterasyon 

(FAPI) ve hızlı ve istikrarlı YAST, tartışıcaz. En sonda Bu tez çalışmasında yapılan 

simülasyonların sonuçları tanıtılacak ve simülasyonlar farklı MIMO radar 

yapılandırmaların performansını sunmak için yapılmaktadır. 
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1. INTRODUCTION 

In this part, we survey essential ideas from radar and quickly portray the real 

aftereffects of every section. The chapter is organized as follows: Section 1.1 gives the 

fundamental audit of the detection and ranging in radar system. Section 1.2 reviews 

estimation of the velocity in radar. Section 1.3 we will talk about beamforming. In 

Section 1.4 Multistatic Radar Systems are analyzed, and Phased Array Radars are 

covered to give the peruser the chance to contrast those frameworks and MIMO Radar. 

1.1 Detection and Ranging 

Detection and Recognition is the most crucial capacity of a radar framework. In the 

wake of radiating the electromagnetic waveform, the radar gets the reflected sign. To 

identify the objective, it is important to recognize the signal reflected from the 

objective, from the signal containing just noise. In the wake of recognizing the 

objective, one can further calculate the range. In the radar community the word range 

is utilized to demonstrate the separation between the radar framework and the 

objective. 

Consider a monostatic radar system with one antenna as shown in Fig. 1.1. The radar 

emits a waveform 𝑢(𝑡) into the space. The waveform hits the objective situated in 

range 𝑟 and returns to the receiving antenna. After demodulation, the received signal 

can be represented as [1] 

                                        𝑎𝑢 (𝑡 −
2𝑟

𝑐
) + 𝑣(𝑡).                                                            (1.1)        

Where 𝑐 is the velocity of wave propagation, 𝑟 is the range of the objective, 𝑣(𝑡) is 

the additive noise, and α indicates the amplitude response of the objective. The 

amplitude response α is defined by the radar cross section (RCS) of the target, the 

range 𝑟 of the target, the angle of the target and the beampattern of the antenna. In the 

receiver, a matched filter is generally connected to improve the signal to-noise ratio 

(SNR). Output of matched filter can be expressed as 
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Figure 1.1: Basic radar for detection and ranging. 

                  𝑦(𝜏) = ∫ 𝑎𝑢 (𝑡 −
2𝑟

𝑐
)

+∞

−∞
𝑢∗(𝑡 − 𝜏)𝑑𝑡 +  ∫ 𝑢

+∞

−∞
(𝑡)𝑢∗(𝑡 − 𝜏)𝑑𝑡 

                                = 𝑎𝑟𝑢𝑢 (𝑡 −
2𝑟

𝑐
) +  ∫ 𝑢

+∞

−∞
(𝑡)𝑢∗(𝑡 − 𝜏)𝑑𝑡.                                      (1.2)  

Where the autocorrelation function of 𝑢(𝑡) is  𝑟𝑢𝑢(𝜏) = ∫ 𝑢
+∞

−∞
(𝑡)𝑢∗(𝑡 − 𝜏)𝑑𝜏. The 

input output relation is displayed in Fig.1.2. To figure out if there is an objective, the 

matched filter yield sign is checked at a particular time moment 𝜏0. If  𝑟𝑢𝑢(𝜏) > 𝜂 for 

a predetermined threshold 𝜂, at that point the radar framework reports that it has found 

an objective. There is a trade-off between false alarm rate and detection rate when 

choosing the threshold 𝜂 [2]. Small threshold 𝜂 enhances the discovery rate 

additionally increases the false alarm rate. Then again, large threshold reduces the false 

alarm rate additionally diminishes the discovery rate. In the wake of identifying the 

objective, one can encourage decides the range of the objective. For a simple point 

target, the range of the objective can be obtained by 

                                                         𝑟 =
1

2
𝜏0𝑐 .                                                              (1.3)                         
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Figure 1.2: Matched filter in the radar receiver. 

Where 𝜏0 is the time moment at which the matched filter yield surpasses the threshold. 

For the case of numerous objectives, the matched filter output signal can be written as 

                       𝑦(𝜏) = ∑ 𝑎𝑖𝑟𝑢𝑢 (𝜏 −
2𝑟𝑖

𝑐
)

𝑁𝑡−1
𝑖=0 +  ∫ 𝑢

+∞

−∞
(𝑡)𝑢∗(𝑡 − 𝜏)𝑑𝑡.               (1.4)                                               

While 𝑁𝑡 is the number of targets,  𝛼𝑖 is the reflected signal amplitude of the 𝑖th target 

and 𝑟𝑖   is the range of the 𝑖th target. To have the capacity to recognize these targets, 

the autocorrelation function 𝑟𝑢𝑢(𝜏) has to be a narrow pulse in order to diminish the 

interferences coming from different targets. A narrow pulse in time-domain has a 

widely spread energy in its Fourier transform and vice versa. Accordingly to get a thin 

pulse 𝑟𝑢𝑢(𝜏), one can elect the waveform 𝑢(𝑡) so that the energy of the Fourier 

transform of 𝑟𝑢𝑢(𝜏)  is widely spread. We can express Fourier transform of the 

autocorrelation function 𝑟𝑢𝑢(𝜏) as 

                                              𝑆𝑢𝑢(𝑗𝜔) = |𝑈(𝑗𝜔)|2 .                                                     (1.5)                                                       

Where 𝑈(𝑗𝜔) is the Fourier transform of the waveform 𝑢(𝑡). Hence, one can elect 

𝑢(𝑡) so that its energy is broadly spread over various frequency segments. 

Another critical attractive property of the transmitted waveform is the consistent 

modulus property. The consistent modulus property permits the antenna to always 

work at the same power. This maintains a strategic distance from the utilization of 

costly amplifiers, and the nonlinear impact of the amplifiers. One great applicant that 

has widely spread energy in the frequency domain furthermore fulfills the consistent 

modulus property is the linear frequency modulated (LFM) waveform. It is also called 

the chirp waveform. We can express LFM waveform as  
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            𝑢(𝑡) ∝ {𝑒𝑗2𝜋𝑓𝑐𝑡𝑒𝑗𝜋𝑘𝑡2
 ,          0 ≤ 𝑡 < 𝑇

0 ,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                 (1.6)                                 

Where 𝑓𝑐   is the carrier frequency, T is the span of the signal and k is the parameter 

that defines the bandwidth of the signal. The instantaneous frequency of the LFM 

waveform obtains from derivative of the phase function 

                         
1

2𝜋

𝑑(2𝜋𝑓𝑐𝑡+𝜋𝑘𝑡2) 

𝑑𝑡
= 𝑓𝑐 + 𝑘𝑡.                                                     (1.7)                                     

So kT is the approximate bandwidth of the LFM signal. The autocorrelation function 

of the linear frequency modulated (LFM) waveform can be approximated as [3] 

  𝑟𝑢𝑢(𝑡) ≅ {
|

sin (𝜋𝑘𝑇𝜏(1−
|𝜏|

𝑇
))

𝜋𝑘𝑇𝜏
| ,       0 ≤ 𝑡 < 𝑇

      0 ,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                (1.8) 

Fig.1.3 shows the linear frequency modulated (LFM) waveform and the corresponding 

autocorrelation. The first zero-crossing of the autocorrelation function 𝑟𝑢𝑢(𝑡) appears 

at the point 1 𝑘𝑇⁄ . So the waveform has been “compressed” after the matched filtering 

from the primary width T to 1
𝑘𝑇⁄ . This effect is termed pulse compression. The 

proportion between the primary width and the compressed width is defined as the 

compression ratio. We can express it as 

                                                     𝑇
1

𝑘𝑇
=⁄ 𝑘𝑇2.                                                       (1.9) 

We have previously specified that kT is the bandwidth of the LFM signal. Hence the 

time-bandwidth product of the LFM signal is kT2 = (kT). T is the time-bandwidth 

product of the linear frequency modulated (LFM) signal. In this way the resolution of 

a radar system radiating LFM waveform is specified by the time-bandwidth product 

of the linear frequency modulated (LFM) waveform.  
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Figure 1.3: The LFM signal: (a) real part of an LFM waveform and (b) Fourier 

transfrom magnitude of the LFM waveform. 

Another incredible advantage of the LFM sign is that it can be effortlessly created by 

circuits [4]. Indeed, LFM sign can even be found in some natural "radar framework, 

for example, the ultrasonic frameworks of bats and dolphins. 

1.2 Estimation of the Velocity 

Radar system can be utilized to further measuring the speed of an item besides 

detection and ranging. For instance, police speed radar measures the speed of moving 

vehicles. Also the radar systems can filter out the unwanted reflected signals by using 

the velocity information. For instance, for a radar system worked to distinguish flying 

items, for example, air ships or rockets, clouds will be the undesirable reflected signs. 

In radar community, this sort of undesirable sign is called clutter. In the majority of 

the case, the clutter can be very strong. Sometimes it may go up to 35 to 45 dB over 

the target signal. Fortunately, one can use the velocity information to filter it out 

because the clutter objects are usually still or moving slowly. We will clarify how radar 

frameworks acquire the velocity information. 

Consider a monostatic radar system with one transmitter and receiver antenna and a 

moving target as appeared in Fig. 1.4. The target at an angle θ moves with the velocity 

v as shown in the figure. A narrowband waveform 𝑢(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 are emitted from radar 
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system. Here narrowband means the carrier frequency fc is much larger than the 

bandwidth of the signal. The waveform hits the moving target at range r and returns to 

the antenna. After demodulation, the received waveform can be defined as 

                                          𝛼𝑢 (𝑡 −
2𝑟

𝑐
) 𝑒𝑗2𝜋𝑓𝐷𝑡 + 𝑣(𝑡).                                     (1.10) 

 

Figure 1.4: Illustration of the Doppler Effect. 

Where  𝑣(𝑡) denotes the noise in the receiver, 𝛼 is the amplitude response of the target 

and 𝑓𝐷 is the Doppler frequency. We can express the Doppler frequency as [3] 

                                           𝑓𝐷 =
𝑐+𝑣 𝑐𝑜𝑠𝜃

𝑐−𝑣 𝑐𝑜𝑠𝜃
𝑓𝑐 ≅

2𝑣 𝑐𝑜𝑠𝜃

𝑐
𝑓𝑐 .                                         (1.11) 

Note that the carrier frequency 𝑓𝑐  is much larger than 𝑓𝐷 because the speed of light is 

usually much larger than the velocity of the object 𝑣. Along these lines, to viably 

evaluate the small Doppler frequency 𝑓𝐷, we will require a longer time window. One 

approach to accomplish this is to transmit various pulses. As shown in Fig. 1.5 these 

pulses can involve a longer time window. Along these lines they give better Doppler 

frequency resolution. Additionally, the computational complexity for processing 

pulses is much smaller than processing a long continuous waveform. In radar 

community the radar systems which transmit pulse trains are called pulse radar. Most 

advanced radar frameworks are pulse radars. We can express the transmitted signal in 

pulse radar as 
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                                                            Figure 1.5: The pulse train. 

                                                 𝑢(𝑡) = ∑ ∅(𝑡 − 𝑙𝑇).𝐿−1
𝑙=0                                        (1.12) 

Where Ø(𝑡) is the basic shape pulse, L is the number of the total transmitted pulses, T 

is the pulse repetition period and 𝑙 is the pulse index. 𝑙 and t are regularly called slow 

time index and fast time respectively, in radar community. The fast time is utilized to 

process the range data while the slow time is utilized to process the Doppler data. Fig. 

1.5 shows the Doppler envelope and a pulse train signal. Using (1.12) and (1.10), the 

corresponding received signal becomes 

                    𝛼 ∑ ∅ (𝑡 − 𝑙𝑇 −
2𝑟

𝑐
) 𝑒𝑗2𝜋𝑓𝐷𝑡 + 𝑣(𝑡).𝐿−1

𝑙=0                            (1.13) 

Since the pulse Ø(𝑡) is narrow in time domain, one can estimated the Doppler 

expression 𝑒𝑗2𝜋𝑓𝐷𝑡 as a consistent inside the pulse. Along these lines the above 

equation can be approximated as 

                               𝛼 ∑ ∅ (𝑡 − 𝑙𝑇 −
2𝑟

𝑐
) 𝑒𝑗2𝜋𝑓𝐷𝑙𝑇 + 𝑣(𝑡).𝐿−1

𝑙=0                    (1.14) 

Recall that the matched filter is utilized as a part of receiver to carry out pulse 

compression and boosted the SNR. In the pulse radar case, it is adequate to utilize the 

matched filter which matches to the pulse Ø(𝑡). We can express the matched filter 

output as 

𝑦(𝜏) = 𝛼 ∑ ( ∫ ∅ (𝑡 − 𝑙𝑇 −
2𝑟

𝑐
) ∅∗(𝑡 − 𝜏)𝑑𝑡

∞

−∞

) 𝑒𝑗2𝜋𝑓𝐷𝑙𝑇 + ∫ 𝑣(𝑡)∅∗(𝑡 − 𝜏)𝑑𝑡

∞

−∞

𝐿−1

𝑙=0

 

           = 𝛼 ∑ 𝑟∅∅(𝑡 − 𝑙𝑇 −
2𝑟

𝑐
)𝑒𝑗2𝜋𝑓𝐷𝑙𝑇 + ∫ 𝑣(𝑡)∅∗(𝑡 − 𝜏)𝑑𝑡

∞

−∞
𝐿−1
𝑙=0 .   (1.15) 
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Utilizing the above matched filter yield, one can perform detection and ranging as 

portrayed in the last segment. After acquiring the range r, we can extract the Doppler 

data, by sampling the matched filter output 𝑦(𝜏) associated with the range and acquire 

the peaks of the received signal as 

                   𝑦𝑞 = 𝑦 (𝑞𝑇 +
2𝑟

𝑐
) 

                        = 𝛼 ∑ 𝑟∅∅((𝑞 − 𝑙)𝑇)𝑒𝑗2𝜋𝑓𝐷𝑙𝑇 + ∫ 𝑣(𝑡)∅∗(𝑡 − 𝑞𝑇 +
2𝑟

𝑐
)𝑑𝑡

∞

−∞
𝐿−1
𝑙=0    

                        ≅ 𝛼𝑟∅∅(0)𝑒𝑗2𝜋𝑓𝐷𝑞𝑇 + ∫ 𝑣(𝑡)∅∗ (𝑡 − 𝑞𝑇 +
2𝑟

𝑐
) 𝑑𝑡

∞

−∞
.                     (1.16) 

For 𝑞 = 0,1, … , 𝐿 − 1 Computing the discrete Fourier transform (DFT) 𝑌(𝑓) of 𝑦𝑞, 

we access 

|𝑌(𝑓)| = |∑ 𝑦𝑞𝑒−𝑗2𝜋𝑓𝑞

𝐿−1

𝑞=1

| 

= |𝛼𝑟∅∅(𝑡) ∑ 𝑒−𝑗2𝜋𝑓𝑞

𝐿−1

𝑞=1

+ 𝑛𝑜𝑖𝑠𝑒 𝑡𝑒𝑟𝑚| 

                                    = |𝛼𝑟∅∅(𝑡)
sin (𝜋𝐿(𝑓−𝐹𝐷))

sin (𝜋(𝑓−𝑓𝐷))
+ 𝑛𝑜𝑖𝑠𝑒 𝑡𝑒𝑟𝑚|.                              (1.17) 

We can compute the Doppler frequency 𝑓𝐷 from the peak of the magnitude. One can 

also utilize the Doppler processing to filter out the undesirable reflected signals. For 

instance, assume there are two targets at the same range 𝑟, but with various Doppler 

frequencies. Then we can express the received signal associated with the range 𝑟, as 

                𝑦𝑞 ≈ 𝛼1𝑟∅∅(0)𝑒𝑗2𝜋𝑓𝐷1𝑞 + 𝛼2𝑟∅∅(0)𝑒𝑗2𝜋𝑓𝐷2𝑞 + 𝑛𝑜𝑖𝑠𝑒 𝑡𝑒𝑟𝑚.                (1.18) 

Where 𝑓𝐷1 and 𝑓𝐷2 are Doppler frequencies and 𝛼1 and 𝛼2  are the amplitude responses 

of the targets. To separate the two frequency components of signal 𝑦𝑞 , one can utilize 

a bandpass filter to extract interest Doppler frequency as appeared in Fig. 1.6.  

