ISTANBUL TECHNICAL UNIVERSITY * INFORMATICS INSTITUTE

ON THE ANALYSIS AND EVALUATION OF SPARSE HYBRID LINEAR
SOLVERS

M.Sc. THESIS

Afrah Najib FAREA

Department of Computational Science and Engineering

Computational Science and Engineering Programme

JUNE 2018

ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

ON THE ANALYSIS AND EVALUATION OF SPARSE HYBRID LINEAR
SOLVERS

M.Sc. THESIS

Afrah FAREA
(702151010)

Department of Computational Science and Engineering

Computational Science and Engineering Programme

Thesis Advisor: Prof. Dr. M.Serdar.CELEBI

JUNE 2018

ISTANBUL TEKNIiK UNIiVERSITESI % BiLiSiM ENSTITUSU

SPARSE HIiBRIiT DOCRUSALIl\.{IN"AN.ALiZi VE DEGERLENDIRILMESI
COZUCULER

YUKSEK LiSANS TEZIi

Afrah FAREA
(702151010)

Bilisim Enstitiisii
Hesaplamah Bilim ve Miihendisligi Programm

Tez Damismani: Prof. Dr. M.Serdar.CELEBI

Haziran. 2018

Afrah FAREA, a M.Sc. student of iTU Graduate School of Science Engineering and
Technology student ID 702151010, successfully defended the thesis/dissertation
entitled “ON THE ANALYSIS AND EVALUATION OF SPARSE HYBRID
SOLVERS”, which she prepared after fulfilling the requirements specified in the
associated legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. M.Serdar.CELEBI ...
Istanbul Technical University

Jury Members : Prof. Dr. Mine Caglar .
Kos University

Prof. Dr. Hakan Akyildiz ..
Istanbul Technical University

Date of Submission : 21 May 2018
Date of Defense : 08 JUNE 2018

To my explicit zero entries...

vii

FOREWORD

I would like to thank my supervisor Prof.Dr.M.Serdar.Celebi for introducing me to the
high performance computing and the parallel world through his cources and this thesis.
It is a turning point in my career.

I would also like to thank people at Ulusal Yiiksek Basarimli Hesaplama Merkezi
Projesi (UHeM) for the grant and answering my questions whatever naive they are.
Many thanks to Superlu, Maphys, Pt-scotch, spack, stack overflow and PETSc
developers for answering my questions. Many thanks to Prof.Dr.Tim Davis for Florida
Sparse Matrix collection. Life would be difficult without this repository.

JUNE 2018 Afrah FAREA

TABLE OF CONTENTS

Page

FOREWORDcciiimmmmmisnmssmssssssssssssssssssmsss ix
TABLE OF CONTENTS . ..oiivrssrmnismsssmsssssmsssssssssssssssssssssssssssssssssasssssssssssssssssss xi
ABBREVIATIONS .ooiiriinmsmsssssmssssssssssssmssssnssssssssssssssssssssssssnsssssassssssssssssssssssassssssss xiii
LIST OF TABLES ...omrrrreisrisrmssansasss XV
LIST OF FIGURES .uviosisismssmsmssmsssassssssssss xvii
SUMMARY ...oviiirimmrmmsssssssassssrsssssssasssssassssssssssssasssassssnsssssssssasssssssssssssssssssssssssssssssans Xix
(077 31 L xxiiii
L INTRODUCTION ..cociivarsnsmsrmssmsssssssssssssssssssssssssssssssssssssasssssssssassssssssasssasssssssssssans 1
L] LITErature REVIBWccviiiieiiiieie ettt sttt 1
1.2 Related Work to Experimental Comparison of Hybrid Solvers......................... 4

2. SPARSE MATRICES ...coiinismmsmsnmssssnsmssssssssssssssssssssssssssssssssassansssasssssssssssssssssssss 7
2.1 Sparase Matrix Storage FOratimscccceoeieieiininiseeieie e 7
2.1.1 CoOrdinate FOIMAL.........ccviiiierieieriesie sttt 7
2.1.2 Compressed stripe storage Format (CSR, CSC).cccoovvvviinineninieene, 7
2.1.3 Diagonal FOrMat(DIAG)ccueiieiececee sttt 9
2.1.4 ELLPACKI/ITPACK format(ELL)........cccovvviiiieieieie e 9
2.1.5 Block Compressed Stripe FOrmMats.........ccccoevveveiievieieiic e 10

2.2 Experimental Comparison of the Basic FOrmats............cccoccevvveveniennniesiinnenn 11
3. ORDERING AND GRAFPH PARTITIONING SCHEMES......coonmmmmmamsnnanss 13
3.1 BaSIC DefiNITIONScoiiiiiciieceee et 13
3.2 Ordering and Graph Partitioning TEChNIQUES.........cccuevveriereieiene s 15
3.2.1 Block traingular matrix ordering.........c.ccocevvrereeieienene e 16
3.2.2 Local PivOt OFEriNgGccovviiiiiecicie st 19
3.2.3 Band and variable band orderingcc.ccoovviriiiiiinen e 20
3.2.4 DisSeCtion MELOUSccveiiiiieeiese s 22

3.3 Ordering UnSymmetric MatriCeSccovveiireriiiiiiesiieeeie e 23
3.4 Sparsity Preservation vs Numerical Stabilitycccocoveveiiiniiiiice 24
3.5 Software Packages for Ordering and Graph partitioningc.ccccevevvrvennenn. 25
4. DIRECT METHODScooinimmmminismmissmmmmssmsmsissssissssssssssssssssssssssssssssssssssssss 27
4.1 Cholesky FaCtOrZatiONcoiiviieiieieicee e 29
o W I e Tod (0] 4 1 ([0 o RSP UTPSPRRR 30
5. ITERATIVE METHODS AND PRECONDITIONERS 35
5.1 Basic Iterative MethodsS ..o e 35
5.2 Krylov Subspace Methods...........cccoiiiiiiiiiecneee s 36
5.2.1 Generalized minimum residual method (GMRES)..........cccccccevieiieennene, 37
5.2.2 Conjugate gradient method (CG)cccoovieririnieieieiee s 38

3.3 Preconditioning Methods...........coooiiiiiiiniee e 39
6. HYBRID SOLVERSocoiiirmsmmmsssismsssmssasssssass 41
S o 1S o USSP 41
£1.2 MAPNYS < 45
6.2.1 Multithreading in MaphyS........cccoveiiiiiii i 47

.3 HIPS L 48

Xi

O PARMS ... 50

115 ABCD .. 51
7. EXPERIMENTAL SETUP AND RESULTS ...orvrriirrrrrsnssrsssssssssssssssssassassass 55
7.1 Experimetal environment and Optimization Details...........cccccooeviriiinininnn, 55
7.2 MatriX DESCIIPLION ...ttt 56
T3 EValuation IMELIICS ...vcveiiiieie e 58
7.4 Schur Complement ProCeSSING........ccveviiierierierieniieiesiee e 62
T.5 MEMOIY VS TIME .ottt 65
8. CONCLUSION AND FUTURE WORKcoorsmsmmmssrssssssssrmsssssssssssssssssssssssssss 73
REFERENCES.. 75
PN o] O O —— 79
APPENDIX A: Matrices and Package VersionS..........cccccuevveveseeiesieseesesieennnns 79
APPENDIX B: Dependecies of Hybrid SOIVEIS ..., 81
APPENDIX C: Hybrid Solvers Input Parameters...........ccccoeevevevvevesiieieene e 85

CURRICULUM VITAE . sssssssssssssess 90

Xii

ABBREVIATIONS

AMD
BFS
COO
CSC
CSR

CG

DFS
FGMRES
FLOPS
GMRES
GPU
HPC
MPI
MMD
MTX
ND

RSS
SPD
RSA
RUA

: Approximate Minimum Degree

: Breadth First Search

: COOrdinate format

: Compressed Sparse Column

: Compressed Sparse Row

: Conjugate Gradient

: Depth First Search

: Flexible Generalized Minimum Residual
: floating Points per second

: Generalized Minimum Residual

: Graphics Processing Unit

: High Performance Computing

: Message Passing Interface

: Multiple Minimum Degree

: MaTriX market format

: Nested Dissection

. Resident Set Size

: Symmetric Psitive Definite

: Rea Symmetric Assembled

: Real Unsymmetirc Assembled format

Xiii

LIST OF TABLES

Page

Table 1.1 : Results optained in [4] for HIPS vs PDSLin using Tdrd55K. ...occovvevennen. 5
Table 3.1 : List of popular graph partitioning Schemescocoeveverencnncnncacreen. 16
Table 3.2 : Popular Packages for Ordering Matricescoooecvvvievceninie e secsnsennes 25
Table 5.1 : List of Basic Iterative SChemes. ... 36
Table 7.1 : List of matrices used for evaluating hybrid solvers.coccvvvvvvrvirinrenn. 36
Table 7.2 : Processor Distribution and Spamif}ring Tolerance Setting on the Selected
Matrices .. ST I

Table 7.3 : List Error Measuremf:nts .. 58
Table7.4 : Superlu-dist options selected.........covvcveririinrninree s 59
Table7.5 : Schur Matrix Info in Audik using PDSLin Solver.......ccccooeviiienicnnn... 62
Table7.6 : Schur Matrix Info in Audik using Maphys SoIVer......cooevveiinevinnnen. 62
Table7.7 : Schur Matrix Info in Freescale using PDSLin Solver..........ococeeveveene... 62
Table7.8 : Schur Matrix Info in Freescale using Maphys Solver.......ccooeeiiveninne 63
Table7.9 : Schur Matrix Info in ASIC680KS using PDSLin Solver........................ 63
Table7.10 : Schur Matrix Info in ASIC680ks using Maphys Solver.........ccccccoeee. 63
Table7.11 : Schur Matrix Info in Atmosmodl using PDSLin Solver.........c..ccoev...... 64
Table7.12 : Schur Matrix Info in Atmosmod] using Maphys Solver... evevenaenes O
Table A.1 : List of Matrices used in Literature for Evaluating Ilybnd thers 79
Table A.2 : Versions of libraries we have considered in this work............cccovvevnnn. 80
Table C.1 : Maphys Input Parameters..........ocooveoioiioeeneseeeeese e 85

Table C.2 :
Table C.3:

PDSLIN INPUE PATAIMEIETS ...vevvvevevrieresvssersssssssasssssssssssssssasssssasssssassasssses 86
HIPS INput PAramMEtersvovverciesssssssssssssssssssssss s ssssss s sssssssssssnsssnsnns 87

XV

LIST OF FIGURES

Figure 2.1

Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 3.1 :

Figure 3.2 :

Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 3.6 :
Figure 3.7 :

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 5.1

Figure 6.1 :

Figure 6.2

Figure 6.3 :
Figure 6.4 :
: The Three binding mechanisms of Maphys[10]......ccccovvveviriereeernene. 48

: (a)Partition of an 8 x 8 5-point mesh into 9 subdomains and the

Figure 6.5
Figure 6.6

Figure 6.7
Figure 7.1

Figure 7.2 :
Figure 7.3 :
Figure 7.4 :
Figure 7.5 :

Figure 7.6 :

Page

: Example of Compressed Sparse Row (CSR) format [12]. .o 8
An example of Compressed sparse Column (CSC) format [12]. 8
An example of Diagonal Format (DIAG) format [12]. covevevivieieeeeennnnn 9
An example of ELLPACK/ITPACK format (ELL) [12]..cveevvveavinenn, 10
Example of Block Compressed Stripe Format [12]...cccoovvveeererenannen. 10

Graph of sparse matrices (above)non-symmetric, (middle)symmetric,
(down)bipartite for 4 X 5 MAIX. ..o ssasesrasessesses 14
Block Triangular matrix ordering through row and column singleton

Relabeling a matrix using Sargent and Westerberg algorithm [19]. 19

Relabeling a matrix using Tartan’s algorithm [19]. .cvvreviricrenrierennnn 19
Band and variable band form [19]. ..o 21
Example of Cuthill-McKee ordering [19]. ..ovvrerveversernrsrressearasessssee 22
Example of Nested Dissection ordering [8]. ... 23

: (a)ymatrix ordered by ND(red shows fill-in) (b) directed filled graph (c)
transitive reduction (d) elimination tree[27]. .. cese s T .27
: The proposed steganography method for extractmn[z“?] 28

: (a) left approach (b) right approach of Gaussian elimination[8,36]..... 33
: assembly tree of the elimination tree of figure(4.3) with the supernode

CcomMbINING 7,8,9 [27] oeeieeeeceseeeseeeeaesrassnsrssssssesssaseessaaassassassasnas 34
: Orthogonality condition of the Krylov subspace[14].cocveevrvraneranne. 37

Domain Decomposition of PDSLIN[43]. ..o 42

: parallel subdomain calculation of PDSLIn[43]. ...ovooiiiniieieeseninennes 44
Domain decomposition of Maphys[48].coovvrirviniriierienee . 40
Algebraic Additive Schwarz preconditioner{49]........ccocvvvvvcrrirreraenen. 46

corresponding HID structure (b) Matrix associated with an 8:x 8 5-poinl

mesh reordered according to HID [52]. oo 49
: block partition of subdomain(2) [52].....cccvvirerrrriernrrnne s 49
: Speedup of Maphys, PDSLin, and Superlu on Audik(a),
Freescale(b)ASIC680ks(c) and Atmosmodl(d). .. SR 41 |
Solution steps of Maphys(M), PDSLin(P) and ?uperlu dHt{S] on
Audik(a), Freescale(b)ASIC680ks(c) and Atmosmodl(d)......cccovevrvernee. 61
Schur Complement Steps of PDSLin for solving Audik(a),
Freescale(b)ASIC680ks(c) and Atmosmodl(d).cooovvvvviieieiieinn 65
Wall clock time and memory usage of Maphys solver on Audik-1
matrix .. veres 6
Wall clﬂck nma and memur}f usage m" Maph}rs snlver on Frﬂesca]el
matrix 66
Wall clﬂck nme and memnry usage ﬂfMa[}h}“S solver on ASIL 68{}k5
matrix .. 67

XVii

Figure 7.7 : Wall clock time and memory usage of Maphys solver on Atmosmodl

L0 67
Figure7.8 : Wall clock time and memory usage of PDSLin solver on Audik-1 matrix

.. 68
Figure 7.9 : Wall clock time and memory usage of PDSLin solver on ASIC680ks

10 68
Figure 7.10 : Wall clock time and memory usage of PDSLin solver on Freescalel

L0 69
Figure 7.11 : Wall clock time and memory usage of PDSLin solver on Atmosmodl

L0 69
Figure 7.12 : Wall clock time and memory usage of Superlu-dist solver on Audik-1

L0 O 70
Figure 7.13 : Wall clock time and memory usage of Superlu-dist solver on

ATMOSMOA] MAITIX ... ens 71
Figure A.1 : PDSLin Hybrid Solver Installation Dependenciescocooevennnnccne 81
Figure A.2 : Maphys Hybrid Solver Installation Dependenciesocovevevicrennene. 82
Figure A.3 : HIPS Hybrid Solver Installation Dependenciescccocoveveeeeenneennn. 83
Figure A.4 : pARMS Hybrid Solver Installation Dependencies..........ccecvveeviereernenes 84
Figure A.5 : ABCD Hybrid Solver Installation Dependencies...........cooeevueveverernrne 84

Xviii

ON THE EVALUATION AND ANALYSIS OF SPARSE HYBRID SOLVERS

SUMMARY

A matrix is called sparse if many of its entries are zero. Such types of matrices are
generated from discretization problems of many fields like numerical simulations,
Fluid Dynamics, Graph theory, Optimization problems, Signal processing, Finance,
industry, Linear Programming, Electromagnetics, 2D/3D and many other real-world
applications. In general, we call a matrix sparse if we could exploit the sparsity of its
elements in terms of memory storage and computation. Different sparse matrix formats
are proposed which lead to huge memory and computation savings.

Similarly, solving large sparse linear systems becomes increasingly important as a
kernel task for such scientific applications. Furthermore, recent years witnessed huge
and complex development in modern microprocessor architecture and hardware in
general. Besides, the parallel computing methods and languages has shown a kind
maturation in solving real-world problems especially, the development of Message
Passing Interface (MPI). Consequently, many algorithms and software packages have
emerged to exploit the new developments in hardware and software alike. For instance,
the development in the hierarchy of memory and computation nodes leads to
developing new blocking algorithms which accommodate the small cache memory of
modern architecture and increase the floating-point performance.

In general, there are two broad categories for solving linear systems mathematically:
direct and iterative methods. Direct methods can give high accurate results (10730)
and are more suitable for small problems (current direct methods can solve up to a
couple of millions of equations) because of the memory consumption they require (for
example, they can not solve large sparse 3D problems which may generate hundreds
of millions of unknowns). Besides, they have limited parallel scalability.
Preconditioned iterative methods, on the other hand, are more robust, require less
memory and easier to parallelize. However, they are problem dependent and can
converge faster with good preconditioning methods. These methods are the methods
of choice when an approximate solution of the problem is sought. Our focus in this
thesis is the parallel software packages used for solving large sparse linear systems.
We investigated the various methods and techniques for solving sparse linear systems
and concentrate on the open source hybrid approaches as they are more flexible and
well-suited the hierarchal structure of modern computers.

The word hybrid has different meanings. Hybrid in programming means combining
OpenMP and MPI so they work for shared and distributed memory. Hybrid in
hardware means working on CPU and GPU. Hybrid in algorithms means combining
direct and iterative methods. So, our focus is on the third meaning; combining direct
and iterative algorithms in order to get more efficient methods for solving sparse
matrices. Therefore, throughout this dissertation, when we mention the word hybrid,
we mean direct/ iterative methods.

XiX

Hybrid solvers are the latest research in developing robust and scalable methods for
solving sparse linear systems. These methods combine direct and iterative approaches
in certain ways, mostly using Schur complement framework, with the aim of getting
the desired features of both direct and iterative methods especially the speed and low
memory consumption of the iterative methods and the robustness of the direct
methods.

Most sparse hybrid solvers use the so called ‘Schur complement framework’ to
combine direct and iterative methods. In this framework, the original matrix is divided
into 2x2 block matrices. This approach is also known as sub-structuring domain
decomposition method. Graph theory algorithms are responsible for ordering the
global matrix and getting such block structure. The first block is a large block diagonal
square matrix. Each diagonal block, called internal subdomain, is factorized using
direct methods. The second and third block are the interfaces. If the matrix is
symmetric, these interface blocks are transpose of each other. The fourth block is a
square matrix called Schur complement matrix. This matrix has many desired features
well-suited for iterative methods. It has smaller size than the original matrix and it is
better conditioned than the original matrix. If the original matrix is symmetric positive
definite, this Schur matrix will inherit this property and thus Conjugate Gradient can
be used. Although Schur matrix is better conditioned than the original matrix,
preconditioning the matrix before applying iterative method is necessary for faster
convergence. The factorized internal subdomains are used to get an approximation of
the Schur complement matrix and used as a preconditioner.

Solving large sparse linear systems can take days even with algorithmic hybrid
approaches if performed in sequential. Schur complement framework is more
appealing for parallel programming. With increasing development of hardware and
supercomputers, these systems can be solved efficiently within few seconds. However,
existing algorithms should be modified to accommodate the parallel environment
constrains such as scalability and load balancing.

PDSLin and Maphys are the best existing public domain Schur-complement based
hybrid solvers. They are based on different preconditioning methods which is a crucial
ingredient in any iterative solver. PDSLin uses an approximation of the Schur
complement as a precontitioner which gives a global view of the domain problem.
Maphys uses an approximation of the local assembled Schur matrix which makes the
solver more scalable. In our experiments, we thoroughly examined these solvers, test
them on different matrix types and compare their results with the state-of-art Superlu-
dist direct solver. We also investigated the effect of tuning preconditioning input
parameters on PDSLin and Maphys with increasing number of processors.

Developed at Lawrence Berkeley National Laboratory (LBNL) by two distinguishing
researchers in parallel linear algebra Ichitaro Yamazaki and X. Sherry Li; PDSLin
solver is very robust and scales very well with increasing number of processors.
However, it is very sensitive to the input parameters especially sparsifying tolerances
which is not good. PDSL.in is a powerful solver but has a lot of bugs and still needs a
lot of work. Our results show that Maphys solver is more stable with the input values
than PDSLin and gives better results. PDSLin results are unpredictable and sometimes
fails with the slightest change of the input values. Maphys performance is better than
both PDSLin and Superlu-dist in terms of time consumption and memory. Besides, the
two-level parallelism of PDSLin is more robust than multithreading of Maphys. The
serial partitioning time of Maphys is significant in many cases of our experiments and

XX

thus it is better to change into a parallel graph partitioner in Maphys than using a
sequential partitioner. Sometimes the partitioning time is larger than summation of the
other solution steps of Maphys and this is clearly shown in Audik and Freescale cases.
Maphys solver also scales very well with increasing number of processors.

