

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

NETWORK PACKET CAPTURING

FOR WINDOWS OPERATING SYSTEM

M.Sc. THESIS

Yücel AYDIN

Department of Applied Informatics

Cyber Security Engineering and Cryptography Programme

JUNE 2017

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

Thesis Advisor: Assoc. Prof. Dr. Enver ÖZDEMİR

Department of Applied Informatics

Cyber Security Engineering and Cryptography Programme

Yücel AYDIN

 (707141011)

M.Sc. THESIS

NETWORK PACKET CAPTURING

FOR WINDOWS OPERATING SYSTEM

JUNE 2017

İSTANBUL TEKNİK ÜNİVERSİTESİ  BİLİŞİM ENSTİTÜSÜ

Tez Danışmanı: Doç. Dr. Enver ÖZDEMİR

Bilişim Uygulamaları Anabilim Dalı

Bilgi Güvenliği Mühendisliği ve Kriptografi Programı

Yücel AYDIN

(707141011)

YÜKSEK LİSANS TEZİ

WINDOWS İŞLETİM SİSTEMLERİNDE AĞ PAKETİ YAKALAMA

HAZİRAN 2017

v

Date of Submission : 05 May 2017

Date of Defense : 05 June 2017

Yücel AYDIN, a M.Sc. student of ITU Informatics Institute student ID 707141011,

successfully defended the thesis entitled “Network Packet Capturing for Windows

Operating System”, which he prepared after fulfilling the requirements specified in the

associated legislations, before the jury whose signatures are below.

vi

vii

To my spouse Latifah,

viii

ix

FOREWORD

I would like to express my deep appreciation and thanks for my advisor. This work is

supported by ITU Institute of Informatic.

June 2017

Yücel AYDIN

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

LIST OF TABLES ... xv
LIST OF FIGURES ... xvii
SUMMARY ... xix
ÖZET .. xxi

 INTRODUCTION .. 1
1.1 Purpose of Thesis ... 2

1.2 Background .. 2

 WINDOWS INTERNALS ... 5
2.1 User Mode and Kernel Mode ... 5
2.2 User Space and System Space .. 5
2.3 System Calls ... 6
2.5 Windows Architecture .. 8

2.6 Network Driver Interface Specification (NDIS) .. 9
2.7 The Path from NIC to Applications ... 11

2.8 Journey of Network Packet in Internet ... 11

 NETWORK PACKET CAPTURING SYSTEMS .. 13
3.1 Berkeley Packet Filter .. 13

3.2 Network Packet Capturing for UNIX Systems .. 15
3.3 Network Packet Capturing in Android Operating Systems.............................. 19

3.4 WinPcap Windows Packet Capturing Library ... 20
3.5 Packet Encapsulation .. 26

3.6 Costs and Optimization of WinPcap .. 26

 EXPERIMENTAL RESULTS AND RISK ANALYSIS 29
4.1 Experimental Results .. 29
4.2 Risk Analysis .. 32

 CONCLUSIONS AND RECOMMENDATIONS ... 33
5.1 Practical Application of This Study ... 33
5.2 Future Works .. 35

REFERENCES ... 37
APPENDICES .. 39

APPENDIX A.1 ... 40

CURRICULUM VITAE .. 43

xii

xiii

ABBREVIATIONS

API : Application Programming Interface

BPF : Berkeley Packet Filtering

CSPF : CMU/Standford Packet Filtering

DPC : Deferred Procedure Call

DLL : Dynamic Link Library

HAL : Hardware Abstraction Layer

IP : Internet Protocol

LibPcap : Library for Packet Capturing

NDIS : Network Device Interface Specification

NIC : Network Interface Card

NPF : Netgroup Packet Filtering

OS : Operating System

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

WinPcap : Windows Packet Capturing

xiv

xv

LIST OF TABLES

Page

Table 3.1 : Comparison of libraries for Unix Operating System. 18

 PreRequirements for Application. .. 41

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : Relations between user and kernel mode. ... 5
Figure 2.2 : 32 Bit System Space. ... 6
Figure 2.4 : System Calls. ... 7
Figure 2.5 : Windows Architecture ... 8

Figure 2.6 : NDIS Wrapper [9]. .. 10

Figure 3.1 : Tree Model .. 13
Figure 3.2 : Acyclic Control Flow (ACF) Method ... 13
Figure 3.3 : BPF Architecture ... 15
Figure 3.4 : DashCap Architecture [14]. ... 17

Figure 3.5 : nCap Architecture [14]. ... 17
Figure 3.6 : Packet Loss Comparison [13]. ... 19

Figure 3.7 : LibPcap Work Flow .. 20
Figure 3.8 : WinPcap Work Flow ... 24
Figure 3.9 : Netgroup Packet Filter ... 25
Figure 3.10 : Encapsulation .. 26

Figure 4.1 : Network Packet Capturing by packet.dll ... 30
Figure 4.2 : Network Packet Capturing by wpcap.dll ... 31

Figure 5.1 : Packet Capturing with WinPcap .. 34
Figure 5.2 : Packet Capturing with LibPcap ... 34

Figure A.1 : packetCapture Application. .. 40

xviii

xix

NETWORK PACKET CAPTURING FOR WINDOWS OPERATING

SYSTEM

SUMMARY

Today there are several network security systems used by the end users at the

application layer. Network security systems are designed to detect the attacks or to

measure the intensity of the network traffic. The first step for the network systems is

to detect the malicious traffic coming to the network or going from the network.

Detecting is possible with analyzing the packets whether they are malicious or normal

network packets with the user level applications. Diagnosis tools can be created by

inspecting of each packet in the network.

In this study, I present the detailed methods to capture the network traffic in Windows

Operating Systems. The second chapter is devoted to explain the parts of the Windows

OS’ kernel in charge of network. Network packet capturing process for different kind

of operating systems and Winpcap used by the most popular network analysis tools

are discussed in the third part of the study. The evaluations and analysis with a

simulation of packet capturing are presented in the fourth chapter. A detail explanation

of the network packet capturing application written in C++ programming language and

future works are presented in the conclusion part.

It is through network packets that computers can communicate with each other within

a network. Any input from the outside world to the computer is input to the computer

through a hardware device. The packages come in the same way via a computer

network cable and enter the operating system from the network card.

The Windows operating system restricts the operations that the user can do, unlike

open source operating systems. In open source operating systems, users can interact

directly with the kernel that makes up the operating system.

When network packages need to be captured and analyzed, application developers

place one packet capture driver in the operating system kernel and also develop new

libraries to allow user-level applications to contact this driver. The speed and accuracy

of network packet capture systems directly impact the applications that will analyze

the network packets. Because; There may be content that will damage the system in

any unreachable network package and the analysis system may not be aware of this

package.

The performance of network packet capture systems is directly related to the buffering

and filtering systems used in the system. If a good buffer and filter are not used, many

network packets are transmitted directly to the operating system without being caught.

There are many network packet capture systems developed in open source operating

systems. However, most of the normal and server computers used by many users and

companies nowadays include the Windows operating system. Because of this, a

network packet capture system was required for Windows operating system. As a

result of the work done, WinPcap network packet capture library, which is preferred

by many applications today, has been developed.

xx

xxi

WINDOWS İŞLETİM SİSTEMLERİNDE AĞ PAKETİ YAKALAMA

ÖZET

Günümüzde uygulama seviyesinde yapılmış birçok ağ güvenlik sistemi

bulunmaktadır. Bunlar saldırganı tespit etmek, saldırı trafiğinin yoğunluğunu tespit

etmek gibi birçok amaç için tasarlanmıştır. Yapılan her uygulamada ilk aşama

bilgisayara veya ağa gelen trafiğin tespit edilmesidir. Bunun hayata geçirilmesi için

ise trafiği oluşturan paketlerin elde edilmesi şarttır. Elde edilen paketlerin içeriği

yorumlanarak gerekli önleme yöntemleri ortaya koyulmaktadır.

