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ON THE EVALUATİON AND ANALYSİS OF SPARSE HYBRİD SOLVERS 

SUMMARY 

A matrix is called sparse if many of its entries are zero. Such types of matrices are 

generated from discretization problems of many fields like numerical simulations, 

Fluid Dynamics, Graph theory, Optimization problems, Signal processing, Finance, 

industry, Linear Programming, Electromagnetics, 2D/3D and many other real-world 

applications. In general, we call a matrix sparse if we could exploit the sparsity of its 

elements in terms of memory storage and computation. Different sparse matrix formats 

are proposed which lead to huge memory and computation savings. 

Similarly, solving large sparse linear systems becomes increasingly important as a 

kernel task for such scientific applications. Furthermore, recent years witnessed huge 

and complex development in modern microprocessor architecture and hardware in 

general. Besides, the parallel computing methods and languages has shown a kind 

maturation in solving real-world problems especially, the development of Message 

Passing Interface (MPI).  Consequently, many algorithms and software packages have 

emerged to exploit the new developments in hardware and software alike. For instance, 

the development in the hierarchy of memory and computation nodes leads to 

developing new blocking algorithms which accommodate the small cache memory of 

modern architecture and increase the floating-point performance. 

In general, there are two broad categories for solving linear systems mathematically: 

direct and iterative methods.  Direct methods can give high accurate results (10−30) 

and are more suitable for small problems (current direct methods can solve up to a 

couple of millions of equations) because of the memory consumption they require (for 

example, they can not solve large sparse 3D problems which may generate hundreds 

of millions of unknowns). Besides, they have limited parallel scalability. 

Preconditioned iterative methods, on the other hand, are more robust, require less 

memory and easier to parallelize. However, they are problem dependent and can 

converge faster with good preconditioning methods.  These methods are the methods 

of choice when an approximate solution of the problem is sought.  Our focus in this 

thesis is the parallel software packages used for solving large sparse linear systems.  

We investigated the various methods and techniques for solving sparse linear systems 

and concentrate on the open source hybrid approaches as they are more flexible and 

well-suited the hierarchal structure of modern computers. 

The word hybrid has different meanings. Hybrid in programming means combining 

OpenMP and MPI so they work for shared and distributed memory. Hybrid in 

hardware means working on CPU and GPU. Hybrid in algorithms means combining 

direct and iterative methods. So, our focus is on the third meaning; combining direct 

and iterative algorithms in order to get more efficient methods for solving sparse 

matrices. Therefore, throughout this dissertation, when we mention the word hybrid, 

we mean direct/ iterative methods. 
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Hybrid solvers are the latest research in developing robust and scalable methods for 

solving sparse linear systems. These methods combine direct and iterative approaches 

in certain ways, mostly using Schur complement framework, with the aim of getting 

the desired features of both direct and iterative methods especially the speed and low 

memory consumption of the iterative methods and the robustness of the direct 

methods. 

Most sparse hybrid solvers use the so called ‘Schur complement framework’ to 

combine direct and iterative methods. In this framework, the original matrix is divided 

into 2×2 block matrices. This approach is also known as sub-structuring domain 

decomposition method. Graph theory algorithms are responsible for ordering the 

global matrix and getting such block structure. The first block is a large block diagonal 

square matrix. Each diagonal block, called internal subdomain, is factorized using 

direct methods. The second and third block are the interfaces. If the matrix is 

symmetric, these interface blocks are transpose of each other. The fourth block is a 

square matrix called Schur complement matrix. This matrix has many desired features 

well-suited for iterative methods. It has smaller size than the original matrix and it is 

better conditioned than the original matrix. If the original matrix is symmetric positive 

definite, this Schur matrix will inherit this property and thus Conjugate Gradient can 

be used. Although Schur matrix is better conditioned than the original matrix, 

preconditioning the matrix before applying iterative method is necessary for faster 

convergence. The factorized internal subdomains are used to get an approximation of 

the Schur complement matrix and used as a preconditioner.  

Solving large sparse linear systems can take days even with algorithmic hybrid 

approaches if performed in sequential. Schur complement framework is more 

appealing for parallel programming. With increasing development of hardware and 

supercomputers, these systems can be solved efficiently within few seconds. However, 

existing algorithms should be modified to accommodate the parallel environment 

constrains such as scalability and load balancing.  

PDSLin and Maphys are the best existing public domain Schur-complement based 

hybrid solvers.  They are based on different preconditioning methods which is a crucial 

ingredient in any iterative solver. PDSLin uses an approximation of the Schur 

complement as a precontitioner which gives a global view of the domain problem. 

Maphys uses an approximation of the local assembled Schur matrix which makes the 

solver more scalable. In our experiments, we thoroughly examined these solvers, test 

them on different matrix types and compare their results with the state-of-art Superlu-

dist direct solver.  We also investigated the effect of tuning preconditioning input 

parameters on PDSLin and Maphys with increasing number of processors. 

Developed at Lawrence Berkeley National Laboratory (LBNL) by two distinguishing 

researchers in parallel linear algebra Ichitaro Yamazaki and X. Sherry Li; PDSLin 

solver is very robust and scales very well with increasing number of processors. 

However, it is very sensitive to the input parameters especially sparsifying tolerances 

which is not good. PDSLin is a powerful solver but has a lot of bugs and still needs a 

lot of work. Our results show that Maphys solver is more stable with the input values 

than PDSLin and gives better results. PDSLin results are unpredictable and sometimes 

fails with the slightest change of the input values. Maphys performance is better than 

both PDSLin and Superlu-dist in terms of time consumption and memory. Besides, the 

two-level parallelism of PDSLin is more robust than multithreading of Maphys. The 

serial partitioning time of Maphys is significant in many cases of our experiments and 
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thus it is better to change into a parallel graph partitioner in Maphys than using a 

sequential partitioner. Sometimes the partitioning time is larger than summation of the 

other solution steps of Maphys and this is clearly shown in Audik and Freescale cases. 

Maphys solver also scales very well with increasing number of processors. 

Our conclusion is that sparse hybrid solvers are more flexible because they have 

different components and each component can be substituted to accommodate the 

problem at hand. The developers of the solvers we considered have already aware of 

this feature and this is clearly seen through the different methods they integrated within 

their solvers. For example, PDSLin uses either MUMPS or Superlu-dist as a direct 

method which are different approches of factorizing matrices. Similarly, Maphys uses 

either MUMPS or PASTIX which also are also different. 

Using two level parallelism can make hybrid solvers work efficiently and scalable up 

to thousand number of processors. In this level, Processors are distributed into levels 

and work concurrently and independently. This method alleviates the problem of 

increasing Schur complement size. However, load balancing is a challenging problem 

in this method. Hybrid solvers consume much less amount of memory than either pure 

direct or iterative methods. 
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SEYREK HİBRİD ÇÖZUCÜLERİN DEĞERLENDİRİLMESİ VE ANALİZİ 

ÖZET 

Birçok girdisinin sıfır olması durumunda bir matris seyrek olarak adlandırılır. Bu tür 

matrisler, sayısal simülasyonlar, Akışkanlar Dinamiği, Grafik Teorisi, Optimizasyon 

Problemleri, Sinyal İşleme, Finans, Endüstri, Doğrusal Programlama, 

Elektromanyetik, 2D / 3D ve diğer pek çok gerçek uygulama gibi birçok alanın 

ayrıklaştırma problemlerinden kaynaklanır. Genelde, bellek depolama ve hesaplama 

açısından öğelerinin seyrekliginden yararlanabilirsek ona seyrek matris diyoruz. 

Büyük bellek ve hesaplama tasarruflarına yol açan farklı seyrek matris formatları 

önerilmiştir. 

Benzer şekilde, büyük sparse lineer sistemlerin çözümü, bu tür bilimsel uygulamalar 

için bir çekirdek  görevinde olduğundan giderek önem kazanmaktadır. Dahası, son 

yıllarda modern mikroişlemci mimarisinde ve genel olarak donanımda büyük ve 

karmaşık gelişmeler yaşandı. Ayrıca, paralel hesaplama yöntemleri ve dilleri, gerçek 

dünyadaki problemleri çözmede, özellikle Mesaj Geçiş Arayüzü (MPI) 

geliştirilmesinde bir çeşit gelişme göstermiştir. Sonuç olarak birçok algoritma ve 

yazılım paketi donanımda yeni gelişmelere kapı açtı. Örnek verilecek olunursa, bellek 

ve hesaplama düğümlerinin hiyerarşisindeki gelişme, modern mimarinin küçük 

önbelleği barındıran ve floating point performansını arttıran yeni engelleme 

algoritmalarının geliştirilmesini sağlar. 

Genel olarak, doğrusal sistemleri matematiksel olarak çözmek için iki ana kategori 

vardır: doğrudan ve yinelemeli yöntemler. Doğrudan yöntemler yüksek doğrulukta 

sonuçlar verebilir (10−30) ve ihtiyaç duydukları düşük hafıza tüketimi nedeniyle (son 

yıllarda doğrudan yöntemler birkaç milyon odf denklemini çözebilir) problemler için 

daha uygundur (örneğin, Büyük Sparse 3D problemlerini çözemezler). Bunun yanında 

paralel boyutlandırmayı sınırlar. Öte yandan Preconditioned iterasyon yöntemleri daha 

sağlıklıdır, daha az bellek gerektirir ve paralelleştirilmesi daha kolaydır. Ancak, bunlar 

problem bağımlıdırlar ve iyi preconditioning metodlarla daha hızlı yakınsanabilir. Bu 

tezdeki odak noktamız, büyük Sparse lineer sistemlerini çözmek için kullanılan paralel 

yazılım paketleridir. Spars lineer sistemlerin çözümü için çeşitli yöntemler ve teknikler 

araştırdık ve modern bilgisayarların hiyerarşik yapısı daha esnek ve uygun oldukları 

için açık kaynaklı hibrit yaklaşımlara yoğunlaştık. 

Hibrit kelimesinin farklı anlamları vardır. Programlamada hibrit, OpenMP ve MPI 

dillerini birleşimi anlamına gelmektedir çünkü paylaşımlı ve distrübe edilmiş hafızayı 

çalıştırabilirler.  Donanımda ise hibrit, CPU ve GPU’nun birlikte çalışmasıdır. Hibrit 

algoritmada doğrudan ve iteratif yöntemleri birleştirmek anlamına gelir. Odak 

noktamız olan algoritma hibriti; daha verimli bir yöntem oluşturmak için doğrudan ve 

iteratif yöntemleri birleştirir. Bu nedenle, bu tez boyunca hibrit sözcüğünden 

bahsettiğimizde, doğrudan ve yinelemeli yöntemleri birlikte kastetmiş olacağız. 

Çoğu seyrek hibrit çözümleyicileri “Schur complement framework” yöntemini 

kullanır. Buradaki amaç doğrudan ve iteratif metodları birleştirmektir. Bu çerçevede, 

orijinal matris 2 × 2 blok matrisine ayrılmıştır. Grafik teorisi algoritmaları matrisin 

düzenlenmesi ve bu blok yapısının elde edilmesine yarar. İlk blok büyük bir blok 
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köşegen kare matrisidir. Her diagonal blok iç alt domain olarak adlandırılır ve direk 

metodlar kullanılarak çarpanlarına ayrılırlar. İkinci ve üçüncü bloklar 

“interface”lerdir. Eğer matris simetrik ise bu interface bloklar birbirlerinin 

transpozesidir. Dördüncü blok Schur komplement matris olarak adlandırılan kare bir 

matristir. Bu matris asıl matristen daha küçüktür ve kullanmak için daha uygundur. 

Eğer asıl matris SPD matris ise Schur komplement matris de SPD matristir. Aynı 

zamanda Schur matris kullanmak asıl matrisi kullanmaktan daha kolaydır. Matrisi 

daha önceden preconditioning etmek daha hızlı bir yakınsama için gereklidir. 

Çarpanlarına ayrılmış iç alt domainler Schur complement matris yaklaşımı ve 

precondition yapmak için kullanılır. 

 

Büyük seyrek lineer sistemlerini çözmek sekansiyel olarak çalıştırıldığında, algoritmik 

hibrit yaklaşımlarla bile günler alabilir. Schur tamamlayıcı çerçeve paralel 

programlama için daha fazla tercih edilir. Donanım ve süper bilgisayarların 

gelişmesiyle birlikte, bu sistemler birkaç saniye içinde verimli bir şekilde 

çözülebilir.  Ancak, var olan algoritmalar ölçeklenebilirlik ve yük dengesi gibi paralel 

çevresel kısıtlamalara uyum sağlayabilmek için modifiye edilmelidir. 

PDSLin ve Maphys, mevcut en iyi hibrit çözücü tabanlı açık kod Schur-

complement’dir. Bu çözücüler üzerinde derinlemesine inceleme yaptık, bunları farklı 

matris türlerinde test ettik ve sonuçlarını son teknoloji Superlu-dist doğrudan çözücüsü 

ile karşılaştırdık. 

Sonuç olarak, seyrek hibrit çözücüler daha esneklerdir çünkü farklı bileşenlere 

sahiplerdir ve her bileşen mevcut probleme uyarlanabilecek şekilde diğerinin yerine 

geçirilebilir.  İki seviyeli paralellik kullanmak, hibrit çözücülerin verimli olmasını ve 

bin adet işlemci sayısına kadar ölçeklenebilir olmasını sağlayabilir. Hibrit çözücüler, 

doğrudan veya iteratif yöntemlerden çok daha az miktarda bellek kullanılır. 
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PDSLin ve Maphys, mevcut en iyi hibrit çözücü tabanlı açık kod Schur-

complement’dir. Bu çözücüler üzerinde derinlemesine inceleme yaptık, bunları farklı 

matris türlerinde test ettik ve sonuçlarını son teknoloji Superlu-dist doğrudan çözücüsü 

ile karşılaştırdık. 

Sonuç olarak, seyrek hibrit çözücüler daha esneklerdir çünkü farklı bileşenlere 

sahiplerdir ve her bileşen mevcut probleme uyarlanabilecek şekilde diğerinin yerine 
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 INTRODUCTION 

Recent years witnessed huge and complex development in modern microprocessor 

architecture and hardware in general. Besides, the parallel computing methods and 

languages has shown a kind maturation in solving real-world problem especially, the 

development of Message Passing Interface(MPI).  Consequently, many algorithms and 

software packages have emerged to exploit the new developments in hardware and 

software alike. For instance, the development in the hierarchy of memory and 

computation nodes leads to developing new blocking algorithms which accommodate 

the small cache memory of modern architecture  and increase the floating point 

performance. 

Similarly, solving large sparse linear systems becomes increasingly important as a 

kernel task for many scientific applications. Our focus in this thesis is  the parallel 

software packages used for solving large sparse linear systems.  We  investigate on the 

various methods and techniques for solving sparse linear systems and mainly focus    

on the open source hybrid approaches as they are more flexible and well-suited the 

hierarchal structure of modern computers. 

Key words: hybrid, hierarchal, matrix, parallel, sparse, linear, solver, pdslin , maphys 

, hips , pArms, Schur complement, additive schwarz , direct , iterative, LU 

factorization , Krylov methods, GMRES, CG, partitioning,  preconditioning. 

 Literature Review 

The problem of solving sparse linear systems was extensively studied in the last 

decade. There are many good parallel sparse linear packages developed over the years. 

In general, these packages are categorized according to the algebraic method used into 

direct and iterative. The direct solver packages are more mature than iterative solver 

packages and they gain more attention from the research community. Here we survey 

the most common distributed memory parallel packages in both methods starting with 

direct solvers. 
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PARDISO[1] is a left-right looking supernodal hybrid programming (MPI + threads) 

direct solver with dynamic scheduling of processes to tasks. It supports many types of 

symmetric and unsymmetric sparse matrices. Complete pivoting or Bunch and 

Kaufmann supernode pivoting is required.  The main algorithm works as follows: First, 

ordering and symbolic factorization is done using ordering and symbolic factorization 

algorithms. Then, block numerical factorization is performed in the resulting 

elimination tree by factorizing groups of columns at a time. At supernode 𝒍𝒊, an 

"external factorization" is performed for this supernode with left-looking by gathering 

contributions from previously factorized supernodes. The result is then gathered to the 

destination supernode. A set of optimization techniques are implemented in this solver 

such as assembly is separated from floating point operations, pivoting is restricted to 

supernode diagonal blocks and BLAS-3 pipelining parallelism during numerical 

factorization and out-of-core capability in which the disc is used as an extension of the 

main memory. 

