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As it is well known, Rice is one of the most important crops as it is the staple food for
more than 3.5 billion people worldwide. The focus area of this study was the estimation
of Leaf Area Index (LAI) of paddy rice crop by making use of satellite images as this
variable can be used as indicator of the growth and productivity of the crop.
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PADDY-RICE LEAF AREA INDEX (LAI) ESTIMATION USING
RADAR AND OPTICAL IMAGERY

SUMMARY

Rice is one of the most important crops as it is the staple food for more than 3.5 billion
people worldwide. As a result, a number of studies have been conducted in order to
improve the production and productivity of rice. One of the focus areas of the studies is
the estimation of rice variables by making use of satellite images as the variables can be
used as indicators of the growth and productivity of the crop. Leaf Area Index (LAI),
a dimensionless index defined as the leaf area per unit ground area, is one of the most
crucial biophysical variables used for monitoring the growth and productivity of crops.
However, undertaking field measurement of LAI over a large area is not feasible and,
thus, the use of satellite data to rapidly and accurately compute LAI values has been
considered as the most convenient way. The objective for this study was to evaluate
the performance of rice LAI estimation using satellite-based radar and optical images
compared with in-situ measurements. In-situ LAI measurements were collected with
CI-110 from six paddy rice fields located in Ipsala region (Yenikarpus farm), which
is one of the major rice producing areas in Turkey. Paddy rice crop has three growth
stages: vegetative stage (germination to panicle initiation), reproductive stage (panicle
initiation to flowering) and ripening stage (flowering to mature grain). The CI-110
based field measurement was carried out during the reproductive stage of the paddy
rice crop.

The satellite images used as data sources for estimating the LAI of the rice crop in
the study area were captured by two Synthetic Aperture Radar (SAR) sensors named
Sentinel-1 and TerraSAR-X and an optical sensor known as Landsat-8 during the
reproductive stage of paddy rice crop. Both Sentinel-1 and TerraSAR-X operate
in all-weather conditions. However, Sentinel-1 operates in C-band with 5.405 GHz
frequency, 0-100 MHz bandwidth and VV and VH polarization, whereas TerraSAR-X
operates in X-band with center frequency of 9.65 GHz, bandwidth of 300 MHz and
VV and VH polarization.

Once the SAR images were collected, all images were pre-processed to account for
geometric distortions due to acquisition geometry of the imagery, and backscattering
coefficients were calculated. The backscattering coefficient values were then used
as inputs into the Water Cloud Model to determine LAI. The reliability of this
technique of determining LAI was investigated by comparing the estimated LAI
results with the values of the in-situ LAI measurements by taking into consideration
the correlation coefficients (R) as performance evaluation criteria. With regards to
the optical sensors (Landsat-8 images), the Normalized Difference Vegetation Index
(NDVI), Modified Normalized Difference Water Index (NDWI), Green Normalized
Difference Vegetation Index (GNDVI), Gitelson and Merzlyak Index (GMI), Simple
Ratio Index (SR) and Zygielbaum Water Stress Index (ZWSI) were calculated for
each pixel of the 6 paddy-rice fields. Here again, correlation coefficient was used
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to investigate the presence of relationships between the in-situ LAI values and the
above mentioned indices generated from the Landsat-8 image. The results of the study
showed that, in general, the indices generated from the Landsat-8 image were found to
be highly correlated to the in-situ LLAI than the values of the backscattering coefficients
determined from the Sentinel-1 and TerraSAR-X images with various polarizations. In
particular, the SR index was found to be the best index (R = 0.91) related to the in-situ
LAI values followed by the NDVI, NDWI and GNDVI indices. In conclusion, based
on the results of this study, it could be stated that Landsat-8 images could be used as a
reliable data source to acquire reliable LAI for paddy rice crop in the study area much
better than SAR images. Here again, it should be noted that only the reproductive
stage (not time series based analyses) of paddy rice crop was considered to meet the
objective of this study.
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RADAR VE OPTIK GORUNTULER KULLANARAK CELTIK
BITKiSI YAPRAK ALAN INDEKS KESTIRIMI

OZET

Pirin¢, diinya capinda 3,5 milyardan fazla insanin temel gida maddesi olan en
Oonemli iriinlerden biri olmasinin yanisira diinyada en c¢ok tiiketilen ve ekonomik
olarak da en 6nemli besin iiriiniidiir. Bu konuda yapilan bir dizi ¢alismanin sonucu,
gelecekte artan niifusu beslemek icin pirin¢ liretiminin artacagin1 gostermektedir.
Konunun bu derece énemine ragmen son gozlemler bazi alanlarda sulamadan dolay1
toprak bozulmasinin ve ¢evre kirliliginin meydana geldigini ve bundan dolay1 pirin¢
verimliliginin azaldigini hatta durdugun gostermistir.

Bu zorluklar1 gidermek ve gida giivenliini saglamak icin piring iiretiminde ekin
degiskenlerini belirlemek, analiz etmek ve elde edilen pirinci izlemek biiyiilk dnem
tasimaktadir. Bu dogrultuda, piring iiretimini ve verimliligini artirmak amaci ile
bir takim calismalar yapilmigtir. Bu ¢alismalarin odak noktasi, piring degiskenlerini
tahmin etmek i¢in uydu goriintiilerini iiriiniin bilytime ve liretkenlik gostergesi olarak
kullanmaktir.

Yaprak alan endeksi (LAI), birim zemin alani bagina diisen yaprak alani olarak
tamimlanan boyutsuz bir indekstir ve bitkilerin biiyiimesini ve verimlilifini izlemek
icin kullanilan en 6nemli biyofiziksel degiskenlerden biridir. Saha calismalar ile
LAI'min belirlenmesi biiyiik tarim alani i¢in zaman alici ve yorucudur. Uzaktan
algilama ile elde edilen cografik verilerin kullanilmasi gibi dolayli yontemler ise
giivenilirlik ve kullanim kolayliginin yaninda giincel ve tutarli bir uzamsal ve zamansal
kapsama ve ¢oziiniirliige sunma yetenegine sahip olduklari i¢in yayginlik kazanmugtir.
Ayrica LAI'nin genis bir alan iizerinde Ol¢timiiniin yapilmasi miimkiin degildir. Bu
nedenle LAI degerlerini hesaplamak i¢in hizli ve dogru bir sekilde elde edilen uydu
verilerini kullanmak en uygun yontem olarak diisiiniilmiistiir. Bu ¢alismanin amaci,
piring iiretiminde LAI tahmininde ve degerlendirmesinde kullanilan uydu tabanl radar
ve optik goriintiilerinin performansini yerinde (saha) dl¢ciim degerleri ile karsilagtirmali
olarak gostermektir.

Calisma sahasi olarak Tiirkiye’nin onde gelen piring iiretim alanlarindan biri olan
Ipsala bolgesi secilmistir. Bu bolge Meri¢ nehri boyunca 16 x 6 kilometre karelik bir
alan1 kaplamaktadir ve tarimsal arazi sulamasi bu nehir ve yan kollar1 ile yapilmaktadir.

Celtik ekiminin biiyiimesi li¢ asamadan olugsmaktadir: Bitkisel, tireme ve olgunlasma
asamasi. Yerinde (saha) LAI ol¢iimleri, CI-110 6l¢iim cihazi ile iiretimin iireme
asamasinda (28 Agustos 2015 tarihinde) ve bu bolgede bulunan 6 celtik tarlasinda
yapilmistir. CI-110 6l¢iim cihazi kullanilarak su ile kapl yiizeyden 30 santimetre
yiikseklikte dijital yarikiiresel goriintiller alinmistir.  Cihaz, 7 x 7 metrekare
civarindaki herbir alanin kenarlarindan yaklasik 5 metre iceriden 10 dakikalik herbir
periyot i¢cin 5 saniyelik veri toplamaya ayarlanmistir. Bu cihaz aym1 zamanda caligma

2 (13

bolgesindeki pirin¢ mahsuliiniin “gap fraction threshold (GFT)”, “photosynthetically
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active radiation (PAR)”, “transmission coefficient (TC)” ve “sunflecks ve mean leaf
area index (MLA)” parametrelerini ayni anda 6lgmek icin kullanilmigtir.

CI-110, Global Navigation Satellite System (GNSS) ve aydinlanma sensoriine gelen
verileri analiz ederek, 6l¢iim yapilan noktadaki giines konumunu belirlemekte ve yarim
kiire lens ile fotograf alimi gerceklestirmektedir. Daha sonra elde edilen bu fotograflar,
kontrollii olarak simiflara (aciklik, yesil alan vb.) ayrilmaktadir. Siniflandirmanin
ardindan otsu esik deger metodu ile ikilik sisteme doniistiiriilerek elde edilen binary
goriintli lizerinde bitki sinifina giren piksellerin alani hesaplanmaktadir. Yapilan
bu basit goriintii igsleme algoritmalar ile, referans veri olarak alinan yarim kiire
forograflamadan yaprak alan indeksi elde edilmistir.