Figure 1.6: Doppler processing. 
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For instance, the signal reflected by clouds is one major source of interference when 

identifying the flying targets. However, aircraft or missiles usually move faster 

compared to the clouds. One can utilize a filter to eliminate the greater part of the 

undesirable reflected signs. We will remark more about Doppler processing in section 

3. 

1.3 Beamforming 

We have talked about identification, ranging and measuring peed utilizing radar. Now 

we will discuss another vital parameter, angle, in this subsection. Along with the range 

data, the angle information gives us the entire information about the target location. 

The target location can be indicated by three parameters (𝑟;  𝜃 ;  Ø), where Ø is the 

elevation angle and θ is the azimuth angle. These three parameters are illustrated in 

Fig. 1.7. In this thesis, we usually deal with only one angle because the two angles θ 

and Ø can be processed independently. The one-dimensional outcome presented in this 

thesis can be easily generalized to two dimensions. 

 

Figure 1.7: Range r, elevation angle Ø and azimuth angle θ. 

For signals received from different angles and signals transmitted to different angles, 

Antennas usually have different gain. The beampattern 𝐵(𝜃) is defined the antenna 

gain as a function of angles. Think about an antenna with beampattern 𝐵(𝜃) which has 

a great gain around angle 0° but has miniature gains at other angles. To detect a target 

at 0°we can use this antenna. However, to recognize targets at different sides, we have 

to mechanically spin the antenna to the side of interest. spinning the antenna 

mechanically is highly priced and usually generally.  
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In order to avoid mechanically spinning the antenna, we can utilize a technology called 

beamforming which allowed us to rotate the beampattern electronically. This requires 

numerous antennas and generally these antennas have more extensive beampatterns. 

For convenience, we assume the beampatterns of all antennas are omnidirectional. In 

simple terms, for every antenna, 𝐵(𝜃)  =  1 for all 𝜃. These antennas are implanted 

uniformly on a straight-line. This is named a uniform linear antenna array (ULA). Such 

an antenna array are displayed in Fig. 1.8. Assume a narrowband plane wave with 

carrier frequency fc hitting from angle θ. We can express the received signal of the nth 

antenna as 

                                      𝑟𝑛(𝑡) = 𝛼𝑠(𝑡)𝑒𝑗
2𝜋

𝜆
𝑑𝑛𝑠𝑖𝑛𝜃 + 𝑣(𝑡).                                      (1.19) 

For 𝑛 =  0;  1;  … ; 𝑁 −  1; where N is the number of antennas, 𝑠(𝑡) is the signal 

envelope, α is the amplitude response, 𝜆 =
𝑐

𝑓𝑐
 is the wavelength of the signal, 𝑣(𝑡) is 

the additive noise and x is the range of the target. The phase difference item 

𝑒𝑗
2𝜋

𝜆
𝑑𝑛𝑠𝑖𝑛𝜃

 originates from various traveling distances to various antennas as 

illustrated in Fig. 1.8. 

         

Figure 1.8: A plane wave hitting a uniform linear antenna array (ULA). 
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To extract signal from θ (to get obviously signal coming from θ), one can linearly 

combine the received signals and obtain 

𝑦(𝑡) = ∑ 𝜔𝑛𝑟𝑛(𝑡)

𝑁−1

𝑛=0

 

                              = 𝛼𝑠(𝑡) ∑ 𝜔𝑛𝑒𝑗
2𝜋

𝜆
𝑑𝑛𝑠𝑖𝑛𝜃𝑁−1

𝑛=0 + ∑ 𝜔𝑛𝑣(𝑡)𝑁−1
𝑛=0 .                (1.20) 

Here 𝜔𝑛 is the weighting coefficient matching to the nth antenna. Considering the 

above formula, one can notice that 𝑦(𝑡) has a various gain for signal coming from 

various angle θ. consequently by linearly uniting the signals, we can synthesize the 

beampattern 𝐵(𝜃) as displayed in Eq. (1.20). Note that this beampattern 𝐵(𝜃) can be 

managed by the weighting coefficients 𝜔𝑛. 

To modify the beampattern, we do not require to mechanically spin the antenna. We 

can just switch the weighting coefficients 𝜔𝑛 and this should be possible through 

utilizing electronic gadgets. This technique is named digital beamforming and the 

weighting coefficients 𝜔𝑛 are called beamformer coefficients. We can express the 

beampattern as 

𝐵(𝜃) = ∑ 𝜔𝑛𝑒𝑗
2𝜋
𝜆

𝑑𝑛𝑠𝑖𝑛𝜃

𝑁−1

𝑛=0

 

                             = ∑ 𝜔𝑛𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

   |
𝜔=

2𝜋
𝜆

𝑑𝑠𝑖𝑛𝜃
 

                                                        = 𝑊(𝑒𝑗𝜔) |
𝜔=

2𝜋

𝜆
𝑑𝑠𝑖𝑛𝜃

 .                                   (1.21) 

Where 𝑊(𝑒𝑗𝜔) is the Fourier transform of 𝜔𝑛. Hence, the beamformer design issue 

can be behaved as an FIR filter design issue. Ordinary FIR filter design methods like 

Parks-McClellan method can be applied to beamformer design. Note that in filter 

design issue, the frequency resolution of a filter relies on the filter order. Comparably, 

the spatial resolution of the beamformer relies on the count of antennas in the uniform 

linear antenna array ULA array. Note that we have 𝜔 =
2𝜋

𝜆
𝑑𝑠𝑖𝑛𝜃 in the upper formula. 

If  𝑑 >
𝜆

2
 , there will be numerous amounts of θ projection to the same 𝜔. This is equal 

to the aliasing result in sampling. To keep away from this, one chooses 𝑑 ≤
𝜆

2
. In 
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practice, the distance among antennas is nearby half of the wavelength. In this 

situation, 

                                    −𝜋 ≤ 𝜔 =
2𝜋

𝜆
𝑑𝑠𝑖𝑛𝜃 = 𝜋𝑠𝑖𝑛𝜃 ≤ 𝜋.                                  (1.22) 

Thus there will not be aliasing in the beampattern. Beamforming has long been utilized 

in numerous fields, for instance radar, sonar, medical imaging, seismology, wireless 

communications, and speech processing. 

1.4 Radar classification 

 

Various forms of antennas, receiver, transmitter structures and processing module are 

exploited in radars according to their operations and on which stage the radar is 

installed. The partition of antennas is also specified by radar’s function. Routine radar 

structures can be categorized into three classes based on the number of antennas the 

system has and the interval between them. These are named monostatic, bistatic and 

multistatic radars [4]. Greater part of radar systems are monostatic. In monostatic 

radars, receiver and transmitter antennas are co-located and usually there is only one 

antenna operating both receiving and transmitting functions in a period multiplexed 

design. In bistatic radars, there are one receiver and one transmitter antenna, but they 

are considerably separated [1]. Multistatic systems have more than two receiving or 

transmitting antennas with all antennas separated by large distances when contrasted 

to the antenna sizes [5]. 

Newly, a field of radar investigate called Multiple Input Multiple Output (MIMO) 

radar has been expanded, which can be thought as a speculation of the multistatic radar 

systems. MIMO radar has multiple receive and transmit multiple antennas as its name 

represents [6]. The receive and transmit antennas can be in the form of an array and 

the receive and transmit arrays may be widely separated or co-located as phased array 

radars. Although some forms of MIMO radars seems phased array radars, but there is 

a basic conflict between phased array system and MIMO system. The difference is that 

phased array systems send scaled versions of a singular waveform which are entirely 

correlated, whereas MIMO system all the time sends various probing signals, through 

its transmit antennas, that uncorrelated with each other. The multiple receive and 

transmit antennas of a MIMO radar may also be broadly separated as radar networks. 
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The basic conflict between a MIMO radar and multistatic radar network is that 

independent radars that shape the network operate a serious level of local processing 

and there exists a central processing unit that fuses the results of central processing in 

a sensible route. For instance, each radar perform detection decisions locally then the 

central processing unit cumulates the local detection decisions. While MIMO radar 

make a single decision about the existence of the target by utilize all of the obtainable 

data and jointly processes received numerous signals [37]. 

Abbreviation MISO signifies Multiple Input Single Output. It explains the radar 

systems with multiple transmitters and a single receiver antenna.  

Abbreviation SIMO signifies Single Input Multiple Output. It explains the radar 

systems with a single transmitter and multiple receiver antennas.  

Abbreviation MIMO signifies Multiple Input Multiple Output. It explains the radar 

systems with multiple transmitters and multiple receiver antennas. 

An array is called Uniform Linear Array (ULA) if the separation between the 

elements is uniform.  

An array is called filled array if the spacing between antennas is half of the 

wavelength.  

An array is called Sparse array if the spacing between array elements is greater than 

half of the wavelength. 

In the next two subchapter we briefly explain both multistatic and phase radars and 

discuss about MIMO radar with details in chapter 2. 

1.4.1 Multistatic Radar Systems  

Radar systems that have more than two receiving or transmitting elements with all 

elements distributed by large spacing when compared to the elements sizes are 

generally named multistatic radars. Although there is no a sole determination of 

multistatic radar systems. 

Radar communities define the radar systems that have several spatially separated 

receiving antennas and only one transmitter as in Fig. 1.9 as multistatic radar systems. 



14 
 

 

Figure 1.9: Configuration of Multistatic Radar System [37]. 

On the other hand multiradar (Netted Radar) system is defined radar that have arbitrary 

systems of broadly distributed radars where all the acquired information is fused and 

jointly processed as [5]. Each of these broadly distributed radars may run in monostatic 

mode as in Fig. 1.10 or in a full multistatic mode as in Fig. 1.11. Multisided radar 

systems are defined radar systems including both the netted radar and multistatic 

systems. A large amount of information about multisided radar systems and multistatic 

radar can be obtained in [5] and [7]. 

 

Figure 1.10: Configuration of Multistatic Radar (Multiple Monostatic) [37]. 
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Figure 1.11: Configuration of Multistatic Radar (Fully Multistatic) [37]. 

In systems like multistatic radar, all transmit receive couples may operate as 

independent radars. Each couple may process the received data individually and 

discovery determinations and estimated parameters like velocity and range are fused 

in a processing center (PCU). This is so called distributed (decentralized) detection. 

As inverse to this design, all the received data, may be forwarded to a processing center 

without any prior processing. For this purpose Data transmission lines like fiber cables 

or copper cables are exist between units and PCU [5]. 

 

For joint processing, forwarding of received data is not enough. A common frequency 

and time reference ascertaining the synchronization between units and PCU should 

exist. Since the distance between units and PCU may be enormous, establish and 

maintain this synchronization might be troublesome. This is the major disadvantage of 

multistatic radar systems. 

There are many favors of multistatic systems [5]. First of all, attaching extra receiver 

and transmitter elements to a monostatic radar boosts the total power and sensitivity 

of the system and reduces the signal power losses. If sufficiently separated transmitting 

units illuminate the target, fluctuations of reflected signals are statistically independent 

at various receiving units. When the received data are jointly processed, these 

fluctuations are flattened and correspondingly performance of the detection enhances 

at high possibilities. At the same time detection from different directions increases 

detection probabilities of secret target. While the angle among, directions from a secret 
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target to a receiving unit nears 180 degrees, the scattered sign energy dramatically 

increase at the input of the receiver antenna and this increase cannot be decreased by 

stealth methods like radar absorbing material coating and body shaping. 

 

High accuracy of location and position estimation of an objective is further benefit of 

multistatic radar systems. Range estimations of monostatic radars are generally more 

accurate than angle estimations because angle measurements are related to antenna 

beamwidth. In monostatic systems accuracy of angle estimations also decreases with 

increasing range. On the other hand, multistatic radars can utilize range measurements 

of numerous receivers and special methods such as triangulation and extract angle of 

achievement data from these range measurements increasing the accuracy of the 

position and location estimation [37]. 

 

Another advantage of multistatic radar systems is increased resolution proficiency. 

Resolution proficiency defines as the detection probability and measurement accuracy 

of the system in the presence of extra objects and other interference causes. Presume 

there are two objects at the equal range in the resolution cell of a monostatic radar 

receiver. These two targets might be at various ranges to a various radar receiver in the 

multistatic radar system so that the targets may be determined in the range. 

Another advantage of multistatic radar systems appears when transmitters and 

receivers of multistatic systems are widely distributed so intersection of their main 

beams may be smaller than a monostatic system resulting diminution in the power 

echoing from the clutter.  

The last benefit of multistatic radar systems to be mentioned in this chapter is their 

resistance to jamming and augmented survivability. When multistatic radar systems 

run in bistatic type, it is hard to locate the exact positions of receiver units and this 

makes the receiver units less vulnerable to jamming and direct physical attack by 

missiles [37]. 
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1.4.2 Phased Array Radar 

Phased Array Radar utilizes antenna arrays for transmitting and receiving waveforms. 

These arrays may be planar or linear. The interval between the elements is usually 

uniform in both the planar and linear arrays. These arrays may be co-located and even 

transmit and receive operations can be executed by the same array. The two arrays 

may also be widely distributed allowing the radar system to perform in bistatic model. 

In Fig. 1.12 we give an example configuration of a phased array radar system.  

 

Figure 1.12: Phased Array Radar. 

Since the distance between of phased array radar elements is small, the bistatic RCS 

seen by each transmit-receive couple in a phased array radar system is presumed to be 

equal.  

 

In phased array radar systems, each of the elements of the transmit array send a scaled 

copy of the same waveform. Although the elements gradually being omnidirectional, 

a directive antenna with a high gain can be achieved by accurately adjusting these scale 

components. By altering these scale components in time, we can steer the beam in 

space toward any arbitrary direction like as a conventional radar with a directional 

beam. Even the technology of scaling waveforms can be operated on the signals 

received by the received elements. This produces the result of using a directional 

antenna at the receiver. For this reason phased array radars are also named 

beamformers. Since this beamforming operation is performed electronically, the look 

direction of the beam may alter so rapidly and the location of interest can be probe 

very fast without any mechanical progress. Beamforming is the major advantage of 

phased array radar systems. 
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Using adequate large number of elements in an array allowing to steer numerous 

independent beams simultaneously. We can utilized this beams to track numerous 

targets or probing different areas of the space at once. Also performing time 

multiplexed fashion to probe and track function may in the same radar system allowing 

the use of phased array radar as a multi-function radar [4]. Versus these benefits, its 

complexity, difficulties in the manufacture stages of phased array elements and 

unaffordable are its major disadvantages. 

To indicate signal model of phase radar assume a phased array system that has 𝑀𝑟 

receive elements and 𝑀𝑡 transmit. Consider that receive and transmit arrays are 

uniform linear arrays with spacing between elements is 𝑑𝑟 and 𝑑𝑡 respectively. 

We can denote the discrete time baseband signal transmitted by the transmit antenna 

elements as √𝐸𝑡 𝑀𝑡⁄ 𝑥(𝑡)  where 𝐸𝑡 is the total average transmitted energy.  