MUMPS[3] is a multifrontal direct method with dynamic pivoting(more about 

multifrontal methods on section(4.2)). Different ordering methods are supported in 

MUMPS such as AMD, QAMD, PORD, ND, METIS and  AMF. User defined 

ordering can also be used. In this solver, first ordering and symbolic factorization is 

performed on the symmetrized matrix 𝑨 + 𝑨𝑻. The result is the elimination tree and a 

mapping of the multifrontal computation graph. According to the mapping computed 

in the previous step, numerical factorization is carried out on the multifrontal dense 

matrices. The factorized matrices are then used for finding the solution. Iterative 

refinement and backward error analysis are among the options. Similar to PARDISO, 

MUMPS allows dynamic scheduling of processors to tasks and out-of-core capability. 

The new versions of MUMPS support multithreading.  

PASTIX[4] is a left-looking supernodal multithreading solver with static pivoting. It 

follows the same steps of the previous solvers for solving sparse linear 

systems(ordering, symbolic factorization, numerical factorization, solve, refinement). 

Metis is recommended for partitioning and halo approximate minimum degree 

algorithms is used if the subgraph is smaller than a specified threshold. Out-of-core 

capability is also supported. GMRES, CG or simple iterative refinement can be used 

to incease the precision of the solution. Newer verions of Pastix supports different low-

rank compression techniques. 
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Developed by IBM, WSMP(Watson Sparse Matrix Package) is a hybrid programming 

(MPI + threads) multifrontal package for solving sparse symmetric/unsymmetric linear 

systems. Nested dissection ordering on the symmetrized matrix 𝑨 + 𝑨𝑻 with some 

heuristics for more robustness. The method of this solver separates symbolic analysis 

from numerical factorization which experimentally gives better performance. 

Threshold pivoting is used with automatic option for the threshold value. The solver 

also has the capability of solving multiple linear systems with the same sparsity pattern 

using ordering and analysis of a single matrix.   

PSPASES(Parallel SPArse Symmetric dirEct Solver) is a multifrontal solver for 

solving SPD sparse matrices with no pivoting required. This solver uses the same 

solution steps as the previous methods with subtree-to-subcube static mapping of 

processors to nodes in the elimination tree and cyclic mapping of rows and columns 

of the frontal matrices within each subgroup. ND of Metis is used for ordering and 

graph partitioning. Although this two-level processor mapping adds to the scalability 

of Cholesky factorization of this method; the expenses are load imbalance and 

communication overhead.  

SUPERLU-DIST is a supernodal right-looking distributed sparse solver with shared 

memory capability for many core systems and GPU option. Sequential or parallel 

ordering options are  available using multiple minimum degree(MMD), or nested 

discretion algorithm of Metis or Parmetis on 𝑨𝑻𝑨 or 𝑨𝑻 + 𝑨 graph and static pivoting 

is used. Users can also provide their own ordering, overriding the defaults.  Parallel 

symbolic factorization  is an option with column permutation using Parmetis. Different 

factorization options are also available. For algorithmic stability, tiny diagonal pivot 

can be replaced by a small perturbation value and iterative refinement at the end of the 

solution for more accurate results. The latest version of SUPERLU-DIST can be 

compiled without Parmetis dependency. 

Developed by Argonne National Lab, PETSc (Portable, Extensible Toolkit for 

Scientific Computation ) is a set of sparse matrix tools written in C/Fortran and Python 

with object orientation programming support. The library includes a variety  of Krylov 

subspace iterative methods, preconditioners, different orthogonalization schemes and 

refinement options. 
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WSMP (Watson Sparse Matrix Package) has an iterative version for shared memory 

environment only. The iterative package supports symmetric/ unsymmetric types of 

matrices. Different iterative solvers are supported like CG, GMRES, TFQMR and 

BiCGStab. The preconditioners supported include Jacobi, Gauss-Siedel and 

incomplete 𝑳𝑫𝑳𝑻/ 𝑳𝑼 depending on the matrix type.  

Although pARMS (Parallel Algebraic Recursive Multilevel Solver) can work as a 

hybrid direct/iterative solver(section 6.4), it is actually a set of iterative solvers and 

preconditioners for solving sparse linear systems in distributed memory environment. 

The main accelerator in pARMS is the  preconditioned FGMRES. Three classes of 

preconditioners are available: Schwarz Preconditioners, single-level Schur 

Preconditioners and multi-level Schur Preconditioners. 

Developed by Sandia National Laboratories, Aztec [5] is an iterative library for 

solving general sparse linear equations on distributed parallel systems. Written in 

ANSI-C standard, Aztec supports different types of iterative methods and 

preconditioners. Aztec supports two sparse matrix formats: Distributed Modified 

Sparse Row (DMSR) and Distributed Variable Block Row format (DVBR). The new 

version of Aztec supports simpler data formats allowing users to specify rows in a 

natural order.  

Developed by Lawrence Livermore National Laboratory(LLNL), HYPRE (High 

Performance preconditioners) is set of multigrid algorithms and software for 

distributed and shared memory environment with emphasis on scalable parallel 

preconditioners. According to the problem provided by the user, different conceptual 

interfaces are available like structured grid, finite element and linear algebra interfaces. 

Multigrid preconditioners supported include semiconductor multigrd(SMG), 

BoomerAMG and ParaSail. 

 Related Work to Experimental Comparison of Hybrid Solvers 

Unfortunately there is no much research comparing the performance of available 

hybrid solvers. We mention here the studies we found. 

In [4], they compared PDSLin with Hips using Tdr455k matrix on Cray XT4 machine 

at NERSC. They mentioned that Schur complement got larger with increasing number 

of subdomains in Hips because of the one-level parallelism technique used. 
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Consequently, the convergence became slower and the number of iterations increased 

from 151 iterations on 16 processors, and it failed to converge with 1000 iterations on 

32 processors. Authors in [5-7] mentioned this experiment in table (1.1). The results 

show that number of iterations did not increase much as in the case of Hips and PDSLin 

continues to converge with increasing number of processors. 

Table 1.1 : Results optained in [4] for HIPS vs PDSLin using  Tdr455k. 

P 𝑁𝑠 HIPS1.0 

Sec (iter) 

PDSLin 

 Sec (iter) 

8 13k 284.6 (26) 79.9 

32 29k 55.4 (64) 25.3 (16) 

128 62k -- 17.1 (16) 

256 124k -- 21.9 (17) 

In a Siam conference(not published), Maphys developers compared their solver's 

performance against PDSLin using Audik-1, Haltere and other matrices. The version 

of Maphys used in that experiment was  one level parallelism (they did not add 2 level 

parallelism feature at that time) so they removed some features from PDSLin such that 

both solvers work on the same foot. The partitioner used in Maphys is sequential while 

the partitioner used in PDSLin is  parallel. The results show a good scaling for PDSLin 

with increasing number of processors but the overall performance was approximately 

similar. 

We repeated this experiment  with the last versions of PDSLin and Maphys currently 

available on Sariyer Cluster using up to 16 nodes. The details of this experiment is 

shown in the result chapter. 

An important study of hybrid solvers performance evaluation is the one mentioned in 

[8]. In their study, they ran a set of experiments on PDSLin and Maphys using 

Matrix211 and Tdr455k matrices. In order to compare these solvers, they selected the 

following options: 

• They used the same partitioning tool for both solvers. 

• They used the same stopping criteria for both solvers. 𝜖𝑝 = 
||𝑆𝑋𝜏  − 𝑏�̂�||

|| 𝑏 ||
 where 

𝑋𝜏 is the variables corresponding the interfaces 𝜏 and S, 𝑏�̂� are Schur 

complement and its corresponding right hand side(see section 6.1 and   for 

Schur compelement and right hand side equations). b is the right hand side of 
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the original system Ax = b and ||.|| is the 2-norm. They also set  𝜖𝑏 =  10−10 as  

the error threshold. 

• They set the other control parameters for the two solvers with aim to minimize 

the parallel time of the solution.  

• The experiments were run on Hopper machine of Lawrence Berkeley National 

Laboratory. 

These results show that the overall performance of Maphys (M) is better than that of 

PDSLin(P) in term of elapsed time. PDSLin scales better with increasing number of 

cores especially with Tdr455k matrix. The factorization time for PDSLin is larger 

than that of Maphys for both matrices but the solution time is smaller and this is an 

advantage for PDSLin in case of multiple right hand side. The best configuration of 

PDSLin is with 1536 cores for both matrices. With Maphys, 1536 gives the best result 

with Matrix211 and 384 with Tdr455k. 

In appendix(A) , table (A.1), we show some of the common matrices in literature used 

for evaluating those hybrid solvers along with some other information. Unfortunately, 

all publications use matrices  not publically available except Audik matrix from 

Florida university collection. In column Con.No, we mention the hybrid solvers used 

with the corresponding matrix. 

The remainder of this dessetation is devoted to different algorithms and techniques 

used in the components of the hybrid solvers. Chapter 2 is an introduction to  sparse 

matrices and sparse matrix formats. Due to its crucial  role in sparse matrix algorithms, 

we devoted  Chapter 3 to the ordering and graph partitioning algorithms. Chapter 4 

and Chapter 5 summarize the common direct and iterative methods respectively.  In 

Chapter 6, we discuss the public domain hybrid solvers we found and the main 

algorithms used in each one of them. In Chapter 7, we discuss our experiments on the 

two best hybrid solvers we found; Maphys, PDSLin and compare results with  Superlu-

dist direct solver. Finally, the conclusion and future work in chapter 8.   
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 SPARSE MATRICES 

A matrix is called sparse if many of its entries are zero. Such types of matrices are 

generated from discretization problems of many fields like numerical simulations, 

Fluid Dynamics, Graph theory, Optimization problems, Signal processing, Finance, 

industry, LinearPprogramming, Electromagnetics, 2D/3D and many other real-world 

applications. Thus a reliable solution of such systems are more important than ever. In 

general, we call a matrix sparse if we could exploit the sparsity of its elements in terms 

of memory storage and computation [11]. In this section, we will briefly discuss the 

common data structures used for storing sparse matrices. 

 Sparase Matrix Storage Foratms 

There are many varieties of sparse matrix formats, each tailored to specific application 

and matrix structure. In this section, we discuss the most familiar sparse matrix format. 

2.1.1 Coordinate Format 

Coordinate format (COO) stores the non-zeros value along with their row/column 

indices. No ordering constraints imposed on the coordinate format. Experiments show 

that this format is significantly slower by orders of magnitude[12]. 

2.1.2 Compressed stripe storage Format (CSR, CSC). 

This format is considered the default sparse format by many sparse packages. In CSR, 

we put the subsequent nonzeros of the matrix rows in contiguous memory locations. 

Assuming we have a non-symmetric sparse matrix A, we create three vectors:  

• Floating point vector (val) for storing nonzero entries of the matrix A as they 

are traversed in a row-wise fashion. 

• Integer vector col_ind which stores the column indexes of the elements in the 

val vector. That is, if  val(k) = 𝑎𝑖𝑗, then  col_ind(k)=j. 

• Integer vector row_ptr which stores the locations in the val vector that start a 

row; that is, if val(k) = 𝑎𝑖𝑗, then  row_ptr(i)  ≤ k < row_ptr(i+1). 
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By convention, we define  row_ptr(n+1) = nnz+1, where nnz is the number of nonzeros 

in the matrix A. Figure(2.1) shows an example of CSR for a nonsymetric matrix.  

 

 Example of Compressed Sparse Row (CSR) format [12]. 

A slightly different variation is Modified Sparse Row format (MSR) in which the 

diagonal elements are stored in a separate array diag-val and the other off-diagonal 

elements are compressed using CSR. 

A similar compression format is compressed sparse column (CSC) (also known as 

Harwell-Boeing) [3]. In this form, the columns are traversed instead of rows.Thus, 

CSC is the CSR of 𝐴𝑇. Similar to CSR,we use three arrays (val, row_ind, col_ptr), 

where row_ind stores the row indices of each nonzero, and col_ptr  stores the index of 

the elements in val which start a column of  A. 

 

 An example of Compressed sparse Column (CSC) format [12]. 

The maximum storage requirement for CSC is 𝜽(2nnz + n +1) and for CSR 𝜽(2nnz + 

𝒏

𝟐
+1). The maximum storage  for uncompressed form is 𝜽 (𝒏𝟐) which shows a huge 

saving of memory 
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2.1.3 Diagonal Format(DIAG) 

This format is used for full nonzero diagonal matrices like those generated from stencil 

calculations. No need to store individual nonzero elements. Only diagonal indices need 

to be stored. According to the this numbering convention: the main diagonal is 

numbered zero, upper diagonals have positive numbers and lower diagonals have 

negative numbers. Nonzero entry at position(i,j) lies on diagonal number(j-i). 

Figure(2.3) shows an example of such format. Thus we  need two data structures:  

• A matrix val of size(m × s) for storing nonzero elements where m is the size 

of the diagonal and s is the number of diagonals. Since the diagonal carries the 

largest number of nonzero elements, there are padding places in val as shown 

in figure(2.3).  

• An array diag-num of size S for storing the index of the first element of each 

diagonal. 

 

 An example of Diagonal Format (DIAG) format [12]. 

2.1.4 ELLPACK/ITPACK format(ELL) 

This format was originally developed for ELLPACK and ITPACK sparse solvers and 

mostly suitable for matrices with almost same number of nonzero entries for each row. 

In ELL, two arrays are needed each of size  𝒎 × 𝒔 where m is the number of rows in 

A and s is maximum number of nonzero entries in any row in A. The first array val is 

used for storing nonzero values and the second ind for storing column indices for each 

row. Figure (2.4) shows an example. 
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 An example of ELLPACK/ITPACK format (ELL) [12]. 

2.1.5 Block Compressed Stripe Formats 

Block Compressed Stripe format is a generalization of compressed stripe format we 

discussed earlier. It is most suitable for sparse matrices with fixed block structures. As 

in compressed stripe format, three data structures are used val, ind and ptr. Unlike 

Compressed stripe format, val here is a matrix of size (rK) ×c where r  × c  is the 

block size and  K is the number of blocks. The blocks are treated as  full dense blocks 

so padding is required for filling any zero elements if necessary. Besides, blocking is 

not unique here. Figure(2.5) shows two different blocking arrangements for the same 

matrix. 

 

 Example of Block Compressed Stripe Format [12] 
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 Experimental Comparison of the Basic Formats 

Experiments in SpMV show that CSR and MSR give the best performance on a wide 

class of matrices and either one of them can be used as a default format if we do not 

know the structure of the matrix at hand[12]. In our experiments, we used RUA, MTX 

and IJV formats depending on the solver. For Maphys solver we used RUA and MTX. 

For PDSLin, we used  RUA and IJV formats and for Superlu-dist we sued  RUA 

format. 
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 ORDERING AND GRAPH PARTITIONING SCHEMES 

Graph theory is closely related to sparse matrices because of their sparsity structure. 

The best way to keep track of the nonzero elements in the sparse matrices is though 

graphs showing the connection between those nonzero entries. According to their 

structures, sparse matrices can be categorized into structured or unstructured. 

Structured matrices follow a certain regular pattern. Examples of such matrices are 

those generated from finite difference problems on rectangular grid. As we will see 

throughout this chapter, the main purpose ordering is to reduce fill-in and thus memry 

consumption during  LU factorization. 

In this chapter, we present the basic concepts, the most common algorithms, parallel 

implementation and the software packages for reordering and graph partitioning. 

 Basic Definitions 

The graph G consists of two finite sets (V,E), where V is the set of vertices/nodes, 

them.  

𝑉 = {𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛} 

E is the set of edges connecting two ordered pairs of vertices where  𝑣𝑖 , 𝑣𝑗 ∈ V. A 

graph is called undirected graph if for all where  𝑣𝑖  𝑎𝑛𝑑  𝑣𝑗 ∈ V: 

( 𝑣𝑖  , 𝑣𝑗 ) ∈ E ⟺  ( 𝑣𝑗  , 𝑣𝑖 ) ∈ E 

Otherwise, the graph is directed(digraph). A degree of a vertix is the number of edges 

connecting to the node, denoted by deg(𝑣𝑖) 

A path in a graph is a sequence of vertices 𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑘 such that (𝑣𝑖 , 𝑣𝑖+1 ) is 

an edge in the graph. A closed path is known as a Cycle. A graph with no cycles is a 

Tree. 

A graph 𝐺′(𝑉′ , 𝐸′) is called subgraph of G if 𝑉′ ⊆ 𝑉   and 𝐸′ ⊆ 𝐸   . A graph is called 

a complete graph (or strongly connected graph) if every pair of nodes are adjacent. A 

clique is a subgraph of the complete graph.  
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In sparse matrices, an edge  𝑎𝑖𝑗  is drawn between equation (i) and unknown (j) if its 

value is nonzero. i.e 𝑎𝑖𝑗  ≠ 0. Moreover, if for each  𝑎𝑖𝑗 ≠ 0 , there  exists 𝑎𝑗𝑖 ≠ 0, then 

the matrix has a symmetric nonzero structure(pattern symmetry). In such cases, 

undirected graph is used. For non-square matrices, bipartite graph is used. Bipartite 

graph consists of two independent sets of nodes(U,V) for which the edges connect 

node pairs (𝑢𝑖  , 𝑣𝑗) where 𝑢𝑖  ∈ U and 𝑣𝑖  ∈ V.  Figure(3.1) shows an example. 

