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QUASI-NEWTON AND ARTIFICIAL COMPRESSIBILITY BASED
PARTITIONED ALGORITHMS FOR STRONGLY COUPLED

FLUID STRUCTURE INTERACTIONS

SUMMARY

In this thesis, fluid-structure interactions (FSI), a multi-physics application, was
investigated in detail. The reasons why fluid-structure interaction applications were
developed, what those applications are, and different approaches that had been used on
those FSI problems were explained and discussed.

The two coupling approaches in fluid-structure interactions, which are monolithic
coupling and partitioned coupling, were explained briefly. Then, so called "black-box"
partitioned FSI coupling schemes were investigated. Two numerical schemes of
black-box partitioned FSI coupling methods, explicit and implicit, were explained in
detail, the algorithmic differences between them were pointed out. Two algorithms
based on implicit partitioned FSI coupling scheme, Aitken’s dynamic relaxation and
the state of the art IQN-LS methods were explained in detail. The solvers which
use those algorithms were used in order to run famous FSI benchmark case [1].
The performances of both implicit partitioned algorithms were compared by using
the benchmark case and discussed in detail. The superior performance of IQN-LS
method over Aitken’s dynamic relaxation was confirmed as a result of this comparison.
Nevertheless, one of the major problem of partitioned coupling methods, which was
described as the "incompressibility dilemma" by [2] for fully-enclosed, incompressible
problems, was explored. A potential solution to this problem which was modifying the
fluid solver and the coupling algorithm in order to add "artificial compressibility" was
discussed briefly.

Lastly, fluid-structure interaction applications in hemodynamics and blood flow
simulations were introduced. The reasons why FSI techniques are required in order to
simulate the blood flow through artery simulations in hemodynamics were explained
briefly. Nevertheless, the challenges in modeling the blood flow and artery walls
were described and the effects of their highly nonlinear nature on FSI applications
were discussed. Finally, the state of the art implicit partitioned FSI coupling scheme,
IQN-LS, based solver was used in order to simulate 3D blood flow through large artery.
The simulation was composed of incompressible, Newtonian, laminar flow solver with
pulsatile velocity profile and linear elastic structural solver. All setup parameters and
the results of the simulation were discussed in detail. The suitability of IQN-LS
algorithm for further hemodynamics FSI applications were discussed.
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SIKI BAĞLANMIŞ AKIŞKAN-KATI ETKİLEŞİMLİ PROBLEMLERDE
QUASI-NEWTON VE YAPAY SIKIŞTIRILABİLME TABANLI

BÖLÜMLENMİŞ ALGORİTMALAR

ÖZET

Bu tezde, çoklu fizik uygulaması olan akışkan-katı etkileşimleri derinlemesine
incelenmiştir. Üç ana hedef konulmuş ve o hedeflere nasıl ulaşıldığı açıklanmış,
tartışılmıştır.

Bu hedeflerden ilki, akışkan-katı etkileşimli problemlerin neler oldukları, hangi
mühendislik alanlarında kullanıldıkları ve akışkan-katı etkileşimli uygulamaların
neden yapıldıklarının incelenmesidir. Ayrıca günümüze kadar kullanılmış ve halen
kullanılmakta olan akışkan-katı etkileşimli metodları derinlemesine incelemek, herkes
tarafından "benchmark" problemi olarak tanınan bir problemde incelenen metodları
kullanmak ve bu metodlar arasındaki performans farklılıklarını göstermektir.

İkinci hedef ise, tamamen kapalı, silindir şeklindeki damar içerisinde kan akışı
simülasyonların temel karakteristiklerini ve sayısal çözümlerindeki zorluklarını
belirlemektir.

Bu tezdeki son hedef ise, birinci bölümde elde edilen bulguların ışığında, en iyi
performasa sahip olan akışkan-katı etkileşimi metodununun, damar içerisindeki kan
akışı problemlerindeki performansını ölçmek ve gelecekteki akışkan-katı etkileşimli
kan akışı simulasyonları için ne kadar uygun bir metod olabileceğini saptamaktır.

Akışkan-katı etkileşimli uygulamalar kısaca şöyle açıklanabilir. Bir akışkan ile bir
katının oluşturduğu bir problemde, akışkan ile katı arasındaki etkileşim bilim veya
mühendislik çerçeveleri içerisinde gözardı edilemeyecek kadar güçlüyse (sıkıysa);
akışkan-katı etkileşim tabanlı sayısal metodlar kullanılarak o problem çözülmelidir.
Aksi takdirde problemi çözmek için kullanılan simulasyonların sonuçları gerçeklerden
daha uzak olacaktır. Belirli bir hızın üzerine çıkmış bir otomobilin hava ile etkileşimi,
bir uçak kanadı tasarımında kanadın üzerine binen yüklerin hesapları, rüzgar türbinü
kanatlarının eğrilme oranları veya damarlar içerisinde akan kanın yarattığı etkiler
gözardı edilemeyecek kadar birbirine sıkı bağlanmış problemlerdir.

Akışkan-katı etkileşimli problemlerde ve onların sayısal çözümlerinde dikkate
alınması gereken iki temel unsur vardır. Bunlar akışkan problemi ve katı problemleri
arasındaki etkileşim sınırlarında, dinamik devamlılığın ve kinematik devamlılığın
sağlanmasıdır. Dinamik devamlılık, etkileşim sınırlarında hem akışkandan hem
de katıdan gelecek olan stresler ile kuvvetlerin her zaman birbirine eşit olmasıdır.
Kinematik devamlılık ise, etkileşim sınırlarında hem akışkanda hem de katıda
oluşabilecek olan yer değiştirmelerin birbirlerine eşit olmaları esasıdır.

Akışkan-katı etkileşimli problemlerde uygulanan metodlar iki ana grup altında
sınıflandırılıyor. Bunlardan biri monolitik yaklaşım, diğeri ise bölümlenmiş
yaklaşımdır. Monolitik yaklaşımda; akış, katı ve etkileşim problemlerindeki alan
değişkenlerinin tek bir bünye denklemi olarak yazılması ve o denklemin tüm
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problem geometrisinde çözülmesidir. Bölümlenmiş yaklaşımlarda ise; akışkan, katı
ve etkileşim problemleri birbirlerinden bağımsız olarak çözdürülür ve problemin
sonucuna yakınsamaya çalışılır. Bu tezde, her iki tip yaklaşım türü de incelenmiş ve ne
oldukları kısaca anlatılmıştır. Bölümlenmiş yaklaşımlı metodların içinde "black-box"
olarak adlandırılan yaklaşım, akışkan-katı etkileşimli problemlerin akışkan ve katı
kısımlarını birbirlerinden en bağımsız olacak şekilde tutan yaklaşım türüdür. Bu
tezdeki çalışmanın ana hatlarını da, bu "black-box" yaklaşımlı metodlar oluşturuyor.

"Black-box" yaklaşımlarında, birbirinden bağımsız çalışan hem akışkan model
denklemleri çözücüsü hem de katı model denklemleri çözücüsü ve son olarak da
aralarındaki etkileşimi sağlayacak olan "bağlantı problemi" çözücüsü mevcuttur.
Akışkan ve katı problemlerinden gelen verilerin, bu iki alan arasındaki dinamik
ve kinematik sürekliliğe uymalarını sağlayan "bağlantı problemi" çözücüsü problem
türüne göre farklı şekillerde olabiliyor. Bu farklı tür metodlar da kendi içerisinde
"explicit" ve "implicit" olarak iki ayrı sınıfa ayrılıyorlar. Herhangi bir sayısal
metodda da geçerli olduğu üzere "explicit" olarak sınıflandırılan "bağlantı problemi"
çözücülerinde, dinamik ve kinematik süreklilik sınır koşullarına, çözümün ulaşıp
ulaşmadığı kontrol edilmemektedir. Bu yüzden de belli şartlara sahip olan
problemlerde verimli çalışabilmektelerdir. "Implicit" olarak sınıflandırılan "bağlantı
problemi" çözücülerinde ise çözümün belirlenen koşullara ulaşıp, ulaşmadığı kontrol
edilir ve çözümün sınır koşullarına ulaşması sağlanır. Bu kontrol mekanizması
da "implicit" olan metodlarının becerilerini, kararlılıklarını arttırmış olup, çözmesi
çok daha zor olan sıkı etkileşimli akışkan-katı problemlerinde iyi performans
göstermelerini sağlamıştır.

Bu tezde "implicit" olarak sınıflandırılan "black-box" bölümlenmiş akışkan-katı
etkileşimleri metodlarından "Aitken’s dynamic relaxation" ve quasi-Newton tabanlı
"IQN-LS" metodları detaylıca incelenmiştir. Literatürde yaygın olarak kullanılan bir
"benchmark" probleminde de bu iki bağlantı tiplerinin karşılaştırılması yapılmıştır.
Günümüzde "the state of art" olarak tanınan metod olan "IQN-LS" metodu da
incelenmiş olup, uygulamalarıyla diğerlerinden da iyi sonuç verdiği ve bunu çok daha
kararlı ve hızlı bir şekilde yapabildiği gösterilmiş, bu üstün performansının kaynağı
kısaca açıklanmıştır. Bunlarla birlikte, bölümlenmiş algoritmalarda gözlemlenen
büyük bir problem incelenmiş ve çözüm aranmıştır. "Sıkıştırılamazlık ikilemi" olarak
anılan problemin neden ortaya çıktığı kısaca bahsedilmiş ve problemin çözümler
üzerindeki kötü etkilerini azaltacak bir teknik araştırılmıştır. "Yapay sıkıştırılabilme"
olarak isimlendirilmiş olan bu tekniğin, IQN-LS metodu için uygulanabilirliği
sorgulanmış ve teknik zorlukları tartışılmıştır.

