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HYPERSPECTRAL IMAGE 

COMPRESSION USING SPARSE REPRESENTATIONS 

AND WAVELET TRANSFORM BASED SPECTRAL DECORRELATION 
 
 
 
 

 

SUMMARY 

 

Being a spectral imaging technique, hyperspectral imagery enables acquisition of 

electromagnetic spectrum data in hundreds of narrow bands. The chemical 

composition of objects within the viewing range of hyperspectral sensors may be 

analyzed with the help hyperspectral imaging techniques. Providing a huge amount of 

data comes with a heavy cost of size. To that extent, hyperspectral compression 

methods become essential for transmission and storage purposes. 
 

There are two fundamental ways for data compression, namely, lossless and lossy. 

Lossy methods aims at compressing the data as much as possible while keeping the 

reconstructed data quality as high as possible. On the other hand, lossless compression 

techniques, as the name suggests, are targeted towards compressing the data in a 

lossless manner with the largest possible compression ratio value defined as the ration 

of uncompressed data size to the size of the compressed data. Lossless compression 

schemes typically achieve much higher compression ratios as compared with lossy 

techniques. 
 

For hyperspectral compression purposes, data-driven approaches, such as dictionary 
learning based lossy compression methods, yield better compression performance 

compared with other state-of-the-art methods. Regarding the lossless compression 
methods for hyperspectral imagery, integer wavelet transform based techniques are 

reported to perform better in terms of compression ratio. 
 

In this thesis, a novel hyperspectral image compression approach that blends a fully 

data-driven technique based on sparse representations and an integer wavelet 

transform based algorithm is proposed. The hyperspectral data is spectrally 

decorrelated using various integer wavelet filters at different levels. The decorrelated 

data is then processed according to its frequency content in such a way that highly 

correlated, sparse high-band block is compressed in a lossless fashion with JPEG2000. 

On the other hand, a sparse representation is obtained for the low-band block making it 

possible to represent the lower subband data block using a few number of coefficients. 
 

Experimental results indicate that, the proposed hybrid method perfroms better than 
the existing hyperspectral image compression techniques. 
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SEYREK GÖSTERİMLER VE DALGACIK DÖNÜŞÜMÜNE DAYALI İZGEL 

İLİNTİSİZLEŞTİRME KULLANARAK HİPERSPEKTRAL GÖRÜNTÜ 

SIKIŞTIRMA 

 
 
 
 
 

ÖZET 
 

 

Son yıllarda, görüntü işleme alanındaki çalışmaların sayısında ve çeşidinde artış 

olduğu gözlenmektedir. Birçok dalga boyu bandında algılanan enerji üzerinde hassas 

kayıt yapabilmek için uzaktan algılama bu alanlardan en önemlisidir. Hipperspektral 

görüntüler, dijital görüntülerin ve spektroskopinin güçlü yanlarını birleştirir. Bir 

hiperspektral kamera, komşu spektral bantların büyük bir kısmı için ışık yoğunluğunu 

yakalar. Hiperspektral görüntüler, farklı izgelere olan duyarlılıklarından ötürü, 

algıladıkları nesnelerin kimyasal içeriğine ilişkin önemli bilgiler sunmaktadır. 

 

Uydu görüntüleri ve özellikle hiperspektral görüntüler, farklı bilimlerin birçok alanı 

için önemli veri kaynağıdır. Uydu görüntüleri, insan gözü veya diğer teknolojiler 
tarafından algılanamayan, yeryüzündeki geniş bir alanı kaplar. Uzaktan algılama terimi 

ilk olarak 1960'larda kullanıldı. Bu teknoloji, yeryüzünün uzaktan gözlenmesini esas 
almıştır. Yeryüzünü izlemek için farklı yükseklikteki uydular kullanılır. 

 

Bu çalışmada, çevrimiçi öğrenmeyi temel alan seyrek kodlamayı kullanarak kayıplı bir 

hiperspektral görüntü sıkıştırma yöntemi önerilmektedir. Hiperspektral görüntüleri 

çevrimiçi sözlük öğrenme yöntemine dayanan seyrek kodlama algoritması 

uygulayarak temsil etmek için en az sayıda katsayı elde edilir. Sonuçlar, sıfır olmayan 

sözlük öğelerinin bir ön analizinin, genel sıkıştırma kalitesini iyileştirmede yardımcı 

olabileceğini ortaya koymaktadır. 

 

Seyrek kodlama tabanlı hiperspektral görüntü sıkıştırma, literatürdeki tekniğin mevcut 
durumunu yansıtan yöntemlere göre, özellikle düşük bit hızlarında daha iyi veri hızı-
bozunum başarımı vermektedir 

 

Seyrek gösterim, önceden eğitilmiş bir sözlükten birkaç sözcüğün (atomun) doğrusal 

bileşimi olarak sinyalleri modelleme yeteneğine sahiptir. Sinyallerin gösterilmesinde 

çok seyrek doğaya neden olan uyarlanabilir bir sözlük öğrenmeyi sağlar. Bu 

çalışmada, seyrek gösterim, kayıplı bir hiperspektral veri sıkıştırma çerçevesinde 

konuşlandırılmıştır. Spektral korelasyonun yanı sıra hem spektral hem de mekansal 

korelasyondan yararlanan sözlükler çevrimiçi sözlük öğrenimi kullanılarak eğitilir. 

Daha sonra, hiperspektral bir veri, seyrek kodlama yoluyla öğrenilen sözlük 

kullanılarak gösterilir. Oluşan seyrek katsayılar nihai bit akışı formüle etmek için 

kodlanır. Bir dizi hiperspektral veri kümesindeki deneysel sonuçlar, önerilen 

yaklaşımın hız-bozulma performansı açısından 3D-SPIHT gibi dalgacık tabanlı 

yöntemlerle rekabet ettiğini göstermektedir. 
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Seyrek modeller, sıfır olmayan elementlerle verilerin temsil edilmesini sağlar. Seyrek 
modellerin bu özelliği, veri sıkıştırma amacıyla seyrek modellerin kullanılmasının 
uygun olabileceğini düşündürmektedir. 

 

Teknolojinin gelişmesiyle birlikte, görüntüleme teknolojileri, hiperspektral 

görüntüleme gibi görüntüleme yeteneklerine ve gelişmiş görüntüleme özelliklerini 

olanaklı kılmıştır. Hiperspektral görüntülerin kullanılması ile, spektral düzlemdeki dar 

bant genişlikleri ile çok büyük miktarda veri işlenmeye başlandı ve daha yüksek 

hesaplama maliyetleri oluştu Sınıflandırma performanslarındaki artışa rağmen, bu 

büyük boyutlu verilerin boyutunun azaltılması önemli bir olgu hâline geldi. 

 

Bu çalışmada, çevrimiçi öğrenmeyi kullanan seyrekliğe dayalı hiperspektral görüntü 

sıkıştırma yöntemleri için bir çerçeve ve dalgacık dönüşümüne dayalı bir izgel 

ilintisizleştirme önerilmektedir. Bu amaçla, tamsayı katsayılı dalgacık dönüşümü 

süzgeçleriyle izgel ilintisizleştirilen hiperspektral veri, JPEG2000 kodeği ile kayıpsız 

olarak, seyrek gösterimlere dayalı yöntemle ise kayıplı olarak sıkıştırılmaktadır. Bu 

sâyede, kayıpsız ve kayıplı sıkıştırma yöntemlerinin en uygun yönlerini bünyesinde 

barındıran melez bir hiperspektral veri sıkıştırma yöntemi geliştirilmiştir. 

 

Farklı seyrek optimizasyon modelleri bulunmaktadır. Hiperspektral görüntü sıkıştırma 

başarımı ile ilgili seyrek gösterimlerin bağıl analizne de yer verilen çalışmada, 

çevrimiçi öğrenme tabanlı hiperspektral görüntü sıkıştırma modları iki farklı seyrek 
gösterimle sunulmaktadır. İki veri kümesi için hiperspektral görüntüler, üç seviye 

dalgacık dönüşümüyle izgel ilintisizleştirilerek sıkıştırılmaktadır. 

 

Bu çalışma, iki tür veri kümesinden elde edilen (AVIRIS ve HYPERION) iki farklı 

hiperspektral veri üzerinde sonuçların alınmasını sağlamıştır. Ortalama Kare Hata 
(MSE) işlemine dayalı olarak belirlenen PSNR değeri, sonuç başarımlarının 

karşılaştırılması amacıyla kullanılmaktadır. 

 

Bu tezde, verilerin mümkün olduğunca içsel bağıntısını kullanmak için tamamen veri 

tabanlı tekniklerden (sözlük öğrenme tabanlı seyreltik gösterimler) ve sabit katsayı 

dönüşümü (wavelet / DCT) temelli algoritmalardan yararlanarak dengeli bir 

hiperspektral görüntü sıkıştırma yaklaşımı önermekteyiz. Bu bağlamda, hiperspektral 

veriler tam rekonstrüksiyon elde etmek için tamsayılı dalgacık dönüşümü temelli filtre 

bankaları kullanılarak spektral olarak ilintisizleştirilir. Spektral olarak ilintisizleştirilen 

verilerin, yüksek bant kısımları JPEG2000 standardıyla kodlanacak şekilde 

sıkıştırılırken, düşük bantlı veriler için çevrimiçi sözlük öğrenme çerçevesini 

kullanarak seyrek bir gösterim elde edilir. 

 

Tezin katkısı, veriye dayalı uyarlanır katsayılı yaklaşımlar ile veriden bağımsız, sabit 
katsayılı süzgeç temelli yaklaşımların melez ve yenilikçi bir yaklaşımla harmanlanarak 

yeni bir hiperspektral veri sıkıştırma yöntemini ilk kez öneriyor oluşudur. Böyle bir 
yaklaşımın arkasındaki ana motivasyon, her iki yöntemin de hiperspektral görüntü 

sıkıştırma amaçları için yararlanılmasıdır.  
Hiperspektral görüntülerin kayıplı sıkıştırılması için ayırt edici bir çevrimiçi sözlük 

öğrenme yöntemine dayanan seyrek kodlama algoritması önerilmiştir. Değişken sayıda 

sıfır olmayan sözlük unsurlarının etkileri de analiz edilmiştir. Sonuçlar, önerilen çevrimiçi 

öğrenme temelli seyrek kodlama algoritmasının, PSNR değerleri bakımından 

 

xxii 



daha iyi performans gösterdiği için, daha yüksek veri hızları için kullanılabileceğini 
göstermektedir. Ayrıca, sıfır olmayan sözlük öğelerinin sayısının bir ön analizinin 
sıkıştırma yaklaşımının başarımını artırabileceği değerlendirilmektedir. 
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1. INTRODUCTION 
 

In recent years the focus in several areas in the image processing has been increased. 

Remote sensing is the most important of these areas to carry out accuracy recording 

on sensed energy in many wavelength bands (Jin et al., 2005; Puri et al., 2014). 