 

Figure 3.1 : Graph of sparse matrices (above)non-symmetric, (middle)symmetric, 

(down)bipartite for 4 x 5 matrix. 

A common operation for solving sparse linear systems is by reordering rows and 

columns of the sparse matrix. This is a very important preprocessing step especially 

for parallel implementation. When the nonzero elements are cluttered near the main 

diagonal, this makes the variables more independent and thus less communication is 

required to find unknown values. This structure minimizes the fill-in problem of direct 

methods because of Gaussian elimination. Besides, the block diagonal structure 

maximizes locality and minimizes the solution time cost. 

A permutation matrix is a matrix with its rows and/or columns interchanged. In order 

to interchange the rows of a matrix, we need to premultiply the matrix by a permutation 

matrix 𝑷𝒓. Similarly, to change the columns of the matrix, we need to postmultiply the 

matrix by the permutation matrix 𝑷𝒄. Permuting the rows  of the matrix must also 

change the right hand side of the equation AX=b and permuting the columns of the 

matrix should change the order of the unknowns X. Furthermore, if  𝑷𝒄 = 𝑷𝒓
𝑻,the 

permutation is known as symmetric permutation. Such permutation preserves the 

diagonal elements and the symmetric pattern of the original matrix. A matrix is called 
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reducible if its corresponding graph is undirected, otherwise, irreducible. A reducible 

matrix can be transformed into block upper triangular form using symmetric 

permutation [14]. 

 Ordering and Graph Partitioning Techniques 

In this section we present the graph partitioning problem and the most popular 

algorithms for solving them. In general, a p-way partition of a graph is a mapping P 

: V[1 ... p] vertices into subsets called partitions 𝑆1, 𝑆2 , 𝑆3 ….  , 𝑆𝑝 such ∪𝑖 𝑆𝑖 = 𝑉 and 

𝑆𝑖  ∩  𝑆𝑗  = 0. An edge cut 𝐸𝑐 is a subset of E whose vertices lie on different partitions. 

The edge cut is known as edge separator because removing them split the graph into 

distinct partitions. Vertex separator is also possible in which the graph is partitioned 

along the vertices. It is this vertex separator that is used in the well-known nested 

dissection algorithm as we will see in section (3.2.4).  

Graph partitioning problem is to partition the graph into roughly equal number of 

partitions with minimum separator size. This problem is known to be NP-complete 

problem [15,16]. However, many algorithms have been developed to give good 

partitioning. Table (3.1) shows the most common schemes for graph partitioning. 

Ordering sparse matrices is mainly related to direct methods which use elimination 

during LU factorization. As a result, many nonzero elements can be generated. These 

new nonzero elements are called fill. Like that of dense matrices, ordering rows is used 

to make factorization more numerically stable. However for sparse matrices, there are 

other objectives : minimize fill-in and maximize parallelism. Finding the ordering that 

produces the fewest new entries in the LU factorization(the minimum fill-in) has 

already proven to be NP-complete problem [17,18] and thus many approaches are 

heuristics in nature. So fill-in is inevitable in LU factorization since most ordering 

algorithm are usually more expensive than the fill-in problem itself. Here we present 

four main strategies according to [19]. 
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Table 3.1 : List of popular graph partitioning Schemes 

Scheme Method Run Time Brief Info 

Geometric Techniques 

(coordinate information) 

Coordinate Nested Dis- section 

(CND) 
--- Splits the mesh in half, normal to its 

longest axis,fast, requires low memory 

and easy to par- allelize but the subgraphs 

are of low quality 

Recursive Inertial Bisec- tion 

(RIB) 
--- Splits the mesh in half, normal to principal 

iner- tial axis of the mass distribution 

Sphare Filling Curve --- Splits the mesh into k parts according to 

the po- sitions of the centers-of-mass 

elements along a space-filling curve,fast 

Sphare Cutting Approach --- uses(a, k)-overlap graph to construct 

vertex sep- arator 

Combinatorial Techniques 

(adjacency information) 

Levelized Nested Dis- section 

(LND) 
--- Numbering vertices in BFS manner until 

half vertices are numbered(one partition). 

The un- numbered vertices are in the other 

partition, sen- sitive ti initial vertex choice 

Kernighan- Lin/Fiduccia- 

Mattheyses (KL/FM) 
--- Partition refinement of sub-optimal 

partitioning graphs, heuristic, naturally 

sequential 

Spectral Techniques Recursive Spectral Bi- section --- Splits vertices according to eigenvector of 

the second smallest eigenvalue of LG 

(Fiedler vec- tor), computationally 

expensive 

Multilevel Spectral Bi- 

section(MSB) 
--- Uses multilevel approaches to reduce 

computa- tion , ,well-parallelized 

Multilevel Schemes (Coarsening, 

Partitioning , Refinement 

Multilevel Recursive Bi- section O(|E|logk)[10] Partitioning phase :A2-waypartition Pm, 

ver- tices in Vm are split in half, well-

parallelized 

Multilevel k-way Parti- tioning O(|E|)[10] k-way multilevel partitioning,well-

parallelized 

3.2.1 Block traingular matrix ordering 

We mentioned in section (3.1) that reducible matrices can be transformed into block 

triangular form. Such form is shown in equation (3.1). 
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𝑃𝐴𝑄 =  

[
 
 
 
 

𝐵11                              
𝐵21 𝐵22                      
𝐵31 𝐵32 𝐵33              
…           …                

𝐵𝑁1   𝐵𝑁2  𝐵𝑁3              𝐵𝑁𝑁]
 
 
 
 

 
 

(3.1) 

This form is appealing because it minimizes the cost of storage and solution time of 

the linear system since we can use forward substitution as follows. 

 𝐵𝑖𝑖  𝑦𝑖 = (𝑃𝑏)𝑖 − ∑ 𝐵𝑖𝑗  𝑦𝑗
𝑖−1
𝑗=1                       i = 1,2,3, ...  (3.2) 

The factorization is only done on the diagonal blocks 𝐵𝑖𝑖 and the off-diagonal blocks 

are used only for multiplication 𝐵𝑖𝑗  𝑦𝑗  . Thus fill-in occurs on the diagonal blocks 

only. Duff et.al in [14] divides the process of constructing block triangular form into 

three stages.  Here we describe an algorithm with block matrix of size 3,i.e 

 
[
𝐵11                  
𝐵21 𝐵22          
𝐵31 𝐵32 𝐵33 

] (3.3) 

• Finding Row and Column Singletons 

The purpose of this stage is to order the matrix into a form similar to (3.1). The 

idea is that any row singleton is moved to the first diagonal position of 𝐵11 

block matrix. In the next step, the remaining submatrix is traversed for any 

other row singleton. If any, move it to the second diagonal position of  𝐵11. 

The process continues until no singleton rows remaining. The result is a block 

lower triangular matrix 𝐵11. Similarly, we construct the 𝐵33 matrix choosing 

one column singleton at a time from each remaining submatrix. The remaining 

portion of the matrix constitutes 𝐵22 block. An example of this algorithm is 

shown figure (3.2) . 
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Figure 3.2 : Block Triangular matrix ordering through row and column singleton 

[14]. 

• Permute Entries on the Diagonal(Transversal). 

This stage concerns with placing nonzero entries on the diagonal of 𝐵22 of 

equation (3.1) so that all diagonal entries are nonzero at the end of this stage ( 

otherwise the matrix is structurally singular). This problem is known as 

assignment problem[19,20] . The algorithm is based on depth-first search 

with look-ahead feature by seeking through rows or through columns with one 

row/column to examine at a time. So for example, to order the matrix into a 

sequence of columns 𝑐1  , 𝑐2  , 𝑐3 , …    𝑐𝑗  with  𝑐1   having k nonzero entries. 

Starting  with the first entry in column k, we take its row number to indicate 

the next column and search through the first off-diagonal entry in each column 

as a subsequent column(DFS).  In each column, we look for an entry in row k 

or beyond(Look-ahead). 

• Finding the Block Triangular Form by Symmetric Permutation. 

The purpose of this stage is to find the symmetric permutation that will put  the 

matrix into block lower triangular form. Digraphs are usually used since 

applying symmetric permutation does not change the digraph of the associated 

matrix except for relabeling of its nodes. Here we discuss two algorithms for 

relabeling. 

In Sargent and Westerberg algorithm,  starting from a random node, we trace 

a path until we find a node from which the path does not leave. This last sinking 

node will be labeled first and we then delete all edges connecting to the node 

(deleting the row and column in the matrix). Continuing this way until no node 

remains. This process always works in the digraph as long as there are no 

cycles in the graph. Such cycles are called strong components. Cycles are 
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collapsed into a single node called composite node and labeled separately. 

Figure (3.3) shows an example of the algorithm.  Nodes in bold are labeled at 

this step. 

 

Figure 3.3 : Relabeling a matrix using Sargent and Westerberg algorithm 

[19]. 

Tarjan’s algorithm is more efficient than the previous algorithm and uses 

stack for path tracking and node labeling. It avoids the excessive relabeling of 

the previous algorithm. The algorithm starts with a random selected node and 

moves through the unvisited edges pushing the node into the stack. If we find 

an edge connecting a node on top of the stack with a lower node, this will be a 

closed path and we do not label the nodes. A node is labeled and removed from 

the path if all its edges are visited. Figure (3.4) shows an example of this 

method. 

 

Figure 3.4 : Relabeling a matrix using Tartan’s algorithm [19]. 

3.2.2 Local pivot ordering 

These set of algorithms are based on Markowitz criterion [21] which chooses as a pivot 

the entry 𝑎𝑖𝑗 with row i and column j having the lowest number of nonzero elements. 
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More formally, for (n-k+1) (n-k+1) submatrix after applying (k-1) steps of the 

Gaussian elimination ,select an entry  𝑎𝑖𝑗
𝑘 that minimizes: 

 (𝑟𝑖
(𝑘) − 1)(𝑐𝑗

(𝑘) − 1) (4) 

Where 𝑟𝑖
(𝑘) and 𝑐𝑗

(𝑘) are the number of nonzero entries in row i and column j 

respectively. They are local greedy approaches because they select as a pivot the node 

with minimum degree without regard whether this selection affect the following steps. 

This is also very expensive since it requires knowledge of the sparsity pattern of the 

submatrix at each stage. Some variations of this algorithm are follows: 

• Minimum Degree Method 

This method is applied to symmetric matrices. Thus the objective function of 

equation(4) is reduced to 𝑚𝑖𝑛𝑡𝑟𝑖
(𝑘) . It is called minimum degree because it 

chooses the node with the smallest degree in the associated graph of the 

submatrix as the next pivot row. To avoid the high cost of degree update at 

each step, an approximation is used such as Column Approximate Minimum 

Degree (COLAMD)[22] which proves to perform better than the minimum 

degree approach and applicable for unsymmetic matrices. A major drawback 

of this algorithm is its sensitivity to the ties: when more than two nodes have 

the same minimum degree value; which one to choose. Another  variant of 

minimum degree is Multiple Minimum Degree(MMD). 

• A Priori column ordering 

The idea is to find a good column permutation for the normal symmetric 

positive definite  matrix 𝑵 = 𝑨𝑻𝑨 and apply it as a column ordering to the 

zero-free diagonal matrix A. The justification is that finding a good column 

permutation for N will drastically reduce fill-in in its Cholesky factorization 

pattern R. Since the pattern of A is contained in N [20] .i.e if 𝑎𝑖𝑗  ≠ 0 then 

𝑛𝑖𝑗  ≠ 0, such a column permutation will also reduce fill-in in  

𝐿𝑘 𝑈 factorization of A provided that N is sparse  and A is zero-free diagonal. 

This method is used in sequential and shared memory solvers. 

3.2.3 Band and variable band ordering 

Another set of approaches that rely on ordering the matrix such that the elements are 

cluttered along the main diagonal in a banded or variable band form. Examples are 
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shown in figure (3.5). In this section we introduce some basic terms and the common 

algorithms for this type of ordering. A matrix has a bandwidth  2m + 1 and a 

semibandwidth  m if 𝑎𝑖𝑗 = 0 whenever |i - j| > m. A profile (also called skyline or 

envelope) is the number of nonzero entries in the variable banded matrix. It is clear 

that Gaussian elimination without interchanges does not affect the banded or variable 

banded structure of the matrix since no fill is created outside the band. However, any 

zeros within the band will be filled totally. Thus the smaller the bandwidth and the 

profile the less fill can occur. 

 

Figure 3.5 : Band and variable band form [19]. 

An important variant of this method is Cuthill-McKee and Reverse Cuthill-McKee 

algorithm(CM/RCM). This algorithm constructs a level set of nodes via breadth-first 

search starting with a node of minimum degree at level set 𝑆1. Level set 𝑆2  consists of 

all nodes neighboring to the node in 𝑆1. Level set 𝑆3 contains all nodes neighboring to 

the nodes in 𝑆2 that are not in 𝑆1 and 𝑆2. In general, level set 𝑆𝑖 consists of all 

neighboring nodes in 𝑆𝑖−1 that are not in 𝑆𝑖−1 and 𝑆𝑖−2. The ordering then starts by 

traversing all nodes from the lowest level to the highest level as shown in the example 

of figure(3.6). Reversing this order (RCM) was proven to give better performance 

when the neighbors of a node at level 𝑆𝑖 have occurred in the previous levels or the 

node has no neighbors at level 𝑆𝑖+1. 
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Figure 3.6 : Example of Cuthill-McKee ordering [19]. 

3.2.4 Dissection methods 

These algorithms are based on finding a set of nodes/edges whose removal result in 

splitting the graph into independent subgraphs. Those nodes/edges are called 

node/edge separators. Ordering the separators last results in a bordered block diagonal 

form. An important variant of this algorithm is the Nested Discetion method. This is 

a divide and conquer approach and was originally developed for partitioning regular 

graphs generated from finite element systems of equations [23] but recently it has been 

found to do well for large 3D problems. In this method, we split the graph into roughly 

two equal parts using separators. After getting the first partition, we continue with the 

subgraphs using the same steps. An example of this ordering is shown in figure (3.7). 

The efficiency of this algorithm highly depends on the size of the separator and thus 

works well with problems of regular and planer graphs since they have smaller 

separator size [24]. There are several methods for finding the separator nodes with the 

objective to find the smallest possible separator size. One way is by constructing the 

level set discussed in section (3.2.3) and taking the middle set as the separator set. 

 



23 

 

Figure 3.7 : Example of Nested Dissection ordering [8]. 

  Ordering Unsymmetric Matrices 

Unlike symmetric matrices, partitioning unsymmetic matrices can not be done directly 

using undirected graphs but rather many algorithms borrow techniques from 

partitioning symmetric matrices. Usually the graph of  𝑨𝑻 + 𝑨,  𝑨𝑻𝑨 and 𝑨 𝑨𝑻 are 

used help partitioning and ordering the unsymmetric matrix A because the sparsity 

structure of these matrices is a superset of the sparsity structure of A. Obviously, if A 

is symmetric the structure of 𝑨𝑻 + 𝑨 is the same as the structure of A and 𝑨𝑻𝑨 and 

𝑨 𝑨𝑻 will be the identical. Furthermore, the structure of 𝑨𝑻 + 𝑨 will be nearly 

symmetric if A is so and will be full if A is unsymmetirc. Both  𝑨𝑻𝑨 and 𝑨 𝑨𝑻 are 

symmetric positive definite and thus Cholesky factorization can be used. As discussed 

in section (3.2.2), 𝑨𝑻𝑨 is used to find a column permutation Q such that the sparsity 

pattern in the Cholesky factorization of  𝑸𝑻 𝑨𝑻𝑨 𝑸 is preserved. For numerical 

ordering, row permutation is used which does not affect the structure of 𝑨𝑻𝑨 since 

(𝑷𝑨)𝑻𝑷𝑨 = 𝑨𝑻𝑨 [19,20]. In this case, P is 𝑸𝑻. For convenience, we present the 

suggested solution steps of (George/Ng '87) for solving sparse linear system AX = b 

in algorithm (1) below where A is large sparse unsymmetric matrix. This is the original 

paper that proposed Nested Dissection ordering discussed previously. 

A different approach for partitioning unsymmetric matrices is by using Hypergraph. 