Son olarak, kan akışı modellemelerindeki akışkan-katı etkileşimleri tanıtılmıştır.
Kan akışı modelleri matematiksel ve sayısal olarak çözülmeleri en zor olan
problem türüdür. Kanın ve kanı çevreleyen damarların aslında yaşayan bir
matabolizmaya sahip olmaları bu zorlukları çıkaran birkaç sebepten biridir. Kanın
akışmazlığını modellemek zor olsa da, mevcut modellerin çoğu "nonlineer"lik
göstermektedir. Bununla birlikte aynı "nonlineer"lik damar duvarlarının elastikliğinde
de gözlenmektedir. Dolayısıyla zaten "nonlineer" denklemlerin çözümündeki zorluklar
hem de akışkan-katı probleminden gelen "nonlineer"lik, kan akışı problemlerindeki
akışkan-katı etkileşimleri uygulamalarını çözmeyi çok zorlaştırıyor. Damarlar içindeki
kan akışının modellenmesindeki bu zorlukların nasıl aşılabileceği araştırılmıştır.
Denemelerde kendini göstermiş olan IQN-LS tabanlı akışkan-katı etkileşimleri
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çözücümüzü kullanarak geniş damarlarda kan akışı modellemesi ve simülasyonu
yapılmıştır. Bu simulasyon üç boyutta koşturulmuştur. Akış problemi şıkıştırılmaz,
Newtonian ve laminer olarak modellenmiş olup, zamana bağlı değişen hız profili
eklenmiştir. Katı problemi ise lineer elastik olarak modellenmiş ve neden bizim
problemimize uygun olmadığı tartışılmıştır. Simülasyona ait tüm parametreler ve
simülasyonun sonuçları detaylıca açıklanmış ve tartışılmıştır.
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1. INTRODUCTION

The perceivable nature can be categorized as inherently multi-scale and multi-physics

problems. Although, scientists have discovered and developed a great amount of

theories and laws in order to reach an understanding of nature in a better, quantitative

way; most of the developed theories and laws have only worked in their own scopes

and had always some phenomenons that escaped from their limited scopes.

To overcome the limitations of theories and laws, coupled systems have been

developing in contemporary science and engineering projects. By designing a coupling

between different physical domains or different scales, better approximations of

engineering problems to the reality of nature have been achieved. One class of such

multi-physics problems is called Fluid-Structure Interaction (FSI) which focuses on the

problems where mutual dependence and response between fluid and structure becomes

significant.

In FSI problems, the flow behavior depends on the shape of the structure and its

motion, whereas the motion and the deformation of the structure depends on the

fluid forces acting on the structure. For instance, interaction between a slow car

and the air surrounding it can be neglected thus computational fluid dynamics (CFD)

can be used for modeling; however after passing a certain speed, the effects of the

aerodynamics becomes significant thus FSI must be used in order to capture more

realistic approximation. Several other examples of FSI problems can be listed as

the fluttering of aircraft wings [3], deflection of wind-turbine blades, blood flow and

arterial dynamics [4], blood flow in cerebral aneurysms [5] and rocking motion of the

ships. Since FSI plays an important role in contemporary engineering applications,

predictive FSI methods which would help modeling these problems of interest are in

high demand in the industry, science and many other contexts.

One of the field that has started using FSI techniques for the last decade is

biomechanics field where blood flow through arteries are modeled and hemodynamics

are investigated. The reason for increasing usage of FSI in hemodynamics is because,

1



due to viscoelastic nature of the blood vessels, assumptions of rigid wall structure of

the vessels had given unrealistic results. Moreover, it was discovered that there is

a significant interaction between blood vessels and the blood flow inside of them so

that FSI techniques must be used in order to get more realistic approximations about

hemodynamics. According to [6] research, the rigid wall assumption, without FSI, in

computations consistently shows an overestimation of wall shear stress compared to

the flexible wall by as much as 50%. Consequently, the people who work on blood

flow and hemodynamics have started using FSI techniques in order to simulate blood

flow in arteries.

The field of FSI has been slowly reaching its maturity in the sense that many of its

properties and complexities are in general well understood as well as with emerging

methods to overcome the challenges involved. The inherently nonlinear and time

dependent nature of the FSI makes it very difficult to use analytical methods for solving

these class of problems. Therefore computational FSI research has had significant

advances in the last decade by forming both core FSI methods and special FSI methods

targeting specific classes of problems (see for example [7]). Most of the computational

methods developed on the last decade are robust, efficient and capable of accurately

modeling complex 3D geometries at full spatial scales. There are essentially two main

approaches to solving FSI problems. One of them is monolithic approach and the

other one is partitioned approach. The monolithic approach solves all the governing

equations, which comes from fluid domain, solid domain and coupling interface

domain, in a single unified solver, typically by using some variant of Newton’s method

[8]. On the other hand, partitioned approach uses two separate field solvers for both

fluid and solid domains, coupled along an interface. Partitioned schemes can be solved

either explicitly or implicitly (by using sub-iterations) in order to satisfy coupling

interface conditions.

One of the important research area in FSI problems is about the simulation of

incompressible flows. A number of numerical challenges emerges in incompressible

FSI, especially when densities of fluid and solid domain are of equal orders of

magnitude or the geometrical aspect ratio of the problem is large as in the simulation of

blood flow through arteries. In such problems, the numerical coupling at the interface

are non-trivial and another problem referred "added-mass effect" emerges [9].

2



In order to obtain a stable and robust solution procedure for these strongly coupled

problems, monolithic solvers were advised or even required [10]. Although monolithic

approach has its own advantages, it is hard to justify enormous initial investment

required in developing a monolithic solver. Moreover, there are stable, robust and

optimized large number of fluid and solid solvers available. Therefore, partitioned

schemes can be counted as a better solution if a monolithic solver is not absolutely

required. Nevertheless, partitioned approach lets use of different numerical schemes

and discretisations on the sub-domain problems as long as data transfer between fluid

and solid domain is also designed accordingly.

In partitioned FSI solvers, both fluid and solid solvers have iterations in order to solve

their own problem. In addition to that, coupling algorithm has iterations on its own and

in coupling’s iterations those fluid and solid solutions exist. Therefore, if the coupling

between fluid and solid problems are not stable and robust, the whole FSI problem can

take enormous time to solve or it may never converge. So it is very critical to design

an efficient and robust coupling algorithm for partitioned solvers.

In the past, several contributions were made in order to create a more stable and robust

incompressible partitioned FSI solvers. These include artificial compressibility [11]

[12], Robin transmission conditions [13], computation of exact interface Jacobians

[14]. Computation of exact interface Jacobians has been demonstrated to be stable as

much as monolithic methods. However, all these methods require access to the source

code of both fluid and solid solvers in order to be implemented, which is a drawback.

In order to achieve true modularity and freedom in selecting fluid solver and solid

solver in partitioned FSI problems, "black-box" solvers are required. Black box

schemes do not require any access to fluid and solid solvers’s source codes because

they work by using the input and output data of them. Although this approach has

advantages on its own, the capability of such solvers are limited and depends on

the complexity of the problem. One of the earliest method still being used today is

fixed-point iterations with dynamic relaxation. After fixed-point iterations, several

other methods were developed such as reduced order models, space mapping methods,

using higher order polynomials to estimate interface positions and approximate

quasi-Newton(QN) methods. Among those methods, QN methods approximate the
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interface Jacobians instead of evaluating the exact Jacobians, have shown a better way

to provide robust and efficient black box solver alternative.

The current "state of the art" black box coupling method is the "interface quasi-Newton

method for approximation of the Jacobians using Least-Squares" (IQN-LS) of [15].

IQN-LS constructs approximate Jacobians by using observations of the interface

results and it has been shown that IQN-LS coupling scheme is capable of solving wide

variety of strongly coupled FSI problems very efficiently.

Although IQN-LS is deservedly the state of the art implicit partitioned FSI solution

scheme due to its performance among others, there is a major problem in the

field of partitioned FSI coupling algorithms that when the problem domain is fully

enclosed, incompressible and bounded by the DN conditions, partitioned schemes

have difficulties on their convergence. The situation is defined and stated by [2]

as "incompressible dilemma". Common examples of this dilemma include balloon

inflation problems, flow through 3D tubes or even in quasi-enclosed problems as in

flow through opening and closing heart valves.

In order to simulate blood flow through arteries, which are inherently fully enclosed

3D pipe problems and the simulations of blood flow in arteries requires FSI application

in order to have a much better approximations to the solution, we used the state of

the art FSI coupling algorithm IQN-LS for our blood flow simulation. In addition,

we explored using artificial compressibility(AC) on the interface boundary in order

to improve our blood flow FSI simulations. Artificial compressibility(AC) has been

proposed as a solution to the incompressibility dilemma and due to the fact that AC

solution fits perfectly with the nature of black-box solvers. Artificial compressibility

is a scalar source term added to the continuity equation of the fluid solver. Therefore

implementing AC to a production ready FSI flow solver is relatively the least intrusive

technical achievement. That’s why we tried to implement AC into our IQN-LS FSI

solver for our blood flow simulations. However, we couldn’t manage to have it worked

correctly with the IQN-LS FSI solver at our hands. Nonetheless, we briefly present

artificial compressibility in this report and explain the challenges implementing it into

a FSI solver.
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The outline of the remainder of the thesis is as follows. In chapter 2, we briefly

describe fluid and solid domain problems by giving the governing equations in weak

form. Chapter 3 outlines many design properties of a FSI problem and describe the

necessary building blocks in partitioned FSI solver. In Chapter 4, we investigate

the state of the art partitioned FSI coupling scheme, IQN-LS, as well as Aitken’s

dynamic relaxation method which is the predecessor of IQN-LS and also used solvers

based on both algorithms to solve famous benchmark case [1] in order to analyze

performance differences between coupling algorithms. Lastly, we briefly describe

artificial compressibility(AC) method and present the challenges implementing it. In

Chapter 5, we used IQN-LS FSI solver in order to simulate blood flow through arteries

and analyzed the results we obtained from the simulation. In last chapter, we will give

our conclusions and recommendations about the future of FSI coupling algorithms and

their applications on blood flow and hemodynamics problems.
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2. DESCRIPTION OF THE FLUID AND STRUCTURE SUBPROBLEMS

The aim of this chapter is to introduce the fluid and structural subdomains, briefly.

Since we focused on black-box field solvers in the partitioned FSI coupling, both fluid

and structural solvers do not use any particular formulation on their sub-fields.

Both fluid and structural sub-problems belong to the general field of continuum

mechanics. Although, they both share several commonalities, they are defined in

two different reference frames: an Eulerian formulation for the fluid domain and a

Lagrangian formulation for the structural domain. In general, the finite volume method

(FVM) for the fluid problems and the finite element method (FEM) for the structural

problems are used to solve their respective field equations. Both FVM and FEM are

the subset of the more general class of weighted residual methods. Nevertheless, both

methods are very popular numerical methods for approximating the solutions of partial

differential equations.

In this thesis, foam-extend-3.2 is used for both fluid domain solutions and structural

domain solutions. The following two sections will briefly describe general governing

equations of both domains.