Hyperspectral images combine the strengths of digital images and spectroscopy. A 

hyperspectral camera captures the light density for a big amount of neighbouring 

spectral bands. It can get accurate details of objects located in scenes through the 

uninterrupted spectrum owned by per pixel in the hyperspectral images (Url1). 

 

In order to deepen our knowledge of the earth, it is necessary to obtain more 

comprehensive and more accurate information about it. So it is necessary to find 

means to monitor and control remotely especially from space to difficult-to-access 

places on the surface of the earth. Satellite images, and especially hyperspectral 

images, are important sources of data for many fields of different sciences. Satellite 

images cover a large area on the surface of the earth that is invisible to human eyes or 

other technologies. The term remote sensing was first used in the 1960s. It 

principally linked the study of the earth's surface and its biosphere. Satellite of 

different altitude are used to monitor the earth (Eismann, 2012). 

 

Hyperspectral imaging (HSI) is a part of remote sensing technology for space 

reconnaissance and earth surveillance purposes (Goetz, 2009; Eismann, 2012). Being 

a spectral imaging method HSI acquires reflection data from objects in hundreds of 

narrow adjacent electromagnetic spectral bands. Hence, the acquired data may be 

visualized as a three-dimensional matrix of radiation or reflection values. It has two 

dimensional spatial and one-dimensional spectral components. A sample HS image 

data cube (3D matrix) is shown in Figure 1.1. 
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Fig. 1.1. A hyperspectral data cube sample (Low Altitude). The data cube is formed 

by a stack of two dimensional band images where bands make up the 

spectral component of the data. 

 

Hyperspectral images compared to the regular visible range camera images can 

provide more abundant and accurate information of the scenes. Hyperspectral images 

provide insight about the chemical composition of the objects under consideration 

thanks to its spectral content. 

 

Hyperspectral images come with the cost of huge data size. These massive data volumes 

strain storage and transmission strength of the present system (Romines, 2006). NASA’s 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS), for example, can produce a 

data size of around 16 Gigabytes in every day. Thus, there is an indispensable need of an 

efficient way of data compression which possibly exploits the correlation within the 

spectral and/or spatial content of the hyperspectral imagery. 

 

There are many hyperspectral image compression techniques in the remote sensing 

literature (Ngadiran et al., 2010; Karami et al., 2010; Nallathai et al., 2013, Christophe, 

2011). Handling hyperspectral data as a 3D cube and applying 3D compression 

technique that is an immediate extension of 2D technique is one of them. 3D Set 

Partitioning In Hierarchical Trees (SPIHT) and 3D JPEG 2000 are samples of these 

methods. Unlike the first method, where 3D hyperspectral data cube is compressed 

directly, in the latter approach, compression method is implemented to de-correlate the 

3D data cube in the spectral dimension and the method is followed by 2D spatial 
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compression (Ramakrishna et al., 2005; Christophe, 2011; Hassanzadeh and Karami, 

2016). 

 

Many compression approaches depend on transform based techniques, such as Discrete 

Wavelet Transform (DWT) (Lee et al., 2005; Yang et al., 2007; Tang et al., 2003; Huang 

et al., 2004; Ramakrishna et al., 2006 and Christophe, 2011), and Discrete Cosine 

Transform (DCT) (Wang et al., 1998). The disadvantage of the transform based 

compression techniques is that the algorithm does not take into account the content of the 

data under consideration. As such, fixed filter coefficients are used to compress the 

hyperspectral imagery without considering the inherent characteristics of the data to be 

compressed. On the contrary, dictionary and sparse representation based approaches aim 

at using filter coefficients that adapt to the specific content of the hyperspectral data to be 

compressed (Ülkü and Töreyin, 2015a). 

 

Dictionary and sparse representation based algorithms were recently proposed for 

HSI compression and analysis purposes (Ülkü and Töreyin, 2015a; Huo et al., 2012; 

Wang et al., 2014; Ülkü and Töreyin, 2015c) The important aspect of the sparsity 

based compression techniques is that a dictionary is learned in accordance with the 

input data. In addition, a sparse representation based on the learnt dictionary is 

achieved yielding a tightly coupled representation of the data to be compressed. 

 

Apparently, transform based techniques and data-driven approaches, like dictionary 

based methods, may be considered as two extreme approaches for HSI compression. 

The transform based techniques compress the data using filters that are totally 

independent from the data itself. On the other hand, dictionary learning based 

methods are fully data-driven. 

 

1.1 Contribution of the Thesis 

 

In this thesis, we propose a balanced hyperspectral image compression approach by 

leveraging fully data-driven techniques (dictionary learning based sparse representations) 

and fixed coefficient transform (wavelet / DCT) based algorithms, to exploit the inherent 

correlation of the data as much as possible. To that extent, hyperspectral data is 

spectrally decorrelated using integer wavelet transform based filter banks, in order to 

achieve perfect reconstruction. Spectrally decorrelated data is further compressed in such 

a way that the high-band data is coded with JPEG2000 standard (Töreyin et al., 2015), 

whereas a sparse representation is obtained for the low-band data using an online 

dictionary learning framework (Ülkü and Töreyin, 2015b). 
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The contribution of the thesis is that a hybrid hyperspectral data compression method 

blending a pure data driven dictionary learning framework with a fixed coefficient 

integer wavelet transform based spectral decorrelation mechanism is proposed for the 

first time. The main motivation behind such an approach is to exploit the advantages 

of both methods for hyperspectral image compression purposes. 
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2. LITERATURE REVIEW 
 

 

In this chapter, a survey on the compression of hyperspectral imagery is presented. 

The chapter starts with a review on lossy compression methods for hyperspectral 

imagery. It is followed by a discussion of techniques on lossless hyperspectral image 

compression. Other hyperspectral data compression techniques leveraging lossless 

and lossy approaches in the literature, such as, distributed source coding based 

methods are also reviewed. The chapter concludes with a discussion on sparse 

representations and dictionary learning based methods, as lossy compression 

approach presented in the thesis is substantially based on sparse representations. 

 
 

2.1 Lossy Compression of Hyperspectral Images 

 

From the title, it seems to be different from our subject, but what concerns us is touched 

by a researcher from the sparse representation as well as how to handle the dictionary 

learning in hyperspectral images (Ülkü and Töreyin, 2014). Gave a description of the 

process of using the dictionary learning which in turn is the process of data loss, was a 

result of the Peak Signal to Noise Ratio (PSNR) indicated without utilized the dictionary 

learning 31.49, On the contrary, this work in which the value of PSNR (infinity) and 

after using the dictionary learning and three levels the researcher gets different values 

show from 44 to the level of first and ranging to 104 for the third level that describes the 

impact of the dictionary learning on the images compression and its quality. And the fact 

that the loss caused many problems during the classification process can be overcome 

using the hybrid compression, which in turn provides the features of the image to obtain 

a good and accurate classification after compression (Lee et al., 2015). But others 

adopted some methods and after dividing the hyperspectral images into several layers of 

pixels, which are prone to applying Spectral Angle Mapping (ASM) and Principal 

Component Analysis (PCA). This process subject to segmentations with wavelet 

transform (WT) (Tamhankar and Fowler, 2007). But (Zhou et al., 2006) have another 

opinion which is to keep the basic information in the images and the intended edges, 

which is applied to spatial decorrelation. In 
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(Alaydın and Töreyin, 2016) their approach depends based on the value of bit rate 

this mean getting the best quality of performance that should has low BPS, Before 

use the dictionary learning step over the low-sub-band data, adopted by the above 

author one level of WT The higher subband is further compressed in a lossless 

approach utilizing JPEG2000. Regarding the dictionary learning is considerd a lossy 

manner during data compression, On the contrary, the spectral decorrelation in our 

work carried out by 6 types of filter (Haar, 9\7, 5\3, 9\3, 6\2 and 5\11c). With three 

levels WT. As well the higher sub-band is compressed using JPEG2000.Sparse 

representation plays an important role in the process of removing noise from spectral 

images (Lu et al., 2016). its use in this aspect to overcome the relapse in 

hyperspectral images resulting in noise in the images (Christophe et al., 2005; Acito 

et al., 2011; Lin and Bourennane, 2013). Spectral image compression process has 

proved in these days a flexible environment to work in the field of research. As we 

mentioned above that the spectral images consisting of three dimensions, as well as 

containing a set of images or scenes similar but different wavelength (Puri et al., 

2014). It can be obtained or picked many ways the first of sensors such as NASA's 

(Shahriyar et al., 2016). Because of technical possibilities possessed by the spectral 

images taken advantage of widespread use in many areas such as disclosure and 

determine the analogy of the surface (Tang and Pearlman, 2006). The compression 

type above can be two types of compression lossy, lossless as we said earlier that the 

first in which some information is lost after the compression process, while the 

second is information retrieval entirely. It's not in favour of the second (lossy) 

because some data loss leads to loss of the main factor in the spectral images and is 

responsible for the discovery processes as well as identification and this factor is 

called spectral signatures. Well, there are two ways to spectral image compression, 

the first dealing with the overall size of the cube, in other words, compression is 

three-levels in order to get the highest possible proportion of this process (Töreyin et 

al., 2015). The second relies mainly on the spectral correlation (Prasad et al., 2011). 

 

 

2.2 Lossless Hyperspectral Image Compression and Decorrelation approaches 

 

In this part we will present two papers that almost has a little similarity correspond to 

this work, the first one that focused in estimate the performances by utilized the 

integer-coefficient DWT filters but the author also focused on compression ratio and 

the influence of the filters which we mentioned them above (Töreyin et al., 2015). 
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While in our work we used these filters in many operations and the important one 

compression. And the second part to take the process used in the process of calculating 

bit rate sample by used the JEPG2000 method for gitting the lossless compression of the 

high sub-band in all levels WT. But there are researcher follow other steps to get liken to 

original data, that means after the spectral image compression we get a few data loss of 

contents (lossless), In this approach it has been to rely on non-linear generalization of the 

statistical technique, popular technique for getting patterns in data of high dimension that 

mean based on PCA Which it has been applied to a set of images by auto-associative 

neural networks, researcher also touched on that image compression process and increase 

limited to the number of nodes in them , and the Nonlinear Principal Component 

Analysis (NLPCA) played a major role in the search being allowed to lose a minimal 

number of features (Licciardi et al., 2014). 

 

the researcher proficient in the use of technology above depends on the statistical 

properties of the images and he proved through experience that the use of this technique 

is best to get a good outcome to the process of spectral image compression, as well as the 

calculations modest and uncomplicated (Wang et al., 1995). A new technique is 

considered at the time to get the images is not devoid of original data (lossless) and the 

experience was on the Landsat-TM data. There are some researchers followed styles in 

order to process the content above, which is used in linear prediction and some of them 

over the work stages so as to get rid of the impurities after the compression process 

(Roger and Cavenor, 1996). But there is another follow a new approach, a deep dealing 

with images spectral properties. This was done by taking advantage of the abundance of 

spectral in hyperspectral images, as well as relying on the existing correlation between 

neighbouring bands in the images mentioned above (Wang et al., 2007). Some used the 

same idea of redundancies of inter-band and depending on (Context-based, Adaptive, 

Lossless Image Codec) for getting the high performances from compression, as well as 

whereby it can reduce the bit rate compared to the rest research (Wu and Memon, 2000). 

