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BIOMECHANICAL MODELING OF GROWTH AND REMODELING
PROCESS IN SOFT BIOLOGICAL TISSUE

SUMMARY

In this work, we constructed a novel collagen fiber remodeling algorithm that
incorporates the complex nature of random evolution acting on single fibers causing
macroscopic fiber dispersion. The proposed framework is different from the existing
remodeling algorithms, in a way that the microscopic random force on cellular scales
causing a rotational-type Brownian motion alone is considered as an aspect of vascular
tissue remodeling. A continuum mechanical framework for the evolution of local
dispersion and how it could be used for modeling the evolution of internal radius of
biaxially strained artery structures under constant internal blood pressure are presented.
A linear evolution form for the statistical fiber dispersion is employed in the model.
The random force component of the evolution, which depends on the mechanical stress
stimuli, is described by a single parameter. Although the mathematical form of the
proposed model is simple, it has been considered that there is a strong link between
microscopic evolution of collagen dispersion on the cellular level and its effects on
macroscopic visible world through mechanical variables. We believe that the proposed
algorithm utilizes a better understanding of the relationship between the evolution
rates of the mean fiber direction and fiber dispersion. The predictive capability of
the algorithm is presented using experimental data. A preliminary version has been
tested by the prediction of the mechanical magnitudes and chemical concentrations
that are given by a fibrin-based gel experiment. For this purpose we apply the
algorithm by means of a finite element framework. The model has been simulated by
solving a single layered axisymmetric artery (adventitia) deformation problem. The
algorithm performed well for estimating the quantitative features of the experimental
anisotropy, mean fiber direction vector and dispersion (κ) measurements under the
strain dependent evolution assumptions. The convergence and uniqueness of the
solutions have been analyzed by altering the initial conditions set for both validation
of the fibrin-gel experiment and artery deformation problem. The uniqueness has been
achieved for the strain based remodeling framework, whereas the results for the stress
based framework is convergent but not unique.
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YUMUŞAK DOKULARDA BÜYÜME VE YENİDEN-MODELLEME
SÜREÇLERİNİN BİYOMEKANİK OLARAK MODELLENMESİ

ÖZET

Biyomekanik genel olarak mekaniğin biyolojiye uygulanması olarak şeklinde
tanımlanır. Temel amacı insan sağlığının ve sağlık şartlarının iyileştirilmesidir. Sağlık
şartlarının iyileştirilmesine yönelik olarak kimyasal ve fiziksel tüm ardalan bilgilerinin
ortak bir paydada birleştirilebileceği sürekli bir ortam ve bağlantılı bir çatı yaratılması
esas odak noktasıdır. Asıl vurgunun genellikle matematik ve biyokimya olması da bu
düşünsel akıştan kaynaklanmaktadır. Doğrusal olmayan sürekli ortamlar mekaniğinin
1940’lı yıllardan sonrası hızlı gelişimi sonucunda elde edilen kinematik çatı, polimer
fiziğinin bulguları ile birleştirilerek biyolojik dokuların davranışına ilişkin ilk rasyonel
sonuçların irdelenmesine fırsat sağlamıştır. Bu sayede daha önce anlaşılamaz görülen
geri dönüşsüz ve karmaşık zaman patikalarına sahip deneysel gözlemlerin, aslında
bir hayli derin analitik bağlantılar içeren öngörülebilir termodinamik bir sistemin
uzantıları olabileceğine dair tespitler artmıştır. Doğa, ve onun bir parçası olan
biyolojik sistemler içsel ve dışsal devinimler altında sürekli olarak daha karmaşığa ve
karmaşıklığın anlaşılmasını bir nebze de olsa kolaylaştıran çok katmanlı yapılara doğru
evrilen bir dinamik eğilim sergilemektedir. Bu evrilmenin yönetici denklemlerine
yönelik temel biyokimyasal anlayışın matematiksel bir dışavurumu olarak Turing’in
morfojen kavramı örnek verilebilir. Bir tepkime-yayılma (reaction-diffusion)
denkleminde yönlendirici tepkime terimi sistemin evrilimini kesinleştirici bir hedef
noktaya yöneltirken, yayılma terimi de bu sistemin yönelimindeki belirsizliği arttıran
bir etkide bulunmaktadır. Biyolojik sistemlerdeki bu ikili (dual) ilişki canlılığın
doğasına yönelik temel bakış açılarından bir tanesidir.

Çok küçük ölçeklerde organların temel yapıtaşı olarak hücreler ve onun dış
ortamını oluşturan hücre-dışı ortam (ECM), hücreler arası kısa ve uzun erimli
iletişimin ve mekanik iç gerilmelerdeki bilgi taşıyıcı unsurların ana kaynağıdır.
Hücreler bu ortam içinde tutunabilmekte, rastgele şekilde hareket edebilmekte
ve içinde bulundukları çevre ile çift-yönlü geri besleme kanalları üzerinden
bulundukları ortamı şekillendirmektediler. Mekanik ortamla etkileşim içinde
bulunan ve ortamdan sağladığı verileri kendi protein sentez mekanizmasına dahil
eden (mechano-transduction) hücreler, salgıladıkları uzun polimer zincirlerini
(kolajen, elastin, fibronektin, GAGs glycosaminoglycans), dokuların dayanımını
optimize edecek şekilde yeniden biçimlendirmektedirler. Bu ortamlar matematiksel
olarak modellenebilmeleri için polimer fiziği kaynaklı hiperelastik (Neo-Hookean)
varsayımların kullanılmasına izin verir. Bir karışım teorisi (mixture theory) üzerinden
üzerinden toplamsal şekilde tanımlanabilen hücresel ortamın mekanik davranışı, aynı
zamanda ortama salgılanan proteinlerin bağımsız olarak incelenebilmesine olanak
sağlamaktadır. Hücrelerin içinde bulundukları ortamın mekanik özelliklerini uzun
vadeli bir biçimde belirlemeleri, dokudaki kütle artışı ve dokunun iç biçim ve
örüntüsünün yeniden-modellenmesi (remodeling), büyüme ve yeniden-modelleme
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(growth and remodeling) başlığı altında incelenmektedir. Büyüyen ve kütlesi
artan bir ortamdaki yoğunluk değişimlerinin evrilimi deformasyon tensörünün ara
konfigürasyonlar (intermediate configuration) üzerinden yapılan tanımlamalarına bağlı
şekilde verilebilir. Biyolojik dokularda kütlesel büyüme yaklaşımlarının türevi olan
kavramların (örneğin yüzey alanı artışı ve fiber uzaması) teorik sınırları artık iyi
bilinmekte olup, günümüzdeki çabaların odak noktası fenomenolojik kavramlardan
mekanistik yaklaşımlara doğru kayarak, biyolojik sistemlerin bir hayli karmaşık,
transkripsiyon süreçlerini de içeren sinyal-patikalarının derin ardalan ilişkilerine doğru
ilerlemektedir. Fenomenolojik yaklaşımlarda ise, makroskopik mekaniğin kabullerine
dayanılarak büyüme ve yeniden modelleme çalışmalarının ayrım sınırları çizilmiştir.
Buna göre büyüme kütle artışını içeren bir değişme ve yeniden-modelleme ise doku
içi örüntüyü tanımlayan matematiksel büyüklüklerin zaman evrilimine yönelik sürekli
ortamlar mekaniği yorumundan oluşmaktadır. Biz bu çalışmada büyümenin sınırlı
kaldığı ve yeniden-modelleme olgusunun dokunun iç mekanik gerilme durumunu
önemli ölçüde belirlediği bir durumda, yapısal tensörlerin evrilme denklemlerinin
hangi formlarda tasvir edilebileceği üzerine eğilmekteyiz.

Bir serbest enerji denklemi aynı zamanda doku içinde gömülü bulunan tercih edilen
yapısal yönlerin (preffered structural direction/orientation) objektif bir fonksiyonudur.
Dokudaki uzun vadeli değişimlerin mekanik kökenleri bu tercih edilen yönlerin
termodinamik ve kinematik kısıtlar altındaki evrilme denklemleri ile ilişkilidir. Bu
evrilme denklemleri, örneğin, kalp-damar sistemi hastalıklarının patolojik kökenlerine
ait kavramların ayrıştırılması için kullanılmaktadır. Sıvı mekaniğinin genel
varsayımlarından yaralanıldığında, yüksek tansiyon altında, damar dokusundaki uzun
vadeli değişimlerde tercih edilen kolajen lif yönlerinin dokunun yeniden yapılanması
için önemli olduğu görülür. Buradaki yapılanma kavramı karşım teorlerinde kullanılan
protein yarı ömrü ile yakından ilişkilidir. Buna göre lifler zaman içinde ön-gerilmeli
(pre-strained) bir şekilde ortamda yapılanırken, mekanik haberleşme ile tetiklenen
bir moleküler-patika (MMP,TIMP,TGF−β pathways) ile proteinlerin çözünmesi ve
gerilmenin evrilmesi sağlanabilmektedir. Bu mekanik konfigürasyonlar arasında
geçmişe gecikmeli-bağımlı (viscous) bir sürecin oluşmasını sağlar.

Her ne kadar kolajen liflerin kütlesel veya hacim oranı artışının modellenmesi (volume
fraction) önemli ise de, matematiksel açıdan kolajen liflerin yöne bağlı (anisotropic)
ve yönden-bağımsız/izotropik (isotropic) evrilme özelliklerinin incelenmesi kritiktir.
Bunun nedeni liflerin izotropik yapılanma evriliminin iç gerilmelerin büyüklüklerine
olası katkısıdır. Son 30 yıldaki deneysel veriler, doku içindeki yük taşıyıcı
makro-moleküllere ait saçılımın izotropik kısmının doku mekaniğinin asli bir unsuru
olduğunu ve iç-gerilme üzerinde etkili olduğunu göstermiştir. İç gerilmenin
yeniden-modellemeye bağlı evriliminin tam olarak anlaşılabilmesi için yük taşıyıcı
unsurların saçılımına ait izotropik komponentin evrilimine ilişkin bütüncül bir
yaklaşım gereklidir. Burada bütüncülden kasıt hücrenin bireyselliğinin ortadan
kaldırılarak (çoğu deneyde bireyseldir) eylemlerinin içinde bulunduğu ortam ile eşanlı
ve geri-beslemeli bir biçimde incelenmesi ve ortamda meydana gelen değişimlerin
hem makroskopik (tissue scale) hem de mikroskopik (cell scale) ölçekteki biyolojik
amaç ve hedeflerinin incelenmesini gerektirmektedir. Benzer şekilde bu algoritmaların
hesaplamalı özelliklerinin, olguların karmaşıklığı altında hızlı sonuç vermesinin önünü
açacak yeni yaklaşımlara da ihtiyaç bulunmaktadır.
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Günümüzde kolajen lif saçılımının hesaplamalı modellerine yönelik genel uygu-
lamalar lif öğelerinin ayrı doğrultular olarak ele alınarak, herbir doğrultuya ait
evrilme denkleminin sonuçtaki toplamsal bir serbest enerji formunun içine gömülmesi
şeklindedir. Bu yaklaşım açısal integrasyon (angular integration AI) olarak bilinir.
Günümüzde sık kullanılan, hesaplama yükü ağır, fakat gerilme doğrultularından
bağımsız gürbüz bir yöntemdir. Kolajen liflerin saçılımının evrilmesine yönelik ikinci
temel yaklaşım ise yapısal tensörün ayrık kolajen liflerin bir toplamsal gösterilimi
şeklinde betimlenmediği, lif dağılımının doğrultulanma yoğunluk fonksiyonuna
(orientation density function) bağlı az sayıda parametre üzerinden, genelleştirilmiş
yapısal bir tensör (generalized structural tensor (GST)) ile tanımlanmasıdır. Bu
yaklaşım kullanılarak hesaplama yükü azaltılabilir. Damar kolajen liflerine ait
yapısal tensörün genelleştirilmiş formaları her ne kadar belirli bir dağılım formu esas
alınarak türetilse de, bu varsayım deneysel veriler ile tutarlıdır. Saçılım için tek bir
parameter gerektiğinde model yaklaşımı κ−GST ile betimlenebilir. κ−GST yaklaşımı
tek eksenli gerilme durumları için gürbüz değilse de, çift eksenli gerilmelerde,
gerilmelerin oranının birbirine yakın olduğu durumlarda gürbüzdür. Bu nedenle damar
sisteminin eksenel-bakışık silindirik geometrilerinde kullanılabilmektedir. Kolajen
liflerin κ−GST zaman evrilim denklemleri için ise mikroskopik kaynaklı gözlemler
kullanılabilir. Buna göre uzun zaman adımlarına sahip ara konfigürasyonların
evriliminde lif rotasyonunun mikroskopik denklemlerine bozucu bir terim eklenerek,
makroskopik evrilimdeki etkileri gözlenebilmektedir. Bu durumda saçılım evriminin,
tercih edilen yapısal ortalama yönün (mean preferred structural direction) evrilimine
göre daha hızlı dengeye varması beklenir. Bu yaklaşım makroskopiktir ve olgunun
hızlı değişen alt öğelerinin (örneğin kimyasal) daha üst ölçeklerdeki yansımaları
ihmal edilmektedir. Aynı zamanda bu bozucu etkiler bir kuvvet terimi gibi
evrilim denklemlerine toplamsal olarak etki edebildiğinden, bozucu terim ile onun
makroskopik yansıması arasında bir geçiş fonksiyonu tanımlayacağı göz ardı
edilemez. Bu geçiş fonksiyonu en basit şekli ile bu tez kapsamında verilmiştir.
Fonksiyon bozucu etkilerin doku içindeki mekanik bir tanımlayıcısıdır.

Bu çalışmada, biz, mikroskopik fiber dağılımının karmaşık doğasını tanımlayan
özgün bir kolajen fiber yeniden-modelleme algorithmasını, canlıların biyomekaniksel
gelişiminin daha iyi anlaşılması için önermekteyiz. Burada önerilen form varolan
algoritmalardan farklı olarak, mikroskopik ölçekteki rastgele etkiler sonucu ortaya
çıkan açısal tipteki Brownian hareketin kendisinin, damar yeniden-modellemesinin
asli bir unsuru olduğu şeklindeki bir yaklaşımı savunmaktadır. Yerel saçılım
dinamiklerinin sürekli ortamlar mekaniği çatısına dayalı evrimsel yapısına ait
bir model, kan basıncına maruz kalarak iki yönlü eksenel kuvvetler altında
gerilen damarın yarıçap değişmini modellemek için hangi şekillderde kullanılacağı
belirtilmiştir.

Fiberlerin istatistiksel dağılımını modellemek için doğrusal bir yaklaştırım kul-
lanılmıştır. Değişim denklemlerinin stress uyaranına bağlı rastgele kısmının
modellenmesi için tek parametreden yararlanılmiştır. Modelin matematiksel fomu
basit olsa da, mekanik değişkenler analizi, hücresel düzeyde mikroskopik kolajen fiber
dağılımını ile makroskopik düzeydeki fiber değişimi arasında güçlü bir bağ olduğunu
düşündürmektedir. Önerilen algorithmanın fiber saçılım dinamiklerini ve ortalama
fiber yönünün evrimini aydınlatan bir şekilde, daha iyi bir modelleme aracı oluğunu
savunulmuştur.

xxxiii



İki farklı algoritmik form üstünde çalışılmıştır. Öncül olarak türetilen denklemler sonlu
elemanlar yöntemi kullanılarak fibrin-jel deneyinden elde edilen kimyasal bileşenlerin
tahmini için kullanılmıştır. Integrasyon noktası tabanlı sonlu elemanlar yönteminde
Toplamsal Lagrangian (Total lagrangian) yaklaşımıyla çözülen problemde sonuçlar
düğüm noktalara interpole edilerek verilmiştir. Burada bir hassaslık analizi vasıtasıyla
mekanik simülasyon sonuçları kimyasal konsantrasyon patikasına uydurulmuştur. Bu
model pek çok başlangıç şartı için tekrar edildiğinden gerilme tabanlı algoritmanın iyi
sonuç verdiği söylenebilir.

İkinci model öncül modelin kavramsal çatısının iyileştirilerek yeniden kurgulanması
ile elde edilmiştir. Modelin nümerik kararlılığı ve tekil sonuçları tek tabakalı damar
modelinin şekil değişimi üzerinde gösterilmiştir. Modelin zamana bağlı sonuçları
ve ulaştığı son parametrik değerler, ortalama fiber yönü ve κ dağılım istatistikleri,
gerilme tabanlı uyaran için deneysel gözlemlerle uyumludur. Bu deneysel veriler
çeşitli hastalradan alınan κ istatistiklerinin ortalaması şeklindedir. Algoritma sonuçları
gerilim (stress) ve gerilme (strain) tabanlı denge durum evrilimleri için incelenemiştir.
Gerilme (strain) tabanlı algoritma farklı başlangıç şartları için, beklenen şekilde
aynı denge durumuna evrilmiştir. Bununla beraber gerilim tabanlı algoritma farklı
başlangıç sonuçları için eşsiz olmayan fakat yakınsak sonuçlar sağlamıştır. Sonuç
olarak algoritmanın gerilme tabanlı kullanılması uygundur.
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1. INTRODUCTION

Philosophical principles we live in the world has been inherited from the philosopher

of science Rene Descartes and his period. Rendering rationalism and perceptible

natural phenomena into understandable forms, scientific thinking has been carried out

by fitting the one-way linear reductionist perspective of a scientific approach on to

natural events in the 17th century. Descartes’ famous ’I think therefore I am’ approach

that distinguish the nature and mental processes has led the scientific ideology that all

kinds of natural phenomena can be evaluated via objective reductionist perspective.

Thus, we live in the era of science and the impact of reductionism has been great.

According to this understanding, each natural event should have been divided into

small pieces before an implicit perception. Every piece of nature must be understood

through an explicit objective analysis process supported by experimentation. Then,

implicit knowledge of the natural phenomena should be a summary of functioning as a

mathematical model of the machine frame compatible with the explicitly agreed parts.

This machine analogy, especially via the widespread use of differential calculus after

Newton, is rated as the only acceptable truth within the world of science. Briefly,

the intuition has been replaced by experimental evidence which is an element of the

deterministic Cartesian perspective.

The science of this deterministic and reproducible machine analogy which can be

observed to this day assayed a great success in areas such as physics and chemistry.

Similarly, the reductionist approach has made major advances in biology in which

the experimental approach can be used partly. From the 17th century, accumulated

medical and anatomical information on the human body, intuitively, led researchers to

imagine the human body like a highly detailed machine that converts certain entries to

the outputs. One of the basic principles behind this perception was the fact that living

organisms work in an integrated framework consisting of multi-tiered hierarchical

nested structures. Accordingly, long chain polymers form cellular organelles and

cellular groups form macroscopic organs. Life arises from complex interactions within
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the multi-scaled structure of these organelles and organs. The sources of the diseases

are the predictable disruptions and distortions in the body organs interacting with each

other. For example in this era, Louis Pasteur’s discovery of the role of the single-celled

organisms in the formation of the diseases has made a revolution in the field, especially

in biology and medicine community adopting a reductionist view. Accordingly, the

source of functional disorders seen in the macro-scale could be the ecological problems

at the micro scale, and the way of thinking would have demonstrated the usefulness of

the hierarchical system approach. In this way, the teachings and beliefs of the diseases

based on the reductionist approach has seriously serve medicine current in the 18th and

19th centuries. Diseases were functional disorders, and the largest shareholders were

the interactions at the cellular level.

In fact, Louis Pasteur and his followers were ecological thinkers, and the source of

viability problems encountered by the surge was believed to be the environmental

conditions which have vital importance. Environmental condition is another important

aspect of the evolutionary biology, as being one of the main conceptual tools.

According to the evolutionary perspective, organisms have reached their present

multi-layered structure through a long genetic variation and natural elimination

process. The concept of functional adaptation in gaining this structure should also

be required at the cellular level, in which the concept is seated at the head corner in

the formation of macroscopic phenotype features. In particular, from the examination

of the phenotype characteristics both in terms of biological and mathematical point of

view, it is easy to notice that the first attempts at modeling were carried out in this

context. By the help of a number of isomorphic geometric transformations, Darcy

Thomson has shown that the average phenotype of the same family of animal species

can be explained by the non-linear transformations where its impact in the field of

developmental biology continues even today.

Understanding of the molecular causes of functional adaptation could be proceeded

after the second world war when the advanced imaging techniques in medical

treatments spread and universal behavior of polymer physics (and related phase

transformation phenomena) was clarified. One of the most important conceptual

problems in evolutionary biology is how the energy efficient living systems able

to continue functioning within an extraordinary complex environment that is giving
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Figure 1.1: Conceptual classification of the adaptive forces and their elements that
are common in a thermodynamic system.

rise to the organizational layers appear today. Aside from the animal and plant

kingdom, biological interactions have a high level of complexity, even for single-celled

organisms. Considering the structure and form of this complexity, it is away from

linearity, programmed and at the very large scale (planetary scale) is seen to adhere to

certain universal laws.

When systems with life or including life (social, political, economic ) are concerned,

most of the events are seen to be vulnerable to catastrophic conditions and navigating

away from equilibrium. These features also apply to biological systems. According to

Ilya Prigogine, the item ’history’ is located only in humanities such as economics,

sociology, psychology and for biology. There is no history element in the basic

sciences of physics and chemistry. From an evolutionary perspective, history element

in biology, the events are considered to follow a constructive path that requires an

understanding of the premise. As a result, the phenotypes observed in short-term

fluctuations showing a limited change in months and years are, in fact, a snapshot of

the biological formation, representing an evolutionary motion of the system examined

for millions of years. In addition, by observing some chemical reactions, Prigogine

was the first to reveal that chemical reactions may have its own history and may

lead to complex structures in an irreversible manner. According to him, there are

three interdependent basic concepts associated with determining the history path

of dissipative structures: function, structure, and fluctuations (Figure 1.1). Basic

3



determiners for a biological development process are as follows: “structure” is a

continuous or discontinuous physical domain that the problem is being evaluated on.

Without physical laws, the structure is just a conceptual representation of boundaries.

“Fluctuation” is an initial event or triggering activity that gives rise to a continuous

development process. “Functions” are force fields like chemical gradients, magnetic

fields, morphogenetic activities, internal stress-strain fields that are generated as a

result of the boundary conditions (such as mass flux). The shape and intensity

of the fluctuations in the environment have been writing the history of a specific

kind of reaction, and the mathematical form of the reaction is of central importance

here. Turing (1952) showed mathematically that the chemical reactions at the cellular

level could affect the animal’s morphology and give them a new differentiated from.

Diffusion equations, in general, are seen as a function that leads to building a more

stable system, such as heat dissipation. However, the chemicals called morphogens

can exhibit diffusive interactions that lead to highly detailed visual results under

certain boundary conditions. As a result, an irreversible history of chemical reactions

is possible in a way that these reactions are those corresponding to the morphogen

that can influence the animal’s morphology with complex outputs. This is one of

the intersection points of biology and mathematics. Low-dimensional mathematical

equations corresponding to the biochemical processes could produce complex outputs.

Since the second half of the 20th century, the developed non-linear dynamic systems

approach and chaos terms are used for this purpose. Such equations give rise to the

formation of the self-determined unstable orbits, and the future of the system can be

created depending on the trajectory path to evolve into one of these unstable orbits.

For all its complexity, chemical reactions continue at all scales in the cellular viability,

on the large scale, however, it can be expressed by a number of parameters. For

example, the massive growth path of many vertebrates living on the earth’s surface

is the same with a high level of confidence. As a result, on the basis of the evolution

of very complex systems, a small number of variables of the systems owned right to

speak in accessing to the homeostatic state, is one of the basic assumptions of a finite

growth process. In this case, simplicity could represent the complexity of nature. After

this semi-philosophical introduction, now, the context of the cellular level that is the

basic building block of life must be evaluated.
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Cells are the basic building blocks of vertebrate and invertebrate animals and plants.

Cells are closed forms that contain organelles including the nucleus and surrounded

by a phospholipid based membrane containing a viscous liquid. Since the scope of

this thesis is focused more on mathematical evolution and the mechanical strength, the

historical development of the cells has not been discussed. As a brief summary, the

emergence of cellular life is considered to begin with the occurrence of self-replicating

long-chain molecules and information-encoder polymers guaranteeing the transfer of

biological inheritance. Until an unusual ice age covering the whole world, there have

been only single-celled organisms. After this period, an increase in the diversity of life

called Cambrian explosion appeared and it was the turning point for the bio-mechanical

design and organization. The competition among creatures, as they grow in mass,

was moved to a biomechanical field in the same time. The first collagen molecule is

produced in the bodies of marine sponge. With the emergence of embryo, the role

of the mechanical instability as well as the chemicals in the first phase of biological

development has been revealed.

Cells are mechanically stable structures. The geometric shape of eukaryotic cells

and their response to environmental conditions are provided by the bony structures

(cytoskeleton) in the cytoplasm. These structures are the networks of fibers in the

form of protein. One of these structures, which connects the cytoplasm to the plasma

membrane is the actin micro-filaments. Microtubules stabilize the organelles and cell

shape while intermediate filament provides a support for the cytoskeleton.

Because the molecular biology of the cells is an extremely wide area and the scientific

perception includes interdisciplinary concepts, the items included here are for only to

evaluate the terms of the mechanics of cells and the basic elements of biomechanics.

In this case, ’what the biomechanics is’ should be emphasized and in what direction, it

is separated from pure mechanics.

Biomechanics is in general defined as the application of mechanics in biology’.

Its main goal is the improvement of human health and the health conditions. As

for the improvement of health conditions, chemical and physical information of all

backgrounds can be combined to create a common ground associated with a continuum

framework. Therefore, the main emphasis is on the mathematical and physical roof,

geometric boundaries, and biochemical inputs. The continuum domain is related to the
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Figure 1.2: The time-dependent change in structure can be considered as the finite
deformation of a structure, donated by an evolution “function”, where the

initial deformation process is triggered by an external “fluctuation”.

“structure” concept. Thus, the evolution of biological domain includes the perception

of a time-dependent finite deformation of the structure in a quasi-static manner (Figure

1.2). The rapid development of nonlinear continuum mechanics after the second world

war combined with the findings of polymer physics in the 50s and 60s, the first models

of the mechanical behavior of tissue were opened to discussion. For example, Fung has

suggested the existence of a three-dimensional strain energy function by evaluating the

exponential characteristics of the experimental data, giving the term pseudo-elasticity

to the literature

Ψ = c(eQ − 1). (1.1)

Here c is a material constant and Q is a function of elastic strains in tissue. Many

experimental data on the functioning of this simple approach has proved that the

mechanical behavior of complex layered macroscopic soft tissue structures could be

explained by few constants. It is mentioned that at microscopic scales cells and its

external environment making up the extra-cellular matrix are the basic building block

of organs (Figure 1.3). Smaller in scale, the complexity of physical nature changes

greatly. There are 200 kinds of cells in the human body that can be located in 4

main tissue categories: muscle, epithelial, connective and nerve. The cells are in
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Figure 1.3: Spatial and temporal scales that are observed in a growing and
remodeling biological domain (adapted from [2]).

exchange of information with the extracellular matrix environment (ECM) which they

are embedded in, and the formation of the external environment plays an active role

in mobility. Because cells are movable within this environment, they can adhere to a

surface or displace randomly. Therefore, ECM also has an impact on the shape and

orientation of the cells as a two-way relationship. Scientific advances in the last 20

years of imaging techniques have shown that extracellular mechanical pattern is not

independent of the cytoskeletal patterns of intracellular and subcellular organization.

The ECM collagen fiber orientation seems to be connected to the shape of the cells as

a delayed feedback. ECM is composed of various long chain polymers (collagen,

elastin, and fibronectin), glycosaminoglycans (GAGs) and water. GAGs forming

covalent bonds with proteins form proteoglycans. Three basic protein chain that

enables the mechanical strength of ECM are collagen, elastin, and those proteoglycans.

These types of proteins have half-life period which can vary sharply according to

the cell-signaling mechanisms (days or months). In that sense, ECM is a continuum

filler where the propagating mechanical signals are felt with the aid of cell receptors.

Therefore, the degree of formation of a protein, its concentration and geometric

orientation in the ECM are setting items that influence the rigidity and cell-signaling

mechanism. Microscopic anisotropy itself seems to be a basic determiner in the

evolution of the fiber reinforced structural fabrics based on cellular feedback.
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When we examine the current approaches, it is seen that two important mathematical

propositions made on the viability of the growth and development and mechanical

organization are found to be effective in dynamic feedback. (1) Reaction-diffusion

type equations can affect cell behavior with its organization and morphogenetic

effects make complex forms possible. (2) Mechanical conditions perturbed by cells

may lead to distortion and instability. In such cases, the mechanical effects gain

long-range character. Especially in bending situations, the instability helps to transfer

of knowledge mechanically without the presence of chemical morphogens. In the

early stages of the embryonic development of vertebrates, instability is the one the

primary factors of the embryonic growth patterns. These growth patterns are proposed

to be based on a biological terminology, the so-called hyper-restoration hypothesis.

Discussions on this issue have not been finalized.

1.1 Randomness, Cellular Functions, and Cellular Mechanics

Tissue cells are individual entities that can be considered independently from the

environment in which they are embedded in. As a result, when they left from their

environment, under in vitro experiments, the functional behavior they exhibit is similar

to the one in the tissue. This is an indicator of their decision-making behavior and

individuality. By these types of experiments, the complex processes of cells could

be described by simple equations. Some typical well-known animal cell behavior is

briefly discussed here.

Cells can adhere extremely strongly to a surface. Cell adhesion function performs

with a very low number of receptor-ligand bonds, which is unusual that the number

of bonds is so low that the deterministic behavior can not be described by an average

(mean field) model. The behavior is stochastic in nature which is associated with

microscopic scale. The number of receptor-ligand bonds of adherent cells is a discrete,

time dependent and randomly fluctuating variable.

Cells can evaluate local mechanical, chemical or electromagnetic forces to assess

their local environment or they can also develop their own response to eliminate

the effects of these forces. For example, fibroblast cells under cyclic stress may

exhibit rotation perpendicularly to the direction of stretching from outside, or they may

provide buckling on man-made of elastic material. Similarly, cells move randomly in
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the direction of the cathode under a voltage stress, or they can follow the chemical

gradient signals. Most of these examples are based on well-known experimental works

that investigate the mechanism of cellular movement.

The basis of the facts mentioned here is the existence of molecular motor dynamics that

enable cellular motion. Cellular movement and orientation are one of the basic features

of life. Indeed, Taber said it well: “During many cellular processes, cell movement is

more important than cell division. ...abnormal cell division is bad, but abnormal cell

motion is often worse (metastasis)”. Just as in adhesion events (and in numerous other

cellular processes), cellular orientation movement features the basics of the Brownian

nature. For example, the fundamental dynamics of the cellular engine model called

Brownian Ratchets use the rectified energy of Brownian motion. This probabilistic

approach has played a crucial role in the understanding of a number of other low-level

processes. For example, it is taking place around the cell membrane, such as protrusive

filopodia and lamellipodia events. Filopodia is an event governed by the Brownian

nature, which is important for the modeling of cellular migration. Animal cells can

also detect the long-range behavior of other cells by means of elongate protrusions.

In this case, cell movement patterns have led to the utilization of a biharmonic partial

differential equation that belongs to a special type of diffusion equation. The overall

perspective is that this form of cellular movement is an anisotropic diffusion. Today,

Brownian effect became one of the basic assumptions to model the cellular motion.