Our conclusion is that sparse hybrid solvers are more flexible because they have
different components and each component can be substituted to accommodate the
problem at hand. The developers of the solvers we considered have already aware of
this feature and this is clearly seen through the different methods they integrated within
their solvers. For example, PDSLin uses either MUMPS or Superlu-dist as a direct
method which are different approches of factorizing matrices. Similarly, Maphys uses
either MUMPS or PASTIX which also are also different.

Using two level parallelism can make hybrid solvers work efficiently and scalable up
to thousand number of processors. In this level, Processors are distributed into levels
and work concurrently and independently. This method alleviates the problem of
increasing Schur complement size. However, load balancing is a challenging problem
in this method. Hybrid solvers consume much less amount of memory than either pure
direct or iterative methods.

XXi

SEYREK HIiBRiD COZUCULERIN DEGERLENDIRILMESI VE ANALIZI

OZET

Bir¢ok girdisinin sifir olmas1 durumunda bir matris seyrek olarak adlandirilir. Bu tiir
matrisler, sayisal simiilasyonlar, Akiskanlar Dinamigi, Grafik Teorisi, Optimizasyon
Problemleri, Sinyal isleme, Finans, Endiistri, Dogrusal Programlama,
Elektromanyetik, 2D / 3D ve diger pek ¢ok gercek uygulama gibi birgok alanin
ayriklastirma problemlerinden kaynaklanir. Genelde, bellek depolama ve hesaplama
acisindan Ogelerinin seyrekliginden yararlanabilirsek ona seyrek matris diyoruz.
Biiyiik bellek ve hesaplama tasarruflarina yol acan farkli seyrek matris formatlari
Onerilmistir.

Benzer sekilde, biiyiik Sparse lineer sistemlerin ¢éziimii, bu tiir bilimsel uygulamalar
icin bir ¢ekirdek gorevinde oldugundan giderek 6nem kazanmaktadir. Dahasi, son
yillarda modern mikroislemci mimarisinde ve genel olarak donanimda biiyiik ve
karmagik gelismeler yasandi. Ayrica, paralel hesaplama yontemleri ve dilleri, ger¢ek
diinyadaki problemleri ¢6zmede, oOzellikle Mesaj Gegis Arayiizii (MPI)
gelistirilmesinde bir ¢esit gelisme gostermistir. Sonug olarak birgok algoritma ve
yazilim paketi donanimda yeni gelismelere kap1 agti. Ornek verilecek olunursa, bellek
ve hesaplama diigimlerinin hiyerarsisindeki gelisme, modern mimarinin kiigiik
onbellegi barindiran ve floating point performansini arttiran yeni engelleme
algoritmalarinin gelistirilmesini saglar.

Genel olarak, dogrusal sistemleri matematiksel olarak ¢dzmek icin iki ana kategori
vardir: dogrudan ve yinelemeli yontemler. Dogrudan yontemler yiiksek dogrulukta
sonuglar verebilir (1073%) ve ihtiya¢ duyduklar diisiik hafiza tiiketimi nedeniyle (son
yillarda dogrudan yontemler birka¢ milyon odf denklemini ¢6zebilir) problemler igin
daha uygundur (6rnegin, Biiylik Sparse 3D problemlerini ¢c6zemezler). Bunun yaninda
paralel boyutlandirmay sinirlar. Ote yandan Preconditioned iterasyon yontemleri daha
sagliklidir, daha az bellek gerektirir ve paralellestirilmesi daha kolaydir. Ancak, bunlar
problem bagimlidirlar ve iyi preconditioning metodlarla daha hizli yakinsanabilir. Bu
tezdeki odak noktamiz, biiyiik Sparse lineer sistemlerini ¢ozmek icin kullanilan paralel
yazilim paketleridir. Spars lineer sistemlerin ¢oziimii i¢in ¢esitli yontemler ve teknikler
arastirdik ve modern bilgisayarlarin hiyerarsik yapisi daha esnek ve uygun olduklar
i¢in acik kaynakli hibrit yaklagimlara yogunlastik.

Hibrit kelimesinin farkli anlamlart vardir. Programlamada hibrit, OpenMP ve MPI
dillerini birlesimi anlamina gelmektedir ¢iinkii paylasimli ve distriibe edilmis hafizay:
caligtirabilirler. Donanimda ise hibrit, CPU ve GPU’nun birlikte ¢calismasidir. Hibrit
algoritmada dogrudan ve iteratif yontemleri birlestirmek anlamina gelir. Odak
noktamiz olan algoritma hibriti; daha verimli bir yontem olusturmak i¢in dogrudan ve
iteratif yontemleri birlestirir. Bu nedenle, bu tez boyunca hibrit sézciigiinden
bahsettigimizde, dogrudan ve yinelemeli yontemleri birlikte kastetmis olacagiz.

Cogu seyrek hibrit ¢ozlimleyicileri “Schur complement framework” yontemini
kullanir. Buradaki ama¢ dogrudan ve iteratif metodlar1 birlestirmektir. Bu ¢ercevede,
orijinal matris 2 x 2 blok matrisine ayrilmistir. Grafik teorisi algoritmalar1 matrisin
diizenlenmesi ve bu blok yapisinin elde edilmesine yarar. Ilk blok biiyiik bir blok

XXiii

kosegen kare matrisidir. Her diagonal blok i¢ alt domain olarak adlandirilir ve direk
metodlar kullanilarak carpanlarma ayrilirlar. Ikinci ve f{igiincii bloklar
“interface”lerdir. Eger matris simetrik ise bu interface bloklar birbirlerinin
transpozesidir. Dordiincii blok Schur komplement matris olarak adlandirilan kare bir
matristir. Bu matris asil matristen daha kiiciiktiir ve kullanmak i¢in daha uygundur.
Eger asil matris SPD matris ise Schur komplement matris de SPD matristir. Ayni
zamanda Schur matris kullanmak asil matrisi kullanmaktan daha kolaydir. Matrisi
daha Onceden preconditioning etmek daha hizli bir yakinsama igin gereklidir.
Carpanlarina ayrilmis i¢ alt domainler Schur complement matris yaklagimi ve
precondition yapmak i¢in kullanilir.

Biiytiik seyrek lineer sistemlerini ¢6zmek sekansiyel olarak ¢alistirildiginda, algoritmik
hibrit yaklasimlarla bile giinler alabilir. Schur tamamlayici ¢er¢eve paralel
programlama i¢in daha fazla tercih edilir. Donanim ve siliper bilgisayarlarin
gelismesiyle birlikte, bu sistemler birka¢c saniye icinde verimli bir gsekilde
¢oziilebilir. Ancak, var olan algoritmalar 6lgeklenebilirlik ve yiik dengesi gibi paralel
cevresel kisitlamalara uyum saglayabilmek i¢in modifiye edilmelidir.

PDSLin ve Maphys, mevcut en iyi hibrit ¢oziicii tabanli ag¢ik kod Schur-
complement’dir. Bu ¢oziiciiler tizerinde derinlemesine inceleme yaptik, bunlar farkl
matris tiirlerinde test ettik ve sonuglarini son teknoloji Superlu-dist dogrudan ¢oziiciisii
ile karsilastirdik.

Sonug¢ olarak, seyrek hibrit c¢oziicliler daha esneklerdir cilinkii farkli bilesenlere
sahiplerdir ve her bilesen mevcut probleme uyarlanabilecek sekilde digerinin yerine
gecirilebilir. 1ki seviyeli paralellik kullanmak, hibrit ¢dziiciilerin verimli olmasini ve
bin adet islemci sayisina kadar 6lgeklenebilir olmasini saglayabilir. Hibrit ¢oziiciiler,
dogrudan veya iteratif yontemlerden ¢cok daha az miktarda bellek kullanilir.

Biiyiik seyrek lineer sistemlerini ¢6zmek sekansiyel olarak ¢alistirildiginda, algoritmik
hibrit yaklagimlarla bile gilinler alabilir. Schur tamamlayic1i ¢ergeve paralel
programlama i¢in daha fazla tercih edilir. Donanim ve siiper bilgisayarlarin
gelismesiyle birlikte, bu sistemler birka¢ saniye icinde verimli bir sekilde
coziilebilir. Ancak, var olan algoritmalar 6l¢eklenebilirlik ve yilik dengesi gibi paralel
cevresel kisitlamalara uyum saglayabilmek i¢in modifiye edilmelidir.

PDSLin ve Maphys, mevcut en iyi hibrit ¢oziici tabanli agik kod Schur-
complement’dir. Bu ¢oziiciiler lizerinde derinlemesine inceleme yaptik, bunlar farkl
matris tlirlerinde test ettik ve sonuclarini son teknoloji Superlu-dist dogrudan ¢oziiciisii
ile karsilagtirdik.

Sonug olarak, seyrek hibrit ¢oziicliler daha esneklerdir ¢iinkii farkli bilesenlere
sahiplerdir ve her bilesen mevcut probleme uyarlanabilecek sekilde digerinin yerine
gegirilebilir. 1ki seviyeli paralellik kullanmak, hibrit ¢dziiciilerin verimli olmasini1 ve
bin adet islemci sayisina kadar 6lgeklenebilir olmasini saglayabilir. Hibrit ¢oziiciiler,
dogrudan veya iteratif yontemlerden ¢cok daha az miktarda bellek kullanilir

Biiytik seyrek lineer sistemlerini ¢6zmek sekansiyel olarak ¢alistirildiginda, algoritmik
hibrit yaklagimlarla bile giinler alabilir. Schur tamamlayici ¢ergeve paralel
programlama icin daha fazla tercih edilir. Donanim ve siiper bilgisayarlarin
gelismesiyle birlikte, bu sistemler birka¢c saniye icinde verimli bir sekilde
coziilebilir. Ancak, var olan algoritmalar 6lgeklenebilirlik ve yilik dengesi gibi paralel
cevresel kisitlamalara uyum saglayabilmek i¢in modifiye edilmelidir.

XXiV

PDSLin ve Maphys, mevcut en iyi hibrit ¢dziicii tabanli acgik kod Schur-
complement’dir. Bu ¢dziiciiler iizerinde derinlemesine inceleme yaptik, bunlar farkl
matris tiirlerinde test ettik ve sonuglarini son teknoloji Superlu-dist dogrudan ¢oziiciisii
ile karsilastirdik.

Sonug olarak, seyrek hibrit ¢oziicliler daha esneklerdir ¢linkii farkli bilesenlere
sahiplerdir ve her bilesen mevcut probleme uyarlanabilecek sekilde digerinin yerine
gecirilebilir. 1ki seviyeli paralellik kullanmak, hibrit ¢dziiciilerin verimli olmasini ve
bin adet islemci sayisina kadar 6l¢eklenebilir olmasini saglayabilir. Hibrit ¢oziiciiler,
dogrudan veya iteratif yontemlerden ¢ok daha az miktarda bellek kullanilir

XXV

1. INTRODUCTION

Recent years witnessed huge and complex development in modern microprocessor
architecture and hardware in general. Besides, the parallel computing methods and
languages has shown a kind maturation in solving real-world problem especially, the
development of Message Passing Interface(MPI). Consequently, many algorithms and
software packages have emerged to exploit the new developments in hardware and
software alike. For instance, the development in the hierarchy of memory and
computation nodes leads to developing new blocking algorithms which accommodate
the small cache memory of modern architecture and increase the floating point

performance.

Similarly, solving large sparse linear systems becomes increasingly important as a
kernel task for many scientific applications. Our focus in this thesis is the parallel
software packages used for solving large sparse linear systems. We investigate on the
various methods and techniques for solving sparse linear systems and mainly focus
on the open source hybrid approaches as they are more flexible and well-suited the

hierarchal structure of modern computers.

Key words: hybrid, hierarchal, matrix, parallel, sparse, linear, solver, pdslin , maphys
, hips , pArms, Schur complement, additive schwarz , direct , iterative, LU
factorization , Krylov methods, GMRES, CG, partitioning, preconditioning.

1.1 Literature Review

The problem of solving sparse linear systems was extensively studied in the last
decade. There are many good parallel sparse linear packages developed over the years.
In general, these packages are categorized according to the algebraic method used into
direct and iterative. The direct solver packages are more mature than iterative solver
packages and they gain more attention from the research community. Here we survey
the most common distributed memory parallel packages in both methods starting with

direct solvers.

PARDISO[1] is a left-right looking supernodal hybrid programming (MPI + threads)
direct solver with dynamic scheduling of processes to tasks. It supports many types of
symmetric and unsymmetric sparse matrices. Complete pivoting or Bunch and
Kaufmann supernode pivoting is required. The main algorithm works as follows: First,
ordering and symbolic factorization is done using ordering and symbolic factorization
algorithms. Then, block numerical factorization is performed in the resulting
elimination tree by factorizing groups of columns at a time. At supernode [;, an
"external factorization" is performed for this supernode with left-looking by gathering
contributions from previously factorized supernodes. The result is then gathered to the
destination supernode. A set of optimization techniques are implemented in this solver
such as assembly is separated from floating point operations, pivoting is restricted to
supernode diagonal blocks and BLAS-3 pipelining parallelism during numerical
factorization and out-of-core capability in which the disc is used as an extension of the

main memory.

MUMPS[3] is a multifrontal direct method with dynamic pivoting(more about
multifrontal methods on section(4.2)). Different ordering methods are supported in
MUMPS such as AMD, QAMD, PORD, ND, METIS and AMF. User defined
ordering can also be used. In this solver, first ordering and symbolic factorization is
performed on the symmetrized matrix A + AT. The result is the elimination tree and a
mapping of the multifrontal computation graph. According to the mapping computed
in the previous step, numerical factorization is carried out on the multifrontal dense
matrices. The factorized matrices are then used for finding the solution. Iterative
refinement and backward error analysis are among the options. Similar to PARDISO,
MUMPS allows dynamic scheduling of processors to tasks and out-of-core capability.

The new versions of MUMPS support multithreading.

PASTIX[4] is a left-looking supernodal multithreading solver with static pivoting. It
follows the same steps of the previous solvers for solving sparse linear
systems(ordering, symbolic factorization, numerical factorization, solve, refinement).
Metis is recommended for partitioning and halo approximate minimum degree
algorithms is used if the subgraph is smaller than a specified threshold. Out-of-core
capability is also supported. GMRES, CG or simple iterative refinement can be used
to incease the precision of the solution. Newer verions of Pastix supports different low-

rank compression techniques.

Developed by IBM, WSMP(Watson Sparse Matrix Package) is a hybrid programming
(MPI + threads) multifrontal package for solving sparse symmetric/unsymmetric linear
systems. Nested dissection ordering on the symmetrized matrix A + AT with some
heuristics for more robustness. The method of this solver separates symbolic analysis
from numerical factorization which experimentally gives better performance.
Threshold pivoting is used with automatic option for the threshold value. The solver
also has the capability of solving multiple linear systems with the same sparsity pattern

using ordering and analysis of a single matrix.

PSPASES(Parallel SPArse Symmetric dirEct Solver) is a multifrontal solver for
solving SPD sparse matrices with no pivoting required. This solver uses the same
solution steps as the previous methods with subtree-to-subcube static mapping of
processors to nodes in the elimination tree and cyclic mapping of rows and columns
of the frontal matrices within each subgroup. ND of Metis is used for ordering and
graph partitioning. Although this two-level processor mapping adds to the scalability
of Cholesky factorization of this method; the expenses are load imbalance and

communication overhead.

SUPERLU-DIST is a supernodal right-looking distributed sparse solver with shared
memory capability for many core systems and GPU option. Sequential or parallel
ordering options are available using multiple minimum degree(MMD), or nested
discretion algorithm of Metis or Parmetis on AT A or AT + A graph and static pivoting
is used. Users can also provide their own ordering, overriding the defaults. Parallel
symbolic factorization is an option with column permutation using Parmetis. Different
factorization options are also available. For algorithmic stability, tiny diagonal pivot
can be replaced by a small perturbation value and iterative refinement at the end of the
solution for more accurate results. The latest version of SUPERLU-DIST can be

compiled without Parmetis dependency.

Developed by Argonne National Lab, PETSc (Portable, Extensible Toolkit for
Scientific Computation) is a set of sparse matrix tools written in C/Fortran and Python
with object orientation programming support. The library includes a variety of Krylov
subspace iterative methods, preconditioners, different orthogonalization schemes and

refinement options.

WSMP (Watson Sparse Matrix Package) has an iterative version for shared memory
environment only. The iterative package supports symmetric/ unsymmetric types of
matrices. Different iterative solvers are supported like CG, GMRES, TFQMR and
BiCGStab. The preconditioners supported include Jacobi, Gauss-Siedel and

incomplete LDLT/ LU depending on the matrix type.

Although pARMS (Parallel Algebraic Recursive Multilevel Solver) can work as a
hybrid direct/iterative solver(section 6.4), it is actually a set of iterative solvers and
preconditioners for solving sparse linear systems in distributed memory environment.
The main accelerator in pARMS is the preconditioned FGMRES. Three classes of
preconditioners are available: Schwarz Preconditioners, single-level Schur

Preconditioners and multi-level Schur Preconditioners.

Developed by Sandia National Laboratories, Aztec [5] is an iterative library for
solving general sparse linear equations on distributed parallel systems. Written in
ANSI-C standard, Aztec supports different types of iterative methods and
preconditioners. Aztec supports two sparse matrix formats: Distributed Modified
Sparse Row (DMSR) and Distributed Variable Block Row format (DVBR). The new
version of Aztec supports simpler data formats allowing users to specify rows in a

natural order.

Developed by Lawrence Livermore National Laboratory(LLNL), HYPRE (High
Performance preconditioners) is set of multigrid algorithms and software for
distributed and shared memory environment with emphasis on scalable parallel
preconditioners. According to the problem provided by the user, different conceptual
interfaces are available like structured grid, finite element and linear algebra interfaces.
Multigrid preconditioners supported include semiconductor multigrd(SMG),
BoomerAMG and ParaSail.

1.2 Related Work to Experimental Comparison of Hybrid Solvers

Unfortunately there is no much research comparing the performance of available

hybrid solvers. We mention here the studies we found.

In [4], they compared PDSLin with Hips using Tdr455k matrix on Cray XT4 machine
at NERSC. They mentioned that Schur complement got larger with increasing number

of subdomains in Hips because of the one-level parallelism technique used.

Consequently, the convergence became slower and the number of iterations increased
from 151 iterations on 16 processors, and it failed to converge with 1000 iterations on
32 processors. Authors in [5-7] mentioned this experiment in table (1.1). The results
show that number of iterations did not increase much as in the case of Hips and PDSL.in

continues to converge with increasing number of processors.

Table 1.1 : Results optained in [4] for HIPS vs PDSLin using Tdr455k.

P N, HIPS1.0 PDSLin
Sec (iter) Sec (iter)
8 13k 284.6 (26) 79.9
32 29k 55.4 (64) 25.3 (16)
128 62k -- 17.1 (16)
256 124k - 21.9 (17)

In a Siam conference(not published), Maphys developers compared their solver's
performance against PDSLin using Audik-1, Haltere and other matrices. The version
of Maphys used in that experiment was one level parallelism (they did not add 2 level
parallelism feature at that time) so they removed some features from PDSL.in such that
both solvers work on the same foot. The partitioner used in Maphys is sequential while
the partitioner used in PDSLin is parallel. The results show a good scaling for PDSLin
with increasing number of processors but the overall performance was approximately

similar.

We repeated this experiment with the last versions of PDSLin and Maphys currently
available on Sariyer Cluster using up to 16 nodes. The details of this experiment is

shown in the result chapter.

An important study of hybrid solvers performance evaluation is the one mentioned in
[8]. In their study, they ran a set of experiments on PDSLin and Maphys using
Matrix211 and Tdr455k matrices. In order to compare these solvers, they selected the

following options:

e They used the same partitioning tool for both solvers.

||Sx: — bl

where
[b]]

e They used the same stopping criteria for both solvers. €, =

X, is the variables corresponding the interfaces T and S, b, are Schur
complement and its corresponding right hand side(see section 6.1 and for

Schur compelement and right hand side equations). b is the right hand side of

the original system Ax = b and ||.|| is the 2-norm. They also set €, = 1071% as

the error threshold.

e They set the other control parameters for the two solvers with aim to minimize

the parallel time of the solution.

e The experiments were run on Hopper machine of Lawrence Berkeley National

Laboratory.

These results show that the overall performance of Maphys (M) is better than that of
PDSLin(P) in term of elapsed time. PDSLin scales better with increasing number of
cores especially with Tdr455k matrix. The factorization time for PDSLin is larger
than that of Maphys for both matrices but the solution time is smaller and this is an
advantage for PDSLin in case of multiple right hand side. The best configuration of
PDSLin is with 1536 cores for both matrices. With Maphys, 1536 gives the best result
with Matrix211 and 384 with Tdr455k.