Bu çalışma Windows işletim sistemlerindeki ağ trafiğini elde edebilecek bilgileri

içermektedir. Çalışmanın ikinci bölümünde Windows sistemlerindeki ağ trafiğini

anlayabilmek için sistemi oluşturan işletim sisteminin içerisindeki yapılar

incelenmiştir. Üçüncü bölümde ise bugüne kadar farklı işletim sistemlerinde ağ

trafiğinin elde edilmesi için yapılmış uygulamaların detayları verilmiş ve Windows

sistemlerinde uygulanan ve birçok kullanıcı tarafından tercih edilen ağ analiz

programları tarafından kullanılan WinPcap alt yapısı incelenmiştir. Dördüncü kısımda

Ağ paketlerinin yakalanması simule edilerek hazırlanan analiz ve değerlendirmelere

yer verilmiştir. Sonuç kısmında ise Windows sistemlerinde kullanılacak C++

programlama dili ile yazılmış uygulamanın detayları ve ileride kullanım şekilleri

açıklanmıştır.

Bir ağ içerisinde bilgisayarların birbirleriyle irtibat kurup iletişim sağlaması ağ

paketleri sayesinde olmaktadır. Ağ paketi, kullanıcı veya işletim sistemi tarafından

oluşturulmuş ham bilginin yada verinin iletişimin sağlanması için gerekli ek bilgilerin

eklenmesiyle oluşmaktadır. Bilgisayara dış dünyadan gelen her türlü girdi bir donanım

sayesinde bilgisayara giriş yapmaktadır. Paketler de aynı şekilde bir bilgisayara ağ

kabloları vasıtasıyla gelmekte ve ağ kartından işletim sistemine giriş yapmaktadır. Ağ

kartının kilobyte seviyesinde hafızası bulunması nedeniyle paketler ağ kartı tarafından

ön tespit yapıldıktan sonra işletim sistemi hafızasına kaydedilmektedir. Ön tespit

olarak ağ kartı sadece paketin içerisinde bulunan ethernet bilgilerini alıp gerekli hash

algoritmasıyla işleyip elde ettiği bilgi ile ethernet bilgilerinin son hanesi olan frame

kontrol bilgisiyle karşılaştırma yapmaktadır. Uygun olmayan paketleri ağ kartı işletim

sistemine iletmeden elemektedir.

Windows işletim sistemi diğer işletim sistemlerinin aksine kullanıcının yapabileceği

işlemleri kısıtlamaktadır. Diğer işletim sistemlerinde kullanıcılar işletim sistemini

oluşturan çekirdek ile doğrudan etkileşim sağlamaktadır. Bu özellik doğal olarak diğer

işletim sistemlerinde ağ paketleri ağ kartından çekirdeğe geçtiğinde kullanıcılar

tarafından direkt olarak elde edilip gerekli analizler yapılabilmektedir. Windows

işletim sisteminde ise işlem bu kadar basit değildir.

Windows işletim sistemi kullanıcı bölgesi ve çekirdek bölgesi olacak şekilde iki ana

yapıya ayrılmıştır. Normal kullanıcılar sadece kullanıcı bölgesinde yetki verilen

işlemleri yapmaktayken çekirdek ile direk etkileşimleri bulunmamaktadır. Eğer

kullanıcıların veya kullanıcı bölgesinde işleyen bir uygulamanın çekirdek ile etkileşim

sağlaması gerekli ise çekirdek içerisinde bu etkileşimi sağlayacak bir sürücünün

bulunması gereklidir. Sürücü çekirdek içerisinde gerekli işlemleri gerçekleştirirken

xxii

kullanıcı bu sürücü ile yine bu etkileşim için programlanmış dinamik bağlantı

kütüphaneleri (dbk) yardımıyla gerekli irtibatı sağlamaktadır.

Her ağ kartı işletim sistemi içerisinde kendisine has olacak şekilde bir ağ sürücüsü ile

birlikte bulunur. Bu sürücü vasıtasıyla ağ kartı işletim sistemine gerekli işlemleri

yaptırır. Ağ kartı gelen paketleri sistem hafızasına kopyaladıktan sonra ağ sürücüsünü

uyararak yeni bir paketin geldiğini haber verir. Ağ sürücüsü ise üst seviye

sürücülerinden ağ paketlerini kullanacak tüm sürücülere paketin bulunduğu bilgisini

verir ve üst sürücüler gerekli işlemleri yaparlar.

Ağ paketlerinin yakalanıp analiz yapılması gerekliliğinde ise uygulama geliştiriciler

işletim sistemi çekirdeğine bir adet paket yakalama sürücüsü yerleştirir ve ayrıca

kullanıcı seviyesindeki uygulamaların bu sürücü ile irtibatını sağlamak için yeni

kütüphaneler geliştirirler.

Ağ paket yakalama sistemlerinin hızı ve doğruluğu aynı zamanda analiz yapacak

uygulamaları doğrudan etkilerler. Çünkü; elde edilemeden geçen herhangi bir ağ

paketi içerisinde sisteme zarar verecek içerik bulundurabilir ve bu paketten de analiz

sisteminin haberi olmayabilir.

Ağ paket yakalama sistemlerinin performansı sistem içerisinde kullanılan tamponlama

ve filtremele sistemleriyle doğrudan ilgilidir. İyi bir tampon yada filtre kullanılmaz ise

bir çok ağ paketi yakalanmadan doğrudan işletim sistemine iletilmiş olmaktadır. İlk

zamanlarda tampon olarak iki adet sabit boyutlu tampon çekirdek içerisine

yerleştirilmiştir. Ağ kartından gelen paketler önce bir tamponda depolanmıştır ve bu

tampon dolduğu zaman tüm veriler diğer tampona aktarılmıştır. Kullancı

seviyesindeki uygulamalar ise doğrudan bu tampon içerisindeki bilgilere ulaşmıştır.

Ancak bu sistem günümüz ortamında pek uygulanabilir olmamıştır. Günümüzde

kullanılan ağ trafiği çok hızlı ve yoğun bir şekilde işlemektedir. Bir saniye içerisinde

milyonlarca paket sistem içersine gelmek de veya sistemden uzaklaşmaktadır. Eğer

kullanıcı seviyesindeki uygulama gelen paket hızı kadar bir hızla paketleri tampon

içerisinden alamazsa ilk tampon içerisine gelen yeni paketler yakalanamamaktadır. Bu

dezavantajı gidermek için sirküler tampon sistemi geliştirilmiştir. Bu sistem de sadece

bir adet tampon kullanılmış ve bu tamponun boyutu dinamik olarak değiştirilmiştir.

Ağ kartından gelen paketler olduğu sürece tampon boyutu artarken kullanıcı

seviyesindeki uygulamalar paketleri aldıkça boyut azalmıştır.

Ağ paket yakalama sistemlerindeki diğer bir kritik unsur ise filtreleme sistemidir.

Çoğu kullanıcı veya uygulama ağ paketlerini analiz ederken tüm paketleri yakalamak

istemez. Sadece gerekli olan paketlerin yakalanması sistem için yeterlidir. Bu ayırt

etme işlemi ise filtreleme sistemiyle mümkün olmaktadır. Yakalanacak paket sayısının

azaltılması vasıtasıyla ayrıca tampon içerisinde yerleştirilecek paket sayısı azaltılmak

da ve tamponlama sistemi de rahatlatılmaktadır. Filtreme sistemi kullanıcı

uygulamasının hangi paketlerin yakalanması gerektiğini tanımlamasıyla başlar. Bu

tanımlama gerekli kütüphaneler vasıtasıyla çekirdek içerisindeki sürücüye iletilir.

Sürücü ise ağ paketleri daha ağ kartı içerisindeyken bu filtreleme işlemini yapar ve

sadece kullanıcı uygulamasının istediği paketler tampon içersine kopyalanır.

Açık kaynak işletim sistemlerinde geliştirilen birçok ağ paket yakalama sistemi

bulunmaktadır. Ancak günümüzde birçok kullanıcı ve şirketin kullandığı normal ve

xxiii

server bilgisayarlarının çoğu Windows işletim sistemini içermektedir. Bu sebepten

dolayı Windows işletim sistemi için de bir ağ paket yakalama sistemi gerekliliği

doğmuştur. Yapılan çalışmalar sonucunda günümüzde de bir çok uygulamanın tercih

ettiği WinPcap ağ paket yakalama kütüphanesi geliştirilmiştir. Wireshark, TCPDump

vb. Birçok popüler uygulama da kendi sistemlerinde bu kütüphaneyi kullanmaktadır.