2.1 Fluid Subdomain

The fluid flow domain is governed by the Navier-Stokes (NS) equations. These

equations, typically, are expressed in an Eulerian reference frame, where fluid flows

through a fixed spatial discretization. However, in FSI applications, the fluid domain

needs to be adaptive for the solid domain deformation because of the interaction

between both domains. There are numerous ways to deal with this problem. One

of them is to accommodate the deforming boundary by displacing the fluid boundary

and its internal discretization via mesh movement algorithms. In order to use such

mesh movement algorithm, Navier-Stokes equations has to be casted in an arbitrary

Lagrangian-Eularian (ALE) reference frame, an approach first described by [16] and

still used on most FSI formulations.
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On a fluid domain Ω f , the governing equations for a viscous, isothermal,

incompressible and isotropic Newtonian fluid flow in an ALE reference frame are given

by
∂u
∂ t

+(u−um) ·∇u = ∇ ·σ f +b f , in Ω f (2.1)

∇u = 0 , in Ω f (2.2)

Here u is the fluid velocity, um the ALE coordinate system velocity at a given reference

position, σ f the fluid Cauchy stress tensor and b f refers to the body forces acting on

Ω f . For a Newtonian incompressible fluid, the constitutive relation is

σ f =−pI+2µD (2.3)

where p is the thermodynamic pressure, µ the fluid viscosity and D the rate of

deformation tensor. Substituting 2.3 into equation 2.1 and arranging terms gives

∂u
∂ t

+(u−um) ·∇u+∇p−ν∇2u = b f , in Ω f (2.4)

where ν is the kinematic viscosity and p refers to the kinematic pressure. The

formulation 2.4 has the same form used in foam-extend-3.2 software which we use

during our studies.

In order to solve the equations, appropriate boundary conditions are required.

Dirichlet-Neumann boundary conditions along the fluid boundary can be posed as

u = u0 , on Ω f ,D (2.5)

n ·σ = t , on Ω f ,N (2.6)

where n is the unit normal outward pointing vector. From these two boundary

conditions, other boundary conditions can be derived.

2.2 Solid Subdomain

In our simulations, linear elastic stress analysis structural solver was coupled with

the incompressible, Newtonian, viscous fluid solver. The governing equations of the

structural solver used described by [17] are as follows. For a solid body element, the

momentum balance states the following equations:

∂ 2(ρu)
∂ t2 −∇ ·σ = 0 (2.7)
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where u is the solid displacement vector, ρ is the density and σ is the stress tensor with

the assumption of free body force.

In order to complete the governing equations, following constitutive relation must be

specified

σ = 2µε +λ tr(ε)I (2.8)

where I is the unit tensor. µ and λ are Lamé parameters, material properties. Lastly,

the strain tensor ε is defined in terms of u as follows,

ε =
1
2
[∇u+(∇u)T ] (2.9)

By combining all three equations, the governing equation for linear elastic solid body

can be written as

∂ 2(ρu)
∂ t2 −∇ · [µ∇u+µ(∇u)T +λ Itr(∇u)] = 0 (2.10)

Notice that the equation 2.10 is written with only one unknown u. There is also

another important point that the three displacement components are coupled. In order

to overcome this issue, the solver in foam-extend-3.2, follows the "segregated manner",

where each displacement component is solved separately and the inter component

coupling is treated explicitly with several iterations for recovery.
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3. FSI PRELIMINARIES

In this chapter, the building blocks of a partitioned FSI solver is investigated. All the

following sections contains general information about the partitioned FSI coupling so

that this chapter would be a foundation for the following chapters.

3.1 FSI Problem Description

The term "fluid-structure interactions" refers to a two-field problem of interaction

between fluid flow and deformable structural bodies. In most FSI problems, a fluid

flow induces pressure to a near deformable structure and in return deformed structure

response to the fluid flow by changing its boundaries which also affects the fluid flow.

Therefore, FSI problems describes two field coupled domains where each sub domain

have significant influence on the other. In a typical single field mechanics problem such

as fluid-only or structure-only, a set of governing differential equations on a domain

and a set of boundary conditions on that domain would be enough. However, in FSI,

boundaries are in motion so that the boundary conditions on both fluid domain and

structure domain must be satisfied simultaneously. Since fluid domain and structure

domain do not overlap, a meaningful coupling between fluid-structure interface must

also be designed.

The notional FSI problem for an arbitrary volume is depicted in 3.1, with a fluid

domain given by Ω f , solid domain, Ωs and associated boundaries ∂Ω f ,s. The two

sub-domains are independent from each other, and interact only along a common

and shared interface Γ, where Γ = Γs = Γ f . The FSI problem requires that both the

kinematic and dynamic continuity be satisfied at all times along the shared interface

Ω f ,s.

Kinematic continuity at the interface Ω f ,s ensures mass conservation, whereas dynamic

continuity ensures conservation of linear momentum. Therefore both kinematic

continuity and dynamic continuity must be satisfied on the coupling interface.
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Figure 3.1 : FSI problem description, depicting the fluid and solid domains, sharing a
common interface Γ

Kinematic continuity states that the fluid flow velocity at the interface u f ,Γ equals the

boundary velocity as described in 3.1.

d f ,Γ = ds,Γ (3.1)

Dynamic continuity states that stresses from both fluid and solid are equal at the

interface

σs,Γ ·ns,Γ = p f ,Γn f ,Γ − τ f ,Γ ·n f ,Γ (3.2)

where ns and n f are the respective interface normals. Here σs,Γ indicates the solid

stress state, τ f ,Γ the fluid viscous stress tensor and p f ,Γ the interface pressure.

In this thesis, Dirichlet-Neumann(DN) interface boundary conditions were used.

Dirichlet boundary (displacement) imposed along the fluid interface Γ f , and Neumann

interface is applied to the solid domain interface Γs in the form of pressures and shear

stresses.

3.2 Monolithic vs. Partitioned Solution Schemes

There are two major FSI coupling approaches which are monolithic and partitioned.

In monolithic coupling also called strongly-coupled, governing equations for both

fluid and structure subdomains are cast in terms of the same primitive variables. In

other words, a new governing equations are derived by using both fluid equations

and structure equations which would then be applied on the same level of discretized

mesh interface. Consequently, the equations of fluid, structure and mesh moving

are solved simultaneously at the same time step. In order to accomplish that

Arbitrary Lagrangian-Eulerian (ALE) formulation can be used. To use ALE
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formulation in a FSI problem, advanced mesh update techniques must be deployed

in order to adapt changing boundaries of the domains as well as depending on the

discretization parameters, special predictor-multicorrector algorithms and interface

projection techniques for non-matching fluid and structure interface discretisations

must also be implemented [18], [19] and [20].

Due to fully-coupled fashion, monolithic solvers are more robust than

partitioned-coupled solvers. However, monolithic solvers must be designed from

scratch by virtually precluding fluid and structure solvers. There are three categories

of coupling techniques in strongly-coupled FSI methods which are block-iterative,

quasi-direct and direct-coupling. In all three coupling techniques, iterations are

performed within a time-step to simultaneously converge the solutions of all the

equations involved [8].

In partitioned coupling, both fluid and structure domains are modeled and discretized

separately. On the fluid part, traditional CFD techniques are used for the flow

properties. On the structure part, finite element on structural mechanics are applied.

Therefore, existent fluid solvers and structure solvers can be used which make this

approach very flexible and desirable. However, stress and displacement terms must

be transferred across the domain interface. Moreover, this coupling between fluid

solver and structure solver must produce accurate results without deteriorating the

convergence of the system significantly. Meeting with those criteria are the hardest

part of partitioned coupling in FSI.

As mentioned before, using production ready, optimized, robust existing solvers for

both fluid domain and solid domain has been very attractive, which led to more

different kinds of partitioned coupling methods where all of them tried to improve

stability, robustness and convergence of partitioned coupling. Notice from figure

3.2, majority of FSI coupling developments has been made for partitioned coupling

methods. There are two types of partitioned solution schemes, explicit and implicit. In

explicit schemes, the fluid and the solid sub-domains are solved in a staggered fashion

with no convergence or residual checks. That is why, explicit schemes or loosely

coupled schemes are not stable enough to solve strongly coupled FSI problems where

large deformations or high "added mass effect" happens. On the other hand, explicit

schemes have been used in aeroelasticity problems successfully. In such problems, the
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Coupling Methods

Monolithic Partitioned

Algebraic Methods Differential Methods

Penalty Lagrange Multipliers Block Gauss-Seidel Block Jacobi Block Newton

Figure 3.2 : Summary of FSI coupling approaches, reproduced from [21]

solid to fluid density ratios are large which results in a weakly coupled system. For

the class of problems with large deformations or with high nonlinearity or with high

"added mass effect", implicit methods becomes important because with improvements,

those problems can be solved successfully.

In conclusion, black box solvers are attractive enough to warrant additional research

because they increases the efficiency of development time.

3.3 Partitioned FSI Solver

3.3.1 Fluid and solid solvers

In this thesis, foam-extend-3.2 [22] is used, a special version of open source CFD

software OpenFOAM [23] , to solve both fluid equations and solid equations. The

associated governing equations were described in Chapter 2.

foam-extend-3.2 is an open-source object oriented library for numerical solution of

partial differential equations. It is a fork of OpenFOAM and maintained by academia

which leads to more diverse and advanced capabilities over the official version. It is

being developed by using high level C++ functionality. It comes standard with large

number of utilities and solvers. Despite being and open source, it has comparable

capabilities to most high-end commercial CFD softwares.

The solvers are categorized according to their fluid problem properties. In this

thesis, fsiFoam [24] solver from extend-bazaar toolkit is used. It is a incompressible

partitioned FSI solver and it couples icoFoam and stressFoam solvers. icoFoam solver

is a fluid solver which uses finite volume method in order to solve incompressible,
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Newtonian, laminar transient flow. stressFoam solver is a solid solver which also uses

finite volume method to solve nonlinear material models.

3.3.2 Implicit iterative coupling

In order to improve accuracy and stability of partitioned solvers, implicit coupling

in which coupling iterations are performed in a given time step. Implicit coupling

scheme workflow is illustrated in figure 3.3(b). As can be seen from the figure 3.3(b),

Initialise solvers

Deform fluid domain 
and mesh

Solve fluid

Solve solid

Advance time

(a) (b)

Initialise solvers

Deform fluid domain 
and mesh

Solve fluid

Solve solid

Advance time

Convergence check

if converged

if not 
converged

Application of 
partitioned coupling 
scheme (eg. 
dynamic relaxation 
or quasi-Newton 
methods.

Figure 3.3 : (a) weak coupling(explicit), (b) strong coupling(implicit)

in implicit coupling, due to the nature of staggered approach, there is a natural time lag

between serial fluid and serial solid solutions. Therefore, to minimize the numerical

errors derive from this time lag, the following convergence criterion

|dΓ,k+1 −dΓ,k|√
m

⩽ ε, (3.3)

where subscript k indicates the iteration counter, ε indicates the error tolerance. m

indicates the total number of DOFs along the discrete interface and it removes the

mesh size dependencies from the convergence criterion.