In appendix(A) , table (A.1), we show some of the common matrices in literature used
for evaluating those hybrid solvers along with some other information. Unfortunately,
all publications use matrices not publically available except Audik matrix from
Florida university collection. In column Con.No, we mention the hybrid solvers used

with the corresponding matrix.

The remainder of this dessetation is devoted to different algorithms and techniques
used in the components of the hybrid solvers. Chapter 2 is an introduction to sparse
matrices and sparse matrix formats. Due to its crucial role in sparse matrix algorithms,
we devoted Chapter 3 to the ordering and graph partitioning algorithms. Chapter 4
and Chapter 5 summarize the common direct and iterative methods respectively. In
Chapter 6, we discuss the public domain hybrid solvers we found and the main
algorithms used in each one of them. In Chapter 7, we discuss our experiments on the
two best hybrid solvers we found; Maphys, PDSLin and compare results with Superlu-

dist direct solver. Finally, the conclusion and future work in chapter 8.

2. SPARSE MATRICES

A matrix is called sparse if many of its entries are zero. Such types of matrices are
generated from discretization problems of many fields like numerical simulations,
Fluid Dynamics, Graph theory, Optimization problems, Signal processing, Finance,
industry, LinearPprogramming, Electromagnetics, 2D/3D and many other real-world
applications. Thus a reliable solution of such systems are more important than ever. In
general, we call a matrix sparse if we could exploit the sparsity of its elements in terms
of memory storage and computation [11]. In this section, we will briefly discuss the

common data structures used for storing sparse matrices.

2.1 Sparase Matrix Storage Foratms

There are many varieties of sparse matrix formats, each tailored to specific application

and matrix structure. In this section, we discuss the most familiar sparse matrix format.

2.1.1 Coordinate Format

Coordinate format (COO) stores the non-zeros value along with their row/column
indices. No ordering constraints imposed on the coordinate format. Experiments show

that this format is significantly slower by orders of magnitude[12].

2.1.2 Compressed stripe storage Format (CSR, CSC).

This format is considered the default sparse format by many sparse packages. In CSR,
we put the subsequent nonzeros of the matrix rows in contiguous memory locations.

Assuming we have a non-symmetric sparse matrix A, we create three vectors:

e Floating point vector (val) for storing nonzero entries of the matrix A as they

are traversed in a row-wise fashion.

e Integer vector col_ind which stores the column indexes of the elements in the

val vector. That is, if val(k) = a;;, then col_ind(k)=j.

e Integer vector row_ptr which stores the locations in the val vector that start a

row; that is, if val(k) = a;;, then row_ptr(i) <k <row_ptr(i+1).

By convention, we define row_ptr(n+1) = nnz+1, where nnz is the number of nonzeros

in the matrix A. Figure(2.1) shows an example of CSR for a nonsymetric matrix.

val

col_ind

Figure 2.1 : Example of Compressed Sparse Row (CSR) format [12].

A slightly different variation is Modified Sparse Row format (MSR) in which the
diagonal elements are stored in a separate array diag-val and the other off-diagonal

elements are compressed using CSR.

A similar compression format is compressed sparse column (CSC) (also known as
Harwell-Boeing) [3]. In this form, the columns are traversed instead of rows.Thus,
CSC is the CSR of AT. Similar to CSR,we use three arrays (val, row_ind, col_ptr),
where row_ind stores the row indices of each nonzero, and col_ptr stores the index of

the elements in val which start a column of A.

a1 I T T T R .
rov_ind GG T .

<>

col_ptr MENCINEIN -/

Figure 2.2 : An example of Compressed sparse Column (CSC) format [12].

The maximum storage requirement for CSC is 8(2nnz + n +1) and for CSR 8(2nnz +
§+1). The maximum storage for uncompressed form is @ (n?) which shows a huge

saving of memory

2.1.3 Diagonal Format(DIAG)

This format is used for full nonzero diagonal matrices like those generated from stencil
calculations. No need to store individual nonzero elements. Only diagonal indices need
to be stored. According to the this numbering convention: the main diagonal is
numbered zero, upper diagonals have positive numbers and lower diagonals have
negative numbers. Nonzero entry at position(i,j) lies on diagonal number(j-i).

Figure(2.3) shows an example of such format. Thus we need two data structures:

e A matrix val of size(m x s) for storing nonzero elements where m is the size
of the diagonal and s is the number of diagonals. Since the diagonal carries the
largest number of nonzero elements, there are padding places in val as shown
in figure(2.3).

e An array diag-num of size S for storing the index of the first element of each

wal T r
PR ﬁ L

] num

diagonal.

= 5 —

Figure 2.3 : An example of Diagonal Format (DIAG) format [12].

2.1.4 ELLPACKI/ITPACK format(ELL)

This format was originally developed for ELLPACK and ITPACK sparse solvers and
mostly suitable for matrices with almost same number of nonzero entries for each row.
In ELL, two arrays are needed each of size m x s where m is the number of rows in
A and s is maximum number of nonzero entries in any row in A. The first array val is
used for storing nonzero values and the second ind for storing column indices for each

row. Figure (2.4) shows an example.

Figure 2.4 : An example of ELLPACK/ITPACK format (ELL) [12].

2.1.5 Block Compressed Stripe Formats

Block Compressed Stripe format is a generalization of compressed stripe format we
discussed earlier. It is most suitable for sparse matrices with fixed block structures. As
in compressed stripe format, three data structures are used val, ind and ptr. Unlike
Compressed stripe format, val here is a matrix of size (rK) xc where r x c is the
block size and K is the number of blocks. The blocks are treated as full dense blocks
so padding is required for filling any zero elements if necessary. Besides, blocking is
not unique here. Figure(2.5) shows two different blocking arrangements for the same

matrix.

. M=cellim)

cr W) Meceilimi

Figure 2.5 : Example of Block Compressed Stripe Format [12]

10

2.2 Experimental Comparison of the Basic Formats

Experiments in SpMV show that CSR and MSR give the best performance on a wide
class of matrices and either one of them can be used as a default format if we do not
know the structure of the matrix at hand[12]. In our experiments, we used RUA, MTX
and IJV formats depending on the solver. For Maphys solver we used RUA and MTX.
For PDSLin, we used RUA and IJV formats and for Superlu-dist we sued RUA

format.

11

3. ORDERING AND GRAPH PARTITIONING SCHEMES

Graph theory is closely related to sparse matrices because of their sparsity structure.
The best way to keep track of the nonzero elements in the sparse matrices is though
graphs showing the connection between those nonzero entries. According to their
structures, sparse matrices can be categorized into structured or unstructured.
Structured matrices follow a certain regular pattern. Examples of such matrices are
those generated from finite difference problems on rectangular grid. As we will see
throughout this chapter, the main purpose ordering is to reduce fill-in and thus memry

consumption during LU factorization.

In this chapter, we present the basic concepts, the most common algorithms, parallel

implementation and the software packages for reordering and graph partitioning.

3.1 Basic Definitions
The graph G consists of two finite sets (V,E), where V is the set of vertices/nodes,
them.

V=Avy,vy,v3, ..., 0}

E is the set of edges connecting two ordered pairs of vertices where v;,v; € V. A

graph is called undirected graph if for all where v; and v; € V:

(Ui,vj) EEe (Vj,vi) eE
Otherwise, the graph is directed(digraph). A degree of a vertix is the number of edges
connecting to the node, denoted by deg(v;)

A path in a graph is a sequence of vertices v; ,v,,v3, ..., Uy Such that (v; , v;41) IS
an edge in the graph. A closed path is known as a Cycle. A graph with no cycles is a

Tree.

Agraph G'(V',E") is called subgraphof Gif V' € V and E' € E . A graph is called
a complete graph (or strongly connected graph) if every pair of nodes are adjacent. A

clique is a subgraph of the complete graph.

13

In sparse matrices, an edge a;; is drawn between equation (i) and unknown (j) if its
value is nonzero. i.e a;; # 0. Moreover, if for each a;; # 0, there exists a;; # 0, then
the matrix has a symmetric nonzero structure(pattern symmetry). In such cases,
undirected graph is used. For non-square matrices, bipartite graph is used. Bipartite
graph consists of two independent sets of nodes(U,V) for which the edges connect

node pairs (u; , v;) where u; € Uand v; € V. Figure(3.1) shows an example.

- = X 7%
- = !
- . f

L . 15 /3

1 2

- . - O

- - =
T

- - =

4. N3

- = - =)1

- It) 2
3O a4
" - 40— S

Figure 3.1 : Graph of sparse matrices (above)non-symmetric, (middle)symmetric,
(down)bipartite for 4 x 5 matrix.

A common operation for solving sparse linear systems is by reordering rows and
columns of the sparse matrix. This is a very important preprocessing step especially
for parallel implementation. When the nonzero elements are cluttered near the main
diagonal, this makes the variables more independent and thus less communication is
required to find unknown values. This structure minimizes the fill-in problem of direct
methods because of Gaussian elimination. Besides, the block diagonal structure

maximizes locality and minimizes the solution time cost.

A permutation matrix is a matrix with its rows and/or columns interchanged. In order
to interchange the rows of a matrix, we need to premultiply the matrix by a permutation
matrix P,.. Similarly, to change the columns of the matrix, we need to postmultiply the
matrix by the permutation matrix P.. Permuting the rows of the matrix must also
change the right hand side of the equation AX=b and permuting the columns of the
matrix should change the order of the unknowns X. Furthermore, if P, = P,” the
permutation is known as symmetric permutation. Such permutation preserves the

diagonal elements and the symmetric pattern of the original matrix. A matrix is called

14

reducible if its corresponding graph is undirected, otherwise, irreducible. A reducible
matrix can be transformed into block upper triangular form using symmetric

permutation [14].

3.2 Ordering and Graph Partitioning Techniques

In this section we present the graph partitioning problem and the most popular
algorithms for solving them. In general, a p-way partition of a graph is a mapping P
- V[1... p] vertices into subsets called partitions S, S;, S5 , S, suchu; S; = V and
S; n S; =0. An edge cut E,. is a subset of E whose vertices lie on different partitions.
The edge cut is known as edge separator because removing them split the graph into
distinct partitions. Vertex separator is also possible in which the graph is partitioned
along the vertices. It is this vertex separator that is used in the well-known nested

dissection algorithm as we will see in section (3.2.4).

Graph partitioning problem is to partition the graph into roughly equal number of
partitions with minimum separator size. This problem is known to be NP-complete
problem [15,16]. However, many algorithms have been developed to give good

partitioning. Table (3.1) shows the most common schemes for graph partitioning.

Ordering sparse matrices is mainly related to direct methods which use elimination
during LU factorization. As a result, many nonzero elements can be generated. These
new nonzero elements are called fill. Like that of dense matrices, ordering rows is used
to make factorization more numerically stable. However for sparse matrices, there are
other objectives : minimize fill-in and maximize parallelism. Finding the ordering that
produces the fewest new entries in the LU factorization(the minimum fill-in) has
already proven to be NP-complete problem [17,18] and thus many approaches are
heuristics in nature. So fill-in is inevitable in LU factorization since most ordering
algorithm are usually more expensive than the fill-in problem itself. Here we present
four main strategies according to [19].

15

Table 3.1 : List of popular graph partitioning Schemes

Scheme

Method

Run Time

Brief Info

Geometric Techniques

(coordinate information)

Coordinate Nested Dis- section
(CND)

Recursive Inertial Bisec- tion
(RIB)

Sphare Filling Curve

Sphare Cutting Approach

Splits the mesh in half, normal to its
longest axis,fast, requires low memory
and easy to par- allelize but the subgraphs

are of low quality

Splits the mesh in half, normal to principal

iner- tial axis of the mass distribution

Splits the mesh into k parts according to
the po- sitions of the centers-of-mass

elements along a space-filling curve,fast

uses(a, k)-overlap graph to construct

vertex sep- arator

Combinatorial Techniques

(adjacency information)

Levelized Nested Dis- section
(LND)

Kernighan- Lin/Fiduccia-

Mattheyses (KL/FM)

Numbering vertices in BFS manner until
half vertices are numbered(one partition).
The un- numbered vertices are in the other

partition, sen- sitive ti initial vertex choice

Partition refinement of sub-optimal
partitioning graphs, heuristic, naturally

sequential

Spectral Techniques

Recursive Spectral Bi- section

Multilevel Spectral Bi-
section(MSB)

Splits vertices according to eigenvector of
the second smallest eigenvalue of Lc
(Fiedler tor),

expensive

vec- computationally

Uses multilevel approaches to reduce

computa- tion , ,well-parallelized

Multilevel Schemes (Coarsening,

Partitioning , Refinement

Multilevel Recursive Bi- section

Multilevel k-way Parti- tioning

O(|E|logk)[10]

O(IEN[10]

Partitioning phase :A2-waypartition Pm,
ver- tices in Vm are split in half, well-

parallelized

k-way multilevel partitioning,well-

parallelized

3.2.1 Block traingular matrix ordering

We mentioned in section (3.1) that reducible matrices can be transformed into block

triangular form. Such form is shown in equation (3.1).

16

By
[B31 By,]
PAQ = | B31 B3y B33 |
(3.2)
1Bus Bz Bus Buwl

This form is appealing because it minimizes the cost of storage and solution time of

the linear system since we can use forward substitution as follows.
Bii Vi = (Pb)l — ;;11 BU y] i= 1,2,3, (32)

The factorization is only done on the diagonal blocks B;; and the off-diagonal blocks
are used only for multiplication B;; y; . Thus fill-in occurs on the diagonal blocks
only. Duff et.al in [14] divides the process of constructing block triangular form into

three stages. Here we describe an algorithm with block matrix of size 3,i.e

Bi1
Bj1 B2 (3.3)
B3y B3, B33

e Finding Row and Column Singletons

The purpose of this stage is to order the matrix into a form similar to (3.1). The
idea is that any row singleton is moved to the first diagonal position of B,
block matrix. In the next step, the remaining submatrix is traversed for any
other row singleton. If any, move it to the second diagonal position of B;;.
The process continues until no singleton rows remaining. The result is a block
lower triangular matrix B,;. Similarly, we construct the B33 matrix choosing
one column singleton at a time from each remaining submatrix. The remaining
portion of the matrix constitutes B,, block. An example of this algorithm is

shown figure (3.2) .

17

1234567 7614235
1 [x X] 6 [x 1
2 X s X V4 2 K
3 X X X becomes 1 > <
4 X X 4 X X
5 X X 2 X X X
6 X 3 >4 X X
T) X X | 5 | X X |

Figure 3.2 : Block Triangular matrix ordering through row and column singleton

[14].

Permute Entries on the Diagonal(Transversal).

This stage concerns with placing nonzero entries on the diagonal of B,, of
equation (3.1) so that all diagonal entries are nonzero at the end of this stage (
otherwise the matrix is structurally singular). This problem is known as
assignment problem[19,20] . The algorithm is based on depth-first search
with look-ahead feature by seeking through rows or through columns with one
row/column to examine at a time. So for example, to order the matrix into a
sequence of columns ¢; , ¢, , ¢3,... ¢ with ¢; having k nonzero entries.
Starting with the first entry in column k, we take its row number to indicate
the next column and search through the first off-diagonal entry in each column
as a subsequent column(DFS). In each column, we look for an entry in row k
or beyond(Look-ahead).

Finding the Block Triangular Form by Symmetric Permutation.

The purpose of this stage is to find the symmetric permutation that will put the
matrix into block lower triangular form. Digraphs are usually used since
applying symmetric permutation does not change the digraph of the associated
matrix except for relabeling of its nodes. Here we discuss two algorithms for
relabeling.

In Sargent and Westerberg algorithm, starting from a random node, we trace
a path until we find a node from which the path does not leave. This last sinking
node will be labeled first and we then delete all edges connecting to the node
(deleting the row and column in the matrix). Continuing this way until no node
remains. This process always works in the digraph as long as there are no

cycles in the graph. Such cycles are called strong components. Cycles are

18

collapsed into a single node called composite node and labeled separately.
Figure (3.3) shows an example of the algorithm. Nodes in bold are labeled at

this step.

becomes

Figure 3.3 : Relabeling a matrix using Sargent and Westerberg algorithm
[19].

Tarjan’s algorithm is more efficient than the previous algorithm and uses
stack for path tracking and node labeling. It avoids the excessive relabeling of
the previous algorithm. The algorithm starts with a random selected node and
moves through the unvisited edges pushing the node into the stack. If we find
an edge connecting a node on top of the stack with a lower node, this will be a
closed path and we do not label the nodes. A node is labeled and removed from
the path if all its edges are visited. Figure (3.4) shows an example of this

method.

Stack

]
Y oo
e I A CRNN

1
*;(A'I) 1

[R
bl A
=N
L=

-
-

Figure 3.4 : Relabeling a matrix using Tartan’s algorithm [19].

3.2.2 Local pivot ordering

These set of algorithms are based on Markowitz criterion [21] which chooses as a pivot

the entry a;; with row i and column j having the lowest number of nonzero elements.

19

More formally, for (n-k+1) (n-k+1) submatrix after applying (k-1) steps of the

Gaussian elimination ,select an entry aij" that minimizes:

(r® - 1)(® - 1) (4)

Where ;% and ¢;® are the number of nonzero entries in row i and column j

respectively. They are local greedy approaches because they select as a pivot the node

with minimum degree without regard whether this selection affect the following steps.

This is also very expensive since it requires knowledge of the sparsity pattern of the

submatrix at each stage. Some variations of this algorithm are follows:

Minimum Degree Method

This method is applied to symmetric matrices. Thus the objective function of
equation(4) is reduced to min,r;*® . It is called minimum degree because it
chooses the node with the smallest degree in the associated graph of the
submatrix as the next pivot row. To avoid the high cost of degree update at
each step, an approximation is used such as Column Approximate Minimum
Degree (COLAMD)[22] which proves to perform better than the minimum
degree approach and applicable for unsymmetic matrices. A major drawback
of this algorithm is its sensitivity to the ties: when more than two nodes have
the same minimum degree value; which one to choose. Another variant of
minimum degree is Multiple Minimum Degree(MMD).

A Priori column ordering

The idea is to find a good column permutation for the normal symmetric
positive definite matrix N = ATA and apply it as a column ordering to the
zero-free diagonal matrix A. The justification is that finding a good column
permutation for N will drastically reduce fill-in in its Cholesky factorization

pattern R. Since the pattern of A is contained in N [20] .i.e if a;; # O then
n;; #0, such a column permutation will also reduce fill-in in

L, U factorization of A provided that N is sparse and A is zero-free diagonal.

This method is used in sequential and shared memory solvers.

3.2.3 Band and variable band ordering

Another set of approaches that rely on ordering the matrix such that the elements are

cluttered along the main diagonal in a banded or variable band form. Examples are

20

shown in figure (3.5). In this section we introduce some basic terms and the common
algorithms for this type of ordering. A matrix has a bandwidth 2m + 1 and a
semibandwidth m if a;; = 0 whenever |i - j| > m. A profile (also called skyline or
envelope) is the number of nonzero entries in the variable banded matrix. It is clear
that Gaussian elimination without interchanges does not affect the banded or variable
banded structure of the matrix since no fill is created outside the band. However, any
zeros within the band will be filled totally. Thus the smaller the bandwidth and the

profile the less fill can occur.

% W R W T A < Wt W,

..............
...............

...........

Figure 3.5 : Band and variable band form [19].

An important variant of this method is Cuthill-McKee and Reverse Cuthill-McKee
algorithm(CM/RCM). This algorithm constructs a level set of nodes via breadth-first
search starting with a node of minimum degree at level set S;. Level set S, consists of
all nodes neighboring to the node in S;. Level set S5 contains all nodes neighboring to
the nodes in S, that are not in S; and S,. In general, level set S; consists of all
neighboring nodes in S;_, that are not in S;_; and S;_,. The ordering then starts by
traversing all nodes from the lowest level to the highest level as shown in the example
of figure(3.6). Reversing this order (RCM) was proven to give better performance
when the neighbors of a node at level S; have occurred in the previous levels or the

node has no neighbors at level S, ;.

21

Figure 3.6 : Example of Cuthill-McKee ordering [19].

3.2.4 Dissection methods

These algorithms are based on finding a set of nodes/edges whose removal result in
splitting the graph into independent subgraphs. Those nodes/edges are called
node/edge separators. Ordering the separators last results in a bordered block diagonal
form. An important variant of this algorithm is the Nested Discetion method. This is
a divide and conquer approach and was originally developed for partitioning regular
graphs generated from finite element systems of equations [23] but recently it has been
found to do well for large 3D problems. In this method, we split the graph into roughly
two equal parts using separators. After getting the first partition, we continue with the
subgraphs using the same steps. An example of this ordering is shown in figure (3.7).
The efficiency of this algorithm highly depends on the size of the separator and thus
works well with problems of regular and planer graphs since they have smaller
separator size [24]. There are several methods for finding the separator nodes with the
objective to find the smallest possible separator size. One way is by constructing the
level set discussed in section (3.2.3) and taking the middle set as the separator set.

