ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

NETWORK PACKET CAPTURING
FOR WINDOWS OPERATING SYSTEM

M.Sc. THESIS

Yiicel AYDIN

Department of Applied Informatics

Cyber Security Engineering and Cryptography Programme

JUNE 2017

ISTANBUL TECHNICAL UNIVERSITY * INFORMATICS INSTITUTE

NETWORK PACKET CAPTURING
FOR WINDOWS OPERATING SYSTEM

M.Sc. THESIS

Yiicel AYDIN
(707141011)

Department of Applied Informatics

Cyber Security Engineering and Cryptography Programme

Thesis Advisor: Assoc. Prof. Dr. Enver OZDEMIR

JUNE 2017

ISTANBUL TEKNIiK UNIiVERSITESI % BiLiSiM ENSTITUSU

WINDOWS iSLETIM SISTEMLERINDE AG PAKETi YAKALAMA

YUKSEK LiSANS TEZI

Yiicel AYDIN
(707141011)

Bilisim Uygulamalar1 Anabilim Dah

Bilgi Giivenligi Miihendisligi ve Kriptografi Program

Tez Damismani: Do¢. Dr. Enver OZDEMIR

HAZIRAN 2017

Yiicel AYDIN, a M.Sc. student of ITU Informatics Institute student ID 707141011,
successfully defended the thesis entitled “Network Packet Capturing for Windows
Operating System”, which he prepared after fulfilling the requirements specified in the
associated legislations, before the jury whose signatures are below.

Thesis Advisor: Assoc. Prof. Dr.Enver OZDEMIR ﬁ ‘. —
[stanbul Technical University

Jury Members: Prof. Dr. Liitfiye DURAK ATA
Istanbul Technical University

Assis. Prof. Dr. Erding OZTURK
[stanbul Commerce University

Date of Submission : 05 May 2017
Date of Defense : 05 June 2017

To my spouse Latifah,

vii

FOREWORD

I would like to express my deep appreciation and thanks for my advisor. This work is
supported by ITU Institute of Informatic.

June 2017 Yiicel AYDIN

TABLE OF CONTENTS

Page

FOREWORD ..ottt sttt sttt et saestenneeneene e iX
TABLE OF CONTENTS ..ottt e Xi
ABBREVIATIONS ...ttt nneans Xiii
LIST OF TABLES ... oo bbb XV
LIST OF FIGURESottt XVii
SUMMARY et XIX
(0.2 3 N Xxi
1. INTRODUCTION ...ttt bbbttt 1
1.1 PUIPOSE OF TRESIS ...ttt 2
1.2 BaCKOIOUNGcviiiiiiieccie ettt re e naenne s 2
2. WINDOWS INTERNALS. ..ottt 5
2.1 User Mode and Kernel MOEccovoieieiiiiieiiseseeee e 5
2.2 User Space and SYSTEIM SPACE........coueurierierieriisiesiesieseeie et 5
2.3 SYSEM CallS.....iiiieiiieie e e 6
2.5 WINAOWS AFCNITECTUIE........eeiiiieciiecie et nneas 8
2.6 Network Driver Interface Specification (NDIS)c.ccooeviiiiiivciiiiicceciecen, 9
2.7 The Path from NIC to APPHCAtIONSocvviiiiiiiiiieeeee e 11
2.8 Journey of Network Packet in INternet..........cccccceveeviiieiiece e, 11
3. NETWORK PACKET CAPTURING SYSTEMS.......ccccoiiiveiiceceee e, 13
3.1 Berkeley Packet FIlter.......ccccovoviiieiieie e 13
3.2 Network Packet Capturing for UNIX SYStemscccceveieniienenieniniceees 15
3.3 Network Packet Capturing in Android Operating Systems..........c.ccccceveveenenn. 19
3.4 WinPcap Windows Packet Capturing Libraryccccoveiiiiniiiicc 20
3.5 Packet ENCAPSUIALION.coieieiieiie ettt 26
3.6 Costs and Optimization Of WINPCaPcccoeriiiiiiiiicieiee s 26
4. EXPERIMENTAL RESULTS AND RISK ANALYSIS ..., 29
4.1 EXperimental RESUILS........c.ooiiiiiiiiiicee e 29
4.2 RISK ANGIYSIS.....cciiiiiiiiice ettt 32
5. CONCLUSIONS AND RECOMMENDATIONS.......coooieeieiesese e 33
5.1 Practical Application of This Studyccceviiiiiieiiccec e, 33
5.2 FULUIE WOTKS ...ttt st e e 35
REFERENCES.ottt st 37
APPENDICES ..ottt st sne e 39
APPENDIX AL oottt bbbt 40
CURRICULUM VITAE ...ttt 43

Xi

ABBREVIATIONS

API
BPF
CSPF
DPC
DLL
HAL

IP
LibPcap
NDIS
NIC
NPF

0OS

TCP
UDP
WinPcap

. Application Programming Interface
: Berkeley Packet Filtering

: CMUY/Standford Packet Filtering

: Deferred Procedure Call

: Dynamic Link Library

: Hardware Abstraction Layer

. Internet Protocol

: Library for Packet Capturing

: Network Device Interface Specification
- Network Interface Card

: Netgroup Packet Filtering

: Operating System

: Transmission Control Protocol

: User Datagram Protocol

: Windows Packet Capturing

Xiii

LIST OF TABLES

Page
Table 3.1 : Comparison of libraries for Unix Operating System.cc.coovevennee. 18
Table A.1 : PreRequirements for Application...........ccccceevvieeiiiieiicce e, 41

XV

LIST OF FIGURES

Figure 2.1 :
Figure 2.2 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 3.6 :
Figure 3.7 :
Figure 3.8 :
Figure 3.9 :
Figure 3.10
Figure 4.1 :
Figure 4.2 :
Figure 5.1 :
Figure 5.2 :

Figure A.l:

Page
Relations between user and kernel mode.cccoeveiiiniiiic 5
32 Bit SYSIEIM SPACE.ecvveveeiecie et 6
SYSIEM CalIS. ..o 7
WiNAOWS AFChITECTUIE......oviiiiiieieiee e 8
NDIS Wrapper [9]. ..o 10
TrEE MOTEL ... s 13
Acyclic Control Flow (ACF) Methodccooeiiiniiieiiieseeeie s 13
BPF AIChITECIUIE ..o 15
DashCap ArchiteCture [14].......ccooooveiiiiiiiieieeee e, 17
NCap ArchiteCture [14]. ..ccoeoeeecece e 17
Packet L0oSs ComMpPariSon [13]......ccceoeiiririnininieieiese e 19
LibPCap WOTrK FIOWcovviiiiicece e 20
WINPCap WOTK FIOWcccoiiiiiiiiiieeee e 24
Netgroup Packet FIIEr.........cccovviiiiieeiec e 25
DENCAPSUIALION ... 26
Network Packet Capturing by packet.dll.............ccccooeiveviiiiiiciicen, 30
Network Packet Capturing by wpcap.dll.............cooooiiiiiiiiiiice, 31
Packet Capturing With WINPCap.........cccoeiviieiiie i 34
Packet Capturing With LIDPCaPcccooviiiiiiiiicee e, 34
packetCapture ApPlICAtioN.cccccvviiiiieiece e 40

Xvii

NETWORK PACKET CAPTURING FOR WINDOWS OPERATING
SYSTEM

SUMMARY

Today there are several network security systems used by the end users at the
application layer. Network security systems are designed to detect the attacks or to
measure the intensity of the network traffic. The first step for the network systems is
to detect the malicious traffic coming to the network or going from the network.
Detecting is possible with analyzing the packets whether they are malicious or normal
network packets with the user level applications. Diagnosis tools can be created by
inspecting of each packet in the network.

In this study, | present the detailed methods to capture the network traffic in Windows
Operating Systems. The second chapter is devoted to explain the parts of the Windows
OS’ kernel in charge of network. Network packet capturing process for different kind
of operating systems and Winpcap used by the most popular network analysis tools
are discussed in the third part of the study. The evaluations and analysis with a
simulation of packet capturing are presented in the fourth chapter. A detail explanation
of the network packet capturing application written in C++ programming language and
future works are presented in the conclusion part.

It is through network packets that computers can communicate with each other within
a network. Any input from the outside world to the computer is input to the computer
through a hardware device. The packages come in the same way via a computer
network cable and enter the operating system from the network card.

The Windows operating system restricts the operations that the user can do, unlike
open source operating systems. In open source operating systems, users can interact
directly with the kernel that makes up the operating system.

When network packages need to be captured and analyzed, application developers
place one packet capture driver in the operating system kernel and also develop new
libraries to allow user-level applications to contact this driver. The speed and accuracy
of network packet capture systems directly impact the applications that will analyze
the network packets. Because; There may be content that will damage the system in
any unreachable network package and the analysis system may not be aware of this
package.

The performance of network packet capture systems is directly related to the buffering
and filtering systems used in the system. If a good buffer and filter are not used, many
network packets are transmitted directly to the operating system without being caught.

