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COMPRESSED SENSING BASED 3D IMAGE RECONSTRUCTION IN 

DIGITAL BREAST TOMOSYNTHESIS AND MICRO-BIOIMAGING 

SUMMARY 

Breast cancer is the most commonly seen cancer type among women. Early diagnosis 

of breast cancer is considered as the best strategy to increase the lifetime and to reduce 

the mortality rate, treatment duration, and the cost. In the last two decades, 

mammography has been the most efficient and effective tool for early diagnosis of 

breast cancer. However, 2-dimensional (2D) mammography increases the false-

positive and false-negative rates due to the limitation of overlapping tissues. 

Tomosynthesis has been introduced to reduce these limitations with its ability to 

provide (3-dimensional) 3D images of the breast. Recently, tomosynthesis has been 

actively in use clinically with a possible replacement of mammography in the near 

future. In literature, there have been numerous studies published on digital breast 

tomosynthesis (DBT).  

DBT is a linear imaging modality which can be expressed as Y=AX in linear algebraic 

equation form that is a linear combination of the voxels which build up X. In Y=AX 

form, Y is the observed data or projection in vector form, A is the system matrix that 

models ray tracing geometry in matrix form, and X is the object that is desired to be 

reconstructed in vector form. The coefficients of the linear equations must be 

computed before any iterative reconstruction algorithm is applied. To implement 

algebraic reconstruction technique (ART), one of iterative reconstruction technique 

(IRT) or any IRT, Siddon’s 3D ray tracing algorithm can be used to build up the matrix 

A in 3D image reconstruction.  

The reconstruction methods used in DBT can be split into analytical and iterative 

techniques. Filtered back projection (FBP) which is an analytical and a conventional 

tomographic reconstruction technique shows inefficient results due to the lack of a 

number of projections though it is computationally very efficient. IRTs have been 

proposed in order to overcome this problem. In addition to the IRTs, regularization 

terms have been proposed in order to achieve the unique solution due to the highly 

under-determined problem in DBT reconstruction arose from limited view angle 

imaging geometry. Total variation (TV) has been the most commonly used term 

among these regularizations. Compressed sensing based application, TV3D (3-

dimensional total variation), is applied to ART (ART+TV3D) to enhance the quality of 

the reconstructed image. 

In this Ph.D. thesis, as the first project, we proposed an effective application of 

majorization-minimization (MM) based on 3D TV, called ART+TV3D+MM 

(compressed sensing based application) in iterative image reconstruction of DBT, and 

the effectiveness of the work has been shown using an analytical phantom and a real 

DBT images obtained at 12 different doses by Siemens MAMMOMAT. 

Using a Siemens MAMMOMAT Inspiration system (Siemens AG, Healthcare Sector, 

Erlangen, Germany), we acquired 25 projections of the real breast phantom, CD 

Pasmam 1054 phantom (Southern Scientific Ltd, West Sussex, United Kingdom) at 

Hospital da Luz S.A., Lisbon, Portugal. The equipment acquired the projections with 
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short X-ray pulses at angles of the range of 47o with 28 kVp at 12 different levels of 

radiation doses in mAs. 

We reconstructed the images of the analytical phantom with three iterative 

reconstruction methods: ART, ART+TV3D, and ART+TV3D+MM and compared the 

results both qualitatively and quantitatively. We then reconstructed the images of the 

real breast phantom with ART, ART+TV3D, and ART+TV3D+MM (IRT methods) and 

compared the results of the IRT methods with the results of MAMMOMAT’s FBP 

method both qualitatively and quantitatively as well. Siemens MAMMOMAT 

reconstructs via its know-how unknown filtered back projection (FBP) method. We 

further aimed to investigate if compressed sensing based methods, ART+TV3D and 

ART+TV3D+MM, could help decrease the radiation dose which is one of the most 

critical limitations of DBT. We evaluated the performance of the methods for each 

experiment and phantom using visual assessment and quantitative metrics such as 

signal to noise ratio (SNR), structural similarity (SSIM), CNR (contrast to noise ratio), 

and 1-dimensional (1D) profiles. The visual interpretation was done by focusing on 

the different object of interests (OOIs) and region of interests (ROIs). 

The first project of the Ph.D. thesis was performed at both Istanbul Technical 

University and Lisbon University. 

3D imaging of the biological structures such as bioreactors, lab-on-a-chips (LOCs), 

cancer tissues, organoids, and spheroids is desired in many applications of the 

biomedical field such as bioimaging. However, in general, 2D microscopy techniques 

are used in bioimaging. Confocal microscopy, a promising method to produce 3D 

images, suffers from being very expensive, very difficult to access, and not easy to 

use. Having the intense experience of 3D image reconstruction in DBT has inspired us 

for creating a robotic 3D micro-bioimaging (MBI) tool.   

For this purpose, which is the second project of this Ph.D. thesis, we developed the 

software algorithms for 3D image reconstruction and created a hardware, robotic 3D 

MBI tool, which is portable, cost-effective, and easy to use. We also manufactured 

several biological phantoms using polydimethylsiloxane (PDMS) as a transparent 

media to test the 3D image reconstruction performance of the tool. 

The imaging and scanning tool for MBI had mainly three parts as modeling DBT: a 

complementary metal oxide semiconductor (CMOS) detector with a lens, a light 

source (can be a light emitted diode (LED)), and a holder or mini table for the 

biological sample. As CMOS image detector, Logitech C160 CMOS was used. Before 

creating the robotic 3D MBI tool, the manual imaging and scanning tool was built 

using PMMA (polymethylmethacrylate) by a laser cutter. It was able to manually 

rotated between maximum -45o and +45o with 5o angle steps, which means it was able 

to acquire maximum 19 projections in an examination. After getting promising results 

via manual scanning imaging tool, we designed a robotic imaging and scanning tool 

(robotic 3D MBI tool) controlled automatically.  

The mechanical part of the robotic 3D MBI tool was built from scratch according to 

the specifications that were needed for a smooth and precise image acquisition. The 

chassis of the structure was built from 20mm T-slotted black anodized aluminum, 

which provided enough support for the rotating axis. The T-slots were joint using 

aluminum corner brackets to ensure the integrity of the chassis and to have versatility 

in case the structure had to be changed. The design was based on a mix between a 

computer numerical control (CNC) machine and a 3D printer. The size of the robotic 

3D MBI tool was 35cmx35cmx30cm. It was able to manually rotated between 

maximum -45o and +45o with 5o angle steps, which means it was able to acquire 

maximum 19 projections in an examination in a similar manner as the manual one. 



xxiii 
 

The electronics part of the robotic 3D MBI tool was done by Arduino board/software 

and motor controls. It comprised of one CMOS imager, one lens, one Arduino Mega 

2560 R3 board, one RAMPS 1.4 board, three motor drivers, one light source, two 

stepper motors, one linear motor, and one power supply. We also designed a more 

advanced optical imaging setup using a combination of optical table and tools 

compared to that of manual scanning tool. The microcontroller programming of motor 

control was done using both a C++ code compiler and Matlab™ Graphical User 

Interface (GUI). 

Whereby this tool, we improved the precision of the geometry and the resolution 

quality of the acquired projections. We also reconstructed 3D images of the projections 

acquired via robotic 3D MBI tool using ART+TV3D that we developed and suggested 

to investigate if the layers of a biological phantom and/or a biological sample such as 

bioreactor fabricated by PDMS could be distinguished. 

This second project of the Ph.D. thesis was performed at Harvard Medical School and 

Harvard-MIT Health Science and Technology, Massachusetts Institute of Technology, 

MA, USA. 

The ultimate goal of this research for MBI by developing advanced robotic 3D MBI 

tool will be to investigate how morphology differentiation and proliferation of the 

tumor is attained by the cells after putting in the hydrogel and to visualize the 3D 

images of the tumor slice by slice. We will study the changes that happen on a 

morphological level after the interaction of the tumor tissue with drugs inside a gel by 

3D imaging layer by layer as well. 
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SAYISAL MEME TOMOSENTEZİNDE VE MİKRO 

BİYOGÖRÜNTÜLEMEDE SIKIŞTIRILMIŞ ALGILAMA TABANLI 3B 

GÖRÜNTÜ GERİ ÇATMA 

ÖZET 

Meme kanseri, dünyada kadınlar arasında görülen en yaygın kanser türüdür. Kanserin 

erken teşhisi hastalığın tedavisinde çok önemli bir yer tutmaktadır. Erken teşhis 

araçlarından biri de görüntülemedir. Elektronik Mühendisliği açısından görüntüleme, 

görüntü geri çatma teknikleri ve görüntü işleme olarak ele alınmaktadır. Bu doktora 

tezinde, hızla gelişen görüntü geri çatma teknikleri ve görüntü işleme metotlarındaki 

yeni yaklaşımların kanserli hücre ve doku (örneğin meme kanseri) üzerine yapılan 

çalışma alanlarına uygulanması kapsamında iki ana proje çalışılmıştır. İlk proje olarak 

mevcut görüntü geri çatma algoritmalarının limitasyonları ve tıkanıklıkları göz önünde 

bulundurularak 12 radyasyon doz seviyesinde gerçek meme fantomu kullanılarak 

sayısal meme tomosentezinde (SMT) (digital breast tomosynthesis-DBT) sıkıştırılmış 

algılama tabanlı 3-boyutlu (3B) görüntü geri çatma yöntemleri geliştirilmiş ve 

önerilmiştir. İkinci proje kapsamında mikro biyogörüntülemede (micro-bioimaging) 

kanserli hücre kolonisi, tümör, kanserli doku, biyopsi, lab-on-a-chip gibi çeşitli 

biyolojik örnekleri açısal tarama yaparak 3B görüntüleyebilen 3B biyogörüntüleme 

cihazı (robotic 3D micro-bioimaging tool) geliştirilmiştir.    

Hastalık tanı ve teşhisinde medikal görüntüleme önemli bir teknolojidir. Yapısal ve 

fonksiyonel görüntüleme olarak adlandırılan ve farklı amaçlar için kullanılan iki ana 

medikal görüntüleme sınıfı mevcuttur. Yapısal görüntüleme ile anatomik yapılar 

incelenir. Manyetik rezonans görüntüleme (MRG), Röntgen ve bilgisayarlı tomografi 

(BT) yapısal görüntüleme tekniklerinin en önemlileridir. Fonksiyonel görüntüleme ise 

insan vücudundaki özel bir fonksiyonu analiz eden bir tekniktir. En önemlileri Single 

Photon Emission Computed Tomography (SPECT) ve Positron Emission Tomography 

(PET)’dir. 

Tomografi Yunan kökenli “tomos” (dilim) ve “graph” (tanımlama) kelimelerinin 

birleşiminden oluşmuştur. İngiliz mühendis Godfrey Hounsfield ve Güney Afrika 

doğumlu fizikçi Allan Cormack tarafından 1972 yılında geliştirilmiştir. Bu sebeple 

Hounsfield ve Cormack 1979 yılında Nobel Tıp Ödülü’ne layık görülmüşlerdir. 

Bilgisayarlı tomografi (BT), vücut içine girmeksizin vücut içini görüntülemek 

suretiyle çeşitli hastalıkların tanı ve teşhisinde kullanılmasıyla tıpta devrim 

yaratmıştır. Radyografinin bir formu olan BT günümüzde çok yaygın bir medikal 

görüntüleme uygulamasıdır. X-ışın kaynağının bir eksen etrafında döndürülmesiyle 

toplanan 2-boyutlu (2B) radyografik görüntülerden nesnenin 3B görüntüsü elde 

edilebilmektedir. 

Ulusal Meme Kanseri Vakfının (NBCF: National Breast Cancer Foundation, Inc.,) 

2010 yılında yapmış olduğu araştırmaya göre her yıl kadınlar arasında 200.000 yeni 

meme kanseri vakası ve 40.000 ölüm yaşanmaktadır. Türkiye’de Sağlık Bakanlığının 

2008 verilerine göre meme kanseri %41.6 oranıyla kadınlar arasında en sık görülen 

hastalık olmuştur. Bunu %15.3 ile tiroid, %13.5 ile kolorektal, %8.7 ile uterus korpusu, 

%8.4 ile trakea, akciğer ve bronş, %8 ile mide, %6.5 ile over, %4.7 ile non-hodgking 
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lenfoma, %4.4 ile uterus serviksi, %4.2 ile beyin ve diğer sinir sistemi kanserleri takip 

etmektedir.  

Kadın meme dokusu süt üretme bezleri (lobules), süt taşıma kanalları (ducts) ve bağ 

dokusu (stroma) olmak üzere üç ana kısımdan meydana gelir. Bağ dokusu kan 

damarları, lenfatik damarlar ve yağ dokusunu çevreler. Bazı kanserler süt üretme 

bezlerinden başlarken (lobular cancers), çoğunluğu süt taşıma kanallarında (ductal 

cancers) meydana gelir. 

Mamografi yönteminin, birçok avantajlarının yanında tanı görüntülemesinde yaklaşık 

%20 oranında kanserli hücreyi kaçırdığı tahmin edilmektedir. 2B görüntülemeden 

kaynaklı dokunun üst üste binme problemi mamografinin en büyük kısıtlarındandır. 

Sayısal meme tomosentezi (SMT) ise yüksek çözünürlüklü 3B görüntü elde etme 

imkânı sunan yeni görüntüleme yaklaşımıdır. Bu sayede SMT ile geleneksel 

mamografide karşılaşılan dokunun üst üste binme problemi nedeniyle dokular arasına 

gizlenen kanserli hücreler daha kolay algılanabilmektedir. 

SMT’de plakalarla sıkıştırılan meme etrafında bir yay şeklinde ve genellikle 50 

derecelik tarama açısı ile hareket eden X-ışın tüpünden gönderilen radyasyon meme 

altındaki detektöre düşürülerek memenin 2B projeksiyonları elde edilir. 

Uygulamalarda yaygın olarak SMT’de 11-60 derece tarama açısı ile 9-25 arasında 

projeksiyon elde edilir. Bu projeksiyonlar daha sonra çeşitli görüntü geri çatma 

yöntemleriyle geri çatılarak dilim dilim 3B geri çatılmış meme görüntüsü elde edilir. 

Böylece doku üst üste binmesi problemi nedeniyle meydana gelen yanlış pozitif ve 

yanlış negatif oranları azaltılabilir. SMT’nin radyasyon nedeniyle sınırlı açıda ve 

sınırlı sayıda tarama yapması ise dezavantajdır. 

SMT Y=AX lineer cebirsel denklem formu ile yazılabilen hedef nesnenin (X) 3B geri 

çatılmış görüntüsünü elde eden yenilikçi bir görüntüleme modelidir. Y=AX formunda 

Y gözlenen veri (projeksiyon) vektörü, A ışın izleme geometrisini modelleyen sistem 

matrisi, X ise 3B görüntülenmesi istenen nesnenin vektör formunu göstermektedir. 

Lineer denklem katsayılarını içeren A sistem matrisi yinelemeli geri çatma 

algoritmasının uygulanması için elde edilmelidir. Geri çatılan 3B görüntü, sınırlı açıda 

ve sınırlı sayıda taramayla elde edilen 2B projeksiyonlardan elde edildiğinden eksik 

veri problemi olarak adlandırılan önemli bir kısıt ortaya çıkmaktadır. Bu kısıtı aşmak 

için ileri düzey 3B görüntü geri çatma algoritmalarının geliştirilmesine ihtiyaç 

duyulmaktadır. 

Literatürde bir yinelemeli yöntem olan cebirsel geri çatma tekniğinin (algebraic 

reconstruction technique (ART)) ve bir analitik yöntem olan filtrelenmiş geri izdüşüm 

tekniğinin (filtered back projection (FBP)) SMT gibi ileri tıp teknolojisinde 

uygulandığından bahsedilmektedir.  

Bu doktora tezinde ART ile 3B görüntü geri çatılmıştır. ART algoritmasında, Y=AX 

formundaki, ışın izleme geometrisini modelleyen sistem matrisini (A) elde etmek için 

Siddon’un 3B ışın izleme algoritması kullanılmıştır. ART ile elde edilmiş geri çatılmış 

3B görüntünün kalitesini arttırmak için sıkıştırılmış algılama tabanlı bir uygulama olan 

(compressed sensing based application) 3B toplam değişinti algoritması TV3D (3-

dimensional total variation) ART sonrası elde edilen geri çatılmış 3B görüntüye 

uygulanmıştır. 

İlk projede iki ayrı alt çalışma yapılmıştır. İlk olarak 3B toplam değişinti temelli 

maksimizasyon-minimizasyon algoritması (majorization-minimization (MM) based 

on 3D total variation) yinelemeli görüntü geri çatma literatüründe yenilikçi bir 

yaklaşım olarak sunulmuştur (ART+TV3D+MM). İkinci olarak ART, ART+TV3D ve 

ART+TV3D+MM yöntemleri ile elde edilen geri çatılmış görüntüler 12 farklı 

radyasyon dozu için elde edilerek, sıkıştırılmış algılama tabanlı yinelemeli görüntü 
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geri çatma teknikleri olan ART+TV3D algoritmasının ve bizim önerdiğimiz yeni 

ART+TV3D+MM yönteminin hastaya uygulanan radyasyon dozunun azaltılabilmesi 

noktasında uygulanabilirliği araştırılmıştır. İlk proje kapsamında, Lizbon Üniversitesi 

da Luz S.A. hastanesinde Siemens MAMMOMAT Inspiration system (Siemens AG, 

Healthcare Sector, Erlangen, Germany) kullanılarak 12 farklı doz seviyesinde yaklaşık 

47o açısal tarama aralığında 25 projeksiyonu alınan gerçek meme fantomu (CD 

Pasmam 1054) için ART, ART+TV3D ve ART+TV3D+MM uygulanarak 3B görüntüler 

elde edilmiş ve aynı fantomun Siemens MAMMOMAT cihazının filtrelenmiş geri 

izdüşüm tekniğiyle (FBP) elde edilen geri çatılmış görüntüleri ile kıyaslanmıştır. 