1.2 Purpose of Thesis

Mechanisms of cell’s actions can be considered within a holistic approach with its

environment where their individuality is abolished. The evolutionary changes that

occur in that environment will require an examination of both the microscopic and

the macroscopic scale biological goals and objectives. In this case, basically, three

different evolutionary processes can be reduced to mathematical equations seen gliding

through layered structures for living tissues. These include a description of the

mass increase called as growth, the changes in the internal structure of the material

properties and forms called as remodelling, and the morphogenesis in which the

epigenetic concepts and genetic elements have an impact on the morphology of the

living things. The first two of these concepts are inseparable since the conversion
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Figure 1.4: As being the three main conceptual phenomena, growth-remodeling and
morphogenesis give rise to the ontological formation of biological pattern

formation and development.

reaction of substances in different phases with each other is related to both growth and

remodelling at the cellular level. Nevertheless, the concepts are interrelated with each

other and there is feedback (Figure 1.4). In this study, by evaluating the mathematical

findings of developmental patterns that have been developed so far, and by making

an interpretation of the randomness observed at the cellular level inside the animal

tissue, how this randomness should be shown in the macroscopic constitutive equations

has been discussed. Here, as an important element, the distorting effects called the

random Langevin force is considered to be an essential and a new kind of internal

tissue force similar to the concepts of strain and stress. The tissue is evolving to an

optimal state of equilibrium through the measurable outcomes of Langevin force, by

adjusting its internal structure. The validity of the situation has been analyzed with

some experimental data. Another case presented here is that the randomness of the

small scale affects the optimal situation on the large scale, and a mathematical form

called ’transfer function’ is a clear and pure representation of this effect.

Evaluation of this present work states that, in particular, the randomness of events and

its properties inside the tissue, affects the structural changes for the future. This is

the collagen fiber remodelling managed by fibroblasts in vascular tissue. In the body,

the remodelling includes the mechanochemical events involving an intense feedback

which depends on environmental factors. These events, intracellular and extracellular

processes, in some cases (e.g., diseases) also, create an irreversible memory of the

tissue history by configuring the structural pattern. Structural characteristics of the
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tissue stored in its history can be traced to a certain extent by mathematical techniques.

An important part of this modelling techniques has now brought proposals for the

dynamics of the fiber dispersion mechanisms for the patterned texture. However,

the undeniable presence of Brownian phenomena in microscopic scales affecting

the overall characteristics of the subject of equations was not addressed in any way

connected with the macroscopic constitutive equations. One of the reasons may be

the simplifying assumptions in the macroscopic constitutive equations as an imitation

of the unifying theories. However, as indicated by Stuart Kauffmann advocating the

exploratory phenomenological approach, evolutionary steps are very dependent to the

current reference, and to biology, a ’grand unified theory’ does not exist. It may be

the only thing to do then, it is to create a form compatible with the microscopic and

macroscopic equations.

The reason that we’re working on the area of vascular tissue is the fact that this is

one of the most apparent places of the randomness in the formation of collagen fibers’

distributional structure. Especially after the 90s, since the structural randomness within

the tissue is known to affect stresses significantly, related works have been concentrated

on this subject. In addition, the diseases associated with the blood vessels and veins

are the cases with high mortality, however, unlike cancer, clinical findings for vascular

diseases indicate that the mechanical ones are much more effective than other factors.

Similarly, the geometric boundary conditions of blood circulation are very clear. This

means that the effects of the anomalies under the relevant boundary conditions may

be dominant on the behavior of the fluid and the constitutive equations rather than

chemical reactions. Such that, the source of the diseases suggest that the main reason

can be the geometric perspective (curvatures, bifurcations).

Considering the trend underlying biomechanics is to improve people’s health

conditions, in particular, it is important to know how they appear and spread in the

form of the diseases. Since collagen is found in abundance in the human body, diseases

related to its deficiency reduce the quality of life seriously. Such as Keratoconus

is a genetically oriented corneal disease that occurs in the eyes predisposing to the

development of irregular collagen fibril evolution which causes the thinning of the lens

continuously. Although riboflavin injection stops the disease, it is not possible to return
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to a completely healthy condition. Similarly, Marfan syndrome is a disease of genetic

origin characterized by the highly scattered irregular collagen fiber patterns in tissue.

Pathological conditions that are related to the growth and development of collagenous

vascular tissue is a vital concept and it is very common in society, due to the fact

that the problems are an extension of epigenetic factors rather than the genetic ones.

The age, as being an important factor of such diseases, is an important ingredient of

the technical assumptions made on the elasticity and the mechanical strength of the

tissue. For example, cardiac hypertrophy occurs as a result of the loss of elasticity

under the pressure load in the face of long-term hypertension. On the other hand, our

main consideration is the aneurysm phenomena.

An aneurysm is a focal dilatation of the arterial wall structure. Although a certain

pathogenesis is not known, degeneration in a portion of vascular tissue followed by a

time-dependent reduction of medial smooth muscle cells is believed to be the triggering

factor. A typical example is the intracranial saccular aneurysm that occurs near the

Circle of Willis. Another example is the abdominal aortic aneurysm (AAA) which is

very common in industrial societies (9% of the population). Clinical and computational

works state that the main reason of the pathology is due to the mechanical factors. The

vascular lesions’ position relative to the blood flow line may influence the rupture

potential. Heterogeneous distribution of the wall shear stresses on the artery face

can trigger the local weakness by affecting the levels of collagen production locally.

In both vascular diseases, the concentration and the orientation of collagen fibers

within configurations change the course of the disease over time and determine the

patient’s life expectancy. Simple and computational efficient ways that give rise to the

identification of predictive mechanisms are important from a mathematical point of

view, which is the aim of observing the physical relationships.

1.3 Literature Review

Biological adaptation is a crucial element of complex evolutionary processes observed

in the life cycle of cellular organisms. An adaptation process, which occurs at

diverse spatial and temporal scales, genetically drives dense feedback mechanisms

including chemical and mechanical information flow. Due to this fact, the long-term

change in morphology by mechanical effects existing in, and adaptation process of,
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biological systems is being investigated through the concepts of growth, remodeling

and morphogenesis ([7]). A noteworthy number of recent works try to analyze the

mechanical nature of growth and remodeling process through evolution equations.

Especially, the random nature of the evolution of tissue structure becomes an important

heading. In order to obtain a predictive computational model, it is essential to include

the effects of microscopic ingredients in the cellular environment (such as proteins,

chain reactions) that act over short time scale.

The mechanical strength of biological materials, soft tissue or engineered scaffolds,

is highly related to the continuous cycle of synthesis and degradation of the

directed macromolecular assembly, such as elastin and collagen fibers, that brings

an anisotropic characteristic. The anisotropy can be seen in each layer of the artery

structure which has a distinctive fiber distribution with an angle of preferred main

direction (see Figure 1.5). It has a high level of ultimate tensile strength where

fibers are embedded in a mechanically isotropic matrix environment. Since the

tensile strength depends on the “load carrying” anisotropic fiber component, it is

expected that in order to balance the external mechanical conditions, the “long term”

remodeling of the tissue structure requires the change in the physical characteristics of

fibers. In natural events, structural change is linked to the mass growth of the tissue.

In pathological cases, the physiological properties of collagen deposition play role

in many diseases. For instance, during the progression of atherosclerosis, smooth

muscle cells have transitions from contractile to matrix synthetic phenotype where

the accumulation of collagen has significant a role in plaque formation. In some

pathologies, such as abdominal aortic aneurysm, not only the deposition of collagen

but also the volumetric growth of the collagenous environment with pre-existing

collagen formation plays an important role. In opposition to the atherosclerotic case,

according to histological observations, tissues having intracranial aneurysm show a

decreased number of endothelial cells, degradation of the internal elastic lamina and

thinning of the medial layer. In advanced cases, the only mechanical barrier between

turbulent blood flow and brain tissue is the very thin adventitia layer. It is believed that

the elastin/collagen fiber reconstitution mechanism plays a major role in aneurysm

wall weakening. Thus, understanding the natural evolution of a collagen-rich tissue

environment, and developing new computational frameworks, have become inevitable
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Figure 1.5: The three layers that are observed in many artery tissues. The layers are
distinctively differentiated from each other by their preferred main fiber

direction and biological elements (from [3]).

in biomechanics. Here, we have limited our considerations to collagen fibers and their

dispersion. In general, the remodeling of collagen fibers oriented towards a certain

direction has two main headings: the fiber volume fraction of the tissue and fiber

reorientation ([8], [9]). The concept of fiber reorientation requires a basic assumption

for the desired homeostatic orientation, which is usually to align in the principal

stress/strain direction. Collagen fibers can be assumed to lie in between principal strain

directions ([10]). Axial and biaxial experiments on collagenous samples have verified

that the rotation of fibers in fibroblast populated regions is triggered by the applied

strain ([11, 12, 13, 14, 15]) and applied stress. [16] developed a strain dependent

theoretical model for the traction-induced formation and organization of collagen

alignment and extra-cellular matrix composition. Since strain is a directly observable

quantity, the rate of rotation and dispersion due to the contractility of fibroblasts

could be measured quantitatively ([11]). Although visual observations state that the

rotation of fibers is related to the rotation of single cells (see [14]), this phenomenon

was recently proposed to be a result of “intracellular” formation of stress fibers (SF)

comprised of F-actin and myosin ([17]). Strain-dependent experiments showed that

14



stress fiber alignment depends on boundary conditions ([18]). Then, the formation of

stress fibers aligned with the collagen fiber directions can be used efficiently for the

modeling of compaction evolution in collagen gels ([19]). The direction of principal

stress can also be selected as the main driving source for reorientation ([20]), due to

the coaxially assumption. To summarize, the axial cellular formation can either be

modeled through the rotation of cells or by evaluating the formation of SF’s based on

principal strain/stress, or both (see for example [21]).

In addition to the concept of orientation towards a homeostatic state, the rate of

remodeling and the existing level of dispersion are crucial for anisotropic models. The

derivation of evolution equations, which incorporate the effects of random structure,

has been one of the major problems so far. In [4], it is proposed that the evolution

of the rotation component and dispersion can be thought as distinct events that

are modeled by first-order differential equations. Here, dispersion is assumed to

be a circular Gaussian, π-periodic Von-Mises distribution, discussed by [22]. An

approach utilizing this assumption can be employed to estimate the fiber dispersion

in cardiovascular tissue components ([9, 23]). The generalized structural tensor (GST)

concept explained by [22, 23, 24, 25] was utilized in the work of [26] to obtain

the evolution equation of a structural tensor. The evolution of tensor forms, that

are based on an exponential strain energy density, is supported by supplementary

variables describing the form of the orientation distribution ([26]). If one tries to

split the microscopic rotation components of the aforementioned structural tensor,

the anisotropic formulation of individual micro level evolution equations should be

present. [27] gave a formulation of evolution equations based on the spherical

integration of individual directions through a stereographic projection. Their technique

adopts the worm-like chain model in which the strain energy depends on persistence

length and thermodynamic variables for the polymer based constituent (see [28]). The

anisotropic microsphere model has been evaluated for collagen remodeling process

by [29]. [30] have shown that, due to the ellipsoid representation of tensorial fiber

orientations, the rate of change in structural tensor can be considered as an eigenvector

evolution determined by the recruitment (transition) stretch. The theoretical work

of [31] concerns the fiber dispersion as a diffusion-like continuum evolution of the

orientation density. The remodeling approach of [19] differs in its point of view with
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an assumption made on linking cellular stress fiber formation to extracellular fiber

alignment. The works concerning the evolution of statistical dispersion assume the

existence of a “deterministic type” evolution form controlling the dispersion that is

supposed to originate from a continuum source.

In this work, we formulated a novel collagen fiber remodeling algorithm that

incorporates the complex nature of random evolution acting on single fibers causing

macroscopic fiber dispersion. The proposed framework is different from the existing

remodeling algorithms, such that the microscopic random force on cellular scales

causing a rotational-type Brownian motion alone is considered as an aspect of vascular

tissue remodeling. A continuum mechanical framework for the evolution of local

dispersion and how it could be used for modeling the evolution of internal radius of

biaxially strained artery structures under constant internal blood pressure are presented.

The chapters are organized as follows: In chapter 2, we explain the basic mathematical

definitions that are commonly used in continuum biomechanics. In chapter 3, common

mathematical approaches utilized in growth and remodeling phenomena have been

described. In chapter 4, we have proposed a preliminary formulation of a linear

evolution equation for the statistical fiber dispersion based on random perturbation

term. In chapter 5, an extended version of the preliminary formulation has been given.

The numerical solution scheme used for an axisymmetric deformation problem, and

the parameter sets in tabular form used in simulations, are presented. The simulation

results are displayed and explained. We discuss some validity concepts and future

directions in chapter 6.
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2. THEORETICAL BACKGROUND

2.1 Kinematics and Analysis of Deformation

Kinematics deal with the analysis of motion and deformation without referencing the

cause of the event. Then, natural laws and interpretations are out of consideration,

while geometric principles and physical analogies of abstract mapping functions are of

interest. In the field of biomechanics, hard tissue elements can be modelled by linear

material laws. In these cases, the infinitesimal assumptions made on strain give rise

to the neglection of any kind of geometric motion. On the other hand, soft tissues

often exhibit large deformation characteristics, not infinitesimal but, finite magnitudes.

Large rotations or “large” translations of material space vector X in Ω0 are a part of

geometric nonlinearity. Materials having linear stress-strain curves undergoing large

deformations also belong to the nonlinear continuum analysis. Nonlinear continuum

mechanics basically includes the headings below ([32]):

• the study of motion and deformation (kinematics)

• the study of stress in a continuum (internal forces)

• the material description of the fundamental laws of physics governing the motion

of a continuum body (balance principles).

Our aim here is to represent the logical flow of the mathematical basis and definitions

related to the derivation of constitutive equations for the growth and remodeling

phenomena. Secondly, it is important to understand how biological modelling

approaches are based on a continuum hypothesis and which apriori assumptions are

made for the simplification of the framework.

The basic assumptions for a continuum body can be related to the concept of

the nonfluctuating (at least piece-wise continuous) field variables, such as density,
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temperature, and stress where one has the ability to track the gradient of a searched

quantity.

2.2 Continuum Mass, Force, and Stress Concepts

The main focus here is on the evaluation of the continuity and physical characteristics

of the investigated domain Ω which can be scaled down to the degree of atomistic

level. In the case of negligible level of density fluctuations, the whole domain can

be evaluated as a whole unique subset where the same principles of the basic laws

of physics are valid. These laws are generally in a Newtonian manner where the

exact deterministic evolution of the system could be determined. Beyond atomistic

levels, through much smaller scales, the Newtonian assumptions are not valid and

field equations are derived to cover the underlying uncertain nature of the subatomic

relationships. Here, in this work, the concepts are limited by the boundaries of

atomistic scale, and our main aim will be to discuss the cellular and tissue scale

continuum events. For this purpose, the basic concepts of the physical laws, balance

principles and the logical connections of these principles with a phenomenological

description of the living organisms should be discussed. Continuum assumption

provides a computational modeling approach without dealing the complex hierarchical

micro-structure of the domain. That is why the phenomenology discussed here is often

considered as a macroscopic approach.

2.2.1 Continuum bodies

The ignorance of the density fluctuations of the physical domain greatly simplifies

the analytical description of basic laws. By assuming an infinitely divisible material

domain, we obtain a homogeneous open subset B of Euclidean space E3 as a moving

frame in Cartesian space. Each virtual material point X ∈ B on this frame supplies

a neighborhood relationship between different points. B is called the configuration

of the body in E3. All its own material points X = (Xi) ∈ <ndim are represented

according to the natural basis. In this case, B is called “regular” according to,

• B consists of a finite number of open disjoints and bounded components.
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• the bounding surface of ∂B is piece-wise smooth and consists of a finite number of

components.

• each component is orientable since it has two sides.

As a physical property of matter, the quantification of the resistance of matter towards

acceleration, mass density field for a continuum body can be considered as an

integration over an open subset of Ω̊ of Ω. Then, the ’mass density field’ per unit

volume is given by, ρ : Ω→ <+,

mass[Ω̊] =

ˆ
Ω̊

ρ(X)dVX , (2.1)

where dVX denotes the infinitesimal volume element at X ∈ Ω̊. Specifically, the

volume of Ω̊ is,

vol[Ω] =

ˆ
Ω̊

dVX . (2.2)

The mass density field is defined as,

ρ(X) = lim
ε→0

mass[Ω̊ε(X)]

vol[Ω̊ε(X)]
, (2.3)

for ∀ε > 0 and vol[Ω̊ε(X)] → 0 as ε → 0. The concepts does not change for material

frames under continuous motion, where there exists a bijective mapping ϕ for Ω0
ϕ−→ Ωt

and for x −→ ϕ(X). The mass conservation enforces ˙
mass[Ω0] =

˙
mass[Ωt] = 0. If the

density does not depend on X ∈ Ω0 and if ∇ρΩ0(X) = 0, then the configuration is

said to be homogeneous, a typical assumption made in continuum biomechanics.

2.2.2 Force

By definition, there are four basic forces which govern interactions between real

particles. These are the gravitation, electromagnetism, weak nuclear interaction and

strong nuclear interaction. These forces are the body forces acting on each point in a

material space independently from any kind of material mapping ϕ. In relation with the

deformation of a material body, surface forces are exerted on internal surfaces between

separate parts of a continuum body, or an external boundary layer. Body forces depend

on the distance from the source of potential. The external influence of a body force b

is defined by the field b : Ω → V , where Vndim is the set of ndim-dimensional tensor
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space. The resultant force defined on the configuration Ω due to a body force per unit

volume is,

rb =

ˆ
Ω

b(X) dΩ, (2.4)

and the resultant torque on Ω about a point Z is,

torqueb =

ˆ
Ω

(X −Z)b(X) dΩ. (2.5)

The resultant torque vanishes, if the body force is applied to all neighborhood of

material pointsX .

At this point, geometric and functional relationships between two successive

configurations, namely Ω0 and Ωt, have been briefly discussed. The collection of

material particles forms a physical body B surrounded by the boundary layer ∂B.

As body moves from one position to another in space, it occupies a finite number

of successive configurations (regions) denoted by Ω0, . . . , Ωt. All material points in

B will also occupy the translated images of the previous configurations, yielding a

collective motion of the whole domain from one reference configuration Ω0 (also called

initial or material) to the final destination, called the spatial (current) configuration

Ω̃t. For clarity, here and in the following chapters, a configurational variable with the

superscript “tilde” sign ((̃.)) defines a variable in the spatial coordinates. The reference

configuration is furnished by the Cartesian basis E{1,2,3} constructing E3, and a spatial

variable is defined with respect to the basis e{1,2,3} = e3. The detailed concepts of the

curvilinear representations of the configurations with respect to an arbitrary basis set

are omitted. Then, X = (Xi) = XiEi and x = (xi) = xiei and Ei, ei are identical

(i = 1, 2, 3).

If the mapping ϕ is bijective (one-to-one and on-to) in ϕ : Ω0 → Ω̃t, then the

mapping corresponds to a motion of the body. The motion changes the geometric

relationships of the material points giving rise to a smooth deformation. Thus, ϕ is

a deformation map relative to the reference configuration Ω0. Due to the bijection,

material coordinates of a particle have an indirect representation as X = ϕ−1(x) for

x ∈ Ω̃t. Since the distance between any two particles is altered, it can be characterized

by the displacement field u : Ω0 → V ,

u(X) = ϕ(X)−X . (2.6)

The mapping is one-to-one and on-to, det(∇ϕ(X)) > 0, ∀X ∈ Ω0.
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A crucial concept in nonlinear deformation mappings is the “deformation gradient

tensor” which describes the local geometric evolution of a material point X and its

neighborhood Ωε
X . An open ball of radius ε > 0 centered atX0 ∈ Ω0 has been defined

as Ωε
X . Under the deformation ϕ, the point X0 ∈ Ω0 is mapped to x0 = ϕ(X0).

Any relative difference in the geometrical shape caused by the mapping process ϕ :

Ω0 → Ωt in the limit ε → 0 is called the strain at X0. The source of the strain is

the local deformation in the neighborhood of a material point. A technical approach to

characterize the local deformation of a configuration Ωε
X0

is supplied by the definition

of the deformation gradient. The deformation gradient is a second order tensor field

F : Ω0 → V2, which is defined by

F (X) = ∇ϕ(X) . (2.7)

The field supplies information about the local behavior of the deformation ϕ. For

X0 ∈ Ω0, Taylor expansion aroundX0 yields,

ϕ(X) = ϕ(X0) + F (X0)(X −X0) +O(|X −X0|2) . (2.8)

Thus, in the local neighborhood of a material point, the deformation gradient depends

on the material configuration, which is in fact a ’two-point’ tensor involving points

from the two different configurations. Formally,

F (X, t) =
∂ϕ(X, t)

∂X
= ∇0x(X, t) =

∑
FiI ei ⊗ EI (i, I = 1,ndim) . (2.9)

Deformation gradient can be inverted,

F−1(x, t) =
∂ϕ−1(x, t)

∂x
= ∇̃X(x, t) , (2.10)

where ∇̃ is defined with respect to the spatial configuration. Due to bijection, the

change in the body volume V0 in Ω0 is related to the volume vat Ω̃t as,

d v = J(X, t) d V0 J(X, t) = det(F (X), t) > 0 . (2.11)

If the motion is affine, F = I and det(F ) = 1, then the motion is called isochoric

(volume-preserving). Deformation mapping not only translates the position of points,

but also affects the deformation related high dimensional tensors. There is a polar

decomposition of the deformation gradient,

F = RU = V R , (2.12)
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where U ,V are the stretch tensors and R is a rotation tensor. Naturally, a vector in

material configuration a0 can be transformed into spatial version ã via ,

ã = Fa0 . (2.13)

Norm of a stretch vector, ‖ã‖ = λ, in spatial configuration is the result of a

deformation, when ‖a0‖ = 1. Similarly, ‖ã‖2 = ‖Fa0‖‖Fa0‖. Then,

λ2 = (Fa0)TFa0 , (2.14)

λ2 = aT0 (F TF )a0 , (2.15)

in which C = F TF is the right Cauchy-Green deformation tensor. C is a symmetric

positive definite tensor defined for each X ∈ Ω0, then aT · C · a > 0 , ∀a 6=
0. An important extension, which is widely used in Fung type materials, is the

Green-Lagrange strain tensor E defined by,

E =
1

2
(C − I) . (2.16)

BothC andE are material tensors. Their spatial counter versions are the Finger tensor

b = FF T , and the Euler-Almansi strain tensor e = 1
2
(I − b−1). The inverse of the

deformation mapping gives the advantage of defining the tensor related quantities in

both configurations via the push-forward and the pull-back operations. For example,

the push-forward operation ϕ∗ = Ω0 → Ω̃t is defined for the Almansi strain,

e = ϕ∗(E) = F−TEF−1 , (2.17)

and the pull-back of the same tensor from spatial coordinates to the material one yields,

E = ϕ−1
∗ (e) = F TEF . (2.18)

Not all deformation mappings cause strain at the spatial configuration. A deformation

is called translation if,

ϕ(X) = X + c , (2.19)

for some constant vector c ∈ V . The deformation is called an extension at X0 in the

direction of a unit vector a, if

ϕ(X) = X0 + F (X −X0) F = I + (λ− 1)a⊗ a , (2.20)
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for some λ ∈ <+. The last equation shows us the appropriate application of the

stretch variable λ on the direction of a. The situation can be analyzed for a general

case via spectral decomposition of the deformation tensorC. Cauchy-Green tensor C

can be represented by its spectral decomposition including an eigenvalue (ΛCi ) and an

eigenvector set (nCi ). Thus,

C =

ndim∑

i=1

ΛCi
(
nCi ⊗ nCi

)
. (2.21)

Lagrangian (material) and Eulerian (spatial) strain tensors have the decomposition,

E =
1

2

ndim∑

i=1

((
ΛCi
)2 − 1

) (
nCi ⊗ nCi

)
, (2.22)

e =
1

2

ndim∑

i=1

(
1−

(
Λbi
)2
) (
nbi ⊗ nbi

)
, (2.23)

respectively. For ΛCi = (Λbi )
−1, it yieldsRTR = I .

While evaluating the time-dependent spatial evolution of a deforming body B, the rates

of the deformation tensor gain attention. The geometric consideration assumes a spatial

dimension 1 ≤ ndim ≤ 3, so the mapping should also cover a time configuration (time

frame) t ∈ I, I = [0,∞) ⊂ <+. Then, the mapping is defined by ϕ : Ω0 × I→ Endim ,

where for each fixed t ≥ 0, ϕt maps the reference configuration onto a selected spatial

configuration, Ωt = ϕt(Ω0). Similar to the displacement field (u), any kind of physical

quantity can be represented with respect to a selected configuration. For example,

chemical density ρc , may be a description in the material coordinates ρc = ρc(X, t)

or in the spatial one ρ̃c = ρ̃c(x, t). The time rate of the spatial field variables should be

evaluated by considering the simultaneously deforming current configuration. For the

spatial chemical field,

˙̃ρc =
∂

∂t
ρ̃c(ϕ(X, t), t) ,

=
∂ρ̃c(x, t)

∂t
+
∂ρ̃c(x, t)

∂x
· ∂ϕ(X, t)

∂t
. (2.24)

The second additional term in equation 2.24 is a result of the simultaneous

deformation. The spatial time derivative concept can be related to the velocity of

the deformation. Assume, ϕ : Ω0 × I → E3 describes the motion of a continuum

configuration Ω. The material (v) and spatial (ṽ) velocity at time t are expressed by

v(X, t) =
∂ϕ(X, t)

∂t
ṽ(x, t) = ṽ(ϕ−1(X, t), t) , (2.25)
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and the acceleration is a = ∂2ϕ(X, t)/∂t2. Formally, for a continuum motion ϕ :

Ω× I→ E3 with the spatial velocity field ṽ, and an arbitrary vector field q̃ = q̃(x, t)

is given by
˙̃
q =

∂

∂t
q̃ +

(
∇̃q̃
)
· ṽ . (2.26)

Similarly, the spatial velocity gradient is given by

l̃ =
∂ṽ(x, t)

∂x
= ∇̃ṽ . (2.27)

The spatial velocity gradient can be decomposed in to its symmetric and

anti-symmetric parts as

l̃ = d̃+ w̃ , (2.28)

where d̃ =
(
l̃ + l̃

T
)
/2 and w̃ =

(
l̃− l̃T

)
/2, are the symmetric and the

skew-symmetric rate of the deformation respectively.

2.2.3 Stress concept

In this section, the concept of stress is summarized. The motion of a continuum

body is a geometric transformation causing strains which has effects on the geometric

positions of continuum particles. Strain creates an internal force field inside the

material, and that should be balanced by a virtual opposing force field. When

external forces are applied on the boundary ∂Ω of the body, internal forces start

acting on the virtual boundary layers ∂Ω′ at any point inside the body. If the body

is continuously deforming, there appears an inside flux of resultant force which brings

out a time dependent traction vector t = t(x, t, ñ) in the direction of the normal

ñ(x, t) ⊥ ∂Ω̃′(x, t). t = t(x, t, ñ) is called the true Cauchy traction vector and

T = T (X, t,n) is the first Piola-Kirchhoff (nominal) traction. Due to the law of

action-reaction, t(x, t, ñ) = −t(x, t,−ñ). The following lines are known as the

the Cauchy’s stress theorem. Let t : N × Ω̃′ → V be the traction function for a

configuration Ω̃′ whose volume tends to zero (N is the set of all normal vectors with

respect to a boundary layer). Then, t(x,ñ) is linear in n, that is, for each x ∈ Ω̃′ there

exists a second-order tensor S(x) ∈ V2,

t(x,ñ) = S(x) · ñ . (2.29)
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The field S : Ω̃′ → V2 is called as the Cauchy stress field for Ω̃′. The relationship

between the Cauchy (σ) and Piola (P ) stresses is given by,

P = JσF−T . (2.30)

Another spatial stress quantity is the Kirchhoff stress tensor τ , and it is related to the

Cauchy stress via the Jacobian of the mapping by,

τ = J σ . (2.31)

In many computational applications, the symmetric definitions of the stress tensors are

crucial for reducing the computational complexity of the simulations. The symmetric

second Piola-Kirchhoff tensor is defined for the material configuration which may be

obtained via the pull-back of the Cauchy stress,

S = JF−1σF−T . (2.32)

For growing biological domains, the Mandel stress is defined with respect to the

coordinate system of the intermediate configuration Ω. It is preferred for the evolution

equations of the internal variables, due to its relationship with the thermodynamic

magnitudes (energetically conjugate pairs). Mandel stressM is defined as,

M = CS , (2.33)

where C is the Green deformation and S is the second Piola-Kirchhoff stress tensor.

In many applications of the developmental biomechanics, the main consideration may

be to determine the maximum stress level at a point x ∈ Ωt in order to evaluate the

excessive loads inside the body. The problem is the determination of the eigenvalues of

a stress tensor. For instance, the equation (σ − Λσi I) ·nσi = 0 yields the characteristic

polynomial

Λσi − I1Λσi + I2Λσi − I3 = 0 i = 1,ndim , (2.34)

with the set of principal stress invariants Ii of the tensor σ,

I1(σ) = tr (σ) ,

I2(σ) =
1

2

((
tr (σ)2)− tr

(
σ2
))

,

I3(σ) = det (σ) . (2.35)
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The spectral decomposition of the stress tensor σ yields

σ =

ndim∑

i=1

σi (n
σ
i ⊗ nσi ) . (2.36)

2.3 Balance Laws

For a consistent analysis of the motion of a continuum body B, the kinematic process

should obey some universal laws that guarantee the existence of an equilibrium

configuration Ω̃t. Since the behavior of the macroscopic continuum elements depends

on the applied internal or external forces, the final equilibrium configuration is

determined by the magnitude of these forces. The effects of the forces may be

absorbed by the body potentially (without heat production) or it may be exerted to

the movement kinetically. At least some quantity, defining the potential or kinetic

behavior of the output, should be preserved to obtain the steady-state equilibrium

conditions. In this section, five fundamental balance laws are analyzed in order to

denote the time-dependent configurational mapping with the consistent universal laws,

where any continuum body does inevitably obey. These are the conservation equations

of the mass, linear momentum, angular momentum, and the stored energy for the

configuration Ω̃t. The fifth law is the entropy inequality. The inequality defines a

definite restriction, a natural boundary, for the thermodynamic processes.

2.3.1 Conservation of mass

Some aspects of mass have been previously discussed in section 2.2. The focus of this

work is in low energy physics, in which the integrity of elemental particles is preserved,

and the mass of continuum domain does not change. Thus, for a closed system B, the

mass of the initial configuration is

mass[Ω̊0] = mass[Ω̃t] > 0 ∀t ∈ I . (2.37)

The principle is called the conservation of mass. Similarly, for ϕ : Ω0 → Ω̃t∈I,

the spatial mass density ρ̃ = ρ̃(x, t) changes with time since d v = J(x, t) d V ,

ρ0(x)dV = ρ̃(x, t) J dV . Thus, for a constant material density ρ̇0 = 0, one obtains

d

d
(ρJ) = ρ̇J + ρJ

(
∇̃ · ṽ

)
. (2.38)
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For the volume preserving motions, ∇̃ · ṽ = 0 equality inevitably dictates ρ̇ = 0 for

J = 1. In many applications of vascular biomechanics, soft tissue is assumed to be

incompressible or nearly incompressible due to the abundance of water.