There are many network packet capture systems developed in open source operating
systems. However, most of the normal and server computers used by many users and
companies nowadays include the Windows operating system. Because of this, a
network packet capture system was required for Windows operating system. As a
result of the work done, WinPcap network packet capture library, which is preferred
by many applications today, has been developed.

XiX

WINDOWS iSLETIM SiSTEMLERINDE AG PAKETi YAKALAMA

OZET

Glinlimiizde uygulama seviyesinde yapilmis bircok ag giivenlik sistemi
bulunmaktadir. Bunlar saldirgani tespit etmek, saldir1 trafiginin yogunlugunu tespit
etmek gibi bircok amag¢ icin tasarlanmistir. Yapilan her uygulamada ilk asama
bilgisayara veya aga gelen trafigin tespit edilmesidir. Bunun hayata gecirilmesi i¢in
ise trafigi olusturan paketlerin elde edilmesi sarttir. Elde edilen paketlerin igerigi
yorumlanarak gerekli onleme yontemleri ortaya koyulmaktadir.

Bu c¢alisma Windows isletim sistemlerindeki ag trafigini elde edebilecek bilgileri
icermektedir. Calismanin ikinci boliimiinde Windows sistemlerindeki ag trafigini
anlayabilmek i¢in sistemi olusturan isletim sisteminin igerisindeki yapilar
incelenmistir. Ugiincii boliimde ise bugiine kadar farkli isletim sistemlerinde ag
trafiginin elde edilmesi i¢in yapilmis uygulamalarin detaylar1 verilmis ve Windows
sistemlerinde uygulanan ve bir¢ok kullanici tarafindan tercih edilen ag analiz
programlari tarafindan kullanilan WinPcap alt yapisi incelenmistir. Dordiincii kisimda
Ag paketlerinin yakalanmasi simule edilerek hazirlanan analiz ve degerlendirmelere
yer verilmistir. Sonu¢ kisminda ise Windows sistemlerinde kullanilacak C++
programlama dili ile yazilmis uygulamanin detaylari ve ileride kullanim sekilleri
aciklanmustir.

Bir ag icerisinde bilgisayarlarin birbirleriyle irtibat kurup iletisim saglamasi ag
paketleri sayesinde olmaktadir. Ag paketi, kullanici veya isletim sistemi tarafindan
olusturulmus ham bilginin yada verinin iletisimin saglanmasi i¢in gerekli ek bilgilerin
eklenmesiyle olusmaktadir. Bilgisayara dis diinyadan gelen her tiirlii girdi bir donanim
sayesinde bilgisayara giris yapmaktadir. Paketler de ayni sekilde bir bilgisayara ag
kablolar1 vasitasiyla gelmekte ve ag kartindan isletim sistemine giris yapmaktadir. Ag
kartinin kilobyte seviyesinde hafizas1 bulunmasi nedeniyle paketler ag karti tarafindan
on tespit yapildiktan sonra isletim sistemi hafizasina kaydedilmektedir. On tespit
olarak ag kart1 sadece paketin igerisinde bulunan ethernet bilgilerini alip gerekli hash
algoritmasiyla isleyip elde ettigi bilgi ile ethernet bilgilerinin son hanesi olan frame
kontrol bilgisiyle karsilagtirma yapmaktadir. Uygun olmayan paketleri ag karti igletim
sistemine iletmeden elemektedir.

Windows isletim sistemi diger isletim sistemlerinin aksine kullanicinin yapabilecegi
islemleri kisitlamaktadir. Diger isletim sistemlerinde kullanicilar isletim sistemini
olusturan ¢ekirdek ile dogrudan etkilesim saglamaktadir. Bu 6zellik dogal olarak diger
isletim sistemlerinde ag paketleri ag kartindan ¢ekirdege gectiginde kullanicilar
tarafindan direkt olarak elde edilip gerekli analizler yapilabilmektedir. Windows
isletim sisteminde ise islem bu kadar basit degildir.

Windows isletim sistemi kullanict bolgesi ve ¢ekirdek bolgesi olacak sekilde iki ana
yaptya ayrilmistir. Normal kullanicilar sadece kullanici bdlgesinde yetki verilen
islemleri yapmaktayken cekirdek ile direk etkilesimleri bulunmamaktadir. Eger
kullanicilarin veya kullanici bolgesinde isleyen bir uygulamanin ¢ekirdek ile etkilesim
saglamas1 gerekli ise g¢ekirdek igerisinde bu etkilesimi saglayacak bir siiriiciiniin
bulunmasi gereklidir. Siirticii ¢ekirdek igerisinde gerekli islemleri gergeklestirirken

XXi

kullanici bu siiriicii ile yine bu etkilesim i¢in programlanmis dinamik baglanti
kiitiiphaneleri (dbk) yardimiyla gerekli irtibat1 saglamaktadir.

Her ag karti igletim sistemi icerisinde kendisine has olacak sekilde bir ag siiriiciisii ile
birlikte bulunur. Bu siirlicii vasitasiyla ag karti isletim sistemine gerekli islemleri
yaptirir. Ag kart1 gelen paketleri sistem hafizasina kopyaladiktan sonra ag siiriiciisiinii
uyararak yeni bir paketin geldigini haber verir. Ag siiriiciisii ise {ist seviye
stiriciilerinden ag paketlerini kullanacak tiim stiriiciilere paketin bulundugu bilgisini
verir ve ust stiriiciiler gerekli islemleri yaparlar.

Ag paketlerinin yakalanip analiz yapilmasi gerekliliginde ise uygulama gelistiriciler
isletim sistemi g¢ekirdegine bir adet paket yakalama siiriiciisli yerlestirir ve ayrica
kullanic1 seviyesindeki uygulamalarin bu siiriicii ile irtibatin1 saglamak i¢in yeni
kiitliphaneler gelistirirler.

Ag paket yakalama sistemlerinin hiz1 ve dogrulugu ayni zamanda analiz yapacak
uygulamalar1 dogrudan etkilerler. Ciinkii; elde edilemeden gegen herhangi bir ag
paketi igerisinde sisteme zarar verecek igerik bulundurabilir ve bu paketten de analiz
sisteminin haberi olmayabilir.

Ag paket yakalama sistemlerinin performansi sistem igerisinde kullanilan tamponlama
ve filtremele sistemleriyle dogrudan ilgilidir. Iyi bir tampon yada filtre kullamlmaz ise
bir ¢cok ag paketi yakalanmadan dogrudan isletim sistemine iletilmis olmaktadir. ilk
zamanlarda tampon olarak iki adet sabit boyutlu tampon ¢ekirdek igerisine
yerlestirilmistir. Ag kartindan gelen paketler 6nce bir tamponda depolanmistir ve bu
tampon doldugu zaman tiim veriler diger tampona aktarilmistir. Kullanci
seviyesindeki uygulamalar ise dogrudan bu tampon igerisindeki bilgilere ulagmistir.
Ancak bu sistem glinlimiiz ortaminda pek uygulanabilir olmamigtir. Gliniimiizde
kullanilan ag trafigi ¢ok hizli ve yogun bir sekilde islemektedir. Bir saniye icerisinde
milyonlarca paket sistem icersine gelmek de veya sistemden uzaklagmaktadir. Eger
kullanic1 seviyesindeki uygulama gelen paket hiz1 kadar bir hizla paketleri tampon
igerisinden alamazsa ilk tampon igerisine gelen yeni paketler yakalanamamaktadir. Bu
dezavantaji gidermek icin sirkiiler tampon sistemi gelistirilmistir. Bu sistem de sadece
bir adet tampon kullanilmis ve bu tamponun boyutu dinamik olarak degistirilmistir.
Ag kartindan gelen paketler oldugu siirece tampon boyutu artarken kullanici
seviyesindeki uygulamalar paketleri aldik¢a boyut azalmistir.

Ag paket yakalama sistemlerindeki diger bir kritik unsur ise filtreleme sistemidir.
Cogu kullanici1 veya uygulama ag paketlerini analiz ederken tiim paketleri yakalamak
istemez. Sadece gerekli olan paketlerin yakalanmasi sistem i¢in yeterlidir. Bu ayirt
etme islemi ise filtreleme sistemiyle miimkiin olmaktadir. Yakalanacak paket sayisinin
azaltilmasi vasitasiyla ayrica tampon igerisinde yerlestirilecek paket sayis1 azaltilmak
da ve tamponlama sistemi de rahatlatilmaktadir. Filtreme sistemi kullanici
uygulamasinin hangi paketlerin yakalanmasi gerektigini tanimlamasiyla baglar. Bu
tamimlama gerekli kiitiiphaneler vasitasiyla ¢ekirdek igerisindeki siiriiciiye iletilir.
Siirticli ise ag paketleri daha ag karti icerisindeyken bu filtreleme islemini yapar ve
sadece kullanici uygulamasinin istedigi paketler tampon igersine kopyalanir.