Siemens MAMMOMAT cihazında know-how’ı bilinmeyen bir filtreleme yöntemine 

sahip FBP kullanılmaktadır. 

Sonuçların performansını karşılaştırmak amacıyla önce yinelemeli görüntü geri çatma 

tekniği olan (iterative reconstruction technique: IRT) ART, ART+TV3D ve 

ART+TV3D+MM bir analitik fantom için test edilmiştir. Sonuçlar niteliksel ve 

niceliksel olarak değerlendirilmiştir. Niceliksel değerlendirmede iki metrik olan 

sinyal-gürültü oranı (signal-to-noise ratio: SNR) ve yapısal benzerlik (structural 

similarity: SSIM) kullanılmıştır. Daha sonra, 12 dozda alınan CD Pasmam 1054 

gerçek meme fantomu projeksiyonları için yinelemeli görüntü geri çatma tekniğinin 

üç yöntemi (ART, ART+TV3D ve ART+TV3D+MM) kullanılarak elde edilen geri 

çatılmış görüntüler ile Siemens MAMMOMAT cihazının filtrelenmiş geri izdüşüm 

tekniğiyle (FBP) elde edilen geri çatılmış görüntüler kıyaslanmıştır. Bu kısımdaki 

sonuçlar ise hem niteliksel hem de karşıtlık gürültü oranı (contrast to noise ratio (CNR) 

ve 1B profil değişimi metrikleriyle niceliksel olarak değerlendirilmiştir. İlk proje 

İstanbul Teknik Üniversitesi ve Lizbon Üniversitesi’nde gerçekleştirilmiştir.  

İkinci projede, SMT’deki çalışmalardan elde ettiğimiz umut verici sonuçların verdiği 

ilhamla kanserli hücre kolonisi, tümör, kanserli doku, biyopsi, lab-on-a-chip gibi 

çeşitli biyolojik örnekleri 3B görüntüleyebilen robotik 3B biyogörüntüleme cihazı 

(robotic 3D micro-bioimaging tool) geliştirilmiştir. Tıp ve biyoloji alanlarında bilimsel 

araştırma yapılan merkezlerde kullanılabilecek olan cihazın avantajları arasında, ucuz, 

taşınabilir ve kullanımı kolay olması sıralanabilir. Bu cihaz donanım (mekanik, 

elektronik ve robotik kontrol kısımları) ve yazılım (robotik kontrol yazılımı ve 3B 

görüntü geri çatma yazılımı) olmak üzere iki aşamalı tasarlanmıştır. 

Donanımsal olarak robotik 3B biyogörüntüleme cihazının ana mekanik çatkısı, dönme 

eksenine yeterli güç ve desteği sağlamak için 20 mm’lik T-oluklu eloksallı 

alüminyumdan 35cmx35cmx30cm boyutlarında üretilmiştir. Hassas hareket ve 

ölçümler için bazı parçalar 3B yazıcı ile üretilirken, bazıları ise 

polymethylmethacrylate (PMMA) malzeme kullanılarak CNC makine ve lazer kesici 

ile üretilmiştir. Elektronik ve robotik kontrol kısmı, bir Arduino Mega 2560 R3 kartı, 

bir RAMPS 1.4 kartı, Arduino yazılımla kontrol edilen iki adım motoru, bir lineer 

motor, üç motor sürücü ve bir güç kaynağından meydana gelmiştir. Optik görüntüleme 

kısmı ise bir metal oksit yarı iletken dedektör (complementary metal oxide 

semiconductor (CMOS) görüntüleyici, bir lens ve bir ışık kaynağından meydana 

gelmiştir. CMOS görüntüleyici dedektör olarak Logitech C160 kullanılmıştır. Optik 

görüntülemede hassas optik masa tasarımı sayesinde projeksiyon elde etme geometrisi 

ve görüntüleme kalitesi iyileştirilmiştir. -45o ve +45o açı aralığında tarama yapabilme 

yeteneğine sahip cihaz ile bu projede -25o ve +25o açı aralığında 5o açı adımıyla 11 

projeksiyon elde edilmiş ve geri çatılmıştır.  

Yazılımsal olarak ise açısal tarama ve üç boyutlu düzlemde eksen hareketlerini yapan 

robotik motor kontrollerin mikrokontrolör programlanması C++ kod derleyici ve 

Matlab grafiksel kullanıcı arayüzü ile yazılmıştır. 3B görüntüleme için ise sıkıştırılmış 
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algılama tabanlı yinelemeli 3B görüntü geri çatma yazılımı (ART+TV3D) mikro-

biyogörüntüleme (micro-bioimaging (MBI)) araştırmalarında kullanılmak üzere 

revize edilerek geliştirilmiştir. 

Testlerde kullanılan biyolojik fantomlar transparan ortam sağlayan 

polydimethylsiloxane (PDMS) kullanılarak üretilmiştir.  

İkinci proje Harvard Medical School, Harvard-MIT Health Science and Technology 

ve Massachusetts Institute of Technology’de gerçekleştirilmiştir. 

Sonuç olarak, ilk projenin ilk kısmında ART+TV3D+MM yönteminde analitik fantom 

için elde edilen sonuçların SSIM ve SNR değerleri on iterasyon sonunda ART+TV3D 

ve ART yöntemleriyle elde edilen aynı değerlerden yüksek çıkmıştır. Onuncu 

iterasyonda ART+TV3D+MM’in SSIM ve SNR değerleri sırasıyla 0.9814 ve 24.56 

olurken, ART+TV3D’in 0.9771 ve 24.32; ART’in ise 0.9208 ve 22.48 olmuştur. Ayrıca 

ROI ve object of interest (OOI)’ler FBP ve ART’ye göre ART+TV3D ve 

ART+TV3D+MM yöntemlerinde görsel olarak daha net bir şekilde ayırt edilebilmiştir. 

İlk projenin ikinci kısmında, 12 farklı doz seviyesi için ART+TV3D ile elde edilen 

görüntülerde CNR değerleri hem doz arttıkça artmış, hem de aynı doz seviyesindeki 

ART’nin CNR değerlerinden genel olarak yüksek çıkmıştır. Örneğin en yüksek doz 

seviyesi olan 199 mAs doz seviyesinde, ROI-1 için FBP, ART, ART+TV3D ve 

ART+TV3D+MM’in CNR değerleri sırasıyla 1.203, 54.621, 55.894 ve 56.443 olurken; 

ROI-2 için yine sırasıyla 2.188, 2.292, 2.364 ve 2.473 olmuştur.  

İkinci projede ise tasarlanan robotik 3B biyogörüntüleme cihazıyla laboratuvar 

ortamında üretilen biyolojik fantomların projeksiyonları değişik açılardan başarıyla 

alınmıştır. ART+TV3D yöntemiyle, bu projeksiyonlar 3B görüntü şeklinde geri 

çatılmış ve bu biyolojik fantomlar başarılı bir şekilde dilim dilim görüntülenebilmiştir. 

İki projede de alınan olumlu sonuçların gerek yinelemeli 3B görüntü geri çatmada yeni 

yaklaşımların araştırılması ve geliştirilmesi noktasında; gerekse tasarlanan robotik 3B 

biyogörüntüleme cihazının bilimsel araştırma laboratuvarlarında, kanserli hücre ve 

doku çalışmaları ile bunlara karşı ilaç vb. geliştirmek için yapılan tıbbi ve biyolojik 

araştırmalarda kullanılan çeşitli biyolojik numunelerin 3B görüntülenmesinin 

geliştirilmesi noktasında gelecekteki çalışmalara ışık tutacağı düşünülmektedir.   
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1.  INTRODUCTION 

Medical imaging modalities can be classified based on different ciriteria as 

summarized in the following section.  

1.1 Medical Imaging 

Medical imaging is an important modality that visualizes invisible inner part of the 

body for medical diagnostic. Medical imaging can be grouped according to different 

scope of windows such as structural/functional (in terms of technologies), 

ionizing/nonionizing (using radiation), projection/tomographic (as techniques).  

1.1.1 Structural and functional imaging 

1. Structural imaging modalities show anatomical structures obtained from: 

• Magnetic Resonance Imaging (MRI) is accepted as one of the most accurate imaging 

method and uses the magnetic field properties for the diagnosis. 

• X-rays or the radiography uses the ionizing electromagnetic radiation. 

• Computed Tomography (CT) uses the X-rays to acquire a slice image in a two-

dimensional (2D) or a volume in a three-dimensional (3D) structure. 

2. Functional imaging is a nuclear medicine technique that analyzes a specific function 

handled in a specific area of the human body. 

• Single Photon Emission Computed Tomography (SPECT) uses γ-rays emitted after 

injection of a low dose radiactive agent into the patient for acquiring the image sections 

of the organs and tissues. 

• Positron Emission Tomography (PET) produces a 3D image of functional changes 

occuring in organs and tissues followed by injecting radioactive agents in the body. 

Each device has its advantages. MRI and CT give structural information whereas 

SPECT and PET provide functional information at the expense of low spatial 

resolution.  
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Nowadays, new modalities such as functional MRI (fMRI-used in neuroimaging) 

provide both structural and functional information. The goals of all imaging modalities 

are similar in general sense, for instance, to achieve getting medical images with high 

resolution and to reduce the number of artifacts (Ntalampeki, 2007). 

1.1.2 Ionizing and non-ionizing imaging 

Some of medical imaging techniques use ionizing radiation, whereas others use non-

ionizing radiation. In the techniques, which use ionizing radiation, the images are 

created by the use of X-rays or gamma rays. Both X-rays and gamma rays are high 

energy, high frequency, and short wavelength (less than an angstrom) electromagnetic 

radiation that is capable of penetrating and passing through most tissues. (See Figure 

1.1) (Url-1, 2015). 

Tissues of greater thickness or higher atomic mass absorbe differentially ionizing 

radiation, as it passes through the body (e.g. calcium has a higher atomic weight than 

hydrogen which is a major component of tissue water). Different portions of the body 

tissues attenuate differing amounts of the incident radiation. Attenuation of the 

ionizing radiation through the body makes the tissue atoms chemically reactive and 

damages the cells. Non-ionizing radiation techniques mainly use either radio waves 

combined with high-field magnets (e.g. magnetic resonance imaging) or acoustic 

pulses (ultrasound) for echo-ranging imaging (e.g. radar) (Url-1, 2015). 

 

 

Figure 1.1 : Ionizing (X-ray, computed tomography, mammography, nuclear 

scintigraphy) and non-ionizing (magnetic resonance) imaging (Url-1, 2015). 
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1.1.3 Projection and tomography techniques in imaging 

Medical images can be classified as tomographic techniques (magnetic resonance 

imaging (MRI), computed tomography (CT), and echocardiography) or projection 

techniques (radiography, angiography, and planar scintigraphy) based on volumetric 

and planar imaging (see Figure 1.2). Because of various tissues at different depths are 

overlapping each other and often need multiple views, the body needs to be 

transilluminated by projection techniques such as X-ray films which are shadowgram. 

Tomography is a slicing of the body into various sections with various view planes, 

and tomographic images are thin slices, which allow understanding the anatomy more 

clearly with less artifacts by avoiding the overlapping structures. 

Tomographic sections are generated by X-rays in the case of computed tomography or 

ultrasound in the case of echocardiography, and then they are processed by a computer 

to allow the display and understanding of 3D anatomy (Url-1, 2015). Some of these 

modalities are used for screening purposes and some for diagnostic purposes. These 

imaging modalities are continually being developed to diagnose fatal diseases such as 

breast cancer as early as possible (Sree et al., 2011). 

 

Figure 1.2 : Projection (radiography, angiography, planar scintigraphy) and 

tomographic (magnetic resonance, computed tomography, echocardiography) 

techniques (Url-1, 2015). 
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The currently used modalities to detect breast cancer include mammography, breast 

ultrasound, thermography, magnetic resonance imaging (MRI), positron emission 

tomography (PET), scintimammography, optical imaging, electrical impedance based 

imaging, and computed tomography (CT). Since cancer is a complex disease with 

various pathologies, many variations of the detection technique have been used in 

performing to improve the detection efficiency over the years (Sree et al., 2011). 

Additionally, according to Yıldırım and Kamasak (2014) referenced by Edell and 

Eisen (1999) and Bick and Diekmann (2010), mammography is a medical imaging 

system which is mainly used in breast imaging today. 

An ultrasound was a reference method for breast cancer diagnosis before 

mammography at early ages because it was a cheap and harmless technique. Since 

MRI is often used for the display of soft tissue; it may not give certain results to detect 

cancerous tissue. Likewise, although CT and PET devices potentially may be used in 

large amounts for breast imaging, they are not being able to use for diagnostic purposes 

due to high rate X-ray dose (Yıldırım & Kamasak, 2014). X-ray technology is 

described in Section 1.2 X-ray Technology. 

Since mammography and digital breast tomosynthesis (DBT) are the most common 

modalities for detecting breast cancer, these methods are briefly explained in Section 

1.4. Breast cancer. 

CT is also briefly explained in Section 1.3 Computed Tomography (CT) since the 

fundamental of mathematical theory of tomography is applied to mammography and 

DBT as well. 

1.2 X-ray Technology 

X-rays have been highly useful diagnostically and backbone of medical imaging by 

both computed tomography and Roentgen films. X-ray imaging is a method of 

illuminating the body with a penetrating high-energy ionizing radiation.  The different 

tissues of body that have various densities attenuate different amounts of this radiation. 

Less dense and lower atomic weight structures, such as lung, allow transmission of 

more radiation, and cause black areas on the film, while higher atomic weight 

structures (bone) absorb and block the radiation, and these areas appear white 
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(transparent) on the film. The differential pattern of X-ray radiation escaping the body 

creates the shadowgram on an X-ray film. Since overlapping nature of body structures 

is the main limitation of the projection techniques, in X-ray imaging often at least two 

views (e.g. PA and lateral) are required. (Url-1, 2015). 

1.3 Computed Tomography (CT) 

Tomography is from the Greek word "tomos" meaning slice or section and "graphia" 

meaning describing. British engineer Sir Godfrey Hounsfield and South Africa-born 

physicist Allan Cormack invented Computed Tomography (CT) in 1972 (Url-2, 2014).  

Hounsfield and Cormack were awarded the Nobel Prize for their contributions to 

medicine and science in 1979. The Nobel Assembly of Karolinska Institutet decided 

to award the Nobel Prize in Physiology or Medicine for 1979 jointly to Allan M. 

Cormack and Godfrey Newbold Hounsfield for the "development of computer assisted 

tomography” (Url-2, 2014). 

In terms of inspecting the body noninvasively, the invention of CT was a great 

revolution in diagnostic medicine. The 2D slice-based CT has been the most 

commonly used of CT technique in clinical operations for many years. However, the 

need for better visualization and more accuracy of the 3D or volumetric CT imaging 

have been motivating the science world to develop more efficient reconstruction 

approaches (Ntalampeki, 2007). CT was also called computerized tomography or 

computed axial tomography (CAT). X-ray CT consists of detectors, motorized table 

and an X-ray tube that rotates around the body (Figure 1.3). Specialized and computer 

processed X-ray equipment is used to produce cross-sectional images (tomographic 

images) of the body which represent slices of the patient being imaged allowing the 

user to see inside of the body without cutting. These tomographic images are used for 

various purposes such as intervention and screening, diagnosis, treatment planning, 

and therapy (Url-3, 2014). There is a picture of a real CT in Figure 1.3. 

X-ray CT that is a form of radiography is the most common medical imaging 

application. A series of 2D radiographic images taken around a single axis of rotation 

are used to create a 3D image of an object by applying digital geometry processing. A 

volume of data produced by CT can be manipulated to demonstrate various structures 

of the body according to their ability to block the X-ray beam (Url-4, 2014). 
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1.4 Breast Cancer 

Today, since the most common type of disease in women is breast cancer, researches 

about breast cancer are increasing rapidly. Because of high disease incidence among 

women, most of these researches are done in medical area. 

According to World Health Organization (WHO) International Agency for Research 

on Cancer (IARC), 2008 (Available from: http://globocan.iarc.fr/factsheets/ 

populations/factsheet.asp? uno=900) and WHO Fact sheet N297, 2009 (Available 

from: http://www.who.int /mediacentre/factsheets/fs297/en/index.html) referenced by 

Sree et.al., 2011, worldwide, breast cancer has 10.9% of cancer incidence in both men 

and women which is on second order of cancer types after lung cancer. Breast cancer 

is also the fifth common cause of cancer death (Sree et al., 2011). 

National Breast Cancer Foundation, Inc. (NBCF), 2010 (Available from: 

http://www.nationalbreastcancer.org/about-breast-cancer/what-is-breast-cancer.aspx) 

is also referenced by Sree et.al., 2011 that it is estimated that around 200000 new breast 

cancer cases and 40000 deaths every year in women. In men, these statistics are 1700 

and 450, respectively (Sree et al., 2011). 

According to the statistics of the Surveillance, Epidemiology, and End Results (SEER) 

Cancer Statistics Review, 1975-2007, National Cancer Institute (Available from: 

http://seer.cancer.gov/csr/1975_2007/) referenced by Sree et.al., 2011 that it was 

estimated that 207090 new cases and 39840 deaths from breast cancer (only women) 

 

Figure 1.3 : A model of computed tomography (left), a real computed tomography 

(right) (Url-3, 2014). 
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were expected to occur in the United States, despite recent advances in treatment (Sree 

et al., 2011). The statistics inform that the early diagnosis of breast cancer was 

considered vital, because a five-year survival rate of 96% for those whose cancer was 

detected in the early stages (Sree et al., 2011). 

