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YÜKSEK LİSANS TEZİ

Hamed GHOLAMI VIJOUYEH
(705141005)
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AN EXPERIMENTAL ANALYSIS OF
FEATURE SELECTION ALGORITHMS

IN HYPERSPECTRAL IMAGE CLASSIFICATION

SUMMARY

Recently, hyperspectral images have been an attractive subject for many researches
in remote sensing area since they provide abundant information due to their wide
range of spectral bands. On the one hand, providing such a huge amount of
data by hyperspectral images may lead to complexity and bring some redundancy
due to high correlation among the hyperspectral bands. On the other hand,
this redundancy often negatively effects the classification of hyperspectral data by
imposing extra computational costs without providing any advantageous information
to the performance of the classifier. Moreover, the redundancy or using more features
may lead to a decrease in the classification accuracy, which is known also as Hughes
effect.

In order to reduce the redundancy and increasing the performance of the classification
methods, feature selection algorithms have been carried out to remove irrelevant
features and highlight the efficient features of dataset to achieve a significant accuracy
with minimum costs. The feature selection methods are typically presented in three
categories based on how they combine the selection algorithm and the model building:
filter-based methods which select suitable features using a search method; wrapper
methods that validate the selected features with a classifier; and embedded methods
which utilize the profits of two prior methods.

There have been many studies related to feature selection not only in developing novel
methods but also in application of the methods to hyperspectral image classification.
To our knowledge, there is no any general analysis over hyperspectral remotely sensed
datasets, involving a wide range of feature selection methods to compare them in the
same experimental environments. In this work, a comprehensive experimental analysis
with seventeen mostly used state of art feature selection algorithms is conducted
extensively analyzed with two well-known classifiers, that are K-nearest neighbours
and support vector machines, on seven common hyperspectral remotely sensed
datasets. The contribution of this thesis is to present an extensive benchmark study
on using feature selection algorithms with hyperspectral datasets to help researchers
to comprehend the behaviour of feature selection methods on different cases. The
analysis of feature selection algorithms are carried out by considering different
number of training samples and different number of ranked features count. Besides,
the methods are assessed based on four evaluation criteria which are classification
accuracy, stability of feature selection methods, ability of ranked features to separate
the classes of a dataset, and computational cost.

According to the results obtained from the experiments, the filter-based methods,
which are improved by mutual information measures, are more profitable than the
other filter-based methods, even wrapper and embedded techniques. Although, filter
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methods are known as unstable method, they achieve accurate classification results as
well as low computational time. Some wrapper and embedded methods also perform
significant classification accuracy while filter-based methods also enhance a higher
level of generalization.
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HİPERSPEKTRAL GÖRÜNTÜLERIN SINIFLAMASINDA
ÖZNİTELİK SEÇİM ALGORİTMALARININ DENEYSEL ANALİZİ

ÖZET

Son günlerde, hiperspektral görüntüler geniş spektrum bantlarından dolayı bol
miktarda bilgi sağladığı için, uzaktan algılama alanında yapılan birçok araştırma
da çekici bir konu olmuştur. Ancak, hiperspektral görüntülerle çok fazla miktarda
veri sağlanması, hiperspektral bantlar arasındaki yüksek korelasyona bağlı olarak
sınıflandırmada karmaşıklığa neden olabilir ve bilgi fazlalığı yaratabilir. Dolayısyla,
bu bilgi fazlalığı, sınıflandırıcının performansına çoğunlukla bir katkı sağlamazken
ekstra hesaplama zararı getirerek hiperspektral verilerin sınıflandırılmasını olumsuz
yönde etkiler. Fazla öznitelik kullanılması, Hughes efekti olarak da bilinen
sınıflandırma doğruluğunda bir azalmaya neden olabilir.

Artıklığı azaltmak ve sınıflandırma yöntemlerinin performansını arttırmak için
öznitelik seçim algoritmaları, asgari maliyetlerle belirgin bir doğruluğu sağlamak için
fazla öznitelikleri kaldırmak ve veri kümesinin etkin özniteliklerini çıkarmak için
kullanılmaktadır. Öznitelik seçimi (ÖS), uzaktan algılamada hiperspektral görüntüler
alanında etkili ve avantajlı bir araştırma alanıdır. Çok sayıda ilgisiz ve gereksiz
öznitelik içeren bu büyük veride, öznitelik seçimi yaparak, veri fazlalığı, çok fazla
bilgi kaybına uğramadan azaltılabilir. Bununla birlikte, dikkate alınan hiperspektral
veri kümesi için uygun bir öznitelik seçimi yönteminin belirlenmesi uygulamacılar
açısından önemli olabilmektedir.

Öznitelik seçme yöntemleri tipik olarak, seçim algoritmasını ve model oluşturma
yöntemini nasıl birleştirdiklerine bağlı olarak üç kategoriye ayrılmaktadır: Bunlar,
arama yöntemini kullanarak uygun öznitelikleri seçen filtre temelli yöntemler, seçilen
öznitelikleri bir sınıflandırıcıyla doğrulayan sarmalayıcı yöntemler ve iki önceki
yöntemin kazançlarını kullanan gömülü yöntemler şeklinde sıralanmaktadır.

Öznitelik seçimi konusu üzerinde yapılan birçok çalışma sadece yeni yöntemlerin
geliştirilmesi üzerinde değil, yöntemlerin hiperspektral görüntü sınıflandırmasına
uygulanması üzerinde de yapılmaktadır. Bildiğimiz kadarıyla, hiperspektral uzaktan
algılanmış veri kümeleri üzerinde, öznitelik seçimi yöntemlerinin aynı deneysel
ortamlarda karşılaştırıldığı genel bir analiz çalışması literatürde mevcut değildir.
Bu çalışmada, en çok kullanılan en gelişmiş on yedi öznitelik seçimi algoritması
ile kapsamlı bir deneysel analiz yapılmıştr. Destek Vektör Makineleri (DVM) ve
K-En Yakın Komşuluk (K-EYK) sınıflandırıcıları kullanılarak literatürde bilinen
yedi hiperspektral uzaktan algılama veri kümesi üzeride kapsamlı olarak analiz
edilmiştir. Bu tezin katkısı, araştırmacıların, farklı tiplerdeki öznitelik seçimi
yöntemlerinin davranışını anlamasına yardımcı olmak amacıyla hiperspektral veri
kümeleri ile öznitelik seçimi algoritmalarının kullanımı hakkında kapsamlı bir
değerlendirme çalışması sunmaktır. Öznitelik seçimi algoritmalarının analizi, farklı
sayıda eğitim örneği alınarak da analiz edilmiştir. ÖS yöntemeleri, sınıflandırma
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doğruluğu, öznitelik seçimi yöntemlerinin kararlılığı, sınıflandırılmış özniteliklerin bir
veri kümesinin sınıflarını ayırabilme kabiliyeti ve hesaplama maliyeti olmak üzere
dört ana değerlendirme kriterine göre değerlendirilmiştir. Bu tez, öznitelik seçme
yöntemleri ve bunların uzaktan algılama alanındaki hiperspektral veri kümeleri üzerine
odaklanmıştır. Bu tez beş bölümden oluşmaktadır.

Birinci bölüm, bu çalışmayı tanıtmakta ve uzaktan algılama alanında kullanılan
hiperspektral görüntülerden bazı yönler sunmaktadır. Buna ek olarak, bu bölümde
boyut azaltıcı ve sınıflandırma yöntemleri ile ilgili temel tanımlarda verilmektedir.
Ayrıca, hiperspektral görüntüleri ve öznitelik seçimi alanında yapılan literatürdeki
daha önceki eserlerile ilgili bir literatür özeti verilmektedir. Bu çalışmanın kısa bir
amacı ve motivasyonuna da bu bölümde yer verilmiştir.

İkinci bölüm, araştırmada ele alınan yöntemlerin genel olarak tanımlarını içermektedir.
Tüm öznitelik seçimi ve sınıflandırma yöntemleri kısaca özetleri verilmektedir.

Üçüncü bölüm, üç alt bölümden oluşmaktadır. İlk bölüm, çalışmanın içerdiği hiper-
spektral veri kümelerininin genel tanımlarını içermektedir. Kullanılan hiperspektral
veri kümeleri, uzaktan algılama alanındaki kullanımı çok yaygındır ve bu alanda
yapılan çalışmalarda geniş ölçüde kullanılmaktadır. İkinci bölümde, öznitelik seçim
yöntemlerinin analizinde kullanılan değerlendirme kriterlerinin neler olduğundan
söz edilmektedir. Çalışmada, dört farklı değerlendirme kriteri dikkate alınmıştır.
Bunlar, sınıflandırma doğruluğu, öznitelik seçimi yöntemlerinin kararlılığı, seçilen
özniteliklerin sınıfları ayırma becerisi ve ÖS yöntemlerinin hesaplama şeklindedir. Son
bölümde ise, deneylere geçmeden önce yapılan gerekli parametre seçimlerinden söz
edilmektedir.

Dördüncü bölüm, hiperspektral veri kümeleri ile yapılan deneylerin sonuçlarını
göstermekte ve elde edilen bulgular hakkında kapsamlı bir tartışma imkanı
sunmaktadır. Deney sonuçları, öznitelik seçme yöntemleri ve sınıflandırıcıların
hiperspektral veri kümeleri üzerindeki davranışlarına göre ayrı ayrı incelenmiştir.

Son olarak, beşinci bölümde, tez kapsamında yapılan çalışmanın elde edilen
genel sonuçları özetlenmektedir. Elde edilen sonuçlara göre, filtre temelli
yöntemler, hiperspektral veri kümeleri üzerinde yapılan farklı değerlendirme kriterleri
çerçevesinde sarmalayıcı veya katıştırılmış tipteki yöntemlere göre daha avantajlı
yöntemlerdir.

Bu tez kapsamında elde edilen sonuçları ışığında, uzaktan algılama alanında
hiperspektral görüntülerin sınıflandırma problemleri ve analizleri için "mutual
information" tabanlı filtre yöntemlerinin kullanılması önerilmektedir. Ayrıca "Random
Forest (RF)" ve "FSTree" yöntemleri de başarılı sonuçlar vermektedir. "Mutual
information" yöntemlerinin avantajları aşağıda sıralanmaktadır:

• Bu yöntemler herhangi bir sınıflandırıcıdan bağımsızdır ve herhangi bir parametre
ayarı gerektirmezler. Dolayısıyla, bu yöntemlerin uygulanması oldukça kolaydır.

• Bu yöntemlerin hesaplama zamanı sarmalayıcı ve katıştırılmış yöntemlerden daha
düşüktür.

• "Mutual information" tabanlı yöntemler farklı örnekler ve veriler için iyi bir
genellştirme yeteniğine sahiptir.
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"RF" yöntemi, hiperspektral veri kümelerinin boyut azaltma sorunlarıyla başa
çıkmanın başka bir alternatifi olabilir. Bu yöntem, düşük hesaplama süresinin yanı sıra
yüksek düzeyde bir sınıflandırma doğruluğu vermektedir. Ancak, "RF" yönteminin
uygulanması filtre tabanlı yöntemlere göre daha zordur.

"FSDTree" yöntemi, sınıflandırma doğruluğu açısından oldukça iyi bir yöntemdir
ancak hesaplama maliyeti yüksektir. Hesaplama zamanının önemli olmadığı
uygulamalar için, bu yöntem ile başarılı sonuçlar elde edilmesi mümkündür.
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1. INTRODUCTION

1.1 Introduction

Recent promotes in remote sensing and geographical information system (GIS) is

directed to find new ways to extend the hyperspectral images (HSI) and its sensors.

In case of remote sensing, HSI is a recently developed technology that allocates the

scientists and researchers in their investigations. The main subject of hyperspectral

remote sensing has begun in the mid-80’s to use for mapping minerals by the

geologists.

Hyperspectral image is an imaging technique that collects information from objects,

based on their electromagnetic spectrum [2]. Using advantages of thousands of

sensors, HSI spectrometer can measure about 100 to 200 spectral bands with 5 to

10 nm through an extensive wavelength, mostly in the range of 400 to 2500 nm,

whereas, multispectral imaging are usually composed of about 5 to 10 bands with a

large bandwidth (70-400 nm).

Since the HSI has the ability to provide a detailed information about the objects, a

variety of application such as object discovering, material identification, and target

detection have been reported in the literature [3] [4] [5] [6]. The HSI imagery is

generally collected as a data cube with spacial information in the X-Y plane, and

spectral data in the Z-direction as shown in Figure 1.1.

Classification algorithms are quite effective tools to extract the information from the

HSI. However, hyperspectral data always come with a huge number of redundant

and correlated bands that might cause a poor classification accuracy. Besides, the

redundancy in features also brings an extra computational cost without contributing

any useful information to classification performance [7]. Therefore, processing such

a huge volume of data might become a quite difficult task especially when supervised

classification methods are used. Another problem, often reported in the context

of classification of hyperspectral images in the literature is the Hughes effect or
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Figure 1.1 : Data cube of a hyperspectral image [1].

phenomenon [8] that can have a major unfavourable impact on the classification

accuracy. In classification analysis and with assuming a fixed training set, classification

accuracy increases with the addition of new features. The rate of increase, declines

and eventually, the accuracy will begin to decrease with adding more features.

Hence, feeding more features to a classification method may cause a decrease in

the classification accuracy [9]. To tackle with this issues, dimensionality reduction

techniques have been carried out as very useful tools to effectively use the classification

methods, to reduce the computational time and to optimally use data storage

requirements [10]. Moreover, reducing the number of features may lead to increase

the classification accuracy in some cases [11].

The dimensionality reduction methods can be categorized into two main sections:

feature extraction, and feature selection. Feature extraction (FE) methods map the

original features into a low dimensional space. These methods provide more separable

features in the low dimensional space, but FE modifies the physical properties of

the features. In contrast, feature selection (FS) methods rank the features or pick a

subset of features with respect to their ability to generate an accurate classification

performance or ignore some features that are considered as redundancy [12]. The

ambition of the FS is to select a batch of features which brings as much information as

possible. Through keeping the physical explanation of the features, the FS might be a

better choice than the FE, especially when dealing with the analysis of real datasets.

There exists three different approaches for the FS: filter, wrapper, and embedded

methods [13]. Filter methods clarify unsuitable features usually by using a search
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method based on statistical criterion without considering any classifier [11]. On the

contrary, wrapper methods utilize a classification technique to validate the selected

features [14]. The wrappers, often generate better results for final classification

accuracy than filter methods while they are optimized for a particular learning method.

However, while they have an inside evaluator and each feature set is separately

considered, the wrapper methods are more expensive to run. The wrapper methods

also can be uncompromising in case of having the big data including many features

and classes like HSI datasets. Moreover, in case of the wrapper methods, the methods

need to be re-run from a problem to another. Hence, the filter methods provide more

general solution than the wrappers. Besides, the embedded methods use the advantages

of both above strategies.

The different FS methods result various subsets of the original feature set. Moreover,

for a specified classification purpose, a particular FS method should be chosen.

An FS method may obtain significant results in a classification problem while in

another problem it can not show the same outcomes and using another FS method

is preferable. For all these reasons and challenges, feature selection persists a hot topic

for researchers in the area of machine learning and data analysis [15].