Calisma alanindaki piring mahsuliiniin LAI’sini elde etmek icin uzaktan algilama
goriintiileri kullanilmistir.  Uzaktan algilama sisteminde aktif (RADAR) ve pasif
(optik) olmak tizere iki farkl: tipte sensorler kullanilmagtir.

Aktif sensorler (radar) kendi elektromagnetik dalgasimi gonderen ve bu dalganin
cisme carparak geri donen radyasyonunu tespit eden sensorlerdir. Nesnelerin iki
veya ii¢ boyutlu goriintiilerini olusturmak icin en cok tercih edilen goriintiileme
radar1 oldugundan ve uydu platformuna yerlestirilen biiyiik bir radar anteninin ileri
hareketinin avantajlarindan yararlanarak geleneksel 1sin tarama radarlarindan daha
ince uzaysal ¢oziiniirliikte goriintiiler elde etme 6zelligine sahip oldugu i¢in “synthetic
aperture radar (SAR)” goriintiileri bu tezde kullanilmigtir.

Calisma alanindaki piring mahsuliiniin LAI’sini elde etmek icin kullanilan SAR
sensorleri olan Sentinel-1 (VV ve VH polarizasyona sahip olan C-bandinda) ve
TerraSAR-X (VV ile HH polarizasyon olan X bandinda) tiim hava sartlarinda goriintii
saglama 0zelligi ile tarim ¢alismalari i¢in olduk¢a uygundur.

Sentinel-1 goriintiisii 27 Agustos 2015’te (iireme asamasinda) «<ESA» web sayfasindan
ve TerraSAR-X goriintiisii 4 Eyliil 2015’te «Airbus Defense and Space» web
sayfasindan indirilmistir. Calisma alami icin SAR goriintiileri elde edildikten sonra
bu goriintiiler, her pikselin geri sagilma katsayilarimi (backscattering coefficients)
belirlemek i¢in “Snap” yaziliminda girdi olarak kullanilmistir. Bu geri sagilma katsay1
degerleri daha sonra LAI’yi belirlemek i¢in su bulutu modelinde (Water Cloud Model)
girdi olarak kullanmilmugstir. Belirli bir dalga boyu i¢in bir hedefin geri sagilmasi
hedefin fiziksel boyutu, elektriksel ozellikleri ve nem icerigi, daha 1slak nesnelerin
parlak goriinmesi ve kuru hedeflerin karanlik goriinmesi gibi cesitli parametrelere
ve kosullara baghdir. Su bulutu modelinde bitki Ortiisiiniin rastgele dagilmig su
damlaciklarini igerdigi varsayilir ve girdi olarak geri sacilma katsayisi (dielektrik
sabiti, dalga boyu, polarizasyon ve etki acisina bagl olan bir katsayi) kullanilarak
LAI degeri belirlenir. LAI’nin belirlenmesinde bu teknigin giivenilirligi, modellenmis
LAI sonuglari ile yerinde (arazi) LAI ol¢iimlerinin degerleri ile karsilastirilarak ve
korelasyon katsayis1 (correlation coefficient, r) dikkate alinarak arastirilmistir.

Daha once de belirtildigi gibi bu tezde X ve C bandi SAR isaretlerini LAI
parametresiyle iligkilendirmek icin Water Cloud Model (WCM) kullanilmigtir. Bu
amacla WCM’de ihtiya¢ duyulan vejetasyon parametreleri olan A, B ve C, D toprak
parametreleri optimize edilmelidir. Parametrelerin optimizasyonu ve vejetasyon
parametrelerinin tahmininde en uygun olan GA (genetic algorithm) bu calismada bir
optimizasyon teknigi olarak kullanilmigtir. GA zor problemlerin hizli, giivenilir ve
dogru bir sekilde optimizasyonu i¢in uygun bir ¢éziimdiir.
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Pasif (optik) sensorler yansitilan giines radyasyonunu ve goriiniir yeryiizeyini yakin
kizilotesi (NIR) ve kisa dalga kizil6tesi bantlarla; ylizey tarafindan yayilan radyasyonu
ise termal kizilotesi bant ile algilamaktadir.

En yeni multispektral goriintiileme sistemlerinden biri olan Landsat-8 goriintiileri
bu tezde kullanilmigtir. Yaklagik 16 giin tekrarlama siiresi ve 30 metre uzaysal
coziiniirliikte (goriiniir, NIR, SWIR), 100 metreden (termal) ve 15 metreden
(panokromatik) olmak iizere iki goriintii algilayicidan olugan bu sensoriin tez ¢alisma
alanini1 iceren, 11 banda sahiptir. Performans degerlendirme kriterleri olarak bu
bantlarin yardimiyla ve ENVI programini kullanarak normalize edilmis farkli bitki
ortiisii endeksi (NDVI), modifiye normalize fark su indeksi (NDWI), celtik-celtik
parsellerinin her pikseli icin normal normalizasyon fark vejetasyon indeksi (GNDVI),
Gitelson ve Merzlyak indeksi (GMI), basit oran indeksi (SR) ve Zygielbaum su stres
indeksi (ZWSI) hesaplanmistir.

Celtik piring mahsuliiniin LAI degerleri ile ZWSI, SR, GMI ve GNDVI endeksleri
arasinda bir iliski kurmak i¢in bu endekslerin degerleri 28 Agustos 2015 tarihinde
calisma alaninin Landsat-8 uydusu ile ¢ekilmis olan goriintiisii kullanilmigtir. Daha
sonra bu endekslerin degerleri ile yer Ol¢ciimlii LAI degerleri arasindaki iliskiyi
aragtirmak icin korelasyon analizi yapilmistir. Ozellikle SR indeksi, dl¢iilmiis ilgili
LAI degerleriyle en iligkili endeks ( R = 0.91) olarak bulunmustur; bunu sirasiyla
NDVI, NDWI ve GNDVI endeksleri izlemektedir.

Sonu¢ olarak Landsat-8 goriintiisiinden elde edilen indeks degerlerinin Sentinel-1
ve TerraSAR-X SAR goriintiilerinin ¢esitli polarizasyonlarindan elde edilen geri
sacilma katsay1 degerleriyle elde edilen indeks degerlerine kiyasla tireme doneminde
elde edilen yer Olciim LAI degerleri ile daha yiiksek oranda korelasyona sahip
oldugu goriilmiistiir. Ayrica bu c¢alisma alaninin celtik iiriiniiniin LAI degerinin
tahmin edilmesinde optik algilayicinin (Landsat-8) goriintiilerinin SAR (Sentinel-1 ve
TerraSAR-X) goriintiilerinden daha hizli ve yiiksek dogruluklu bir veri kaynagi oldugu
sOylenebilir. Son olarak belirtmek gerekir ki, ¢eltik piring mahsuliiniin sadece lireme
asamasinin (zaman serilerine dayali olmayan analizler) bu calismanin amacina uygun
oldugu diistiniilmektedir.

Kisaca celtik bitkisinin iireme doneminde gerceklestirilen analizlerde, Landsat-8 den
elde edilen SR endeksi, TerraSAR-X ve Sentinel-1 den elde edilen SAR geri sag¢ilim
degerlerine gore saha calismalarindan elde edilen LAI oOl¢timleri ile daha uyumlu
oldugu goriilmiistiir.
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1. INTRODUCTION

Rice is the most widely consumed and economically important food crop in the world
[1]. A number of studies show that the production of rice will increase in the future
to feed the world’s increasing population. Despite its importance, however, recent
observations indicate that the productivity of rice has become stagnant or even declined
because of land degradation and environmental pollution in some irrigated areas [2].
In order to address these challenges and optimize food security, rice monitoring, which
is achieved through the determination and analysis of rice crop variables, is very
important [3]. Paddy rice crop has three growth stages: vegetative stage (germination
to panicle initiation), reproductive stage (panicle initiation to flowering) and ripening

stage (flowering to mature grain).

Leaf Area Index (LAI), which is defined as the total one-sided leaf area per unit ground
area is one of the most important biophysical crop parameters that characterize the
canopy of the crop [4]. The calculation of LAI using direct method is time-consuming
and destructive. As opposed to this, indirect methods such as using remotely sensed
geospatial data of rice fields with updated spatial and temporal resolution has gained
popularity because of their reliability and ease of operation in addition to their ability

to provide timely and consistent spatial and temporal coverage [5].