Hypergraphs are generalizations of graphs in which edges(called hyperedges or nets) 

can connect arbitrary number of vertices(called pins). In matrices, rows represent 

vertices and columns represent nets. A set of vertices(rows) is called a part and a net 

is connected to a part if it has at least one pin in the part. Hypergraphs can partition the 
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unsymmetric matrix into any number of parts[19]. The most popular packages for 

partitioning unsymmetric matrices using hypergraph is PaToH and Zoltan. 

Algorithm 1 ND-algorithm[20] 

• Find a permutation matrix Q so that QA has a zero-free diagonal. 

• Determine the structure of 𝐵 =  (𝑄𝐴)𝑇(𝑄𝐴) =  𝐴𝑇𝐴. 

• Find a symmetric permutation 𝑃𝑐 so that  𝑃𝑐
𝑇 𝐵 𝑃𝑐  has a sparse Cholesky 

factor. Denote the Cholesky factorization by  𝑃𝑐
𝑇 𝐵 𝑃𝑐   = 𝑅�̂� �̂�. 

• Determine the structure of Cholesky factor �̂� of  𝑃𝑐
𝑇 𝐵 𝑃𝑐 , and set up a 

storage  scheme that exploits the sparsity of  �̂� and   𝑅�̂�. 

• Input the numerical values of A, storing it as 𝑃𝑐
𝑇 𝑄𝐴 𝑃𝑐 . 

• Compute the LU-decomposition of  𝑃𝑐
𝑇 𝑄𝐴 𝑃𝑐  using Gaussian 

elimination with partial pivoting. Store the triangular factors in the 

storage structure for �̂� and   𝑅�̂�. 

• Solve (𝑃𝑐
𝑇 𝑄𝐴 𝑃𝑐 )𝑃𝑐

𝑇= 𝑃𝑐
𝑇𝑄𝑏 using the LU-decomposition. 

 Sparsity Preservation vs Numerical Stability 

Preserving sparsity and numerical stability can be conflicting issues in sparse matrices. 

As we will see in the next chapter, pivoting is used during LU factorization to put large 

entries on the diagonal and void tiny pivots. However, this can destroy sparsity if the 

new pivot row, for instance, contains more nonzero elements than the original pivot 

row and will cause more fill-in in the following steps. 

One technique to alleviate this problem is through threshold pivoting. Suppose that 

𝒂𝒊𝒊   is the diagonal entry and 𝒂𝒎𝒊 is the largest entry on a partially factored matrix 𝑨  

up to column 𝒊 . Depending on a threshold value 𝟎 < 𝒖 ≤ 𝟏 , defined by the user,  𝒂𝒎𝒊  

will be chosen as new pivot if |𝒂𝒊𝒊 | < 𝒖 |𝒂𝒎𝒊 | . otherwise no changing is done. When 

𝒖 = 1, this is equivalent to the  classical partial pivoting and when 𝒖  = 0, the diagonal 

entries on the pivot will be chosen, unless they are zero so pivoting is required [19,25].  

For symmetric positive definite matrices, such numerical stability is not a concern 

because pivots has no growth during Gaussian elimination. A detailed study about this 



25 

is in [26]. There are other types of matrices which have special numerical stability 

issues like diagonally dominant matrices, symmetric indefinite matrices which is out 

of scope of this study. 

 Software Packages for Ordering and Graph partitioning 

The most important parallel partitioning libraries used are Ptscotch and Parmetis. 

Table (3.2) shows the most common packages for graph partitioning. 

Table 3.2 : Popular Packages for Ordering Matrices 

Name Method Type 

Chaco Multilevel spectral bisection approaches & 

unsymmetric & sequential and parallel 

sequential 

/ parallel 

Jostle Multilevel k-way partitioning and diffusive load-

balancing & unsymmetric & sequential and parallel 

sequential 

/ parallel 

PARTY Multilevel k-way partitioning & unsymmetric & 

sequential and parallel 

sequential 

/ parallel 

Metis/Parmetis Multilevel recursive bisection, multilevel k-way, 

KL/FM refinement 

sequential 

/ parallel 

Sotch/Ptscotch Multilevel recursive bisection with KL/FM 

refinement 

sequential 

/ parallel 

PaToH Multilevel hypergraph partitioning sequential 

Zotan Hypergraph partitioning sequential 

hMeTiS Hypergraph partitioning sequential 
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 DIRECT METHODS 

 In this chapter we talk about solution of sparse linear systems using the most important 

factorization techniques for solving large sparse linear systems. Before proceeding 

with the discussion of the factorization methods,we define some basic concepts. 

Elimination tree is a compact data structure that shows the node dependencies and 

the order in which the variables must be eliminated. Thus it is related to ordering and 

Gaussian elimination. A vertex j depends on a vertex i such that  i < j  (written i → j) 

iff eliminating element 𝑎𝑘𝑖 affects the value of 𝑎𝑘𝑗 for k < i. More formally,  i →j iff 

∃ k ∈ [i+1,n] such that 𝐿𝑘𝑖𝑈𝑖𝑗 ≠ 0 [27]. If there is such a relation (i → 𝒋) , we say j is 

an ancestor of i in the elimination tree. Figure (4.1) shows an example of elimination 

tree. 

 

Figure 4.1 : (a)matrix ordered by ND(red shows fill-in)  (b) directed filled graph  

(c) transitive reduction  (d) elimination tree[27]. 

Directed filled graph is the graph representation of the matrix and,  shows vertex 

dependencies(including fill-in). Because the dependency relation is not symmetric 

since (i → j ) can occur only if i < j, the filled graph must be a directed graph. Figure 

(4.1b) shows the directed filled graph of matrix shown in (4.1a) with red arrows 

showing the fill-in that can occur during elimination. Figure (4.1c) shows the transitive 

reduction graph after eliminating dependencies. If the matrix is symmetric, the 

undirected variant of this transitive reduction graph is a spanning tree (elimination 
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tree)[27, 28]. If the matrix is unsymmetric, approaches of section (3.3) are used to 

symmetrize the matrix. Figure(4.1d) shows the elimination tree of this example.  

In the elimination tree, two or more nodes(columns) can be grouped together if they 

have the same sparsity structure. The resulting grouped node is called supernode and 

the process is known as amalgamation. The solvers that use this approach are 

Supernodal method solvers. For example, in figure (4.1), nodes 7,8,9 have the same 

sparsity structure and thus can be combined to form a supernode. Among the common 

Solvers that  use this method are Superlu-dist and Pastix. 

Another important tree structure is the assembly tree which assembles the 

contributions of the variables in the form of a dense block matrix called contribution 

block of the variable. For example,  assembly tree is used in frontal method which 

was originally developed for solving finite element problems in limited memory 

systems. Figure(4.2) shows an example. 

 

Figure 4.2 : The proposed steganography method for extraction[29]. 

In this approach, each finite element variable form a block dense matrix called frontal 

matrix and the whole system is solved  by partial factorization and elimination of 

matrices of the form. 

 𝐴 = ∑𝐵(𝑙)

𝑙

 
(5) 

That is, when applying Gaussian elimination, there is no need to wait for all the 

assembly steps of equation(5) to complete, i.e assembly and factorization can be done 

simultaneously. The variable can be chosen as a pivot only if it is fully summed i.e, no 

further contribution to come to the variable. In other words, a column is chosen for 

elimination only when all its descendants have been eliminated. In Gaussian 
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elimination, this corresponds to passing the Schur complement to the  parent in the 

elimination tree [29,30]. 

Depending on the properties of the matrix, we distinguish the following types of 

matrices [31]: 

• n x n symmetric positive definite matrix for which Cholesky A = 𝐿 𝐿𝑇 

factorization is used where L is a lower triangular matrix. A = 𝐿𝐷𝐿𝑇 is also 

possible where D is a diagonal matrix and L is a unit lower triangular matrix.  

This later formula voids using square roots. As duscussed in section (3.4), such 

matrices simplify pivoting strategies.. 

• n  x  n unsymmetric matrix for which A = L U factorization is used where L is 

a unit lower triangular matrix and U is an upper triangular matrix. 

• n x n symmetric indefinite matrix for which A = 𝐿𝐷𝐿𝑇 factorization is used 

where D is a block diagonal matrix. Diagonal pivoting is required. 

• m x n  rectangular matrix where m  ≠ n for which A = QR factorization is used 

where Q is n x n orthogonal matrix and R upper trapezoidal matrix. LU 

factorization is also possible where L is n x n lower triangular matrix and U is  

m x n upper trapezoidal matrix since 𝑈𝑖𝑗 = 0  when i > j. 

In int following sections, we will investigate these factorization methods  in detail. 

 Cholesky Factorization 

Due to its importance, Cholesky factorization has gained a lot of attention from 

research community. The major steps for solving the linear system where the 

matrix is symmetric positive definite are the following: 

• Ordering. This type of matrices simplify ordering since the matrix is 

numerically stable. The purpose of ordering is to find a permutation matrix 

P such that 𝑃𝑇AP  has small fill-in. 

• Symbolic factorization. The nonzero structure of L can be determined 

independently of the numerical factorization. Elimination tree is the result 

of this step. 

• Numerical factorization. Applying Cholesky factorization to find L. 
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• Triangular Solution. Forward substitution to find y in Ly = b and back 

substitution to find x in  𝑳𝑻x = y 

 LU Factorization 

The most common method for matrix factorization is LU Factorization where L is 

lower triangular and U is upper triangular. In general, there are four major steps for 

direct solution of sparse linear system Ax=b using LU factorization [24,33,34]: 

• Ordering. Reorder rows and columns to reduce fill-in as discussed in 

chapter (3). Our experimental  results show that row permutation can enhance 

the solve step tıme by orders of magnitude. 

• Symbolic factorization. As we have seen previously, from ordering, 

we can predict the upper bound of fill-in that can occur during numerical 

factorization. Thus a static data structure can be accommodated for L and U 

beforehand. This added to the efficiency because dynamic memory allocation 

for the fill-in takes time. Besides, this allows us to determine which 

compression scheme to use(CRS, CSC ...etc). This process is known as 

Symbolic factorization. For example, steps (3-6) in algorithm (1) represents 

one way of symbolic factorization. Another approach is the symbolic analysis 

of the symmetric matrix 𝐴 + 𝐴𝑇. However, Unlike 𝐴𝑇𝐴, row permutation 

affects the ordering found and thus symbolic analysis will not be so good.  

In many cases, row permutation 𝐶 = 𝐴𝑄 + 𝑄𝑇𝐴𝑇 is performed to get large 

diagonal entries and thus reduce the number of pivots that are delayed in this 

way[35]. Such a permutation matrix Q can be found using maximum 

weighted bipartite matching algorithm. Developers of This way of 

prepivoting large elements to the diagonal  is called Static Pivoting. To 

further ensure stability, tiny pivots are replaced with a small perturbation 

√𝜖||A||, where  𝜖 is machine precision) and iterative refinement is used at the 

end to get more accurate results. 

• Numeric factorization. To compute L and U factors and store results 

in the data structure assigned in the previous step. This is the most time 

consuming part of the solution process. For unsymmetric matrices, 

numerical and symbolic factorization interleave. 
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To construct LU factors, Gaussian elimination is used. For clarity, we illustrate 

Gaussian elimination with 3x3 linear system example taken from[19] shown in 

equation (6). 

 

[

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23 
𝑎31 𝑎32 𝑎33

] [

𝑥1

𝑥2

𝑥3

] =   [

𝑏1

𝑏2

𝑏3

] 

(6) 

The first step is to eliminate 𝑎21 and 𝑎31 by multiplying the first equation first by 𝑙21 

= 𝑎21/𝑎11 and subtract it from the second equation and then multiply it by  𝑎31 = 

𝑎31/𝑎11 and subtract it from the third equation. The equivalent system is: 

 

[

𝑢11        𝑢12          𝑢13

𝑙21        𝑎
(2)

22       𝑎
(2)

23 

𝑙31       𝑎
(2)

32       𝑎
(2)

33

] [

𝑥1

𝑥2

𝑥3

] =   [

𝑏1

𝑏(2)
2

𝑏(2)
3

] 

(7) 

where 

𝑎(2)
22= 𝑎22 − 𝑙21𝑎12 𝑎(2)

23= 𝑎23 − 𝑙21𝑎13 𝑏(2)
2= 𝑏2 − 𝑙21𝑏1 

𝑎(2)
32= 𝑎32 − 𝑙31𝑎12 𝑎(2)

33= 𝑎33 − 𝑙31𝑎13 𝑏(2)
3= 𝑏3 − 𝑙31𝑏1 

Finally, we have to eliminate 𝑎(2)
32  by multiplying the new second equation by 𝑙32 = 

𝑎(2)
32 /𝑎

(2)
22 and subtract it from the third equation. 

 

[

𝑢11        𝑢12          𝑢13

𝑙21        𝑢22       𝑢23 

𝑙31       𝑙32       𝑎
(3)

33

] [

𝑥1

𝑥2

𝑥3

] =   [

𝑏1

𝑏(2)
2

𝑏(3)
3

] 

(8) 

where 

𝑎(3)
33= 𝑎2

33 − 𝑙32𝑎
(2)

23  ,     𝑏(3)
3= 𝑏(2)

3 − 𝑙32𝑏
(2)

2 

The entry 𝑎(𝑘)
𝑖𝑖 (called the pivot) should be nonzero for any iteration step k and if its 

value is too small, it will cause instability in the elimination process because the 

updated element will be very large. This problem propagates in the following steps so 

it is crucial to choose the pivot element. The factors 𝑙𝑖𝑘 are called the multipliers and 

they constitute the unit lower triangular matrix L and  the final matrix of A of equation 
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(8) constitutes the upper triangular matrix U. Thus the elimination process can be 

summarized in the following important equation: 

 𝑎(𝑘+1)
𝑖𝑗= 𝑎(𝑘)

𝑖𝑘 − 𝑙𝑖𝑘𝑎
(𝑘)

𝑘𝑗            i,j > 0  (9) 

where 𝑙𝑖𝑘 =  𝑎(𝑘)
𝑖𝑘/ = 𝑎(𝑘)

𝑘𝑘. 

This way of Gaussian elimination is also called Right-looking Gaussian Elimination 

because at each elimination step, we always use entries of the right of the pivot and 

modify entries at the lower right part of the submatrix. It is also called submatrix-

based Gaussian elimination for obvious reason. It is also called "data-driven" , "fan-

out" or "eager" approach. 

A variant of Gaussian elimination is to delay modifying 𝑎𝑖𝑗  until column j is pivotal. 

Using this method with the above example,we eliminate the 𝑎21 and 𝑎31 using the 

same method and use this information to update the second column as follows: 

 

[

𝑢11        𝑎
(2)

12      𝑎13

𝑙21        𝑎
(2)

22       𝑎23 

𝑙31       𝑎
(2)

32       𝑎33

] [

𝑥1

𝑥2

𝑥3

] =   [

𝑏1

𝑏2

𝑏3

] 

(10) 

where 

𝑢12=𝑎(2)
12 =  𝑎12      , 𝑎(2)

22= 𝑎22 − 𝑙21𝑢12     , 𝑎(2)
32= 𝑎32 − 𝑙31𝑢12 

In the next step, we modify the third column, 

 

[

𝑢11        𝑢12      𝑎
(3)

13

𝑙21         𝑢22     𝑎
(3)

23 

𝑙31         𝑙32       𝑎
(3)

33

] [

𝑥1

𝑥2

𝑥3

] =   [

𝑏1

𝑏2

𝑏3

] 

 

(11) 

where 

𝑎(3)
13=𝑢13 = 𝑎13 𝑎(3)

23= 𝑎23 − 𝑙21𝑢13 𝑎(3)
33= 𝑎32 − 𝑙31𝑢13 − 𝑙32𝑢23 

which yields the same results as the previous example.Thus the elimination equation 

will be [19]: 

 𝑎(𝑗)
𝑖𝑗= 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘

𝑗−1
𝑘=1,𝑘<𝑗 𝑢𝑘𝑗 (12) 
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This way of Gaussian elimination is called Left-looking Gaussian elimination 

because, as shown in the example, while modifying the current column, we always use 

the information on the left of the pivotal column. It is also called Column-based 

Gaussian elimination for obvious reason. It is also called "demand-driven" , "fan-in" 

or "lazy" approach.  A C implemetation code of this these two varaints for factorizing 

dense matrices is shown in figure(4.3). 

 

Figure 4.3 : (a) left approach  (b) right approach of Gaussian elimination[8,36]. 

An important variant of the right-looking Gaussian elimination is the Multifrontal 

method which makes use of the concepts of elimination and assembly trees discussed 

earlier. In the multifrontal method, each node of the assembly tree is associated with a 

matrix called frontal matrix that shows the elimination contribution of the node. For 

example, eliminating node 1 of figure(4.2) contributes to variables 3 and 7(1 → 3, 1 → 

7). This contribution is represented by the 2× 2 Schur complement(partial 

factorization) of the frontal matrix 𝐹1 and is passed to the parent(node 3) in this case). 