2.3.2 Balance of linear and angular momentum

Let ϕ : Ω0 × I→ E3 be a deformation field for x = ϕ(X, t), the spatial mass density

is ρ̃ = ρ̃(x, t), and spatial velocity field is ṽ = ṽ(x, t). The total linear momentum L

is defined by the vector valued function L : V → V as,

L(t) =

ˆ
Ωt

ρ̃(x, t) ṽ(x, t) dv =

ˆ
Ω0

ρ0(X, t)v0(X, t) dV , (2.39)

and the total angular momentum J(t) relative to a fixed point x0 is defined as,

J(t) =

ˆ
Ωt

r × ρ̃(x, t) ṽ(x, t) dv =

ˆ
Ω0

r × ρ0(X, t)v0(X, t) dV , (2.40)

for r(x) = x − x0 = ϕ(X, t) − x0 [32]. The time rates give L̇(t) = F(t) and

J̇(t) = M(t) are the forces and moment of the forces. They define two sets of balance

equation as,

F (t) =
d

d t

ˆ
Ωt

ρ̃(x, t) ṽ(x, t) dv =

ˆ
∂Ω

t ds+

ˆ
Ω

b dv , (2.41)

M(t) =
d

d t

ˆ
Ωt

r × ρ̃(x, t) ṽ(x, t) dv =

ˆ
∂Ωt

r × tds+

ˆ
Ω

r × b dv . (2.42)

The necessary and sufficient condition for the linear and angular momentum equations

to be valid is the existence of a tensor field σ, where t = t(x, t, ñ) = σ(x, t) ·ñ. From

the divergence theorem,

t = t(x, t, ñ) = σ(x, t) · ñ , (2.43)
ˆ
∂Ωt

t(x, t, ñ) ds =

ˆ
∂Ωt

σ(x, t) · ñ ds =

ˆ
Ωt

∇̃ · σ(x, t) dv , (2.44)

where σ is the Cauchy stress. Substituting the integration yields,
ˆ

Ωt

(
∇̃ · σ(x, t) + b(x, t)− ρ ˙̃v(x, t)

)
dv = 0 , (2.45)

which can be reduced into the Cauchy’s equation of motion ∇̃ · σ + b = ρ ˙̃v. For a

very slow quasi-static evolution of growing bodies, the acceleration term is assumed to

vanish. Thus,

∇̃ · σ + b = 0 . (2.46)
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If not strictly required, internal body forces (i.e. gravity) is not critical for the long-term

biological changes. Thus, the balance of linear momentum simplifies into the form

∇̃ · σ = 0, pointing the status of self-equilibrium. The balance of angular momentum

is satisfied by the symmetry restriction of the Cauchy stress,

σ = σT . (2.47)

2.3.3 Balance of mechanical energy

The balance of energy can be supposed to be an extension of the Cauchy’s equation of

motion. A dynamic process based on a tensor field σ : Ω̃t → V2 and a deformation

field ϕ : Ω0 → Ω̃t for x = ϕ(X, t) is assumed. Since the whole process depends

on the (σ,ϕ) tuple, the energy based derivations assume that the accumulation of

the internal potential is dynamically influenced by only the stress field. Then, there

is a natural distinction between external and internal energy sources. The external

mechanical power, which is the rate of an external mechanical work is defined by,

Pext(t) =

ˆ
∂Ω̃t

t · ṽds+

ˆ
Ω̃t

b · ṽ dv , (2.48)

is the power of input in a region Ω̃t realized by the system forces (t, b) . The kinetic

energy K in the Ω̃t region is

K(t) =

ˆ
Ω̃t

1

2
ρṽ2dv =

ˆ
Ω̃t

1

2
ρṽ · ṽ dv . (2.49)

The rate of the internal mechanical work Pint in a region Ω̃t created by a stress field is

defined by,

Pint(t) =

ˆ
Ω̃t

σ : d dv =

ˆ
Ω̃t

tr
(
σTd

)
dv . (2.50)

By substituting the previous definitions, the total balance of mechanical energy in the

spatial configuration yields,

d

dt
K(t) + Pint(t) = Pext(t) . (2.51)

Then, ˆ
Ω̃t

1

2
ρṽ2 dv +

ˆ
Ω̃t

σ : d dv =

ˆ
∂Ω̃t

t · ṽ ds+

ˆ
Ω̃t

b · ṽ dv . (2.52)

The balance of mechanical energy in the material configuration is represented by [32],
ˆ

Ω0

1

2
ρ0V

2
0dV +

ˆ
Ω0

P : Ḟ dV =

ˆ
∂Ω0

T · V 0dS +

ˆ
Ω0

B · V 0dV , (2.53)
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where B(X, t) = J(X, t)b(x, t), T (X, t,n0) = P (X, t) · n0 and V 0(X, t) is

the velocity of the deformation field at X . The total energy is conserved during the

dynamical process (σ,ϕ).

2.3.4 Entropy inequality

A continuum configuration which possesses both mechanical and thermal energy is

called a thermodynamic continuum. The time evolution of a continuum is governed

by the state variables, where the relationship between them are described by the

constitutive equations. The second law of thermodynamics sets a physical boundary

for the evolution of thermodynamic systems. The energy transfer from one system to

another exhibits some level of irreversible energy loss (as heat), due to the random

nature and disorder in the microscopic partitions of the system. The total entropy of a

continuum configuration can be expressed by S(t),

S(t) =

ˆ
Ω̃t

η̃(x, t) dv =

ˆ
Ω0

η(x, t) dV , (2.54)

where η̃(x, t) and η̃(X, t) stands for the entropy per unit spatial and material volume.

The second law of thermodynamics known as the Clasius-Planck inequality is

Dint = P : Ḟ − Ψ̇− η Ṫ , (2.55)

whereDint is called the internal dissipation, T is the absolute temperature and Ψ is the

Helmholtz free energy Ψ = uint − ηT , for an internal energy term uint. The (P , Ḟ )

tuple remarks that the dissipative process is a deformation driven one.
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3. EVOLUTION OF STRUCTURAL TENSORS

3.1 Purpose

In this section, a general framework for growing continuum domains which is

influenced by a mass source (or flux) will be discussed. Some references will be

emphasized from the theoretical background in chapter 2. Many equations that

are related to the mass growth is similar to the behavior of any physical field that

belongs to the non-relativistic continuum mechanics. Mass growth may be the reason

for the residual stresses in a biological environment. Thus, an intermediate virtual

configuration Ω is utilized for the volumetric growth cases in order to obtain a

stress-free configuration.

3.2 Constitutive Framework for the General Theory of Growth

The splitting of the time-dependent deformation and motion into an n number of virtual

steps, constructs a virtual configuration set {Ωi}ni=1, is a basic description for the

continuously remodeling continuum bodies. The mass growth in a continuum body

B is considered to be a non-elastic action, where the deformation gradient of the

mapping possesses a permanent residual component. The residual component supplies

information about the inelastic (plastic) strains stored in the deformation field ϕ . A

non-complex description of the deformation field, which is split into its elastic and

plastic parts, can be represented by the multiplicative decomposition, known as the

Kroner-Lee decomposition [33],

F = F eF g , (3.1)

where F is the total deformation gradient, F e is the elastic recoverable part, and

F g is the inelastic growing part of the total deformation. Similar multiplicative

decompositions also apply for nonliving materials such as crystal structures as being

the continua. In Figure 3.1, it is shown that the deformation mapping from the initial

configuration Ω0 to the final one Ω̃t can be decomposed into its elastic and plastic
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Figure 3.1: Representation of the multiplicative decomposition of deformation
gradient into its elastic and growth parts in the configuration space. The

intermediate configuration is assumed to be a stress free one which
permits independent deformation (and evolution) of the individual local
body partitions in the configuration space. Each local body partition is

deformed in a geometrically incompatible way via F g. The final
geometrically compatible body domain is constructed by the elastic

deformation supplied by F e.

parts. There is still a theoretical discussion on the existence of a decomposition

of the deformation mapping (ϕ) itself. However, for computational purposes, the

decomposition of the deformation gradient matrix finds a wide range of application.

Assume that, ϕ is the deformation mapping, such that, ϕ : Ω0 × I → E3 and

ϕ : Ω0 → Ω̃t in which the deformation gradients are F g = ∂x/∂X and F e = ∂x̃/∂x

which yields F e = ∂x̃/∂X in global. The chain rule supplies the mentioned form in

equation 3.1. The decomposition of the gradient is not uniquely defined since arbitrary

rotations between Ω0 → Ω may yield the same unstressed intermediate configuration.

Since, F = F eF g, the polar decomposition yields F = V e (ReRg)U g. For an

isotropic strain energy density function (SED), the stresses inside the body depend on

the principal stretches that are based on Ce = F T
e F e. For simplicity, Rg = I can

be assumed. In this case, the growth part of the deformation gradient depends only on

the stretches that appear on the path of Ω0 → Ω. The simplest case is the independent

isotropic growth of individual local partitions in the Ω configuration, and U g = νI

for ν ∈ <. When the material body is transversely isotropic, the transverse layout

of the fibers enforces the existence of a preferred direction embedded in the fabric

structure. It is usual to assume that the mass growth, which has potential to generate

the additional stresses due to the rotation of the local preferred direction, does not affect
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r(x′)
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Figure 3.2: A mass flux representation based on a virtual configuration Ω which has a
point mass source at x′. The mass flux is assumed to be observed through

the boundary layer ∂Ω with a normal vectorN .

the fabric structure ([34, 35]). Here, we will present the generally accepted settlement

of the continuum theory of open system thermodynamics, balance equations, and the

relationship between the continuum deformation of the material domain (continuum

domain as the “structure”) and the evolution of the fabric structure (remodeling as the

“function”). The mass flux can be evaluated as a physical process where the source of

a mass change in a continuum body B is related to both an external mass flux through

∂Ω and an internal mass source R(x) located at x in Ω. Then, the mass density ρ is

related to the mass sources as,

D

Dt

ˆ
Ω0

ρ0 dV =

ˆ
Ω0

R(X) dV +

ˆ
∂Ω0

Γmass dV , (3.2)

where ρ0 is the mass density in the reference configuration, R is a smooth volumetric

source term and Γmass is the mass flux through the boundary layer ∂Ω, and Γmass is

the mass flux vector defined by a normal vector Γmass = N · Γmass. From Cauchy’s

theorem,
∂

∂t
ρ0(X) = R(X) +∇0 · Γmass , (3.3)

for the material configuration. Piola transformation which yields r(x) = J−1R(X)

uses the Jacobian J of the deformation gradient F (see Figure 3.2). Similarly, in the

spatial configuration, γmass(x) = J−1 F Γmass . The spatial density ρ is related to ρ0

as

ρ = ρ0J
−1, J = det (F ) . (3.4)

It is clear that the current density is determined by ρ0 and J tuple where ρ̇ = 0 is also

possible. The following balance law describes the evolution of ρ as a remodeling event

in Ω̃t

d

dt
ρ(x) = r(x) + ∇̃ · γmass(x)− ρ∇̃ · ṽ(x), (3.5)
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where ṽ is the spatial velocity of the deformation at x ([34, 35]). Then, a density

preserving spatial evolution is described by ([36])

r(x) + ∇̃ · γmass(x)− ρ∇̃ · ṽ(x) = 0 . (3.6)

For an open system thermodynamic equilibrium, the concept of the “reduced” form of

quantities are of special importance ([37]). Similar in rocket movements, the reduced

quantities in an open system correspond to the hot gas flow that is excluded from

the closed system of the rocket and gas union. Then, for an open system, there are

reversible conserved magnitudes which do not leave the system, and some portion of

the flux is lost (irreversible) since it leaves the system forever. One typical example is

the migration of cellular clusters, entering in a closed region Ω through its boundary

∂Ω as a cell flux Γcell, where some portion of the flux Γcell is again exerted from the

boundary ∂Ω, leaving a reversible portion of the migration. Then, the total momentum

flux (Γ) including the reduced flux is Γ = Γ + v ⊗ R where v = Dϕ(X, t)/Dt

([37]). Similarly, γ = γ + ṽ ⊗ r for the spatial configuration. The momentum source

is defined by b0 = b0 + v Rmass − ∇v · Γmass in which Rmass is a source function

supplying the rate of material production and Γmass is a mass influx. According to the

derivations of the balance equations for volume-specific and mass specific versions,

the mass-specific balance laws can be reformulated in order to corporate the change

in mass. Unlike any other internal variable, change in mass itself has a direct effect

on the form of conservation relationships. For the volume-specific case, the material

version of the momentum balance equation is the classical Cauchy’s equation, with the

replacement of Γ,
D

Dt
p0 = ∇0P + b0 , (3.7)

which is associated with a set of Piola transformations,

p0 = J p̃ b0 = J b̃ P = J σF−T , (3.8)

where p0 is the volume-specific momentum density, and P is the first Piola-Kirchhoff

stress tensor standing for the momentum flux. Momentum can be expressed as a

function of the spatial velocity as p0 = J ρ̃ ṽ. For the spatial configuration, the

momentum balance is
d

dt
p̃+ ∇̃ (p̃⊗ ṽ) = ∇̃σ + b̃ . (3.9)
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In an open system the external mass source is the only phenomena that effects the

shape of the balance equations,

P ·N = tclosed0 + topen0 , topen0 = t
open
0 + (p⊗R) ·N , (3.10)

σ· n = t̃closed + t̃
open

, t̃
open

= t̃
open

+ (p⊗ r) · n , (3.11)

for n being the normal vector for the mass flux in the spatial configuration, and t is the

Cauchy traction. Upper indices state the source of the magnitudes whether it is coming

from a closed or an open system. It is clear that the effects of an external mass flux

contribution are only seen via the change in variable topen. Similar to the traction, the

external mass source is defined by the equations [37]

b0 = bclosed0 + bopen0 , bopen0 = b
open

0 + pR0 −∇0p ·R , (3.12)

b̃ = b̃
closed

+ b̃
open

, b̃
open

= b̃
open

+ pR̃− ∇̃p · r , (3.13)

where b is the external mass source term. Addition of the external mass flux into

the dynamic system can be defined explicitly by the point-wise modification the b
open

term. In the volume-specific formulations, density is related to the deformation itself if

bopen = 0, and the external mass source is in its classical version that is observed

in closed systems, b = bclosed. The mass-specific formulations are identical to

the volume- case, and much shorter representations can be achieved (see [37] for

discussions). The energy balance and the entropy inequality are analyzed in a similar

way.

A simple case includes an example of the continuum system with a growing mass

through the activities of the internal sources ([34]). If rg(x) is the time rate of mass

growth per unit volume, and ρ is the mass density, such that

d

dt
(dm) = rgd v, ρ =

dm

d v
, (3.14)

in which, d/dt stands for the material time derivative. For rg > 0 the mass growth

occurs. Then the evolution of the material density with a growing mass is given by,

d

dt
ρ+ ρ∇̃ · ṽ = rg . (3.15)

For incompressible materials dρ/dt = 0 and ∇̃ · ṽ = rg/ρ and for the volume

preserving cases ∇̃ · ṽ = 0 . The time rate of the mass growth per unit reference
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volume Rg can be obtained by rgdv = RgdV . Thus, Rg = rgJ , since dv = JdV .

Similarly, d(ρJ)/dt = Rg for ρg0 = ρJ , where ρg0 is the path dependent growing

density in the reference configuration. The time evolution yields,

ρJ = ρ0 +

ˆ t

0

Rg dt
′ . (3.16)

Essentially, for biological structures, if the volume is preserved throughout the

evolution of a remodeling event, then J = 1, ρg0 = ρ, Rg = rg, and ρ = ρ0 +
´ t

0
Rgdt

′

as observed commonly in bone tissue. If the material is incompressible, the density is

preserved and ρ = ρ0, ρg0 = ρ0 are kept constant. Then,

J = 1 +
1

ρ0

ˆ t

0

Rgdt
′ , (3.17)

as commonly observed in vascular systems when mass growth occurs. The approach

can be generalized for various internal variables. Assume Υ i is the ith internal variable

which is defined with respect to the per unit current mass. Υ i0 is the corresponding

variable defined for the per unit initial mass. Then, Υ iρdv = Υ i0ρ0dV . Since dv =

JdV , it follows that Υ iρJ = Υ i0ρ0. By using the identity in equation 3.16, it yields

Υ i
(

1 +
1

ρ0

ˆ t

0

Rgdt
′
)

= Υ i0 , (3.18)

for the internal variable Υ i . For quasi-static analysis, the linear and angular balance of

momentums are similarly evaluated as in the non-growing cases which do not include

mass-growth. The material form of the Cauchy’s law of motion can be reduced into

the balance law,

∇0P + ρ0b0 = ρg0
dv

dt
, (3.19)

for the nominal Piola-Kirchhoff stress P . For long time periods, when the transient

elastic waves vanish, and the accelerations are negligible dv/dt ≈ 0, ρg0 has no effect

on the balance. The angular balance of momentum for the mass-growth case is again

satisfied by the symmetry constraint of the Cauchy’s stress tensor, σ = σT .

The first law of thermodynamics (conservation of energy) for the case of growing mass

can be represented by,

d

dt

ˆ
v

ρ

(
1

2
v · v + u

)
dv = P +Q+

ˆ
v

rg

(
1

2
v · v + u

)
dv+

ˆ
v

ρRgrg dv , (3.20)

and the rate of the work done by the external and body forces is given by,

P =

ˆ
v

(
ρ
d

dt

(
1

2
v · v

)
+ σ : D

)
dv D = (v ⊗∇)sym , (3.21)
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where D is the symmetric part of the spatial velocity gradient tensor. The rate of the

work is related to the heat flux q across a surface element ndS, and the rate of the heat

input per unit current mass w is defined by,

Q = −
ˆ
v

q · n dv +

ˆ
v

ρw dv =

ˆ
v

(−∇ · q + ρw) dv . (3.22)

In equation 3.20, the term Rgrg represents the rate of chemical energy per unit current

mass. Then, Rg is considered as the conjugate variable associated with the rate of

mass-growth that is supplied by the term rg . The term u stands for the rate of internal

energy associated with the current mass growth. The time derivative of u has an explicit

representation,
d

dt
u =

1

ρ
σ : D − 1

ρ
∇ · q + w + Rgrg , (3.23)

which depends on the internal stresses, heat flux and a chemical potential, are all

sourced from the mass growth.

The second law of thermodynamics (entropy inequality) for the case of growing mass

can be related to the dissipation due to the structural changes (i.e. fabric). The rate of

the dissipation per unit mass accompanying structural remodeling can be described by,
∑

k

fk
dΥk
dt

, (3.24)

where Υk (k = 1, . . . ,n) are the internal variables that describe the structural changes

due to the deformation, and fk are the thermodynamic forces that are conjugate to the

fluxes dΥk/dt ([34]). The thermodynamic conjugate reserved for the mass source rg is

fg . The integral form of the entropy inequality for the continuum domain in spatial

configuration with a growing mass is then,

d

dt

ˆ
v

ρη dv = −
ˆ
S

1

T q · n dS +

ˆ
v

w

T ρ dv +

ˆ
v

ρrη dv , (3.25)

η is the entropy per unit mass, T is the absolute temperature and rη is the entropy

production rate. The second law of thermodynamics restricts that rη > 0, and the total

rate of the dissipation is given by,

T rη = fgrg +
∑

k

fk
dΥk
dt
≥ 0 . (3.26)

There is a direct relationship between the time rate of entropy production and the rate

of mass production,

dη

dt
= −1

ρ
∇ ·
(

1

T q
)

+
1

T

(
w + fgrg +

∑

k

fk
dΥk
dt

)
. (3.27)
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From equation 3.23, the reversible partition of the rate of internal energy is defined by,

d u

dt
=

1

ρ
σ : D + T dη

dt
+ (Rg − fg) rg −

∑

k

fk
dΥk
dt

. (3.28)

It is clear that a sound description of the internal energy per unit mass may be

represented in the form of

u = u(E, η, ρg0,Υk) , (3.29)

for the Green-Lagrange strain tensor E . Introduction of the Helmholtz free energy

gives,

Ψ (E, T , ρg0,Υk) = u (E, η, ρg0,Υk)− T η , (3.30)

which is crucial for the definitions of the growing entropic material domains, such

as the long-chain polymer based extra cellular matrix environment in soft biological

tissues. Once an acceptable form of the free energy is explicitly stated, via experiments

or so, then the dissipation and its conjugate terms can be associated with the

mechanical potential as,

dΨ

dt
=
∂Ψ

∂E
:
dE

dt
− ηdT

dt
+ (Rg − fg) rg −

∑

k

fk
dΥk
dt

, (3.31)

in which,

η = −∂Ψ

∂T , Rg − fg = J
∂Ψ

∂ρg0
, fk = − ∂Ψ

∂Υk
. (3.32)

These could be the basic relationships that define the thermodynamic state of a

biological material. The determination of the exact form of the potential, which

depends on a large number of internal variables k � 1, may be problematic for the

biological structures.

3.2.1 Multiplicative decomposition of the deformation gradient

The biomechanical applications which incorporates the growth and remodeling process

in soft biological tissue, the decomposition of the deformation gradient F into its

elastic and growth parts is crucial for the compact representation of the evolution

equations. Some preliminary information about the decomposition has been given

in previous paragraphs. It should be emphasized that the decomposition in equation

3.1 is not uniquely defined. Arbitrary local material rotations can be applied onto

the rotational part of F g preserving the same unstressed state of the intermediate

configuration Ω. However, an explicit definition of the growth part of F supplies the
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Figure 3.3: Representation of the multiplicative decomposition of the deformation
gradient into its elastic and growth parts in the configuration space. The
density relations that depend on the Jacobian of the transformations are

presented as a function mapping.

sufficient freedom for the continuum formulations. Similar to the non-growing cases,

in a growing media, the Lagrangian definition of the strain measures are given by,

Ee =
1

2

(
F T
e F e − I

)
, Eg =

1

2

(
F T
g F g − I

)
, (3.33)

where Ee is the elastic and Eg is the (permanent) growth strain. The total strain can

be expressed as,

E =
1

2

(
F TF − I

)
= Eg + F T

g ·Ee · F g , (3.34)

and the decomposition does not supply an additive splitting, E 6= Eg +Ee.

3.2.1.1 Growth and remodeling formulations for the evolution of mass density

Biological structures in the body of a living organism exhibit mechanical anisotropy.

These structures are characterized by a set of structural tensor and related variables

that describe the fabric of the domain. A usual example is the fiber reinforced vascular

tissue. As in the case of the non-growing deformation mapping, the Jacobian of

the deformation that maps the mass density from initial configuration to the grown

intermediate-configuration is det (F g) = Jg, and the elastic Jacobian is det (F e) = Je.

Thus, J = JeJg . The local mass density around a fixed point can be associated with the

growth deformation gradient, as shown in Figure 3.3. The density in the intermediate

configuration is given by ρg(x) = J−1
g ρ0(X) . The time evolution for the density in
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spatial configuration is,
dρ

dt
+ ρ tr

(
Ḟ · F−1

)
= rg , (3.35)

and in the intermediate configuration it is,

dρg
dt

+ ρg tr
(
Ḟ g · F−1

g

)
= rgJe . (3.36)

The evolution equation for the reference mass density ρ0 is defined by

ρ̇0 = −ρ0Jg
˙(

J−1
g

)
= ρ0tr (Lg) , (3.37)

with the velocity gradient Lg = Ḟ g · F−1
g in intermediate configuration. If there is

no mass flux ∇0 · Γmass = 0, then Rg = ρ0 tr (Lg). The total velocity gradient in the

reference configuration can be represented in terms of the growth velocity gradient,

L = Ḟ · F−1 = Ḟ e · F−1
e + Ḟ e ·

(
Ḟ g · F−1

g

)
· F−1

e . (3.38)

Considering equation 3.30, a plausible free-energy description for the biological tissue

can be summarized in a compact form,

Ψ = Ψ (F ,F g,Hp, ρ0, T ) , (3.39)

whereHp is the set of structural tensors with p = 1,n . A typical element of this set is

the outer product H = a⊗ a where a is a vector determining the preferred direction

of the elastic anisotropy. When there is no external mass flux, F g is only affected by an

internal mass source which defines the rate of mass growth. Naturally, the relationship

between other mechanical magnitudes can be represented by,

Rg = Rg (F ,F g,Hp, ρ0, T ) . (3.40)

In the following passages, the theoretical connections between a growing hyper-elastic

domain and the remodeling of a structural fabric in time are discussed.

3.2.1.2 Notes on the algorithmic update procedures of the growth and remodeling

variables

Our main consideration here is that the biological growth is considered to be a process

of the large time scales. When it is compared with the time scale of the process of

the arteries undergoing large deformation due to the blood pressure, the viscoelastic

effects inside the artery wall are considered as transient ones. On the larger time
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scales, the viscoelastic effects are negligible and the tissue can be assumed to obey the

hyper-elastic constitutive laws ([38]). For an isothermal process Ṫ ≈ 0, the growth and

remodeling is a history dependent evolutionary event which can be analyzed similarly

by the internal variable update procedures applied in computational plasticity. Then,

the evolution of the internal structure (fabric) and the mass evolution of the continua

can be represented by the constitutive functions that predict the global behavior of

the domain. Here, the global constitutive model for the structure is assumed to be

an hyper-elastic one. If the fabric of the structure is defined by a single tensor-field,

H : Ω0 → V2, the Eulerian counter-part is defined by H = F ThF . Then, the

Lagrangian description of the hyper-elastic law states,

S = S (F ,H) , (3.41)

with the Lagrangian internal variable H . The stress-like quantity S satisfies

S(QF ,H) = S (F ,H) for ∀Q ∈ SO(3). Then, for a growth and remodeling event,

H has the evolution equation,

H = h (F ,H) with H|tn = Hn , (3.42)

and function h satisfies the objectivity requirement h(QF ,H) = h (F ,H). From

a computational point of view, for [tn, tn+1] ∈ I, the internal variable is updated by

([39]),

Hn+1 = Hn + ∆t ((1− α)h(F n,Hn) + αh (F n+1,Hn+1)) , (3.43)

where ∆t = tn+1 − tn and α is the integration parameter. The update procedure

Hn+1 = Ĥ
algo

(F n+1; {F n,Hn}) is called the “deformation-driven algorithmic

Lagrangian state-update” algorithm. Similarly, stress update is given by

Sn+1 = Ŝ
algo

(F n+1; {F n,Hn}) ,

= Ŝ
algo
(
F n+1; Ĥ

algo
(F n+1; {F nHn})

)
. (3.44)

The Lagrangian state-update and stress-update algorithms are incrementally objective.

For the spatial configuration, an incrementally objective algorithm requires the

definition of the Oldroyd rate of the Eulerian tensor field h : Ω̃t → V2 which is given

by the definition of Lie derivative (L ),

Lv{h} : F−THF−1 = ḣ+ hl + lTh , (3.45)
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Figure 3.4: Graphical representation of the configuration mapping ϕ : Ω0 → Ω̃t, and
the successive intermediate configurations set.

formulated in terms of the spatial velocity gradient l = Ḟ F−1 = ∇v. Consequently,

Lv{h} : F−THF−1 = ḣ + hḞF−1 + F−T Ḟ Th. The algorithmic update for h is

given by,

hn+1 = F−Tn+1

(
F T
nhnF n

)
F−1
n+1

+ ∆t((1− α)F−Tn+1(F T
nh(F n,hn)F n)F−1

n+1

+ αh(F n+1,hn+1)), (3.46)

which supplies an objective rate of the internal variable evolution. Then, hn+1 =

halgo (F n+1; {F n,h}). Spatial stress-update is calculated in a similar way,

σn+1 = σ̂algo (F n+1; {F n,hn}) = σ̂algo
(
F n+1; σ̂algo(F n+1; {F n,hn})

)
. (3.47)

It is observable that the rate of change of h from tn to tn+1 depends on the mapping

F−Tn+1

(
F T
n (Υ )nF n

)
F−1
n+1 which belongs to the internal variable Υ . This is an

semi-implicit mapping in time which gathers information from both previous and

current time steps (see Figure 3.4). When the time step is close to zero ∆t ≈ 0, then

F n ≈ F n+1, and the successive dynamic steps coincide with the material configuration

with a displacement vector close to zero u ≈ 0. This assumption is useful for

computational evaluation of the balance of momentum via considering v ≈ 0 [10, 38],

for slowly evolving systems. The algorithmic update is related to the spatial velocity

gradient as (F n+1 − F n) = ∆t · l = ∆t∇v · F n+1, and spectral decomposition of a
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symmetric Υ = h : Ω̃t → V2 yields,

(I −∆t∇v)T ·
(∑

i

λhi n
h
i ⊗ nhi

)
· (I −∆t∇v) , (3.48)

and, (∑

i

λhi (I −∆t∇v)T nhi ⊗ nhi (I −∆t∇v)

)
, (3.49)

which shows the effect of the time step.

3.3 Mechanical Evolution Laws for the Growth and Remodeling Process

The mathematical investigations of the growing domains have shown that the

constitutive evolution equations of a growth process may be classified in one of three

main titles. These titles are ([40]) itemized as,

• the tensorial evolution of growth,

• the homeostatic equilibrium of growth,

• the micro-structural evolution of growth.

Constitutive relationships that govern the rate of change in the fabric related tensor

quantities are usually thought to be related to the balance laws. The balance of

linear momentum has been previously mentioned in equation 3.19 for an existing mass

source. When a mass in flux or out flux exists on the boundary layer of the domain,

then the linear momentum balance is specified by,

ρ0v̇ = ∇0 (P − v ⊗ Γmass) + ρ0b+R0v + Ḟ · Γmass . (3.50)

For slowly evolving quasi-static events, v̇ = 0, the linear momentum in reference

configuration is the classical equation,

0 = ∇0P + ρ0b , (3.51)

which is the usual equation to be solved for the computational growth and remodeling

processes. The entropy inequality for the isothermal conditions states that ([41, 38])

ρ0D = P : Ḟ − ρ0Ψ̇ + T (∇0Γη − Γη) ≥ 0 , (3.52)
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which is the short representation of the Clasius-Duhem inequality in terms of the

dissipation functional D. The relationship between the internal variables and the

time rate of the free energy Ψ has been given in equation 3.31. The additional term

rη = (∇0Γη −Rη) denotes the external entropy fluxes Γη =
{
ΓΥk
η

}
k

and the internal

entropy sources (reference) Rη =
{
RΥk
η

}
k

as being given similarly in equation 3.26.

For the constitutive equations, the Helmholtz free energy can be represented as

Ψ (F ,F g,H , ρ0, T ) = u (F e,H , ρ0, η)− T η , (3.53)

which assumes that the fabric structure depends only on the preferred direction, H =

a ⊗ a. For soft tissues, Ṫ ≈ 0 is a typical assumption. The deformation driven

dissipation function finally takes the form ([40]),

ρ0D =

[
P − ρ0

∂Ψ

F

]
: Ḟ − ρ0

∂Ψ

∂F g

: Ḟ g

− ρ0
∂Ψ

∂H
: Ḣ

− ρ0
∂Ψ

∂ρ0

(∇0 · Γmass −Rmass) + T (∇0Γη −Rη) ≥ 0 . (3.54)

3.3.1 Evolution of growth and structural tensor

A focus on the growth tensor F g in equation 3.54 interprets that,

ρ0
∂Ψ

∂F g

: Ḟ g = −
(
ρ0
∂Ψ

∂F g

· Ḟ T

g

)
:
(
Ḟ g · F−1

g

)
,

= −
(
P e :

∂F e

∂F g

· F T
g

)
: Lg ,

=
(
F T
e · P e

)
: Lg = M e : Lg , (3.55)

where M e is the elastic Mandel stress and P e is the pull back of the first

Piola-Kirchhoff stress in to the intermediate configuration Ω. As a result, the

evolution of the growth tensor is considered to be a function of the elastic

Mandel stress, and the relationship between the conjugates can be represented as(
∂F gΨ (F ,F g,H , ρ0, T ) , Ḟ g

)
Z⇒ (M e, Lg). This approach is based on pure

thermodynamic concerns. Thus, modified functional assumptions can be made for

the determiner variables of the velocity gradient in Ω and for other growth magnitudes,

such that, Lg = Lg (F ,F g,H , ρ0, T ) instead of Lg = Lg (M e,H , ρ0, T ).