This research project investigated the potentials of Synthetic Aperture Radar (SAR)
images particularly obtained from Sentinel-1 and TerraSAR-X and optical images
obtained from Landsat-8 as reliable and quick data sources for generating the LAI

of a paddy rice crop.
The objectives of this study were:

e To investigate the relationship between the in-situ LAl and measured field parameters
such as Photosynthetically Active Radiation (PAR), Gap Fraction Threshold (GFT),
Sunflecks, Transmission Coefficient (TC) and Mean Leaf Angle (MLA).



e To investigate the relationship between the in-situ LAI and radar observations
including backscattering coefficients in different frequency, polarization and

resolution,

e To investigate the correlation analysis between vegetation indices such as, the
Normalized Difference Vegetation Index (NDVI), Simple Ratio Index (SR), Green
Normalized Difference Vegetation Index (GNDVI), Modified Normalized Difference
Water Index (NDWI), Gitelson and Merzlyak Index (GMI) and Zygielbaum Water

Stress Index (ZWSI) from Landsat-8 satellite images and in-situ LAl measurements.

e To investigate the reliability within different sensors in terms of LAI estimation,

1.1 Literature Review

LALI, defined as the ratio of the total area of all leaves on a plant to ground surface area,
is one of the most important crop parameters used for monitoring crop biophysical
parameters, yield estimation and gas exchange processes in plants [6-9]. Due to this
importance, a significant number of studies have been undertaken and a considerable
amount of knowledge has been accumulated in the literature as to how to obtain
rapid, reliable and accurate estimation of LAI. The methods can be divided into two

categories: direct and indirect methods.

The direct methods involve actual field measurements with destructive or
non-destructive techniques. They involve the collection and measurement of leaf area,
using either a leaf area meter or a specific relationship of dimension to area via a shape
coefficient [10]. According to [11], planimetric and gravimetric methods are identified
as the two direct methods of leaf area determination. The planimetric method is based
on the correlation between the individual leaf area and the number of area units covered
by that leaf in a horizontal plane whereas the gravimetric method is based on the
correlation between dry weight of leaves and leaf area using predetermined leaf mass
per area. The direct method is, therefore, complex, time-consuming, laborious and
expensive as it involves intensive sampling and require the use of special measuring
instruments. Due to the difficulties and the limitations of the direct methods, they are

mostly used as reference data for indirect methods which are easier and faster to apply.



The indirect methods are cost effective and have the advantage of obtaining a
large-scale information in a very short period of time and, thus, the variable being
studied is better assessed. Among the indirect methods of LAI estimation, the
hemispherical canopy photography (also known as fisheye lens photography), is
being applied successfully in commercial plantations. The hemispherical canopy
photography is based on estimated position, size, density and distribution of canopy
gaps, which characterize the canopy geometry, through which the solar radiation
intercepted is measured [12]. From the research point of view, the current trend of
photography based indirect measurements is going towards smartphone applications

[12].

Other indirect measurements involve the use of space-based technologies. These
technologies obviate the need for land-based surveys and provide a possible effective
method to address the problems associated with direct methods of LAI determination.
Hence, the use of spaceborne remote sensing images for analysis of agricultural fields
has rapidly increased due to its inherent nature in supplying easy, fast and accurate
solutions [13, 14]. Satellite-based indirect methods can roughly be grouped under
two categories: radar and optical observations. LAI monitoring with optical sensors
started with MODIS [15]. After having successful results, the studies have continued
with high-resolution satellite data such as Landsat, Spot, and Sentinel-2. From a
methodological point of view, LAI can be estimated from spectral (vegetation) indices
computed by using these satellite data instead of dealing with / fo n ill-posed advanced
radiative transfer model [12, 16]. This can be achieved as the interaction between
the wave and the target causes different reflectance due to the pigments and plant
components, which allows to the creation of a large number of vegetation indices with
different sensibilities [17]. Although these indices are not well suited for direct LAI
estimation, their ease of computation and tackling the problem of leaf inclination angle

makes them popular for space-based crop monitoring.

Spaceborne radar systems are also of interest for agricultural studies. They are
particularly important for irrigated farming with their all weather, day and night
imaging capability [18]. The latest generation of radar imaging satellites features
high temporal and spatial resolution as well as enhanced capabilities of polarimetric

acquisition. Radar backscatter measurements depend on physical and geometrical



properties of the target. Previous studies showed that there is a strong relationship
between radar backscattering and biophysical properties of crops such as LAI,
biomass, and crop height [19]. Radar backscattering based LAI measurements
can be divided into two categories: modeling the radiative transfer of SAR beam
(inverse problems) and statistical analysis. Modeling radiative transfer involves inverse
problem of [ fo n relationship between radar backscattering and morphological and
physical properties of the crop, requiring powerful nonlinear inversion methods [20].
Instead, statistical approaches relate the radar backscattering measurements with

in-situ based LAI measurements and generalize the results.

There are two approaches in the literature that are used to relate the SAR signatures
to the LAI parameter: empirical and semi empirical approaches. An example of
the later approach is the use of a model termed as Water Cloud Model (WCM).
WCM, a model where the canopy cloud is assumed to consists of identical, randomly
distributed water droplets within the canopy, is used to determine LAI by using
the backscatter coefficient (a coefficient that depends on the dielectric constant,

wavelength, polarization, and incidence angle) as input.

In this study, the LAI estimation results determined by using Landsat, TerraSAR-X and
Sentinel-1 images with the aim of analyzing the performance of free satellite imagery
in terms of crop monitoring are presented. Paddy rice fields, which had reached late
reproductive stage are used for showing the feasibility and the operational capability

of the sensors with simplified methods [21,22].

1.2 Structure of the thesis

This thesis is structured as follows. Chapter 2 gives a general introduction to
the fundamental theories about the SAR and optical remote sensing. In Chapter
3, material and methods used to meet the objectives of the thesis are presented.
More specifically, the data collection and analysis for the CI-110 based in-situ
LAI measurements, the Landsat-8 based LLAI determination, and the Sentinel-1
and TerraSAR-X based Radar LAI computations are discussed. Moreover, a brief
description of Genetic Algorithm (GA) is given. In Chapter 4, the results of the

methods used to determine LAI and their comparisons are presented and discussed.



The final chapter, Chapter 5, is given to contain a brief summary of the study,

concluding remarks and recommendations for future work.






2. THEORY

Remote sensing is the process of gathering information about an object without any
direct contact with the object. Despite the presence of various types of systems, remote
sensing based data acquired by space-borne platforms are of paramount importance
for systems aiming to provide large-scale mapping [23]. Remote sensing uses a part
or several parts of the Electromagnetic (EM) spectrum, which is a continuum of all
EM waves energy reflected or emitted by the earth’s surface arranged according to
frequency and wavelength. There are two primary types of remote sensing systems:
passive (optical) and active. Active sensors send their own EM wave and then detect
scattering returning from an object. As opposed to these, passive sensors, also known
as optical sensors, detect emitted and/or reflected EM radiation from an object, but the

source of the EM wave is a natural source such as the Sun.

Active sensors are known to be operated day and night, less weather dependent and
have controlled illuminating signal that is not affected by the atmosphere. Because of
these advantages, active sensors have been applied in various field of studies such as
oceanography, hydrology, geology, glaciology, agriculture, and forestry. Thus, they
are much more advantageous than passive sensors and have the potential to provide

accurate information [24].

Radar, an abbreviation taken from Radio Detection and Ranging, is one of the most
popular active imaging sensors. In particular, SAR is the most widely used radar type
of active imaging sensor. The following sections are given to describe the fundamentals

of SAR and optical imaging sensors.

2.1 SAR fundamentals

The most versatile radar instrument that is used to create either two or three
dimensional images of objects is the SAR. SAR takes advantages of the forward
motion of a large radar antenna placed on the platform of the satellite to provide images

with finer spatial resolution than is possible with conventional beam-scanning radars.
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The SAR satellites function at selected frequencies. However, the predominantly used
spaceborne wavelengths are the L-band, C-band, and X-band. Some of the sensors that
use these bands are RadarSAT-2 (C-band), Sentinel-1 (C-band), ALOS-2 (L-band),
Cosmo-Skymed (X-band) and TerraSAR-X (X-band) [25]. In this study, Sentinel-1

and TerraSAR-X images are used.

Backscatter of a target at a particular wavelength depends on a variety of conditions
such as the physical size of the target, the target’s electrical properties and the moisture
content, the wavelength and polarization of the Radar pulses and observation angles

also affect backscatter. Figure 2.1 depicts the backscatter from various targets.

AN

Rough
Surface

Mountains Forest Flat Surface  Crop land City

Figure 2.1 : Backscatter from various surfaces types

The wavelength and polarization of the Radar pulses and observation angles also
affect backscatter. The relationship between the image intensity and the backscattering

coefficient (¢?) is given by:
A2
0 .
o = —sin(o, 2.1
e sin(Qy) (2.1)
,where ¢V is the radar backscattering coefficient of distributed target to be measured,

A 1s the digital number of the image, o is incidence angle at target position, K is

absolute calibration factor.

Thus, the backscattering coefficient can be used to determine the LAI of vegetation
with the help of empirical or semi-empirical models. WCM is a semi-empirical
model that is developed to find a linear relationship between LAI and backscattering
coefficients determined from SAR images of polarizations. It should be noted here

that, the differences in the characteristics of the Sentinel-1 and TerraSAR-X images



are expected to result in differences in the values of backscattering coefficients. This

in turn results in different estimates of LAI values.