1.2 Related Works

In the context of hyperspectral remote sensing literature, the studies related to the

feature selection have been generally focused on methodology itself. Accordingly

the analyses have been conducted to provide the effectiveness of their proposed

approach in comparison to several existing algorithms based on a few hyperspectral

datasets. Pal and Foody analysed the impact of the features on SVM classification

method in context of hyperspectral images. They achieved that the SVM classification

accuracy declines with adding more features especially when the size of training set

is small. They also found that the feature selection is a useful method to increase the

classification accuracy [16]. Ghamisi and Benediktsson presented a new FS approach

based on a binary optimization method using fractional-order Darwinian particle

swarm optimization. They proposed their method via its impact on SVM, and on

attribute profile (AP) vectors [17]. Patra et al. introduced a supervised method to select

efficient features in hyperspectral images by using Rough set theory. They evaluated
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their method in comparison to three other methods that are fuzzy C-mean, divergence,

and mutual information [18]. Hossain et al. denoted a one-class oriented method

to select the suitable features. They used mutual information (MI) as a FS criterion

and applied to cluster space. Each class was classified in a sequence. They used

hyperspectral and Lidar datasets for their experiments [19]. Persello and Bruzzone

presented a kernel-based feature selection method. Their method chooses a subset of

original feature set which are relevant and invariant. The selected features should

be discriminant in the considered classification problem and stable along different

domains such as source and the target domains [20].

Furthermore, some studies have optimized the common feature selection methods.

Zabalza et al. proposed an optimized PCA approach called Folded-PCA which

resolved PCA drawbacks. They said that although PCA had been broadly used in

feature selection and feature extraction, it tolerated three main drawbacks which are

high computational cost, large memory requirement, and low ability in processing

large dimensional data like HSI [21].

To our knowledge, for a researcher who looking for a feature selection method as a tool

to solve a specific problem in the area of remote sensing, there is no comprehensive

analysis covering the most of the FS methods with using hyperspectral remotely

sensed datasets, and comparing them in the same environmental conditions meaning

that conducting the experiments on the same datasets in the area of remote sensing.

Moreover, while HSI analysis is very costly due to their high dimensionality, there is no

significant assessment including a large collection of commonly used remotely sensed

hyperspectral datasets. For instance, Bolon-Canedo et al. have investigated important

feature selection methods on some synthetic Artificial Intelligence (AI) datasets

with aiming to review the performance of feature selection method with taking into

account of irrelevant features, noise in the data, redundancy and interaction between

attributes, as well as a small ratio between number of samples and number of features

[22]. Besides, Pohjalainen et al. developed supervised and unsupervised feature

selection methods by focusing on paralinguistic analysis using standard K-Nearest

Neighbours (KNN) as a classifier. They showed that the classification of paralinguistic

dataset using FS methods with KNN classifier, leads to achieve equivalent or even

better performance than using support vector machine (SVM) or random forest as
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a classifier [23]. Ang et al. provided a review on the supervised, unsupervised,

and semi-supervised feature selection methods in gene selection analysis. They

also discussed the challenges and problems faced in order to obtain better diseases

prediction or fining new diseases. The paper implied that there are still many open

opportunities for further improvements. The authors utilized most commonly used

gene micro-array expression datasets [24]. Vergara and Estévez presented a review of

the feature selection methods without considering any dataset to analyse the methods.

They showed that modern feature selection techniques must go beyond the concept of

relevance and redundancy to include complementarity. They developed a framework

based on mutual information which is able to optimize the FS method [25]. Brown et

al. demonstrated an unifying framework for feature selection methods by optimizing

the conditional likelihood. They are not pursued an exhaustive analysis but, displayed

a valuable comparison between information-based feature selection techniques using

15 common machine learning datasets [26].

1.3 Purpose of Thesis

The aim of this research is to present a benchmark study covering an experimental

analysis of mostly used state of art feature selection methods on variety of

hyperspectral remotely sensed datasets [27]. The motivation of this thesis is to

exploit a comprehensive survey for using a remote sensing researcher to understand

the performance of the FS algorithms on a specified hyperspectral dataset.

For the experimental analysis, 17 number of FS methods are be tested with two

well-known classification methods over 7 remotely sensed hyperspectral datasets in

terms of classification accuracy, stability of feature selection methods, ability of the

selected features to separate classes, and computational time of FS methods.

1.4 Thesis Overview

This thesis is focused on feature selection methods and their impact on hyperspectral

datasets in the area of remote sensing. The outline of this thesis is organized in 5

chapters.
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The first chapter introduces this work and gives some aspects from hyperspectral

images used in the area of remote sensing. In addition, this chapter contains

fundamental definitions about dimensionality reduction and classification methods. It

also contains a look to previous works that were done in the area of feature selection of

remotely sensed hyperspectral images. A brief purpose of this work and the motivation

also is given in this chapter.

The chapter 2 describes the methodologies considered in this research. All feature

selection and classification methods are briefly given. The feature selection methods

are separately explained in three categories.

The chapter 3 is constructed in three sections. First section, illustrates the hyperspectral

datasets that are included in this work. All these datasets are well-known in the area

of remote sensing and are broadly used in the studies conducted in this area. In

second section, the assessment criteria are described to evaluate the feature selection

methods. Four evaluation criteria are considered in this work: classification accuracy,

stability of feature selection methods, ability of the selected features to separate

classes, and computational time of FS techniques. The experiments and their settings

are demonstrated in the last section of this chapter.

The chapter 4 demonstrates the results of experiments conducted with hyperspectral

datasets and gives a comprehensive discussion about the findings. The experimental

outcomes are investigated with respect to the behaviour of all feature selection methods

and classifiers over all hyperspectral datasets.

Finally, the chapter 5 gives a conclusion of this thesis. According to the obtained

results, the filter-based methods are more profitable than the wrapper or embedded

techniques in terms of different evaluation criteria for hyperspectral datasets.
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2. METHODOLOGY

This chapter explores several well-known feature selection methods based on SVM

and KNN classifiers. For each method, a reference is given to the reader to be able to

get more detail analysis about a specified method.

2.1 Feature Selection Methods

Feature selection methods are categorized as three parts depending on their evaluation

capability of individual feature or feature sets. The FS methods used in this study are

briefly explained below:

2.1.1 Filter methods

2.1.1.1 Chi square (Chi2)

This method uses the Chi-Square distribution that is a special case of the Gamma

distribution and is one of the most broadly-used probability distributions. Chi2 utilizes

the Chi-Square (X2) statistic to discretize numeric attributes of the features repeatedly

until some discrepancies are found in the data. X2 is calculated by this formula:

X2 =
2

∑
i=1

k

∑
j=1

(Ai j−Ei j)
2

Ei j
(2.1)

where k is the number of classes, Ai j is the number of patterns in the ith interval of jth

class, and Ei j is the expected frequency of Ai j that is determined from this equation:

Ei j = Ri×
C j

N
(2.2)

where Ri is the number of patterns in the ith interval, C j is the number of patterns in

the jth class, and N is the total number of patterns [28]. Chi2 is a quite useful method

on numeric and ordinal type of data.
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2.1.1.2 Conditional informative feature extraction (CIFE)

This method is based on information theory and uses the mutual information to reduce

the redundancies between the features based on their relevant classes that cause a

maximized joint class-relevant information [29]. CIFE is a special case of MI based

feature selection methods which the coefficient of MI is equal to 1 [25].

2.1.1.3 Conditional mutual information maximization (CMIM)

The CMIM is a very fast FS method that uses conditional mutual information (MI).

This method maximizes the MI of features that picked up individually or weakly

dependant pairs. The CMIM is a forward selection method and ranks the features by

comparing each feature with the selected one to determine the good features. The good

features mean that if Î(Y ; X́ |X), which is the estimation of the quantity of information

shared between X (feature vector) and Y (related class), is large for each selected X . In

other words, X́ is suitable if it has information about Y and these information have not

been caught by any of the X already picked [30].

2.1.1.4 Double input symmetrical relevance (DISR)

DISR uses two major characteristic of feature selection: a combination of variables

that returns more information about related class rather than the information obtained

from individual variables [31], or a combination of best performing subset when there

is no information how to combine the variables [32].

2.1.1.5 Fisher score (Fisher)

This method uses discriminative methods, and generative statistical models to

determine the most relevant features and selects the features in such a way that the

distances between them and the other features with different classes are as large as

possible while the distances between features with the same class labels are as small

as possible [33]. The Fisher method scores ith using this formula:

Fisher Score =
∑n j(µi j−µi)

2

∑n jρ
2
i j

(2.3)
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where µi j is the mean and ρi j is the variance of the ith feature in the jth class, µi is the

mean of the ith feature and n j is the number of samples in the jth class [34].

2.1.1.6 Gini index (Gini)

This filter method uses Gini coefficient to measure a feature capability to detect class

separability. The Gini Index is determined independently for each feature. The more

important feature has the smaller Gini index. After the whole features are weighted,

the top N features having smallest Gini index are selected [35]. The Gini Index for a

feature is calculated by this formula:

GiniIndex = 1−
n

∑
j=1

p2
j (2.4)

where p j is the relative frequency (probability of occurrence) of class j.

2.1.1.7 Information gain (InfoG)

InfoG is an easy method to implement that counts the number of obtained bit

information with a corresponding class [36]. To select the valuable features, the

entropy of the data both for whole classes and each class is calculated, and the features

with highest discrimination are selected [37]. This method values each term by:

InfoG(Sx,xi) = H(Sx)−
|Sxi=v|

/
|Sx|

∑
v=values(xi)

H(Sxi = v) (2.5)

where SX is the set of training examples, xi is the vector of ith variables and

|Sxi = v|
/
|Sx| is the fraction of examples of the ith variable having value v and:

H(S) =−p+(S) log2 p+(S)− p−(S) log2 p−(S) (2.6)

where p±(S) is the probability of a training sample in the set S to be in the

positive/negative class [38].

2.1.1.8 Joint mutual information (JMI)

This method is a model-independent technique and uses mutual information to detect

the relevant features. The MI checks each feature pair individually while the relevance
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of a set of these pairs is described by JMI [39]. JMI is selected the most relevant

features to the class rather than the MI. It takes into consideration the relevance of

feature and class when the subset of features were selected.

2.1.1.9 Mutual information based feature selection (MIFS)

MIFS technique uses mutual information to select the features. Firstly, it computes

MIs for each feature from an initialized feature set with an output class. Secondly, it

selects the first feature and finds the feature that maximizes the MI. This method uses

greedy method to select the features. The steps of MIFS can be given as follows [40]:

1. Set the first set of n features as F and define S as an empty set (initialization).

2. Compute I(C; f ) for each f ∈ F (MI computation).

3. Find the feature f that maximizes MI and set F = F
{ f} and S = { f}.

4. Repeat levels 2 and 3 until the |S| meets the needed feature rank (greedy selection).

5. Proceed S as the output.

2.1.1.10 Mutual information maximisation (MIM)

The MIM method weights the features with considering mutual information [41]. To

evade the disadvantages of random sampling such as ignoring informative features, the

MIM selects the features that maximize the MI individually with the class prediction.

This technique does not assure minimal dependency between the features and may lead

to redundancy [42] [43].

2.1.1.11 Maximum relevance and minimum redundancy (MRMR)

The MRMR is a common filter technique to select the features that have the strongest

correlation with a classification variable. The MRMR selects the features that are

mutually different from each other while still having a high correlation [44]. To show

the dependency among the feature pairs, it uses the mutual information. In other words,

this strategy consists of selecting a feature fi among the features fs that are not selected

and maximizes (ui− ri), where ui is relevance of fi to the class c and ri is the mean

redundancy in these two selected features and can be defined as:
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ri =
1
| f | ∑

fi∈ f
I( fi;c) (2.7)

ui =
1
| f |2 ∑

fi∈ f
I( fi, f j) (2.8)

where I( fi;c) is the mutual information between f and c that are random variables [16].

2.1.1.12 Relief-F (ReliefF)

ReliefF is an updated version for Relief feature selection technique [45]. It uses the

differences of average distance between the nearest point in the same class (near-hit)

with the nearest point in a different class (near-miss) [46] [47]. The original Relief

uses the single nearest hit and miss but the ReliefF take an average among K nearest

hits and misses [48]. The ReliefF is one of the best and successful strategies in the

feature selection.

2.1.2 Wrapper methods

2.1.2.1 Forward feature selection using decision tree (FSDTree)

This method uses forward feature selection to select worthy features then evaluate them

with decision tree classifier as a validator. The aim of decision trees is to find a model

that predicts the target value using decision rules derived from data features [49].

2.1.2.2 Single feature selection using logistic regression classifier (Single)

The Single algorithm is a wrapper method and uses a simple feature selection

technique. This method selects each feature individually and evaluate its prediction

accuracy using logistic regression classification method. Logistic regression is a very

common method that maximizes the sum of the likelihood logarithm and penalizes the

regression coefficients using L1 norm [50].

2.1.3 Embedded methods

2.1.3.1 Random forest (RF)

This embedded method selects features by repetitively training a random forest

classifier [51] by using ongoing feature set and eliminating the least important feature.
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The random forest classifier is a classification method based on random decision

trees [52]. This classifier fits classification trees by obtaining a bootstrap sample from

the data. A random subset of variables is selected independently from all possible

variables at each node of decision trees. The each tree weights the variables by finding

the best partition on the selected instances. Random forest is one of the best-known

machine learning classification methods and very stable when the training data have

small changes [53].

2.1.3.2 Recursive feature elimination using non-linear kernel-based SVM

(SVMRFEK)

SVM-RFE is a sequential backward feature elimination method that uses the binary

SVM classifier as its evaluator [54]. The SVM-RFE begins with all the features. At

each step, feature weights are acquire by comparing th training data with the existing

features. Then, the feature with the minimum cost function is removed. This procedure

continues until all features are ranked according to the removed order [55]. The cost

function is calculated by this formula:

| ‖ w ‖2 − ‖ w(− f ) ‖2 | (2.9)

where |w|2 is the norm of feature weight vector. The notation− f means that the feature

f has been removed [54].

The SVMRFEK is a kernel version of this method. It uses an RBF kernel and can

handle non-linear SVM models, but is slower than the original technique. A correlation

bias reduction (CBR) [56] strategy is designed to deal with the highly correlated

features.

2.1.3.3 Recursive feature elimination using linear kernel SVM (SVMRFEL)

This method is a version of original linear SVM-RFE as in [54] therefore it uses SVM

with a linear kernel as its evaluator. This method is faster than the method that uses

RBF kernel. Similarly to deal with highly correlated features, a CBR [56] method is

used.
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2.2 Classification Methods

In machine learning, classification is a supervised method that assigns an input feature

vector to one of the existing classes, based on specific classification measures. A linear

classification method classify the samples base on the value of a linear combination of

features. In this thesis, two well-known classification methods which are SVM with

linear kernel as a linear classifier and KNN as a non-linear method are used.

2.2.1 Support vector machine (SVM)

Figure 2.1 : Optimal separating hyperplane in SVM for a linear kernel. The support
vectors are indicated by red shapes.

Recently, in context of classification of remotely sensed hyperspectral images, a special

attention to SVM has been denoted. SVM has often a higher classification accuracy

in counter to another common pattern recognition techniques [57] [58]. This method

uses support vectors to classify given data. The aim of SVM is to find an optimal

hyperplane between classes by maximizing perpendicular distance (the margin).