Similarly, the elimination of node 2 contributes to the variables 3 and 8 and results in 

2 × 2 Schur complement that is passed to node 3. Now, when eliminating variable 3, 

we should first assemble the contributions of all its children and add them to the 

original contribution of node 3. We do the same thing with the other variables in the 
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elimination tree. Figure (4.4) shows the assembly tree corresponding to the elimination 

tree of figure(4.2) 

 

Figure 4.4 : assembly tree of the elimination tree of figure(4.3) with the supernode 

combining 7,8,9 [27] 

• Solution. solve the system using forward and backward substitution. 

Once the LU factorization is obtained, the linear system solution 

consists of two steps: 

1. The forward substitution that solves the triangular system Ly = 

b; 

2. The backward substitution that solves Ux = y. 

The solution of successive linear systems using the same matrix but 

with different right-hand sides, often arising in practice, is then 

relatively cheap . 
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 ITERATİVE METHODS AND PRECONDİTİONERS  

Iterative methods have the advantage of using less memory and being easier to 

parallelize than direct methods. The main problem is that rate of convergence depends 

on the properties of the matrix. In this section, we discuss the basic iterative methods 

and preconditioners. 

 Basic Iterative Methods 

These methods are also called stationary (fixed point) methods. They are based on the 

relaxation of the coordinates. We start with  an initial approximation values of the 

solution and modify them through successive iterations until convergence. Basically 

these methods are not used by their own because they are not so efficient and the 

convergence is never guaranteed for all types of matrices.  However, variations are 

used as preconditioners or combined with other methods.  Table (5.1) shows the basic 

iterative methods along with the vectorization form of each method where D is the 

diagonal matrix with nonzero entries in the diagonal and -F and -E are strict lower  and  

upper triangular matrices respectively such that: 

 𝐴 =  𝐷 − 𝐿 −  𝑈 (5.1) 

Jacobi iteration method updates approximate solution locally at the end of each 

iteration. Thus it is easily parallelizable but the convergence is very slow. Besides, the 

convergence is  only guaranteed if the matrix is diagonally dominant. 

Gauss-Seidel iteration method  Updates approximate solution on the same vector 

immediately after the new component is available. Thus it is faster that Jacobi and 

more economical in terms of memory  but difficult to parallelize.  

Successive over relaxation (SOR) is faster than the previous approaches when an 

appropriate value of 𝝎 is chosen. Here, 𝝎 is positive nonzero value called the 

relaxation factor. A variant of SOR is symmetric successive over relaxation (SSOR) 

used a preconditioner for non-stationary methods. 
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Most of the iterative techniques converge faster  with preconditioners. The role of the 

preconditioners is to enhance the spectrum and thus the convergence characteristics of 

the coefficient matrix. Hence a preconditioning matrix M is multiplied by the 

coefficient matrix such that 

 𝑀−1𝐴𝑥 =  𝑀−1𝑏 (5.2) 

There are block extensions of these algorithms which increase the locality and speed-

up. 

Table 5.1: List of Basic Iterative Schemes. 

 

 Krylov Subspace Methods 

Krylov subspace methods are the non-stationary iterative methods and the most 

important iterative techniques. Krylov subspace methods solve the linear system of 

equations Ax = b by extracting an approximate solution 𝑥𝑚 from the affine subspace  

𝑥0 +  𝜅𝑚  of dimension m by imposing the Petrov-Galerkin  condition 

𝑥𝑚 ∈  𝑥0 + Κ  such that b - A𝑥𝑚  ⊥ 𝐿𝑚 
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where 𝑳𝒎 is a subspace of dimension m and 𝑟0 = b - A𝑥0 for some initial guess of 

solution 𝒙𝟎 [14]. In other words, the approximate solution can be defined as 

 𝑥  ̂= 𝑥0 +   𝛿  𝛿 ∈  Κ 

(𝑟0 − 𝐴𝛿,𝑊) − 0 ∀ 𝑤 ∈ 𝐿 

Figure (5.1) depicts the orthogonality condition of the krylov subspace method. 

 

Figure 5.1 : Orthogonality condition of the Krylov subspace[14]. 

5.2.1 Generalized minimum residual method (GMRES) 

GMRES is a projection method where 𝚱 = 𝚱𝒎 and L = A𝚱𝒎. This method is based 

on minimizing the residual norm over a Krylov subspace at each iteration by 

computing a sequence of orthogonal vectors. Algorithm(2) shows GMRES with 

householder orthogonalization scheme. GMRES converges in at most n steps. 

however, n might be large and the memory required for storing the orthonormal bases 

and the computational cost of the orthogonalization scheme is getting larger. To cope 

with these problems,  GMRES is restarted after m iterations if the desired convergence 

is not achieved with 𝒙𝟎 = 𝒙𝒎. This variant of GMRES is know as restarted GMRES(m) 

with projection size m. Another important variant of GMRES is Flexible GMRES 

(FGMRES) in which a right preconditioner is changing at each step. The cost of this 

flexibility is that an extra memory is required to store a set of vectors  {𝒁𝒋}𝒋=𝟏…𝒎 [14]. 
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5.2.2  Conjugate gradient method (CG) 

This method works fine with symmetric positive definite matrices. We approximate 

the solution by minimizing a quadratic functional of the form. 

 
𝐹(𝑥) =

1

2
 𝑥𝑇𝐴 𝑥 − 𝑥𝑇  𝑏 

(5.3) 

by taking the orthogonal(conjugate) gradients of equation (5.3). They are also residuals 

of the iterates. Variants of this method for symmetric but not positive definite are 

minimal residual (MINRES) and symmetric LQ (SYMMLQ). BiConjugate 

Gradient(BiCG) generates two CG, one is based on the original coefficient matrix A 

and the other on  𝑨𝑻 and are made orthogonal with each other "bi-orthogonal". This 

method can work with unsymmetric matrices but they require multiplication with the 

A and   𝑨𝑻 at each iteration [38]. 
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 Preconditioning  Methods 

A preconditioner is an operator M that transforms  the original matrix A into another 

matrix such that the new matrix is faster to solve. There are many constraints on the 

preconditioners. A good preconditioner should be inexpensive to compute and store. 

In the parallel environment, there are two more constraints; parallelisibility and 

scalability; the communication should be minimized during preconditioner setup and 

performance should be enhances with increasing number of processors. 

From application point of view, there are two broad classes of preconditioners; 

problem-specific preconditioners and general-purpose algebraic preconditioners. The 

former can give optimal solution for specific type of problems but require a complete 

knowledge of the problem and usually sensitive to the input parameters. The second 

type is not optimal for specific problems but gives reasonable solution in many cases. 

The later type  use only information contained in the coefficient matrix and they are 

easy to apply [40]. 

 If  preconditioner M is a non-singular matrix that approximates  𝑨−𝟏, then the left 

preconditioner is defined as: 

 𝑀𝐴𝑥 = 𝑀𝑏  

Right preconditioner is also possible: 

 𝐴𝑀𝑡 = 𝑏  

Once the t vector is obtained, we can get the solution vector by x=Mt. 
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 HYBRID SOLVERS 

As mentioned in the previous sections, direct and iterative methods are the most 

popular algorithms for solving sparse linear systems.  Direct methods  can give high 

accurate results(≈ 10−15) and are more suitable for small(by small we mean several 

millions of equations) problems because of the memory consumption they require( for 

example, they can not solve large sparse 3D problems which contain hundereds of 

millions of equations). Besides, They have limited parallel scalability. Preconditioned 

iterative methods, on the other hand, are more robust, require less memory and easier 

to parallelize. However, they are problem dependent and can converge faster with good 

preconditioning methods.  

In an effort to find the best algorithm for solving large sparse linear systems efficiently, 

various hybrid methods have been developed  using both direct and iterative 

techniques. In general, there are five major steps these hybrid solvers follow to solve 

the linear systems: 

Step 1: Algebraic domain decomposition 

Step 2: Factorization 

Step 3: Preconditioning 

Step 4: Solve 

All hybrid solvers discussed here are for solving linear systems of the form: 

 Ax = b (6.1) 

where A is a large sparse general purpose matrix, b is a dense vector and x  is the 

vector of unknowns to be found. 

 PDSLin 

The first Hybrid solver we are going to discuss is called PDSLin (Parallel Domain 

decomposition Schur complement based LINear solver) developed by Ichitaro 
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Yamazaki and X. Sherry Li at Lawrence Berkeley National Laboratory(LBNL). It can 

be downloaded from here[40]. In this solver, the global system is first reordered using 

any parallel ordering algorithm like Pt-scotch[41] or  Parmetis[42]. Next, the system 

is divided into a set of subdomains that are only connected through separators as shown 

in figure(6.1). 

 

Figure 6.1 : Domain Decomposition of PDSLin[43]. 

𝑨𝟏𝟏 is diagonal matrix and always has a block diagonal structure because vertices in 

each subdomain are either connected to other vertices in the same subdomain or their 

interfaces.  𝑨𝟐𝟐 are the separators and 𝑨𝟏𝟐 and 𝑨𝟐𝟏 are the interfaces between them. 

The internal unknowns are then eliminated to form the Schur complement for each 

subdomain [43]: 

 
(
𝐴𝐼𝐼              𝐴𝐼Γ

𝐴ΓI         𝐴ΓΓ
) (

𝑥𝐼

𝑥Γ
) =  (

𝑏𝐼

𝑏Γ
) 

(6.2) 

 
(
𝐴𝐼𝐼              𝐴𝐼Γ

0               𝑆
) (

𝑥𝐼

𝑥Γ
) =  (

𝑏𝐼

�̂�Γ
) 

(6.3) 

Thus S and �̂�𝚪 can be defined as, 

 𝑆 =  𝐴ΓΓ − 𝐴ΓI 𝐴
−1

II 𝐴𝐼Γ (6.4) 

 �̂�Γ  =  𝑏Γ − 𝐴ΓI 𝐴
−1

II 𝑏𝐼 (6.5) 

Matrix 𝑨−𝟏
𝐈𝐈 can be factorized using either superlu-dist[44] or MUMPS[3] for each 

subdomain. The approximate  �̃�    is used as a preconditioner as follows: 

S = 

≈ 

𝐴ΓΓ − (𝐴ΓI 𝑈
−1

II)( 𝐿
−1

II𝐴IΓ ) 

𝐴ΓΓ − �̃� �̃�                                 
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≈ 

≈ 

𝐴ΓΓ − �̃�                                      

�̃�          ,   𝑀 =   �̃�−1                    

(global approximation of S as 

a preconditioner). 

Because most of the fill occur in the Schur complement, matrices   �̃� , �̃� , �̃� and �̃� are 

approximated by a predefined dropping threshold values in order to enforce the 

sparsity of  the resulting matrices and thus reduce matrix-matrix multiplication and 

memory consumption. Furthermore, if A is SPD, S inherits this property and thus 

Conjugate Gradient method can be employed [14]. Another advantage of this method 

is that  Schur complement need not be defined explicitly i.e no need to reserve memory 

space for the whole Schur matrix and thus multiplication can be done on the fly 

because this Schur matrix is used only once.  S is solved using Krylov subspace method 

of PETSc[43,45].The unknowns on the interface 𝒙𝚪 are then found as: 

 𝑥Γ =    𝑆−1�̂�Γ = 𝑆−1 (𝑏Γ − 𝐴ΓI 𝐴
−1

II 𝑏𝐼)  

The above multiplication is matrix vector multiplication. The next step is to solve 

interior unknowns in parallel using already factored subdomains: 

 𝑥𝐼 =   𝐴−1
II (𝑏𝐼 − 𝐴IΓ 𝑥Γ)  

Our experimental results show that choosing appropriate values of sparsifying 

tolerances can drastically reduce the preconditioning time . However, this also can 

increase the number of iterations and thus the solution time especially in PDSLin. 

To tackle the problem of large scale systems, PDSLin uses two levels of parallelism: 

in first level, the internal domains are factored concurrently and independently, in the 

second level, each internal subdomain is assigned to different processors. This ensures 

constant number of subdomains, Schur size and convergence rate regardless of the 

number of processors used. See figure(6.2). 



44 

 

Figure 6.2 : parallel subdomain calculation of PDSLin[43]. 

 

To summarize the main solution steps and the options we used  for using the  two level 

parallelism in PDSLin : 

• Read and scatter the matrix among processors 

• .matrix ordering and partitioning. We used Parmetis for subdomain 

extraction. Some refinement algorithms are used here to load balance 

subdomains and interfaces. 

• Using input options for factorizing internal subdomains, we used 

superlu-dist with 𝒏𝒈𝒍 processors to factorize each subdomain 

concurrently. 

•  Computation of an approximate schur complement. Using sparsifying 

tolerances defined in the input file, equation (6.4) is calculated by doing 

approximate matrix-matrix multiplication on  (𝑨𝚪𝐈 𝑼
−𝟏

𝐈𝐈) (called  G 

matrix) and ( 𝑳−𝟏
𝐈𝐈𝑨𝐈𝚪 ) (called W matrix). The result Schur matrix is 

further preprocessed and sparified.  

• This sparsified Schur matrix is then factorized(exact LU factorization) 

using another instance of superlu-dist and used as a precoditioner for 

the Schur matrix itself. Krylov method(GMRES, FGMRES or 

BiCGstab) of PETSc is used to solve the preconditioned Schur matrix. 

At this stage the solution vector of the interface is found. 
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• Using solution vector of the interface and the already factored 

subdomains, triangular solve is used to find the unknowns 

corresponding to the internal subdomain variables. 

 Maphys 

Maphys solver [46] is similar to PDSLin. This solver first partitions the global matrix 

into 2×2 block matrices using non-overlapping graph partitioner and then solves the 

generated Schur complement. The internal subdomains 𝑨𝑰𝑰  are factored using sparse 

direct solver either Pastix [47] or MUMPS[3]. To solve the preconditioned Schur 

matrix, we can use CG, GMRES , FGMRES. The partitioner used here is a sequential 

one like Metis[42] or Scotch[41] and they consider parallel partitioners as future work. 

The preconditioning criterion is  also different from that of PDSLin. Each local 

subdomain  𝛀𝒊  can be represented as a local matrix 𝑨𝒊  : 

 
𝐴𝑖 = (

𝐴𝐼𝑖𝐼𝑖              
𝐴𝐼𝑖Γ𝑖 

𝐴Γ𝑖𝐼𝑖              
𝐴Γ𝑖Γ𝑖  

) 
(6.6) 

Thus the Schur matrix of equation (6.4) can be defined as: 

𝑆 =  ∑ 𝑅𝑇
Γi

𝑛
𝑖=1  𝑆𝑖 𝑅Γ𝑖 (6.7) 

where 

𝑆𝑖  =  𝐴Γ𝑖Γ𝑖  
− 𝐴𝐼𝑖Γ𝑖 

𝐴−1
𝐼𝑖𝐼𝑖 

𝐴Γ𝑖𝐼𝑖   
 (6.8) 

Since the interior unknowns are no longer considered, a new restriction 𝑹𝚪𝐢 should be 

devised because of the non-overlapping between the neighboring subdomains at the 

interfaces( 𝚪𝒊  ∩  𝚪𝒋 =  ∅). Thus 𝑹𝚪𝐢 is 𝚪 →  𝚪𝒊 be the canonical point-wise restriction 

which maps full vectors defined on 𝚪 into vectors defined on  𝚪𝒊 [45]. 

Equation (6.7) is the global Schur complement obtained by summing the contributions 

over the subgraphs, and equation (6.8) is the local Schur complement corresponding 

to each local subdomain  𝛀𝒊  of the equation (6.6).  
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Figure 6.3 : Domain decomposition of Maphys[48]. 

Figure (6.3) is similar to figure (6.1) but we elaborate on the subdomains because the 

preconditioner relies on the local assembled Schur complement rather than global 

Schur complement of PDSLin. The assembled local Schur complement  is constructed 

from local Schur complement by assembling their local blocks.  Each box in matrix M 

corresponds to an assembled local Schur complement �̅�𝒊  as depicted in figure (6.3). 

This preconditioner is known as Algebraic Additive Schwarz Preconditioner. Such 

preconditioner is similar to Neumann- Neumann preconditioner but  with the 

difference is that it is SPD if the original matrix is SPD which is not always true in 

Neumann-Neumann preconditioner[10]. 

 

Figure 6.4 : Algebraic Additive Schwarz preconditioner[49]. 

Similar to PDSLin, in order to get inexpensive preconditioner, Maphys relies on the 

sparsifying techniques. However, the sparsfication mechanism is different from that 

of PDSLin. It uses the following criterion to sparsity the assembled preconditioning 

matrix: 
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𝑆̅̃
𝑙𝑖  =  {

0                𝑖𝑓| 𝑆�̅�𝑖 | ≤  𝜉  (𝑆�̅�𝑙 + 𝑆�̅�𝑖)

𝑆�̅�𝑖                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6.9) 

This criterion preserves the symmetry of the symmetric problems[10,50]. 