 

 

Lossless compression is predominantly carried out in two procedure, the first one 

Decorrelation in this point able to visible accordingly to first-order entropy decrease 

step in which the abundance or correlation of the data is isolated and a superfluity 

image is acquired. There are a lot of predictors are progressing for this aim. The 

second, Coding: This stage utilizes a coder that transitions the remaining image for a 

 
 

7 



result bit stream. Generality the algorithms of lossless compression in remote sensing 

environments employ just for spatial decorrelation (Memon et al., 1994). 

 

There are different types of spectral decorrelation approaches likewise (KLT), 

(DWT), (DCT) and Vector Quantization (VQ) able to done by previous to 2- levels-

compression (Galli and Salzo, 2004; Magli et al., 2004; Christophe, et al., 2008; 

Mielikainen and Toivanen, 2003; Aiazzi et al.,1999; Bilgin et al., 2000; Penna et al., 

2006; Lee et al., 2002). 

 

Every model or approach includes pros and cons. For example, KLT contains the 

better decorrelation efficiency; but, it is so complicated and there are necessarily for 

a large quantity of calculation energy, storage and time that gives a pointer it 

inappropriate with regard to spaceborne applications. Besides, VQ needs for lower 

time and least computation energy; however, compared with KLT it has minimum 

decorrelation performance. Resource demand of DCT is significantly less matched to 

prior of which; but, it presents a lossy transform that is unsuitable concerning with 

lossless image compression. Ultimately, DWT presents lossless and lossy transform 

that able to chosen by means of a user and accompanied by comparatively less 

complicated, low counting time and power need. 

 
 

2.3 Lossy and Lossless Hyperspectral Image Compression 

 

Hyperspectral Images refer to the images that have a sufficient amount of spectral bands. 

Those bands mostly contain a kindly spectral abundance and spatial abundance. As 

mentioned above, the process of compressing hyperspectral images can be divided into 

two processes “lossless” approach such as (Mamatha and Singh, 2014; Töreyin et al., 

2015b; Shahriyar et al., 2016). The other approach “lossy” such as (Ülkü and Töreyin, 

2014; Conoscenti et al., 2016). In addition to the approaches followed there are many 

methods for both approaches, like Optimized for Spectral Unmixing (Karami et al., 

2016) and other depending on Independent Component Analysis (Yang et al., 2014). The 

number of bands and the excessive flexibility found in hyperspectral images give the 

opportunity for many to work in the conversion between approaches, lossy to lossless 

and vice versa. In (Cheng and Dill, 2014) a lossless to lossy compression methods for 

hyperspectral images that depending on dual-tree Binary Embedded Zerotree Wavelet 

(BEZW) algorithm, The algorithm conforms with Karhunen–Loève Transform and 

DWT to obtain 3- levels integer reversible hybrid 
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transform and decorrelate data of a hyperspectral image. While in (Wang et al., 2009) 

the approach that followed Lossy-to-lossless hyperspectral image compression they 

suggest a modern transform way of multiplierless reversible time-domain lapped 

transform and Karhunen–Loève transform (RTDLT/KLT) for lossy-to-lossless 

hyperspectral image compression. Instead of using (DWT) in the spatial domain, 

RTDLT is utilizing for decorrelation. 

 

Diminishing the abundance is consider the major target of the data compression( 

encoding information) algorithms. With a view to attaining this, an existent 

correlation in the images is possible to depend. Probably, generally utilized 2- levels 

image compression principles, like JPEG-LS or JPEG2000 at all events, look just the 

intra-band correlation. Accordingly, high inter-band correlation attends in 

hyperspectral images residues not take advantage of that outcome in low 

compression rates. Furthermore, so as to obtain best compression ratios the spectral 

correlation offer in the image must be traded on. 

 

There are two major kinds of hyperspectral image compression approaches. The first 

is depending on 3- levels compression, which deals with the data or images as cube 

style. This is a type of compression modes possible to obtain top compression ratios. 

But, decorrelating the data in all three dimensions with one another, raises the 

hardware intricacy and demands a massive magnitude of processing energy and 

storage, which is commonly out of the question to be faced by spaceborne 

frameworks. Furthermore, the wanted time of processing is very loudly that it 

impossible contraction the data rate created through of hyperspectral sensors. So, 3- 

levels compression modes are mostly used for earth applications and comparatively 

tiny images like biomedical images (Penna et al., 2006; Schelkens et al., 2000; 

Dragotti et al., 2000). 

 

2.4 Distributed Source Coding Based Hyperspectral Image Compression 
 

Each compression process flaws and advantages that make many researchers search for 

techniques that give or produce high performance in hyperspectral image compression. 

One of these important technologies that have been introduced because of its 

effectiveness Distributed source coding (DSC), which some relied on to facilitate of 

some complicated calculations and the dynamic process between encryption and 

decryption (coder and encoder) through the control of correlation in various bands (Barni 

et al., 2005). However, in another work, have been exploited on the relationship 
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between DSC- wavelet and the process of combining DSC and intra-coding that the 

results were satisfactory as well as technical was convenient for the three-dimensional 

wavelet (Barni et al., 2005). Some researchers follow a bit of the same technique to 

exploit the correlation between pixels bands, with the use of technology ensures 

hyperspectral images efficiency by utilizing prediction model with wavelet interference. 

Tang et al. and Barni et al. (2005) suggest algorithm for lossless hyperspectral 

compression-based on multilevel coset codes. That depended on a block-based way, after 

the process of separation bands of images to a group of small separate blocks are 

processing or analysis of each block separately. This deal with blocks gives outstanding 

performance and is far from the complexity (Cheung and Ortega, 2009). 

 
 

 

2.5 Dictionary Learning for Hyperspectral Image Compression 

 

The spatial resolutions of hyperspectral images are generally lower due to imaging 

hardware limitations. High resolution algorithms are more usable for getting superior 

resolutions. There are a numerous algorithms occur to obtain high resolution 

Hyperspectral images from minimum resolution images gained in different 

wavelengths. The most commonly algorithms is sparse representation-based 

algorithms that utilize dictionary learning approaches. According to (Şımşek and 

Polat, 2015) they are study of framework is improvement of indicate which 

dictionary learning algorithm achieve to better high-resolution images. The results 

show that ODL algorithm out KSVD in terms of both reestablishment quality and 

processing times. 

 

Many algorithms like K-SVD (Elad and Aharon, 2006), Non-local means (Buades, et 

al., 2005) and block-matching and 3- levels filtering (BM3- levels) (Dabov et al., 

2007) their target sophisticated about 2- levels image denoising. These approaches 

able to immediately employed for denoising of HSI by denoising every band image 

individually. But, taking into account the bands to be separate restricts performance. 

(Qian et al., 2012; Maggioni et al., 2013) denoise HSIs through seeing 3- levels 

cubes of the HSI rather than the 2- levels patches of a conventional image to 

recovery, however, these modes disregard the rising correlation over spectra and 

restrict their accomplishment. 
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A numerous approaches depend on Wavelet and PCA for Hyperspectral image 

denoising. In study of (Atkinson, et al., 2003; Othman and Qian, 2006) have been 

both suggested wavelet-based HSI denoising algorithms. In another study conduct by 

(Chen and Qian, 2009; Chen and Qian, 2009) submit implementing of dimensions 

decreases and HSI denoising by using of wavelet retraction and principal component 

analysis (PCA). (Lam et al., 2012) are using of principal component analysis for 

dimension decreases in the spectral domain and then implemented denoising in local 

spatial proximity to further developed denoising outcomes. By the findings from 

(Karami, et al., 2011) minimized the noise of Hyperspectral image by using their 

Genetic Kernel Tucker Decomposition. (Guo et al., 2013) denoised the hyperspectral 

image depended on a high-order rank-1 tensor decomposition. Furthermore, (Wang et 

al., 2010; Wang and Niu, 2009) were used an alternative hyperspectral anisotropic 

diffusion scheme to denoise Hyperspectral image. In deep point of findings, (Yuan et 

al., 2012) used spatial-spectral adaptive total kinds of model for their denoising 

forms. In another term, (Zhong and Wang, 2013) together model and uses spatial and 

spectral reliance in a unified probabilistic scope by multiple-spectral-band 

conditional random areas. So, (Zhang et al., 2014) explored the low-rank property of 

hyperspectral image for image restoration. Several methods utilized both spatial and 

spectral data. Whereas, nobody has exploited the non-local self- resemblance offer in 

hyperspectral image of natural scenes. 

 

In study by (Qian and Ye, 2013) submitted the non-local self-similarity and spatial-

spectral framework of hyperspectral image towards a sparse representation structure, 

but their method used a commonly 3- levels dictionary made up from 3- levels DCT 

and 3- levels OWT, that not to be appropriate for some conditions of intended scene. 

 

Finely, (Peng et al., 2014) conducted a hyperspectral image denoising method 

depending on decomposable non-local tensor dictionary learning, due to their model 

did not deal with the neighboring non-local self-similarity towards account. 

 

2.6 Sparse Representation in image processing for Hyperspectral Data 

 

Sparse representation has found many applications In image processing missions like 

image classification (Bahrampour et al., 2016), image denoising , deblurring, 

inpainting (Elad et al., 2010) image restoration (Mairal et al., 2008). Compression of 

a fixed field of images or more public images utilizing sparse representation can be 

found in (Bryt and Elad, 2008; Skretting and Engan, 2011). In (Ülkü and Töreyin, 
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2014) a lossy compression of hyperspectral images utilizing sparse representation was 

presented. Newly, sparse representation (SR) term has been explained to be a strong tool 

in digital signal processing (Li et al., 2013; Zhang et al. 2015). Mostly, natural signals 

are looked to be sparse and can be performed by sparse coefficients (vectors) through a 

dictionary in the SR pattern. The sparse coefficients include just a few nonzero entries; 

consequently, the information of original signals is usually compressed for the small 

nonzero values of sparse coefficients. The SR compression manner has been used to 2-D 

image compression in (Skretting and Engan, 2011) by sparsely representing 

nonoverlapping image patches through an offline dictionary. The gained sparse 

coefficients are quantized to integers and then converted into a bit stream by the entropy 

coding technique. The SR compression way enables prolonged to compression of HSIs, 

ever after spectral signatures of HSI pixels can be sparsely represented according to (Li 

and Du, 2014; Fu et al., 2016; Fang et al., 2016). The basic manner is to separately 

compress every HSI pixel by sparsely representing the pixel’s spectral signature through 

an appropriate dictionary. Distinct the SR-based 2-D image compression (Skretting and 

Engan, 2011), which learns an offline dictionary for different images, the HSI 

compression demands a data-dependent dictionary on account of the big diversity of 

HSIs. Sub dictionary depend on dictionary structure approach (Dong et el., 2013), which 

has a bit complication and leads to sparser representation which may be utilized for SR 

compression. The on the top of SR method for HSIs compression can be called the 

pixelwise SR (PWSR) approach. However, the PWSR method overrides the spatial 

correlation of HSI pixels, i.e., neighboring pixels generally performed the same material 

and share the comparable spectral signatures. In (Eldar et al., 2010; Tang and Nehorai, 

2010) they are offered simultaneous SR of correlative signals (i.e., similar vectors) with 

the row-sparse coefficients can regain signals with higher sparsity scale (i.e., sparser 

coefficients) contrasted with the SR of the single. This is due to the former combine’s 

contextual information of signals into the model. Thus, the spatial correlation of HSI 

pixels is substantial for the SR compression, when neighboring HSI pixels might 

possibly be correlative signals and can be represented by sparser coefficients to get better 

the compression performance. Solving problems related to the process sparse coding 

with hyperspectral image compression and dictionary learning require a stand against the 

main problems and difficulties and to overcome them. 
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The goals of the sparse coding are to build the brief representation for the data (pre-

process data). Depending on this kind with using pre-specified number of atoms can 

be used to generate a data spot of the dictionary learning model the input data (Xie et 

al., 2013; Bao et al., 2016). Using sparse model can obtain the lowest possible 

number of non-zero elements to represent data. 
 

thesis. The hybrid approach, which comprises lossless spectral decorrelation, lossless 

compression of high-band data and sparse representation based lossy compression of 

the low-band data steps, benefits from advantages of both lossless and lossy schemes. 

