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AN EXPERIMENTAL ANALYSIS OF
FEATURE SELECTION ALGORITHMS
IN HYPERSPECTRAL IMAGE CLASSIFICATION

SUMMARY

Recently, hyperspectral images have been an attractive subject for many researches
in remote sensing area since they provide abundant information due to their wide
range of spectral bands. On the one hand, providing such a huge amount of
data by hyperspectral images may lead to complexity and bring some redundancy
due to high correlation among the hyperspectral bands. On the other hand,
this redundancy often negatively effects the classification of hyperspectral data by
imposing extra computational costs without providing any advantageous information
to the performance of the classifier. Moreover, the redundancy or using more features
may lead to a decrease in the classification accuracy, which is known also as Hughes
effect.

In order to reduce the redundancy and increasing the performance of the classification
methods, feature selection algorithms have been carried out to remove irrelevant
features and highlight the efficient features of dataset to achieve a significant accuracy
with minimum costs. The feature selection methods are typically presented in three
categories based on how they combine the selection algorithm and the model building:
filter-based methods which select suitable features using a search method; wrapper
methods that validate the selected features with a classifier; and embedded methods
which utilize the profits of two prior methods.

There have been many studies related to feature selection not only in developing novel
methods but also in application of the methods to hyperspectral image classification.
To our knowledge, there is no any general analysis over hyperspectral remotely sensed
datasets, involving a wide range of feature selection methods to compare them in the
same experimental environments. In this work, a comprehensive experimental analysis
with seventeen mostly used state of art feature selection algorithms is conducted
extensively analyzed with two well-known classifiers, that are K-nearest neighbours
and support vector machines, on seven common hyperspectral remotely sensed
datasets. The contribution of this thesis is to present an extensive benchmark study
on using feature selection algorithms with hyperspectral datasets to help researchers
to comprehend the behaviour of feature selection methods on different cases. The
analysis of feature selection algorithms are carried out by considering different
number of training samples and different number of ranked features count. Besides,
the methods are assessed based on four evaluation criteria which are classification
accuracy, stability of feature selection methods, ability of ranked features to separate
the classes of a dataset, and computational cost.

According to the results obtained from the experiments, the filter-based methods,
which are improved by mutual information measures, are more profitable than the
other filter-based methods, even wrapper and embedded techniques. Although, filter

xxiii



methods are known as unstable method, they achieve accurate classification results as
well as low computational time. Some wrapper and embedded methods also perform
significant classification accuracy while filter-based methods also enhance a higher
level of generalization.
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HIPERSPEKTRAL GORUNTULERIN SINIFLAMASINDA
OZNITELIK SECIM ALGORITMALARININ DENEYSEL ANALIZI

OZET

Son giinlerde, hiperspektral goriintiiler genis spektrum bantlarindan dolayr bol
miktarda bilgi sagladig1 i¢in, uzaktan algilama alaninda yapilan bir¢ok aragtirma
da cekici bir konu olmustur. Ancak, hiperspektral goriintiilerle ¢ok fazla miktarda
veri saglanmasi, hiperspektral bantlar arasindaki yiiksek korelasyona bagli olarak
siniflandirmada karmagikliga neden olabilir ve bilgi fazlalig: yaratabilir. Dolayisyla,
bu bilgi fazlaligi, simiflandiricinin performansina ¢ogunlukla bir katki saglamazken
ekstra hesaplama zarar1 getirerek hiperspektral verilerin siniflandirilmasini olumsuz
yonde etkiler.  Fazla Oznitelik kullanilmasi, Hughes efekti olarak da bilinen
siniflandirma dogrulugunda bir azalmaya neden olabilir.

Artikli§1 azaltmak ve siniflandirma yontemlerinin performansini arttirmak icin
Oznitelik secim algoritmalari, asgari maliyetlerle belirgin bir dogrulugu saglamak icin
fazla Oznitelikleri kaldirmak ve veri kiimesinin etkin Ozniteliklerini ¢ikarmak ig¢in
kullamlmaktadir. Oznitelik secimi (OS), uzaktan algilamada hiperspektral goriintiiler
alaninda etkili ve avantajli bir aragtirma alamidir. Cok sayida ilgisiz ve gereksiz
Oznitelik iceren bu biiyiik veride, Oznitelik secimi yaparak, veri fazlaligi, ¢cok fazla
bilgi kaybina ugramadan azaltilabilir. Bununla birlikte, dikkate alinan hiperspektral
veri kiimesi icin uygun bir 6znitelik secimi yonteminin belirlenmesi uygulamacilar
acisindan 6nemli olabilmektedir.

Oznitelik secme yontemleri tipik olarak, secim algoritmasini ve model olusturma
yontemini nasil birlestirdiklerine bagl olarak ii¢ kategoriye ayrilmaktadir: Bunlar,
arama yontemini kullanarak uygun 6znitelikleri secen filtre temelli yontemler, secilen
Oznitelikleri bir simiflandiriciyla dogrulayan sarmalayict yontemler ve iki Onceki
yontemin kazancglarini kullanan gémiilii yontemler seklinde siralanmaktadar.

Oznitelik secimi konusu iizerinde yapilan bircok calisma sadece yeni yontemlerin
geligtirilmesi iizerinde degil, yontemlerin hiperspektral goriintii siniflandirmasina
uygulanmasi iizerinde de yapilmaktadir. Bildigimiz kadariyla, hiperspektral uzaktan
algilanmig veri kiimeleri iizerinde, Oznitelik secimi yontemlerinin aymi deneysel
ortamlarda karsilastirildigr genel bir analiz ¢aligmasi literatiirde mevcut degildir.
Bu calismada, en cok kullanilan en gelismis on yedi Oznitelik se¢imi algoritmasi
ile kapsamli bir deneysel analiz yapilmistr. Destek Vektor Makineleri (DVM) ve
K-En Yakin Komguluk (K-EYK) simiflandiricilart kullanilarak literatiirde bilinen
yedi hiperspektral uzaktan algilama veri kiimesi iizeride kapsamli olarak analiz
edilmistir.  Bu tezin katkisi, arastirmacilarin, farkli tiplerdeki Oznitelik secimi
yontemlerinin davranisin1 anlamasina yardimeci olmak amaciyla hiperspektral veri
kiimeleri ile Oznitelik se¢imi algoritmalarinin kullanimi hakkinda kapsamli bir
degerlendirme calismasi sunmaktir. Oznitelik se¢imi algoritmalarinin analizi, farkl:
sayida egitim Ornegi alinarak da analiz edilmistir. OS yontemeleri, siniflandirma
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dogrulugu, dznitelik se¢cimi yontemlerinin kararliligi, siniflandirilmig 6zniteliklerin bir
veri kiimesinin siniflarimi ayirabilme kabiliyeti ve hesaplama maliyeti olmak iizere
dort ana degerlendirme kriterine gore degerlendirilmistir. Bu tez, 6znitelik secme
yontemleri ve bunlarin uzaktan algilama alanindaki hiperspektral veri kiimeleri iizerine
odaklanmugtir. Bu tez bes boliimden olugsmaktadir.

Birinci boliim, bu calismayr tanitmakta ve uzaktan algilama alaninda kullanilan
hiperspektral goriintiilerden bazi yonler sunmaktadir. Buna ek olarak, bu boliimde
boyut azalticit ve siniflandirma yontemleri ile ilgili temel tanimlarda verilmektedir.
Ayrica, hiperspektral goriintiileri ve Oznitelik secimi alaninda yapilan literatiirdeki
daha oOnceki eserlerile ilgili bir literatiir 6zeti verilmektedir. Bu calismanin kisa bir
amaci ve motivasyonuna da bu boliimde yer verilmistir.

Ikinci boliim, arastirmada ele alinan yontemlerin genel olarak tanimlarini icermektedir.
Tiim 6znitelik se¢imi ve siniflandirma yontemleri kisaca 6zetleri verilmektedir.

Uciincii boliim, ii¢ alt boliimden olusmaktadir. Ik boliim, ¢alismanin icerdigi hiper-
spektral veri kiimelerininin genel tanimlarini icermektedir. Kullanilan hiperspektral
veri kiimeleri, uzaktan algilama alanindaki kullanimi ¢ok yaygindir ve bu alanda
yapilan calismalarda genis 6lciide kullanilmaktadir. Ikinci boliimde, 6znitelik secim
yontemlerinin analizinde kullanilan degerlendirme kriterlerinin neler oldugundan
s0z edilmektedir. Calismada, dort farkli degerlendirme kriteri dikkate alinmigtir.
Bunlar, siniflandirma dogrulugu, 6znitelik secimi yontemlerinin kararlilifi, secilen
ozniteliklerin siniflar1 ayirma becerisi ve OS yontemlerinin hesaplama seklindedir. Son
boliimde ise, deneylere gecmeden Once yapilan gerekli parametre se¢imlerinden sz
edilmektedir.

Dordiincii boliim, hiperspektral veri kiimeleri ile yapilan deneylerin sonuglarini
gostermekte ve elde edilen bulgular hakkinda kapsamli bir tartisma imkam
sunmaktadir. Deney sonuclari, 6znitelik se¢me yontemleri ve siniflandiricilarin
hiperspektral veri kiimeleri iizerindeki davraniglarina gore ayri ayri incelenmistir.

Son olarak, besinci bolimde, tez kapsaminda yapilan calismanin elde edilen
genel sonuglart O6zetlenmektedir. Elde edilen sonuglara gore, filtre temelli
yontemler, hiperspektral veri kiimeleri iizerinde yapilan farkli degerlendirme kriterleri
cercevesinde sarmalayict veya katistirllmig tipteki yontemlere gore daha avantajh
yontemlerdir.

Bu tez kapsaminda elde edilen sonuglari 1s18inda, uzaktan algilama alaninda
hiperspektral goriintiilerin siniflandirma problemleri ve analizleri i¢in "mutual
information" tabanl filtre yontemlerinin kullanilmas1 6nerilmektedir. Ayrica "Random
Forest (RF)" ve "FSTree" yontemleri de basarili sonuclar vermektedir. "Mutual
information" yontemlerinin avantajlar1 asagida siralanmaktadir:

e Bu yontemler herhangi bir siniflandiricidan bagimsizdir ve herhangi bir parametre
ayar gerektirmezler. Dolayisiyla, bu yontemlerin uygulanmasi oldukc¢a kolaydir.

e Bu yontemlerin hesaplama zamani sarmalayici ve katistiritlmig yontemlerden daha
diistiktiir.

e "Mutual information" tabanli yontemler farkli ornekler ve veriler igin iyi bir
genellstirme yetenigine sahiptir.
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"RF" yontemi, hiperspektral veri kiimelerinin boyut azaltma sorunlariyla baga
cikmanin bagka bir alternatifi olabilir. Bu yontem, diisiik hesaplama siiresinin yani sira
yiiksek diizeyde bir siniflandirma dogrulugu vermektedir. Ancak, "RF" yonteminin
uygulanmast filtre tabanli yontemlere gore daha zordur.

"FSDTree" yontemi, smiflandirma dogrulugu acisindan oldukg¢a iyi bir yontemdir
ancak hesaplama maliyeti yiiksektir. ~ Hesaplama zamaninin 6nemli olmadigi
uygulamalar i¢in, bu yontem ile basarili sonuglar elde edilmesi miimkiindiir.
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1. INTRODUCTION

1.1 Introduction

Recent promotes in remote sensing and geographical information system (GIS) is
directed to find new ways to extend the hyperspectral images (HSI) and its sensors.
In case of remote sensing, HSI is a recently developed technology that allocates the
scientists and researchers in their investigations. The main subject of hyperspectral
remote sensing has begun in the mid-80’s to use for mapping minerals by the

geologists.

Hyperspectral image is an imaging technique that collects information from objects,
based on their electromagnetic spectrum [2]. Using advantages of thousands of
sensors, HSI spectrometer can measure about 100 to 200 spectral bands with 5 to
10 nm through an extensive wavelength, mostly in the range of 400 to 2500 nm,
whereas, multispectral imaging are usually composed of about 5 to 10 bands with a

large bandwidth (70-400 nm).

Since the HSI has the ability to provide a detailed information about the objects, a
variety of application such as object discovering, material identification, and target
detection have been reported in the literature [3] [4] [5] [6]. The HSI imagery is
generally collected as a data cube with spacial information in the X-Y plane, and

spectral data in the Z-direction as shown in Figure 1.1.

Classification algorithms are quite effective tools to extract the information from the
HSI. However, hyperspectral data always come with a huge number of redundant
and correlated bands that might cause a poor classification accuracy. Besides, the
redundancy in features also brings an extra computational cost without contributing
any useful information to classification performance [7]. Therefore, processing such
a huge volume of data might become a quite difficult task especially when supervised
classification methods are used. Another problem, often reported in the context

of classification of hyperspectral images in the literature is the Hughes effect or
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Figure 1.1 : Data cube of a h?perspéétral image [1].

phenomenon [8] that can have a major unfavourable impact on the classification
accuracy. In classification analysis and with assuming a fixed training set, classification
accuracy increases with the addition of new features. The rate of increase, declines
and eventually, the accuracy will begin to decrease with adding more features.
Hence, feeding more features to a classification method may cause a decrease in
the classification accuracy [9]. To tackle with this issues, dimensionality reduction
techniques have been carried out as very useful tools to effectively use the classification
methods, to reduce the computational time and to optimally use data storage
requirements [10]. Moreover, reducing the number of features may lead to increase

the classification accuracy in some cases [11].

The dimensionality reduction methods can be categorized into two main sections:
feature extraction, and feature selection. Feature extraction (FE) methods map the
original features into a low dimensional space. These methods provide more separable
features in the low dimensional space, but FE modifies the physical properties of
the features. In contrast, feature selection (FS) methods rank the features or pick a
subset of features with respect to their ability to generate an accurate classification
performance or ignore some features that are considered as redundancy [12]. The
ambition of the FS is to select a batch of features which brings as much information as
possible. Through keeping the physical explanation of the features, the FS might be a

better choice than the FE, especially when dealing with the analysis of real datasets.

There exists three different approaches for the FS: filter, wrapper, and embedded

methods [13]. Filter methods clarify unsuitable features usually by using a search
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method based on statistical criterion without considering any classifier [11]. On the
contrary, wrapper methods utilize a classification technique to validate the selected
features [14]. The wrappers, often generate better results for final classification
accuracy than filter methods while they are optimized for a particular learning method.
However, while they have an inside evaluator and each feature set is separately
considered, the wrapper methods are more expensive to run. The wrapper methods
also can be uncompromising in case of having the big data including many features
and classes like HSI datasets. Moreover, in case of the wrapper methods, the methods
need to be re-run from a problem to another. Hence, the filter methods provide more
general solution than the wrappers. Besides, the embedded methods use the advantages

of both above strategies.

The different FS methods result various subsets of the original feature set. Moreover,
for a specified classification purpose, a particular FS method should be chosen.
An FS method may obtain significant results in a classification problem while in
another problem it can not show the same outcomes and using another FS method
is preferable. For all these reasons and challenges, feature selection persists a hot topic

for researchers in the area of machine learning and data analysis [15].