As a semi-empirical model, WCM defines the backscatter coefficient or sigma nought
(GO) as a linear combination of backscatter coefficients from vegetation (c?eg) and
from soil (Gs%il). WCM was first developed by [22] and was then applied to the
assessment of LAI by [26]. In WCM, it is assumed that the canopy cloud consists
of identical water droplets randomly distributed within the canopy and the backscatter

coefficient, which depends on the dielectric constant, wavelength, polarization, and

incidence angle 6;, is written as [12,21,27]:

Oy = Oe + T2y p,q=H,V (2.2)
Opre = AVy cos 6;(1 — 7°) (2.3)
ol =C+DM, 24)
72 = exp (—2BV; sec 6;) (2.5)

where 72 yields the two-way vegetation attenuation, M, is the volumetric soil moisture,
V1,V, are the descriptors for canopy and erg and Gsooil are the backscatter coefficient

for vegetation and soil of respectively.

In the WCM, the vegetation parameters A,B and the soil parameters C,D are
empirically obtained. Due to the flooded condition of the fields during the rice growing
season, the simplification of the backscattering model is proceeded by replacing Gsooil
by constant GgG and by assuming V| =V, = V. As implemented by [26] and [28],
the backscattering coefficient for the paddy rice can be expressed (in dB) as in the

following.

6” = 10log {AV cos 6; (1 —exp [—2BV cos 6;]) + exp [—2BV cos 6] GgG} (2.6)

Using LAI as a canopy descriptor (V1 = V2 = V = LAI) in WCM yields the
optimization problem of finding A, B, and GgG . In this work, Genetic Algorithm
(GA) optimization approach was used to estimate the vegetation parameters as it is

best suited for optimization of parameters [29].



2.2 Optical Remote Sensing Fundamentals

Passive sensors, detect solar radiation reflected by the earth’s surface in the visible, near
infrared (NIR) and short-wave infrared bands and the radiation emitted by the surface
in the thermal infrared band, recorded as brightness temperature by the sensor to form
images of the earth’s surface [30]. By taking into consideration the number of spectral
bands used in the imaging process, optical (passive) remote sensing techniques are
classified as Panchromatic, Multispectral, Superspectral and Hyperspectral imaging
systems [31]. The multispectral imaging system is equipped with a multichannel
detector with a few spectral bands, where each channel is sensitive to radiation within
a narrow band of wavelength resulting in a multilayer image that contains both the
brightness and spectral information of the observed objects. As a result, images

captured with multispectral imaging systems are used in a number of applications [32].

LANDSAT MSS, LANDSAT TM, SOPT HRV-XS and IKNOS MS are a
few examples of multispectral space-borne imaging systems. One of the
most recent multispectral imaging system is Landsat-8 with 16 days of revisit
time and at a spatial resolution of 30 meters (visible, NIR, SWIR), 100
meters (thermal) and 15 meters (panchromatic) https://landsat.usgs.gov/
what—-are-band-designations—-landsat-satellites. Detail character-

istics of the spectral bands of Landsat-8 imaging system are presented in Table 2.1.

Table 2.1 : Landsat-8 Bands

Wavelength Resolution
Bands (micrometers) (meters)

Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - Blue 0.45-0.51 30
Band 3 - Green 0.53-0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30
Band 6 - SWIR 1 1.57-1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50-0.68 15
Band 9 - Cirrus 1.36-1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60-11.19 100 x (30)
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 x (30)

The mathematical combinations of surface reflectance at two or more of the

wavelengths (depicted in Table 2.1) result in Spectral indices. Thus, based on the
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considered reflection and absorption characteristics at different wavelengths, various
indices could be developed so that targets can be discriminated in the captured Landsat
images according to their spectral reflectance signatures. In the literature, spectral
indices such as Vegetation, Burned areas, Man-made (built-up) features, Water, and
Geologic features are available. Among these, however, spectral vegetation indices
are the most popular ones. This is because these indices are simple mathematical
expressions that are widely used to determine values of vegetation parameters such as
plant biomass and structure (leaf size, stem density, LAI, etc.). In addition vegetation
indices can be used for crop monitoring and measuring live and green vegetation

amount from remotely sensed images in a short period of time with less cost.

Spectral vegetation indices are mathematical combinations of different spectral bands
mostly in the visible and near-infrared regions of the EM spectrum [33]. These
indices reduce the multiple-waveband data at every pixel of an image into a single
numerical value (index) [34]. The values of these indices can be taken as measures
of vegetation activity and as means of highlighting changes in vegetation condition.
As a result, many studies have been carried out establish relationships between LAI
and spectral vegetation indices determined from images captured with optical remote
sensing systems [35]. The most widely used spectral vegetation indices for this purpose
are: NDVI, SR, GNDVI, NDWI, GMI and ZWSI [20]. The NDVI is expresses as [36]:

PNIR — PRed
PNIR + PRed

NDVI = 2.7)

,where pyrr and pg.q refer to the NIR and red reflectance in each band, respectively.
This index is the most widely used standardized indicator of the relative biomass of
plant as can be used to monitor drought, agricultural production, predict hazardous fire
zones and map desertification [37]. Its values range between —1 to 1, where values
close to unity depict highly vegetated targets, while values close to zero represent

non-vegetated targets.

[38] defined SR as ratio of the values of the NIR reflectance to the red reflectance as
depicted in the following equation:

_ PNIR
PRed

SR (2.8)

Non-vegetated targets such as bare soil have SR values of unity or close to unity, and

this is achieved when the values of the NIR and the red reflectance are equal or almost
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the same values. SR is not normalized and its values increase as the amount of green

vegetation in a pixel increases.

GNDVl is defined as [39]:

GNDVI = PNIR — PGreen (2.9)
PNIR + PGreen

,where stands for the digital number of the Green channel of a pixel. GNDVI and
NDVI are similar except the fact that GNDVI is based on the green spectrum instead
of the red spectrum. However, GNDVI is known to be more sensitive to chlorophyll

concentration than NDVIL.
The NDWTI is expressed as [6]:

PNIR — PSWIRL1

NDWI = (2.10)
PNIR + PSWIR1
[40] defined the GMI index as:

GMI — PswiRr12 2.11)

PGreen

ZWSI is defined by [41] as:

ZwSI — PSWIRII (2.12)

PGreen
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3. MATERIALS AND METHODS

This section provides the dataset behind the LAI estimation study in detail along with

coincide information about their processing methodology.

3.1 Description of the study area

The study area, Ipsala, is located in north western part of Turkey at (N 37°7'53"” and
E 6°19'32"). 1t is a rice-agricultural field with an area of 16 x 6 km and found
along the Maritza River, which forms, with its tributaries, the drainage system for the
irrigation of the paddy rice fields. Ipsala site is one of the largest rice-producing areas
in Turkey. The most dominant rice species in this area is Oryza sativa L.; specifically
the two long-grain types: Baldo and Rocca are common in the area. In this region,
rice crops are planted by broadcasting. The planting techniques used by the farmers
vary from the use of airplane to manual labor, but in all of the techniques, seeds spread
randomly. This agronomic practice characterizes the heterogeneity within and among
the fields. Accordingly, the sowing date can vary from the end of April to late May
and the harvest takes place in the late September to mid October. The rice-agricultural
fields, shown in Figure 3.1, are cultivated annually. Since 2013, the Directorate of
Trakya Agricultural Research Institute has collected ground measurements in the area

to develop an operational satellite based monitoring scheme [26, 28,42-45].

3.1.1 In-situ LAI measurements: CI-110

Ground measurements of LAI for paddy-rice were performed with the CI-110 Plant
Canopy Imager. This device was also used to simultaneously measure the Gap
Fraction Threshold (GFT) , Photosynthetically Active Radiation (PAR), Transmission
Coefficient (TC), Sunflecks, and MLA parameters of the rice crop in the study area.
The measurements of the in-situ LAI and the above listed other crop biophysical
parameters were collected from 6 paddy rice plots (Figure 3.1) on the August 28, 2015

during the late reproductive stage of paddy rice. Digital hemispherical images using
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Figure 3.1 : Location of the study area (top left), Lansat-8 image acquired on August
28, 2015 over the study area (top right, red color indicating the locations
of the six test fields analyzed in this study) and hemispherical
photographs depicting the nature of paddy fields were taken with a
canopy imager (CI-110) (bottom).

CI-110 were acquired at 30 centimeters from the surface covered by water. In each
field, the CI-110 was programmed to collect data every 5s in 10 minutes at the four
corners of the six roughly 7 x 7 meter fields, approximately 5 meter from the edge
of the fields. The images depicted in Figure 3.1 show hemispherical images of the
six paddy rice plots acquired using CI-110 (That is directly captured by CI-110 plant
canopy imager). These images were processed using the CI-110 software to obtain

LAI and PAR.

