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FOREWORD

This master thesis, titled “PADDY-RICE LEAF AREA INDEX (LAI) ESTIMATION
USING RADAR AND OPTICAL IMAGERY”, was prepared as a completion to the
master degree in Satilate Comunication and Remote Sensing Program at the Informatic
Institute of Istanbul Technical University.

As it is well known, Rice is one of the most important crops as it is the staple food for
more than 3.5 billion people worldwide. The focus area of this study was the estimation
of Leaf Area Index (LAI) of paddy rice crop by making use of satellite images as this
variable can be used as indicator of the growth and productivity of the crop.

I am very much indebted to my advisor Associate Professor Esra ERTEN for her
continuous follow up, professional guidance, encouragement and support during the
whole research work. I also would like to give my gratitude to the Scientific and
Technological Research Council of Turkey (TÜBİTAK) for the financial support to the
research under the project entitled “Sulak ve Çeltik Alanların X-band ile Izlenmesi,
project number: TÜBİTAK ÇAYDAG 113Y446.”

I would also like to thank my dear brothers Mohammad and Abolfazl for their presence
that has been an encouragement during the course of this study.

Finally, I wish to extend special recognition to Dr. Tewodros Assefa NIGUSSIE for
his support in this work. I have to thank my lovely father and mother. Also, thanks to
my loving husband Yasin and my sweetie daughter Reha.

June 2017 Elnaz Najatishendi
(Engineer)
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PADDY-RICE LEAF AREA INDEX (LAI) ESTIMATION USING
RADAR AND OPTICAL IMAGERY

SUMMARY

Rice is one of the most important crops as it is the staple food for more than 3.5 billion
people worldwide. As a result, a number of studies have been conducted in order to
improve the production and productivity of rice. One of the focus areas of the studies is
the estimation of rice variables by making use of satellite images as the variables can be
used as indicators of the growth and productivity of the crop. Leaf Area Index (LAI),
a dimensionless index defined as the leaf area per unit ground area, is one of the most
crucial biophysical variables used for monitoring the growth and productivity of crops.
However, undertaking field measurement of LAI over a large area is not feasible and,
thus, the use of satellite data to rapidly and accurately compute LAI values has been
considered as the most convenient way. The objective for this study was to evaluate
the performance of rice LAI estimation using satellite-based radar and optical images
compared with in-situ measurements. In-situ LAI measurements were collected with
CI-110 from six paddy rice fields located in Ipsala region (Yenikarpus farm), which
is one of the major rice producing areas in Turkey. Paddy rice crop has three growth
stages: vegetative stage (germination to panicle initiation), reproductive stage (panicle
initiation to flowering) and ripening stage (flowering to mature grain). The CI-110
based field measurement was carried out during the reproductive stage of the paddy
rice crop.

The satellite images used as data sources for estimating the LAI of the rice crop in
the study area were captured by two Synthetic Aperture Radar (SAR) sensors named
Sentinel-1 and TerraSAR-X and an optical sensor known as Landsat-8 during the
reproductive stage of paddy rice crop. Both Sentinel-1 and TerraSAR-X operate
in all-weather conditions. However, Sentinel-1 operates in C-band with 5.405 GHz
frequency, 0-100 MHz bandwidth and VV and VH polarization, whereas TerraSAR-X
operates in X-band with center frequency of 9.65 GHz, bandwidth of 300 MHz and
VV and VH polarization.

Once the SAR images were collected, all images were pre-processed to account for
geometric distortions due to acquisition geometry of the imagery, and backscattering
coefficients were calculated. The backscattering coefficient values were then used
as inputs into the Water Cloud Model to determine LAI. The reliability of this
technique of determining LAI was investigated by comparing the estimated LAI
results with the values of the in-situ LAI measurements by taking into consideration
the correlation coefficients (R) as performance evaluation criteria. With regards to
the optical sensors (Landsat-8 images), the Normalized Difference Vegetation Index
(NDVI), Modified Normalized Difference Water Index (NDWI), Green Normalized
Difference Vegetation Index (GNDVI), Gitelson and Merzlyak Index (GMI), Simple
Ratio Index (SR) and Zygielbaum Water Stress Index (ZWSI) were calculated for
each pixel of the 6 paddy-rice fields. Here again, correlation coefficient was used
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to investigate the presence of relationships between the in-situ LAI values and the
above mentioned indices generated from the Landsat-8 image. The results of the study
showed that, in general, the indices generated from the Landsat-8 image were found to
be highly correlated to the in-situ LAI than the values of the backscattering coefficients
determined from the Sentinel-1 and TerraSAR-X images with various polarizations. In
particular, the SR index was found to be the best index ( R = 0.91) related to the in-situ
LAI values followed by the NDVI, NDWI and GNDVI indices. In conclusion, based
on the results of this study, it could be stated that Landsat-8 images could be used as a
reliable data source to acquire reliable LAI for paddy rice crop in the study area much
better than SAR images. Here again, it should be noted that only the reproductive
stage (not time series based analyses) of paddy rice crop was considered to meet the
objective of this study.
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RADAR VE OPTİK GÖRÜNTÜLER KULLANARAK ÇELTİK
BİTKİSİ YAPRAK ALAN İNDEKS KESTİRİMİ

ÖZET

Pirinç, dünya çapında 3,5 milyardan fazla insanın temel gıda maddesi olan en
önemli ürünlerden biri olmasının yanısıra dünyada en çok tüketilen ve ekonomik
olarak da en önemli besin ürünüdür. Bu konuda yapılan bir dizi çalışmanın sonucu,
gelecekte artan nüfusu beslemek için pirinç üretiminin artacağını göstermektedir.
Konunun bu derece önemine rağmen son gözlemler bazı alanlarda sulamadan dolayı
toprak bozulmasının ve çevre kirliliğinin meydana geldiğini ve bundan dolayı pirinç
verimliliğinin azaldığını hatta durduğun göstermiştir.

Bu zorlukları gidermek ve gıda güvenliğini sağlamak için pirinç üretiminde ekin
değişkenlerini belirlemek, analiz etmek ve elde edilen pirinci izlemek büyük önem
taşımaktadır. Bu doğrultuda, pirinç üretimini ve verimliliğini artırmak amacı ile
bir takım çalışmalar yapılmıştır. Bu çalışmaların odak noktası, pirinç değişkenlerini
tahmin etmek için uydu görüntülerini ürünün büyüme ve üretkenlik göstergesi olarak
kullanmaktır.

Yaprak alan endeksi (LAI), birim zemin alanı başına düşen yaprak alanı olarak
tanımlanan boyutsuz bir indekstir ve bitkilerin büyümesini ve verimliliğini izlemek
için kullanılan en önemli biyofiziksel değişkenlerden biridir. Saha çalışmaları ile
LAI’nın belirlenmesi büyük tarım alanı için zaman alıcı ve yorucudur. Uzaktan
algılama ile elde edilen coğrafik verilerin kullanılması gibi dolaylı yöntemler ise
güvenilirlik ve kullanım kolaylığının yanında güncel ve tutarlı bir uzamsal ve zamansal
kapsama ve çözünürlüğe sunma yeteneğine sahip oldukları için yaygınlık kazanmıştır.
Ayrıca LAI’nın geniş bir alan üzerinde ölçümünün yapılması mümkün değildir. Bu
nedenle LAI değerlerini hesaplamak için hızlı ve doğru bir şekilde elde edilen uydu
verilerini kullanmak en uygun yöntem olarak düşünülmüştür. Bu çalışmanın amacı,
pirinç üretiminde LAI tahmininde ve değerlendirmesinde kullanılan uydu tabanlı radar
ve optik görüntülerinin performansını yerinde (saha) ölçüm değerleri ile karşılaştırmalı
olarak göstermektir.

Çalışma sahası olarak Türkiye’nin önde gelen pirinç üretim alanlarından biri olan
İpsala bölgesi seçilmiştir. Bu bölge Meriç nehri boyunca 16 × 6 kilometre karelik bir
alanı kaplamaktadır ve tarımsal arazi sulaması bu nehir ve yan kolları ile yapılmaktadır.

Çeltik ekiminin büyümesi üç aşamadan oluşmaktadır: Bitkisel, üreme ve olgunlaşma
aşaması. Yerinde (saha) LAI ölçümleri, CI-110 ölçüm cihazı ile üretimin üreme
aşamasında (28 Ağustos 2015 tarihinde) ve bu bölgede bulunan 6 çeltik tarlasında
yapılmıştır. CI-110 ölçüm cihazı kullanılarak su ile kaplı yüzeyden 30 santimetre
yükseklikte dijital yarıküresel görüntüler alınmıştır. Cihaz, 7 × 7 metrekare
civarındaki herbir alanın kenarlarından yaklaşık 5 metre içeriden 10 dakikalık herbir
periyot için 5 saniyelik veri toplamaya ayarlanmıştır. Bu cihaz aynı zamanda çalışma
bölgesindeki pirinç mahsulünün “gap fraction threshold (GFT)”, “photosynthetically
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active radiation (PAR)”, “transmission coefficient (TC)” ve “sunflecks ve mean leaf
area index (MLA)” parametrelerini aynı anda ölçmek için kullanılmıştır.