Dictionary-based learning approaches became very a popular in image processing 

and others fields (Lee et al., 2006; Mairal et al., 2010). In dictionary-based learning 

approaches, through a little of dictionary elements can represent the signals. In lieu of 

depending on previously prepared dictionaries or specific filter coefficients for 

performing compression objective, dictionary learning-based way yields the best 

achievement in an expression of compression ratio and image fineness (Aharon et al., 

2006). 
 

Algorithms which are depending on repeat batch operating guarantee training by 

getting the whole dataset at every repetition that produces such algorithms feeble for 

big datasets (Bousquet and Bottou, 2008). On the grounds that the substitutional 

kinds of algorithms, dictionary learning algorithms whose based on random 

approximations are useful for big datasets. By performing sparse coding approaches 

for dictionary learning aims on hyperspectral imagery is survived previously (Charles 

et al., 2011). Dictionary elements and coefficients identical to those are supposed to 

carry on (either positive or negative) values in (Charles et al., 2011). 

 

The sparse coding optimization issues are presented as a regularized least-squares 

objective function based on a series of standards on the dictionary elements. The 

solution to the trouble is acquired utilizing an optimization package principally 

intended for l1-regularized regression troubles (Koh et al., 2007). 

 

The convex optimization issue which is utilized for updating procedure permits 

detachable chains in the new dictionary columns. Thus, it is ensured that the point of 

the concourse is carried out at the universal optimum stage (Bertsekas, 1999). 

 

Dictionary learning is presented as a solution issue wherever a smooth non-convex 

objective function is optimized through a convex set pleasurable as a series of 

circumstances. This optimization issue is fixed based on the online algorithm. By 
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considering is a partially of the online algorithm, a quadratic surrogate function of the 

experimental cost is reduced within every iterative tread. Manner is proved to converge 

to a fixed point of the cost function with eventuality one (Mairal et al., 2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

14 



 
 
 
 
 
 

3. METHODOLOGY 

 

In this chapter, the proposed compression method is presented, in detail. The method 

is comprised of three stages, namely, i.spectral decorrelation of the hyperspectral 

data using integer wavelet transform, ii. two dimensional lossless compression of 

high subband images, iii. obtaining a sparse representation for the low subband data 

block. Details of the stages are presented below. 

 
 

3.1 Spectral Decorrelation 
 

The data (cube) is decorrelated in the spectral direction using integer wavelet 

transform. This results in low and high subband data blocks (cf. Figure 3.1). 
 

Let X∈R
n

l 
x n

s 
x n

b represent the hyperspectral image, where the number of bands in the hyperspectral cube is 
represented by nb, the number of lines in the hyperspectral cube is represented by nl, ns represents the number of 
samples in the hyperspectral cube. 

 

 

Let 
 

xi,j[k] = [X[i,j,1], …, X[i,j,nb]] (3.1) 
 

 

be a vector of hyperspectral data values for all the bands, k=1,…,nb, at the (i,j)-th 

spatial location, where, i=1,…,nl, and j=1,…,ns (cf. Figure 3.1). 

 
 

As the name suggests, spectral decorrelation step aims at decorrelating the spectral 

content using integer wavelet transform based filter banks (Chrysafis and Ortega, 

2000; Chui et al., 1998). This provides a perfectly reconstructable decomposition of 
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Table 3.1 High pass filters for Various Integer Wavelet Transforms 
                                                    

 Filter Values                                                  
 Haar  1       

, − 

1                                 

  h0[k]={ √2     √2 }                            (3.2) 
 9-7  1           1         1   1               
  h0[k] = { 16   , 0 , − 2   , 1, − 2 , 0, 16 }             (3.3) 
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 Table 3.2 Low-pass filters for Various Integer Wavelet Transforms  
  

 Filter Values                                                   
 Haar 1    

, 

1                                              

 
9-7 

l0[k]={ √2    √2 }                                          (3.8) 
 1             1    1    71   1 1          
  

l0[k]= { 
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(3.9)   64 8 4 100 4 8        

 5-3         1     1     3   1    1                   
 

9-3 
l0[k]= {− 8  , − 4 ,   4  ,  4  , − 8 }                (3.10) 

 1         1          1  29  7  29  1  1  1   
  

l0[k]={ 
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the original data, X, into two (or more depending on the number of levels) 

subbands in the spectral dimension. The decomposition is composed of 

convolution with low(high)-pass filter, l0[k](h0[k]), followed by decimation (cf. 

Figure 3.2). As a result, xi,j[k] for each and every line and sample location, is 

decomposed into low-band, x
l
i,j[k], and high-band, x

h
i,j[k], components. In order 

to assess the efficacy of various integer wavelet transform filters on spectral 

decorrelation, this decomposition is realized using different wavelet transform 

filterbanks which are presented in Tables 3.1 and 3.2. 
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Figure 3.1 The hyperspectral data, X, is decomposed into low, XL, and high, XH 

subband blocks, in the spectral dimension. This is achieved by 

decomposing xi,j[k] for each line and sample, (i,j) location, into low-band, 

x
l
i,j[k], and high-band, x

h
i,j[k], components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Single-level integer wavelet transform. Each xi,j[k] corresponding to the 

spectral content at location (i,j) is decomposed into two components, 

namely, x
l
i,j[k], and x

h
i,j[k]. 

 

This decomposition, in turn, decomposes the whole hyperspectral data, X, into two 

subband blocks, namely, low-band, XL, and high-band, XH, data blocks, where, 

xli,j[k] = [XL[i,j,1],… XL[i,j, 

 

]] (3.14) 2 

and  

xhi,j[k] = [XH[i,j, 

 
+ 1],… XH[i,j,  ]] (3.15) 2 

andis even.  
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Once the hyperspectral data is spectrally decorrelated using integer wavelet 

transform, the high-band data block, XH, composed of high subband images, and 

low-band data block, XL, composed of low subband images are processed separately, 

in order to fully exploit the redundancy present in the hyperspectral imagery. 

 

 

3.2 High subband images are compressed using JPEG2000 codec in lossless mode 
 

As the high-band data block, XH, is composed of high-band components, x
h

i,j[k], that 

block is already sparse with very few number of non-zero values. Such a sparse and 

highly correlated data may be compressed using lossless image compression 

techniques that are already mature, such as JPEG2000 codec (Christopoulos et la., 

2000). There are studies in which JPEG2000 codec is utilized for hyperspectral data 

compression (Penna et al., 2005). 

 
Different than other techniques in the literature, in this work, we compress the 2 many high subband images in (3.15) using JPEG2000 codec in lossless 
mode. In particular, the high-band subimages, XH[:,:,k], for = 2 + 1, … , , are compressed using  
 

JPEG2000 codec in lossless mode, where ‘:’ stands for all values in the range of that 

particular dimension, namely, i=1,…,nl, and j=1,…,ns. 

 
 

3.3 Low Subband Data Block is processed to obtain a Sparse Representation 
 

As opposed to the high-band data block, XH, the low-band block XL is composed of 

low-band components, x
l
i,j[k], which, depending on the data, is far from being sparse 

by default. In order to obtain a sparse representation, the low-band block is processed 

using dictionary learning based techniques. 
 

The motivation behind utilization of sparse representation based compression 

schemes is that, these methods are shown to yield better compression performance as 

compared with other state-of-the-art approaches in hyperspectral image compression 

(Ülkü and Töreyin, 2015b). 

 

 

3.3.1 Sparse Coding 

 

Sparse representations of signals have drawn large attention in the last period. The 

sparse model is a sturdy way to portray signals depending on the sparsity and 
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abundance of their representations (Mairal et al., 2008). As we have stated previously 

that the structure of the hyperspectral images is a spatial and spectral and under its 

banner gangs. To solve a big problem, such as image compression spectral problem 

we should look for systems or models. So in this area has been to rely on the sparse 

coding. The sparse coding deal with signal vectors assumptions they're an integral 

part of the subspace, In the end, the signals may after using the sparse coding trend to 

showing as linear transform (Wang and Celik, 2016). And it is considered as ways of 

the compression methods. Sparse coding: This procedure indicates to returning the 

coefficient vectors where a dictionary D is specified. Sparse coding is fixed in an 

individually approach when for every sample x in equations (3.16 and 3.17), its 

coefficient vector α possible got separately in the else sample. A greedy algorithm 

like matching pursuit (Mallat, and Zhang, 1993) in addition to OMP (Davis et al., 

1994) possible used when l0 norm is utilized to encourage sparsity within coefficient 

vectors. Efficient algorithms, like Basis Pursuit (BP) (Chen et al., 2001). 
 

The procedure of sparse coding, generally indicated to as “atom decomposition”, call 

for solving. 

(P0) 
‖x‖ 0 subject to y = Dx 

(3.16) 
or   

(P0, ϵ) ‖x‖ 0 subject to ‖y − Dx‖2 ≤ ϵ (3.17) 
 

These are algorithms (greedy) that choose the dictionary vectors alternately. 

Together (3.16) and (3.17) are readily processed by alteration the cessation base of 

the algorithm. 
 

The Basis Pursuit (Chen, et al., 2001) proposes a convexification of the issues 

presented in (3.18) and (3.19), by substituting between l0 -norm and l1 –norm. 