As shown in figure 2.1, a basic and simple implementation of SVM is to find an

optimized linear hyperplane between the samples of two classes that are linearly

separable. This means that it is possible to find a linear hyperplane with function

f (x) that can separate the two classes. f (x) is the discriminant function and can be

defined as:
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f (x) = w . x + b (2.10)

where w is the normal (weight vector) to the line, x is the training data, and b the

bias. The optimal hyperplane can be represented in an infinite number of different

ways by scaling of w and b. As a matter of convention [59], among all the possible

representations of the hyperplane, the one chosen is:

| w . x + b | = 1 (2.11)

From the geometry, the distance between a point x and a hyperplane (w, b) can be

calculated:

Distance =
| w . x + b |
‖ w ‖

=
1
‖ w ‖

(2.12)

Recall that the margin that already defined, is twice the distance to the closest samples:

Margin =
2
‖ w ‖

(2.13)

In order to find an optimal hyperplane, the Margin should be maximized. In other

word,

Max
2
‖ w ‖

⇒ Max
1
‖ w ‖

⇒ min ‖ w ‖⇒ min
1
2
‖ w ‖2 (2.14)

To sum up, the constraints model the requirement for the hyperplane to classify

correctly all the training examples xi. Formally,

min
1
2
‖ w ‖2 subject to yi(w.xi +b)> 1, ∀ i = 1,2, ...,N (2.15)

where yi represents each of the labels of the training data. SVM is also independent

from Hughes effect [60].
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2.2.2 K-nearest neighbours (KNN)

The KNN is one of the simplest methods used in the classification that collects all

the available instances and then classifies new instances with respect to their distance

based similarity. This method determines the class of an unknown data depending on

the class of the nearest neighbours whose classes are already known [61]. It has a

parameter K (integer and usually small number) that refers to the number of nearest

neighbours in the current feature set. The output is a class label that has maximum

iteration in K nearest neighbours classes. For instance, if K is equal to 1, then the

class label of the unknown data is clearly allocated as the class of that first nearest

neighbour.
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3. DATASETS AND EXPERIMENTAL SETTING

3.1 Hyperspectral Datasets

In order to analyse the FS methods, seven hyperspectral remotely sensed datasets were

considered in this study. All datasets are very common in the literature of hyperspectral

images. The datasets and their properties are shown briefly in Table 3.1.

Table 3.1 : The hyperspectral datasets used in the experiments.

Sensor Dataset
Measures

Bands Classes Non-Zero
Samples

EO-1 Botswana 145 14 3248

AVIRIS

Indian Pines 200 16 10249
KSC 176 13 5211
Salinas 204 16 54129
SalinasA 204 6 5348

ROSIS Pavia Center 102 9 148152
University of Pavia 103 9 42776

3.1.1 Botswana

The Botswana dataset is captured by Hyperion NASA EO-1 at 30 m pixel resolution

over a 7.7 km altitude from Okavango Delta, Botswana, in 242 spectral bands with

400-2500 nm portion of the spectrum. Uncalibrated and noisy bands that cover water

absorption are removed, and the 145 spectral bands are remained. The data are

analysed in 14 identified classes displaying the land cover types in seasonal swamps,

occasional swamps, and drier woodlands [62]. The class 3 (Riparian) with 237 data

samples and the class 6 (Woodlands) with 199 data samples are the most complicated

classes for this dataset. The true color representation along with ground truth for

Botswana dataset is shown in Figure 3.1.

3.1.2 Indian pines

The Indian Pines dataset is acquired by AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer) sensor over the Indian Pines site, Northwest of Indiana, US. It is
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(a) False color representation

(b) Ground truth (c) Class labels

Figure 3.1 : Botswana dataset

captured with 145 × 145 pixels and 224 spectral bands in the wavelength range

400-2500 nm. This scene (Figure 3.2(a)) is a subset of a larger dataset. The Indian

Pines scene contains two-thirds agriculture, and one-third forest or other natural

perennial vegetation. There are two major dual lane highways, a rail line, as well

as some low density housing, other built structures, and smaller roads. Since the scene

is taken in June some of the crops present, corn, soy beans, are in early stages of

growth with less than 5% coverage. The ground truth is nominated in 16 classes that

(a) Sample band (170) (b) Ground truth

(c) Class labels

Figure 3.2 : Indian Pines dataset
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are not all mutually exclusive. The most complicated classes for this dataset are the

class 3 (Corn-Min Till) with 834 samples and the class 12 (Soybeans-Heavy Till) that

contains 614 data samples. The number of bands are reduced to 200 by removing water

absorption and other noisy bands ([104-108], [150-163], and 220) [63]. A sample

band, the ground truth and related classes for Indian Pines are shown in Figure 3.2.

3.1.3 Kennedy space center (KSC)

This scene is collected by AVIRIS sensor over the Kennedy Space Center, Florida

on March 23, 1996, US. It is collected in 224 bands of 10 nm width with center

wavelengths from 400-2500 nm from an altitude of approximately 20 km and with

a spatial resolution of 18 m. After removing water absorption and low SNR bands,

176 bands are used for the analysis. Training data are selected using land cover

maps derived from color infrared photography provided by the Kennedy Space Center

and Landsat Thematic Mapper (TM) imagery. For classification purposes, 13 classes

(a) True color map (b) Ground truth

Figure 3.3 : Kennedy Space Center (KSC) dataset

representing the various land cover types are defined for this dataset [64]. The KSC

dataset have four most complicated classes which are the class 3 (Cabbage palm

hammock) with 256 data samples, the class 4 (Cabbage palm/oak) with 252 data

samples, the class 5 (Slash pine) with 161 data samples, and the class6 (Oak/broadleaf

hammock) with 229 data samples. The true color map of KSC and the ground truth

are shown in Figure 3.3.

3.1.4 Pavia center and university of pavia

Pavia Center and University of Pavia scenes are captured by ROSIS (The Reflective

Optics System Imaging Spectrometer) hyperspectral sensor over Pavia, northern Italy.
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Pavia Center has 102 spectral bands while University of Pavia has 103 spectral bands.

The spatial resolution for both datasets is 1.3 meters. The ground truth datasets for

both images are provided for 9 classes [65].

(a) True color map (b) Ground truth

Figure 3.4 : Pavia Center dataset

Figure 3.4 shows the original view and the ground truth for Pavia Center hyperspectral

dataset. The true color map of University of Pavia and its ground truth dataset are also

demonstrated in Figure 3.5.

(a) True color map (b) Ground truth

Figure 3.5 : University of Pavia dataset
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3.1.5 Salinas datasets

Salinas scene is captured over Salinas Valley, California, US by AVIRIS hyperspectral

sensor and is characterized by 3.7 meter as spatial resolution. This dataset is a 512

× 217 pixels image and includes 224 spectral bands, and twenty of these ([108-112],

[154-167], 224) are discarded because of water absorption effects. The Salinas include

16 land cover classes and mostly contain vegetables, bare soils, and vineyard fields

[66]. Figure 3.6 displays the true color map and ground truth dataset for Salinas scene.

(a) True color (b) Ground truth

Figure 3.6 : Salinas dataset

The last dataset called as SalinasA is an small sub-scene of original Salinas dataset

with 86 × 83 pixels. As Salinas scene, this sub-scene, has 204 bands. The ground

truth for this dataset contains 6 land cover classes [66]. The image with its ground

truth is shown in Figure 3.7.

(a) Band 170 (b) Ground truth

Figure 3.7 : SalinasA dataset
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3.2 Performance Evaluation Criteria

With the purpose of assessment of the performance of feature selection methods on HSI

datasets, four different evaluation criteria were used in this study, that are classification

accuracy, stability of feature selection methods, ability of the selected features to

separate classes, and computational time of FS methods.

3.2.1 Classification accuracy

The first criterion is classification accuracy as to measure the effect of progressively

feeding selected features to a classifier. The aim of this analysis is to show how the

accuracy results change with adding more features to a classification method. The

classification accuracy is evaluated in terms of different aspects such as the size of

training data, dependency of FS methods to a classifiers or datasets, determining the

optimal number of features, and finally obtaining the best FS method.

3.2.2 Stability

The stability of FS methods is a measure of robustness of the selected features to small

variations in the training dataset and is shown by plotting of top ten selected features for

ten different random realization. Obviously, an stable FS method is the one that gives

the same or very close feature ranking in each trial with different training datasets.

The aim of investigating the stability of feature selection methods is to find an

application domain experts with quantified evidence that the selected features by an

stable method are relatively robust to variations of training samples. If a FS method

is stable and selects same features for different training data, the captured rank can be

used for different range of training data without utilizing the feature selection method

again.

3.2.3 Ability of the selected features to separate classes

The aim of feature selection methods is to rank the important features of a dataset.

In the ranked feature set, the first features are more important than the other features.

Therefore, obtaining the importance of selected features and investigating their ability

to distinguish the classes can be another criterion to evaluate the feature selection
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methods. Evidently, the features that can be separate classes are more important than

the other features and play a significant role in analysis of data.

3.2.4 Computational time

The computational time of a FS method is another measure to evaluate the feature

selection methods. In order to show, the computationally effectiveness of each FS

strategy, the CPU time is recorded on a computer with Intel Corei7-4710HQ CPU and

8 GB DDR3 memory.

3.3 Experimental Setting

Inasmuch as all FS algorithms are supervised, the datasets were partitioned randomly

into two sections: training data and test data. The training data were included 10, 25,

and 50 samples per each class, and the test data were contained the rest of samples

of classes for each hyperspectral remotely sensed dataset. To reduce processing time

and prevent the reactions of large-value features, training and test data were scaled to

the range of [0,1]. To obtain the robust results, the experiments were conducted with

ten different randomly created training and test datasets, and the average results were

reported.

Support vector machine (SVM), and K-nearest neighbour (KNN) were used to evaluate

the performance of FS techniques in terms of classification accuracy. In the case of

KNN, K neighborhood number was optimized with respect to the leave-one-out error.

For SVM case, a linear kernel was used with the penalty parameter C∈ [2−5,215] which

was obtained with a 5-fold cross-validation algorithm. Since the goal of this work is

to provide fair results for each feature selection method, all classifiers were used with

their default parameters in the implementation of each FS method [67] [26].

In the implementation of the methods, the SVM classification methods were

accomplished by using the LibSVM1, which is an integrated software for support

vector classification and supports multi-class classification, and the KNN classifier

were carried out by using PRTools2, that is a Matlab toolbox for pattern recognition.

Moreover, all the feature selection methods were implemented by combining the

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
2http://prtools.org/
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feature selection toolbox progressed by Arizona State University1 and scikit-learn2

Python machine learning library.

1http://featureselection.asu.edu/index.php
2http://scikit-learn.org/stable/
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4. EXPERIMENTAL RESULTS

The results of the feature selection methods over hyperspectral datasets are

demonstrated in this section. The behaviours of the FS methods are assessed in terms of

classification accuracy based on two common classifiers, stability of feature selection

methods, ability of the selected features to separate classes, and computational time for

the learning phase of the FS methods to rank the relevant features. It is necessary to

note that all the feature selection methods are evaluated with ten different randomly

selected training and test samples for each HSI dataset, and average results are

reported.

4.1 Classification Accuracy

The classification accuracy, obtained from applying the classifiers on the ranked feature

sets, is considered as the first evaluation criteria. The procedure has two main schemes.

In the first part as the learning phase, each training data is used to obtain the relevant

features for once, and in the second part as the classification phase, the sets of ranked

features are given to each classifier. Since the intention of this thesis is to investigate

the FS methods, not classifiers, the parameters of each classifier are optimized based

on each training data to achieve the highest classification accuracy. Moreover, because

the obtained results are too many due to using dozens of FS methods and hyperspectral

datasets, only the important results are considered in this section. For researchers, who

may want to see the whole results, the classification accuracy tables as well as their

plots are demonstrated in appendices A.1 and A.2.

Based on the outcomes achieved from the experiments, it is observed that the higher

number of features makes the classification accuracy higher, except in one case: SVM

with using 10 training samples per class over the KSC dataset. As shown in Figure 4.1,

adding more than a specific number of features (after 50th features approximately)

leads to a slight decrease in the learning curves of classification accuracy in case of

some FS methods. This means that by using small size of training samples in the
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KSC dataset, these feature selection methods may select some irrelevant features which

play a negative role in the classification accuracy. Therefore, according to the results

obtained, linear SVM may not be an appropriate classifier for KSC dataset when the

size of training data is small.

Figure 4.1 : Classification accuracies obtained by the SVM classifier for the features
ranked by different feature selection methods for KSC dataset with 10

training samples per class.

In order to study the effects of feature selection methods on the classification accuracy,

the behaviour of methods are further analysed in term of different aspects such as the

size of training samples, classifiers and datasets, and the number of features used in

classification.

4.1.1 Correlation between size of training data and classification accuracy

This section shows the effects of training data size on the classification accuracy for

each feature selection method. To achieve robust results that are independent from

using different classification method, one classifier is considered and while the SVM

results is higher than the KNN, the SVM classification method is chosen. The aim is to

compare the classification accuracies obtained from different size of training data by

using fixed number of ranked features. Because the first 50 ranked features show the

more stable results, first 50 features are considered for each FS method. The maximum

classification accuracy obtained from whole available features is used as a base for this

comparison.
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The achieved results denote that increasing the size of training data leads to an

increase in the classification accuracy. Table 4.1 shows the classification accuracy

results in Botswana dataset for different size of training data. The last row shows

the classification accuracy with using whole feature set. As can be seen use of larger

training sample makes higher accuracy.

Table 4.1 : The classification accuracy (%) of first 50 features for Botswana dataset using
SVM classifier with different training data size."10SpC", "25SpC", and "50SpC"

represent the size of training data.

Method 10 SpC 25 SpC 50 SpC
Chi2 85.1 90 92.3

CIFE 82.9 87.5 89.9

CMIM 86.4 90.7 92.9
FSDTree 86.3 90.6 92.4

DISR 86.9 90.8 92.5
Fisher 81.1 85.9 87.9

Gini 78.6 84.4 87.3

InfoG 84.5 87 88.3

JMI 86.3 90.9 92.9
MIFS 82.9 87.3 89.2

MIM 86.4 90.8 92.5
MRMR 83.3 86.1 88.3

RF 86.3 90.4 92.3

ReliefF 84.6 89.6 91.1

Single 84.8 88.9 90.1

SVMRFEK 79.2 83.9 86

SVMRFEL 85 89.5 90.8

Maximum Acc. 87.5 91.9 94.1

The purpose of this section is to find methods that capture higher accuracy with a

small size of training data. The methods CMIM, DISR, JMI, and MIM achieve

higher classification accuracy than the other methods in Botswana dataset, and the

classification accuracies are closer to the classification accuracy obtained by whole

features. The CMIM shows accurate results with using 10 and 50 training samples per

class, meaning that this method works also fine with a small size of training data. In

contrast, JMI obtains higher classification accuracy than the other methods when the

size of training data is large enough. Furthermore, the DISR and MIM show the better

results for all size of training data. This means that these two methods can work fine

with a small training data.
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Table 4.2 : The classification accuracy (%) of first 50 features for Indian Pines dataset using
SVM classifier with different training data size."10SpC", "25SpC", and "50SpC"

represent the size of training data.

Method 10 SpC 25 SpC 50 SpC
Chi2 54.6 60.2 62.7

CIFE 50.1 57 60.8

CMIM 52.2 61.1 65.8

FSDTree 54.8 63 67.5
DISR 52.8 61.4 64.5

Fisher 54.2 60.4 62

Gini 51 56.1 58.6

InfoG 52.1 58.1 62.9

JMI 53.4 61.1 63.9

MIFS 50.7 57.6 60.5

MIM 55.4 59 59

MRMR 51 55.1 58.2

RF 52.2 63.8 67.6
ReliefF 51.2 55.7 56.9

Single 51.7 56.2 62.7

SVMRFEK 51.9 53.8 56.3

SVMRFEL 52.6 55 57.1

Maximum Acc. 53.8 63.1 68.4

The classification accuracy obtained by ranked features is not necessarily always

smaller than the maximum classification accuracy. For example, in Table 4.2 which

shows the accuracy results for the Indian Pines dataset, the MIM method demonstrates

higher accuracy than the maximum classification accuracy obtained by the whole

features. It is worthy to say that, the MIM shows the higher accuracy than the other

methods when the size of training data is small. The FSDTree is another successful

method which achieves accurate results for different size of training data meaning

that this method not only shows the higher classification accuracy than the maximum

accuracy, but also a small training sample is enough. In contrast, the RF is a method

which needs sufficient number of training samples.

Table 4.3 presents the best feature selection methods for each dataset. The methods are

selected where the classification accuracy is higher than the other methods in case of

first 50 features. Overall, the methods which uses mutual information measures such
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Table 4.3 : The best FS methods using SVM classifier with considering top 50 ranked
features for different size of training data over all datasets. "10SpC",

"25SpC", and "50SpC" demonstrate the size of training samples.