3.3.3 Mesh movement

In FSI problems, dynamic mesh techniques play key role in the performance of the

solvers because by using dynamic mesh updates and mesh refinements on the fly

would preserve the mesh quality, thus also protects the stability and convergence of

the solution. Although dynamic mesh mechanism on the fly is not enough solely in

FSI solvers, they are a must even in small displacement cases.
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Prescribed Mesh Motion

Example: Prescribed Mesh Motion
• Domain shape is changing during the simulation in a prescribed manner
• Motion is known and independent of the solution
• . . . but it is usually only prescribed at boundaries
• Definition of moving mesh involves point position and mesh connectivity for every

point and cell for every time-step of the simulation. This is typically defined with
reference to a pre-processor or parametrically in terms of motion parameters
(crank angle, valve lift curve, etc.)

• Solution-dependent mesh changes are out of the question: eg. mesh refinement
• Can we simplify mesh generation for dynamic mesh cases?

Dynamic Mesh Handling in OpenFOAM – p. 4

Figure 3.4 : An example of Dynamic Mesh application

Dynamic Mesh technique implemented in OpenFOAM is capable of refining mesh and

updating the meshes on subdomains automatically. Since the mesh motion cannot be

know priori, a mesh motion equation must be defined in order to solve moving mesh

during the given time-step of FSI solver. There are 4 simple mesh motion equation

present in OpenFOAM :

1. Spring analogy: insufficiently robust

2. Linear + torsional spring analogy: complex, expensive and non-linear

3. Laplace equation with constant and variable diffusivity

4. Linear pseudo-solid equation for small deformations

In fsiFoam solver, mesh motion model relies on Laplace equation with constant and

variable diffusivity. Diffusion of the boundary mesh displacement to the internal parts

of the solution domain is modeled as

∇(γ∇d) = 0 (3.4)

where γ is the displacement diffusion coefficient, and d is the point displacement field.

The rate of diffusion of the displacement from the boundaries to the internal mesh
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regions is defined with the spatially varying diffusion coefficient γ given as a function

of the distance between the point x and the mesh boundary as,

γ = γ(r) (3.5)

where r is the distance between the mesh point and the mesh boundary and the

coefficient function is prescribed in a way that makes the coefficient decrease with

the distance from the boundary, in order to reduce the displacement. The solution of

the equation 3.4 is approximated by using the FEM thanks to its implementation in

foam-extend-3.2.
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4. BLACK-BOX PARTITIONED FSI COUPLING

4.1 Introduction

In this chapter, we introduce the most popular black box partitioned FSI coupling

algorithms. We investigate the algorithms and compare their performances in test

cases. In addition, explicit scheme and implicit scheme FSI solvers are described in

detail.

4.2 Explicit Scheme

Explicit scheme is one of the earliest black box solution scheme applied in partitioned

FSI solvers. This algorithm has been classified as loose-coupling or weak coupling

due to the fact that the algorithm does not test any convergence on the FSI coupling

iteration. The lack of any control in FSI coupling makes explicit scheme coupling

vulnerable to the problems with high "added-mass effect" or with strong interactions.

Nonetheless, due to the weak nature of aeroelasticity problems, this algorithm can still

be used today in those problems with success [3].

In loose-coupling, the equations of fluid mechanics, structural mechanics and mesh

moving are solved sequentially as in Figure 4.1.

As it can be seen from the Figure 4.1,

1. Dynamic mesh solver updates the mesh according to the displacement at the

structure part and velocity at the interface is extrapolated from the rate of

displacement.

2. Fluid mechanics equations are solved by using that received values from the

extrapolation.

3. Structural mechanics equations with the updated fluid mechanics interface traction

are solved.
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START

Estimate Structure Displacement

Move Fluid Mesh

Solve Fluid

Solve Structure

t > tend

t = t+ @t

up

u

��F/S

Yes
STOP

No

Figure 4.1 : Loose-Coupling solver sequence

4. By using the new displacements from structure solver, mesh moving algorithm

updates the meshes.

Although this type of solver looks very promising, there is a significant stability issue

that must be handled carefully. The origin of the problem is whether the following

equality,

up = u (4.1)

where u is the velocity of the interface boundary, up is the predicted interface boundary

velocity, holds.

In other words, the new fluid forces are calculated by using the predicted(extrapolated)

displacements instead of the actual displacements due to the mesh update at the end

of the solver. Consequently, an "added mass" problem is encountered during the

solutions. Inaccuracy of the extrapolation approximation of the displacements, fluid

flow solver encounters with an added mass input to the system which in turn affects

the convergence significantly. Moreover, decreasing time step does not improve the

stability derived from the added mass. According to the previous works, when

f luid density
solid density

>= 1 (4.2)

significant instabilities on the solution were observed [25], [9].
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4.3 Coupled FSI Problem

In this section, definitions of the functions that represent flow solver and structural

solver, as they are used by fixed-point methods, are given. The governing equations of

both flow solver and structural solver are given in chapter 2. The following function

definitions are taken from [15].

Dirichlet-Neumann decomposition of the FSI problem imposes velocity on the fluid

side of the interface and stress distribution on the structural side of the interface. The

following abstractions emphasize that the solvers are treated as black boxes.

The function

y = F(x) (4.3)

is referred to as the flow solver. It describes the relationship of flow solver as a black

box solver in the sense that the discretized position x ∈ ℜu is given to the flow code

and returns the new calculated stress distribution y ∈ ℜw on the interface.

The function

x = S(y) (4.4)

is referred to as the structural solver. It also describes the relationship of structural

solver with the interface, where structural solver takes the stress distribution from the

interface and calculates the new position of the fluid-structure interface. With these

definitions, the FSI problem is given by

x = S◦F(x) or R(x) = S◦F(x)−x = 0, (4.5)

in fixed-point or root finding formulation, respectively, with R being the residual

operator.

4.4 Aitken’s dynamic relaxation

Aitken’s dynamic relaxation, also called tight coupling, is a convergence accelerator

technique used in fixed point iterations. As defined in the previous section, black box

FSI solvers can be defined in a way that the problem becomes fixed point iteration

which aims to find the appropriate interface boundary deformation [26].

In tight coupling, an outer fixed-point iteration is used in order to ensure the

convergence at every given time-step. In order to accomplish this, well-known Aitken
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Method which is a scalar relaxation factor, determined dynamically, injected into the

fixed-point iterations as can be seen from the Figure 4.2 is used. By using a relaxation

multiplier the effects of the extrapolation is minimized so that the stability and the rate

of convergence are improved.

START

Move Fluid Mesh Solve Fluid

Solve Structure t > tend

t = t+ @t

��F/S

Yes STOP

No

ui = !iûi � (1� !i)ui�1

|û�F/S ,i � u�F/S ,i�1|p
n

< ✏

ûii++

No

Yes

Fixed-Point Iteration

Figure 4.2 : Tight-Coupling solver sequence with fixed point iteration and dynamic
relaxation

The algorithm of the tightly-coupled solver can be described as:

1. Solve the mesh equation

2. Transfer interface velocity to fluid solver

3. Solve the flow equations

4. Transfer interface pressures into structure solver

5. Solve the structure equations

6. Restrict new interface deformations by using under-relaxation

7. Check the residuals between the last time step and the new one

As in the loosely-coupled solver, existing fluid and structure solvers can be used and a

better stability and convergence can be achieved by using tightly-coupled solvers.
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4.5 IQN-LS

IQN-LS is "the state of art", implicit partitioned FSI coupling method. It uses

quasi-Newton method on the interface boundary and approximation of Jacobians are

determined by using least squares method as described in [15]. The method is based on

reduced order model, [27], of fluid solver. Therefore, by calculating the first response

data from fluid solver on the interface boundary movement can be gathered and a

reduced order model for the fluid can be established. Since creating reduced order

model during the coupling iterations have negligible computational cost, this method

improves performance of black box implicit partitioned FSI coupling solvers.

The reduced order model are built up during the coupling iterations. These reduced

order models enhance the convergence of fixed point iterations. The complete

algorithm taken from [15] is as follows.

At each time step and during the fixed point iterations, assume that fluid solver called k

times, then for k interface positions X f
i , i= 1, . . . ,k, k corresponding stress distributions

at the interface P f
i , i = 1, . . . ,k are computed by the fluid solver. With this information

a matrix

V = [∆X f
1 , . . . ,∆X f

j , . . . ,∆X f
k−1] (4.6)

with displacement modes of the interface ∆X f
j = X f

j −X f
k , j = 1, . . . ,k−1 and a matrix

W = [∆P f
1 , . . . ,∆P f

j , . . . ,∆P f
k−1] (4.7)

with the corresponding changes in stress distribution at the interface ∆P f
j = P f

j −

P f
k , j = 1, . . . ,k−1 are constructed. With these two matrices, an arbitrary displacement

∆X f and the corresponding change in stress distribution ∆P f can be approximated by

a linear combination of the computed modes as follows:

∆X f ≈V α∆P f ≈Wα (4.8)

with α = [α1, . . . ,αk−1]
T . Minimizing ∥ ∆X f −V α ∥ results in a least squares problem

with solution

α = (V TV )−1V T ∆X f (4.9)

so that

∆P f = Fk
X ∆X f (4.10)
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Fk
X =W (V TV )−1V T . (4.11)

The resulting reduced order models for the fluid solver and in a similar way for the

structural solver are

P = P f
k +Fk

X(X −X f
k ) (4.12)

X = X s
k +Sk

P(P−Ps
k ) (4.13)

By using the reduced order model for the fluid problem, the structural problem can be

solved with Newton-Raphson iterations upon convergence as follows:

G(X l+1,Pl+1)≈ G(X l,Pl)+(
∂G
∂X

+
∂G
∂P

Fk
X)(X

l+1 −X l) = 0 (4.14)

with l the iteration level for the Newton-Raphson iterations. The simplified

representation of the algorithm can be seen in figure 4.3.

As for any other Newton–Raphson or quasi-Newton scheme, the
IQN-ILS iterations will only converge when the initial guess is suf-
ficiently close to the final solution. For example, if the deformation
of the structure within one time step is too large and the coupling
iterations do not converge, then the time step must be adjusted.
The same remark can be made for the IBQN-LS and Interface-
GMRES coupling techniques.

The complete IQN-ILS technique is shown in Algorithm 1 and a
simplified version is shown in Fig. 3(a). Because the matrices Vk

and Wk have to contain at least one column, a relaxation with fac-
tor x (line 4) is performed in the second coupling iteration of the
first time step if information from the previous time steps is reused
ðq > 0Þ and in the second coupling iteration of every time step
without reuse ðq ¼ 0Þ.