 

3.3.1.1 Least Absolute Shrinkage and Selection Operator 

 

Last decade, the LASSO approaches have become common approaches for parameter 

assessment and mutable chosen due to their ownership of shrinking several of the 

patterns coefficients to precisely zero (Lu and Su, 2016). LASSO recession modes are 

openly used in domains with huge datasets, such as genomics, where dynamic and fast 

algorithms are the major (Friedman et al., 2010). The LASSO is not solid to the high 

connection among predictors and will randomly choose one and eliminate the others 
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and shot dawn when all predictors are similar (Friedman et al., 2010). The LASSO 
sanction expects a lot of points to be close to zero, and only a little subdivision to be 
bigger (either positive or negative). The LASSO estimator (Tibshirani, 1996), utilizes 
the l1 penalized least squares criterion to get sparse outcomes to the (3.27). The l1 
penalty support the LASSO to together regularize the least squares fit and shrink 
several ingredients o lasso to zero for several appropriate selected λ. 
 
 

 

3.3.1.2 Basis Pursuit 

 

The basis pursuit (BP) algorithm (Chen et al., 2001) proposes the replacement of the 

l0-norm in (3.16) and (3.17) with an l1- norm. So solutions of: 

(P0) 
‖x‖ 1 subject to y = Dx 

(3.18) 

in the accurate representation issue, and  

(P0, ℇ) ‖x‖ 1 subject to ‖y − Dx‖2 ≤ ℇ (3.19) 
 
 

In (3.18), guide to the BP representation. A solution of (3.19) amounts to linear 

programming and a good solvers for the issues occur. The approximate format (3.19) 

guides to a quadratic programming constructing, and still, there work out functional 

solvers for that problems. 

 

In returns the outcome of x, for the (neither positive and negative) coefficients match 

to atoms of the dictionary, 

 

We are able to utilize the indexes of the nonzero ingredients of x to recognize the 

columns of D that are indispensable to replicate the signal. This set is a foundation of 

a representation. Utilizing 1-norm permit us to specify a cost for every atom which 

used in the representation. 

 
 

3.3.2 Dictionary Learning 

 

Recently, the focus of many researchers and practitioners in the field of processing 

images and signals on the sparse representation, for the obvious emergence in many 

important applications, which is the heart of the work in image processors and signal, 

like denoising of image (Elad and Aharon, 2006), face recognition (He et al., 2013; 
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Wang et al., 2015) and super-resolution reconstruction (Zhang et al., 2015; Yang et 

al., 2010). That has the ability to appear as little atoms of a specific over-complete 

dictionaries (Candes et al., 2011). 

 

The technique of dictionary learning is considered explicit technique. Depending on 

the below equation each training for images can be divided into nested spots. We 

should compute sparse basis and dictionary learning D for every input. 

min 1 
∑ ‖   − Dα ‖2 + λ‖α‖ 

1 

(3.20) 

 

 
 =1 

 2   
where T is number of iterations, xi input ,αi sparse basis and α ∈ R

k
.  

Some techniques can be used for the purpose of implementing the algorithm for the 
 

dictionary learning like Orthogonal Matching Pursuit (OMP) and Alternating 

Direction Method of Multipliers (ADMM). 

 

3.3.3 Sparse Coding and Dictionary Learning 

 

Dictionary learning based methods become popular among researchers working on 

hyperspectral image compression (Wang and Celik , 2016; Wang et al., 2014). The 

main idea behind dictionary-learning-based methods is to represent the data using 

minimum number of dictionary elements. 

 

By utilizing the l0 norm concerning data that represent nonzero vector elements. The 

core of our topic is getting sparse representation is done by reducing the value of l0 

(Elad et al., 2010). Possible comparison between the previous norm and the norm 

more flexible purpose is to provide more for the concept of the sparse and possible to 

call this norm l1 depending upon the results can be obtained and efficient solutions 

able to solve a lot of problems related to sparse coding (Elad et al., 2010). Many 

studies divided representation algorithm the sparse into several categories: Relax 

convex, greedy algorithms, and methods of combinatorial. On the other views sparse 

decomposition algorithms are mostly separated into two parts: greedy algorithms and 

convex relaxation algorithms (Zhang et al., 2015; Tropp, 2006; Tropp et al., 2006; 

Cheng et al., 2013). 

 

But there is another opinion to divide the sparse representation also into three sections 

can enumerate as follows: greedy pursuit algorithms, lp norm regularization based 
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algorithms, and iterative shrinkage algorithms (Yang et al., 2009). Can underestimate 

the norm l0 because the main objective of greedy pursuit algorithms. The Matching 

Pursuit (MP) considered one of the fundamentals that are dealing with recent 

algorithm (Davis et al., 1994). lp is decreased more If compared with the l0 norm. 

Through some research and found that the strongest and most appropriate example 

for lp norm - regularization - based techniques is Basis Pursuit (BP)( Chen et al., 

2001). After all of the above cannot fail to pose another kind and is important in the 

representation process above class as well as it is very important in our work and 

followed by its equation with a basis pursuit equation, is type called Least Absolute 

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). That we proposed it 

as representation- based hyperspectral image coding. 

 

In sparse-coding-based hyperspectral image compression using the next sparse 

representations: 

 

• Least Absolute Shrinkage and Selection Operator. 
 
• Basis Pursuit. 

 
In this thesis, the low-band block XL is processed using dictionary learning based techniques in such a way that, 
x

l
i,j[k]’s are used to form a dictionary, D ∈ R

n
b
’
 
f
 ,where f denotes number of columns in the dictionary, and nb’= 

2 . The matrices A and B are considered for updating the dictionary where A ∈ R
f.f

and B ∈ R
n

b
’f

 , T be the 

number of iterations, E ∈ R
fx1

 be the error, λ ∈ R be the regularization parameter, and α ∈ R
f
 be sparse 

coefficients. In addition to above information that mentioned about cubes (Table 4.1) and as we proposed in our 
introduction the following Parameters that are used in the analysis are defined as nb It symbolizes the number of 
bands in the hyperspectral cube, nl , ns symbolizes the numbers of rows and columns (lines and samples) , and the 
number of the columns in dictionary represented in the f. assume D0 ∈ R

n
b
’
 
x f

 be the initial dictionary, A ∈ R
f.f

 

and B ∈ R
n

b
’
 
f
 be assist matrices utilized in process updating the dictionary, T is number of iterations, E ∈ R

f x1
 

be the error, λ ∈ R be the regularization parameter, and α ∈ R
f
 be sparse coefficients and The below equation 

refer to empirical cost function.  

FT (D) = 
1  ∑T l(   − D) 

(3.21) 
T  i=1   
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where V ={v1,… ,vT} in R 
n

b
’T

 is the finite training set, D in R 
n

b
’
 
f
 is the dictionary. 

Sparse Coding and Dictionary Update Equations Corresponding to LASSO (3.22), 
 

(3.23) and BP (3.24), (3.25) sparse representations defined as follow: 

 

 

= arg min 1 ‖   α − ‖2 + λ‖α‖ 

1 

where α ∈ Rf 
(3.22) 

 

 2   −1  2    
 
 

and the Dictionary Update Equation (LASSO) defined as: 

 

 

= arg min 
1  

∑ ( 
1  ‖   −  ‖

2 + λ‖α ‖ 

1 

) where D ∈ C (3.23) 

 

 

   =1 2 αi 2     

  = arg min ‖α‖1    s.t . Dt−1α = xt 
where α ∈ Rf 

(3.24) 
 

and the Dictionary Update Equation (BP) defined as: 

 
 

= arg min 
1 

∑ ‖α ‖ 
1 

s.t . 1 
∑ 

 
Dαi= xi   where D ∈ C (3.25) 

   

  
 

 =1 
  

 
 =1 

  
           

  
C ={ Di ∈ R 

n
b
’
f s.t. ∀ j= 1,…,f, i =0, d'jdj ≤ 1} (3.26) 

 

There are two algorithms in sparsity-based hyperspectral image compression work 

environment: dictionary learning and dictionary update. That it presented with the 

sparse representation equations (LASSO and BP), these equations that presented 

above corresponding to the numbers (3.22), (3.23) ,(3.24) and (3.25) 

 

 

Algorithm 1: Dictionary learning 

 

Build random initial dictionary D0 

 

Set A0 and B0 matrices to zero initially 
 

for t =1 : T 
Choose xt ∈ R

n
b randomly from hyperspectral data  

‘Equation of sparse coding’ (3.22) or (3.24) based on the 

representation Update At = At−1 +αtαt
T

 and Bt= Bt−1+ xtαt
T 

 
Evaluate Dt depending on Dictionary Update Algorithm 

End for 
 

Gain learned dicti 
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Algorithm 2: Dictionary Update 
 

Dt is computed by utilizing Dt−1, At and Bt in 

“Dictionary Update Equation” ((3.23) or (3.25) 

Based on the sparse representation repeat 

 

for j =1 : f 
 

Find jth column of Dt depending on one of equations of sparse representation 

where 
 
D =[d1,…, df] ∈ R 

n
b
’
 
f
, A =[a1,…, af] ∈ R

f.f
 and 

 
B =[b1,…, bf] ∈ R

n
b
’
 
f
 Uj=1/Aj,j) (bj-

Daj) + dj 

 

dj=1/max(║uj║2 ,1) uj and Ej =squr(∑
n

b’ │dj
t
 - dj

t-

1
│2) End for 

 

until E < Threshold 
 

Use D in Dictionary Learning Algorithm (Ülkü, and Töreyin, 2015b) 
 
 

Hence, a sparse representation is obtained for the low-band block, XL, by an online 

learning based hyperspectral image compression framework. The framework consists 

of dictionary learning and dictionary update sub-algorithms that are applied in an 

alternating fashion (Ülkü, and Töreyin, 2015b). The sub-algorithms make use of 

different sparse coding ((3.22), (3.24)) and dictionary update equations ((3.23), 

(3.25)) to obtain BP or LASSO based sparse representations. Finally, the framework 

yields a set of sparse coefficients, α, that represents the low-band block, XL. 
 
One may further decompose the spectral vector, xi,j[k], using successive levels of 

integer wavelet filters in order to obtain a smaller low-band block, XL. In this thesis, 

we apply two and three levels of decomposition in order to obtain further spectral 

decorrelation (cf. Figure 3.3). 
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Figure 3.3 Two-level integer wavelet transform applied to xi,j[k] for further spectral 

decorrelation. In this thesis, upto three levels are applied. 

 

The integer wavelet transform can be reconstructed in a perfect manner by a set of 

reconstruction filters, h1[k] and l1[k] which may be obtained as follows (Strang and 

Nguyen, 2011): 

 

h1[k] = (-1)
k
 l0[k] (3.27) 

l1[k] = (-1)
k+1

 h0[k] (2.28) 

 
where h1[k] stands for the highpass filter coefficients and l1[k] stands for the lowpass filter coefficients in the 
synthesis (reconstruction) stage (cf. Figure 3.4). The synthesized (reconstructed) signal (spectral vector) is 
represented by   ̂i,j[k].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4 Single-level (perfect) reconstruction stage corresponding to integer 

wavelet transforms. 
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Similar reconstruction stages may be deployed for higher (two or three) 

level decompositions. 
 