If the array antennas operate transmit beamforming in the direction of 𝜃̃ the transmitted 

signal model can be written in the vector form as 

                                            𝒙(𝑡) = 𝑎(𝜃̃) √𝐸𝑡 𝑀𝑡⁄ 𝑥(𝑡).                                    (1.23)   

Where 𝒂(𝜃̃)  is the transmitter steering vector. If the transmit array is scaled 𝒂(𝜃̃)  is 

in the form of (1.24) 

                                    𝒂(𝜃̃) = [

1

𝑒𝑗2𝜋𝑓0𝑑𝑡sin (𝜃̃) 𝑐⁄

⋮

𝑒𝑗2𝜋𝑓0(𝑀𝑡−1)𝑑𝑡sin (𝜃̃) 𝑐⁄

].                                           (1.24)   

Where 𝑐 is the speed of light and 𝑓0 is the carrier frequency of the radar. Consider there 

is a motionless target at the far field of the radar in the direction of θ. Under the 

consideration of the propagation is nondispersive and transmitting narrowband signal 

the signal model 𝑥𝑡(𝑡) at the target location can be written as: 

                     𝑥𝑡(𝑡) = 𝒂𝐻(𝜃)𝒙(𝑡 − 𝜏𝑡) = 𝒂𝐻(𝜃)𝒂(𝜃̃)√𝐸𝑡 𝑀𝑡⁄ 𝑥(𝑡 − 𝜏𝑡).            (1.25) 

Where 𝜏𝑡 is the time interval among the transmit antenna array and the target, 𝐻 is the 

Hermitian transpose or conjugate transpose of a matrix and 𝒂(𝜃) is 
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                                    𝒂(𝜃) = [

1
𝑒𝑗2𝜋𝑓0𝑑𝑡sin (𝜃) 𝑐⁄

⋮
𝑒𝑗2𝜋𝑓0(𝑀𝑡−1)𝑑𝑡sin (𝜃) 𝑐⁄

].                                         (1.26) 

Since the array elements of the phased array system are nearly spaced, all transmit 

receive couples get the same bistatic RCS. Consider that α expresses this 

backscattering effect. If the objective is at the direction of 𝜃′ with respect to the receive 

antennas then the signal at the receiver array 𝒚𝑟(𝑡) can be formed as 

                     𝒚𝑟(𝑡) = 𝛼𝒃(𝜃′)𝒂𝐻(𝜃)𝒂(𝜃̃)√𝐸𝑡 𝑀𝑡⁄ 𝑥(𝑡 − 𝜏) + 𝒘(𝑡).                  (1.27) 

Where 𝜏 represents the total time interval among transmitter and receiver (𝜏 = 𝜏𝑡 +

𝜏𝑟) and 𝒃(𝜃′) is 

                                      𝒃(𝜃′) = [

1

𝑒−𝑗2𝜋𝑓0𝑑𝑟sin (𝜃′) 𝑐⁄

⋮

𝑒𝑗2𝜋𝑓0(𝑀𝑟−1)𝑑𝑟sin (𝜃′) 𝑐⁄

].                                    (1.28) 

𝒘(𝑡) is a zero mean vector of complex random procedures which is in the form of 

                                                   𝒘(𝑡) = [

𝑤1(𝑡)
𝑤2(𝑡)

⋮
𝑤𝑀𝑟

(𝑡)

].                                                (1.29) 

1.4.3 Phased-MIMO Radar Systems [8] 

Phased MIMO radar systems is a novel conception which efforts to bring excellent 

perspective of both MIMO radar and phased array jointly in a single radar system. This 

radar system engages transmit and receive antenna arrays which has nearly spaced 

antenna elements as Coherent MIMO radar. Transmit array is divided into a number 

of subarrays. Every subarray coherently transmits signals and operates beamforming 

towards a definite point in space. By this way like a phased array radar system we can 

achieve a coherent processing gain. Signals transmitted by each transmit subarray are 

orthogonal to each other to obtain benefits of waveform diversity like a MIMO radar 

system. 

We can summarize the advantages of Phased MIMO radar system as:  

 It benefits from all advantages of the MIMO radar systems. Improved 

parameter identifiability and angular resolution, Increase the number of target 

detection.  
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 It is possible to perform the conventional beamforming techniques at both 

transmitter and receiver sides 

 It provides robustness against strong interference, jammer or clutter 

 It provides a tradeoff among angular resolution and robustness toward beam-

shape loss  

 

To present a better understanding, the transmitter antenna array construction of 

phased-MIMO radar is shown in Fig. 1.13. 

 

Figure 1.13: Transmitter antenna Array construction Of Phased-MIMO Radar. 

In the figure1.13 a transmitter antenna array has 𝑀𝑡 elements and divided to K 

subarrays as shown. Every transmitter antenna belongs to at least one subarray. Every 

subarray may comprise from one up to 𝑀𝑡  elements and generally no two subarrays 

overlap thoroughly. If a 𝑤𝑀,𝐾 (weight coefficient) is equal to zero, it implies that the 

𝑚th transmit element does not belong to 𝑘th subarray. The nonzero weight coefficients 

of a subarray calibrates the same signals to shape and navigate a beam in space and the 

waveforms 𝑥𝑚(𝑡) and 𝑥𝑙(𝑡) are perpendicular if ≠ 𝑙 . 
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2. MIMO RADAR 

In the traditional phased array radar, the system can only transmit scaled versions of a 

single waveform. Because only a single waveform is used, the phased array radar is 

also called SIMO (single input multiple-output) radar in contrast to the MIMO radar. 

We will use “SIMO radar” or “phased array radar” alternatively throughout the thesis. 

MIMO Radar system utilizes multiple transmit and receive antennas for sending and 

receiving waveforms. These antennas may be in the form of an array being and closely 

spaced or be separately spaced constructing like a netted radar system structure.  

Each antenna element in a MIMO radar system propagates various waveforms. These 

may be orthogonal, simply linearly independent or mutually uncorrelated 

(Orthogonality always implies Linear Independence but not vice-versa). This is named 

waveform diversity and it is a characteristic of MIMO radar system. Correlation of 

waveforms may also be applied to some steps for some operations. Hence performing 

mutually orthogonal signals with favorable autocorrelation and crosscorrelation 

effects is one of the growing research fields of MIMO radar [9], [10]. 

 

Figure 2.1: 4 x 4 MIMO and channel between the transmitter and the receiver 

example. 

To benefit from this waveform diversity, in each MIMO radar receiver units, there are 

as many matched filters as the number of transmitted waveforms. The target 

backscatters are passed through these matched filters compared to every transmitted 
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waveform. If the number of transmitter array elements is 𝑀𝑡 and the number of receiver 

array elements is 𝑀𝑟 , there are totally 𝑀𝑡𝑀𝑟 outcomes of these matched filters. MIMO 

radar system processes these outputs  all together to detection a target. An illustration 

of a MIMO radar receiver unit is shown in Figure 2.2. 

                

Figure 2.2: Receiver configuration of MIMO Radar system. 

In [37], the two models of MIMO radar systems, namely coherent MIMO radar and 

non-coherent (statistical) MIMO radar are explored. The similarities and differences 

of these two type of radar configuration from traditional radar systems are investigated. 

The performance developments obtained by each type of MIMO radar system are 

described. Here we only briefly explore coherent MIMO radar. 

 

2.1 Coherent MIMO Radar 

Coherent MIMO radar system utilizes antenna arrays for transmitting and receiving 

waveforms. These arrays may be separated or co-located and even transmit and receive 

operation can be performed by the same array. The interelement spacing can be 

uniform or non-uniform. Depending on the system application, the arrays may be 
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sparse or filled. But every time the separation is short compared to the range extent of 

the target. An illustration allocation of linear arrays of coherent MIMO radar antennas 

is displayed in Figure 2.3. 

                        

Figure 2.3: Configuration of Coherent MIMO Radar system. 

Whatever the interelement spacing is, the most important issue in coherent MIMO 

radar. If the array elements are located enough closely to each other so that every 

element observes the same feature of the target i.e. the same RCS. As a result, we 

generally utilize point target assumption in coherent MIMO radar applications. 

Coherent MIMO radar system resembles the phased array radar because of this 

distributed arrangement of antenna elements. But differently from phased array radar, 

each antenna element of a Coherent MIMO radar transmits various waveforms. 

 

2.1.1 Signal Model 

Assume a MIMO radar system with 𝑀𝑡 transmitter and 𝑀𝑟 receiver antennas. Let 

𝑥𝑚(𝑛) signify the discrete-time baseband signal which emitted by the 𝑚𝑡ℎ transmit 

element. Also, let 𝜃 signify the location parameter(s) of a typical target, for example, 

its range and its azimuth angle. Then, under the consideration that the propagation is 

nondispersive and the transmitted exploring signals are narrowband, we can illustrate 

the baseband signal at the target location by the expression 

           ∑ 𝑒−𝑗2𝜋𝑓0𝜏𝑚(𝜃)𝑥𝑚(𝑛) ≅ 𝒂𝑯(𝜃)𝒙(𝑛),   𝑛 = 1, … , 𝑁
𝑀𝑡
𝑚=1 .                   (2.1) 
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 Where 𝜏𝑚(𝜃) is the time required by the signal sent via the m𝑡ℎ transmit antenna to 

reach the target, 𝑓0 is the carrier frequency of the radar, (·)H denotes the conjugate 

transpose, N signify the number of samples of each transmitted signal pulse, 

                                   𝒙(𝑛) = [𝑥1(𝑛) 𝑥2(𝑛) …   𝑥𝑀𝑡
(𝑛)]

𝑇
.                                              (2.2) 

And 

                        𝜶(𝜃) = [𝑒𝑗2𝜋𝑓0𝜏1(𝜃)   𝑒𝑗2𝜋𝑓0𝜏2(𝜃)  …  𝑒𝑗2𝜋𝑓0𝜏𝑀𝑡
(𝜃)]

𝑇
.                         (2.3) 

While (·)𝑇 signify the transpose function. By considering that the transmit array of the 

radar is scaled, 𝒂(θ) is a known function of θ.  

When 𝑦𝑚(𝑛) signify the signal received by the 𝑚𝑟𝑡ℎ receive element, let 

                   𝒚(𝑛) = [𝑦1(𝑛) 𝑦2(𝑛) …   𝑦𝑀𝑟
(𝑛)]

𝑇
,      𝑛 = 1, … , 𝑁.                            (2.4) 

And 

                       𝒃(𝜃) = [𝑒𝑗2𝜋𝑓0𝜏̃1(𝜃)   𝑒𝑗2𝜋𝑓0𝜏̃2(𝜃)  …  𝑒𝑗2𝜋𝑓0𝜏̃𝑀𝑟
(𝜃)]

𝑇
.                          (2.5) 

When  𝜏̃𝑚(𝜃) is the time required by the signal backscattered from the target located 

at θ to reach at the 𝑚𝑡ℎ receive element. So, under the simplifying consideration of 

point targets, we can describe the received data vector by the equation ([5] and [10]) 

           𝒚(𝑛) = ∑ 𝛽𝑘𝒃𝑐(𝜃𝑘)𝒂𝐻(𝜃𝑘)𝒙(𝑛) + 𝜖(𝑛),      𝑛 = 1, … , 𝑁.    𝐾
𝑘=1                     (2.6) 

While K is the number of targets that scattered the waveforms back to the radar 

receiver element, {βk} denote complex amplitudes relative to the radar cross sections 

(RCSs) of those targets, {θk} denote their location parameters, (·)𝑐 is the complex 

conjugate and 𝜖(𝑛) signify the interference plus noise pert. The anonymous 

parameters, to be measured are {𝒚(𝑛)}𝑛=1
𝑁  , are {𝛽𝑘}𝑘=1

𝐾  1 and {𝜃𝑘}𝑘=1
𝐾 . 

2.1.2 Improvements That Coherent MIMO Radar Systems Offer 

Waveform diversity makes MIMO radar achieve better performance in several 

application areas compared to standard phased array radar and is the key of 

performance improvement for many MIMO radar applications. In the following 

chapters these improvements offered by Coherent MIMO radar systems will be 

described. 
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2.1.2.1 Higher Resolution 

At first we describe The “Phantom” Antenna Element to the understanding of within 

aperture MIMO radar. Consider the simple bistatic antenna pair shown in Fig. 2.4. The 

geometry shows how, for far-field targets, signals from the bistatic pair would be 

identical to signals received from a monostatic 𝑇𝑅𝑥 element positioned mid point 

between the transmit and receive elements of the bistatic pair. It is clear that a reflected 

signal arriving with a specific delay must have arisen from some point on the surface 

of an ellipsoid with foci at the 𝑇𝑥 and 𝑅𝑥 element positions. It is also clear that for 

very distant targets the ellipsoid converges to a sphere centered on the mid-point 

between the elements, forming the phantom 𝑇𝑅𝑥 element. 

                                   

Figure 2.4: Round trip delays are the same for the Tx/Rx pair and the phantom 

element. 

We can extend this idea to show how M transmitters and N receivers can be used to 

synthesis apertures of various geometries comprising M×N phantom elements, 

allowing the formation of M×N directional beams [11]. The physical elements may 

be configured to synthesis a one-dimensional (Fig. 2.5), two-dimensional (Fig. 2.6), or 

even three-dimensional (Fig. 2.7) phantom element array, with the phantom elements 

being synthesised midway between each transmitter-receiver pair. With there being 

M×N pairwise combinations, we show M×N phantom elements can be synthesised. 
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Figure 2.5: One dimensional synthesised linear array of phantom elements. 

                            

Figure 2.6: Two dimensional synthesised planar array of phantom elements. 

                         

Figure 2.7: Three dimensional synthesised cylindrical array of phantom elements. 

At the MIMO radar receiver units the corresponding receiver steering vector for 

orthogonal waveform is the Kronecker product of transmit and receive steering vectors 

and is named MIMO steering vector [12]. It can be shown as 

                                         𝑉𝑀𝐼𝑀𝑂 = 𝑏∗(𝜃′) ⊗ 𝑎∗(𝜃).                                               (2.7) 

The MIMO steering vector is equivalent to a receiver array which performs the same 

efficiency as the MIMO radar and it involves all attainable transmit receive phase 
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difference compositions. To present a better perception two examples are given in 

subsequent paragraphs. 

For a MIMO radar which transmit receive array element is uniform linear spaced but 

each element simultaneously transmit and receive waveform, in this case the MIMO 

steering vector has 𝑀𝑡 + 𝑀𝑟 − 1 distinct components. This is the minimum achievable 

number of components which defines the worst case scenario [6], [13]. An illustration 

of this worst case scenario is shown In Figure 2.8.On the left side of this figure MIMO 

radar structure with four transmit and four receive elements is given where transmit 

antenna is also the receive antenna. On the right side the corresponding virtual receiver 

array equivalent to MIMO radar steering vector is shown. We can see in the virtual 

array seven (7) distinct elements formed and the other ten elements are duplication of 

appointed array elements. 

 

Figure 2.8: Configuration of Virtual Receiver Array – The Worst Case [12]. 

Figure 2.9 depicts the best case scenario which the MIMO system steering vector has 

distinct components [6], [13]. This corresponds to the condition where arrays share 

few or no element to transmit and receive waveforms. In the figure a sparse uniform 

linear of two elements performs as a transmitter array and a filled uniform linear of 

four elements performs as a receiver array. The outcome virtual array has eight distinct 

elements and no duplication of array elements formed in the outcome. 