WinPcap kütüphanesi Fulvio Rises ve Loris Degionani isimli iki italyan bilim insanı

tarafından geliştirilmiştir ve daha sonraki yıllarda optimize çalışması yapılmıştır.

WinPcap kütüphanesi üç ayrı ancak birbiriyle irtibatlı parçalardan oluşmaktadır. Bu

parçalar Çekirdek Sürücüsü, Packet.dll ve Wpcap.dll parçalarıdır.

Çekirdek sürücüsü kullanıcı tarafından tanımlanmış filtreye uygun olarak filtreleme

yapıp kullanıcının istediği paketleri sirküler tampon içerisine kopyalamaktadır. Aynı

zamanda işlem kolaylığı ve hız sağlamak maksadıyla sürücü içersinde bir istatiksel

makine tutmaktadır. Bu makine gelen ve giden paketlerle ilgili istatiksel bilgileri

kullanıcının istemesi durumunda derhal sağlamak maksadıyla hazır etmektedir. Diğer

bir sürücü görevi ise gelen giden tüm paketlerinin içeriği ile ilgili tüm bilgileri

kullanıcı seviyesine çıkmadan direkt olarak hardisk içerisine kaydetmektedir.

Packet.dll unsuru ise Windows işletim sistemi içerisindeki kullanıcı bölgesi ile

çekirdek bölgesi arasında irtibatı sağlamaktadır. Çekirdek içerisindeki sürücüye

gerekli direktifleri göndererek kullanıcı uygulamasının istediği işlemleri

gerçekleştirmektedir.

Wpcap.dll unsuru üst seviye işlemler için geliştirilmiş bir kütüphanedir. Çekirdek

tarafından kullanılacak filtrenin oluşturulması, kullanıcı uygulamaları ile irtibatların

sağlanması vb. işlemler bu kütüphane tarafından sağlanmaktadır.

Windows işletim sisteminin incelenmesinin yanında çalışmanın üçüncü bölümünde

diğer işletim sistemlerindeki ağ paket yakalama sistemleriyle ilgili çalışmalar

incelenmiştir.

Günümüzde Windows işletim sisteminin yaygın olarak kullanılmasının yanında

bireysel kullanım bazında mobil sistemlerin gelişmesiyle Android işletim

sistemlerinin kullanılması da artmıştır. Anroid işletim sistemlerinde ağ paketinin

yakalanması ile ilgili çalışmalar yağılmıştır. Bu çalışmalar Android işletim sisteminin

linux tabanlı bir işletim sistemi olması sebebiyle açık kaynak işletim sistemleriyle ilgili

geliştirilmiş sistemler kullanılmıştır. Linux işletim sisteminde ağ paketi yakalamak

konusunda popüler olan libpcap kütüphanesinin Android işletim sistemine

uyarlanması çalışmaları yapılmıştır. LibPcap kütüphanesinin C programlama dili ile

yazılmış olması ve Android işletim sisteminde Java programlama dili kullanımı

geliştiriciler için problemler çıkartmıştır. Bu problemin aşılması ise Android işletim

sistemlerinde kullanılan programlama dilleri arasında dönüşüme imkan sağlayan Java

Native Interface kullanılmıştır.

Yapılan çalışma ile aynı zamanda gerekli test çalışmalarının yapılabilmesi için C++

programlama dili kullanılarak WinPcap kütüphanesi tabanlı bir uygulama

geliştirilmiştir. Geliştirilen uygulama ile açık kaynak işletim sistemlerindeki ağ paket

yakalama sistemleri karşılaştırılmış ve gerekli sonuçlar ilgili bölümlerde verilmiştir.

Genel olarak bakıldığında Windows işletim sistemi için geliştirilen WinPcap

xxiv

kütüphanesi son optimize çalışmalarıyla birlikte açık kaynak sistemlerine göre

üstünlük göstermekte ancak açık kaynak sistemlerinde sistem geliştirilmesi için birçok

araştırma yapıldığı ve yapılacağı görülmektedir. Geliştirilen uygulama Windows

işletim sisteminde simule edilmiş ve 10 Ghz kadar ağ trafiği altında çalışabilirliği ve

kullandığı kaynak miktarı gözlenmiştir.

1

 INTRODUCTION

The advance of technology connected the people throughout the world by internet.

Also, there are huge number of network infrastructure connecting several people,

commercial companies, military and government. Internet itself allowed for many

security threats to occur. Therefore, network security has become so much important

to the world because; sensitive information can be reached through the internet. A data

from source computer to the destination computer should be secured well.Otherwise;

an attacker can obtain the data or send another data from the channel.

An efficient network monitoring tool is a crucial need for all kind of network systems.

Network monitoring is the collection of information for network management

purposes. An efficient network monitoring tool should provide a real time monitoring

for administrators. And also a network monitoring tool should have comprehensive

capabilities for analysis purposes in order to see the traffic clearly and quickly.

Important features of network monitoring are real–time capturing which is to show the

traffic in the monitoring application when the packet arrived the computer, displaying

type of information such as list of coming packets, protocol distribution charts etc.

Meanwhile, packet capturing is very crucial component for network monitoring

systems. Most of the networks nowadays are working with high traffic load and in this

kind of traffic capturing all packets without losing even one is the most essential

functionality in network monitoring systems. Because; the packets that were not

captured by the system could have viruses, worms and others that can affect the

network.

With the improvements in the technology, several packet capturing systems have been

produced by the vendors in either hardware based or software based. Even though the

hardware based systems provide high capturing rates, deployment of hardware for all

systems in the network needs huge amount of budget. Therefore, scientists has focus

on software based systems more than hardware systems [1].

2

1.1 Purpose of Thesis

The main objective for this study to elaborate the internal infrastructure of the systems

built for packet capturing purposes and to create a basic packet capturing system to be

used by network intrusion systems.

1.2 Background

Network Monitoring tools are called sniffers. Monitoring tools are the helpers for

administrators to manage and administer the network. Traditionally, these tools are

used for evaluating network related problems, network intrusion systems and network

traffic logging. While network monitoring tools are passive listeners, network

intrusion systems can respond the malicious traffic.

Usually, monitoring applications put the network card of a computer into promiscuous

mode. This enables the computer to listen all subsection traffic in the network. Also a

filter can be produced from the information inside headers and it can be used for

capturing only a specific packet such as; capturing packets coming from port 80 [2].

There are two basic network monitoring approaches,active monitoring and passive

monitoring. Active monitoring is to inject control packets inside the network. It costs

additional traffic inside the network. Active monitoring provides full control regarding

monitoring interval, packet size and path to be monitored. A ping search can be

considered as active monitoring method.

Passive Monitoring is to observe the existing network traffic without injecting any

packets in the network. There is no control over monitoring action for passive

monitoring. For passive monitoring there is no choice except underlying network

protocol.

Most of the traffic in a network consist of three underlying protocol Internet Control

Message Protocol (ICMP), Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP).

ICMP is underlying protocol for famous ping utility. The advantage of ICMP is

simplicity and ease of use. Some of the protocols need to establish connection ,which

is called handshake ,before sending data. ICMP protocol doesn’t have any handshake

requirement.

3

TCP is the underlying protocol for many internet applications such as WWW and File

Transfer Protocol(FTP). Unlike ICMP, TCP needs handshake. It is a three way

process. First the source host sends a request to initiate the connection which is called

TCP SYN (Synchronization). Destination host replies the request as TCP ACK

(Acknowledged). Lastly, source host sends a SYN ACK packet to the destination host.

 A TCP packet consists of 40 bytes header (20 Byte IP Header + 20 Byte TCP Header).

The TCP protocol consumes more bandwidth than other protocols because of its large

header size.

The applications which need high reliability use TCP protocol. Because; TCP has

functionality to rearrange the packets in the right order at the destination host. Also

TCP provides retransmission if the packets reach the destination with loses.

UDP packet consists of 28 Byte header. It is a connectionless protocol unlike TCP. It

doesn’t need any handshake. UDP consumes less bandwidth than TCP because of its

28 Bytes header [3].

All computers in a network gets the network packets with their own Network Interface

Cards (NICs). Network packets travel through several components inside the operating

systems from NIC to the applications that we use in our computers. Also when an

application needs to interact with outside, operating system creates a network packet

through the application to the NIC.