Dataset 10 SpC 25 SpC 50 SpC
Botswana DISR JMI CMIM, JMI
Indian Pines MIM RF RF
KSC CIFE DISR FSDTree
Pavia Center MIM, RF MIM FSDTree, JMI
University of Pavia MRMR MIM DISR, MRMR
Salinas DISR DISR FSDTree
SalinasA DISR DISR DISR

as CMIM, MIM, JMI, and MRMR as well as FSDTree, RF, and DISR are the methods

that show the accurate performance for different size of training data.

4.1.2 Dependency of FS methods to classifiers

The purpose of investigating FS methods in this section is to find an independent

method from any classifier. More precisely, the aim is to determine the methods that

achieve a higher accuracy in all classification methods. In order to get a clear view of

classifiers effects on feature selection methods, the classification accuracies obtained

by first 50 features of each ranked feature set (because 50 features give more stable

accuracy than first 10 and 30 features) are considered.

Table 4.4 : The classification accuracy (%) of first 50 features for Botswana
dataset."10SpC", "25SpC", and "50SpC" represent the size of training data.

Method KNN SVM
10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC

Chi2 77.6 80.8 85.3 85.1 90 92.3
CIFE 75.5 80 84.2 82.9 87.5 89.9
CMIM 79.3 84 86.9 86.4 90.7 92.9
FSDTree 80.6 83.8 87.5 86.3 90.6 92.4
DISR 80.9 83.8 86.6 86.9 90.8 92.5
Fisher 75 78.2 80.7 81.1 85.9 87.9
Gini 69.9 74.8 76.6 78.6 84.4 87.3
InfoG 77.3 79.9 80.1 84.5 87 88.3
JMI 80 84.3 87.6 86.3 90.9 92.9
MIFS 76.2 80.4 83.3 82.9 87.3 89.2
MIM 79.1 81.5 85.5 86.4 90.8 92.5
MRMR 76.8 78.2 80.4 83.3 86.1 88.3
RF 79 84.5 86.6 86.3 90.4 92.3
ReliefF 75.8 80.7 84.7 84.6 89.6 91.1
Single 79.3 82.1 84.2 84.8 88.9 90.1
SVMRFEK 73.3 77.2 79.7 79.2 83.9 86
SVMRFEL 77 82.2 85.4 85 89.5 90.8
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Table 4.4, shows the classification accuracies of the considered first 50 features in

Botswana dataset with regard to three different size of training samples. As can be

seen, the DISR method achieves accurate performance with both classifiers when the

training data is small. This means that the DISR is a classifier-independent method

which works fine with just a small training samples.

Based on the achieved results in Botswana dataset, some of the feature selection

methods are dependent to the considered classifier. For example, the MIM works with

SVM better than the KNN or the RF is a method that provides higher accuracy in KNN

classifier. However, this does not mean that these two methods are dependent to the

classifiers in all HSI datasets. For instance, the RF is a classifier-independent method

in Indian Pines dataset. In case of Botswana dataset, the FSDTree and JMI are two

methods which show the better performance than the other FS methods for both SVM

and KNN classifiers.

The methods which obtain higher classification accuracy than the other methods are

illustrated in Table 4.5. The results are demonstrated for each classifier. If a method

is the winner for both classifiers, it means that the method is a classifier-independent

method for the related dataset. For instance, the CMIM is an independent method for

the Salinas and SalinasA datasets and shows a higher performance for both KNN and

SVM. However, in case of KSC dataset, this method works fine with the SVM only.

Table 4.5 : The first two best FS method for two classifiers with considering
classification accuracy of 50 first ranked features over all datasets. Some

methods present almost identical performance that are come together.

Dataset
Best FS Methods

KNN SVM
1st 2nd 1st 2nd

Botswana FSDTree JMI JMI FSDTree
Indian Pines FSDTree RF FSDTree RF
KSC RF CIFE CMIM, JMI FSDTree, DISR
Pavia Center JMI FSDTree, RF, MRMR FSDTree RF, MIM
University of Pavia MRMR FSDTree MRMR MIM
Salinas FSDTree, CMIM DISR FSDTree CMIM, DISR
SalinasA CMIM JMI, RF DISR, JMI CMIM, Gini

A noticeable point that worth to say is about the SalinasA dataset. In this dataset,

the Gini is one of the successful feature selection methods when using the SVM as

classifier. The Gini is a mediocre method for almost all the datasets and does not

show a significant classification accuracy. However, this method achieves accurate
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performance in the SalinasA dataset. This is possibly due to the small number of

classes in this dataset.

It is easy to see that the method FSDTree is the most successful methods with both

SVM and KNN classifiers in all the datasets, which means that this method is an

independent method from any classification technique for a wide range of HSI datasets.

However, in the University of Pavia dataset, FSDTree does not obtain a highest

accuracy with SVM, but achieves high accuracy while it is lower than the MRMR

and MIM classification accuracy. In this dataset, the MRMR is an accurate method

for both SVM and KNN classifiers. In addition, as the FSDTree, the DISR is another

independent FS method in Salinas dataset.

The methods FSDTree, RF, and MI based feature selection methods such as JMI,

MRMR, and CMIM are the methods with the highest classification accuracy using both

KNN and SVM classification methods which make them independent and powerful

methods for hyperspectral datasets.

4.1.3 Dependency of FS methods to datasets

This section determines the best FS methods for each dataset separately. For each

dataset, the best methods are the methods that achieve the highest classification

accuracy for different size of training data and different number of considered features

using both classifiers.

Table 4.6 : The best FS methods for each hyperspectral dataset. The best method is
the method with highest achieves in classification accuracies.

Sensor Dataset Measures Best Methods
Bands Classes 1st Rank 2nd Rank

EO-1 Botswana 145 14 FSDTree JMI

AVIRIS

Indian Pines 200 16 FSDTree RF
KSC 176 13 CIFE RF
Salinas 204 16 FSDTree CMIM, JMI
SalinasA 204 6 FSDTree CMIM, JMI

ROSIS
Pavia Center 102 9 FSDTree JMI, RF
University of Pavia 103 9 FSDTree MRMR

Table 4.6 illustrates the best feature selection methods for each dataset in terms of

their classification accuracies. In order to have an explicit view, this table also shows

the number of classes, feature, and the type of sensors for each dataset. The best
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methods are the methods having the largest number of maximums in classification

accuracy. For instance, in Pavia Center dataset the FSDTree, RF, and JMI perform the

highest classification accuracy for different size of training data and different number

of features than the other methods.

Obviously, the best methods that demonstrate in the Table 4.6 are categorized into two

main groups: the methods which use decision trees such as FSDTree and RF, and the

methods which use MI measures like JMI, CMIM, and MRMR. The FSDTree is the

method that frequently repeated in the table. This method is an appropriate FS method

for all HSI datasets except in KSC dataset where the CMIM and RF are found as the

best methods.

From a point of view, it can be said that the embedded and wrapper methods like

FSDTree and RF gain the more significant results than the filter-based methods.

However, filter-based methods like JMI, CMIM, and MRMR are also achieve

noticeable results with lower computational costs than the wrapper and embedded

methods. Next, the computational cost of feature selection methods will be

investigated in Section 4.4.

4.1.4 The optimal number of features

The target of feature selection methods is to find the important features in the original

feature set that can increase the classification accuracy. Accordingly, the features that

are ranked in the beginning of the feature set is more important than the other features

and lead to rise the classification accuracy. In order to select the number of effective

features and ignore the less compatible ones from the ranked feature set, a threshold

is needed [22]. Finding this threshold is always one of the questions of researchers

that is not very easy to solve. In order to assess a feature selection method and

determining the optimal number of the features, standard deviation of ten different

realization of classification is a criteria that might be considered. Obviously, the low

standard deviation means that the classification accuracies of different feature selection

methods provides more stable learning curve. Hence, a method can be thought as a best

method if it achieves a higher classification accuracy with a lower standard deviation

by using minimum number of ranked features.
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Table 4.7 : Classification accuracy (%) for Botswana dataset. "10F", "30F", and "50F" show
the number of ranked features are selected. For instance, 10F means first 10

ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for

each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 64.4 73.7 77.6 69.9 79.9 80.8 75.9 83.5 85.3 75.1 83.4 85.1 80.2 87.9 90 83.5 89.6 92.3
CIFE 56.7 64.3 75.5 63.3 70.5 80 70.7 76.4 84.2 67.8 74.4 82.9 73.7 80.3 87.5 79 84.2 89.9
CMIM 71.4 76.6 79.3 77.8 84 84 79.5 86.9 86.9 79.1 84.5 86.4 84.1 89.7 90.7 86.3 92.3 92.9
FSDTree 77.6 78.9 80.6 83.7 83.6 83.8 85.5 87 87.5 83.8 85.6 86.3 89 90.4 90.6 90.4 92.1 92.4
DISR 71.6 77.5 80.9 78.3 82.9 83.8 79.7 84.2 86.6 78.9 85.2 86.9 85.1 89.5 90.8 85.5 90.1 92.5
Fisher 52 70.1 75 51.5 76.3 78.2 51.2 78.9 80.7 62.2 77.8 81.1 62.3 83.6 85.9 62.9 85.1 87.9
Gini 54 69.7 69.9 58.3 74.2 74.8 59.5 76 76.6 61.1 77.5 78.6 65.1 83 84.4 67 85.9 87.3
InfoG 63.6 72.8 77.3 69.3 75.9 79.9 70.8 77.4 80.1 70.6 80 84.5 76.5 83.6 87 78.5 85.6 88.3
JMI 72.6 77.9 80 78.8 83.2 84.3 84.3 86.9 87.6 81 85.8 86.3 86.1 90.3 90.9 89.7 92.2 92.9
MIFS 61.2 68.4 76.2 64.8 71.8 80.4 68.2 75.7 83.3 72.4 76.8 82.9 74.9 80.9 87.3 77.8 83.3 89.2
MIM 75.8 78.6 79.1 78 81.4 81.5 78.7 84.1 85.5 82.4 85.2 86.4 85.3 89.3 90.8 84.5 89.8 92.5
MRMR 57.1 68.5 76.8 61 68.4 78.2 63.3 70.3 80.4 68.7 76.9 83.3 70.5 78.4 86.1 71.3 80.2 88.3
RF 75.6 79.4 79 78.9 82.6 84.5 79.3 84.1 86.6 81.1 85.2 86.3 84.6 88.2 90.4 84.7 89.6 92.3
ReliefF 55.5 73.8 75.8 68.8 79.5 80.7 72.1 83 84.7 69.7 83.2 84.6 77.9 87.6 89.6 79.7 89.3 91.1
Single 64.3 75.4 79.3 67.4 75.5 82.1 63.6 75.8 84.2 71.3 81.6 84.8 74.2 83.3 88.9 71.7 84.2 90.1
SVMRFEK 46.6 55.5 73.3 49.8 58.9 77.2 49.1 61.9 79.7 50.3 63 79.2 53 67 83.9 52.1 69.4 86
SVMRFEL 67.9 76.2 77 73.8 80.8 82.2 76.3 83.9 85.4 75.4 83.5 85 80.8 87.5 89.5 82.2 89.3 90.8
All feature 80.8 85.2 88.1 87.5 91.9 94.1

Table 4.7 demonstrates the classification accuracies while Table 4.8 shows the standard

deviations for Botswana dataset. In this dataset, with using 10 training samples per

class, the FSDTree is the method that achieves higher accuracy than the other methods

in case of using first 10, 30 and 50 features. This means that this method obtains proper

accuracy with a low number of features. In addition, FSDTree shows an acceptable

standard deviation. This method shows the same performance in almost all the datasets

which gives it a priority when selection an advantageous FS method is considered. The

whole results of standard deviations for all datasets are demonstrated in Appendix B.

Table 4.8 : Standard deviation (%) for Botswana dataset. "10F", "30F", and "50F" show the
number of ranked features are selected. For instance, 10F means first 10 ranked

features are chosen. "10SpC", "25SpC", and "50SpC" represent the size of
training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 7.7 3 1.6 5.5 2 1.9 2.8 0.9 0.7 3.9 2 1.9 3.6 1 0.9 2.1 0.6 0.4
CIFE 4.9 4.5 4.7 6.7 4.7 1 6.1 4.9 1.9 3.6 3.1 3 4.1 2.4 0.9 5.1 2.6 1
CMIM 6.8 3.4 1.8 2.6 1.2 1.7 4.1 0.8 0.5 5.3 2.5 2.1 2.5 0.9 1 3.7 0.7 0.8
FSDTree 2.6 2.3 2 2 1.7 1.8 1 1.4 0.7 2.6 2.5 2.1 0.8 0.7 0.6 0.7 0.6 1
DISR 5.4 2.3 1.5 3.8 1.3 1.3 2.3 1.1 0.6 3.8 1.8 1.9 3.2 0.8 0.7 1.8 1.1 0.7
Fisher 9.9 5.1 1.7 7.5 1.5 1.1 1 1.4 0.8 8.1 2.5 1.3 5.4 0.6 0.4 0.6 1.2 0.7
Gini 2.2 1.6 1.9 0.8 1 1.7 1 1 1 1.9 1.4 1.3 1.2 0.8 0.9 0.7 0.7 0.6
InfoG 7.8 4 3.9 7 1.5 2.8 7.5 0.9 1.9 5.3 2.5 2.6 4.8 1.1 1.8 5.4 0.9 1
JMI 5.7 2.9 2.6 2.8 1.9 1.9 1.7 0.7 0.4 3.1 1.7 1.8 1.1 0.7 0.7 1.2 0.6 0.6
MIFS 5.8 4.5 2.6 7.1 4.6 2.1 6.7 5.4 1.4 5.2 3.2 2.5 5.4 3 0.9 5.4 2.9 0.9
MIM 3.2 2.4 3 2.5 2 2.2 2.4 1.2 0.4 2.6 2 1.9 2.1 0.7 1 2.2 1.3 1
MRMR 4.8 3.3 3.2 6.7 5 1.7 7.6 6.2 2.6 5.2 2.9 2.4 5.6 3 1.4 6.1 3.7 1.3
RF 2 2.1 2.5 4.1 3 2.7 2.1 1.9 1.8 2 2.5 2 2.9 2.2 1.4 2.3 1.9 1.3
ReliefF 6.3 3.1 2.7 7.6 1.7 2.1 7.3 0.6 0.8 3.1 1.6 1.9 4.5 1.2 0.9 4.5 0.6 0.7
Single 10 5.2 2.6 7.9 6.3 2.8 9.3 5.4 3 9.7 3.5 1.9 6 5 1.6 7.5 3.8 1.5
SVMRFEK 3.2 2.7 1.8 3.5 0.9 1.5 1 1.3 1.2 4.5 1.5 1.8 4.8 1.2 0.7 0.9 1 0.7
SVMRFEL 2.3 2.1 2.1 0.8 1.4 1.4 0.7 0.8 0.5 1.7 2 2 0.8 1 0.5 0.9 0.8 0.7
All feature 2.1 1.8 0.8 2 0.5 0.3
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As mentioned before, the DISR method shows a higher accuracy than the other

methods with small size of training data in Botswana dataset in SVM classifier. This

method achieves this performance exactly with using 50 first features which indicates

that this method requires a sufficient number of features. The standard deviation of

the DISR is also very low. The CMIM is another method that performs an accurate

result with 30 and 50 features, meaning that this method requires a sufficient number

of features. In this dataset, the JMI shows a different behaviour. This method works

fine with small amount of features only when the size of training data is large enough.