Algorithm 1. IQN-ILS method

1: k ¼ 0; ~x1 ¼ S $Fðx0Þ; r0 ¼ ~x1 % x0

2: while krkk2 > eo do
3: if k ¼ 0 and (q ¼ 0 or n ¼ 0) then
4: xkþ1 ¼ xk þxrk

5: else
6: construct Vk and Wk as shown in Eqs. (10)–(12)
7: calculate QR-decomposition Vk ¼ QkRk

8: solve Rkck ¼ %QkT
rk

9: xkþ1 ¼ xk þWkck þ rk

10: end if
11: k ¼ kþ 1; ~xkþ1 ¼S $FðxkÞ; rk ¼ ~xkþ1 % xk

12: end while

5. IBQN-LS

The IBQN-LS method is explained in detail in Algorithm 2 and a
simplified representation is shown in Fig. 3(b). This coupling tech-
nique solves the FSI problem written as

FðxÞ % y ¼ 0; ð22aÞ
SðyÞ % x ¼ 0 ð22bÞ

with block-Newton–Raphson iterations of the Gauss–Seidel type.
The linear system

cdF
dx %I

%I cdS
dy

2

4

3

5 Dx
Dy

! "
¼ %

FðxÞ % y
SðyÞ % x

! "
ð23Þ

is thus first solved for Dx, followed by an update of x and the right-
hand side. Subsequently, the modified system is solved for Dy and y
is updated. As a consequence, the IBQN-LS method modifies the
stress distribution that is calculated by the flow solver before trans-
ferring it to the structural solver, as opposed to the other techniques
described in this paper. With the notation for intermediate values
defined in Section 2, the input and output of the flow solver are thus
denoted as xk and ~ykþ1 and the input and output of the structural
solver are ykþ1 and ~xkþ1.

Starting from the position xk that was given as input to the flow
solver in the previous coupling iteration, the position
xkþ1 ¼ xk þ Dxk is calculated by solving the system

I %
ddS
dy

k
ddF
dx

k

 !
Dxk ¼ ~xkþ1 % xk þ

ddS
dy

kð~ykþ1 % ykþ1Þ ð24Þ

for Dxk. As opposed to the original approach of Vierendeels et al. [8],
this linear system is solved with an iterative solver like the general-
ized conjugate residual method [48] or the generalized minimal
residual method [49] in a matrix-free way. The matrix on the left-

hand side of Eq. (24) and consequently the approximate Jacobians
cdF
dx

k and cdSdy
k do not have to be calculated explicitly; a procedure to

calculate the product of these matrices with a vector is sufficient.
The procedure to calculate the product of the approximate Jaco-

bian cdFdx
k or cdSdy

k with a vector is similar to the procedure described
in Section 4. The matrix–vector product with cdFdx

k is calculated from
the previous inputs

x0; . . . ; xk ð25aÞ

and the corresponding outputs

~y1 ¼Fðx0Þ; . . . ; ~ykþ1 ¼FðxkÞ ð25bÞ

of the flow solver which are converted into differences with respect
to the last input and output

Dxi ¼ xi % xk; ð26aÞ
D~yiþ1 ¼ ~yiþ1 % ~ykþ1 ð26bÞ

Fig. 3. Simplified representation of the (a) IQN-ILS, (b) IBQN-LS, (c) (Aitken)
relaxation and (d) Interface-GMRES algorithm for partitioned FSI simulations with
black-box solvers.

J. Degroote et al. / Computers and Structures 88 (2010) 446–457 451

Figure 4.3 : Simplified representation of IQN-LS algorithm taken from [28]

4.6 Flow Induced Oscillating Flexible Beam Benchmark

In this section, partitioned FSI solvers mentioned in this chapter was used to run on

a benchmark case. Both Aitken’s relaxation method and IQN-LS method are used

in order to investigate their performances on this benchmark case. By running this

case with both algorithms, we confirmed that the partitioned FSI solver implemented
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in fsiFoam are setup correctly and performed as expected. Nonetheless, performing

these tests give us a deeper understanding about the nature of algorithms, their

implementation details and also the post processing techniques. At last, with a robust

and stable implementation of IQN-LS solver at our hands, we can build upon on it.

Flow induced oscillating flexible beam case is a well-known 2D FSI benchmark case

[1]. As it can be seen from figure 4.4, a linear elastic beam is fixed into a sphere inside

a fluid flow domain. The flow comes from the inlet goes around the sphere and in

the course of time Von Karman vortex street is formed during the simulation. Due to

the pressure change induced by the vortexes, beam starts to oscillate. This problem is

counted as large deformation FSI due to the fact that during the simulation, the beam’s

edge towards to the outlet displacement is relatively large.

Figure 4.4 : Benchmark geometry and mesh

Table 4.1 : Hron-Turek Mesh Properties

Stats/domain Fluid Mesh Solid Mesh
points 11134 1484
faces 21575 2631
cells 5336 630

boundary patches 7 3
hexahedra elements 5336 630

Max aspect ratio 17.2499 4.5
Max skewness 0.409801 1.49568e-08

The mesh properties in our test case setup is given in table 4.1. As it can be seen from

the table, the discretization is relatively small. There are around 6000 cells combined

from both fluid and solid domain, and all of the cells are made of hexahedra elements

which are known to be good for convergence in FVM simulations.

Since FSI coupling is very hard to solve numerically, starting to the simulation with

the highest quality of mesh is a rule of thumb. As it can be seen from the table 4.1,

maximum aspect ratio and maximum skewness of both domain’s meshes are in good

shape.
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Maximum aspect ratio is very important on FVM simulations, because it indicates the

ratio between the largest face size to the smallest face size, which in turn determines

directly the gradient calculations of the field in FVM.

On the other hand, maximum skewness is also prominent indicator about the quality

of meshes. Skewness ratio refers to the angle ratios between the individual mesh cells.

Since FVM method in OpenFOAM is cell based, the face values are calculated from

the midpoint of each cells by interpolation. With high skewness, the interpolation

calculations would impose numerical errors into the simulation.

Both maximum aspect ratio and maximum skewness have an important role in the

convergence of CFD simulations, due to the fact that they directly effect the numerical

stability.

Figure 4.5 : At time step=5.78, steady state fluid velocity contours

Figure 4.6 : At time step=5.78, steady state fluid velocity contours, enlarged view

In figure 4.5 and also 4.6, the so-called von Karman vortex street can be seen. The

reddish droplet like shapes indicates the fluid which flows faster than other colors. The
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figure was taken at time = 5.78 seconds and it depicts the steady state of the simulation.

Also from the same figure, the no-slip boundary condition which states that the velocity

of fluid is 0 can be seen. The darkest blue shade indicates the zero velocity of fluid and

on the fluid domain boundary, it is all dark blue. The same blue can also be seen on

the tip of the sphere and also in the wake area of it where velocities are decreased.

The deflection on the tip of the beam with corresponding coordinates (x,y,z) =

(0.60.20.025334) can be seen in figure 4.7. It shows that the deflection was large

in both x and y axis. The large deflection derives from the fact that high magnitude

forces were applied which was measured in figure 4.8.
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Figure 4.7 : Deflection vs Time at the the tip of the beam with the coordinates (x, y,
z) = (0.6 0.2 0.025334)

In figure A.3 and A.4, the convergence and stability analysis of the simulation can be

made. In CFD simulations, the Courant number and keeping it under 1 is very crucial

in order to reach convergence to the solution. Courant number gives and idea about the

accuracy of the simulation. If the time step size is not selected according to the mesh

sizes, then the accuracy of the solution may be compromised. Another basic check on

any numerical computation is also the residuals of the unknowns. In this simulations,

fluid solver solves velocities on both directions and also the structural solver solves

the displacements. As can be seen from the residuals graph, initial residuals (indicates

the beginning of time steps) are decreasing and they reaches to steady state with very
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Figure 4.8 : Forces vs Time at the the tip of the beam with the coordinates (x, y, z) =
(0.6 0.2 0.025334)
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Figure 4.9 : Courant number mean and max value of fluid solver during simulation
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Figure 4.10 : Fluid solver and structural solver residuals during simulation

low errors. To conclude, IQN-LS method in this benchmark worked very well. The

simulation was stable, robust and accurate.
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Figure 4.11 : Number of IQN-LS coupling iterations during simulation

In figure 4.11, FSI coupling iterations in every time steps can be seen. Up until t =

2, when the vortexes started to be formed and induces pressure differential on the

coupling interface, the number of iterations per time step was only one. In other words,

there was no movement in this specific test case. But after that, in every time step,
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IQN-LS coupling iterates around 15 times in order to maintain Dirichlet-Neumann

boundary conditions along the interface boundary.

4.7 Artificial Compressibility and IQN-LS

We study blood flow through arteries and the geometry and nature of the problem

can be stated as incompressible flow through fully enclosed 3D pipes. However,

there is a technical challenge named "incompressibility dilemma" first stated by [2] of

fully enclosed, incompressible fluid in partitioned fluid structure interaction problems.

As described by [2], partitioned, incompressible, FSI, based on Dirichlet-Neumann

domain decomposition solution schemes cannot be applied to problems when the fluid

domain is fully enclosed. Such problems are defined ill-posed numerically which

makes finding solutions to them with partitioned FSI solvers harder or even impossible.

In order to handle "incompressibility dilemma", "artificial compressibility (AC)" can

be used so that the numerical solutions of such problems become better. AC was

originally used in FSI applications in order to remove some of the instabilities related

to strongly coupled, incompressible problems [29], [30].

Artificial compressibility is a scalar factor added into the continuity equation in fluid

solver, therefore it is relatively easy to implement it into flow solver. AC usually is

added into robust compressible solvers in order to give those solvers ability to solve

also incompressible flow problems. However, a novel adaptation of this technique

applied into FSI problems by [31] and the new FSI solver with AC performed slightly

better for fully enclosed incompressible problems. Nonetheless, the same solver also

showed performance degradation in other types of problems [31]. Brief description of

what AC is, and its usage in a partitioned FSI solver are as follows.

Artificial compressibility modifications to the fluid domain solver are described in

this section. The governing equations for a viscous, isothermal, incompressible and

isotropic Newtonian fluid flow in an ALE reference frame are given by

∂u
∂ t

+(u−um) ·∇u+∇p−ν∇2u = b f , (4.15)

∇u = 0 (4.16)
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Here u is the fluid velocity, um the ALE coordinate system velocity at a given reference

position, ν is the kinematic viscosity, p refers to the kinematic pressure and b refers to

the body forces.