Network analysing tools such as Snort should capture network packets before

analysing them. The most important part in this process is buffering and filtering of

the related packets. Buffering is keeping the packets inside the memory before sending

them to the other part of the operating system. Due to the high amount of the data, if

the packets were sent from a part to another part without buffering it would cost high

amount of microprocessor. Therefore, some of the packets may be dropped before

reaching the applications by the operating system due to the bottleneck for the

microprocessor.

There are several kind of network protocols reaching from outside to the internal

networks. Most of the network monitoring applications want to track specific protocols

and also delivering all packets to the applications needs a strong microprocessor.

Therefore, filtering of specific network protocol has a critical importance for network

monitoring applications.

4

There are several libraries providing this functionality for users but when comparison

is done, WinPcap is the most preferred one by the diagnosis tools.

The first known packet filtering and network monitoring system was CMU/Stanford

Packet Filtering (CSPF) [4]. It provided access to the data link layer and was used by

most of the other applications as a starting point for their systems.

McCane and Van Jackson improved CSPF in 1993 and released the Berkeley Packet

Filter (BPF) [4]. Basically their improvement was dropping the network packets

according to user defined filter while the packet was still in NIC. Today, most of the

Berkeley Software Distribution (BSD) operating systems such as UNIX use BPF as a

default network packet capturing system.

The Mach Packet Filter, PathFilter are some examples for studies aimed to improve

the filter inside the BPF.

A few studies focused on the other aspects of packet filtering, such as buffering and

copying. A study proposed to use a shared buffer or a bigger buffer to limit the copy

time for network packets. WinPcap which was built for Windows Operating Systems

is the most robust library with its efficient buffering system .

5

 WINDOWS INTERNALS

2.1 User Mode and Kernel Mode

A processor has two different modes in windows operating systems. According to the

code, the mode of processor is shifted. User applications run in user mode while core

operating system components run in kernel mode. Many drivers also run in kernel

mode [5].

Windows allocates virtual address space for each application that runs in user mode.

This property protects one application from the other one. If one application crashes,

it affects only that application not the other one. All codes running in kernel mode use

only one virtual address space. One code can affect or destroy the other one. If one

code crashed all operating system would crash.

Figure 2.1 : Relations between user and kernel mode.

2.2 User Space and System Space

As we mentioned before, each code running in user mode uses different spaces. These

spaces are called USER SPACE. But many drivers and system components run in

kernel mode and they also use different spaces. These spaces are called SYSTEM

SPACE.

Normally 32 bit Windows has 2 32 = 4GB total space. As default, 2GB memory is

allocated for user space and 2GB for system space. This default option can be changed

WINDOWS

API
USER MODE

DRIVERS

HARDWARE

OTHER

KERNEL

DRIVERS

OS KERNEL
FILE SYSTEM

DRIVERS

HARDWARE ABSTRACTION LAYER

USER MODE

KERNEL

MODE

6

before running the operating system i.e. before booting. For example; 3GB space can

be allocated for user and 1GB for system space [6].

Figure 2.2 : 32 Bit System Space.

For 64 bit systems there are 2 64 =16 Exabyte space totally. 8TB space is allocated for

user and 248 TB are allocated for system [6].

Figure 2.3 : 64 Bit System Space.

Codes run in user mode have only access to user space not to system space but codes

run in system space have access to both system and user spaces. Therefore, codes or

components that run in system space should be designed very carefully to read or write

to user space. They can interrupt processes running on the user space.

All pages in user space can be transferred to disk and bring back but in system space

some pages (paged pool) can be transferred, some pages (non paged pool) cannot. The

places for paged and non paged pools are created in system space dynamically [6].

2.3 System Calls

When a Windows application creates a function which needs to work in the kernel it

comes first to the kernelbase.dll library to translate the function to the kernel

understandable function. Then the function is transfered to the ntdl.dll library. This

library includes all kernel functions with a specific number. This point is the entrance

point to the kernel mode from user mode [7].

Ntdl.dll creates a system call to change the CPU mode from user to kernel mode. It

transmits the function number to the System Service Dispatcher inside the kernel.

Dispather includes a table whose inputs are the numbers coming from system calls and

0000 0000

2GB

USER SPACE

7FFF FFFF

8000 0000

2GB

SYSTEM SPACE

FFFF FFFF

000 0000 0000

8TB

USER SPACE

7FF FFFF FFFF

FFFF 0800 0000 0000

248TB

SYSTEM SPACE

FFFF FFFF FFFF FFFF

0000 0800 0000 0000

UNALLOCATED SPACE

FFFF 07FF FFFF FFFF

7

the outputs are the related kernel function. The system call is sent to the related

execution exe file inside the kernel. After execution the result turns back to the user

level application through the same way. Figure 2.6 illustrates an example for writing

a file [7].

Figure 2.4 : System Calls.

2.4 Mini Drivers, Miniport Drivers and Driver Pairs

(Miniport Driver, Port Driver) This structure is shown at the left side is a driver pair.

Although they are different drivers, they are seen as one driver by all of the elements

in the network. Miniport Driver focuses on general works for a driver while port driver

handles with specific works [8].

When a driver is loaded, it first implements GsDriverEntry function. The function

makes some initial synchronization and calls the DriverEntry function. DriverEntry

function fills the device object with the functions that related driver will use. Device

Objects consists of Unload and Major Function that is the need to handle with IRPs

[8].Having experiences with Windows, the developers understand that some functions

are all the same for most of the drivers and also creating these functions for some

vendors who want to create a specific driver for themselves can be hard. Because of

these reasons Microsoft built driver pairs. Driver pairs consist of two parts. First part

is miniport driver that conducts common works and the second part is port driver that

conducts the works that special vendors want to [8].

WriteFile

In Kernelbase.dll

NtWriteFile

In Ntdl.dll

System Service

Dispatcher

WriteFile

In Kernelbase.dll

User Mode

Kernel Mode

Call NtWriteFile()

SYSENTER

Call NtWriteFile()

Execute

Call WriteFile()

8

The way for implementing with driver pairs is first to give all works to the miniport

driver and then if miniport driver can’t handle with request, it asks help from port

driver [8].

2.5 Windows Architecture

Figure 2.5 : Windows Architecture

Windows has a hierarchical system to implement all complex works. Normally, it is

restricted to call a native windows system directly. When a service process or a user

wants to call a kernel service it is only possible by the help of subsystem dynamic link

libraries. These DLLs translate a user level function into a native system call.

Windows executive implements the services in the kernel, such as memory

management, process and thread management,security, I/O, networking and inter

process connection [7].

Kernel implements low level operating system services, such as thread scheduling,

interrupt and exception dispatching and multiprocessor synchronization. Kernel also

provides objects which will be used by executive.

Device drivers translate user or device defined I/O functions into related I/O request

packets which the kernel can understand.

System Support

Processes

Service

Processes

User

Applications

Environmental

Subsystems

Subsystem DLLs

Executive

Kernel Device Drivers

Hardware Abstraction Layer

Kernel

User

9

Hardware Abstraction Layer (HAL) is an interface between kernel, device drivers and

hardware. HAL isolates the kernel, device drivers and executive from different kinds

of hardwares. It provides functionality for kernel, device drivers and executive to

implement their works independent from the hardware [7].

I/O system in Windows includes several executive components to manage hardware

and to provide interaction between hardware and applications. These components are

I/O Manager, Plug and Play Manager and Power Manager.

I/O Manager is the main actor in the I/O system. It provides communication between

applications, systems and devices.

A device driver is a software module that translates high level commands, such as read

and write into device understandable commands. They take the commands from the

I/O manager and transmits the related device. Once the commands are done, device

driver informs the I/O manager.

A user application can issue one or multiple I/O requests. If the request was

synchronous I/O the request would reach the device and the device will implement it.

After completing the work, the device will inform the application. After informing, the

application can continue its work. If the I/O request type is asynchronous the

application doesn’t have to wait the device to continue its work [7].

2.6 Network Driver Interface Specification (NDIS)

NDIS is the system that provides the communication between network card driver and

protocol drivers. It provides the capability for protocol drivers to send network packets

to the network drivers and receive network packets from network drivers independent

from the model the network adapter and operating system.