22

Figure 3.7 : Example of Nested Dissection ordering [8].

3.3 Ordering Unsymmetric Matrices

Unlike symmetric matrices, partitioning unsymmetic matrices can not be done directly
using undirected graphs but rather many algorithms borrow techniques from
partitioning symmetric matrices. Usually the graph of AT + A, ATA and A AT are
used help partitioning and ordering the unsymmetric matrix A because the sparsity
structure of these matrices is a superset of the sparsity structure of A. Obviously, if A
is symmetric the structure of AT + A is the same as the structure of A and A4 and
A AT will be the identical. Furthermore, the structure of AT + A will be nearly
symmetric if A is so and will be full if A is unsymmetirc. Both ATA and A AT are
symmetric positive definite and thus Cholesky factorization can be used. As discussed
in section (3.2.2), ATA is used to find a column permutation Q such that the sparsity
pattern in the Cholesky factorization of QT ATA Qis preserved. For numerical
ordering, row permutation is used which does not affect the structure of ATA since
(PA)TPA = ATA [19,20]. In this case, P is QT. For convenience, we present the
suggested solution steps of (George/Ng '87) for solving sparse linear system AX = b
in algorithm (1) below where A is large sparse unsymmetric matrix. This is the original
paper that proposed Nested Dissection ordering discussed previously.

A different approach for partitioning unsymmetric matrices is by using Hypergraph.
Hypergraphs are generalizations of graphs in which edges(called hyperedges or nets)
can connect arbitrary number of vertices(called pins). In matrices, rows represent
vertices and columns represent nets. A set of vertices(rows) is called a part and a net

Is connected to a part if it has at least one pin in the part. Hypergraphs can partition the

23

unsymmetric matrix into any number of parts[19]. The most popular packages for

partitioning unsymmetric matrices using hypergraph is PaToH and Zoltan.

Algorithm 1 ND-algorithm[20]

e Find a permutation matrix Q so that QA has a zero-free diagonal.
e Determine the structure of B = (QA)T(QA) = AT A.

e Find a symmetric permutation P so that P.” B P. has a sparse Cholesky

—_

factor. Denote the Cholesky factorization by P.” B P. = RT R.

o Determine the structure of Cholesky factor R of P.” B P,, and set up a

storage scheme that exploits the sparsity of R and RT.
e Input the numerical values of A, storing it as P.” QA P..

e Compute the LU-decomposition of P.T QAP. using Gaussian

elimination with partial pivoting. Store the triangular factors in the

storage structure for R and RT.

e Solve (P." QA P.)P."= P, Qb using the LU-decomposition.

3.4 Sparsity Preservation vs Numerical Stability

Preserving sparsity and numerical stability can be conflicting issues in sparse matrices.
As we will see in the next chapter, pivoting is used during LU factorization to put large
entries on the diagonal and void tiny pivots. However, this can destroy sparsity if the
new pivot row, for instance, contains more nonzero elements than the original pivot

row and will cause more fill-in in the following steps.

One technique to alleviate this problem is through threshold pivoting. Suppose that
a;; is the diagonal entry and a,,; is the largest entry on a partially factored matrix A
up to column i . Depending on a threshold value 0 < u < 1, defined by the user, a,;
will be chosen as new pivot if |a; | < u |a,,; | . otherwise no changing is done. When
u =1, this is equivalent to the classical partial pivoting and when u = 0, the diagonal

entries on the pivot will be chosen, unless they are zero so pivoting is required [19,25].

For symmetric positive definite matrices, such numerical stability is not a concern

because pivots has no growth during Gaussian elimination. A detailed study about this

24

is in [26]. There are other types of matrices which have special numerical stability
issues like diagonally dominant matrices, symmetric indefinite matrices which is out

of scope of this study.

3.5 Software Packages for Ordering and Graph partitioning

The most important parallel partitioning libraries used are Ptscotch and Parmetis.
Table (3.2) shows the most common packages for graph partitioning.

Table 3.2 : Popular Packages for Ordering Matrices

Name Method Type

Chaco Multilevel spectral bisection approaches & sequential
unsymmetric & sequential and parallel / parallel

Jostle Multilevel k-way partitioning and diffusive load- sequential
balancing & unsymmetric & sequential and parallel / parallel

PARTY Multilevel k-way partitioning & unsymmetric & sequential
sequential and parallel / parallel

Metis/Parmetis Multilevel recursive bisection, multilevel k-way, sequential
KL/FM refinement / parallel

Sotch/Ptscotch Multilevel recursive bisection with KL/FM sequential
refinement / parallel

PaToH Multilevel hypergraph partitioning sequential

Zotan Hypergraph partitioning sequential

hMeTiS Hypergraph partitioning sequential

25

4. DIRECT METHODS

In this chapter we talk about solution of sparse linear systems using the most important
factorization techniques for solving large sparse linear systems. Before proceeding

with the discussion of the factorization methods,we define some basic concepts.

Elimination tree is a compact data structure that shows the node dependencies and
the order in which the variables must be eliminated. Thus it is related to ordering and
Gaussian elimination. A vertex j depends on a vertex i such that i <j (writteni — j)
iff eliminating element a,; affects the value of a,; for k < i. More formally, i —j iff
3 k € [i+1,n] such that Ly;U;; # 0 [27]. If there is such a relation (i — j) , we say j is
an ancestor of i in the elimination tree. Figure (4.1) shows an example of elimination

tree.

1234561783789 9

e WK -

=7}

o @

(a (b} (c)

Figure 4.1 : (a)matrix ordered by ND(red shows fill-in) (b) directed filled graph
(c) transitive reduction (d) elimination tree[27].

Directed filled graph is the graph representation of the matrix and, shows vertex
dependencies(including fill-in). Because the dependency relation is not symmetric
since (i — j) can occur only if i < |, the filled graph must be a directed graph. Figure
(4.1b) shows the directed filled graph of matrix shown in (4.1a) with red arrows
showing the fill-in that can occur during elimination. Figure (4.1c) shows the transitive
reduction graph after eliminating dependencies. If the matrix is symmetric, the

undirected variant of this transitive reduction graph is a spanning tree (elimination

27

tree)[27, 28]. If the matrix is unsymmetric, approaches of section (3.3) are used to
symmetrize the matrix. Figure(4.1d) shows the elimination tree of this example.

In the elimination tree, two or more nodes(columns) can be grouped together if they
have the same sparsity structure. The resulting grouped node is called supernode and
the process is known as amalgamation. The solvers that use this approach are
Supernodal method solvers. For example, in figure (4.1), nodes 7,8,9 have the same
sparsity structure and thus can be combined to form a supernode. Among the common

Solvers that use this method are Superlu-dist and Pastix.

Another important tree structure is the assembly tree which assembles the
contributions of the variables in the form of a dense block matrix called contribution
block of the variable. For example, assembly tree is used in frontal method which
was originally developed for solving finite element problems in limited memory

systems. Figure(4.2) shows an example.

N /N
1/ \'-7 3/ \4 .5/ \e '/ \s

Figure 4.2 : The proposed steganography method for extraction[29].

In this approach, each finite element variable form a block dense matrix called frontal
matrix and the whole system is solved by partial factorization and elimination of

matrices of the form.

A= B® (5)
.

That is, when applying Gaussian elimination, there is no need to wait for all the
assembly steps of equation(5) to complete, i.e assembly and factorization can be done
simultaneously. The variable can be chosen as a pivot only if it is fully summed i.e, no
further contribution to come to the variable. In other words, a column is chosen for

elimination only when all its descendants have been eliminated. In Gaussian

28

elimination, this corresponds to passing the Schur complement to the parent in the

elimination tree [29,30].

Depending on the properties of the matrix, we distinguish the following types of

matrices [31]:

n X n symmetric positive definite matrix for which Cholesky A = L LT
factorization is used where L is a lower triangular matrix. A = LDLT is also
possible where D is a diagonal matrix and L is a unit lower triangular matrix.
This later formula voids using square roots. As duscussed in section (3.4), such

matrices simplify pivoting strategies..

n X nunsymmetric matrix for which A = L U factorization is used where L is

a unit lower triangular matrix and U is an upper triangular matrix.

n x n symmetric indefinite matrix for which A = LDLT factorization is used

where D is a block diagonal matrix. Diagonal pivoting is required.

m x n rectangular matrix where m # n for which A = QR factorization is used
where Q is n x n orthogonal matrix and R upper trapezoidal matrix. LU
factorization is also possible where L is n x n lower triangular matrix and U is

m X n upper trapezoidal matrix since U;; = 0 when i >].

In int following sections, we will investigate these factorization methods in detail.

4.1 Cholesky Factorization

Due to its importance, Cholesky factorization has gained a lot of attention from

research community. The major steps for solving the linear system where the

matrix is symmetric positive definite are the following:

e Ordering. This type of matrices simplify ordering since the matrix is
numerically stable. The purpose of ordering is to find a permutation matrix
P such that PTAP has small fill-in.

e Symbolic factorization. The nonzero structure of L can be determined
independently of the numerical factorization. Elimination tree is the result

of this step.

e Numerical factorization. Applying Cholesky factorization to find L.

29

e Triangular Solution. Forward substitution to find y in Ly = b and back

substitution to find x in LTx =y

4.2 LU Factorization

The most common method for matrix factorization is LU Factorization where L is
lower triangular and U is upper triangular. In general, there are four major steps for

direct solution of sparse linear system Ax=Db using LU factorization [24,33,34]:

o Ordering. Reorder rows and columns to reduce fill-in as discussed in
chapter (3). Our experimental results show that row permutation can enhance

the solve step time by orders of magnitude.

o Symbolic factorization. As we have seen previously, from ordering,
we can predict the upper bound of fill-in that can occur during numerical
factorization. Thus a static data structure can be accommodated for L and U
beforehand. This added to the efficiency because dynamic memory allocation
for the fill-in takes time. Besides, this allows us to determine which
compression scheme to use(CRS, CSC ...etc). This process is known as
Symbolic factorization. For example, steps (3-6) in algorithm (1) represents
one way of symbolic factorization. Another approach is the symbolic analysis
of the symmetric matrix A + AT. However, Unlike AT A, row permutation

affects the ordering found and thus symbolic analysis will not be so good.

In many cases, row permutation C = AQ + QT AT is performed to get large
diagonal entries and thus reduce the number of pivots that are delayed in this
way[35]. Such a permutation matrix Q can be found using maximum
weighted bipartite matching algorithm. Developers of This way of
prepivoting large elements to the diagonal is called Static Pivoting. To
further ensure stability, tiny pivots are replaced with a small perturbation
Ve||A||, where € is machine precision) and iterative refinement is used at the

end to get more accurate results.

e Numeric factorization. To compute L and U factors and store results
in the data structure assigned in the previous step. This is the most time
consuming part of the solution process. For unsymmetric matrices,

numerical and symbolic factorization interleave.

30

To construct LU factors, Gaussian elimination is used. For clarity, we illustrate

Gaussian elimination with 3x3 linear system example taken from[19] shown in

- 1)
Xy | = bZ
X3 bs

The first step is to eliminate a,; and a3, by multiplying the first equation first by [,

equation (6).

a1 Aq2 Aq3
Qz1 Az Q33

Q31 A3 433

= a,,/a;; and subtract it from the second equation and then multiply it by a3, =

asq/a, and subtract it from the third equation. The equivalent system is:

Ujp Uz Uz b, 7
l,y a®,, a®,, [] b@,
iy a() (2) b(z)3
where
a(2)22: az; — a4, a(2)23: az3 — a3 b(Z)Z: b, — ly1by
a(2)32= as; — lz1aq; a(2)33: aszs — l31a43 b(2)3: bs — l31b,

Finally, we have to eliminate a(®;, by multiplying the new second equation by I3, =

a®,, la®,, and subtract it from the third equation.

U Uz U131 X1 by (8)
[lrr Uz Uy] [le = [b®,
3l a®gllx b3,
where
a® 332 a%35 — 15,0P 3 , b®3=b®5 — 15,

The entry a®;; (called the pivot) should be nonzero for any iteration step k and if its
value is too small, it will cause instability in the elimination process because the
updated element will be very large. This problem propagates in the following steps so
it is crucial to choose the pivot element. The factors [;;, are called the multipliers and

they constitute the unit lower triangular matrix L and the final matrix of A of equation

31

(8) constitutes the upper triangular matrix U. Thus the elimination process can be

summarized in the following important equation:
a(k+1)ij= a(k)ik - lika(k)kj I,J >0 (9)

where lix = a(k)ik/ = a(k)kk

This way of Gaussian elimination is also called Right-looking Gaussian Elimination
because at each elimination step, we always use entries of the right of the pivot and
modify entries at the lower right part of the submatrix. It is also called submatrix-
based Gaussian elimination for obvious reason. It is also called "data-driven” , "fan-

out" or "eager" approach.

A variant of Gaussian elimination is to delay modifying a;; until column j is pivotal.

Using this method with the above example,we eliminate the a,, and as; using the

same method and use this information to update the second column as follows:

Upq a®, a] M b; (10)
L1 a(z)zz ass [le = [bzl
l31 a(2)32 ass X3 bs
where
u;=a® 1, = a;; 4Py =ag — Ly, aPg=ag; — g,

In the next step, we modify the third column,

wr wp a®) g by
l u a® X, |= |b
21 22 (3)23 o bz (11)

l31 l32
where

a® a® a®

13~ U13 = Qg3 23= a3 — U3 33= A3z — l31Uq3 — l35Up3

which yields the same results as the previous example.Thus the elimination equation
will be [19]:

aVyj=a;; - Zk 1k<; Lik Ukj (12)

32

This way of Gaussian elimination is called Left-looking Gaussian elimination
because, as shown in the example, while modifying the current column, we always use
the information on the left of the pivotal column. It is also called Column-based
Gaussian elimination for obvious reason. It is also called "demand-driven™ , "fan-in"
or "lazy" approach. A C implemetation code of this these two varaints for factorizing
dense matrices is shown in figure(4.3).

. iI=1
l=1I,, u= 0y, uj; = ajy ()“
s u = n
for j=2:n
o bt for k=1:n-1
;_ y for i=k+1:n
lsj—1 = asj—1/e;j-1j-1 i = a1/ ag
end o S A
for k=1:j-1 ool R I
for i=k-1:n ”'df = aij — lik % ak;
n
“nlz"lj—llk‘”f.‘_/ g
end
end
end Ukk:n = Qkk:n
end
7 = a
1:5J 13 Unn = Unn
]
U v
N\ A
ﬁ.
L NOY
. TOUCHED

Figure 4.3 : (a) left approach (b) right approach of Gaussian elimination[8,36].

An important variant of the right-looking Gaussian elimination is the Multifrontal
method which makes use of the concepts of elimination and assembly trees discussed
earlier. In the multifrontal method, each node of the assembly tree is associated with a
matrix called frontal matrix that shows the elimination contribution of the node. For
example, eliminating node 1 of figure(4.2) contributes to variables 3and 7(1 - 3,1 -
7). This contribution is represented by the 2x 2 Schur complement(partial
factorization) of the frontal matrix F; and is passed to the parent(node 3) in this case).
Similarly, the elimination of node 2 contributes to the variables 3 and 8 and results in
2 X 2 Schur complement that is passed to node 3. Now, when eliminating variable 3,
we should first assemble the contributions of all its children and add them to the

original contribution of node 3. We do the same thing with the other variables in the

33

elimination tree. Figure (4.4) shows the assembly tree corresponding to the elimination

tree of figure(4.2)
789
iman
Sman
Sgman
3789 67889
jmEanm ftmEEN
7|/ 7.
5im 5.
g/m a/m
137 239 467 569
| mEn Zmmunm imEn Smmn
1| 3. 6. 6.
7| 9(m 7m 9(m

Figure 4.4 : assembly tree of the elimination tree of figure(4.3) with the supernode

combining 7,8,9 [27]

Solution. solve the system using forward and backward substitution.
Once the LU factorization is obtained, the linear system solution

consists of two steps:

1. The forward substitution that solves the triangular system Ly =
b;
2. The backward substitution that solves Ux =y.

The solution of successive linear systems using the same matrix but
with different right-hand sides, often arising in practice, is then

relatively cheap .

34

5. ITERATIVE METHODS AND PRECONDITIONERS

Iterative methods have the advantage of using less memory and being easier to
parallelize than direct methods. The main problem is that rate of convergence depends
on the properties of the matrix. In this section, we discuss the basic iterative methods

and preconditioners.

5.1 Basic lterative Methods

These methods are also called stationary (fixed point) methods. They are based on the
relaxation of the coordinates. We start with an initial approximation values of the
solution and modify them through successive iterations until convergence. Basically
these methods are not used by their own because they are not so efficient and the
convergence is never guaranteed for all types of matrices. However, variations are
used as preconditioners or combined with other methods. Table (5.1) shows the basic
iterative methods along with the vectorization form of each method where D is the
diagonal matrix with nonzero entries in the diagonal and -F and -E are strict lower and

upper triangular matrices respectively such that:
A=D—-L-U (5.1)

Jacobi iteration method updates approximate solution locally at the end of each
iteration. Thus it is easily parallelizable but the convergence is very slow. Besides, the

convergence is only guaranteed if the matrix is diagonally dominant.

Gauss-Seidel iteration method Updates approximate solution on the same vector
immediately after the new component is available. Thus it is faster that Jacobi and

more economical in terms of memory but difficult to parallelize.

Successive over relaxation (SOR) is faster than the previous approaches when an
appropriate value of w is chosen. Here, w is positive nonzero value called the
relaxation factor. A variant of SOR is symmetric successive over relaxation (SSOR)

used a preconditioner for non-stationary methods.

35

Most of the iterative techniques converge faster with preconditioners. The role of the
preconditioners is to enhance the spectrum and thus the convergence characteristics of
the coefficient matrix. Hence a preconditioning matrix M is multiplied by the

coefficient matrix such that
M 1Ax = M~ 1p (5.2)

There are block extensions of these algorithms which increase the locality and speed-
up.

Table 5.1: List of Basic lterative Schemes.

Method Vector Form Iteration Preconditioner Convergence con-
(M) dition of A

Jacobi Xy = D YD+ F)x, + Db D strictly diagonally
dominant or an
irreducibly diag-
onally dominant
matrix

Gauss-Seidel x4 =(D—E)"YFx; + (D—E) b D-E strictly diagonally
dominant or an
irreducibly diag-
onally dominant
matrix

Successive (D — wE)xg 41 wE + (1 —w)Dlxxy + (D —wE) Positive Definite

over relax- wh. matrix for any w

ation(SOR) in (0,2)

Symmetric (D — wEx; + 1/2 [wF+(1 - _L_p- symmetric

Successive w)Dixy + wh i 2 1) Positive Definite

over relax-) wE)D D —wF) matrix for any w

ation(SSOR) (D - u.‘[’-ll.\'k +1 iLL’E + (1 - u?lD].\'k f in (0,2)

1/2+ wbh

5.2 Krylov Subspace Methods

Krylov subspace methods are the non-stationary iterative methods and the most
important iterative techniques. Krylov subspace methods solve the linear system of
equations Ax = b by extracting an approximate solution x,,, from the affine subspace

xo + K, of dimension m by imposing the Petrov-Galerkin condition

Xm € x9 +K such that b-Ax, LL,

36

where L, is a subspace of dimension m and r, = b - Ax, for some initial guess of

solution x, [14]. In other words, the approximate solution can be defined as
X=xot O §d €K
(ro—AS5,W) -0 Vw EL

Figure (5.1) depicts the orthogonality condition of the krylov subspace method.

\

Figure 5.1 : Orthogonality condition of the Krylov subspace[14].

5.2.1 Generalized minimum residual method (GMRES)

GMRES is a projection method where K = K,,, and L = AK,,,. This method is based
on minimizing the residual norm over a Krylov subspace at each iteration by
computing a sequence of orthogonal vectors. Algorithm(2) shows GMRES with
householder orthogonalization scheme. GMRES converges in at most n steps.
however, n might be large and the memory required for storing the orthonormal bases
and the computational cost of the orthogonalization scheme is getting larger. To cope
with these problems, GMRES is restarted after m iterations if the desired convergence
Is not achieved with x¢ = x,,,. This variant of GMRES is know as restarted GMRES(m)
with projection size m. Another important variant of GMRES is Flexible GMRES
(FGMRES) in which a right preconditioner is changing at each step. The cost of this

flexibility is that an extra memory is required to store a set of vectors {Z;};—1 ., [14].

37

Algorithm 2 GMRES with Householder orthogonalization [Y]

1: procedure GMRES

2 Compute ryp =b - Axp, z :=ry.
3: Forj=1,.. mm+1
4
5

Compute the Householder unit vector w; such that
(wj)i=0,i=1,.. ,j-1and

6: (Pjz)i=0i=j+1,.. nwhere P, =1- 2w,-w]T s
& /1,'_1 = P,'Z;

8: If j= 1 then let B:= el hy.

9: v:i=Pb ... Pe;.