CI-110, Global Navigation Satellite System (GNSS) ve aydınlanma sensörüne gelen
verileri analiz ederek, ölçüm yapılan noktadaki güneş konumunu belirlemekte ve yarım
küre lens ile fotoğraf alımı gerçekleştirmektedir. Daha sonra elde edilen bu fotoğraflar,
kontrollü olarak sınıflara (açıklık, yeşil alan vb.) ayrılmaktadır. Siniflandirmanin
ardindan otsu eşik değer metodu ile ikilik sisteme dönüştürülerek elde edilen binary
görüntü üzerinde bitki sinifina giren piksellerin alani hesaplanmaktadir. Yapilan
bu basit görüntü işleme algoritmaları ile, referans veri olarak alinan yarim küre
foroğraflamadan yaprak alan indeksi elde edilmiştir.

Çalışma alanındaki pirinç mahsulünün LAI’sini elde etmek için uzaktan algılama
görüntüleri kullanılmıştır. Uzaktan algılama sisteminde aktif (RADAR) ve pasif
(optik) olmak üzere iki farklı tipte sensörler kullanılmıştır.

Aktif sensörler (radar) kendi elektromagnetik dalgasını gönderen ve bu dalganın
cisme çarparak geri dönen radyasyonunu tespit eden sensörlerdir. Nesnelerin iki
veya üç boyutlu görüntülerini oluşturmak için en çok tercih edilen görüntüleme
radarı olduğundan ve uydu platformuna yerleştirilen büyük bir radar anteninin ileri
hareketinin avantajlarından yararlanarak geleneksel ışın tarama radarlarından daha
ince uzaysal çözünürlükte görüntüler elde etme özelliğine sahip olduğu için “synthetic
aperture radar (SAR)” görüntüleri bu tezde kullanılmıştır.

Çalışma alanındaki pirinç mahsulünün LAI’sini elde etmek için kullanılan SAR
sensörleri olan Sentinel-1 (VV ve VH polarizasyona sahip olan C-bandında) ve
TerraSAR-X (VV ile HH polarizasyon olan X bandında) tüm hava şartlarında görüntü
sağlama özelliği ile tarım çalışmaları için oldukça uygundur.

Sentinel-1 görüntüsü 27 Ağustos 2015’te (üreme aşamasında) «ESA» web sayfasından
ve TerraSAR-X görüntüsü 4 Eylül 2015’te «Airbus Defense and Space» web
sayfasından indirilmiştir. Çalışma alanı için SAR görüntüleri elde edildikten sonra
bu görüntüler, her pikselin geri saçılma katsayılarını (backscattering coefficients)
belirlemek için “Snap” yazılımında girdi olarak kullanılmıştır. Bu geri saçılma katsayı
değerleri daha sonra LAI’yi belirlemek için su bulutu modelinde (Water Cloud Model)
girdi olarak kullanılmıştır. Belirli bir dalga boyu için bir hedefin geri saçılması
hedefin fiziksel boyutu, elektriksel özellikleri ve nem içeriği, daha ıslak nesnelerin
parlak görünmesi ve kuru hedeflerin karanlık görünmesi gibi çeşitli parametrelere
ve koşullara bağlıdır. Su bulutu modelinde bitki örtüsünün rastgele dağılmış su
damlacıklarını içerdiği varsayılır ve girdi olarak geri saçılma katsayısı (dielektrik
sabiti, dalga boyu, polarizasyon ve etki açısına bağlı olan bir katsayı) kullanılarak
LAI değeri belirlenir. LAI’nin belirlenmesinde bu tekniğin güvenilirliği, modellenmiş
LAI sonuçları ile yerinde (arazi) LAI ölçümlerinin değerleri ile karşılaştırılarak ve
korelasyon katsayısı (correlation coefficient, r) dikkate alınarak araştırılmıştır.

Daha önce de belirtildiği gibi bu tezde X ve C bandı SAR işaretlerini LAI
parametresiyle ilişkilendirmek için Water Cloud Model (WCM) kullanılmıştır. Bu
amaçla WCM’de ihtiyaç duyulan vejetasyon parametreleri olan A, B ve C, D toprak
parametreleri optimize edilmelidir. Parametrelerin optimizasyonu ve vejetasyon
parametrelerinin tahmininde en uygun olan GA (genetic algorithm) bu çalışmada bir
optimizasyon tekniği olarak kullanılmıştır. GA zor problemlerin hızlı, güvenilir ve
doğru bir şekilde optimizasyonu için uygun bir çözümdür.
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Pasif (optik) sensörler yansıtılan güneş radyasyonunu ve görünür yeryüzeyini yakın
kızılötesi (NIR) ve kısa dalga kızılötesi bantlarla; yüzey tarafından yayılan radyasyonu
ise termal kızılötesi bant ile algılamaktadır.

En yeni multispektral görüntüleme sistemlerinden biri olan Landsat-8 görüntüleri
bu tezde kullanılmıştır. Yaklaşık 16 gün tekrarlama süresi ve 30 metre uzaysal
çözünürlükte (görünür, NIR, SWIR), 100 metreden (termal) ve 15 metreden
(panokromatik) olmak üzere iki görüntü algılayıcıdan oluşan bu sensörün tez çalışma
alanını içeren, 11 banda sahiptir. Performans değerlendirme kriterleri olarak bu
bantların yardımıyla ve ENVI programını kullanarak normalize edilmiş farklı bitki
örtüsü endeksi (NDVI), modifıye normalize fark su indeksi (NDWI), çeltik-çeltik
parsellerinin her pikseli için normal normalizasyon fark vejetasyon indeksi (GNDVI),
Gitelson ve Merzlyak indeksi (GMI), basit oran indeksi (SR) ve Zygielbaum su stres
indeksi (ZWSI) hesaplanmıştır.

Çeltik pirinç mahsulünün LAI değerleri ile ZWSI, SR, GMI ve GNDVI endeksleri
arasında bir ilişki kurmak için bu endekslerin değerleri 28 Ağustos 2015 tarihinde
çalışma alanının Landsat-8 uydusu ile çekilmiş olan görüntüsü kullanılmıştır. Daha
sonra bu endekslerin değerleri ile yer ölçümlü LAI değerleri arasındaki ilişkiyi
araştırmak için korelasyon analizi yapılmıştır. Özellikle SR indeksi, ölçülmüş ilgili
LAI değerleriyle en ilişkili endeks ( R = 0.91) olarak bulunmuştur; bunu sırasıyla
NDVI, NDWI ve GNDVI endeksleri izlemektedir.

Sonuç olarak Landsat-8 görüntüsünden elde edilen indeks değerlerinin Sentinel-l
ve TerraSAR-X SAR görüntülerinin çeşitli polarizasyonlarından elde edilen geri
saçılma katsayı değerleriyle elde edilen indeks değerlerine kıyasla üreme döneminde
elde edilen yer ölçüm LAI değerleri ile daha yüksek oranda korelasyona sahip
olduğu görülmüştür. Ayrıca bu çalışma alanının çeltik ürününün LAI değerinin
tahmin edilmesinde optik algılayıcının (Landsat-8) görüntülerinin SAR (Sentinel-1 ve
TerraSAR-X) görüntülerinden daha hızlı ve yüksek doğruluklu bir veri kaynağı olduğu
söylenebilir. Son olarak belirtmek gerekir ki, çeltik pirinç mahsulünün sadece üreme
aşamasının (zaman serilerine dayalı olmayan analizler) bu çalışmanın amacına uygun
olduğu düşünülmektedir.

Kısaca çeltik bitkisinin üreme döneminde gerçekleştirilen analizlerde, Landsat-8 den
elde edilen SR endeksi, TerraSAR-X ve Sentinel-1 den elde edilen SAR geri saçılım
değerlerine göre saha çalışmalarından elde edilen LAI ölçümleri ile daha uyumlu
olduğu görülmüştür.
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1. INTRODUCTION

Rice is the most widely consumed and economically important food crop in the world

[1]. A number of studies show that the production of rice will increase in the future

to feed the world’s increasing population. Despite its importance, however, recent

observations indicate that the productivity of rice has become stagnant or even declined

because of land degradation and environmental pollution in some irrigated areas [2].

In order to address these challenges and optimize food security, rice monitoring, which

is achieved through the determination and analysis of rice crop variables, is very

important [3]. Paddy rice crop has three growth stages: vegetative stage (germination

to panicle initiation), reproductive stage (panicle initiation to flowering) and ripening

stage (flowering to mature grain).

Leaf Area Index (LAI), which is defined as the total one-sided leaf area per unit ground

area is one of the most important biophysical crop parameters that characterize the

canopy of the crop [4]. The calculation of LAI using direct method is time-consuming

and destructive. As opposed to this, indirect methods such as using remotely sensed

geospatial data of rice fields with updated spatial and temporal resolution has gained

popularity because of their reliability and ease of operation in addition to their ability

to provide timely and consistent spatial and temporal coverage [5].