CI-110 analyzes inputs obtained from Global Navigation Satellite System (GNSS) and
optic sensors. CI-110 uses the above mentioned inputs to determine the location of
the sun in relation to the location target and it captures images with its hemispherical
lens. Then, the captured image is manipulated with a software to classify green
area, openness and others in a controlled manner. After achieving the controlled
classification, the image is converted into a binary system using Otsu threshold value
method and calculates the areas of the pixels that fall within crop class. These steps

are carried out to determine the Leaf Area Index (Figure 3.2).
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Figure 3.2 : Classification of LAI

3.2 Optical LAI Measurements: Landsat-8

In this study, for optical satellite imagery based LAI measurements, Landsat-8 image is
used due to its relatively wide spectral range and the spatial resolution. Additionally,
Landsat-8 images can be obtained freely from the United States Geological Survey
(USGS: http://landsat.usgs.gov/) data archive system and, thus, they
can be used for long term vegetation monitoring and parameter determination. In
this particular study, Landsat-8 OLI data acquired on 28 August 2015 with 30
m pixel resolution were downloaded from the website of the USGS http://
landsat.usgs.gov/. The Landsat-8 with 181 path and 032 row for Scene
"LC81810322015240LGNOO" covers the entire rice field. Surface reflectance of the
scene for each channel (blue (B), green (G), red (R), NIR, and the two short wave
infrared (SWIR1, SWIR2) were calculated by using FLAASH embedded in the ENVI
software and were used to determine spectral vegetation indices. These indices are:
NDVI, NDWI, GNDVI, GMI, SR and ZWSI [20], and they were determined for each
field of the six paddy rice plots using the Egs. (2.7)-(2.14).

3.3 Radar LAI Measurements: Sentinel-1, TerraSAR-X

Sentinel-1 is a long-term mission of a polar orbiting satellite launched to provide
continuous all-weather day/night imagery at C-band for observation, mapping and
monitoring purposes [46]. Sentinel-1 is the first satellite built with interferometric wide

swath (IWS) mode exploiting the terrain observation with progressive scan (TOPS)

15



technique and has been designed to achieve medium-to-high-resolution imaging
capabilities [47] driven by the need for continuity of data provision with improved
revisit, coverage, timeliness and reliability of service [48]. The Wave Mode of
Sentinel-1 has selectable single polarization (VV or HH) and for all other modes,

Sentinel-1 has selectable dual polarization (VV+VH or HH+HV).

For this study, the Sentinel-1 image acquired on 27 August, 2015 was downloaded
from the website of ESA https://scihub.copernicus.eu/dhus/. The
Sentinel-1 image was processed using the Sentinel-1 Toolbox. After performing
radiometric calibration, terrain correction (With SRTM) and speckle filtering with a
7 x 7 window, the intensity of the VV and VH polarized images were transformed to

backscattering coefficients 6” using Eq. 2.1 with the help of SNAP software.

TerraSAR-X is a German national SAR-satellite system that features an advanced
high-resolution X-Band SAR based on the active phased array technology. This
technology allows the operation in Spotlight, Stripmap and Scan SAR Mode with
various polarizations [49]. The radar of TerraSAR-X has single and dual polarization
options. It also has an additional quad polarization option for Mission specific captures.
TerraSAR-X captures in 5 modes with resolutions ranging from 1m (High Resolution
Spotlight Mode) to 18.5m (Scan SAR Mode) and revisit times ranging from 2.5 days

to 11 days depending on imaging mode.

It could be understood from above given characteristics of Sentinel-1 and TerraSAR-X
that the images captured by these sensors are different in resolution and in frequency.
Despite these differences, however, both SAR images can be used to estimate the radar

backscatter of a target on the ground.

The HH and VV polarized intensity images captured on 04 september
2015 were downloaded from Airbus Defense and Space website http:
//terrasar-x—archive.infoterra.de/ and they were transformed to
backscattering coefficients as given in Eq.1. To reduce the speckle boxcar filter
with kernel dimension of 5 x 20 m (range x azimuth) was used for calculating ¢
values. Compared to Sentinel-1 imagery, the main advantage of TerraSAR-X is its

high resolution imaging capability. Radar sensor parameters are given in Table 3.1.
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Table 3.1 : Radar sensor parameters

Satellite Mission TerraSAR-X Sentinel-1
Parameter X-Band C-Band
Central frequency [GHz] 9.65 5.35
Average incidence angle [deg] 31 29
Orbit height [km] 515 693
Illuminated area x-size [m] 2.6 7.6
Illuminated area y-size [m] 1.8 5.2
Polarization VV/HH VV/VH
Acquisition date 2015.09.04 2015.08.27

As it is very well known, the backscattering coefficient of SAR images is a function
of various variables that are affected by vegetation and soil types, topography of the
land and the types of the sensor used in the radar. Because of this, the values of the
backscattering coefficient need to be determined using a process-based model [28]. In
addition to backscattering analysis, in this paper, in order to relate the X and C band
SAR signatures to LAI parameter the WCM was used. For this purpose, the vegetation

parameters A, B and the soil parameters C, D required in WCM need to be optimized.

As indicated earlier (Eq. 2.3), WCM is used to determine the backscatter coefficient of

a crop (a9 ) as a function the backscatter coefficient of the soil (¢

veg i1)» 01l parameters

(C and D), canopy descriptor (V), dielectric constant, wavelength, polarization and
incidence angle. In WCM, the values of Gsooil are given in the form of soil
moisture (GgG). However, since paddy rice fields are under water for long time,
the backscattering coefficient from the surface of the soil under the crop canopy
(GgG) can be taken as constant. In shorter, in paddy rice fields, GgG and Gsom.l are
assumed to be equal. In addition, the values of both canopy descriptors (V; and V,) are
assumed to be equal (V| =V, = V) and can be represented by LAI. This means that
Vi =V, =V = LAI [29]. In this regard, WCM yields the optimized results to the values
A, B and GgG from LAI and GA was used as an optimization technique to estimate the

vegetation parameters as it is best suited for optimization of parameters [29].

As it is very well known, GAs are the solution for optimization of hard problems
quickly, reliably and accurately [50]. In other words, GA is a computerized search
and optimization algorithm based on the prototype of natural selection and natural

genetics [51]. Usually, a simple GA for optimization comprises six major components,
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namely genetic representation, reproduction, cross-over, mutation, a fitness function

and termination criteria [50].

Genetic representation: Initially, a population of parameters proportional to the total
string length is generated using a random generator. Generally, GAs have been
developed by using binary coding in which a string (or chromo-some) is represented
by a string of binary bits that can encode integers or real numbers. In this study, the
parameters A and B were encoded as substrings of binary digits having a specific
length. These substrings are joined together to form longer strings representing a
solution. The length of the substring is determined according to the desired solution
accuracy and is dependent on the range and the precision requirement of the parameter

[52].

Reproduction: The strings generated in the initial population are chosen for
participation in the reproduction process based on their fitness values. Many
selection schemes, such as deterministic sampling, stochastic sampling with or without
replacement, stochastic tournament selection and fitness proportionate selection, can
be used for the reproduction process [53]. In this study, fitness proportionate selection
has been used, where a string is selected for the reproduction process with a probability
proportional to its fitness. Thus the probability p; of an individual member string 1

being selected is given by:
n
pi=)_fi 3.1)
i=1

,where f; is the fitness of an individual string i and n is the population size.

The scheme is implemented with the simulation of a roulette wheel with its
circumference marked for each string proportionate to the string’s fitness. The roulette
wheel is rotated p times, each time selecting a copy of the string chosen by the roulette
wheel printer. As the circumference of the wheel is marked according to a string’s
fitness, the roulette wheel mechanism makes f;/ fiuean copies of the ith string in the

reproduction. Here, f,.q, 1S the average fitness of the population given as:

1 &
fmean = Zfz 3.2)
iz

18



A string with a higher fitness value represents a larger range in the cumulative
probability values, and, hence, has a higher probability of being copied into the mating

pool.

Mating (cross-over): The general theory behind the cross-over operation is that by
exchanging important building blocks between two strings that perform well, the GA
attempts to create new strings that preserve the best material from the two parent
strings. Cross-over is a recombinant operator that selects two strings from the mating
pool at random and cuts them into bits at a randomly chosen position. This produces
two “head” segments and two “tail” segments. The tail segments are then swapped
over to produce two new full-length strings. The number of strings participating in
mating depends on the cross-over probability. If a cross-over probability of p,. is used,
only 100 x p. percent strings in the population are used in the cross-over operation.
Cross-over has a wide range of possible types, i.e. one point, multipoint, uniform,
intermediate arithmetical and entered arithmetical [53]. The effect of cross-over

depends upon the site at which cross-over takes place.

Mutation: Mutation is an important process that permits new genetic material to be
introduced to a population. A mutation probability is specified that permits random
mutations to be made to individual genes (e.g. changing 1 to 0 and vice versa for binary
GAs). A mutation operator facilitates the convergence towards an optimal solution
even if the initial population is far from the optimal solution. Binary genetic algorithms

use a very low mutation probability ranging from 0.001 to 0.05.