In the KSC dataset, the FSDTree and RF result in higher accuracy than the other

methods by using 10 first ranked features. It can be said that for the datasets like

KSC which have high correlation between data, these two FS methods show better

classification accuracy than the other methods with using small number of ranked

features. Whereas, in datasets with low data dependencies, filter-based methods

achieve the highest accuracy with using a few ranked features. For instance, in the

Salinas dataset, the JMI, which is a filter-based method, shows the higher classification

accuracy than the other methods when the number of features considered in the

classification is low for all size of training data. The MIM is another filter-based

method which shows the same behaviour in SalinasA dataset. Other methods that

not described in this section have almost same performances for all three considered

feature count and size of training data.

4.1.5 The best FS methods

According to the parameters that are discussed before, to researchers who are looking

for an appropriate FS methods in case of classification accuracy for different HSI

datasets, the best feature selection methods are shown in Table 4.9. To select the

best methods, all the results from investigating factors that impact the classification

accuracy such as classification method, size of training samples, and number of ranked

features are considered.

Obviously, the demonstrated methods are assorted in three context: FSDTree, RF, and

MI based methods (such as JMI, CIFE, CMIM, and MRMR). The FSDTree is one of

the most successful methods for classification accuracy in case of different aspects that

mentioned before for almost all datasets. The RF is a successful method for Indian
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Table 4.9 : The best FS method for HSI datasets based on their classification
accuracy and standard deviation results.

Dataset Best FS Methods
1st 2nd

Botswana FSDTree JMI
Indian Pines FSDTree RF
KSC CIFE FSDTree
Pavia Center JMI FSDTree
University of Pavia MRMR FSDTree
Salinas FSDTree CMIM
SalinasA CMIM JMI

Pines dataset. Besides, the methods JMI, CIFE, CMIM, and MRMR also show the

highest classification accuracy in the most of hyperspectral datasets.

4.2 Stability of Feature Selection Methods

In this section, the reaction of feature selection methods in terms of their stability

without considering any classification method is presented. The aim is to determine

the stability of feature selection methods by measuring their robustness to changing

the training data. Put differently, when a stable method is utilized to rank the features

of a hyperspectral dataset, the one does not need to use this method for each time when

the training data is slightly changed. In order to achieve a robust results, the stability

of FS methods is examined for 10 different realization of training data. Evidently, a

stable method shows the same or very close ranked features in each realization.
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FSDTree
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Gini

InfoG

JMI

MIFS

MIM

MRMR
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ReliefF

Single

SVMRFEK

SVMRFEL

(a) 10 Samples per class

1 145

(b) 25 Samples per class

1 145

(c) 50 Samples per class
Figure 4.2 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Botswana dataset.
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Figure 4.2, shows the results of stability for three different-size of training data over the

Botswana dataset. The blue dots in plots indicate the index of top 10 selected features

that are ranked by each FS method.

It is obvious that the dense plot for each feature selection method, which means the

method selects same or very close features in each realization, shows a behaviour of

stable method. For example, in Botswana dataset, the methods Chi2, Fisher, Gini,

ReliefF, SVMRFEL, and SVMRFEK are very stable methods in all size of training

data. The mentioned methods are known as stable methods in almost all datasets

meaning the stability of these methods are not depend on the datasets.

Moreover, with increasing the size of training data in the Botswana dataset, the stability

of almost FS methods is increased or at least remains constant, expect in two case:

JMI and FSDTree. For these two methods, increasing the size of training samples does

not effect the stability of methods, however the JMI and FSDTree are totally unstable

methods for the Botswana dataset.
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(a) 10 Samples per class

1 200

(b) 25 Samples per class

1 200

(c) 50 Samples per class
Figure 4.3 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Indian Pines dataset.

The stability of feature selection methods for the Indian Pines dataset is shown in

Figure 4.3. As can be seen, FS methods may not demonstrate similar stability results

in all dataset. For example, the "Single" method is a stable technique in Indian Pines

dataset. However, in the Botswana, this method is an unstable method.

The stability of feature selection methods for other hyperspectral datasets is illustrated

in Figures 4.4 to 4.8. It is worth to say that, in all datasets, almost filter-based methods

like JMI, MIM, MIFS, and MRMR that use mutual information measures are not very
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Figure 4.4 : Distribution of the top 10 features provided by FS methods on ten

different realizations for KSC dataset.
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Figure 4.5 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Pavia Center dataset.
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Figure 4.6 : Distribution of the top 10 features provided by FS methods on ten

different realizations for University of Pavia dataset.
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stable methods. This means that, the MI based feature selection methods are dependent

on the training data and with changing the training samples, the selected features are

also changed.
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Figure 4.7 : Distribution of the top 10 features provided by FS methods on ten

different realizations for Salinas dataset.
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Figure 4.8 : Distribution of the top 10 features provided by FS methods on ten

different realizations for SalinasA dataset.

As mentioned before, the stability is a measure to rate the robustness of feature

selection methods without taking into account any classifier. In other words, there

is not any significant correlation between stability of feature selection methods and

classification accuracy and vice versa. As an illustration, the Chi2 is an stable method

which does not specify a good classification accuracy. In contrast, JMI and MIM

which perform a higher classification accuracy, are not the stable ones. Nevertheless,

for analysts, a good FS method is a method which is both stable and providing a high

classification accuracy. For example, the SVMRFEL and SVMRFEK methods, which
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both are embedded methods, are a good example that have acceptable accuracy results

as long as they are enhanced an adequate level of stability.

4.3 Ability of the Selected Features to Separate Classes

Classification methods are utilized to evaluate the feature selection methods, however,

despite the fact that FS methods are profitable, they can not show high performance

when the classification methods are not suitable for considered data. Hence, to detect

the worthy feature selection methods, the analyses which are independent from any

classification method are required. Investigating stability of the FS method is a

classifier-independent way that is discussed in Section 4.2. Obviously, while the FS

methods rank the features, the important features come first. In order to evaluate these

ranked feature sets, the ability of selected features to separate classes is another way to

examine the feature selection methods.

Figure 4.9 : Ability of features to separate classes 3 and 6 in Botswana dataset.
Features 1 to feature 5 are the first five important features ranked by RF

method.

Figure 4.9 shows the ability of the first five important features ranked by RF method to

separate the classes 3 and 6 in Botswana dataset. As mentioned in section 3.1.1, these

classes are the most difficult ones to separate. As can be seen, 1st and 2nd features
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are not able to distinguish two classes, however, they are first two important features

from the view of RF method. Diagonal histograms are clearly show that the classes

3 and 6 are very hard to separate by using these two first features. Instead, feature

pairs such as (4,1), (4,2), (4,3) can strongly isolate two mentioned classes as clear as

possible. Similarly, the combination of 5th ranked feature with the first three features

are another strong candidates that separate the classes.

Figure 4.10 : Ability of features to separate classes 3, 4, 5, and 6 in KSC dataset.
Features 1 to Feature 5 are first five important feature ranked by JMI

method.

The discrimination of classes are not always easy like in the Botswana dataset. For

example, in Figure 4.10 which shows the most complicated classes (Classes 3, 4, 5,

and 6) for KSC dataset, the first five important features that ranked by JMI method can

not separate the classes simply. In this dataset, the selected features are not able to

distinguish the classes effortless, meaning that the classes of KSC dataset are suffering

from a high degree of data correlation.

Figure 4.11 illustrates the median of first 50 features of four most complicated classes

for KSC dataset that ranked by the JMI method. As can be resulted from the figure,

while the medians are too close to each other, the features can not be able to separate
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Figure 4.11 : The median of first 50 features ranked by JMI method for four most
complicated classes of KSC dataset.

the classes as easy as possible. This inability means that if the features ranked by the

JMI is used for classification, the classification accuracy are not significant.

4.4 Computational Time

Another key point to evaluate the performance of an FS method is its computational

time. The computational time, is measured by taking account the time that a feature

selection method needs to rank the features.
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Figure 4.12 : Average computational time of all FS methods for different
hyperspectral datasets.

The computational time of feature selection methods can be affected by the structure

of each dataset. The number of classes, correlation between the features, and the level

of redundancies can influence the time required to select the important features. Figure

4.12, illustrates the average CPU-time of all FS methods for each hyperspectral dataset.

41



As demonstrated in the figure, while Indian Pines and Salinas have more abundant

features and classes than the other datasets, FS methods consume more computational

time in these two HSI datasets than the others. Respectively, in case of Pavia datasets

(Pavia Center and University of Pavia), FS methods are faster than the other datasets.

Table 4.10 : The required computational times (in seconds) of FS methods to rank
features for training data with size of 50 samples per class for each

dataset.
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Chi2 <1 <1 <1 <1 <1 <1 <1

CIFE 49 88 54 17 18 94 36

CMIM 48 89 51 16 16 94 36

FSDTree 2411 6200 2537 443 548 5837 1098

DISR 131 247 140 43 45 253 96

Fisher <1 <1 <1 <1 <1 <1 <1

Gini 15 17 4 6 6 17 5

InfoG <1 <1 <1 <1 <1 <1 <1

JMI 48 87 52 15 16 96 35

MIFS 48 86 52 16 16 95 35

MIM 48 85 52 16 16 94 35

MRMR 48 84 52 16 16 93 34

RF <1 <1 <1 <1 <1 <1 <1

ReliefF 4 4 2 1 1 5 <1

Single 107 161 139 41 44 174 95

SVMRFEK 15 19 13 5 5 21 1

SVMRFEL 1 2 2 <1 <1 1 <1

However, structure of the HSI datasets does not effect the computational time of FS

methods as much as the configuration and procedure of FS methods. Table 4.10 shows

the computational time of all feature selection methods for training data with the size

of 50 samples per class. In order to achieve the reliable values, the computational time

is measured for ten different realization of training data and an average of CPU-time is

reported.

Evidently, the FSDTree method expends more CPU time than the other methods to

rank the features. This means that, in all datasets, the FSDTree is a costly method.

However, this method performs the significant classification accuracies and is found
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to be one of the accurate methods for dimensionality reduction of remotely sensed

hyperspectral datasets. The DISR is another method that spends more computational

time due to the fact that it uses two major characteristic of feature selection [68].

However, the DISR method achieves a good level of classification accuracy (like

FSDTree) for datasets when the number of samples and classes of datasets are high.

It is easy to see that the methods CMIM, JMI, MIM, MIFS, and MRMR have almost

the same computational time because they apply MI measurements as a common

framework [44] [26].

As it has been pointed out in the Table 4.10, the methods Chi2, Fisher, InfoG, and RF

are the methods that show the lowest computational time and therefore, are very fast

methods. From all these methods, the RF is a successful method in terms of both the

classification accuracy and the computational time. The SVMRFEL is another method

that spends fewer time than the other methods to rank the features because this method

uses a linear kernel with SVM classifier. However, SVMRFEL has one of the lowest

performances in classification accuracies.
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5. CONCLUSIONS

Feature selection is an effective and advantageous research domain in the area of

hyperspectral images in remote sensing. By using feature selection on such a big

data that contains lots of irrelevant and redundant features, the complicity of remotely

sensed hyperspectral datasets as well as redundancy of data might be decreased without

incurring much loss of information. However, selecting an appropriate FS method for

considered HSI dataset is a dilemma.

There are three general categories for feature selection methods: filter, wrapper, and

embedded methods. In this work, a review of seventeen feature selection methods

is enforced on 7 well-known hyperspectral remotely sensed datasets. From these

FS methods, twelve of them are filter-based, two are wrapper, and three of them

are embedded. These methods are demonstrated with intention of studying their

performance and outcomes. Besides, two famous classification methods are conducted

to compare the influence of ranked features and to select a convenient FS method: the

SVM classifier with a linear kernel and the KNN classifier as a non-linear classification

method. In order to assess the FS methods that are used in this work, four evaluation

criteria are considered: classification accuracy, stability of feature selection methods,

ability of selected features to separate classes, and computational time of each method.

These assessment measures are examined for three different size of training data over

all seven hyperspectral remotely sensed datasets.

As classification accuracy evaluation criteria, the methods are investigated from

different aspects such as the effects of datasets, size of training samples, classification

method, and number of considered features on classification procedure. The

experimental results show that the methods JMI, MIM, MIFS, CMIM, and MRMR

as filter-based methods obtain higher classification accuracy than the other filter-based

methods. These mentioned methods use mutual information measurements to rank

the feature sets. Besides, FSDTree as a wrapper and RF as an embedded method,
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perform higher accuracy even greater than filter-based methods. These results are not

unexpected because both the RF and FSDTree, use a classifier as an evaluator.

In case of stability of feature selection methods, the results demonstrate that Chi2,

Fisher, Gini, ReliefF, SVMRFEK, and SVMRFEL are the most stable feature selection

methods meaning that these methods select almost the same features when slightly

changed training data is used, therefore they are more reliable than the others.

However, the classification accuracy achieved by these methods is not satisfying. In

contrast, the methods with higher classification accuracy than the other FS methods,

that are FSDTree, RF, and MI based methods, are not found to be very stable methods,

meaning that these methods should be used for each training data set.

As a third key point, the ability of features ranked by FS methods are examined to

separate the most complicated classes of a dataset. The achieved results show that the

selected features are adequately strong to separate the classes. However, in the datasets,

which have high correlated data, separating the classes is challenging indeedly.

The forth evaluation criteria demonstrates the computational time that a feature

selection method required to distinguish the effective features. The results clarify

that the methods FSDTree, DISR, and Single occupied more CPU time than the other

methods. The FSDTree also shows the highest computational time. However, in the

case of classification accuracy, this method is the significant one. In contrast, the MI

based methods like CIFE, CMIM, JMI, MIFS, MIM, and MRMR achieve acceptable

computational time. It is worthy to say, the RF which is an embedded method, shows

very low computational time, however, it is an embedded method.

In light of the results illustrated in this work, the MI based filter methods are suggested

to settle the classification problems and analysis of hyperspectral images in the area of

remote sensing.

• Firstly, these methods are independent from any classifiers, and they do not need to

set any parameter that must be setted. Hence, the implementation of these methods

are quite easy.

• Secondly, the computational time of these methods is lower than the wrapper and

embedded methods.
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• Thirdly, the MI based methods have a good generalization ability for different

samples and data.

The RF method can be another alternative to tackle the dimensionality reduction

problems of HSI datasets. This method demonstrates a high level of classification

accuracy as well as low computational time. However, the implementation of the RF

is more difficult that filter-based methods.