This research project investigated the potentials of Synthetic Aperture Radar (SAR)

images particularly obtained from Sentinel-1 and TerraSAR-X and optical images

obtained from Landsat-8 as reliable and quick data sources for generating the LAI

of a paddy rice crop.

The objectives of this study were:

• To investigate the relationship between the in-situ LAI and measured field parameters

such as Photosynthetically Active Radiation (PAR), Gap Fraction Threshold (GFT),

Sunflecks, Transmission Coefficient (TC) and Mean Leaf Angle (MLA).
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• To investigate the relationship between the in-situ LAI and radar observations

including backscattering coefficients in different frequency, polarization and

resolution,

• To investigate the correlation analysis between vegetation indices such as, the

Normalized Difference Vegetation Index (NDVI), Simple Ratio Index (SR), Green

Normalized Difference Vegetation Index (GNDVI), Modified Normalized Difference

Water Index (NDWI), Gitelson and Merzlyak Index (GMI) and Zygielbaum Water

Stress Index (ZWSI) from Landsat-8 satellite images and in-situ LAI measurements.

• To investigate the reliability within different sensors in terms of LAI estimation,

1.1 Literature Review

LAI, defined as the ratio of the total area of all leaves on a plant to ground surface area,

is one of the most important crop parameters used for monitoring crop biophysical

parameters, yield estimation and gas exchange processes in plants [6–9]. Due to this

importance, a significant number of studies have been undertaken and a considerable

amount of knowledge has been accumulated in the literature as to how to obtain

rapid, reliable and accurate estimation of LAI. The methods can be divided into two

categories: direct and indirect methods.

The direct methods involve actual field measurements with destructive or

non-destructive techniques. They involve the collection and measurement of leaf area,

using either a leaf area meter or a specific relationship of dimension to area via a shape

coefficient [10]. According to [11], planimetric and gravimetric methods are identified

as the two direct methods of leaf area determination. The planimetric method is based

on the correlation between the individual leaf area and the number of area units covered

by that leaf in a horizontal plane whereas the gravimetric method is based on the

correlation between dry weight of leaves and leaf area using predetermined leaf mass

per area. The direct method is, therefore, complex, time-consuming, laborious and

expensive as it involves intensive sampling and require the use of special measuring

instruments. Due to the difficulties and the limitations of the direct methods, they are

mostly used as reference data for indirect methods which are easier and faster to apply.
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The indirect methods are cost effective and have the advantage of obtaining a

large-scale information in a very short period of time and, thus, the variable being

studied is better assessed. Among the indirect methods of LAI estimation, the

hemispherical canopy photography (also known as fisheye lens photography), is

being applied successfully in commercial plantations. The hemispherical canopy

photography is based on estimated position, size, density and distribution of canopy

gaps, which characterize the canopy geometry, through which the solar radiation

intercepted is measured [12]. From the research point of view, the current trend of

photography based indirect measurements is going towards smartphone applications

[12].

Other indirect measurements involve the use of space-based technologies. These

technologies obviate the need for land-based surveys and provide a possible effective

method to address the problems associated with direct methods of LAI determination.

Hence, the use of spaceborne remote sensing images for analysis of agricultural fields

has rapidly increased due to its inherent nature in supplying easy, fast and accurate

solutions [13, 14]. Satellite-based indirect methods can roughly be grouped under

two categories: radar and optical observations. LAI monitoring with optical sensors

started with MODIS [15]. After having successful results, the studies have continued

with high-resolution satellite data such as Landsat, Spot, and Sentinel-2. From a

methodological point of view, LAI can be estimated from spectral (vegetation) indices

computed by using these satellite data instead of dealing with 1 to n ill-posed advanced

radiative transfer model [12, 16]. This can be achieved as the interaction between

the wave and the target causes different reflectance due to the pigments and plant

components, which allows to the creation of a large number of vegetation indices with

different sensibilities [17]. Although these indices are not well suited for direct LAI

estimation, their ease of computation and tackling the problem of leaf inclination angle

makes them popular for space-based crop monitoring.

Spaceborne radar systems are also of interest for agricultural studies. They are

particularly important for irrigated farming with their all weather, day and night

imaging capability [18]. The latest generation of radar imaging satellites features

high temporal and spatial resolution as well as enhanced capabilities of polarimetric

acquisition. Radar backscatter measurements depend on physical and geometrical
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properties of the target. Previous studies showed that there is a strong relationship

between radar backscattering and biophysical properties of crops such as LAI,

biomass, and crop height [19]. Radar backscattering based LAI measurements

can be divided into two categories: modeling the radiative transfer of SAR beam

(inverse problems) and statistical analysis. Modeling radiative transfer involves inverse

problem of 1 to n relationship between radar backscattering and morphological and

physical properties of the crop, requiring powerful nonlinear inversion methods [20].

Instead, statistical approaches relate the radar backscattering measurements with

in-situ based LAI measurements and generalize the results.

There are two approaches in the literature that are used to relate the SAR signatures

to the LAI parameter: empirical and semi empirical approaches. An example of

the later approach is the use of a model termed as Water Cloud Model (WCM).

WCM, a model where the canopy cloud is assumed to consists of identical, randomly

distributed water droplets within the canopy, is used to determine LAI by using

the backscatter coefficient (a coefficient that depends on the dielectric constant,

wavelength, polarization, and incidence angle) as input.

In this study, the LAI estimation results determined by using Landsat, TerraSAR-X and

Sentinel-1 images with the aim of analyzing the performance of free satellite imagery

in terms of crop monitoring are presented. Paddy rice fields, which had reached late

reproductive stage are used for showing the feasibility and the operational capability

of the sensors with simplified methods [21, 22].

1.2 Structure of the thesis

This thesis is structured as follows. Chapter 2 gives a general introduction to

the fundamental theories about the SAR and optical remote sensing. In Chapter

3, material and methods used to meet the objectives of the thesis are presented.

More specifically, the data collection and analysis for the CI-110 based in-situ

LAI measurements, the Landsat-8 based LAI determination, and the Sentinel-1

and TerraSAR-X based Radar LAI computations are discussed. Moreover, a brief

description of Genetic Algorithm (GA) is given. In Chapter 4, the results of the

methods used to determine LAI and their comparisons are presented and discussed.
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The final chapter, Chapter 5, is given to contain a brief summary of the study,

concluding remarks and recommendations for future work.
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2. THEORY

Remote sensing is the process of gathering information about an object without any

direct contact with the object. Despite the presence of various types of systems, remote

sensing based data acquired by space-borne platforms are of paramount importance

for systems aiming to provide large-scale mapping [23]. Remote sensing uses a part

or several parts of the Electromagnetic (EM) spectrum, which is a continuum of all

EM waves energy reflected or emitted by the earth’s surface arranged according to

frequency and wavelength. There are two primary types of remote sensing systems:

passive (optical) and active. Active sensors send their own EM wave and then detect

scattering returning from an object. As opposed to these, passive sensors, also known

as optical sensors, detect emitted and/or reflected EM radiation from an object, but the

source of the EM wave is a natural source such as the Sun.

Active sensors are known to be operated day and night, less weather dependent and

have controlled illuminating signal that is not affected by the atmosphere. Because of

these advantages, active sensors have been applied in various field of studies such as

oceanography, hydrology, geology, glaciology, agriculture, and forestry. Thus, they

are much more advantageous than passive sensors and have the potential to provide

accurate information [24].

Radar, an abbreviation taken from Radio Detection and Ranging, is one of the most

popular active imaging sensors. In particular, SAR is the most widely used radar type

of active imaging sensor. The following sections are given to describe the fundamentals

of SAR and optical imaging sensors.

2.1 SAR fundamentals

The most versatile radar instrument that is used to create either two or three

dimensional images of objects is the SAR. SAR takes advantages of the forward

motion of a large radar antenna placed on the platform of the satellite to provide images

with finer spatial resolution than is possible with conventional beam-scanning radars.
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The SAR satellites function at selected frequencies. However, the predominantly used

spaceborne wavelengths are the L-band, C-band, and X-band. Some of the sensors that

use these bands are RadarSAT-2 (C-band), Sentinel-1 (C-band), ALOS-2 (L-band),

Cosmo-Skymed (X-band) and TerraSAR-X (X-band) [25]. In this study, Sentinel-1

and TerraSAR-X images are used.

Backscatter of a target at a particular wavelength depends on a variety of conditions

such as the physical size of the target, the target’s electrical properties and the moisture

content, the wavelength and polarization of the Radar pulses and observation angles

also affect backscatter. Figure 2.1 depicts the backscatter from various targets.

Figure 2.1 : Backscatter from various surfaces types

The wavelength and polarization of the Radar pulses and observation angles also

affect backscatter. The relationship between the image intensity and the backscattering

coefficient
(
σ0) is given by:

σ
0 =

A2

K
sin(αd) (2.1)

,where σ0 is the radar backscattering coefficient of distributed target to be measured,

A is the digital number of the image, αd is incidence angle at target position, K is

absolute calibration factor.