 

Figure 2.9: Configuration of Virtual Receiver Array – The Best Case [12]. 
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As can be viewed from the images, even in the worst case scenario the numbers of 

distinct elements in virtual arrays are greater than the number of receiver elements in 

the real configuration. Consequently, the array aperture is virtually stretched. This 

stretch results in better angular resolution and higher detection execution. Better 

angular resolution assists to enhance the characterization of a target and to enhance the 

refusal ability of the jamming and other interfering causes [12]. 

Since phased array radar systems transmit coherent waveform, there is no any chance 

of creation an extended virtual array. 

2.1.2.2 Parameter Identifiability 

Another fields that MIMO radar system improves performance is the parameter 

identifiability [14], [13], [15]. In radar community parameter identifiability is defined 

as the maximum number of objectives that can be uniquely detected by the radar. as 

reported by [13], the maximum number of objectives that can be uniquely detected by 

the MIMO radar system - 𝐾𝑚𝑎𝑥 - stands in the interval 

                                     𝐾𝑚𝑎𝑥 ∈ [
2(𝑀𝑡+𝑀𝑟)−5

3
,   

2𝑀𝑡𝑀𝑟

3
).                                              (2.8) 

Where 𝑀𝑡 and 𝑀𝑟 signifies the number of transmit and receive elements respectively. 

The quantity 𝐾𝑚𝑎𝑥 in (2.8) is directly have connection with the distinct number of 

components in MIMO steering vector and varies according to 

 the arrays being linear or nonlinear,   

 the interelement spacing being uniform or non-uniform  

 the number of elements being shared between the transmit and receive arrays.  

The minimum number in (2.8) related to the worst case scenario where the same filled 

uniform linear element is utilized simultaneously for both transmitting and receiving. 

However, the maximum number in the same equation can be obtained when the receive 

array and the transmit array share no element to operate [15]. 

In addition, for a phased array radar system, for which all the degree of freedom even 

containing the total transmitted power are the same as for the MIMO radar system 

except that, 𝑀𝑡 = 1 , 𝐾𝑚𝑎𝑥 can be written as 

                                𝐾𝑚𝑎𝑥 ∈ [
2𝑀𝑟−3

3
].                                            (2.9) 
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Where [. ] signifies the minimum integer bigger than or equal to a given number [13].  

When we compare (2.8) and (2.9), we notice that the highest number of objects that 

can be uniquely detected by MIMO radar system is up to 𝑀𝑡  times bigger than its 

phased array match and even at the worst case scenario this number is twice bigger 

than its phased array radar match. 
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3. STAP IN MIMO RADAR 

Space Time Adaptive Processing (STAP) is a modern signal processing method that 

can enhance target detection capability in the presence of an intense clutter. In this 

chapter only short summary of this subject is presented, more comprehensive analysis 

of this technique can be obtained in a book written by Richard Klemm [16].  

3.1 Overview of STAP and Airborne Clutter 

In airborne radar Moving Target indication operation, we face the problem that 

reflected signals approaching from motionless ground objects (ground clutter) contain 

non-zero Doppler bandwidth [17] (Fig.3.1). This is an outcome of relative speed 

between radar platform (aircraft) and ground area probed by the radar system. As a 

consequence, target signal can drop within the clutter spectrum and may be invisible 

under the clutter (Fig. 1 depicts simpler model, where target signal is out of the clutter 

bandwidth). In this case, clutter elimination will also eliminate target data. STAP 

technique is to Filter-out ground clutter, while preserving signal reaching from real 

target. 

 

                                            Figure.3.1: Airborne clutter [17]. 
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In order to benefit its advance, STAP performs antenna array, which allows direction 

of arrival filtering. We can view the geometry of airborne antenna arrays In Fig. 3.2. 

Axis Vp indicate flight direction. There are practical two original configurations: 

forward-looking and side-looking. 

For side-looking model, receiving antennas are implanted along the flight direction. 

For forward looking type, receiving antennas are implanted along an axis 

perpendicular to the flight direction, but parallel to the ground surface. Side-looking 

model is simpler to explain, hence we consider this configuration only. Also for 

simplification, we consider that receiving antennas are ULA, with interelement 

spacing is equal to 𝜆
2⁄  (𝜆¸ denotes wavelength). Antenna array is performed cone-

angle (𝛼 in Fig. 3.2) filtering. Receiving signal from point P (Fig. 3.2) on the ground 

is sampled in space by array antennas. Waveforms approaching from point P are 

received to receiving elements at various moments in time. As a consequence there is 

a phase difference between array channels. This phase difference is depend on cone 

angle 𝛼. In forward looking configurations (with slant angle), analysis is more 

complicated, but qualitative outcomes are similar. 

                        

                                Figure.3.2: Geometry of airborne antenna arrays [16]. 
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It can be viewed that Doppler shift of reflected signals from motionless objectives 

depends on cone angle [16]. Every point in space, viewed by the radar system under 

angle 𝛼 is receiving to the radar at the equal velocity. More precisely, this velocity is 

related to the radar platform speed and to the cosines of the angle 𝛼. Therefore, all such 

points with same speed in angle 𝛼 have the same Doppler frequency. Therefore the 

cone is surface of constant Doppler frequency. But experimentally, airborne radar 

reflections is not from the whole space but only from the ground surface (excluding 

object target). Therefore, to access the set of points with the same Doppler frequency 

we should intersect the ground plane with cone surface. Result of this intersection is a 

hyperbola. Therefore hyperbola is a set of all points in the ground which have the same 

Doppler frequency. Lines on the ground of constant Doppler frequency are called 

isodops. In our case a single hyperbola is exactly an isodop. 

                  

                                                   Figure.3.3: Isodops [16]. 

Each Doppler frequency is depend on a single isodop (hyperbola). Cluster of isodops 

is depicted in Fig.3.3. In this figure it can be viewed that zero Doppler isodop (fr = 0) 

is vertical line to the flight path. On the right hand of zero Doppler line, positive 

Doppler isodops are located. The last one is a maximum Doppler isodop (fr = 1). On 

the left hand negative Doppler isodops are located. We are generally interested in 

target indication, and range information simultaneously. A line which has constant 

range to the radar is called Isorange line. It is a circle on the ground surface, which is 

an intersection of a ground surface and a sphere with the radius which equals to our 

range of interest (Fig.3.4). 

Considering isodops and isorange lines, we figure out that for the particular range and 

for the particular Doppler frequency, we receive reflected signal from particular areas 

on the ground. This can be explained: clutter of the particular Doppler frequency and 
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from the particular range is coming from particular angles only. This connection is 

applied with STAP. 

In view of the relation between the clutter Doppler frequency and the cone angle, it is 

obvious that a good spacetime filtering is needed for efficient clutter mitigation. This 

is also depicted in Fig.3.5, which shows the clutter spectral power (for a side looking 

array antenna) plotted over the cosine of the look direction azimuth cos 𝛼 and the 

Doppler frequency fD. The clutter spectrum extends along the diagonal of this plot; it 

is modulated by the transmit beam. 

 Conventional temporal processing means that the projection of the clutter 

spectrum onto the fD axis is suppressed via an inverse filter. The clutter 

canceled this filter is determined by the projected clutter main beam, which is 

a Doppler effect of the transmit beam. Slow objective are attenuated. 

 For spatial processing, as used for jammer suppressed, the clutter spectrum is 

projected onto the cos 𝛼 axis. However, performing an inverse spatial clutter 

filter forms a broad stop band in the look direction, so that the radar becomes 

blind. Both fast and slow targets fall into the clutter notch. 

 Space-time processing exploits the fact that the clutter spectrum is originally a 

narrow ridge. A space time clutter filter therefore has a narrow clutter notch, 

so that even slow targets fall into the pass band. 

 

                        

                                 Figure.3.4: Isorange circles and isodops [17]. 
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                              Figure.3.5: Space-time structure of clutter [37]. 

The MIMO radar space time adaptive processing (STAP) for multipath clutter 

mitigation can be found in [18]. However, in the MIMO radar system, the STAP 

technique appeared even more challengeable because of the extra dimension appeared 

by the orthogonal signals. On one hand, the additional dimension increases the rank of 

the interference subspace, especially the jammer and clutter subspace. This becomes 

the STAP more conflicted. On the other hand, the extra degrees of freedom generated 

by the MIMO radar system allow us to suppress more clutter subspace with minimum 

effect on signal-to-interference-plus-noise ratio (SINR). 

In the next subsection, using the geometry of the MIMO system we will explain the 

clutter subspace and its rank in MIMO radar system. Practically, the clutter subspace 

may alter because of such effects like velocity misalignment, array manifold misfit, 

internal clutter motion (ICM), and channel misfit [19]. In our thesis, an “ideal model” 

is considered which does not take into account these effects in computation. When this 

assumption is not reliable, the performance of the outcome will Drop-off. One way to 

overcome this may be to approximate the clutter subspace by utilize a mixture of both 

the received data and the assumed geometry. Another way may be to expand a more 

powerful processing technique versus the clutter subspace misfit. These concepts will 

be analyzed later. 
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3.2 STAP in MIMO Radar System 

In this part, the STAP issue in MIMO radar is formulated. The MIMO radar 

generalization for this technique first manifested in [20]. We will concentrate on the 

concept of utilizing the additional degrees of freedom to boost the spatial resolution of 

clutter. 

3.2.1 Signal Model 

Fig.3.6 depicts the simple construction of the MIMO radar system with uniform linear 

arrays (ULAs), where: 

1) 𝑑𝑇 signifies the transmitter interelement spacing;  

2) M signifies the number of transmitting elements;  

3) 𝑑𝑅 signifies the receiver interelement spacing; 

4) N signifies the number of the receiving elements; 

5) 𝑇 signifies sending pulse period; 

6) 𝑙 represents the index of sending pulse (slow time); 

7) 𝜏 indicates the time within the pulse (fast time); 

8) 𝑣𝑡is the target velocity toward the radar platform; 

9) 𝑣 is the velocity of the radar platform. 

10) x is the range of the target 

 

Figure.3.6: MIMO radar system with M transmitting and N receiving antennas. The 

radar platform is moving with velocity v. 
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The radar platform motion is considered to be parallel to the linear antenna array. This 

consideration has been applied in most of the airborne ground moving target indicator 

(GMTI) radars. Attention that the two antenna arrays are linear and parallel in this 

model. The distance between transmitter and the receiver arrays are close enough so 

that they see the same angle value 𝜃. Every array is constructed of omnidirectional 

antennas. We can express the transmitted signals of the 𝑚𝑡ℎ element as 

                                        𝑥𝑚(𝑙𝑇 + 𝜏) =  √𝐸∅𝑚(𝜏)𝑒𝑗2𝜋𝑓(𝑙𝑇+𝜏)                             (3.1) 

For 𝑚 = 1,2, … , 𝑀 − 1, where ∅𝑚(𝜏) denote the baseband pulse waveform, 𝐸 denote 

the transmitted energy for the pulse and 𝑓 is the carrier frequency. Now we can express 

the demodulated received signal of the 𝑛𝑡ℎ element as 

                               𝑦𝑛 (𝑙𝑇 + 𝜏 +
2𝑟

𝑐
) 

≈ ∑ 𝑝𝑡∅𝑚(𝜏)𝑒
𝑗2𝜋

𝜆
(𝑠𝑖𝑛𝜃𝑡(2𝑣𝑇𝑙+𝑑𝑟𝑛+𝑑𝑇𝑚)+2𝑣𝑡𝑇𝑙)

𝑀−1

𝑚=0

 

+ ∑ ∑ 𝑝𝑖∅𝑚(𝜏)𝑒
𝑗2𝜋

𝜆
(𝑠𝑖𝑛𝜃𝑖(2𝑣𝑇𝑙+𝑑𝑟𝑛+𝑑𝑇𝑚))

𝑀−1

𝑚=0

𝑁𝑐−1

𝑖=0

 

                                +𝑦𝑛
(𝐽)

(𝑙𝑇 + 𝜏 +
2𝑟

𝑐
) +  𝑦𝑛

(𝑤)
(𝑙𝑇 + 𝜏 +

2𝑟

𝑐
).                (3.2)                                                       

For convenience, all of the arguments used in the signal model are summarized in 

Table.3.1. The first term in (3.2) expresses the signal received from the target. The 

second term is the signal received from the clutter. The last two terms expresses the 

jammer signal and white noise. We consider there is no ICM or antenna array 

misalignment [19]. The phase differences in the received signals are caused by the 

Doppler effect, the differences of the transmitting element locations and the 

differences of the receiving element locations. In the MIMO radar system, the 

transmitting waveforms ∅𝑚(𝜏)  satisfy orthogonality: 

                                          ∫ ∅𝑚(𝜏)∅𝑘
∗ (𝜏)𝑑𝜏 =  𝛿𝑚𝑘.                                   (3.3) 

A bank of matched filters apply to obtain the adequate data as depicted in Fig.3.6. We 

can rewrite the obtained signals as 
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TABLE.3.1:  roster of the arguments utilize in the signal model. 

𝑑𝑇 Interelement space of the transmitter antennas 

𝑑𝑅 Interelement space of the receiver antennas 

M number of transmitter elements 

N number of the receiving elements 

T Pulse signal period 

𝑙 indicates the index of radar pulse (slow time) 

𝜏 time within the pulse (fast time) 

𝑣𝑡 target speed toward the radar station 

𝑥𝑚 transmitted signal in the 𝑚th antenna. 

∅𝑚 baseband pulse waveforms 

𝑦𝑛 demodulated received signal in the 𝑛th antenna 

v speed of the radar station. 

r distance of the range bin of interest 

c speed of light 

𝑝𝑡 amplitude of the signal reflected by the target 

𝑝𝑖 amplitude of the signal reflected by the 𝑖𝑡ℎ clutter 

𝜃𝑡 looking direction of the target 

𝜃𝑖 looking direction of the 𝑖𝑡ℎ clutter 

𝑁𝑐 number of clutter signals 

𝑦𝑛
(𝐽)

 jammer signal in the 𝑛𝑡ℎ antenna output 

𝑦𝑛
(𝑤)

 white noise in the 𝑛𝑡ℎ antenna output 
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                               𝑦𝑛,𝑚,𝑙 ≅ ∫ 𝑦𝑛 (𝑙𝑇 + 𝜏 +
2𝑟

𝑐
) ∅𝑘

∗ (𝜏)𝑑𝜏 

     = 𝑝𝑡𝑒
𝑗2𝜋

𝜆
(𝑠𝑖𝑛𝜃𝑡(2𝑣𝑇𝑙+𝑑𝑟𝑛+𝑑𝑇𝑚)+2𝑣𝑡𝑇𝑙)

 

                   + ∑ 𝑝𝑖𝑒
𝑗2𝜋

𝜆
(𝑠𝑖𝑛𝜃𝑖(2𝑣𝑇𝑙+𝑑𝑟𝑛+𝑑𝑇𝑚))𝑁𝑐−1

𝑖=0  

                                   +𝑦𝑛,𝑚,𝑙
(𝐽)

+ 𝑦𝑛,𝑚,𝑙
(𝑤)

.                                            (3.4) 

For 𝑛 = 0,1,2, … , 𝑁 − 1, 𝑚 = 0,1,2, … , 𝑀 − 1 , and 𝑙 = 0,1,2, … , 𝐿 − 1  where 𝑦𝑛,𝑚,𝑙
(𝐽)

 

is the intended jammer signal, 𝑦𝑛,𝑚,𝑙
(𝜔)

 is the intended white noise, and 𝐿 is the number 

of the pulses in a coherent processing interval (CPI). To abbreviate the previous 

equation, we define the following normalized spatial and Doppler frequencies: 