According to some other researches, one of per 9 women is under the risk of breast 

cancer and breast cancer constitutes 23% of all female cancer that causes of women 

death. Breast cancer is a tumor genesis in mammary glands and milk ducts and starts 

in the breast cells. It is estimated that gene mutations and hereditary causes are the 

reasons of breast cancer (Sener, 2013; Sree et al., 2011).  To comprehend the basics of 

breast cancer, the structure of the normal breast tissue must be understood clearly.  

A female breast tissue includes three main sections, which are lobules, ducts, and 

stroma, shown in Figure 1.4. The lobules are milk-producing glands, ducts are tiny 

tubes that carry the milk from the lobules to the nipple, and stroma is fatty tissue and 

connective tissue surrounding the ducts and lobules, blood vessels, and lymphatic 

vessels. A majority of cancer begins in the ducts (ductal cancers), whereas some begins 

in the lobules (lobular cancers) (ACS, 2014). 

The most well known and a reliable technique for detecting breast cancer is 

mammography. Since the breast is a very sensitive part of the body against radiation, 

the application time of radiation dose of diagnosis to acquire breast image should be 

minimum (Sener, 2013).  

Physical factors such as system noise, compression of the breast, radiation scattering 

and motion artifacts affect the imaging quality. Additionally, because of the dense 

structure of the breast tissue, tumors in the breast may not be detected at younger ages. 

For these reasons, it is needed to improve the imaging techniques to detect breast 

tumors much better. Although mammography finds the traditional and wide 

application areas to sense tumors, due to overlapping of breast tissue, tumors can be 

hidden and cannot be detected in the processed image. One of the most popular study 

areas of the new detector technologies is digital breast tomosynthesis (DBT) to 

overcome these bottlenecks. The principle of 3D breast imaging of DBT is similar to 

digital mammography with C-Arm CT. DBT system structure is like CT and its 

imaging that generates cross sectional data sets is done with reconstruction methods in 

a short time (Sener, 2013). 
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In Turkey, according to the data taken from Ministry of Health Department of Cancer 

Control breast cancer has the highest rate as 41.6% incidence among women. The 

incidence of the other types of cancer is ordered as colorectal 15.3%, thyroid 13.5% 

and uterine-corpus 8.7% cancer (per 100.000), respectively in 2008 as shown in Figure 

1.5 (Can, 2011). 

Before applications of DBT, mammography, ultrasound and magnetic resonance have 

been recently applied for breast imaging. As an imaging technique, DBT uses a limited 

viewing angle for scanning the breast. Projections on the detector which are obtained 

 

Figure 1.4 : Normal breast tissue (ACS, 2014). 

 

Figure 1.5 : Incidence of the most common 10 types of cancer in women, Turkey, 

2006-2008 (Can, 2011). 
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by scanning of the breast in a limited view are used to produce a 3D image of the 

breast. This method has an important advantage over 2D mammography to accomplish 

the overlapping problem, which causes severe artifacts. One of the disadvantages of 

this technique is that because of the limited view angle, projection number may not be 

adequate to reconstruct the image completely in the Fourier space (ACS, 2014; Ertas 

et al., 2012; Ertas et al., 2013a; Helvie, 2010; Wu et al., 2004). 

1.4.1 Mammography 

Mammography is a specific type of imaging for screening and diagnosis of human 

breast by using low-energy X-rays (the process usually around 30 kVp). A 

mammography inspection, which is called mammogram, goals the early detection of 

breast cancer by detecting of characteristic masses and/or microcalcifications (Lewin 

& Niklason, 2007; Url-6, 2014). 

In Figure 1.6, there are two pictures of mammography; the illustration at left and a real 

picture of implementation at right. X-ray (radiograph) is the most popular application 

form of medical imaging and it is a noninvasive tool that helps physicians diagnose. 

X-ray emits a small dose of ionizing radiation to produce pictures of the inside of body. 

Digital mammography, computer-aided detection and breast tomosynthesis are 

advances in mammography (Lewin & Niklason, 2007; Url-6, 2014). 

In digital mammography, solid-state detectors that convert X-rays into electrical 

signals replaced the X-ray film. The images of the breast are produced by these 

electrical signals on a computer screen (Url-6, 2014). 

Although both digital and conventional mammography use X-ray to produce a breast 

image, the image is stored directly on film in conventional mammography. On the 

other hand, in digital mammography, an electronic image of the breast is stored as a 

computer file (digital information) that can be enhanced or manipulated for further 

evaluation more easily than the information stored on a film. Furthermore, digital 

mammography data can be adjusted, stored, and recovered electronically (Lewin & 

Niklason, 2007; National Cancer Instute [NCI], 2014).  
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Computer-aided detection (CAD) systems need a digitized mammographic image to 

search masses or microcalcifications, which are the indicators of the presence of 

cancer. This digitized mammographic image is accommodated with either a digitally 

acquired mammogram or a conventional film mammogram (Url-6, 2014). 

Breast tomosynthesis is a mammography modality, which uses a moving X-ray tube 

to expose in an arc over the breast during the imaging. It is also called 3D breast 

imaging and creates a series of slices (tomographic images) which may be as thin as 

0.5 mm through the breast for image processing (Polat et al., 2016; Polat & Yildirim, 

2018; Url-6, 2014). 

1.4.2 Digital breast tomosynthesis (DBT) 

In conventional digital mammography, the structures and tissues of the 3D breast are 

projected onto a 2D image plane, resulting in the loss of depth vision. Normal breast 

tissue may hide malignancies, causing a false-negative result or in some cases, the 

normal tissue may mimic a tumour, resulting in a false-positive result (Tingberg, et al., 

2011).  

Despite the many advantages of mammography in the past years, it is estimated that at 

least 20% of breast cancers are still being missed on digital mammograms. The normal 

tissues of the breast can hide cancers on standard 2D digital mammography that limits 

the radiologists’ ability to detect them (NCI, 2014). 

Tomosynthesis or digital breast tomosynthesis (DBT) is a 3D imaging technology that 

provides high-resolution acquiring images. Compared to conventional mammography, 

 

Figure 1.6 : The illustration of mammography (left) (Url-5, 2014); a picture of 

mammography implementation (right) (Url-6, 2014). 
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DBT performs a higher diagnostic accuracy. Stationary compressing of the breast 

makes image quality better and decreases radiation dose at multiple angles during a 

short scan. Collected images of DBT have very high resolution (85 - 160 micron 

typically) which is much higher than CT. A general DBT system is drawn in Figure 

1.7. 

A compression plate compresses the breast, and the X-ray tube moves through a 

narrow arc typically between 11°-60° scanning angle, which means DBT is a limited 

view angle imaging modality (some references accept 11o-60o, others accept 15o-60o 

or 15o-50o) with a limited number of discrete exposures (different references 

assumptions are 7-51, 9-25, and/or 10-25 projections). This limited angle scanning in 

DBT causes the incomplete data set problem. Advanced reconstruction techniques are 

used to avoid this problem. (Helvie, 2010; Polat et al., 2016; Polat & Yildirim, 2018; 

Smith, 2012).  

A few projections are acquired in limited angle scanning, and they are then 

reconstructed into a series of thin high-resolution slices that can be displayed 

individually. In single slice 2D mammography imaging tissue overlap and structure 

noise cause artifacts. These artifacts are eliminated or reduced by reconstructed 

tomosynthesis slices, and this offers more diagnostic accuracy, fewer recalls, greater 

radiologist confidence, and 3D lesion localization (Polat et al., 2016; Polat & Yildirim, 

2018; Smith, 2012). 

 

Figure 1.7 : Schematic view of digital breast tomosynthesis (Helvie, 2010). 
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In DBT devices (see Figure 1.8), continuous or pulsed exposure, stable or moving 

detectors, exposure parameters, total dose, effective pixel size, X-ray source, and 

patient position are taken into account during the design of the device for DBT 

manufacturers (Helvie, 2010). 

The reconstructed images are like pseudo 3D in DBT because of the limited angle of 

scanning. High-resolution image is arranged on the x-y plane perpendicular to the X-

ray beam. On the other hand, on the 

parallel plane or z axis, low resolution 

image is arranged (Helvie, 2010).  

Compressed thickness of the breast 

affects the number of slices to be 

reviewed. For example, if a 40 cm 

compressed breast is reconstructed at 1 

mm thickness, there will be 40 slices for 

the physician to review. If the images are 

reconstructed at 0.5 mm thicknesses, 

there will be 80 slices to be reviewed. 

(Helvie, 2010). 

In Figure 1.9, overlapping problem is compared for conventional mammography, 

which provides 2D image (left), and DBT, which provides 2D image (right), and it is 

clear that in DBT, hidden pathologies (here is as blue lesion) can be detected more 

easily. 

 

Figure 1.8 : A tomosynthesis equipment 

(Sener, 2013). 

 

Figure 1.9 : Tissues that overlap in conventional mammography (left) and hide 

pathologies (blue lesion) are less likely to be obscured using DBT (right) (Smith, 

2012). 



13 

There are several reconstruction techniques in DBT such as shift-and-add (SAA), 

tuned aperture computed tomography, filtered back projection (FBP), maximum 

likelihood reconstruction, and algebraic reconstruction technique (ART), which is one 

of iterative reconstruction techniques (Helvie, 2010). Principle of SAA tomosynthesis 

is demonstrated in Figure 1.10. 

1.4.3 Radiation dose 

A major factor that determines image quality is dose level, therefore manufacturing 

companies effort to find a balance between dose and image quality. According to 

current Food and Drug Administration (FDA) exposure limit, all manufacturers design 

the DBT equipment with dosing parameters less than 300 millirads per exposure. The 

dose limit per scan is 150-250 millirads in conventional mammography (Helvie, 2010). 

The absorbed radiation dose of the breast is a concern because the female breast is so 

sensitive organ against radiation (Stein et.al., 2014; Svahna et al., 2015). Studies 

dealing with low-dose imaging with high resolution and low noise have attracted 

increasing attention in DBT. There are many techniques for reducing imaging dose 

such as optimization, filtering, and image post-processing (Modulation Transfer 

Function (MTF), Detective Quantum Efficiency (DQE) or Contrast to Noise Ratio 

(CNR) and Contrast Detail Studies (CDS)). To evaluate the effect of dose level, the 

examinations in DBT are generally compared to full-field digital mammography 

(FFDM) (Svahna et al., 2015; Veldkamp, et. al., 2009; Zhao & Zhao, 2008). 

International Commission on Radiological Protection (ICRP) released Diagnostic 

Reference levels (DRLs), a guideline of patient doses, in radiology. For instance, in 

 

Figure 1.10 : Principle of shift-and-add (SAA) tomosynthesis (Can, 2011). 
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the Mammography Quality Standard Act (MQSA) outlined by FDA restricts a breast 

dose of 3 mGy per acquisition of the American College of Radiology (ACR) phantom 

(Svahna et al., 2015). 

The cumulative sum of the doses for the sequence of low-dose projections is the total 

radiation dose in an individual examination of DBT. This dose level is similar to the 

level used for conventional 2D mammography with 2 mGy per acquisition (Gur et al., 

2012; Zhao & Zhao, 2008). 

There is a trade-off between increasing and decreasing of the radiation dose. The dose 

reduction is desired to avoid absorption of the radiation of the patient; however, high 

imaging dose decreases the electronic noise effects and increases the quality in the 

individual projections of DBT.  
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2.  AIM AND OBJECTIVE 

Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 

3-dimensional (3D) reconstructed images of the breast slice by slice. Missing data in 

the projections acquired via DBT that arises due to the limited view angle imaging 

geometry of the modality causes severe artifacts in the reconstructed images. 

Therefore, advance image reconstruction algorithms need to be developed. 

The main objective of this Ph.D. thesis was to develop advanced reconstruction 

algorithms considering the limitations of the currently available methods in DBT 

imaging modality and micro-bioimaging (MBI). We compared our methods with the 

existing methods using both simulated data and real data. 

In this study, we mainly had two major purposes. The first purpose was to investigate 

if compressed sensing based iterative reconstruction technique could decrease the 

radiation dose applied to the patient. In the scope of the first purpose, we first proposed 

an effective application of majorization-minimization (MM) based on 3D total 

variation (TV3D) algebraic reconstruction technique (ART), ART+TV3D+MM, which 

is a novel application for DBT, in iterative image reconstruction. In the scope of the 

first purpose, we secondly proposed to compare ART and compressed sensing based 

3D image reconstruction methods (ART+TV3D and ART+TV3D+MM) for a real breast 

phantom at 12 different dose levels. To analyze the performance of the proposed 

method (ART+TV3D+MM), we compared the reconstructed images of iterative 

reconstruction techniques (IRT) (ART, ART+TV3D, ART+TV3D+MM) and Siemens 

MAMMOMAT’s FBP at 12 dose levels both qualitatively and quantitatively. The 

second purpose was to develop algorithms for 3D image reconstruction and to create 

a robotic scanning tool for imaging system in MBI. In the scope of the second purpose, 

we created and suggested the robotic 3D MBI tool to reconstruct 3D images of 

various biological samples slice by slice, which means the layers of a biological sample 

such as a cancerous tumor could be distinguished. 
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3.  LITERATURE REVIEW 

The articles and studies about digital breast tomosynthesis (DBT) were investigated in 

the literature. The basic and the famous article of this subject is Siddon’s paper 

published in 1985. Siddon basically addressed that “a fast calculation of the exact 

radiological path for a 3D Computed Tomography (CT) array” (Siddon, 1985). 

Siddon’s algorithm should perfectly be comprehended to understand the main logic of 

image reconstruction. 

First, WHO IARC, NBCF, and SEER-based Sree et al. (2011) presented some statistics 

on cancer and breast cancer (Sree et al., 2011). 

Ekstrom (1984) summarized historical improvements and studies of image 

reconstruction from projections at the end of the Chapter 4 of Digital Image 

Processing Techniques, Academic Press, Orlando-Florida, in 1984 (Ekstrom, 1984) as 

below; 

The first mathematical approach to solve the reconstruction problem was given by 

Radon in 1917. Bracewell, Oldendorf, Cormack, Kuhl and Edwars, DeRoiser and 

Klug, Tretiak et al., Rowley, Berry and Gibbs, Ramachandran and Lakshminarayanan, 

Bender et al., and Bates and Peters examined this problem theoretically and 

experimentally in chronological order. According to the article of Kak namely 

“Computerized medical imaging” in 1981, CT (Computed Tomography) imaging 

studies started before 1979 (Ekstrom, 1984). 

Firstly, Bracewell and Riddle and then, independently, Ramachandran and 

Lakshminarayanan introduced the filtered back projection (FBP) principles. Shepp and 

Logan first demonstrated that the advantage of FBP algorithm over the algebraic 

techniques in 1974. Bracewell first derived that a method to reconstruct images by a 

direct 2D Fourier transformation for radio astronomy in 1956, and later independently 

DeRoiser and Klug applied this method in electron microscopy in 1968. Dines and 

Kak, Dreike and Boyd, and Peters and Lewitt developed fast algorithms for ray sorting 

of fan beam data in 1976, in 1977, and in 1977, respectively. Brooks et al., and 
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Crawford and Kak studied aliasing artifacts in image reconstruction in 1978, and in 

1979, respectively (Ekstrom, 1984).  

Polish mathematician Stefan Kachmarz discovered an iterative algorithm which was 

named as Kachmarz method or Kachmarz’s algorithm for solving linear systems of 

Ax=b equations in 1937 (Kaczmarz, 1937). Gordon et al., Herman et al., Bender et al., 

and Budinger and Gullberg examined in detail the algebraic techniques to reconstruct 

images at the first half of the 1970s and rediscovered in the field of image 

reconstruction from projections, where it was called the algebraic reconstruction 

technique (ART). Gilbert proposed a new approach for ART which was called 

simultaneous algebraic reconstruction technique (SART) to improve the convergence 

features of the algebraic methods in 1972 (Ekstrom, 1984).  

Dobbins J. T. III and Godfrey D.J. also summarized the historical background of 

tomographic imaging in diagnostic radiology at the article digital X-ray tomosynthesis: 

current state of the art and clinical potential, Physics in Medicine and Biology, 48 

(2003) R65-R106 (Dobbins J. T. III & Godfrey D.J., 2003) as below; 

After Wilhelm Röntgen discovered X-rays in 1895, Radon (1917) provided the 

mathematical foundation for tomography. In 1932, Ziedses des Plantes introduced 

tomographic imaging to the medical research community that allowed for the 

reconstruction of planes from a discrete series of projection images. Garrison et al. 

who built a prototype ‘3D roentgenography’ device at Johns Hopkins University 

implemented Ziedses des Plantes’ theory for the first time in 1962. Garrison generated 

a full 3D dataset from a single radiographic scan. Miller et al. (1971) revealed 

‘photographic laminography’ that described the discrete tomography results. Grant 

published a circular image acquisition geometry based prototype 3D image projector, 

in 1972. Grant also coined ‘tomosynthesis’ term referring to create an infinite number 

of tomograms. 

A number of variants of tomosynthesis imaging were developed in the 1970s & 1980s, 

including ec-tomography by Dale and et al., 1985 and flashing tomosynthesis that 

provided rapid imaging for vascular applications. In the middle of 1980s, several 

researchers explored methods to decline the blur artifacts associated with 

tomosynthesis imaging. 
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Dr. Stein and et al. devised a patent and published evidences about how to reduce dose 

of tomosynthesis at 2014 that he said one goal of any X-ray imaging system was to 

gain the highest quality image while minimizing the patient dose. When selecting a 

radiation dose to use for imaging, a balance must be attained between the image quality 

and patient safety. As a result, an effort was made to limit the dose of radiation 

administered during tomosynthesis imaging. In addition the dosage may be controlled 

by limiting the angle of the scan and or the number of projection images obtained 

during a scan (Stein et.al., 2014). 