Once the reconstructed spectral vector,   ̂i,j[k], is obtained, the reconstructed data cube, ̂, can be formed as follows: 

̂ ̂ 

(3.29)   ̂i,j[k] = [  [i,j,1], …,   [i,j,nb]] 

 

where k=1,…,nb, at the (i,j)-th spatial location, and, i=1,…,nl, and j=1,…,ns. 
 

 

The performance of the hybrid compression scheme is measured based on peak-

signal-to-noise-ratio (PSNR): 

PSNR = 10 log10 

(2  −1)2 

(3.30) 
   

 

 

where nd stands for the bit-depth of the values in X and M stands for the mean-

square-error: 

 1    ̂ 2  

M =  ∑
 =1 

∑
 =1 ∑ =1[(  ( ,  ,  ) −  ( ,  ,  )]  (3.31) 

It is expected to have a better PSNR performance for reconstructed data cubes, ̂, that are 
obtained using higher level spectral decorrelations. In the following chapter, comparative 
compression results are presented for several methods applied on two hyperspectral 
images. 
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4 RESULTS AND DISCUSSIONS 

4.1 Experimental Data Set 

 
In here, we classify experiments that we made: we used two different test dataset 

hyperspectral images that have different size (Low Altitude and Erta Ale ), which 

was detailed in (Table 4.1). We examined with the Airborne Visible / Infrared 

Imaging Spectrometer (AVIRIS) and hyperion datasets (Kiely and Klimesh, 2009). 
 

In this thesis, we analyze part of the data that is cropped into a smaller cube of size 

256x256x224. Comparative results are presented in the following tables for various 

decorrelation integer wavalet filters with varying decomposition levels, different 

dictionary sizes, f, and various sparse representations, such as BP and LASSO. 

 

 

Table 4.1 Image Specifications of AVIRIS/HYPERION  Hyperspectral Data 
       

AVIRIS HYPERSPECTRAL DATA     

Name No. No. No. Bit depth Flight Number year 

 Samples Lines Bands    

Low 614 3689 224 16 f960705t01p02_r05 1996 

Altitude       

HYPERION HYPERSPECTRAL DATA     

Name No. No. No. Bit depth image Number year 

 Samples Lines Bands    

Erta Ale 256 3187 242 12 EO1H1680502010057110KF 2010 
       

 
 

 

Throughout the comparisons, the bit-rate, r, measured in bits-per-sample, is 

evaluated using the following equation: 

r = n 
c2 

(4.1) 
c1   

 
 
 

where nd is the bit-depth, c1 is the size of the original data cube, X, and c2 is the sum 

of sizes of compressed high band data, size of the number of sparse coefficients and 

the size of dictionary learning. 

 

 

27 

https://aviris.jpl.nasa.gov/
https://aviris.jpl.nasa.gov/
https://aviris.jpl.nasa.gov/


Compression performances of online sparse-coding algorithms for the processed 

cubes present in below tables proposed the performances of compression of online 

sparse-coding algorithms. As well as the compression process is presented in the 

tables below are for a set of filters also the two sets of data for three levels WT 

decomposition, which showed close results for each BPS comes a reason for the 

convergence of image data 

 

values and due to we dealed with lossless approach. As we mentioned above that the 

compression process is performed by the values of PSNR conformity with the BPS 

values. In below figure (4.1) Hyperspectral data is decomposed where (a) low (L) 

and high (H) sub - band images by correlating it with single level, (b) (H), (LH) and 

(LL) for two-level and (c) (H),( LH), (LLH) and(LLL) for two level filter banks 

wavelet transform. For this purpose, the researcher applies the sub-samplers with the 

above filter banks in the (d) (x, y) position of the original data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

(b) 
 
 
 
 
 

 

(d) 
(c) 

 

 

Figure 4.1. Three-level spectral decorrelation of Hyperspectral data. The data blocks 
named as H, LH and LLH, are all compressed using JPEG2000 – lossles mode, 
whereas, LLL and LL are compressed using sparse representations 

 
 
 
 
 
 

In addition to that has been mentioned and detailed we will show it in the following 

tables are related to compression performances corresponding to the bit rate, LASSO 
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and BP- representation-based online sparse-coding algorithms measured by PSNR values 
 

for Low Altitude and Erta Ale datasets. Where f is the number of columns in the dictionary, 
 

BPS bit rate sample and BPSD bit rate sample with dictionary learning. In (Tables 4.2-4.25). 
 

Among the f-value-coded hyperspectral images, the best PSNR values are acquired by the 
 

data compressed using LASSO, and BP-representation-based online sparse coding 
 

algorithms for 3 levels 
 
 
 

 

Table 4.2 Haar filter bank, Low Altitude, LASSO  sparse representation 
 

          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 1- level 2- 3- levels 1- 2- 3- 1- 2- 3- 

  levels  level levels levels level levels levels 

1 0138004 4834.80 4403.401 0.1 0.1 0.1 8.1 4.1 2.1 
2 4434444 4834.84 4403.10. 0.1 0.1 0.19 8.1 4.18 2.1 

3 4438484 4834.8. 44030188 0.2 0.2 0.2 8.2 4.2 030 

4 443.048 4834404 44030008 0.3 0.3 0.3 8.3 4.3 2.3 

5 4034411 4834.88 44030888 0.3 0.3 0.4 8.3 4.39 2.4 

10 40300.0 4834.10 44030844 0.7 0.7 0.7 8.7 4.7 2.7 

 Table 4.3 Haar filter bank , Low Altitude, BP  sparse representation  
          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 1- level 2- 3- levels 1- 2- 3- 1- 2- 3- 

  levels  level levels levels level levels levels 

1 0138004 4834.80 4403.401 0.1 0.1 0.1 8.1 4.1 2.1 
2 4434444 4834.84 4403.10. 0.1 0.1 0.19 8.1 4.18 2.1 

3 4438484 4834.8. 44030188 0.2 0.2 0.2 8.2 4.2 030 

4 443.048 4834404 44030008 0.3 0.3 0.3 8.3 4.3 2.3 

5 4034411 4834.88 44030888 0.3 0.3 0.4 8.3 4.39 2.4 

10 40300.0 4834.10 44030844 0.7 0.7 0.7 8.7 4.7 2.7 
 
 
 
 
 
 
 

In the following tables, the PSNR values corresponding to different compression cases 
 

are presented. Tables (4.2) and (4.3) are corresponding to compression performance 
 

for the Haar filter bank. Similarly, consecutive tables are populated with PSNR and 
 

bit-rate values that correspond to other integer wavelet filters, such as 9/7, 9/3, 5/3, 
 

5/11 and 2/6. Apparently, the best performance was achieved by Haar, 5/3 and 9/3 
 

based spectral decorrelation filters. 
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 Table 4.4 9/7 filter bank, Low Altitude ,LASSO sparse representation 
          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 -4 2- -. -4 -0 -. -4 -0 -. 

 level levels levels level levels levels level levels levels 

1 0.384 48308.8 .0304.8 0.1 0.1 0.1 83. 4.1 2.1 
2 00340 48308.8 94.40 0.2 0.1 0.2 8.4 4.18 2.1 

3 00308 48301 .03.184 0.3 0.2 0.3 8.5 4.2 2.2 

4 0030. 48301 .0304 0.3 0.3 0.3 8.6 4.3 2.3 

5 00300 48301 .030. 0.4 0.39 0.4 8.6 4.39 2.39 

10 0034. 4830140 .0304 0.8 0.7 0.8 9 4.7 2.7 
 
 
 
 

Table 4.5 9/7 filter bank , Low Altitude, BP  sparse representation. 
          

f PSNR PSR PSNR BPS BPS BPS BPSD BPSD BPSD 
 level -4 -0 -. -4 -0 -. -4 -0 -. 

  levels levels level levels levels level levels levels 

1 0.311.4 48308.8 .034.10 0.1 0.1 0.1 83. 4.1 2.1 
2 0034814 483004. .0341.4 0.2 0.1 0.2 8.4 4.18 2.1 

3 00348.4 4830..0 .034404 0.3 0.2 0.3 8.5 4.2 2.2 

4 0034008 4830..4 ..38048 0.3 0.3 0.3 8.6 4.3 2.3 

5 003404. 4830.88 .03404. 0.4 0.39 0.4 8.6 4.39 2.39 

10 0034408 4830.88 ..3.00. 0.8 0.7 0.8 9 4.7 2.7 
 
 
 
 

Table 4.6 5/3 filter bank, Low Altitude,LASSO  sparse representation. 
             

f PSNR  PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 -4 levels -0 levels -. -4 -0 -. -4 -0 -.   

 level    level levels levels level levels levels 

1 08341  57.0355 440314.0 0.1 0.1 0.1 8.1 4.1 2.1   

2 48.03  57.0357 4403888. 0.17 0.1 0.2 8.2 034 2.2   

3 08344  57.0360 44038.00 0.2 0.2 0.3 8.3 4.2 2.3   

4 01384  57.0357 44038.48 0.3 0.3 0.39 8.3 03. 2.39   

5 0834.  57.0354 44038.4. 0.39 0.3 0.4 8.4 03.. 2.4   

10 08341  4134.48 44038.41 0.7 0.7 0.8 8.8 4.7 2.8   

 Table 4.7 5/3 filter bank , Low Altitude, BP  sparse representation    
           

f PSNR  PSR PSNR BPS BPS BPS BPSD BPSD BPSD 
 level -4  -0 levels -. -4 -0 -. -4 -0 -.   

   levels  level levels levels level levels levels 

1 0438008 4134.11 44034400 0.1 0.1 0.1 8.1 4.1 2.1   

2 43.9039 483.8.8 44034840 0.17 0.1 0.2 8.2 034 2.2   

3 0.34804 483.848 44034..4 0.2 0.2 0.3 8.3 4.2 2.3   

4 003..01 483.884 44031444 0.3 0.3 0.39 8.3 03. 2.39   

5 0830401 483.184 44038.01 0.39 0.3 0.4 8.4 03.. 2.4   

10 0834.48 4134444 44038414 0.7 0.7 0.8 8.8 4.7 2.8   
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Table 4.8 9/3 filter bank, Low Altitude, LASSO  sparse representation 
          

K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 -4 -0 levels -. -4 -0 -. -4 -0 -. 

 level levels  level levels levels level levels levels 

1 0034. 483.80. 4403848. 0.1 0.1 434 8.2 4.1 2.1 
2 04340 483.8.0 44038481 0.17 0.17 434. 8.3 4.18 2.19 

3 04344 483.8 440384.. 0.2 0.2 0.2 83. 4.2 030 

4 0438. 483.8 440384.0 0.3 0.3 0.3 8.4 4.3 2.3 

5 0438. 483.8.0 4403884. 0.39 0.39 0.4 834 4.39 2.4 

10 043.. 483.8.0 44038844 0.7 0.7 0.7 8.8 4.7 2.7 
 
 

 

 Table 4.9 9/3 filter bank, Low Altitude, BP sparse representation  
          

K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 level -4 -0 levels -. -4 -0 -. -4 -0 -. 

  levels  level levels levels level levels levels 

1 003488. 483.80. 44034408 0.1 0.1 434 8.2 4.1 2.1 

2 0438.80 4830800 44.34888 0.17 0.17 434. 8.3 4.18 2.19 

3 0438404 4830844 4403.4.4 0.2 0.2 0.2 83. 4.2 030 

4 04384.8 4830..8 44030104 0.3 0.3 0.3 8.4 4.3 2.3 

5 0438040 4830... 44034480 0.39 0.39 0.4 834 4.39 2.4 

10 0438040 48301.. 4403080. 0.7 0.7 0.7 8.8 4.7 2.7 
 
 
 

 

Table 4.10 5/11 filter bank, Low Altitude ,LASSO sparse representation 
           

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 1- level -0 levels -. -4 -0 -. -4 -0 -.  

  levels  level levels levels level levels levels 

1 0030440 4834004 44034.84 0.1 0.1 0.1 8.3 4.1 2.1  

2 04300.0 483400. 44034448 0.17 0.17 0.19 8.3 4.18 034.  