𝑓𝑠 ≅
𝑑𝑅

𝜆
𝑠𝑖𝑛𝜃𝑡    ,   𝑓𝑠,𝑖 ≅

𝑑𝑅

𝜆
𝑠𝑖𝑛𝜃𝑖      

                                                    𝑓𝐷 ≅
2(𝑣𝑠𝑖𝑛𝜃𝑡+𝑣𝑡)

𝜆
𝑇.                                          (3.5) 

One can notice that the normalized Doppler frequency of the target is a function of 

both target velocity and location angle. Throughout this thesis we shall make the 

assumption 𝑑𝑅 = 𝜆
2⁄  so that spatial aliasing is avoided. Profit the above description, 

we can simplify the extracted signal in (3.4) as 

                                    𝑦𝑛,𝑚,𝑙 = 𝑝𝑡𝑒𝑗2𝜋𝑓𝑠(𝑛+𝛾𝑚)𝑒𝑗2𝜋𝑓𝐷𝑙  

            +  ∑ 𝑝𝑖𝑒
𝑗2𝜋𝑓𝑠,𝑖(𝑛+𝛾𝑚+𝛽𝑙)𝑁𝑐−1

𝑖=0  

                                                  +𝑦𝑛,𝑚,𝑙
(𝐽)

+ 𝑦𝑛,𝑚,𝑙
(𝑤)

.                                   (3.6) 

 

For 𝑛 = 0,1,2, … , 𝑁 − 1, 𝑚 = 0,1,2, … , 𝑀 − 1 , and 𝑙 = 0,1,2, … , 𝐿 − 1  where 

                               𝛾 = 𝑑𝑇 𝑑𝑅⁄       and        𝛽 = 2𝑣𝑇 𝑑𝑅⁄  
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3.2.2 Fully Adaptive MIMO STAP 

The purpose of space time adaptive processing (STAP) is to discover a linear 

combination of the obtained data in the way that maximize the SINR. Hence, the target 

data can be distinguished from the interferences, clutter, and noise to decide the 

detection. Stacking the obtained data in (3.6), we acquire the NML vector 

                                 𝑦 = (𝑦0,0,0   𝑦1,0,0 …  𝑦𝑁−1,𝑀−1,𝐿−1)𝑇.                                 (3.7) 

Here we can express the linear combination as 𝑤𝐻𝑦, where w indicate the weight 

vector for the equation. To obtained the optimal weight vector w must maximize the 

SINR such as  

                                𝑆𝐼𝑁𝑅 =
𝐸[|𝑤𝐻𝑦𝑡|

2
]

𝐸[|𝑤𝐻(𝑦𝑐+𝑦𝑛)|2]
=

𝜎𝑠
2|𝑤𝐻𝑠(𝑓𝑠 ,𝑓𝐷)|

2

𝑤𝐻𝑅𝑤
                     (3.8) 

Where 𝜎𝑠
2 = 𝐸[|𝑦𝑡|2] is the desired signal power, R interference plus-noise covariance 

matrix, 𝑠(𝑓𝑠, 𝑓𝐷) is the size NML- MIMO space–time steering vector and E[.] denotes 

the expectation operator. 

The SINR maximization can be obtained by minimizing the denominator of (3.8), i.e., 

minimizing the variance/power of interference and noise at the output of the adaptive 

beamformer, while keeping the numerator (3.8) fixed, i.e., ensuring the distortionless 

response of the beamformer towards the direction of the desired source.. It can be 

expressed as the following optimization problem: 

                                                 𝑤𝐻
𝑤

𝑚𝑖𝑛 𝑅𝑤. 

                                                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝐻𝑠(𝑓𝑠 , 𝑓𝐷) = 1.                                    

 Where 𝑅 ≅ 𝐸[𝑦𝑦H], and 𝑠(𝑓𝑠, 𝑓𝐷) is the size NML- MIMO space–time steering 

vector, which consists of the elements 

                                            𝑒𝑗2𝜋𝑓𝑠(𝑛+𝛾𝑚)𝑒𝑗2𝜋𝑓𝐷𝑙 .                                 (3.9) 

For 𝑛 = 0,1,2, … , 𝑁 − 1, 𝑚 = 0,1,2, … , 𝑀 − 1 , and 𝑙 = 0,1,2, … , 𝐿 − 1. This w is 

called minimum variance distortionless response (MVDR) beamformer [21]. The 

optimal STAP weight vector maximizing the signal to noise plus interference ratio 

(SINR) [22] is given by 

                                                       𝑤𝑜𝑝𝑡 = 𝛼𝑅−1𝑦𝑡 .                                             (3.10) 
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Where α is a scalar constant which does not affect the SINR, R is the clutter plus noise 

covariance matrix and 

                                                      𝑦 = 𝑦𝑡 + 𝑦𝑐 + 𝑦𝑛 .                                           (3.11) 

Where 𝑦𝑡 , 𝑦𝑐 𝑎𝑛𝑑 𝑦𝑛 denote the vectors of the desired signal, interference, and noise, 

respectively 

                                            𝑅 = 𝐸[(𝑦𝑐 + 𝑦𝑛)(𝑦𝑐 + 𝑦𝑛)𝐻] .                                   (3.12) 

 

The output of the filter is                     𝑟 = 𝑤𝑜𝑝𝑡
𝐻 𝑦.                                                (3.13) 

Weight approximating (r) is digital beamforming, or an inner product, application. The 

output values is then compared to a threshold value to figure out existence of a target 

at the determined Doppler and angle. The result of the process function is a separate 

quantity (decision) for each angle, range, and velocity at which target existence is to 

be ambiguous. Preferably, the space time adaptive processor supplies coherent gain on 

target while applying angle and Doppler response suppress to mitigate clutter and 

jammer.  

The extension from the SIMO to the MIMO system is trivial, matrix R and weight 

vector 𝑤𝑜𝑝𝑡 being of dimension 𝑀𝑁𝐿𝑥𝑀𝑁𝐿 and 𝑀𝑁𝐿𝑥1 in the latter case instead of 

𝑁𝐿𝑥𝑁𝐿 and 𝑁𝐿𝑥1 in the first case, respectively. It is well known that the localization 

of sources by an antenna array is improved when the number of receiving elements of 

the array increases. In the case of MIMO STAP, a better estimation of the clutter 

spectrum is thus expected yielding a better rejection of it when constructing the weight 

vector (3.10). Indeed, in this case, it has been seen that the number of elements is 

virtually MN for a number of physical elements of N+M instead of N in the case of 

SIMO. However this is only true in the theoretical (optimal) case. 

 

                                      Figure.3.7:  MIMO Data cube in a CPI. 
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In figure 3.7 we see obtained data of MIMO radar in a CPI. Thus a MIMO STAP 

processor will operate on a four dimensional data hypercube that encompasses the 

transmit elements M, slow time Doppler pulses L, receive elements N and fast time 

range sample K. To make it simple we can unify this data cubes as illustrated in Figure 

3.8.   

In practice, neither R or  𝑥𝑡 are known. R may be estimated from K secondary 

snapshots around the range cell under test as follows. Fig.3.9. The maximum 

likelihood estimate of the covariance matrix is given by 

                 𝑅̂(𝑘0) =
1

𝐾−1
∑ (𝑥𝑐(𝑘) + 𝑥𝑛(𝑘))(𝑥𝑐(𝑘) + 𝑥𝑛(𝑘))𝐻𝐾

𝑘=1
𝑘≠𝑘0

.                   (3.14) 

The target component 𝑥𝑡 is replaced by a steering vector of the form (3.15) computed 

for a candidate couple of Doppler and spatial frequencies (𝑓𝐷 , 𝑓𝑠). 

                             𝑠(𝑓𝐷 , 𝑓𝑠) = 𝑏(𝑓𝐷) ⊗ 𝑎𝑅(𝑓𝑠) ⊗ 𝑎𝑇(𝛾𝑓𝑠).                                   (3.15) 

Where 𝑏(𝑓𝐷), 𝑎𝑅(𝑓𝑠) and 𝑎𝑇(𝛾𝑓𝑠) are temporal and receiving and transmitting spatial 

steering vectors of dimensions L, N and M, respectively. The suboptimal sample 

matrix inversion (MIMO) STAP weight vector then consists in [19-16-23] 

                                     𝑤𝑆𝑀𝐼(𝑘0, 𝑓𝐷 , 𝑓𝑠) =  𝑅̂(𝑘0)−1 𝑠(𝑓𝐷 , 𝑓𝑠).                            (3.16) 

 

                         

 

Figure3.8: MIMO STAP Data cube and Range cell of interest. 
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Note that a weight vector is computed for each range cell and each couple of Doppler 

and spatial frequencies. It is known in the STAP literature [24] that the “convergence“ 

of the SMI defined as the number of snapshots necessary to achieve a SINR loss 

performance of 3 dB compared to the optimal STAP in the absence of clutter, is twice 

the dimension of the received vector. It follows that the convergence for the SIMO and 

the MIMO cases is obtained for K=2NL and K=2NML snapshots, respectively. In the 

same way, the larger the size of the covariance matrix, the more complex the 

computational load required for the inversion in (3.16). It follows that 𝑂((𝑁𝑀𝐿)3) and 

𝑂((𝑁𝐿)3)  are necessary to compute the SMI weight vectors in the MIMO and SIMO 

cases, respectively. The theoretical interest of the MIMO system becomes thus limited 

in practice. 

 

Figure3.9: Estimating the space-time interference covariance matrix. 

An alternative approach proposed in the literature for reducing the convergence is 

based on rank reduction. For example, the eigencanceller (EC) method that we will 

study in next section. 

 

3.2.3 Clutter Subspace in MIMO Radar System 

In this subsection, we explain the subspace and rank of clutter space in the MIMO 

radar scheme. We can express the covariance matrix 𝑅 in (3,8) as 𝑅 = 𝑅𝑡 + 𝑅𝑐 + 𝑅𝑗 +

𝜎2𝐼 , where 𝑅𝑡 indicates the covariance matrix of the target data, 𝑅𝑐 determines the 

covariance matrix of the clutter data, 𝑅𝑗 indicates the covariance matrix of the jammer 

data, and 𝜎2 is the variance of the white noise. In STAP literature researcher denoted 

The clutter subspace as the range space of 𝑅𝑐 and denoted the clutter rank as the rank 

of 𝑅𝑐 . In the space time adaptive processing (STAP) investigations, it is a principle 
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knowledge that the clutter subspace generally has a small rank. Klemm was the first 

one who illustrated in [25], that the clutter rank is roughly N+L where N and L indicate 

the number of receiving elements and number of pulses in a coherent processing 

interval (CPI) Respectively. In [23] and [26], a method for computing the clutter rank 

was advised. The computed rank is roughly 

                                                     𝑁 + 𝛽(𝐿 − 1).                                                  (3.17) 

Where  𝛽 = 2𝑣𝑇 𝑑𝑅⁄  . This is named Brennan’s rule. In [27], this method has been 

extended to the models with arbitrary antenna arrays. Using benefits of the low rank 

feature, the STAP can be applied in a lower dimensional area so that the convergence 

and the complexity can be highly improved [28]–[16]. This outcome will now be 

extended to the MIMO radar system. These approaches are often named partially 

adaptive techniques or subspace techniques. 

To approximate the clutter rank in MIMO radar system we describe the clutter term in 

(3.6) which is displayed as 

                                      𝑦𝑛,𝑚,𝑙
(𝑐)

= ∑ 𝑝𝑖𝑒
𝑗2𝜋𝑓𝑠,𝑖(𝑛+𝛾𝑚+𝛽𝑙)𝑁𝑐−1

𝑖=0 .                         (3.18) 

For 𝑛 = 0,1,2, … , 𝑁 − 1, 𝑚 = 0,1,2, … , 𝑀 − 1, and 𝑙 = 0,1,2, … , 𝐿 − 1. Note that 

−0.5 ≤ 𝑓𝑠,𝑖 ≤ 0.5  because  𝑑𝑅 = 𝜆
2⁄  .  

Define                                  𝐶𝑖,𝑚,𝑛,𝑙 =  𝑒𝑗2𝜋𝑓𝑠,𝑖(𝑛+𝛾𝑚+𝛽𝑙)
  .                                   (3.19) 

And                              𝐶𝑖 = (𝐶𝑖,0,0,0, 𝐶𝑖,1,0,0, … . 𝐶𝑖,𝑁−1,𝑀−1,𝐿−1)𝑇.                            (3.20) 

By stacking the {𝑦𝑛,𝑚,𝑙
(𝑐)

} signals into a vector, one can obtain 

                                    𝑦(𝑐) =  ∑ 𝑝𝑖𝑐𝑖
𝑁𝑐−1
𝑖=0 .                                            (3.21)                    

Assume that 𝑝𝑖 are zero-mean independent random variables with variance 𝜎𝑐,𝑖
2 . The 

clutter covariance matrix can be expressed as 

                           𝑅𝑐 = 𝐸 [𝑦(𝑐)𝑦(𝑐)𝔱
] =  ∑ 𝜎𝑐,𝑖

2 𝑐𝑖
𝔱𝑐𝑖

𝑁𝑐−1
𝑖=0 .                                 (3.22) 

Therefore, span (Rc) = span (C) where 

                                    𝐶 ≜ (𝑐0, 𝑐1, … , 𝑐𝑁𝑐−1).                                    (3.23)                                  
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The vector 𝑐𝑖 contain the samples of 𝑒𝑗2𝜋𝑓𝑠,𝑖𝑥 at points {𝑛 + 𝛾𝑚 + 𝛽𝑙} , while 𝛾 and 𝛽 

are denoted in (3.6). Usually 𝑐𝑖, is a random sampled type of the band limited 

sinusoidal signal 𝑒𝑗2𝜋𝑓𝑠,𝑖𝑥 . If both of 𝛾 and 𝛽 are integers, then the sampled points can 

only be integers in {0, 1, … , 𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1)}. 

If  𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1) ≤ 𝑁𝑀𝐿 , then there will be duplications in the results. 

In simple words, some of the row vectors in C will be completely the same and there 

will be muximum 𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1) separate row vectors in C. Hence, the 

rank of C is smaller than  𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1) . So the rank of Rc is.  

                               𝑟𝑎𝑛𝑘(𝑅𝑐) ≈ ⌈𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1)⌉.                            (3.24) 

This outcome can be thought as a generalization of Brennan’s rule [23], given in (3.17), 

to the MIMO radar system model. 

In the SIMO radar system model, applying Brennan’s rule, the ratio of the clutter rank 

and the total dimension of the space time processing steering vector can be obtained 

as 

                                         
𝑁+𝛽(𝐿−1)

𝑁𝐿
=  

1

𝐿
+

𝛽(𝐿−1)

𝑁𝐿
 .                                   (3.24) 

In the MIMO radar system model with 𝛾 = 𝑁 (best case scenario in Figure 2.9), the 

corresponding ratio becomes 

                          
𝑁+𝑁(𝑀−1)+𝛽(𝐿−1)

𝑁𝑀𝐿
=  

1

𝐿
+

𝛽(𝐿−1)

𝑁𝑀𝐿
.                    (3.25) 

 

We can view that the clutter rank now is smaller than the total data dimension because 

of the additional dimension originated by the MIMO radar system. So the MIMO radar 

receiver can mitigate the clutter subspace with little impression on signal-interference 

noise-ratio. Therefore, a superior spatial resolution for clutter can be accessed. 

It is thus worth noting that the convergence speed is no longer proportional to the 

product of the number of transmitting and receiving elements but a linear combination 

of them (3.24). Moreover it is also worth noting that if you compare a SIMO antenna 

array of N’=MN physical elements you can find a MIMO system of N and M physical 

receiving and transmitting elements, so that by choosing adequately γ(γ< N ) the 
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rank 𝑟𝑀𝐼𝑀𝑂 is smaller than the rank of 𝑟𝑆𝐼𝑀𝑂 the corresponding SIMO. It then follows 

that with the EC approach, the MIMO STAP system can converge faster than its SIMO 

counterpart. This was not the case for the SMI algorithm. 