Acik kaynak isletim sistemlerinde gelistirilen birgok ag paket yakalama sistemi
bulunmaktadir. Ancak gilinlimiizde bir¢ok kullanici ve sirketin kullandig1r normal ve

xXxii

server bilgisayarlarinin ¢ogu Windows isletim sistemini igermektedir. Bu sebepten
dolayr Windows isletim sistemi i¢in de bir ag paket yakalama sistemi gerekliligi
dogmustur. Yapilan ¢alismalar sonucunda giiniimiizde de bir ¢ok uygulamanin tercih
ettigi WinPcap ag paket yakalama kiitiiphanesi gelistirilmistir. Wireshark, TCPDump
vb. Bir¢ok popiiler uygulama da kendi sistemlerinde bu kiitliphaneyi kullanmaktadir.

WinPcap kiitiiphanesi Fulvio Rises ve Loris Degionani isimli iki italyan bilim insani
tarafindan gelistirilmistir ve daha sonraki yillarda optimize c¢aligmasi yapilmistir.
WinPcap kiitiiphanesi ii¢ ayr1 ancak birbiriyle irtibath parcalardan olugmaktadir. Bu
pargalar Cekirdek Siiriiciisii, Packet.dll ve Wpcap.dll pargalaridir.

Cekirdek stirticiisti kullanic1 tarafindan tanimlanmis filtreye uygun olarak filtreleme
yapip kullanicinin istedigi paketleri sirkiiler tampon igerisine kopyalamaktadir. Ayni
zamanda islem kolaylig1 ve hiz saglamak maksadiyla siiriicii i¢ersinde bir istatiksel
makine tutmaktadir. Bu makine gelen ve giden paketlerle ilgili istatiksel bilgileri
kullanicinin istemesi durumunda derhal saglamak maksadiyla hazir etmektedir. Diger
bir siiriicii gorevi ise gelen giden tiim paketlerinin icerigi ile ilgili tiim bilgileri
kullanici seviyesine ¢ikmadan direkt olarak hardisk igerisine kaydetmektedir.

Packet.dll unsuru ise Windows isletim sistemi igerisindeki kullanici bolgesi ile
cekirdek bolgesi arasinda irtibatt saglamaktadir. Cekirdek igerisindeki siiriiciiye
gerekli direktifleri gondererek kullanict uygulamasinin istedigi islemleri
gerceklestirmektedir.

Wpcap.dll unsuru iist seviye islemler i¢in gelistirilmis bir kiitiiphanedir. Cekirdek
tarafindan kullanilacak filtrenin olusturulmasi, kullanict uygulamalar: ile irtibatlarin
saglanmasi vb. islemler bu kiitiiphane tarafindan saglanmaktadir.

Windows isletim sisteminin incelenmesinin yaninda c¢alismanin ii¢lincli boliimiinde
diger isletim sistemlerindeki ag paket yakalama sistemleriyle ilgili caligmalar
incelenmistir.

Gilinlimiizde Windows isletim sisteminin yaygin olarak kullanilmasinin yaninda
bireysel kullanim bazinda mobil sistemlerin gelismesiyle Android isletim
sistemlerinin kullanilmasi da artmistir. Anroid isletim sistemlerinde ag paketinin
yakalanmasi ile ilgili calismalar yagilmistir. Bu calismalar Android igletim sisteminin
linux tabanli bir isletim sistemi olmasi sebebiyle agik kaynak isletim sistemleriyle ilgili
gelistirilmis sistemler kullanilmistir. Linux igletim sisteminde ag paketi yakalamak
konusunda popiiler olan libpcap kiitiiphanesinin Android isletim sistemine
uyarlanmasi ¢aligmalar1 yapilmistir. LibPcap kiitliphanesinin C programlama dili ile
yazilmis olmast ve Android isletim sisteminde Java programlama dili kullanimi
gelistiriciler i¢in problemler ¢ikartmistir. Bu problemin asilmasi ise Android igletim
sistemlerinde kullanilan programlama dilleri arasinda doniisiime imkan saglayan Java
Native Interface kullanilmistir.

Yapilan ¢alisma ile ayn1 zamanda gerekli test ¢caligmalarinin yapilabilmesi igin C++
programlama dili kullanilarak WinPcap kiitliphanesi tabanli bir uygulama
gelistirilmistir. Gelistirilen uygulama ile agik kaynak isletim sistemlerindeki ag paket
yakalama sistemleri karsilastirilmis ve gerekli sonuglar ilgili boliimlerde verilmistir.
Genel olarak bakildiginda Windows igletim sistemi i¢in gelistirilen WinPcap

XXiii

kiitliphanesi son optimize caligmalariyla birlikte agik kaynak sistemlerine gore
istiinliik gostermekte ancak agik kaynak sistemlerinde sistem gelistirilmesi i¢in birgok
arastirma yapildigr ve yapilacagi goriilmektedir. Gelistirilen uygulama Windows
isletim sisteminde simule edilmis ve 10 Ghz kadar ag trafigi altinda ¢alisabilirligi ve
kullandig1 kaynak miktar1 gdzlenmistir.

XXiV

1. INTRODUCTION

The advance of technology connected the people throughout the world by internet.
Also, there are huge number of network infrastructure connecting several people,
commercial companies, military and government. Internet itself allowed for many
security threats to occur. Therefore, network security has become so much important
to the world because; sensitive information can be reached through the internet. A data
from source computer to the destination computer should be secured well.Otherwise;

an attacker can obtain the data or send another data from the channel.

An efficient network monitoring tool is a crucial need for all kind of network systems.
Network monitoring is the collection of information for network management
purposes. An efficient network monitoring tool should provide a real time monitoring
for administrators. And also a network monitoring tool should have comprehensive

capabilities for analysis purposes in order to see the traffic clearly and quickly.

Important features of network monitoring are real-time capturing which is to show the
traffic in the monitoring application when the packet arrived the computer, displaying
type of information such as list of coming packets, protocol distribution charts etc.
Meanwhile, packet capturing is very crucial component for network monitoring
systems. Most of the networks nowadays are working with high traffic load and in this
kind of traffic capturing all packets without losing even one is the most essential
functionality in network monitoring systems. Because; the packets that were not
captured by the system could have viruses, worms and others that can affect the

network.

With the improvements in the technology, several packet capturing systems have been
produced by the vendors in either hardware based or software based. Even though the
hardware based systems provide high capturing rates, deployment of hardware for all
systems in the network needs huge amount of budget. Therefore, scientists has focus

on software based systems more than hardware systems [1].

1.1 Purpose of Thesis

The main objective for this study to elaborate the internal infrastructure of the systems
built for packet capturing purposes and to create a basic packet capturing system to be

used by network intrusion systems.

1.2 Background

Network Monitoring tools are called sniffers. Monitoring tools are the helpers for
administrators to manage and administer the network. Traditionally, these tools are
used for evaluating network related problems, network intrusion systems and network
traffic logging. While network monitoring tools are passive listeners, network

intrusion systems can respond the malicious traffic.

Usually, monitoring applications put the network card of a computer into promiscuous
mode. This enables the computer to listen all subsection traffic in the network. Also a
filter can be produced from the information inside headers and it can be used for

capturing only a specific packet such as; capturing packets coming from port 80 [2].

There are two basic network monitoring approaches,active monitoring and passive
monitoring. Active monitoring is to inject control packets inside the network. It costs
additional traffic inside the network. Active monitoring provides full control regarding
monitoring interval, packet size and path to be monitored. A ping search can be

considered as active monitoring method.

Passive Monitoring is to observe the existing network traffic without injecting any
packets in the network. There is no control over monitoring action for passive
monitoring. For passive monitoring there is no choice except underlying network

protocol.

Most of the traffic in a network consist of three underlying protocol Internet Control
Message Protocol (ICMP), Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP).

ICMP is underlying protocol for famous ping utility. The advantage of ICMP is
simplicity and ease of use. Some of the protocols need to establish connection ,which
is called handshake ,before sending data. ICMP protocol doesn’t have any handshake

requirement.

TCP is the underlying protocol for many internet applications such as WWW and File
Transfer Protocol(FTP). Unlike ICMP, TCP needs handshake. It is a three way
process. First the source host sends a request to initiate the connection which is called
TCP SYN (Synchronization). Destination host replies the request as TCP ACK
(Acknowledged). Lastly, source host sends a SYN ACK packet to the destination host.

A TCP packet consists of 40 bytes header (20 Byte IP Header + 20 Byte TCP Header).
The TCP protocol consumes more bandwidth than other protocols because of its large

header size.

The applications which need high reliability use TCP protocol. Because; TCP has
functionality to rearrange the packets in the right order at the destination host. Also

TCP provides retransmission if the packets reach the destination with loses.

UDP packet consists of 28 Byte header. It is a connectionless protocol unlike TCP. It
doesn’t need any handshake. UDP consumes less bandwidth than TCP because of its
28 Bytes header [3].

All computers in a network gets the network packets with their own Network Interface
Cards (NICs). Network packets travel through several components inside the operating
systems from NIC to the applications that we use in our computers. Also when an
application needs to interact with outside, operating system creates a network packet
through the application to the NIC.

Network analysing tools such as Snort should capture network packets before
analysing them. The most important part in this process is buffering and filtering of
the related packets. Buffering is keeping the packets inside the memory before sending
them to the other part of the operating system. Due to the high amount of the data, if
the packets were sent from a part to another part without buffering it would cost high
amount of microprocessor. Therefore, some of the packets may be dropped before
reaching the applications by the operating system due to the bottleneck for the

MICroprocessor.