1.2 Related Works

In the context of hyperspectral remote sensing literature, the studies related to the
feature selection have been generally focused on methodology itself. Accordingly
the analyses have been conducted to provide the effectiveness of their proposed
approach in comparison to several existing algorithms based on a few hyperspectral
datasets. Pal and Foody analysed the impact of the features on SVM classification
method in context of hyperspectral images. They achieved that the SVM classification
accuracy declines with adding more features especially when the size of training set
is small. They also found that the feature selection is a useful method to increase the
classification accuracy [16]. Ghamisi and Benediktsson presented a new FS approach
based on a binary optimization method using fractional-order Darwinian particle
swarm optimization. They proposed their method via its impact on SVM, and on
attribute profile (AP) vectors [17]. Patra et al. introduced a supervised method to select

efficient features in hyperspectral images by using Rough set theory. They evaluated



their method in comparison to three other methods that are fuzzy C-mean, divergence,
and mutual information [18]. Hossain et al. denoted a one-class oriented method
to select the suitable features. They used mutual information (MI) as a FS criterion
and applied to cluster space. Each class was classified in a sequence. They used
hyperspectral and Lidar datasets for their experiments [19]. Persello and Bruzzone
presented a kernel-based feature selection method. Their method chooses a subset of
original feature set which are relevant and invariant. The selected features should
be discriminant in the considered classification problem and stable along different

domains such as source and the target domains [20].

Furthermore, some studies have optimized the common feature selection methods.
Zabalza et al. proposed an optimized PCA approach called Folded-PCA which
resolved PCA drawbacks. They said that although PCA had been broadly used in
feature selection and feature extraction, it tolerated three main drawbacks which are
high computational cost, large memory requirement, and low ability in processing

large dimensional data like HSI [21].

To our knowledge, for a researcher who looking for a feature selection method as a tool
to solve a specific problem in the area of remote sensing, there is no comprehensive
analysis covering the most of the FS methods with using hyperspectral remotely
sensed datasets, and comparing them in the same environmental conditions meaning
that conducting the experiments on the same datasets in the area of remote sensing.
Moreover, while HSI analysis is very costly due to their high dimensionality, there is no
significant assessment including a large collection of commonly used remotely sensed
hyperspectral datasets. For instance, Bolon-Canedo et al. have investigated important
feature selection methods on some synthetic Artificial Intelligence (AI) datasets
with aiming to review the performance of feature selection method with taking into
account of irrelevant features, noise in the data, redundancy and interaction between
attributes, as well as a small ratio between number of samples and number of features
[22]. Besides, Pohjalainen et al. developed supervised and unsupervised feature
selection methods by focusing on paralinguistic analysis using standard K-Nearest
Neighbours (KNN) as a classifier. They showed that the classification of paralinguistic
dataset using FS methods with KNN classifier, leads to achieve equivalent or even

better performance than using support vector machine (SVM) or random forest as



a classifier [23]. Ang et al. provided a review on the supervised, unsupervised,
and semi-supervised feature selection methods in gene selection analysis. They
also discussed the challenges and problems faced in order to obtain better diseases
prediction or fining new diseases. The paper implied that there are still many open
opportunities for further improvements. The authors utilized most commonly used
gene micro-array expression datasets [24]. Vergara and Estévez presented a review of
the feature selection methods without considering any dataset to analyse the methods.
They showed that modern feature selection techniques must go beyond the concept of
relevance and redundancy to include complementarity. They developed a framework
based on mutual information which is able to optimize the FS method [25]. Brown et
al. demonstrated an unifying framework for feature selection methods by optimizing
the conditional likelihood. They are not pursued an exhaustive analysis but, displayed
a valuable comparison between information-based feature selection techniques using

15 common machine learning datasets [26].

1.3 Purpose of Thesis

The aim of this research is to present a benchmark study covering an experimental
analysis of mostly used state of art feature selection methods on variety of
hyperspectral remotely sensed datasets [27]. The motivation of this thesis is to
exploit a comprehensive survey for using a remote sensing researcher to understand

the performance of the FS algorithms on a specified hyperspectral dataset.

For the experimental analysis, 17 number of FS methods are be tested with two
well-known classification methods over 7 remotely sensed hyperspectral datasets in
terms of classification accuracy, stability of feature selection methods, ability of the

selected features to separate classes, and computational time of FS methods.

1.4 Thesis Overview

This thesis is focused on feature selection methods and their impact on hyperspectral
datasets in the area of remote sensing. The outline of this thesis is organized in 5

chapters.



The first chapter introduces this work and gives some aspects from hyperspectral
images used in the area of remote sensing. In addition, this chapter contains
fundamental definitions about dimensionality reduction and classification methods. It
also contains a look to previous works that were done in the area of feature selection of
remotely sensed hyperspectral images. A brief purpose of this work and the motivation

also is given in this chapter.

The chapter 2 describes the methodologies considered in this research. All feature
selection and classification methods are briefly given. The feature selection methods

are separately explained in three categories.

The chapter 3 is constructed in three sections. First section, illustrates the hyperspectral
datasets that are included in this work. All these datasets are well-known in the area
of remote sensing and are broadly used in the studies conducted in this area. In
second section, the assessment criteria are described to evaluate the feature selection
methods. Four evaluation criteria are considered in this work: classification accuracy,
stability of feature selection methods, ability of the selected features to separate
classes, and computational time of FS techniques. The experiments and their settings

are demonstrated in the last section of this chapter.

The chapter 4 demonstrates the results of experiments conducted with hyperspectral
datasets and gives a comprehensive discussion about the findings. The experimental
outcomes are investigated with respect to the behaviour of all feature selection methods

and classifiers over all hyperspectral datasets.

Finally, the chapter 5 gives a conclusion of this thesis. According to the obtained
results, the filter-based methods are more profitable than the wrapper or embedded

techniques in terms of different evaluation criteria for hyperspectral datasets.



2. METHODOLOGY

This chapter explores several well-known feature selection methods based on SVM
and KNN classifiers. For each method, a reference is given to the reader to be able to

get more detail analysis about a specified method.

2.1 Feature Selection Methods

Feature selection methods are categorized as three parts depending on their evaluation
capability of individual feature or feature sets. The FS methods used in this study are

briefly explained below:

2.1.1 Filter methods

2.1.1.1 Chi square (Chi2)

This method uses the Chi-Square distribution that is a special case of the Gamma
distribution and is one of the most broadly-used probability distributions. Chi2 utilizes
the Chi-Square (X?) statistic to discretize numeric attributes of the features repeatedly

until some discrepancies are found in the data. X2 is calculated by this formula:
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where k is the number of classes, A;; is the number of patterns in the i"" interval of j*

class, and E;; is the expected frequency of A;; that is determined from this equation:

C.
%:&x# (2.2)

where R; is the number of patterns in the i/ interval, C j is the number of patterns in
the j* class, and N is the total number of patterns [28]. Chi2 is a quite useful method

on numeric and ordinal type of data.



2.1.1.2 Conditional informative feature extraction (CIFE)

This method is based on information theory and uses the mutual information to reduce
the redundancies between the features based on their relevant classes that cause a
maximized joint class-relevant information [29]. CIFE is a special case of MI based

feature selection methods which the coefficient of Ml is equal to 1 [25].

2.1.1.3 Conditional mutual information maximization (CMIM)

The CMIM is a very fast FS method that uses conditional mutual information (MI).
This method maximizes the MI of features that picked up individually or weakly
dependant pairs. The CMIM is a forward selection method and ranks the features by
comparing each feature with the selected one to determine the good features. The good
features mean that if /(Y;X|X), which is the estimation of the quantity of information
shared between X (feature vector) and Y (related class), is large for each selected X. In
other words, X is suitable if it has information about ¥ and these information have not

been caught by any of the X already picked [30].

2.1.1.4 Double input symmetrical relevance (DISR)

DISR uses two major characteristic of feature selection: a combination of variables
that returns more information about related class rather than the information obtained
from individual variables [31], or a combination of best performing subset when there

1s no information how to combine the variables [32].

2.1.1.5 Fisher score (Fisher)

This method uses discriminative methods, and generative statistical models to
determine the most relevant features and selects the features in such a way that the
distances between them and the other features with different classes are as large as
possible while the distances between features with the same class labels are as small

h

as possible [33]. The Fisher method scores i'”* using this formula:

Yonj(uij— pi)*
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Fisher Score = 2.3)



where (;; is the mean and p;; is the variance of the i'" feature in the j'" class, y; is the

mean of the i feature and nj is the number of samples in the j' class [34].

2.1.1.6 Gini index (Gini)

This filter method uses Gini coefficient to measure a feature capability to detect class
separability. The Gini Index is determined independently for each feature. The more
important feature has the smaller Gini index. After the whole features are weighted,
the top N features having smallest Gini index are selected [35]. The Gini Index for a

feature is calculated by this formula:

Ginilndex = 1— Y p3 (2.4)

1

n
j:

where p; is the relative frequency (probability of occurrence) of class j.

2.1.1.7 Information gain (InfoG)

InfoG is an easy method to implement that counts the number of obtained bit
information with a corresponding class [36]. To select the valuable features, the
entropy of the data both for whole classes and each class is calculated, and the features

with highest discrimination are selected [37]. This method values each term by:

‘Sxi:V|/|Sx|
InfoG(Sy,x;) =H(S:)— ), H(Sy=v) (2.5)

v=values(x;)

where Sy is the set of training examples, x; is the vector of i variables and

|Sx, = v|/ |Sx] is the fraction of examples of the i variable having value v and:

H(S) = —p4(S)log, p+(S) — p—(S)log, p—(S) (2.6)

where p.(S) is the probability of a training sample in the set S to be in the

positive/negative class [38].

2.1.1.8 Joint mutual information (JMI)

This method is a model-independent technique and uses mutual information to detect

the relevant features. The MI checks each feature pair individually while the relevance



of a set of these pairs is described by JMI [39]. JMI is selected the most relevant
features to the class rather than the MI. It takes into consideration the relevance of

feature and class when the subset of features were selected.

2.1.1.9 Mutual information based feature selection (MIFS)

MIFS technique uses mutual information to select the features. Firstly, it computes
MIs for each feature from an initialized feature set with an output class. Secondly, it
selects the first feature and finds the feature that maximizes the MI. This method uses

greedy method to select the features. The steps of MIFS can be given as follows [40]:

1. Set the first set of n features as F' and define S as an empty set (initialization).

2. Compute I(C; f) for each f € F (MI computation).

3. Find the feature f that maximizes MI and set F = {FT} and S = {f}.

4. Repeat levels 2 and 3 until the | S| meets the needed feature rank (greedy selection).

5. Proceed S as the output.

2.1.1.10 Mutual information maximisation (MIM)

The MIM method weights the features with considering mutual information [41]. To
evade the disadvantages of random sampling such as ignoring informative features, the
MIM selects the features that maximize the MI individually with the class prediction.
This technique does not assure minimal dependency between the features and may lead

to redundancy [42] [43].

2.1.1.11 Maximum relevance and minimum redundancy (MRMR)

The MRMR is a common filter technique to select the features that have the strongest
correlation with a classification variable. The MRMR selects the features that are
mutually different from each other while still having a high correlation [44]. To show
the dependency among the feature pairs, it uses the mutual information. In other words,
this strategy consists of selecting a feature f; among the features f; that are not selected
and maximizes (u; — r;), where u; is relevance of f; to the class ¢ and r; is the mean

redundancy in these two selected features and can be defined as:
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where I( fi; ¢) is the mutual information between f and c that are random variables [16].

2.1.1.12 Relief-F (ReliefF)

ReliefF is an updated version for Relief feature selection technique [45]. It uses the
differences of average distance between the nearest point in the same class (near-hit)
with the nearest point in a different class (near-miss) [46] [47]. The original Relief
uses the single nearest hit and miss but the ReliefF take an average among K nearest
hits and misses [48]. The ReliefF is one of the best and successful strategies in the

feature selection.

2.1.2 Wrapper methods

2.1.2.1 Forward feature selection using decision tree (FSDTree)

This method uses forward feature selection to select worthy features then evaluate them
with decision tree classifier as a validator. The aim of decision trees is to find a model

that predicts the target value using decision rules derived from data features [49].

2.1.2.2 Single feature selection using logistic regression classifier (Single)

The Single algorithm is a wrapper method and uses a simple feature selection
technique. This method selects each feature individually and evaluate its prediction
accuracy using logistic regression classification method. Logistic regression is a very
common method that maximizes the sum of the likelihood logarithm and penalizes the

regression coefficients using L1 norm [50].

2.1.3 Embedded methods

2.1.3.1 Random forest (RF)

This embedded method selects features by repetitively training a random forest

classifier [51] by using ongoing feature set and eliminating the least important feature.
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The random forest classifier is a classification method based on random decision
trees [52]. This classifier fits classification trees by obtaining a bootstrap sample from
the data. A random subset of variables is selected independently from all possible
variables at each node of decision trees. The each tree weights the variables by finding
the best partition on the selected instances. Random forest is one of the best-known
machine learning classification methods and very stable when the training data have

small changes [53].

2.1.3.2 Recursive feature elimination using non-linear kernel-based SVM

(SVMRFEK)

SVM-REE is a sequential backward feature elimination method that uses the binary
SVM classifier as its evaluator [54]. The SVM-RFE begins with all the features. At
each step, feature weights are acquire by comparing th training data with the existing
features. Then, the feature with the minimum cost function is removed. This procedure
continues until all features are ranked according to the removed order [55]. The cost

function is calculated by this formula:

w12 = (w2 (2.9)

where |w|? is the norm of feature weight vector. The notation — f means that the feature

f has been removed [54].

The SVMREFEK is a kernel version of this method. It uses an RBF kernel and can
handle non-linear SVM models, but is slower than the original technique. A correlation
bias reduction (CBR) [56] strategy is designed to deal with the highly correlated

features.

2.1.3.3 Recursive feature elimination using linear kernel SVM (SVMRFEL)

This method is a version of original linear SVM-RFE as in [54] therefore it uses SVM
with a linear kernel as its evaluator. This method is faster than the method that uses
RBF kernel. Similarly to deal with highly correlated features, a CBR [56] method is

used.
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2.2 Classification Methods

In machine learning, classification is a supervised method that assigns an input feature
vector to one of the existing classes, based on specific classification measures. A linear
classification method classify the samples base on the value of a linear combination of
features. In this thesis, two well-known classification methods which are SVM with

linear kernel as a linear classifier and KNN as a non-linear method are used.

2.2.1 Support vector machine (SVM)

Class 1 u

Support vectors. ~

-

Hyperplané ® Class 2

Figure 2.1 : Optimal sepairating hyperplane in SVM for a linear kernel. The support
vectors are indicated by red shapes.

Recently, in context of classification of remotely sensed hyperspectral images, a special
attention to SVM has been denoted. SVM has often a higher classification accuracy
in counter to another common pattern recognition techniques [57] [58]. This method
uses support vectors to classify given data. The aim of SVM is to find an optimal

hyperplane between classes by maximizing perpendicular distance (the margin).