The basic of AC is to modify continuity equation 4.16 by inserting a pressure time

derivative such that

β (
∂ p
∂ t

)+∇u = 0, (4.17)

where β is the artificial compressibility coefficient. The solution of the modified

equation 4.17 can be approximated in a given iteration as follows,

β (pn+1
k − pn+1

k−1)

∆t
+∇un+1

k = 0, (4.18)

where subscript k represents the current FSI coupling iteration in time step n +

1 and ∆t is the simulation time step size. Therefore, while the incompressible

continuity equation 4.16 is initially violated, at convergence for time step n+ 1, the

AC compressibility term disappears as pn+1
k → pn+1

k−1, thereby satisfying the original

continuity equation.

One of the most critical challenge of integrating AC into a quasi-Newton method is to

change pressure component at the coupling interface so that the coupling algorithm

(IQN-LS) be aware of the additional pressure sensitivities comes from the fluid

domain. Since AC basically applies an under-relaxation into incompressible flow

solver’s pressure wave, thus decreasing the stiffness of pressure propagation in the fluid

domain, it also changes the applied pressure onto the coupling interface. Therefore,

while implementing AC into IQN-LS solver, the force difference originated from the

AC in flow solver must be taken into account also in the coupling iterations and

pressure correction must be applied. Otherwise a Newton-like method with AC/FSI

cannot work. More detailed description of this technique can be found in [31].
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4.8 Remarks

The individual analysis of flow induced oscillating flexible beam benchmark was done

in the previous section. As it can be seen from there, both flow solver and structural

solver converged into the solution and numerically gave stable solutions. Here, we

compare the number of iterations of FSI coupling algorithms on the same problem as

well as how the difference between the number of iterations reflected on the execution

times of the simulation.

The advantage of using IQN-LS FSI solver can be clearly seen from the figure 4.12.

IQN-LS method converges much more faster than Aitken’s relaxation method which

in turn completes the simulation in a much shorter time with the same computational

resources.
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Figure 4.12 : Execution times comparison of FSI coupling methods on flow induced
oscillating flexible beam benchmark

In figure 4.13, it can be seen that IQN-LS method needs around half the number of FSI

coupling iterations in order to converge within one time step and move onto the next

time step. For this benchmark, IQN-LS method performs almost twice as better than

Aitken’s relaxation.
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Figure 4.13 : Number of iterations comparison of FSI coupling methods on flow
induced oscillating flexible beam benchmark

Another observed difference between IQN-LS and Aitken method on the benchmark

case was that while the evaluated deflection at the tip of the beam was almost the

same between each method, the forces calculated by the Aitken method showed some

noise in comparison with the results of IQN-LS. Look at the figures A.1 and A.2 in the

Appendix.

The results found in this chapter are consistent with the results found in [28]. By

retesting the same simulation case, we both confirmed them and also be sure about

the performances of the solvers and their settings we use. These results gave us a

valid reference point before implementing our blood flow through large artery case

and analyze its results in detail.

Another finding of this chapter was that there is a challenge in integrating AC into

IQN-LS coupling scheme. It was done successfully by [31] for another quasi-Newton

based partitioned coupling algorithm and it promised improvement for the fully

enclosed cases such as our blood flow through artery problems. However, we could

not manage to have AC worked very well in our IQN-LS solver.
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5. FSI IN HEMODYNAMICS

5.1 Introduction

In this chapter, we used state of the art partitioned FSI coupling scheme IQN-LS

algorithm in order to simulate blood flow through large arteries. Our motivation

of using FSI in blood flow in arteries simulations derives from the fact that the

Reynolds number at the peak systole characterizes the flow regime and the complexity

in the order of several hundreds in cerebral arteries and few thousands in the aortic

arteries. Those Reynolds number ranges corresponds to laminar complex 3D flows.

Nonetheless, mild turbulence in the arteries was also rarely observed under certain

circumstances. Due to this laminar and incompressible nature of the blood flows

in arteries, most of the commercial CFD softwares was able to simulate reasonably

accurate blood flow through arteries. Nevertheless, stationary rigid wall assumption

for blood vessel in the only CFD applications is not physiologically realistic due to

the fact that vessel walls are viscoelastic in nature and undergo large deformations due

to hemodynamic forces, thus also affecting the blood flow dynamics passing through

the vessels. According to [6] research, the rigid wall assumption in computations

consistently shows an overestimation of wall shear stress compared to the flexible

wall by as much as 50%. Consequently, accurate FSI techniques must be used while

exploring the hemodynamics of blood flow in arteries. By using FSI, response of

viscoelastic nature of the blood vessel into the fluid and corresponding fluid forces

acting back to the vessel walls can be examined more realistically.

5.2 Blood Viscosity

Blood consists of plasma and particles, with 99% of the particle volume taken by the

red blood cells, RBCs, or erythrocytes. Thus the red blood cells mainly determine

the difference between plasma and blood viscosity. The viscosity of blood therefore

depends on the viscosity of the plasma, in combination with the hematocrit (volume
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% of red blood cells, Ht) and red cell deformability. Higher hematocrit and less

deformable cells imply higher viscosity. The relation between hematocrit and viscosity

is complex and many formulas exist. One of the simplest is the one by Einstein:

η = ηplasma · (1+2.5Ht) (5.1)

Einsteins relation for the viscosity of fluids containing particles applies only to very

contrast to the kinematic viscosity, which is defined as viscosity divided by
density thus

Viscosity of blood

Blood consists of plasma and particles, with
99% of the particle volume taken by the red
blood cells, RBC’s, or erythrocytes. Thus the
red blood cells mainly determine the
difference between plasma and blood
viscosity. The viscosity of blood therefore
depends on the viscosity of the plasma, in
combination with the hematocrit (volume %
of red blood cells, Ht) and red cell
deformability. Higher hematocrit and less
deformable cells imply higher viscosity. The relation between hematocrit and
viscosity is complex and many formulas exist. One of the simplest is the one
by Einstein:

Einstein’s relation for the viscosity of
fluids containing particles applies only
to very low particle concentrations.
Nevertheless, it gives some indication.
The viscosity of plasma is about 0.015
Poise (1.5 centipoise, cP) and the
viscosity of whole blood at a
physiological hematocrit of 40 - 45% is
about 3.2 cP, or Pa·s.

Blood viscosity depends not only on
plasma viscosity and hematocrit, but

also on the size, shape and flexibility of the red blood cells. For instance, the
hematocrit of camel blood is about half of that of human blood, but the
camel’s red blood cells are more rigid, and the overall effect is a similar blood
viscosity.

Anomalous viscosity or non-Newtonian behavior of blood

The viscosity of blood depends on its
velocity. More exactly formulated, when
shear rate increases viscosity decreases.
At high shear rates the doughnut-shaped
RBC’s orient themselves in the direction
of flow and viscosity is lower. For
extremely low shear rates formation of
RBC aggregates may occur, thereby
increasing viscosity to very high values. It
has even been suggested that a certain
minimum shear stress is required before
the blood will start to flow, the so-called
yield stress. In large and medium size
arteries shear rates are higher than so viscosity is practically constant.

4 Basics of Hemodynamics

VISCOSITY of plasma and blood.

VISCOSITY as function of shear rate for
hematocrit of 48.

VISCOSITY as function of hematocrit.
Figure 5.1 : Blood viscosity as function of hematocrit taken from [32]

low particle concentrations. Nevertheless, it gives some indication. The viscosity of

plasma is about 0.015 Poise (1.5 centipoise, cP) and the viscosity of whole blood at a

physiological hematocrit of 40 - 45% is about 3.2 cP, or 3.2 ·10−3Pa.s.

Blood viscosity depends not only on plasma viscosity and hematocrit, but also on the

size, shape and flexibility of the red blood cells. For instance, the hematocrit of camel

blood is about half of that of human blood, but the camels red blood cells are more

rigid, and the overall effect is a similar blood viscosity.

The viscosity of blood depends on its velocity. More exactly formulated, when shear

rate increases viscosity decreases. At high shear rates the doughnut-shaped RBCs

orient themselves in the direction of flow and viscosity is lower. For extremely low

shear rates formation of RBC aggregates may occur, thereby increasing viscosity to

very high values. It has even been suggested that a certain minimum shear stress is

required before the blood will start to flow, the so-called yield stress. In large and

medium size arteries shear rates are higher than 100s−1, so viscosity is practically

constant. The physiological range of wall shear stress is 10 to 20 or 1 to 2 Pa, with 1

Pa = 0.0075 mmHg. Several equations exist that relate shear stress and shear rate of

blood, e.g., Casson fluid, and Herschel-Bulkley fluid [33], [34].

Viscosity also depends on the size of blood vessel. In small blood vessels and at

high velocities, blood viscosity apparently decreases with decreasing vessel size. This

is known as the Fahraeus-Lindqvist effect, and it begins to play a role in vessels
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contrast to the kinematic viscosity, which is defined as viscosity divided by
density thus

Viscosity of blood

Blood consists of plasma and particles, with
99% of the particle volume taken by the red
blood cells, RBC’s, or erythrocytes. Thus the
red blood cells mainly determine the
difference between plasma and blood
viscosity. The viscosity of blood therefore
depends on the viscosity of the plasma, in
combination with the hematocrit (volume %
of red blood cells, Ht) and red cell
deformability. Higher hematocrit and less
deformable cells imply higher viscosity. The relation between hematocrit and
viscosity is complex and many formulas exist. One of the simplest is the one
by Einstein:

Einstein’s relation for the viscosity of
fluids containing particles applies only
to very low particle concentrations.
Nevertheless, it gives some indication.
The viscosity of plasma is about 0.015
Poise (1.5 centipoise, cP) and the
viscosity of whole blood at a
physiological hematocrit of 40 - 45% is
about 3.2 cP, or Pa·s.

Blood viscosity depends not only on
plasma viscosity and hematocrit, but

also on the size, shape and flexibility of the red blood cells. For instance, the
hematocrit of camel blood is about half of that of human blood, but the
camel’s red blood cells are more rigid, and the overall effect is a similar blood
viscosity.

Anomalous viscosity or non-Newtonian behavior of blood

The viscosity of blood depends on its
velocity. More exactly formulated, when
shear rate increases viscosity decreases.
At high shear rates the doughnut-shaped
RBC’s orient themselves in the direction
of flow and viscosity is lower. For
extremely low shear rates formation of
RBC aggregates may occur, thereby
increasing viscosity to very high values. It
has even been suggested that a certain
minimum shear stress is required before
the blood will start to flow, the so-called
yield stress. In large and medium size
arteries shear rates are higher than so viscosity is practically constant.

4 Basics of Hemodynamics

VISCOSITY of plasma and blood.

VISCOSITY as function of shear rate for
hematocrit of 48.

VISCOSITY as function of hematocrit.