NDIS itself is also a driver and Ndis.sys file is located under the Windows folder.

Actually this driver is a wrapper and provides protocol drivers to communicate with

NIC driver. NIC drivers should be written for Windows O.S. as NDIS compatible so

that Ndis.sys can understand NIC driver language. NDIS converts the NIC language

to the language that protocol drivers can understand.

10

Figure 2.6 : NDIS Wrapper [9].

NDIS support three kinds of network drivers:

Network Interface Card Driver: NDIS can manage NICs directly. NIC driver is the

interface between NIC and upper layers. Its jobs:

a. To send packets to the network,

b. To handle with interrupts,

c. To reset the NIC,

d. To halt the NIC.

NIC Drives can be miniport or full NIC. Miniport drivers can only send and receive

the packets. NDIS does the low level hardware operations. Such as synchronization

for miniport drivers, establishing connection with OS. But Full NIC can do these works

by itself.

Interface Drivers are the second one. They are placed between NIC drivers and

protocol drivers. The reason using these drivers is to translate some kinds of media

types that NIC doesn’t understand to the proper types.

Protocol drivers are the last ones. These drivers execute the protocol works. Such as;

TCP/IP protocol driver.

The version of NDIS changes according to version of Windows O.S:

Win95 : NDIS 3.0

Win98 : NDIS 5.0

WinXP : NDIS 5.1

11

Win7 : NDIS 6.20

Win8 : NDIS 6.30

Win10 : NDIS 6.50 [9].

Netgroup Packet Filter in WinPcap is also a protocol driver. NPF is not working as a

synchronic drive. When an operation is need by applications in the user level they are

activating the NPF and also when NIC catches a packet it is activating the NPF.

2.7 The Path from NIC to Applications

NICs have a limited size of memory (a few Kbytes) inside it and this memory should

deal with sending and receiving the network packets [10]. Also NICs check the packets

when they are still inside the NIC memory in order to discard the improper packets,

such as short Ethernet frames.

When the packet is valid, the NIC requests a bus controller role to transfer the packet

from its memory to the main memory of the operating system. After transferring the

packet, the NIC creates a hardware interrupt which will trigger the NIC driver.

NIC driver creates a Deferred Procedure Call (DPC) to inform upper layer drivers

about that a new packet has been received. If there is a network capturing driver in the

system, it will receive the packet after filtering process to deliver to the applications in

the user level [10].

2.8 Journey of Network Packet in Internet

A bus network is connecting of each computer or network device to a single cable.

Internet is also a bus network which consists of a control node and many nodes all

around the world. Each node in the internet has a unique address. When a packet is

sent by any node, it will be sent all nodes due to the broadcasting logic. The Network

Card for each host examines whether source address of packet is matching with its

address or not. If not, the packet will be discarded by the host. On the other hand, if it

matches, network card will deliver the packet to the operating system.

12

Nowadays, network cards have four modes: the broadcast, the multicast, direct and

promiscuous modes. Direct and promiscuous modes are the basic modes for network

cards. If the network card switches the promiscuous mode, it will process all packets

in the network to the operating system [11].

13

 NETWORK PACKET CAPTURING SYSTEMS

3.1 Berkeley Packet Filter

For a network analysing system good buffering can be measured with the number of

packets that are dropped before processing the user space while good filtering can be

measured with the number of the packets that are processed to the buffer in accordance

with the related user defined filter. A good performance for capturing applications is

possible with having a well designed filtering machine.

There are two methods to create a filtering machine. First one is a Boolean expression

tree and second one is a directed acyclic control flow, which is used in Berkeley Packet

Filter (BPF). Examples for methods can be seen at Figure 3.1 and 3.2.

Figure 3.1 : Tree Model

Figure 3.2 : Acyclic Control Flow (ACF) Method

Tree Model has some disadvantages for capturing process:

 It produces more memory traffic.

OR

Ether.type

=IP

Ether.type

=ARP

NO

Ether.typ

e=IP

Ether.typ

e=ARP

FALSE TRUE

YES

YES

NO

14

 It computes the formulas even if it is not necessary. For example; it should

compute ether. Type=IP even if it doesn’t need to compare them.

BPF uses acyclic control flow method. ACF doesn’t need to compute all packets for

each comparison.

Most UNIX versions provide user level functionality to capture network packets from

the network traffic. Every time a user captures a packet and then it should be copied

from the kernel to the user level. This causes a bottleneck for operating system

because; every time creating a system call to copy packets can cost a huge usage of

CPU.

Berkeley Packet Filter is a kernel agent located inside the kernel. Its main function is

to set a filter inside the kernel and decrease the numbers of the packets that will be

copied to the user level. This kernel agent provides 20 times faster packet capturing

than the normal packet capturing processes [12].

The first idea to reside a filter inside the kernel came from a study in CMU/Stanford.

They placed a packet filter in a UNİX kernel in 1980[12]. This filter was sufficient for

the time being computers but not the computers that we are using today.

Normal traffic in a UNİX environment when link level driver gets a packet it sends it

to the protocol stack. But if there is a BPF which tracks the communication, link level

driver delivers packet to the BPF first. When the BPF gets the packet it copies the

packet to the kernel buffer if the packet is valid for user defined filter.

There are two buffers inside kernel: Store and Hold buffers. Their size is 32 Kbytes

and this memory for them is allocated at the beginning of the capturing process [12].

Store buffer keeps the packets coming from filter machine while Hold buffer keeps the

packets that will go to the user level buffer.

15

Figure 3.3 : BPF Architecture

3.2 Network Packet Capturing for UNIX Systems

When the first network was established over ARPANET in 1969, the traffic was low

and it was easy to monitor this traffic. Today the situation is a little bit challenging.

Due to the large computer networks the network traffic is huge and the need for a new

diagnosis tool is occurred. Once a network card receives a network packet it checks its

destination MAC address. If the MAC address matches with its own MAC address,

network card copies the packet to the system memory in the kernel space and then it

checks its Ethernet header. According to header packet is copied to the related protocol

stack. When IP stack receives a packet it conducts some tests to clarify whether the

packet changed on the way or the destination address for the packet is its address. After

tests protocol header are removed and packet comes to transport layer. This process

continues until the packet reaches to the application layer.

DIRECTLY

ACCESS TO

KERNEL

APPLICATION

USER

BUFFER

HOLD

BUFFER

STORE

BUFFER

FILTER

MACHINE

FILTER

MACHINE

NETWORK
TAP

NIC DRIVER

16

Libpcap is an open source library providing functionality to capture network packets

over the network. McCane, Leres and Jacobson created the library in 1993 to improve

a platform independent API to capture network packets. The library first was created

by C programming language. But today there are some wrappers for other

programming languages to use the library.

Functions in library is:

Pcap_lookupdev is to show the network devices name

Pcap_open_live is to open the selected interface, which includes maximum

bytes of packets to capture and time for copying from kernel to user level.

Pcap_next is to capture packets in a loop.

Libpcap library captures the packets in a loop and copies them to the user application.

The packets consist of Ethernet header, IP header, Protocol header and data. It is a

work for programmers to design raw network packets for their own purposes.

Different kind of new solutions proposed their own packet capturing systems for UNIX

Systems by using libpcap library. They also used new technologies such as circular

buffer to increase the performance of their network monitoring tools. DashCap,nCap

and Beyond Device Polling are among the existing solutions.

In high speed networks, there is huge possibility losing packets while sending from

NIC to kernel then to the user level. DashCap proposal was to include two

component into system to increase the performance. These components are

DMA_MAP in the kernel and libDashCap in the user level. Both components

provided functionality to increase the performance to capture packets in high traffic.

DMA_MAP is a kernel and NIC driver dependent component.

DashCap also uses circular buffer technology. Their system consists of two different

buffer, receive (Rx) and transmit (Tx) buffer. While Rx buffer gets the packets from

DMA_MAP, Tx buffer sends the packets into the address space inside memory with

calling mmap function in UNIX. With this functionality, user level applications can

reach packets from memory without any other system call. DashCap is able to

capture high packets rates without losing any packets up to 700 KPPS(Kilo Packets

per Seconds) [13].