As shown in figure 2.1, a basic and simple implementation of SVM is to find an
optimized linear hyperplane between the samples of two classes that are linearly
separable. This means that it is possible to find a linear hyperplane with function
f(x) that can separate the two classes. f(x) is the discriminant function and can be

defined as:
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flx) =w.x+b (2.10)

where w is the normal (weight vector) to the line, x is the training data, and b the
bias. The optimal hyperplane can be represented in an infinite number of different
ways by scaling of w and b. As a matter of convention [59], among all the possible

representations of the hyperplane, the one chosen is:

lw.x+b| =1 2.11)

From the geometry, the distance between a point x and a hyperplane (w, b) can be

calculated:

Distance = [w.x+b] - (2.12)

Recall that the margin that already defined, is twice the distance to the closest samples:

2
Margin = —— (2.13)
|w]

In order to find an optimal hyperplane, the Margin should be maximized. In other

word,

Max = Max

2 1
[[w i [[w i

To sum up, the constraints model the requirement for the hyperplane to classify

1
= min || w /= min || w & (2.14)

correctly all the training examples x;. Formally,

1
mini |wl> subject to yi(wxi+b)>1, vV i=1,2,..,N (2.15)

where y; represents each of the labels of the training data. SVM is also independent

from Hughes effect [60].
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2.2.2 K-nearest neighbours (KNN)

The KNN is one of the simplest methods used in the classification that collects all
the available instances and then classifies new instances with respect to their distance
based similarity. This method determines the class of an unknown data depending on
the class of the nearest neighbours whose classes are already known [61]. It has a
parameter K (integer and usually small number) that refers to the number of nearest
neighbours in the current feature set. The output is a class label that has maximum
iteration in K nearest neighbours classes. For instance, if K is equal to 1, then the
class label of the unknown data is clearly allocated as the class of that first nearest

neighbour.
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3. DATASETS AND EXPERIMENTAL SETTING

3.1 Hyperspectral Datasets

In order to analyse the FS methods, seven hyperspectral remotely sensed datasets were
considered in this study. All datasets are very common in the literature of hyperspectral

images. The datasets and their properties are shown briefly in Table 3.1.

Table 3.1 : The hyperspectral datasets used in the experiments.

Measures
Sensor Dataset Bands Classes Non-Zero
Samples
EO-1 Botswana 145 14 3248
Indian Pines 200 16 10249
KSC 176 13 5211
AVIRE Salinas 204 16 54129
SalinasA 204 6 5348
Pavia Center 102 9 148152
ROSIS University of Pavia 103 9 42776

3.1.1 Botswana

The Botswana dataset is captured by Hyperion NASA EO-1 at 30 m pixel resolution
over a 7.7 km altitude from Okavango Delta, Botswana, in 242 spectral bands with
400-2500 nm portion of the spectrum. Uncalibrated and noisy bands that cover water
absorption are removed, and the 145 spectral bands are remained. The data are
analysed in 14 identified classes displaying the land cover types in seasonal swamps,
occasional swamps, and drier woodlands [62]. The class 3 (Riparian) with 237 data
samples and the class 6 (Woodlands) with 199 data samples are the most complicated
classes for this dataset. The true color representation along with ground truth for

Botswana dataset is shown in Figure 3.1.

3.1.2 Indian pines

The Indian Pines dataset is acquired by AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer) sensor over the Indian Pines site, Northwest of Indiana, US. It is
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B  Water

B Hippo grass
Floodplain grasses1

B Floodplain grasses2

Reeds

B Riparian

(a) False color representation e
Island interior

B Acacia woodlands
Acacia shrub lands
Acacia grasslands

Short mopane

B Mixed mopane

Exposes soils

(b) Ground truth (c) Class labels

Figure 3.1 : Botswana dataset
captured with 145 x 145 pixels and 224 spectral bands in the wavelength range
400-2500 nm. This scene (Figure 3.2(a)) is a subset of a larger dataset. The Indian
Pines scene contains two-thirds agriculture, and one-third forest or other natural
perennial vegetation. There are two major dual lane highways, a rail line, as well
as some low density housing, other built structures, and smaller roads. Since the scene
is taken in June some of the crops present, corn, soy beans, are in early stages of

growth with less than 5% coverage. The ground truth is nominated in 16 classes that

(a) Sample band (170) (b) Ground truth
1 Alfalfa 9 Oats
2 Corn-notill 10 Soybean-notill
3 Corn-mintill 11 Soybean-mintill
4 Corn 12 Soybean-clean
5 Grass-pasture 13 Wheat
6 Grass-trees 14 Woods
7 Grass-pasture-mowed 15 Buildings-Grass-Trees-Drives
8 Hay-windrowed 16 Stone-Steel-Towers

(c) Class labels
Figure 3.2 : Indian Pines dataset
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are not all mutually exclusive. The most complicated classes for this dataset are the
class 3 (Corn-Min Till) with 834 samples and the class 12 (Soybeans-Heavy Till) that
contains 614 data samples. The number of bands are reduced to 200 by removing water
absorption and other noisy bands ([104-108], [150-163], and 220) [63]. A sample

band, the ground truth and related classes for Indian Pines are shown in Figure 3.2.

3.1.3 Kennedy space center (KSC)

This scene is collected by AVIRIS sensor over the Kennedy Space Center, Florida
on March 23, 1996, US. It is collected in 224 bands of 10 nm width with center
wavelengths from 400-2500 nm from an altitude of approximately 20 km and with
a spatial resolution of 18 m. After removing water absorption and low SNR bands,
176 bands are used for the analysis. Training data are selected using land cover
maps derived from color infrared photography provided by the Kennedy Space Center

and Landsat Thematic Mapper (TM) imagery. For classification purposes, 13 classes

B Unclassified
Scrub

B Willow

B CP Hammock

B CP/Oak

B Slash Pine

B Oak/Broadleaf

[] Hardwood swamp

B Graminoid marsh
Spartina marsh
Cattail Marsh
Salt marsh

M Mud flats

W Water

(a) True color map (b) Ground truth
Figure 3.3 : Kennedy Space Center (KSC) dataset

representing the various land cover types are defined for this dataset [64]. The KSC
dataset have four most complicated classes which are the class 3 (Cabbage palm
hammock) with 256 data samples, the class 4 (Cabbage palm/oak) with 252 data
samples, the class 5 (Slash pine) with 161 data samples, and the class6 (Oak/broadleaf
hammock) with 229 data samples. The true color map of KSC and the ground truth

are shown in Figure 3.3.

3.1.4 Pavia center and university of pavia

Pavia Center and University of Pavia scenes are captured by ROSIS (The Reflective

Optics System Imaging Spectrometer) hyperspectral sensor over Pavia, northern Italy.
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Pavia Center has 102 spectral bands while University of Pavia has 103 spectral bands.
The spatial resolution for both datasets is 1.3 meters. The ground truth datasets for

both images are provided for 9 classes [65].

[ Water
[ Trees
I Meadows
I Self-blocking bricks
[ Bare soil
B Asphalt
I Bitumen
) B Tiles
I Shadows

(a) True color map (b) Ground truth
Figure 3.4 : Pavia Center dataset

Figure 3.4 shows the original view and the ground truth for Pavia Center hyperspectral
dataset. The true color map of University of Pavia and its ground truth dataset are also

demonstrated in Figure 3.5.

Asphalt

Meadows

Gravel

Trees

Painted metal sheets
Bare soil

Bitumen
Self-blocking bricks
Shadows

BERERNRAE

(a) True color map (b) Ground truth
Figure 3.5 : University of Pavia dataset
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3.1.5 Salinas datasets

Salinas scene is captured over Salinas Valley, California, US by AVIRIS hyperspectral
sensor and is characterized by 3.7 meter as spatial resolution. This dataset is a 512
x 217 pixels image and includes 224 spectral bands, and twenty of these ([108-112],
[154-167], 224) are discarded because of water absorption effects. The Salinas include
16 land cover classes and mostly contain vegetables, bare soils, and vineyard fields

[66]. Figure 3.6 displays the true color map and ground truth dataset for Salinas scene.

Brocoli green weeds 1
Brocoli_green_weeds_2
Fallow
Fallow_rough_plow
Fallow_smooth

Stubble

Celery
Grapes_untrained

L-I-L IS - N

Soil_vinyard_develop
10 Corn_senesced green_weeds
11 Lettuce romaine 4wk

12 Lettuce_romaine Swk
13 Lettuce_romaine_6wk
14 Lettuce_romaine_7wk
15 Vinyard untrained

16 Vinyard_vertical _trellis

(a) True color (b) Ground truth
Figure 3.6 : Salinas dataset

The last dataset called as SalinasA is an small sub-scene of original Salinas dataset
with 86 x 83 pixels. As Salinas scene, this sub-scene, has 204 bands. The ground
truth for this dataset contains 6 land cover classes [66]. The image with its ground

truth is shown in Figure 3.7.

(a) Band 170 (b) Ground truth
Figure 3.7 : SalinasA dataset
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3.2 Performance Evaluation Criteria

With the purpose of assessment of the performance of feature selection methods on HSI
datasets, four different evaluation criteria were used in this study, that are classification
accuracy, stability of feature selection methods, ability of the selected features to

separate classes, and computational time of FS methods.

3.2.1 Classification accuracy

The first criterion is classification accuracy as to measure the effect of progressively
feeding selected features to a classifier. The aim of this analysis is to show how the
accuracy results change with adding more features to a classification method. The
classification accuracy is evaluated in terms of different aspects such as the size of
training data, dependency of FS methods to a classifiers or datasets, determining the

optimal number of features, and finally obtaining the best FS method.

3.2.2 Stability

The stability of FS methods is a measure of robustness of the selected features to small
variations in the training dataset and is shown by plotting of top ten selected features for
ten different random realization. Obviously, an stable FS method is the one that gives

the same or very close feature ranking in each trial with different training datasets.

The aim of investigating the stability of feature selection methods is to find an
application domain experts with quantified evidence that the selected features by an
stable method are relatively robust to variations of training samples. If a FS method
is stable and selects same features for different training data, the captured rank can be
used for different range of training data without utilizing the feature selection method

again.

3.2.3 Ability of the selected features to separate classes

The aim of feature selection methods is to rank the important features of a dataset.
In the ranked feature set, the first features are more important than the other features.
Therefore, obtaining the importance of selected features and investigating their ability

to distinguish the classes can be another criterion to evaluate the feature selection
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methods. Evidently, the features that can be separate classes are more important than

the other features and play a significant role in analysis of data.

3.2.4 Computational time

The computational time of a FS method is another measure to evaluate the feature
selection methods. In order to show, the computationally effectiveness of each FS
strategy, the CPU time is recorded on a computer with Intel Corei7-4710HQ CPU and
8 GB DDR3 memory.

3.3 Experimental Setting

Inasmuch as all FS algorithms are supervised, the datasets were partitioned randomly
into two sections: training data and test data. The training data were included 10, 25,
and 50 samples per each class, and the test data were contained the rest of samples
of classes for each hyperspectral remotely sensed dataset. To reduce processing time
and prevent the reactions of large-value features, training and test data were scaled to
the range of [0, 1]. To obtain the robust results, the experiments were conducted with
ten different randomly created training and test datasets, and the average results were

reported.

Support vector machine (SVM), and K-nearest neighbour (KNN) were used to evaluate
the performance of FS techniques in terms of classification accuracy. In the case of
KNN, K neighborhood number was optimized with respect to the leave-one-out error.
For SVM case, a linear kernel was used with the penalty parameter C € [27>,2!%] which
was obtained with a 5-fold cross-validation algorithm. Since the goal of this work is
to provide fair results for each feature selection method, all classifiers were used with

their default parameters in the implementation of each FS method [67] [26].

In the implementation of the methods, the SVM classification methods were
accomplished by using the LibSVM', which is an integrated software for support
vector classification and supports multi-class classification, and the KNN classifier
were carried out by using PRTools?, that is a Matlab toolbox for pattern recognition.

Moreover, all the feature selection methods were implemented by combining the

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://prtools.org/
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feature selection toolbox progressed by Arizona State University! and scikit-learn®

Python machine learning library.

'http://featureselection.asu.edu/index.php
’http://scikit-learn.org/stable/
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4. EXPERIMENTAL RESULTS

The results of the feature selection methods over hyperspectral datasets are
demonstrated in this section. The behaviours of the FS methods are assessed in terms of
classification accuracy based on two common classifiers, stability of feature selection
methods, ability of the selected features to separate classes, and computational time for
the learning phase of the FS methods to rank the relevant features. It is necessary to
note that all the feature selection methods are evaluated with ten different randomly
selected training and test samples for each HSI dataset, and average results are

reported.

4.1 Classification Accuracy

The classification accuracy, obtained from applying the classifiers on the ranked feature
sets, is considered as the first evaluation criteria. The procedure has two main schemes.
In the first part as the learning phase, each training data is used to obtain the relevant
features for once, and in the second part as the classification phase, the sets of ranked
features are given to each classifier. Since the intention of this thesis is to investigate
the FS methods, not classifiers, the parameters of each classifier are optimized based
on each training data to achieve the highest classification accuracy. Moreover, because
the obtained results are too many due to using dozens of FS methods and hyperspectral
datasets, only the important results are considered in this section. For researchers, who
may want to see the whole results, the classification accuracy tables as well as their

plots are demonstrated in appendices A.1 and A.2.

Based on the outcomes achieved from the experiments, it is observed that the higher
number of features makes the classification accuracy higher, except in one case: SVM
with using 10 training samples per class over the KSC dataset. As shown in Figure 4.1,
adding more than a specific number of features (after 50th features approximately)
leads to a slight decrease in the learning curves of classification accuracy in case of

some FS methods. This means that by using small size of training samples in the
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KSC dataset, these feature selection methods may select some irrelevant features which
play a negative role in the classification accuracy. Therefore, according to the results
obtained, linear SVM may not be an appropriate classifier for KSC dataset when the

size of training data is small.

= Chj2 === FSDTree === Gjnij MIFS RF == == SVMRFEK
wem= CIFE === DISR m@mm |nfoG ==@mm ]|\  ==@== ReliefF SVMRFEL
CMIM Fisher  ==@==JM| ==@&==MRMR = == Single
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Figure 4.1 : Classification accuracies obtained by the SVM classifier for the features

ranked by different feature selection methods for KSC dataset with 10
training samples per class.

In order to study the effects of feature selection methods on the classification accuracy,
the behaviour of methods are further analysed in term of different aspects such as the
size of training samples, classifiers and datasets, and the number of features used in

classification.

4.1.1 Correlation between size of training data and classification accuracy

This section shows the effects of training data size on the classification accuracy for
each feature selection method. To achieve robust results that are independent from
using different classification method, one classifier is considered and while the SVM
results is higher than the KNN, the SVM classification method is chosen. The aim is to
compare the classification accuracies obtained from different size of training data by
using fixed number of ranked features. Because the first 50 ranked features show the
more stable results, first 50 features are considered for each FS method. The maximum
classification accuracy obtained from whole available features is used as a base for this

comparison.
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The achieved results denote that increasing the size of training data leads to an
increase in the classification accuracy. Table 4.1 shows the classification accuracy
results in Botswana dataset for different size of training data. The last row shows
the classification accuracy with using whole feature set. As can be seen use of larger

training sample makes higher accuracy.