Viscosity 5
The physiological range of wall shear stress is 10 to 20 or 1 to 2
Pa, with 1Pa = 0.0075 mmHg. Several equations exist that relate shear stress
and shear rate of blood, e.g., Casson fluid, and Herschel-Bulkley fluid [1,2].

Viscosity also depends on the size of
blood vessel. In small blood vessels and at
high velocities, blood viscosity apparently
decreases with decreasing vessel size. This
is known as the Fahraeus-Lindqvist effect,
and it begins to play a role in vessels
smaller than 1 mm in diameter. Red blood
cells show axial accumulation, while the
concentration of platelets appears highest at
the wall. The non-Newtonian character of
blood only plays a role in the microcircula-
tion.

Viscosity depends on temperature. A
decrease of 1°C in temperature yields a 2% increase in viscosity. Thus in a
cold foot blood viscosity is much higher than in the brain.

How to measure viscosity

Blood viscosity is measured using viscometers. Viscometers consist
essentially of two rotating surfaces, as a model of the two plates shown in the
box figure. Blood is usually prevented from air contact and temperature is
controlled. When comparing data on viscosity one should always keep in
mind the measurement technique, as results are often device dependent.

Physiological and clinical relevance

The anomalous character of blood viscosity results from the red blood cells,
and the effects are mainly found in the microcirculation at low shear and
small diameters. The effects are of little importance for the hemodynamics of
large arteries. Thus, in hemodynamics, it may be assumed that viscosity is
independent of vessel size and shear rate.

Determination of blood viscosity in vivo is almost impossible. In
principle, the pressure drop over a blood vessel and the flow through it,
together with vessel size, can be used to derive viscosity on the basis of
Poiseuille’s law. However, the vessel diameter in Poiseuille’s law (Chapter 2)
appears as the fourth power, so that a small error in the vessel diameter leads
to a considerable error in the calculated viscosity. Also, the mean pressure
drop over a segment of artery is typically a fraction of 1 mmHg. Moreover,
hematocrit is not the same in all vessels due to plasma skimming effects. And
finally, Poiseuille’s law may only be applied when there are no effects of inlet
length (see Chapter 2).

The main purpose of the circulation is to supply tissues with oxygen.
Oxygen supply is the product of flow and oxygen content. The hematocrit
determines the (maximum) oxygen carrying capacity of blood and its
viscosity, and therefore the resistance to blood flow. These counteracting
effects on oxygen transport result in an optimal hematocrit of about 45 in the
human at sea level, with a small difference between males and females. It
appears that in mammals, blood viscosity is similar, but the hematocrit is not

VISCOSITY as function of vessel
size.

(a) (b)

Figure 5.2 : (a)Viscosity as function of shear rate for hematocrit of 48. (b)Viscosity
as function of vessel size. Taken from [32].

smaller than 1 mm in diameter. Red blood cells show axial accumulation, while the

concentration of platelets appears highest at the wall. The non-Newtonian character of

blood only plays a role in the microcirculation.

Viscosity depends on temperature. A decrease of 1◦C in temperature yields a 2%

increase in viscosity. Thus in a cold foot blood viscosity is much higher than in the

brain.

Finally, since we simulate blood flow in large arteries, we assumed the the flow is

incompressible, Newtonian and also laminar. These assumptions are good enough to

be applied in our case.

5.3 Oscillatory Flow Theory and Womersley Number

The pressure-flow relation for steady blood flow, where only frictional losses are

considered, and the relation between oscillatory or pulsatile pressure and flow are

simplified version of the reality. However, using oscillatory or pulsatile pressure and

velocity profiles in blood flow simulations gives good enough solutions for engineering

purposes. That’s why we also use oscillatory inlet velocity and pressure profiles in our

simulations.

The relation between oscillatory, sinusoidal, pressure drop and flow through a blood

vessel can be derived from the Navier-Stokes equations. The assumptions are to a large

extent similar to the derivation of Poiseuilles law: uniform and straight blood vessel,

rigid wall, Newtonian viscosity. The result is that flow is still laminar but pulsatile, i.e.,
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not constant in time, and the flow profile is no longer parabolic. The theory is based on

sinusoidal pressure-flow relations, and therefore called oscillatory flow theory, [35].

The flow profile depends on the frequency of oscillation, with ω the frequency, the

radius r, the viscosity µ , and density ρ , of the blood. These variables were taken

together in a single dimensionless parameter called Womersley number [36]. The

Womersley number, or α parameter, is another dimensionless parameter that has been

used in the study of fluid mechanics. This parameter represents a ratio of transient to

viscous forces, just as the Reynolds number represented a ratio of inertial to viscous

forces. A characteristic frequency represents the time dependence of the parameter.

The Womersley number may be written as

α = r
√

ω
ν

or α = r
√

ωρ
µ

(5.2)

where

• r = the vessel radius

• ω = the fundamental frequency

• ρ = the density of the fluid

• µ = the viscosity of the fluid

• ν = the kinematic viscosity

The fundamental frequency is typically the heart rate. The units must be rad/s for

dimensional consistency. In higher-frequency flows, the flow profile is blunter near

the centerline of the vessel since the inertia becomes more important than viscous

forces. Near the wall, where velocity of flow, v, is close to zero, viscous forces are still

important.

If the local pressure gradient, ∆P/l, is a sinusoidal wave with amplitude A, and circular

frequency ω , then the corresponding velocity profile is given by the formula [36]:

v(r, t) = Real
(

A
ωρ i

(
1− J0(αri3/2)

J0(αRi3/2)

)
eiωt

)
(5.3)

where α is Womersley number, A the mean velocity, r the relative radius, R the radius

of the vessel, ρ the density, and ω the heart rate in rad/s.
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5.4 Arterial Walls

To understand the mechanics of arterial walls, begin by imagining a long tube

of constant cross section and constant wall thickness. This imaginary tube is

homogeneous and isotropic (the material properties are identical in all directions).

The typical blood vessel is branched and tapered. It is also nonhomogeneous and

nonisotropic. Although our assumptions do not fit the blood vessel, strictly speaking,

it makes a practical first estimate of a model to help understand vessel mechanics.

We need to continually remember our assumptions and the limitations they bring to

the model as we progress in our blood vessel simulations and modeling. Consider a

tapered. It is also nonhomogeneous and nonisotropic. Although our
assumptions do not fit the blood vessel, strictly speaking, it makes a
practical first estimate of a model to help understand vessel mechan-
ics. We need to continually remember our assumptions and the limita-
tions they bring to the model as we progress in our knowledge of blood
vessel mechanics.
Consider a cross section of an artery as shown in Fig. 5.3 with wall

thickness h and inside radius ri. Blood vessels are borderline thin-
walled pressure vessels. Thin-walled pressure vessels are those with a
thickness-to-radius ratio that is less than or equal to about 0.1. For
arteries, the ratio of wall thickness h to inside radius ri is typically
between 0.1 and 0.15, as shown in Eq. (5.1).

(5.1)

The mechanics of the artery are not dependent only on geometry, but
rather to understand the mechanics of the artery we must also consider
material properties.  In order to consider material properties, let’s begin
with Hooke’s law for uniaxial loaded members. Hooke’s law for this
simple loading condition relates stress to strain in a tensile specimen.
Hooke’s law for a one-dimensional, uniaxial loaded member is shown in
Eq. (5.2).

(5.2)

where s is the normal stress in N/m2,E is the modulus of elasticity, N/m2,
and ! is the strain, which is unitless.
Figure 5.4 shows a stress–strain curve for a typical engineering mate-

rial. The modulus of elasticity is the slope of the stress–strain curve. For

s 5 Ee

h
ri
> 0.1 to 0.15
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Figure 5.3 An artery modeled as
a homogeneous long, straight
tube with constant cross section
and constant wall thickness.

Figure 5.3 : An artery modeled as a homogeneous long, straight tube with constant
cross section and constant wall thickness.

cross section of an artery as shown in Fig.5.3 with wall thickness h and inside radius

ri. Blood vessels are borderline thin-walled pressure vessels. Thin-walled pressure

vessels are those with a thickness-to-radius ratio that is less than or equal to about 0.1.

For arteries, the ratio of wall thickness h to inside radius ri is typically between 0.1 and

0.15, as shown in Eq. 5.4.
h
ri
∼= 0.1 to 0.15 (5.4)

The mechanics of the artery are not dependent only on geometry, but rather to

understand the mechanics of the artery we must also consider material properties. In

order to consider material properties, lets begin with Hookes law for uniaxial loaded

members. Hookes law for this simple loading condition relates stress to strain in a

tensile specimen. Hookes law for a one-dimensional, uniaxial loaded member is shown

in Eq. 5.5.

σ = Eε (5.5)
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where σ is the normal stress in N/m2, E is the modulus of elasticity, N/m2, and ε is

the strain, which is unitless. For linearly elastic materials, the modulus of elasticity,

E, is a constant in the linearly elastic range. However, arteries are not linearly elastic.

The stressstrain curve for an artery is shown in Fig. 5.4. It is still possible to define

the modulus of elasticity, but the slope of the curve varies with stress and strain. As

stress increases in an artery, the material becomes stiffer and resists strain. Arteries are

linearly elastic materials, the modulus of elasticity, E, is a constant in
the linearly elastic range.
Arteries are not linearly elastic. The stress–strain curve for an artery

is shown in Fig. 5.5. It is still possible to define the modulus of elastic-
ity, but the slope of the curve varies with stress and strain. As stress
increases in an artery, the material becomes stiffer and resists strain.

146 Chapter Five

Figure 5.4 Stress–strain curve for
a material that is linearly elastic
below the yield stress, Sy.

Figure 5.5 Stress–strain curve for an artery.Figure 5.4 : Stress strain curve for an artery, taken from [35].

also metabolically active materials. Smooth muscle can contract and expend energy

in an effort to resist strain. Also, arteries are viscoelastic materials. Viscoelasticity

is a material property in which the stress is not only dependent on load and area, but

also on the rate of strain. For a material in which the stress is dependent on the rate of

strain, Eq. 5.6 is true.

σ = E1ε +E2
dε
dt

(5.6)

Finally, the ideal and much more realistic way to simulate blood flow through arteries

with FSI, one had better use viscoelastic structure solver coupled with the flow solver.

However, modeling and simulating viscoelastic structures is a challenge due to the

material’s nonlinear properties. In addition, coupling with a stable flow solver in a FSI

application would also be a huge challenge, because the response of the structure part

on the interface would have also be nonlinear which would push the limits of coupling

algorithms in FSI simulations. Consequently, in order to reduce complexity of such
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case, we used linear elastic model in our blood flow simulation. Nevertheless, we are

fully aware of the limitations of this approach.