Termination criteria: In the present study, the GA-based process is stopped when the
fitness criterion is satisfied, or the maximum number of generations is exceeded. The
values of the genetic parameters such as string length, population size, cross-over

probability, reproduction, mutation and termination criteria are given in a later section.

In short, the GA calls the written code repeatedly to find the most appropriate values
of the vegetation parameters A and B, which are then used to find the best relationship

between X- band and C-band SAR signatures and the LAI parameter.
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4. RESULTS

This section covers the LAI estimation of paddy rice fields which had reached

reproductive stage on the acquisition dates.

4.1 The relationship between in-situ LLAI and some other crop biophysical

parameters

For investigation the relationship between the LAI and other crop biophysical
parameters of the rice crop in this study, values of the in-situ LAI, GFT, PAR,
Sunflecks, TC and MLA were determined using CI-110. The mean values of these

parameters determined for the 6 fields are presented in Table 4.1.

Table 4.1 : Mean values of the in-situ LAI and other crop biophysical parameters.

Field Area Mean Leaf Transmission Gap Fraction
No (m?) rals Angle Coefficient B flecks Threshold
1 9761 1.65 1014.61  20.83 0.218 48.96 0.765
2 14551 2.55 867.50 9.55 0.187 51.39 0.760
3 22476 2.62 848.83 16.04 0.186 43.33 0.748
4 21145 2.68 707.57 11.08 0.177 61.11 0.754
5 21784 1.71 82540 2545 0.253 32.22 0.769
6 20836 1.85 303.94 18.93 0.223 6.95 0.746

The correlation between the in-situ LAI and the other crop biophysical parameters are
depicted in Figure 4.1. It can be seen from the correlation coefficient values given
on the graph bar in of Figure 4.1 that there is a weak relationship between the in-situ
LAI and the values the PAR and GFT parameters respectively as the corresponding
correlation coefficient values are found to be less than 0.5. However, the TC parameter,
with a correlation coefficient value of -0.905, was found to be related to the in-situ
LAI better than these parameters, followed by MLA (with a correlation coefficient of
-0.869).
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Figure 4.1 : The values of the correlation coefficients of the ground-based crop
parameters and in-situ LAI
PAR refers to the spectral range of solar radiation (400-700 nm). It is determined as
the mean light intensity over the sensors positioned along the top of the CI-110 arm.
PAR can directly be measured by using the sensors. The light above the canopy has a

value ranging from 1 to 2000 umol /m?s.

Sunflecks refer to the occurrence an increased amount of solar radiation below the
canopy within a short period of time. Wind moving leaves in the canopy or the
sun’s movement within a specific day are the causes of Sunflecks. The size of the
Sunflecks can be used to determine the size of canopy cover and can be related to
the characteristics of the canopy. The sunfleck value is a percentage of the PAR
sensors exposed to a radiation level greater than the set threshold. The default sunfleck

minimum PAR is set at 300 umol /m?s.

The probability of a ray of light passing through the canopy without touching foliage
or other plant elements is termed as Canopy gap fraction. There are several methods
incorporated in the CI-110 Plant Canopy Analysis software to determine the Gap

Fraction. In this study, the Otsu method was used.

An other parameter which very similar to the gap fraction is the solar beam
transmission coefficients. This coefficient is defined as the fraction of the sky visible
from beneath the plant canopy. This coefficient has values ranging from O to 1; 0
meaning no sky is visible below the plant canopy, and 1 meaning that the entire area is

sky or no foliage coverage. The values of this coefficient determined for the six paddy
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rice fields are presented in Table 4.1. As can be seen from this table, the transmission
coefficient values are closer to zero. This is because the ground was well covered with
the crop at the time of the measurement as the measurement was carried ou at the

reproductive stage of the paddy rice crop.

4.2 Backscattering coefficient analysis

In order to see temporal trend of backscattering coefficient over the study area,
first, a total of nine Sentinel-1 satellite images captured in June, July and August
were analyzed. Radiometric calibration, terrain correction and speckle filtering were
performed on these images. The corrected and calibrated images were then used to
determine the values of sigma nought for each pixel in the images. The mean sigma
nought values of each fields were determined for various dates under the various
polarizations. These values were plotted against time and are presented in Figure 4.2

and Figure 4.3.
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Figure 4.2 : The time series of average of sigma nought (dB) in VH polarization in
2015.

As can be seen from Figure 4.2, the mean sigma nought values of the fields determined
from the SAR images with VH polarizations tend to increase and decrease with time
except the fact that the sigma nought values determined from the image captured on
August 28, 2015 dropped again. As opposed to this, the mean sigma nought values

of the fields determined from the SAR images with VV polarizations tend to fluctuate
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Figure 4.3 : The time series of average of sigma nought (dB) in VV polarization in
2015.
with time (Figure 4.3). However, the mean sigma nought values of the six rice fields
determined from the SAR images in both VH and VV polarizations capture on June
3, 2015 are very different from one another when compared to the mean sigma nought

values of the fields determined from the SAR images captured on other dates.

The time series of the variance of sigma nought(dB) values under the VH and VV
polarization in 2015 are presented in Figure 4.4 and Figure 4.5 respectively. It can be
clearly seen from these figures that the variance of the mean sigma nought values of
the six fields under both VH and V'V polarizations remained more or less below three
in most of the dates. However, the variance values determined from the mean sigma
nought values of the images captured on June 3, 2015 were found to be larger (for
most of the fields) and very different from field to field. As the result, paddy fields
are flooded during the rice-planting season (early vegetation) that has low backscatter
in this season. In the general case of rough water bodies, the visible structures do not
show regular wave pattern; irregular pattern is caused more frequently at the surface
of paddy rice fields and this causes irregular backscattering values. Backscatter of a
paddy field increases as rice grows. However, it is impossible to monitor rice fields
precisely due to speckle noise of SAR data. The default of SAR data is single banded
and contains speckle noise. This could be because of the considerable difference in the

sigma nought values determined from the image captured on June 3, 2015 as depicted
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in Figure 4.2 and Figure 4.3. In general, the increase in stem density is the cause
for the increase in the mean sigma nought values that produced the first peak. The
sigma nought values then decrease as the leaf coverage the thin scatterers (the stems)
increases. Then, the growth of flag leaves and young heads in the top layer of the crop
canopy result in the increase in sigma nought values.

Variance-Sentinel-1-VH
25

20

—s—Field 1
——Field 2
—e—TField 3
——Field 4
—e—Field 5
—s—Field 6

Variance VH

Figure 4.4 : The time series of variance of sigma nought (dB) in VH polarization in
2015.

For further analysis, the sigma nought values determined from the SAR satellite images
captured on August 28, 2015 were selected as the data of field parameters measured

using the CI-110 device were available only for this date.

The backscattering coefficients of the paddy rice in the 6 fields extracted from the
various polarizations (HH and VV in TerraSAR-X and VH and VV in Sentinel-1)
of the SAR images are shown in Figure 4.6. In general, the backscattering
coefficients determined from the image of TerraSAR-X were found to be larger than the
corresponding values determined from the image of Sentinel-1. This could be related
to the fact that TerraSAR-X is located more close to the ground (when compared to
Sentinel-1) with better resolution, high frequency and the more number of pixels. The
TerraSAR-X image was captured on 4 September 2015 and the Sentinel-1 image was
captured on 27 August 2015. It can be seen from this figure that, in all of the 6 rice

fields, the largest backscattering coefficient values were determined from the SAR
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Figure 4.5 : The time series of variance of sigma nought (dB) in VV polarization in
2015.
image in HH polarization. As opposed this, the smallest backscattering coefficients
of rice in the 6 fields were determined from the SAR images in cross polarization
(VH). These values indicate that rice crop fields have the strongest response to the HH
polarization while they have the weakest response to the cross polarization. It can also
be seen from Figure 4.6 that the backscattering coefficients of the 6 fields in the VV
polarizations of both SAR images is between the corresponding backscattering values
in HH and VH polarizations of the TerraSAR-X and Sentinel-1 satellites, respectively.
The backscattering coefficients determined under the HH polarization of TerraSAR-X
image were found to be the highest in all of the rice fields. Based on these analyses,
the HH polarization provides the best discrimination between water and non-water
terrains. This is caused by the low scattering of the horizontal component of the signal

from the smooth open water surface.

The scatter plots developed using the measured LAI values and backscattering
coefficient values of the Sentinel-1 (with VH and VV polarizations) and TerraSAR-X

(HH and V'V polarizations) images are depicted in Figure 4.7.

As can seen from Figure 4.7, in general, the LAI values computed using the
backscattering coefficients determined from the TerraSAR-X satellite in the HH

polarization were found to be better correlated with the measured LAI values than
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Figure 4.6 : The backscattering coefficients of rice in the 6 fields for TerraSAR-X
(HH and VV) and Sentinel-1 (VH and VV)
the Sentinel-1 satellite. This could be attributed to the fact that, as also witnessed
by [54], the EM sent from the sensor with HH polarization interacts more with the
vertical structure of the paddy rice crop (leaf size and stem density oriented in the
vertical direction) than the horizontal structure of the crop (leaf size and stem density

oriented in the horizontal direction).