Thus, the backscattering coefficient can be used to determine the LAI of vegetation

with the help of empirical or semi-empirical models. WCM is a semi-empirical

model that is developed to find a linear relationship between LAI and backscattering

coefficients determined from SAR images of polarizations. It should be noted here

that, the differences in the characteristics of the Sentinel-1 and TerraSAR-X images
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are expected to result in differences in the values of backscattering coefficients. This

in turn results in different estimates of LAI values.

As a semi-empirical model, WCM defines the backscatter coefficient or sigma nought(
σ0) as a linear combination of backscatter coefficients from vegetation

(
σ0

veg
)

and

from soil
(
σ0

soil

)
. WCM was first developed by [22] and was then applied to the

assessment of LAI by [26]. In WCM, it is assumed that the canopy cloud consists

of identical water droplets randomly distributed within the canopy and the backscatter

coefficient, which depends on the dielectric constant, wavelength, polarization, and

incidence angle θi, is written as [12, 21, 27]:

σ
0
pq = σ

0
veg + τ

2
σ

0
soil p,q = H,V (2.2)

σ
0
veg = AV1 cosθi(1− τ

2) (2.3)

σ
0
soil =C+DMv (2.4)

τ
2 = exp(−2BV2 secθi) (2.5)

where τ2 yields the two-way vegetation attenuation, Mv is the volumetric soil moisture,

V1,V2 are the descriptors for canopy and σ0
veg and σ0

soil are the backscatter coefficient

for vegetation and soil of respectively.

In the WCM, the vegetation parameters A,B and the soil parameters C,D are

empirically obtained. Due to the flooded condition of the fields during the rice growing

season, the simplification of the backscattering model is proceeded by replacing σ0
soil

by constant σ0
BG and by assuming V1 = V2 = V . As implemented by [26] and [28],

the backscattering coefficient for the paddy rice can be expressed (in dB) as in the

following.

σ
0 = 10log{AV cosθi (1− exp [−2BV cosθi]) + exp [−2BV cosθ ]σ0

BG
}

(2.6)

Using LAI as a canopy descriptor (V1 = V2 = V = LAI) in WCM yields the

optimization problem of finding A, B, and σ0
BG . In this work, Genetic Algorithm

(GA) optimization approach was used to estimate the vegetation parameters as it is

best suited for optimization of parameters [29].
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2.2 Optical Remote Sensing Fundamentals

Passive sensors, detect solar radiation reflected by the earth’s surface in the visible, near

infrared (NIR) and short-wave infrared bands and the radiation emitted by the surface

in the thermal infrared band, recorded as brightness temperature by the sensor to form

images of the earth’s surface [30]. By taking into consideration the number of spectral

bands used in the imaging process, optical (passive) remote sensing techniques are

classified as Panchromatic, Multispectral, Superspectral and Hyperspectral imaging

systems [31]. The multispectral imaging system is equipped with a multichannel

detector with a few spectral bands, where each channel is sensitive to radiation within

a narrow band of wavelength resulting in a multilayer image that contains both the

brightness and spectral information of the observed objects. As a result, images

captured with multispectral imaging systems are used in a number of applications [32].

LANDSAT MSS, LANDSAT TM, SOPT HRV-XS and IKNOS MS are a

few examples of multispectral space-borne imaging systems. One of the

most recent multispectral imaging system is Landsat-8 with 16 days of revisit

time and at a spatial resolution of 30 meters (visible, NIR, SWIR), 100

meters (thermal) and 15 meters (panchromatic) https://landsat.usgs.gov/

what-are-band-designations-landsat-satellites. Detail character-

istics of the spectral bands of Landsat-8 imaging system are presented in Table 2.1.

Table 2.1 : Landsat-8 Bands

Bands
Wavelength Resolution

(micrometers) (meters)
Band 1 - Coastal aerosol 0.43 - 0.45 30
Band 2 - Blue 0.45 - 0.51 30
Band 3 - Green 0.53 - 0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85 - 0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11 - 2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100× (30)
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100× (30)

The mathematical combinations of surface reflectance at two or more of the

wavelengths (depicted in Table 2.1) result in Spectral indices. Thus, based on the
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considered reflection and absorption characteristics at different wavelengths, various

indices could be developed so that targets can be discriminated in the captured Landsat

images according to their spectral reflectance signatures. In the literature, spectral

indices such as Vegetation, Burned areas, Man-made (built-up) features, Water, and

Geologic features are available. Among these, however, spectral vegetation indices

are the most popular ones. This is because these indices are simple mathematical

expressions that are widely used to determine values of vegetation parameters such as

plant biomass and structure (leaf size, stem density, LAI, etc.). In addition vegetation

indices can be used for crop monitoring and measuring live and green vegetation

amount from remotely sensed images in a short period of time with less cost.

Spectral vegetation indices are mathematical combinations of different spectral bands

mostly in the visible and near-infrared regions of the EM spectrum [33]. These

indices reduce the multiple-waveband data at every pixel of an image into a single

numerical value (index) [34]. The values of these indices can be taken as measures

of vegetation activity and as means of highlighting changes in vegetation condition.

As a result, many studies have been carried out establish relationships between LAI

and spectral vegetation indices determined from images captured with optical remote

sensing systems [35]. The most widely used spectral vegetation indices for this purpose

are: NDVI, SR, GNDVI, NDWI, GMI and ZWSI [20]. The NDVI is expresses as [36]:

NDV I =
ρNIR−ρRed

ρNIR +ρRed
(2.7)

,where ρNIR and ρRed refer to the NIR and red reflectance in each band, respectively.

This index is the most widely used standardized indicator of the relative biomass of

plant as can be used to monitor drought, agricultural production, predict hazardous fire

zones and map desertification [37]. Its values range between –1 to 1, where values

close to unity depict highly vegetated targets, while values close to zero represent

non-vegetated targets.

[38] defined SR as ratio of the values of the NIR reflectance to the red reflectance as

depicted in the following equation:

SR =
ρNIR

ρRed
(2.8)

Non-vegetated targets such as bare soil have SR values of unity or close to unity, and

this is achieved when the values of the NIR and the red reflectance are equal or almost
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the same values. SR is not normalized and its values increase as the amount of green

vegetation in a pixel increases.

GNDVI is defined as [39]:

GNDV I =
ρNIR−ρGreen

ρNIR +ρGreen
(2.9)

,where stands for the digital number of the Green channel of a pixel. GNDVI and

NDVI are similar except the fact that GNDVI is based on the green spectrum instead

of the red spectrum. However, GNDVI is known to be more sensitive to chlorophyll

concentration than NDVI.

The NDWI is expressed as [6]:

NDWI =
ρNIR−ρSWIR1

ρNIR +ρSWIR1
(2.10)

[40] defined the GMI index as:

GMI =
ρSWIR12

ρGreen
(2.11)

ZWSI is defined by [41] as:

ZWSI =
ρSWIR11

ρGreen
(2.12)
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3. MATERIALS AND METHODS

This section provides the dataset behind the LAI estimation study in detail along with

coincide information about their processing methodology.

3.1 Description of the study area

The study area, Ipsala, is located in north western part of Turkey at (N 37o7′53′′ and

E 6o19′32′′). It is a rice-agricultural field with an area of 16 × 6 km and found

along the Maritza River, which forms, with its tributaries, the drainage system for the

irrigation of the paddy rice fields. Ipsala site is one of the largest rice-producing areas

in Turkey. The most dominant rice species in this area is Oryza sativa L.; specifically

the two long-grain types: Baldo and Rocca are common in the area. In this region,

rice crops are planted by broadcasting. The planting techniques used by the farmers

vary from the use of airplane to manual labor, but in all of the techniques, seeds spread

randomly. This agronomic practice characterizes the heterogeneity within and among

the fields. Accordingly, the sowing date can vary from the end of April to late May

and the harvest takes place in the late September to mid October. The rice-agricultural

fields, shown in Figure 3.1, are cultivated annually. Since 2013, the Directorate of

Trakya Agricultural Research Institute has collected ground measurements in the area

to develop an operational satellite based monitoring scheme [26, 28, 42–45].

3.1.1 In-situ LAI measurements: CI-110

Ground measurements of LAI for paddy-rice were performed with the CI-110 Plant

Canopy Imager. This device was also used to simultaneously measure the Gap

Fraction Threshold (GFT) , Photosynthetically Active Radiation (PAR), Transmission

Coefficient (TC), Sunflecks, and MLA parameters of the rice crop in the study area.

The measurements of the in-situ LAI and the above listed other crop biophysical

parameters were collected from 6 paddy rice plots (Figure 3.1) on the August 28, 2015

during the late reproductive stage of paddy rice. Digital hemispherical images using
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Figure 3.1 : Location of the study area (top left), Lansat-8 image acquired on August
28, 2015 over the study area (top right, red color indicating the locations

of the six test fields analyzed in this study) and hemispherical
photographs depicting the nature of paddy fields were taken with a

canopy imager (CI-110) (bottom).