5.5 Blood Flow through 3D Cylinder Shaped Large Artery

In this section, we finally describe the setup parameters and also analyzing the results

of our blood flow through large artery simulation ran with partitioned FSI solver.

In our simulations, we picked IQN-LS implicit partitioned coupling scheme in our

FSI solver because of its being the state of the art algorithm and also it had better

chance for maintaining the stability of the simulation. As discussed in the previous

chapters, our problem is 3D fully enclosed incompressible FSI problem which has

its own challenges, therefore by choosing IQN-LS algorithm in our FSI solver, we

both obtained its performance in hemodynamics problems and also decreased the

simulation’s runtime lengths.

The geometry of the simulation was chosen as 3D fully enclosed. The radius of a large

artery was chosen as 5mm which is consistent with the literature and reality. In order

to find appropriate artery vessel wall thickness, we used equation 5.4 and decided to

take the artery wall thickness as 0.75mm. The artery length was picked as 5cm which

is ten times longer than the radius of the artery. This ten times length of the radius

has been used for CFD application when the problem is a flow thorough a channel or

a tube in order to let the flow be fully developed. The geometry of our simulation is

given in figure 5.5 where, Ω f is the flow domain, Ωs refers to the solid domain and

Γ f ,s is the interface.

As can be seen from the figure 5.5, we took advantage of the axial symmetry by

using the symmetry planes on both directions. Thanks to using pulsatile Womersley

inlet profile which is axisymmetric. Using symmetry planes in our case reduced the

computational complexity, thus simulation times significantly. In addition, we found

the lowest number of mesh sizes which would have still given accurate results to further

minimizing the simulation times.

The mesh properties in this case setup was given in table 5.1. As can be seen from the

table, the discretization was relatively small for a case like this. There were around

23000 cells combined from both fluid and solid domains, and all of the cells were
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Figure 5.5 : Large artery geometry, mesh and its properties

made of hexahedra elements which are known to be good for convergence in FVM

simulations.

In order to maximize numerical accuracy, stability and convergence rate of this FSI

simulation, very high quality meshing was done as can be seen from the table 5.1 and

the quality of the meshes were confirmed with very good maximum aspect ratio and

maximum skewness measures.

In FSI simulations, conforming meshing at the coupling interface is a good practice

and we applied this in our meshes too. As can be confirmed from the figure 5.5, at the

coupling interface, Γ f ,s, the cells on the boundaries of both fluid and solid domains are

conforming to each other. Therefore, we minimized the numerical errors which would

have derived from the interpolations between nonconforming meshes.

Table 5.1 : 3D Large Artery Blood flow mesh properties

Stats/domain Fluid Mesh Solid Mesh
points 18306 8505
faces 50200 21200
cells 16000 6400

boundary patches 5 6
hexahedra elements 16000 6400

Max aspect ratio 4.63716 2.94347
Max skewness 0.726027 0.0653977
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In this simulation, flow solver was chosen as incompressible, Newtonian and laminar

as the reasons of this decision was explained and discussed in section 5.2. The structure

solver was chosen as linear elastic as discussed in section 5.4. The transport properties

of flow solver and the rheology properties of the structure solver is given in table 5.2.

Table 5.2 : Transport and rheology properties of the simulation

Properties/domain Flow Solid
density, ρ , kg/m3 1060 1160

kinematic viscosity, ν , m2/s 3e-6 -
elastic modulus, E, kg/m · s2 - 2e5

The inlet velocity profile was oscillatory in order to make our simulation more realistic.

The velocity profile was calculated by using Womersley solution described in section

5.3. We picked the heart rate as 120 bpm which means that the frequency of the

oscillatory flow would be 2 Hz. By inserting the appropriate simulation parameters

into the equation 5.2, we calculated the Womersley number as:

α = 0.01m

√√√√√120
(

π
30

)
rad/s

3 ·10−6m2/s
= 20.467 (5.7)

As can be seen from the calculation of Womersley number in equation 5.7, the

Womersley number in our simulation was around 20. In other words, inertial forces

on the flow dominated and created a flat velocity profile. This expected flat velocity

profile was showed from the results of the simulation as in figure 5.6. Due to the mesh

resolutions, the velocity profile shown in the figure 5.6 is slightly different than the

analytical solution of the velocity profile equation 5.3.

In figure 5.7, pulsatile blood flow and the velocity changes can be observed.

Nevertheless, displacement vectors applied on the solid domain was showed in figure

5.8. As can be seen from there, the displacement vectors in front of the pulse (the

reddish part of the figure) are outward, in other words, the pressure derived from the

upcoming pulse have the artery walls expanded. On the other hand, the displacement

vectors behind the pulse is inwards so that the artery walls contracted. Although this

observation was expected due to the linear elastic model of the solid solver, however in

reality, the response of the artery walls differs from this result both in the rate of strain

and the amount of it.
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Figure 5.6 : Womersley inlet velocity profile

Figure 5.7 : The first pulsatile velocity passes through the middle point along the
artery.

(b)

(a)

Figure 5.8 : Displacement of artery vessels during pulsatile flow passing. (a)Whole
view of the problem domain. (b)Focused view of the middle part where

the pulse is passing through.
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Figure 5.9 : Deflection vs Time at the middle point with the coordinates (x, y, z) = (0,
0.005, 0.025)

The deflections in time of the point with coordinates (x,y,z) = (0,0.005,0.025) can

be seen from the figure 5.9. From the graph, the expansion and the contraction of

the artery walls can be read. Nonetheless, notice the effects of the first pulse and the

second pulse on the displacement.
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Figure 5.10 : Courant number mean and max value of fluid solver during simulation

In figure 5.10 and 5.11, the convergence and stability analysis of the simulation can be

made. In CFD simulations, the Courant number and keeping it under 1 is very crucial
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Figure 5.11 : Fluid solver and structural solver residuals during simulation

in order to reach convergence to the solution. Courant number gives and idea about the

accuracy of the simulation. If the time step size is not selected according to the mesh

sizes, then the accuracy of the solution may be compromised. Another basic check on

any numerical computation is also the residuals of the unknowns. In this simulations,

fluid solver solves velocities on both directions and also the structural solver solves the

displacements. As can be seen from the residuals graph, initial residuals (indicates the

beginning of time steps) are decreasing and they reaches to steady state with very low

errors. To conclude, IQN-LS method in this case worked very well. The simulation

was stable, robust and numerically accurate.

In figure 5.12, FSI coupling iterations in every time steps can be seen. Since the case

geometry was 3D fully enclosed, this time number of coupling iterations started from

18 and settled on 10 to 15 band. The jump at the beginning can be explained by the

nature of CFD, in other words, the beginning of a simulation is also the farthest from

the converged solution and also reality. That’s why, IQN-LS algorithm took more steps

for convergence at the beginning time step.

5.6 Remarks

In this chapter, the essential background about hemodynamics simulation was laid out.

The viscosity of blood, the mechanical properties of artery walls, the oscillatory flow
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Figure 5.12 : Number of IQN-LS coupling iterations during simulation

theory and using Womersley number to determine the specific velocity profile were

explained briefly. Nevertheless, the state of the art FSI coupling algorithm IQN-LS

was used in order to solve blood flow through large artery in 3D. All the decisions

about the parameters of the simulation was discussed and explained.

In conclusion, IQN-LS algorithm performed very well in this blood flow simulation.

Although it was fully enclosed and incompressible flow, IQN-LS managed

convergence and stability to a solution.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, fluid structure interactions were explored in detail. The history of FSI

applications and the motivation behind them were explained briefly. Nonetheless,

different coupling algorithms in the literature were explained briefly. The differences

between those algorithms were discussed both in theory and also in a benchmark case

by using open source software foam-extend-3.2. In addition, artificial compressibility

technique integration onto a partitioned FSI coupling algorithm, specifically onto

IQN-LS, were discussed and the challenges implementing it were explained.

Fluid structure interaction in hemodynamics and in blood flow simulations were also

explained. As our main focus being the blood flow simulations, we needed to have a

tested, robust and flexible FSI solver. The reasons which makes using FSI techniques

in blood flow simulations a necessity were discussed and examples from the literature

supported those reasons.

Blood flow through large artery simulation were performed by using the state of the

art FSI coupling algorithm IQN-LS and the results were analyzed in detail. Although

the flow solver of the simulation and its parameters were closer to the reality, the

structural solver had drawbacks as explained and discussed in detail. Nonetheless,

we successfully showed that IQN-LS algorithm and foam-extend-3.2 software were

suitable for blood flow simulations.

As discussed in this thesis, the advantages of using implicit partitioned FSI solvers

showed great promise in our blood flow simulations. IQN-LS, being the state of the

art implicit partitioned coupling algorithm, our solver can be modified in order to meet

with the requirements of hemodynamics. Firstly, the linear elastic based structural

can be substituted with a hyper-elastic based or viscoelastic based structural solvers

depends on the problem and the targeted accuracy for the problem at hand. Secondly,

for the microcirculation problems, the flow solver can be substituted with another one

which models non-Newtonian flows, i.e. Bird-Carreau viscosity model. In addition, by

including energy equation into the solvers and also into the IQN-LS coupling, thermal
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effects can be simulated too. Those improvements can be made relatively easily and in

a short amount of time thanks to the partitioned coupling scheme of the IQN-LS.

In hemodynamics, usages of patient-specific geometries and also patient-specific

pressure-velocity profiles in simulations have been proved to be the most accurate

results in comparison with the experimental data. However, FSI simulations with

patient-specific geometries and patient-specific pressure-velocity profiles increases

the complexity of those simulations significantly. However, IQN-LS in this study

performed very well and as a next step, patient-specific FSI blood flow problem may

be successfully solved.

Overall, we believe the work presented in this thesis to be a valuable addition to our

further studies. We have built an efficient workflow on flexible, powerful, scalable and

open source software for solving FSI problems which may arise in the future.
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APPENDIX A.1 : Benchmark Case Results
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APPENDIX A.1
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Figure A.1 : Deflection vs Time at the the tip of the beam with the coordinates (x, y,
z) = (0.6 0.2 0.025334) during simulation with Aitken’s relaxation

method
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Figure A.2 : Forces vs Time at the the tip of the beam with the coordinates (x, y, z) =
(0.6 0.2 0.025334) during simulation with Aitken’s relaxation method
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Figure A.3 : Courant number mean and max value of fluid solver during simulation
with Aitken’s relaxation method
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Figure A.4 : Fluid solver and structural solver residuals during simulation with
Aitken’s relaxation method
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Figure A.5 : Number of Aitken’s dynamic relaxation method coupling iterations
during simulation
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