17

Figure 3.4 : DashCap Architecture [14].

nCap has been designed to provide functionality for capturing packets with wire

speed and sending packets at least 1 Gbit speed. Also, it has been designed to give

more control over system components for users. It has two circular buffers inside to

kernel where incoming and outgoing packets are placed. Applications in user level

have authorization to customize the buffers directly from user level [13].

Figure 3.5 : nCap Architecture [14].

Beyond Device Polling has been proposed to deal with the overhead of operating

system in high speed networks. The Device polling was implemented where polling is

a technique for handling the devices including network cards to perform the tasks for

packet capturing. In the design the packets are not queued inside the kernel. Users

applications can capture packets directly from NIC by socket system calls. Due to the

the using socket system calls there is no overhead in the system [13].

18

Existing

Solution

Architecture

 Kernel Space User Space

DashCap
DMA_MAP can Access the NIC

driver by registering in /dev file

system, opening this device

through it and then calling its

system calls.

libDashCap is implemented in

user space for its simplicity of

implementation and error

handling.

nCap
Device driver is responsible for

controlling the Ethernet device

and creating two circular buffers

where incoming and outgoing

packets are set as well as enable

applications to act upon the two

buffers and their indexes directly

from user-space.

nCap library allows the

applications to control the two

buffers and their indexes

directly from userspace by

means of

memory mapping without any

kernel intervention.

Beyond

Device

Polling

Device polling is implemented

where polling is a technique for

handling devices including

network cards that perform the

tasks:

-When network device receives a

packet it creates an interrupt to

request kernel attention.

It is a good solution to enhance

both packet capture performance

and system responsiveness under

high traffic load.

Libpcap-mmap use the mmap()

system call for passing packets

to user space, lessen the time

spent moving the packet from

the kernel to user-space.

From the performance point of view, DashCap provides the best performance

regarding packet loss in high speed networks. Beyond Device Polling and nCap can

tolerate packets up to 570 KPSS. After reaching maximum level, their packet loss rate

is increasing 100%. DashCap can tolerate packets up to 770 KPSS [13].

Table 3.1:Comparison of libraries for Unix Operating System.

19

Another solution proposed to decrease the packet loss rate for high speed networks is

to use link lists in the applications. Link lists can decrease the usage of memory so that

overhead may be less. Link lists provides increasing and decreasing the size of list

without fixing the size of memory. This means that any packet insertion and deletion

can be handled efficiently without fixing the size of the memory in advance.

Figure 3.6 : Packet Loss Comparison [13].

3.3 Network Packet Capturing in Android Operating Systems

The more a system is used the more it is being attacked by intruders. One of the popular

systems nowadays is Android Operating System. According to the reports Android has

9.2% portion in the spreading malicious traffic and also attackers can reach personal

information from the Android devices easily [15]. From this observation we can

understand that providing a secure environment for Android systems is one of the

primary tasks for mobile security developers.

Android OS is created by Google Company and its framework system is Linux also it

is written with Java Programming language.

Internal of the Android includes three layers. At the top it has an application program

which provides interface for the users. At the bottom there is Linux kernel. Between

Linux kernel and application program there is application framework which provides

communication between top and bottom.

20

The network traffic in Android OS is not huge but the processing capability of the

system is not good enough. So, packet capturing interface for Android should have

very good performance. LibPcap library which is used on Linux systems to capture

network packets can be used also on Android systems for the same purpose with a little

bit exceptions. With the help of LibPcap library network packets can be captured and

saved in a memory card. Basic work flow for packet capturing with the library can be

seen at Fig.3.2.

Figure 3.7 : LibPcap Work Flow

Because of the security issues Android System doesn’t let to interact with Linux

Kernel directly from application program. LibPcap library was written with C++

programming language while Android System is Java Based system. But interacting

with the kernel this C++ library should be used. This is a problem for developers and

to deal with that issue Java Native Interface in Android System can be used. JNI is a

Java Developer Kit (JDK) providing interface for other programming languages with

Java [15].

3.4 WinPcap Windows Packet Capturing Library

UNIX System lets the users to interact with the network directly with the help of some

system calls to capture network packets. But Windows operating systems protect low

level components from the high level applications. There is no significant system calls

like UNIX systems to provide interaction with the network directly. If an interaction

with the low level is needed a driver should be included inside the Windows system.

SELECT

THE INTERFACE

SET

THE INTERFACE

PROMISCUOUS

MODE

SET

THE FILTER

CAPTURE

THE PACKETS

IN A LOOP

21

There are some drivers providing interaction with the network for Windows system.

But they all have some limitations. NETMON API is only working on Windows 2000

operating system, it is not open source and it doesn’t have filtering and raw packet

sending functionality. PCAUSA was produced to provide UNIX compatible packet

capturing driver for Windows. Its user interface is not well designed and filtering

functionality is not user friendly [16].

WinPcap packet capturing platform is the first open source library with the several

functionalities inside it. Therefore, most popular network analysis applications use

WinPcap library at the bottom of their applications. The designers of WinPcap are

Fulvio Rises and Loris Degiooni who are Italians.

Basically WinPcap was designed on BPF structure to provide UNIX compatibility to

the applications. A detailed structure of the WinPcap can be seen at Fig.3.3.

In Windows systems WinPcap can be used with:

1. Network and Protocol Analyzers

2. Network Monitoring systems

3. Network Logger Systems

4. Traffic Generator

5. Network IDS

6. Network Scanner

7. Security Tools

Filtering is very important for packet capturing performance. Most of the applications

generally want to catch a specific packet.

WinPcap filtering starts from the user defined filter. In user level the filter that user

defined is converted to the pseudo instruction.

Example: If the packet is IP and the protocol type is equal to 18

 Then

 Return true

These instructions are sent to the filtering machine inside the kernel.

22

The differences of WinPcap are hidden inside the kernel module. WinPcap architecture

has a circular buffer inside the kernel that can copy a block of packets at one time.

Implementing a circular buffer is harder than implementing a hold and store buffer as

in BPF. There is no fix size buffer in circular buffer system. According to captured

packets the buffer size can be raised and when the user buffer is free packets inside

kernel buffer will be sent to user buffer. Then the kernel buffer size will get decreased.

This provides more right for memory usage and more speed than BPF system.

Choosing a buffer size in user space is very crucial for network packet capturing

systems. Having a small or large user buffer can change according to the developers’

will. When the user buffer was chosen larger, the kernel buffer would wait until having

enough packets to fill the user buffer. It means that the system calls from user to kernel

will be less. It is a good scenario to use processor less. But if the user buffer is kept

smaller the kernel buffer will send the packets as soon as possible. This is also good

for real time capturing systems. WinPcap has option to configure user buffer size

according to needs.

Copy time process is the number of hops for network packets. The more copy number

the more system will have overheating due to the memory usage. WinPcap has 2 copy

time processes because it copies the packets first from network driver to kernel buffer

then from kernel buffer to user buffer. Filtering is the first phase in the WinPcap

structure so that unnecessary packets will not cause the memory usage and overheating

will be less.

Real time packet capturing is to capture network traffic at the same time it happens.

Packet capturing applications use huge amount of CPU when they are in loop. If the

application is not functional enough lose of the network packets can occur. One of the

methods to decrease packet losing is to use filters while the packets are still inside the

NIC driver. Another method is to keep the number of packets which will be copied to

memory less. In each copy function application or the kernel uses system calls that

cause the usage of CPU.

WinPcap has a statistical functionality to make the usage of CPU less. In this function

statistical information is kept inside the kernel such as amount of data per second. With

only one system call the application can get the result from the statistical machine.

23

WinPcap consists of three different components. One of them works inside the kernel

as a protocol driver to communicate with the NDIS. NPF.sys file can be found under

the System32/drivers folder after the installation the WinPcap which is the kernel

driver. Main purpose of the driver is to get packets from NIC and deliver them to the

user level.

Second component which is located in user level is packet.dll component. It is an API

for Windows systems and its duty is to be an interface between user and kernel level.

Some low level functions are performed by packet.dll such as getting the name of

interface or the net mask of the interface etc. Because; each Windows version has

different kind of NDIS version up of the NIC driver, NPF driver and packet.dll should

be configured according to the NDIS. These components work OS dependent.

The last component in WinPcap is Wpcap.dll which is a high level component and is

not OS dependent. The component provides high level functionalities such as setting

the size of user buffer or producing a filter etc. The component can communicate

directly with the protocol driver to execute the capturing process.