There are several kind of network protocols reaching from outside to the internal
networks. Most of the network monitoring applications want to track specific protocols
and also delivering all packets to the applications needs a strong microprocessor.
Therefore, filtering of specific network protocol has a critical importance for network

monitoring applications.

There are several libraries providing this functionality for users but when comparison
is done, WinPcap is the most preferred one by the diagnosis tools.

The first known packet filtering and network monitoring system was CMU/Stanford
Packet Filtering (CSPF) [4]. It provided access to the data link layer and was used by
most of the other applications as a starting point for their systems.

McCane and Van Jackson improved CSPF in 1993 and released the Berkeley Packet
Filter (BPF) [4]. Basically their improvement was dropping the network packets
according to user defined filter while the packet was still in NIC. Today, most of the
Berkeley Software Distribution (BSD) operating systems such as UNIX use BPF as a

default network packet capturing system.

The Mach Packet Filter, PathFilter are some examples for studies aimed to improve
the filter inside the BPF.

A few studies focused on the other aspects of packet filtering, such as buffering and
copying. A study proposed to use a shared buffer or a bigger buffer to limit the copy
time for network packets. WinPcap which was built for Windows Operating Systems

is the most robust library with its efficient buffering system .

2. WINDOWS INTERNALS

2.1 User Mode and Kernel Mode

A processor has two different modes in windows operating systems. According to the
code, the mode of processor is shifted. User applications run in user mode while core
operating system components run in kernel mode. Many drivers also run in kernel
mode [5].

Windows allocates virtual address space for each application that runs in user mode.
This property protects one application from the other one. If one application crashes,
it affects only that application not the other one. All codes running in kernel mode use
only one virtual address space. One code can affect or destroy the other one. If one

code crashed all operating system would crash.

USER MODE WINDOWS
API
S USER MODE
OTHER FILE SYSTEM
KERNEL [OS KERNEL] DRIVERS
DRIVERS
KERNEL
[HARDWARE ABSTRACTION LAYER } MODE

[HARDWARE]

Figure 2.1 : Relations between user and kernel mode.
2.2 User Space and System Space

As we mentioned before, each code running in user mode uses different spaces. These
spaces are called USER SPACE. But many drivers and system components run in
kernel mode and they also use different spaces. These spaces are called SYSTEM
SPACE.

Normally 32 bit Windows has 2 3? = 4GB total space. As default, 2GB memory is

allocated for user space and 2GB for system space. This default option can be changed

5

before running the operating system i.e. before booting. For example; 3GB space can
be allocated for user and 1GB for system space [6].

0000 0000 8000 0000
2GB
USER SPACE
FFF FERF SYSTEM SPACE
FFFF FFFF

Figure 2.2 : 32 Bit System Space.

For 64 bit systems there are 2 % =16 Exabyte space totally. 8TB space is allocated for
user and 248 TB are allocated for system [6].

000 0000 0000 FFFF 0800 0000 0000
8TB 0000 0800 0000 0000 248TB
USER SPACE UNALLOCATED SPACE SYSTEM SPACE
7FF FFFF FFFF FFFF O7FF FFFF FRFF FFFF FFFF FFFF FFFF

Figure 2.3 : 64 Bit System Space.

Codes run in user mode have only access to user space not to system space but codes
run in system space have access to both system and user spaces. Therefore, codes or
components that run in system space should be designed very carefully to read or write

to user space. They can interrupt processes running on the user space.

All pages in user space can be transferred to disk and bring back but in system space
some pages (paged pool) can be transferred, some pages (non paged pool) cannot. The
places for paged and non paged pools are created in system space dynamically [6].

2.3 System Calls

When a Windows application creates a function which needs to work in the kernel it
comes first to the kernelbase.dll library to translate the function to the kernel
understandable function. Then the function is transfered to the ntdl.dll library. This
library includes all kernel functions with a specific number. This point is the entrance

point to the kernel mode from user mode [7].

Ntdl.dll creates a system call to change the CPU mode from user to kernel mode. It
transmits the function number to the System Service Dispatcher inside the kernel.

Dispather includes a table whose inputs are the numbers coming from system calls and

the outputs are the related kernel function. The system call is sent to the related
execution exe file inside the kernel. After execution the result turns back to the user
level application through the same way. Figure 2.6 illustrates an example for writing
afile [7].

Call WriteFile()

WriteFile .

In Kernelbase.dll Call NtWriteFile()

NtWriteFile

In Ntdl.dll SYSENTER User Mode

A

Call NtWriteFile()

System Service
Dispatcher

Kernel Mode

WriteFile
In Kernelbase.dll

Execute

Figure 2.4 : System Calls.
2.4 Mini Drivers, Miniport Drivers and Driver Pairs

(Miniport Driver, Port Driver) This structure is shown at the left side is a driver pair.
Although they are different drivers, they are seen as one driver by all of the elements
in the network. Miniport Driver focuses on general works for a driver while port driver

handles with specific works [8].

When a driver is loaded, it first implements GsDriverEntry function. The function
makes some initial synchronization and calls the DriverEntry function. DriverEntry
function fills the device object with the functions that related driver will use. Device
Objects consists of Unload and Major Function that is the need to handle with IRPs
[8].Having experiences with Windows, the developers understand that some functions
are all the same for most of the drivers and also creating these functions for some
vendors who want to create a specific driver for themselves can be hard. Because of
these reasons Microsoft built driver pairs. Driver pairs consist of two parts. First part
is miniport driver that conducts common works and the second part is port driver that

conducts the works that special vendors want to [8].

The way for implementing with driver pairs is first to give all works to the miniport

driver and then if miniport driver can’t handle with request, it asks help from port
driver [8].

2.5 Windows Architecture

System Support Service User Environmental
Processes Processes Applications Subsystems
Y A
Subsystem DLLs User
Kernel Device Drivers

Hardware Abstraction Layer

Figure 2.5 : Windows Architecture

Windows has a hierarchical system to implement all complex works. Normally, it is
restricted to call a native windows system directly. When a service process or a user
wants to call a kernel service it is only possible by the help of subsystem dynamic link

libraries. These DLLs translate a user level function into a native system call.

Windows executive implements the services in the kernel, such as memory
management, process and thread management,security, 1/O, networking and inter

process connection [7].

Kernel implements low level operating system services, such as thread scheduling,
interrupt and exception dispatching and multiprocessor synchronization. Kernel also

provides objects which will be used by executive.

Device drivers translate user or device defined 1/O functions into related 1/O request

packets which the kernel can understand.

Hardware Abstraction Layer (HAL) is an interface between kernel, device drivers and
hardware. HAL isolates the kernel, device drivers and executive from different kinds
of hardwares. It provides functionality for kernel, device drivers and executive to

implement their works independent from the hardware [7].

I/0 system in Windows includes several executive components to manage hardware
and to provide interaction between hardware and applications. These components are

I/0 Manager, Plug and Play Manager and Power Manager.

I/0 Manager is the main actor in the /O system. It provides communication between

applications, systems and devices.

A device driver is a software module that translates high level commands, such as read
and write into device understandable commands. They take the commands from the
I/0 manager and transmits the related device. Once the commands are done, device

driver informs the 1/0 manager.

A user application can issue one or multiple 1/O requests. If the request was
synchronous 1/0O the request would reach the device and the device will implement it.
After completing the work, the device will inform the application. After informing, the
application can continue its work. If the I/O request type is asynchronous the

application doesn’t have to wait the device to continue its work [7].

2.6 Network Driver Interface Specification (NDIS)

NDIS is the system that provides the communication between network card driver and
protocol drivers. It provides the capability for protocol drivers to send network packets
to the network drivers and receive network packets from network drivers independent

from the model the network adapter and operating system.

NDIS itself is also a driver and Ndis.sys file is located under the Windows folder.
Actually this driver is a wrapper and provides protocol drivers to communicate with
NIC driver. NIC drivers should be written for Windows O.S. as NDIS compatible so
that Ndis.sys can understand NIC driver language. NDIS converts the NIC language

to the language that protocol drivers can understand.

Protocol
Stack
Diriwer

windows

e MDIS Interface Wrapper

MNdis.sys NDIS
Miniport
Drivers

T

I etw orl
ad apter

Figure 2.6 : NDIS Wrapper [9].
NDIS support three kinds of network drivers:

Network Interface Card Driver: NDIS can manage NICs directly. NIC driver is the

interface between NIC and upper layers. Its jobs:
a. To send packets to the network,

b. To handle with interrupts,

C. To reset the NIC,

d. To halt the NIC.

NIC Drives can be miniport or full NIC. Miniport drivers can only send and receive
the packets. NDIS does the low level hardware operations. Such as synchronization
for miniport drivers, establishing connection with OS. But Full NIC can do these works

by itself.

Interface Drivers are the second one. They are placed between NIC drivers and
protocol drivers. The reason using these drivers is to translate some kinds of media

types that NIC doesn’t understand to the proper types.

Protocol drivers are the last ones. These drivers execute the protocol works. Such as;
TCP/IP protocol driver.