CI-110 were acquired at 30 centimeters from the surface covered by water. In each

field, the CI-110 was programmed to collect data every 5s in 10 minutes at the four

corners of the six roughly 7 × 7 meter fields, approximately 5 meter from the edge

of the fields. The images depicted in Figure 3.1 show hemispherical images of the

six paddy rice plots acquired using CI-110 (That is directly captured by CI-110 plant

canopy imager). These images were processed using the CI-110 software to obtain

LAI and PAR.

CI-110 analyzes inputs obtained from Global Navigation Satellite System (GNSS) and

optic sensors. CI-110 uses the above mentioned inputs to determine the location of

the sun in relation to the location target and it captures images with its hemispherical

lens. Then, the captured image is manipulated with a software to classify green

area, openness and others in a controlled manner. After achieving the controlled

classification, the image is converted into a binary system using Otsu threshold value

method and calculates the areas of the pixels that fall within crop class. These steps

are carried out to determine the Leaf Area Index (Figure 3.2).
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Figure 3.2 : Classification of LAI

3.2 Optical LAI Measurements: Landsat-8

In this study, for optical satellite imagery based LAI measurements, Landsat-8 image is

used due to its relatively wide spectral range and the spatial resolution. Additionally,

Landsat-8 images can be obtained freely from the United States Geological Survey

(USGS: http://landsat.usgs.gov/) data archive system and, thus, they

can be used for long term vegetation monitoring and parameter determination. In

this particular study, Landsat-8 OLI data acquired on 28 August 2015 with 30

m pixel resolution were downloaded from the website of the USGS http://

landsat.usgs.gov/. The Landsat-8 with 181 path and 032 row for Scene

"LC81810322015240LGN00" covers the entire rice field. Surface reflectance of the

scene for each channel (blue (B), green (G), red (R), NIR, and the two short wave

infrared (SWIR1, SWIR2) were calculated by using FLAASH embedded in the ENVI

software and were used to determine spectral vegetation indices. These indices are:

NDVI, NDWI, GNDVI, GMI, SR and ZWSI [20], and they were determined for each

field of the six paddy rice plots using the Eqs. (2.7)-(2.14).

3.3 Radar LAI Measurements: Sentinel-1, TerraSAR-X

Sentinel-1 is a long-term mission of a polar orbiting satellite launched to provide

continuous all-weather day/night imagery at C-band for observation, mapping and

monitoring purposes [46]. Sentinel-1 is the first satellite built with interferometric wide

swath (IWS) mode exploiting the terrain observation with progressive scan (TOPS)
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technique and has been designed to achieve medium-to-high-resolution imaging

capabilities [47] driven by the need for continuity of data provision with improved

revisit, coverage, timeliness and reliability of service [48]. The Wave Mode of

Sentinel-1 has selectable single polarization (VV or HH) and for all other modes,

Sentinel-1 has selectable dual polarization (VV+VH or HH+HV).

For this study, the Sentinel-1 image acquired on 27 August, 2015 was downloaded

from the website of ESA https://scihub.copernicus.eu/dhus/. The

Sentinel-1 image was processed using the Sentinel-1 Toolbox. After performing

radiometric calibration, terrain correction (With SRTM) and speckle filtering with a

7× 7 window, the intensity of the VV and VH polarized images were transformed to

backscattering coefficients σ0 using Eq. 2.1 with the help of SNAP software.

TerraSAR-X is a German national SAR-satellite system that features an advanced

high-resolution X-Band SAR based on the active phased array technology. This

technology allows the operation in Spotlight, Stripmap and Scan SAR Mode with

various polarizations [49]. The radar of TerraSAR-X has single and dual polarization

options. It also has an additional quad polarization option for Mission specific captures.

TerraSAR-X captures in 5 modes with resolutions ranging from 1m (High Resolution

Spotlight Mode) to 18.5m (Scan SAR Mode) and revisit times ranging from 2.5 days

to 11 days depending on imaging mode.

It could be understood from above given characteristics of Sentinel-1 and TerraSAR-X

that the images captured by these sensors are different in resolution and in frequency.

Despite these differences, however, both SAR images can be used to estimate the radar

backscatter of a target on the ground.

The HH and VV polarized intensity images captured on 04 september

2015 were downloaded from Airbus Defense and Space website http:

//terrasar-x-archive.infoterra.de/ and they were transformed to

backscattering coefficients as given in Eq.1. To reduce the speckle boxcar filter

with kernel dimension of 5× 20 m (range× azimuth) was used for calculating σ0

values. Compared to Sentinel-1 imagery, the main advantage of TerraSAR-X is its

high resolution imaging capability. Radar sensor parameters are given in Table 3.1.
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Table 3.1 : Radar sensor parameters

Satellite Mission TerraSAR-X Sentinel-1
Parameter X-Band C-Band
Central frequency [GHz] 9.65 5.35
Average incidence angle [deg] 31 29
Orbit height [km] 515 693
Illuminated area x-size [m] 2.6 7.6
Illuminated area y-size [m] 1.8 5.2
Polarization VV/HH VV/VH
Acquisition date 2015.09.04 2015.08.27

As it is very well known, the backscattering coefficient of SAR images is a function

of various variables that are affected by vegetation and soil types, topography of the

land and the types of the sensor used in the radar. Because of this, the values of the

backscattering coefficient need to be determined using a process-based model [28]. In

addition to backscattering analysis, in this paper, in order to relate the X and C band

SAR signatures to LAI parameter the WCM was used. For this purpose, the vegetation

parameters A, B and the soil parameters C, D required in WCM need to be optimized.

As indicated earlier (Eq. 2.3), WCM is used to determine the backscatter coefficient of

a crop (σ0
veg) as a function the backscatter coefficient of the soil (σ0

soil), soil parameters

(C and D), canopy descriptor (V), dielectric constant, wavelength, polarization and

incidence angle. In WCM, the values of σ0
soil are given in the form of soil

moisture (σ0
BG). However, since paddy rice fields are under water for long time,

the backscattering coefficient from the surface of the soil under the crop canopy

(σ0
BG) can be taken as constant. In shorter, in paddy rice fields, σ0

BG and σ0
soil are

assumed to be equal. In addition, the values of both canopy descriptors (V1 and V2) are

assumed to be equal (V1 = V2 = V ) and can be represented by LAI. This means that

V1 =V2 =V = LAI [29]. In this regard, WCM yields the optimized results to the values

A, B and σ0
BG from LAI and GA was used as an optimization technique to estimate the

vegetation parameters as it is best suited for optimization of parameters [29].

As it is very well known, GAs are the solution for optimization of hard problems

quickly, reliably and accurately [50]. In other words, GA is a computerized search

and optimization algorithm based on the prototype of natural selection and natural

genetics [51]. Usually, a simple GA for optimization comprises six major components,
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namely genetic representation, reproduction, cross-over, mutation, a fitness function

and termination criteria [50].

Genetic representation: Initially, a population of parameters proportional to the total

string length is generated using a random generator. Generally, GAs have been

developed by using binary coding in which a string (or chromo-some) is represented

by a string of binary bits that can encode integers or real numbers. In this study, the

parameters A and B were encoded as substrings of binary digits having a specific

length. These substrings are joined together to form longer strings representing a

solution. The length of the substring is determined according to the desired solution

accuracy and is dependent on the range and the precision requirement of the parameter

[52].

Reproduction: The strings generated in the initial population are chosen for

participation in the reproduction process based on their fitness values. Many

selection schemes, such as deterministic sampling, stochastic sampling with or without

replacement, stochastic tournament selection and fitness proportionate selection, can

be used for the reproduction process [53]. In this study, fitness proportionate selection

has been used, where a string is selected for the reproduction process with a probability

proportional to its fitness. Thus the probability pi of an individual member string i

being selected is given by:

pi =
n

∑
i=1

fi (3.1)

,where fi is the fitness of an individual string i and n is the population size.

The scheme is implemented with the simulation of a roulette wheel with its

circumference marked for each string proportionate to the string’s fitness. The roulette

wheel is rotated p times, each time selecting a copy of the string chosen by the roulette

wheel printer. As the circumference of the wheel is marked according to a string’s

fitness, the roulette wheel mechanism makes fi/ fmean copies of the ith string in the

reproduction. Here, fmean is the average fitness of the population given as:

fmean =
1
n

n

∑
i=1

fi (3.2)
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A string with a higher fitness value represents a larger range in the cumulative

probability values, and, hence, has a higher probability of being copied into the mating

pool.

Mating (cross-over): The general theory behind the cross-over operation is that by

exchanging important building blocks between two strings that perform well, the GA

attempts to create new strings that preserve the best material from the two parent

strings. Cross-over is a recombinant operator that selects two strings from the mating

pool at random and cuts them into bits at a randomly chosen position. This produces

two “head” segments and two “tail” segments. The tail segments are then swapped

over to produce two new full-length strings. The number of strings participating in

mating depends on the cross-over probability. If a cross-over probability of pc is used,

only 100× pc percent strings in the population are used in the cross-over operation.

Cross-over has a wide range of possible types, i.e. one point, multipoint, uniform,

intermediate arithmetical and entered arithmetical [53]. The effect of cross-over

depends upon the site at which cross-over takes place.