Evolution of the structural tensors can be analyzed by a similar logic. The conjugate

analysis of the second law gives the conjugate pair
(
−ρ0∂HΨ, Ḣ

)
for the term
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−ρ0
∂Ψ
∂H

: Ḣ . Then, due to the thermodynamic restrictions of the second law, the

evolution law of a structural tensorH can given by

Ḣ = Ḣ (−ρ0∂HΨ, H , ρ0, T ) , (3.56)

where −ρ0∂HΨ is the thermodynamic conjugate term for the evolution of H in the

second law. This form is suitable for a stress dependent evolution law since the value

of ∂HΨ may be altered even if the configuration’s geometry is fixed in time. Similarly,

for a strain dependent law,

Ḣ = Ḣ (F ,F g,H , ρ0, T ) . (3.57)

The tensorial evolution laws are driven by purely mathematical restrictions. Soft

tissues exhibit a large number of chemical interactions that appear in short time

intervals. Thus, the effects of these interactions inevitably possess additional weights

on the terms of the evolution equations, at least in a statistical sense. The statistical

averaging is usually referred as a homogenization scheme, which is applied to reduce

the complexity of the biomechanical problem. Consequently, the proposals made for

the tensor evolution laws based on the thermodynamic conjugates are in fact abstract

idealizations of the underlying complex processes. However, at least, it is supposed to

be useful to determine the core functional forms of the law. Homeostatic equilibrium is

the most accepted phenomena in the biomechanics community where it is believed that

the tissue evolution serves for the governing of the internal fabric evolution towards

an optimal equilibrium point in order to reduce the effects of the excessive internal

mechanical loads. A technical description of the equilibrium has been proposed by

Stephen Cowin ([42]), such that, the homeostatic equilibrium is described by the

coaxiality of the symmetric stress tensor S and the fabric tensor H . In the coaxial

case,

H · S = S ·H , (3.58)

where the eigenvectors of the multiplications in both sides coincide for the homeostatic

equilibrium condition, nH·Si = nS·Hi .

In addition to these, the existence and uniqueness of the solution of the evolution is

another concept that is related to the homeostatic conditions. It is observable that

similar mechanical boundary conditions applied on to the artificial in vitro cell-seeded
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gel structures yield close final mechanical magnitudes and fabric orientations. There

seems to be a tendency to reach a pre-programmed mechanical equilibrium in living

biological tissues. The existence of a unique equilibrium condition is still questionable

[42] for some types of tissue. The utilization of the mechanical instability is sometimes

useful to obtain the certain morphologies such as wrinkled surfaces of skin or alveolars.

On the other hand, the mechanical models using small-strain assumption for the bone

remodeling theory have suggested that a large class of the strain based remodeling

events is expected to have unique solutions, and the homeostatic equilibrium seems

to be a desired property for the mathematical investigations. Some theoretical

discussions have recently begun to seek for the reason of the mechanical equilibrium

for the structural tensors, in order to enlighten the concept of homeostatic optimality

conditions for a fabric evolution (see [43]).

3.3.2 Micro-Structural evolution of the growth and remodeling processes and its

relationship with governing constitutive equations

The focus of this section is based on the analysis of the micro-structural evolution of

biological tissues. Here, we define the structural evolution as the time evolution of

a fabric tensor H that approaches to a homeostatic equilibrium labeled by the tensor

H∗. The fabric tensor is usually characterized by a characteristic direction vector a

defining the anisotropy, such that, H = a⊗ a. In this section, first, an isotropic mass

growth is analyzed. Then, secondly, the formulations of an anisotropic mass growth in

the direction of preferred vector are detailed. In equation 3.53, a free energy definition

has been given by Ψ (F ,F g,H , ρ0, T ) which is equivalent to Ψ (F e,H , ρ0, T ), where

H = a⊗a defines the anisotropy in the intermediate configuration. Then, Piola stress

is

P = P e · F−1
g , (3.59)

P e = 2 ρ0 F e

7∑

k=1

∂Ψ
(
ICek , IH1,2,3, ρ0, T

)

∂ICek

· ∂I
Ce
k

∂Ce

, (3.60)

with Ce = F T
e F e andH = F T

g ·H · F g is the push forward on Ω0 → Ω.
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The set of strain invariants Ik in equation 3.60 is given as,

ICei = tr
(
Ci
e

)
i = 1, 2, 3

ICe4 = tr (Ce ·H) ICe5 = tr
(
C2
e ·H

)

ICe6 = tr
(
Ce ·H2

)
ICe7 = tr

(
C2
e ·H2

)
(3.61)

IHj = tr
(
Hj
)

j = 1, 2, 3

which can characterize the anisotropy in a material. For isotropic materials, the strain

energy density is an isotropic function of the elastic strain tensor Ce,

Ψ (C,Cg, ρ0, T ) = Ψ (Ce, ρ0, T ) = Ψ
(
ICe1,2,3, ρ0, T

)
. (3.62)

The principal invariants ICei are expanded as (Ce = F T
e F e),

ICe1 = tr (Ce) , ICe2 =
1

2

(
tr
(
C2
e

)
− (tr (Ce))

2) , ICe3 = det (Ce) = J2
e . (3.63)

A function G is said to be isotropic if G : V2 → V2 is,

Q · G (C) ·QT = G
(
Q ·C ·QT

)
, (3.64)

for all ∀A ∈ V2 and for all norm preserving rotation tensorsQ belonging to a rotation

group labeled by Q ∈ SO(dim (Q)). If G : V2 → V2 maps symmetric tensors to the

symmetric ones, then there exists functions ck : < → <,

G(C) = c0

(
IC
)
I + c1

(
IC
)
C + c2

(
IC
)
C2 . (3.65)

For the isotropic mass growth, a simple assumption can be made for the functional

form of the growth deformation gradient as,

F g = νg I , (3.66)

where νg is the isotropic growth parameter. Additionally, νg is the isotropic permanent

stretch ratio which defines the growth Jacobian of the volumetric mass growth, such

that Jg = (νg)
3. The velocity gradient Lg is given by,

Lg = Ḟ gF
−1 =

ν̇g
νg
I . (3.67)

The association of Lg with the Mandel stress in the form of M e : Lg gives the

evolution laws of the isotropic growth based on thermodynamic conjugates

M e : Lg =
ν̇g
νg
IMe

1 , Ce : Lg =
ν̇g
νg
ICe1 , (3.68)

ν̇g =
kνg
νg
IMe

1 ν̇g =
kνg
νg
ICe1 , (3.69)

47



a0

a

ã
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Figure 3.5: A transversely isotropic description of the anisotropic mass growth based
on a characteristic direction a which is mapped between configurations.

The anisotropic growth is expressed by two growth parameters which
correspond to the evolution of the eigenvalues of an ellipsoid

representation of the growth deformation gradient.

where I1 is the first invariant of the associated mechanical tensor and kνg is a parameter

controlling the saturation type convergence towards a maximum or minimum limit

([34, 38]). When both anisotropic and isotropic mass growth occur, the effect of the

mass growth in the direction of a micro-structural preferred direction is characterized

by an additional parameter (Figure 3.5). When the structural tensor is given by H =

a⊗ a, the growth deformation gradient tensor is defined in the form of

F g = νisoI + (νaniso − 1)a⊗ a , (3.70)

for ‖ a ‖= 1. The isotropic growth that appears through every direction is controlled

by the parameter νiso. The isotropic growth is weighted by an additional anisotropic

parameter by νansio. Since F g is symmetric, the rotational part is excluded. If the

characteristic direction is preserved during growth, then Ḟ g = ν̇isoI+(ν̇aniso − 1)a⊗
a. The stress and strain dependent stimuli which are based on the growth velocity

gradient are given by,

M e : Lg = ν̇iso

(IMe
1

νiso
− νaniso − 1

νiso (νiso + νaniso − 1)
IMe

4

)

+ ν̇aniso

(
1

νiso + νaniso − 1
IMe

4

)
, (3.71)

Ce : Lg = ν̇iso

(ICe1

νiso
− νaniso − 1

νiso (νiso + νaniso − 1)
ICe4

)

+ ν̇aniso

(
1

νiso + νaniso − 1
ICe4

)
. (3.72)
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For νiso = 1, a set of unidirectional fiber growth stimuli is obtained,

M e : Lg = ν̇aniso

(
1

νaniso
IMe

4

)
, (3.73)

Ce : Lg = ν̇aniso

(
1

νaniso
ICe4

)
. (3.74)

For this special case, a fiber elongation accompanying the mass growth is seen. Then,

the growth deformation gradient represents a one-dimensional elongation rather than

an expanding ellipsoid. These brief evolution forms supply a generally accepted

framework for the growing biological domains. In the next section, the growth and

remodeling laws intended for the structural tensor will be discussed.

3.4 Current Approaches That Aim to Understand the Evolution of the Structural

Tensors in a Growth and Remodeling Process

In a mathematical sense, the evolution of the anisotropic direction a via rotation is

usually treated as a distinct mechanical process of the structural evolution that is

separated from the overall growth phenomena. Mechanical growth is a consequence

of the density evolution via mass flux or mass source. If ρ̇0 6= 0, the process is also

evaluated as a remodeling one where the fabric may remain unchanged, but the density

gradient is time dependent. The preferred direction may evolve into a new state,

while the total mass of the system is preserved or not. In this section, we analyze the

current advancements in the theoretical modeling of the evolution of structural tensors.

Specifically, we focus on the approaches that are related to the statistical nature of

the fiber dispersion in a collagen-rich soft tissue. We classify the basic algorithmic

methods which describe the evolution law of the statistical parameters. At the end

of the section, we propose a new theoretical approach and position it among other

previously proposed approaches. We discuss how the proposal fills the theoretical

needs in order to supply a new framework for the biomechanical modeling demands.

Due to the widespread concepts in growth and remodeling theories we limit the

discussion with the mathematical evolution forms, in special, the forms of the time

rate of structural tensors. We define the structural tensor as a material description in

the micro-scale (µm) environment where the internal web of the preferred structural

directions is embedded into the set of these tensors. Structural tensors describe the
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anisotropic behavior of the material domain in addition to the isotropic components of

the media which are defined by an additive decomposition of the SED function.

A non-complex representation of the structural tensor is the outer product of the

preferred directions in the material space H = a0 ⊗ a0. Then, the evolution of H

strictly depends on the evolution of a0. For a unit vector n0 = a0/ ‖ a0 ‖, the rotation

of n0 is realized by an orthogonal rotation matrixQ as,

ñt = Q · n0 , (3.75)

which preserves unity. The time rate of n is expressed by,

˙̃nt = Q̇ · n0 , (3.76)

where n0 is fixed in Ω0 and ñt is a vector in Ω̃t configuration. Since Q is a norm

preserving matrix, its polar decomposition yields only a rotational component whereas

its derivative yields the rate of the rotation (spin tensor) part,

˙̃nt = Q̇ · n0 ⇒ ωñt × ñt . (3.77)

The rate of a spatial unit vector depends on the selection of an axis of rotation ωñt

vector. The target direction of the rotation, which is the called as stimulus, can be

assumed to depend on the strain or stress tensors,

ωñt =
1

τc
ñt ⊗ nMe

max, ωñt =
1

τc
ñt ⊗ nCemax , (3.78)

M e =

ndim∑

i

λMe
i nMe

i ⊗ nMe
i , Ce =

ndim∑

i

λCei nCei ⊗ nCei , (3.79)

where τc is the characteristic remodeling time, and n(·)
max is one of the principal

directions associated with the maximum principal value of (·) tensor. The evolution of

rotation is given by,

˙̃nt =
1

τc
(I − ñt ⊗ ñt) · nMe

max,
˙̃nt =

1

τc
(I − ñt ⊗ ñt) · nCemax . (3.80)

If we consider the case in equation 3.70 with nCemax being the stimulus, the time

evolution of growth deformation tensor with respect to Ω0 is,

Ḟ g = ν̇isoI + ν̇aniso (ñt ⊗ ñt) + νaniso

(
˙̃nt ⊗ ñt + ñt ⊗ ˙̃nt

)
, (3.81)

Ḟ g = ν̇isoI + ν̇aniso (ñt ⊗ ñt) +
νaniso
τc

×
(
(I − ñt ⊗ ñt) · nCemax ⊗ ñt + ñt ⊗ (I − ñt ⊗ ñt) · nCemax

)
. (3.82)
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It is clear that the additional anisotropic contribution comes from the evolution of

rotation. Consequently, the rotation of a micro-structural direction effects the rate

of change in the permanent growth-strain Eg. The information which can be related

to the speed of fabric rotation is inevitably stored in the intermediate configuration

temporarily. That speed is controlled by the angular distance between ∠
(
nCemax, ñt

)

and its effect on F g is weighted by νaniso/τc. During the growth process, due to

the irreversible bio-mechanochemical interactions between the growth deformation

gradient and the deposition or degradation rate of the local proteins, the temporal

information has the potential to be stored permanently on the whole remodeling

system.

3.4.1 The time-dependent fiber reorientation approach based on the mechani-

cally motivated vector differential equations

Time dependent fiber reorientation is assumed to be a rotation of the fabric related

vectors towards the biological stimulus. The rotation process is completed by reaching

a homeostatic equilibrium condition. The rotation phenomena is not restricted

with the biological domains and it may be observed in the cases of liquid crystal

formation as well as the polarization of piezoceramic materials. For a deformation

ϕ : Ω0 → Ω̃t, the spatial coordinates of a particle is defined by x = ϕ(X, t). In

a hyper-elastic transversely isotropic domain, the structural tensor, which is defined

by H = a0 ⊗ a0, ‖ a0 ‖= 1 in Ω0, is associated with the fabric direction a0.

If the mass is preserved during the remodeling, the free energy is described by

Ψ (C,H) = Ψ
(
QCQT ,QHQT

)
, ∀Q = SO(dim(Q)). The symmetry group

is defined by the tensor valued set G =
{
Q ∈ SO(dim(Q))|QAQT = A

}
. The

transversely isotropic description of the SED function based on the strain invariants

can be described by Ψ (C,H) = Ψ
(
IC1,...5

)
. The Clasius-Duhem inequality states that

[44],

D0 =
1

2
S : Ċ − Ψ̇ (C,H)− T (∇0Γη −Rη) ≥ 0 , (3.83)

S = 2
∂Ψ

∂C
. (3.84)

where S is the second Piola-Kirchhoff stress tensor. During the reorientation of the

fiber fabric while keeping the term ∇0Γη − Rη ≈ 0, the second law may be violated.

Thus, an additional entropy flux and entropy source term that is related to the biological
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domain is conceptually utilized, in order to enforce the second law being inherently

satisfied. In fact, the physical limitations and characterization of the external entropy

source term seems to be an important part of the evolving biological domains. This

concept may be linked intuitively to the irreversibility of the growth and remodeling

processes, where it is definitely known that “an arrow of time” is present.

The evolution form derived in [44] depends mostly on kinematic quantities making this

approach widely applicable. For a rigid body motion x (X, t) = c(t) +R(t) ·X(t)

the spatial velocity gradient has the decomposition l = d +w. Then, there is a norm

preserving rotation of the fiber with additional properties of d = 0 and w = ṘRT , R

being an orthogonal rotation tensor. The variation of a spatial line element with respect

to itself describes the rotation

dẋ =
∂ẋ

∂x
· dx = ∇0v · dx = Ḟ · F−1 · dx . (3.85)

Thus, dẋ = w · dx = ωdx × dx, since w is skew-symmetric. The time evolution of a

unit fiber vector (defines the fabric) is

∂

∂t
(a0 · a0) = 0 ⇒ ȧ0 · a0 = 0 , (3.86)

which states that the time rate of the fiber orientation is perpendicular to the fiber

direction itself. Then the evolution of a fiber direction is,

ȧ0 = ωa0 × a0 , (3.87)

where the superscript in ωa0 states that the axis of the rotation is determined

perpendicular to a0. The axis direction can be linked to the strain based mechanical

stimulus,

ωa0 =
π

2τc
a0 × nCmax . (3.88)

Finally, the rotation of a fiber direction vector is given by,

ȧ0 =
π

2τc
(I − a0 ⊗ a0) · nCmax . (3.89)

It should be noted that the direction a0 is defined with respect to the material

configuration. Then, the time evolution is a permanent update procedure for the

remodeling of the structural tensor. This approach is a basic description for the

vector-valued differential equation that governs the evolution of a single fiber direction.
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The tensor-based finite element derivations are straight forward since it is formulated

in the vector form. A disadvantage of the approach is the existence of a singular point

near a0 ·nCmax = 0. Although the time evolution is inherently nonlinear, this approach

does not reflect the effect of the stimulus magnitude on the time evolution pattern.

3.4.2 Remodeling of the fiber directions via the evolution of angular parameters

According to the basic deterministic model described by Driessen et.al. in [45], Nf

number of fiber families associated with a frequency distribution for each one can be

represented by a single structural fibre reorientation tensor H0. In the undeformed

initial configuration it is defined by,

H0 =

Nf∑

i=1

Pr(i)
(
ai0 ⊗ ai0

)
, (3.90)

where Pr is a probability density distribution and Pr(i) stands for the partitioned

observation probability associated with the direction i. Then, the sum of the partitions

yield
∑Nf

i=1 Pr(i) = 1. This approach is supposed to be the first model which describes

a distinct evolution equation for each fiber direction. The time evolution of H0 in the

spatial configuration is given by,

O

H̃ + 2
(
l : H̃

)
· H̃ = 0 , (3.91)

where
O

(•) is the objective Truessdel derivative of the spatial (•) tensor. The objective

evolution with respect to the spatial configuration is defined by
O

H̃ =
˙̃
H−l·H̃−H̃ ·lT .

l is the spatial velocity gradient and ˙̃
H stands for the ordinary material derivative. H̃

is the spatial mapping of the materialH0 defined by the push-forward operation,

H̃ =
FH0F

T

Λ2
f

. (3.92)

The normalization is supplied by Λ2
f which is the sum of square fiber stretches Λ2

f =
∑Nf

i=1 λ
a
i = tr

(
FH0F

T
)
. The fiber stretch is defined as λai ã

i = F ·ai0, for ‖ ãi ‖= 1.

The normalization division is applied in order to eliminate any initial fictitious strains.

The fibre evolution is extended to include an internal governing stimuli by adding the

term,
O

H̃ + 2
(
l : H̃

)
· H̃ =

1

τc

(
H̃
∗ − H̃

)
. (3.93)
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where H̃
∗

is a spatial stimulus tensor. In quasi-static deformations (L = 0), equation

3.93 reduces to a first order rate equation,

˙̃
H =

1

τ

(
H̃
∗ − H̃

)
. (3.94)

Based on the objectivity principle, the spatial target tensor H̃
∗

is assumed to be a

function of the finger strain b. Then, the anisotropy of the tissue is expected to develop

from the macroscopic kinematic quantities,

H̃
∗

=
bv

tr (bv)
, (3.95)

with the constant parameter v. The reorientation of the fiber vectors can be represented

by the evolution of the angle between stimulus direction and the vector itself,

θi∠
(
ai0,nCmax

)
. The differential change in θ < π/2 for the ith fiber family is,

dθi
dt

=
1

τc
(1− cos (θi)) . (3.96)

The update of the the new orientation can be obtained by an explicit or implicit scheme,

as θi = θi + dθi.

3.4.3 Fiber remodeling approaches based on n−chain networks

The collagen fiber remodeling approaches based on n− chain networks have been

summarized in [28]. This remodeling framework differs from the previously

mentioned existing approaches since its mechanism is based on the developments

of the long-chain polymer physics whose background goes back to 1940’s. Living

tissue is a chemically active environment supported by a complex structural hierarchy.

For biological structures, the main structural blocks are made of various long-chain

polymers which support the mechanical load bearing of the macroscopic organism.

One example for the polymer based structural material is the extra cellular-matrix

(ECM) environment that constructs an intermediate media for the flow of intra-cellular

information. ECM plays role in the physical synthesis and remodeling of the additional

structures. Before proceeding to the model, a brief explanation of the relationship

between the Neo-Hookean free energy and ECM is presented.

Living organisms are carbon-based beings. Carbon is the fourth most abundant

element on earth. Carbon can form a covalent bond with other carbon atoms to
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Figure 3.6: The molecular conformations and corresponding end-to-end distance dr.
The distance dr is a direct indicator for the probability of a geometric

conformation. The molecules are represented by flexible lines.

construct macro-molecular chains consisting of thousands of atoms. Collagen-I is a

typical example for this. In biological systems, the variety of the complexity and the

geometrical formation of the carbon-based long-chain polymers increase. As being the

basis for the structural integrity, the organic polymer compounds increase the stiffness

of the extracellular matrix making the concept crucial for fiber remodeling approaches.

In the ECM, the long polymer chains may be cross-linked to produce advanced chain

structures with the desired mechanical properties, such as the tropocollagen. The fiber

reinforced continuum can be imagined to include long macro-molecules that occupy

a certain geometric characteristic (conformation) in the material configuration space.

The geometrical conformations of the molecules can be analytically investigated by

assigning them in to specific categories. The categories are labeled as the n−chain

networks where n represents the number corresponding to a specific geometric type of

the individual structural elements integrating the network. Long polymer chains with

nc distinct independent parts with length lc is characterized by the so-called end-to-end

distance (dr) between the two tie points of the polymer (Figure 3.6). Here, for the

simplification of the discussion, it is assumed that the molecule does not exhibit any

branching and it can be represented by a flexible line element. Then the total length of

the chain is Lc = nc lc .

The distance dr is an indicator for the number of geometric possibilities of the full

chain. For dr = Lc there is only one molecular conformation as the straight line
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element. The mean square value d2
r for a Gaussian chain with n freely moving joints

is given by, (r � L),

d2
r = ncl

2
c . (3.97)

The probability of a conformation which has an end-to-end distance dr is given by

[32],

Pr (dr) d dr =

(
4
b3

π
1
2

)
d2
r exp

(
−b2d2

r

)
d dr , (3.98)

which is of Gaussian type. Probability of a thermodynamic state of a single chain

conformation can be calculated by the Boltzmann’s equation,

ηi = a+ kB ln (Pr (dr)) , (3.99)

for a constant a and the Boltzmann constant kB = 1.38 × 10−23Nm/K. Then, the

entropy of a single chain is obtained as,

ηi = c− kB b2d2
r , (3.100)

for c = a + kB ln
(
b3/π

3
2

)
. Here b is a parameter which is related to the

end-to-end distances as b2 = 3/
(

2 d2
r−out

)
and d2

r−out is the mean square value of

the conformations that includes the un-cross-linked free chains out of the network.

When the chain is deformed from one state to another, i.e the material is stretched or

compressed, the number of microscopic probable states (entropy by conformations) the

molecules geometrically occupy inevitably change. A simple stretching can be defined

by the affine mapping xi = λiXi from the undeformed (X = Xi) to the deformed

configuration (x = xi). If one tip of the chain is fixed at X ′ = 0, then the other end

moves fromX to x. The difference in entropy with the change in dr is given by,

∆ηi =

ndim∑

j

−kBb2
((
λ2
j − 1

)
X2
j

)
, (3.101)

with Πiλi = 1 satisfying incompressibility. The extension is applied to all Nc number

of macro-molecular chains in a molecular network. Then, from the summation of the

entropies, ∆η =
∑Nc

i ∆ηi is,

∆η = −kBb2[
(
λ2

1 − 1
)∑

i

X2
i,1

+
(
λ2

2 − 1
)∑

i

X2
i,2 +

(
λ2

3 − 1
)∑

i

X2
i,3], (3.102)
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for subscript Xi,j stands for the jth end tip coordinate element of the ith chain. If the

material has no preferred direction within the fabric structure, it acts as an isotropic

one. Thus,
∑

iXi,1 =
∑

iXi,2 =
∑

iXi,3 under the assumption that the molecular

configurations are all randomly oriented. Then,
∑Nc

i=1X
2
i,1 = d2

r−in/3 is defined where

d2
r−in is the average over cross-linked chains at the beginning of the deformation.

Finally,

∆η = −1

2
NckB

d2
r−out

d2
r−in

(
λ2

1 + λ2
2 + λ2

3 − 3
)

. (3.103)

The change in Helmholtz free energy ΨH is,

ΨH = u− ηT , (3.104)

∆ΨH = ∆u−∆ηT , (3.105)

ΨH =
1

2
NckB

d2
r−out

d2
r−in

(
λ2

1 + λ2
2 + λ2

3 − 3
)

, (3.106)

which defines a material property where long polymer elongations in the material

space are randomly oriented. Such material can be described by an incompressible

Neo-Hookean material with the shear modulus µc for the complete chain network,

Ψ = µc
(
λ2

1 + λ2
2 + λ2

3 − 3
)

, (3.107)

and the Cauchy stress for the isotropic model is,

σ = −phI + µcFF
T , (3.108)

for an unknown hydrostatic pressure ph. Since ECM matrix is mostly proteoglycan

based and has isotopic material properties, it is common to approximate its behavior

by a Neo-Hookean material model. For non-Gaussian freely joint cases with finite

extensions, the formulations are altered greatly. This concept, which is supposed to be

crucial for highly sensitive industrial applications, is out of the scope of our discussions

on biological structures.

The evolution of the structural peculiarities is based on the remodeling of the long

chain polymer elements. The rotation based chain remodeling is a common example

that the free energy depends on the alteration in the geometric conformations. In order

to give an ordered framework for the geometric behavior, Arruda-Boyce 8−chain

model can be utilized for the free energy definitions. An 8−chain model is a

wormlike-chain approach where the chain may bend under thermal fluctuations. The
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theoretical wormlike-chain model has been discussed in [28]. The model is separated

in to three different length-scales. The smallest scale for the collagen remodeling

algorithm is the molecular level of collagen. The free energy Ψchain of a single collagen

fiber is given by,

Ψchain = Ψ0,chain + kBT
(
Lf
4A

)(
2
dr
L2
f

+
1

1− dr
Lf

− dr
Lf

)
, (3.109)

where Ψ0,chain shows the initial unperturbed energy level of the chain, dr is the

end-to-end distance and Lf is the length of the collagen fiber (T = 310 K). A is

the persistence length which is described as the projection of the conformation in the

direction of the first bond (lf � A � Lf ). The constant A is an indicator for the

bending stiffness.

On the ECM level, the total free energy of the extra cellular media and collagen fiber

bundles is given by,

Ψ = Ψiso + Ψchain + Ψrep , (3.110)

with a repulsive energy contribution Ψrep. The expansion of the energy contributions

is given as,

Ψiso =
1

2
λLame ln (J) +

1

2
µLame

(
IC1 − ndim

)
− µLame ln (J) , (3.111)

Ψchain = kBT nfLf
(

2
dr
L2
f

+
1

1− dr
Lf

− dr
Lf

)
, (3.112)

Ψrep = kBT
nf
4A


1

4
+

1

4d0,r

(
1− d0,r

Lf

) − 1

4d0,r


Ψrep , (3.113)

for the material constants λLame,µLame, initial end-to-end distance d0,r, strain invariant

IC1 = C : I , C = F TF and J = det (F ). The total length of a fiber is Lf =

nf lf . It is clear that the model inherently includes the thermoelastic behavior of the

chain deformations. Ψrep is defined as the function of the strain nonstandard invariants

formulated for the 8−chain deformation elements in order to eliminate the effects of

the initial d0,r distances. The Cauchy stress is,

σ = σiso + σchain + σrep , (3.114)

The principal axes of the chain network remodels towards the principal axes of the

stress tensor as similarly in the previous remodeling approaches.
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3.5 Time Dependent Evolution of the Statistically Dispersed Fiber Directions

In previous subsections, the structural tensor is assumed to be an outer product of a

single fiber direction vector. In reality, various kinds of biological materials in the

tissue show a high level of dispersion through the tissue volume. The dispersion in the

target domain can be characterized by the analytic probability distribution functions.

In the following subsections, the free energy approaches that define the mathematical

relationship between the statistical dispersion of the fiber directions and their effects

on the stresses are briefly summarized.

3.5.1 Evolution of the orientation density distribution of the fiber dispersion

The micro-sphere approach is a homogenization technique where the dispersion of

the fiber directions are integrated over the unit sphere to obtain a structural tensor.

If the orientation density ρ of the variable Υ between A,A + dA is known, the total

orientation density can be obtained by the integration on a unit sphere. In the case of

the fiber distributions, the orientation density satisfies ρ(a) = ρ(−a), ∀a ∈ S2 and

(4π)−1 ´
S2 ρ(a)dA = 1. The “average” of a direction dependent internal variable Υ

over the unit sphere is given by [29],

〈Υ 〉 =
1

4π

ˆ
S2

Υ dA ≈
Nw∑

i=1

wiΥ i , (3.115)

where the integration is applied on the two dimensional surface S2 of the sphere. The

brackets 〈〉 define a homogenization operation [27]. wi are the numerical integration

weights corresponding to a finite number of unique directions (i = 1,Nw). A soft

tissue reinforced by an anisotropic fiber dispersion that is embedded in an isotropic

incompressible media can be defined by its free energy representation,

Ψ
(
C,ai0

)
= Ψvol (J) + Ψiso + Ψaniso

(
C,ai

)
i = 1,Nf . (3.116)

The term Ψaniso can be approximated by the angular integration (AI) scheme,

Ψaniso

(
C,ai

)
≈ Ψaniso

(
C,yj

)
i = 1,Nf , j = 1,Nw , (3.117)

Ψaniso

(
C,yj

)
=

1

4π

ˆ
S2

nfρΨaniso

(
λ
)
dA ,

≈
Nw∑

j=1

(
nfρjwjΨaniso

(
λj
))

, (3.118)
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λj =
√
yj ·C · yj is the stretch on the direction of a fiber (integration) vector, and

yj and ρj are the probabilistic values for each direction yj . nf is the fibril number

density. The same term can be approximated by the generalized structural tensor

approach (GST)

Ψaniso

(
C,ai

)
≈ Ψaniso

(
λ
) 1

4π

ˆ
S2

ρ (a) (a⊗ a) dA . (3.119)

If the probability of observing a single fiber direction is uniformly distributed, then,

Ψaniso

(
C,ai

)
≈ Ψaniso

(
λ
) 1

4π

ˆ
S2

ρ (a) (a⊗ a) dA ,

= Ψaniso

(
λ
) Nf∑

i=1

(
ai ⊗ ai

)
. (3.120)

The evolution of the orientation density distribution can be formulated by using the rate

equations of the statistical moments. A probability distribution Pr(x) has an infinite

number of moments Mn, n ∈ Z+ around fixed c ∈ < defined by,

Mn = E(xn) =

ˆ +∞

−∞
(x− c)n Pr (x) dx . (3.121)

Statistical distributions that are commonly used in the modeling of the fiber dispersion

are the functions of the first two moments of the distributed random variable. For

example, the circular von-Mises probability distribution, which is the analogue of the

Gaussian probability density on a spherical domain , is given by,

Pr (x|µ, k) =
exp (cos (x− µ))

2πI0 (k)
, (3.122)

where µ is the mean of the density, k is the magnitude of the dispersion and I0(k) is the

modified Bessel function of order 0. The evolution of the fiber directions is identical to

the modeling of the distinct evolution of the moment parameters. When the distribution

depends only on the average and the variance measure of the probability density, the

mechanical evolution includes two independent/dependent rate equations. It is obvious

that such a remodeling approach assumes a static form of the probability distribution.

During the evolution, the shape of the probability density function is not related

to any other moment parameters (Figure 3.7). Instead of assuming the distinction

between individual fiber directions, as mentioned in micro-sphere approach, simple

idealizations can be made for the modeling of the angular evolution of the statistical
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Figure 3.7: Fiber dispersion parameters are based on a circular probability
distribution. A fiber direction vector ai is defined with respect to the

Cartesian e1 axis where φi = ∠ (ai, e1). The fiber orientation density Φf

is a circular weight associated with the angular measurement φ and a
circular dispersion parameter k. The figure is adapted from [4].

fiber dispersion. One example is the Driessen et.al.’s work on the angular deviation of

the fibers discussed in [4]. The total stress incudes an isotropic and anisotropic part,

σ = −phI + σiso + σaniso , (3.123)

σaniso =

Nf∑

i=1

Φi
f

(
σif
(
λif
)
− ãi · σiso · ãi

)
ãi ⊗ ãi , (3.124)

where σif is the ith fiber’s stress depending on the fiber stretch λif , and Φi
f is the

associated orientation density on a spatial direction ãi = F · ai0. The partition of

the orientation density is analogous to the integration weights utilized in micro-sphere

approach. The weights of the orientation density depends on the circular probability

distribution as,

Φi
f

(
φi
)

= A exp

(
cos (2 (φi − αµ)) + 1

k

)
. (3.125)

αµ is the main fiber direction and k is the variance parameter of the distribution. A is a

scaling factor that guarantees
∑

i Φ
i
f = Φf . In general, the evolution of the angle and

dispersion parameters obey first order equations,

dαµ
dt

=
1

τα
(αp − αµ) , (3.126)

dk

dt
=

1

τk
(kp − k) , (3.127)

τα, τk are the characteristic remodeling times. The target homeostatic condition

parameters αp, kp are determined by the target stimuli definitions which are not detailed

here.
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To summarize, the statistical evolution of the dispersion in a fiber reinforced soft

tissue can be related to the evolution of a finite number of distinct fibers associated

with a probability density function. In a micro-sphere like approximation, additional

evolution equations for each integration direction should be developed in order to be

able to write down the whole evolution process [27]. On the other hand, the evolution

of the dispersion can be reduced to the evolution of only one single parameter (k)

to define the overall statistical dispersion. The local fluctuations common in natural

processes may yield non-Gaussian density forms. Then, multiple distributions for

distinct fiber families may be a way to overcome the problem. On the other hand,

the assumption of the existence of one single dispersion parameter has taken place in

many experimental works, and the models gave satisfactory results (see for example

[46]).