Dr. Garrett et al. in their paper published in 2012 concluded using the prior image 

constrained compressed sensing (PICCS) algorithm to reduce image noise and 

radiation dose in DBT in the case of the clinical data was possible. Therefore, the 

PICCS algorithm decreased noise over 35 percent with no loss of diagnostic essential 

features (such as calcifications / low contrast lesions). According to it, visibility of low 

contrast lesions was improved with PICCS. Dose reduction of 28 percent was being 

possible with the phantom data, and the low dose PICCS reconstructions of phantom 

data showed improved low contrast lesion detectability and lower noise. This indicated 

potential dose savings in DBT. The diagnostic quality of the phantom reconstructions 

at 28 percent reduced dose was equivalent to or better than those acquired at full dose 

(Garrett, et al., 2012). 

According to the study done in 2012 by Dr. Wu et al., the patch-based denoising 

algorithm could decrease the total imaging dose further in DBT by allowing a reduced 

exposure for each projection view. It was favorable to achieve a proper level of image 

quality while keeping the radiation dose as low as reasonably achievable. Hence, the 

patch-based algorithm estimated the true value of a pixel as a weighted average of all 

pixels in the projection image, where the weights depended on the similarity between 

the patches that compared with the filtering methods, it could reduce noise while 

preserving details. The results of Dr. Wu et al. showed image quality of DBT could be 

potentially improved by the proposed technique by incorporating appropriate 

denoising into the iterative reconstruction algorithm (Wu et al., 2012). 

Dr. Veldkamp et al. in their article published in European Journal of Radiology (EJR) 

in 2009 described a number of methods about the relationship between the dose and 

image quality were developed in the last few years. Objective measurements of 

physical characteristics, such as Modulation Transfer Function (MTF), Detective 
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Quantum Efficiency (DQE) or Contrast to Noise Ratio (CNR) and Contrast Detail 

Studies (CDS) were often used.  

The CDS could be used to determine dose levels that were related to a desired Contrast 

Detail Performance (CDP) or could be used to compare different systems or 

acquisition techniques. An advantage of CDS over objective physical measurements 

was that CDP includes the performance of human observers. A limitation with both 

CDP and physical measurements was that the anatomic background was not taken into 

account.  

A number of researchers reported on methods for simulating reduced dose images. A 

well-established method for reduced dose simulation that was previously described 

uses DQE at the original and simulated dose levels to create an image containing 

filtered noise. The method provided for simulated images containing noise in terms of 

frequency content, agreed very well with original images at the same dose levels 

(Veldkamp, et. al., 2009). 
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4.  THEORETICAL AND MATHEMATICAL BACKGROUND 

4.1 The Mathematical Basis of Projections 

Theoretical and mathematical background of medical imaging has two main sections: 

projections and reconstruction of these projections. The basics of projection and image 

reconstruction are line integral and inverse problem, respectively. 

The fundamentals of computed tomography (CT) are line integral, the Radon 

transform, and Fourier-Slice theorem (Ntalampeki, 2007). Furthermore, Siddon 

algorithm is described as a fast and perfect algorithm that calculates the exact 

radiological path for a 3D CT array in the literature. 

The reason of image reconstruction problem that is called inverse problem is described 

as to reconstruct the region of interest, i.e. to know the function x  (unknown density), 

from its projections taken along the different directions. Here, the distribution of the 

attenuation coefficient is not directly available; the desired condition is to estimate the 

object of interest via knowing the projections acquired by a medical imaging 

equipment. In Figure 4.1, 1-dimensional (1D) projection of a function x  is taken at 

angle   means calculating y , which is the integral of distribution of function x

(Duarte, 2009). 

4.1.1 Line integral 

In tomography, a cross-section in 2D or a volume in 3D is reconstructed from the 

acquired projections obtained by X-ray attenuation because of intersection of the 

object’s cells. The object function  yx,  which is desired to be reconstructed is 

modeled as a 2D (or 3D) distribution of the X-ray attenuation function. When a beam 

of X-ray travels in a straight line through the object the total attenuation of X-rays is 

represented by a line integral (a projection) (Ntalampeki, 2007; Turbell, 2001). r  is 

calculated at angle θ using the coordinate system in Figure 4.2 by (4.1). 
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ryx   sincos      (4.1) 

where is the angle and r is the smallest distance to the origin of the coordinate 

system. 

The data to be collected is simply considered as a series of parallel rays at position r  

across a projection at the angle because of the parallel projection system. The line 

integral (projection, 𝑃𝜃(𝑟)) of X-ray transmission along a path (L) is given as in (4.2). 

   dlyxrP
L

 ,  
   (4.2) 

 yx,  represents the density (an unknown density) of the 2D object to be 

reconstructed in (4.2). 

This line integral expression can also be explained with the Beer’s law (Eq. (4.3)) 

based on the intensities inI  and 
outI . 
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inout ,    (4.3) 

 

Figure 4.1 : The 1D projection at 

angle  . 

 

Figure 4.2 : Parallel beam geometry. Each       

projection is made up of the set of line 

integrals through the object (Url-7, 2014). 
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inI represents applied intensity from X-ray tube 

outI  represents attenuated X-ray intensity by the object along the line L. 

By taking the logarithm of (4.3), we get the line integral value  rP  of the object 

function  yx, as in (4.4). 

   dlyx
I

I
lnrP

Lin

out
















 ,   (4.4) 

(Ntalampeki, 2007; Turbell, 2001). 

4.1.2 Radon transform 

Radon transform has many applications such as medical imaging, radar imaging, and 

geophysical imaging. In medical imaging, Radon transform is a function, which 

computes several projections (line integrals) of an image matrix along parallel or cone 

beams in specified directions. As it can be seen in Figure 4.3, Radon transform takes 

multiple projections from different angles around the original image, and then the 

inverse Radon transform is applied to estimate this original image from its projections 

taken from different angles (Duarte, 2009). 

 

Figure 4.3 : Projections of the object taken from different angles (Duarte, 2009). 
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Radon transform, the mathematical basis for tomographic imaging, was disclosed by 

Johann Radon in 1917. It was applied in CT to obtain cross-sectional images of 

patients. J. Radon proved mathematically that 2D and 3D objects could be 

reconstructed from their multiple projections (Ntalampeki, 2007; Turbell, 2001). In 

other words, Radon suggested that a 3D object can be obtained perfectly by using its 

infinite number sets of 2D projections. Using dirac ( ) function in (4.1), the function 

 rP  is described as Radon transform given by (4.5). 

     dxdyrysinxcosyxrP   








 ,     (4.5) 

Since Radon transform of dirac ( ) function is the characteristic function of a sine 

wave, the term sinogram is used for Radon transform data in the terminology of 

tomography. The inverse of Radon transform is used for reconstruction of images that 

means getting  yx,  from (4.5) (Ntalampeki, 2007; Turbell, 2001). 

In practice, filtered back projection (FBP) algorithm which is the discretized version 

of the inverse Radon transform is used for reconstructing because the inverse Radon 

transform behaves unstable with respect to noisy data (Ntalampeki, 2007; Turbell, 

2001). 

One of the limitation in the reconstruction of the medical imaging (CT, DBT) is that 

the projections are acquired in a restricted range of angles such as from -250 to +250 

in DBT. Radon transform estimates the attenuation coefficient distribution along the 

object for each angle projection (Duarte, 2009).  

This attenuation coefficient distribution is used to obtain desired object  yx,


  by 

evaluating the inverse Radon transform. The substitution of the attenuation coefficient 

distribution concept is the system matrix in the reconstruction methods such as 

algebraic reconstruction technique (ART). ART uses a system matrix to obtain a 

desired image. As it is studied in Section 4.2.1, A is a system matrix, Y is the vector 

of the observed projections, X  is the vector of the desired image in AXY   form of 

ART. The system matrix A needed by ART is calculated by Siddon’s algorithm. 
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4.1.3 Siddon algorithm 

Siddon’s algorithm provides an efficient way to calculate the intersection lengths by 

following the path of each ray through the volume, using a parametric representation 

and considering the intersection points with the grid edges in 3D space. 

In  (Siddon, 1985), Robert L. Siddon described an exact and efficient algorithm for 

calculating the ray sum that follows a path through a 3D CT. The ray sum, in other 

words, the radiological path in 3D space is defined by (4.6). 

 kjil ,,  defines a part of a certain ray-line intersected by a voxel located in the point 

(i, j, k) and  kji ,,  is the voxel density (attenuation coefficient). In this algorithm, 

the crux is that the intersection volumes of equidistant parallel planes build the voxels. 

The intersection points of the ray with the planes are calculated recursively after 

determining the intersection point of the ray with the first plane.  

Figure 4.4 shows intersection points of the ray with the horizontal lines (filled circles) 

and the vertical lines (closed circles). A subset of intersections with the lines means 

the intersections with the pixels of 2D image. 

When considering that the pixels are the intersection areas of equally spaced parallel 

planes, the 2D version of the method is illustrated in Figure 4.4. Figure 4.5 describes 

the basic parameters of Siddon algorithm, which are the geometric representation of a 

ray on the 2D image grid. 

   
kji

kjikjild ,,,,   
   (4.6) 

 

Figure 4.4 : The pixels of CT array (left), the intersection areas of orthogonal sets 

of equally spaced parallel lines (right) (Siddon, 1985). 
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In Siddon’s algorithm, a ray from point 1 (
1P ) located on (

111 ,, zyx ) to point 2 ( 2P ) 

located on (
222 ,, zyx ) is defined with the parameter  ( 01  at 

1P  and 12   at 2P ) 

in 3D space. These parametric planes are defined in (4.7). 

Each intersection of the ray with each plane has a parameter in the range of                      

(
maxmin , ). If point 1 is inside in the grid, then 

min becomes zero, otherwise 
min is a 

nonzero value. If point 2 is inside in the grid, then max becomes one, otherwise max

takes a value different than one (see Figure 4.5). 

For the number of ( 1xN , 1yN , 1zN ) voxels of an image array, the orthogonal 

sets of equidistant parallel planes are written as in (4.8);  

   121 XXXX    

   121 YYYY    

   121 ZZZZ    

   (4.7) 

     dxiXiX planeplane 11             
xNi ,...,2,1         

     dyjYjY planeplane 11             yNj ,...,2,1  

     dzkZkZ planeplane 11             
zNk ,...,2,1  

  (4.8) 

 

Figure 4.5 : Geometric representation of a ray on the 2D image grid (Can, 2011; 

Siddon, 1985). 
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where dx , dy , and dz  are the distances between the zyx ,,  planes which are the 

dimensions of the voxel. 

The values of 
min  and max  parameters are acquired via intersecting the ray with the 

in and out sides of the voxel array. The parametric values of the sides are calculated 

by (4.9) using (4.7) and (4.8).  

Expressions are similar for y  and z  directions for  1y ,  yy N ,  1z , and  zz N . 

Then 
min and max ’s quantities are computed by the parametric values of the in and 

out as in (4.10);  

If max is less than or equal to 
min  then it means that the ray does not intersect the 

voxel array.  

Only certain intersected planes have α parametric value in the range of [
min , max ]. 

These values are used to calculate the range of indices (
mini , 

maxi ), (
minj , 

maxj ) and         

( mink , 
maxk ), which intersect the planes (Eq. (4.11)). 

if  
12 XX  , 

      12111 XXXX planex   

      121 XXXNXN xplanexx   

   (4.9) 

      )(),1(min,)(),1(min,)(),1(min,0maxmin zzzyyyxxx NNN    

      )(),1(max,)(),1(max,)(),1(max,1minmax zzzyyyxxx NNN    
(4.10) 

if  0)( 12  XX , 

     dxXXXNXNi xplanex 112minmin    

     dxXXXXi plane 11 12max1max    

 

(4.11) 
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with similar notations hold for 
minj , 

maxj , mink , and 
maxk . The next step in the algorithm 

is to create the sets of parametric values ({
x }, {

y }, {
z }) which represent the 

intersections of the ray with the zyx ,,  planes can be written for intersected indices 

using the notation for {
x }, and with similar notations for {

y }, and {
z }; 

where  

It is seen that {
x }, {

y },  and {
z } sets are in ascending or in descending order 

according to the sign of differences of the point 1 and point 2 for each dimensions. 

The definite intersection points are found by merging the sets {
x },{

y }, and {
z } 

into one set considering the ending points of the ray can be inside the array, therefore 

the maximum and minimum values (
min  and max ) are also added to the merged set. 

The merged set which is the new { } set has the form expressed as in (4.14).  

The parameter set consists of (n+1) element where n is given as in (4.15); 

if  0)( 12  XX , 

     dxXXXNXNi xplanex 112maxmin    

     dxXXXXi plane 11 12min1max    

               if  0)( 12  XX , 

      maxmin ,..., ii xxx    

               if  0)( 12  XX , 

      minmax ,..., ii xxx    

 (4.12) 

      121 XXXiXi planex    (4.13) 

       maxmin ,,,,  zyxmerge  

        n ,...,1,0  
(4.14) 
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The intersection length, which means the weighting factor of intersected voxels, can 

be defined in terms of the difference between the two adjacent terms in the set of 

parameters. Once the { } array has been formed it is possible to calculate the voxel 

that was hit and its intersection length with the ray as well. Then the intersection length 

formed by the (m)th and (m-1)th intersections of the { } array, which are the weights 

of the intersected voxels, are calculated with (4.16). 

where   is taken from the { } array and 12d  is the total length (the Euclidian 

distance) of the ray from point 1 to point 2 and is given by (4.17). 

The voxel’s indexes [ )(),(),( mkmjmi ] which intersect the ray are related with the 

midpoint of the (m)th and (m-1)th that are two adjacent intersections and they are 

calculated as in (4.18). 

where the 
mid  is the midpoint of the (m-1) th and the m th intersections and is given by 

(4.19). 

Finally the projection value P  (the radiological path) can be obtained by performing 

the sum over the n elements of the { } array. This is achieved with (4.20). 

      1111 minmaxminmaxminmax  kkjjiin    (4.15) 

      112  mmdml       for nm ,...,3,2,1    (4.16) 

     212

2

12

2

1212 ZZYYXXd     (4.17) 

              dxXXXXmi planemid 11)( 121    

     dyYYYYmj planemid 11)( 121    

           dzZZZZmk planemid 11)( 121    

  (4.18) 

  2)1()(  mmmid     (4.19) 
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where  kji ,,  defines the voxel intensity and n is given in (4.15).  

Siddon’s algorithm primarily provides evaluating the exact radiological path of a ray 

through a 3D CT array. One advantage of this algorithm is its computation time that is 

scaled with the proportional number of the planes (N) instead of the proportional 

number of voxels (N3). Parametric values, which hit the voxels, define intersections of 

the ray with the planes. These intersections are weighting factor of total intersected 

length of the ray hits the 3D array for each voxel (Siddon, 1985). 

4.2 Reconstruction Methods 

There are several reconstruction methods to reconstruct the image from projections 

obtained from the objects (Figure 4.6). Two main techniques of the reconstruction 

methods are analytical (Fourier transform, filtered back projection) and algebraic 

(statistical e.g. ML: maximum-likelihood, EM: expectation-maximization; iterative 

e.g. algebraic reconstruction technique (ART), simultaneously algebraic 

reconstruction technique (SART), and simultaneous iterative reconstruction technique 

(SIRT)). Because of only ART is studied in this thesis, ART is examined in detail in 

Section 4.2.1. 

4.2.1 Algebraic reconstruction technique (ART) 

As mentioned in the previous sections, projections obtained from target object that will 

be re-projected are used to reconstruct the related target object in medical applications 

such as X-ray CT and DBT. The reconstruction algorithm can be classified into four 

major groups that are the summation methods, the convolution methods, the Fourier 

methods, and the summation expansion methods. Iterative reconstruction methods take 

part in the group of the summation expansion methods (Peterson et al., 1985). 

Reconstruction methods can also be classified as analytical (Fourier transform and 

FBP) and algebraic (statistical and iterative) (see Figure 4.6). 

 



n

m

mkmjmimlP
1

)(),(),()( 
 

   



n

m

mkmjmimmdP
1

12 )(),(),()1()( 
 

  (4.20) 
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There are several different approaches with their references of iterative reconstruction 

techniques, which are written in Table A.1, in appendices (Beister et al., 2012). 

In the first step of iterative reconstruction technique, a dummy raw data is created by 

forward projection of the estimated object. This data is compared to the real measured 

raw data to calculate a correction term in the second step. In the third and last step, the 

correction term is back-projected to estimate the object. Generally, an empty image 

estimation or a prior knowledge is used to initialize the iteration process. If 

approaching a constant number of iteration or the variation of the image estimation is 

small enough to update, the iterative process is ended (Beister et al., 2012). 

 

Figure 4.6 : Reconstruction methods 

Reconstruction
Methods

Analytical Fourier Transform

Filtered Back Projection

Algebraic Statistical ML-EM

Iterative ART, SART, SIRT

 

Figure 4.7 : A schematic view of the iterative reconstruction process (Beister et al., 

2012). 
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These iterative reconstruction algorithms benefit from sparsity matrices to solve 

integral equation in matrix form using a relaxation coefficient. The rays through the 

object are assumed as non-refracting, straight, and having a full range of penetration 

angles. One of these techniques, ART, finds a wide use for the application of 

reconstruction problems, because it is favorable for different geometries and limited 

projection angles (Peterson et al., 1985). 