10: If < m then compute z:= P, P;_; ... P; Av.

11: EndFor o

12: Define Hy, = the (m + 1) x m upper part of the matrix [/ ... ,Ji,,].
13: Compute ym = Argminy||Bes - Hul||2 - Let ym = (11,92, , ;],,,)T "
14: zi:=0

15: Forj=mm-1,..,1:
16: z:= P; (niej + z),

17: EndFor

18: Compute x,; =x0 + 2

5.2.2 Conjugate gradient method (CG)

This method works fine with symmetric positive definite matrices. We approximate
the solution by minimizing a quadratic functional of the form.
F(x) = % xTAx— xTh (5:3)
by taking the orthogonal(conjugate) gradients of equation (5.3). They are also residuals
of the iterates. Variants of this method for symmetric but not positive definite are
minimal residual (MINRES) and symmetric LQ (SYMMLQ). BiConjugate
Gradient(BiCG) generates two CG, one is based on the original coefficient matrix A
and the other on AT and are made orthogonal with each other "bi-orthogonal. This
method can work with unsymmetric matrices but they require multiplication with the
Aand AT at each iteration [38].

38

5.3 Preconditioning Methods

A preconditioner is an operator M that transforms the original matrix A into another
matrix such that the new matrix is faster to solve. There are many constraints on the
preconditioners. A good preconditioner should be inexpensive to compute and store.
In the parallel environment, there are two more constraints; parallelisibility and
scalability; the communication should be minimized during preconditioner setup and

performance should be enhances with increasing number of processors.

From application point of view, there are two broad classes of preconditioners;
problem-specific preconditioners and general-purpose algebraic preconditioners. The
former can give optimal solution for specific type of problems but require a complete
knowledge of the problem and usually sensitive to the input parameters. The second
type is not optimal for specific problems but gives reasonable solution in many cases.
The later type use only information contained in the coefficient matrix and they are

easy to apply [40].

If preconditioner M is a non-singular matrix that approximates A~1, then the left

preconditioner is defined as:
MAx = Mb
Right preconditioner is also possible:
AMt =b

Once the t vector is obtained, we can get the solution vector by x=Mt.

39

6. HYBRID SOLVERS

As mentioned in the previous sections, direct and iterative methods are the most
popular algorithms for solving sparse linear systems. Direct methods can give high
accurate results(~ 10~1°) and are more suitable for small(by small we mean several
millions of equations) problems because of the memory consumption they require(for
example, they can not solve large sparse 3D problems which contain hundereds of
millions of equations). Besides, They have limited parallel scalability. Preconditioned
iterative methods, on the other hand, are more robust, require less memory and easier
to parallelize. However, they are problem dependent and can converge faster with good

preconditioning methods.

In an effort to find the best algorithm for solving large sparse linear systems efficiently,
various hybrid methods have been developed using both direct and iterative
techniques. In general, there are five major steps these hybrid solvers follow to solve

the linear systems:

Step 1: Algebraic domain decomposition
Step 2: Factorization

Step 3: Preconditioning

Step 4: Solve

All hybrid solvers discussed here are for solving linear systems of the form:
Ax=b (6.1)

where A is a large sparse general purpose matrix, b is a dense vector and x is the

vector of unknowns to be found.

6.1 PDSLin

The first Hybrid solver we are going to discuss is called PDSLin (Parallel Domain
decomposition Schur complement based LINear solver) developed by Ichitaro

41

Yamazaki and X. Sherry Li at Lawrence Berkeley National Laboratory(LBNL). It can
be downloaded from here[40]. In this solver, the global system is first reordered using
any parallel ordering algorithm like Pt-scotch[41] or Parmetis[42]. Next, the system
is divided into a set of subdomains that are only connected through separators as shown
in figure(6.1).

D, E,
\ | \ D, k
& a & o\ l A, | A, "
\ N R .:\ ~ | A, "\:: | D, E
Y = e d e
% F F F|A

Figure 6.1 : Domain Decomposition of PDSLin[43].

A4, is diagonal matrix and always has a block diagonal structure because vertices in
each subdomain are either connected to other vertices in the same subdomain or their
interfaces. A, are the separators and A4, and A4 are the interfaces between them.
The internal unknowns are then eliminated to form the Schur complement for each
subdomain [43]:

(i 40 G)

@ MG

(?) (6.2)
r

(?1) (6.3)
br

S = Arr— An A ' App (6.4)
br = br— Arf A7y by (6.5)

Matrix A~1}; can be factorized using either superlu-dist[44] or MUMPS][3] for each

subdomain. The approximate S is used as a preconditioner as follows:

S = Arr — (Ar U D) (L Ar)

=~ AFF—GW

42

Q

I
i
3
|

vﬂ

(global approximation of S as
1 a preconditioner).

Q
U
<
Il
U

Because most of the fill occur in the Schur complement, matrices G , W , T and S are
approximated by a predefined dropping threshold values in order to enforce the
sparsity of the resulting matrices and thus reduce matrix-matrix multiplication and
memory consumption. Furthermore, if A is SPD, S inherits this property and thus
Conjugate Gradient method can be employed [14]. Another advantage of this method
Is that Schur complement need not be defined explicitly i.e no need to reserve memory
space for the whole Schur matrix and thus multiplication can be done on the fly
because this Schur matrix is used only once. S is solved using Krylov subspace method

of PETSc[43,45].The unknowns on the interface xy are then found as:
xp= S7'hp=S"'(br— Ar A7y by)

The above multiplication is matrix vector multiplication. The next step is to solve

interior unknowns in parallel using already factored subdomains:
xp= A7'y (b — Ajp xp)

Our experimental results show that choosing appropriate values of sparsifying
tolerances can drastically reduce the preconditioning time . However, this also can

increase the number of iterations and thus the solution time especially in PDSL.in.

To tackle the problem of large scale systems, PDSLin uses two levels of parallelism:
in first level, the internal domains are factored concurrently and independently, in the
second level, each internal subdomain is assigned to different processors. This ensures
constant number of subdomains, Schur size and convergence rate regardless of the
number of processors used. See figure(6.2).

43

P(O 5)

P
P(o 5) Pe . 11|P2- 11 (18 122)

p(O 5) E7 0 | 0 1 ()
3 |4 3. |4l 5 |3 .
P(eAm Pe:11) E2 0|} 01 0
\ 3 'l - 3 4 - 3 3
D 2
3 _\. [H)]] 1 0]
Pnz 1) Pnz 17 EJ-\
A 5 4 5 3 | 4 A 3 4
| [

DaPlis 23 Poa: 23| Es N\

Fy

FZ F3 F4 A22

Figure 6.2 : parallel subdomain calculation of PDSLin[43].

To summarize the main solution steps and the options we used for using the two level

parallelism in PDSLin :

Read and scatter the matrix among processors

.matrix ordering and partitioning. We used Parmetis for subdomain
extraction. Some refinement algorithms are used here to load balance

subdomains and interfaces.

Using input options for factorizing internal subdomains, we used

superlu-dist with ng processors to factorize each subdomain

concurrently.

Computation of an approximate schur complement. Using sparsifying
tolerances defined in the input file, equation (6.4) is calculated by doing
approximate matrix-matrix multiplication on (Ap U™1y) (called G
matrix) and (L™ 1 A;r) (called W matrix). The result Schur matrix is

further preprocessed and sparified.

This sparsified Schur matrix is then factorized(exact LU factorization)
using another instance of superlu-dist and used as a precoditioner for
the Schur matrix itself. Krylov method(GMRES, FGMRES or
BiCGstab) of PETSc is used to solve the preconditioned Schur matrix.

At this stage the solution vector of the interface is found.

44

e Using solution vector of the interface and the already factored
subdomains, triangular solve is wused to find the unknowns

corresponding to the internal subdomain variables.

6.2 Maphys

Maphys solver [46] is similar to PDSLin. This solver first partitions the global matrix
into 2x2 block matrices using non-overlapping graph partitioner and then solves the
generated Schur complement. The internal subdomains A;; are factored using sparse
direct solver either Pastix [47] or MUMPS[3]. To solve the preconditioned Schur
matrix, we can use CG, GMRES , FGMRES. The partitioner used here is a sequential
one like Metis[42] or Scotch[41] and they consider parallel partitioners as future work.
The preconditioning criterion is also different from that of PDSLin. Each local

subdomain Q; can be represented as a local matrix 4; :

A = (Alili Apr,) (6.6)

Thus the Schur matrix of equation (6.4) can be defined as:
S = X1 R"ri Si Rry (6.7)
where
S; = Arr, — A A Ay, (6.8)

Since the interior unknowns are no longer considered, a new restriction Rp; should be
devised because of the non-overlapping between the neighboring subdomains at the

interfaces(I; N I; = @). Thus Ry isT — T; be the canonical point-wise restriction

which maps full vectors defined on T into vectors defined on T; [45].

Equation (6.7) is the global Schur complement obtained by summing the contributions
over the subgraphs, and equation (6.8) is the local Schur complement corresponding

to each local subdomain Q; of the equation (6.6).

45

.

b‘.
'

- .-

(a) Graph representation. (b) Domain decomposition. (¢) Block reordered matrix.

Figure 6.3 : Domain decomposition of Maphys[48].

Figure (6.3) is similar to figure (6.1) but we elaborate on the subdomains because the
preconditioner relies on the local assembled Schur complement rather than global
Schur complement of PDSLin. The assembled local Schur complement is constructed
from local Schur complement by assembling their local blocks. Each box in matrix M
corresponds to an assembled local Schur complement S; as depicted in figure (6.3).
This preconditioner is known as Algebraic Additive Schwarz Preconditioner. Such
preconditioner is similar to Neumann- Neumann preconditioner but with the
difference is that it is SPD if the original matrix is SPD which is not always true in

Neumann-Neumann preconditioner[10].

G - Ski(S;‘u‘ ot A o ‘ Su_ Okt |
- Ok Ou Otm : | Sex | Ses Stm =
bml \Smm \\—mn Smr’ Slnm Slnn 1
Snm Sn," Snm Snf‘
F olt) - . - A
s = (S Ske) o 0 = (\ «bu)
Su S0
w %8 Ly —_—
local Schur local assembled Schur
\ V.
{1
¥
adi

Figure 6.4 : Algebraic Additive Schwarz preconditioner[49].

Similar to PDSLin, in order to get inexpensive preconditioner, Maphys relies on the
sparsifying techniques. However, the sparsfication mechanism is different from that
of PDSL.in. It uses the following criterion to sparsity the assembled preconditioning

matrix;

46

& =10 ifl Sl < & (Su+ Sip) (6.9)
i =)&]
Sii otherwise

This criterion preserves the symmetry of the symmetric problems[10,50].

Here we summarize the solution phases of Maphys followed in our experiments:

Partitioning step. Maphys uses nested dissection algorithm of Metis or Scotch

for graph partitioning. In our experiments we used scotch-custom option.

Factorization of the interior subdomains A;,;, and the local Schur complement
S; . Maphys uses either the supernodal method of Pastix or the multifrontal
method of Mumps for this purpose and let the user choose between them. In
order to use the 2-level parallelism, Pastix with multithreading option should
be compiled and linked with Maphys. We chose Pastix in all our experiments

except for serial time, we chose Mumps.

Preconditioning. As dicussed before, Maphys uses Additive Schwarz
preconditioner which consists of two steps: assembly of the local Schur
matrices S;. The next step is factorization of this assembled Schur matrix.
Because S; is a dense matrix, the preconditioner can be expensive. Thus
dropping is used as discussed before. This preconditioner is called sparse
preconditioner. The user has to define the dropping threshold & in order to
activate this preconditioner. There is another preconditioner type in Maphys
based on ILU(t,p) factorization which is already implemented in pARMS. In

our experiments, we used sparse preconditioner.

Solve step. Similar to PDSLin, There are two consecutive phases here. First

solving the interface unknowns and then backsolve of the interiors.

6.2.1 Multithreading in Maphys

In order to implement the two level parallelism in Maphys. Maphys developers use

three types of binding and let the user decide which binding to choose. The first type

is not to use any kind of binding and let the operating system handle the binding

between processes and threads(Figure (6.5a)). The second type is to bind processes to

cores and let the operating system handle the placement of threads(Figure (6.5b)). The

third type is to handle the placement of threads and processes(Figure (6.5c)). Since

47

such bindings depend on the operating system and architecture of the target machine,
Maphys relies on hwloc software [51] for getting these information from the machine.
In [10], they tested the three types of binding and concluded that the second type gives
the best results so we used this type of binding in all our experiments when evaluating

the two level parallelism of Maphys. More about this can be found in the result section.

(¢) Process and thread binding.

(a) No binding,.

P /’_\-.
,Jf "“ &

\ @ MPI process ¢ Thread
) Subdomain (O15) Operating System

(b) Process binding. (d) Caption.

Figure 6.5 : The Three binding mechanisms of Maphys[10].

6.3 HIPS

Similar to the previous solvers, HIPS (Hierarchical Iterative Parallel Solver) uses
direct/iterative methods through Schur complement. GMRES is used for solving the

Schur complement S preconditioned by incomplete LU of S;i.e M= L U as follows:

The local block matrices of A;; of equation(6.2) are factorized independently with
exact factorization using supernodal right looking algorithm. In the next step, an
approximate computation of the global L U, using left looking ILUT(t) algorithm

where:
LyUg = S— (A U™)(L yAr) (6.10)

HIPS uses a different graph partitioning and reordering algorithm called Hierarchical
Interface Decomposition Algorithm (HID) as well as Metis or Scotch for ordering
internal unknowns. Here we briefly outline the algorithm of HID. Reader should
consult [52] for further details .

HID is an edge-based partitioning algorithm ,i.e, the overlaps are over vertices rather
edges. The global domain is partitioned into levels; each level has a set of subgraphs

called connectors such that connectors of a given level are 'separators' of the levels

48

below. Figure (6.6) shows an example of partitioning 5-point mesh of 2D Poisson
equation into 9 subdomains using this scheme. In this example, we can distinguish
three types of points: interiors which are the lowest level. The interface nodes which
are the separators of the interior nodes and the cross points; separators of the interface
nodes. Such a hierarchal decomposition is appealing for parallel processing since
factorization can proceed independently starting from the lowest level using
ILU[52,53] . However, we should keep this HID structure as intact as possible and

minimize fill-in between connectors.

Y~ imwrior
" Points

[
ST & Poirm

Domain
Edges

Figure 6.6 : (a)Partition of an 8x 8 5-point mesh into 9 subdomains and the
:orresponding HID structure (b) Matrix associated with an 8 8 5-point mesh reordered
according to HID [52].

In order to keep the HID structure, developers of HIPS suggested two dropping

strategies: locally consisted strategy and strictly connected strategy.

In strictly consisted strategy, fill-in is allowed only in places that will not destroy the
HID block diagonal structure. Locally consistent strategy, fill-in is allowed in any

block matrix.

Figure 6.7 : block partition of subdomain(2) [52].

49

Figure (6.7) shows the block matrix of subdomain (2) as an example. The diagonal
elements show the levels: level labeled (2) is the lowest level (level 0) and takes the
label of the subdomain itself. connectors of the second level(level one): (1,2), (2,3),
(2,5) which are interfaces of level 0 (previous level) and connectors of level 2:
(1,2,4,5),(2,3,5,6) or the cross points. The figure also shows places where fill-in is

allowed using locally consistent strategy.

Saad in [53] states that there are two important ingredients of this method: (1) good
levelization(few levels). (2) good combination of incomplete factorization algorithm

and dropping strategy.

As opposed to PDSL.in, HIPS uses one level mapping of processors to subdomain ,i.e,
each processor is assigned to multiple subdomain. This ensures a good load balancing
but global size of the Schur complement increases with increasing number of
subdomain [6]. In our experiments, we used one level parallelism with Maphys using
ASIC680ks matrix.

6.4 pPARMS

This solver is based on a multilevel recursive algorithm called Algebraic Recursive
Multilevel Solver (ARMS) developed by Yousef Saad[54]. So it is a multilevel
approach, in the first level, the global system is ordered into 2x2 blocks of matrices
similar to that of equation(6.2). Nested dissection algorithm of Metis or row and
column permutation, i.e, PAPT can be used for such ordering. For convenience, we are

going to rewrite the equation (6.2) with superscript denoting the level number as

AD® AD O] ®
((l)u) " x(l)l - b(z)l (6.11)
A A¥rp) \xr b

The above equation is then approximately factored like this:

AW, ADO,L - JAQ) 0 o y® L_l(l)A(l)IF (6.12)
AOL ADL O u® g 0 G+

follows:

where 1 is the identity matrix, U® and L® are the LU (or ILU) factors of A®y and

s®D s an approximate of the Schur complement of equation(6.3).

50

—1Q 1@
gU+1) — A(l)IF — (A(l)r‘l U 1())(L 1()A(1)1F) (6.13)

All matrices and matrix multiplications of equation(6.13) are approximated with
certain dropping threshold values in a manner similar to that of PDSLin and Maphys.
In the next step, we repeat this same process with resultant S matrix. ARMS algorithm
is shown at (3)below

Algorithm 3 ARMS factorization[56]

1: procedure ARMS(A;,;)

2 if lev = last-lev then

3: Compute Ay, &2 Ly U,y [e.g. ILUT factorization of Ay,]
4 else

5

Find an independent set permutation P,
Apply permutation Ay = PI Ao Pier
Compute the block factorization (equation(6.11))
Call ARMS(A}0:1)

end if.

L e N > g

For LU(or ILU) factorization of the last level at step(3), different approximations can
be used. Pivoting is not performed during the block factorization except for the last
level where a pivoting factorization technique like ILUTP or GMRES preconditioned
with ILUT can be used. Saad in[56] divides ARMS into three phases: the first
phase(called the forward or restriction) phase as analogous to the coarsening phase of
AMG method. Various number of methods may be used in this phase like VARMS
and WARMS.

.5 ABCD

Augmented Block Cimmino Distributed Solver(ABCD) is develpoed from a PhD
thesis of Mohamed Zenadi. The official website of this solver is [56] and the github
account is [57]. This solver is based on an iterative method using block-row
projections. called block Cimmino method[58]. For convenience, we present the
original algorith below. The original system (Ax = b) is partitioned into p blocks of

rows such that,

51

(6.14)

PaToH Hypergraph partitioner is used for row permutation. The justification for this
row-wise partitioning is that an ill-conditioned matrix A has some linear combination
of rows almost equal to the zero vector. After such row partitioning, these may occur
within the blocks or across the blocks. If, in the block Cimmino algorithm, we assume
that we compute the projections on the subspaces exactly, the rate of convergence of

the method will depend only on the conditioning across the blocks[59].

From initial estimates of x(®), the algorithm approximates the solution iteratively

according to

u; = A+i (bl = Al-x(k)) izl, ... P (615)

xED = x4 o Yy (6.16)

p
i=

1
where A*; is the Moore—Penrose pseudo-inverse(explicitly A*; =AT;(4; AT;))™!) of
the matrix A4; and w is the relaxation parameter. Similar to Jacobi iteration method,

equations in (6.15) are independent and can be solved in parallel. We can write the

above equations like:

x(K+1) - p (6.17)
x(k) + w ZA+l' (bl - Ai x(k))
i=1
= (I —w X A% A)x® + o ¥ At b (6.18)
= p (6.19)
Q x(k) + w ZA+i bi
i=1
The iteration matrix for the block Cimmino method is (H = I - Q) which corresponds

to a sum of projectors (H=w ¥ . P, ,r, where R(AT,) is a projection matrix onto
Proj i=1 T RAT)

the range of A7,. If w > 0, H will be symmetric positive semidefinite and it is

52

symmetric positive definite if A is square and of full rank. So we can solve equation
(6.20):

Hx = o ZA*l-bi (6.20)

using conjugate gradient or block conjugate gradient methods. As the relaxation scalar
w appears on both sides of the equation, we can set it to one. At each step of the

conjugate gradient algorithm, we must solve for the p projections
Ajug = 1, (Ti = b; — Al-x(")) i=1,2..p. (6.21)

To solve the subproblems of (6.15, 6.21) system, the following augmented system is

used:

m, :
G o)) =

The reason for this augmented system approach is that it is more stable and less

(0) . (622

Ti

sensitive to ill-conditioning within the blocks caused by this row-wise partitioning and
thus accelerate the convergence of the block Cimmino method. Second it helps using

the ellipsoidal norms and the corresponding oblique projectors used.

Algorithm 4 (block Cimmino method)[59]
procedure BLOCK-CIMMINO

Choose x'Y, setk=0

repeat until convergence

hd

4 begin
do in parallel i= 1,...,p
(k) Fy3: 3 (k
b ST=A"D - P’Rix‘.-‘rhll /
= AT (b — Alx(®)
: end parallel
(k- X p (K)
.\"“' +1) — xeh 4 “"Z} i 0[' '
10: k=k+1

The sparse direct multifrontal solver MUMPS is used to solve this augmented system.