3.5.2 Biologically motivated approaches

The fiber remodeling algorithms that are discussed so far are motivated by the

acceptance of a mechanical stimulus such as the principal stress and strain. In reality,

the cellular scale microscopic phenomena are the main cause of the micro-scale

remodeling. It is experimentally validated that the evolution of the fiber orientation

vectors may depend on both strain and stress. However, the time evolution of such

dependency is highly related to the sub-processes having extreme complexity. In this

subsection, we emphasize some basic approaches and well-known models that are

trying to explain the aforementioned cellular activities.

An important development in the field of modeling the structural remodeling in

collagen gels may be attributed to the research of Barocas and Tranquillo ([16]). The

model is developed for predicting the time evolution of the collagen gel remodeling.

The collagen gels are obtained by a carefully designed incubation procedure including

a cell seeding process. After the seeding process, the gel evolves into its homeostatic

mechanical conditions via the cell migration, which can be modeled by an anisotropic

diffusion process. The anisotropic cell migration can be modeled by,

d c

dt
+ c (∇ · vn) = ∇ · (bmigHc · ∇) + bcell c , (3.128)

where bmig is a basal migration, bcell is a basal proliferation coefficient and Hc is a

tensor that defines the cell alignment (orientation) of the cells. vn is the velocity of
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the fibrillar network which is embedded in an interstitial fluid component. The cell

alignment is supposed to be related to the fibril alignment in the extra-cellular matrix

domain. Due to the concept of the contact guidance, the cell alignment tensorHf is a

monotonous function of the fibril alignment tensorHf as,

Hc =
ndim

tr (Hf )
q (Hf )

q , (3.129)

q is a sensitivity parameter for the cell contact guidance. A typical value is q ≈ 4

([10, 16]). The fibril alignment tensor is given by,

Hf =
3

2π

ˆ π
2

0

ˆ 2π

0

Pr (ζ, Ξ) (a (ζ, Ξ)⊗ a (ζ, Ξ)) sin (ζ) dζdΞ , (3.130)

for the fibril direction a (ζ, Ξ) ∈ S2 in spherical coordinates.

The criticism of the model can be summarized as follows,

• As observed in some experimental situations [6], the relationship between time

evolution of Hc,f can be indirectly related. For instance, assume that Hf = κI +

(1 − κndim)e1 ⊗ e1, then Hc ≈ AHq
f = A diag ((1− κ (ndim − 1))q ,κq,κq), A

being any normalizer. When q ≈ 1, the principal directions ofHc andHf coincide

in time, which means that their evolution speeds are the same. If the distribution

is a transversely isotropic one defining an ellipsoid, the rotation of e1 does not

effect the interpretation. However, as we discuss in chapter 5, the evolution of

structural tensors for the cell and fibril orientations is shifted in time. In addition,

the evolution of the mean fiber rotation and dispersion rates are time shifted [11].

Thus, the mechanical equations should be based on these observations.

• According to the concept of cell contact guidance, the evolution of migration and

fibril alignment is inter-dependent processes. Fibril alignment itself is not only a

consequence of the current deformation field but also the cellular migration field.

Cellular migration type (i.e. ameboid) also affect fibril alignment pattern. Then, at

least, a feedback approach which translates the random information propagating in

the ECM environment should be present in the model.

Another class of the collagen remodeling models depends on the mechanistic evolution

of the anisotropy due to the synthesis of proteins and the stiffness evolution. Such

models cover a great volume of the derived novel approaches published in the field
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in the last decade. In the growth and remodeling frameworks, some concepts are

widely accepted and now they are settled as the state-of-the-art principles. One of

the principles is related to the loss of balance between the production and degradation

of the ECM constituents (collagen, elastin, proteoglycans) which are considered to be

influential for bio-mechanochemical processes. Pathological cases may be related to

the loss of balance. During the evolution of the vascular remodeling, hemodynamic

conditions could trigger a black-box mechanism which starts protein synthesis via

transcription in cells. Growing in mass, the accumulated protein deposition alter the

mechanical magnitudes locally. This two-sided feedback process starts a fluctuating

events chain until the adaptation is completed by reaching a homeostatic condition. For

collagen-based vascular tissue, the balance mechanism can be effected by the chemical

agents such as TGF − β (transforming growth factor). The release of TGF − β

from the smooth muscle cells is associated with the deposition of the pro-collagen

molecule. In addition, the ratio of the metalloproteinase enzymes (MMP) and the

tissue inhibitors of the metalloproteinase (TMMP) is a quantifier of the degradation

level. In hypertension, the level of MMP decreases in accordance with the degradation

of collagen. A typical approach to characterize this event is to use a first order rate

equation for the mentioned chemical agents [47],

RTGF−β = ρ̇TGF−β = cTGF−β

[
ρTGF−β

ρ∗TGF−β

]−mTGF−β

ΨSMC (I4)−Ψ∗TGF−β , (3.131)

for the source term R. The density evolution of a system is represented by,

ρ̇ = R, R =

[
ρ

ρ∗

]−m
Ψ (C)−Ψ∗ , (3.132)

with 2 < m < 3. Ψ∗ is the energy that exists in the equilibrium state, and ρ∗ is the

density of the homeostatic conditions. Similarly,

RTIMP = ρ̇TIMP = cTIMP

[
ρTIMP

ρ∗TIMP

]−mTIMP

ΨSMC (I4)−Ψ∗TIMP , (3.133)

where cTIMP is a rate parameter. Then, the evolution of the collagen fiber density can

be given by,

Rcoll = ρ̇coll = c0RTGF−β + c1RTIMP , (3.134)

which links the production and the degradation rates. The collective rate of change

of various protein chains can be handled in a similar way. If the chemicals
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diffuse very slowly in the media, the spatial dimension affects the time-dependent

propagation of the chemicals, and the ordinary rate equations are extended in to their

reaction-diffusion forms including the additional diffusion rate constants.

3.5.3 κ−based remodeling approaches for the evolution of the generalized

structural tensor (GST)

In this section, the generalized structural tensor (GST) based remodeling approaches

are briefly discussed. A generalized structure definition of a fiber reinforced collagen

tissue [22] based on the statistical orientation parameter κ is given by,

H (a0,κ) = κI + (1− 3κ)a0 ⊗ a0 , (3.135)

where the formal definition is,

H =
1

4π

ˆ
ρ (a0 (ζ, Ξ))a0 (ζ, Ξ)⊗ a0 (ζ, Ξ) sin (ζ) dζdΞ , (3.136)

1 =
1

4π

ˆ
ρ (a0 (ζ, Ξ)) sin (ζ) dζdΞ , (3.137)

and ρ (a0) = −ρ (a0), where a0 is defined in Eulerian space coordinates as,

a0 (ζ, Ξ) = sin (ζ) cos (Ξ) e1 + sin (ζ) sin (Ξ) e2 + cos (Ξ) e3 , (3.138)

span{e1, e2, e3} = E3. H is a linear mixture of isotropic I and a directed component

a0 ⊗ a0 weighted by an assigned probability. Then, H has positive eigenvalues. For

the transversely isotropic distribution of the fibers in space, κ can be reduced into the

short form,

κ =
1

4

ˆ π

0

ρ (ζ) sin3 (ζ) dζ , (3.139)

ρ (ζ) is usually modeled as a circular normal distribution, such as, π−periodic

von-Mises distribution. Then, ρ (ζ) is,

ρ (ζ) = 4

√
b

2π

exp (b cos (2ζ) + 1)

erfi
(√

2b
) , (3.140)

and b is the concentration parameter. The energy function can be represented as,

Ψ = Ψiso +

p∑

i=1

Ψf

(
λ̂if

)
, (3.141)

or λ̂if = (H i : C)
1
2 is the average stretch definition based on the structural tensor

H i accompanying strain tensor C. A superscript hat symbol is utilized in order to
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make a distinction between the deterministic stretch from the statistical distribution

based stretch (in average sense). Then, unlike formulations discussed in [4], the

distribution is integrated to obtain the structural tensor. λ̂if is an average description

for the dispersed stretch which appears on the direction of the mean orientation of the

total fiber layout. Thus, there is a loss of information coming from the second moment

of the distribution. For very low dispersion magnitudes, the loss of information is

negligible. For a three-dimensional transversely isotropic von-Mises type orientation

distribution function, the integration is reduced into the form of equation 3.135 for

0 5 κ 5 1/3. In this case, time rate of H depends on κ and a0. The preferred mean

direction vector rotates according to the concepts discussed in previous sections. The

parameter κ remodels according to a first order equation,

κi =
1

τκ

(
κ∗ − κi

)
, (3.142)

where κ∗ is the target dispersion and κi is the ith dispersion parameter in the fiber

network.

Mathematical models proposed for the evolution of fiber dispersion achieved a great

amount of success, however, all these algorithms have similar conceptual backgrounds

to model the complex interactions in a tissue. All of them assume the existence of a

deterministic nature, except migration based approaches. At the very small scale, the

cellular migration and related phenomena seems to be a direct indicator of the existence

of a fluctuating non-deterministic microscale environment. The clues about this fact

can be followed to explain the evolution of the macroscopic fiber reinforced structures.

In the following sections, a new remodeling framework based on the random Langevin

force is proposed. The proposed framework emphasizes that not only the quantitative

evolution of the mechanical magnitudes but also the speed of the evolution of mean

orientation and dispersion should be the basic concept. The random Langevin force

can restrict the evolution speeds of the distinct distribution moments, if the process is

coming from a Gaussian one.
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4. A PRELIMINARY FORMULATION: A COMPUTATIONAL MODEL TO
PREDICT THE EVOLUTION OF HYDROXYPROLINE CONCENTRATION
AND TRANSITION STRETCH IN FIBRIN GELS

4.1 Purpose and Motivation

In this section, we construct a preliminary version of the collagen fiber remodeling

algorithm that incorporates the complex nature of the random evolution and

macroscopic fiber dispersion. We also present a continuum mechanical framework

for the evolution of local dispersion and how it could be coupled with the transition

stretch and collagen production. A locally linear evolution form for the statistical fiber

dispersion was proposed. The random force component of the evolution is described

by two parameters. The bounds of the constitutive model parameters are determined

by considering the experimental modulus and ultimate tensile stress data. We validate

the consistency of the whole algorithm by determining the optimal model parameters

that explain a four-week evolution of the Hydroxyproline concentration in a fibrin gel

experiment. The whole algorithm performed well for estimating the “qualitative”

features of anisotropy ratio distribution and four-week evolution of the collagen

volume fraction. The evolution equation parameters that control the maximum level

of Hydroxyproline concentration and remodeling time for the transition stretch are

determined to be critical for the evolution of compaction and collagen production.

4.2 Theoretical Framework

4.2.1 Essential kinematics and constitutive equations

The deformation of an undeformed initial configuration B0 to deformed current

configuration Bt at time t is described by one-to one mapping of Π. Then,

transformation (mapping) of the coordinates of material particles X ∈ B0 ⊂ E3

to the spatial coordinates z ∈ Bt ⊂ E3 is represented by x = Π(X, t). The

deformation gradient (F ) that stores the information of the relative infinitesimal rate
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of change of the displacement field between the material and spatial space is given

by F (X) = ∇Π = ∂Π(X)/∂X (the details are discussed in chapter 2). The

Cauchy-Green tensor is denoted by C,

C = F TF . (4.1)

The fibres are assumed to be embedded in an isotropic nonlinear hyperelastic matrix

environment and its angular orientation is characterized by the reference unit vector

defined on the surface of the unit sphere S2 = (a ∈ <3, ‖ a ‖= 1). The deformation

gradient maps the fiber orientation from the material configuration to the spatial one

as,

λa = F a , λ =
√
aT C a, (4.2)

where λ is the fiber stretch on the direction of a. In material space, the stretch λ ,

defined in equation 4.2 is supposed to be applied on the current preferred direction

of the collagen orientation ã. For the anisotropic behavior of the material with the

statistically dispersed fiber orientations, we consider the definitions in [22] based on the

additive splitting of the strain energy density function into its isotropic and anisotropic

contributions originally described in [48]. In this case, the strain energy function for

the dispersed structure can be defined as (ϕ is the volume fraction of the constituent),

ψ(C,Hi) = ϕisoψiso(C) + ϕaniso

Nf∑

i=1

ψaniso(C,Hi(a
i
µ,κi)) , (4.3)

in which Hi is the ith structural tensor of Nf fiber families with the mean orientation

aiµ and for some dispersion parameter κi. The symmetric generalized structural tensor

(sGST)H is defined as a function of the orientation density ρ(a) = ρ(−a) integrated

through the surface of the unit sphere Ω(Θ, Φ) ∈ S2,

H =
1

4π

ˆ
S2

ρ(a(Θ, Φ))a(Θ, Φ)⊗ a(Θ, Φ) dS . (4.4)

In equation 4.4, a(Θ, Φ) = sin Θ cos Φe1 + sin Θ sin Φe2 + cos Θe3 is defined in

Eulerian angles where e1,2,3 is the Cartesian basis set. Thus, [H ]k,l = bk,l ek ⊗ el
for some bk,l which define the orientation based average quantities. The explicit

mathematical form of the total potential can be determined as a function of the

Green-Lagrange strain-like quantity E = H : C − 1. For one fiber family,

ψ(C,H) = ϕisoψiso(C) +H(E)ϕanisoψaniso(C,H ,β) , (4.5)

ψaniso =
k1

2k2

(E)k2 , (4.6)
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where β represents a set of material parameters. ψaniso is the so-called anisotropic

fibre potential activated by the Heaviside step functionH, whereasψiso is the isotropic

potential ([22, 24]). I∗4 = H : C is an invariant ofC which might be used in equation

4.5 too. The first derivative of the scalar function ψ(I∗4 (C,H)) of I∗4 with respect to

C is given by (H ∈ <m×m),

∂ψ(I∗4 (C,H))

∂C
=
∂ψ(I∗4 (C,H))

∂I∗4
H . (4.7)

The identity in equation 4.7 can be utilized to obtain the second Piola-Kirchhoff stress

tensor (S) by,

S = Siso + Saniso , (4.8)

Siso = C1(tr(C)− ln(det(C))− 3) +D1(ln(det(C)))2 , (4.9)

Saniso = 2
∂ψaniso(I∗4 (C,H))

∂C
, (4.10)

Saniso = k1 (E)k2−1H . (4.11)

Equation 4.10 has a the desired mathematical form that the stress can be represented

as the product of a scalar with the generalized structure tensor. The implication points

that the stress evolution corresponding to the anisotropic remodeling depends directly

on the evolution of H . Surely, the convexity of the potential for arbitrary functional

forms of ψ is essential. The convexity of the polynomial type potentials under similar

circumstances has been investigated in [24].

4.2.2 Evolution of collagen production based on the modulation transition stretch

Collagen fibers align in the direction of the principal stretch to optimally bear

the internal stress load. The strain-dependent remodeling process is supported by

the synthesis and degradation of the collagen. Matrix proteins such as matrix

metalloproteinases (MMP) and tissue inhibitor metalloproteinases (TIMPs) are

important in the remodeling of collagenous tissue. MMPs are supposed to be activated

by the mechanical stimuli and their excessive production may point an abnormal event,

such as pathological situations and remodeling ([49]). The concentration of these

agents increases with stretch. This results in an increase in collagen level in terms

of the net amount of hydroxyproline (Hyp) content ([5]) (see section 4.3). The final

collagen level is expected to saturate towards the homeostatic position to be in balance

with the final deformation field.
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There are mechanistic models which defines the cellular signaling pathways and

transduction mechanisms for the collagen synthesis and secretion. If the concentration

or collagen volume fraction data has a highly oscillating complex evolution pattern,

mechanistic approaches should (inevitably) be preferred in order to capture the

oscillations. However, here, we apply a phenomenological evolution equation for

the collagen synthesis. The layout of the hydroxyproline concentration data of

the fibrin scaffold does not show a complicated growth pattern, and we consider

those phenomenological models being able to capture the rate of change in the

time-dependent evolution of hydroxyproline (see Figure 4.2).

Then, the steady state of the concentration of hydroxyproline content (ϑss) can be

assumed to be linearly related to the square of the fiber stretch (λ2). The collagen

content is limited by the lower value ϑmin activated by a minimum stretch λl, and the

upper value ϑmax activated by a maximum stretch λu [9]. Thus,

ϑss =





ϑmin if λ < λl,

ϑmax if λ > λu,(
ϑmax−ϑmin

λ2
u−λ2

l

)
(λ2 − λ2

l ) + ϑmin if λl < λ < λu.

(4.12)

The evolution of the hydroxyproline concentration can be given as a first order linear

differential equation,
dϑ

dt
=

1

τcoll

(
ϑss(λ

2)− ϑ
)

. (4.13)

In equation 4.13 dϕ/dt is the collagen net turnover as a result of synthesis and

degradation process. It is assumed that λu has a certain upper bound, since excessive

strain levels inhibit collagen production rate (see [8, 9] and references therein).

Experimental observations support that the tissue compaction in cellular scales is one

of the leading mechanisms for the molecular machinery of the remodeling process

[12]. From one point of view ([30]), the contractile motions of cells in the ECM

are utilized for the stretched assembly of the load carrying collagen fibers making

them pre-strained, residually via the transition stretch, which may be the reason for

the compaction observed in collagen and fibrin based structures. Here, we follow the

same assumption with a slight modification due to the dispersion. The pre-stretched

assembly assumption requires the definition of an intermediate remodeled continuum

configuration (Πg), which acts only on the anisotropic constituent of the structure.
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Then, the current transition stretch (λg) evolves according to equation 4.14.

dλg
dt

=
1

τg
(λ0 − λg) . (4.14)

The target transition stretch is defined by the multiplicative decomposition yielding the

remodeling and elastic stretches (equation 4.15).

λ0 =

√
H : C

λh
, (4.15)

E = λ−2
g (H : C)− 1 . (4.16)

The desired homeostatic stretch (λh) is supposed to be the final stretch level of the

pre-strained dispersed fibers. Naturally, the final stretch of the dispersed directions

depend on H : C which is the average quantity obtained from every single fiber

direction. We finally define the Green-Lagrange strain like quantity E (see [22]) in

the remodelled intermediate configuration as in equation 4.16. When λg decreases, the

fibers evolves towards a residually strained configuration through the time steps, due

to an increase in E.

4.2.3 A locally linear fiber remodeling formulation based on langevin force

In this work, we consider the observed dispersion characteristics of the collagen fiber

orientations as not being a static structure of the soft tissue, but as a stationary state of a

transient dynamic mechanism. Our main goal is to derive the macroscopic remodeling

of fiber dispersion and give a consistent evolution equation for the time-dependent

evolution of generalized structural tensor H . An evolution form has been previously

given by [26] whereas we will be focusing on the analytical form to account the random

force term. In this case, the overall collagen remodeling problem on hand intrinsically

assumes the existence of an underlying spatio-temporal diffusion mechanism, that can

be originated from a random force acting on the fast time scale. The remodeling

process also includes a deterministic driving force which drifts the process towards

a mechanically determined direction. The microscopic description of a stochastic

dynamics disturbed by the random Langevin can be represented by the Langevin

Equation. A general form of the nonlinear Langevin equation for the M -dimensional

state vector variable ξ is given by ([50, 51]),

d ξ(t)

dt
= h(ξ(t), t) + g(ξ(t), t)Γ(t) , (4.17)
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where ξ = ξ(t) for ξ : <M → <M is a stochastic variable and h(ξ, t) : <M → <M ,

g(ξ, t) ∈ <M×M are drift and diffusion terms consecutively. Γ(t) ∈ <M is the random

Langevin force. Its components are assumed to be of Gaussian type with zero mean

and δ-correlation having the properties

〈Γk(t)〉 = 0 , 〈Γl(t) Γk(t
′)〉 = δlkδ(t− t′) . (4.18)

The evolution of ξ depends on the applied random force Γ(t), where g(ξ) determines

the magnitude and the rotation of the random force vector. To obtain the microscopic

description of the time-dependent remodeling of collagen orientation, we use the

heuristic derivation approach explained in [50]. Since the remodeling process

outcomes with observed statistical quantities that are represented by probability

distributions, the probability distribution of collagen orientation can be obtained by

investigating the effects of microscopic Langevin force on the drifting mechanism [52].

As a result, we have a microscopic definition of the remodeling process driven by the

deterministic drift (h). The functional form of h : <M → <M , h = h(a,C, t), a ∈
<M can be selected to give the rate of the rotation as described in [44],

h(a,C, t) = f(a, ΛCmax) (I − a⊗ a) nCmax , (4.19)

where f is a scalar function, and ΛCi is the ith eigenvalue of C corresponding to the

eigenvector nCi . Then, a probabilistic evolution of a can be proposed as described in

equation 4.20.

da(t)

dt
= f(a, ΛCmax) (I − a⊗ a) nCmax + g(a(t), t)Γ(t) . (4.20)

It is possible to represent the time-dependent evolution of H through equation 4.20.

We use the probabilistic definition in order to estimate the H matrix. The probability

density function Pr(x) in equation 4.22 describes the geometric layout (orientation)

of a fiber density distribution that gives the probability of a single fiber being in the

interval (x,x + dx). By applying an approach similar to the “sample covariance

matrix estimator”, the integration of the individual fiber directions can be calculated

by the discrete sums. The covariance matrix of a random x vector is defined by

(COV (x,x)) (⊗ is the outer product),

COV (x,x) = E(x⊗ x)− E(x)⊗ E(x) , (4.21)

=

ˆ
x

p(x) x⊗ x dx− E(x)⊗ E(x) . (4.22)
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The integration of the continuous form
´
x

Pr(x) x⊗x dx can be approximated by the

discrete sums including a sample of n independent vectors from the same distribution.

ˆ
x

Pr(x) x⊗ x dx = E(x⊗ x) ≈ 1

n

n∑

i=1

xi ⊗ xi , (4.23)

where i is the sample index for a random vector. In the asymptotic case n → ∞,

the sum approaches to the exact matrix obtained from the continuous form. Since the

integration corresponds to the expectation calculated from all microscopic directions

ai, then

H =
1

4π

ˆ
S2

ρ(a)a⊗ a dS , (4.24)

≈ lim
N→∞

1

N

N∑

i=1

ai ⊗ ai , (4.25)

for ρ being the orientation density distribution that source from the definition of Pr,

and

1

4π

ˆ
S2

ρ(a)dS = 1 . (4.26)

From equation 4.20 and from the definition ofH in equation 4.27 we get,

Ḣ = lim
N→∞

1

N

N∑

i=1

ȧi ⊗ ai + ai ⊗ ȧi , (4.27)

Ḣ = lim
N→∞

1

N

N∑

i=1

[(f(ai, ΛCmax)
(
I − ai ⊗ ai

)
nCmax

+ g(ai, t)Γ(t))⊗ ai

+ ai ⊗ (f(ai, ΛCmax)
(
I − ai ⊗ ai

)
nCmax

+ g(ai, t)Γ(t))] , (4.28)

which might not be represented in simplified tensor forms for nonlinear f and g. The

whole sum should be calculated to obtain Ḣ . An approach using the integration

over the unit sphere to calculate the total effect of individual fibers has been recently

applied in many studies [19, 30, 47, 27]. However, we focus on the homogenized

average effects of the process. The evolution in equation 4.27 can be transformed in

to a compact tensor form if an appropriate form of h is chosen. The linearization of
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equation 4.19 around a0 at time t yields,

h(a) = h(a0) +∇ (h(a0)) · (a− a0) +O(‖ a− a0 ‖) , (4.29)

∇h = ∇a
(
f(a, ΛCmax)(I − a⊗ a)nCmax

)
, (4.30)

= f(a, ΛCmax) ∇a
(
(I − a⊗ a)nCmax

)

+
(
(I − a⊗ a)nCmax

)
⊗∇af(a, ΛCmax) . (4.31)

Keeping f(a) = π/2 τω as a constant value is effective for the numerical simulations.

Finally the linearization is given by,

h(a, t) =
π

2 τω

(
nCmax + aT0n

C
maxa0

−
(
(
nCmax

)T
a0I + a0 ⊗ nCmax

)
a

)
, (4.32)

= B(a0)a+ c(a0) , (4.33)

in which B ∈ <M×M , c ∈ <M for a ∈ <M , and τω is the characteristic remodeling

time of rotation. a0 can be considered as the previous direction of the fiber in the

reference configuration which is algorithmically updated by the incremental Newton

iterations to a newly remodeled direction. By incorporating the linear form with

equation 4.20, it is possible to give an integrated version (equation 4.35) and the

differential form of the fiber orientation evolution including the random effects,

a(t+ ∆t) = a(t) +

ˆ t+∆t

t

h(a(t′), t′) dt′

+

ˆ t+∆t

t

g(a(t′), t′)Γ(t′) dt′ , (4.34)

da(t) = (B(t)a(t) + c(t)) dt+
√

Σ dW (t) , (4.35)

where dW (t) is a Wiener process ([50, 51]) with the property,

W (t+ ∆t)−W (t) =

ˆ t+∆t

t

Γ(t′) dt′ , (4.36)

dW =
√

∆t Γ(t) , (4.37)

and g(a, t), as given in equation 4.20, is taken to be
√

Σ. In equation 4.36, due to

random nature of Γ, the integration is calculated by the probabilistic approaches (Itô
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rule). As previously mentioned, Γ(t) ∈ <M is distributed according to the Gaussian

distribution defined by the probability density function Pr(Γ),

Pr(Γ) =
1√

(2π)M
exp(−1

2
Γ · Γ) . (4.38)

The expected value of the mean orientation (aµ) can be calculated by utilizing the

infinitesimal increase on the expectation function E(x) =
´
x

Pr(x)x dx. Since

E(dW (t)) = 0

daµ = E(a+ da)− E(a) , (4.39)

= B(t)aµ(t)dt+ c(t)dt . (4.40)

We want to estimate the expectation of the structural tensor through the derived

identities as in equation 4.40. Generalized structure tensor can be defined by the

expected value of the variance-covariance matrix V = E(a ⊗ a) − E(a) ⊗ E(a).

Thus,

V̇ = Ḣ − ˙aµ ⊗ aµ . (4.41)

From E(
√

ΣdW (t)⊗
√

ΣdW (t)) = ΣI dt (dW is isotropic) and assuming a constant

dispersion term Σ ∈ <, one obtains the time-dependent matrix differential equation for

the evolution of V (andH).

dV (t) = E ((a+ da− aµ − daµ)⊗ (a+ da− aµ − daµ))

− E ((a− aµ)⊗ (a− aµ)) , (4.42)

= B(t)⊗ V (t)dt+ V (t)⊗B(t)dt+ ΣIdt+O(dt2) . (4.43)

There is an advantage of the linearity that the update procedures can be given

analytically for the nonlinear Newton iterations. The update equations from t to t+∆t

for aµ,V andH is given in equation 4.44.

aµ(t+ ∆t) = e∆tBaµ(t) +

ˆ ∆t

0

e(∆t−s)Bc ds , (4.44)

aµ(t+ ∆t) = aµ(t+ ∆t)/ ‖ aµ(t+ ∆t) ‖ , (4.45)

V (t+ ∆t) = e∆tB V (t) e∆tBT

+

ˆ ∆t

0

e(∆t−s)B ΣI e(∆t−s) BT ds , (4.46)

H(t+ ∆t) =
1

∑M
i=1 Λ

H(t+∆t)
i

× (V (t+ ∆t) + aµ(t+ ∆t)⊗ aµ(t+ ∆t)) . (4.47)
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Numerical calculation of the matrix exponentials (e∆tB) is trivial and can be realized

by existing libraries. Integration of the matrix exponentials may not be trivial

especially for the stiff cases, however, Gaussian quadrature well performed for our

case.

We simply assumed a constant Σ = ζuI for the random force term. This term can

be assumed to vary with time depending on a strain dependent stimulus. In every

Newton iteration, the random force term can be defined as a ratio of the eigenvalues

of Cauchy-Green tensor (equation 4.48). Strain dependent experiments show that the

inter-cellular stress fibers (SF) align isotropically when biaxial boundary conditions

were applied (ΛH1 = ΛH2 > ΛH3 ), and show no dispersion when the structure is

uniaxially stretched to extreme levels (ΛHmax > ΛH2 ≈ ΛH3 ≈ 0) (see [18]). Then

we propose the form,

Σ =

(
ΛCmax−1

ΛC
max

)γ
ζu , (4.48)

as the random Langevin force for the collagen fiber dispersion. We set γ = 1 for

simplicity, which is a weighting term. ζu is an upper bound for the random force.

4.3 Model Parameters and Their Intervals

4.3.1 Problem specification

We validate the theoretical scheme through investigating its predictive abilities on a

four-week fibrin based gel experiment, discussed in [14, 5, 49]. The experiments

are prepared to track the evolution of chemical signals for the collagen production,

evolution of mechanical properties and statistical fiber dispersion. Rectangular strips

(35 × 5 × 1 mm.) of polyglycolic acid meshes were coated with a thin layer of

poly-4-hydroxybuytrate. The bottom surface of the scaffolds is reinforced by an elastic

layer. In the longitudinal direction, the scaffolds are attached to the flexible membranes

of 6-well plates at the outer 5mm. Human saphenous vein myofibroblasts were seeded

into the fibrin gel compound (10mg/ml fibrinogen, 10 IU/ml thrombin solution)

having the geometry of a rectangular strip at the density of 2 × 106 cells per cm2.

Two boundary conditions, cyclic and constrained, have been applied for different strips

(Figure 4.1a). We only investigate the constrained case here. In the constrained case,

the outer 5mm of the engineered scaffold with rectangular geometry has been statically
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Figure 4.1: A sample drawing of the experiment samples and strip geometry. (a)
Experimental design of a set of strips located on a fibrin block. (b) Rough

geometry of the samples and their constrained regions.

conditioned and no displacement occurs on this partition. The 25mm interior region

of the scaffold block is free to compact due to contractility (Figure 4.1b). The strip

samples were assumed to be the same in their chemical composition and any material

properties. Then the strip samples (n = 5) were analyzed to determine the statistical

properties of the chemical composition and material properties at predetermined times.

In the following sections, through utilizing the qualitative and quantitative information

presented in these experiments, we show that a locally linear evolution model for

the statistical fiber orientation depending on the transition stretch can be used as an

efficient tool to explain a four-week evolution of the collagen concentration in fibrin

gels.

4.3.2 Material parameters for fibrin-based engineered tissue

The experimental setup includes the process of myofibroblast seeding using 10mg/ml

fibrinogen and 10 IU/ml thrombin solution as the cell carrier. Although the chemical

composition and production procedures influence the mechanical properties, tensile

stiffness of the fibrin-based scaffolds is known to be highly correlated with the

concentration of fibrinogen and thrombin. For our investigations, the young modulus

of isotropic matrix component will be set to an acceptable approximate value which

is supposed to represent the properties of the matrix component. Although some

publications in the literature support evidence for nonlinear material behavior ([53]),

for simplicity, we assume that isotropic matrix component could be modeled by a
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nonlinear hyperelastic material. Previous works ([53, 54, 55, 5, 56, 57]) have shown

that the linear modulus of fibrin-based scaffolds is on the order of kPa’s. We consider

that EM describes the stiffness of isotropic fibrin-based structure without collagen. The

linear modulus of collagen scaffolds has shown to be approximately 10 times higher

than the fibrin scaffolds which were created by the same production techniques ([55]).