The FSDTree is a powerful method in case of classification accuracy, but spend more

computational time and is known as a tardy method. In case where the computational

time is not important, this method can achieve significant results.
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APPENDIX A

Appendix A.1

Table A.1 : Classification accuracy (%) for Botswana dataset. "10F", "30F", and "50F" show
the number of ranked features are selected. For instance, 10F means first 10

ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for

each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 64.4 73.7 77.6 69.9 79.9 80.8 75.9 83.5 85.3 75.1 83.4 85.1 80.2 87.9 90 83.5 89.6 92.3
CIFE 56.7 64.3 75.5 63.3 70.5 80 70.7 76.4 84.2 67.8 74.4 82.9 73.7 80.3 87.5 79 84.2 89.9
CMIM 71.4 76.6 79.3 77.8 84 84 79.5 86.9 86.9 79.1 84.5 86.4 84.1 89.7 90.7 86.3 92.3 92.9
FSDTree 77.6 78.9 80.6 83.7 83.6 83.8 85.5 87 87.5 83.8 85.6 86.3 89 90.4 90.6 90.4 92.1 92.4
DISR 71.6 77.5 80.9 78.3 82.9 83.8 79.7 84.2 86.6 78.9 85.2 86.9 85.1 89.5 90.8 85.5 90.1 92.5
Fisher 52 70.1 75 51.5 76.3 78.2 51.2 78.9 80.7 62.2 77.8 81.1 62.3 83.6 85.9 62.9 85.1 87.9
Gini 54 69.7 69.9 58.3 74.2 74.8 59.5 76 76.6 61.1 77.5 78.6 65.1 83 84.4 67 85.9 87.3
InfoG 63.6 72.8 77.3 69.3 75.9 79.9 70.8 77.4 80.1 70.6 80 84.5 76.5 83.6 87 78.5 85.6 88.3
JMI 72.6 77.9 80 78.8 83.2 84.3 84.3 86.9 87.6 81 85.8 86.3 86.1 90.3 90.9 89.7 92.2 92.9
MIFS 61.2 68.4 76.2 64.8 71.8 80.4 68.2 75.7 83.3 72.4 76.8 82.9 74.9 80.9 87.3 77.8 83.3 89.2
MIM 75.8 78.6 79.1 78 81.4 81.5 78.7 84.1 85.5 82.4 85.2 86.4 85.3 89.3 90.8 84.5 89.8 92.5
MRMR 57.1 68.5 76.8 61 68.4 78.2 63.3 70.3 80.4 68.7 76.9 83.3 70.5 78.4 86.1 71.3 80.2 88.3
RF 75.6 79.4 79 78.9 82.6 84.5 79.3 84.1 86.6 81.1 85.2 86.3 84.6 88.2 90.4 84.7 89.6 92.3
ReliefF 55.5 73.8 75.8 68.8 79.5 80.7 72.1 83 84.7 69.7 83.2 84.6 77.9 87.6 89.6 79.7 89.3 91.1
Single 64.3 75.4 79.3 67.4 75.5 82.1 63.6 75.8 84.2 71.3 81.6 84.8 74.2 83.3 88.9 71.7 84.2 90.1
SVMRFEK 46.6 55.5 73.3 49.8 58.9 77.2 49.1 61.9 79.7 50.3 63 79.2 53 67 83.9 52.1 69.4 86
SVMRFEL 67.9 76.2 77 73.8 80.8 82.2 76.3 83.9 85.4 75.4 83.5 85 80.8 87.5 89.5 82.2 89.3 90.8
All feature 80.8 85.2 88.1 87.5 91.9 94.1

Table A.2 : Classification accuracy (%) for IndianPines dataset. "10F", "30F", and "50F"
show the number of ranked features are selected. For instance, 10F means first
10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the
size of training data. For example, 10SpC means 10 samples were considered

for each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 32.5 41 46.1 35.1 46 53.5 37 50.1 56.4 36.1 48.7 54.6 36.7 53.5 60.2 39.4 55.5 62.7
CIFE 30.4 35.7 37.7 31.7 40.9 40.3 38.3 48.1 45.7 32.4 45.4 50.1 35.9 51.3 57 39.2 54.9 60.8
CMIM 42.2 47.2 45.4 39.5 52.5 52.2 48.1 57.8 56.9 46.9 55.1 52.2 46 59.2 61.1 55.7 66.4 65.8
FSDTree 46.9 48.2 48.1 53.9 55.6 54.7 58.5 59.8 59.7 54.5 55 54.8 62 64.2 63 64.7 67.8 67.5
DISR 43.3 45.7 46.4 49 54.1 52.9 51.9 56.6 56.4 52.1 50.9 52.8 57.9 61.6 61.4 59.4 63.9 64.5
Fisher 35.7 39.2 42 37.5 43.7 47.1 43.5 47.8 53.2 39.2 49.4 54.2 42 54.6 60.4 43.8 53.1 62
Gini 27.8 30.9 32.6 32.4 36.5 39.8 37.7 43 46.3 36 42.3 51 41.2 49.5 56.1 44.3 52.9 58.6
InfoG 36.5 40.3 41.7 38.7 44.6 46.9 41.6 47.3 50.4 44.2 49.1 52.1 47 56 58.1 47.4 59.9 62.9
JMI 42.6 47.6 48.3 48 53.2 53.8 56.2 58.3 57.6 49.5 51.8 53.4 55.9 61.1 61.1 60.3 63.7 63.9
MIFS 33.2 37.2 38.7 31.4 37 39.6 35.9 42.1 44 34.9 45.8 50.7 34 49.2 57.6 37.2 50.5 60.5
MIM 41.7 45.5 47.9 40.5 49.9 51.6 41.1 52.7 55.1 46.5 52.9 55.4 47.1 54.7 59 45.4 57 59
MRMR 29.2 36.2 35.5 29.9 38.2 36.9 32.9 42.8 42.3 34.6 47.4 51 33.3 49.1 55.1 36.4 50.9 58.2
RF 44.9 49.8 47.9 40.6 53.9 54.4 45.1 58 59.9 51.3 56.8 52.2 48.1 63.3 63.8 48.7 65.8 67.6
ReliefF 33.4 42.8 45.8 36.6 48.5 51.4 38.9 52.7 54.2 36.7 48.7 51.2 38.7 52.4 55.7 41.4 56 56.9
Single 35.6 40 42.1 38.1 43.1 46.6 43.1 48.4 51.5 41.2 47.9 51.7 40.1 50.8 56.2 48.2 59.4 62.7
SVMRFEK 24.6 36.1 43.9 28.6 39.8 47.9 32.4 45.3 53.1 28.2 41.4 51.9 30.1 44 53.8 35.3 45.5 56.3
SVMRFEL 29.5 43.7 46.8 32.5 49.6 53.4 35.1 53.7 56.9 36.5 47.7 52.6 38.1 50.8 55 39.5 52.5 57.1
All feature 49.9 54.9 58.4 53.8 63.1 68.4
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Table A.3 : Classification accuracy (%) for KSC dataset. "10F", "30F", and "50F" show the
number of ranked features are selected. For instance, 10F means first 10 ranked

features are chosen. "10SpC", "25SpC", and "50SpC" represent the size of
training data. For example, 10SpC means 10 samples were considered for each

class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 56.6 63.4 64.4 65.7 70.4 71.1 67.1 76.3 77.1 41.9 41.2 43.8 52.1 56.7 59.7 51.9 64 66.7
CIFE 70 75.3 74.7 78.6 81.4 81.6 84.3 85.5 85.3 51.7 59.6 59.2 51.5 55.2 54.1 59.1 50.6 54.4
CMIM 74.3 75 73.7 75.2 77.1 77.8 79.6 81.7 82.6 55.4 57.9 57.5 57.5 60.1 58.4 66.8 71.6 74.4
FSDTree 72.2 72.4 72 78.7 77.7 77.7 82.7 83.2 82.7 55.9 56.7 55.9 54.9 54.9 58.9 65.2 71.9 77.1
DISR 69.5 71.3 71.5 77.5 79 78.8 82.6 82.4 82 49.7 52.2 52.5 56.5 58.8 63.4 65.1 74.4 77
Fisher 50.4 61.5 65.7 57.4 71.7 74 61.9 76.7 78 38.6 41.8 45.9 36.3 44.8 60.3 42.9 60.1 67.1
Gini 49.4 63.2 65.7 54.8 68.2 71 57.5 72.3 75.4 42.5 50.3 52.8 42.6 55.5 58.6 44.3 63.3 66.6
InfoG 61.8 66.9 68.9 68.4 74.2 75.5 71 77.5 79.7 46.5 49.7 52.8 42.3 54 60.9 47 63.4 72
JMI 69.6 70 70.2 77.6 78.6 78.4 81.2 81.8 81.9 50.5 52.1 52.6 56.6 61.8 63.3 65.1 74.3 76.9
MIFS 72.2 75.4 75.4 77.4 80.9 80.4 78.2 83.5 83.7 50.2 58.1 59 49.2 54.2 53 58.1 52.6 49.7
MIM 58.7 62.4 65.1 62.1 68.6 71.1 67.6 73.3 75.7 41.5 43.6 46.3 45.5 52.1 61.5 50.3 60.7 66.1
MRMR 71.9 74.2 74.5 75.2 78.8 79.8 79.2 82.1 84 53.6 57.9 58 49.8 52.6 53.2 61 54.8 56.7
RF 73.9 75 75.1 79.6 83 82.6 82 85.8 85.4 54.1 55.7 55.6 53.8 57.8 57.9 56.8 68.1 73.1
ReliefF 53.9 62.6 64 61 69.3 70.6 68.9 76.6 77 41.1 43.6 45.5 49 54.2 59.9 56.2 63.7 66.6
Single 62 67.3 68.4 72.1 74.9 75.8 71.2 78.4 79.9 47.2 51.6 52.9 49.3 53.9 55 52.8 65.9 72.3
SVMRFEK 57.3 60.7 66.9 63.3 67.4 74.5 67.4 72.7 79.9 36.9 38.5 41.8 46 51.7 59.2 52.8 60.5 68.7
SVMRFEL 55 63 63.1 61.8 70.3 70.9 66.2 75.5 75.2 41.4 44.2 45.3 51.2 57.1 59.1 55.2 63.6 65.7
All feature 72.4 78.4 82.8 50.6 66.3 81

Table A.4 : Classification accuracy (%) for PaviaCenter dataset. "10F", "30F", and "50F"
show the number of ranked features are selected. For instance, 10F means first
10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the
size of training data. For example, 10SpC means 10 samples were considered

for each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 62.3 77.4 81.6 61.4 82.7 87 61.8 85.7 89.9 67.4 88 93.1 66.6 90.1 94.9 66.8 92.2 95.6
CIFE 82.6 91.1 91.6 84.8 93.1 93.5 83.9 93.2 94.4 88.1 94 94.7 89.1 95.7 96 89.3 95.7 96.3
CMIM 71.5 87.9 91.1 87.8 93.5 94.3 92.9 94.9 95.1 79.4 92.9 94.3 93 96 96.1 95.5 96.6 96.6
FSDTree 90.5 91 91.2 93.2 93.7 94 95.1 95 95.2 94.5 94.8 94.8 95.9 96.1 96.2 96.6 96.8 97
DISR 81.7 87.3 89.7 88.9 92.1 92.8 91.6 94.7 94.6 88.4 91.5 93.1 93.3 95.3 95.7 94.5 96.3 96.3
Fisher 72.4 81.1 85.4 65.4 81.8 87.4 66.9 83.3 89.2 77.7 89.2 93.9 72.9 89.7 94.8 73.7 89.7 95.6
Gini 68.2 79.5 80.2 73.2 86 86.3 75.7 87.9 88.5 81.1 91.4 92.4 85.8 93.8 94.1 87.4 94.8 95.2
InfoG 81.3 87.6 90 78.3 91.5 92.9 86.3 94.2 94.5 88.2 93.5 94.5 84.7 95.4 96.2 90.7 96.8 96.8
JMI 84.7 91.7 91.3 90.8 93.9 94.1 93.9 95.3 95.3 91.1 94.5 94.7 94.1 96 96.2 96.1 96.6 97
MIFS 87.8 91 91.5 90.8 92.6 93.6 94 94.2 93.9 91.7 94 94.5 94.3 95.6 96 95.8 95.8 96.1
MIM 86.5 91.3 91.2 86.4 92.7 93.4 79 92.5 94.4 90.7 95.1 95 92.2 96 96.3 85 96.5 96.8
MRMR 86.4 90.8 91.2 92.7 94 94 94.3 95.1 94.9 92.1 94.2 94.6 95.3 96.1 96.1 96.3 96.3 96.5
RF 90.8 91.7 91.6 90.6 93.6 93.9 92.5 94.7 95.2 94.4 94.9 95 94.8 95.9 96.2 95.8 96.5 96.8
ReliefF 62 70.4 79.6 61.5 74.6 86.5 61.8 78.4 88.5 67.2 81 92.7 66.4 83.3 94.7 66.8 85.3 95.4
Single 82.8 87.8 90.9 79.9 90.7 92.4 78.1 93.1 94.6 88.7 93.2 94.4 87.6 95.2 96 84.7 95.7 96.5
SVMRFEK 48.3 71.5 88.9 51.8 71.9 91.2 51.3 74.9 91.9 51.7 80.3 92 53.1 83.4 95.2 55.3 85.8 95.2
SVMRFEL 62.2 69.6 80.1 61.5 74.6 86.5 63.7 78.4 88.5 68.4 80.9 92.9 66.4 83.3 94.7 69.1 85.3 95.4
All feature 91 94.1 95.4 95.1 96.4 97
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Table A.5 : Classification accuracy (%) for PaviaUniversity dataset. "10F", "30F", and
"50F" show the number of ranked features are selected. For instance, 10F means
first 10 ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent

the size of training data. For example, 10SpC means 10 samples were
considered for each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 48.4 54.7 60.5 49.2 60.2 66.6 51 64.3 69.9 48.8 55.6 62.1 50.9 60.8 69.7 53.5 62.9 71.1
CIFE 59.9 62.8 61.7 62.1 66.2 67.8 65 69.6 71 61.9 67.6 68.2 65.4 74.1 77 67.9 76.3 78.6
CMIM 49.1 56 60.8 63.5 66.5 68.2 68.2 70.9 70.8 50.6 59.8 66.4 65.9 75.8 76.3 70.8 77.8 77.1
FSDTree 62.1 61.4 62.3 66.4 67 67.5 69.4 70.1 70 66.7 68 68.6 72.3 76.4 78.4 73.8 78.1 79.1
DISR 51.4 58.4 60.2 64 67.6 67.6 68.8 72 72 52.7 60 64.3 70.8 77.8 80 74.8 79.5 80.4
Fisher 47.9 55.4 60.4 48.7 59.6 65.8 47.8 62.6 69.6 47.6 56.1 62.2 48.7 61 71.1 48.5 61.5 72.2
Gini 55.2 57.6 58.3 57.8 63.8 64.2 61.1 66.7 67.5 58.6 64.9 66.9 65.7 75.6 77.6 69.9 77.1 79.3
InfoG 55 59.8 60.8 58.2 64.7 66.9 63.4 68.5 71 57.4 65.1 69.2 64.3 72.7 77.3 66 73.2 75.9
JMI 54.5 59.3 61 62.2 65.5 66.3 68.1 69.9 71 54 66 67.1 67.9 75.7 79.1 72.9 79.8 80.2
MIFS 58.6 61.7 61.1 64.3 66.9 67.4 67.7 70.3 70.6 61.9 66.5 66.8 71.1 76.2 77.9 71.9 77.1 77.9
MIM 53.1 60.1 60.9 65.6 66.7 68.1 66.6 70.3 70.7 59 66.7 67.5 73.6 79.2 80.3 73.8 77.9 79.3
MRMR 56.6 61.8 61.5 65.1 68.1 67.5 69.7 71.7 72.2 58.9 67.3 69.5 73 78.5 79.5 73.5 79.7 80.4
RF 57.5 61.5 62 62.7 64.9 66.7 65.4 69.4 70.8 64.1 66.1 67.5 71.4 76.8 79.9 70.5 79 79.8
ReliefF 51.3 58.7 60.3 51.9 63 63.3 56.6 66.8 70 53.9 61.5 65.1 56.8 72 75.3 59.6 73.4 76.1
Single 55.8 59.9 59.9 56 66.3 66.5 58.4 68.7 71.5 58.9 65.8 68.6 61 75.5 77.7 59.7 72 76.4
SVMRFEK 53.6 57.8 58.9 56.3 61.8 62.9 61 65.5 68.5 57.2 63.6 63.7 63.1 70.7 72.4 67.1 74.3 75.7
SVMRFEL 48.3 57 59.3 53 63.5 66.9 57.7 69.7 70.1 56 65.3 67.6 63.2 74.9 78.5 65.6 76.1 80
All feature 62.4 68.3 71.8 68.2 80.3 80.7

Table A.6 : Classification accuracy (%) for Salinas dataset. "10F", "30F", and "50F" show
the number of ranked features are selected. For instance, 10F means first 10

ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for

each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 64.3 76.6 78.9 67.2 78.9 80.7 69.8 81 82.9 72.7 80.1 81.9 75.9 84.2 85.9 76.9 85.1 86.9
CIFE 64.3 75.3 78.6 73.5 80.3 82.2 74.9 82.5 83.8 68.1 78.6 80.9 75.8 83.7 85 79 86.3 87.4
CMIM 78 80.3 80.4 80.9 81.6 82.8 83.6 84.3 84.6 79.9 82.5 83 84.7 87.1 87.3 88.1 89.2 89.3
FSDTree 79.7 80 80.6 80.8 82.3 82.3 83.6 84.2 84.1 80.9 82.7 83 85.3 87.5 87.5 87.5 88.8 89.4
DISR 76.2 80.1 81.2 80.3 82.3 83 82.6 84.3 84.6 78.9 82 83.3 85.3 87.5 87.7 86.8 88.7 89.2
Fisher 66.3 73 77.2 69.1 78 80.2 71.2 80 82.1 72.2 79.1 81.1 76.3 83.9 86 77.4 84.7 87.2
Gini 51.4 72.5 75.9 59.3 75.7 78.2 63.2 77.7 80.2 61 77 79.3 68.9 81.8 84 71.7 83.7 85.8
InfoG 74.2 78.8 79.5 77.4 80.9 81.5 80.6 83.2 83.3 77.9 81.4 81.8 83.7 86.4 86.9 84.7 87.7 88
JMI 79.3 79.5 79.6 80.8 81.4 81.4 82.9 83.2 83.3 81.2 82.1 82.8 84.9 87.3 87.2 88.2 88.8 88.8
MIFS 64.2 72.4 78.1 64.7 75.6 81.2 66.4 78.7 83.2 70.5 76.1 80.5 74 82.1 84.5 75.9 84.8 87.3
MIM 74 77.7 78.9 71.7 79.3 80.6 73 81.4 82.7 79.4 81.2 82 79.4 84.9 85.9 79.9 86.2 86.9
MRMR 64.3 75.1 79 68.5 77 81.4 73.2 79.6 83.1 70.5 78.5 81.5 75.7 84.2 85.5 78.8 85.7 87.3
RF 77.5 79.2 79.5 79.9 81.3 81.5 82.6 83.2 83.6 80.4 82.9 82.9 85 87.5 87.5 85.8 88.1 88.6
ReliefF 64.4 76.7 78.9 67.6 79.3 80.6 70.1 81.2 82.9 72.3 80.5 81.7 76.4 84.5 86 77.1 85.8 87.1
Single 76.6 78.1 79 78.1 80.2 80.6 79.5 81.8 82.6 80.4 81.2 81.8 82.7 85.7 87 83 86.6 88.2
SVMRFEK 63.7 64.2 74.4 65.4 68.5 77 67.4 72.1 79.8 57.6 73.3 79 61.4 77.8 83 66.5 80.9 85.7
SVMRFEL 65 76.2 79.4 69.3 80 81.2 72.2 82.2 83.1 74.3 81.2 82.2 78.1 85.7 85.9 79.3 86.5 87.1
All feature 80.6 82.9 84.6 84 87.1 88.4

59



Table A.7 : Classification accuracy (%) for SalinasA dataset. "10F", "30F", and "50F" show
the number of ranked features are selected. For instance, 10F means first 10

ranked features are chosen. "10SpC", "25SpC", and "50SpC" represent the size
of training data. For example, 10SpC means 10 samples were considered for

each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 84.8 93.3 95.4 90.5 95.7 96.2 93.1 97.1 97.5 94.6 96.2 96.7 96.2 97.5 97.6 97.6 98.3 98.4
CIFE 84.9 95.3 96.6 91.1 95.9 97 91 96.6 97.6 86.4 95.5 96.8 94.1 96.6 97.5 94.4 97.3 97.7
CMIM 94.7 96.3 96.7 95.9 96.7 96.9 97.5 97.8 97.9 94.8 96.9 97.1 97.6 97.9 97.8 98.3 98.6 98.6
FSDTree 95.4 95.9 96 95.8 96.7 97.1 97.1 97.6 97.9 95.4 97.1 97.2 96.2 97.7 97.8 98.2 98.5 98.4
DISR 89.7 95.1 95.6 87.8 96.3 96.7 91.9 97.1 97.7 81.5 97.4 97.8 87.8 97.9 98.2 91.7 98.4 98.8
Fisher 83.7 92 93.1 89.5 94.4 95 91.9 96.3 96.8 94.2 95.5 96.3 95.7 97.6 97.6 97.1 98.2 98.3
Gini 80.2 86.8 90.2 84.6 90.6 93.5 89.9 93.8 96 73.6 91 95 94.6 97.9 98.1 96.5 98.5 98.9
InfoG 90.1 94.5 94 94 95.1 95.4 95.6 96.4 96.7 90.9 96.7 97.1 94.4 96.6 97.5 95.3 97.9 98.4
JMI 95.8 96.3 96.5 96.7 96.7 96.6 97.5 97.6 97.7 96.8 97.2 97 97.6 97.8 97.8 98.3 98.4 98.6
MIFS 82.7 91.9 96.3 84.1 91.4 96.9 86.5 93.2 97.5 78.7 94 96.4 87 96.1 97.7 91.6 97.2 98
MIM 94.6 95.6 96.1 95.6 95.9 96.3 97.1 97.3 97.5 96.4 96.8 97 97.1 97.8 97.8 98.1 98.4 98.5
MRMR 86.5 94.8 95.8 84.4 94.1 97 87.1 95.9 97.6 73.7 94.4 97.3 80.6 97.5 98 82.6 98 98.4
RF 95.5 96.6 96.9 94.5 96.6 97 95.7 97.5 97.8 96.1 96.9 96.9 95.7 97.5 97.7 96.6 98.3 98.5
ReliefF 85.9 92.5 95.6 90.7 95.6 96.6 93.7 97.2 97.5 94.9 96 96.7 96.6 97.8 97.6 97.7 98.4 98.4
Single 91.6 93.5 93.9 89.8 94.3 95.7 91.5 96.4 97.3 92.8 96.3 96.4 92.6 96.6 97.6 89.6 97.8 98.4
SVMRFEK 83.6 91.7 94.5 89.8 95.3 96.1 93 96.9 97.5 88.1 93.3 96.2 92.2 97.5 97.6 92.5 98.3 98.7
SVMRFEL 84.5 95.4 96.2 91 96 96.5 93.1 97.4 97.4 94.7 96.6 96.9 96.2 97.5 97.7 97.6 98.5 98.5
All feature 96.9 97 98 97.3 97.9 98.7
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Appendix A.2

20 40 60 80 100 120 140

Feature Index

45

50

55

60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y

Chi2

CIFE

CMIM

FSDTree

DISR

Fisher

Gini

InfoG

JMI

MIFS

MIM

MRMR

RF

ReliefF

Single

SVMRFEK

SVMRFEL
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(f) SVM-50Spc

Figure A.1 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size

(SpC: samples per class) over Botswana dataset. The results are
averaged over ten realizations.
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(e) KNN-50Spc
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(f) SVM-50Spc

Figure A.2 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size

(SpC: samples per class) over IndianPines dataset. The results are
averaged over ten realizations.
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(f) SVM-50Spc

Figure A.3 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over KSC dataset. The results are averaged

over ten realizations.
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(f) SVM-50Spc

Figure A.4 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size

(SpC: samples per class) over PaviaCenter dataset. The results are
averaged over ten realizations.
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(f) SVM-50Spc

Figure A.5 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over PaviaUniversity dataset. The results are

averaged over ten realizations.
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(f) SVM-50Spc

Figure A.6 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size
(SpC: samples per class) over Salinas dataset. The results are averaged

over ten realizations.
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Figure A.7 : Classification accuracies obtained by the classifiers for the features
ranked by different feature selection methods for all training data size

(SpC: samples per class) over SalinasA dataset. The results are averaged
over ten realizations.
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APPENDIX B

Table B.1 : Standard deviation of ten different realizations of classification accuracy for
Botswana dataset. "10F", "30F", and "50F" show the number of ranked features

are selected. For instance, 10F means first 10 ranked features are chosen.
"10SpC", "25SpC", and "50SpC" represent the size of training data. For

example, 10SpC means 10 samples were considered for each class as a training
data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 7.7 3 1.6 5.5 2 1.9 2.8 0.9 0.7 3.9 2 1.9 3.6 1 0.9 2.1 0.6 0.4
CIFE 4.9 4.5 4.7 6.7 4.7 1 6.1 4.9 1.9 3.6 3.1 3 4.1 2.4 0.9 5.1 2.6 1
CMIM 6.8 3.4 1.8 2.6 1.2 1.7 4.1 0.8 0.5 5.3 2.5 2.1 2.5 0.9 1 3.7 0.7 0.8
FSDTree 2.6 2.3 2 2 1.7 1.8 1 1.4 0.7 2.6 2.5 2.1 0.8 0.7 0.6 0.7 0.6 1
DISR 5.4 2.3 1.5 3.8 1.3 1.3 2.3 1.1 0.6 3.8 1.8 1.9 3.2 0.8 0.7 1.8 1.1 0.7
Fisher 9.9 5.1 1.7 7.5 1.5 1.1 1 1.4 0.8 8.1 2.5 1.3 5.4 0.6 0.4 0.6 1.2 0.7
Gini 2.2 1.6 1.9 0.8 1 1.7 1 1 1 1.9 1.4 1.3 1.2 0.8 0.9 0.7 0.7 0.6
InfoG 7.8 4 3.9 7 1.5 2.8 7.5 0.9 1.9 5.3 2.5 2.6 4.8 1.1 1.8 5.4 0.9 1
JMI 5.7 2.9 2.6 2.8 1.9 1.9 1.7 0.7 0.4 3.1 1.7 1.8 1.1 0.7 0.7 1.2 0.6 0.6
MIFS 5.8 4.5 2.6 7.1 4.6 2.1 6.7 5.4 1.4 5.2 3.2 2.5 5.4 3 0.9 5.4 2.9 0.9
MIM 3.2 2.4 3 2.5 2 2.2 2.4 1.2 0.4 2.6 2 1.9 2.1 0.7 1 2.2 1.3 1
MRMR 4.8 3.3 3.2 6.7 5 1.7 7.6 6.2 2.6 5.2 2.9 2.4 5.6 3 1.4 6.1 3.7 1.3
RF 2 2.1 2.5 4.1 3 2.7 2.1 1.9 1.8 2 2.5 2 2.9 2.2 1.4 2.3 1.9 1.3
ReliefF 6.3 3.1 2.7 7.6 1.7 2.1 7.3 0.6 0.8 3.1 1.6 1.9 4.5 1.2 0.9 4.5 0.6 0.7
Single 10 5.2 2.6 7.9 6.3 2.8 9.3 5.4 3 9.7 3.5 1.9 6 5 1.6 7.5 3.8 1.5
SVMRFEK 3.2 2.7 1.8 3.5 0.9 1.5 1 1.3 1.2 4.5 1.5 1.8 4.8 1.2 0.7 0.9 1 0.7
SVMRFEL 2.3 2.1 2.1 0.8 1.4 1.4 0.7 0.8 0.5 1.7 2 2 0.8 1 0.5 0.9 0.8 0.7
All feature 2.1 1.8 0.8 2 0.5 0.3

Table B.2 : Standard deviation of ten different realizations of classification accuracy for
IndianPines dataset. "10F", "30F", and "50F" show the number of ranked
features are selected. For instance, 10F means first 10 ranked features are

chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 2.1 2.9 4.5 1.3 2.2 1.2 0.8 1.5 2.3 1.8 3 3.2 1.8 2.1 2.6 2.5 1.9 1.5
CIFE 3.3 5.2 3.8 1.7 5.1 2.1 6.9 6.1 1.8 6 3.9 2 3.7 2.2 1.8 7.1 3.1 2.5
CMIM 7.8 4.5 3.2 5 2.2 2.2 5.7 3 2.4 5.9 3.4 3.8 3.4 3.1 3.6 6.5 2.5 2.1
FSDTree 4 3 3.9 2.6 1.5 1.7 1.7 1.4 1.6 2.2 1.1 3 2.1 1.9 2.6 2.8 3 2.9
DISR 5.5 4.2 2.8 5 2.4 2.5 6.8 3.1 2.8 3.9 4.1 3.1 3.4 2.1 2.3 5.5 1.9 2.4
Fisher 4.2 4.3 4.3 2.4 2.5 3.6 1.8 1.9 3.3 3 5 6.5 2.6 3.5 3.5 1.6 2.4 2.2
Gini 2.8 1.8 3 1.8 1.3 1.8 1.3 0.8 1.3 4.8 4.3 3.1 3.1 1.2 1.3 2.7 2.1 1.8
InfoG 2 1.5 2.4 1.9 2.7 2.4 2.1 2.4 2.9 5 3.5 2.8 6.4 3.9 3 4.7 3.4 2.8
JMI 3.6 4.3 3.8 4 2.9 2.8 1.8 1.3 2 4.3 3.1 2.6 4.1 3.2 1.6 4.2 2.1 1.9
MIFS 3.3 3.2 3.3 2.7 2 2.1 1.9 1.6 2.5 4 4 2.9 3.7 1.8 2.2 3 1.7 1.4
MIM 1.7 4.2 3.2 2.7 1.8 2.3 1.5 1.5 2.4 4.5 2.1 2.7 3.4 2.3 2.6 1.8 1.9 1.7
MRMR 4 3.1 4.3 1.4 2.2 4.2 1.7 1.6 4.9 4.8 3.1 3.9 2.6 2 2.5 2.8 2.3 1.8
RF 4.7 3.2 2.1 3.2 2.7 1.5 3.8 3.3 2.7 4.7 3.5 3.2 4.2 2.2 2.1 4.3 2.4 2
ReliefF 2.4 3.6 3.7 1.5 2.2 1.7 2.3 1.6 2.1 2.1 2.3 3.6 3.2 1.5 2 4.2 1.4 1.7
Single 4.2 3.3 3.7 3.1 3.1 3.1 2.2 2.8 2 5.5 3.6 3 4.7 4.1 2.9 3.1 2.8 2.7
SVMRFEK 3.5 3.1 1.9 2.7 3 1.2 3.7 3 1.5 2.7 2.3 1.5 1.8 1.9 1.4 1.8 1.8 1.5
SVMRFEL 2.3 2.8 2.5 1.8 1.6 1.2 1.5 1.5 1.1 2.3 2.2 1.4 1.9 1.4 2 1.3 1.7 1.7
All feature 3.2 1.8 1.9 2 1.5 1.6
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Table B.3 : Standard deviation of ten different realizations of classification accuracy for
KSC dataset. "10F", "30F", and "50F" show the number of ranked features are
selected. For instance, 10F means first 10 ranked features are chosen. "10SpC",
"25SpC", and "50SpC" represent the size of training data. For example, 10SpC

means 10 samples were considered for each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 5.6 2.1 2.1 3.9 1.9 2.2 7.4 0.9 1.1 4.6 5.1 5.9 4.3 3.3 3.4 12.1 3.5 3.5
CIFE 2.7 1.4 1.4 2 2.2 1.9 1.3 0.9 0.8 6.6 7 6.2 6.7 8.7 9.4 2 8.7 11.2
CMIM 2.9 2.8 2.6 3.4 2.4 2.5 2.7 1.7 1.5 7.5 5.1 4.2 3.6 7.4 10.3 2.5 6.2 6.5
FSDTree 3 2.3 2.6 2.3 2.3 2.4 1.7 1.7 1.4 3.2 3.4 3.5 4.5 6 8.8 4.9 6.7 2.1
DISR 4.3 3 2.4 2.3 1.6 1.6 1.1 0.9 0.9 4.2 4.2 3.6 6.7 7.5 9.1 4.5 1.2 1.4
Fisher 2.8 3.9 3.8 1.9 2 1.5 0.8 1.3 1.1 3.3 4.9 3.9 1.5 7.1 6.6 2.5 3.4 3.5
Gini 2.6 1.7 1.9 1.1 1.4 1.2 1.1 0.9 1 3.6 3.2 2.6 1.2 6.2 5.9 1.9 2.5 1.7
InfoG 5.9 3.9 2.3 5.2 2.7 1.7 2.6 1.4 1 6.7 5.8 4 5.3 6.7 8.8 7.2 3.5 3.2
JMI 2.4 3.4 2.9 1.2 1.6 1.6 1.2 0.8 1 4.3 3.4 3.4 6.4 6.3 9 4 1.1 1.4
MIFS 3.5 2.5 1.9 3.2 2.6 1.8 1 0.5 0.7 6.3 5.8 6.2 4.6 8.1 9 4.8 8.6 11.2
MIM 3.4 3.3 3.3 3.7 1.7 2.3 2 1.4 1 2.8 3.5 3.5 4.6 6.8 1.5 2.6 2.4 3.2
MRMR 2.5 1.9 2.4 1.5 1.7 1.6 1.5 0.9 0.9 7.2 5.9 6.4 6.4 8.8 8.9 4.8 12.6 15.8
RF 2.6 1.7 1.8 3.7 1.7 1.7 3.6 1 1.1 4.4 4.1 4.6 6.7 6.3 7.8 9.4 11.7 11.8
ReliefF 4.7 3.2 2.7 4 2.1 1.5 6 0.7 1.2 4.4 4.4 5.2 6.5 6.2 3.1 6 3.5 3.6
Single 4.9 2.2 1.8 3.9 2 1.8 4.6 1.5 0.9 5 4.2 3.9 8 5.7 7.8 6.4 5.3 2.7
SVMRFEK 3.2 2.5 2.5 1.8 2.1 1.8 1.8 1.2 1.3 3.1 3.6 5.2 5.3 7.4 8.8 3.8 2.8 4.5
SVMRFEL 4.5 2.5 2.6 3.6 1.3 1.6 3.2 2.1 1.6 5 6.3 6.9 2.5 2.4 2.7 3.4 3 3.1
All feature 2 1.7 1.2 6.8 14.6 1.4