Table 4.1 : The classification accuracy (%) of first 50 features for Botswana dataset using
SVM classifier with different training data size."10SpC", "25SpC", and "50SpC"
represent the size of training data.

Method 10SpC  25SpC 50 SpC
Chi2 85.1 90 92.3
CIFE 82.9 87.5 89.9
CMIM 86.4 90.7 92.9
FSDTree 86.3 90.6 92.4
DISR 86.9 90.8 92.5
Fisher 81.1 85.9 87.9
Gini 78.6 84.4 87.3
InfoG 84.5 87 88.3
IMI 86.3 90.9 92.9
MIFS 82.9 87.3 89.2
MIM 86.4 90.8 92.5
MRMR 83.3 86.1 88.3
RF 86.3 90.4 92.3
ReliefF 84.6 89.6 91.1
Single 84.8 88.9 90.1
SVMRFEK 79.2 83.9 86
SVMRFEL 85 89.5 90.8

Maximum Acc. 87.5 91.9 94.1

The purpose of this section is to find methods that capture higher accuracy with a
small size of training data. The methods CMIM, DISR, JMI, and MIM achieve
higher classification accuracy than the other methods in Botswana dataset, and the
classification accuracies are closer to the classification accuracy obtained by whole
features. The CMIM shows accurate results with using 10 and 50 training samples per
class, meaning that this method works also fine with a small size of training data. In
contrast, JMI obtains higher classification accuracy than the other methods when the
size of training data is large enough. Furthermore, the DISR and MIM show the better
results for all size of training data. This means that these two methods can work fine

with a small training data.
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Table 4.2 : The classification accuracy (%) of first 50 features for Indian Pines dataset using
SVM classifier with different training data size."10SpC", "25SpC", and "50SpC"
represent the size of training data.

Method 10 SpC 25SpC 50 SpC
Chi2 54.6 60.2 62.7
CIFE 50.1 57 60.8
CMIM 522 61.1 65.8
FSDTree 54.8 63 67.5
DISR 52.8 61.4 64.5
Fisher 54.2 60.4 62
Gini 51 56.1 58.6
InfoG 52.1 58.1 62.9
IMI 534 61.1 63.9
MIFS 50.7 57.6 60.5
MIM 55.4 59 59
MRMR 51 55.1 58.2
RF 522 63.8 67.6
ReliefF 51.2 55.7 56.9
Single 51.7 56.2 62.7
SVMRFEK 51.9 53.8 56.3
SVMRFEL 52.6 55 57.1

Maximum Acc. 53.8 63.1 68.4

The classification accuracy obtained by ranked features is not necessarily always
smaller than the maximum classification accuracy. For example, in Table 4.2 which
shows the accuracy results for the Indian Pines dataset, the MIM method demonstrates
higher accuracy than the maximum classification accuracy obtained by the whole
features. It is worthy to say that, the MIM shows the higher accuracy than the other
methods when the size of training data is small. The FSDTree is another successful
method which achieves accurate results for different size of training data meaning
that this method not only shows the higher classification accuracy than the maximum
accuracy, but also a small training sample is enough. In contrast, the RF is a method

which needs sufficient number of training samples.

Table 4.3 presents the best feature selection methods for each dataset. The methods are
selected where the classification accuracy is higher than the other methods in case of

first 50 features. Overall, the methods which uses mutual information measures such
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Table 4.3 : The best FS methods using SVM classifier with considering top 50 ranked
features for different size of training data over all datasets. "10SpC",
"25SpC", and "50SpC" demonstrate the size of training samples.

Dataset 10 SpC 25 SpC 50 SpC
Botswana DISR IMI CMIM, JIMI
Indian Pines MIM RF RF

KSC CIFE DISR FSDTree
Pavia Center MIM, RF MIM FSDTree, IMI
University of Pavia MRMR MIM DISR, MRMR
Salinas DISR DISR FSDTree
SalinasA DISR DISR DISR

as CMIM, MIM, JMI, and MRMR as well as FSDTree, RF, and DISR are the methods

that show the accurate performance for different size of training data.

4.1.2 Dependency of FS methods to classifiers

The purpose of investigating FS methods in this section is to find an independent
method from any classifier. More precisely, the aim is to determine the methods that
achieve a higher accuracy in all classification methods. In order to get a clear view of
classifiers effects on feature selection methods, the classification accuracies obtained
by first 50 features of each ranked feature set (because 50 features give more stable

accuracy than first 10 and 30 features) are considered.

Table 4.4 : The classification accuracy (%) of first 50 features for Botswana
dataset."10SpC", "25SpC", and "SO0SpC" represent the size of training data.

Method KNN SVM
10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC

Chi2 77.6 80.8 85.3 85.1 90 92.3
CIFE 75.5 80 84.2 82.9 87.5 89.9
CMIM 79.3 84 86.9 86.4 90.7 92.9
FSDTree 80.6 83.8 87.5 86.3 90.6 92.4
DISR 80.9 83.8 86.6 86.9 90.8 92.5
Fisher 75 78.2 80.7 81.1 85.9 87.9
Gini 69.9 74.8 76.6 78.6 84.4 87.3
InfoG 77.3 79.9 80.1 84.5 87 88.3
IMI 80 84.3 87.6 86.3 90.9 92.9
MIFS 76.2 80.4 83.3 82.9 87.3 89.2
MIM 79.1 81.5 85.5 86.4 90.8 92.5
MRMR 76.8 78.2 80.4 83.3 86.1 88.3
RF 79 84.5 86.6 86.3 90.4 92.3
ReliefF 75.8 80.7 84.7 84.6 89.6 91.1
Single 79.3 82.1 84.2 84.8 88.9 90.1
SVMRFEK 73.3 77.2 79.7 79.2 83.9 86

SVMRFEL 77 82.2 85.4 85 89.5 90.8
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Table 4.4, shows the classification accuracies of the considered first 50 features in
Botswana dataset with regard to three different size of training samples. As can be
seen, the DISR method achieves accurate performance with both classifiers when the
training data is small. This means that the DISR is a classifier-independent method

which works fine with just a small training samples.

Based on the achieved results in Botswana dataset, some of the feature selection
methods are dependent to the considered classifier. For example, the MIM works with
SVM better than the KNN or the RF is a method that provides higher accuracy in KNN
classifier. However, this does not mean that these two methods are dependent to the
classifiers in all HSI datasets. For instance, the RF is a classifier-independent method
in Indian Pines dataset. In case of Botswana dataset, the FSDTree and JMI are two
methods which show the better performance than the other FS methods for both SVM
and KNN classifiers.

The methods which obtain higher classification accuracy than the other methods are
illustrated in Table 4.5. The results are demonstrated for each classifier. If a method
is the winner for both classifiers, it means that the method is a classifier-independent
method for the related dataset. For instance, the CMIM is an independent method for
the Salinas and SalinasA datasets and shows a higher performance for both KNN and

SVM. However, in case of KSC dataset, this method works fine with the SVM only.

Table 4.5 : The first two best FS method for two classifiers with considering
classification accuracy of 50 first ranked features over all datasets. Some
methods present almost identical performance that are come together.

Best FS Methods

Dataset KNN SVM

Ist 2nd Ist 2nd
Botswana FSDTree JMI JMI FSDTree
Indian Pines FSDTree RF FSDTree RF
KSC RF CIFE CMIM, IMI  FSDTree, DISR
Pavia Center IMI FSDTree, RF, MRMR FSDTree RF, MIM
University of Pavia MRMR FSDTree MRMR MIM
Salinas FSDTree, CMIM DISR FSDTree CMIM, DISR
SalinasA CMIM JMI, RF DISR, JMI CMIM, Gini

A noticeable point that worth to say is about the SalinasA dataset. In this dataset,
the Gini is one of the successful feature selection methods when using the SVM as
classifier. The Gini is a mediocre method for almost all the datasets and does not

show a significant classification accuracy. However, this method achieves accurate
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performance in the SalinasA dataset. This is possibly due to the small number of

classes in this dataset.

It is easy to see that the method FSDTree is the most successful methods with both
SVM and KNN classifiers in all the datasets, which means that this method is an
independent method from any classification technique for a wide range of HSI datasets.
However, in the University of Pavia dataset, FSDTree does not obtain a highest
accuracy with SVM, but achieves high accuracy while it is lower than the MRMR
and MIM classification accuracy. In this dataset, the MRMR is an accurate method
for both SVM and KNN classifiers. In addition, as the FSDTree, the DISR is another

independent FS method in Salinas dataset.

The methods FSDTree, RF, and MI based feature selection methods such as JMI,
MRMR, and CMIM are the methods with the highest classification accuracy using both
KNN and SVM classification methods which make them independent and powerful

methods for hyperspectral datasets.

4.1.3 Dependency of FS methods to datasets

This section determines the best FS methods for each dataset separately. For each
dataset, the best methods are the methods that achieve the highest classification
accuracy for different size of training data and different number of considered features

using both classifiers.

Table 4.6 : The best FS methods for each hyperspectral dataset. The best method is
the method with highest achieves in classification accuracies.

Sensor Dataset Measures Best Methods
Bands Classes I1st Rank  2nd Rank
EO-1 Botswana 145 14 FSDTree JMI
Indian Pines 200 16 FSDTree RF
KSC 176 13 CIFE RF
AVIRIS Salinas 204 16 FSDTree CMIM, JMI
SalinasA 204 6 FSDTree CMIM, JMI
ROSIS Pavja C§nter . 102 9 FSDTree JMI, RF
University of Pavia 103 9 FSDTree MRMR

Table 4.6 illustrates the best feature selection methods for each dataset in terms of
their classification accuracies. In order to have an explicit view, this table also shows

the number of classes, feature, and the type of sensors for each dataset. The best
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methods are the methods having the largest number of maximums in classification
accuracy. For instance, in Pavia Center dataset the FSDTree, RF, and JMI perform the
highest classification accuracy for different size of training data and different number

of features than the other methods.

Obviously, the best methods that demonstrate in the Table 4.6 are categorized into two
main groups: the methods which use decision trees such as FSDTree and RF, and the
methods which use MI measures like JMI, CMIM, and MRMR. The FSDTree is the
method that frequently repeated in the table. This method is an appropriate FS method
for all HSI datasets except in KSC dataset where the CMIM and RF are found as the

best methods.

From a point of view, it can be said that the embedded and wrapper methods like
FSDTree and RF gain the more significant results than the filter-based methods.
However, filter-based methods like JMI, CMIM, and MRMR are also achieve
noticeable results with lower computational costs than the wrapper and embedded
methods.  Next, the computational cost of feature selection methods will be

investigated in Section 4.4.

4.1.4 The optimal number of features

The target of feature selection methods is to find the important features in the original
feature set that can increase the classification accuracy. Accordingly, the features that
are ranked in the beginning of the feature set is more important than the other features
and lead to rise the classification accuracy. In order to select the number of effective
features and ignore the less compatible ones from the ranked feature set, a threshold
is needed [22]. Finding this threshold is always one of the questions of researchers
that is not very easy to solve. In order to assess a feature selection method and
determining the optimal number of the features, standard deviation of ten different
realization of classification is a criteria that might be considered. Obviously, the low
standard deviation means that the classification accuracies of different feature selection
methods provides more stable learning curve. Hence, a method can be thought as a best
method if it achieves a higher classification accuracy with a lower standard deviation

by using minimum number of ranked features.
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Table 4.7 : Classification accuracy (%) for Botswana dataset. "10F", "30F", and "50F" show

the number of ranked features are selected. For instance, 10F means first 10
ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for
each class as a training data.

KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC

10F 30F 50F 10F 30F 50F 10F 30F 50F I0F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 644 737 776 699 799 80.8 759 835 853 75.1 83.4 85.1 80.2 879 90 83.5 89.6 923
CIFE 56.7 64.3 75.5 63.3 70.5 80 70.7 76.4 84.2 67.8 744 82.9 73.7 80.3 87.5 79 84.2 89.9
CMIM 714 766 793 778 84 84 79.5 86.9 86.9 79.1 84.5 864 84.1 89.7 90.7 86.3 923 929
FSDTree 776 789 80.6 837 836 838 8.5 87 87.5 838 856 863 89 904 906 904 921 924
DISR 71.6 715 809 783 82.9 838 79.7 842 86.6 78.9 852 869 85.1 89.5 90.8 85.5 90.1 92.5
Fisher 52 70.1 75 51.5 76.3 78.2 51.2 789 80.7 622 778 81.1 62.3 83.6 859 629 85.1 87.9
Gini 54 69.7 69.9 583 742 748 59.5 76 76.6 61.1 71.5 78.6  65.1 83 84.4 67 85.9 87.3
InfoG 63.6 728 77.3 69.3 75.9 79.9 70.8 7.4 80.1 70.6 80 84.5 76.5 83.6 87 78.5 85.6 88.3
IMI 726 719 80 78.8 832 843 843 869 87.6 81 85.8 86.3  86.1 90.3 909 89.7 922 929
MIFS 612 684 762 648 718 804 682 757 833 724 768 829 749 809 873 778 833 892
MIM 758 786  79.1 78 81.4 815 787 84.1 85.5 82.4 852 864 853 89.3 90.8 84.5 89.8 925
MRMR 571 685 768 6l 684 782 633 703 804 687 769 833 705 784 8.1 713 802 883
RF 756 794 79 78.9 826 845 793 84.1 86.6 81.1 85.2 86.3 846 882 904 84.7 89.6 923
ReliefF 55.5 73.8 75.8 68.8  79.5 80.7 72.1 83 84.7 69.7 83.2 84.6 77.9 87.6 89.6  79.7 893  O9l1.1
Single 64.3 754 793 674 755 82.1 63.6 758 84.2 71.3 81.6 848 742 833 889 717 842  90.1
SVMRFEK 46.6 555 73.3 498 589 772 491 619  79.7 50.3 63 79.2 53 67 839 521 69.4 86
SVMRFEL 67.9 76.2 71 73.8 80.8 822 763 83.9 85.4 75.4 83.5 85 80.8 87.5 89.5 82.2 893 908
All feature 80.8 85.2 88.1 87.5 91.9 94.1

Table 4.7 demonstrates the classification accuracies while Table 4.8 shows the standard

deviations for Botswana dataset. In this dataset, with using 10 training samples per

class, the FSDTree is the method that achieves higher accuracy than the other methods

in case of using first 10, 30 and 50 features. This means that this method obtains proper

accuracy with a low number of features. In addition, FSDTree shows an acceptable

standard deviation. This method shows the same performance in almost all the datasets

which gives it a priority when selection an advantageous FS method is considered. The

whole results of standard deviations for all datasets are demonstrated in Appendix B.

Table 4.8 : Standard deviation (%) for Botswana dataset. "10F", "30F", and "50F" show the

number of ranked features are selected. For instance, 10F means first 10 ranked
features are chosen. "10SpC", "25SpC", and "50SpC" represent the size of
training data.