The exact value depends on the production process and concentrations, especially

the fibrinogen level. It is reasonable to select the variation of elastic modulus EM

to be lying in the interval 5 < EM < 30 kPa for our case. We support this

assumption by presenting a list of previous experimental measurements gathered by the

experiments on fibrin scaffolds (Table 4.1), which focuses on mechanical parameters.

The observations point out that without collagen fibers the fibrin-based scaffolds may

be described by an isotropic weak matrix where collagen structure takes place by

the cellular activities, and mature with time. By this way, in order to decrease the

complexity of the problem, we assume that the overall time-dependent strength of the

material largely depends on the collagen level and we exclude any temporal change in

the mechanics of isotropic matrix. Thus, we set shear modulus of the matrix as 20kPa

and C1 ≈ 10kPa.

We have roughly determined the representative stress-strain model by using the

(uniaxial extension) data of experimental UTS and linear modulus reported in [5] for

the 2nd, 3rd, 4th weeks. A rough power law description of the strain-stress relationship

can be given by the function σ = ν1 (λ − 1)ν2 . The linear modulus is placed as

the slope of the curve at λ = 1.25. The estimated coefficients for ν1, ν2 have been

given in Figure 4.4 where the nonlinear relationship matures with time. We use the

representative model for 4th week in order to determine a plausible estimate of the

parameters. The components of the Cauchy stress is determined by,

σ′ = C1 det(F )−5/3(FF T − tr(F )

3
I) , (4.49)

σ11 =

(
λ2 − 1

λ

)
×
(

(1− ϕcoll)C1

+ ϕcoll
k1

3

((
λ2 +

2

λ

)
/3− 1

)k2−1
)

. (4.50)

The theoretical uniaxial model in equation 4.50, which represents an incompressible

anisotropic nonlinear elastic media with Neo-Hookean isotropic contribution, assumes
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a homogenous distribution of the collagen volume fraction which was set to ϕcoll =

0.015. The statistical distribution of the fibers has been (experimentally) observed to

be almost isotropic at week 4, then (H ≈ I/3). Incompressibility has been utilized

in order to simplify the expression equation 4.50, because of the uniaxial extensions

F = diag(λ, 1/
√
λ, 1/
√
λ) and det(F ) = 1. The nonlinear fitting of the expression

in equation 4.50 supplies the overall variation of the boundaries of two anisotropic

parameters. We conclude that k1 = 2.2 GPa and k2 > 2.0 are strictly required for

this model to be in accordance with both the UTS and linear modulus data at week 4

(Figure 4.4). The constraint k2 > 2.0 is required not only for fitting purposes but also

for the stability of the simulations. Isotropic parameters do not have much effect on the

variation of k1 and k2 when C1 < 30 kPa. This calibration of parameters is expected

to be sufficient for simulating the 30 days of evolution.

4.3.3 Collagen remodeling and transition stretch

Initial estimations of the collagen remodeling parameters can be realized by means

of a nonlinear curve fitting applied on to experimental data. The collagen levels are

related to the existing hydroxyproline concentration since many collagen types include

this molecule at a certain fraction of the collagen content. To estimate the evolution of

hydroxyproline, we replace the evolution equation by the logistic type growth curve as

in equation 4.51

dϑ

dt
=

1

τcoll
ϑ

(
1− ϑ

ϑss

)
. (4.51)

ϑss is the steady state concentration and τcoll is characteristic remodeling time for

hydroxyproline production. The exact solution for the incremental update procedure is

available,

ϑ(t+ ∆t) =
ϑss ϑ(t) e∆t/τcoll

ϑss + ϑ(t) (e∆t/τcoll − 1)
. (4.52)

Parameter estimations for equation 4.52 are τcoll = 6.045 days, ϑss = 7.3548, and

ϑ(t = 0) = 0.3357. This kind of initial analysis without solving the boundary value

problem supplies strong quantitative information such as the characteristic remodeling

time for the hydroxyproline content, and weak information about the steady state

concentration ϑss. Steady state target concentration depends on the evolution of

the mechanical magnitudes such as the transition stretch and principal strain. The
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Figure 4.2: Experimentally observed hydroxyproline concentration data [5] and the
best logistic type nonlinear growth fitting curve.

time-dependent dimensionless fiber volume fraction ϕcoll(t) can be estimated directly

from the dimensionless density variable ϑ(t) for the hydroxyproline. Since the

hydroxyproline data is given in terms of µgHyp/µgDNA, the total amount of DNA

is required. It can be estimated by multiplying the total number of cells Ncell(V ) in a

volume V by the amount of DNA in a single cell MDNA = 7.2pg/cell (see [58]). The

mass of the collagen content can be calculated by the mass ratio R coll
hyp

= 100.0/13.0

([59]), where the mass of the collagen in µgHyp/µgDNA is given byMcoll = R coll
hyp
×ϑ .

Finally, the collagen volume fraction ϕcoll can be calculated by the technique described

in [60], and when there is no variation in the number of cells per unit volume it could

be formulated as equation 4.53.

ϕcoll(t) ≈ ξMDNAR coll
hyp

(
Ncell(V )

V

)
ϑ(t) , (4.53)

≈ η ϑ(t) . (4.54)

The conversion parameter from hydroxyproline in to collagen concentration in

equation 4.54 is η = 0.0024. ξ ≈ 1.44 is a constant conversion parameter which

relates the volumetric fraction to the density of the chemical composites (see [60] for

details). This conversion is used to estimate the final ϑcoll for the mechanical model.

We expect this model to predict the Hyp concentration (also volume fraction) of five

experimental observations from [49] as ϑ(t = 3) ≈ 0.4, ϑ(t = 10) ≈ 1.3 and from

[5], we have ϑ(t = 14) = 2.75, ϑ(t = 21) = 4.26, ϑ(t = 28) = 6.18 (Figure 4.2).
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Figure 4.3: Representation of the finite element discretization of strip geometry with
1848 hexahedral 8-node elements. A single node has been selected for

data demonstration purposes. uy is the displacement variable that belongs
to the sample node.

The target homeostatic stretch was determined as λh = 1.01 which has been used for

the collagen compaction models in [30]. It gave satisfactory compaction levels in our

simulations.

4.3.4 Rotation rate

Characteristic remodeling time for the mean fiber orientation has been qualitatively

determined and set to be in the interval 3.0 ≤ τω ≤ 6.0 days, due to some experimental

results that are given in [11] for collagen gels. For this case, uniaxially strained samples

have shown a characteristic rotation time of tω ≈ 72 hours. Additionally, we test the

situation for tω ≈ 6.0 days.

4.4 Numerical Implementation: Solution Method and Software

The boundary value problem has been solved by an integration point based finite

element method where we apply an incremental update procedure for the nonlinear

Newton iterations. The basics of the integration point based approach for the growth

and remodeling equations can be found in [36]. The whole algorithm and the

discretisation of the problem domain have been implemented by using the fortran

subroutines located in Elmer Multiphysics Library ([61]). The rectangular block

domain of the real problem has been partitioned into 1848 hexahedral 8−node elements

constructed by 2736 nodes. The displacement boundary conditions of Dirichlet type

u = 0 have been applied from both left and right faces of the rectangular block (see

Figure 4.3). For the post-processing, the interpolation of local variables has been

obtained by the related subroutines in Elmer library. Additional modules to compute

the anisotropic stress, collagen production, calculations of the transition stretch and
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numerical estimations of the algorithmic tangent moduli have been written and adapted

for the incremental update process. The solution procedure is applied both in local and

global newton iterations, and there is supposed to be no inertial effects acting on the

body,

∇ · σ = 0 . (4.55)

In this case, at every time step, ∆t = 0.5 days, the balance of momentum equation 4.55

is solved by the Total Lagrangian (TL) approach until the convergence is achieved.

In the TL approach, we formulate the remodeling processes to update the internal

variables in the intermediate remodeled configuration. For each time step, the

local update equations 4.14,4.44,4.52 are solved simultaneously. The updated

Green-Lagrange strain (E) in the intermediate configuration is assumed to be the

source of elastic strain energy, which can be solved by the global Newton iterations to

calculate the stress and strain measures, for the new updated reference configuration.

The new estimations of the internal variables (λg,aµ,H ,ϕcoll) are stored at the

integration point level at the end of each global Newton iteration. The global Newton

iteration proceeds until the norm of the global displacement increment vector satisfies

the condition ∆u < 10−6. We numerically estimate the local algorithmic tangent

modulus matrix by the approach given by [39]. The evolution of the concentration and

other mechanical magnitudes are tracked for 30 days.

4.5 Results and the Validation of the Algorithm

In this section, we briefly represent our simulation results and analyze them in order to

improve the estimations. We estimate the optimal parameter interval by successive

fine-tuning approaches by means of investigating the sensitivity of the parameters

ϕmax, τω, τg listed in Table 4.2. We followed a two-stage fine-tuning strategy. In the

first part, we use arbitrary initial parameters in order to determine their effects on the

deformation level and chemical concentration. Secondly, we fine-tune the parameters

for a better estimation of the experimental data. Initial simulation results have certainly

shown that ϕmax, τg have a direct consequence on compaction level and collagen

production. The remodeling time τω for the fiber dispersion evolution did not affect

the simulation results meaningfully (ζ = 1). This interpretation can be followed from

Figure 4.5. It is expected to be affecting the results quite weakly even if the parameters
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are set to higher values. The reason of the insensitivity may be related to the isotropic

distribution of fibers over the domain (see Figure 4.9). Although the dispersion at the

beginning of the process is close to isotropy, the evolution of mean fiber direction aµ

has shown a usual, expected rotation (Figure 4.10). The mean fiber direction is always

flat at the middle of the fibrin bar, whereas it has the maximum rate of rotation at

spatial positions close to the corners of strips. The influence can probably be seen for

ζu << 1.0 when the random force is relatively small. The experimental observations

support the existence of a high level of dispersion for the constrained cases ([14]). The

investigation has been continued for τω = 6.0 days, assuming a similar characteristic

remodeling time of the collagen production τω ≈ τcoll, for the rest of the analysis. On

the other hand, remodeling time for transition stretch τg has been understood to be

very effective on mechanical magnitudes independent from ϕmax, (Figure 4.5, 4.6, 4.7

and 4.8). Observations of the sample node states that the characteristic time for the

Table 4.1: Previous works that describe the mechanical properties of fibrin gels
(NA : Not Available).

Fibrinogen
(Fb)

Thrombin
(Tb)

EM (kPa) V/V0 Description Ref.

(mgml−1) (UI/ml Fb)

0.5− 3.0 0.2 UI/ml 1.04− 5.92 NA Analytical
description of elastic
modulus as a function
of Fb,
E∞M = 2.04(Fb)0.97

[53]

2.0
4.0

0.1 28.0
19.0

0.954
0.816

Pure fibrin gels at day
6

[55]

40.0 0.5 5.95 NA Uncompressed
samples at day 0

[56]

4.0 1.0
0.1
0.01
0.001

9.93
8.86
18.9
28.2

V/V0 < 0.1
for all

The influence of Tb
concentration on
measurements at day
7

[57]

17.8− 26.5 NA 12.0± 1.0 NA [54]

transition stretch increases when the hydroxyproline production decreases. There is an

undoubted trade between τg and ϕmax evolution where the effects of a decrease in τg

can be counterbalanced by a decrease in ϕmax. The trade-off exists among ϕmax, τg

and λg. Since the compaction levels depend on the magnitude of the transition stretch

λg, it is a functionally dependent variable of both ϕmax and τg. As a result, in order

to reach the exact compaction levels, the parameters should be determined through
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Table 4.2: The predefined parameters, their descriptions and test intervals that are
used in simulations.

Parameter Value Description Test Interval

Material Model
C1 10.0 kPa Shear Modulus -
D1 40.0 kPa Bulk Modulus (Poisson ratio

ν ≈ 0.4, D1 = C1 2ν
1−2ν

)
-

k1 2.2× 106 kPa Fiber Stiffness Parameter -
k2 2.1 Exponential Fiber Parameter -

Transition Stretch
λh 1.01 Homeostatic Stretch 1.01 ≤ λh
τg 3 days Characteristic Time for the

Transition Stretch
1.0 ≤ τg ≤ 3.0

Fiber Remodeling
τω 6.0 days Characteristic Time for Fiber

Reorientation
3.0 ≤ τω ≤ 6.0 days

γ 1.0 Dispersion parameter -
ζu 1.0 Upper Bound for Random

Langevin Force
-

Collagen Remodeling
ϕmax 490.0 µg Hyp/ µg DNA Target Concentration (Max) 50.0 ≤ ϕmax

ϕmin 0.1 µg Hyp/ µg DNA Target Concentration (Min) -
λu 1.1 Upper bound for Fiber stretch

to activate ϕmax

-

λl 1.0 Lower bound for Fiber stretch
to activate ϕmin

-

τcoll 6.0 days Characteristic Time for
Hydroxyproline Synthesis

-

Fiber Volume Fraction
η 0.0024 Constant coefficient for the

direct conversion of
hydroxyproline concentration
in to collagen volume fraction

-

analyzing λg. Experiments show that, the amount of static strain generated due to tissue

compaction is in the order of 4% after four weeks [5]. Here, we assume that λg − 1 is

an indicator variable for the static fiber strain generated by myofibroblasts. Although

ϕmax = 100 and τg = 2.5 supply better λg estimations, the level of ϕmax does not

fulfill the collagen production criteria (Figure 4.5). For ϕmax = 100, τg = 1.0, the

static stretch generated by the cellular activities reach to a level of nearly 15%, where

the estimation has been improved to λg − 1 ≈ 8%, as being the final and satisfactory

static stretch level in our simulations (Figure 4.11).

4.5.1 Evaluation of the experimental validation of the framework

In the second stage of the analysis τg has been set to 3.0 days. In this case, it can be

seen from Figure 4.5 that the static strain levels do not depend on ϕmax (also Figure

4.11). The effects of varying ϕmax are shown in Figure 4.12. Our numerical tests prove

the inexistence of the evidences for supporting the strong impact of the fiber anisotropy

evolution. The evolution of the anisotropy ratio weakly couples with the mechanical

rate of change. This is understandable since the statistical dispersion data obtained

84



0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

100

200

300

400

500

ν2 ≈ 1.02

ν2 ≈ 1.49

ν2 ≈ 1.96

Strain (λ− 1)

Ca
uc

hy
St

re
ss

σ
(k

Pa
)

Representative Stress-Strain Models for σ ≈ ν1(λ − 1)ν2

Representative Model week 4
Representative Model week 3
Representative Model week 2
Experimental Modulus week 4

Experimental UTS

a)a)

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35

0

200

400

600

800

k2 ≈ 2.5

k2 ≈ 2.2

k2 ≈ 2.1

k2 ≈ 2.01

Strain (λ− 1)

Ca
uc

hy
St

re
ss

σ
(k

Pa
)

Uniaxial Model Approximations

Representative Model week 4
Experimental Modulus week 4

Experimental UTS
Theoretical Model

b)b)

Figure 4.4: Representative True stress - Engineering strain curves for experimental
UTS and modulus (a). The effect of the variation of anisotropic parameter
k2 compared with the layout of experimental UTS and modulus (b).

85



0 5 10 15 20 25 30
0

2

4

6

λh = 1.01, ϕmax = 50.0, τω = 3.0

day

µ
g

Hy
p/

µ
g

DN
A

Simulation Results for Hyp Production (Nodal Average)

experiment
tg = 1.0
tg = 1.5
tg = 2.0

a)a)

0 5 10 15 20 25 30
0

2

4

6

λh = 1.01, τω = 6.0

day

µ
g

Hy
p/

µ
g

DN
A

Simulation Results for Hyp Production (Nodal Average)

experiment
ϕmax = 50.0, τg = 1.0
ϕmax = 50.0, τg = 1.5
ϕmax = 50.0, τg = 2.0
ϕmax = 100.0, τg = 1.0
ϕmax = 100.0, τg = 1.5
ϕmax = 100.0, τg = 2.5

b)b)

Figure 4.5: Simulation results for the hydroxyproline production. The effects of
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Figure 4.7: Simulation results for the Cauchy Stress uy element. The effects of
varying τg and ϕmax on the evolution of displacement measurements

while λh and τω are fixed (a). The effects of varying ϕmax while ϕmax τω
are fixed (b).
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Figure 4.8: Simulation results for the anisotropy ratio (1− ΛHmax−1/Λ
H
max). The

effects of varying τg and ϕmax on the evolution of anisotropy ratio while
λh and τω are fixed (a). The effects of varying ϕmax while ϕmax and τω

are fixed (b).
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Figure 4.9: Simulation results for the evolution of the anisotropy ratio at days
0.5,14,21 and 28.
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Figure 4.10: Simulation results for the evolution of mean fiber direction aµ at days
0.5,2,10,20 and 30.
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Simulation Results for λg (λh = 1.01, τω = 6.0)
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Figure 4.11: Simulation results for the transition stretch λg. The effects of varying τg
and ϕmax on the evolution of λg while λh and τω are fixed (a). The

effects of varying ϕmax while τg and τω are fixed (b).
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Figure 4.12: Experimental validation of the model framework in accordance with the
hydroxyproline production. The model could explain the experimental
data for ϕmax = 490 and the parameters can be fine-tuned in order to

obtain exact compaction levels.

from for this experimental design (constrained case) is so high preventing one from a

meaningful analysis to describe the effects of fiber anisotropy. The predictions made

by the simulations well describe the qualitative experimental features that are given

in [14]. Hydroxyproline levels obtained from each simulation can be determined by

changing the maximum concentration level, and an optimal level has been determined

as ϕmax = 490 supplying an optimal fitting for 4 weeks of evolution. We want to

emphasize that the optimal parameters gave a very close description of not only the

concentration itself but also the rate of change in it. We think that this predictability

is highly related to the evolution function in equation 4.51, where its characteristic

curvature is transferred to the predictions realized by the fine-tuning. Therefore, we

came to a conclusion that the main effects have been reflected by the fiber strain

(through τg) and target maximum level of the Hydroxyproline concentration, We could

have been able to utilize their parametric tradeoff in order to satisfy an approximate

level of compaction. The discussions of the results are given under the conclusion

section.
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5. A NOVEL FIBER REMODELING FORMULATION BASED ON
LANGEVIN FORCE

5.1 Purpose

In previous chapter we have constructed a preliminary version of a probabilistic

evolution framework. The algorithm has been shown to supply valid quantitative

information extracted from the published experimental data. Also we have represented

a sensitivity analysis on parameters.The bounds of the constitutive model parameters

are determined by considering the experimental modulus and ultimate tensile stress

data. We have validated the consistency of the whole algorithm by determining the

optimal model parameters that explain a four-week evolution of the Hydroxyproline

concentration in a fibrin gel experiment. In this section we extend and modify our

approach in to its final form as an algorithmic scheme. The algorithmic scheme

is computationally advantageous for inverse analysis and it is the first model in the

literature that can extract the information coming from the random perturbations. First,

we develop and modify the algorithm to its final form. Then we tried show the effects

of Langevin force approach on the magnitudes of characteristic time evolution via

analyzing a collagen scaffold based experiment. In a second numerical simulation, we

see that a strain dependent evolution form supplies quantitative information close to

experimental values.

5.2 Theoretical Framework

5.2.1 Essential kinematics and constitutive equations

Deformation from the undeformed initial configuration B0 to the deformed current

configuration Bt at time t is described by the one-to one mapping Π. Then,

transformation (mapping) of the coordinates of material particles X ∈ B0 ⊂ E3 to

the spatial coordinates x̃ ∈ Bt ⊂ E3 is represented by x̃ = Π(X, t).
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The deformation gradient (F ) for this transformation is defined by F (X) = ∇Π =

∂Π(X)/∂X . Deformation will be considered as incompressible giving rise to the

multiplicative decomposition of F in to its spherical (J1/3I) and unimodular parts F ,

where J = det(F ) = 1. The Cauchy-Green tensor which is based on the isochoric

component F is denoted by C as

F = J1/3F C̄ = F
T
F , (5.1)

where J is the Jacobian of the mapping. The fibers are assumed to be embedded in an

isotropic nonlinear hyperelastic matrix and their angular orientation is characterized

by the reference unit vector defined on the surface of the unit sphere S2 = (a ∈ <3, ‖
a ‖= 1). The deformation gradient maps the orientation from the material to the

spatial configuration ã by equation 5.2.

λã = Fa λ =
√
aT C a, (5.2)

where λ is the fiber stretch associated with direction of a. In material space, stretch

λ defined in equation 5.2 is supposed to be applied on the current preferred direction

of collagen orientation a. For an anisotropic behavior of the material with statistically

dispersed fiber orientations, we considered the definition of [22] based on the additive

splitting of the strain energy density function in to its isotropic and anisotropic

components originally described by [48]. In this case, the strain energy function

including the isochoric and volumetric contributions for the dispersed structure can

be defined as,

ψ(C,Hp) = U(J) + ψ̄iso(C)

+

Nf∑

p=1

ψ̄aniso(C,Hp(a
(p)
µ ,κp)), (5.3)

in which Hp is the pth structural tensor of Nf fiber families with a mean orientation

a
(p)
µ and for a dispersion parameter κp. The volumetric contribution is related to the

energy function U(J). The symmetric generalized structural tensor H is defined as

a function of the orientation density ρ(a) = ρ(−a) integrated over the surface of the

unit sphere Ω(Θ, Φ) ∈ S2, where Θ ∈ (0, π), Φ ∈ (0, 2π). κ lies on the interval

κ ∈ [0, 1/3] when a ∈ <3 and

H =
1

4π

ˆ
S2

ρ(a(Θ, Φ)) a(Θ, Φ)⊗ a(Θ, Φ) dS. (5.4)
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In equation 5.4, a(Θ, Φ) = sin Θ cos Φe1 +sin Θ sin Φe2 +cos Θe3 is defined in terms

of Eulerian angles where e1,2,3 are the Cartesian bases. Thus, [H ]k,l = bk,l ek⊗el for

some bk,l define the orientation-based average quantities. The explicit mathematical

form of the total potential can be determined as a function of the Green-Lagrange

strain-like quantity Ē = H : C − 1. In order to prevent initial strains in the

undeformed initial configuration, tr(H) = 1 should be satisfied. In three dimensions,

this constraint is unconditionally satisfied for 0 ≤ κ ≤ 1/3. For a number of p fiber

families, without considering volume fractions, the isochoric overall strain energy is

defined by,

ψ̄(C,Hp) = ψ̄iso(C) +
N∑

p=1

H(Ēp)ψaniso(C,Hp,ν), (5.5)

where ν = (c, k1, k2) represents the set of material parameters and Ēp = Hp : C − 1.

For incompressible materials,

ψ̄iso =
c

2
(tr(C)− 3) , (5.6)

ψaniso =
k1

k2

(
exp(k2 Ē

2
p)− 1

)
, (5.7)

ψ̄aniso is the “isochoric-anisotropic” fiber potential activated by the Heaviside step

functionH, whereas ψ̄iso is the “isochoric-isotropic” potential ([22, 24]). It is possible

to define the equations via invariant definition. I∗4 = H : C̄ is an invariant of C̄.

The first derivative of the scalar function ψaniso(I∗4 (C̄,H)) of I∗4 , H ∈ <M×M , with

respect to C̄ is given by,

∂ψaniso(I∗4 (C̄,H))

∂C̄
=
∂ψaniso(I∗4 (C̄,H))

∂I∗4
H . (5.8)

Here we define M as the spatial dimension of a problem in Cartesian/Cyclindrical

coordinate systems. The identity in equation 5.8 can be utilized to obtain the second

order Cauchy stress tensor (σ),

σ = σvol + P : (σ̄iso + σ̄aniso) , (5.9)

σvol = −phI , (5.10)

σiso = J−1cFF
T

, (5.11)

σ̄aniso = J−1F

(
2
∂ψ̄aniso(I∗4 (C,H))

∂C

)
F
T

,

σ̄aniso = 2J−1 k1(Ē) exp(k2 Ē
2) FHF

T
, (5.12)
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where ph is the hydrostatic pressure to be determined. The Eulerian projection

operator P in equation 5.9 is defined as

P = I− 1

3
I ⊗ I , (5.13)

where I is the fourth-order and I is the second order identity tensors. The projection

operator is required for incompressible materials to ensure that the constraint [P : (·)] :

I = 0 (see [22]).

Equation 5.12 has the short mathematical form showing that the stress can be

represented as the product of a scalar with the generalized structure tensor. The

implication points that the stress evolution corresponding to the anisotropic remodeling

depends directly on the evolution of H . The convexity of a potential for arbitrary

functional forms of ψ is important. For the polynomial type potentials with similar

considerations, convexity has been investigated by [24].

5.2.2 A locally linear fiber remodeling formulation based on a Langevin force

The remodeling process includes a deterministic driving force which drifts the

overall mechanism towards a mechanically governed direction. The microscopic

description of a stochastic dynamics disturbed by a random Langevin force including a

deterministic drift term can be represented by the Langevin Equation. A general form

of the nonlinear Langevin equation for an M -dimensional state vector ξ variable is

given by ([50, 51]),

d ξ(t)

dt
= h(ξ(t), t) +G(ξ(t), t) Γ (t) , (5.14)

where ξ = ξ(t) for ξ ∈ <M is a stochastic variable and h(ξ, t) : <M → <M , and

G(ξ, t) ∈ <M×M are drift and diffusion terms consecutively. Γ (t) ∈ <M is the

random Langevin force and its components are assumed to be of Gaussian type with

zero mean and δ-correlation having the following properties

〈Γk(t)〉 = 0, and 〈Γl(t) Γk(t
′)〉 = δlkδ(t− t′) . (5.15)

The evolution of ξ depends on the applied random force Γ (t) whereG(ξ) determines

the magnitude and the rotation of this random force vector.

To obtain the microscopic description of the time dependent remodeling of collagen

orientation, we used the heuristic derivation approach explained by [50]. Since the
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Figure 5.1: (a) Statistical mean vector aµ of dispersed fiber bundle family in
spherical parameterization aµ = aµ(Θ,φ) according to the Cartesian

basis (e1, e2, e3) on reference configuration. (b) Rotation path of pth fiber
cluster accumulated around aµ towards its desired homeostatic position

vector n, where cos−1(aµ · n) = θ(p) and θ(p) < π/2, according to
arbitrary orthogonal basis (ηi, ηj, ηk).

remodeling process outcomes with the observed statistical quantities are represented

by probability distributions, the probability distribution of collagen orientations can be

obtained by investigating the effects of a microscopic Langevin force on the drifting

mechanism. Eventually, we have a microscopic definition of the remodeling process

driven by the deterministic drift (h). The functional form of h is h : <M → <M ,

h = h(a,C, t). a ∈ <M can be selected to give the rate of rotation as described by

[44],

h(a,C, t) = f(a, ΛCmax) (I − a⊗ a) nCmax, (5.16)

where f is a scalar function and ΛCi is the ith eigenvalue of C corresponding

to the eigenvector nCi . Then, an initial attempt for the probabilistic evolution of

a can be made in Cartesian coordinates as in equation 5.17. Here, the random

perturbation G(a(t), t) Γ (t) can be applied in Cartesian or spherical coordinates

through appropriate transformations.

d a(t)

dt
= f(a,C) (I − a⊗ a) nCmax +G(a(t), t) Γ (t) , (5.17)

The dimension of the problem can be reduced via the determination of the evolution

of a single angular parameter θ(p) where the pth dispersed fiber bundle rotates

towards a homeostatic position vector n (Figure 5.1). Additionally, Figure 5.1a gives

the statistical mean vector aµ of a dispersed fiber bundle family in the spherical

parameterization aµ = aµ(Θ,φ) according to the Cartesian basis (e1, e2, e3) on the
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reference configuration. Figure 5.1b illustrates the rotation path of the pth fiber cluster

accumulated around aµ towards its desired homeostatic position vector n. Here,

cos−1(aµ · n) = θ(p) and θ(p) < π/2, are based on an arbitrary orthogonal basis

(ηi, ηj, ηk).

Instead of computing the rotation in Cartesian coordinates, the evolution of a mean

angular measurement θ(p) of the pth fiber bundle supplies information about the

infinitesimal rotation increment ∆ θ(p) which should be followed by an update

procedure utilizing the Rodriguez rotation (equation 5.18) ([62]),

aµ(t+ ∆t) = aµ(t) cos(∆θ(p))

+ (ω × aµ(t)) sin(∆θ(p))

+ ω(ω · aµ)(t)(1− cos(∆θ(p))), (5.18)

where ω is a unit vector describing the axis of rotation. The rotation around ω

is considered as a damped motion towards the steady state position. Usually, the

governing drift function h in equation 5.14 has a trigonometric character, ([44, 63]).

The probabilistic evolution equation can be given by,

d θ(t)

dt
= −τ−1 sin(θ(t)) +G(θ(t), t)Γ (t) , (5.19)

h(θ, t) = −τ−1 sin(θ(t)) , (5.20)

where θ = (θ(1), . . . , θ(p), . . . , θ(M))T is the vector of angular measurements of rotating

individual fiber bundles with their own random perturbation vector G(θ(t), t) Γ (t),

τ−1 ∈ <+, and sin(θ) = (sin(θ(1)), . . . , sin(θ(p)), . . . , sin(θ(M)))T . Later we will show

that, it is possible to represent the time dependent evolution of H through equation

5.19. Integrating over a unit sphere to calculate the overall effects of individual

fibers has been recently used in many studies ([19, 30, 47, 27]). However, we

focused, in this study, on the homogenized average effects of the process by directly

computing the evolving first and second moments of the probability distribution ρ(a).

For transversally isotropic fiber orientation distributions, ρ(a) depends only on θ,

where ρ(a) = ρ(θ). It may be worth considering more complex distributional

schemes, however they are supposed to include mathematical derivations similar to

the transverse case. Derivation of the new remodeling algorithm and the κ−s function

are presented in Appendices.

100



5.2.3 Interpretation of the functional forms of drift and diffusion terms

For small angular measurements θ � π/4, the drift function can be selected as

h(θ(t)) ≈ −τ−1θ(t) which is the Ornstein-Uhlenbeck process for τ−1 < 1,

dθ(t)

dt
= −τ−1θ + ΣΓ(t) . (5.21)

As mentioned in the introduction, it should be emphasized that the first term of

the right hand side in equation 5.21 is well settled in the literature and the linear

assumption has also given satisfactory results in our experimental analysis. On the

other hand, the second diffusive term of the equation has not been widely investigated

and usually mechanical stimulus postulations made by [20] have been adopted by other

researchers.

From a modeling point view, selection of the basic stimulus of fiber remodeling

does not change its mathematical description much. It is expected that the “long

term” remodeling of the structure, which is in balance with the external mechanical

conditions, starts the variation in physical characteristics of fibers. Computation of

the maximum principal stresses/strains and the hypothesization that the collagen fibers

will align along the related direction, are considered to be meaningful assumptions.

Therefore, the elongation of principal direction and relative position of fibers to that

direction have been common in many modeling perspectives. The main difference

is the equations that are used to determine the rate of the process. For example, the

remodeling rate can be linked to the strain rate formulation ([19]) for gels. On the other

hand, since macroscopic living structures, such as artery, have very complex dynamics

at every measurement scale, phenomenological approaches are much more widely used

for the remodeling rate. In this case, strain or stress dependent formulations are almost

the same and they both use the principal direction of related mechanical tensors (see

[20] and [4]). The reductionism as a philosophical motivation could also lead the

current studies towards much more complex models, where every individual model of

specific length scales is linked to a single multi-scale mechanism. We did not follow

such a reductionist approach in this work and took variables as global determiners, such

as the diffusion mechanism and its parameters (for some discussions about mechanistic

approaches, see [9]).
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According to the hypothesis, the magnitude of a mechanical stimulus is governed by

the ratio of first two eigenvalues σ1,2 of the stress tensor σ in spatial configuration.

The eigenvalues satisfy the inequality σ1 > σ2 > σ3 for σ ∈ <3×3. Additionally,

the mean fiber orientation moves towards a position in between the two corresponding

eigenvectors weighted by the principal stresses. These assumptions give satisfactory

experimental results in systems with active collagen fiber dynamics (see [64] and [46]).