Here we summarize the solution phases  of Maphys followed  in our experiments: 

• Partitioning step. Maphys uses nested dissection algorithm of Metis or Scotch 

for graph partitioning. In our experiments we used scotch-custom option. 

• Factorization of the interior subdomains 𝑨𝑰𝒊𝑰𝒊   and the local Schur complement 

𝑺𝒊 . Maphys uses either the supernodal method of Pastix or the multifrontal 

method of Mumps for this purpose  and let the user choose between them. In 

order to use the 2-level parallelism, Pastix with multithreading option should 

be compiled and linked with Maphys. We chose Pastix in all our experiments 

except for serial time, we chose Mumps.  

• Preconditioning. As dicussed before, Maphys uses Additive  Schwarz 

preconditioner which consists of two steps: assembly of the local Schur 

matrices �̅�𝒊. The next step is factorization of this assembled Schur matrix. 

Because �̅�𝒊 is a dense matrix, the preconditioner can be expensive. Thus 

dropping is used as discussed before. This preconditioner is called sparse 

preconditioner. The user has to define the dropping threshold 𝝃 in order to 

activate this preconditioner. There is another preconditioner  type in Maphys 

based on ILU(t,p) factorization which is already implemented in pARMS. In 

our experiments, we used sparse preconditioner. 

• Solve step. Similar to PDSLin, There are two consecutive phases here. First 

solving the interface unknowns  and then backsolve of the interiors. 

6.2.1 Multithreading in Maphys 

In order to implement the two level parallelism in Maphys. Maphys developers use 

three types of binding and let the user decide which binding to choose. The first type 

is not to use any kind of binding and let the operating system handle the binding 

between processes and threads(Figure (6.5a)). The second type is to bind processes to 

cores and let the operating system handle the placement of threads(Figure (6.5b)).  The 

third type is to handle the placement of threads and processes(Figure (6.5c)). Since 
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such bindings depend on the operating system and architecture of the target machine, 

Maphys relies on hwloc software [51] for getting these information from the machine. 

In [10], they tested the three types of binding and concluded that the second type gives 

the best results so we used this type of binding in all our experiments when evaluating 

the two level parallelism of Maphys. More about this can be found in  the result section. 

 

Figure 6.5 : The Three binding mechanisms of Maphys[10]. 

 HIPS 

Similar to the previous solvers, HIPS (Hierarchical Iterative Parallel Solver) uses 

direct/iterative methods through Schur complement. GMRES is used for solving the 

Schur complement S  preconditioned by incomplete LU of S; i.e  M ≈ �̅�𝑠�̅�𝑠   as follows:  

The local block matrices of 𝐴𝐼𝐼 of  equation(6.2) are factorized independently with 

exact factorization using supernodal right looking algorithm. In the next step, an 

approximate computation of the global  �̅�𝑠�̅�𝑠  using left looking ILUT(τ) algorithm 

where: 

 �̅�𝑠�̅�𝑠  =  𝑆̅ −  (𝐴ΓI 𝑈
−1)( 𝐿−1

II𝐴IΓ )   (6.10) 

HIPS uses a different graph partitioning and reordering algorithm called Hierarchical 

Interface Decomposition Algorithm (HID) as well as Metis or Scotch for ordering 

internal unknowns. Here we briefly outline the algorithm of HID. Reader should 

consult  [52] for further details .  

HID is an edge-based partitioning algorithm ,i.e, the overlaps are over vertices rather 

edges. The global domain is partitioned into levels; each level has a set of subgraphs 

called connectors such that connectors of a given level are 'separators' of the levels 
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below. Figure (6.6) shows an example of partitioning 5-point mesh of 2D Poisson 

equation into 9 subdomains using this scheme. In this example, we can distinguish 

three types of points: interiors which are the lowest level. The interface nodes which 

are the separators of the interior nodes and the cross points; separators of the interface 

nodes. Such a hierarchal decomposition is appealing for parallel processing since 

factorization can proceed independently starting from the lowest level using 

ILU[52,53] .  However, we should keep this HID structure as intact as possible and 

minimize fill-in between connectors. 

 

Figure 6.6 : (a)Partition of an 8× 8 5-point mesh into 9 subdomains and the 
corresponding HID structure (b) Matrix associated with an 8× 8 5-point mesh reordered 

according to HID [52]. 

In order to keep the HID structure, developers of HIPS suggested two dropping 

strategies: locally consisted strategy and strictly connected strategy.  

In strictly consisted strategy, fill-in is allowed only in places that will not destroy the 

HID block diagonal structure. Locally consistent strategy, fill-in is allowed in any 

block matrix. 

 

Figure 6.7 : block partition of subdomain(2) [52]. 
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Figure (6.7) shows the block matrix of subdomain (2) as an example. The diagonal 

elements show the levels: level labeled (2) is the lowest level (level 0) and takes the 

label of the subdomain itself. connectors of the second level(level one): (1,2), (2,3), 

(2,5) which are interfaces of level 0 (previous level) and connectors of level 2: 

(1,2,4,5),(2,3,5,6) or the cross points. The figure also shows places where fill-in is 

allowed using locally consistent strategy. 

Saad in [53] states that there are two important ingredients of this method: (1) good 

levelization(few levels). (2) good combination of incomplete factorization algorithm 

and dropping strategy.  

As opposed to PDSLin, HIPS uses one level mapping of processors to subdomain ,i.e, 

each processor is assigned to multiple subdomain. This ensures a good load balancing 

but global size of the Schur complement increases with increasing number of 

subdomain [6]. In our experiments, we used one level parallelism with Maphys using 

ASIC680ks matrix. 

 pARMS 

This solver is based on a multilevel recursive algorithm called Algebraic Recursive 

Multilevel Solver (ARMS) developed by Yousef Saad[54]. So it is a multilevel 

approach, in the first level, the global system is ordered into 2×2 blocks of matrices 

similar to that of equation(6.2). Nested dissection algorithm of Metis or row and 

column permutation, i.e, 𝑃𝐴𝑃𝑇can be used for such ordering. For convenience, we are 

going to rewrite the equation (6.2) with superscript denoting the level number as 

follows: 

 
(
𝐴(𝑙)

𝐼𝐼              𝐴
(𝑙)

𝐼Γ

𝐴(𝑙)
ΓI         𝐴

(𝑙)
ΓΓ

)(
𝑥(𝑙)

𝐼

𝑥(𝑙)
Γ

) =  (
𝑏(𝑙)

𝐼

𝑏(𝑙)
Γ

)                                         (6.11) 

The above equation is then approximately factored like this: 

 (
𝐴(𝑙)

𝐼𝐼              𝐴
(𝑙)

𝐼Γ

𝐴(𝑙)
ΓI         𝐴

(𝑙)
ΓΓ

)   ≈  (
𝐿(𝑙)                       0

𝑏(𝑙)
ΓI 𝑈

−1(𝑙)
        𝐼

) × ( 𝑈(𝑙)     𝐿−1(𝑙)
𝐴(𝑙)

𝐼Γ

   0                      𝑆(𝑙+1)
) (6.12) 

where I is the identity matrix, 𝑼(𝒍) and 𝑳(𝒍)   are the LU (or ILU) factors of 𝑨(𝒍)
𝚪𝚪 and 

𝑺(𝒍+𝟏) is an approximate of the  Schur complement of equation(6.3). 
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 𝑆(𝑙+1 )  =  𝐴(𝑙)
𝐼Γ  −  (𝐴(𝑙)

ΓI   𝑈
−1(𝑙)

) ( 𝐿−1(𝑙)
 𝐴(𝑙)

𝐼Γ) (6.13) 

All matrices and matrix multiplications of equation(6.13) are approximated with 

certain dropping threshold values in a manner similar to that of PDSLin and Maphys. 

In the next step, we repeat this same process with resultant S matrix. ARMS algorithm 

is shown at (3)below 

 

For LU(or ILU) factorization of the last level at step(3), different approximations can 

be used. Pivoting is not performed during the block factorization except for the last 

level where  a pivoting factorization technique like ILUTP or GMRES preconditioned 

with ILUT can be used.  Saad in[56] divides ARMS into three phases: the first 

phase(called the forward or restriction) phase as analogous to the coarsening phase of 

AMG method. Various number of methods may be used in this phase like VARMS 

and WARMS. 

 ABCD 

Augmented Block Cimmino Distributed Solver(ABCD) is develpoed from a PhD 

thesis of Mohamed Zenadi. The official website of this solver is [56] and the github 

account is [57]. This solver is based on an iterative method using block-row 

projections. called block Cimmino method[58]. For convenience, we present the 

original algorith below. The original system (Ax = b) is partitioned into p blocks of 

rows such that, 
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 (

𝐴1

𝐴2

⋮
𝐴𝑝

)  𝑥  =   (

𝑏1

𝑏2

⋮
𝑏𝑝

) 
 

(6.14) 

PaToH Hypergraph partitioner is used for row permutation. The justification for this 

row-wise partitioning is that an ill-conditioned matrix A has some linear combination 

of rows almost equal to the zero vector. After such row partitioning, these may occur 

within the blocks or across the blocks. If, in the block Cimmino algorithm, we assume 

that we compute the projections on the subspaces exactly, the rate of convergence of 

the method will depend only on the conditioning across the blocks[59]. 

From initial estimates of 𝒙(𝟎), the algorithm approximates the solution iteratively 

according to 

𝑢𝑖  =  𝐴+
𝑖 (𝑏𝑖 − 𝐴𝑖 𝑥

(𝑘)
 ) i = 1 , … , p             (6.15) 

𝑥(𝑘+1)  =  𝑥(𝑘) +   𝜔 ∑𝑢𝑖

𝑝

𝑖=1

              (6.16) 

where 𝑨+
𝒊 is the Moore–Penrose pseudo-inverse(explicitly 𝑨+

𝒊 =𝑨𝑻
𝒊(𝑨𝒊 𝑨

𝑻
𝒊)

−𝟏  ) of 

the matrix 𝑨𝒊 and 𝝎 is the relaxation parameter. Similar to Jacobi iteration method, 

equations in (6.15) are independent and can be solved in parallel. We can write the 

above equations like: 

 

 𝑥(𝑘+1) = 
𝑥(𝑘) +   𝜔 ∑𝐴+

𝑖 (𝑏𝑖 − 𝐴𝑖 𝑥
(𝑘)

 )

𝑝

𝑖=1

 

     (6.17) 

 

  = ( 𝐼  − 𝜔 ∑ 𝐴+
𝑖 𝐴𝑖 

𝑝
𝑖=1 ) 𝑥(𝑘)   +  𝜔 ∑ 𝐴+

𝑖 𝑏𝑖 
𝑝
𝑖=1        (6.18) 

  = 
𝑄 𝑥(𝑘) +   𝜔 ∑𝐴+

𝑖

𝑝

𝑖=1

𝑏𝑖  

        (6.19) 

The iteration matrix for the block Cimmino method is (H = I - Q) which corresponds 

to a sum of projectors (H = 𝝎 ∑ 𝑷𝑹(𝑨𝑻
𝒊)
 

𝒑
𝒊=𝟏  where 𝑹(𝑨𝑻

𝒊) is a projection matrix onto 

the range of 𝑨𝑻
𝒊. If 𝝎 > 0, H will be symmetric positive semidefinite and it is 
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symmetric  positive definite if A is square and of full rank. So we can solve equation 

(6.20): 

 𝐻𝑥 =    𝜔 ∑𝐴+
𝑖

𝑝

𝑖=1

𝑏𝑖       (6.20) 

using conjugate gradient or block conjugate gradient methods. As the relaxation scalar 

𝝎 appears on both sides of the equation, we can set it to one. At each step of the 

conjugate gradient algorithm, we must solve for the p projections 

 𝐴𝑖 𝑢𝑖  =   𝑟𝑖  ,   (𝑟𝑖 = 𝑏𝑖 − 𝐴𝑖 𝑥
(𝑘) ),     𝑖 =  1 , 2…𝑝.    (6.21) 

To solve the subproblems of (6.15, 6.21) system, the following augmented system is 

used: 

 
(
𝐼            𝐴(𝑇)

𝑖

𝐴𝑖                0
) (

𝑢𝑖

𝑣𝑖
)  =   (

0
𝑟𝑖
)                                 ..    (6.22) 

The reason for this augmented system approach is that it is more stable and less 

sensitive to ill-conditioning within the blocks caused by this row-wise partitioning  and 

thus accelerate the convergence of the block Cimmino method. Second it helps using 

the ellipsoidal norms and the corresponding oblique projectors used.  

 

The sparse direct multifrontal solver MUMPS is used to solve this augmented system. 

At each iteration to get 𝒖𝒊 = 𝑨+
𝒊𝒓𝒊 , the projection is needed for each partition 𝑨𝒊. 
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According to [60], there are two ways that ill-conditioning can affect the solution using 

block Cimmino: 

• Within the blocks where the systems being solved are symmetric indefinite 

problems, ill-conditioning can cause any sparse direct method to behave poorly 

or unpredictably. 

• Across the blocks where there can be problems if the subspaces are far from 

orthogonal. 
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 EXPERIMENTAL SETUP AND RESULTS 

In this chapter we  discuss the experimental method and environment we used for 

comparing those methods. The hybrid solvers we evaluate are Maphys and PDSLin. 

We compare the  results with state-of-art Superlu-dist direct solver.  

 Experimetal environment and Optimization Details 

Our experiments are conducted on a linux cluster with Slurm workload manager called 

Sariyer cluster  at Ulusal Yüksek Başarımlı Hesaplama Merkezi Projesi (UHeM).   

Sariyer nodes consist of two sockets with 14-core Intel(R) Xeon(R) CPU 

E5-2680 v4 @ 2.40GHz processors in each socket (total of 28 cores per node).  

All the libraries are compiled using Openmpi, Intel MKL library and gcc@7.1.0 

compiler with 03 optimization flag. Due to the large number of libraries and their 

dependencies, we could not compile the whole libraries with Intel compilers and 

consider that as a future work. With superlu-dist and PDSLin, we used one debugging 

and print level, namely, -DDEBUGlevel=1 -DPRNTlevel=1.  All the libraries are 

compiled with 32 bit arithmatic and matrix indices (integer limit 231-1) and we 

consider 64 bit as a future work. The versions of the libraries appear in Appendix(A), 

table(A2). 

We used the matrix format IJV,  MTX and HB and Matlab for converting matrices 

from Matlab format into IJV/HB. Because MTX takes explicit zeros into account, for 

the sake of fair comparison, we took those explicit zeros into account during 

conversion in all types of matrices too.  The reason of taking multiple matrix formats 

is that different solvers support different matrix formats and a solver sometimes fails 

on a certain matrix format and works with other format. For example, Maphys fails to 

run (not fails to give a solution) with atmosmodl MTX matrix format and works with 

HB format. PDSLin works better when using IJV format for symmetric matrices. 

Because Matlab automatically drops zeros from sparse matrices, we substitute the 

explicit zero values by 𝟏𝟎−𝟑𝟎. 
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Finally, following the conventions in [61], we distinguish three types of failur: 𝑭𝑪 

indicates an abnormal or no termination failure, 𝑭𝑴 indicates that the solver runs out 

of memory,   𝑭𝑵 indicates that the results were not accurate. 

 Matrix Description 

The  four matrices we selected for evaluation are all from Florida University collection. 

These are of moderate sizes.  The description of the matrices is shown in table (7.1). 

The criteria of choosing these matrices are the size of the matrix, number of nonzero 

elements,  source of the matrix, the sparsity structure and degree of diffcultiy. The 

condition number of the matrices is taken from Matlab function condest(). According 

to matlab documentation, condest() is based on the 1-norm condition estimator of 

Hager  and a block-oriented generalization of Hager's estimator. The heart of the 

algorithm involves an iterative search to estimate ||𝑨−𝟏||𝟏without computing this 

inverse[62].  

Table 7.1: List of matrices used for evaluating hybrid solvers. 