In addition, this could be related to that fact that TerraSAR-X is located close to the
ground to (when compared to Sentinel-1) with better resolution and high frequency.
However, the LAI value measured using backscattering coefficients determined
using the TerraSAR-X image with HH polarization resulted in the largest values of
correlation coefficients (0.778) or correlation determination (0.605) and the littlest
values of correlation determination is for TerraSAR-X image with VV polarization

with 0.292.

4.3 WCM analysis

Analysis based on the WCM use two different SAR frequencies. In this study,
the possibility of extracting information about vegetation parameters A and B from
Sentinel-1 (C-band at 5.35 GHZ frequency and 44.7 incidence angle) and TerraSAR-X
(X-band at 9.65 GHZ frequency and 36.8 incidence angle) were investigated.

Parameter A corresponds to the albedo of the vegetation and parameter B is an
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Figure 4.7 : The scatter plots of observation sigma nought values of the Sentinel-1
(a,b) and TerraSAR-X (c,d)
attenuation factor. Because of its larger wave length, the backscatter of C-band (with
length of 6 cm) is expected to have stronger penetration in to the target than the

backscatter of X-band (with length of 3 cm).

The values of the two parameters (parameters A and B that depend on the type of
vegetation) estimated from the backscatter values of the HH and VV polarizations
in TerraSAR-X and VH and VV polarizations in Sentinel-1 are presented in Table
4.2 (A GA optimization technique was coupled with the water cloud model for the
estimation of the vegetation parameters A and B). The values of parameter B and
the lower values of parameter A presented in the table show the presence of greater
influence of vegetation on the recorded signal. Higher value of parameter B shows
the presence of attenuation and contributes to a larger vegetation descriptor effect on

sigma nought.

By taking in to consideration the values of the standard deviation of parameters of A
and B presented in Table 4.2, it can be said that there are no variations in the values
of parameter A determined from Sentinel-1 VV, TerraSAR-X VV and TerraSAR-X
HH images when compared with the standard deviation values of the Sentinel-1 VH

image, which was found to be relatively larger. The standard deviations of parameter
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Table 4.2 : Parameter values obtained with GA with N = 22

Radar A B RMSE [dB]
Acquisition mean std mean std G(())b - cl »

Sentinel-1 VV -0.015 | 0.003 | 0.224 | 0.574 0.00009
Sentinel-1 VH -0.005 | 0.001 | 0.489 | 0.233 0.00011
TerraSAR-X VV | -0.024 | 0.004 | 0.482 | 0.907 0.00015
TerraSSAR-X HH | -0.028 | 0.005 | 1.235 | 0.731 0.01499

B estimated from the SAR images of all polarizations were found to be larger and,
hence, there are larger variations in the values of Parameter B. The RMSE values
presented in Table 4.2 show that the observed and computed sigma nought values are
very close to each other. However, the RMSE value of TerraSAR-X HH was found
to be slightly higher when compared to the other RMSE values presented in the table.
This could be attributed to the presence of larger vegetation descriptor effect on the
observed sigma nought. In addition, WCM based sigma nought values (computed
sigma nought values) of the TerraSAR-X images were found to be not close to the
observed sigma nought (determined with SNAP). As opposed to this, the observed and
computed sigma nought values of the Sentinel-1 images were found to be very close to
each other. This is because the Sentinel-1 sensor has a longer wavelength can be more

sensitive to vegetation [55].

Among the six fields, three field were selected after checking all possible combinations
of fields for calibration and validation. Then, A and B values of the three selected fields
were determined by WCM from the measured LAI values of the three fields. These A
and B values were then used as inputs (together with other required inputs) in WCM

to determine the LAI of the remaining three fields.

The same steps were repeated twenty times to estimate values of LAI index from A
and B values of various combinations of three fields. This means that, for instance,
for the VH polarization of Sentinel-1, A and B values were determined from the mean
values of characteristics of the image determined for the three selected fields as input
into the WCM model. The computed A and B values were, then, used as inputs into the
WCM model together with other required characteristics of the remaining three fields

to determine LAI values for each of the three field. These procedure was repeated

29



by considering various combinations of fields for training and testing. A total of 20

combinations (scenarios) were developed using the six fields. Table 4.3 presents the

combination of fields used for training and testing under each scenario.

Table 4.3 : Test and training scenario

Senario Senario

NO Train Test NO Train Test
1 Field 1-3-5 | Field 2-4-6 11 Field 2-4-6 | Field 1-3-5
2 Field 1-2-3 | Field 4-5-6 12 Field 4-5-6 | Field 1-2-3
3 Field 1-2-4 | Field 3-5-6 13 Field 3-5-6 | Field 1-2-4
4 Field 1-2-5 | Field 3-4-6 14 Field 3-4-6 | Field 1-2-5
5 Field 1-2-6 | Field 3-4-5 15 Field 3-4-5 | Field 1-2-6
6 Field 1-3-4 | Field 2-5-6 16 Field 2-5-6 | Field 1-3-4
7 Field 1-3-6 | Field 2-4-5 17 Field 2-4-5 | Field 1-3-6
8 Field 1-5-6 | Field 2-3-4 18 Field 2-3-4 | Field 1-5-6
9 Field 1-4-6 | Field 2-3-5 19 Field 2-3-5 | Field 1-4-6
10 Field 1-4-5 | Field 2-3-6 20 Field 2-3-6 | Field 1-4-5

The same steps were followed for the VV polarization of Sentinel-1 image and the HH
and VV polarizations of the TerraSAR-X images. Then correlation values between
the LAI values of each fields determined using the above mentioned procedure and
the corresponding in-situ LAI values were determined. Figures 4.8, 4.9, 4.10 and 4.11
depict the correlation values determined between the simulated and in-situ LAI values

of the 20 scenarios.

As can be seen from Figure 4.8, higher correlation coefficients (-0.999, -0.998 and
-0.996) were found under scenarios 3, 13 and 7 for Sentinel-1 VH polarization
respectively. The lowest correlation coefficient was found under scenario 8. By
taking into consideration Figure 4.9, scenarios 2, 8, 20 and 19 were found to result
in higher correlation coefficient values (0.999, 0.997, 0.995 and 0.992 respectively)
for Sentinel-1 VV polarization. The lowest correlation coefficient was found under
scenario 6. Scenarios 14, 20, 13 and 18 were found to result in higher correlation
coefficient values in figure 4.10 (0.999, 0.998, 0.992 and 0.991 respectively) for
TerraSAR-X, HH polarization. Smaller correlation coefficients were observed under

scenarios 3, 4, 8 and 10. Finally, for TerraSAR-X VV polarization, scenarios 18, 20,
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1 and 11 were found to result in higher correlation coefficient values (-0.999, 0.993,

0.988 and -0.986 respectively) (Figure 4.11).
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Figure 4.8 : The scatter plots of correlation coefficient under various scenarios for
Sentinel-1 VH polarization
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Figure 4.9 : The scatter plots of correlation coefficient under various scenarios for

Sentinel-1 VV polarization

Root Mean Square Error (RMSE) and Normalized Relative Mean Error (RME) values
were used as evaluation criteria to assess the performance of the WCM in estimating
LAI values from the various polarizations of the SAR images. RMSE measures the
difference between the estimated (using WCM) and in-situ values of LAI, whereas
RME measures the relative difference between the estimated and in-situ values of LAI.
Equations 4.1 and 4.2 are used to determine these evaluation criteria. As both RMSE

and RME are functions of the differences between estimated and in-situ values, the
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smaller the values of these indices (close to zero) the higher the performance of the

model.

N
RMSE = \/1/N2<hmeasured _hestimated)2 (4-1)
i=1

RME = (hestimated - hmeasured)/hmeasured (42)

The RMSE values of the various polarizations of the two SAR images is determine
with Equations 4.1. The RSME of VH and VV polarization of Sentinel-1 are 0.69
and 0.47, respectively. The result for in general, the RMSE values determined under
the VV polarization of Sentinel-1 were found to be smaller than the corresponding
values determined under VH polarization. In addition to the RSME of VH and VV
polarization of TerraSAR-X are 0.457 and 0.467 respectively. The result for in general,
the RMSE values determined under the HH polarization of TerraSAR-X were found to

be smaller than the corresponding values determined under VV polarization.

The RME values of the various polarizations of the two SAR images are given in Table
4.4. The RME values in this table show that, the largest value was found for field 1
under both polarizations, where as the smallest value of RME was found for field 2
under the VH polarization and field 4 under the VV polarization. Nevertheless, as
presented in Table 4.4, the RME values under the VV polarization are smaller than the
RME values under the VH polarization. These show that the Sentinel-1 image with

VV polarization is better for LAI estimation than the Sentinel-1 image with VH.