The version of NDIS changes according to version of Windows O.S:

Win95 :NDIS 3.0
Win98 :NDIS 5.0
WinXP :NDIS 5.1

10

Win7 : NDIS 6.20
Win8 - NDIS 6.30
Win10 : NDIS 6.50 [9].

Netgroup Packet Filter in WinPcap is also a protocol driver. NPF is not working as a
synchronic drive. When an operation is need by applications in the user level they are
activating the NPF and also when NIC catches a packet it is activating the NPF.

2.7 The Path from NIC to Applications

NICs have a limited size of memory (a few Kbytes) inside it and this memory should
deal with sending and receiving the network packets [10]. Also NICs check the packets
when they are still inside the NIC memory in order to discard the improper packets,

such as short Ethernet frames.

When the packet is valid, the NIC requests a bus controller role to transfer the packet
from its memory to the main memory of the operating system. After transferring the
packet, the NIC creates a hardware interrupt which will trigger the NIC driver.

NIC driver creates a Deferred Procedure Call (DPC) to inform upper layer drivers
about that a new packet has been received. If there is a network capturing driver in the
system, it will receive the packet after filtering process to deliver to the applications in
the user level [10].

2.8 Journey of Network Packet in Internet

A bus network is connecting of each computer or network device to a single cable.
Internet is also a bus network which consists of a control node and many nodes all
around the world. Each node in the internet has a unique address. When a packet is
sent by any node, it will be sent all nodes due to the broadcasting logic. The Network
Card for each host examines whether source address of packet is matching with its
address or not. If not, the packet will be discarded by the host. On the other hand, if it

matches, network card will deliver the packet to the operating system.

11

Nowadays, network cards have four modes: the broadcast, the multicast, direct and
promiscuous modes. Direct and promiscuous modes are the basic modes for network

cards. If the network card switches the promiscuous mode, it will process all packets

in the network to the operating system [11].

12

3. NETWORK PACKET CAPTURING SYSTEMS

3.1 Berkeley Packet Filter

For a network analysing system good buffering can be measured with the number of
packets that are dropped before processing the user space while good filtering can be
measured with the number of the packets that are processed to the buffer in accordance
with the related user defined filter. A good performance for capturing applications is

possible with having a well designed filtering machine.

There are two methods to create a filtering machine. First one is a Boolean expression
tree and second one is a directed acyclic control flow, which is used in Berkeley Packet
Filter (BPF). Examples for methods can be seen at Figure 3.1 and 3.2.

Ether.type Ether.type
=IP =ARP

Figure 3.1 : Tree Model

Ether.typ
e=IP

NO /
YES
Ether.typ
e=ARP

Figure 3.2 : Acyclic Control Flow (ACF) Method

Tree Model has some disadvantages for capturing process:

e |t produces more memory traffic.

13

e It computes the formulas even if it is not necessary. For example; it should

compute ether. Type=IP even if it doesn’t need to compare them.

BPF uses acyclic control flow method. ACF doesn’t need to compute all packets for

each comparison.

Most UNIX versions provide user level functionality to capture network packets from
the network traffic. Every time a user captures a packet and then it should be copied
from the kernel to the user level. This causes a bottleneck for operating system
because; every time creating a system call to copy packets can cost a huge usage of
CPU.

Berkeley Packet Filter is a kernel agent located inside the kernel. Its main function is
to set a filter inside the kernel and decrease the numbers of the packets that will be
copied to the user level. This kernel agent provides 20 times faster packet capturing

than the normal packet capturing processes [12].

The first idea to reside a filter inside the kernel came from a study in CMU/Stanford.
They placed a packet filter in a UNIX kernel in 1980[12]. This filter was sufficient for
the time being computers but not the computers that we are using today.

Normal traffic in a UNIX environment when link level driver gets a packet it sends it
to the protocol stack. But if there is a BPF which tracks the communication, link level
driver delivers packet to the BPF first. When the BPF gets the packet it copies the
packet to the kernel buffer if the packet is valid for user defined filter.

There are two buffers inside kernel: Store and Hold buffers. Their size is 32 Kbytes
and this memory for them is allocated at the beginning of the capturing process [12].
Store buffer keeps the packets coming from filter machine while Hold buffer keeps the
packets that will go to the user level buffer.

14

[) APPLICATION]

[
!
!
!

USER
BUFFER I

: DIRECTLY
ACCESS TO

K%RNEL

STORE i
BUFFER

FILTER

[NIC DRIVER]

Figure 3.3 : BPF Architecture

3.2 Network Packet Capturing for UNIX Systems

When the first network was established over ARPANET in 1969, the traffic was low
and it was easy to monitor this traffic. Today the situation is a little bit challenging.
Due to the large computer networks the network traffic is huge and the need for a new
diagnosis tool is occurred. Once a network card receives a network packet it checks its
destination MAC address. If the MAC address matches with its own MAC address,
network card copies the packet to the system memory in the kernel space and then it
checks its Ethernet header. According to header packet is copied to the related protocol
stack. When IP stack receives a packet it conducts some tests to clarify whether the
packet changed on the way or the destination address for the packet is its address. After

tests protocol header are removed and packet comes to transport layer. This process

continues until the packet reaches to the application layer.

15

Libpcap is an open source library providing functionality to capture network packets
over the network. McCane, Leres and Jacobson created the library in 1993 to improve
a platform independent API to capture network packets. The library first was created
by C programming language. But today there are some wrappers for other

programming languages to use the library.
Functions in library is:
Pcap_lookupdev is to show the network devices name

Pcap_open_live is to open the selected interface, which includes maximum

bytes of packets to capture and time for copying from kernel to user level.
Pcap_next is to capture packets in a loop.

Libpcap library captures the packets in a loop and copies them to the user application.
The packets consist of Ethernet header, IP header, Protocol header and data. It is a

work for programmers to design raw network packets for their own purposes.

Different kind of new solutions proposed their own packet capturing systems for UNIX
Systems by using libpcap library. They also used new technologies such as circular
buffer to increase the performance of their network monitoring tools. DashCap,nCap

and Beyond Device Polling are among the existing solutions.

In high speed networks, there is huge possibility losing packets while sending from
NIC to kernel then to the user level. DashCap proposal was to include two
component into system to increase the performance. These components are
DMA_MAP in the kernel and libDashCap in the user level. Both components
provided functionality to increase the performance to capture packets in high traffic.

DMA_MAP is a kernel and NIC driver dependent component.

DashCap also uses circular buffer technology. Their system consists of two different
buffer, receive (Rx) and transmit (Tx) buffer. While Rx buffer gets the packets from
DMA_MAP, Tx buffer sends the packets into the address space inside memory with
calling mmap function in UNIX. With this functionality, user level applications can
reach packets from memory without any other system call. DashCap is able to
capture high packets rates without losing any packets up to 700 KPPS(Kilo Packets
per Seconds) [13].

16

) User
space

’ \
: libDashCap :
DashCap | | !
- J'~ —————— t ------ — :- ———
' I
| y \
1" DMA_MAP ’ Kernel
NIC Driver Space
J

Figure 3.4 : DashCap Architecture [14].

nCap has been designed to provide functionality for capturing packets with wire
speed and sending packets at least 1 Gbit speed. Also, it has been designed to give
more control over system components for users. It has two circular buffers inside to
kernel where incoming and outgoing packets are placed. Applications in user level
have authorization to customize the buffers directly from user level [13].

Mo nitoring Monitoring Monitoring
Application Application Application
o =
&
E nCap Library
20—
e
g
=
k-
5 8 \ ! Legacy
E pet Rec eive ; Send]
= / J
< ey , /
@ S ’ _ﬂ_ rd
Ethernet Device Driver

Figure 3.5 : nCap Architecture [14].

Beyond Device Polling has been proposed to deal with the overhead of operating
system in high speed networks. The Device polling was implemented where polling is
a technique for handling the devices including network cards to perform the tasks for
packet capturing. In the design the packets are not queued inside the kernel. Users
applications can capture packets directly from NIC by socket system calls. Due to the
the using socket system calls there is no overhead in the system [13].

17

Table 3.1:Comparison of libraries for Unix Operating System.

Existing Architecture
Solution
Kernel Space User Space
D DMA_MAP can Access the NIC | libDashCap is implemented in
ashCap . e) Lo
driver by registering in /dev file | user space for its simplicity of
system, opening this device implementation and error
through it and then calling its handling.
system calls.
nCap Device Qriver is responsible_for nCap Iiprary allows the
controlling the Ethernet device applications to control the two
and creating two circular buffers | buffers and their indexes
where incoming and outgoing directly from userspace by
packets are set as well as enable | means of
applications to act upon the two | memory mapping without any
buffers and their indexes directly | kernel intervention.
from user-space.
Beyond Device polling is implemented Libpcap-mmap use the mmap()
Device where polling is a technique for | system call for passing packets
Polling handling devices including to user space, lessen the time

network cards that perform the
tasks:

-When network device receives a
packet it creates an interrupt to
request kernel attention.

It is a good solution to enhance
both packet capture performance
and system responsiveness under
high traffic load.

spent moving the packet from
the kernel to user-space.