Mutation: Mutation is an important process that permits new genetic material to be

introduced to a population. A mutation probability is specified that permits random

mutations to be made to individual genes (e.g. changing 1 to 0 and vice versa for binary

GAs). A mutation operator facilitates the convergence towards an optimal solution

even if the initial population is far from the optimal solution. Binary genetic algorithms

use a very low mutation probability ranging from 0.001 to 0.05.

Termination criteria: In the present study, the GA-based process is stopped when the

fitness criterion is satisfied, or the maximum number of generations is exceeded. The

values of the genetic parameters such as string length, population size, cross-over

probability, reproduction, mutation and termination criteria are given in a later section.

In short, the GA calls the written code repeatedly to find the most appropriate values

of the vegetation parameters A and B, which are then used to find the best relationship

between X- band and C-band SAR signatures and the LAI parameter.
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4. RESULTS

This section covers the LAI estimation of paddy rice fields which had reached

reproductive stage on the acquisition dates.

4.1 The relationship between in-situ LAI and some other crop biophysical

parameters

For investigation the relationship between the LAI and other crop biophysical

parameters of the rice crop in this study, values of the in-situ LAI, GFT, PAR,

Sunflecks, TC and MLA were determined using CI-110. The mean values of these

parameters determined for the 6 fields are presented in Table 4.1.

Table 4.1 : Mean values of the in-situ LAI and other crop biophysical parameters.

Field Area
LAI PAR

Mean Leaf Transmission
Sunflecks

Gap Fraction

No (m2) Angle Coefficient Threshold

1 9761 1.65 1014.61 20.83 0.218 48.96 0.765

2 14551 2.55 867.50 9.55 0.187 51.39 0.760

3 22476 2.62 848.83 16.04 0.186 43.33 0.748

4 21145 2.68 707.57 11.08 0.177 61.11 0.754

5 21784 1.71 825.40 25.45 0.253 32.22 0.769

6 20836 1.85 303.94 18.93 0.223 6.95 0.746

The correlation between the in-situ LAI and the other crop biophysical parameters are

depicted in Figure 4.1. It can be seen from the correlation coefficient values given

on the graph bar in of Figure 4.1 that there is a weak relationship between the in-situ

LAI and the values the PAR and GFT parameters respectively as the corresponding

correlation coefficient values are found to be less than 0.5. However, the TC parameter,

with a correlation coefficient value of -0.905, was found to be related to the in-situ

LAI better than these parameters, followed by MLA (with a correlation coefficient of

-0.869).
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Figure 4.1 : The values of the correlation coefficients of the ground-based crop
parameters and in-situ LAI

PAR refers to the spectral range of solar radiation (400-700 nm). It is determined as

the mean light intensity over the sensors positioned along the top of the CI-110 arm.

PAR can directly be measured by using the sensors. The light above the canopy has a

value ranging from 1 to 2000 µmol/m2s.

Sunflecks refer to the occurrence an increased amount of solar radiation below the

canopy within a short period of time. Wind moving leaves in the canopy or the

sun’s movement within a specific day are the causes of Sunflecks. The size of the

Sunflecks can be used to determine the size of canopy cover and can be related to

the characteristics of the canopy. The sunfleck value is a percentage of the PAR

sensors exposed to a radiation level greater than the set threshold. The default sunfleck

minimum PAR is set at 300 µmol/m2s.

The probability of a ray of light passing through the canopy without touching foliage

or other plant elements is termed as Canopy gap fraction. There are several methods

incorporated in the CI-110 Plant Canopy Analysis software to determine the Gap

Fraction. In this study, the Otsu method was used.

An other parameter which very similar to the gap fraction is the solar beam

transmission coefficients. This coefficient is defined as the fraction of the sky visible

from beneath the plant canopy. This coefficient has values ranging from 0 to 1; 0

meaning no sky is visible below the plant canopy, and 1 meaning that the entire area is

sky or no foliage coverage. The values of this coefficient determined for the six paddy
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rice fields are presented in Table 4.1. As can be seen from this table, the transmission

coefficient values are closer to zero. This is because the ground was well covered with

the crop at the time of the measurement as the measurement was carried ou at the

reproductive stage of the paddy rice crop.

4.2 Backscattering coefficient analysis

In order to see temporal trend of backscattering coefficient over the study area,

first, a total of nine Sentinel-1 satellite images captured in June, July and August

were analyzed. Radiometric calibration, terrain correction and speckle filtering were

performed on these images. The corrected and calibrated images were then used to

determine the values of sigma nought for each pixel in the images. The mean sigma

nought values of each fields were determined for various dates under the various

polarizations. These values were plotted against time and are presented in Figure 4.2

and Figure 4.3.

Figure 4.2 : The time series of average of sigma nought (dB) in VH polarization in
2015.

As can be seen from Figure 4.2, the mean sigma nought values of the fields determined

from the SAR images with VH polarizations tend to increase and decrease with time

except the fact that the sigma nought values determined from the image captured on

August 28, 2015 dropped again. As opposed to this, the mean sigma nought values

of the fields determined from the SAR images with VV polarizations tend to fluctuate
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Figure 4.3 : The time series of average of sigma nought (dB) in VV polarization in
2015.

with time (Figure 4.3). However, the mean sigma nought values of the six rice fields

determined from the SAR images in both VH and VV polarizations capture on June

3, 2015 are very different from one another when compared to the mean sigma nought

values of the fields determined from the SAR images captured on other dates.

The time series of the variance of sigma nought(dB) values under the VH and VV

polarization in 2015 are presented in Figure 4.4 and Figure 4.5 respectively. It can be

clearly seen from these figures that the variance of the mean sigma nought values of

the six fields under both VH and VV polarizations remained more or less below three

in most of the dates. However, the variance values determined from the mean sigma

nought values of the images captured on June 3, 2015 were found to be larger (for

most of the fields) and very different from field to field. As the result, paddy fields

are flooded during the rice-planting season (early vegetation) that has low backscatter

in this season. In the general case of rough water bodies, the visible structures do not

show regular wave pattern; irregular pattern is caused more frequently at the surface

of paddy rice fields and this causes irregular backscattering values. Backscatter of a

paddy field increases as rice grows. However, it is impossible to monitor rice fields

precisely due to speckle noise of SAR data. The default of SAR data is single banded

and contains speckle noise. This could be because of the considerable difference in the

sigma nought values determined from the image captured on June 3, 2015 as depicted
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in Figure 4.2 and Figure 4.3. In general, the increase in stem density is the cause

for the increase in the mean sigma nought values that produced the first peak. The

sigma nought values then decrease as the leaf coverage the thin scatterers (the stems)

increases. Then, the growth of flag leaves and young heads in the top layer of the crop

canopy result in the increase in sigma nought values.

Figure 4.4 : The time series of variance of sigma nought (dB) in VH polarization in
2015.

For further analysis, the sigma nought values determined from the SAR satellite images

captured on August 28, 2015 were selected as the data of field parameters measured

using the CI-110 device were available only for this date.

The backscattering coefficients of the paddy rice in the 6 fields extracted from the

various polarizations (HH and VV in TerraSAR-X and VH and VV in Sentinel-1)

of the SAR images are shown in Figure 4.6. In general, the backscattering

coefficients determined from the image of TerraSAR-X were found to be larger than the

corresponding values determined from the image of Sentinel-1. This could be related

to the fact that TerraSAR-X is located more close to the ground (when compared to

Sentinel-1) with better resolution, high frequency and the more number of pixels. The

TerraSAR-X image was captured on 4 September 2015 and the Sentinel-1 image was

captured on 27 August 2015. It can be seen from this figure that, in all of the 6 rice

fields, the largest backscattering coefficient values were determined from the SAR
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Figure 4.5 : The time series of variance of sigma nought (dB) in VV polarization in
2015.

image in HH polarization. As opposed this, the smallest backscattering coefficients

of rice in the 6 fields were determined from the SAR images in cross polarization

(VH). These values indicate that rice crop fields have the strongest response to the HH

polarization while they have the weakest response to the cross polarization. It can also

be seen from Figure 4.6 that the backscattering coefficients of the 6 fields in the VV

polarizations of both SAR images is between the corresponding backscattering values

in HH and VH polarizations of the TerraSAR-X and Sentinel-1 satellites, respectively.

The backscattering coefficients determined under the HH polarization of TerraSAR-X

image were found to be the highest in all of the rice fields. Based on these analyses,

the HH polarization provides the best discrimination between water and non-water

terrains. This is caused by the low scattering of the horizontal component of the signal

from the smooth open water surface.

The scatter plots developed using the measured LAI values and backscattering

coefficient values of the Sentinel-1 (with VH and VV polarizations) and TerraSAR-X

(HH and VV polarizations) images are depicted in Figure 4.7.