The principle of ART is to solve X  of the equation system expressed in matrix form 

as AXY  . Solving X includes large, sparse arrays and linear algebra examines sparse 

matrices very well (Peterson et al., 1985). 

ART, the common and basic form of iterative reconstruction, was used for the 

reconstruction of images in the first CT systems. Kaczmarz introduced ART principles 

for solving linear systems of equations YAX  in 1937 (Kaczmarz, 1937). First 

medical imaging application of ART was performed by Herman in 1980 (Herman, 

1980).  

Because of limited projections in low dose CT, the use of ART increases for the 

estimation from the missing views in recent works. Missing projections are initially 

set to zero to estimate projections for following CT reconstruction based on 

convolution-back projection in re-projection step. The computation accuracy of this 

step is very important for determining the quality of the final reconstructed image 

(Andersen, 1989; Beister et al., 2012). 

The reconstruction problem becomes one of solving a linear algebraic equation of the 

form 

In the form


 YXA ; 


X is the column vector of the object whose elements are the 

voxels (number m) of the 3D object to be reconstructed. 

A is the system matrix which includes the weighting factor of each voxel (number m) 

for each rays (number n) used for producing the raw data. It is a non-negative elements-

2D matrix that describe the probability of a photon that hits a voxel. For each 

projection of the object, a system matrix nxmA  is built up. 



 YXA    (4.21) 
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

Y is the detector (column vector) whose elements are the pixels of the measured raw 

data (projections) for every ray per angle. 

To reconstruct an image mathematically, (4.21) can be written in an expanded form as 

linear system equations; 

In Eq. (4.22);  

m represents the number of voxels of the object  

n represents the number of the ray within each projection 

ija represents weight coefficients of A system matrix (i=1,2,…,n; j=1,2,…,m) 

(Andersen, 1989; Duarte, 2009; Tessa et al., 2004). The intensities of voxels (in 3D 

case) or pixels (in 2D case) are updated in the each iteration in the ART algorithm (see 

Figure 4.8). This updating process 

provides that the calculated projection 

comes close to the measured projection. 

ART implementation supplies that the 

change of the grayness of pixels when 

the ray intersect the pixel (Andersen, 

1989; Tessa et al., 2004). 

One of other approaches of ART is the 

estimation of an image provided by 

minimizing the difference between 

calculated and measured projections 

formulated as in (4.23). 
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   (4.22) 

 

Figure 4.8 : The illustration of calculating 

of weight factor aij in ART algorithm 

(Tessa et al., 2004). 
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𝑋̂ represents the estimation of the image, 

Y represents the measured data,  

X is the image to be reconstructed, 

A  represents the system matrix or the weighting matrix. 

The image X that will be estimated is updated in each iteration by using the 

mathematical formula stated in (4.24). 

where N is the ray number, and M is the voxel number.  

The Eq. (4.24) can be also written as below (Peterson et al., 1985); 

The term  1 k

ijX in (4.25) is the correction term. The determination of this correction 

term is the basis of ART algorithm. The correction term is then applied to each pixel 

or voxel through which the ray i passes (Peterson et al., 1985). The explanations of the 

terms of (4.24) and (4.25) are listed below. 

 k

jX  is previous image before thk )1(   iteration 

 1k

jX  is updated image after thk )1(   iteration   

iY  is the measured projection data corresponding to the 
thi ray line integral 

)(

1

k

m

M

m

imXa


 is the calculated projection data 

)(

1

k

m

M

m

imi XaY 


  is the error value  




M

m

ima
1

2 is the normalization factor 

 2

2
ˆ AXYminargX

X

  
  (4.23) 

   
ijM

m

im

k

m

M

m

imi
k

j

k

j a

a

XaY

XX













1

2

)(

11
,            for      

Mj

Ni

,...,3,2,1

,...,3,2,1




   (4.24) 

     11   k

ij

k

j

k

j XXX ,                           for        
Mj

Ni

,...,3,2,1

,...,3,2,1




   (4.25) 
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 1 k

ijX  is the correction term 

ija represents weight coefficients of A-system matrix (i=1,2,…,n;  j=1,2,…,m) 

m represents the number of voxels of the object ( j is voxel (m) indices) 

n represents the number of  the ray within each projection (i is ray (n) indices) 

The contribution of thj  voxel on the 
thi  ray line integral is weighted by system 

coefficients 
ija . Since Siddon’s algorithm calculates these coefficients, aij is also called 

Siddon’s coefficients. A single iteration means that the updating is repeated for all 

projections (Ertas et al., 2013b; Peterson et al., 1985). 

4.3 Improvement and Optimization Methods 

Compressed sensing (CS) based approaches, especially total variation (TV) 

minimization, have drawn a great interest in limited view angle imaging problems such 

as DBT imaging (see Figure 4.9). 

4.3.1 Compressed sensing 

The Shannon/Nyquist sampling theorem suggests that sampling frequency of a signal 

(fNYQ) must be at least two times faster than its bandwidth (W) for loseless uniformly 

sampling ( Wf NYQ 2 ). Since images are not bandlimited, the sampling rate is specified 

by the desired spatial resolution not by the Shannon theorem. In the case of the number 

of sampling is much less than Nyquist rate ( NYQCS ff  ) compressed sensing (CS) 

theory comes in view. CS theory affirms that perfectly reconstruction of an object from 

its far fewer samples or measurements under certain circumtances. To make this 

possible, CS relies on two principles: sparsity and discrepancy. The object being 

recovered must be either sparse or can be sparsified (Candes & Wakin, 2008; Park, 

et.al, 2015). 

 

Figure 4.9 : Improvement and optimization methods. 

Improvement & Optimization 
Methods

Compressed Sensing

Total Variation (TV) Minimization
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In a relatively recent study by Donoho, it was proved that a sparse signal can be 

recovered exactly from a small set of linear observations. The reason why it is called 

“compressed sensing” is that sparse signals can be sensed by taking far fewer 

measurements (Donoho, 2006). There are three important aspects on difference 

between CS and classical sampling theory. First, CS measures finite-dimensional 

vectors in ℛ𝑛 in terms of mathematical theory; however, sampling theory focuses on 

infinite length and continuous-time signals. Second, in sampling theory, the signal is 

sampled at specific points in time, but the measurements acquired by CS systems are 

in the form of inner products between the signal and test functions (Eldar & Michaeli, 

2009). Third, the signal recovery is done using highly nonlinear methods in CS, 

whereas the signal is reconstructed by interpolation in the sense of Nyquist frequency 

in sampling theory (Tropp & Wright, 2010).  

In this Ph.D. thesis, we use CS theory to enhance the quality of reconstructed image 

obtained via ART. To be able to apply CS theory, the image must be sparse and 

reconstructed using a nonlinear method (Chen et. al., 2008; Donoho, 2006). 

It was mentioned that ‘Radon says that a 3D object can be recovered perfectly by using 

its infinite number sets of 2D projections’ in Section 4.1.2. In this work, we intend to 

reconstruct 3D images from its 25 sets of 2D projections at maximum, which means 

that we have very underdetermined observations (projections) against to infinite 

numbers of projections. 

The definition of the CS-based reconstruction algorithm is explained mathematically 

as follows. The original vector, mx1X , to be reconstructed and the measured projection 

vector, 
nx1Y , are represented by (4.26). 

n-observations also means the number of sampling points in the projection data.           

A-system matrix that contains the weighting of every voxel for all the rays in the 

projection data, relating X and Y, is defined as a matrix by (4.27).  
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  (4.26) 
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Using these definitions, the measurement equation (inverse problem) is described by; 

Then, the problem becomes to recover X from Y.
mx1X , m-voxels of the phantom, are 

described as unknowns in (4.28). The condition n-projections < m-unknowns means 

the number of the projections/rays/observations (n) is less than the number of the 

voxels (m) of the phantom. For n < m, AXY  is an underdetermined linear equation 

having infinite solutions of X from the observed Y. The main notion of the CS-based 

tomosynthesis image reconstruction is to take advantage of the sparsity of X or being 

able to sparsify it.  

Since the derivative of natural images is expected to become sparse, the gradient 

operator D is often used as an effective sparsifying transform for common medical 

images. Thus to minimize (
0


l

; l-0 norm) of an objective function )(xf , which is an 

optimization problem, recovers the original image vector X, described in (4.29): 

The Eq. (4.29) describes the general definition of compressed sensing (Donoho, 2006; 

Park, et.al, 2015). For linear transformation, and for a linear transform operator,φ , 

compressed sensing shades into (4.30) that yields AXY  . 
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0


l
provides compressed sensing based application, and φ -sparsifying operator, 

which guarantees the sparse solution of X, sparsifies the image by transforming non-

sparse image X to the sparsified version. Other commonly used φ -sparsifying 

operators except the gradient operator D are Wavelet transform and Total Variation 

(TV) operator. In this study, for φ , TV was assigned as the sparsifying transform. The 

most components of TV(X) are negligibly small. By using this property, the number 

of unknowns in (4.28) can be reduced from m to n so that (4.28) becomes uniquely 

solvable achieving accurate reconstruction. Therefore, CS-based application of a 

general cost function )(xf  can be expressed as in (4.31).  

In the Eq. (4.31), 
2

22

1 calYY meas
 is the fidelity term whereas 

2
)(XTV is the penalty 

or regularization term, which is an approximate solution to compressed sensing theory. 

 is a regularization parameter that provides a balance between the fidelity term and 

the regularization term. 
meas

Y  is the measured data vector and 
cal

Y  is the calculated 

projection vector (Chen et. al, 2008; Donoho, 2006; Park, et.al, 2015; Polat et al., 2016; 

Polat & Yildirim, 2018).  

4.3.2 Total Variation (TV) minimization 

Rudin, Osher, and Fatemi (ROF) introduced first total variation as a regularizing 

criterion for solving inverse problems in 1992. ROF has achieved regularized images 

without smoothing the boundaries of the objects (Chambolle, 2004; Rudin, et.al, 

1992). The regularization term of (4.31) can be expressed as 

where 
iD is the forward difference approximation to the gradient at ith voxel (Park,  

et.al, 2015). The Eq. (4.33) is the expanded form of (4.32) for 𝑙2-norm of 3D TV.  

2
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Finally, in (4.34) that is called TV minimization reconstruction problem, 𝑙2-norm of 

3D-TV minimization is applied to the compressed sensing formula (Eq. (4.30)) in an 

unconstrained minimization form to recover X.  

 regularization parameter that controls the effect of the sparsifying term TV on the 

cost function (Ertas, 2015; Park, et.al, 2015; Polat et al., 2016; Polat & Yildirim, 2018). 

TV term contains the sparsifying information of the image. This sparsifying 

information is used in the missing data problems caused by the few numbers of 

projections acquired from limited view angle imaging modality in DBT. The solution 

of TV minimization is performed by using the steepest descent algorithm. The gradient 

of the 𝑙2-norm of 3D-TV, which means the derivative of 3D-TV(X) is expressed in 

(4.35). 

 was chosen as 10-8 for the applications and algorithms, which avoids being zero-

value of the denominators of (4.35). 

The flowchart of the CS-based 3D image reconstruction (ART+TV3D) in DBT image 

reconstruction is illustrated in Figure 4.10. 
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Figure 4.10 : Flowcart of the CS-based algorithm (ART+TV3D) for DBT reconstruction. 
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4.3.3 Majorization-Minimization algorithm 

Until recently, only a few studies mentioned 3D TV minimization, whereas the 

majority of them were concerned with 2D TV minimization (Ertas et al., 2013a; Polat 

et al., 2016; Polat & Yildirim, 2018). In addition, as used to TV denoising, a new 

algorithm majorization-minimization (MM) (Figueiredo et al., 2007) was introduced 

for a 1D signal and N-point x(n) in the literature of signal processing (Selesnick, 2014). 

The MM algorithm finds the maxima or minima of a function by exploiting the 

convexity of the function to optimize a developed iterative algorithm (Figueiredo et. 

al., 2007; Hunter & Lange, 2004; Polat & Yildirim, 2018; Selesnick, 2014).  

Additionally, MM algorithm solves a sequence of optimization problems, for 

minimizing a convex cost function by using the following formulation (Figueiredo et. 

al., 2007; Hunter & Lange, 2004; Polat & Yildirim, 2018; Selesnick, 2014). 

  )(1 xminGargx k
X

k 
    (4.36) 

k is the number of iteration, and  must be chosen as a majorizer of (4.37). 

 

)x(F)x(G

x),x(F)x(G

)k()k(

k

k




    (4.37) 

As far as we know, in DBT studies, this MM algorithm has not yet been applied. 

However, in (Polat et al., 2016), our group performed the MM algorithm application 

to the 3D DBT imaging problem to demonstrate a proof-of-concept recently. This was 

the first application of the MM algorithm to the 3D DBT and has been performed for 

a 3D analytical phantom mimicking a breast and for a real breast phantom with 

301x236 pixels with only one radiation dose (Polat et al., 2016). 

In this study, using an analytical phantom and real data, we propose the 

implementation of the MM algorithm to the 3D DBT imaging problem. The proposed 

method ART+TV3D+MM, ART+TV3D, and ART are executed for a phantom that 

mimics 3D breast as in (Polat et al., 2016; Polat & Yildirim, 2018) by evaluating both 

qualitative and quantitative analyses. In ART+TV3D+MM method, MM algorithm is 

applied to TV3D (ART+TV3D) volumes in each iteration (Polat et al., 2016; Polat & 

Yildirim, 2018). 
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Figure 4.11 : Convergence criterion for inner iteration of MM algorithm. 
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We proposed to apply MM algorithm in our ART+TV3D+MM method by adapting 

MM algorithm developed by Selesnick (2014) to our problem with five iterations. MM 

algorithm has another inner iteration process in itself. All algorithms were performed 

on MATLAB R2015b. 

The convergence criterion for stopping the iteration of MM, (%)Variation in (4.38), 

was set for MM based on the difference of the mean value of a chosen region of interest 

(ROI) (        ) from one iteration (k) to the next (Oliveira et. al., 2016). 
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The iteration number of MM algorithm was chosen based on (4.38) (Oliveira et. al., 

2016), whereas the iteration number of ART+TV3D was chosen based on experimental 

trials. The graph of (%)Variation  of the ROI for MM algorithm is shown in Figure 

4.11. We decided the number of the inner iteration of MM what the values of the 

(%)Variation  were under 5%. In our studies, we reached the (%)Variation  value 

below 5% at the 3rd iteration; however, we preferred five iterations since the variation 

at the 4th iteration was higher than the 3rd iteration.  
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5.  DATA AND METHODOLOGY 

5.1 Data and Methodology for Digital Breast Tomosynthesis (DBT) 

The studies in DBT part of this Ph. D. thesis were performed at Istanbul Technical 

University, at Instituto de Biofisica e Engenharia Biomedica, Faculdade de Ciencias, 

Universidade de Lisboa, Lisbon, Portugal (from April 8, 2016 to July 8, 2016) and at 

Harvard Medical School, Harvard-MIT Health Sciences and Technology, 

Massachusetts Institute of Technology, Cambridge, MA, USA (from December 16, 

2016 to December 15, 2017).  

The methodology of DBT project had three sections as below; 

 The implementation of a numeric matrix model (2x4x3) 

 ART, ART+TV3D, and ART+TV3D+MM for an analytical phantom (61x61x9) 

 FBP, ART, ART+TV3D, and ART+TV3D+MM for the real images of CD 

Pasmam 1054 breast phantom (601x472x8) 

5.1.1 A numeric matrix model and an analytical phantom 

A three-dimensional (3D) matrix model (numeric model - 2x4x3) of a breast was 

created by Matlab R2014a software program. It was the basic code of Siddon and ART. 

Numeric model was a 3D phantom (2x4x3) that had both indices and voxel intensities 

of related indices as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, and 24. The dimensions 2, 4, and 3 of the 3D phantom were rows (z-axis), 

columns (y-axis), and layers (x-axis), respectively. What was implemented in Matlab 

is illustrated in Figure 5.1. An X-ray source was placed at point (0,0,100) and 5x6-size 

detector was accepted as a plane, which placed parallel to 𝑥𝑦-plane, at point 𝑧 = −2, 

whereas the center of the 3D phantom (2x4x3) was placed at origin (0,0,0). In the first 

step, X-ray source was kept stable only at point (0,0,100).  
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Siddon algorithm was implemented to this model to obtain the projections of 2x4x3-

dimensions breast model. These projections were acquired in a limited view angle 

between -450 and 450 with 50 angle step size as mimicing actual tomosynthesis 

systems. Under this scanning angle condition, 19 projections were acquired. 

Each line of X-ray beam intersected the two rows of the phantom as equally weighting 

factor which was one. Because of the ratios of intersection length of each X-ray line 

were coequal, the contribution of voxel intensities, which were hit by the same X-ray 

line, were also similar. The values of detector pixels were computed by calculating 

voxel intensities taking into account weighting factor of intersections. Weighting 

factors were normalized and for this situation they were 0.5 value each. 

 

Figure 5.1 : The schematic of the simulation of Siddon’s matlab implementation. 
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The algebraic form of projection values (Y-detector image), the phantom’s voxel 

intensities (X), and Siddon system matrix (A) can be expressed as Y=AX. 
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         Ynx1    =                    Anxm                  .            Xmx1 

 

              nx1-dimension rays vector   nxm-dimension system matrix  mx1-dimension voxels vector 

 

n=30 rays and m=24 voxels in the numeric matrix model (2x4x3) case. 