From the performance point of view, DashCap provides the best performance

regarding packet loss in high speed networks. Beyond Device Polling and nCap can

tolerate packets up to 570 KPSS. After reaching maximum level, their packet loss rate
is increasing 100%. DashCap can tolerate packets up to 770 KPSS [13].

18

Another solution proposed to decrease the packet loss rate for high speed networks is
to use link lists in the applications. Link lists can decrease the usage of memory so that
overhead may be less. Link lists provides increasing and decreasing the size of list
without fixing the size of memory. This means that any packet insertion and deletion

can be handled efficiently without fixing the size of the memory in advance.

120
Fe L
2 100 7 il —
@ 80
g o
- 60 /
= 40 ﬁ
& /
20 /
0 —fE—f— i —i—e /
100 200 300 400 500 600 700 800
Kpps
s DashCap === nCap Beyond Device Polling

Figure 3.6 : Packet Loss Comparison [13].
3.3 Network Packet Capturing in Android Operating Systems

The more a system is used the more it is being attacked by intruders. One of the popular
systems nowadays is Android Operating System. According to the reports Android has
9.2% portion in the spreading malicious traffic and also attackers can reach personal
information from the Android devices easily [15]. From this observation we can
understand that providing a secure environment for Android systems is one of the

primary tasks for mobile security developers.

Android OS is created by Google Company and its framework system is Linux also it

is written with Java Programming language.

Internal of the Android includes three layers. At the top it has an application program
which provides interface for the users. At the bottom there is Linux kernel. Between
Linux kernel and application program there is application framework which provides

communication between top and bottom.

19

The network traffic in Android OS is not huge but the processing capability of the
system is not good enough. So, packet capturing interface for Android should have
very good performance. LibPcap library which is used on Linux systems to capture
network packets can be used also on Android systems for the same purpose with a little
bit exceptions. With the help of LibPcap library network packets can be captured and
saved in a memory card. Basic work flow for packet capturing with the library can be
seen at Fig.3.2.

SELECT SET SET
THE INTERFACE THE INTERFACE THE FILTER
PROMISCUOUS

MODE

CAPTURE
THE PACKETS
IN A LOOP

Figure 3.7 : LibPcap Work Flow

Because of the security issues Android System doesn’t let to interact with Linux
Kernel directly from application program. LibPcap library was written with C++
programming language while Android System is Java Based system. But interacting
with the kernel this C++ library should be used. This is a problem for developers and
to deal with that issue Java Native Interface in Android System can be used. JNI is a
Java Developer Kit (JDK) providing interface for other programming languages with
Java [15].

3.4 WinPcap Windows Packet Capturing Library

UNIX System lets the users to interact with the network directly with the help of some
system calls to capture network packets. But Windows operating systems protect low
level components from the high level applications. There is no significant system calls
like UNIX systems to provide interaction with the network directly. If an interaction

with the low level is needed a driver should be included inside the Windows system.

20

There are some drivers providing interaction with the network for Windows system.
But they all have some limitations. NETMON API is only working on Windows 2000
operating system, it is not open source and it doesn’t have filtering and raw packet
sending functionality. PCAUSA was produced to provide UNIX compatible packet
capturing driver for Windows. Its user interface is not well designed and filtering
functionality is not user friendly [16].

WinPcap packet capturing platform is the first open source library with the several
functionalities inside it. Therefore, most popular network analysis applications use
WinPcap library at the bottom of their applications. The designers of WinPcap are
Fulvio Rises and Loris Degiooni who are Italians.

Basically WinPcap was designed on BPF structure to provide UNIX compatibility to

the applications. A detailed structure of the WinPcap can be seen at Fig.3.3.
In Windows systems WinPcap can be used with:

1. Network and Protocol Analyzers

2. Network Monitoring systems

3. Network Logger Systems

4. Traffic Generator

5. Network IDS

6. Network Scanner

7. Security Tools

Filtering is very important for packet capturing performance. Most of the applications
generally want to catch a specific packet.

WinPcap filtering starts from the user defined filter. In user level the filter that user

defined is converted to the pseudo instruction.

Example: If the packet is IP and the protocol type is equal to 18
Then
Return true

These instructions are sent to the filtering machine inside the kernel.

21

The differences of WinPcap are hidden inside the kernel module. WinPcap architecture
has a circular buffer inside the kernel that can copy a block of packets at one time.
Implementing a circular buffer is harder than implementing a hold and store buffer as
in BPF. There is no fix size buffer in circular buffer system. According to captured
packets the buffer size can be raised and when the user buffer is free packets inside
kernel buffer will be sent to user buffer. Then the kernel buffer size will get decreased.

This provides more right for memory usage and more speed than BPF system.

Choosing a buffer size in user space is very crucial for network packet capturing
systems. Having a small or large user buffer can change according to the developers’
will. When the user buffer was chosen larger, the kernel buffer would wait until having
enough packets to fill the user buffer. It means that the system calls from user to kernel
will be less. It is a good scenario to use processor less. But if the user buffer is kept
smaller the kernel buffer will send the packets as soon as possible. This is also good
for real time capturing systems. WinPcap has option to configure user buffer size

according to needs.

Copy time process is the number of hops for network packets. The more copy number
the more system will have overheating due to the memory usage. WinPcap has 2 copy
time processes because it copies the packets first from network driver to kernel buffer
then from kernel buffer to user buffer. Filtering is the first phase in the WinPcap
structure so that unnecessary packets will not cause the memory usage and overheating

will be less.

Real time packet capturing is to capture network traffic at the same time it happens.
Packet capturing applications use huge amount of CPU when they are in loop. If the
application is not functional enough lose of the network packets can occur. One of the
methods to decrease packet losing is to use filters while the packets are still inside the
NIC driver. Another method is to keep the number of packets which will be copied to
memory less. In each copy function application or the kernel uses system calls that

cause the usage of CPU.

WinPcap has a statistical functionality to make the usage of CPU less. In this function
statistical information is kept inside the kernel such as amount of data per second. With

only one system call the application can get the result from the statistical machine.

22

WinPcap consists of three different components. One of them works inside the kernel
as a protocol driver to communicate with the NDIS. NPF.sys file can be found under
the System32/drivers folder after the installation the WinPcap which is the kernel
driver. Main purpose of the driver is to get packets from NIC and deliver them to the

user level.

Second component which is located in user level is packet.dll component. It is an API
for Windows systems and its duty is to be an interface between user and kernel level.
Some low level functions are performed by packet.dll such as getting the name of
interface or the net mask of the interface etc. Because; each Windows version has
different kind of NDIS version up of the NIC driver, NPF driver and packet.dll should

be configured according to the NDIS. These components work OS dependent.

The last component in WinPcap is Wpcap.dll which is a high level component and is
not OS dependent. The component provides high level functionalities such as setting
the size of user buffer or producing a filter etc. The component can communicate

directly with the protocol driver to execute the capturing process.

A faster capturing process can be measured according to the performance of the device
driver inside the kernel. Once the NIC driver gets the packet it will process the packet
to the upper layer. The device driver should capture the packets before this process. In
UNIX systems a special system call can be created to direct the NIC driver to send a
copy of the packets to the capturing driver but in Windows systems it is not possible
to modify the operating system or NIC driver. The solution for this problem is network
tap. Network Tap is a protocol driver created by WinPcap at the up of NDIS to get one
copy from each packet.Tests are implemented to show the performance of WinPcap
including the comparison with UNIX BPF system in [16]. Tests show that the usage
of the CPU never reaches 100% level with WinPcap. While BPF can only capture half
of the packets with high usage of CPU, WinPcap can capture all packets on the network
traffic. When the evaluating of the dumping machine which saves captured packets to
the disk directly is done it is a bottleneck for both UNIX and Windows systems. Some
packets were dropped because of the high CPU usage or the lack kernel buffer space.
Another observation is the performance of the statistical machine which can monitor
and bring statistical information about packets inside the kernel. Observation was that
making monitoring inside the kernel costs less CPU usage whose reason is the less

switching between user and kernel level [16].

23

Kernel buffer size is also important piece for capturing performance. In Windows
systems increasing the kernel buffer size can decrease the number of packets that are
dropped but in UNIX systems the performance is not changing after changing the

kernel buffer size.

The basic work flow of Winpcap:

Pcap_findalldev_ex

Pcap_open_live

Pcap_compile

Pcap_set_filter

Pcap_loop

Pcap_close

Figure 3.8 : WinPcap Work Flow
To list the network adapters, WinPcap has “pcap_lookupdev” function.

To open a connection it has a “pcap open_live” function. This function uses five

inputs. Network Adapter, Buffer Size, Promiscuous Mode, 0, Error Buffer.

To filter the traffic, there are two functions. “pcap_compile” and “pcap_filter. First
one is to convert a filter string to the program understandable format and second one

is to set the filter.