3.2.4 Data-Independent Estimation of the Clutter Subspace with PSWF 

 

In this subsection, we analyze a technique which figure out the clutter subspace by 

utilizing the geometry of the system rather than the received data. The major 

excellence of this technique is that it is independent from data type. The clutter 

subspace acquired by this technique can be utilize to enhance the convergence of the 

space time processing. Analyzes also show that the obtained subspace is more reliable 

than the ideal case (without ICM and array misalignment). 

The vector ci which is obtained in (3.20) can be noticed as a randomly sampled model 

of the truncated sinusoidal function 

                       𝑐(𝑥; 𝑓𝑠,𝑖) ≜ {
𝑒𝑗2𝜋𝑓𝑠,𝑖𝑥 ,              0 ≤ 𝑥 < 𝑋
  0 ,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                     (3.26) 

Where 𝑋 ≜ 𝑁 − 1 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1). In addition −0.5 ≤ 𝑓𝑠,𝑖 ≤ 0.5, because 

𝑑𝑅 is mostly chosen 𝜆 2⁄  as in (3.5) to prevent aliasing. So, the power of these signals 

is often limited to a specified time-frequency space. Fig.3.10 displays a model of such 

a signal. This kind of signals can be well estimated by linear combinations of 

⌈2𝑊𝑋 + 1⌉ orthogonal functions [29], where W indicates the one-sided bandwidth and 

X denotes the duration of the time-limited functions. Hence, we have 𝑊 = 0.5 and 

⌈2𝑊𝑋 + 1⌉ = 𝑁 − 1 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1) . The vectors 𝑐𝑖 can be also estimated 

by a linear combination of the randomly sampled versions of these ⌈𝑁 − 1 + 𝛾(𝑀 −

1) + 𝛽(𝐿 − 1)⌉ orthogonal functions. 

To estimate the subspace that contains this kind of signals, there is a root functions 

which are limited in time and centralize their power on the matching bandwidth. This 

kind of original functions are the answers of the following integral equation [29]. 

                         𝜇𝜓(𝑥) =  ∫ 𝑠𝑖𝑛𝑐(2𝑊(𝑥 − 𝜁))𝜓(𝜁)𝑑𝜁
𝑋

0
.                                    (3.27) 

Where 𝜇 denotes a scalar to be found. There are infinite number of solutions 𝜓𝑖(𝑥) to 

this integral equation and 𝜇𝑖 for = 0, 1, … , ∞ . The approximation of 𝜓𝑖(𝑥)  is called 
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Prolate Spheroidal Wave Functions (PSWF). By the maximum principle [30], the 

solution satisfies 

 

𝜓0(𝑥) = arg 𝑚𝑎𝑥‖𝜓‖=1 ∫ ∫ 𝜓∗(𝑥)𝑠𝑖𝑛𝑐(2𝑊(𝑥 − 𝜁))𝜓(𝜁)𝑑𝜁
𝑋

0

𝑑𝑥
𝑋

0

 

𝜓1(𝑥) = arg 𝑚𝑎𝑥‖𝜓‖=1 ∫ ∫ 𝜓∗(𝑥)𝑠𝑖𝑛𝑐(2𝑊(𝑥 − 𝜁))𝜓(𝜁)𝑑𝜁
𝑋

0

𝑑𝑥
𝑋

0

 

                                        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∫ 𝜓(𝑥)𝜓𝑘
∗ (𝑥)𝑑𝑥

𝑋

0
=0 

                                                 𝑓𝑜𝑟 𝑘 = 0, 1, … . , 𝑖 − 1.                                          (3.28) 

                                                  For 𝑖 = 0, 1, … , ∞ 

 

Fig.3.10: (a) Real part and (b) Magnitude response of Fourier transform of Instance 

of the signal c(x; fs,i ). 

The operation 𝜓𝑖(𝑥)  is orthogonal to the prior root elements 𝜓𝑘(𝑥), for k < i while 

centralize most of its power on the bandwidth [−𝑊, 𝑊]. Furthermore, only the first  

⌈2𝑊𝑋 + 1⌉ eigenvalues 𝜇𝑖 are important [29]. Therefore, the function c(x; fs,i ) in 

(3.26) which is limited in time and bandwidth can be truly estimated by linear 

combinations of 𝜓𝑖(𝑥)   for = 0, 1, … , ⌈2𝑊𝑋 + 1⌉ . In this case, 𝑊 = 0.5  and 

⌈2𝑊𝑋 + 1⌉ = 𝑁 − 1 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1). So, the randomly sampled versions of 

c(x; fs,i ), specifically 𝑐𝑖,𝑛,𝑚,𝑙, can be estimated by the linear combination  



48 
 

      𝐶𝑖,𝑚,𝑛,𝑙 ≜ 𝑒𝑗2𝜋𝑓𝑠,𝑖(𝑛+𝛾𝑚+𝛽𝑙)  ≈  ∑ 𝛼𝑖,𝑘𝜓𝑘(𝑛 + 𝛾𝑚 + 𝛽𝑙)
𝑟𝑐−1
𝑘=0 .         (3.29) 

 for some {𝑎𝑖,𝑘}, where 

                          𝑟𝑐 ≜ ⌈𝑁 + 𝛾(𝑀 − 1) + 𝛽(𝐿 − 1)⌉.                                      (3.30) 

Stacking the above components into vectors, we have 

                                             𝑐𝑖  ≈  ∑ 𝛼𝑖,𝑘𝑢𝑘
𝑟𝑐−1
𝑘=0  .                                                (3.31) 

Where 𝑢𝑘 is a vector that consists of the elements 𝜓𝑘(𝑛 + 𝛾𝑚 + 𝛽𝑙). Finally, we have 

                           𝑠𝑝𝑎𝑛(𝑅𝑐) =  𝑠𝑝𝑎𝑛(𝐶) ≈  𝑠𝑝𝑎𝑛(𝑈𝑐).                     (3.32) 

Where 𝑈𝑐 ≜ (𝑢0 ; 𝑢1 ; … ; 𝑢𝑟𝑐−1) . Notice that in spite of being Orthogonality of the 

operation 𝜓𝑘(𝑥), the vectors {𝑢𝑘 } are usually not orthogonal. This is result of the 

reality that {𝑢𝑘  } are acquired by random sampling which damages orthogonality. In 

real operation, the PSWF 𝜓𝑖(𝑥) can be approximated off-line and saved in the 

memory. When the elements alter, one can acquire the vectors 𝑢𝑘 by resampling the 

PSWF 𝜓𝑘(𝑛 + 𝛾𝑚 + 𝛽𝑙) to approximate the new clutter subspace. In this way, we can 

acquire the clutter subspace by utilizing the geometry of the issue. Note that, unlike 

the eigendecomposition technique, the proposed method based on PSWF does not need 

the information of 𝑅𝑐. 

 

3.3 PSWF STAP Technique for MIMO Radar System 

In this subsection, we explain PSWF STAP technique for MIMO radar which uses the 

clutter subspace approximation method described in the last section. Because the 

clutter subspace can be acquired by using the parameter knowledge, the performance 

and complexity can both be improved. 

The target-free covariance matrix can be signified as 𝑅 = 𝑅𝑐 + 𝑅𝐽 + 𝜎2𝐼, while 𝑅𝐽 

indicates the covariance matrix of the jammer signals, 𝑅𝑐 indicates the covariance 

matrix of the clutter signals, and 𝜎2 denotes the variance of the white noise. 

Considering (3.32), there is a 𝑟𝑐 × 𝑟𝑐 matrix 𝐴𝑐  so that 𝑅𝑐 ≈ 𝑈𝑐𝐴𝑐𝑈𝑐 †. Where 𝑈𝑐 is 

the square matrix whose 𝑖𝑡ℎ column is the eigenvector of 𝑅𝑐 and 𝐴𝑐 is the diagonal 
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matrix whose diagonal components are the corresponding eigenvalues. Thus, the 

covariance matrix can be approximated by 

                                             𝑅 ≈   𝑅𝐽 + 𝜎2𝐼 + 𝑈𝑐𝐴𝑐𝑈𝑐 †.                                     (3.33) 

                                              Define  𝑅𝑣 =  𝑅𝐽 + 𝜎2𝐼. 

The jammer signals 𝑦𝑛,𝑚,𝑙
(𝐽)

  which figure out in (3.6) are statistically independent in 

different pulses and different orthogonal waveform components [19]. Therefore, they 

satisfy 

                          𝐸 [𝑦
𝑛,𝑚,𝑙

(𝐽)  . 𝑦
𝑛′,𝑚′,𝑙

′

(𝐽)†
] =  {

𝑟
𝐽,𝑛,𝑛′,                𝑚=𝑚′ ,    𝑙=𝑙

′

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                 (3.34) 

 

for 𝑛, 𝑛′ = 0,1,2, … , 𝑁, 𝑚, 𝑚′ = 0,1,2, … , 𝑀 , and 𝑙, 𝑙′ = 0,1,2, … , 𝐿. Using this fact, 

the jammer-plus-noise covariance matrix 𝑅𝑣 defined in (3.33) can be expressed as 

                                   𝑅𝑣 = 𝑑𝑖𝑎𝑔(𝑅𝑣𝑠, 𝑅𝑣𝑠, … , 𝑅𝑣𝑠).                                             (3.35) 

Where 𝑅𝑣𝑠 is an 𝑁 × 𝑁 matrix with elements [𝑅𝑣𝑠]𝑛,𝑛′ = 𝑟𝐽,𝑛,𝑛′ + 𝜎2 for 𝑛, 𝑛′ =

0,1,2, … , 𝑁. Hence, the covariance matrix 𝑅𝑐 which shown in (3.33) include a block-

diagonal jammer-pulse-noise and a low-rank clutter covariance matrix. By performing 

the matrix inversion lemma [31], we can acquire 

                          𝑅−1  ≈   𝑅𝑣
−1 − 𝑅𝑣

−1𝑈𝑐(𝐴𝑐
−1 + 𝑈𝑐

†𝑅𝑣
−1𝑈𝑐)−1𝑈𝑐

†𝑅𝑣
−1.                   (3.36) 

Note that calculation of the block-diagonal matrix 𝑅𝑣
−1 inversion is simple 𝑅𝑣

−1 =

𝑑𝑖𝑎𝑔(𝑅𝑣𝑠
−1, 𝑅𝑣𝑠

−1, … , 𝑅𝑣𝑠
−1), and the multiplication of this block-diagonal matrix with 

another matrix is easy. 

 

3.3.1 Complexity of the New Method 

The complexity of directly inverting the 𝑁𝑀𝐿 × 𝑁𝑀𝐿 covariance matrix R is 

𝑂(𝑁3𝑀3𝐿3). Taking advantage of the block-diagonal matrix and the low rank matrix, 

in (3.36), the complexity for computing 𝑅𝑣
−1 is only 𝑂(𝑁3) and in computing 𝐴𝑐

−1and  

(𝐴𝑐
−1 + 𝑈𝑐

†𝑅𝑣
−1𝑈𝑐)−1 the complexity just is 𝑂(𝑟𝑐

3), while 𝑟𝑐 is indicated in (3.30). The 

whole complexity for calculating (3.36) is thus diminished from 𝑂(𝑁3𝑀3𝐿3) to 

𝑂(𝑟𝑐𝑁2𝑀2𝐿2). This is the complexity of the two (𝑟𝑐 × 𝑁𝑀𝐿) matrix multiplication.  
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The matrix 𝑈𝑐 in (3.36) can be acquired by the random sampling of the PSWF as 

expressed in the last subsection. The noise -pulse- jammer covariance matrix 𝑅𝑣 and 

the matrix 𝐴𝑐 both need further approximation from the received data. By reason of 

the block-diagonal structure, one can approximate the covariance matrix 𝑅𝑣 by 

approximate its submatrix 𝑅𝑣𝑠 determined in (3.35). The matrix 𝑅𝑣𝑠 can be 

approximated when there are no target signals and clutter echo. For this operation, the 

radar system work in passive mode so that the receive elements can gather the signals 

with only jammer signals and white noise [16]. The submatrix 𝑅𝑣𝑠 can be expressed 

as 

                                  𝑅̂𝑣𝑠 =  
1

𝐾𝑣
 ∑ 𝑟𝑘𝑟𝑘

†𝐾𝑣−1
𝑘=0 .                                              (3.37)   

While 𝑟𝑘 is 𝑁 × 1 vector and indicates the target free and clutter free data collecting 

by N receiving elements and 𝐾𝑣 denotes the number of snapshot in passive mode. By 

(3.33), one can express 𝐴𝑐 as 

                                 𝐴𝑐 =  (𝑈𝑐
†𝑈𝑐)

−1
𝑈𝑐

†(𝑅 − 𝑅𝑣)𝑈𝑐(𝑈𝑐
†𝑈𝑐)−1 .                          (3.38) 

Therefore, one can estimate 𝐴𝑐  by using 

                     𝐴̂𝑐 =  
1

𝐾
 ∑ 𝑥𝑘𝑥𝑘

† −𝐾−1
𝑘=0 (𝑈𝑐

†𝑈𝑐)−1𝑈𝑐
†𝑅̂𝑣𝑈𝑐(𝑈𝑐

†𝑈𝑐)
−1

.             (3.39) 

Where 𝑥𝑘 = (𝑈𝑐
†𝑈𝑐)

−1
𝑈𝑐

†𝑦𝑘 and 𝑦𝑘 is the MIMO space time processing data vector 

illustrated in (3.7). Substituting (3.36), (3.37) and (3.39) into the MIMO space time 

adaptive beamformer in (3.16), we acquire 

           𝑤 ∝ (𝑅̂𝑣
−1

− 𝑅̂𝑣
−1

𝑈𝑐 (𝐴̂𝑐
−1

+ 𝑈𝑐
†𝑅̂𝑣

−1
𝑈𝑐)

−1

𝑈𝑐
†𝑅̂𝑣

−1
)𝑠(𝑓𝑠, 𝑓𝑑).          (3.40) 

 

 

3.3.2 Zero-Forcing Technique 

Instead of approximating 𝐴𝑐 and calculating the Minimum variance distortionless 

response (MVDR) by (3.40), it is possible straightly “null out” the whole clutter 

subspace as explain next. Consider that the clutter-to-noise ratio is adequately large 

and in result whole of the eigenvalues of 𝐴𝑐  reach infinity. We acquire 𝐴𝑐
−1 ≈ 0. 

Appling it into (3.40), we can acquire the MIMO space time beamformer as 
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                 𝑤 ∝ (𝑅̂𝑣
−1

− 𝑅̂𝑣
−1

𝑈𝑐 (𝑈𝑐
†𝑅̂𝑣

−1
𝑈𝑐)

−1

𝑈𝑐
†𝑅̂𝑣

−1
)𝑠(𝑓𝑠, 𝑓𝑑).                   (3.41)        

So we acquire a “zero-forcing” beamformer that mitigate the whole clutter subspace. 

Because it is no longer necessary to approximate 𝐴𝑐 in this method the benefit of this 

zero-forcing technique is distinguished. Here, we only require to estimate 𝑅𝑣𝑠. The 

technique is no related to the range bin. The matrix 𝑅−1 calculated by this technique 

can be utilized for whole range bins. As a result of extra additional dimensions in 

MIMO STAP, removing the whole clutter subspace will decrease just a small portion 

of the total dimension. Hence, it will not impress the signal interference plus noise 

ratio performance importantly, as we shall illustrate. Thus, this technique can be very 

impressive in multiple input multiple output radar systems. 