Method

Chi2

CIFE
CMIM
FSDTree
DISR
Fisher

Gini

InfoG

IMI

MIFS
MIM
MRMR

RF

ReliefF
Single
SVMRFEK
SVMRFEL
All feature

10F
7.7
4.9
6.8
2.6
5.4
9.9
22
7.8
5.7
58
32
4.8

6.3

10
32
2.3

10SpC 255pC 50 SpC 10SpC 255pC 50 SpC

30F 50F 10F 30F 50F 10F 30F S0F 10F 30F 50F 10F  30F 50F 10F 30F 50F

4.5 4.7 6.7 4.7 1 6.1 4.9 1.9 3.6 3.1 3 4.1 2.4 0.9 5.1 2.6 1
34 1.8 2.6 1.2 {17 4.1 0.8 0.5 3.3 2.5 2.1 2.5 0.9 1 3.7 0.7 0.8

23 2 2 1.7 1.8 1 1.4 0.7 2.6 25 2.1 0.8 0.7 0.6 0.7 0.6 1
2.3 15 3.8 1.3 1.3 2.3 1.1 0.6 38 1.8 1.9 32 0.8 0.7 1.8 1.1 0.7
5.1 1.7 75 1.5 1.1 1 1.4 0.8 8.1 25 13 54 0.6 0.4 0.6 12 0.7
1.6 19 0.8 1 1.7 1 1 1 1.9 14 13 12 0.8 0.9 0.7 0.7 0.6
4 39 7 1.5 2.8 75 0.9 1.9 53 25 2.6 4.8 1.1 1.8 54 0.9 1

2.9 2.6 2.8 1.9 1.9 1.7 0.7 0.4 3.1 1.7 18 1.1 0.7 0.7 1.2 0.6 0.6
4.5 2.6 7.1 4.6 2.1 6.7 54 1.4 52 32 2.5 54 3 0.9 54 2.9 0.9
2.4 3 2.5 2 222 2.4 12 0.4 2.6 2 1.9 2.1 0.7 1 22 1.3 1

33 32 6.7 5 1.7 7.6 6.2 2.6 52 29 2.4 5.6 3 1.4 6.1 3.7 1.3
2.1 2.5 4.1 3 2.7 A 1.9 1.8 2 2.5 2 2.9 22 1.4 2.3 1.9 1.3
3.1 2.7 7.6 1.7 2.1 73 0.6 0.8 3.1 1.6 1.9 4.5 1.2 0.9 4.5 0.6 0.7
52 2.6 79 6.3 2.8 9.3 54 3 9.7 35 1.9 6 5 1.6 75 3.8 1.5
2.7 1.8 3.5 0.9 1.5 1 1.3 1.2 4.5 1.5 1.8 4.8 1.2 0.7 0.9 1 0.7
21 2.1 0.8 1.4 1.4 0.7 0.8 0.5 1.7 2 2 0.8 1 0.5 0.9 0.8 0.7
2.1 1.8 0.8 2 0.5 0.3
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As mentioned before, the DISR method shows a higher accuracy than the other
methods with small size of training data in Botswana dataset in SVM classifier. This
method achieves this performance exactly with using 50 first features which indicates
that this method requires a sufficient number of features. The standard deviation of
the DISR is also very low. The CMIM is another method that performs an accurate
result with 30 and 50 features, meaning that this method requires a sufficient number
of features. In this dataset, the JMI shows a different behaviour. This method works

fine with small amount of features only when the size of training data is large enough.

In the KSC dataset, the FSDTree and RF result in higher accuracy than the other
methods by using 10 first ranked features. It can be said that for the datasets like
KSC which have high correlation between data, these two FS methods show better
classification accuracy than the other methods with using small number of ranked
features. Whereas, in datasets with low data dependencies, filter-based methods
achieve the highest accuracy with using a few ranked features. For instance, in the
Salinas dataset, the JMI, which is a filter-based method, shows the higher classification
accuracy than the other methods when the number of features considered in the
classification is low for all size of training data. The MIM is another filter-based
method which shows the same behaviour in SalinasA dataset. Other methods that
not described in this section have almost same performances for all three considered

feature count and size of training data.

4.1.5 The best FS methods

According to the parameters that are discussed before, to researchers who are looking
for an appropriate FS methods in case of classification accuracy for different HSI
datasets, the best feature selection methods are shown in Table 4.9. To select the
best methods, all the results from investigating factors that impact the classification
accuracy such as classification method, size of training samples, and number of ranked

features are considered.

Obviously, the demonstrated methods are assorted in three context: FSDTree, RF, and
MI based methods (such as JMI, CIFE, CMIM, and MRMR). The FSDTree is one of
the most successful methods for classification accuracy in case of different aspects that

mentioned before for almost all datasets. The RF is a successful method for Indian
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Table 4.9 : The best FS method for HSI datasets based on their classification
accuracy and standard deviation results.

Best FS Methods
Dataset Ist nd
Botswana FSDTree JMI
Indian Pines FSDTree RF
KSC CIFE FSDTree
Pavia Center JIMI FSDTree
University of Pavia MRMR  FSDTree
Salinas FSDTree @ CMIM
SalinasA CMIM IMI

Pines dataset. Besides, the methods JMI, CIFE, CMIM, and MRMR also show the

highest classification accuracy in the most of hyperspectral datasets.

4.2 Stability of Feature Selection Methods

In this section, the reaction of feature selection methods in terms of their stability
without considering any classification method is presented. The aim is to determine
the stability of feature selection methods by measuring their robustness to changing
the training data. Put differently, when a stable method is utilized to rank the features
of a hyperspectral dataset, the one does not need to use this method for each time when
the training data is slightly changed. In order to achieve a robust results, the stability
of FS methods is examined for 10 different realization of training data. Evidently, a

stable method shows the same or very close ranked features in each realization.

SVMRFEL B
SVMRFEK B
Single| ©
ReliefF
RF | .+ g% ‘
MRMR B |
1
o 1
.
1 145 1 145 1 145
(a) 10 Samples per class (b) 25 Samples per class  (c) 50 Samples per class

Figure 4.2 : Distribution of the top 10 features provided by FS methods on ten
different realizations for Botswana dataset.
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Figure 4.2, shows the results of stability for three different-size of training data over the
Botswana dataset. The blue dots in plots indicate the index of top 10 selected features

that are ranked by each FS method.

It is obvious that the dense plot for each feature selection method, which means the
method selects same or very close features in each realization, shows a behaviour of
stable method. For example, in Botswana dataset, the methods Chi2, Fisher, Gini,
ReliefF, SVMRFEL, and SVMRFEK are very stable methods in all size of training
data. The mentioned methods are known as stable methods in almost all datasets

meaning the stability of these methods are not depend on the datasets.

Moreover, with increasing the size of training data in the Botswana dataset, the stability
of almost FS methods is increased or at least remains constant, expect in two case:
JMI and FSDTree. For these two methods, increasing the size of training samples does
not effect the stability of methods, however the JMI and FSDTree are totally unstable
methods for the Botswana dataset.

SVMRFEL
SVMRFEK
Single | & .~
ReliefF
RF :'.'.:‘ D A i
MRMR| :.% §
MIM | s
MIFS |*
M B
InfoG
Gini
Fisher
DISR [
FSDTree
CMIM [ s v o 7
CIFE| .-
Chi2

1 200 1 200 1 200

. (a) 10 Samples per class (b) 25 Samples per class  (c¢) 50 Samples per class
Figure 4.3 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Indian Pines dataset.

The stability of feature selection methods for the Indian Pines dataset is shown in
Figure 4.3. As can be seen, FS methods may not demonstrate similar stability results
in all dataset. For example, the "Single" method is a stable technique in Indian Pines

dataset. However, in the Botswana, this method is an unstable method.

The stability of feature selection methods for other hyperspectral datasets is illustrated
in Figures 4.4 to 4.8. It is worth to say that, in all datasets, almost filter-based methods

like JMI, MIM, MIFS, and MRMR that use mutual information measures are not very
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Figure 4.4 : Distribution of the top 10 features provided by FS methods on ten

different realizations for KSC dataset.
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Figure 4.5 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Pavia Center dataset.
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Figure 4.6 : Distribution of the top 10 features provided by FS methods on ten

different realizations for University of Pavia dataset.
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stable methods. This means that, the MI based feature selection methods are dependent
on the training data and with changing the training samples, the selected features are

also changed.

SVMRFEL
SVMRFEK
Single
ReliefF
RF |57 dnaii !
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MIM
MIFS
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InfoG |
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Fisher
DISR
FSDTree
CMIM
CIFE
Chi2
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n .

1 204 1 204 1 204

. (a) 10 Samples per class (b) 25 Samples per class  (c) 50 Samples per class
Figure 4.7 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Salinas dataset.
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Figure 4.8 : Distribution of the top 10 features provided by FS methods on ten
different realizations for SalinasA dataset.

As mentioned before, the stability is a measure to rate the robustness of feature
selection methods without taking into account any classifier. In other words, there
is not any significant correlation between stability of feature selection methods and
classification accuracy and vice versa. As an illustration, the Chi2 is an stable method
which does not specify a good classification accuracy. In contrast, JMI and MIM
which perform a higher classification accuracy, are not the stable ones. Nevertheless,
for analysts, a good FS method is a method which is both stable and providing a high
classification accuracy. For example, the SVMRFEL and SVMRFEK methods, which
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both are embedded methods, are a good example that have acceptable accuracy results

as long as they are enhanced an adequate level of stability.

4.3 Ability of the Selected Features to Separate Classes

Classification methods are utilized to evaluate the feature selection methods, however,
despite the fact that FS methods are profitable, they can not show high performance
when the classification methods are not suitable for considered data. Hence, to detect
the worthy feature selection methods, the analyses which are independent from any
classification method are required. Investigating stability of the FS method is a
classifier-independent way that is discussed in Section 4.2. Obviously, while the FS
methods rank the features, the important features come first. In order to evaluate these
ranked feature sets, the ability of selected features to separate classes is another way to

examine the feature selection methods.
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Figure 4.9 : Ability of features to separate classes 3 and 6 in Botswana dataset.
Features 1 to feature 5 are the first five important features ranked by RF
method.

Figure 4.9 shows the ability of the first five important features ranked by RF method to
separate the classes 3 and 6 in Botswana dataset. As mentioned in section 3.1.1, these

classes are the most difficult ones to separate. As can be seen, 1st and 2nd features
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are not able to distinguish two classes, however, they are first two important features
from the view of RF method. Diagonal histograms are clearly show that the classes
3 and 6 are very hard to separate by using these two first features. Instead, feature
pairs such as (4,1), (4,2), (4,3) can strongly isolate two mentioned classes as clear as
possible. Similarly, the combination of 5th ranked feature with the first three features

are another strong candidates that separate the classes.

%10

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

- N W soa
3

* + [t
2 4 6 05 1 15 2 25 1 2 3 4 5 1 2 3 4 12 3 4 5
%1073 %103 %103 %10 %107
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Figure 4.10 : Ability of features to separate classes 3, 4, 5, and 6 in KSC dataset.
Features 1 to Feature 5 are first five important feature ranked by JMI
method.

The discrimination of classes are not always easy like in the Botswana dataset. For
example, in Figure 4.10 which shows the most complicated classes (Classes 3, 4, 5,
and 6) for KSC dataset, the first five important features that ranked by JMI method can
not separate the classes simply. In this dataset, the selected features are not able to
distinguish the classes effortless, meaning that the classes of KSC dataset are suffering

from a high degree of data correlation.

Figure 4.11 illustrates the median of first 50 features of four most complicated classes
for KSC dataset that ranked by the JMI method. As can be resulted from the figure,

while the medians are too close to each other, the features can not be able to separate
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Figure 4.11 : The median of first 50 features ranked by JMI method for four most
complicated classes of KSC dataset.

the classes as easy as possible. This inability means that if the features ranked by the

JMI is used for classification, the classification accuracy are not significant.

4.4 Computational Time

Another key point to evaluate the performance of an FS method is its computational
time. The computational time, is measured by taking account the time that a feature

selection method needs to rank the features.
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Figure 4.12 : Average computational time of all FS methods for different
hyperspectral datasets.

The computational time of feature selection methods can be affected by the structure
of each dataset. The number of classes, correlation between the features, and the level
of redundancies can influence the time required to select the important features. Figure

4.12, illustrates the average CPU-time of all FS methods for each hyperspectral dataset.
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As demonstrated in the figure, while Indian Pines and Salinas have more abundant
features and classes than the other datasets, FS methods consume more computational
time in these two HSI datasets than the others. Respectively, in case of Pavia datasets

(Pavia Center and University of Pavia), FS methods are faster than the other datasets.

Table 4.10 : The required computational times (in seconds) of FS methods to rank
features for training data with size of 50 samples per class for each

dataset.

3 g 3
Methods Q% E Q £ 5 £ 3 3
Chi2 <1 <1 <1 <1 <1 <1 <1
CIFE 49 88 54 17 18 94 36
CMIM 48 89 51 16 16 94 36
FSDTree 2411 6200 2537 443 548 5837 1098
DISR 131 247 140 43 45 253 96
Fisher <1 <1 <1 <1 <1 <1 <1
Gini 15 17 4 6 6 17 5
InfoG <1 <1 <1 <1 <1 <1 <1
IMI 48 87 52 15 16 96 35
MIFS 48 86 52 16 16 95 35
MIM 48 85 52 16 16 94 35
MRMR 48 84 52 16 16 93 34
RF <1 <1 <1 <1 <1 <1 <1
ReliefF 4 4 2 1 1 5 <1
Single 107 161 139 41 44 174 95
SVMRFEK 15 19 13 5 5 21 1
SVMRFEL 1 2 2 <1 <1 1 <1

However, structure of the HSI datasets does not effect the computational time of FS
methods as much as the configuration and procedure of FS methods. Table 4.10 shows
the computational time of all feature selection methods for training data with the size
of 50 samples per class. In order to achieve the reliable values, the computational time
is measured for ten different realization of training data and an average of CPU-time is

reported.

Evidently, the FSDTree method expends more CPU time than the other methods to
rank the features. This means that, in all datasets, the FSDTree is a costly method.

However, this method performs the significant classification accuracies and is found
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to be one of the accurate methods for dimensionality reduction of remotely sensed
hyperspectral datasets. The DISR is another method that spends more computational
time due to the fact that it uses two major characteristic of feature selection [68].
However, the DISR method achieves a good level of classification accuracy (like

FSDTree) for datasets when the number of samples and classes of datasets are high.

It is easy to see that the methods CMIM, JMI, MIM, MIFS, and MRMR have almost
the same computational time because they apply MI measurements as a common

framework [44] [26].

As it has been pointed out in the Table 4.10, the methods Chi2, Fisher, InfoG, and RF
are the methods that show the lowest computational time and therefore, are very fast
methods. From all these methods, the RF is a successful method in terms of both the
classification accuracy and the computational time. The SVMRFEL is another method
that spends fewer time than the other methods to rank the features because this method
uses a linear kernel with SVM classifier. However, SVMRFEL has one of the lowest

performances in classification accuracies.
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S. CONCLUSIONS

Feature selection is an effective and advantageous research domain in the area of
hyperspectral images in remote sensing. By using feature selection on such a big
data that contains lots of irrelevant and redundant features, the complicity of remotely
sensed hyperspectral datasets as well as redundancy of data might be decreased without
incurring much loss of information. However, selecting an appropriate FS method for

considered HSI dataset is a dilemma.