As can seen from Figure 4.7, in general, the LAI values computed using the

backscattering coefficients determined from the TerraSAR-X satellite in the HH

polarization were found to be better correlated with the measured LAI values than
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Figure 4.6 : The backscattering coefficients of rice in the 6 fields for TerraSAR-X
(HH and VV) and Sentinel-1 (VH and VV)

the Sentinel-1 satellite. This could be attributed to the fact that, as also witnessed

by [54], the EM sent from the sensor with HH polarization interacts more with the

vertical structure of the paddy rice crop (leaf size and stem density oriented in the

vertical direction) than the horizontal structure of the crop (leaf size and stem density

oriented in the horizontal direction).

In addition, this could be related to that fact that TerraSAR-X is located close to the

ground to (when compared to Sentinel-1) with better resolution and high frequency.

However, the LAI value measured using backscattering coefficients determined

using the TerraSAR-X image with HH polarization resulted in the largest values of

correlation coefficients (0.778) or correlation determination (0.605) and the littlest

values of correlation determination is for TerraSAR-X image with VV polarization

with 0.292.

4.3 WCM analysis

Analysis based on the WCM use two different SAR frequencies. In this study,

the possibility of extracting information about vegetation parameters A and B from

Sentinel-1 (C-band at 5.35 GHZ frequency and 44.7 incidence angle) and TerraSAR-X

(X-band at 9.65 GHZ frequency and 36.8 incidence angle) were investigated.

Parameter A corresponds to the albedo of the vegetation and parameter B is an
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Figure 4.7 : The scatter plots of observation sigma nought values of the Sentinel-1
(a,b) and TerraSAR-X (c,d)

attenuation factor. Because of its larger wave length, the backscatter of C-band (with

length of 6 cm) is expected to have stronger penetration in to the target than the

backscatter of X-band (with length of 3 cm).

The values of the two parameters (parameters A and B that depend on the type of

vegetation) estimated from the backscatter values of the HH and VV polarizations

in TerraSAR-X and VH and VV polarizations in Sentinel-1 are presented in Table

4.2 (A GA optimization technique was coupled with the water cloud model for the

estimation of the vegetation parameters A and B). The values of parameter B and

the lower values of parameter A presented in the table show the presence of greater

influence of vegetation on the recorded signal. Higher value of parameter B shows

the presence of attenuation and contributes to a larger vegetation descriptor effect on

sigma nought.

By taking in to consideration the values of the standard deviation of parameters of A

and B presented in Table 4.2, it can be said that there are no variations in the values

of parameter A determined from Sentinel-1 VV, TerraSAR-X VV and TerraSAR-X

HH images when compared with the standard deviation values of the Sentinel-1 VH

image, which was found to be relatively larger. The standard deviations of parameter
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Table 4.2 : Parameter values obtained with GA with N = 22

Radar A B RMSE [dB]

Acquisition mean std mean std σ0
obs−σ0

comp

Sentinel-1 VV -0.015 0.003 0.224 0.574 0.00009

Sentinel-1 VH -0.005 0.001 0.489 0.233 0.00011

TerraSAR-X VV -0.024 0.004 0.482 0.907 0.00015

TerraSAR-X HH -0.028 0.005 1.235 0.731 0.01499

B estimated from the SAR images of all polarizations were found to be larger and,

hence, there are larger variations in the values of Parameter B. The RMSE values

presented in Table 4.2 show that the observed and computed sigma nought values are

very close to each other. However, the RMSE value of TerraSAR-X HH was found

to be slightly higher when compared to the other RMSE values presented in the table.

This could be attributed to the presence of larger vegetation descriptor effect on the

observed sigma nought. In addition, WCM based sigma nought values (computed

sigma nought values) of the TerraSAR-X images were found to be not close to the

observed sigma nought (determined with SNAP). As opposed to this, the observed and

computed sigma nought values of the Sentinel-1 images were found to be very close to

each other. This is because the Sentinel-1 sensor has a longer wavelength can be more

sensitive to vegetation [55].

Among the six fields, three field were selected after checking all possible combinations

of fields for calibration and validation. Then, A and B values of the three selected fields

were determined by WCM from the measured LAI values of the three fields. These A

and B values were then used as inputs (together with other required inputs) in WCM

to determine the LAI of the remaining three fields.

The same steps were repeated twenty times to estimate values of LAI index from A

and B values of various combinations of three fields. This means that, for instance,

for the VH polarization of Sentinel-1, A and B values were determined from the mean

values of characteristics of the image determined for the three selected fields as input

into the WCM model. The computed A and B values were, then, used as inputs into the

WCM model together with other required characteristics of the remaining three fields

to determine LAI values for each of the three field. These procedure was repeated
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by considering various combinations of fields for training and testing. A total of 20

combinations (scenarios) were developed using the six fields. Table 4.3 presents the

combination of fields used for training and testing under each scenario.

Table 4.3 : Test and training scenario

Senario
Train Test

Senario
Train Test

NO NO
1 Field 1-3-5 Field 2-4-6 11 Field 2-4-6 Field 1-3-5

2 Field 1-2-3 Field 4-5-6 12 Field 4-5-6 Field 1-2-3

3 Field 1-2-4 Field 3-5-6 13 Field 3-5-6 Field 1-2-4

4 Field 1-2-5 Field 3-4-6 14 Field 3-4-6 Field 1-2-5

5 Field 1-2-6 Field 3-4-5 15 Field 3-4-5 Field 1-2-6

6 Field 1-3-4 Field 2-5-6 16 Field 2-5-6 Field 1-3-4

7 Field 1-3-6 Field 2-4-5 17 Field 2-4-5 Field 1-3-6

8 Field 1-5-6 Field 2-3-4 18 Field 2-3-4 Field 1-5-6

9 Field 1-4-6 Field 2-3-5 19 Field 2-3-5 Field 1-4-6

10 Field 1-4-5 Field 2-3-6 20 Field 2-3-6 Field 1-4-5

The same steps were followed for the VV polarization of Sentinel-1 image and the HH

and VV polarizations of the TerraSAR-X images. Then correlation values between

the LAI values of each fields determined using the above mentioned procedure and

the corresponding in-situ LAI values were determined. Figures 4.8, 4.9, 4.10 and 4.11

depict the correlation values determined between the simulated and in-situ LAI values

of the 20 scenarios.

As can be seen from Figure 4.8, higher correlation coefficients (-0.999, -0.998 and

-0.996) were found under scenarios 3, 13 and 7 for Sentinel-1 VH polarization

respectively. The lowest correlation coefficient was found under scenario 8. By

taking into consideration Figure 4.9, scenarios 2, 8, 20 and 19 were found to result

in higher correlation coefficient values (0.999, 0.997, 0.995 and 0.992 respectively)

for Sentinel-1 VV polarization. The lowest correlation coefficient was found under

scenario 6. Scenarios 14, 20, 13 and 18 were found to result in higher correlation

coefficient values in figure 4.10 (0.999, 0.998, 0.992 and 0.991 respectively) for

TerraSAR-X, HH polarization. Smaller correlation coefficients were observed under

scenarios 3, 4, 8 and 10. Finally, for TerraSAR-X VV polarization, scenarios 18, 20,
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1 and 11 were found to result in higher correlation coefficient values (-0.999, 0.993,

0.988 and -0.986 respectively) (Figure 4.11).

Figure 4.8 : The scatter plots of correlation coefficient under various scenarios for
Sentinel-1 VH polarization

Figure 4.9 : The scatter plots of correlation coefficient under various scenarios for
Sentinel-1 VV polarization

Root Mean Square Error (RMSE) and Normalized Relative Mean Error (RME) values

were used as evaluation criteria to assess the performance of the WCM in estimating

LAI values from the various polarizations of the SAR images. RMSE measures the

difference between the estimated (using WCM) and in-situ values of LAI, whereas

RME measures the relative difference between the estimated and in-situ values of LAI.

Equations 4.1 and 4.2 are used to determine these evaluation criteria. As both RMSE

and RME are functions of the differences between estimated and in-situ values, the
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Figure 4.10 : The scatter plots of correlation coefficient under various scenarios for
TerraSAR-X HH polarization

Figure 4.11 : The scatter plots of correlation coefficient under various scenarios for
TerraSAR-X VV polarization
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smaller the values of these indices (close to zero) the higher the performance of the

model.

RMSE =

√
1/N

N

∑
i=1

(hmeasured−hestimated)2 (4.1)

RME = (hestimated−hmeasured)/hmeasured (4.2)

The RMSE values of the various polarizations of the two SAR images is determine

with Equations 4.1. The RSME of VH and VV polarization of Sentinel-1 are 0.69

and 0.47, respectively. The result for in general, the RMSE values determined under

the VV polarization of Sentinel-1 were found to be smaller than the corresponding

values determined under VH polarization. In addition to the RSME of VH and VV

polarization of TerraSAR-X are 0.457 and 0.467 respectively. The result for in general,

the RMSE values determined under the HH polarization of TerraSAR-X were found to

be smaller than the corresponding values determined under VV polarization.

The RME values of the various polarizations of the two SAR images are given in Table

4.4. The RME values in this table show that, the largest value was found for field 1

under both polarizations, where as the smallest value of RME was found for field 2

under the VH polarization and field 4 under the VV polarization. Nevertheless, as

presented in Table 4.4, the RME values under the VV polarization are smaller than the

RME values under the VH polarization. These show that the Sentinel-1 image with

VV polarization is better for LAI estimation than the Sentinel-1 image with VH.