A faster capturing process can be measured according to the performance of the device

driver inside the kernel. Once the NIC driver gets the packet it will process the packet

to the upper layer. The device driver should capture the packets before this process. In

UNIX systems a special system call can be created to direct the NIC driver to send a

copy of the packets to the capturing driver but in Windows systems it is not possible

to modify the operating system or NIC driver. The solution for this problem is network

tap. Network Tap is a protocol driver created by WinPcap at the up of NDIS to get one

copy from each packet.Tests are implemented to show the performance of WinPcap

including the comparison with UNIX BPF system in [16]. Tests show that the usage

of the CPU never reaches 100% level with WinPcap. While BPF can only capture half

of the packets with high usage of CPU, WinPcap can capture all packets on the network

traffic. When the evaluating of the dumping machine which saves captured packets to

the disk directly is done it is a bottleneck for both UNIX and Windows systems. Some

packets were dropped because of the high CPU usage or the lack kernel buffer space.

Another observation is the performance of the statistical machine which can monitor

and bring statistical information about packets inside the kernel. Observation was that

making monitoring inside the kernel costs less CPU usage whose reason is the less

switching between user and kernel level [16].

24

Kernel buffer size is also important piece for capturing performance. In Windows

systems increasing the kernel buffer size can decrease the number of packets that are

dropped but in UNIX systems the performance is not changing after changing the

kernel buffer size.

The basic work flow of Winpcap:

Figure 3.8 : WinPcap Work Flow

To list the network adapters, WinPcap has “pcap_lookupdev” function.

To open a connection it has a “pcap_open_live” function. This function uses five

inputs. Network Adapter, Buffer Size, Promiscuous Mode, 0, Error Buffer.

To filter the traffic, there are two functions. “pcap_compile” and “pcap_filter. First

one is to convert a filter string to the program understandable format and second one

is to set the filter.

Pcap_findalldev_ex

Pcap_open_live

Pcap_compile

Pcap_set_filter

Pcap_loop

Pcap_close

25

Figure 3.9 : Netgroup Packet Filter

Capture Application Logging Application Monitoring

Application

User

Buffer

wpcap.dll

packet.dll

Kernel

Buffer

Filter Dump Engine Statistic Engine

Network Tap

NIC Driver

Packets

Kernel

Buffer

Disk

User mode

Kernel mode

26

3.5 Packet Encapsulation

Packets encapsulating is to add a header to packets in each network layer. It starts from

Application layer until the Physical Layer. In order to analysis the packets a network

analyzing tool should examine all headers. Filtering machine inside the kernel can

clarify the kind of packets such as only tcp packets or ip packets will be captured.

According to filter type packets arrives the user level and in user level the application

according to its design can separate the headers from the packets. Packets are delivered

by a stream that includes Ethernet, IP and etc. headers inside it. In the application

showed in appendix-1 designed to capture destination addresses inside the udp and tcp

packets. To separate this result from all stream after first 14 bytes which is Ethernet

header 20 bytes of the stream were taken and the destination address from the IP header

was delivered to the database.

Figure 3.10 : Encapsulation

3.6 Costs and Optimization of WinPcap

Filtering is the one of the main component for network capturing applications.

Therefore, the performance of the filtering can affect the whole capturing process.

There is a relation between the number of clock cycles and the number of filtering

instruction. The more building a complex instruction for filtering the more the CPU

will be used by the application. For example; the instruction for capturing only IP

packets can create 131 clock cycles while the instruction for capturing UDP Port 20

packets can create 585 cycles [4].

LAYER 7

LAYER 4

LAYER 3

LAYER 2 ETHERNET
HEADER

IP HEADER

UDP
HEADER

DNS

TCP
HEADER

HTTP SMTP FTP

ICMP
HEADER

ARP
HEADER

RAPP
HEADER

27

The second cost in design of WinPcap is copy time of network packets. The packets

are copied twice in WinPcap. The first one is from NIC memory to the main memory

which is performed by NdisTransferData() function. This function has two

disadvantages. Firstly, the function can copy the packet from NIC to main memory if

the whole packet exists in the NIC memory. If not, the function will cause a delay.

Second disadvantage is when the function is performed, The NIC will need a bus

master role to transfer the packet. This process also causes more clock cycle number.

The second copy function for copy from kernel buffer to user buffer also can increase

the number of clock cycles. The number of clock cycles can vary according to the

length of the packet and the size of the kernel buffer.

The number of clock cycles varies between 540 and 10500 for first copy function while

the number of clock cycles varies between 259 and 8550 for second copy function [4].

One of the packet filtering costs is the number of clock cycles to obtain the timestamp

of each packet. WinPcap is using KeQueryPerformanceCounter function that is the

only function to obtain a time reference with microsecond level. This function uses

huge amount of clock cycles due to its interaction with system time chip, which costs

1800 clock cycles per packet. 1800 clock cycles per packet is the maximum number

of clock cycle usage in the packet capturing process.

Experiments showed that the optimization of filtering machine is possible with using

a just in time machine to translate a filtering instruction to the 80x86 binary code. 8%

improvement was observed with a complex filtering instruction and after WinPcap

version 3.0, this property was implemented in the kernel [4].

It was observed that the first copy function which was from NIC memory to main

memory was using more CPU than the second copy function.Optimization of this

function is possible with using a C library function to copy the packets piece by piece

to main memory without waiting the completing the packet. This optimization

decreased the number of clock cycles from 540 to 300 for 20 byte packets [4].

28

Optimization of timestamp related to the cost for packet capturing system is possible

with the usage of TimeStamp Counter whose function is rdtsc for Windows operating

system. Using this function decreases the number of clock cycles from 1800 to 270

per packet. This provides a good performance for system but the problem is that only

Intel CPUs have this function inside them. Therefore, WinPcap Team disabled this

optimization as default for their system [4].

29

 EXPERIMENTAL RESULTS AND RISK ANALYSIS

4.1 Experimental Results

In this chapter, the comparison of packet.dll with wpcap.dll and the results of

observations were presented.

As it is presented in the third chapter, packet.dll and wpcap.dll have different

functionalities. Packet.dll is providing interaction with kernel driver, whereas

wpcap.dll is conducting high level functions such as filtering. A capturing system

which is able to capture all network packets can be designed by both using only

packet.dll or using only wpcap.dll.

In a close environment, a virtual network traffic was created gradually. The traffic load

was 100 MB first, then it was 1 GB and 10 GB network load was created lastly.

The main idea of this experiment was to observe the usage of microprocessor and

memory by network packet capturing system and to compare the two winpcap dll files.

The test environment was designed carefully so that there will not be any other network

traffic in the environment. Internet connection was closed and there was no modem

connection which may cause occurring of some network packets.

Two different gauges which were showing the load of network traffic were used in the

experiment. One gauge was showing outgoing traffic load, whereas other was showing

incoming traffic.

Observation of microprocessor and memory usage was done by using Windows Task

Manager. The system properties of host ,which the implementation was done, were

Intel Core i5 CPU (Central Processor Unit), 4.00 GB Memory, 64 Bit Windows

Operating System.

30

Figure 4.1 : Network Packet Capturing by packet.dll

The simulation of network packet capturing by packet.dll can be seen at Figure 4.1.

Under 100 MB network traffic load, the application was using 4.2% of CPU and 0.8

MB memory. When the load was 1 GB, the application was using 6.8% of CPU and

1.1 MB memory. Once the load was 10 GB, the application was using 7.1% of CPU

and 1.5 MB memory.

It was clearly seen from the experiment that the application which had been created

by using only packet.dll was not using too much CPU and memory. We can say that

packet.dll doesn’t cause the fail over of operating system by using too much CPU and

memory.

31

Figure 4.2 : Network Packet Capturing by wpcap.dll

The simulation of network packet capturing by wpcap.dll can be seen at Figure 4.2.

Under 100 MB network traffic load, the application was using 17.4% of CPU and 52.6

MB memory. When the load was 1 GB, the application was using 22.7% of CPU and

74.6 MB memory. Once the load was 10 GB, the application was using 25.8% of CPU

and 94.2 MB memory.