Name Freescale1 Atmosmodl Audikw-1 ASIC_680ks 

n 3.4M 1.5M 
 

934K 
682.7K 

nnz 17M 10.31M 
 

77.7 M 
1.7 M 

 

Cond No 
1.074941e+10 1.472850e+03 6.952866e+10 9.474649e+19 

Explicit Zeros 1.9M 0 0 0.6M 

Sym (pattern 

Sym%) 

unsymmetric 

(0%) 

unsymmetric 

(100%) 

symmetric  

(100%) 

unsymmetric 

(100%) 

Type real real real real 

Source Circuit Simulation  
Computational Fluid 

Dynamics  
3D Structur Circuit Simulation  

Maphys Serial 

Time 
34.81 321.6 199.4 69.03 

PDSLin Serial 

Time 
72.397 659.40688 684.700 8.0897 

Superlu-dist 

Serial Time 
FN 676.79 622.1 FN 

Sparsity 

Pattern 

    

 



57 

Table 7.2: Processor Distribution and Sparsifying Tolerance Setting on the Selected Matrices 

 Audik Freescale ASIC atmosmodl 

#nodes 1 2 8 8 11 1 1 1 2 8 16 1 1 8 8 16 2 2 8 8 16 

#cores 16 32 64 128 256 4 8 16 32 64 256 4 16 64 128 256 16 32 64 128 256 

#subdomains 

MaPHyS 16 16 16 16 16 4 4 8 4 16 16 4 16 64 128 256 8 8 16 16 16 

PDSLin 4 8 8 8 8 4 4 4 4 16 16 4 8 8 8 8 4 4 8 8 16 

# cores 

MaPHyS threads 1 2 4 8 16 1 2 2 8 4 16 4 16 64 128 256 2 4 4 8 16 

PDSLi

n 

𝑛𝑔𝑙 2 4 16 32 64 1 2 4 8 4 16 1 2 8 16 32 2 4 4 8 16 

𝑛𝑔𝑠 16 16 16 4 64 4 4 4 8 16 8 4 4 32 8 4 4 4 8 16 16 

preconditione

r 

MaPHyS 10−4 10−4 10−4 10−4 10−4 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 

PDSLi

n 

𝜏𝐺 10−4 10−3 10−3 10−3 10−3 10−12 10−12 10−12 10−12 10−12 10−4 10−20 10−20 10−20 10−20 10−20 10−6 10−6 10−6 10−6 10−6 

𝜏𝑊 10−1 10−2 10−2 10−2 10−2 dense 
dens

e 

dens

e 

dens

e 

dens

e 
dense 10−20 10−20 10−20 10−20 10−20 dense 

dens

e 

dens

e 

dens

e 

dens

e 

𝜏𝑆 10−5 10−5 
dens

e 

dens

e 

dens

e 
10−10 10−10 10−10 10−10 10−10 𝑑𝑒𝑛𝑠𝑒 10−20 10−20 10−20 10−20 10−20 10−5 10−5 10−5 10−5 10−5 

#iterations 

MaPHyS 76 97 96 88 68 17 17 17 46 46 46 2 2 -- -- -- 20 20 25 25 25 

PDSLin 43 156 8 10 10 2 2 2 2 2 8 4 2 2 4 4 16 16 18 18 18 
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 Evaluation  Metrics 

For evaluating the solvers, we extract the information from the generated output files. 

We used the same stopping criteria for all solvers(𝟏𝟎−𝟏𝟐) the error measurement for 

the three solvers is shown in table(7.3) below. 

Table 7.3:  List Error Measurements 

Solver Error Measurement  

Superlu-dist FERR = ||𝒙𝒕𝒓𝒖𝒆 − 𝒙 ||∞ / ||𝒙 ||∞ ||𝒙 ||∞ = 𝒎𝒂𝒙𝒊 |𝒙𝒊|   

PDSLin Err.nrm = √||𝒙𝒕𝒓𝒖𝒆 − 𝒙 ||𝟐  / √||𝒙 ||𝟐 ||𝒙 ||𝟐 Euclidean norm 

Maphys Norm.res = ||𝑨𝒙 − 𝒃 ||𝟐 / ||𝒃 ||𝟐  

Since time and memory are the major concerns in sparse matrices, we studied those 

parameters here. The time measurement is the MPI wall-clock time function; 

MPI_Wtime(). For memory measurement, different solvers use different tools to 

extract these information. 

Finally, we used Speedup measurement according to the definition below: 

Definition The speedup(S(p)) is defined as : S(p) =T(1)/T(P). where T(1) is the serial 

time; we ran the code with a single processor and T(P) is the parallel time using P 

number of processors. 

The control parameters for solving the selected matrices are show in table (7.2) above. 

As mentioned before, the criteria of selecting these values is for best performance of 

the solver. We should mention here that except for ASIC680KS, the matrices are 

simple matrices  and that is why sparse preconditioner is used as shown in table(7.2). 

By setting the number of subdomains to 4,8  and 16 in PDSLin and Maphsy, we 

increased the number of threads/processors from 16 to 256 in each solver. We chose a 

power of 2 for subdomains since nested dissection method is used for graph 

partitioning.  The speedup is show in figure(6.8) below. 
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Table7.4: Superlu-dist options selected 

Name Audik-1 Freescale1 ASIC680ks atmosmodl 

Equil YES YES YES YES 

ColPerm PARMETIS PARMETIS PARMETIS PARMETIS 

RowPerm NO LargeDiag LargeDiag LargeDiag 

SymbFact ParSymbFact ParSymbFact ParSymbFact Serial on 𝐴𝑇 + 𝐴 

SymPattern YES NO NO NO 

ReplaceTinyPivot YES YES YES YES 

IterRefin NO NO NO NO 

Trans NO NO NO NO 

SolveInitialized NO NO NO NO 

RefineInitialized NO NO NO NO 

The serial/Parallel time in Maphys is the total execustion time RINFO(21). For 

PDSLin, the parallel time is the time to factorize local subdomains + time to compute 

approximate Schur + time preprocessing approximate Schur + time factorizing Schur 

matrix + solve time. The serial time in PDSLin is the factorization time + the solve 

time. The parallel/serial time in Superlu-dist is equal to equilibration time + row 

permutation time(if exists) + column permutation time + symbolic factorization time 

+ distribute time +  numerical factorization time + solve time. 
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Figure 7.1: Speedup of Maphys, PDSLin, and Superlu on Audik(a), 

Freescale(b)ASIC680ks(c) and Atmosmodl(d). 

 

As shown in table (7.1) above, In Audik-1 matrix, the serial time for the three solvers 

is approximately (199.4, 684.700, 622.1) seconds for Maphys, PDSLin and Superlu-

dist restrictively. It is significanet to see that serial time in Maphys is three times faster 

than Superlu-dist and PDSLin. Because we are using a single subdomain, Maphys and 

PDSLin work as a direct solver. Maphys uses MUMPS and PDSLin uses Superlu-dist 

in this case. 
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Figure 7.2: Solution steps of Maphys(M), PDSLin(P) and Superlu-dist(S) on  Audik(a), 

Freescale(b)ASIC680ks(c) and Atmosmodl(d). 

In Freescale and ASC680ks, Superlu-dist fails so it is not included in the graphs(The 

estimated forward error is approximately one even with itrative refinement).  As shown 

in Table(7.1), Freescale1 matrix is an arrow matrix so with a good column 

permutation, small amount of fill-in can occur. As shown in Figure(7.1), Maphys 

scales better than PDSLin using such input parameters. Both solvers make use of 

increasing number of processors and scales very well in Freescale matrix. 

The two level parallelism continues working in PDSLin with increasing number of 

processors. The two level parallelism in Maphys in ASIC680KS fails.  We used one 

level parallelism which fails at 64 processors. In this one level parallelism, number of 

processors is equal to the number of subdomains and this makes the Schur complement 

matrix size increases rapidly. This might be the reason on Maphys failure at 64 

processors and beyond. 

In atmosmodl matrix, all PDSLin and Maphys scales very well upto 128 processors. 

Again the facotization and solution time in Maphys is twice than that of Superlu-dist 

and PDSLin. 
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 Schur Complement Processing  

The following tables show Schur matrix number of entries after applying dropping 

threshold  along with number of subdomains for both solvers PDSLin and Maphys. 

Tables(5 - 12) shows the Schur complement information of Audik on PDSLin and 

Maphys respectively.  In PDSLin, when the dropping threshold 𝝆𝟐= 10−5around 25% 

entries are kept using 4 and 8 subdomains and when 𝝆𝟐= 0, a dense preconditioner is 

used. In that case, number of iterations and consequently solution time is getting 

smaller. 

Table7.5: Schur Matrix Info in Audik using PDSLin Solver 

P #subdom 𝝆𝟐 
Schur 
Size 

Nnz(�̅�) 
Nnz Kept 

(%) 
Niter 

16 4 1.000000e-05. 12539 26100057 25,0916 34 

32 8 1.000000e-05. 29177 38836822 28,1691 156 

64 8 0.000000e+00. 27874 304736476 100 8 

128 8 0.000000e+00. 27570 301717802 100 10 

256 8 0.000000e+00. 26906 293136106 100 10 

Maphys uses a local preconditioner, the Schur matrix size is much smaller.  When ρ=

𝟏𝟎−𝟒 using 16 subdomains, 9% of the entries are kept. This gives us an average of 85 

iterations. The solution time scales well with these settings up to 128 processors. 

Table7.6  Schur Matrix Info in Audik using Maphys Solver 

Threads #subdom 𝝆 
Schur 

Size(avg) 
Nnz(�̅�) 
(avg) 

Nnz Kept 
(%) 

Niter 

16 16 0,0001 6304 43240000 9.062 76 

32 16 0,0001 6304 43240000 9.062 97 

64 16 0,0001 6304 43240000 9.062 96 

128 16 0,0001 6304 43240000 9.062 88 

256 16 0,0001 6304 43240000 9.062 68 

Table7.7: Schur Matrix Info in Freescale using PDSLin Solver 

P #subdom 𝝆𝟐 
Schur 
Size 

Nnz(�̅�) 
Nnz Kept 

(%) 
Niter 

4 4 1.000000e-10. 1003 14195 16,2206 2 

8 4 1.000000e-10. 989 13955 15,6357 2 

16 4 1.000000e-10. 1237 18926 15,9283 2 

32 4 1.000000e-10. 937 11208 14,7863 2 

64 16 1.000000e-10. 1832 22814 16,1188 2 

256 16 0.000000e+00. 1671 3799 100 8 
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Table(7.7) shows the Schur complement information of Freescale.  When the dropping 

threshold 𝝆𝟐 = 𝟏𝟎−𝟏𝟎, around 15% entries are kept using 4 and 16 subdomains and 

when 𝝆𝟐 = 0, a dense preconditioner is used.  

In Maphys, ρ= 𝟏𝟎−𝟔, only 1% and 1.5% of nnz entries are kept in Freescale matrix as 

shown in table(7.8) below. 

Table7.8  Schur Matrix Info in Freescale using Maphys Solver 

Threads #subdom 𝝆 
Schur 

Size(avg) 
Nnz(�̅�) 

Nnz Kept 
(%) 

Niter 

4 4 1E-06 577.2 338000 1 17 

8 4 1E-06 577.2 338000 1 17 

16 4 1E-06 577.2 338000 1 17 

32 16 1E-06 344.2 133700 1.5 46 

64 16 1E-06 344.2 133700 1.5 46 

256 16 1E-06 344.2 133700 1.5 46 

The entry values of ASC680ks are very small so even with , 𝝆𝟐 = 𝟏𝟎−𝟐𝟎, almost all 

entries are kept and a dense preconditioner is used as shown in table(7.9) below. 

Table7.9 Schur Matrix Info in ASIC680KS using PDSLin Solver 

P #subdom 𝝆𝟐 
Schur 
Size 

Nnz(�̅�) 
Nnz Kept 

(%) 
Niter 

4 4 1.000000e-20. 781 1249 99,3636 4 

16 8 1.000000e-20. 1124 1851 100 2 

64 8 1.000000e-20. 1155 1837 99,7827 2 

128 8 1.000000e-20. 1086 1707 99,8246 4 

256 8 1.000000e-20. 1099 1777 99,7754 4 

As a contrast, using 𝝆𝟐 = 𝟏𝟎−𝟔 , thrshold, only 1% of the nnz entries are kept in the 

local Schur complement as shown in ytable(7.10) below. 

Table7.10  Schur Matrix Info in ASIC680ks  using Maphys Solver 

Threads #subdom 𝝆 
Schur 
Size 

Nnz(�̅�) 
Nnz Kept 
(%) 

Niter 

4 4 1E-06 5032 28300000 1 2 

16 16 1E-06 2771 9574000 1 2 

64 64 1E-06 0 0 0 0 

128 128 1E-06 0 0 0 0 

256 256 1E-06 0 0 0 0 

For Atmosmodl matrix, we fixed the dropping threshold 𝝆𝟐 = 𝟏𝟎−𝟓  In PDSLin and 

𝝆𝟐 = 𝟏𝟎−𝟔 in Maphys. The results are shown below. 
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Table7.11  Schur Matrix Info in Atmosmodl using PDSLin Solver 

P #subdom 𝝆𝟐 Schur Size Nnz(�̅�) 
Nnz Kept 
(%) 

Niter 

16 4 1.000000e-05. 14886 6250461 6,41983 16 

32 4 1.000000e-05. 14753 6006205 6,1622 16 

64 8 1.000000e-05. 29351 11962169 4,49453 18 

128 8 1.000000e-05. 29437 11717100 4,271 18 

256 16 1.000000e-05. 43456 17654959 4,39066 18 

Table7.12  Schur Matrix Info in Atmosmodl using Maphys Solver 

Threads #subdom 𝝆 Schur Size Nnz(�̅�) 
Nnz Kept 
(%) 

Niter 

16 8 1E-06 7467 58800000 14,25 20 

32 8 1E-06 7467 58800000 14,25 20 

64 16 1E-06 5641 33500000 18,5 25 

128 16 1E-06 5641 33500000 18,5 25 

256 16 1E-06 5641 33500000 18,44 25 

In the next figure, we elaborate further on time spent for Schur complement setup. The 

red color (schurSolvemax) shows the total maximum time spent for sparse traingular 

solve( both lower and upper triangular). The green color (schurSymbolmax) shows the 

symbolic computation of approximate Schur. The blue color shows sparse matrix-

matrix multiply of  (𝑨𝚪𝐈 𝑼
−𝟏

𝐈𝐈) (called  G matrix) and ( 𝑳−𝟏
𝐈𝐈𝑨𝐈𝚪 ) (called W matrix) 

of section (6.1). The yellow color time spent for MPI communication setup(send, recv 

etc). The brown color shows approximate Schur computation setup. Finally, the black 

color shows the time of updating with messaging. All these values are the maximum 

values. It is clear  that decreasing the sparifing tolerance , 𝝆𝟐 which consequnetly 

increases the nnz in the approximate Schur will lead to an incease in MM multiply as 

shown in some cases below(the blue color).  The traingular solve is the most time 

consuming in almost all other cases here as shown in figure(7.3) below. 
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Figure 7.3: Schur Complement Steps of PDSLin for solving  Audik(a), 

Freescale(b)ASIC680ks(c) and Atmosmodl(d). 

 Memory Vs Time 

The following graphs show time agains memory for Maphys, PDSLin and Superlu-

dist on Audik-1, Freescale, ASIC680ks and Atmosmodl matrices respectively. 

The Figure (7.4) below shows total memory consumption during solution of Audik-1 

matrix using Superlu-dist solver. Because most of the time is spent in factorization, 

the total time spent takes the shape of factiorization time shape. The first graph 

(Figure(7.4 a)) shows the actual memory consumption. The summation of all memory 

is about 44GB and increasing from 16 to 256. 
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Figure 7.4 : Wall clock time and memory usage of Maphys solver on Audik-1 matrix 

 

 

Figure 7.5: Wall clock time and memory usage of Maphys solver on Freescale1 matrix 
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Figure 7.6: Wall clock time and memory usage of Maphys solver on ASIC680ks matrix 

 

 

Figure 7.7: Wall clock time and memory usage of Maphys solver on Atmosmodl matrix  
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Figure7.8 : Wall clock time and memory usage of PDSLin solver on Audik-1 matrix 

 

Figure 7.9: Wall clock time and memory usage of PDSLin solver on ASIC680ks matrix 
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Figure 7.10: Wall clock time and memory usage of PDSLin solver on Freescale1 matrix 

 

Figure 7.11 : Wall clock time and memory usage of PDSLin solver on Atmosmodl matrix 
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Figure 7.12: Wall clock time and memory usage of Superlu-dist solver on Audik-1 matrix 

 

For atmosmodl matrix, Superlu-dist shows a strange behavour at 128(process grid 8 * 

16) processors. With parallel symbolic factorization using Parmetis, it gave a 

termination failure at 128 processors and the slove time step((f) part of the figure) was 

large by orders of magnitude. When we changed serial symbolic facotrization on 𝑨𝑻 +

𝑨, the solution time decreased and the solver works with 128 processor but the column 

permutation, symbolic factorization and total memory consumption are large as shown 

in Figure(7.12) below.  
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Figure 7.13: Wall clock time and memory usage of Superlu-dist solver on Atmosmodl 

matrix 
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 CONCLUSION AND FUTURE WORK 

This is an attempt to address the effect of  Sparse hybrid solvers on various matrix 

types. Our intuition is that it is not easy to  evaluate  a hybrid solver. There are  large 

number of dependencies for the best hybrid solvers known; Maphys and PDSLin. It is 

not also easy to compare these solvers fairly due to the large and different number of 

input values. 