After testing and achieving Siddon algorithm and the implementation of reconstruction 

for the numeric matrix model (2x4x3), using the same scanning geometry, ART, 

ART+TV3D, and ART+TV3D+MM for an analytical phantom (61x61x9) were 

performed.  
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5.1.2 Real breast phantom and images 

In this section, using a real breast phantom, we proposed the implementation of the 

MM algorithm to the 3D DBT imaging problem, which was called MM based 3D TV 

regularized ART (ART+TV3D+MM). ART, ART+TV3D, and the proposed method 

ART+TV3D+MM were executed for the real phantom (CD Pasmam 1054), which 

mimics a real 3D breast, scanned using Siemens MAMMOMAT. Experiments were 

evaluated both qualitatively and quantitatively by performing the tasks on MATLAB 

R2015b. We called iterative reconstruction techniques (IRT) for all ART, ART+TV3D, 

and ART+TV3D+MM. 

Additionally, using 12 different radiation doses for the real breast phantom, we further 

investigate the effect of the radiation dose increase in DBT by applying IRT in 

comparison with Siemens MAMMOMAT’s FBP method. Siemens MAMMOMAT 

reconstructs via its know-how unknown filtered back projection (FBP) method. The 

FBP method used in the comparisons in this thesis was Siemens MAMMOMAT’s FBP 

method. 

Using a Siemens MAMMOMAT Inspiration system (Siemens AG, Healthcare Sector, 

Erlangen, Germany), we acquired 25 projections of CD Pasmam 1054 phantom 

(Southern Scientific Ltd, West Sussex, United Kingdom). All acquisitions were 

performed at Hospital da Luz S.A., Lisbon, Portugal. The equipment acquired the 

projections with short X-ray pulses at angles of (-25.19o, -22.98o, -20.78o, -19.12o, -

17.22o, -15.14o, -13.45o, -11.41o, -9.54o, -7.48o, -5.63o, -3.55o, -1.92o, 0.29o, 2.23o, 

4.00o, 5.79o, 7.84o, 9.99o, 11.64o, 13.49o, 15.6o, 17.76o, 18.92o, 21.77o) with 28 kVp at 

12 different levels of radiation doses in mAs values of 56, 63, 71, 80, 90, 100, 110, 

125, 140, 160, 180 and 199. 

We reconstructed the projections acquired via MAMMOMAT by performing ART 

with one iteration. The voxel values of the 3D image for each projection were updated 

ray by ray, and for all 25 projections the updating was repeated to complete a single 

iteration. Then we performed compressed sensing based image reconstructions 

(ART+TV3D, and ART+TV3D+MM). During each iteration, first 3D TV minimization 

(TV3D) expressed in (4.34) (Ertas et al., 2013a; Polat & Yildirim, 2018; Sidky et al., 

2008), was applied to the 3D image reconstructed by ART (ART+TV3D), and then MM 

algorithm was applied to ART+TV3D, called ART+TV3D+MM as well.  
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The geometry of Siemens MAMMOMAT is illustrated in Figure 5.2. MAMMOMAT 

scans the breast over an angular range of approximately 47o to acquire 25 projections 

with short X-ray pulses. For more details about MAMMOMAT, see Siemens AG, 

2016 and Siemens MAMMOMAT Inspiration, 2017. The real angular scanning 

system of Siemens MAMMOMAT was taken into consideration to design the ray 

geometry of the project. 

As shown in Figure 5.2, a general DBT system has three major sections; a moving X-

ray source, a pair of compression plates, and a static detector. In the Siemens 

MAMMOMAT, the distances between X-ray source to the detector, the rotation point 

of the source to the detector, and the bottom compression plate to the detector are 650 

mm, 47 mm, and 17 mm, respectively. The XY-dimension of the detector is 

3584x2816 pixels (Siemens AG, 2016; Siemens MAMMOMAT Inspiration, 2017). 

ART was used to reconstruct these 25 projections by applying one iteration. In each 

projection, the values of the 3D image’s voxels were updated ray by ray, and the 

updating was repeated for all 25 projections to complete a single iteration.  

Due to the limitations of Matlab program, and computer capacity such as out of 

memory error and time cost, we run all algorithms for down-sampled projections as 

 

Figure 5.2 : The geometry of DBT system of Siemens MAMMOMAT (Polat et 

al., 2016; Polat & Yildirim, 2018). 
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601x472 pixels. We reconstructed 25 down-sampled projections of the real phantom 

CD Pasmam 1054 with dimensions 601x472 as 8 slices of third dimension in z-

direction in this project. The results of these reconstructed images were compared for 

12 dose levels by choosing layer-1 as the layer of interest (LOI). We chose the 

regularization coefficients (λ) of TV3D as 5. A preset value for TV regularization term 

was used at all reconstructions. Ideally, it is well known that regularization term should 

be selected inverse proportional to signal to noise ratio (SNR) (Ahmed et. al., 2002; 

Yildirim et. al, 2009). 

5.1.3 Algorithms to overcome out of memory and speed problems 

We performed all tests using Matlab R2015b running on computer-1 that had Intel ® 

Core™ i7-4600U CPU@ 2.1 GHz, 2.70 processor, 8 GB RAM, and 64 bit processing 

Windows system, and on computer-2 that had two Intel Xeon E5_2660 CPUs@ 2.2 

GHz with total of 16 cores, 64 GB RAM, two Tesla K20 NVIDIA cards and 64 bit 

CentOS 6.4 system. Our matlab code followed three main steps; the first step 

calculated the intersection lengths and their indices, the second step built the system 

matrix, and the third step performed ART, ART+TV3D and ART+TV3D+MM methods. 

Implementation of the pseudocode of the algorithm is given below. 

1. Calculations of the intersection lengths and its indices via Siddon’s algorithm 

(Siddon, 1985) for lattice structure of the 3D breast. 

• Describe parameters, dimensions of the lattice structure, rotation geometry, and 

ray geometry 

• Approach: use sparse allocation, cell and structure functions. Allocate the 

memory in column-wise to speed up calculations.  

           >> for 25 scanning angle 

        >> for each row&column of detector pixel 

   Run Siddon’s algorithm 

          Get “intersection lengths” and “voxel indices" 

       >> end 

            >> end 

2. Building the System Matrix-A 
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• Approach: use parfor parallel computing 

           >> parfor 25 scanning angle 

  Assign “intersection lengths” to “rays (i)” and “voxel indices (j)" 

  Get transpose of A-matrix with dimensions-(voxels x rays)   (j x i) 

         >> end 

3. Implementation of the ART, ART+TV3D and ART+TV3D+MM 

• The study adopts the standard ART algorithm with a change in [6]. Perform 

ART formula in 5 steps.   

  >> for iterations 

            >> for 25 scanning angle 

          >> for i:  each row&column of detector pixel 

        Get transpose of transpose of A-matrix with dimensions – (rays x voxels) A(i x j) 

        Calculate ART formula in 5 lines instead of 1 line 

Norm=diag(A'*A); 

AV=A(:,i);     // transpose of A (j X i) 

Q=Y(i)-AV'*XR; // transpose of transpose of A   

Constant=AV/Norm(i); 

XR=XR+Q*Constant;  

% XR=XR+(Y(i)-A(:,i)’*XR)/Norm(i)*(AV'); 

       >> end 

        >> end 

 Apply ART+TV3D and ART+TV3D+MM to ART 

>>end 
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5.2 Data and Methodology for Micro-Bioimaging (MBI) 

The studies in micro-bioimaging (MBI) part of this Ph. D. thesis were performed at 

Harvard Medical School, Harvard-MIT Health Sciences and Technology, 

Massachusetts Institute of Technology, Cambridge, MA, USA (from December 16, 

2016 to December 15, 2017).  

The methodology of MBI project had five sections as below; 

 Creating manual scanning imaging tool 

 Creating robotic scanning imaging tool 

 Manufacturing biological phantoms 

 Manufacturing a real bioreactor 

 Performing ART+TV3D for 3D image reconstruction of two biological 

phantoms (200x200x50) 

5.2.1 Introduction to bioimaging 

Bioimaging relates to methods that non-invasively visualise biological processes in 

real time. Bioimaging aims to interfere as little as possible with life processes. 

Moreover, it is often used to gain information on the 3D structure of the observed 

specimen from the outside, i.e. without physical interference. In a broader sense, 

bioimaging also includes methods visualising biological material that has been fixed 

for observation. 

In cell biology, bioimaging can be used to follow cellular processes, quantify ion or 

metabolite levels and measure interactions of molecules live where they happen. 

Appropriate tracers, e.g., specific fluorochromes, and advanced microscopic 

instruments as e.g. confocal laser scanning microscopes (CLSM) are a prerequisite for 

most applications (Url-10, 2017). 

Bioimaging is a term that covers the complex chain of acquiring, processing and 

visualizing structural or functional images of living objects or systems, including 

extraction and processing of image-related information. Examples of image modalities 

used in bioimaging are many, including: X-ray, CT, MRI and fMRI, PET and High 

Resolution Research Tomograph (HRRT) PET, SPECT, Magnetoencephalography 

(MEG) and so on. Medical imaging and microscope/fluorescence image processing 
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are important parts of bioimaging referring to the techniques and processes used to 

create images of the human body, anatomical areas, tissues, and so on, down to the 

molecular level, for clinical purposes, seeking to reveal, diagnose, or examine diseases, 

or medical science, including the study of normal anatomy and physiology. Image 

processing methods, such as denoising, segmentation, deconvolution and registration 

methods, feature recognition and classification represent an indispensable part of 

bioimaging, as well as related data analysis and statistical tools (Url-11, 2017). 

5.2.2 Imaging system for micro-bioimaging (MBI) 

In this section, we revised and adapted current algorithms that we have developed in 

DBT image reconstruction to compressed sensing based image reconstruction in 3D 

imaging systems for micro-bioimaging (MBI). Our aim by transforming of 

ART+TV3D from DBT application to MBI application is illustrated in Figure 5.3. We 

revised our MATLAB code to reconstruct 3D images of biological samples with size 

200x200x50. 

To achieve the aims introduced above, we designed and created a 3D bioimaging 

system for biological applications. The concept of 3D bioimaging system is shown in 

Figure 5.4. It had mainly three parts as DBT: a complementary metal oxide 

semiconductor (CMOS) detector with a lens, a light source (can be a light emitted 

diode (LED)), and a holder for the biological sample. The design of optical imaging 

part which includes CMOS and lens is shown in Figure 5.5. 

 

 

Figure 5.3 : 3D image reconstruction of biological applications. 

DBT -> Micro-Scale Imaging
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The distances from the sample to the lens and from the lens to the CMOS (image 

sensor) were setup as 150 mm and 40 mm, respectively. We utilized an achromatic 

lens with 10 mm diameter, 30 mm focal lenght, and visible-near infrared coated (Url-

9, 2017) and it is illustrated in Figure 5.6. The basic specifications of the lens are given 

in Table 5.1. All specifications of the achromatic lens can be found in (Url-9, 2017). 

 
 

Figure 5.5 : Optical imaging design. 

 

  

Figure 5.4 : The concept of 3D bioimaging system for micro-scale biological 

applications. The acquisition of projections was done between -25 and +25 degrees 

with 5-degree angle step. 
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For image sensor Logitech C160 CMOS was used. The CMOS is shown in Figure 5.7 

and its specifications are shown in Table 5.2.  

  

 
 

Figure 5.6 : Achromatic lens. 

 

Table 5.1 : The basic specifications of the lens. 

Diameter 10.0 mm 

Effective focal length (FL) 30.0 mm 

Back focal length 27.47 mm 

Center thickness 1 & Center thickness 2 3.5 mm & 2.0 mm 

Radius 1 & Radius 2 &                     

Radius 3 

18.58 mm & -13.17 mm &     

-37.11 mm  

Wavelength range 400-1000 nm 

Focal length specification wavelength 587.6 nm 

 

 
 

Figure 5.7 : Logitech C160 CMOS. 
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5.2.3 Creating the manual scanning 3D bioimaging tool 

We designed and built a limited view manual scanning tool for 3D micro-bioimaging 

system using PMMA (polymethylmethacrylate) by CorelDRAW and laser cutter. The 

manual scanning tool which includes CMOS, lens, and light source is illustrated in 

Figure 5.8. It was able to manually rotated between maximum -45o and +45o with 5o 

angle steps, which means it was able to acquire maximum 19 projections in an 

examination. 

Table 5.2 : The specifications of Logitech C160 CMOS. 

Lens and sensor type Plastic, CMOS 

Focus type  Manual 

Field of view (FOV) 50o 

Focal length 40 cm (15.75 inch) 

Optical resolution (true) 640x480 VGA 

Image capture (4:3 SD) 320x240, 640x480, 1.3P 

Frame rate (max) 15fps @ 640x480 

Video capture (4:3 SD) 320x180, 360P 

 

   
 

Figure 5.8 : Manual scanning tool. Between -45 and +45 degrees with 5 degree angle 

step. 
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5.2.4 Creating the robotic 3D micro-bioimaging (MBI) tool 

After getting promising results via manual scanning imaging tool, we created an 

automatic image scanning tool controlled by robotic. The robotic 3D micro-

bioimaging (MBI) tool was done by Arduino software and motor controls and is shown 

in Figure 5.9. We also designed a more advanced optical imaging setup using a 

combination of optical table and tools compared to that of manual scanning tool. By 

this tool, we improved the geometry of the projection acquisition and the quality of the 

images.  

The size of the robotic 3D MBI tool was 35cmX35cmx30cm. It included one CMOS 

imager, one lens, one Arduino Mega 2560 R3 board, one RAMPS 1.4 board, three 

motor drivers, one light source, two stepper motors, one linear motor, and one power 

supply (see Figure 5.6, 7, 9-11).  

 

  

Figure 5.9 : The animation (left) and photo (right) of the robotic 3D micro-

bioimaging (MBI) tool. 

 

 

Figure 5.10 : a. Arduino Mega 2560 R3 (ATMEGA128O combo) and RAMPS 

1.4 board, b. stepper motor, c. linear motor and d. power supply. 

a d c b 
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5.2.4.1 Mechanical design 

The robotic 3D MBI tool was built from scratch according to the specifications that 

were needed for a smooth and precise image acquisition. The chassis of the structure 

was built from 20mm T-slotted black anodized aluminum which provided enough 

support for the rotating axis. The T-slots were joint using aluminum corner brackets to 

ensure the integrity of the chassis and to have versatility in case the structure had to be 

changed. The design was based on a mix between a computer numerical control (CNC) 

machine and a 3D printer. A couple rails were used for the forward and backwards 

degree of motion of the platform that holds the bioreactor sample. On top of the rails 

a platform was set and adapted to it a fitting that carried another platform which in turn 

holds the sample to be scanned. In the lower part of the chassis a rotating axis was 

constructed, this to ensure that the CMOS-detector could have a range of degrees of 

freedom along this rotating axis, also the CMOS-detector was set in-line with the light 

source on top of a platform which was in turn set on top of the rotating axis as shown 

in Figure 5.9. The rotating axis was a swivel table-top which gave it the degrees of 

freedom needed. The platform on top of the rotating axis is a 1-foot aluminum U-

shaped bar. Most of the fittings involved were custom made for the project using a 

filament (fused deposition modeling (FDM)) 3D printer. 

For the locomotion steppers motors were chosen because of their characteristics of 

precision and stability. The two main motors were the ones used for rotating the swivel 

table and to move the platform on top of the couple of rails, NEMA 17 stepper motors 

with 12V of rated voltage were used for this purpose. To lower and raise the sample 

and to move the CMOS along the rotating axis, small micro-stepping linear motors 

with 9V of rated voltage were used, an additional motor was used depending on the 

sample with additional fittings. The versatility of having different kind of fittings at a 

very low cost was one of the advantages of the design. 

5.2.4.2 Electronics design 

To provide enough control and stabilization to the four to five stepper motors that were 

to be used it was imperative to have an electronics and control platform that was 

sufficient for this endeavor, as previously stated the design was based partially on CNC 

machines and 3D printers so to drive the steppers we used a RAMPS 1.4 board and 

ATMEGA128O microcontroller combo (Figure 5.10) which is commonly used in 3D 
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printers. The RAMPS board was fitted with A4988 stepper motor drivers (Figure 5.11) 

and in the case of the ones controlling the micro-stepping linear motors the current was 

limited to 500mA with the in-built potentiometer of each driver. Everything was 

powered via a 12V power supply also adapted to the chassis with custom 3D printed 

fittings. 

5.2.4.3 Software implementation 

The microcontroller programming was done using a C++ code compiler. However, the 

control of the motors was implemented via a Matlab™ Graphical User Interface (GUI) 

in order to have versatility when controlling the device as the scanning software was 

also developed in this coding language. The communication was done via serial as the 

code in the microcontroller was made to respond to inputs via its serial port. This was 

preferred instead of managing all the control just from Matlab™ because as the motors 

require a very constant and specific signal to work properly as they are stepper motors, 

controlling directly through Matlab™ turns out to be too slow for the proper 

functionality of the motors. This because of the delays and the kind of processing that 

Matlab™ has to work under. Matlab™ takes a lot of time between signals as it has to 

process everything via software which depends on the computing power of each PC. 

Adding to this it must open and close the serial communications port, write to it and 

process all this information. All these processes make the use of signals through 

Matlab™ software too slow to be used with stepper motor which require a specific 

delay and a faster signal to work properly. 