24

Application

[Capture Application } [Monitoring } [Logging Application }

Us{er
Buffer
1

wpcap.dll

packet.dll }

User mode

1
1
1
I
|
1
|
1
1
1
|
I
|
I
1
1
I
1

1
Kernel

Buffer
1

[Dump,'Engine
1

)
1 i

=

@

=
—
)

w

=

f<5)

=,

w

=

o

m

>

Q

=]

5
—

Kernel
Buffer

‘. Disk
[}
I
I
I

Kernel mode

[Packets]

Figure 3.9 : Netgroup Packet Filter

25

3.5 Packet Encapsulation

Packets encapsulating is to add a header to packets in each network layer. It starts from
Application layer until the Physical Layer. In order to analysis the packets a network
analyzing tool should examine all headers. Filtering machine inside the kernel can
clarify the kind of packets such as only tcp packets or ip packets will be captured.
According to filter type packets arrives the user level and in user level the application
according to its design can separate the headers from the packets. Packets are delivered
by a stream that includes Ethernet, IP and etc. headers inside it. In the application
showed in appendix-1 designed to capture destination addresses inside the udp and tcp
packets. To separate this result from all stream after first 14 bytes which is Ethernet
header 20 bytes of the stream were taken and the destination address from the IP header

was delivered to the database.

ETHERNET

1
ARP RAPP
1P IRIZADIER HEADER HEADER

1
1 1
UDP TCP ICMP
LAYER 4 HEADER HEADER HEADER

LAYER 7

LAYER 3

Figure 3.10 : Encapsulation
3.6 Costs and Optimization of WinPcap

Filtering is the one of the main component for network capturing applications.
Therefore, the performance of the filtering can affect the whole capturing process.

There is a relation between the number of clock cycles and the number of filtering
instruction. The more building a complex instruction for filtering the more the CPU
will be used by the application. For example; the instruction for capturing only IP
packets can create 131 clock cycles while the instruction for capturing UDP Port 20

packets can create 585 cycles [4].

26

The second cost in design of WinPcap is copy time of network packets. The packets
are copied twice in WinPcap. The first one is from NIC memory to the main memory
which is performed by NdisTransferData() function. This function has two
disadvantages. Firstly, the function can copy the packet from NIC to main memory if
the whole packet exists in the NIC memory. If not, the function will cause a delay.
Second disadvantage is when the function is performed, The NIC will need a bus

master role to transfer the packet. This process also causes more clock cycle number.

The second copy function for copy from kernel buffer to user buffer also can increase
the number of clock cycles. The number of clock cycles can vary according to the
length of the packet and the size of the kernel buffer.

The number of clock cycles varies between 540 and 10500 for first copy function while

the number of clock cycles varies between 259 and 8550 for second copy function [4].

One of the packet filtering costs is the number of clock cycles to obtain the timestamp
of each packet. WinPcap is using KeQueryPerformanceCounter function that is the
only function to obtain a time reference with microsecond level. This function uses
huge amount of clock cycles due to its interaction with system time chip, which costs
1800 clock cycles per packet. 1800 clock cycles per packet is the maximum number
of clock cycle usage in the packet capturing process.

Experiments showed that the optimization of filtering machine is possible with using
a just in time machine to translate a filtering instruction to the 80x86 binary code. 8%
improvement was observed with a complex filtering instruction and after WinPcap

version 3.0, this property was implemented in the kernel [4].

It was observed that the first copy function which was from NIC memory to main
memory was using more CPU than the second copy function.Optimization of this
function is possible with using a C library function to copy the packets piece by piece
to main memory without waiting the completing the packet. This optimization
decreased the number of clock cycles from 540 to 300 for 20 byte packets [4].

27

Optimization of timestamp related to the cost for packet capturing system is possible
with the usage of TimeStamp Counter whose function is rdtsc for Windows operating
system. Using this function decreases the number of clock cycles from 1800 to 270
per packet. This provides a good performance for system but the problem is that only
Intel CPUs have this function inside them. Therefore, WinPcap Team disabled this

optimization as default for their system [4].

28

4. EXPERIMENTAL RESULTS AND RISK ANALYSIS

4.1 Experimental Results

In this chapter, the comparison of packet.dll with wpcap.dll and the results of

observations were presented.

As it is presented in the third chapter, packet.dll and wpcap.dll have different
functionalities. Packet.dll is providing interaction with kernel driver, whereas
wpcap.dll is conducting high level functions such as filtering. A capturing system
which is able to capture all network packets can be designed by both using only

packet.dll or using only wpcap.dll.

In a close environment, a virtual network traffic was created gradually. The traffic load
was 100 MB first, then it was 1 GB and 10 GB network load was created lastly.

The main idea of this experiment was to observe the usage of microprocessor and

memory by network packet capturing system and to compare the two winpcap dll files.

The test environment was designed carefully so that there will not be any other network
traffic in the environment. Internet connection was closed and there was no modem

connection which may cause occurring of some network packets.

Two different gauges which were showing the load of network traffic were used in the
experiment. One gauge was showing outgoing traffic load, whereas other was showing

incoming traffic.

Observation of microprocessor and memory usage was done by using Windows Task
Manager. The system properties of host ,which the implementation was done, were
Intel Core 5 CPU (Central Processor Unit), 4.00 GB Memory, 64 Bit Windows
Operating System.

29

@ i < | @
U] Print Preview... =) Print... 93 Settings.. @ Help... { Fle Edit Gauges Help
S H e .
pod 3 e B TP-LINK Wireleys‘fﬁlspé:Adapter - Vii-Fi
I

Automatic interpacket gap adjustment

Receive Transmit
252 hps 100K 16 Gbps |k
0K 10K !

Pause Stop
- : ” 76% 48%
h A Name CPU Memory
~
Apps (6)
@ Bandwidth Gauges (32 bit) 0% 20,6 MB
J CamStudic Recarder (32 bit) (2) 2,6% 6,2 MB E
[i5] peapProject (32 bit) 6,8% 1,1 MB
15 Task Manager 0% 92 MB
o ToolsetintegrationTray (32 bit) 0% 9,2 MB
& WanKiller (32 bit) 29,3% 17,2 MB -
< >

Fewer details

Figure 4.1 : Network Packet Capturing by packet.dll

The simulation of network packet capturing by packet.dll can be seen at Figure 4.1.
Under 100 MB network traffic load, the application was using 4.2% of CPU and 0.8
MB memory. When the load was 1 GB, the application was using 6.8% of CPU and
1.1 MB memory. Once the load was 10 GB, the application was using 7.1% of CPU
and 1.5 MB memory.

It was clearly seen from the experiment that the application which had been created
by using only packet.dll was not using too much CPU and memory. We can say that
packet.dll doesn’t cause the fail over of operating system by using too much CPU and

memory.

30

N SO
® v < | @
Fie

Edit Gauges Help {

LI Print Preview... = Print... 4 Settings... @ Help... H
== TG W e |
562.95 Mbps 563 % yucelPC |

TP-LINK Wireless USB Adapter - Wi-Fi

Automatic inter-packet gap adjustment

Receive Transmit

1334 bps 100K 1,3 Gbps
K
Pause Stop
[Y
[Z
TIME PROTO IPSOURCE IPDESTINATION ~ LEN 84% 53%
. = - = Name CPU Memory
2017-05-14 14:08:08 192.168.1.7 173134221105 |73284 ® ! <
~
2017-05-14 14:08:09 192.168.1.7 173.194.221.105 | 72616 Apps (6)
20170514 14:08:10 192.168.1.7 173.184.221.105 | 75072
a Bandwidth Gauges (32 bit) 0,1% 20,3 MB
414:08:11 192.168.1.7 173.194.221.105 | 7!
19 7 7 > [2] CamStudio Recorder (32 bit) (2)
> [packetCapture (32 bit)

> B

Figure 4.2 : Network Packet Capturing by wpcap.dll

The simulation of network packet capturing by wpcap.dll can be seen at Figure 4.2.
Under 100 MB network traffic load, the application was using 17.4% of CPU and 52.6
MB memory. When the load was 1 GB, the application was using 22.7% of CPU and
74.6 MB memory. Once the load was 10 GB, the application was using 25.8% of CPU
and 94.2 MB memory.

It was clearly seen from the experiment that the application which had been created
by using only wpcap.dll was using more CPU power and memory than packet.dll
application. We can say that users who want to capture all network packets without
filtering should use only packet.dll executable file in order to use less operating system

sources.

31

4.2 Risk Analysis

It is better to analyze the risks of all kind of network tools in order to understand the
gaps of the systems. Gaps are the starter point of future works. Therefore, the points
of network packet capturing system which are vulnerable to attacks are presented in

this session.

The first attack point can be Network Interface Card because; the process is getting
started in NIC. Once a new network packet arrives the NIC, NIC will inform the NIC
Driver. If NIC can’t inform NIC Driver, this new network packet will not be captured

by packet capturing system.

The second attack point can be Network Driver Interspecification which is the
intermedia driver inside the operating system. This driver is providing communication

between NIC and capturing driver.

The third attack point is the network capturing system driver. In network packet
capturing system, driver inside the kernel is conducting critical works.

Command and Controlling of Network Packet Capturing is possible with reaching

device drivers and control them how we want.

Multipartite viruses are the viruses which can infect from boot sector of operating
system to the file system and even device drivers [17]. Multipartite viruses can be used

to control NIC driver or NDIS or Packet Capturing Driver.