 

3.4 Range Recursive Space Time Adaptive Processing (STAP) 

From the computational complexity point of view the EC STAP algorithm encounters 

the same drawbacks as the SMI algorithm, it is to say that it is increased by a 

multiplicative factor of 𝑂((𝑀)3) because of the eigendecomposition of the clutter plus 

noise covariance matrix. It is why in this section we explore a range recursive EC-

based STAP algorithm. It takes benefit of the abovementioned rank reduction property 

and consequently convergences faster than the SMI and has a computational load of 

only 𝑂(𝑁𝐿)  and 𝑂(𝑀𝑁𝐿) for the SIMO and the MIMO cases, respectively. 

Here we explain a range recursive subspace-based algorithm in order to construct the 

STAP filter. Traditionally used in spectral analysis and antenna processing as time-

recursive adaptive algorithms [32], adaptive recursive subspace-based algorithms such 

as FAPI have been more recently used in STAP for airborne radar [33]. In this case of 

STAP, the recursion relates to the distance instead of time. The classical subspace 

tracking algorithm on which FAPI is established considers the following scalar 

function [34] 

                                  𝐽(𝑊) = 𝐸(‖𝑥 − 𝑊𝑊𝐻𝑥‖2).                                             (3.42) 

Where 𝑥 is the observed data vector of covariance matrix 𝑅 and W is the matrix 

argument. This cost function possesses just a global minimum [34] which is attainted 

only if 𝑊 = 𝑈𝑐𝑄 where 𝑈𝑐 the clutter subspace basis defined in (3.33) and Q is a 
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unitary matrix. The original algorithm which considered this abovementioned criterion 

is the projection approximation subspace tracking (PAST) algorithm [34] replacing the 

expectation by an exponentially weighted sum and supposing an approximation of the 

clutter (𝑊(𝑖 − 1) ≈ 𝑊(𝑖)where 𝑖 was time in the original version of PAST and that 

we transpose to range in the proposed STAP version). Thus a basis of the clutter 

subspace is obtained as the solution of the unconstrained minimization problem: 

                𝐽(𝑊(𝑘)) =  ∑ 𝛽𝑘−𝑖𝑘
𝑖=1 ‖𝑥(𝑖) − 𝑊(𝑘)𝑊(𝑖 − 1)𝐻𝑥(𝑖)‖2.                    (3.43) 

Where 𝑥(𝑖) is the observed data vector at range i and 𝑊(𝑘) is the estimated 

interference (clutter plus noise) subspace basis at range k and β a forgetting factor,       

0 < β <1. This exponentially least square problem is solved by a recursive computation. 

We here are more interested by the FAPI algorithm [33] which is based on the previous 

approach with a less restrictive approximation: the projection on the clutter subspace 

at range 𝑖 is approximated by the projection on the clutter subspace at range 𝑖 − 1. 

                                  𝑊(𝑖)𝑊(𝑖)𝐻 ≈  𝑊(𝑖 − 1)𝑊(𝑖 − 1)𝐻.                                         (3.44) 

The obtained subspace is found to be orthonormalized. The details of this algorithm 

are given in table.3.2. The corresponding STAP filter computed for each snapshot is 

obtained through 

                                𝑤𝐹𝐴𝑃𝐼(𝑘) = (𝐼 −  𝑊(𝑘)𝑊(𝑘)𝐻)𝑣(𝑓𝐷 , 𝑓𝑠).                          (3.45) 

 

3.5 Fast and stable YAST algorithm 

In this section we explore another implementation of the YAST algorithm (Yet 

Another Subspace Tracker) for principal and minor subspace tracking. YAST was 

initially derived from the Subspace Projection (SP) algorithm by C.E. Davila [38], 

which was known for its exceptional convergence rate, compared to other classical 

principal subspace trackers. The novelty in the YAST algorithm was the lower 

computational cost (linear if the data correlation matrix satisfies a so-called shift-

invariance property), and the extension to minor subspace tracking. However, the 

original implementation of the YAST algorithm suffered from a numerical stability 

problem (the subspace weighting matrix slowly loses its orthonormality)[35]. 
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TABLE.3.2: the input x(k) is x defined in (3.11) at range k. 

FAPI Algorithm 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶ 𝑊(0) ← 𝐼𝑀×𝑁 , 𝑍(0) ← 𝐼𝑁×𝑁  

       𝐹𝑜𝑟  𝐾 = 1 𝑡𝑜 𝑁𝑏𝑟 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝒅𝒐 

               𝑦(𝑘) =  𝑊(𝑘 − 1)𝐻 . 𝑥(𝑘) 

               ℎ(𝑘) = 𝑍(𝑘 − 1). 𝑦(𝑘) 

               𝑔(𝑘) =  
ℎ(𝑘)

𝛽+𝑦𝐻(𝑘).ℎ(𝑘)
 

               𝑒(𝑘) = 𝑥(𝑘) − 𝑊(𝑘 − 1). 𝑦(𝑘) 

               𝜀2(𝑘) =  ‖𝑥(𝑘)‖2 − ‖𝑦(𝑘)‖2 

               𝜏(𝑘) =  
 𝜀2(𝑘)

1+ 𝜀2(𝑘)‖𝑔(𝑘)‖2+√1+ 𝜀2(𝑘)‖𝑔(𝑘)‖2
 

               𝜂(𝑘) = 1 − 𝜏(𝑘)‖𝑔(𝑘)‖2 

               𝑦′(𝑘) =  𝜂(𝑘)𝑦(𝑘) + 𝜏(𝑘)𝑔(𝑘) 

               ℎ′(𝑘) =  𝑍(𝑘 − 1)𝐻𝑦′(𝑘) 

                𝜖(𝑘) =  
𝜏(𝑘)

𝜂(𝑘)
(𝑍(𝑘 − 1)𝑔(𝑘) − (ℎ′(𝑘)𝑔(𝑘))𝑔(𝑘))   

                𝑍(𝑘) =  
1

𝛽
(𝑍(𝑘 − 1) − 𝑔(𝑘)ℎ′(𝑘)𝐻 + 𝜖(𝑘)𝑔(𝑘)𝐻) 

                𝑒′(𝑘) =  𝜂(𝑘)𝑥(𝑘) − 𝑊(𝑡 − 1)𝑦′(𝑘) 

                 𝑊(𝑘) = 𝑊(𝑘 − 1) + 𝑒′(𝑘). 𝑔(𝑘)𝐻 

                 End for 

Consider a sequence of independent n-dimensional random data vectors{𝑥(𝑡)}𝑡∈𝑍, 

whose 𝑛 × 𝑛 correlation matrix 𝐶𝑥𝑥(𝑡) is estimated by applying an exponential 

window to the data, leading to the update 

                                𝐶𝑥𝑥(𝑡) =  𝛽𝐶𝑥𝑥(𝑡 − 1) + 𝑥(𝑡)𝑥(𝑡)𝐻.                                    (3.46) 

Where 0 <  𝛽 <  1 is the exponential forgetting factor. As mentioned in [35], the 

generalized Rayleigh quotient is maximized (resp. minimized) when the subspace 

weighting matrix W(t) spans the principal subspace (resp. the minor subspace) of 

𝐶𝑥𝑥(𝑡). Unfortunately, implementing this optimization over all orthonormal matrices 

is computationally demanding, and does not lead to a simple recursion between W(t) 

and W(t −  1). In order to reduce the complexity, the implementation of YAST 
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proposed below recursively performs this search within the (r + 1)-dimensional 

subspace spanned by 𝑊(𝑡 −  1) and 𝑥(𝑡). 

Let Π(𝑡) be the orthogonal projector on the augmented subspace, and 𝑊(𝑡) an 𝑛 ×

(𝑟 + 1) orthonormal matrix such that 

                                         Π(𝑡) = 𝑊(𝑡)𝑊(𝑡)𝐻.                                                    (3.47)  

Then any r-dimensional subspace of 𝑠𝑝𝑎𝑛(𝛱(𝑡)) can be represented by the orthogonal 

projector 

                                      Π(𝑡) =  Π(𝑡) − 𝑣(𝑡)𝑣(𝑡)𝐻.                                             (3.48)  

Where the unitary vector 𝑣(𝑡) belongs to the range space of Π(𝑡). In particular, 𝑣(𝑡) 

can be written in the form 

                                           𝑣(𝑡) = 𝑊(𝑡)𝜙(𝑡).                                                      (3.49) 

Where 𝜙(𝑡) is an (r + 1)-dimensional unitary vector. Substituting equations (3.47) to 

(3.49) into generalized Rayleigh quotient [35], the criterion to be optimized can be 

rewritten as 

                       𝒥(Π(𝑡)) = 𝑡𝑟𝑎𝑐𝑒 (𝐶𝑦𝑦(𝑡)) − 𝜙(𝑡) 𝐻𝐶𝑦𝑦(𝑡)𝜙(𝑡) .                        (3.50) 

Where 𝐶𝑦𝑦(𝑡) is the (𝑟 +  1)  ×  (𝑟 +  1) matrix 

                                       𝐶𝑦𝑦(𝑡) = 𝑊(𝑡) 𝐻𝐶𝑥𝑥(𝑡)𝑊(𝑡).                                       (3.51)  

According to equation (3.50), 𝒥 is maximized (resp. minimized) when 𝜙(𝑡) is the 

minor (resp. principal) eigenvector of 𝐶𝑦𝑦(𝑡). Finally, given the new data vector 𝑥(𝑡), 

the YAST algorithm updates the previous subspace weighting matrix 𝑊(𝑡 − 1) by 

successively computing 

1) An orthonormal basis W(t) of the augmented subspace; 

2) The compressed matrix 𝐶𝑦𝑦(𝑡) defined in equation (3.51); 

3) The principal or minor eigenvector 𝜙(𝑡) of 𝐶𝑦𝑦(𝑡) (for MST or PST resp.), and a 

basis 𝑊′(𝑡) of the range space of the projector Π(𝑡) defined in equation (3.48); 

4) The r × r compressed matrix 𝐶′
𝑦𝑦(𝑡), defined as 

                                      𝐶′
𝑦𝑦(𝑡) = 𝑊′(𝑡) 𝐻𝐶𝑥𝑥(𝑡)𝑊′(𝑡).                                          (3.52) 
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Which will permit a fast calculation of 𝐶𝑦𝑦(𝑡) in step 2). 

The convergence of this YAST algorithm is proved and a fast implementation is 

proposed in [35]. The complete pseudo-code of YAST is summarized in table.3.3. 

 

 

TABLE.3.3: YAST Algorithm 

𝐼𝑛𝑝𝑢𝑡: 𝑥(𝑡) 

𝑦(𝑡)  =  𝑊(𝑡 −  1)𝐻𝑥(𝑡)  

                                           𝑒(𝑡)  =  𝑥(𝑡)  − 𝑊(𝑡 −  1)𝑦(𝑡)  

𝜎(𝑡)  =  ‖𝑒(𝑡)‖2 

𝑖𝑓 𝜎(𝑡)  ≠  0 

𝑢(𝑡)  =  𝑒(𝑡) / 𝜎(𝑡)  

𝑥′(𝑡)  =  𝐶𝑥𝑥(𝑡 −  1) 𝑥(𝑡)  

𝑦′(𝑡)  =  𝐶𝑦𝑦(𝑡 −  1) 𝑦(𝑡) 

𝑦′′(𝑡)  =  𝑊(𝑡 −  1)𝐻𝑥′(𝑡)  
𝐶𝑦𝑦

′ (𝑡)  =  𝛽 𝐶𝑦𝑦(𝑡 −  1)  +  𝑦(𝑡) 𝑦(𝑡)𝐻  

𝑧(𝑡)  =  𝛽 (𝑦′′(𝑡)  −  𝑦′(𝑡))/𝜎(𝑡)  +  𝜎(𝑡)𝑦(𝑡)  

𝛾(𝑡) =  𝛽 
𝑥(𝑡)𝐻𝑥′(𝑡)– 2ℜ(𝑦(𝑡)𝐻𝑦′′(𝑡)) + 𝑦(𝑡)𝐻𝑦′(𝑡)

𝜎(𝑡)2
+ 𝜎(𝑡)2 

 

𝐶𝑦𝑦(𝑡) = [
𝐶𝑦𝑦

′ (𝑡) 𝑧(𝑡)

𝑧(𝑡)𝐻 𝛾(𝑡)
] 

If Principal Subspace Tracking 

(∅(𝑡), 𝛾(𝑡)) = 𝑚𝑖𝑛{𝑟𝑖𝑔(𝐶𝑦𝑦(𝑡))} 

Else if Minor Subspace Tracking 

(∅(𝑡), 𝛾(𝑡)) = 𝑚𝑎𝑥{𝑟𝑖𝑔(𝐶𝑦𝑦(𝑡))} 

End if 

[𝜀(𝑡)𝜙′(𝑡)𝑇 , 𝜑(𝑡)]𝜃(𝑡) = 𝜙(𝑡)𝑇   

𝑒1(𝑡)  =  −𝑒𝑖 𝑎𝑛𝑔𝑙𝑒(𝜙′1(𝑡))[1, 0 . . . 0]𝑇  

𝑎(𝑡)  =  
𝜙′(𝑡) − 𝑒1(𝑡)

‖𝜙′(𝑡) − 𝑒1(𝑡)‖2

 

 

𝑏(𝑡)  =  𝑊(𝑡 −  1) 𝑎(𝑡)  

𝑄(𝑡)  =  𝑊(𝑡 −  1)  −  2𝑏(𝑡)𝑎(𝑡)𝐻  −  𝜀(𝑡)𝑢(𝑡) 𝑒1(𝑡)𝐻 

𝐷(𝑡)  =  𝑑𝑖𝑎𝑔(1/‖𝑞1(𝑡)‖2, 1 . . . 1)  
𝑊(𝑡)  =  𝑄(𝑡)𝐷(𝑡)  

𝑎′(𝑡)  =  4𝐶′𝑦𝑦(𝑡)𝑎(𝑡)  −  4 (𝑎(𝑡)𝐻𝐶′𝑦𝑦(𝑡)𝑎(𝑡)) 𝑎(𝑡) 

𝑧′(𝑡)  =  2 𝑧(𝑡)  −  4(𝑎(𝑡)𝐻𝑧(𝑡))𝑎(𝑡)  −  𝜀(𝑡)𝛾(𝑡)𝑒1(𝑡) 

𝐶′′
𝑦𝑦(𝑡)  =  𝐻𝑒𝑟𝑚(𝐶′

𝑦𝑦(𝑡)– 𝑎′(𝑡)𝑎(𝑡)𝐻– 𝜀(𝑡)𝑧′(𝑡)𝑒1(𝑡)𝐻) 

𝐶𝑦𝑦(𝑡)  =  𝐷(𝑡)𝐶′′
𝑦𝑦(𝑡)𝐷(𝑡) 

      End if 
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4. SIMULATION RESULTS 

In this chapter, results of the simulations which have been performed in this thesis 

study are introduced. In this thesis, simulations are performed to present STAP 

performance of different MIMO radar configurations. At first we compare adapted 

patterns for optimum STAP of SIMO and MIMO radar.  In this comparison we use 

simple matrix inversion method for different type of MIMO and SIMO radar 

configuration. Next, we demonstrate adapted pattern of MIMO STAP for the first time 

using FAPI algorithm which was proposed earlier in [39]. At the end we propose the 

fast and stable YAST algorithm for STAP in MIMO radar and we compare adapted 

patterns of FAPI and YAST. 