Table 4.4 : Results of the performance evaluation criteria for TerraSAR-X and

Sentinel-1
RME
Sentinel-1 | Sentinel-1 | TerraSAR-X | TerraSAR-X
(VH) (VV) (HH) (VV)
Field 1 0.604 0.315 0.293 0.352
Field 2 -0.184 -0.204 -0.128 -0.120
Field 3 -0.309 -0.183 -0.211 -0.253
Field 4 -0.241 -0.152 -0.182 -0.138
Field 5 0.363 0.290 0.258 0.280
Field 6 0.218 0.204 0.229 0.146

33



4.4 Vegetation index analysis

In order to establish a relationship between LAI values and the ZWSI, SR, GMI and
GNDVI indices of the paddy rice crop, the values of these indices were determined
from the satellite image of the study area captured on August 28, 2015 using Landsat-8.
The mean values of these indices are presented in Table 4.5. It can be seen from this
table that the maximum values of the NDWI (-0.785), NDVI (0.770), GNDVI (0.712)
and SR (8.741) indices were found in field-3. In addition, the maximum values of
the ZWSI (2.239) indices were found in field-4, whereas the maximum value of the
GMI index (1.203) was found in field-1. Correlation analysis was then undertaken to
investigate the relationship between the values of these indices and the field measured
LAI values.

Table 4.5 : Mean values of vegetation indices for the fields determined from
Landsat-8.

Field No | NDWI NDVI GNDVI GMI SR ZWSI

Field 1 -0.654  0.654 0.628 1.203 | 4.882 2.0712
Field2 | -0.753  0.756 0.692 1.038 7.357  2.064
Field 3 -0.785  0.770 0.712 1.160 | 8.741 2.237
Field4 | -0.753 0.761 0.704 1.126  7.828 | 2.239
Field 5 -0.711  0.712 0.670 1.138  6.259  2.118
Field6 | -0.686 0.667 0.638 0998 5399 1.725

In in-situ LAl measurements are tightly correlated with spectral are indices as
summarized in Figure 4.12. Figure 4.12 (a, b, ¢ and d) depicts the scatter plot
developed using the measured LAI values and the values of the SR, NDVI, NDWI, and
GNDVI indices with a linear fit line and the corresponding values of the coefficient
of determination. It can be seen from this figure that the SR index was found to be
best correlated with the measured LAI value (with coefficient of determination value
of 0.832), followed by the NDVI, NDWI and GNDVI indices (with coefficient of
determination value of 0.831, 0.820 and 0.807 respectively).

It can be seen from the correlation coefficient values presented in Table 4.6 that, in
general, the relationship between the GMI index and the other indices is weaker than
the relationship among the other indices, followed by the relationship between the

ZWSI index and the other indices. The correlation coefficient between NDVI and
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Figure 4.12 : The scatter plots of indices

GNDVI is largest positive value (0.995), whereas the one between GMI and NDVI
is the smallest positive value (0.012). In terms of negative relationships, the values
in Table 4.6 show that there exists a strong negative correlation between SR and
NDWI indices (-0.989), while there exists a weak negative relationship between LAI
and GMI indices (-0.117). By taking into consideration the correlation coefficient
values between the indices and the in-situ LAI values, the comparison of the GMI
correlation shows that many of the analysed vegetation indices in this study provide
quite high correlation coefficient. Thus, it is possible to conclude that the vegetation
indices considered in this study are much more sensible to the paddy rice field than
the GMI, with the exception ZWSI, where there exists moderate relationship. It is also
worth to notice that the vegetation indices that correlated better to each other (like the
relationship among NDVI, NDWI, GNDVI and SR) were found to be better correlated
to the in-situ LAI values. Therefore, it is possible to conclude that these indices are the

best.

4.5 Correlation analysis within remote-sensing images

As ameans of inter-comparing the performance of the SAR image based and Landsat-8

based LAI estimation, a bar graph was used. Figure 4.13 depicts the bar graph
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Table 4.6 : Mean values of vegetation indices for the fields determined from

Landsat-8.
NDWI NDVI GNDVI GMI SR ZWSI LAI

NDWI 1 -0.976  -0.978 0.065 -0.989 -0.592 -0.906
NDVI | -0.976 1 0.995 0.012 0973 0.695 0911
GNDVI | -0.978  0.995 1 0.058 0983 0.717  0.898
GMI 0.065 0.012 0.058 1 0.065 0.708 -0.117
SR -0.989  0.973 0.983 0.065 1 0.679 00912
ZWSI | -0.592  0.695 0.717 0.708 0.679 1 0.536

LAI -0.906 0911 0.898 -0.117 0912  0.536 1

developed based on the values of the correlation coefficients of the ground-based
and remote sensing based LAI estimations. The figure also depicts the correlation

values determined between the in-situ LAI and the various field measured biophysical

parameters.
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Figure 4.13 : The values of the correlation coefficients of the ground-based and
remote sensing based LAI estimations

It can be clearly seen from this figure that the SR, NDVI, NDWI and GNDVI indices
of the Landsat-8 image were found to be much better correlated to the in-situ LAI

values better than the LAI values estimated from the backscattering coefficients of the
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TerraSAR-X image with HH polarization. Therefore, it can be stated, from the above
given inter-comparison, that optical sensor (Landsat-8) images are better sources of
data for the quick and accurate estimation of the LAI value of the paddy rice crop in

the study area than SAR (Sentinel-1 and TerraSAR-X) images.

The number of pixels that cover each field of the paddy rice under the two SAR images
and the Landsat-8 image are presented in Table 4.7. As can be seen from the table, the
number of pixels of the fields of Landsat-8 image range from 18 (field 1) to 36 (field
3). By taking into consideration the number of pixels from the Sentinel-1 image, the

number ranges from 130 (field 1) to 297 (field 3).

Table 4.7 : Samples of 6 fields for TerraSAR-X, Sentinel-1 and Landsat-8

# Samples
TerraSAR-X | Sentinel-1 | Landsat-8
Field 1 406 130 18
Field 2 722 193 25
Field 3 536 297 36
Field 4 280 282 33
Field 5 379 288 34
Field 6 500 276 32

Table 4.8 is given to present the cross correlation values determined between the
polarization that best simulated LAI (HH for TerraSAR-X and VH for Sentinel-1) and
the SR index of the Landsat-8 image that was found to be best correlated to LAI. As
can be seen from the table, the largest cross-correlation value (-0.880) was found to be
between the VH polarization of Sentinel-1 and the SR index of Landsat-8 images. The

negative sign shows the presence of inverse relationship.

Table 4.8 : Cross correlation values of the two SAR images

TerraSAR-X | Sentinel-1 | Landsat-8
TerraSAR-X 1 -0.488 0.532
Sentinel-1 -0.488 1 -0.880
Landsat-8 0.532 -0.880 1
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S. CONCLUSIONS AND RECOMMENDATIONS

Acquiring reliable and accurate LAI values rapidly is an essential to study ecosystem
processes and undertake process-based ecological research. For large spatial extents,
however, is difficult to directly acquire LAI because of its time consuming and
work intensive nature. In this study, the satellite images were used as data sources
to compute rapidly and accurately LAI values of paddy rice crop at reproductive
stage, which is the most heterogeneous period of the growth cycle of the crop.
This study analyzed the presence of relations between in-situ measures LAI and
backscattering coefficients determined from SAR images having various polarizations,
and vegetation indices computed from optical image (image from Landsat-8). The

following conclusions can be drawn from the results of the study:

e The correlations obtained between the in-situ LAI and the values of the field
parameters were not found to be good except with the Transmission Coefficient, which

was found to be about -0.9048.

e The correlations between the in-situ LAI and the backscattering coefficients
computed from the SAR images with various polarizations were found to be weak with
the R? values of the Sentinel-1 VH, Sentinel-1 VV, TerraSAR-X HH and TerraSAR-X
VV polarizations being about 0.57, 0.46, 0.61 and 0.29, respectively.

e The correlations obtained between the in-sifu LAl and the vegetation indices
generated from the Landsat-8 image were, in general very good except with the ZWSI

(0.29) and GMI (0.01) indices.

e In particular, the correlations obtained between the in-situ LAI and the SR, NDVI,
NDWI and GNDVI indices were found to be very good with the R? values of the
0.832, 0.830, 0.820 and 0.810, respectively, that SR with 0.832 being the highest.

e The indices given as functions of NIR EM radiation resulted in higher correlation.

e From the performances of the SR and NDVI indices, it could be understood that

normalization can slightly decrease the correlation coefficient values.
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Therefore, the LAI at the reproductive stage of paddy rice crops at a large scale can
be mapped using simple linear relationships with the SR, NDVI, NDWI and GNDVI
indices. However, since this study was based on only one variety of rice and in
one particular area, undertaking a similar research in various geographical regions by
considering various rice species and different growth stages would be an interesting

research topic for the future.
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