32

5. CONCLUSIONS AND RECOMMENDATIONS

When the comparison is done it is seen that WinPcap library is the most powerfull
packet capturing system. It has different kind of functionality to work under high speed

network traffic.

As we saw previous sections WinPcap has two dll files inside user level which are
packet.dll and wpcap.dll. packet.dll includes simple functions while wpcap.dll has
high level functions and more functionality. When we compare two dll with a simple
packet capturing application we can see that wpcap.dll is using more CPU than
packet.dll. The main reason for additional CPU usage for wpcap.dll is to use basic
functions such as listing interface names and establishing connection with kernel

driver wpcap.dll needs packet.dll.

Another observation was done to show the CPU usage of libPcap and WinPcap
libraries. As explained before libPcap library can use 100% CPU sometimes and it
costs dropping some network packets but with WinPcap CPU usage doesn’t reach
100% anytime.

In the experiment several different web sites opened while the capturing programs
were open and the usage of CPU was observed. In UNIX environment Wireshark
application was used while Windows environment packetCapture application was
used. As showed at Figure 5.1 and 5.2 in UNIX CPU usage was 100% two times while

in Windows 100% usage was not observed.

5.1 Practical Application of This Study

packetCapture application is a basic tool to capture network packets. It has
functionalities to list network devices, to capture network packets in the chosen driver,
to deliver destination IP addresses and to create a white list showing the IP addresses
that will not be captured by the application. A capturing sample can be found at the
Figure A.1.

33

Once find devices button clicks application shows the list of the interface in the host
with the definition of interfaces. After choosing the interface wanted to be monitored
one thread is executing the capturing the packets. Before saving the packet information

to the database, the thread is checking whether the packet information is in the white
list or not.

Two threads were used for the application. Second thread is delivering the packet
informations from the database and saving the white list information to the other

database while first thread continues the capturing phase.

CPU Intel(R) Core(TM) i5 CPU 650 @& 3.20GH=z
o Ltilization 100G
r4
{1
[
|
| ll .'I' ,"l
|I | f II {1 |r,I |II II
| L~ [’ﬂ W II' | II | ,.-'I |I
| 5 L I | | |
| \ I [! ! A
| Vo | | | | /\
I | | { LI |I | [| A\
-/- | L. Y h |---._"'..' |1 |
60 seconds o

N 0%

| n , | ‘ 0¥
fa ‘ \.Jl

IA\\. r-\m_

0%

\‘x/\\
AN
e, /\\r‘v/ﬁm

[}
0

f' -
L b} n

i}
oo [l I s

Figure 5.2 : Packet Capturing with LibPcap

34

5.2 Future Works

The basic understanding of network packet capturing systems were presented in this

study. This study can be used as a starter point for several future works.

One of the open research area is to design more efficient network intrusion system.
Network Intrusion Systems are designed to separate the malicious network traffic and
normal network traffic. packetCapture application is creating a SQLite database with
using performance of WinPcap library. Some statistical information is saved in the
database such as country information, application port etc. These statistical

information can be used to create a normal user behavior.

Another open research area is to improve the performance of the network packet
capturing systems for open source operating systems. It is clear that in the future most
of the operating systems will be open source and lightweight operating systems. For
these systems it will be required to build new intrusion detection systems or firewall
systems. Therefore, new lightweight packet capturing systems will be crucial.

The third open research area can be the security of device drivers. As it was seen in
the risk analysis, network packet capturing systems are vulnerable to attacks due to the
multiparitite viruses. The prevention methods can be improved against the multipartite

viruses.

35

REFERENCES

[1] Alias, S. B., Manickam, S., & Kadhum, M. M. (2013, December). A Study on
Packet Capture Mechanisms in Real Time Network Traffic.
In Advanced Computer Science Applications and Technologies
(ACSAT), 2013 International Conference on (pp. 456-460). IEEE.

[2] Pande, B., Gupta, D., Sanghi, D., & Jain, S. K. (2005, July). The Network
Monitoring Tool—PickPacket. In Information Technology and
Applications, 2005. ICITA 2005. Third International Conference
on (Vol. 2, pp. 191-196). IEEE.

[3] Shamsi, J., & Brocmeyer, M. (n.d.). Principles of Network Monitoring.

[4] Degioanni, L, Baldi, M., Risso, F., Varenni, G. (2012, May). Profiling and
Optimization of Software Based Network Analysis Applications.

[5]Url-1<http://msdn.microsoft.com/tr-tr/library/Windows/hardware/ff554836>,
date retrieved 17.08.2016.

[6]Url-2<https://docs.microsoft.com/en-us/windows/hardware/drivers/debugger
/user-space-and-system-space>, date retrieved 17.08.2016.

[7] Russinovich, M. E., Solomon, D. A., & Allchin, J. (2005). Microsoft Windows
Internals: Microsoft Windows Server 2003, Windows XP, and
Windows 2000 (Vol. 4). Redmond: Microsoft Press.

[8]Url-3<http://msdn.microsoft.com/tr-tr/library/Windows/hardware/hh439643>,
date retrieved 02.09.2016.

[9]Url-4<https://technet.microsoft.com/en-us/library/cc958797.aspx>, date retrieved
02.09.2016.

[10] Degioanni, L, Baldi, M., Risso, F., Varenni, G. (2012, May). Profiling and
Optimization of Software Based Network Analysis Applications

[11] Xiaoguang, A., & Xiaofan, L. (2016, August). Packet Capture and Protocol
Analysis Based on Winpcap. In Robots & Intelligent System (ICRIS),
2016 International Conference on (pp. 272-275). IEEE.

[12] McCanne, S., & Jacobson, V. (1993, January). The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In USENIX winter (Vol.
93).

[13] Alias, S. B., Manickam, S., & Kadhum, M. M. (2013, December). A Study on
Packet Capture Mechanisms in Real Time Network Traffic.

In Advanced Computer Science Applications and Technologies
(ACSAT), 2013 International Conference on (pp. 456-460). IEEE.

[14] Dashtbozorgi, M., & Azgomi, M. A. (2009, August). A high-performance
software solution for packet capture and transmission. In Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE
International Conference on (pp. 407-411). IEEE.

37

[15] Cheng, K., & Cui, Y. (2012, May). Design and implementation of network
packets collection tools based on the android platform. In Fuzzy
Systems and Knowledge Discovery (FSKD), 2012 9th International
Conference on (pp. 2166-2169). IEEE.

[16] Risso, F., & Degioanni, L. (2001). Architecture for high performance network
analysis. In Computers and Communications, 2001. Proceedings. Sixth
IEEE Symposium on (pp. 686-693). IEEE.

[17] Habraken, J. W. (2003). Absolute beginner's guide to networking. Que
Publishing.

38

APPENDICES

APPENDIX A.1: Sample WinPcap Application

39

APPENDIX Al

ol Selecting

Find
Devices

Add White List

55 Selecting - O X

1.Netwerk adapter VMware Vitual Ethemet Adapter’ on local host peap://\Device\NPF_{EEA2DE]
2 Network adapter Microsoft Corporation’ on local host paap://\Device\NPF_{AFEADSEF-8564-47
3 Netwerk adapter Microseft Corporation’ on local host mpeap://\Deviee \NPF_{A32A79F 1-4835-4A
4 Network adapter Microsoft Corporation’ on local host peap+//\Device\NPF_{40E51BCB-4E5D-4C]
5.Netwerk adapter Microseft Corporation” on local host mpeap://\Deviee \NPF_{46C71306-49F7-45¢
6 Network adapter ‘Reattek PCle GBE Famity Controller”on local host maap://\Devics\NPF_{314A5
7.Netwerk adapter Microseft Corporation’ on local host peap://\Deviee \NPF_{F6210073-03AD4E
8 Network adapter Microsoft Comoration” on local host meap://\Device\NPF_{2360F 38E-F998-452
9.Netwerk adapter VMware Vitual Ethemet Adapter’ on local host peap://A\evice\NPF_{7289EFA
10, Network adapter ot Corporation on local host //\Device\NPF_{C1635666-B1C5-4F
1

Add White List

5 Capturing

Protocol Destination P Length Country Application Protocol Destination IP Length Country Application

@ Today

@ The Last 1 Hour Show List

O The Last 1 Min

Figure A.1 : packetCapture Application.

40

Table A.1 : PreRequirements for Application.

Name Version
Visual C++ CRT v12.0 (x86 or x64)
Microsoft .Net Framework v4.5 Full
WinPcap v4.1.3

41

CURRICULUM VITAE

Name Surname > Yicel AYDIN

Place and Date of Birth : Samsun/ TURKEY — 13.05.1985

Address : Esentepe M. Morgiil S. No:5/2 Eyiip Istanbul

E-Mail : aydinyuc@itu.edu.tr

B.Sc. . Atatiirk University Electrical and Electronic
Engineering

List of Publications and Patents:

PUBLICATIONS/PRESENTATIONS ON THE THESIS

* Aydin Y., Aslan A., 2016: Prevention Against Application Layer 7 DDOS Attacks.
9th International Cyber Security and Cryptography Conference Poster Publication ,
October 25-26, 2016 Ankara, Turkey.

43