3 043.1 4834004 44034000 0.2 0.2 0.2 8.4 4.2 2.2  

4 043.0 4834000 44034004 0.3 0.3 0.3 8.5 4.3 2.3  

5 043.4 4834000 44034004 0.38 0.39 0.4 8.6 4.3 2.4  

10 043.0 4834000 44034004 0.7 0.7 0.7 8.6 4.7 2.7  

 Table 4.11 5/11 filter bank, Low Altitude ,BP  sparse representation   
          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 level -4 -0 levels -. -4 -0 -. -4 -0 -.  

  levels  level levels levels level levels levels 

1 0030.80 4834040 44034448 0.1 0.1 0.1 8.3 4.1 2.1  

2 043...4 4834448 4403444. 0.17 0.17 0.19 8.3 4.18 034.  

3 043.4.0 443..88 44034400 0.2 0.2 0.2 8.4 4.2 2.2  

4 043..0. 4834480 440344.0 0.3 0.3 0.3 8.5 4.3 2.3  

5 0430444 443..81 440344.1 0.38 0.39 0.4 8.6 4.3 2.4  

10 043.10. 4834441 44034441 0.7 0.7 0.7 8.6 4.7 2.7  
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Table 4.12 2/6 filter bank, Low Altitude ,LASSO  sparse representation 
          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 -4 -0 levels -. -4 -0 -. -4 -0 -. 

 level levels  level levels levels level levels levels 

1 08388 40314.. 44034148 0.1 0.1 0.1 8.1 4.1 2.1 
2 08381 4031404 44034.88 0.1 0.1 0.1 8.1 4.1 2.1 

3 0.340 40314.. 44034444 0.2 0.2 0.2 8.3 4.2 2.2 

4 0.340 40314.1 4403444. 0.3 0.3 0.3 8.3 4.3 2.3 

5 083.0 40314.1 44034444 0.3 0.3 0.4 8.4 4.39 2.4 

10 083.8 40314.1 4403444. 0.7 0.7 0.7 8.8 4.7 2.7 
 
 
 

 

Table 4.13 2/6 filter bank , Low Altitude,BP  sparse representation. 
          

f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
 level -4 -0 levels -. -4 -0 -. -4 -0 -. 

  levels  level levels levels level levels levels 

1 083881. 40314.. 4443..00 0.1 0.1 0.1 8.1 4.1 2.1 
2 0831844 40314.8 44034444 0.1 0.1 0.1 8.1 4.1 2.1 

3 083.840 40314.8 44034484 0.2 0.2 0.2 8.3 4.2 2.2 

4 0.3448. 40314.. 44034.4. 0.3 0.3 0.3 8.3 4.3 2.3 

5 0.34484 40314.1 44034.80 0.3 0.3 0.4 8.4 4.39 2.4 

10 0.34800 40314.4 44034.04 0.7 0.7 0.7 8.8 4.7 2.7 
 
 
 

 

Table 4.14 Haar filter bank,  Erta Ale, LASSO  sparse representation 
            

 f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
  level -4 -0 levels -. -4 -0 -. -4 -0 -.  

   levels  level levels levels level levels levels 

 1 4.3.1 4834440 44030844 0.08 0.09 0.1 6.0 1.6 3.0  

 2 4034004 4834444 44034880 0.1 0.1 0.15 6.1 1.65 3.1  

 3 403448. 4834400 104.4745 0.19 0.19 0.2 6.19 1.7 3.19  

 4 4034408 4834444 44030.4. 0.2 0.2 0.26 6.2 1.76 3.2  

 5 4034440 4834404 440308.4 0.29 0.3 0.3 6.29 1.8 3.3  

 10 40344.4 4834448 44030881 0.5 0.5 0.5 6.5 2.08 3.5  

  Table 4.15 Haar filter bank,  Erta Ale, BP sparse representation   
            

            

 f PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
  level -4 2- levels -. -4 -0 -. -4 -0 -.  

   levels  level levels levels level levels levels 

 1 4.3.084 4834408 4403410. 0.2 0.2 0.3 6.2 3.2 1.8  

 2 4.3.444 483444. 44030444 0.29 0.29 0.4 6.2 3.2 1.9  

 3 4.3.8.4 4834408 44030.01 0.3 0.3 0.47 6.3 3.3 1.97  

 4 403484. 4834001 4403..14 0.4 0.4 4340 6.4 3.4 2.0  

 5 4.3.8.0 483440. 44030800 0.4 0.4 0.58 6.4 3.4 2.0  

 10 4434004 4834084 44030188 0.5 0.7 0.8 6.7 3.7 2.3  
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   Table 4.16 9/7 filter bank , Erta Ale, LASSO sparse representation    
              

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   level -4 -0 -. -4 -0 -. -4 -0 -.   

    levels levels level levels levels level levels levels  

1 4030418 4830488 .03414. 0.1 0.09 0.1 6.1 3.0 1.6   

2 4030404 4830488 .0340.1 0.2 0.1 0.2 6.2 3.1 1.7   

3 4030410 483048. .034..4 0.2 0.19 0.26 6.2 3.1 1.7   

4 4030414 4830488 .034.14 0.3 0.2 0.3 6.3 3.2 1.8   

5 4030440 4830488 .034884 0.36 0.3 0.37 6.36 3.3 1.87   

10 4030404 4830481 .0304 0.6 0.5 0.6 6.6 3.5 2.1   

   Table 4.17 9\7 filter bank,  Erta Ale, BP sparse representation    
            

 K PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
    -0 -. -4 -0 -. -4 -0 -.   

   level -4 levels levels level levels levels level levels levels 

1 4034844 4830488 .030841 0.1 0.1 0.4 3.1 3.1 3.4   

2 4030404 483..11 .034080 0.2 0.2 0.5 3.2 3.2 3.5   

3 4030410 483.8.. .030080 0.2 0.2 0.5 3.2 3.2 3.5   

4 4030414 483.881 .0340.0 0.3 0.3 0.6 3.3 3.3 3.6   

5 4030440 483.888 .034481 0.36 0.3 0.69 3.3 3.3 3.69   

10 4030404 483.8.4 .034141 0.6 0.6 0.9 3.6 3.6 3.9   

   Table 4.18 5\3 filter bank , Erta Ale, LASSO sparse representation    
             

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   1-level 2- 3-levels -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels  

1 4034.48 41344.8 44034084 0.09 0.09 0.1 6.0 3.0 1.6   

2 4034800 41344.. 44034.88 0.1 0.1 0.2 6.1 3.1 1.7   

3 403410. 57.0360 44034.08 0.19 0.19 0.2 6.19 3.1 1.7   

4 4034141 4134844 44034.80 0.2 0.2 0.3 6.2 3.2 1.8   

5 4034100 4134840 44034.44 0.3 0.3 0.36 6.3 3.3 1.87   

10 40348.0 41344.. 44034.80 0.5 0.5 0.6 6.5 3.5 2.1   

   Table 4.19 5\3 filter bank,  Erta Ale, BP sparse representation    
             
             

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   1- level 2- 3-levels -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels  

1 4.3.884 4134844 4403.840 0.2 0.2 0.3 6.2 3.2 1.8   

2 4034088 4134400 44034440 0.3 0.3 0.39 6.3 3.3 1.89   

3 4034.40 41344.. 44034011 0.3 0.38 0.4 6.3 3.3 1.9   

4 4034.88 4134040 440348.4 0.4 0.4 .5 6.4 3.4 2.0   

5 403444. 41344.8 44038084 0.49 0.49 .5 6.49 3.49 2.0   

10 40341.4 4134444 44034018 0.7 0.7 0.8 6.7 3.7 2.3   
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Table 4.20 9\3 filter bank,  Erta Ale, LASSO sparse representation 
              

 K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   level -4 2- levels -. -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels 

1 4034401 483..00 44034401 0.09 0.09 0.1 6.0 3.0 1.6   

2 4034484 483..01 44034444 0.1 0.1 0.1 6.1 3.1 1.65   

3 4034400 483..08 4403444. 0.19 0.19 0.19 6.19 3.1 1.7   

4 4034480 483..80 4403444. 0.2 0.2 0.2 6.2 3.2 1.76   

5 4034401 483..08 44034484 0.3 0.3 0.3 6.3 3.3 1.8   

10 4034411 56.3950 4403444. 0.5 0.5 0.5 6.5 3.5 2.08   

   Table 4.21 9\3 filter bank,  Erta Ale, BP sparse representation    
              

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   level -4 -0 levels -. -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels  

1 40344.8 483..04 4403.0.0 0.2 0.2 0.3 6.2 3.2 1.8   

2 4034040 483.48. 44034.44 0.3 0.3 0.4 6.3 3.3 1.9   

3 4034008 4830.04 44030401 0.38 0.38 0.47 6.3 3.3 1.97   

4 4034084 483.441 44034441 0.4 0.4 4340 6.4 3.4 2.0   

5 4034144 4830.04 44034..8 0.49 0.49 0.58 6.49 3.49 2.0   

10 4034411 56.3006 44030004 0.7 0.7 0.8 6.7 3.7 2.3   

   Table 4.22 11\5 filter bank, Erta Ale, LASSO sparse representation    
             

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   level -4 2- levels -. -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels  

1 40300.4 4834004 4403...4 0.08 0.1 0.1 6.0 3.0 1.6   

2 40300.. 4834000 4403.184 0.1 0.1 0.1 6.1 3.1 1.65   

3 40300.0 4834000 4403.818 0.19 0.19 0.19 6.19 3.1 1.7   

4 4030484 4834000 4403.814 0.2 0.2 0.2 6.2 3.2 1.76   

5 40300.. 4834044 4403.814 0.29 0.3 0.3 6.3 3.3 1.8   

10 40300.0 4834014 4403.880 0.5 0.5 0.5 6.5 3.5 2.08   

   Table 4.23 11\5 filter bank,  Erta Ale, BP sparse representation    
             

  K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
   1- level -0 levels -. -4 -0 -. -4 -0 -.   