There are three general categories for feature selection methods: filter, wrapper, and
embedded methods. In this work, a review of seventeen feature selection methods
is enforced on 7 well-known hyperspectral remotely sensed datasets. From these
FS methods, twelve of them are filter-based, two are wrapper, and three of them
are embedded. These methods are demonstrated with intention of studying their
performance and outcomes. Besides, two famous classification methods are conducted
to compare the influence of ranked features and to select a convenient FS method: the
SVM classifier with a linear kernel and the KNN classifier as a non-linear classification
method. In order to assess the FS methods that are used in this work, four evaluation
criteria are considered: classification accuracy, stability of feature selection methods,
ability of selected features to separate classes, and computational time of each method.
These assessment measures are examined for three different size of training data over

all seven hyperspectral remotely sensed datasets.

As classification accuracy evaluation criteria, the methods are investigated from
different aspects such as the effects of datasets, size of training samples, classification
method, and number of considered features on classification procedure. The
experimental results show that the methods JMI, MIM, MIFS, CMIM, and MRMR
as filter-based methods obtain higher classification accuracy than the other filter-based
methods. These mentioned methods use mutual information measurements to rank

the feature sets. Besides, FSDTree as a wrapper and RF as an embedded method,
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perform higher accuracy even greater than filter-based methods. These results are not

unexpected because both the RF and FSDTree, use a classifier as an evaluator.

In case of stability of feature selection methods, the results demonstrate that Chi2,
Fisher, Gini, ReliefF, SVMRFEK, and SVMRFEL are the most stable feature selection
methods meaning that these methods select almost the same features when slightly
changed training data is used, therefore they are more reliable than the others.
However, the classification accuracy achieved by these methods is not satisfying. In
contrast, the methods with higher classification accuracy than the other FS methods,
that are FSDTree, RF, and MI based methods, are not found to be very stable methods,

meaning that these methods should be used for each training data set.

As a third key point, the ability of features ranked by FS methods are examined to
separate the most complicated classes of a dataset. The achieved results show that the
selected features are adequately strong to separate the classes. However, in the datasets,

which have high correlated data, separating the classes is challenging indeedly.

The forth evaluation criteria demonstrates the computational time that a feature
selection method required to distinguish the effective features. The results clarify
that the methods FSDTree, DISR, and Single occupied more CPU time than the other
methods. The FSDTree also shows the highest computational time. However, in the
case of classification accuracy, this method is the significant one. In contrast, the MI
based methods like CIFE, CMIM, JMI, MIFS, MIM, and MRMR achieve acceptable
computational time. It is worthy to say, the RF which is an embedded method, shows

very low computational time, however, it is an embedded method.

In light of the results illustrated in this work, the MI based filter methods are suggested
to settle the classification problems and analysis of hyperspectral images in the area of

remote sensing.

e Firstly, these methods are independent from any classifiers, and they do not need to
set any parameter that must be setted. Hence, the implementation of these methods

are quite easy.

e Secondly, the computational time of these methods is lower than the wrapper and

embedded methods.
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e Thirdly, the MI based methods have a good generalization ability for different

samples and data.

The RF method can be another alternative to tackle the dimensionality reduction
problems of HSI datasets. This method demonstrates a high level of classification
accuracy as well as low computational time. However, the implementation of the RF

1s more difficult that filter-based methods.

The FSDTree is a powerful method in case of classification accuracy, but spend more
computational time and is known as a tardy method. In case where the computational

time is not important, this method can achieve significant results.
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APPENDIX A

Appendix A.1

Table A.1 : Classification accuracy (%) for Botswana dataset. "10F", "30F", and "50F" show

the number of ranked features are selected. For instance, 10F means first 10
ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for
each class as a training data.

KNN SVM

Method 10SpC 255pC 50 SpC 10SpC 255pC 50 SpC

10F 30F S50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F S0F 10F 30F 50F
Chi2 64.4 73.7 77.6 69.9 79.9 80.8 759 83.5 85.3 75.1 83.4 85.1 80.2 87.9 90 83.5 89.6 923
CIFE 56.7 64.3 75.5 63.3 70.5 80 70.7 76.4 84.2 67.8 74.4 82.9 73.7 80.3 87.5 79 84.2 89.9
CMIM 714 766 793 71.8 84 84 79.5 86.9 86.9 79.1 84.5 86.4  84.1 89.7 90.7 86.3 923 929
FSDTree 71.6 78.9 80.6 83.7 83.6 83.8 85.5 87 87.5 83.8 85.6 86.3 89 90.4 90.6 90.4 92.1 92.4
DISR 71.6 7715 809 783 82.9 83.8 79.7 84.2 86.6 78.9 85.2 86.9 85.1 89.5 90.8 85.5 90.1 92.5
Fisher 52 70.1 75 51.5 76.3 78.2 51.2 78.9 80.7 62.2 77.8 81.1 62.3 83.6 859 62.9 85.1 87.9
Gini 54 69.7 69.9 583 742 748 59.5 76 76.6 61.1 71.5 78.6  65.1 83 84.4 67 85.9 87.3
InfoG 63.6 72.8 71.3 69.3 75.9 79.9 70.8 774 80.1 70.6 80 84.5 76.5 83.6 87 78.5 85.6 88.3
IMI 726 779 80 78.8 83.2 84.3 84.3 86.9 87.6 81 85.8 86.3 86.1 90.3 90.9 89.7 922 929
MIFS 61.2 68.4 76.2 64.8 71.8 80.4 68.2 75.7 833 72.4 76.8 82.9 74.9 80.9 87.3 77.8 83.3 89.2
MIM 75.8 786  79.1 78 81.4 815 78.7 84.1 85.5 82.4 85.2 86.4 853 89.3 90.8 84.5 89.8 925
MRMR 57.1 68.5 76.8 61 68.4 78.2 63.3 70.3 80.4 68.7 76.9 83.3 70.5 78.4 86.1 71.3 80.2 88.3
RF 75.6 194 79 78.9 82.6 84.5 79.3 84.1 86.6 81.1 85.2 86.3 846 882 904 84.7 89.6 923
ReliefF 55.5 73.8 75.8 68.8 79.5 80.7 72.1 83 84.7 69.7 83.2 84.6 779 87.6 89.6 79.7 89.3 91.1
Single 64.3 754 79.3 67.4 75.5 82.1 63.6 75.8 84.2 713 81.6 84.8 74.2 83.3 88.9 71.7 84.2 90.1
SVMRFEK 46.6 55.5 73.3 49.8 58.9 77.2 49.1 61.9 79.7 50.3 63 79.2 53 67 83.9 52.1 69.4 86
SVMRFEL 67.9 76.2 77 73.8 80.8 82.2 76.3 83.9 854 75.4 83.5 85 80.8 87.5 89.5 822 89.3 90.8
All feature 80.8 85.2 88.1 87.5 91.9 94.1
Table A.2 : Classification accuracy (%) for IndianPines dataset. "10F", "30F", and "50F"

show the number of ranked features are selected. For instance, 10F means first

10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the

size of training data. For example, 10SpC means 10 samples were considered
for each class as a training data.

Method

Chi2

CIFE
CMIM
FSDTree
DISR
Fisher

Gini

InfoG

IMI

MIFS

MIM
MRMR

RF

ReliefF
Single
SVMRFEK
SVMRFEL
All feature

10F
325
30.4
422
46.9
433
35.7
27.8
36.5
42.6
332
41.7
29.2
44.9
334
35.6
24.6
29.5

T0SpC 255pC 50 SpC T0SpC 255pC 50 SpC
30F  50F T0F 30F 50F T0F 30F 50F 10F 30F 50F T0F 30F 50F T0F 30F 50F
41 461 351 46 535 37 500 564 361 487 546 367 535 602 394 555 627
357 377 317 409 403 383 481 457 324 454 501 359 513 57 392 549 608
472 454 395 525 522 481 578 569 469 551 522 46 592 6l1 557 664 658
482 481 539 556 547 585 598 597 545 55 548 62 642 63 64T 678 675
457 464 49 541 529 519 566 564 521 509 528 579 616 614 594 639 645
390 42 375 437 470 435 478 532 392 494 542 42 546 604 438 531 62
309 326 324 365 398 377 43 463 36 423 51 412 495 561 443 529 586
403 417 387 446 469 416 473 504 442 491 521 47 56 S8.1 474 599 629
476 483 48 532 538 562 583 576 495 518 534 559 6l 6l1 603 637 639
372 387 314 37 396 359 421 44 349 458 507 34 492 576 372 505 605
455 479 405 499 516 411 527 551 465 529 554 471 547 59 454 57 59
362 355 299 382 369 329 428 423 346 474 SI 333 491 551 364 509 582
498 479 406 539 544 451 58 599 513 568 522 481 633 638 487 658 676
428 458 366 485 514 389 527 542 367 487 512 387 524 557 414 56 569
40 421 381 431 466 431 484 515 412 479 517 400 508 562 482 594 627
361 439 286 398 479 324 453 531 282 414 519 301 44 538 353 455 563
437 468 325 496 534 351 537 569 365 477 526 381 508 55 395 525 570
49.9 54.9 58.4 53.8 63.1 68.4
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Table A.3 : Classification accuracy (%) for KSC dataset. "10F", "30F", and "50F" show the

number of ranked features are selected. For instance, 10F means first 10 ranked
features are chosen. "10SpC", "25SpC", and "50SpC" represent the size of
training data. For example, 10SpC means 10 samples were considered for each
class as a training data.

KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F  30F  50F 10F 30F 50F 10F 30F 50F 10F  30F 50F 10F  30F  50F 10F  30F 50F
Chi2 56.6 634 644 657 704 711 67.1 763 77.1 419 412 438 521 567 59.7 519 64 66.7
CIFE 70 753 747 786 814 816 843 85.5 85.3 517 596 592 515 552 541 59.1 50.6 544
CMIM 74.3 75 737 752 771 778 79.6 817 826 554 579 5715 575  60.1 584 668 71.6 744
FSDTree 722 724 72 787 717 717 827 832 827 559 567 559 549 549 589 652 719 771
DISR 69.5 713 715 715 79 78.8 826 824 82 497 522 525 565 588 634 65.1 74.4 71
Fisher 504 615 657 574 717 74 619  76.7 78 386 418 459 363 448 603 429  60.1 67.1
Gini 494 632 657 548 682 71 575 723 754 425 503 528 426 555 586 443 633  66.6
InfoG 61.8 669 689 684 742 755 71 715 79.7 46.5 497 528 423 54 60.9 47 63.4 72
IMI 69.6 70 702 776 786 784 812 81.8 819 505 521 526 566 61.8 633 65.1 743 769
MIFS 722 754 754 714 809 804 782 835 837 502 58.1 59 492 542 53 581 526 497
MIM 587 624 65.1 62.1 68.6 711 67.6 733 757 415 436 463 455 521 61.5 503 60.7 66.1
MRMR 719 742 745 752 788 798 792 821 84 53.6 579 58 498 526 532 61 548  56.7
RF 73.9 75 75.1 79.6 83 82.6 82 858 854 54.1 557 556 538 578 579 568 68.1 73.1
ReliefF 539 626 64 61 693 706 689  76.6 71 41.1 436 455 49 542 599 562 637 66.6
Single 62 673 684 721 749 758 712 184 799 472 51,6 529 493 539 55 528 659 723
SVMRFEK 573 607 669 633 674 745 674 727 799 369 385 418 46 517 592 528 605 68.7
SVMRFEL 55 63 63.1 61.8 703 709 662 755 752 414 442 453 512 571 59.1 552  63.6 657
All feature 72.4 78.4 82.8 50.6 66.3 81
Table A.4 : Classification accuracy (%) for PaviaCenter dataset. "10F", "30F", and "50F"
show the number of ranked features are selected. For instance, 10F means first
10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the
size of training data. For example, 10SpC means 10 samples were considered
for each class as a training data.
KNN SVM
Method 10SpC 255pC 50 SpC 10SpC 25SpC 50 SpC
10F 30F S50F 10F 30F S50F 10F 30F S50F 10F 30F S50F 10F 30F 50F 10F 30F 50F
Chi2 623 774 81.6 614 827 87 61.8 857 899 67.4 88 93.1 66.6  90.1 949 668 922 95.6
CIFE 826 91.1 91.6 848 93.1 93.5 839 932 944 88.1 94 94.7 89.1 95.7 96 893 957 963
CMIM 71.5 879 911 878 935 943 929 949 951 794 929 943 93 96 96.1 955 966  96.6
FSDTree 90.5 91 912 932 937 94 95.1 95 95.2 94.5 948 948 959 96.1 962  96.6  96.8 97
DISR 81.7 873 89.7 889 921 928 916 947 946 884 915 931 933 953 957 945 963 963
Fisher 724 81.1 854 654 818 874 669 833 89.2 777 892 939 729 897 948 737 897 956
Gini 682  79.5 80.2 732 86 863 757 879 885 81.1 914 924 858 938 941 874 948 952
InfoG 81.3 87.6 90 783 915 929 863 942 945 882 935 945 847 954 962 907 968 96.8
IMI 847 917 913 908 939 941 939 953 953 9I.1 945 947 941 96 962  96.1  96.6 97
MIFS 87.8 91 91.5 908 926 93.6 94 942 939 91.7 94 945 943 956 96 958 958  96.1
MIM 865 913 912 864 927 934 79 925 944 90.7 95.1 95 922 96 96.3 85 96.5 96.8
MRMR 864 90.8 912 927 94 94 943  95.1 94.9 92.1 942 946 953 96.1 96.1 963 963  96.5
RF 90.8 917 916 906 936 939 925 947 952 944 949 95 948 959 962 958 965 968
ReliefF 62 704 796 615 746 865 618 784 885 67.2 81 927 664 833 947 668 853 954
Single 828 878 909 799 907 924 781 931 946 887 932 944 876 952 96 847 957 965
SVMRFEK 483 715 889 518 719 912 513 749 919 517 803 92 53.1 834 952 553 858 952
SVMRFEL 622 696 80.1 615 746 865 637 784 885 684 809 929 664 833 947 69.1 853 954
All feature 91 94.1 95.4 95.1 96.4 97
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Table A.S : Classification accuracy (%) for PaviaUniversity dataset. "10F", "30F", and
"50F" show the number of ranked features are selected. For instance, 10F means
first 10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent
the size of training data. For example, 10SpC means 10 samples were
considered for each class as a training data.

KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC

10F 30F 50F 10F 30F 50F 10F 30F 50F I0F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 484 547 60.5 492 602  66.6 51 64.3 69.9 488 556 621 509 60.8 69.7 535 629 711
CIFE 59.9 62.8 61.7 62.1 66.2 67.8 65 69.6 71 619 67.6 68.2 654 741 77 679 763 78.6
CMIM 49.1 56 60.8 63.5 66.5 68.2 682 709 70.8 506 59.8 664 659 758 76.3 70.8 778 71.1
FSDTree 62.1 614 623 66.4 67 67.5 69.4  70.1 70 66.7 68 68.6 72.3 764 784 738 78.1 79.1
DISR 514 584 602 64 67.6 67.6 688 72 72 52.7 60 643  70.8 71.8 80 74.8 795 80.4
Fisher 479 554 604 487 59.6 65.8 478 62.6  69.6 47.6  56.1 622 487 61 71.1 48.5 61.5 72.2
Gini 55.2 576 583 57.8 638 642 61.1 66.7 67.5 586 649 669 65.7 756 716 699 711 79.3
InfoG 55 598 608 582 647 669 634 685 71 574 651 692 643 727 713 66 732 759
IMI 54.5 59.3 61 622 655 66.3 68.1 69.9 71 54 66 67.1 679 757 79.1 729 79.8 80.2
MIFS 58.6  61.7 61.1 64.3 66.9 674 677 70.3 70.6 619  66.5 66.8 71.1 762 779 719 77.1 77.9
MIM 53.1 60.1 609 656 66.7 68.1 66.6 703 70.7 59 66.7 675 73.6 792 80.3 73.8 719 793
MRMR 56.6  61.8 61.5 65.1 68.1 67.5 69.7 71.7 72.2 589 673 69.5 73 78.5 79.5 73.5 79.7 80.4
RF 57.5 61.5 62 62.7 649 66.7 654 694 70.8 64.1 66.1 675 714 768 799 705 79 79.8
ReliefF 51.3 58.7 60.3 51.9 63 63.3 56.6  66.8 70 539 615 65.1 56.8 72 75.3 596 734 76.1
Single 55.8 599 599 56 663  66.5 584  68.7 71.5 589 658 68.6 61 75.5 717 59.7 72 76.4
SVMRFEK 53.6 578 589 563 61.8 62.9 61 65.5 68.5 572 63,6 637 63.1 70.7 724  67.1 74.3 75.7
SVMRFEL 48.3 57 59.3 53 63.5 66.9 57.7 69.7  70.1 56 65.3 67.6 632 749 785 65.6  76.1 80
All feature 62.4 68.3 71.8 68.2 80.3 80.7

Table A.6 : Classification accuracy (%) for Salinas dataset. "10F", "30F", and "50F" show
the number of ranked features are selected. For instance, 10F means first 10
ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for
each class as a training data.

KNN SVM
Method 10SpC 255pC 50 SpC 10SpC 255pC 50 SpC

T0F 30F 50F 10F 30F 50F 10F 30F 50F  10F 30F 50F 10F 30F 50F 10F 30F  50F
Chi2 643 766 789 672 789 807 698 81 89 727 801 819 759 842 859 769 851 869
CIFE 643 753 786 735 803 822 749 825 838 681 786 809 758 837 8 79 863 874
CMIM 78 803 804 809 816 828 836 843 846 799 825 83 847 871 873 881 892 893
FSDTree 797 80 806 80.8 823 823 836 842 841 809 827 83 853 875 875 875 888 894
DISR 762 80. 812 803 823 83 826 843 846 789 82 833 853 875 877 868 887 892
Fisher 663 73 772 691 78 802 712 80 8.1 722 791 8L1 763 839 86 774 847 872
Gini 514 725 759 593 757 782 632 777 802 6l 77 793 689 818 8 717 837 858
InfoG 742 788 795 774 809 815 806 832 833 779 814 818 837 864 869 847 877 88
IMI 793 795 796 808 814 814 829 832 833 812 821 828 849 873 872 832 888 8838
MIFS 642 724 781 647 756 812 664 787 832 705 761 805 74 821 845 759 848 873
MIM 74 717 789 717 793 806 73 814 827 794 812 82 794 849 859 799 862 869
MRMR 643 751 79 685 77 814 732 796 831 705 785 815 757 842 855 788 857 873
RF 775 792 795 799 813 815 826 832 8.6 804 829 829 8 875 875 858 881 886
ReliefF 644 767 789 676 793 806 70. 812 89 723 805 817 764 845 86 771 858 871
Single 766 781 79 781 802 80.6 795 818 826 804 812 818 827 857 87 8 866 882

SVMRFEK 637 642 744 654 685 77 674 721 798 576 733 79 614 778 83 66.5 809 857
SVMRFEL 65 762 794 693 80 812 722 822 831 743 812 822 781 857 89 793 865 871
All feature 80.6 82.9 84.6 84 87.1 88.4
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Table A.7 : Classification accuracy (%) for SalinasA dataset. "10F", "30F", and "50F" show

the number of ranked features are selected. For instance, 10F means first 10
ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for
each class as a training data.

Method

Chi2

CIFE
CMIM
FSDTree
DISR
Fisher

Gini

InfoG

IMI

MIFS

MIM
MRMR

RF

ReliefF
Single
SVMRFEK
SVMRFEL
All feature

10F
84.8
84.9
94.7
95.4
89.7
83.7
80.2
90.1
95.8
82.7
94.6
86.5
95.5
859
91.6
83.6
84.5

T0SpC 25SpC 50 SpC T0SpC 25SpC 50 SpC

30F  50F 10F  30F 50F 10F  30F  50F 10F  30F 50F 10F  30F  50F 10F  30F 50F
933 954 905 957 962 931 971 9715 946 962 967 962 975 976 976 983 984
953 966 91.1 959 97 91 96.6  97.6 864 955 968 941 966 975 944 973 977
963 967 959 967 969 975 978 979 948 969 971 976 979 978 983 98.6 98.6
95.9 96 958  96.7 97.1 97.1 97.6 979 954 97.1 972 962 977 978 982 985 984
951 956 878 963 967 919 97.1 977 815 974 978 878 979 982 91.7 984 988
92 93.1 89.5 944 95 919 963  96.8 942 955 963 957 976 976 971 982 983
86.8 902 846 906 935 899 938 96 73.6 91 95 946 979 981 965 985 989
94.5 94 94 95.1 954 956 964 967 90.9 967 97.1 944 966 975 953 979 984
963 965 967 967 96.6 975 97.6 977 96.8 97.2 97 97.6 978 978 983 984 98.6
919 963 841 914 969 865 932 975 78.7 94 96.4 87 9.1 977 916 972 98
956 961 956 959 963 971 973 975 96.4  96.8 97 97.1 978 978 98.1 984 985
948 958 844 941 97 87.1 959 976 737 944 973 806 975 98 82.6 98 98.4
96.6 969 945 96.6 97 957 975 978 96.1 969 969 957 975 977 96.6 983  98.5
925 956 907 956 966 937 972 975 94.9 96 96.7 966 978 976 977 984 984
935 939 898 943 957 915 964 973 928 963 964 926 966 97.6 89.6 978 984
91.7 945 898 953 96.1 93 969 975 88.1 933 962 922 975 976 925 983 987
954  96.2 91 96 96.5 931 974 974 947 96.6 969 962 975 977 976 985 RS
96.9 97 98 973 97.9 98.7
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: Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over Botswana dataset. The results are
averaged over ten realizations.
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Figure A.2 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over IndianPines dataset. The results are
averaged over ten realizations.
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Figure A.3 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over KSC dataset. The results are averaged
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Figure A.4 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over PaviaCenter dataset. The results are
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Figure A.7 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over SalinasA dataset. The results are averaged

over ten realizations.
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APPENDIX B

Table B.1 : Standard deviation of ten different realizations of classification accuracy for
Botswana dataset. "10F", "30F", and "50F" show the number of ranked features
are selected. For instance, 10F means first 10 ranked features are chosen.
"10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.
KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25SpC 50 SpC

1I0F 30F 50F 10F 30F 50F 1I0F  30F 50F I0F  30F 50F I0F 30F 50F 10F 30F 50F
Chi2 7.7 3 1.6 55 2 1.9 2.8 0.9 0.7 39 2 1.9 3.6 1 0.9 2.1 0.6 0.4
CIFE 49 4.5 4.7 6.7 4.7 1 6.1 49 1.9 3.6 3.1 3 4.1 2.4 0.9 5.1 2.6 1
CMIM 6.8 34 1.8 2.6 1.2 1.7 4.1 0.8 0.5 53 2.5 2.1 2.5 0.9 1 3.7 0.7 0.8
FSDTree 2.6 2.3 2 2 1.7 1.8 1 1.4 0.7 2.6 2.5 2.1 0.8 0.7 0.6 0.7 0.6 1
DISR 5.4 2.3 15 3.8 1.3 1.3 2.3 1.1 0.6 3.8 1.8 1.9 32 0.8 0.7 1.8 1.1 0.7
Fisher 9.9 5.1 1.7 7.5 1.5 1.1 1 14 0.8 8.1 2.5 1.3 5.4 0.6 0.4 0.6 1.2 0.7
Gini 2.2 1.6 19 0.8 1 1.7 1 1 1 1.9 1.4 1.3 1.7 0.8 0.9 0.7 0.7 0.6
InfoG 7.8 4 3.9 7 1.5 2.8 7.5 0.9 1.9 53 2.5 2.6 4.8 1.1 1.8 54 0.9 1
IMI 5.7 2.9 2.6 2.8 1.9 1.9 1.7 0.7 0.4 3.1 1.7 1.8 1.1 0.7 0.7 12 0.6 0.6
MIFS 5.8 4.5 2.6 7.1 4.6 2.1 6.7 5.4 1.4 52 32 2.5 5.4 3 0.9 54 2.9 0.9
MIM 32 2.4 3 2.5 2 22 2.4 12 0.4 2.6 2 1.9 2.1 0.7 1 22 1.3 1
MRMR 4.8 33 32 6.7 5 1.7 7.6 6.2 2.6 52 29 2.4 5.6 3 1.4 6.1 3.7 1.3
RF 2 2.1 2.5 4.1 3 2.7 2.1 1.9 1.8 2 2.5 2 2.9 2.2 14 2.3 1.9 1.3
ReliefF 6.3 3.1 2.7 7.6 1.7 2.1 7.3 0.6 0.8 3.1 1.6 1.9 4.5 1.2 0.9 4.5 0.6 0.7
Single 10 52 2.6 79 6.3 2.8 9.3 54 3 9.7 35 1.9 6 5 1.6 7.5 3.8 1.5
SVMRFEK 32 2.7 1.8 35 0.9 1.5 1 1.3 1.2 4.5 1.5 1.8 4.8 1.2 0.7 0.9 1 0.7
SVMRFEL 23 2.1 2.1 0.8 1.4 1.4 0.7 0.8 0.5 1.7 2 2 0.8 1 0.5 0.9 0.8 0.7
All feature 2.1 1.8 0.8 2 0.5 0.3

Table B.2 : Standard deviation of ten different realizations of classification accuracy for
IndianPines dataset. "10F", "30F", and "50F" show the number of ranked
features are selected. For instance, 10F means first 10 ranked features are

chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.
KNN SVM
Method T0SpC 25SpC 50 SpC 10SpC 25 SpC 50 SpC

10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 2.1 2.9 4.5 1.3 2.2 1.2 0.8 1.5 2.3 1.8 3 3.2 1.8 2.1 2.6 2.5 1.9 1.5
CIFE 3.3 52 3.8 1.7 5.1 2.1 6.9 6.1 1.8 6 3.9 2 3.7 22 1.8 7.1 3.1 2.5
CMIM 7.8 4.5 3.2 5 22 22 57 3 2.4 59 34 3.8 34 3.1 3.6 6.5 2.5 2.1
FSDTree 4 3 39 2.6 1.5 1.7 1.7 14 1.6 22 1.1 3 2.1 1.9 2.6 2.8 3 2.9
DISR 55 4.2 2.8 5 2.4 2.5 6.8 3.1 2.8 3.9 4.1 3.1 34 2.1 2.3 55 1.9 2.4
Fisher 42 43 43 24 2.5 3.6 1.8 1.9 33 3 5 6.5 2.6 3.5 3.5 1.6 2.4 22
Gini 2.8 1.8 3 1.8 13 1.8 1.3 0.8 13 4.8 4.3 3.1 3.1 1.2 1.3 2.7 2.1 1.8
InfoG 2 1.5 2.4 1.9 2.7 2.4 2.1 2.4 29 5 3.5 2.8 6.4 3.9 3 4.7 3.4 2.8
IMI 3.6 43 3.8 4 29 2.8 1.8 1.3 2 4.3 3.1 2.6 4.1 3.2 1.6 4.2 2.1 1.9
MIFS 3.3 3.2 3.3 2.7 2 2.1 1.9 1.6 2.5 4 4 2.9 3.7 1.8 2.2 3 1.7 1.4
MIM 1.7 42 3.2 2.7 1.8 23 1.5 1.5 24 4.5 2.1 2.7 34 2.3 2.6 1.8 1.9 1.7
MRMR 4 3.1 4.3 1.4 2.2 4.2 1.7 1.6 49 4.8 3.1 3.9 2.6 2 2.5 2.8 2.3 1.8
RF 4.7 3.2 2.1 32 2.7 1.5 3.8 33 2.7 4.7 35 32 42 22 2.1 43 24 2
ReliefF 2.4 3.6 3.7 1.5 2.2 1.7 2.3 1.6 2.1 2.1 23 3.6 3.2 1.5 2 4.2 1.4 1.7
Single 42 33 3.7 3.1 3.1 3.1 22 2.8 2 5.5 3.6 3 4.7 4.1 29 3.1 2.8 2.7
SVMRFEK 3.5 3.1 1.9 2.7 3 1.2 3.7 3 1.5 2.7 2.3 1.5 1.8 1.9 14 1.8 1.8 1.5
SVMRFEL 23 2.8 2.5 1.8 1.6 1.2 1.5 1.5 1.1 2.3 22 14 1.9 14 2 1.3 1.7 1.7
All feature 3.2 1.8 1.9 2 1.5 1.6
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Table B.3 : Standard deviation of ten different realizations of classification accuracy for
KSC dataset. "10F", "30F", and "50F" show the number of ranked features are
selected. For instance, 10F means first 10 ranked features are chosen. "10SpC",
"25SpC", and "50SpC" represent the size of training data. For example, 10SpC

means 10 samples were considered for each class as a training data.

KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC

1I0F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 5.6 2.1 21 39 1.9 222 74 0.9 1.1 4.6 5.1 5.9 43 33 3.4 12.1 3.5 3.5
CIFE 2.7 1.4 1.4 2 22 1.9 1.3 0.9 0.8 6.6 7 6.2 6.7 8.7 9.4 2 8.7 11.2
CMIM 29 2.8 2.6 34 2.4 25 2.7 1.7 1.5 7.5 5.1 4.2 3.6 7.4 10.3 2.5 6.2 6.5
FSDTree 3 23 2.6 23 23 2.4 1.7 1.7 1.4 32 3.4 35 4.5 6 8.8 4.9 6.7 2.1
DISR 4.3 3 24 2.3 1.6 1.6 1.1 0.9 0.9 4.2 4.2 3.6 6.7 7.5 9.1 4.5 1.2 1.4
Fisher 2.8 39 3.8 1.9 2 1.5 0.8 1.3 1.1 33 4.9 39 1.5 7.1 6.6 2.5 34 35
Gini 2.6 1.7 1.9 1.1 14 1.2 1.1 0.9 1 3.6 32 2.6 1.2 6.2 5.9 1.9 2.5 1.7
InfoG 59 39 2.3 52 2.7 1.7 2.6 1.4 1 6.7 5.8 4 53 6.7 8.8 72 35 32
IMI 24 34 29 12 1.6 1.6 12 0.8 1 4.3 34 34 6.4 6.3 9 4 1.1 1.4
MIFS 35 2.5 1.9 32 2.6 1.8 1 0.5 0.7 6.3 5.8 6.2 4.6 8.1 9 4.8 8.6 11.2
MIM 34 33 33 3.7 1.7 2.3 2 14 1 2.8 3.5 3.5 4.6 6.8 15 2.6 24 32
MRMR 25 1.9 2.4 1.5 1.7 1.6 1.5 0.9 0.9 72 59 6.4 6.4 8.8 8.9 4.8 12.6 15.8
RF 2.6 1.7 1.8 3.7 1.7 1.7 3.6 1 1.1 4.4 4.1 4.6 6.7 6.3 7.8 9.4 11.7 11.8
ReliefF 4.7 32 2.7 4 2.1 1.5 6 0.7 1.2 44 44 52 6.5 6.2 3.1 6 35 3.6
Single 4.9 22 1.8 3.9 2 1.8 4.6 1.5 0.9 5 4.2 3.9 8 5.7 7.8 6.4 53 2.7
SVMRFEK 32 25 2.5 1.8 2.1 1.8 1.8 1.2 1.3 3.1 3.6 52 53 7.4 8.8 3.8 2.8 4.5
SVMRFEL 4.5 2.5 2.6 3.6 1.3 1.6 32 2.1 1.6 5 6.3 6.9 2.5 24 2.7 3.4 3 3.1
All feature 2 1.7 1.2 6.8 14.6 14

Table B.4 : Standard deviation of ten different realizations of classification accuracy for
PaviaCenter dataset. "10F", "30F", and "SOF" show the number of ranked
features are selected. For instance, 10F means first 10 ranked features are

chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.
KNN SVM
Method 10 SpC 25SpC 50 SpC 10 SpC 25 SpC 50 SpC

10F 30F S50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F S0F 10F 30F 50F
Chi2 34 4.8 55 3 33 2 3.1 25 1.6 4.6 2.1 13 1.8 1.4 0.8 2 0.6 0.4
CIFE 6.5 2.1 2.6 4.9 1.2 1.2 3.8 2 1 5.6 1.4 0.7 4.6 0.5 0.5 3.5 0.5 0.3
CMIM 10.6 35 1.5 49 12 0.9 24 0.8 0.7 8.4 1.7 1 23 0.4 0.4 1.4 0.4 0.3
FSDTree 3 2.8 3.2 1 1.2 0.9 0.5 0.7 0.6 1.1 0.8 0.7 0.7 0.5 0.4 0.2 0.2 0.3
DISR 4.7 32 32 5 3 1.9 8.8 12 14 3.6 2.6 1.8 29 1.7 13 4.9 0.5 0.6
Fisher 8.3 6 52 6.3 3.8 2.4 5.9 39 1.5 8.4 4.7 1.4 6 3.5 12 6.4 4.7 0.6
Gini 42 42 38 1.9 19 1.6 1.6 14 13 4.4 1.8 14 24 13 1.6 14 0.9 0.7
InfoG 9.6 55 2.8 11.9 2.5 1.5 9.9 12 0.9 7.4 2.4 1.1 11.4 1.5 0.7 10.3 0.3 0.3
IMI 3.6 23 2.7 4.2 1.1 0.8 1.6 0.6 0.7 2.6 0.8 0.9 32 0.5 0.4 0.5 0.4 0.2
MIFS 23 2.1 2.6 3.7 2 1.2 1 0.6 1.9 1.7 1.2 0.9 2.7 0.9 0.5 0.3 0.6 0.4
MIM 4.7 2.6 2.6 7.7 14 1.1 11.1 1.8 0.9 3.7 0.5 0.7 5.6 0.9 0.5 9.6 0.6 0.3
MRMR 5.8 2.6 2.8 2.1 1.1 1.2 1.3 0.7 0.8 1.9 1.5 1 1.3 0.4 0.5 0.5 0.5 0.3
RF 2.7 25 23 32 1 0.8 22 0.7 0.7 14 0.8 0.8 1 0.6 0.4 1 0.6 0.4
ReliefF 32 6 49 29 4 1.9 3.1 22 2 4.6 2.7 1.6 2 1.8 1.1 2 22 0.5
Single 8 5 2.8 11.1 34 1.6 11.6 2.1 12 8 22 1.3 8.1 1.4 1 9.3 1.7 0.6
SVMRFEK 6.6 9.7 29 2.7 2.4 1.3 42 45 1.6 5.5 5.7 1.8 23 2.8 0.9 55 32 0.6
SVMRFEL 3.6 5.5 4.8 2.9 4 1.9 24 22 2 3.1 2.5 1.6 2 1.8 1.1 33 22 0.5
All feature 24 0.9 0.6 0.6 0.4 0.2
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Table B.S : Standard deviation of ten different realizations of classification accuracy for
PaviaUniversity dataset. "10F", "30F", and "50F" show the number of ranked
features are selected. For instance, 10F means first 10 ranked features are
chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.
KNN SVM
Method T0SpC 25SpC 50 SpC 10SpC 25 SpC 50 SpC

10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 6 4.3 2.9 34 2.6 3.7 3.6 2.3 1.8 4.5 2.5 53 2.1 2.8 3 1.1 3.7 3
CIFE 6 5 6 4.5 3.8 3.1 3.2 3.3 2.5 3 59 5.5 2.9 2.8 2.8 55 2.7 2.1
CMIM 4.6 3.6 4 55 3.8 2.8 2.7 2.3 2.9 4.9 4.9 4 4.9 2.8 2.7 4.8 2.5 2.3
FSDTree 4.5 43 42 3.1 32 29 2 1.9 2.6 59 54 4.2 4.8 3.5 2.7 3.5 2.8 1.7
DISR 5.6 5 4.5 6 3.7 39 3 1.7 1.8 8.5 6.6 4.5 6.2 2.3 2 2.7 2.1 1.5
Fisher 6.5 5.1 4.2 5.1 3 2.9 4.2 2.8 1.3 79 4.5 53 6 3 2.6 24 33 2
Gini 3.7 49 5.7 32 4.3 4 2.7 2 3.3 54 5 4.8 42 22 2.3 1.7 1.3 14
InfoG 8.5 4.6 5 6.2 3.6 2.2 6.3 1.8 1.7 9.1 6.6 5 7.3 4.3 2.5 6.1 3 3.1
IMI 59 53 5.1 4.7 4.5 4 2.5 2.7 1.9 4.5 2.5 4.4 3.8 1.6 1.2 3.1 1.5 1.5
MIFS 3.4 5.5 55 3.6 4 4.1 3 2.8 2.7 5.6 5.1 6.5 3.9 3.5 29 3.9 1.8 1
MIM 54 3.9 3.1 33 2.6 3 34 2.1 2 5 5.7 4.8 53 22 1.7 3.8 25 2
MRMR 6.6 49 4.3 3.2 3.7 3 3.5 2.7 2.1 57 52 4.7 2.7 2 2.3 3.8 1.5 2
RF 7.3 5.8 3.9 4.8 3.7 2.6 29 33 2 5.5 4.5 33 3.6 3.5 2.1 49 25 23
ReliefF 5.3 3.2 6.2 34 3.2 6.1 4.6 3.1 1.5 5.6 5 5.1 4.3 3.3 2.1 49 3.1 2.3
Single 6.2 3.1 3.9 6.2 32 42 8.2 1.8 14 53 6.6 4.7 9.6 3.5 33 8.5 32 23
SVMRFEK 5.5 3.4 3.4 6.3 2.8 3.3 6.2 2.6 2.5 6.2 5.1 4.7 8.3 2.2 1.8 6.7 1.6 1.6
SVMRFEL 4.5 34 5.1 3.6 4 23 2.6 1.5 2.5 5.6 6.2 6.8 3.6 2.5 1.6 33 2.1 1.7
All feature 4.7 3.1 2 6.5 1.6 1.9

Table B.6 : Standard deviation of ten different realizations of classification accuracy for
Salinas dataset. "10F", "30F", and "SOF" show the number of ranked features are
selected. For instance, 10F means first 10 ranked features are chosen. "10SpC",
"25SpC", and "50SpC" represent the size of training data. For example, 10SpC
means 10 samples were considered for each class as a training data.

KNN SVM
Method 10 SpC 25 SpC 50 SpC 10 SpC 25SpC 50 SpC

10F 30F 50F 10F 30F S0F 10F 30F S0F 10F 30F S50F 10F 30F S50F 10F 30F S50F
Chi2 2.6 2 13 27 13 0.8 0.8 0.8 0.8 33 3 35 1.8 1.5 1.4 0.9 0.6 13
CIFE 53 2.5 1.4 4.8 1.7 1.4 2.7 1.5 0.7 4.8 2.5 2.5 29 1.8 2 12 0.8 0.7
CMIM 2.8 1.6 1.5 1.4 1 0.8 0.7 0.5 0.6 3.8 23 2.4 1.4 1.6 1.6 0.7 0.9 0.8
FSDTree 1.5 1.6 1.3 12 1.1 0.7 1.3 0.7 0.5 3.3 1.6 22 0.9 1.5 1.6 13 0.9 0.7
DISR 2.3 2.4 1.8 1.4 12 .2 1.1 0.6 0.5 34 25 22 1.5 1.5 1.8 1.6 14 1.1
Fisher 5.8 4 35 3.8 1.7 1.2 2.5 1.8 0.8 6.4 33 3.6 2.7 1.7 1.9 2.9 1.3 1
Gini 42 1.6 1.9 1.7 0.8 1 0.9 1 0.8 2 1.7 2.1 1.5 1.7 1.1 1.6 1.1 1
InfoG 3.8 1.2 1.2 12 1.5 1 1.2 0.5 0.5 4.8 3.1 23 2.1 0.9 1.2 13 0.7 0.6
IMI 1.6 1.4 1.5 13 1.1 1.1 0.8 0.6 0.6 2.7 32 2.3 1.8 1.4 1.7 1 1 0.9
MIFS 4.5 1.5 1.6 1.6 1.7 1.4 1.6 1.3 0.8 4.5 2.6 2.5 1.5 1.6 1.4 1.1 0.9 0.8
MIM 52 1.1 1.3 4.2 14 0.9 3.9 1.1 0.8 2.8 29 2.7 2.1 1.6 1.4 2.7 1.1 1.3
MRMR 3.6 22 2 1.9 1.5 1.3 1.8 0.9 0.8 34 34 32 0.8 1.3 1.8 24 0.9 0.8
RF 1.9 1.6 1.6 12 1.1 14 0.5 0.3 0.4 3.7 2.1 2.5 1.3 1.6 1.5 1.1 0.9 0.9
ReliefF 2 1.7 1.3 1.6 1.3 0.9 1 0.6 0.8 38 29 3.1 1.4 1.9 1.4 0.9 1.1 12
Single 2.6 2.1 1.5 3.1 12 1 35 0.7 0.7 22 33 2.9 2 14 1.3 2.8 1.3 1.3
SVMRFEK 2.5 1.2 24 1.7 2.4 12 0.8 22 0.7 43 1.6 22 4.1 1.7 1.7 2.7 1.2 1.1
SVMRFEL 22 1.6 1.4 1.8 1.3 0.9 1 1.1 0.8 2.5 3.5 2.5 1.6 2.1 2 0.7 1.3 1.3
All feature 1.6 0.9 0.9 1.7 1.8 0.9
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Table B.7 : Standard deviation of ten different realizations of classification accuracy for
SalinasA dataset. "10F", "30F", and "5S0F" show the number of ranked features
are selected. For instance, 10F means first 10 ranked features are chosen.
"10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.
KNN SVM
Method T0SpC 25 SpC 50 SpC T0SpC 25SpC 50 SpC

10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F
Chi2 3.9 1.5 0.9 33 1.7 1.2 1.1 0.6 0.6 1.6 1.7 1 1.3 1 0.8 0.3 0.6 0.6
CIFE 52 1.1 0.6 3.6 1 0.6 24 0.7 0.3 4.2 1.6 0.8 2.8 1.1 09 22 0.8 0.7
CMIM 1.3 0.8 0.6 1.7 1 0.9 0.7 0.5 0.5 32 0.9 0.7 0.6 0.4 0.8 0.6 0.5 0.6
FSDTree 14 1.1 1 1.1 0.9 0.5 0.5 0.6 0.3 1.2 0.7 0.8 1.5 0.8 0.8 0.6 0.4 0.5
DISR 5.6 13 1.2 1.3 14 14 1.3 0.8 0.5 8.9 0.7 0.5 5.6 0.5 0.4 4.3 0.6 0.4
Fisher 3.5 1.8 1.5 2.9 22 1.9 1.3 0.5 0.5 2.2 2 1.6 1.2 0.5 0.7 0.5 0.6 0.5
Gini 3.5 14 1.7 2 1.4 1.3 1.5 1.3 0.7 4.3 9.2 7.8 1.3 0.5 0.5 0.3 0.4 0.4
InfoG 59 1.9 3.4 1.2 1.2 1 0.8 0.3 0.5 73 1.2 0.8 1.5 1 1 1.6 1.1 0.7
IMI 1 0.9 0.7 1.1 1.1 1.1 0.5 0.3 0.5 0.6 0.6 0.9 0.7 0.9 0.9 0.6 0.6 0.6
MIFS 59 2.5 0.7 3.5 1.7 0.8 3.7 1.2 0.5 11.3 3 1.1 4.6 09 0.7 3.4 0.9 0.5
MIM 1.5 1 0.8 1.7 1.5 1.3 0.5 0.5 0.6 1.3 1.2 1.1 1.5 0.9 0.9 0.5 0.6 0.7
MRMR 5 1.7 1.1 2.4 2.3 0.8 33 1 0.6 5 7.9 0.6 57 0.4 0.3 6.6 0.6 0.4
RF 1.5 0.8 0.8 14 0.8 0.8 14 0.5 0.5 23 1.2 1.3 2.3 1 0.9 2.1 0.8 0.6
ReliefF 3.5 1.4 09 3.4 1.7 1 1.1 0.4 0.6 1.8 1.6 0.9 1.2 0.5 0.8 04 0.6 0.6
Single 53 42 4.2 4.6 1.5 1.3 2.5 0.9 0.4 6.6 1.7 1.6 74 2 0.8 9.5 1 0.5
SVMRFEK 6.1 3.5 1.1 1.9 1.9 1.3 2.2 0.9 04 11.2 7.1 1 59 0.7 1 5.8 0.5 0.3
SVMRFEL 3.6 14 0.9 22 1.2 0.9 13 0.6 0.7 1.5 1.5 1.1 1.2 1.2 0.8 0.4 0.6 0.5
All feature 0.6 0.7 0.5 0.6 0.7 0.5
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