At each iteration to get u; = A*;r;, the projection is needed for each partition A;.

53

According to [60], there are two ways that ill-conditioning can affect the solution using
block Cimmino:

e Within the blocks where the systems being solved are symmetric indefinite
problems, ill-conditioning can cause any sparse direct method to behave poorly

or unpredictably.

e Across the blocks where there can be problems if the subspaces are far from

orthogonal.

54

7. EXPERIMENTAL SETUP AND RESULTS

In this chapter we discuss the experimental method and environment we used for
comparing those methods. The hybrid solvers we evaluate are Maphys and PDSL.in.

We compare the results with state-of-art Superlu-dist direct solver.

7.1 Experimetal environment and Optimization Details

Our experiments are conducted on a linux cluster with Slurm workload manager called
Sariyer cluster at Ulusal Yiiksek Basarimli Hesaplama Merkezi Projesi (UHeM).

Sariyer nodes consist of two sockets with 14-core Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz processors in each socket (total of 28 cores per node).

All the libraries are compiled using Openmpi, Intel MKL library and gcc@7.1.0
compiler with 03 optimization flag. Due to the large number of libraries and their
dependencies, we could not compile the whole libraries with Intel compilers and
consider that as a future work. With superlu-dist and PDSL.in, we used one debugging
and print level, namely, -DDEBUGIevel=1 -DPRNTIlevel=1. All the libraries are
compiled with 32 bit arithmatic and matrix indices (integer limit 231-1) and we
consider 64 bit as a future work. The versions of the libraries appear in Appendix(A),
table(A2).

We used the matrix format 1JV, MTX and HB and Matlab for converting matrices
from Matlab format into 1JVV/HB. Because MTX takes explicit zeros into account, for
the sake of fair comparison, we took those explicit zeros into account during
conversion in all types of matrices too. The reason of taking multiple matrix formats
is that different solvers support different matrix formats and a solver sometimes fails
on a certain matrix format and works with other format. For example, Maphys fails to
run (not fails to give a solution) with atmosmodl MTX matrix format and works with
HB format. PDSLin works better when using 1JV format for symmetric matrices.
Because Matlab automatically drops zeros from sparse matrices, we substitute the

explicit zero values by 10739,

55

Finally, following the conventions in [61], we distinguish three types of failur: F
indicates an abnormal or no termination failure, F, indicates that the solver runs out

of memory, Fy indicates that the results were not accurate.

7.2 Matrix Description

The four matrices we selected for evaluation are all from Florida University collection.
These are of moderate sizes. The description of the matrices is shown in table (7.1).
The criteria of choosing these matrices are the size of the matrix, number of nonzero
elements, source of the matrix, the sparsity structure and degree of diffcultiy. The
condition number of the matrices is taken from Matlab function condest(). According
to matlab documentation, condest() is based on the 1-norm condition estimator of
Hager and a block-oriented generalization of Hager's estimator. The heart of the
algorithm involves an iterative search to estimate ||A~1||;without computing this

inverse[62].

Table 7.1: List of matrices used for evaluating hybrid solvers.

Name Freescalel AtmosmodI Audikw-1 ASIC 680ks
n 3.4M 1.5M 034K 682.7K
nnz 17M 10.31M 777 M 1.7M

1.074941e+10 1.472850e+03 6.952866e+10 9.474649e+19
Cond No
Explicit Zeros 1.9M 0 0 0.6M
Sym (pattern unsymmetric unsymmetric symmetric unsymmetric
Sym%o) (0%) (100%) (100%) (100%)
Type real real real real
Source Circuit Simulation Com%;it;?[:igﬂuid 3D Structur Circuit Simulation
Maphys Serial 34.81 3216 199.4 69.03
Time
PDSLin Serial 72.397 659.40688 684.700 8.0897
Time
Superlu-dist
Serial Time Fn 676.79

=N g “%}%%

Sparsity \ "g! %
Pattern Ly :

56

Table 7.2: Processor Distribution and Sparsifying Tolerance Setting on the Selected Matrices

Audik Freescale ASIC atmosmod|

#nodes 1 2 8 8 11 1 1 1 2 8 16 1 1 8 8 16 2 2 8 8 16
#cores 16 32 64 128 256 4 8 16 32 64 256 4 16 64 128 256 16 32 64 128 256

MaPHyS 16 16 16 16 16 4 4 8 4 16 16 4 16 64 128 256 8 8 16 16 16

#subdomains

PDSLin 4 8 8 8 8 4 4 4 4 16 16 4 8 8 8 8 4 4 8 8 16

MaPHYyS threads 1 2 4 8 16 1 2 2 8 4 16 4 16 64 128 256 2 4 4 8 16

cores . ng 2 4 16 32 64 1 2 4 8 4 16 1 2 8 16 32 2 4 4 8 16

PDSLi
n

Ngs 16 16 16 4 64 4 4 4 8 16 8 4 4 32 8 4 4 4 8 16 16
MaPHyS 107 | 107+ | 107 | 107* | 10|} 107¢ | 107¢ | 10 | 107¢ | 10 | 10°¢ [} 107° | 10| 107° | 107 | 107¢ || 10 | 107 | 10| 1076 | 10°°
6 107* | 1072 | 1073 | 1073 | 1073 1072 | 1072 | 1072 | 1072 | 1072 | 10™* | 1072°| 1072°| 1072° | 1072°| 107200} 107 | 107® | 107® | 107° | 10°°

preconditione d d d d d d d d
ens ens ens ens ens ens ens ens
r PDSLi Ty 107t | 1072 | 1072 | 1072 | 1072 ||| dense dense |1072°| 1072°| 1072° | 1072°| 1072°} | dense
e e e e e e e e
n
dens | dens | dens
Ts 1075 | 1075 10710 10710 1072°| 107%°| 1071°| dense |} 1072°| 1072°| 1072° | 1072°| 107200 10~° 1075 | 1075 | 1075 | 1075
e e e
MaPHyS 76 97 96 88 68 17 17 17 46 46 46 2 2 - - - 20 20 25 25 25
#iterations
PDSLin 43 156 8 10 10 2 2 2 2 2 8 4 2 2 4 4 16 16 18 18 18

57

7.3 Evaluation Metrics

For evaluating the solvers, we extract the information from the generated output files.
We used the same stopping criteria for all solvers(10~12) the error measurement for

the three solvers is shown in table(7.3) below.

Table 7.3: List Error Measurements

Solver Error Measurement

Superlu-dist FERR = ||xXue — X ||oo / |12 || [1x ||o = max; |x;]|
PDSLin Err.nrm = \/thrue — x> /\/||x [l, |lx 1]z Euclidean norm
Maphys Norm.res = ||Ax — b ||2/ ||b ||,

Since time and memory are the major concerns in sparse matrices, we studied those
parameters here. The time measurement is the MPI wall-clock time function;
MPI_Wtime(). For memory measurement, different solvers use different tools to

extract these information.
Finally, we used Speedup measurement according to the definition below:

Definition The speedup(S(p)) is defined as : S(p) =T(1)/T(P). where T(1) is the serial
time; we ran the code with a single processor and T(P) is the parallel time using P

number of processors.

The control parameters for solving the selected matrices are show in table (7.2) above.
As mentioned before, the criteria of selecting these values is for best performance of
the solver. We should mention here that except for ASIC680KS, the matrices are
simple matrices and that is why sparse preconditioner is used as shown in table(7.2).
By setting the number of subdomains to 4,8 and 16 in PDSLin and Maphsy, we
increased the number of threads/processors from 16 to 256 in each solver. We chose a
power of 2 for subdomains since nested dissection method is used for graph

partitioning. The speedup is show in figure(6.8) below.

58

Table7.4: Superlu-dist options selected

Name Audik-1 Freescalel ASIC680ks atmosmod]
Equil YES YES YES YES
ColPerm PARMETIS PARMETIS PARMETIS PARMETIS
RowPerm NO LargeDiag LargeDiag LargeDiag
SymbFact ParSymbFact ParSymbFact ParSymbFact Serial on AT + A
SymPattern YES NO NO NO
ReplaceTinyPivot YES YES YES YES
IterRefin NO NO NO NO

Trans NO NO NO NO
Solvelnitialized NO NO NO NO
Refinelnitialized NO NO NO NO

The serial/Parallel time in Maphys is the total execustion time RINFO(21). For
PDSLin, the parallel time is the time to factorize local subdomains + time to compute
approximate Schur + time preprocessing approximate Schur + time factorizing Schur
matrix + solve time. The serial time in PDSLin is the factorization time + the solve
time. The parallel/serial time in Superlu-dist is equal to equilibration time + row
permutation time(if exists) + column permutation time + symbolic factorization time

+ distribute time + numerical factorization time + solve time.

59

a4
&
: e 5 - 256
: " a2
: E
- e mERE
|] | 1} 1

Maphys MOSLn Suparts disl Maphys POSLIN
(0] audi- () Frewscale

1

w e 10 -

a
16
¢ “
. e Fe Fe s

0 =t - e o

T T T

Vaphys FOBGLI
(e} ASIC

=)
8P

Maphys POSLIN Supera_dil
|d) atmesmodi

Figure 7.1: Speedup of Maphys, PDSL.in, and Superlu on Audik(a),
Freescale(b)ASIC680ks(c) and AtmosmodI(d).

As shown in table (7.1) above, In Audik-1 matrix, the serial time for the three solvers
is approximately (199.4, 684.700, 622.1) seconds for Maphys, PDSLin and Superlu-
dist restrictively. It is significanet to see that serial time in Maphys is three times faster
than Superlu-dist and PDSLin. Because we are using a single subdomain, Maphys and
PDSLin work as a direct solver. Maphys uses MUMPS and PDSL.in uses Superlu-dist

in this case.

60

W0 =4 Sciution ses 20 =~ Solfion sleps

100 =

P
E]
o &
»
x

a0 -
0 - - I l 0 - g

T T T T T

|8) sudk-1 (bl thnuh

Walk Clock Timeds)
Wab Clock Timeds)
&

1

00 = Sohsion sleps 00 = Sokmon sleps

Wadl Clock Time(s)
&
1 1
Wall Clock Timeds)
3
1
-

2
1

ﬁ.i! wi W i .__Illllllllll!ll

10 6l 1:0 .‘.l‘
{o) ATICE3 0k idlalmonmoul

Figure 7.2: Solution steps of Maphys(M), PDSLin(P) and Superlu-dist(S) on Audik(a),
Freescale(b)ASIC680ks(c) and Atmosmodl(d).

In Freescale and ASC680ks, Superlu-dist fails so it is not included in the graphs(The
estimated forward error is approximately one even with itrative refinement). As shown
in Table(7.1), Freescalel matrix is an arrow matrix so with a good column
permutation, small amount of fill-in can occur. As shown in Figure(7.1), Maphys
scales better than PDSLin using such input parameters. Both solvers make use of

increasing number of processors and scales very well in Freescale matrix.

The two level parallelism continues working in PDSLin with increasing number of
processors. The two level parallelism in Maphys in ASIC680KS fails. We used one
level parallelism which fails at 64 processors. In this one level parallelism, number of
processors is equal to the number of subdomains and this makes the Schur complement
matrix size increases rapidly. This might be the reason on Maphys failure at 64

processors and beyond.

In atmosmod| matrix, all PDSLin and Maphys scales very well upto 128 processors.
Again the facotization and solution time in Maphys is twice than that of Superlu-dist
and PDSLin.

61

7.4 Schur Complement Processing

The following tables show Schur matrix number of entries after applying dropping

threshold along with number of subdomains for both solvers PDSLin and Maphys.

Tables(5 - 12) shows the Schur complement information of Audik on PDSLin and
Maphys respectively. In PDSLin, when the dropping threshold p,= 10~5around 25%
entries are kept using 4 and 8 subdomains and when p,= 0, a dense preconditioner is

used. In that case, number of iterations and consequently solution time is getting

smaller.
Table7.5: Schur Matrix Info in Audik using PDSLin Solver
Schur - Nnz Kept :

P #subdom P2 Size Nnz(S) (%) Niter
16 4 1.000000e-05. 12539 26100057 25,0916 34
32 8 1.000000e-05. 29177 38836822 28,1691 156
64 8 0.000000e+00. 27874 304736476 100 8
128 8 0.000000e+00. 27570 301717802 100 10
256 8 0.000000e+00. 26906 293136106 100 10

Maphys uses a local preconditioner, the Schur matrix size is much smaller. When p=
10~* using 16 subdomains, 9% of the entries are kept. This gives us an average of 85

iterations. The solution time scales well with these settings up to 128 processors.

Table7.6 Schur Matrix Info in Audik using Maphys Solver

Schur Nnz(S) Nnz Kept

Threads #subdom P Size(avg) (avg) (%) Niter
16 16 0,0001 6304 43240000 9.062 76
32 16 0,0001 6304 43240000 9.062 97
64 16 0,0001 6304 43240000 9.062 96
128 16 0,0001 6304 43240000 9.062 88
256 16 0,0001 6304 43240000 9.062 68

Table7.7: Schur Matrix Info in Freescale using PDSLin Solver
P #subdom P2 Sgir;gr Nnz(S) Nn?o}o()ept Niter
4 4 1.000000e-10. 1003 14195 16,2206 2
8 4 1.000000e-10. 989 13955 15,6357 2
16 4 1.000000e-10. 1237 18926 15,9283 2
32 4 1.000000e-10. 937 11208 14,7863 2
64 16 1.000000e-10. 1832 22814 16,1188 2
256 16 0.000000e+00. 1671 3799 100 8

62

Table(7.7) shows the Schur complement information of Freescale. When the dropping
threshold p, = 10710, around 15% entries are kept using 4 and 16 subdomains and

when p, =0, a dense preconditioner is used.

In Maphys, p= 107%, only 1% and 1.5% of nnz entries are kept in Freescale matrix as

shown in table(7.8) below.

Table7.8 Schur Matrix Info in Freescale using Maphys Solver

Threads #subdom p Siig?:vrg) Nnz(S) Nnio/l:)ept Niter
4 4 1E-06 577.2 338000 1 17
8 4 1E-06 577.2 338000 1 17
16 4 1E-06 577.2 338000 1 17
32 16 1E-06 344.2 133700 1.5 46
64 16 1E-06 344.2 133700 1.5 46
256 16 1E-06 344.2 133700 1.5 46

The entry values of ASC680ks are very small so even with , p, = 1072%, almost all

entries are kept and a dense preconditioner is used as shown in table(7.9) below.

Table7.9 Schur Matrix Info in ASIC680KS using PDSL.in Solver
Schur

Nnz Kept

P #subdom i Size Nnz(S) (%) Niter
4 4 1.000000e-20. 781 1249 99,3636 4
16 8 1.000000e-20. 1124 1851 100 2
64 8 1.000000e-20. 1155 1837 99,7827 2
128 8 1.000000e-20. 1086 1707 99,8246 4
256 8 1.000000e-20. 1099 1777 99,7754 4

As a contrast, using p, = 107° | thrshold, only 1% of the nnz entries are kept in the

local Schur complement as shown in ytable(7.10) below.

Table7.10 Schur Matrix Info in ASIC680ks using Maphys Solver

Threads #subdom p giczr;ur Nnz(S) ?I)/z)z Kept Niter
4 4 1E-06 5032 28300000 1 2

16 16 1E-06 2771 9574000 1 2

64 64 1E-06 0 0 0 0
128 128 1E-06 0 0 0 0
256 256 1E-06 0 0 0 0

For Atmosmodl matrix, we fixed the dropping threshold p, = 10~> In PDSLin and

p2 = 107 in Maphys. The results are shown below.

63

Table7.11 Schur Matrix Info in Atmosmodl using PDSLin Solver

P #subdom P2 Schur Size Nnz(S) ?I)/r:)z Kept iter
16 4 1.000000e-05. 14886 6250461 6,41983 16
32 4 1.000000e-05. 14753 6006205 6,1622 16
64 8 1.000000e-05. 29351 11962169 4,49453 18
128 8 1.000000e-05. 29437 11717100 4,271 18
256 16 1.000000e-05. 43456 17654959 4,39066 18

Table7.12 Schur Matrix Info in Atmosmodl using Maphys Solver
Threads #subdom p Schur Size Nnz(s) ?I)/r:)z Kept Niter
16 8 1E-06 7467 58800000 14,25 20
32 8 1E-06 7467 58800000 14,25 20
64 16 1E-06 5641 33500000 18,5 25
128 16 1E-06 5641 33500000 18,5 25
256 16 1E-06 5641 33500000 18,44 25

In the next figure, we elaborate further on time spent for Schur complement setup. The
red color (schurSolvemax) shows the total maximum time spent for sparse traingular
solve(both lower and upper triangular). The green color (schurSymbolmax) shows the
symbolic computation of approximate Schur. The blue color shows sparse matrix-
matrix multiply of (Ap; U™Yyy) (called G matrix) and (L=1;4;r) (called W matrix)
of section (6.1). The yellow color time spent for MP1 communication setup(send, recv
etc). The brown color shows approximate Schur computation setup. Finally, the black
color shows the time of updating with messaging. All these values are the maximum
values. It is clear that decreasing the sparifing tolerance , p, which consequnetly
increases the nnz in the approximate Schur will lead to an incease in MM multiply as
shown in some cases below(the blue color). The traingular solve is the most time

consuming in almost all other cases here as shown in figure(7.3) below.

64

Schur steps - Schur sleps
schurSovemax MhueSalvenas
Aty YTRG scharapmboivas
SPLITATIIX TrarmM,
00 -
Y sctrMPimes
- 1o
E sotuSaupm s g schoSetimmman
BOrUILD AT X schurodamman
i -
8 8
- 3
0 -
* L
- I I - | . o | <I I <I I I 0 - - - I -
L] I 1 1 L] L) I L] 1
" n] 120 bl 1 n o1 50
() At b} Freescakt
Schur steps
30
mEUSovernas
05 - Uy
U
st ma
= -
- g 20 schuSe bipme
gaxq - scrunpdatem
i j
] 3
= R
02 w |
on ot .= | - sl 0 - Il N | |.l IIl
]] 1 L] L] 1)) Ll 1
] " 2] 2% 16 b H 13 120 56
e} ASICLA0Ks () Atmonmod!

Figure 7.3: Schur Complement Steps of PDSL.in for solving Audik(a),
Freescale(b)ASIC680ks(c) and Atmosmodl(d).

7.5 Memory Vs Time

The following graphs show time agains memory for Maphys, PDSLin and Superlu-

dist on Audik-1, Freescale, ASIC680ks and Atmosmodl matrices respectively.

The Figure (7.4) below shows total memory consumption during solution of Audik-1
matrix using Superlu-dist solver. Because most of the time is spent in factorization,
the total time spent takes the shape of factiorization time shape. The first graph

(Figure(7.4 a)) shows the actual memory consumption. The summation of all memory

is about 44GB and increasing from 16 to 256.

65

@ -
- -
F -
i
L
g &
X - -
0
1% - us)
Tomads
(a) All computation steps
= .
= o
B4 An |
E o e . v
:
g Y
3 " -
/"‘\.--
5 - - “'-.———-————f
] - .
T T \
" e 8 £
LA T
(o) Factorization Step

Figure 7.4 : Wall clock time and memory usage of Maphys solver on Audik-1 matrix

~n- Max

-~ M

]
g
&

g ot T =Tt >

0
L Y i
4 i “ 236
#Threads
(a) All computation stops

Wail Clock Tee 31

#Throads

(b) Factorization Stop

Figure 7.5: Wall clock time and memory usage of Maphys solver on Freescalel matrix

10e.23
A)
2ae01
e
1 n.-ai
15008
120
" 0w
S0s2
Ineaz
LU

ey
18033

1 he.0)

12008
|(~4—
INE
[T

40e-22
L0evi2

110403
900402
870402
100402

@l
S4ny
A 4040

23e402
220402
110402
00u+00

1.1we00
W 6002
850102
150402

Gido 08!
33040

o |
1320402
218402
1 4es02
000100

Wl Tioox Tein)

Yl Clscs Term)

Wal Cock Tmsizl

Wil Clock Tansis)

66

130,03

- N - :1
. v 13008

I Bl S — S
Ve
2 - 02
ranecl

3] e

Ate.of
15 e .| e
bl B e ——— A e
| devim
¢ = 050400

™ T T T

* o [H] P

AThmads
(b) Setup of the preconditioner

1 v o Ve | A0t
ousl - « W} 2301

% Bl - g
2401
» 4 20t
(EE 1
" 1 5440
(P

- %

") RS i " | 20w

g ~ a1 o o
5) ST IERREAD €oet0
. - 200000
*4 08e400

™ T T .