In this section, a model is configured for the waveforms received by an airborne 

pulsed-Doppler radar antennas. In this model an array antenna is implanted on radar 

platform and there is an independent receiver channel (match filter) behind each 

element. The received signals will generally include a factor due to receiver noise and 

may include factor due to both desired object and undesired interference. Here, 

interference defines either clutter, jamming, or both. The outcomes engender here form 

the foundation for the analysis of the different space-time processing technique that 

are explained in the third chapter of this thesis. 

Assumed system is a pulsed Doppler airborne radar. The radar antenna element is a 

uniformly spaced linear array antenna (ULA) including of M transmitter and N 

receiver. The radar platform is flying at an altitude ℎ𝑎 with a constant motion velocity 

vector 𝑣𝑎. The selected coordinate system is depicted in Figure 4.1.  The angle 

variables 𝜃 and ∅ refer to true elevation and azimuth, and not the conventional 

spherical coordinate system angles. 

TARGET: A target is determined as a scattered mobile point that must be discovered. 

The segment of the space time samples at the range gate matching to the target range 

𝑅𝑡 will be derived. Furthermore the target is specified by its elevation 𝜃𝑡, azimuth ∅𝑡, 

speed relative to the radar 𝑣𝑡, and radar cross-section (RCS) 𝜎𝑡. 
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NOISE: Consider that the only noise origination is internally produced receiver noise, 

which is generally present on every channel. Because every antenna has its own 

channel, assume that the noise existent on every antenna are mutually uncorrelated. In 

addition, consider that the momentary bandwidth is wide compared with the PRF. 

Hence, noise samples on each antenna derived at time moment distinct by a nonzero 

multiple of the PRI are temporally uncorrelated.  

 

Figure 4.1: Platform geometry. 

The noise energy is 𝜎2 = 𝑁0𝐵. For goal of this simulation, an appropriate 

normalization is to set 𝜎2 = 1 so that whole signal levels can be cited by their SNR 

per antenna and pulse. 

The noise assumption above is practical only when the prevailing source of noise is 

internally originated receiver amplifier noise. If sky noise is a main generator, a spatial 

correlation may require to be applied into the model above.  

JAMMING: Just barrage noise jamming which produces from airborne platforms or 

ground based at far distance from the radar will be considered. The jamming power is 

considered to fill the radar's momentary bandwidth. The narrowband consideration that 

a waveform's propagation time among the array (time delay) is small compared to 1/𝐵, 

so notice again there is signal correlation among the array. Oppositely, a radar PRF is 
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considered that is significantly short than the momentary bandwidth therefor the 

jamming decorrelates from one pulse to the next. In other words, the jamming is 

temporally uncorrelated from pulse to pulse and spatially correlated from antenna to 

antenna. Thus, jamming perform like a point target or a discrete clutter source 

spatially, but like as thermal noise in time domain. 

CLUTTER:  Radar clutter is usually known as the reflected signals from any 

scatterers believed to be not of strategic significance. For an airborne radar system, the 

ground surface is the main source of clutter and is the only type of clutter to be assumed 

in this simulation. Of the numerous origins of interference, clutter is the most complex 

because it is distributed in both range and angle and is spread in Doppler frequency 

because of the platform movement. In this thesis, a scheme is utilized for the ground 

clutter element of the space time samples for a target range, and the effects of the 

clutter space time covariance matrix are applied. 

Since earth is considered to have zero inherent speed, the velocity of clutter depends 

only to the radar the platform velocity. Ground clutter is distributed in range unlike a 

target. It is extended from the platform altitude to the radar horizon over all azimuths. 

As an estimation to a continuous form of clutter, the clutter echo from each unclear 

range will be considered as the overlap of a large number 𝑁𝑐 of independent clutter 

origins that are equally distributed in azimuth about the radar. The energy of each 

clutter contribution is acquired from the radar equation for ground clutter [36]. 

Different type of the clutter scattering have been suggested, depending on the radar 

frequency, terrain type, polarization, etc. For the configuration in this thesis, the 

constant gamma model [36], 𝜎0 = 𝛾𝑠𝑖𝑛𝜑𝑐, is applied, where 𝛾 indicates the terrain 

dependent parameter and 𝜑𝑐 indicates grazing angle created by the ray from antenna 

to clutter patch and the surface tangent at the clutter patch . 

For simplicity, the assumptions made in this simulation are listed in Table 4.1. In Table 

4.2, airborne radar system parameters, platform and interference scenario are given. 

The platform altitude is 9 km, and the range of interest is 130 km. The clutter-to-noise 

ratio (CNR) is 40 dB. There are two jammers at -40° and 25° . The jammer-to-noise 

ratio (JNR) for each jammer equals 50 dB. 
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TABLE.4.1: Assumption in this model. 

Model Summarization 

Radar System 

Constant PRF waveform 

Constant platform velocity 

Non-relativistic velocities 

Array axis and platform velocity vector lie in the horizontal plane 

Narrowband waveforms and receivers (B « f0) 

Uniform linear antenna array (possibly columns of a planar array) 

Target Model 

Constant velocity  

Point target 

 

Noise Model 

Noise signals on different elements are mutually uncorrelated 

Internally generated receiver noise is dominant source 

Noise decorrelates over a PRI (fr « B) 

Jamming Model 

Only continuous barrage noise jamming is considered 

Jamming may be assumed stationary over a CPI (coherent processing interval) 

Jamming signal decorrelates over a PRI 

Clutter Model 

Number of independent scatterers 

Clutter from a single range approximated by large  

Gaussian intrinsic clutter motion spectrum 

Constant gamma reflectivity model 

ICM (internal clutter motion) spectrum is the same for each clutter patch 
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TABLE.4.2: airborne radar system parameters, platform and interference scenario. 

M=6 , 9 number of transmitter 

N=3 , 6 , 9 number of receiver 

L=18 number of pulse 

fo = 450*1e6 radar operating frequency 

fr = 300 prf in hz 

Gt = 22 transmit gain in db 

Gr = 10 column receive gain in db 

Nc = 360 number of clutter patches 

lambda = c/fo operating wavelength 

dr = lambda/2 interelement spacing 

ha = 9000 platform height in meters 

𝑣𝑎 = 50 m/s platform velocity 

FF   = 3 receiver noise figure in db 

Pn = Nn*B receiver noise power in watts 

Rcik =130k (clutter) range of interest in meters. 

dR = c/2/B radar range resolution 

Re = 6370000 earth radius in meters. 

Ls = 4 system losses in db 

Gel = 4 element gain in db 

𝛾 =N dt/dr    spacing of the transmitting 

antennas/ spacing of the receiver antennas 

thtj = [-40 25] jamer azimuth angles in degrees. 

thtt = 0 phit = 0 target azimuth and elevation 

fdt = 100 target doppler frequency in Hertz. 
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4.1 Optimum Fully Adaptive STAP 

In Figure.4.2 and Figure.4.3 we compare adapted patterns for optimum STAP of SIMO 

and MIMO radar. The expected target is placed at 0° azimuth with Doppler frequency 

100 Hz. in the SIMO context of N=18 receiving elements, M=1 transmitting elements 

and L=18 pulses, β =1. In the MIMO context of N=6 receiving elements, M=3 

transmitting elements and L=18 pulses, β =1 and γ =N=6 ( 𝛾 = 𝑑𝑇 𝑑𝑅⁄   𝛽 = 2𝑣𝑇 𝑑𝑅⁄ ). 

The pattern's mainlobe is at the target location. The jamming is suppressed by the deep 

vertical pattern nulls at the jammer azimuths. These pattern nulls suppress the 

interference at the output to well below thermal noise. 

Figure.4.2: optimum fully adaptive STAP of SIMO radar N=18, M=1, L=18. 

We can view the adapted pattern of 18 antennas in a SIMO radar system obtain only 

with 9 antennas in a MIMO radar. The results showed that compared to SIMO radar, 

MIMO radar could achieve the same STAP performance with fewer physical antennas 

and we will see when the number of antennas is the same, MIMO radar could obtain 

more distinct virtual array elements and have better adapted pattern.               
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Figure.4.3: optimum fully adaptive STAP of MIMO radar N=6, M=3, L=18. 

Figure.4.4 and Figure.4.5 depict the two original cuts of this patterns. The azimuth 

pattern at the target Doppler illustrates the receive beamformer; it represent nulls at 

both the jammer azimuths and the azimuth where the sidelobe clutter and target have 

the same Doppler frequency. The second cut depicts the Doppler Effect at the target 

azimuth. The intense clutter null appear at zero Doppler mitigates mainlobe clutter. 

Jammer and clutter nulls exist at other azimuths do not become visible in this pattern 

cut. 

Once again we can see from principal plane cuts at target azimuth and Doppler that  

the MIMO radar with M+N antenna arrays has the same performance as SIMO radar 

with M*N antenna arrays  and this is due to the advantage of Virtual Receiver Array 

Configuration in MIMO radar. Note that in this MIMO radar we configure the best 

scenario corresponds to the case where transmit and receive arrays share no antennas 

and γ =N. 
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Figure.4.4: Principal plane cuts at target azimuth and Doppler of SIMO radar N=18, 

M=1, L=18. 

 

Figure.4.5: Principal plane cuts at target azimuth and Doppler of MIMO radar N=6, 

M=3, L=18. 
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The results in Figure 4.6 and Figure 4.7 reveal that while we configure MIMO radar 

with the same antenna number used in SIMO one, we obtain better angular resolution 

and higher SNIR. In this MIMO context N=9 receiving elements, M=9 transmitting 

elements and L=18 pulses, β =1 and γ =N=9. Figure 4.6 shows adapted patterns for 

optimum STAP of MIMO radar and Figure 4.7 depicts the two original cuts of this 

pattern. The azimuth pattern at the target Doppler illustrates the receive beamformer, 

it represent nulls at both the jammer azimuths and the azimuth where the sidelobe 

clutter and target have the same Doppler frequency. The second cut illustrates the 

Doppler Effect at the target azimuth. The intense clutter null appear at zero Doppler 

mitigates mainlobe clutter. 

 

Figure.4.6: optimum fully adaptive STAP of MIMO radar N=9, M=9, L=18. 

 

This time we increase the number of pulses in a CPI in MIMO radar and there is no 

change in the number of antennas. Figure 4.8 and Figure 4.9 depict adapted patterns 

for optimum STAP of MIMO radar and two original cuts of this pattern. The azimuth 

pattern at the target Doppler illustrates the receive beamformer. The second cut 

presents the Doppler Effect at the target azimuth. 
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Figure.4.7: Principal plane cuts at target azimuth and Doppler of MIMO radar N=9, 

M=9, L=18. 

 

Figure.4.8: optimum fully adaptive STAP of MIMO radar N=6, M=3, L=36. 
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Figure.4.9: Principal plane cuts at target azimuth and Doppler of MIMO radar N=6, 

M=3, L=36. 

4.2 FAPI Algorithm in STAP 

In Figure 4.10 and Figure 4.11 the performances of the SIMO and MIMO versions of 

the FAPI algorithm are illustrated in the same conditions that those of Figures 4.2 and 

4.3. Figure.4.12 and Figure.4.13 depict the two original cuts of this patterns. The 

azimuth pattern at the target Doppler illustrate the receive beamformer. The second 

cut presents the Doppler Effect at the target azimuth. The intense clutter null appear at 

zero Doppler mitigates mainlobe clutter. Jammer and clutter nulls exist at other 

azimuths do not become visible in this pattern cut. 

It should be noted that in the case of MIMO radar by choosing adequately γ(γ< N ) 

the rank 𝑟𝑀𝐼𝑀𝑂 is smaller than 𝑟𝑆𝐼𝑀𝑂 the rank of  the corresponding SIMO. Indeed, 

while being a reduced rank subspace based technique as the FAPI algorithm, it requires 

much less training snapshots to converge than the SMI method. Contrarily to the SMI 

it also has a low computational cost which is a linear function of the dimension of the 

virtual received signal vector. 
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                     Figure.4.10: FAPI algorithm STAP of SIMO radar N=18, M=1, L=18. 

                

Figure.4.11: FAPI algorithm STAP of MIMO radar N=6, M=3, L=18. 
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Figure.4.12: Principal plane cuts at target azimuth and Doppler of FAPI algorithm 

SIMO radar N=18, M=1, L=18. 

 

Figure.4.13: Principal plane cuts at target azimuth and Doppler of FAPI algorithm 

MIMO radar N=6, M=3, L=18. 



70 
 

Figure 4.14 and Figure 4.15 depicted adapted patterns for FAPI algorithm STAP of 

MIMO radar with N+M=18 (same antennas number with SIMO) and two original cuts 

of this pattern. The azimuth pattern at the target Doppler illustrates the receive 

beamformer. The second cut presents the Doppler Effect at the target azimuth. 

     

Figure.4.14: FAPI Algorithm STAP of MIMO radar N=9, M=9, L=18. 

          

Figure.4.15: Principal plane cuts at target azimuth and Doppler of FAPI algorithm MIMO 

radar N=9, M=9, L=18. 
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4.3 Fast and stable YAST Algorithm in STAP 

In Figure 4.16 and Figure 4.17 the performances of the SIMO and MIMO versions of 

the YAST algorithm are illustrated in the same conditions that those of Figures 4.2 and 

4.3. Figure.4.18 and Figure.4.19 show the two original cuts of this patterns. The 

azimuth pattern at the target Doppler illustrates the receive beamformer. The second 

cut presents the Doppler Effect at the target azimuth. The intense clutter null appear at 

zero Doppler mitigates mainlobe clutter. Jammer and clutter nulls exist at other 

azimuths do not become visible in this pattern cut. 

 

Figure.4.16: fast and stable YAST algorithm STAP of SIMO radar N=18, M=1, 

L=18. 
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Figure.4.17: fast and stable YAST algorithm STAP of MIMO radar N=6, M=3, L=18. 

 

Figure.4.18: Principal plane cuts at target azimuth and Doppler of YAST algorithm SIMO 

radar N=18, M=1, L=18. 
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Figure.4.19: Principal plane cuts at target azimuth and Doppler of YAST algorithm MIMO 

radar N=6, M=3, L=18. 

Figure 4.20 and Figure 4.21 show adapted patterns for YAST algorithm STAP of 

MIMO radar with N+M=18 (same antennas number with SIMO) and two original cuts 

of this pattern. The azimuth pattern at the target Doppler illustrates the receive 

beamformer. The second cut presents the Doppler effect at the target azimuth. 

 

                   Figure.4.20: YAST Algorithm STAP of MIMO radar N=9, M=9, L=18. 
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Figure.4.21: Principal plane cuts at target azimuth and Doppler of YAST algorithm 

MIMO radar N=9, M=9, L=18. 

Figure.4.22 and Figure.4.23 compare fully adaptive performance with FAPI and 

YAST for the example scenario of MIMO radar. Assume SNR 0 dB. Optimum fully 

adaptive space time processing achieves about 25 dB SINR over the most of the 

Doppler space. In the existence of interference condition, optimum fully adaptive 

STAP is granting near maximum gain on target while mitigating both jamming and 

clutter to well below thermal noise. When the target is near 0 Hz or 300 Hz the SINR 

is extremely small, because in this condition the target is near the mainlobe clutter in 

both Doppler and angle. Efficiency decline as the target drop into the corresponding 

null that the application has appointed on the mainlobe clutter. 

The same figures also illustrate the efficiency of FAPI and YAST STAP. The YAST 

and FAPI efficiency is always a little lower than the optimum. Conversely, the form 

of the curve is similar to the fully adaptive technique. Over most of the Doppler space, 

the SINR achieved with FAPI and YAST STAP is about 1.8 dB less than optimum.  
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Figure.4.22: SINR for the optimum and FAPI STAPs. 

 

Figure.4.23: SINR for the optimum and YAST STAPs. 
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