It was clearly seen from the experiment that the application which had been created

by using only wpcap.dll was using more CPU power and memory than packet.dll

application. We can say that users who want to capture all network packets without

filtering should use only packet.dll executable file in order to use less operating system

sources.

32

4.2 Risk Analysis

It is better to analyze the risks of all kind of network tools in order to understand the

gaps of the systems. Gaps are the starter point of future works. Therefore, the points

of network packet capturing system which are vulnerable to attacks are presented in

this session.

The first attack point can be Network Interface Card because; the process is getting

started in NIC. Once a new network packet arrives the NIC, NIC will inform the NIC

Driver. If NIC can’t inform NIC Driver, this new network packet will not be captured

by packet capturing system.

The second attack point can be Network Driver Interspecification which is the

intermedia driver inside the operating system. This driver is providing communication

between NIC and capturing driver.

The third attack point is the network capturing system driver. In network packet

capturing system, driver inside the kernel is conducting critical works.

Command and Controlling of Network Packet Capturing is possible with reaching

device drivers and control them how we want.

Multipartite viruses are the viruses which can infect from boot sector of operating

system to the file system and even device drivers [17]. Multipartite viruses can be used

to control NIC driver or NDIS or Packet Capturing Driver.

33

 CONCLUSIONS AND RECOMMENDATIONS

When the comparison is done it is seen that WinPcap library is the most powerfull

packet capturing system. It has different kind of functionality to work under high speed

network traffic.

As we saw previous sections WinPcap has two dll files inside user level which are

packet.dll and wpcap.dll. packet.dll includes simple functions while wpcap.dll has

high level functions and more functionality. When we compare two dll with a simple

packet capturing application we can see that wpcap.dll is using more CPU than

packet.dll. The main reason for additional CPU usage for wpcap.dll is to use basic

functions such as listing interface names and establishing connection with kernel

driver wpcap.dll needs packet.dll.

Another observation was done to show the CPU usage of libPcap and WinPcap

libraries. As explained before libPcap library can use 100% CPU sometimes and it

costs dropping some network packets but with WinPcap CPU usage doesn’t reach

100% anytime.

In the experiment several different web sites opened while the capturing programs

were open and the usage of CPU was observed. In UNIX environment Wireshark

application was used while Windows environment packetCapture application was

used. As showed at Figure 5.1 and 5.2 in UNIX CPU usage was 100% two times while

in Windows 100% usage was not observed.

5.1 Practical Application of This Study

packetCapture application is a basic tool to capture network packets. It has

functionalities to list network devices, to capture network packets in the chosen driver,

to deliver destination IP addresses and to create a white list showing the IP addresses

that will not be captured by the application. A capturing sample can be found at the

Figure A.1.

34

Once find devices button clicks application shows the list of the interface in the host

with the definition of interfaces. After choosing the interface wanted to be monitored

one thread is executing the capturing the packets. Before saving the packet information

to the database, the thread is checking whether the packet information is in the white

list or not.

Two threads were used for the application. Second thread is delivering the packet

informations from the database and saving the white list information to the other

database while first thread continues the capturing phase.

Figure 5.1 : Packet Capturing with WinPcap

Figure 5.2 : Packet Capturing with LibPcap

35

5.2 Future Works

The basic understanding of network packet capturing systems were presented in this

study. This study can be used as a starter point for several future works.

One of the open research area is to design more efficient network intrusion system.

Network Intrusion Systems are designed to separate the malicious network traffic and

normal network traffic. packetCapture application is creating a SQLite database with

using performance of WinPcap library. Some statistical information is saved in the

database such as country information, application port etc. These statistical

information can be used to create a normal user behavior.

Another open research area is to improve the performance of the network packet

capturing systems for open source operating systems. It is clear that in the future most

of the operating systems will be open source and lightweight operating systems. For

these systems it will be required to build new intrusion detection systems or firewall

systems. Therefore, new lightweight packet capturing systems will be crucial.

The third open research area can be the security of device drivers. As it was seen in

the risk analysis, network packet capturing systems are vulnerable to attacks due to the

multiparitite viruses. The prevention methods can be improved against the multipartite

viruses.

36

37

REFERENCES

[1] Alias, S. B., Manickam, S., & Kadhum, M. M. (2013, December). A Study on

Packet Capture Mechanisms in Real Time Network Traffic.

In Advanced Computer Science Applications and Technologies

(ACSAT), 2013 International Conference on (pp. 456-460). IEEE.

[2] Pande, B., Gupta, D., Sanghi, D., & Jain, S. K. (2005, July). The Network

Monitoring Tool—PickPacket. In Information Technology and

Applications, 2005. ICITA 2005. Third International Conference

on (Vol. 2, pp. 191-196). IEEE.

[3] Shamsi, J., & Brocmeyer, M. (n.d.). Principles of Network Monitoring.

[4] Degioanni, L, Baldi, M., Risso, F., Varenni, G. (2012, May). Profiling and

Optimization of Software Based Network Analysis Applications.

[5]Url-1<http://msdn.microsoft.com/tr-tr/library/Windows/hardware/ff554836>,

date retrieved 17.08.2016.

[6]Url-2<https://docs.microsoft.com/en-us/windows/hardware/drivers/debugger

/user-space-and-system-space>, date retrieved 17.08.2016.

[7] Russinovich, M. E., Solomon, D. A., & Allchin, J. (2005). Microsoft Windows

Internals: Microsoft Windows Server 2003, Windows XP, and

Windows 2000 (Vol. 4). Redmond: Microsoft Press.

[8]Url-3<http://msdn.microsoft.com/tr-tr/library/Windows/hardware/hh439643>,

date retrieved 02.09.2016.

[9]Url-4<https://technet.microsoft.com/en-us/library/cc958797.aspx>, date retrieved

02.09.2016.

[10] Degioanni, L, Baldi, M., Risso, F., Varenni, G. (2012, May). Profiling and

Optimization of Software Based Network Analysis Applications

[11] Xiaoguang, A., & Xiaofan, L. (2016, August). Packet Capture and Protocol

Analysis Based on Winpcap. In Robots & Intelligent System (ICRIS),

2016 International Conference on (pp. 272-275). IEEE.

[12] McCanne, S., & Jacobson, V. (1993, January). The BSD Packet Filter: A New

Architecture for User-level Packet Capture. In USENIX winter (Vol.

93).

[13] Alias, S. B., Manickam, S., & Kadhum, M. M. (2013, December). A Study on

Packet Capture Mechanisms in Real Time Network Traffic.

In Advanced Computer Science Applications and Technologies

(ACSAT), 2013 International Conference on (pp. 456-460). IEEE.

[14] Dashtbozorgi, M., & Azgomi, M. A. (2009, August). A high-performance

software solution for packet capture and transmission. In Computer

Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE

International Conference on (pp. 407-411). IEEE.

38

[15] Cheng, K., & Cui, Y. (2012, May). Design and implementation of network

packets collection tools based on the android platform. In Fuzzy

Systems and Knowledge Discovery (FSKD), 2012 9th International

Conference on (pp. 2166-2169). IEEE.

[16] Risso, F., & Degioanni, L. (2001). Architecture for high performance network

analysis. In Computers and Communications, 2001. Proceedings. Sixth

IEEE Symposium on (pp. 686-693). IEEE.

[17] Habraken, J. W. (2003). Absolute beginner's guide to networking. Que

Publishing.

39

APPENDICES

 APPENDIX A.1 : Sample WinPcap Application

40

APPENDIX A.1

Figure A.1 : packetCapture Application.

41

Name Version

Visual C++ CRT v12.0 (x86 or x64)

Microsoft .Net Framework v4.5 Full

WinPcap v4.1.3

 PreRequirements for Application.

42

43

CURRICULUM VITAE

Name Surname : Yücel AYDIN

Place and Date of Birth : Samsun / TURKEY – 13.05.1985

Address : Esentepe M. Morgül S. No:5/2 Eyüp İstanbul

E-Mail : aydinyuc@itu.edu.tr

B.Sc. : Atatürk University Electrical and Electronic

 Engineering

List of Publications and Patents:

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 Aydın Y., Aslan A., 2016: Prevention Against Application Layer 7 DDOS Attacks.

9th International Cyber Security and Cryptography Conference Poster Publication ,

October 25-26, 2016 Ankara, Turkey.