*® s 154 s

aThsads
{d} Solve Step

016

010

005 -

e o- Max | Qbes02
T m iy m Q10003
) 540407
1 A0es02
i 110008
‘..', = 24040
---_"--__ 2.7.0}
T | 200002
TV —— . 1 48402
: T} eseson
Fiees | agesao
R B PO T !
4 2 a4 296
HTheads
(b) Setup of the preconditioner
194400
ey L4 &"u 120400
AW “ve A
120400
119400
nmog
75001
o.oung
4%0-01
20001
\.______’—————‘-""' 1 5001
000400
1) o . ' U A T
a2 W 296
#Thmeads
(b) Solve Step

1 fin+02 Max 720402

o Max o Max o Max '
15 < e Man o« Mn 149403 18 o o M &, oo Min g agl02
AW v Avg Avg e o A
130401 Dy 980402
) . 110408 B SR 500402
L 9500 ! 10 - . u_."»_‘_\ 430008
E 70040 g Mgl PR 98010
\ 62040 . 29040
; 4 - . 4704002 3 s - et Yay 230402
3320402 phe LR o 1 4402
S 1 tlas02 0 3 744t
0 ‘ 000100 00 000400
T 1 T 1
4 16] 16
#Threads #Threads
() All computation steps (b) Setup of the preconditionar
o Max | 160003 o 150100
-== Min 1 40103 120400
4= Awg
120103 120000
'y 11403 i 118400
E 040008 .g 00w
g 7 8us0 3 740-01
62040 6.00.01
3 470402 E 45001
210002 30001
1 G402 15001
000400 00 - 006400
T T
] 0]
#Tnronds #Threads
(b) Factorization Step (b) Solve Step

Figure 7.6: Wall clock time and memory usage of Maphys solver on ASIC680ks matrix

w o .o s W o . s
120 j:: Tl g 1 o — t:, 567 | Bl
\ aaa3 12 PR
g 100+ \ amarry g 10 - S
I % el P wd - w123
3 - \ - reeeeececeece oot 3 8 : '\ m
@ N, o | = nnsg
; w - —— o | e 2 """""" | ressrr
-~ ol SRTTTS z g | e
o 53330 B .- —
o 0 [- o]
r s T o T J L] A = —gre T
1% # 128 £ 1% 4 128]
LALE T #Trmads
(a) AR compautation steps (b} Setup of the preconditionar
2 = - o Mu | 95829 ks BT o v | 10
— M el L] — < W) e
0 — A - ey 190 — Ay v g
aaai 12 sasy 12
oo 1* e B By w73
¢ R g b - 2§
§ \' ™ g e
w0 - 2z - - =n
8]\ hessidssinssesseeses -
£ & 5\ 108817 ; o 1os 1y
ke . o] e Mmam
2 o
e | = e —
' = a n o o S s ====l| &
— T T — T
1 “ 128 e 1 u 128 =6
*Thmads FTremads
(b) Factorization Step (b) Solve Step

Figure 7.7: Wall clock time and memory usage of Maphys solver on Atmosmod| matrix

67

L (O Se o PoakfiBS 170408 a0 o <o~ Peshit8 300408
oo PoakVM ¢ |y aei0n — " <o PaakvM 270408
- Towl ViewulvM — A < Towl Viemaivi
40 140405 200 240404
W 120408 "y 210408
‘g 20 - //" 10008 ! 110008
s i #8040 3 200 | 1 fie)
8 20 // 8010 8) 2ned
g 510404] 910404
o 100 o
10 5 ok JAei04 , 10404
O 170104 - A10i04
0| "rascesmssamrremmmemmosenoeeaooenaeen 110102 0o e 1 00403
T T T T ™ T T T
" “ 128 4 1 44 124 04
WNproew Wiproes
(a) Partitioning step (b) Faclorization step
400 1 e aax “a- Poakfiss oo vk 100 Lo Mex “ue Poakisy 3w
i AL < PaakvM 270408 e MDY «« PaakvM ERINUL)
~ Awg < Tatl Viryalvia o Avg < Taml Vieuaviy
240405 00 - 240005
w 21m08) 210404
E 1 Bas E w0 10000
g 200 - | G i0g 3 1040
1 20401 40 | 7 12040
i 1 21mi04 i 910404
/ . ° | 01ni04 20 -| 610104
2P B - et | 10404 210404
- 100409 o - 100403
T T T T 1
" 0 120 e
WNprocs WihNproow
(e)preconditioning step (d) Solve Step

Figure7.8 : Wall clock time and memory usage of PDSLin solver on Audik-1 matrix

Mo 1
> Pate o Pensy i o vor PesSS 13008
15008 4 . ,
1 Tow wavn | ¢ T r] T Tewveanie | 170
A Vet 15008
= " ,/ 2ei05 E . \ 12028
£ " -~ v £ S 12008
- < Leni0f % | = ™
-~
§ 3 -~ 3 7 / ;
; >3 ¢.:g ; / T4e
4 — S1e.08 S2ent
k3
B L4l U M TN
9 e 190t
PP R ——————— - 2iw00 L | R —— Qde+0
™ T T T T T T T
1 u n £ : “ 124 E
otarocs atarocs
(n) Partitioning step (b} Factorization step
0 d - we o Peakhss L - N o Pesnss 1548
le— —e PV 2 Twn = <+ PosivM 170t
[A Tl Vv — Awy B S
oo | timit Y, 150400
0 \ / 13w008 i ® / 130008
8 ~ el =
= | |~q;. E o no-q
Sl o B :
o 10 g 1
; PR ; / PEA
e v 1604 5l 7 3800
0wt 1 utit
08 Aemesscseanisassssotmasssssasssssannase - | aew0 o IR e ceciiaaas - | 0040
LR [] Ll \4 T L4
1 “w o »e 2 o = %5
Neo Ahproc
(cjpreconditioning stop (d) Sotve Step

Figure 7.9: Wall clock time and memory usage of PDSLin solver on ASIC680ks matrix

68

- Patveada . ”‘“w’ - :::ﬁi | et
w4 T Towwwave | TS T T voraniy | 108
p 2 3mp0s 150002
¥ " TP K 130t
s LB '~'4 5 19
i I < i an
& " (5 c 73e
£ 4 \ - e i 250t
a—- 230:08 . 200k
4 e —
t . 1704 g T [12
200000 D T 03000
T T Y
‘ - & ™
g
(b} Factorization step
e [T o Pp—, [EEE
160 e - PoaWiM . | Teetn
— g - Totel Ve
Lm0 (R
3 13m0 E w0 130008
s tin 5 [|
‘e g 23
g 13w “/ 73
[| Lo g EPsseH
1704 hed
BRI 5 e g I) 30N
20000 DI 000t
T Y T
4 o0 56
ANprocs
(d) Scive Step

Figure 7.10: Wall clock time and memory usage of PDSL.in solver on Freescalel matrix

| = Partesn cu- PonNBSS 178 - +- Posems L adtnd
. PoartM b}~ . v
= 150409 - 270008
@ 4 e 248

12008

» Ilnlg

i
u-:g g ’ "‘z

Wt Coce Terw jz)
®
1

23004 Ottt
100
10 - . & =t YIRS (e
. _‘/.a-’”/ | et & Breane
-
L B —— - | 180 o oo 1 8es08
LA LA T Ll LS L2 T Bl
% 5 1. = % . £]
Norose
(a) Partitioning atep
L L o PadliOS FPRY o ~ 30e03
—y = x Tals
- A Toaw v | 270 27
2400 TAsl0
=0 - 1
230008 200408

' lo'!

o |

! e
™ oy
: - i

LR LA
100 e » Gravtd
| 30 B lek
g4 T eerer wressrreereeeereeeey - 190403 0~ 130403
T L] L] Ll L L
" “ " = " . iE] s
omcs hprmes
(cipreconditioning step () Solve Step

Figure 7.11 : Wall clock time and memory usage of PDSL.in solver on AtmosmodIl matrix

69

100 o Tomltiwe A Mwrw Sy Man Mon®
e L Fact Total Nem Asg Ve 1
LU ol Ny
50
s
] v -~
E . .
= 60
o} e
8 2 -
o & -
2
= 20
0 . - =
16 64 128)
(a) A% computabion steps
§ S .
- Symboi Fact Time Symbot Fact Mem
4 -
w
™
E 3
i
o 2
3
=
14 .
—
0
16 64 28 56
(¢} symbolic Factorzation
6~ ——— et
w— Fact Time Fact Mem
. 4
2
-3
E %
=
-
2
o 20
z .
1) 1 X
0
16 o4 128 250

(@) LU Faclorizaton

Figure 7.12: Wall clock time and memory usage of Superlu-dist solver on Audik-1 matrix

For atmosmodl matrix, Superlu-dist shows a strange behavour at 128(process grid 8 *
16) processors. With parallel symbolic factorization using Parmetis, it gave a
termination failure at 128 processors and the slove time step((f) part of the figure) was
large by orders of magnitude. When we changed serial symbolic facotrization on AT +
A, the solution time decreased and the solver works with 128 processor but the column

permutation, symbolic factorization and total memory consumption are large as shown

in Figure(7.12) below.

4. 9e+04
4 de-08
J0e404
Jde+dd
28e+04
240404
20e+04
1.5e+04
G8e«0)
4 9e-03

! 0.0e+00

49
442
293
344
268
246
166
147
e

memocyiMB)

r_\—é
=
MBY

o
3
memory

- Col Perm Tine

40 4

Wall Clogk Time |8) Wall Clock Time (s)

Wall Clock Time (s)

70

30 4

ha

128

Col Parm Mem

2586

(0} Column Permutation

- Distributa Time Dustribute Merm
- -
T T
16 64 128 256
(d) Matnx Distribution
- Solve ime Solve Mem
i
1] ba 128 266
(1) Solve stap

200+02
1 Be+l2
1 0402
140402
1.20-&
10048
8.20+&
6 lv.u(gl
41a4
200+01
0.0e+00

| 340

g
279
244
200
174
139
108
70

memory(MB)

100 -

80

60

40

Wall Clock Time (s)

20

Wall Clock Time (s)

o
o

(=]
(=]

60

40

Wall Clock Time (s)

20

ime --- AlMem Sum Max Mem/P
] Tolaltime T o Total Mevi e A:;M;:‘:P
-+= LU jptal Mem
- o3l
_')—’—'—"‘—0
4 YT A &
......... B et e bttt
i A e *
T T T T T
16 64 128 256
(a) All computation steps
] —- Symbol Fact Time
E T T T T
16 64 128 256
(c) symbolic Factorization
1 Fact Time ---- FactMem
a

(e) LU Factorization

1.3e+05
1.2e+05
1.0e+05
9.1e+04
7.8e+04
6.5e+04
5.2e+04
3.9e+04
2.6e+04
1.3e+04
0.0e+00

Wall Clock Time (s) Wall Clock Time (s)

(=]
(%]
o
ry
Wall Clock Time (s)

20

—_
o

-
o

n
o
o

o
o

o
o

o
o

—o— Col Perm
—&— Row Perm

=~ EQUAL

¢cf—= i —Q

T T T T T

16 64 128 256
(b) Column Permutation

—&— Distribute Time

T T T T

16 64 128 256
(d) Matrix Distribution

- Solve time ---- Solve Mem

(f) Solve step

1748
1573
1398
1223
1049
874

(=23

(7=}

(=}
memory(MB)

524
350
175

Figure 7.13: Wall clock time and memory usage of Superlu-dist solver on Atmosmodl|

matrix

71

#. CONCLUSION AND FUTURE WORK

This is an attempt to address the effect of Sparse hybrid solvers on various matrix
types. Our intuition is that it is not easy to evaluate a hybrid solver. There are large
number of dependencies for the best hybrid solvers known; Maphys and PDSLin. It is
not also easy to compare these solvers fairly due to the large and different number of

input values.

Our experience show that there are many failure in the solvers like division by zero
due to sparsity or memory address out of range error. The solvers may also behave
differently with different matrix format like 1JV, HB or MTX even when using the
same matrix. This is because the ordering is different. The pure-MPI two level
parallelism of PDSLin is more robust than the multithreading of Maphys. Some
matrices like ASIC680ks fails with two level parallelism of Maphys. The roots of
PDSLin are based on sparse matrix factorization, namely superlu-dist, and the roots of
Maphys are based on domain decomposition. This may explain that the factorization
time in PDSLin is low whereas the preconditioning in Maphys is low. That is why

larger number of subdomains are used in Maphys as input parameter.

Development process in Maphys is progressing and there are active contributions to
Maphys. This may also explain the good performance of Maphys in the result section.
PDSLin still needs work and there are many bugs in the solver. Superlu-dist is more

mature and robust.

We have already considered HIPS and pARMS solvers but because of the limited time,
we consider them as a future work. Preconditioners of pARMS like ILU(p,t) are
already implemented in Maphys and the graph partitioning of HIPS(HID) can also be
used in PDSL.in. Shylu is another hybrid solver and it would be interesting to compare
it with these solvers. Besides, one can easily compare these solvers with the Kryolv
methods of PETSc. PETSc has a large community of support and active contribution.
Its installation and debugging is also easy. There are also many open source direct
solvers that are worthwhile to study and compare like MUMPS and Pastix. One can

also compile the libraries with 64 bit integer and 64 bit matrix indices and test the

73

solvers with very large matrices. For example we tried to test HV15R matrix but the

solvers failed due to matrix index overflow problems.

We believe that there are many ways to improve these solvers such as reducing the
dependencies like graph repartitioners or developing a hybrid solver without
dependencies at all because dependencies are always constraints since there must be
backward compatiblity if not continue developing at the same rate(naming conflicts,
etc). On the other hand, dependencies make hybrid solvers work as modules. We can
change and choose the suitable package as the problem required. For example, there
are two different implementations of LU factorization in Maphys, supernodal using
Pastix and Multifronatal using MUMPS. This makes the hybrid solver more flexible
for different problem types.

Finally, we created a framework that can extract information automatically from the
output files of the solvers, create a database in csv formats, select from these results
according to certain queries and send results to R for drawing. The format can draw
results related to speedup, solution steps and Schur stages and create tables related to
Schur complement matrix. This framework can be further automated by using other
tools such as as data analysis, machine learning and simulation tools to suggest the
best values of the input parameters and further analysis steps. Here we emphasis on
two things: first is the importance of data analysis tools that will greatly enhance the
performance of students doing such reseaches. The second thing is the importance of
a well organzied input/output files of the solvers so that analysis programs extact
information automatically without errors. Maphsy output and input files are well-
organzied and information can be extracted easily. This was not the case in PDSLin or

any other solver we examined.

74

REFERENCES

[1] https://www.pardiso-project.org/.

[2] Schenk, O.; Girtner, K.; Fichtner, W. BIT Numerical Mathematics 2000, 40,
158-176.

[3] http://mumps.enseeiht.fr/.

[4] Ramet Pierre Casadei Astrid, F. M.L. X. Pastix users guide; tech. rep.; gforge
INRIA, November 29, 2013.

[5] http://lwww.cs.sandia.gov/CRF/aztecl.html.

[6] Yamazaki, I.; Li, X. S. On techniques to improve robustness and scalability of
the Schur complement method In Proc. VECPAR, 2010, pp 421-34.

[7] Yamazaki, I.; Li, X. S.; Rouet, F.-H.; Ucar, B. Combinatorial problems in a
parallel hybrid linear solver In Abstracts of 5th SIAM Workshop on
Combinatorial Scientific Computing, 2011, pp 87-89.

[8] Li, X. S.; Shao, M; Yamazaki, I; Ng, E. Factorization-based sparse solvers and
preconditioners In Journal of Physics: Conference Series, 2009; Vol.
180, p 012015.

[9] Yamazaki, I.; Li, X. S.; Rouet, F.-h.; Ugar, B. Partitioning, ordering, and load
balancing in a hierarchically parallel hybrid linear solver In
International Journal of High Performance Computing Applications,
2012.

[10] Nakov, S. On the design of sparse hybrid linear solvers for modern parallel
architectures., Ph.D. Thesis, Bordeaux, 2015.

[11] DUFF, I. S.; ERISMAN, A. M.; REID, K., Direct Methods for Sparse Matrices;
Oxford University Press: 2017; Vol. 72.

[12] Vuduc, R. W.; Demmel, J. W., Automatic performance tuning of sparse matrix
kernels; University of California, Berkeley: 2003; Vol. 1.

[13] Duff, I. S.; Grimes, R. G.; Lewis, J. G. ACM Transactions on Mathematical
Software (TOMS) 1989, 15, 1-14.

[14] Saad, Y., Iterative methods for sparse linear systems; SIAM: 2003; Vol. 82.

[15] Schloegel, K.; Karypis, G.; Kumar, V., Graph partitioning for high performance
scientific simulations; Army High Performance Computing Research
Center: 2000.

[16] Karypis, G.; Kumar, V. A fast and high quality multilevel scheme for
partitioning irregular graphs SIAM Journal on scientific Computing
1998, 20, 359-392.

[17] Yannakakis, M. Computing the minimum fill-in is NP-complete. SIAM Journal
on Algebraic Discrete Methods 1981, 2, 77-79.

75

[18] Duff, I. S.; Ucar, B. Combinatorial problems in solving linear systems.
Combinatorial Scientific Computing 2009.

[19] Duff, I. S.; Erisman, A. M.; Reid, J. K., Direct methods for sparse matrices;
Oxford University Press: 2017.

[20] George, A.; Ng, E. An implementation of Gaussian elimination with partial
pivoting for sparse systems. SIAM journal on scientific and statistical
computing 1985, 6, 390-409.

[21] Markowitz, H. M. The elimination form of the inverse and its application to
linear programming Management Science 1957, 3, 255-269.

[22] Amestoy, P. R.; Davis, T. A.; Duff, I. S. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications
1996, 17, 886-905.

[23] George, A. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis 1973, 10, 345-363.

[24] Heath, M. T.; Ng, E.; Peyton, B.W. Parallel algorithms for sparse linear systems.
SIAM review 1991, 33, 420-460.

[25] Demmel, J. W. SuperLU users’ guide; tech. rep.; 1999,2016.

[26] Wilkinson, J. H. Error analysis of direct methods of matrix inversion. Journal of
the ACM (JACM) 1961, 8, 281-330.

[27] Mary, T. Block low-rank multifrontal solvers: complexity, performance, and
scalability., Ph.D. Thesis, Ph. D. dissertation, Toulouse University,
Toulouse, France, 2017.

[28] Celebi, M. S.; Duran, A.; Tuncel, M.; Akaydin, B Scalable and improved
SuperLU on GPU for heterogeneous systems. PRACE PN 2012,
283493.

[29] Duff, I. S.; Reid, J. K. The multifrontal solution of indefinite sparse symmetric
linear. ACM Transactions on Mathematical Software (TOMS) 1983, 9,
302-325.

[30] Zitney, S. E. Sparse matrix methods for chemical process separation calculations
on supercomputers. In Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, 1992, pp 414-423.

[31] Duff, I.; Ucar, B. Scholarpedia 2013, 8, revision #153309, 9700.

[32] Li, X. S. Sparse Gaussian elimination on high performance computers; tech. rep.;
California University, Graduate Dev, 1996.

[33] Li, X In http://crd. 1bl. gov/~ xiaoye/SuperLU/SparseDirectSurvey. pdf, 2006.

[34] Duran, A.; Celebi, M. S.; Tuncel, M.; Oztoprak, F. In Advances in Applied
Mathematics; Springer: 2014, pp 153-160.

[35] Duff, I. S.; Koster, J. The design and use of algorithms for permuting large
entries to the diagonal of sparse matrices. SIAM Journal on Matrix
Analysis and Applications 1999, 20,889-901.

76

[36] Benzi, M.; Tuma, M. A robust preconditioner with low memory requirements
for large sparse least squares problems SIAM Journal on Scientific
Computing 2003, 25, 499-512.

[37] Celebi, M. S.; Duran, A.; Oztoprak, F.; Tuncel, M.; Akaydin, B. On the
improvement of a scalable sparse direct solver for unsymmetrical linear
equations. The Journal of Supercomputing 2017, 73, 1852-1904.

[38] Celebi, M. S.; Duran, A.; Tuncel, M.; Akaydina, B.; Oztoprak, F.
Performance Analysis of BLAS Libraries in SuperLU_DIST for
SuperLU_MCDT (Multi Core Distributed) Development. 2013.

[39] Barrett, R.; Berry, M. W.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra,
J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates
for the solution of linear systems: building blocks for iterative methods;
Siam: 1994; Vol. 43.

[40] Haidar, A. On the parallel scalability of hybrid linear solvers for large 3D
problems., Ph.D. Thesis, Institut National Polytechnique de Toulouse-
INPT, 2008.

[41] http://portal.nersc.gov/project/sparse/pdslin/.
[42] https://www.labri.fr/perso/pelegrin/scotch/.
[43] http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

[44] Li, X. S.; Shao, M; Yamazaki, I; Ng, E. Pdslin user’s Guide 1.2; tech. rep.;
2011.

[45] http://crd-legacy.lbl.gov/~xiaoye/SuperLU/.

[46] L. Giraud, R. S. T. Algebraic Domain Decomposition Preconditioners,
Technical Report ENSEEIHT-IRIT RT 2006, 24.