We follow the same postulation in [46] satisfying the stimulus assumptions in [46]

and [20] that governs κ to see whether the diffusive component Σ has a functional

form or not. According to [46], the homeostatic value of κ ∈ [0, 1/3] is a linear

function of the principal stress ratio σ2/σ1 ∈ [0, 1]. Hence, it is natural to approximate

the functional form of Σ, that satisfies the linear relationship through evaluating the

asymptotic prediction of κ, by using the proposed scheme when t → ∞. The results

should give a linear relationship in σ2/σ1. The final standard deviation of the process

depends on the external mechanical stimulus σ2/σ1. We consider the limiting case,

where limt→∞ s(t) = Σ(σ2/σ1)/
√

2τ−1 is estimated by equation 5.21. Considering

the κ̂ function in Table A.1, Σ(σ2/σ1) can be approximated by the polynomial model

with coefficients ai, bi as,

κ̂

(
Σ

(
σ2

σ1

, τ−1

)
, τ−1

)
= c0χ

2
CDF

(
c1

(
Σ/
√

2τ−1
)c2

, ν
)

, (5.22)

where we used the approximation for Σ in equation 5.21 as

Σ

(
σ2

σ1

, τ−1

)
≈ 2π

√
2τ−1

2∑

i=0

ai

(
σ2

σ1

)bi
+ ε . (5.23)

To remove the dependency on the parameter
√

2τ−1 (τ is the remodeling constant), the

same term is added as a multiplier in equation 5.23, thus κ̂ is a function of mechanical

stimulus,

κ̂

(
σ2

σ1

)
= c0χ

2
CDF

(
c1

(
2π

n∑

i=0

ai

(
σ2

σ1

)bi)c2

, ν

)
. (5.24)

Approximation yields an absolute error of max(|ε|) < 4.0×10−3, with the coefficients:

a0 = 0.13084, a1 = 0.13710 a2 = 0.18333, b0 = 2.8099, b1 = 16.17847,

b2 = 0.49707. With this approximation, we complete our explanation on the

relationship between mechanical stimulus and random Langevin force, depending on

the assumptions made in [46] and [20].
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5.2.4 Comparison of the proposed algorithm with existing modeling approaches

In this section, we present some analytical results to give a better understanding of the

proposed scheme compared to other approaches.

5.2.4.1 Ornstein-Uhlenbeck interpretation of the evolution of statistical disper-

sion

Since few analytical solutions of a closed form for probability distributions exist,

our investigation is limited to the linear Langevin equation instead of the nonlinear

one. We consider the same form given in equation 5.21, and then we simplify the

approximations to the evolution of fiber mean and dispersion. In the one dimensional

case, analytical update equations A.12 and A.13 reduce to first order differential

equations for a single fiber family, that is,

θ̇µ(t) = −τ−1 θµ(t) , (5.25)

V̇ (t) = −2τ−1 V (t) + Σ, (5.26)

where again τ−1 and Σ are constants. It should be noted that equations A.12-A.13

show continuous representations of the stochastic evolutions, which intrinsically

assumes the evolution of infinitely many number of fiber directions affected by random

perturbations. Each fiber direction evolves according to the Langevin equation. The

initial conditions IC(θ) for all fiber directions are again infinite dimensional, which

can only be given by their probability distribution IC(θ(t′)) ∼ N (θµ(t′), s2(t′)) at

time t′. The analytical solutions to the equations 5.25 and 5.26 for an initial mean

θµ(t′) and initial variance V (t′) are given by,

θµ(t) = e−τ
−1(t−t′) θµ(t′), (5.27)

V (t) = e−2τ−1(t−t′)V (t′) +
Σ2

2τ−1
(1− e−2τ−1(t−t′)). (5.28)

In the literature, initial conditions are set according to a continuous Markov process

where the evolution of a probability distribution Pr(θµ(t),V (t)) between time steps

(states) are given by Chapman-Kolmogorov equation,

Pr(θ, t) =

ˆ ∞
−∞

P̃ r(θ, t|θ′, t′) Pr(θ′, t′) dθ′. (5.29)

Here, P̃ r(θ, t|θ′, t′) is the normal transition probability density function from state t′

to t. Equations A.12 and A.13 are the evolution equations for mean and variance
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functions belonging to the transition density, not the probability density itself.

However, for an Ornstein-Uhlenbeck process defined by equation 5.21, it can be shown

that the analytical solutions in equations 5.27,5.28 are identical to the evolution pattern

obtained by taking the integration in equation 5.29.

The evolution of a mean fiber direction and fiber dispersion has different characteristic

evolution equations. The difference should be evaluated as an evidence for the

existence of a randomly perturbed feedback, whereas many algorithms in the

literature suppose that mean and dispersion as identical physical phenomena obey the

same physical characteristics (such as orientation time), in fact they obey physical

constraints forced by equations 5.25-5.26. If there is such an evolution of mentioned

feedback type, then the experimental observations are expected to exhibit a certain

ratio between the characteristic remodeling time of a mean orientation and dispersion.

In order to understand whether the model proposed here has better qualitative and

quantitative features or not compared to algorithms in the literature, two remodeling

approaches are compared based on the experimental data. The equality of remodeling

speeds are proposed by [64] and based on the same assumption, [46] predicted the

collagen fibril organization on a cornea-scleral region.

We have worked on two kinds of data: one is the mean orientation measurement θµ

of either cell (θcellµ ) or collagen fiber alignment (θcollµ ), and second is the dispersion

measurement in terms of the mean vector lengths ρcell and ρcoll. The mean vector

length (ρ) measurements are the deviation statistics for the circular wrapped normal

distribution. Thus, ρ should be transformed to the standard deviation s of a

normal distribution by using the identity ρ = exp(−s2/2) proposed by [65]. The

corresponding evolution equation for ρ(t) yields,

ρ(t) = exp

(
−1

2
(e−(τs)−1(t−t′)V (t′) + Σ2τs(1− e−(τs)−1(t−t′)))

)
, (5.30)

where τ−1 = 2/τµ and τs is the characteristic remodeling time for dispersion, τs =

τµ/2.

To analyze the characteristic remodeling times for mean and variance evolution of

the collagen fiber distribution in cellular scale, we have tried to estimate the model

parameters on experimental data. The collagen and cellular orientation data are

gathered from [11], which focuses directly on the evolution of a cellular orientation
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Figure 5.2: Model fitting results of the mean collagen (θcollµ ) and mean cell (θcellµ )
orientation by using two parameter relationship θµ(t) = θ0 exp(−t/τµ).
(a) best model fit (θ0 = 17.98◦, τ collµ = 17.93h) for the mean collagen
orientation and (c) natural logarithm of the dependent axis of the same
analysis. (b) best model fit (θ0 = 10.75◦, τ cellµ = 37.08h) for the mean
cell orientation and (d) natural logarithm of the dependent axis of the

same analysis. The data in circles ((a)-(b)) are evaluated as the statistical
outliers for the analysis by performing a Cook’s distance analysis (from

[6]).

and simultaneous collagen fiber orientation distribution. The main motivation for us to

work on a collagen orientation distribution for prepared scaffolds is to see the pure

effects of mechanical conditions on a cellular orientation as much as possible and

minimize the effects of other variables.

We estimate the remodeling time parameters based on the experimental observations

given in [11]. For the experimental setup of collagenous media, cell culture and

boundary conditions, we refer the reader to the same work.

Our analysis depends on fitting the mentioned evolution equations that source from the

Langevin equation and compares the characteristic time assumptions made in [64] and

[46]. Model fitting results of a mean collagen (θcollµ ) and mean cell (θcellµ ) orientation

by using two parameter relationship θµ(t) = θ0 exp(−t/τµ) with the characteristic

remodeling time τµ (hours) are shown in Figure 5.2a and 5.2d. The best model fit (θ0 =

17.98◦, τ collµ = 17.93h) for a mean collagen orientation and natural logarithm of the

dependent axis of the same analysis are given in Figure 5.2a and 5.2c. The best model
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Figure 5.3: Model fitting results of the collagen (ρcoll) and cell (ρcell) mean vector
lengths by using the relationship in equation 5.30 with fixed characteristic
remodeling time τµ (obtained from the previous analysis). (a) best model
fits for the collagen orientation dispersion: comparison of the proposed

approach and existing assumption of “equal characteristic times”. (b) best
model fit for the cell orientation dispersion: comparison of the proposed

approach and existing assumption of equal characteristic times (from [6]).
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Figure 5.4: Model fitting results of the collagen (κcoll) and cell (κcell) structural
parameters by using the approximation in Table A.1. (a) Best model fits

for the collagen orientation κ parameter: comparison of the proposed
approach and existing assumption of equal characteristic times. (b) Best

model fit for the cell orientation κ parameter: comparison of the proposed
approach and existing assumption of “equal characteristic times” (from

[6]).
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Figure 5.5: Model fitting absolute percentage errors (APE) for the collagen and the
cell orientation κ parameter: (a) comparison of the proposed approach
and the existing assumption of “equal characteristic times” for cell, (b)
comparison of the proposed approach and the existing assumption of

“equal characteristic times” for collagen orientation (from [6]).

fit (θ0 = 10.75◦, τ cellµ = 37.08h) for a mean cell orientation and natural logarithm of

the dependent axis of the same analysis are given in Figure 5.2b and 5.2d. The data

in circles given in Figures 5.2a and 5.2b are evaluated as the statistical outliers for the

analysis by performing a Cook’s distance analysis. All possible curve combinations lie

in between (95%) upper and lower bound curve estimations. Experimental data show

that the natural logarithm of a mean fiber direction θcollµ and a mean cell orientation

θcellµ have a linear decay pattern towards its homeostatic position at θ = 0 which is

determined by the applied mechanical strain in that direction (see Figure 5.2c). The

linear decay patterns in Figure 5.2c-5.2d are clearly visible, however the corresponding

remodeling times significantly differ where collagen fibers evolve faster.

The estimated characteristic times τµ for mean orientations are τ collµ = 17.93h± 2.68h

(Adj-R2=0.97) and τ cellµ = 37.08h± 7.18h (Adj-R2=0.68). The parameter estimations

are settled as fixed (pre-estimated) time parameters for the mean vector length (ρ)

model fitting. We calculate the best nonlinear least square fits for the data while we

kept τs (the characteristic time for κ evolution) fixed depending on the estimations

made for a mean orientation. Based on the results in Figure 5.3a-5.3b, the evolution

of statistical dispersion (ρ) is well aligned with the proposed approach, since it can

predict the underlying viscosity in statistical evolution much better compared to the

“equal assumption τs = τµ“ made in [64] and [46]. In fact, it should be at least

τs = τµ/2, which is an estimation depending on very few initial assumptions, such as

statistical evolution being Markovian.
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Our aim here is not to give a complete and exact understanding of the underlying

dynamics of collagen dispersion phenomena, which is not feasible if we consider

the complexity of the dynamics and cellular level interactions. Instead, we give the

simplest form of evolution equation under the assumption that the current time step

orientation density distribution is predicted by the previous time step. The final κ value

in cell orientation highly differs from the experimental observations, if this approach

is not considered. We believe that, this approach gives a better explanation for a

real situation, since it has lower absolute percentage error rates compared to “equal

evolution time parameters” assumption (Figure 5.4-5.5). Figure 5.5 shows a notable

relative decrease on error levels, especially for the cell orientation. Additionally, the

dynamics of cell and collagen orientation is understood to be similar in terms of the

ratio of time parameters, where τ collµ /τ colls = 4.6 and τ cellµ /τ cells = 5.6. Since the

observed ratios are greater than the one we propose, it points out that the process is

not a Markovian and the tissue environment may have disordered fractal properties

(see discussions in [66]). In this case, it is cumbersome to construct the governing

equations through investigating the characteristic time parameters alone. We note

that the simplification in approaches is also required for the stability of computational

algorithms.

5.2.4.2 Computational efficiency of the algorithm

The algorithm proposed has the ability to model the evolution of a probability

distribution having time dependency. In that sense, the probability should be classified

as a viscous one. The remodeling algorithm presented here is computationally

advantageous compared to the angular integration (AI) schemes, since the evolution

of a generalized structural tensor (GST) H can be obtained directly without angular

integration of the contribution of individual fibers. Existing approaches in the

literature, such as [19, 30, 29, 27], deal with the evolution of distribution via supplying

a large number of fiber direction vectors, whose dispersions supply information on the

evolution of a orientation density distribution. In that sense, modeling the evolution

of distribution is analogous to the kernel density based modeling of probability

distribution. What we show here is a distinctive branch of a new type of statistical

evolution concept in which the angular integration (AI) scheme is replaced by the

phenomenological evolution equation of a single fiber perturbed by noise. Thus,
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’multiple directions’ assumption of the AI schemes are no longer required, since

the number of randomly perturbed single fibers can be taken to be infinite and their

asymptotic properties are known. In this case, the computation of a generalized

structure tensor is fast, because an underlying individual fiber direction set is not

required. The limitations of the proposed approach are discussed in chapter 6.

5.3 Numerical Implementation

5.3.1 Deformation of a “single layered” and “internally pressurized” axisymmet-

ric cylindrical artery tube

We qualitatively tested the theoretical scheme by investigating its predictive abilities on

the radial deformation of a single layered (adventitia) artery structure which is set up

for 30 days of random evolution. In the following sections, utilizing the qualitative and

quantitative information presented in the previous published works, we discuss how

a linear evolution model for statistical fiber orientation depending on the magnitude

of a random Langevin force can be used as a remodeling tool. We expect that an

algorithm of this kind could explain the evolution of the collagen dispersion, and

radial deformation, in biaxially strained soft tissue. The biaxiality assumption is

emphasized for numerical accuracy of the simulations. For this purpose, we used the

analytical description of an axisymmetric artery deformation discussed in [1]. The

deformation problem is formulated by using the strain energy density function based

on principal stretches. The mechanics of a helically arranged dispersed fiber family

embedded in an isotropic matrix environment for adventitia layer is characterized

by the energy functions given in equation 5.31. In this section, the variable λ with

or without an index always represents the stretch level in the tissue. Specifically,

λr,Θ̃,z are the stretch levels given in cylindrical coordinates seen in Figure 5.6 ([1]),

where r, Θ̃, z denote the radial, circumferential and axial directions respectively. We

consider the additive splitting of the energy function into its isotropic and anisotropic

components, where the isotropic matrix media is considered to be a Neo-Hookean

material. The remodeling algorithm formulated in this work is linked to the anisotropic

model by embedding the time dependent dispersion of the evolution equations. The

kinematics and geometry of the mechanical model are displayed in Figure 5.6. Figure
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a)

(r, eΘ, z)
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aµ

a′
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Figure 5.6: (a) Kinematics of an arterial wall with respect to final deformed
configuration under internal pressure. (b) Geometry of the stress free

configuration in cylindrical coordinates (R, Θ,Z) with an opening angle
of Θ0 and internal radius Rm. (c) Solution domain of the internally

pressurized thick cylinder and corresponding principals λΘ̃ and λz. For
each artery layer, it is assumed that the dispersion of fibers are clustered

around a mean direction which is very close to the reference vector n and
n′ (from [6]).

5.6 a explains the kinematics of an arterial wall compared to the deformed final

configuration with internal pressure. The “stress free” reference configuration in

cylindrical coordinates is characterized by the variables (R, Θ,Z) with an opening

angle of Θ0, internal radius Rm and outer radius R0. The final configuration is an

updated geometry carrying an active residual stretch and its geometry is defined by the

coordinate variables (R, Θ̃, z) represented in Figure 5.6b. In the long term, the fibers

are clustered close to the reference vectors n and n′ which show the direction of the

mechanical stimuli that governs the remodeling process. A common definition of the

strain energy function depends on the additive splitting of isotropic and anisotropic

components,

Ψ(λr,λΘ̃,λz) = Ψiso(λr,λΘ̃,λz) + Ψaniso(λΘ̃,λz) . (5.31)

The strain energy density function of the adventitia layer that is composed of an

isotropic Neo-Hookean ground-matrix component and for an anisotropic collagen fiber
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material is given by,

Ψiso =
c

2
(I1 − 3) , (5.32)

Ψaniso =
k1

k2

(exp(k2(I∗4 − 1)2 − 1)) , (5.33)

where c is the shear modulus for the ground-matrix material, k1 and k2 are the

anisotropic potential parameters. The dispersion related fiber strain invariant I∗4 is

defined by I∗4 = κI1 + (1 − 3κ)I4, I1 = λ2
r + λ2

Θ̃
+ λ2

z, I4 = aµCaµ and

aµ = [0 sin(ϕ) cos(ϕ)] is the mean orientation vector of a dispersion which rotates

to the stimulus direction n = [0 sin(β) cos(β)] as shown in Figure 5.7. Geometric

boundaries for the investigated problem are defined as,

Rm ≤ R ≤ R0 0 ≤ Θ ≤ 2Θ0 0 ≤ Z ≤ L , (5.34)

rm ≤ r ≤ r0 0 ≤ Θ̃ ≤ 2π 0 ≤ z ≤ l . (5.35)

The deformation is described over a transformation from Rm to rm where the principal

stretches depend strictly on rm and Rm,

r = r(R) > 0 Θ̃ =
π

Θ0

Θ z = λzΛZ , (5.36)

due to incompressibility (see Figure 5.6). The principal stretches are defined as

functions of the reference position variable R on radial direction as,

λΘ̃ =
π

Θ0

(
r2
m

R2
+

Θ0

πλΛ

(
1− R2

m

R2

))1/2

, (5.37)

λz = λΛ, λr = (λΘ̃ λz)
−1, rm ≤ r ≤ r0 .

The stretch λr in the r direction is calculated by the incompressibility relation, where

λrλΘ̃λz = 1. Λ = diag(λr,λΘ̃,λz) is the residual stress definition characterized by

the explicit stretch level.

The stretches are used directly to calculate the diagonal components σΘ̃,r,zof the

Cauchy stress tensor. The equilibrium equation for the deformed artery tube,

depending on the diagonal components of stress tensor is [67]

dσrr
dr

+
1

r
(σr − σΘ̃) = 0 rm ≤ r ≤ r0 , (5.38)

and boundary conditions for the radial stress is σr = −P0;r = rm, σr = 0; r = r0,

where P0 is the applied internal pressure. The components of Cauchy stress are defined
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by,

σr(r) = −ph(r) + cλ2
r , (5.39)

σΘ̃(r) = −ph(r) + cλ2
Θ̃

+ 4k1(I∗4 − 1) exp
(
k2(I∗4 − 1)2

) (
κ+ (1− 3κ) sin2(ϕ)

)
λ2

Θ̃
, (5.40)

σz(r) = −ph(r) + cλ2
z

+ 4k1(I∗4 − 1) exp
(
k2(I∗4 − 1)2

) (
κ+ (1− 3κ) cos2(ϕ)

)
λ2
z . (5.41)

The Cauchy stress can be related to the strain energy function as,

σi(r) = −ph(r) + λi(r)
Ψ(λr,λΘ̃,λz)

λi(r)
i = r, Θ̃, z , (5.42)

σ̄i(r) = λi(r)
Ψ(λr,λΘ̃,λz)

λi(r)
i = r, Θ̃, z , (5.43)

here its components are derived from the exponential strain energy function. The

hydrostatic pressure ph(r) can be calculated by integrating the balance equation 5.38,

yielding,

ph(r) = λr
Ψ(λr,λΘ̃,λz)

λr
+

ˆ r0

r

(
σ̄Θ̃(r)− σ̄r(r)

) dr
r

, (5.44)

where ph(rm) = P0. For a given internal pressure P0, the unknown deformed internal

radius rm is definite and can be found by solving,

P0 =

ˆ r0

r

(
σ̄Θ̃(r)− σ̄r(r)

) dr
r

, (5.45)

by means of fixed point iterations.

The remodeling process is determined by the strain/stress stimulus which governs the

deformation mapping from the undeformed reference configuration to the deformed

current configuration. The evolution of dispersion is not related to the geometric

framework and is widely effected by the shape of the stimulus function depending

on mechanical magnitudes. In our study, the stimulus function is characterized by

the ratio of principal stretches and stresses. There are two fiber evolution parameters.

First, the mean orientation vector of dispersion, aµ rotates to the stimulus direction

n = [0 sin(β) cos(β)] as shown in Figure 5.7. In this case, β is determined by the

selected stimulus function. Second, the Langevin force parameter, Σ determines

the evolution of dispersion. Both functions depend on strain, symbolized by (βλ, Σλ),

or stress, symbolized by (βσ, Σσ). The ∧ symbol stands for the logical ’or’ operator
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which gives the information about the stimuli, (σ ∧ λ), that is currently being used

in the formulation. The mean direction stimulus βλ,σ is defined by the trigonometric

arctan function as

βσ = arctan(
σΘ̃

σz
) βλ = arctan(

λΘ̃ − 1

λz − 1
). (5.46)

For the stress dependent evolution, the ratio of principal stresses σΘ̃/σz is used as

stimulus. In strain dependent case, which is the preferred case for this work, the stretch

dependent ratio (λΘ̃ − 1)/(λz − 1) is utilized. The preferred direction stimuli based

on stress and strain are given by,

L

R0

n

n′

λΘ

θµ

ϕ

aµ

a′
µ

λzβ

Figure 5.7: The layout of mean fiber orientation vector aµ, spatial stimulus direction
vector nλ∧σ and angular measurement θµ between these two vectors

(from [6]).

The angle θµ(t′) between the mean fiber orientation vector aµ and the stimulus

direction vector nσ∧λ at time t′ is updated to θµ(t) by the linear evolution equation

(Figure 5.7)

θµ(t′) = |ϕ(t′)− β0(t′)(σ∧λ)| 0 < ϕ < π/2, 0 < β0 < π/2 , (5.47)

θµ(t) = exp(−τ−1
µ ∆t)θµ(t′), (5.48)

where ∆t = t − t′ is the time step. In this study, we use the remodeling approach

discussed in [46] for evolution of stimulus. Since 0 < ϕ < π/2, and 0 < β0 < π/2, a

new mean fiber orientation angle ϕ is updated by

ϕ = β0 + θµ if ϕ ≥ β0, ϕ = β0 − θµ if ϕ < β0, (5.49)

where β0 is the angular measurement between the pull back of spatial stimulus

direction vector nλ∧σ and axial direction Ez, in undeformed initial configuration, i.e.

β0 = ](nλ∧σ0 ,Ez). The material stimulus nλ∧σ0 is obtained by the pull back of the
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spatial stimulus vector nλ,σ to the material configuration via deformation mapping,

nλ∧σ0 =
‖ nλ∧σ0 ‖
‖ F−1nλ∧σ ‖F

−1nλ∧σ , (5.50)

which supplies an objective definition of the remodeling stimulus. In equation 5.50 F

is the deformation gradient and ‖ · ‖ is the norm of (·). Finally, the new dispersion

parameter κ(t) at time t is estimated from the variance s2(t′) at time t′ using,

s(t)2 = exp(−2τ−1
µ ∆t)s(t′)2 +

Σ2
(λ∧σ)

2τ−1
µ

(1− exp(−2τ−1
µ ∆t)). (5.51)

Then s2 is converted to κ by the κ̂ function given in equation 5.52.

κ(t) = κ̂(s(t)), (5.52)

where Σ(λ∧σ) represents stimulus dependent variable. The stimulus functions in

equation 5.51, whether they depend on strain or stress, are described by the same

functional forms:

Σσ

(
σΘ̃,σz

)
= 2π

√
2τ−1
µ

2∑

i=0

ai

(
min(σΘ̃,σz)

max(σΘ̃,σz)

)bi
, (5.53)

Σλ

(
λΘ̃,λz

)
= 2π

√
2τ−1
µ

2∑

i=0

ai

(
min(λΘ̃ − 1, λz − 1)

max(λΘ̃ − 1, λz − 1)

)bi
, (5.54)

where ai, bi are constant coefficients and their values are presented in theoretical

section.

For general coding purposes, we summarize the total remodeling stimuli definitions as

(Ez is the Cartesian basis)

βσ = ∠(nσ,Ez) =,





arctan
(
σΘ

σz

)
ε ≤ σΘ

σz
<∞

βσ = β0 σΘ,σz < ε

βσ = ε σΘ < ε,σz > ε

βσ = π/2− ε σz < ε,σΘ > ε

, (5.55)

βλ = ∠(nλ,Ez) =





arctan
(
λΘ−1
λz−1

)
ε ≤ λΘ−1

λz−1
<∞

βσ = β0 λΘ,λz < 1 + ε

βσ = ε λΘ < 1 + ε,λz > 1 + ε

βσ = π/2− ε λz < 1 + ε,λΘ > 1 + ε

, (5.56)

which are the stimuli for mean fiber orientation. Instead of absolute zero

measurements, ε ≈ 10−16 the machine epsilon is applied for any undesired singularity.

It is also possible to set 10−16 < ε � 1. the numerical results are not effected.
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Compression in all directions (including the r axis) lead to hydrostatic pressure, so

no stretch based remodeling occurs. In this case, βσ = β0; σΘ,σz < 0, where β0

is the previous position of the orientation vector. The modulation function restricts

the stimulus magnitude to position in the interval Mλ∧σ ∈ [0, 1]. We eliminate the

remodeling stimulus that is sourced from the r axis,

Mσ (σθ,σz) =





min(σΘ,σz)
max(σΘ,σz)

∈ [0, 1] if σΘ,σz > ε

1− ε if σΘ,σz < ε

ε if σΘ < ε,σz > ε

ε if σΘ > ε,σz < ε

, (5.57)

Mλ (λθ,λz) =





min(λΘ−1,λz−1)
max(λΘ−1,λz−1)

∈ [0, 1] if λΘ,λz > 1 + ε

1− ε if λΘ,λz < 1 + ε

ε if λΘ < 1 + ε,λz > 1 + ε

ε if λΘ > 1 + ε,λz < 1 + ε

,(5.58)

are our modulation functions. Mσ,λ (λΘ,λz) = 1 is defined for the bulk compression

cases where stresses are the hydrostatic pressures for incompressible material.

Naturally there is no dominant stimulus direction. A typical example is the articular

cartilage, where multiaxial compression leads to highly dispersed collagen fiber

orientations.

5.3.2 Model parameters

Constitutive parameters for isotropic and anisotropic parts of the strain energy density

function are gathered from [1] and the parameters are listed in Table 5.1. The angle

parameter ϕ points the direction of aµ in the adventitia layer which may change during

the remodeling process. According to the referred study, the dispersion parameter κ,

in Table 5.1, is reported to be the statistical average of nine different human adventitia

measurements (published in [68]). The second set of parameters defining the geometry

of an artery, and residual stress, are presented in Table 5.2. The remodeling parameter

in this simulation is choosen as τµ which determines the speed of a mean orientation

evolution. The characteristic time for κ evolution is a function of τµ and it is not listed

here. Since a single layered model is adopted, τµ is fixed to τµ = 5 days by evaluating

the previous collagen and fibrin based studies focusing on the collagen remodeling and

cell rotation. Depending on the experimental setups, the whole process may converge

in hours or in weeks. As we have discussed the experimental data in which are limited

by the constraints and procedures of the work in [11], a typical guess of τµ is 1 <
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Table 5.1: Constitutive parameters for isotropic and anisotropic contributions in the
strain energy density function according to [1].

Layer c (kPa.) k1 (kPa.) k2 ϕ (◦) κ
Adventitia 2.7 5.1 15.4 40.0 0.226

Table 5.2: Parameter set used for media and adventitia, and remodeling simulation
(see [1]).

Parameter Description Value
Rm interface for media and adventitia 3.795 mm.
R0 outer radius 4.042 mm.
Θ0 opening angle for adventitia 120◦

Λ residual stress 1
λ prestretch in axial direction 1.265
p0 internal pressure 0− 30 kPa.

Remodeling Description Value
τµ characteristic remodeling time τµ = 5 days

τµ < 2 days which is shorter than the time parameter of cell rotation. In fact, some

qualitative works, such as [14] and [5], reported much larger evolution times for the

maturation of scaffold sample where the highest degree of collagen fiber alignment

observed in 4 weeks. We tested the remodeling speed for 5 days since the process is

quasi-static and larger values do not contribute to the results of the simulation. On

the other hand, we simulated the model for different axial stretches with the additional

residual stress component. The axial pre-stretches in the artery wall are set to λz =

λ = 1.265 and Λ = 1.0 for the simulations. Additionally, we analyzed the evolution of

mechanical magnitudes with respect to changes in internal pressure between 0 < p0 <

30 kPa.

5.4 Application and Results

In order to observe its usefulness and effectiveness, we simulated the remodeling

algorithm using the parameters in Table 5.1 and 5.2. The software used for the

simulations is written in the Octave language and the results are reported in Figure

5.8 through Figure 5.11. In summary, the simulation includes the calculation of

the stress measurements and a final internal radius rm which determines the whole

history of nonlinear solutions. Previously, the deformation problem was reduced to the
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Table 5.3: Initial condition sets that are used for simulating six trial cases.

simulation case (Σλ) initial conditions
P0 (kPa) κ0 s0 ϕ0 λ

case 1 2 0.1 0.1 π 5◦ 1.25
case 2 5 0.2 0.3 π 45◦ 1.25
case 3 10 0.3 0.5 π 85◦ 1.25
case 4 15 0.1 0.1 π 5◦ 1.25
case 5 20 0.2 0.3 π 45◦ 1.25
case 6 30 0.3 0.5 π 85◦ 1.25

solution of equation 5.45 to obtain stresses using the calculated stretches depending on

rm. Solutions are obtained via Octave’s fzero function using fixed-point iterations.

Stress components, satisfying the boundary conditions σr = −P0 and R = Rm

include hydrostatic pressure terms. Remodeling stimuli of an artery depend on the

internal stress/strain and the whole remodeling event is self-directing since no external

constraints are defined. Remodeling variables are the dispersion parameter κ, and the

fiber direction angular measurement ϕ, that are free to evolve along with the modified

stresses/strains at each time step. At this point, we constructed our algorithm using

an explicit scheme, which means the remodeled parameters determine the stresses

explicitly such that there is no feedback at the same time interval. The solutions are

calculated under the assumption of finite deformation of a thick-walled cylinder, where

remodeling variables are inhomogenously distributed over wall thickness. The internal

mechanical variable distributions (stress,stretch and remodeling variables) through the

thickness are interpolated for the next calculation step. Three information nodes are

selected for interpolations: the inner radius Ri, the outer radius R0 and middle radius

Rm = (R0 + Ri)/2. This assumption simplifies the algorithm and observations still

supply the information at the desired level. We investigated the effects of stimulus

functions for a mean fiber orientation on the deformation of an axisymmetric artery

tube under internal blood pressure. We have also tested the stability of the model

under different initial conditions to observe that the final converged internal variables

are the same. To obtain some quantitative clues for the evaluation of the existence

and uniqueness of the remodeling solutions, we select six parameter set combinations

as initial conditions (see Table 5.3). Every parameter set corresponds to an internal

pressure step. Then, the convergence behavior of all variables are observed for every

parameter set. The evolution of the internal radius rm, the dispersion parameter κ
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and remodeling stimuli variables for the adventitia have been tracked for 30 days for

strain (Σλ) and 100 days for the stress stimulus case. The stress case is supplied just

for illustration. The analysis of varying internal pressure between 0 < p0 < 30 kPa

gives us information on the hardening of a material under pressure increment. As can

be seen from Figure 5.8, the maturation of the internal radius measurement completes

around 5 to 10 kPa, and we observed that no meaningful change appears beyond this

pressure limit. The dispersion evolves to 0 < κ < 0.2 interval along with the pressure

increment. The final stress and stretch stimuli show that the stabilization of the final

dispersion level is related to the ratio (λΘ̃ − 1)/(λz − 1) showing the minor increment

beyond 5 days. On the other hand, stress measurements do not saturate and show a

linear pattern with respect to p0. Both circumferential stress and strains preserve the

linearity, thus their ratio is close to a constant value. We observed that the final κ values

are close to experimental results ([68]).