Table B.4 : Standard deviation of ten different realizations of classification accuracy for
PaviaCenter dataset. "10F", "30F", and "50F" show the number of ranked
features are selected. For instance, 10F means first 10 ranked features are

chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 3.4 4.8 5.5 3 3.3 2 3.1 2.5 1.6 4.6 2.1 1.3 1.8 1.4 0.8 2 0.6 0.4
CIFE 6.5 2.1 2.6 4.9 1.2 1.2 3.8 2 1 5.6 1.4 0.7 4.6 0.5 0.5 3.5 0.5 0.3
CMIM 10.6 3.5 1.5 4.9 1.2 0.9 2.4 0.8 0.7 8.4 1.7 1 2.3 0.4 0.4 1.4 0.4 0.3
FSDTree 3 2.8 3.2 1 1.2 0.9 0.5 0.7 0.6 1.1 0.8 0.7 0.7 0.5 0.4 0.2 0.2 0.3
DISR 4.7 3.2 3.2 5 3 1.9 8.8 1.2 1.4 3.6 2.6 1.8 2.9 1.7 1.3 4.9 0.5 0.6
Fisher 8.3 6 5.2 6.3 3.8 2.4 5.9 3.9 1.5 8.4 4.7 1.4 6 3.5 1.2 6.4 4.7 0.6
Gini 4.2 4.2 3.8 1.9 1.9 1.6 1.6 1.4 1.3 4.4 1.8 1.4 2.4 1.3 1.6 1.4 0.9 0.7
InfoG 9.6 5.5 2.8 11.9 2.5 1.5 9.9 1.2 0.9 7.4 2.4 1.1 11.4 1.5 0.7 10.3 0.3 0.3
JMI 3.6 2.3 2.7 4.2 1.1 0.8 1.6 0.6 0.7 2.6 0.8 0.9 3.2 0.5 0.4 0.5 0.4 0.2
MIFS 2.3 2.1 2.6 3.7 2 1.2 1 0.6 1.9 1.7 1.2 0.9 2.7 0.9 0.5 0.3 0.6 0.4
MIM 4.7 2.6 2.6 7.7 1.4 1.1 11.1 1.8 0.9 3.7 0.5 0.7 5.6 0.9 0.5 9.6 0.6 0.3
MRMR 5.8 2.6 2.8 2.1 1.1 1.2 1.3 0.7 0.8 1.9 1.5 1 1.3 0.4 0.5 0.5 0.5 0.3
RF 2.7 2.5 2.3 3.2 1 0.8 2.2 0.7 0.7 1.4 0.8 0.8 1 0.6 0.4 1 0.6 0.4
ReliefF 3.2 6 4.9 2.9 4 1.9 3.1 2.2 2 4.6 2.7 1.6 2 1.8 1.1 2 2.2 0.5
Single 8 5 2.8 11.1 3.4 1.6 11.6 2.1 1.2 8 2.2 1.3 8.1 1.4 1 9.3 1.7 0.6
SVMRFEK 6.6 9.7 2.9 2.7 2.4 1.3 4.2 4.5 1.6 5.5 5.7 1.8 2.3 2.8 0.9 5.5 3.2 0.6
SVMRFEL 3.6 5.5 4.8 2.9 4 1.9 2.4 2.2 2 3.1 2.5 1.6 2 1.8 1.1 3.3 2.2 0.5
All feature 2.4 0.9 0.6 0.6 0.4 0.2
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Table B.5 : Standard deviation of ten different realizations of classification accuracy for
PaviaUniversity dataset. "10F", "30F", and "50F" show the number of ranked

features are selected. For instance, 10F means first 10 ranked features are
chosen. "10SpC", "25SpC", and "50SpC" represent the size of training data. For
example, 10SpC means 10 samples were considered for each class as a training

data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 6 4.3 2.9 3.4 2.6 3.7 3.6 2.3 1.8 4.5 2.5 5.3 2.1 2.8 3 1.1 3.7 3
CIFE 6 5 6 4.5 3.8 3.1 3.2 3.3 2.5 3 5.9 5.5 2.9 2.8 2.8 5.5 2.7 2.1
CMIM 4.6 3.6 4 5.5 3.8 2.8 2.7 2.3 2.9 4.9 4.9 4 4.9 2.8 2.7 4.8 2.5 2.3
FSDTree 4.5 4.3 4.2 3.1 3.2 2.9 2 1.9 2.6 5.9 5.4 4.2 4.8 3.5 2.7 3.5 2.8 1.7
DISR 5.6 5 4.5 6 3.7 3.9 3 1.7 1.8 8.5 6.6 4.5 6.2 2.3 2 2.7 2.1 1.5
Fisher 6.5 5.1 4.2 5.1 3 2.9 4.2 2.8 1.3 7.9 4.5 5.3 6 3 2.6 2.4 3.3 2
Gini 3.7 4.9 5.7 3.2 4.3 4 2.7 2 3.3 5.4 5 4.8 4.2 2.2 2.3 1.7 1.3 1.4
InfoG 8.5 4.6 5 6.2 3.6 2.2 6.3 1.8 1.7 9.1 6.6 5 7.3 4.3 2.5 6.1 3 3.1
JMI 5.9 5.3 5.1 4.7 4.5 4 2.5 2.7 1.9 4.5 2.5 4.4 3.8 1.6 1.2 3.1 1.5 1.5
MIFS 3.4 5.5 5.5 3.6 4 4.1 3 2.8 2.7 5.6 5.1 6.5 3.9 3.5 2.9 3.9 1.8 1
MIM 5.4 3.9 3.1 3.3 2.6 3 3.4 2.1 2 5 5.7 4.8 5.3 2.2 1.7 3.8 2.5 2
MRMR 6.6 4.9 4.3 3.2 3.7 3 3.5 2.7 2.1 5.7 5.2 4.7 2.7 2 2.3 3.8 1.5 2
RF 7.3 5.8 3.9 4.8 3.7 2.6 2.9 3.3 2 5.5 4.5 3.3 3.6 3.5 2.1 4.9 2.5 2.3
ReliefF 5.3 3.2 6.2 3.4 3.2 6.1 4.6 3.1 1.5 5.6 5 5.1 4.3 3.3 2.1 4.9 3.1 2.3
Single 6.2 3.1 3.9 6.2 3.2 4.2 8.2 1.8 1.4 5.3 6.6 4.7 9.6 3.5 3.3 8.5 3.2 2.3
SVMRFEK 5.5 3.4 3.4 6.3 2.8 3.3 6.2 2.6 2.5 6.2 5.1 4.7 8.3 2.2 1.8 6.7 1.6 1.6
SVMRFEL 4.5 3.4 5.1 3.6 4 2.3 2.6 1.5 2.5 5.6 6.2 6.8 3.6 2.5 1.6 3.3 2.1 1.7
All feature 4.7 3.1 2 6.5 1.6 1.9

Table B.6 : Standard deviation of ten different realizations of classification accuracy for
Salinas dataset. "10F", "30F", and "50F" show the number of ranked features are
selected. For instance, 10F means first 10 ranked features are chosen. "10SpC",
"25SpC", and "50SpC" represent the size of training data. For example, 10SpC

means 10 samples were considered for each class as a training data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 2.6 1.2 1.3 2.2 1.3 0.8 0.8 0.8 0.8 3.3 3 3.5 1.8 1.5 1.4 0.9 0.6 1.3
CIFE 5.3 2.5 1.4 4.8 1.7 1.4 2.7 1.5 0.7 4.8 2.5 2.5 2.9 1.8 2 1.2 0.8 0.7
CMIM 2.8 1.6 1.5 1.4 1 0.8 0.7 0.5 0.6 3.8 2.3 2.4 1.4 1.6 1.6 0.7 0.9 0.8
FSDTree 1.5 1.6 1.3 1.2 1.1 0.7 1.3 0.7 0.5 3.3 1.6 2.2 0.9 1.5 1.6 1.3 0.9 0.7
DISR 2.3 2.4 1.8 1.4 1.2 1.2 1.1 0.6 0.5 3.4 2.5 2.2 1.5 1.5 1.8 1.6 1.4 1.1
Fisher 5.8 4 3.5 3.8 1.7 1.2 2.5 1.8 0.8 6.4 3.3 3.6 2.7 1.7 1.9 2.9 1.3 1
Gini 4.2 1.6 1.9 1.7 0.8 1 0.9 1 0.8 2 1.7 2.1 1.5 1.7 1.1 1.6 1.1 1
InfoG 3.8 1.2 1.2 1.2 1.5 1 1.2 0.5 0.5 4.8 3.1 2.3 2.1 0.9 1.2 1.3 0.7 0.6
JMI 1.6 1.4 1.5 1.3 1.1 1.1 0.8 0.6 0.6 2.7 3.2 2.3 1.8 1.4 1.7 1 1 0.9
MIFS 4.5 1.5 1.6 1.6 1.7 1.4 1.6 1.3 0.8 4.5 2.6 2.5 1.5 1.6 1.4 1.1 0.9 0.8
MIM 5.2 1.1 1.3 4.2 1.4 0.9 3.9 1.1 0.8 2.8 2.9 2.7 2.1 1.6 1.4 2.7 1.1 1.3
MRMR 3.6 2.2 2 1.9 1.5 1.3 1.8 0.9 0.8 3.4 3.4 3.2 0.8 1.3 1.8 2.4 0.9 0.8
RF 1.9 1.6 1.6 1.2 1.1 1.4 0.5 0.3 0.4 3.7 2.1 2.5 1.3 1.6 1.5 1.1 0.9 0.9
ReliefF 2 1.7 1.3 1.6 1.3 0.9 1 0.6 0.8 3.8 2.9 3.1 1.4 1.9 1.4 0.9 1.1 1.2
Single 2.6 2.1 1.5 3.1 1.2 1 3.5 0.7 0.7 2.2 3.3 2.9 2 1.4 1.3 2.8 1.3 1.3
SVMRFEK 2.5 1.2 2.4 1.7 2.4 1.2 0.8 2.2 0.7 4.3 1.6 2.2 4.1 1.7 1.7 2.7 1.2 1.1
SVMRFEL 2.2 1.6 1.4 1.8 1.3 0.9 1 1.1 0.8 2.5 3.5 2.5 1.6 2.1 2 0.7 1.3 1.3
All feature 1.6 0.9 0.9 1.7 1.8 0.9
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Table B.7 : Standard deviation of ten different realizations of classification accuracy for
SalinasA dataset. "10F", "30F", and "50F" show the number of ranked features

are selected. For instance, 10F means first 10 ranked features are chosen.
"10SpC", "25SpC", and "50SpC" represent the size of training data. For

example, 10SpC means 10 samples were considered for each class as a training
data.

Method
KNN SVM

10 SpC 25 SpC 50 SpC 10 SpC 25 SpC 50 SpC
10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F 10F 30F 50F

Chi2 3.9 1.5 0.9 3.3 1.7 1.2 1.1 0.6 0.6 1.6 1.7 1 1.3 1 0.8 0.3 0.6 0.6
CIFE 5.2 1.1 0.6 3.6 1 0.6 2.4 0.7 0.3 4.2 1.6 0.8 2.8 1.1 0.9 2.2 0.8 0.7
CMIM 1.3 0.8 0.6 1.7 1 0.9 0.7 0.5 0.5 3.2 0.9 0.7 0.6 0.4 0.8 0.6 0.5 0.6
FSDTree 1.4 1.1 1 1.1 0.9 0.5 0.5 0.6 0.3 1.2 0.7 0.8 1.5 0.8 0.8 0.6 0.4 0.5
DISR 5.6 1.3 1.2 1.3 1.4 1.4 1.3 0.8 0.5 8.9 0.7 0.5 5.6 0.5 0.4 4.3 0.6 0.4
Fisher 3.5 1.8 1.5 2.9 2.2 1.9 1.3 0.5 0.5 2.2 2 1.6 1.2 0.5 0.7 0.5 0.6 0.5
Gini 3.5 1.4 1.7 2 1.4 1.3 1.5 1.3 0.7 4.3 9.2 7.8 1.3 0.5 0.5 0.3 0.4 0.4
InfoG 5.9 1.9 3.4 1.2 1.2 1 0.8 0.3 0.5 7.3 1.2 0.8 1.5 1 1 1.6 1.1 0.7
JMI 1 0.9 0.7 1.1 1.1 1.1 0.5 0.3 0.5 0.6 0.6 0.9 0.7 0.9 0.9 0.6 0.6 0.6
MIFS 5.9 2.5 0.7 3.5 1.7 0.8 3.7 1.2 0.5 11.3 3 1.1 4.6 0.9 0.7 3.4 0.9 0.5
MIM 1.5 1 0.8 1.7 1.5 1.3 0.5 0.5 0.6 1.3 1.2 1.1 1.5 0.9 0.9 0.5 0.6 0.7
MRMR 5 1.7 1.1 2.4 2.3 0.8 3.3 1 0.6 5 7.9 0.6 5.7 0.4 0.3 6.6 0.6 0.4
RF 1.5 0.8 0.8 1.4 0.8 0.8 1.4 0.5 0.5 2.3 1.2 1.3 2.3 1 0.9 2.1 0.8 0.6
ReliefF 3.5 1.4 0.9 3.4 1.7 1 1.1 0.4 0.6 1.8 1.6 0.9 1.2 0.5 0.8 0.4 0.6 0.6
Single 5.3 4.2 4.2 4.6 1.5 1.3 2.5 0.9 0.4 6.6 1.7 1.6 7.4 2 0.8 9.5 1 0.5
SVMRFEK 6.1 3.5 1.1 1.9 1.9 1.3 2.2 0.9 0.4 11.2 7.1 1 5.9 0.7 1 5.8 0.5 0.3
SVMRFEL 3.6 1.4 0.9 2.2 1.2 0.9 1.3 0.6 0.7 1.5 1.5 1.1 1.2 1.2 0.8 0.4 0.6 0.5
All feature 0.6 0.7 0.5 0.6 0.7 0.5
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