    levels  level levels levels level levels levels  

1 40300.0 483404. 4403...8 0.09 0.1 0.1 6.0 3.1 1.6   

2 40304.0 48344.4 4403.118 0.1 0.1 0.2 6.1 3.1 1.7   

3 4030480 483440. 4403.810 0.2 0.2 0.2 6.2 3.2 1.7   

4 403048. 48344.4 4403.81. 0.25 0.2 0.3 6.2 3.2 1.8   

5 4030844 4834400 4403.881 0.3 0.3 0.3 6.3 3.3 1.8   

10 40304.1 4834484 4403.81. 0.5 0.5 0.6 6.5 3.5 2.1   
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Table 4.24 2\6 filter bank,  Erta Ale, LASSO sparse representation 
           

 K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
  level -4 -0 levels -. -4 -0 -. -4 -0 -. 

   levels  level levels levels level levels levels 

1 403010. 4038080 44034048 0.08 0.1 0.09 6.0 3.0 1.6 
2 40301.4 4038080 4403404. 0.1 0.1 0.1 6.1 3.1 1.65 

3 403010. 4038081 44034048 0.19 0.19 0.19 6.19 3.1 1.7 

4 40301.0 4038081 44034084 0.2 0.2 0.2 6.2 3.2 1.76 

5 403010. 403808. 44034084 0.29 0.3 0.3 6.3 3.3 1.8 

10 4030104 4038010 44034041 0.5 0.5 0.5 6.5 3.5 2.08 

  Table 4.25 2\6 filter bank, Erta Ale, BP Sparse Representations  
           

 K. PSNR PSNR PSNR BPS BPS BPS BPSD BPSD BPSD 
  1- -0 levels -. -4 -0 -. -4 -0 -. 

  level levels  level levels levels level levels levels 

1 4030101 4038080 44034044 0.09 0.1 0.1 6.0 3.0 1.6 
2 4030188 4038084 44034018 0.1 0.1 0.1 6.1 3.1 1.65 

3 4030848 40380.4 44034.48 0.19 0.2 0.2 6.19 3.1 1.7 
4 4030800 40380.4 44034.48 0.2 0.2 0.2 6.2 3.2 1.76 

5 4030801 40380.0 44034.00 0.3 0.3 0.3 6.3 3.3 1.8 

 10 40308.4 40380.0 44034.40 0.5 0.5 0.5 6.5 3.5 2.08 
 

 

Results presented in tables suggest the following remarks. In BPSD which meaning of 
 

Bit Per Sample of Dictionary, have been effected gradually by f value. However, in 
 

above tables the BPSD-D1 treatments are significantly increased by raise of K values 
 

and the one dimension type is coming from size of cubes, size of alpha values and size 
 

of data after  compression process  (JEPG2000)  continuously with depth of data. 
 

Moreover, the depth of data set are differences from data set to each other as well as 
 

shows in (Table 4.1). 
 

The single-level decorrelation that contains 112 bands processed in a lossless manner 
 

(JPEG2000), and the remaining 112 bands are utilized to obtain a dictionary learning 
 

based sparse representation which itself is a lossy compression approach. The second 
 

type 2-level contains 168 bands of lossless (JPEG 2000) and 56 bands of dictionary 
 

learning .but the difference between 1- level and 2- levels it’s not that much, the only 
 

thing is the 1- level is less than 2- levels in few points. The last one 3- levels contains 
 

196 bands of lossless (JPEG 2000) and 28 bands of dictionary learning, the difference 
 

between 3- levels and the two other 1- level and 2- levels is higher than the difference 
 

between the first two in height points. 
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Results suggest that independent of filter and sparse representation type, PSNR 

values increase as the bit-rate value increase. Moreover, as the number of spectral 

decorrelation levels increase, the PSNR values also increase. This is due to the fact, 

as the decorrelation is carried out further, the amount of data that is compressed in a 

lossless manner, increases. This, in turn, affects positively the reconstructed data 

quality. In addition, the size of lossless compressed data block gets larger as spectral 

decorrelation is further carried out for more than a single-level. 

 

Another important observation, related to the bps values is that, once the dictionary is 

also taken into consideration for evaluating the bit-rate, the overall bit-rate is 

increased by including the size of the dictionary. 

 
 

4.2 Rate-Distortion Comparison Results 

 

The rate–distortion performance of the suggested hyperspectral compression 

approach depend on sparse coding with online learning is gained utilizing experience 

data mentioned in Table 4.1. 

 

Examine the performance of the rate-distortion Compression for each dataset and for 

each sparse representation (LASSO and BP). 

 

Figures between 4.2 and 4.7 give rate-distortion performance of sparse-coding-based 

hyperspectral image compression ways are described for a datasets (Low Altitude 

and Erta ale) for the size 256x256x224. Where the PSNR measured by a logarithmic 

unit called decibel (dB) and bit rate by bit per sample (bps). 
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(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 

Figure 4.2 Performance comparison of online-learning-based hyperspectral image-

compression algorithms with LASSO and BP sparse representation for Low 
Altitude and Erta Ale are cropped as 256 lines by 256 samples by 242 bands. Using 

Haar filter bank (a) single level , (b) 2-level, (c) 3-level decomposition. 
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(c) 
 

Figure 4.3 Performance comparison of online-learning-based hyperspectral image compression 

algorithms with LASSO and BP sparse representation for Low Altitude and Erta Ale 
are cropped as 256 lines by 256 samples by 242 bands. Using 9/7 filter bank (a) single 
level, (b) 2-level, (c) 3-level decomposition. 
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(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) 
 

 

Figure 4.4 Performance comparison of online-learning-based hyperspectral image- compression 

algorithms with LASSO and BP sparse representation for Low Altitude and Erta Ale 

are cropped as 256 lines by 256 samples by 242 bands. Using 5/3 filter bank (a) 
single level, (b) 2-level, (c) 3-level decomposition. 
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(c) 
 
 

Figure 4.5 Performance comparison of online-learning-based hyperspectral image-
compression algorithms with LASSO and BP sparse representation for Low 
Altitude and Erta Ale are cropped as 256 lines by 256 samples by 242 bands. 
Using 9/3 filter bank (a) single level , (b) 2-level, (c) 3-level decomposition. 
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(c) 
 

 

Figure 4.6 Performance comparison of online-learning-based hyperspectral image- compression 

algorithms with LASSO and BP sparse representation for Low Altitude and Erta Ale 
are cropped as 256 lines by 256 samples by 242 bands. Using 5/11 filter bank (a) 
single level , (b) 2-level, (c) 3-level decomposition. 
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(a) (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 

Figure 4.7 Performance comparison of online-learning-based hyperspectral image-compression 
algorithms with LASSO and BP sparse representation for Low Altitude and Erta 
Ale are cropped as 256 lines by 256 samples by 242 bands. Using 2/6 filter bank (a) 

single level , (b) 2-level, (c) 3-level decomposition. 
 

 

Based on the performance comparison results pertaining to the usage of different 

spectral decorrelation integer wavelet filters, various sparse representations and 

different hyperspectral data, the following conclusions may be drawn: 
 

 As a sparse representation method LASSO performs slightly better than BP to 

represent the low-band block.


 There is a drastic improvement in PSNR values, once the third level for 

spectral decrorrelation is carried out.


 The choice of spectral decorrelation integer wavelet filter does not have a 

strong effect on the PSNR vs. bit-rate performance.
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These conclusions suggest that, a spectral decorrelation step with more than one-

levels would be of paramount importance for the overall compression 

performance of the proposed method. Moreover, filter and sparse representation 

choice has a minor effect on the compression performance. 
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5 CONCLUSION AND RECOMMENDATIONS 

 

For the lossy compression of hyperspectral data, the key aim of the our research is to 

work into the area of sparse representation, In order that lossy compression of 

hyperspectral data, a modern method has been proposed for uncommon compression 

of data that is correlated with three levels filter banks wavelet transformation.The 

method depends on of decompressing the data divided into two untangle sub-band 

image sets, the low sub-band image decompression, and the lossless JPEG2000-

based decompression of the high sub-band. The first testing in this work has done on 

two the data in the AVIRIS and HYPERION hyperspectral datasets in comparison 

with the on top of performance hyperspectral compression ways in the literature. 

Which obtain infinity for the PSNR values. In addition to that by using same datasets 

an online-learning-based hyperspectral image compression framework is proposed. 

Who passed an important phases, the first phase before the update, or as it is called 

Dictionary Learning, the second stage is the stage of modernization. In the first 

transaction was obtained on the equations used, which have been preserved even in 

the second phase. This means relied on the representation in the process of 

modernization in the above stage. As well as the Bear-bit Sample calculation based 

on the size of the dictionary gives this hint is clear from safety process if it was send 

and receive dictionary learn. Also because of the difference between pixel values in 

spectral images, multiple types of image conversions were treated to obtain 

convergent values in order to reduce execution time and to obtain the most accurate 

results.Which are possible to be an important future work. 

 

If we notice in the above tables (4.2 to 4.25) there is a small difference between 1-

level and 2- levels, because the lossless compressing of data performed on 112 bands, 

while 112 was entered on the dictionary learning which consider lossy approach. In 

2-levels 168 bands were subjected to lossless compression and 56 others for lossy 

dictionary learning. Unlike 3- levels which gave great value in all tables, this is due 

mostly to (Low Altitude and Erta Ale) data adopted on lossless compression (196 

bands), while only 28 bands learned with dictionary learning (lossy mode). 
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As In our future work we try to use the above with a larger data set as well as color 

to get results and improve the results above, because it is possible to rely on the 

colors images to get the best results. 

 

Outcomes propose that separate of the filter and sparse representation kind, PSNR 

values riseas the bit-rate value increase. furthermore, as the number of spectral 

decorrelation levels increases, the values of PSNR also raise. This is return to the 

reality, as the decorrelation is carried out further, the size of data that is compressed 

in a lossless mode, increases. This, in its role, impacts positively the reconstructed 

data quality. In addition, the size of lossless compressed data block gains larger as 

spectral decorrelation is further carried out for more than a single-level. 

 

Also taken into account to, regarding the bps values is that, once the dictionary is 

also in mind into account for estimating the bit-rate, the comprehensive bit-rate is 

increased by including the size of the dictionary. 

 

Based on the performance comparison outcomes respecting to the utilize of various 

spectral decorrelation integer wavelet filters, several sparse representations and 

diverse hyperspectral data, can be resulting some points, LASSO sparse 

representations perform best than BP to implement in the low-band block, there is a 

good progress in PSNR values, once the third level for spectral decrorrelation is 

implemented. 

 

In addition, the framework might be prolonged to include another sparse 

representations. moreover, search on this expansion may command to bestead 

compression achievement for higher bit rates. 

 

In each of the foregoing conclusions propose that a spectral decorrelation stage with 

more than one levels would be of essential significance for the overall compression 

performance of the suggested approach. 

 

It is possible to dive for future work by dealing with the spectral images and sparse 

representation rather than the dictionary learning can use neural sparse coding or K-

SVD for extraction the largest possible number of transactions and use it before the 

update process. 
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