The second set of simulations present the evolution of internal variables with respect

to time. Both stress and strain dependent cases are tested. We observed experimental

validation for stretch based stimulus (Σλ).. For stretch based simulations, the

parameter set λ = 1.265 and Λ = 1 are used with different initial conditions. It

can be seen from Figure 5.9 that the saturation of κ completes much faster than the

saturation of the angular variable ϕ. The fast convergence of κ is a characteristic

output of stochastic evolution of fiber dispersion. The final κ value, in this example, is

κ ≈ 0.22 and ϕ ≈ 0.25π which are close to the experimental observations. Naturally,

these close approximations depend on p0, λ and Λ. For example, for λ = 1.15 and

Λ = 1.05, the final κ is close to κ ≈ 0.18. Thus, we consider that the results of

simulations based on Σλ give smooth and stable evolution patterns where the final

values are close to expected observations.

For a stress based evolution (Σσ), we use the parameter set λ = 1.25 and Λ = 1

with initial conditions s0 = 0.9π and ϕ = 70◦. The evolution paths of a stress based

results represented fluctuating complex patterns and sharp turning points. The solution

paths of strain based (Σλ) cases are smoother (see Figure 5.11). For a small initial

dispersion parameter κ ≈ 0, the process reaches its stabilized position around 30

days. The convergence is faster in the evolution of κ compared to ϕ magnitudes.

The initial condition set exhibit a more complex pattern compared to the strain based
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Figure 5.8: Converged mechanical magnitudes with respect to the changes in the
applied internal pressure P0 based on the strain stimulus (Σλ). The

internal pressure steps for the simulation are P0 = 2, 5, 10, 15, 20, 30
(kPa). At every pressure step, the evolution of mechanical magnitudes

are tracked for 30 days, and final converged values are represented in the
graphics. Initial condition sets for the six simulation cases corresponding

to the six pressure steps are given in Table 5.3. The time step for the
simulation is set as ∆t = 0.2 days (from [6]).
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Figure 5.9: Evolution of mechanical magnitudes in time based on strain stimulus
(Σλ). The model parameters for this simulation are λ = 1.265 and

Λ = 1.0, with the initial conditions s0 = 0.1π and ϕ0 = 85◦. The time
step for the simulation is ∆t = 0.04 days (from [6]).
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Figure 5.10: Evolution of mechanical magnitudes in time based on strain stimulus
(Σλ). The model parameters for this simulation are λ = 1.265 and

Λ = 1.0, with the initial conditions s0 = 0.9π and ϕ0 = 5◦. The time
step for the simulation is ∆t = 0.04 days .
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Figure 5.11: Evolution of mechanical magnitudes in time based on stress stimulus
(Σσ). The model parameters for this simulation are λ = 1.265 and

Λ = 1.0, with the initial conditions s0 = 0.9π and ϕ0 = 70◦. The time
step for the simulation is ∆t = 1 days (from [6]).
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simulations. The κ evolution shows a rapid decay form from κ ≈ 0.33 to κ ≈ 0.0,

resulting with a non-homogeneous κ distribution. There is also a linear increment

in ϕ evolution in between 5 − 30 days (Figure 5.11). For stress based evaluations

based on Σσ, unlike our observation for strain based cases, uniqueness of the evolution

is questionable. Our simulation setup has shown that there always exists a solution

for stress based remodeling, however, the convergence can be effected by the initial

parameter sets. This was not observed for strain stimuli cases. Thus, we can conclude

that initial conditions may greatly effect the evolution pattern in stress based situations.

The parameter settings give final κ and ϕ estimations that are far from experimental

observations reported in ([68]).

123



124



6. CONCLUSION AND FUTURE PERSPECTIVES

In this thesis work, a novel computational modeling framework that incorporates

the probabilistic nature of collagen fiber remodeling and evolutionary effects on

structural tensors have been proposed. The random effects are assumed to be additive

perturbations which inherently states that the perturbations are actually forces, forces

that are analogous to Cauchy tractions inside the material domain, and they give rise

to the time-dependent structural modification of the medium in a statistical sense.

The statistical information is processed by cellular structures in order to evaluate the

feedback process where the reaction of the structure is a continuous modification until

a homeostatic position is reached. In this final chapter, we extend our discussions on

the results of simulations. Then we give our conclusion and future perspectives on

growth and remodeling simulations, numerical problems, experimental considerations

and reflections that may be possible in other scientific fields.

6.1 General Comments on Simulations, Numerical Problems and Future

Perspectives

In this study, we proposed a new mathematical approach to model the time-dependent

evolution of collagen fiber orientation distribution using the concept of random

Langevin force. The mathematical and physical assumptions we made should be

considered as phenomenological, in other words, we have modeled only the mean fiber

direction and dispersion based on stress stimulus. There are two main distinctions of

the proposed algorithm from the existing approaches.

First, characteristic remodeling time for mean fiber direction and dispersion are

bounded mathematically following a certain ratio for the processes called Markovian.

In this case, the probability distribution depends only on the previous time step. Our

initial analysis of the system has shown some potential modeling capabilities compared

to the existing approaches assuming the equal remodeling times for both mean fiber

direction and dispersion. The characteristic times can be estimated separately by
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other approaches (see [4] and [46]) where remodeling of κ has been considered

as a distinct process. We have explained this concept in detail in the theoretical

and experimental sections that these two processes should be evaluated as correlated

events and new theoretical models should consider this fact. One of the modeling

perspectives presented here is an example of this formalism. The model described in

this paper inherently include this estimation by definition stating that τµ/τs ≈ 2.0,

which is an outcome of the proposed scheme. The main motivation for this first

contribution is valid for only “feedback systems with random perturbation” such as

cell systems producing fiber materials based on their misperceived signal transduction.

The misperception is obvious and has been discussed in [63]. The main limitation for

experimental validation is the lack of so-called “transient stretch” (recruitment stretch)

which is the plastic part of the fiber evolution keeping the internal strains at much

lower value than expected. The collagen remodeling algorithm discussed here have

the potential to describe the evolution of fibrous structure in artery systems similar to

the computational finite element approaches applied in [64].

Second, the algorithm discussed here is computationally advantageous compared to the

angular integration based schemes, such as [30] and [19] or microsphere approaches

proposed by [27]. In these algorithms, the underlying probability distribution is tried

to be characterized by the sum of distinct fiber/mean directions or distinct distribution

kernels (such as Gaussian). The basic idea, in these cases, is analogous to the kernel

density based representation of the original probability distribution. We replaced this

idea for feedback systems with the random Langevin approach, in which the evolution

is given by the original distribution. The algorithm proposed in this study has been

selected to be linear to eliminate the complexity in equations and to gain computational

efficiency. We have described the solution schemes not as a partial differential equation

but a system of differential equations which makes the solution procedure easier to

implement. However, to achieve that, the Langevin equation is assumed to be linear

too. This requirement seems to be the main drawback of the algorithm restricting

the underlying fiber distribution to Gaussian. This limitation is not crucial for artery

systems since the fiber dispersion is proved to be circular Gaussian.

Soft tissue can nevertheless be assumed to maintain its equilibrium configuration

through a set of random events. The reason for this interpretation may be associated
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with the random structure of biological environments shaped by random nature of

the evolution equations, i.e. random rotation of cells as a Brownian event. A soft

tissue can be considered as a complex system composed of a tremendous number of

microscopic subsystems that irregularly vary on fast time scales ([51] and [50]). At

the very small scales, random fluctuations are a natural part of particle motions which

give rise to the Brownian motion. In spatially larger scales, the statistical results of

underlying dynamics can still be followed to large temporal scales, for our case, it

is the anisotropic dispersion of collagen fibers. Consequently, one may follow the

mechanical modeling perspective through observing the outcomes of the underlying

probabilistic process. In this work, we have interested in the random structure of

the rotation concept. Essentially, the mathematical description of the random nature

of collagen remodeling is not a new concept and has been well investigated by the

community of mathematical biology. For instance, basic governing equations have

been presented in close works by [69] and [70]. The cellular migration pattern

modifying the matrix environment has been proposed to be governed by a set of

vector stochastic differential equations including the perturbation term called random

Langevin force ([71]). Probabilistic dynamics of the rotation of cells can be described

by the continuous form of stochastic dynamics, namely the Fokker-Planck equation

([63]). However, the representation of mechanical models explaining anisotropic

remodeling in soft tissue through the complex evolution of stochastic differential

equations has not been given. Thus, unlike the existing modeling strategies, we

assumed that the source of the statistical dispersion remodeling at a micro or macro

scale is the driving Langevin force, which is a random perturbation.

We considered the observed dispersion characteristics of collagen fiber orientations

as not being a static structure of the soft tissue but as a stationary state of a transient

dynamic mechanism. Our main goal is to derive the macroscopic remodeling of fiber

dispersion and give a consistent evolution equation for the time-dependent evolution

of generalized structural tensor H . An evolution form has been previously given by

[26] whereas, we have been focused on the analytical form to account the random

force term. In this case, the overall collagen remodeling problem at hand intrinsically

assumes the existence of an underlying spatially dependent diffusion mechanism that

can be originated from a random force acting on the fast time scale. The fast time
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scale is considered as a feed-back error between cell’s automatic actions that source

from a complex signal-transduction chain and its cellular environment. Thus, the

main consideration in this study was a feed-back model with error, where biological

environment utilizes this error in order to reach a biological equilibrium.

Simulation results for axisymmetric deformation problem pointed out one crucial

property of randomly perturbed systems obviously: the evolution of κ is so fast

compared to the results gathered for internal radius measurement changes. The rate

of dispersion formation directly depends on the internal stresses, thus any change in

stress pattern is reflected by the dispersion without significant delay. Our analysis has

shown that the evolution of κ has a notable effect on the internal radius measurements.

We believe that there is a strong need for this algorithm to be implemented on a large

sample set to observe the effects of characteristic time and internal stresses in detail.

We have seen that the internal radius measurements have a sensitive dependence to the

characteristic remodeling times.

At this point, we should mention that there is also a need for an important algorithmic

extension to the work which may be considered as a future direction. In equation

5.5 we have pointed out that index p represents the number of fiber families that are

modeled simultaneously. This intrinsically represents that a larger number of fiber

families with narrow dispersions may be utilized to obtain the whole fiber dispersion

behavior. Every fiber family could have its own remodeling parameters which may

differ. This could be useful for highly dispersed fiber media. The algorithmic extension

probably would result in more efficient representations of the fact with smaller error

percentages. This perspective is recommended to the interested readers as a future

work.

For numerical simulations, we have stated that the algorithm developed can be used

for biaxially strained tissue environments. This is due to the work of [72]. They have

shown that in uniaxially extended fibrous structures the GST definition of transversally

isotropic H tensor (see equation A.19) usually represents a strong negative bias in

the estimations of positive second Piola-Kirchhoff stress tensor. The bias is relative

to the ones that are estimated by the angular integration schemes (AI) given in [72].

The problem can be disregarded for biaxially strained cases. For uniaxially strained

cases, the remodeling approach derived here cannot be used for κ > 0.05 in three

128



dimensions, due to extremely high error rates on stress estimations. This constraint

should be considered as a numerical limitation of the proposed algorithm.

Finally, we aim to emphasize the validity of stress based remodeling stimuli. Limited

with the work and approaches utilized here, a nonlinear remodeling stimuli governed

by Brownian effects should be linked to a strain based stimulus. According to the

proof derived by Trabucho in ([73] ), a large class of nonlinear remodeling algorithms

based on strain stimulus supplies existing unique solutions. The solution path is also

stable. Although the existence and uniqueness can be assumed for small strains, for

an approach similar to ours, should depend on strain for large deformation case at first

guess. Computational results validate such an assumption.

In our preliminary formulation, we have tested the uniaxial case on the collagen

gel remodeling. Modeling of collagen evolution in living organisms is a highly

active research area due to its role in mechanical maturation and adaptation of the

organism towards environmental changes. In this work, we formulated a collagen

fiber remodeling algorithm that incorporates the random evolution of single fibers

resulting with a macroscopic mechanical description of anisotropic evolution. In order

to get simplified matrix forms of non-iterative local update procedures eliminating the

drawbacks of nonlinear solutions, the evolution equations are linearized. With this

form, one could separate the functional dependency of overall dispersion evolution

from a single fiber rotation. The separation simplifies the application of complex

processes which is computationally advantageous not only usable for collagen, but

also any other dispersed quantity. Additionally, the algorithm utilizes the exact

mathematical forms of fiber rotations used in the cellular scale model. By this way,

physically correct mathematical forms are implemented while modeling the cellular

scale random rotations. It should be noted that the algorithm can be used for only

biaxially strained tissues due to previously discussed algorithmic reasons. This was

the main reason why we have only considered the artery deformation model which

is known to be biaxial. We also presented a continuum mechanical framework for the

evolution equations and how they could be coupled with time-dependent axisymmetric

evolution of the artery deformation under internal blood pressure. From an algorithmic

point of view, the phenomenological model developed here gave us an insight into the

nature of the cellular level Langevin force parameters. The whole evolution process
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is governed by one important parameter τµ where its value affects the steady state

solution of mechanical deformation. We can conclude that a linear evolution algorithm

gave consistent and acceptable results from both numerical and biological point of

views.

The remodeling framework developed here can be used for fast implementation and

improve the prediction accuracy. Especially for situations, where the characteristic

evolution times of mean fiber orientation and dispersion are of crucial importance, and

when there is a strong need to consider the effects of stochastic nature at the very small

scale. This model can be adapted to future algorithmic schemes dealing with the nature

of statistical evolution and it can play a useful role for finite element implementation

of scaffold designs or vascular system modeling.

6.1.1 Perspectives on growth and remodeling models

In this work, we extended the macroscopic evolution parameters by considering them

a randomly perturbed state of an ideal situation. And, we could be able to link the

random force with the final structural magnitude via the “Transfer function concept”.

One natural question that would arise is to ask whether there exist similar functions for

not only collagen remodeling but also isotropic-anisotropic growth cases. Then, the

extension and testing of newly developed forms should be analyzed.

Similar to the forms discussed in the text, the nonlinear extensions of the random

perturbation will inevitably affect the derived quantities. However, derivations may

result with the loss of computational efficiency. The issue is not so much critical

if very small time steps are selected. The most important extensions of the derived

methodology here would be in the investigation of diseased situations. The model

can be used in order to extract the random force level and give the ability to see how

it propagates in the medium as the tissue evolves. However, many critical questions

should be answered before the application of such models to the prediction of disease

situations. We discuss these circumstances in perspectives on experiments section.

6.1.2 Perspectives on numerical problems

κ−based evolutionary approaches depend on a generalized structural tensor H .

However, GST based formulations suffer from the excessive generalization of the
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orientation density by assuming that the total fiber bundles can be represented by

their mean value. Surely, this is not correct as there exist fiber bundles that are not

spatially close to the mean value. This results with spurious mechanical magnitudes

in simulations. Proposals that aims to solve this problem have recently been made.

A novel extension could be the application of these techniques on the probabilistic

framework discussed in this work. Since computational efficiency is required, we

advocate κ−based solution procedures.

As previously mentioned, the growth and remodeling models may include so many

internal variables giving rise to an increase in computational complexity. Then, new

kind of solution techniques which demands smaller time steps but which are suitable

for large deformation problem should be in consideration. One typical approach could

be the formulation and adaptation of existing explicit-implicit hybrid computational

methods to remodeling problems. Simulation algorithms based on CPU-GPU shared

memory applications has been well established for known libraries (cublas, magma

etc.). Then, new specialized theoretical schemes targeting for an extreme number

of internal variables for GR simulations are welcomed. However, existence and

uniqueness of numerical solutions and stability may still affect the solution procedures

until abstract analytical proofs for nonlinear large deformation cases are supplied.

Investigation of the existence and uniqueness of analytical solutions and necessary

and sufficient conditions for uniqueness is a challenging topic. Understanding the

challenge is not difficult: biological structures are complex systems and they are

supposed to obey sensitive dependence to initial conditions. However, somehow,

experiments show that similar mechanical boundary constraints with different initial

conditions result with similar final solutions with similar evolution patterns. The

enlightenment of such a mathematical phenomena will inevitably impact the future

modeling trends and it will encourage new questions to be asked.

6.1.3 Perspectives on experimental validation related issues

Many of the growth and remodeling phenomena are widely understood by designed

and controlled in-vitro gel experiments. A future perspective and reflection of

this thesis work will inevitably find its position in designing new collagen-based

experimentation to search for the source of the random forces, that are created and
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destroyed through the growth and remodeling process. The main question is “which

parts of the cellular functioning is directly related to the perception of random signals”.

Randomness can be utilized in order to reach biological equilibrium, but is there

genetic and epigenetic factors that are directly related to the source of randomness?

Experiments that are directed towards these questions may give insights to the analysis

of growth and remodeling phenomena. Some other research links may be found in

new visualization techniques of the randomness (like diffusion tensor-based imaging

in neurology) that is propagating in remodeling time scales.

6.1.4 Interdisciplinary reflections to other scientific fields (complex systems,

social sciences and paleontology)

In this section, we discuss (possible) the interdisciplinary reflections of the potential

of growth and remodeling phenomena on other scientific fields including: complex

systems, social sciences and paleontology.

6.1.4.1 Profitable utilization by randomness in social systems

Profitable utilization by randomness has been recently introduced into the spatial

evolutionary social game theory. This field may be considered as a related field

of computational sociology, which tries to analyze collective or individual human

behavior on the utility maximization. The utility is maximized by social agents

(individuals, establishments) through analyzing their local/global effects of collective

and selfish movements. Since behavioral science belongs to social science context,

we limit our discussions on this distant topic, however, it is natural to estimate that an

inevitable interdisciplinary connection exists.

The concept of game theory has been introduced in to biology by Maynard Smith in

1973 [74]. According to spatial game theory, social agents may interact locally in

order to reach a microscopic (individual) and macroscopic (collective behavior) level

of utility equilibrium. The concept is analogous to the homeostatic equilibrium where

cellular actions do not modify the continuum anymore. Recent publications argue that

individuals may choose to behave in a noisy way and in fact, they do not make mistakes

[75]. In their words: “Randomness in social systems may play a functional role”.

Supporting this idea, Macy and Tsvetkova [76] point that noise can be individually
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or collectively beneficial. According to the author, from the defined perspective, the

functional relationship between randomness and utility, for both social and biological

structures, includes future potential as a research area.

6.1.4.2 Complex systems

Many of the algorithms proposed by the bio-mechanics community on growth

and remodeling phenomena achieved successful interpretations about the underlying

hidden rules. We declare the governing evolutionary forces as hidden, since the number

of interacting chemical agents reaches to an immense level, whereas the outcome of the

process could be described by a few global determiner. One example is the isotropic

growth of a tumor or volumetric growth of an artery aneurysm. Phenomenological

models, we may add mechanistic approaches with a low number of variables, are

idealizations of the growth process. Then, how relatively a small number of mechanical

internal variables could represent the outcome and extremely complex process? Why

the outcome of the processes are so smooth and how it is controlled by the cellular

activity? Are these questions are related to the self-organization? According to

Nagler and his coworkers [77] a “self-organized critical system”, the concept has been

introduced by Per Bak in 1987, is a driven dissipative system having properties :

1. a medium

2. where disturbances are propagating through the medium

3. giving rise to the modification of the medium,

4. such that the system reaches critical state,

5. and the modification of the medium is completed, and an unusual balance situation

is reached.

which exhibits above-mentioned blocks of modification steps that are similarly

observed in remodeling situations. Surely, that similarity requires an analytical

background. If collagen remodeling process is a self-organized one, then how

can its mathematical governing equations be linked with the continuum mechanical

formulations. And if the similarity exists, how it can be linked with the state of the art

modeling techniques that are currently being utilized for the description of the diseases
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and growth and remodeling changes. These questions have very deep roots towards

understanding the underlying processes of biological phenomena and their possible

answers via abstract analytical proofs may revolutionize the looking perspective. They

require a strong understanding of the current approaches.

6.1.4.3 Separation of evolutionary time scale from the growth and remodeling

time scale

The model proposed here could find theoretical applications in paleontology and its

interdisciplinary related fields. We will discuss the topic for continuum frameworks

developed for general growth and remodeling equations. Biology is a historical

science. Unlike social systems, that history is supposed to be stored in the genetic

code. As the species evolve in very long time intervals, the mechanical structure

of the species reaches to a homeostatic position in an “ecological sense” instead of

mechanical equilibrium observed in short time periods governed by the “mechanical

sense”.

For short time periods, the growth and remodeling process assumes an intrinsic

remodeling time t (in months years), which is separated from the short time scale t

(in the order of seconds) where remodeling is not observed. Analogously, for very

long evolutionary time scales (t
∼
> 104 years or so), species reach to a desired

mechanical equilibrium which is usually governed by ecological factors and rivals.

Thus, for a probabilistic structural evolution of H from t1
∼
→ t2
∼

requires a continuum

formulation of an additional layer framework which should be constructed on the top

of the framework derived in this work. In this case, the propagation of the probabilistic

magnitudes could be able to be tracked not only in time scales limited by an individual

life cycle but the life cycle of the species.

The experimental research linked with these possible formulations are expected to be

limited by the investigation of hard tissue (bones itself, the size of soft tissue organs

determined by the position of bones) only. On the other hand, any predictive models

will have strong potential to explain the mechanical aspects of genetic information,

which can not be extracted by controlled short time experiments. Novel continuum

formulations should be realized from this perspective.
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6.2 Closure

Briefly, the remodeling framework developed here can be used for fast implementation

and improve the prediction accuracy. Especially for the situations, where the

characteristic evolution times of mean fiber orientation and dispersion are of crucial

importance, and when there is a strong need to consider the effects of stochastic nature

at the very small scale. This model can be adapted to future algorithmic schemes

dealing with the nature of statistical evolution and it can play a useful role for finite

element implementation of scaffold designs or vascular system modeling.
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Appendix A.1

The evolution equation of H is reduced to the exact solution of a linear matrix
differential equation if a suitable h has been chosen. In this case, there is no need
to convert the whole problem into the continuous Fokker-Planck partial differential
equation. A preliminary introduction to the concept is presented in [52] where
a simplified analytical form of stress tensor components has been derived. The
linearization of h(θ, t) around θ0 at time t yields,

h(θ) = h(θ0) +∇(h(θ0)) · (θ − θ0) +O(‖ θ − θ0 ‖). (A.1)

The linearization is given by,

h(θ, t) = ∇(h(θ0))θ + h(θ0)−∇(h(θ0))θ0, (A.2)
h(θ, t) = B(θ0)θ + c(θ0), (A.3)

where B ∈ <M×M and c ∈ <M for θ ∈ <M . From the continuum mechanics
perspective, θ0 can be considered as an ingredient to the previous direction of fiber
in the reference configuration which is updated to a new remodeled direction by
incremental Newton iterations. By incorporating the linear form in equation A.2, it
is possible to represent the integrated form (equation A.4) and differential form in
equation A.5 of the fiber orientation evolution including random effects,

θ(t+ ∆t) = θ(t) +

ˆ t+∆t

t

h(θ(t′), t′) dt′,

+

ˆ t+∆t

t

G(θ(t′), t′)Γ (t′) dt′, (A.4)

dθ(t) = (B(t) θ(t) + c(t)) dt+ Σ dW (t), (A.5)

where dW (t) is a Wiener process ([50, 51]) with the property,

W (t+ ∆t)−W (t) =

ˆ t+∆t

t

Γ (t′) dt′, (A.6)

dW =
√

∆t Γ (t), (A.7)

and G(θ, t) as given in equation A.5, is taken to be Σ. In equation A.6, due to the
random nature of Γ , integration is calculated by probabilistic approaches (Itô rule). As
previously mentioned, Γ (t) ∈ <M is distributed according to the Gaussian distribution
defined by the probability density function Pr(Γ ) as,

Pr(Γ ) =
1√

(2π)M
exp(−1

2
Γ · Γ ). (A.8)

The angle measurement (θµ) of the expected mean orientation is calculated by utilizing
the infinitesimal increase of the expectation function E(θ) =

´
θ
Pr(θ) θ dθ. Since

E(dW (t)) = 0

dθµ = E(θ + dθ)− E(θ), (A.9)
dθµ = B(t)θµ(t)dt+ c(t)dt. (A.10)
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We want to estimate the expectation of structural tensor through the derived identities
in equation A.9. The generalized structure tensor can be defined through the expected
value of the variance-covariance matrix V = E(θ ⊗ θ) − E(θ) ⊗ E(θ). Using
E(ΣdW (t) ⊗ ΣdW (t)) = Σ2I dt and assuming a constant dispersion term Σ ∈ <
and isotropic dW , one obtains the time dependent matrix differential equation for the
evolution of V (andH) as,

dV (t) = E((θ + dθ − θµ − dθµ)⊗ (θ + dθ − θµ − dθµ))

− E((θ − θµ)⊗ (θ − θµ)), (A.11)
dV (t) = B(t)⊗ V (t)dt+ V (t)⊗B(t)dt+ Σ2Idt+O(dt2).

The advantage of linearity is that the internal variable updates can be used analytically.
Algorithmically, the update equations from t to t+ ∆t for θµ and V are given in

θµ(t+ ∆t) = e∆tBθµ(t) +

ˆ ∆t

0

e(∆t−s)Bc ds , (A.12)

V (t+ ∆t) = e∆tB V (t) e∆tBT

+

ˆ ∆t

0

e(∆t−s)B Σ2I e(∆t−s) BT ds . (A.13)

We define the p and q elements of matrix V as V (p, q) = s2
p,q where s2

p,p is the
variance of the pth angular measurement with a univariate distribution N (θµ, s2

p,p).
Update equations for mean fiber orientation are,

∆θ(p) = θ(p)
µ (t+ ∆t)− θ(p)

µ (t) , (A.14)

aµ(t+ ∆t) = aµ(t) cos(∆θ(p)) + (ω × aµ(t)) sin(∆θ(p))

+ ω(ω · aµ)(t)(1− cos(∆θ(p))) . (A.15)

Integration of matrix exponentials may not be trivial especially for stiff equations,
However, Gaussian quadrature is well performed for our case. We note that equation
A.13 is a multidimensional model which does not account for cross relationships of
angular variables. It is known that if B and c exist, the outcome distribution is
multivariate normal in equation A.12.

Appendix A.2

In this section, we will derive the time dependent evolution equation Ḣ(t). By
definition, presented in [22], the structural tensor H is given by the following
integration over S2 with an appropriate normalization as,

H =
1

4π

ˆ
S2

ρ(a) a⊗ a dS , (A.16)

here,
1

4π

ˆ
S2

ρ(a)dS = 1 . (A.17)

For three dimensional transversely isotropic orientation, the dispersion parameter κ is
defined as in

κ =
1

4

ˆ π

0

ρ(θ) sin3(θ) dθ , (A.18)
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where ρ(θ) = nVM(θ; θµ, k), and κ is directly related to the structural tensor H ∈
<3×3 as

H = κ I + (1− 3κ) aµ ⊗ aµ , (A.19)

through a normalized circular von-Misses type probability distribution where ρ(a) =
ρ(θ).

ρ(θ) =
n

2πI0(k)
exp(k (cos(θ − θµ))) . (A.20)

The normalization, which can be found in [22], converts the probability distribution
into an orientation density distribution.

Thus, determination of structural tensor evolution is described by the probability
distribution evolution whose outcomes are obtained by solving the probabilistic
equation via algorithms given in equations A.12 and A.13. The solution for one
dispersed fiber family reduces the dimension of the problem and is given byV ∈ <1×1,
and V1,1 = s2 where the solution is normally distributed with mean θµ and variance s2

defined byN (θ; θµ, s2). θµ is required only for Rodriguez rotation. In reality, θµ = 0 is
taken for distributional properties assuming that individual collagen fiber orientations
are clustered around the mean fiber direction aµ = aµ(θµ). However, angular
measurement distributionN (θ; θµ, s2) cannot be used to calculate the κ directly due to
the domain being limited to 0 ≤ s ≤ ∞. There should be a transformation from the
unbounded domain of s on to a circularly bounded region, in our case, this is the unit
circle,

% −−−→ kx
y

s −−−→ κ

, (A.21)

WN (θ; θµ, %)
%=

I1(k)
I0(k)−−−−→ VM(θ; θµ, k)x%=exp(−s2/2)

y
N (θ; θµ, s2) −−−−→

T −1(s)
κ

. (A.22)

The commutative diagram in equation A.21 explains the transformation path of
unbounded variance s2 in to the circular von Misses variance parameter k. The
first step of the transformation includes wrapping the normal distribution (N ) in to a
wrapped normal distribution (WN ) on a circular domain. The wrapped distribution
includes an infinite sum by definition. Thus, we replaced the wrapped normal
distribution by one of the known approximation by the von Mises distribution (VM)
(see [65]), where a parameter transformation is required from wrapped normal’s %
to von Mises’ k. Equation A.22 describes this transformation in detail. Since the
transformations are one-to-one and on-to, there is a single transformation function for
s → k and for N (θ; θµ, s2) → κ. For numerical purposes, we have defined this
transformation function as s = T (k) where T : <+ → <+ to benefit from the
definition κ = κ(θ, k) as in equation A.18. Then, parameter k is defined using the
inverse function as k = T −1(s). As a result, κ = κ(s) and its integral form is given as,

κ =
n

4

ˆ π

0

VM(θ; θµ, T −1(s)) sin3(θ) dθ . (A.23)
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Table A.1: Approximating κ̂(s) functions for κ− s transformation. ε represents the
global error statistics.

κ̂(s) = c0χ
2
CDF (c1s

c2 , ν) + ε κ̂(s) =
(

1
3
− c0

)
χ2
CDF (c1s

c2 , ν1)
+c0χ

2
CDF (c3s

c4 , ν2) + ε

c0 1/3
c1 3.8328011433268
c2 1.1983102095583
ν 4.1770029065574

max |ε| < 2× 10−3

c0 0.3001596405288
c1 6.8198674774904
c2 2.5076967412147
ν1 3.5312593631438
c3 2.0108360373395
c4 1.5646949492399
ν2 2.5742566697292

max |ε| < 4× 10−4

max |ε| % < 2× 10−1 %

We call the transformation from normal variance s2 to transversely isotropic dispersion
parameter κ via T −1 over the parameterization of k the κ− s function. Its parametric
representation on the (s,κ) domain through parameterization of k is given by,

s =

(
−2 ln

(
I1(k)

I0(k)

))1/2

, (A.24)

κ = n

ˆ π

0

VM(2θ; 0, k) sin3(θ) dθ , (A.25)

n =

(
2

ˆ π

0

VM(2θ; 0, k) sin(θ) dθ

)−1

. (A.26)

���������	
�����
�����

�

�

����

���

����

���

����

���

����

�

��

���� ���� ���� ���� ���	


��


�

Figure A.1: The graph of κ− s function which transforms the normal variance
parameter s into the transversally isotropic dispersion parameter κ by

T −1 by means of the parameterization of k .

Parametric representations of the equations, such as A.24 and A.26, are cumbersome.
The κ − s function can be well approximated by χ2

CDF , which is the cumulative
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distribution function (CDF) of the scaled-χ2 distribution. This approximation is
preferred in our work since it has fewer parameters compared to the locally adaptive
polynomial approaches. In Table A.1, two simple approximations to the κ̂(s) function
are presented. The first approximation to κ̂(s) with 4 parameters is used in our
simulations. It should be noted that precision can be increased arbitrarily by increasing
the number of χ2

CDF functions used for the κ− s approximation.

When the time-dependent variance parameter s = s(t) is obtained from numerical
simulations, it is directly converted to the time-dependent dispersion parameter κ(t)
(see in Figure A.1). By using the identity in equation A.19, the evolution equation of
the structural tensor can be directly given by the integral form representation,

H(t) =

(
n

4

ˆ π

0

VM(θ; θµ, T −1(s(t))) sin3(θ) dθ

)
I

+

(
1− 3

(
n

4

ˆ π

0

VM(θ; θµ, T −1(s(t))) sin3(θ) dθ

))

× aµ(t)⊗ aµ(t) . (A.27)
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