 

 

 

  

Figure 5.11 : A4988 stepper motor driver. 
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5.2.5 Lab-on-a-chip 

The miniaturization of electronic components has attracted more attention in the field 

of advanced fabrication techniques for micro- and nano-scale devices. Lab-on-a-chip 

(LOC) is a device such as a microfluidic platform that integrates complex functions of 

the chemical systems and laboratory functions onto an integrated circuit. These are 

only from a few millimeters to a few square centimeters in size to achieve automation 

and high-throughput screening. LOCs are designed to be equipped with software 

and/or optical detection systems to enhance their function. One of the most important 

advantages of LOCs is to accomplish in vitro tests with portable devices instead of a 

real-sized laboratory with cost effective manufacturing and operations. LOCs are 

applied to in the fields of biomedical, biological, health science, space and atmospheric 

sciences (Ghallab & Badawy, 2004, Url-8, 2017; Volpatti & Yetisen, 2014). 

5.2.6 Biological phantoms 

The biological phantoms and bioreactors are the elements of the lab-on-a-chip. We 

manufactured a variety of biological phantoms as the sample of biological applications 

to scan and acquire projections. First, we produced several transparent media with 

PDMS (polydimethylsiloxane) with soft-lithographic techniques including masses to 

mimic a biological system such as a cancerous tissue. A few biological phantoms 

manufactured by PDMS are illustrated in Figure 5.12. 

 
 

Figure 5.12 : A variety of biological phantoms in transparent media produced by 

PDMS. 
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PDMS is a low-density material used in the soft lithography for flow delivery in 

microfluidics chips. Hydrophobicity of the surface and high fracture toughness over a 

wide temperature range are among the important properties of PDMS. PDMS is also a 

transparent media having a refractive index of ~ 1.4 and an extinction coefficient of   

< 10-10 in the visible range (240 nm – 1100 nm) which is convenient for optical 

absorption. Thanks to this feature of PDMS the light can pass through the media 

containing the object and acquire the images of that object on the CMOS (Whitesides 

& Tang, 2006). 

Recently, most of the PDMS-based studies in nanotechnology and biomaterial 

applications have used Sylgard-184, which is commercially available two-component 

kit manufactured by Dow Corning. The picture of two components of Sylgard-184, 

silicone elastomer curing agent and silicone elastomer base, is illustrated in Figure 

5.13. This material has opened up many doors on soft lithography so that made it as 

one of the indispensable material in this field. 

5.3 The Metrics for Quantitative Evaluation 

For quantitative assessment of the 3D reconstructed images, metrics such as signal to 

noise ratio (SNR), structural similarity (SSIM), contrast to noise ratio (CNR) and 1-

dimensional (1D) profile were used in this Ph. D. thesis. The definitions of these 

metrics are below. 

 

Figure 5.13 : Sylgard-184 kit. 
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SNR measures the ratio of the level of a desired signal and the level of background 

noise and expressed as in (5.1) (Ertas et al., 2013b). 

   

𝑆𝑁𝑅 = 10log 

(

 
 
 √∑ |𝑋̂𝑖𝑗𝑘

𝐼𝐽𝐾|
2𝐼𝐽𝐾

𝑖𝑗𝑘

√∑ |𝑋𝑖𝑗𝑘 − 𝑋̂𝑖𝑗𝑘
𝐼𝐽𝐾|

2𝐼𝐽𝐾

𝑖𝑗𝑘 )

 
 
 

 

 

 (5.1) 

where 𝑋𝑖𝑗𝑘 is original image, and 𝑋̂𝑖𝑗𝑘 is the reconstructed image. 𝑖, 𝑗, 𝑘 are the number 

of the elements in the xyz directions, respectively. 

SSIM, introduced by Wang et al. (2004) as a novel metric, measures the similarity 

between two images; in other words, SSIM index is the quality measure of one of the 

images being compared, provided that the other image is regarded as of perfect quality. 

Wang (2016) presented the MATLAB code for SSIM. The formulation of SSIM index 

is written in (5.2).  

   

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
  

 

 (5.2) 

 

In Eq. (5.2); 

𝜇𝑥 is the average of 𝑥 

𝜇𝑦 is the average of 𝑦 

𝜎𝑥
2 is the variance of 𝑥 

𝜎𝑦
2 is the variance of 𝑦 

𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦 

𝐶1 and 𝐶2 are defined in (5.2a) and (5.2b), respectively. 
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𝐶1 = (𝑘1𝐿)2  

 

   (5.2a) 

   

𝐶2 = (𝑘2𝐿)2  

 

  (5.2b) 

Where 𝐿 is the dynamic range of the pixels (typically (2𝑏 − 1), 𝑏 is the number of bits 

per pixel), 𝑘1 ≪ 1, 𝑘2 ≪ 1. 

CNR is a metric, used in medical imaging, to determine image quality by 

distinguishing between intensities of an image. It is formulated by (5.3). 

   

𝐶𝑁𝑅 =
(𝜇𝑅𝑂𝐼 − 𝜇𝑏𝑔𝑟𝑑)

𝜎𝑏𝑔𝑟𝑑
 

 

   (5.3) 

where 𝜇𝑅𝑂𝐼 and 𝜇𝑏𝑔𝑟𝑑 are the mean value of region of interest (ROI) and the mean 

value of background. 𝜎𝑏𝑔𝑟𝑑 is the standard deviation of background. 
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6.  RESULTS AND DISCUSSION 

The results of reconstructions for both digital breast tomosynthesis (DBT) and micro-

bioimaging (MBI) studies are presented in this Chapter. 

6.1 Results and Discussion for Digital Breast Tomosynthesis (DBT) 

6.1.1 The results of IRT methods (ART, ART+TV3D, and ART+TV3D+MM) for 

an analytical phantom 

The proposed method ART+TV3D+MM was implemented for an analytical phantom 

with dimensions 61x61x9 that simulates a 3D breast roughly. Nine slices of analytical 

phantom with dimensions 61x61 that simulates a 3D breast are illustrated in Figure 

6.1. Layer-3 was chosen as the layer of interest (LOI) due to the existence of fine 

details in this layer (Polat et al., 2016). 

 

     
  

Figure 6.1 : Nine layers of the mimic of a 3D breast (61x61x9) (Polat et al., 2016). 
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In ART+TV3D+MM method, we applied MM algorithm after 3D TV minimization 

step at each iteration. Here, 3D data was reshaped to 1D as input of MM algorithm 

after 3D TV minimization. MM algorithm has another inner iteration process in itself. 

We adapted the MM algorithm developed by (Selesnick, 2014) to our problem with 

five iterations.  

The number of MM iteration was chosen as 5 based on the convergence criterion for 

stopping the iteration, 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) expressed in (4.38).  

The results of LOI (3th Layer) of ART, ART+TV3D and ART+TV3D+MM can be 

visually compared in Figure 6.2. The visual interpretation can be done by focusing on 

two objects of interest (OOI-A and OOI-B). While obtaining similar results in both 

ART+TV3D and ART+TV3D+MM, both methods outperformed ART. Among all 

methods, ART+TV3D+MM has the lowest background noise level. 

 
 

       
 

Figure 6.2 : a. Original LOI, b. the reconstructed LOI via ART, c. the reconstructed 

LOI via ART+TV3D, and d. the reconstructed LOI via ART+TV3D+MM. 
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Signal to noise ratio (SNR) and structural similarity (SSIM) of the LOI were examined 

as quantitative metrics to evaluate the performance of ART+TV3D+MM method by 

comparing to ART+TV3D and ART as well. The pilots of SNR and SSIM versus the 

number of iteration are given in Figure 6.3 and in Figure 6.4, respectively. 

SSIM offers a metric which has a closer match with the human vision. Matlab code 

for SSIM can be accessed on (Wang, 2016). 

While ART+TV3D+MM reached to 0.9814 SSIM value at the end of the 10th iteration, 

SSIM values of ART+TV3D, and ART were 0.9771 and 0.9208, respectively. 

Additionally, SNR (dB) values of ART+TV3D+MM, ART+TV3D, and ART were 

24.56, 24.32, and 23.48, respectively. ART performed the poorest results for both 

metrics. In conclusion, the proposed method ART+TV3D+MM helps in obtaining 

superior results in terms of SNR and SSIM values compared to ART+TV3D. 

 

 

 

  

Figure 6.3 : SNR values (dB) of 3D volume for ART, ART+TV3D, and 

ART+TV3D+MM. 
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6.1.2 The results of IRT methods (ART, ART+TV3D, ART+TV3D+MM) and FBP 

for the real breast phantom images 

The effects of the dose and the reconstruction methods, which are ART, ART+TV3D, 

ART+TV3D+MM (iterative reconstruction techniques (IRT)), and MAMMOMAT’s 

FBP on the quality of the reconstructed images of the real breast phantom (CD Pasmam 

1054) were assessed both quantitatively and qualitatively using MATLAB R2015b at 

12 different dose levels. 

6.1.2.1 Reconstruction of 100 mAs-dose images 

In this sub-section we analyzed only reconstruction of 100 mAs-dose image, evaluated 

qualitative and quantitative assessments for IRT and MAMMOMAT’s FBP to 

compare the methods in detail for the same dose level chosen within the mid-range. 

The reference projection at 100 mAs-dose level at angle of 0.29o (center of moving 

arm) is shown in Figure 6.5. It includes OOI-1 (Object of Interest-1), OOI-2, OOI-3, 

OOI-4, 1D profile-A, and  1D profile-B which were used in quantitative analysis. 

  

Figure 6.4 : SSIM values of ART, ART+TV3D, and ART+TV3D+MM. 
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In Figure 6.6, three projections; 1st projection at angle of -25.19o, 14th projection at 

angle of 0.29o (center), and 25th projection at angle of 21.77o are illustrated. If we 

draw a red line over the center of the circle-shape of the center projection, the images 

of projections on the detector shift versus the scanning angle from -25.19o to 21.77o 

can be seen clearly. This shifting causes a blurring effect on the reconstructed images. 

 

Figure 6.6 : 1st projection at angle of -25.19o (left), 14th projection at angle of 0.29o 

(center), and 25th projection at angle of 21.77o (right). 

 

Figure 6.5 : The reference projection (601x472 pixels), the four OOIs and 1D 

profiles at 100 mAs-dose level at the angle of 0.29o. 
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6.1.2.2 Visual analysis of 100 mAS-dose images 

In this section, we presented the comparison of the outcomes of the reconstructed 

images of 25 projections of the real breast phantom CD Pasmam 1054 for the 

algorithms IRT with one iteration and MAMMOMAT’s FBP. This comparison was 

done for 100 mAs (middle dose level) and is illustrated in Figure 6.7.  

We performed visual and metric analysis of the reconstructed images of the methods, 

and compared the the effect of dose changes focusing on OOI-1, OOI-2, OOI-3, and 

OOI-4.  

 
Figure 6.7 : a. FBP, b-d. IRT (b. ART, c. ART+TV3D, and d. ART+TV3D+MM) at 100 mAs. 
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When we evaluated the reconstructed images of four methods for 100 mAs in Figure 

6.7, OOI-1 drawn on the reference projection in Figure 6.5 were visually similar for 

the three methods of IRT; however, they were better than FBP. Additionally, among 

IRT results for OOI-2, OOI-3, and OOI-4, ART+TV3D and ART+TV3D+MM gave 

improved results than ART. Moreover, although OOIs-1 of ART, ART+TV3D and 

ART+TV3D+MM showed no difference qualitatively, the metric analysis in next 

section proved that the result of ART+TV3D and ART+TV3D+MM was better than the 

result of ART. Enlargement of OOI-1 is illustrated in Figure 6.8. The enframed 

rectangular window shape clearly could be distinguished in the three methods of IRT, 

whereas the same shape was too unclear in FBP.  

In the same way, in the enlargement of OOI-2 in Figure 6.9, ART+TV3D and 

ART+TV3D+MM provided better images in terms of preserving the edges than the 

FBP and ART methods. 

Our proposed method ART+TV3D+MM increased the sharpness of OOI-2. 

Additionally, it was clear that the quality of detectability of the square-shape was much 

better for the three methods of IRT than FBP. In IRT methods, ART+TV3D+MM that 

we proposed had similar quality as ART+TV3D. Moreover, it was quite obvious that 

ART+TV3D+MM was much better quality than ART. 

 

Figure 6.8 : Zoom in OOI-1 at 100 mAs-reconstructed images; FBP and IRT 

(ART, ART+TV3D, and ART+TV3D+MM). 
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6.1.2.3 Metric analysis of 100 mAS-dose images 

To evaluate the performance of IRT comparing to FBP apart from qualitative 

assessment, quantitative metrics such as CNR defined in (5.3) and 1D profile of the 

LOI were examined as well.  

ROI-1 (in OOI-1), ROI-2 (in OOI-2) and their background areas of ART+TV3D+MM 

at 100 mAs are illustrated in Figure 6.10. The CNRs of the same ROI-1 and the same 

ROI-2 of four methods ( three of IRT and FBP) are compared at 100 mAs in Table 6.1.  

Table 6.1 : The CNR values of FBP and the three methods of IRT at 100 mAs. 

  

FBP 

 

ART 

 

ART+TV3D 

 

ART+TV3D+MM 

CNR of ROI-1 1.075 48.949 51.191 52.439 

CNR of ROI-2 2.011 2.152 1.989 1.949 

 

 

Figure 6.9 : Zoom in OOI-2 at 100 mAs-reconstructed images; FBP and IRT 

(ART, ART+TV3D, and ART+TV3D+MM). 
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In Table 6.1, the CNR values of ROI-1 for FBP, ART, ART+TV3D, and 

ART+TV3D+MM were 1.075, 48.949, 51.191, and 52.439, respectively. It could be 

seen that ART, ART+TV3D, and our proposed method ART+TV3D+MM had 

approximately 45-55 times better results when compared to FBP with ROI-1 

evaluating with the CNR. The CNR values of ROI-2 of ART+TV3D and 

ART+TV3D+MM were less than the value of the FBP. This can be explained by the 

effect of down-sampling, applied to the images reconstructed by the FBP, in smoothing 

the background. 

When we evaluated these CNR values of ROI-2 with Table 6.1 and Figure 6.9, 

although the values of CNR of ROI-2 (in OOI-2) for FBP and ART were better than 

the values of CNR of ROI-2 (in OOI-2) for ART+TV3D and ART+TV3D+MM, in 

visual assessment of OOI-2 for ART+TV3D and ART+TV3D+MM  were better than 

FBP and ART qualitatively by giving better contrast and creating sharper edges.    

For 1D profile comparison of IRT and FBP at 100 mAs, 1D profile-A shown in Figure 

6.5 was chosen. 1D profile-A of four methods are given in Figure 6.11. 

ART+TV3D+MM showed better performance than ART+TV3D, ART+TV3D showed 

better performance than FBP and FBP showed better performance than ART in terms 

of amplitudes indicating distiguishability of the circles in the reconstructed images. 

 

 

 

Figure 6.10 : ROI-1 (yellow), background of ROI-1 (black), ROI-2 (red), and 

background of ROI-2 (green). 
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6.1.2.4 Reconstruction of 12 dose-level-images 

After evaluating 100 mAs-dose images (the middle dose level), we also applied the 

reconstruction methods to all images of 12 different levels of radiation doses in mAs 

values of (56, 63, 71, 80, 90, 100, 110, 125, 140, 160, 180 and 199). In Figures A.1, 

A.2, A.3, and A.4 (Appendix A), we presented and compared the three methods of IRT 

(ART, ART+TV3D, and ART+TV3D+MM) and MAMMOMAT’s FBP for all dose 

levels. Afterwards, to see more details we presented the results of IRT and FBP at 56 

mAs (lowest dose level) and 199 mAs (highest dose level) with larger images as well. 

6.1.2.5 Visual analysis of 12 dose-level-images 

In this section, we also compared the results of the reconstructed images of 25 

projections of the real breast phantom CD Pasmam 1054 for IRT with one iteration 

and FBP. This comparison was done for values of 12-dose levels (56, 63, 71, 80, 90, 

100, 110, 125, 140, 160, 180, and 199 in mAs) and shown in Appendix A.  

Here, we repeated visual inspection for all 12-dose levels in the same way as we did 

for 100 mAs-reconstructed images earlier. To see how a dramatic dose increase 

affected the reconstructed images, we presented the results of IRT and FBP for 56 mAs 

(lowest dose) and 199 mAs (highest dose) in Figure 6.12. 

 

 

 

Figure 6.11 : 1D profiles-A of FBP and IRT (ART, ART+TV3D, and 
ART+TV3D+MM). 
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Figure 6.12 : FBP (1st row), ART (2nd row), ART+TV3D (3rd row), and ART+TV3D+MM 

(4th row) at 56 mAs (left column) and 199 mAs (right column). 
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It was clear that visual representations of all OOIs of ART+TV3D+MM were better 

than ART+TV3D, ART, and FBP when we qualitatively evaluated Figure 6.12, proven 

by smoother background, sharper edges, and better separable objects from the 

background. Furthermore, when the dose level increased the background noise 

decreased, and therefore fine details could be better distinguished as expected.  

When we zoomed in the OOI-2 for all methods at 56 mAs (lowest dose), 100 mAs 

(middle dose), and 199 mAs (highest dose), the rectangular frames were 

distinguishable at all dose levels by ART+TV3D+MM and ART+TV3D whereas it was 

clearly distinguishable by ART at only the highest dose level (Figure 6.13), which was 

a clear evidence of how ART+TV3D+MM might attribute to the reduction of the dose 

level. 

 

 

Figure 6.13 : Enlarged views of OOIs-2; FBP (1st column), ART (2nd column), 

ART+TV3D (3rd column), and ART+TV3D+MM (4th column) at three dose levels 

in mAs values of (56 (1st row), 100 (2nd row), and 199 (3rd row)). 
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The same analysis was also performed for OOIs-4 (Figure 6.14). It was observed that 

FBP reconstructed grids in the circle better than IRT. However, we were able to read 

clearly the angle degrees 0, 45, 60, and 90 in ART+TV3D and ART+TV3D+MM at dose 

levels 100 mAs or higher. On the contrary, they were not readable in ART at even the 

highest dose level, which means that our proposed method ART+TV3D+MM could 

provide better results than ART at even half dose.  