[47] https://gitlab.inria.fr/solverstack/maphys.
[48] https://pastix.gforge.inria.fr/filessREADME-txt.html.

[49] Agullo, E.; Giraud, L.; Zounon, M. On the resilience of parallel sparse hybrid
solvers, In High Performance Computing (HiPC), 2015 IEEE 22nd
International Conference on, 2015, pp 75-84.

[50] Carvalho, L. M.; Giraud, L.; Meurant, G. Numerical linear algebra with
applications 2001, 8, 207-227.

[51] Agullo, E.; Giraud, L.; Zounon, M. Maphys user’s guide 0.9.5.0; tech. rep. 3;
Mar. 2015, pp 1-47.

[52] https://www.open-mpi.org/projects/hwloc/.

[53] Hénon, P.; Saad, Y. A parallel multistage ILU factorization based on a
hierarchical graph decomposition, SIAM Journal on Scientific
Computing 2006, 28, 2266—2293.

[54] Barth, T. J.; Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick,
T., Lecture Notes in Computational Science and Engineering; Springer:
2005; Vol. 49.

[55] http://www-users.cs.umn.edu/~saad/software/pARMS/.

77

[56] Saad, Y.; Suchomel, B., ARMS: An Algebraic Recursive Multilevel Solver for
general sparse linear systems; Numer. Linear Alg. Appl: 1999.

[57] http://abcd.enseeiht.fr/.
[58] https://github.com/zeapo/abcd/blob/master/doc/old_doxygen / installation.md.

[59] Arioli Mario; Duff, 1. N.-J.R. D. A Block Projection Method for Sparse
Matrices, SIAM Journal on Scientific and Statistical Computing Jan.
1992, 13.

[60] Duff lain S.; Guivarch, R. R.D.Z. M. The Augmented Block Cimmino
Distributed Method, SIAM Journal on Scientific Computing Jan. 2015,
37.

[61] Gupta, A. Recent advances in direct methods for solving unsymmetric sparse
systems of linear equations, ACM Transactions on Mathematical
Software (TOMS) 2002, 28, 301-324.

[62] https://www.mathworks.com/help/matlab/ref/condest.html.

78

APPENDICES

APPENDIX A: Matrices and Package Versions

Table A.1: List of Matrices used in Literature for Evaluating Hybrid Solvers

Name m n mz Type sym- Solver Arithmetic Source
metry(%)
Ihi71c 703K 703k 15M unsymmetnic(0%) ABCD real Chemical , Process
simulation
baw3_2 273K 273K 576M symmetnc ABCD real Structural Problem’
MHD2 471K 471K 238M unsymmetric pARMS wal 3D magnete-
hydrodynamic
MHD1 486K 486K 24M unsymmetric Hips, real 3D magneto-
pARMS hydrodynamic
Matrix211 08M 08M 5M unsymmetnic PDSLin, Ma- real fusion
phys
Audi_kw 09 09M 392M SPD Maphys real Structural Problem’
Idoor LM 10M #4M SPD Hips real struct. anal’
Nachos LIM LIM 40M unsymmetnc Maphys complex 3D-discontinuous
Galerkin(DG)
Tdr190k LIM 1LIM 433M symmetric PDSLin complex cavity
Hamrlk3 145M 145M 55IM unsymmetric (0%) ABCD real Circuit Simulation’
Haltere I3M 13M 1M symmetric Hips complex 3D electro magnetism
(Maxwell)
xyce? 20M 20M 90M unsymmetric Hips complex circuit sim.
Tdr455k M 27M 113M unsymmetric PDSLin, Ma- complex cavity
phys, Hips
Nachosd! 4IM 4IM 56M symmetric Hips complex 3D-discontinuous
Galerkin(DG)
Amande 70M 7OM 2458M symmetric Hips complex 3D electro magnetism
{Maxwell)

" Florida Sparse Matrix Collection

79

Table A.2 : Versions of libraries we have considered in this work

Name Version
Superlu-dist 51.3
Parmetis 4.0.3
PT-scotch 6.0.4
PDSLin 200
Maphys 0.9.6
Mumps 511
Pastix 523
cmake 28122
PETSc 3.9.0
hwloc 1119
falgrid 3.13.0
pARMS 3.2
Hips 1.0.0
Openblas 1.11.9
lapack-netlib 3.2
Hips 1.0.0
hwloc 1.11.9

80

APPENDIX B: Dependecies of Hybrid Solvers

Note: Design is quoted from Spack developers

Solver Graph Partitioner | | Kernel | Miscellaneous

Direct Iterativ

PDSLin So \

Superu | | Mumps PETSC |\

Pty

7H Superiu-dist | —/ \

[Partitioner) SupetuM]

/
panmetis | | Pt-scgtch SCALAPACK

-

[Kernel \

@ LAPACK MPI CDF
MKL | ;
lec/gee
atlas

BLAS

e -

Figure A.1 : PDSLin Hybrid Solver Installation Dependencies

Solver Graph Partitioner || Kernel | Miscellaneous
% Iterativcx
Pastix Mum
LB ’s || |[eues] [ce |
\ [[scatapack |
Partitioner
Metis Scotch
[Kernel /
TMG | | LAPACK %
l St_arpu HWLOC MPI slatec
BLAS g
\ CUDA lcc/gee
Figure A.2 : Maphys Hybrid Solver Installation Dependencies

82

| Kernel l Miscellaneous

/

PACK

Solver Graph Partitioner
Direct
[pastx | [mumps |
Partitioner A \ j

| mets][Scotch J

/,

\

Kernel)
I MKL LAPACK
BLAS
/ pthread MPL
= v
lec/gee

Figure A.3 : HIPS Hybrid Solver Installation Dependencies

83

Solver Graph Partitioner | Kernel I Miscellaneous

B

-
Partitioner - \
. >
& Kernel B
BLAS g
\ =

Figure A.4 : pARMS Hybrid Solver Installation Dependencies

Solver Graph Partitioner || Kernel | Miscellaneous

\

s '

o MPI
Partitioner Stbaciid
Patoh ;
lec/gee
Kerne)
LAPACK
=
BLAS
—

Figure A.5 : ABCD Hybrid Solver Installation Dependencies

84

APPENDIX C: Hybrid Solvers Input Parameters

MATFILE
SYM=1

ICNTL(1)
ICNTL(2)
ICNTL(3)
ICNTL(4)

ICNTL(5)
ICNTL(6)
ICNTL(7)

ICNTL(8)
ICNTL(9)
ICNTL(10)
ICNTL(11)
ICNTL(12)
ICNTL(13)

ICNTL(14)
ICNTL(15)

ICNTL(15)
ICNTL(16)
ICNTL(17)
ICNTL(18)
ICNTL(19)
ICNTL(20)
ICNTL(21)

ICNTL(22)
ICNTL(23)
ICNTL(24)
ICNTL(25)
ICNTL(26)
ICNTL(27)
ICNTL(28)
ICNTL(29)
ICNTL(30)

ICNTL(31)
ICNTL(32)

ICNTL(33)
ICNTL(34)

ICNTL(35)
ICNTL(36)

ICNTL(37)
ICNTL(38)

ICNTL(39)
ICNTL(40)

GoOR R

50

N O OO

N O

NP RPRPOOON

1000

500

10

N O

16

28
16
16

Table C.1: Maphys Input Parameters

audikw-1.mtx

#0 (General) 1 (SPD) 2 (symmetric)

#Controls where to write error messages. def:0 stderr

1 #Controls where to write warning messages def:0 stderr

where are written statistics messages def: 6:stdout

#Controls where to write stat.msg 1-4,def:print errors,warnings &detailled
statistics:3-> 5:print every thing

#Controls when to print list of controls (Xcntl).Default:0.never
print.1:begining,2:each step

#Controls when to print list of informations (Xinfo).default:0:Never
print.1:begining,2:each step

#Partitioning strategy (1:METIS-NODEND 2:METIS-EDGEND 3:METIS-
NODEWND 4:SCOTCH-CUSTOM)old value :4

#level of filling for L and U in the ILUT method.Default:-1.imp if ICNTL(30)->2
#level of filling for the Schur complement in the ILUT ICNTL(10) =0

#(P,MT:2)fact. & the the precd. direct solver.1:mumps.2:pastix.3:Use multiple
sparse direct solvers.see ICNTL(15,32)

#Output format.Default : 0 stdout,1:emak

#(P,MT:2)direct solver for preconditionerl :mumps.2:pastix.3:multiple.see
ICNTL(13,32)

#(P)3rd party iterative solver0O:unset.1:gmres.2:CG.3:automatic.def:3

#(imp) prendtr strtgy.# (1:local DENSE 2:local sparse.3:From ILUT based.4: No
preconditioner) values:1,2,3,4,5,10

#(P)Controls the iterative solver. 0:modGS, 1:iter.selGS,2classicalGS, 3:iter GS.
def:3

#Controls whether the user wishes to supply an initial guess.0:no,1:yes. def:0
#(P) Iterative Solver - Maximum number of itrs.for difficult problems ->7k
#strategy to compute residual. O:recurrent,1:residual.->irrelevant when iterative
solver is CG (ICNTL(20) = 2,3).

#(P)lterative Solver - GMRES: restart every X iterations. ignored if solver is CG
(ICNTL(20) = 2,3 with SPD

Iterative Solver SCHUR Complement Matrix/VVector product.# (1:EXPLICIT
2:IMPLICIT)

#(P)scaled residual is computed.def:1->similar to pdslin

#mode of the iterative solver FABULOUS.def:1

#how to fnd schur its approx.def:0:shur retrnd by sparse drct slvr package-
>2:Sparse approx.bsd on partl ILU(t;p)shld set ICNTL(8,9),RCNTL(8,9)

#(P,MT:2)direct solver for local schur factorisation.def:ICNTL(13),see
ICNTL(13,15)

#Number of eigenvalues per subdomain.def:10.lgnored ifICNTL(21)=10.
#envrgne hstry of itrtve slvr is wrtn a file.def:0 regular output.1->file is named
gmrescvgN.dat or cgcvgN.dat

#How to bind thread inside MAPHYS.0 :nobind.1: Thread to core bind.2:Grouped
bind.def:0.eg:smph_examplethread.

#(P)2level parlsm,pecifies the number of nodes.only useful if ICNTL(42) >
0.def:1

#(P)2level parlsm,spcfs # cores per node.only useful if ICNTL(42) > 0.def:1
#(P)2level parlsm,spcfs # threads per domains.only useful if ICNTL(42) > 0.def:1

85

ICNTL(41)
ICNTL(42)

ICNTL(43)

ICNTL(44)
ICNTL@45) =

ICNTL(46)
ICNTL(47)
ICNTL(48)
ICNTL(49)

ICNTL(50)
RCNTL(1)
RCNTL(2)
RCNTL(3)

RCNTL(4)

RCNTL(5)

RCNTL(6)
RCNTL(7)
RCNTL(8)

RCNTL(9)

RCNTL(10)
RCNTL(11)

RCNTL(12)
RCNTL(13)
RCNTL(14)
RCNTL(15)

RCNTL(16)
RCNTL(17)
RCNTL(18)
RCNTL(19)
RCNTL(20)
RCNTL(21)

4
4
INPUT_HB

UNSYMMETRIC
UNSYMMETRIC
UNSYMMETRIC
NO

SCOTCH

8

Oe-3

SLU_DIST

1000

10

YES

YES

5

20

o o

#(P)2level parlsm,spcfs # domains.only useful if ICNTL(42) > 0.def:1
#(P)2level,0->mpi only,1:multitheading-> level of parallelism def:0,1-
>multithreading.shld set

#input system (central.on the host, distributed,...)def:1.eg:smph_examplerestart-
>3.paddle->2(experimental).

#When activated, it means user permutation you want MAPHY'S to use.def:0.eg:
xmph_exampledistkv in examples

#local output after analysis. If set to 1, it allows to perform a dump of the local
matrices. def:0

#Crls the MUMPS instance.def:20.

#Crls FABULOUS Deflated Restart algorithm. de:20

#crls domain decp lIbry/algrthm.Warning: Modifies the behavior of
ICNTL(43).def:1: maphys.2:paddle

#When MUMPS error indicates that requires more memory workspace, def:0

0.000E+00

0.000E+00
0.000E+00

0.000E+00

2.000E+00

#is the target for FABULOUS Deflated Restart algorithm.def:0.0

sets the value of alpha for custom stopping criteria of GMRes and
CG(ICNTL(28) = 2).def:0

#sets the value of beta for custom stoppingcriteria of GMRes and CG (ICNTL(28)
=2). def:0

#mumps:gives the amount by which the extra workspace(initially given by
ICNTL(47)) will be multiplied for the next try. def:2.0

0.000E+00
0.000E+00

1.e-02

1.e-02

#thrsld used to sparsify the LU factors while using PILUT.def:0.0.imp if
ICNTL(30)->2

#thrsld used to sparsify the schur compl. While computing it with
PILUT.def:0.0.imp if ICNTL(30)->2

0.000E+00

1.0e-4

#(imp) Preconditioner - local SPARSE — Sparsifying tolerance(imp. if
ICNTL(21)->2)

0.000E+00
0.000E+00
0.000E+00

2.000E-01

#Specifies the imbalance tolerance used in Scotch partitioner to create the
subdomains. def:0.2

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

le-12

#(P) Iterative solver - convergence criteria. see ICNTL(28).

Table C.2: PDSLin Input Parameters

nproc_schur : number of processors on schur complement

nproc_dcomp : number of processors to compute partitoning, (>=num_doms) INPUT_HB
input_type : input matrix file format (INPUT_IJV, INPUT_HB, or INPUT_BIN)
SYMMETRIC

mat_type : input matrix type (SYMMETRIC or UNSYMMETRIC) SYMMETRIC

mat_pattern : input matrix type (SYMMETRIC or UNSYMMETRIC) UNSYMMETRIC
#SHUR_MATRIX_pattern : input matrix type (SYMMETRIC or UNSYMMETRIC)

remove_zeros : YES if matrix file contains zero elements

dcomp_type : how partitioning will be computed (SCOTCH or HIPS)

num_doms : number of domains to be extracted. --(0: iteraitve solver, 1: direct solver)

tol_sub(tau_sub) : ILU threshold for subdomains (used in serial superlu).

dom_solver : interior domain solver (SLU/SLU_DIST/MUMPS)

dom_size : interior domain size

blk_size : block size for the interface solves

pperm_schur : parallel parmutation for schur Complement

psymb_schur : parallel symbolic factorization for schur complement

equil_schur : equilbration for schur complement

relax_factor : compression factor to compute nested diss. of schur complement

86

5
PARMETIS
YES
le-12
0.0
le-6
0.0
1.0e-5
0.0
-1
1
1
1000
500
le-12
CLASSICAL
PR_SLU_ILU
0.0
0.4
0.1
D 0
D 4
D 0
D 100
D 1
D 1
D 0
D 0
D 150
D 3
D 0
D 4
D 1
D 1
D 1
D 0
D 0
D 0
D 1
D 1
D 1
D 0
D 0
D 0
D 0
D 0

equil_dom: equilbrtn fr intror doms used only by serial SuperLU(if 0: no equi or row
perm;equil_schur ->0)
domains(METIS,PARMETIS,NATURAL,MMD_ATA MMD_AT_PLUS_A ,COLAMD)
perm_dom : permutation of interior

hybrid_fgmres->use FGMRES as outer-loop, and hybrid solver as preconditioner

residual_tol : stopping criteria for outer-loop 50 # outer_max

dtol: diag.thrcld fr serl SuperLU(!=0->rplc tiny pivots;=0->acrcy high.diag.pert.is turned
off hgir sol-acrcy mb obtnd usng iterative efinements)

tol0: drop tolerance for F (L"{-1} E)-> threshold for G

toll : drop tolerance for W (E*F) ->threshold for T

tol2 : drop tolerance for schur complement

tol3 : drop tolerance for ILUT(used by petsc)

#ilu_lvl : level threshold for ILU(if this>=0 ->psymp_schur=no:using serial symbolic for
ILU)

asm_ovlp:/* overlap and # of doms per processor for ASM */

asm_nsub BICGSTAB #(M) itsolver : iterative solver for schur complement (GMRES,
BICGSTAB, FGMRES, TFQMR)

#(M) itrs : maximum number of matrix operations

#(M)restart : number of operations at restart

#(M) residual_tol : stopping criteria for iterative method

#(M) orth : orthogonalization scheme for GMRES (CLASSSICAL ,MODIFIED)

prend_type:type of prenditner (PR_PETSC_ILUK ,PR_PETSC_ILUT
PR_PHIDAL_ILU,PR_LSCHUR_ASM)

0.0 # patoh_Ibound :

0.4 # patoh_ubound :

0.1 # patoh_sparsify

Table C.3: HIPS Input Parameters

D 0 HIPS_SYMMETRIC = [0:nonsymmetirc, 2: symmetic, 1:symmetric pattern]
D 1 HIPS_VERBOSE = [0-5]

D 2 HIPS_SCALE = reserved for develpoers

#D 3 HIPS_LOCALLY = [0: no-fillin 100 : allow fillin anywhere]

#D 4 HIPS_KRYLOV_RESTART = restart parameter of GMRES

#D 5 HIPS_ITMAX = maximum number of iteration allowed in the krylov method
#D 6 HIPS_FORWARD = DHIPS developers reserved.

#D 7 HIPS_SCHUR_METHOD =DD HIPS developers reserved.

#D 8 HIPS_ITMAX_SCHUR =

#D 9 HIPS_PARTITION_TYPE = HIPS developers reserved.

#D 10 HIPS_KRYLOV_METHOD = 0 Preconditioned GMRES, =1 Preconditioned CG.
#D 11 HIPS_DOMSIZE =

#D 12 HIPS_SMOOTH_ITER_RATIO = HIPS developers reserved.

#D 13 HIPS_DOMNBR = fff

#D 14 HIPS_REORDER D=# 0 No reordering inside the subdomain to minimize fill-in, =1 reordering

inside the subdomain to minimize fill-in. This option is only used in the recursive ITERATIVE
preconditioneur.

#D 15 HIPS_SCALENBR =[1-] this value is used to set the number of time the normalisation is
applied to the matrix. One should set a value >1 only in special case.

#D 16 HIPS_MASTER = the master process, zero is the default.

#D 17 HIPS_COARSE_GRID =#HIPS developers reserved.

#D 18 HIPS_CHECK_GRAPH = [0, 1] (default 1) : set this option to 1 if you want to check (and
repair) the matrix

adjacency graph. This option ensures the graph is symmetric and that there is no double edge.

#D 19 HIPS_CHECK_MATRIX = [0, 1] (default 1) : set this option to 1 if you want to check (and
repair) the

coefficients matrix. This option check if there are coefficient with the same indices and sum them up
in this case.

#D 20 HIPS_DUMP_CSR =# HIPS developers reserved.

#D 21 HIPS_IMPROVE_PARTITION =# HIPS developers reserved.

#D 22 HIPS_TAGNBR =# HIPS developers reserved.

#D 23 HIPS_SHIFT_DIAG = HIPS developers reserved.

#D 24 HIPS_GRAPH_SYM = set this option to 0, if

#D 25 HIPS_GRID_DIM = HIPS developers reserved. you are sure that the graph you give to HIPS is
symmetric ;

87

VIV

o o

0.0
0.0
0.005
0.0
0.0
0.0

this disable the graph symmetrization

#D 26 HIPS_GRID_3D = HIPS developers reserved.

#D 27 HIPS_DISABLE_PRECOND = [0, 1] if set to 1 then when new matrix coefficient are entered
the preconditioner is not recalculated in HIPS.Nevertheless, this option is taken into account only if a
preconditioner has already been computed.

#D 28 HIPS_FORTRAN_NUMBERING =[0, 1] (default 1) : numbering in indexes array will start at
0 or 1. This options modify the default numbering for the inputs and returns in all HIPS’s functions

#D 29 HIPS_DOF =[1-] (default 1) : number of unknowns per node in the matrix non-zero pattern
graph(degree of freedom).

D 0 #HIPS_PIVOTING =[O0, 1] (default 0) : disable or enable column pivoting in ILUT (only for
unsymmetric matrix).This

option is not yet fully implemented in parallel.

#R 0 HIPS_PREC = Wanted norm error at the end of solve.

#R 1 HIPS_DROPTOLO =

#R 2 HIPS_DROPTOL1 =

#R 3 HIPS_DROPSCHUR = fff

#R 4 HIPS_DROPTOLE =

#R 5 HIPS_AMALG = fff

88

CURRICULUM VITAE

Name Surname : Afrah Farea

E-Mail : Afrah.nacib@gmail.com

EDUCATION

e B.Sc. : 2013, Taiz University,Enineering faculgty, Software

Enineering Department

PROFESSIONAL EXPERIENCE AND REWARDS:

¢ On the Evaluation of Sparse Hybrid Solvers (not pubished yet)

89