Table 4.4 : Results of the performance evaluation criteria for TerraSAR-X and
Sentinel-1

RME

Sentinel-1 Sentinel-1 TerraSAR-X TerraSAR-X

(VH) (VV) (HH) (VV)

Field 1 0.604 0.315 0.293 0.352

Field 2 -0.184 -0.204 -0.128 -0.120

Field 3 -0.309 -0.183 -0.211 -0.253

Field 4 -0.241 -0.152 -0.182 -0.138

Field 5 0.363 0.290 0.258 0.280

Field 6 0.218 0.204 0.229 0.146
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4.4 Vegetation index analysis

In order to establish a relationship between LAI values and the ZWSI, SR, GMI and

GNDVI indices of the paddy rice crop, the values of these indices were determined

from the satellite image of the study area captured on August 28, 2015 using Landsat-8.

The mean values of these indices are presented in Table 4.5. It can be seen from this

table that the maximum values of the NDWI (-0.785), NDVI (0.770), GNDVI (0.712)

and SR (8.741) indices were found in field-3. In addition, the maximum values of

the ZWSI (2.239) indices were found in field-4, whereas the maximum value of the

GMI index (1.203) was found in field-1. Correlation analysis was then undertaken to

investigate the relationship between the values of these indices and the field measured

LAI values.

Table 4.5 : Mean values of vegetation indices for the fields determined from
Landsat-8.

Field No NDWI NDVI GNDVI GMI SR ZWSI

Field 1 -0.654 0.654 0.628 1.203 4.882 2.0712

Field 2 -0.753 0.756 0.692 1.038 7.357 2.064

Field 3 -0.785 0.770 0.712 1.160 8.741 2.237

Field 4 -0.753 0.761 0.704 1.126 7.828 2.239

Field 5 -0.711 0.712 0.670 1.138 6.259 2.118

Field 6 -0.686 0.667 0.638 0.998 5.399 1.725

In in-situ LAI measurements are tightly correlated with spectral are indices as

summarized in Figure 4.12. Figure 4.12 (a, b, c and d) depicts the scatter plot

developed using the measured LAI values and the values of the SR, NDVI, NDWI, and

GNDVI indices with a linear fit line and the corresponding values of the coefficient

of determination. It can be seen from this figure that the SR index was found to be

best correlated with the measured LAI value (with coefficient of determination value

of 0.832), followed by the NDVI, NDWI and GNDVI indices (with coefficient of

determination value of 0.831, 0.820 and 0.807 respectively).

It can be seen from the correlation coefficient values presented in Table 4.6 that, in

general, the relationship between the GMI index and the other indices is weaker than

the relationship among the other indices, followed by the relationship between the

ZWSI index and the other indices. The correlation coefficient between NDVI and
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Figure 4.12 : The scatter plots of indices

GNDVI is largest positive value (0.995), whereas the one between GMI and NDVI

is the smallest positive value (0.012). In terms of negative relationships, the values

in Table 4.6 show that there exists a strong negative correlation between SR and

NDWI indices (-0.989), while there exists a weak negative relationship between LAI

and GMI indices (-0.117). By taking into consideration the correlation coefficient

values between the indices and the in-situ LAI values, the comparison of the GMI

correlation shows that many of the analysed vegetation indices in this study provide

quite high correlation coefficient. Thus, it is possible to conclude that the vegetation

indices considered in this study are much more sensible to the paddy rice field than

the GMI, with the exception ZWSI, where there exists moderate relationship. It is also

worth to notice that the vegetation indices that correlated better to each other (like the

relationship among NDVI, NDWI, GNDVI and SR) were found to be better correlated

to the in-situ LAI values. Therefore, it is possible to conclude that these indices are the

best.

4.5 Correlation analysis within remote-sensing images

As a means of inter-comparing the performance of the SAR image based and Landsat-8

based LAI estimation, a bar graph was used. Figure 4.13 depicts the bar graph
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Table 4.6 : Mean values of vegetation indices for the fields determined from
Landsat-8.

NDWI NDVI GNDVI GMI SR ZWSI LAI

NDWI 1 -0.976 -0.978 0.065 -0.989 -0.592 -0.906

NDVI -0.976 1 0.995 0.012 0.973 0.695 0.911

GNDVI -0.978 0.995 1 0.058 0.983 0.717 0.898

GMI 0.065 0.012 0.058 1 0.065 0.708 -0.117

SR -0.989 0.973 0.983 0.065 1 0.679 0.912

ZWSI -0.592 0.695 0.717 0.708 0.679 1 0.536

LAI -0.906 0.911 0.898 -0.117 0.912 0.536 1

developed based on the values of the correlation coefficients of the ground-based

and remote sensing based LAI estimations. The figure also depicts the correlation

values determined between the in-situ LAI and the various field measured biophysical

parameters.

Figure 4.13 : The values of the correlation coefficients of the ground-based and
remote sensing based LAI estimations

It can be clearly seen from this figure that the SR, NDVI, NDWI and GNDVI indices

of the Landsat-8 image were found to be much better correlated to the in-situ LAI

values better than the LAI values estimated from the backscattering coefficients of the

36



TerraSAR-X image with HH polarization. Therefore, it can be stated, from the above

given inter-comparison, that optical sensor (Landsat-8) images are better sources of

data for the quick and accurate estimation of the LAI value of the paddy rice crop in

the study area than SAR (Sentinel-1 and TerraSAR-X) images.

The number of pixels that cover each field of the paddy rice under the two SAR images

and the Landsat-8 image are presented in Table 4.7. As can be seen from the table, the

number of pixels of the fields of Landsat-8 image range from 18 (field 1) to 36 (field

3). By taking into consideration the number of pixels from the Sentinel-1 image, the

number ranges from 130 (field 1) to 297 (field 3).

Table 4.7 : Samples of 6 fields for TerraSAR-X, Sentinel-1 and Landsat-8

# Samples
TerraSAR-X Sentinel-1 Landsat-8

Field 1 406 130 18
Field 2 722 193 25
Field 3 536 297 36
Field 4 280 282 33
Field 5 379 288 34
Field 6 500 276 32

Table 4.8 is given to present the cross correlation values determined between the

polarization that best simulated LAI (HH for TerraSAR-X and VH for Sentinel-1) and

the SR index of the Landsat-8 image that was found to be best correlated to LAI. As

can be seen from the table, the largest cross-correlation value (-0.880) was found to be

between the VH polarization of Sentinel-1 and the SR index of Landsat-8 images. The

negative sign shows the presence of inverse relationship.

Table 4.8 : Cross correlation values of the two SAR images

TerraSAR-X Sentinel-1 Landsat-8

TerraSAR-X 1 -0.488 0.532

Sentinel-1 -0.488 1 -0.880

Landsat-8 0.532 -0.880 1
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5. CONCLUSIONS AND RECOMMENDATIONS

Acquiring reliable and accurate LAI values rapidly is an essential to study ecosystem

processes and undertake process-based ecological research. For large spatial extents,

however, is difficult to directly acquire LAI because of its time consuming and

work intensive nature. In this study, the satellite images were used as data sources

to compute rapidly and accurately LAI values of paddy rice crop at reproductive

stage, which is the most heterogeneous period of the growth cycle of the crop.

This study analyzed the presence of relations between in-situ measures LAI and

backscattering coefficients determined from SAR images having various polarizations,

and vegetation indices computed from optical image (image from Landsat-8). The

following conclusions can be drawn from the results of the study:

• The correlations obtained between the in-situ LAI and the values of the field

parameters were not found to be good except with the Transmission Coefficient, which

was found to be about -0.9048.

• The correlations between the in-situ LAI and the backscattering coefficients

computed from the SAR images with various polarizations were found to be weak with

the R2 values of the Sentinel-1 VH, Sentinel-1 VV, TerraSAR-X HH and TerraSAR-X

VV polarizations being about 0.57, 0.46, 0.61 and 0.29, respectively.

• The correlations obtained between the in-situ LAI and the vegetation indices

generated from the Landsat-8 image were, in general very good except with the ZWSI

(0.29) and GMI (0.01) indices.

• In particular, the correlations obtained between the in-situ LAI and the SR, NDVI,

NDWI and GNDVI indices were found to be very good with the R2 values of the

0.832, 0.830, 0.820 and 0.810, respectively, that SR with 0.832 being the highest.

• The indices given as functions of NIR EM radiation resulted in higher correlation.

• From the performances of the SR and NDVI indices, it could be understood that

normalization can slightly decrease the correlation coefficient values.
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Therefore, the LAI at the reproductive stage of paddy rice crops at a large scale can

be mapped using simple linear relationships with the SR, NDVI, NDWI and GNDVI

indices. However, since this study was based on only one variety of rice and in

one particular area, undertaking a similar research in various geographical regions by

considering various rice species and different growth stages would be an interesting

research topic for the future.
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