6.1.2.6 Metric analysis of 12 dose-level-images 

We next compared the CNR values of IRT and FBP methods for all dose levels for 

ROI-1 and ROI-2 in Figure 6.15 and Figure 6.16, respectively. Additionally, 1D 

profiles-B of the methods for doses at 56 mAs, 100 mAs, and 199 mAs were compared. 

       

Figure 6.14 : Enlarged views of OOIs-4; FBP (1st column), ART (2nd column), 

ART+TV3D (3rd column), and ART+TV3D+MM (4th column) at three dose levels 

in mAs values of (56 (1st row), 100 (2nd row), and 199 (3rd row)). 
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From the CNR values in Figure 6.15, It could be seen that ART, ART+TV3D, and our 

proposed method ART+TV3D+MM had approximately 45-55 times better results when 

compared to FBP with ROI-1 evaluating with the CNR. On the other hand, analyzing 

ROI-2 using the CNR values (Figure 6.16) produced results that were too close to each 

other to meaningfully draw conclusions; however, visual inspection suggested that 

ART+TV3D+MM provided the best reconstructed images (see Figure 6.13). 

In addition, as the CNR values of ROI-1 of ART+TV3D and ART+TV3D+MM 

supported very strongly, the image quality of our proposed method was much better 

than FBP when analyzed qualitatively. For instance, while the CNR value of ROI-1 of 

FBP at 100 mAs was 1.075, the CNR value of ROI-1 of ART+TV3D+MM at 100 mAs 

was 52.439, which means 48.78 times better. 

At all doses, ART+TV3D+MM showed better results than ART+TV3D, ART+TV3D 

showed better result than  ART, and ART showed better result than FBP in general 

trend except at 56 mAs and 100 mAs for both ROIs in terms of giving higher CNR 

values. The reason of why ART results were higher than other three methods at 56 

mAs and 100 mAs might be because of shining effect during the acquisition. 

Additionally, when the dose increased, the values of CNR increased for IRT and FBP. 

For example, at 63 mAs, 110 mAs, and at 199 mAs the CNR values of 

  

Figure 6.15 : CNR values of ROI-1 of FBP, ART, ART+TV3D, and ART+TV3D+MM 

at 12 dose levels. 
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ART+TV3D+MM for ROI-2 were 1.610, 2.053, and 2.473, respectively. The CNR 

values of FBP for ROI-2 at the same doses were 1.356, 1.822, and 2.188, respectively. 

As a result, ART+TV3D+MM tended to have the best image quality. 

To analyze how 1D profile-B in the OOI-3 shown in Figure 6.5 was effected by the 

level of dose for the reconstruction methods, we studied the lowest (56 mAs), highest 

(199 mAs), and middle (100 mAs) dose levels. 

For 1D profile-B comparison of IRT and FBP at 12 doses, we preferred and presented 

the plots of 1D profile-B at 56 mAs, 100 mAs, and 199 mAs dose levels. 1D profiles-

B of ART and ART+TV3D methods are given in Figure 6.17 and 1D profiles-B of FBP 

and ART+TV3D+MM methods are given in Figure 6.18. It was clear that 

ART+TV3D+MM showed the best performance in terms of amplitudes indicating 

distiguishability of one circle and four squares in the reconstructed images. 

From Figure 6.17, it was clear that as the dose increased the amplitude of the 1D 

profile-B increased for both methods. In  addition, the amplitude of the 1D profile-B 

generated by ART+TV3D at the lowest dose level even exceeded the one generated by 

ART at the highest dose level, which was a sign of how ART+TV3D could be used to 

lower the dose level in DBT imaging. 

 

Figure 6.16 : CNR values of ROI-2 of FBP, ART, ART+TV3D, and ART+TV3D+MM 

at 12 dose levels. 
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Figure 6.17 : 1D profiles-B at three dose levels for ART (dash) and ART+TV3D 

(solid); highest dose-199 mAs (dark blue), lowest dose-56 mAs (light blue), and 

middle dose-100 mAs (red). 
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Figure 6.18 : 1D profiles-B at three dose levels for FBP (dash) and 

ART+TV3D+MM (solid); highest dose-199 mAs (dark blue), lowest dose-56 mAs 

(light blue), and middle dose-100 mAs (red). 
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6.2 Results and Discussion for Micro-Bioimaging (MBI) 

6.2.1 Reconstruction by manual scanning 3D bioimaging tool 

In this section, we presented the reconstructed images of a biological phantom 

manufactured by PDMS. The projections of the PDMS phantom were acquired via 

manual scanning 3D bioimaging tool. The dimensions of the PDMS phantom and of 

its projection in 𝑥𝑦-directions were 2cmx2cm and 200x200 pixels, respectively. The 

resolution of each pixel was 100 µm/pixel. The reference projection is illustrated in 

Figure 6.19. The regions colored by red and yellow were the anomalies detected from 

the different layers of the phantom. The diameter and the height of the cylindrical 

phantom were approximately 2 cm and 2.8 cm respectively (see Figure 6.20). 

11 projections were acquired between -25o and +25o with 5o angle step and 

reconstructed as 50 layers. The dimensions of the reconstructed 3D image were 

200x200x50. The layers including the masses were chosen as layers of interest (LOIs). 

Layer-3 and layer-38 were matched with the real positions in the phantom and 

demonstrated in Figure 6.20. The matching of reconstruction image and real phantom 

for layer-3 was signed by red color, whereas for layer-38 was signed by yellow color. 

It could be seen by these results that we could be able to distinguish the structures and 

morphology of different layers of a biological structure by the manual scanning 3D 

bioimaging tool.  

 

Figure 6.19 : Reference projection of the PDMS phantom. 
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6.2.2 Reconstruction by robotic 3D micro-bioimaging (MBI) tool 

The reference projection of the phantom which was acquired via the robotic 3D micro-

bioimaging (MBI) tool is illustrated in Figure 6.21. The projection on the left was 

acquired via CMOS with a mounted lens and ambient light; however, the projection 

on the right was acquired via CMOS with a separate lens and a light source (the optical 

imaging design), which was illustrated in Figure 5.5. 

 

  Figure 6.20 : Phantom looking from two different directions. Layer-3 and layer-38 of 

reconstructed images of the PDMS phantom. 

  

Figure 6.21 : A biological phantom consisting of two different layers. Left: 

acquisition via CMOS with a mounted lens and ambient light; right: acquisition 

via CMOS with a separate lens and a light source. 
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In Figure 6.21, the phantom had 6mmx6mmx1mm-dimensions; second layer included 

3x3 squares-grid with 5mmx5mmx0.5mm size and first layer included wells with 300 

µm diameter and 100 µm distance between two wells. The length of one edge of the 

area located each 25 wells (5x5) was 2 mm. 

Like the previous experiment, 11 projections were acquired between -25o and +25o 

with 5o angle step and reconstructed as 50 layers. The dimensions of the reconstructed 

3D image were 200x200x50. The resolution of each pixel was 25 µm/pixel. Layers 22 

and 34 of the reconstructed images are illustrated in Figure 6.22. 3D models of 

reconstructed images are shown in Figure 6.23. It could be seen by these results that 

we could be able to distinguish the structures and morphology of different layers of a 

biological structure by the robotic 3D MBI tool. 

 

 

  

                     

Figure 6.22 : Layer 22 (left column) and Layer 34 (right column) of the 

reconstructed images of the biological phantom. Figures in the first row are the 

results of Matlab, in the second row are the results of ImageJ. 
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Figure 6.23: 3D models of the reconstructed images of the biological phantom. 
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7.  CONCLUSION 

In the literature of digital breast tomosynthesis (DBT) image reconstruction, iterative 

reconstruction techniques (IRTs) such as algebraic reconstruction technique (ART) 

and analytical methods such as FBP (filtered back projection) are applied to obtain the 

reconstructed 3D images of the breast. A compressed sensing based application, TV3D 

(3-dimensional total variation), is applied to ART to enhance the quality of the 

reconstructed image.  

In this thesis, we mainly studied two major projects. First, we proposed an iterative 

image reconstruction that is majorization-minimization (MM) based on 3D total 

variation (TV3D), (ART+TV3D+MM) as a novel application in digital breast 

tomosynthesis (DBT) imaging, and compared its performance with ART and 

ART+TV3D for an analytical phantom using structural similarity (SSIM) and signal to 

noise ratio (SNR) metrics. While the value of SSIM of ART+TV3D+MM reached to 

0.9814 at the end of the 10th iteration, SSIM values of ART+TV3D and ART were 

0.9771 and 0.9208, respectively. Additionally, SNR (dB) values of ART+TV3D+MM, 

ART+TV3D, and ART were 24.56, 24.32, and 22.48, respectively. ART performed the 

poorest results for both metrics. In conclusion, the proposed method ART+TV3D+MM 

helped to obtain superior results in terms of SNR and SSIM values compared to 

ART+TV3D and ART. 

The radiation dose level applied to patient is one of the most critical limitations of 

DBT imaging. For this purpose, we further investigated, if a compressed sensing based 

iterative image reconstruction, MM based 3D TV regularized ART 

(ART+TV3D+MM), could help decrease the radiation dose of patient comparing to 

MAMMOMAT’s FBP using a real breast phantom (CD Pasmam 1054) at 12 different 

dose levels ranging from 56 to 199 mAs. Moreover, to compare ART+TV3D+MM, 

ART+TV3D, ART, and FBP, the analysis of visual inspection for qualitative 

assessment and CNR values for quantitative assessment were studied by focusing on 

objects of interest (OOIs) and regions of interest (ROIs). When the dose increased, the 

values of CNR increased for all methods as expected. Additionally, the CNR values of 

ART+TV3D+MM were the highest and the CNR values of ART+TV3D were higher 
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than the CNR values of ART and FBP in general trend. For example, at 71 mAs, at 

140 mAs, and at 199 mAs, while the CNR values of ART for ROI-2 were 1.572, 2.099, 

and 2.292, the CNR values of ART+TV3D for ROI-2 were 1.666, 2.202, and 2.364, 

and the CNR values of ART+TV3D+MM for ROI-2 were 1.682, 2.208, and 2.473, 

respectively. The results showed that compressed sensing based image reconstruction 

techniques (ART+TV3D and ART+TV3D+MM) could efficiently decrease the radiation 

dose level by providing better reconstructed images in terms of obtaining fine details 

and generating higher CNR values.  

The second project was to adapt the software algorithms for 3D image reconstruction 

and to create a robotic scanning tool for 3D imaging system in micro-bioimaging 

(MBI). For this purpose, we created the robotic 3D MBI tool, which was comprised of 

two main parts: hardware (mechanical, electronics, and optical) and software (robotic 

scanning control software and 3D bioimaging reconstruction software). To test the 

ability of the acquisition of the projections and reconstructing these projections via 

ART+TV3D reconstruction algorithm of the robotic 3D MBI tool, we manufactured a 

few biological phantoms. The tool could be able to acquire the projections between      

-45o and +45o with 5o angle step, which means 19 projections.  

We proved that the robotic 3D MBI tool we created could reconstruct 3D images of 

various biological samples slice by slice, which means the layers of a biological sample 

such as a PDMS phantom that mimics a cancerous tumor could be distinguished 

successfully. 
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8.  FUTURE WORKS 

The future studies in digital breast tomosynthesis (DBT) will address developing 

patient specific low dose 3D breast imaging. The ultimate goal of this research in 

micro-bioimaging (MBI) project by developing advanced robotic 3D micro-

bioimaging (MBI) tool will be to investigate how morphology differentiation and 

proliferation of the tumor is attained by cells after putting in the hydrogel. We will 

study the changes that happen on a morphological level after the interaction of the 

tumor tissue with drugs inside a gel as well. The future purpose of this project can be 

demonstrated in Figure 8. 1. 

It is final goal of the advanced robotic 3D MBI tool project that when a user/scientist 

presses just a button of computer, the robotic 3D MBI tool will scan a biological 

system such as bioreactor, lab-on-a-chip system, spheroid or tumor to acquire 

projections, the algorithm will run automatically, and the results will be 3D 

reconstructed images of the object desired to visualize layer by layer. 

 

 

 

 

 

 

 

Figure 8.1 : The demonstration of the ultimate goal of the project in MBI. 

Cancer cells  3D Tumor

slice by slice imaging of a 3D tumor morphology
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APPENDICES 

APPENDIX A : FBP, ART, ART+TV3D, and ART+TV3D+MM at 12 doses. 
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    APPENDIX A 

 

 

                                                         
Figure A.1 : FBP at 12 doses. 

       

       



96 

 

   

 

 

 
Figure A.2 : ART at 12 doses. 
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Figure A.3 : ART+TV3D at 12 doses. 

       

       



98 

 

     

  

 

 

Figure A.4 : ART+TV3D+MM at 12 doses. 
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Table A.1 : The types of iterative reconstruction techniques (Beister et al., 2012). 

 

Abbreviation 

 

Meaning 
 

Reference 

ART 
Algebraic Reconstruction 

Technique 

Gordon R, Bender R, Herman GT. Algebraic 

reconstruction techniques (ART) for three-

dimensional electron microscopy and X-ray 

photography. J Theor Biol 1970; 29:471-482. 

 

SART Simultaneous ART 

Andersen AH, Kak AC. Simultaneous algebraic 

reconstruction technique (SART): a superior 

implementation of the ART algorithm. Ultrason 

Imaging 1984; 6:81-94. 

 

SIRT 
Simultaneous Iterative 

Reconstruction Technique 

Gilbert P. Iterative methods for the three-

dimensional reconstruction of an object from 

projections. Jl Theor Biol 1972; 36:105-117. 

 

MART 
Multiplicative Algebraic 

Reconstruction Technique 

Gordon R, Bender R, Herman GT. Algebraic 

reconstruction techniques (ART) for three-

dimensional electron microscopy and X-ray 

photography. J Theor Biol 1970; 29:471-482. 

Lent A, Censor Y. The primal-dual algorithm as 

a constraintset-manipulation device. Math 

Programming 1991; 50:343-357. 

Badea C, Gordon R. Experiments with the 

nonlinear and chaotic behavior of the 

multiplicative algebraic reconstruction 

technique (MART) algorithm for computed 

tomography. Phys Med Biol 2004; 49:1455-

1474. 

 

OS-SIRT Ordered Subset SIRT 

Gilbert P. Iterative methods for the three-

dimensional reconstruction of an object from 

projections. Jl Theor Biol 1972; 36:105-117. 

Xu F, Xu W, Jones M, Keszthelyi B, Sedat J, 

Agard D, et al. On the efficiency of iterative 

ordered subset reconstruction algorithms for 

acceleration on GPUs. Comput Methods 

Programs Biomed 2010; 98:261-270. 

 

ML-EM 
Maximum Likelihood 

Expectation Maximization 

Lange K, Carson R. EM reconstruction 

algorithms for emission and transmission 

tomography. J Comput Assist Tomogr 1984; 

8:306-316. 

 

OS-EM 
Ordered Subset     

Expectation Maximization 

Manglos SH, Gagne GM, Krol A, Thomas FD, 

Narayanaswamy R. Transmission maximum-

likelihood reconstruction with ordered subsets 

for cone beam CT. Phys Med Biol 

1995;40:1225-1241. 
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Table A.1 (continued) : The types of iterative reconstruction techniques (Beister 

et al., 2012). 

 

Abbreviation 

 

Meaning 
 

Reference 

OSC 
Ordered Subset Convex 

Algorithm 

Kamphuis C, Beekman FJ. Accelerated 

iterative transmission CT reconstruction using 

an ordered subsets convex algorithm. IEEE 

Trans Med Imaging 1998; 17:1101-1105. 

Erdogan H, Fessler JA. Ordered subsets 

algorithms for transmission tomography. Phys 

Med Biol 1999; 44:2835-2851. 

Beekman FJ, Kamphuis C. Ordered subset 

reconstruction for X-ray CT. Phys Med Biol 

2001; 46:1835-1844. 

 

ICD 
Iterative Coordinate 

Descent 

Sauer K, Bouman C. A local update strategy for 

iterative reconstruction from projections. IEEE 

Trans Sig Proc 1993; 41(2):534-548. 

Bouman C, Sauer K. A unified approach to 

statistical tomography using coordinate descent 

optimization. IEEE Trans Image Process 1996; 

5:480-492. 

Thibault J-B, Sauer KD, Bouman CA, Hsieh 

JA. Three-dimensional statistical approach to 

improved image quality for multislice helical 

CT. Med Phys 2007; 34:4526-4544. 

 

OS-ICD Ordered Subset ICD 

Lee S-J. Accelerated coordinate descent 

methods for Bayesian reconstruction using 

ordered subsets of projection data. Proc SPIE 

Conf Math Model; 2000. 4121, pp. 170-181. 

Zhu H, Shu H, Zhou J, Luo L. A weighted least 

squares PET image reconstruction method 

using iterative coordinate descent algorithms. 

Proc. IEEE Nuclear Science Symp Conf 

Record; 2004. 6, pp. 3380-3384. 

 

MBIR 
Model-Based Iterative 

Reconstruction 

Thibault J-B, Sauer KD, Bouman CA, Hsieh 

JA. Three-dimensional statistical approach to 

improved image quality for multislice helical 

CT. Med Phys 2007; 34:4526-4544. 

Yu Z, Thibault J-B, Bouman CA, Sauer KD, 

Hsieh J. Fast modelbased X-ray CT 

reconstruction using spatially nonhomogeneous 

ICD optimization. IEEE Trans Image Process 

2011; 20:161-175. 
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