Our experience show that there are many failure in the solvers like division by zero 

due to sparsity or memory address out of range error. The solvers may also behave 

differently with different matrix format like IJV, HB or MTX even when using the 

same matrix. This is because the ordering is different. The pure-MPI two level 

parallelism of PDSLin is more robust than the multithreading of Maphys. Some 

matrices like ASIC680ks fails  with two level parallelism of Maphys. The roots of 

PDSLin are based on sparse matrix factorization, namely superlu-dist, and the roots of 

Maphys are based on domain decomposition. This may explain that the factorization 

time in PDSLin is low whereas  the preconditioning in Maphys is low. That is why 

larger number of subdomains are used in Maphys as input parameter. 

Development process in Maphys is progressing and there are active contributions to 

Maphys. This may also explain the good performance of Maphys in the result section. 

PDSLin still needs work and there are many bugs in the solver. Superlu-dist is more 

mature and robust. 

We have already considered HIPS and pARMS solvers but because of the limited time, 

we consider them as a future work. Preconditioners of pARMS  like ILU(p,τ) are 

already implemented in Maphys and the graph partitioning of HIPS(HID) can also be 

used in PDSLin. Shylu is another hybrid solver and it would be interesting to compare 

it with these solvers. Besides, one can easily compare these solvers with the Kryolv 

methods of PETSc. PETSc has a large community of support and active contribution. 

Its installation and debugging is also easy. There are also many open source direct 

solvers that are worthwhile to study and compare like MUMPS and Pastix. One can 

also compile the libraries with 64 bit integer and 64 bit matrix indices and test the 
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solvers with very large matrices. For example we tried to test HV15R matrix but the 

solvers failed due to matrix index overflow problems. 

We believe that there are many ways to improve these solvers such as reducing the 

dependencies like graph repartitioners or developing a hybrid solver without 

dependencies at all because dependencies are always constraints since there  must be 

backward compatiblity if not continue developing at the same rate(naming conflicts, 

etc). On the other hand, dependencies make hybrid solvers work as modules. We can 

change and choose the suitable package as the problem required. For example, there 

are two different implementations of LU factorization in Maphys, supernodal using 

Pastix and Multifronatal using MUMPS. This makes the hybrid solver more flexible 

for different problem types. 

Finally, we created a framework that can extract information automatically from the 

output files of the solvers, create a database in csv formats, select from these results 

according to certain queries and send results to R for drawing. The format can draw 

results related to speedup, solution steps and Schur stages and create tables related to 

Schur complement matrix. This framework can be further automated by using other 

tools such as as data analysis, machine learning and  simulation tools to suggest the 

best values of the input parameters and further analysis steps. Here we emphasis on 

two things: first is the importance of data analysis tools that will greatly enhance the 

performance of students doing such reseaches. The second thing is the importance of 

a well organzied input/output files of the solvers so that analysis programs extact 

information automatically without errors. Maphsy output and input files are well-

organzied and information can be extracted easily. This was not the case in PDSLin or 

any other solver we examined. 
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APPENDICES 

APPENDIX A:  Matrices and Package Versions 

 

Table A.1 : List of Matrices used in Literature for Evaluating Hybrid Solvers 
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Table A.2 : Versions of libraries we have considered in this work 
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APPENDIX B: Dependecies of Hybrid Solvers  

Note: Design is quoted from Spack developers 

 

Figure A.1 : PDSLin Hybrid Solver Installation Dependencies 
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Figure A.2 : Maphys Hybrid Solver Installation Dependencies 
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Figure A.3 : HIPS Hybrid Solver Installation Dependencies 
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Figure A.5 : ABCD Hybrid Solver Installation Dependencies 

 

Figure A.4 : pARMS Hybrid Solver Installation Dependencies 
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APPENDIX C: Hybrid Solvers Input Parameters 

Table C.1: Maphys Input Parameters 

MATFILE  =  audikw-1.mtx 

SYM = 1  = 1 #0 (General) 1 (SPD) 2 (symmetric) 

ICNTL(1) = 1 #Controls where to write error messages. def:0 stderr 

ICNTL(2) = 1 1 #Controls where to write warning messages def:0 stderr 

ICNTL(3) = 6 # where are written statistics messages def: 6:stdout 

ICNTL(4) = 5 #Controls where to write stat.msg 1-4,def:print errors,warnings &detailled 

statistics:3-> 5:print every thing 

ICNTL(5) = 1 #Controls when to print list of controls (Xcntl).Default:0.never 

print.1:begining,2:each step 

ICNTL(6)  = 1 #Controls when to print list of informations (Xinfo).default:0:Never 

print.1:begining,2:each step 

ICNTL(7)  = 0 #Partitioning strategy (1:METIS-NODEND 2:METIS-EDGEND 3:METIS-

NODEWND 4:SCOTCH-CUSTOM)old value :4  

ICNTL(8)  = 50 #level of filling for L and U in the ILUT method.Default:-1.imp if ICNTL(30)->2 

ICNTL(9)  = 50 #level of filling for the Schur complement in the ILUT ICNTL(10) = 0 

ICNTL(10)  = 0  

ICNTL(11) = 0  

ICNTL(12)  = 0  

ICNTL(13)  = 2 #(P,MT:2)fact. & the the precd. direct solver.1:mumps.2:pastix.3:Use multiple 

sparse direct solvers.see ICNTL(15,32) 

ICNTL(14)  = 0 #Output format.Default : 0 stdout,1:emak 

ICNTL(15)  = 2 #(P,MT:2)direct solver for preconditioner1 :mumps.2:pastix.3:multiple.see 

ICNTL(13,32) 

ICNTL(15)  = 2  

ICNTL(16)  = 0  

ICNTL(17)  = 0  

ICNTL(18)  = 0  

ICNTL(19)  = 1  

ICNTL(20)  = 1 #(P)3rd party iterative solver0:unset.1:gmres.2:CG.3:automatic.def:3 

ICNTL(21)  = 2 #(imp) prcndtr strtgy.# (1:local DENSE 2:local sparse.3:From ILUT based.4: No 

preconditioner) values:1,2,3,4,5,10 

ICNTL(22) = 2 #(P)Controls the iterative solver. 0:modGS, 1:iter.selGS,2classicalGS, 3:iter GS. 

def:3 

ICNTL(23)  = 0 #Controls whether the user wishes to supply an initial guess.0:no,1:yes. def:0 

ICNTL(24)  = 1000 #(P) Iterative Solver - Maximum number of itrs.for difficult problems ->7k 

ICNTL(25)  = 0 #strategy to compute residual. 0:recurrent,1:residual.->irrelevant when iterative 

solver is CG (ICNTL(20) = 2,3). 

ICNTL(26)  = 500 #(P)Iterative Solver - GMRES: restart every X iterations. ignored if solver is CG 

(ICNTL(20) = 2,3 with SPD 

ICNTL(27)  = 0 # Iterative Solver SCHUR Complement Matrix/Vector product.# ( 1:EXPLICIT 

2:IMPLICIT ) 

ICNTL(28)  = 1 #(P)scaled residual is computed.def:1->similar to pdslin 

ICNTL(29)  = 1 #mode of the iterative solver FABULOUS.def:1 

ICNTL(30)  = 0  #how to fnd schur its approx.def:0:shur retrnd by sparse drct slvr package-

>2:Sparse approx.bsd on partl ILU(t;p)shld set ICNTL(8,9),RCNTL(8,9) 

ICNTL(31)  = 50  

ICNTL(32)  = 2 #(P,MT:2)direct solver for local schur factorisation.def:ICNTL(13),see 

ICNTL(13,15) 

ICNTL(33)  = 10 #Number of eigenvalues per subdomain.def:10.Ignored ifICNTL(21)=10. 

ICNTL(34)  =  #cnvrgnc hstry of itrtve slvr is wrtn a file.def:0 regular output.1->file is named 

gmrescvgN.dat or cgcvgN.dat  

ICNTL(35)  = 0  

ICNTL(36)  = 2 #How to bind thread inside MAPHYS.0 :nobind.1:Thread to core bind.2:Grouped 

bind.def:0.eg:smph_examplethread. 

ICNTL(37)  = 16 #(P)2level parlsm,pecifies the number of nodes.only useful if ICNTL(42) > 

0.def:1  

ICNTL(38)  = 28 #(P)2level parlsm,spcfs # cores per node.only useful if ICNTL(42) > 0.def:1 

ICNTL(39)  = 16 #(P)2level parlsm,spcfs # threads per domains.only useful if ICNTL(42) > 0.def:1 

ICNTL(40)  = 16  
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ICNTL(41)  = 0 #(P)2level parlsm,spcfs # domains.only useful if ICNTL(42) > 0.def:1 

ICNTL(42)  = 0  #(P)2level,0->mpi only,1:multitheading-> level of parallelism def:0,1-

>multithreading.shld set  

ICNTL(43)  = 1  #input system (central.on the host, distributed,...)def:1.eg:smph_examplerestart-

>3.paddle->2(experimental). 

ICNTL(44)  = 0 #When activated, it means user permutation you want MAPHYS to use.def:0.eg: 

xmph_exampledistkv in examples  

ICNTL(45)  = 0 #local output after analysis. If set to 1, it allows to perform a dump of the local 

matrices. def:0  

ICNTL(46)  = 0  

ICNTL(47)  = 20 #Crls the MUMPS instance.def:20. 

ICNTL(48)  = 10 #Crls FABULOUS Deflated Restart algorithm. de:20 

ICNTL(49)  = 1 #crls domain decp lbry/algrthm.Warning: Modifies the behavior of 

ICNTL(43).def:1: maphys.2:paddle  

ICNTL(50)  = 0 #When MUMPS error indicates that requires more memory workspace, def:0  

RCNTL(1)  = 0.000E+00  

RCNTL(2)  = 0.000E+00 #is the target for FABULOUS Deflated Restart algorithm.def:0.0 

RCNTL(3)  = 0.000E+00 # sets the value of alpha for custom stopping criteria of GMRes and 

CG(ICNTL(28) = 2).def:0 

RCNTL(4)  = 0.000E+00 #sets the value of beta for custom stoppingcriteria of GMRes and CG (ICNTL(28) 

= 2). def:0 

RCNTL(5)  = 2.000E+00 #mumps:gives the amount by which the extra workspace(initially given by 

ICNTL(47)) will be multiplied for the next try. def:2.0 

RCNTL(6)  = 0.000E+00  

RCNTL(7)  = 0.000E+00  

RCNTL(8)  = 1.e-02 #thrsld used to sparsify the LU factors while using PILUT.def:0.0.imp if 

ICNTL(30)->2 

RCNTL(9)  = 1.e-02 #thrsld used to sparsify the schur compl. While computing it with 

PILUT.def:0.0.imp if ICNTL(30)->2  

RCNTL(10)  = 0.000E+00  

RCNTL(11)  = 1.0e-4 #(imp) Preconditioner - local SPARSE – Sparsifying tolerance(imp. if 

ICNTL(21)->2)  

RCNTL(12)  = 0.000E+00  

RCNTL(13)  = 0.000E+00  

RCNTL(14)  = 0.000E+00  

RCNTL(15)  = 2.000E-01 #Specifies the imbalance tolerance used in Scotch partitioner to create the 

subdomains. def:0.2  

RCNTL(16)  = 0.000E+00  

RCNTL(17)  = 0.000E+00  

RCNTL(18)  = 0.000E+00  

RCNTL(19)  = 0.000E+00  

RCNTL(20)  = 0.000E+00  

RCNTL(21)  = 1e-12 #(P) Iterative solver - convergence criteria. see ICNTL(28). 

 

 Table C.2: PDSLin Input Parameters  

4  # nproc_schur : number of processors on schur complement  

4 # nproc_dcomp : number of processors to compute partitoning, (>=num_doms) INPUT_HB 

INPUT_HB # input_type : input matrix file format (INPUT_IJV, INPUT_HB, or INPUT_BIN) 

SYMMETRIC 

UNSYMMETRIC # mat_type : input matrix type (SYMMETRIC or UNSYMMETRIC) SYMMETRIC 

UNSYMMETRIC # mat_pattern : input matrix type (SYMMETRIC or UNSYMMETRIC) UNSYMMETRIC 

UNSYMMETRIC #SHUR_MATRIX_pattern : input matrix type (SYMMETRIC or UNSYMMETRIC)  

NO # remove_zeros : YES if matrix file contains zero elements 

SCOTCH  # dcomp_type : how partitioning will be computed (SCOTCH or HIPS) 

8 # num_doms : number of domains to be extracted. --(0: iteraitve solver, 1: direct solver) 

0e-3  # tol_sub(tau_sub) : ILU threshold for subdomains (used in serial superlu). 

SLU_DIST  # dom_solver : interior domain solver (SLU/SLU_DIST/MUMPS) 

1000 # dom_size : interior domain size 

10 # blk_size : block size for the interface solves 

YES # pperm_schur : parallel parmutation for schur Complement 

YES # psymb_schur : parallel symbolic factorization for schur complement 

5 # equil_schur : equilbration for schur complement 

20 # relax_factor : compression factor to compute nested diss. of schur complement 
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5 # equil_dom: equilbrtn fr intror doms used only by serial SuperLU(if 0: no equi or row 

perm;equil_schur ->0) 

domains(METIS,PARMETIS,NATURAL,MMD_ATA,MMD_AT_PLUS_A,COLAMD) 

PARMETIS # perm_dom : permutation of interior 

YES # hybrid_fgmres->use FGMRES as outer-loop, and hybrid solver as preconditioner  

1e-12  # residual_tol : stopping criteria for outer-loop 50 # outer_max 

0.0 # dtol: diag.thrcld fr serl SuperLU(!=0->rplc tiny pivots;=0->acrcy high.diag.pert.is turned 

off hgir sol-acrcy mb obtnd usng iterative  efinements) 

1e-6 # tol0: drop tolerance for F (L^{-1} E)-> threshold for G 

0.0  # tol1 : drop tolerance for W (E*F) ->threshold for T 

1.0e-5 # tol2 : drop tolerance for schur complement 

0.0 # tol3 : drop tolerance for ILUT(used by petsc) 

-1 # ilu_lvl : level threshold for ILU(if this>=0 ->psymp_schur=no:using serial symbolic for 

ILU) 

1 # asm_ovlp:/* overlap and # of doms per processor for ASM */ 

1 # asm_nsub BICGSTAB #(M) itsolver : iterative solver for schur complement (GMRES, 

BICGSTAB, FGMRES, TFQMR) 

1000 #(M) itrs : maximum number of matrix operations 

500 #(M)restart : number of operations at restart 

1e-12 #(M) residual_tol : stopping criteria for iterative method  

CLASSICAL #(M) orth : orthogonalization scheme for GMRES (CLASSSICAL ,MODIFIED)  

PR_SLU_ILU # prcnd_type:type of prcnditner (PR_PETSC_ILUK ,PR_PETSC_ILUT 

PR_PHIDAL_ILU,PR_LSCHUR_ASM) 

0.0 0.0 # patoh_lbound : 

0.4 0.4 # patoh_ubound : 

0.1 0.1 # patoh_sparsify 

 

Table C.3: HIPS Input Parameters 

D 0  # D 0 HIPS_SYMMETRIC = [0:nonsymmetirc, 2: symmetic, 1:symmetric pattern] 

D 4 # D 1 HIPS_VERBOSE = [0-5] 

D 0 # D 2 HIPS_SCALE = reserved for develpoers 

D 100 # D 3 HIPS_LOCALLY = [0: no-fillin 100 : allow fillin anywhere] 

D 1 #D 4 HIPS_KRYLOV_RESTART = restart parameter of GMRES 

D 1 #D 5 HIPS_ITMAX = maximum number of iteration allowed in the krylov method 

D 0  #D 6 HIPS_FORWARD = DHIPS developers reserved. 

D 0  #D 7 HIPS_SCHUR_METHOD =DD HIPS developers reserved. 

D 150  #D 8 HIPS_ITMAX_SCHUR = 

D 3 #D 9 HIPS_PARTITION_TYPE = HIPS developers reserved. 

D 0  #D 10 HIPS_KRYLOV_METHOD = 0 Preconditioned GMRES, =1 Preconditioned CG.  

D 4  #D 11 HIPS_DOMSIZE = 

D 1  #D 12 HIPS_SMOOTH_ITER_RATIO = HIPS developers reserved. 

D 1  #D 13 HIPS_DOMNBR = fff 

D 1  #D 14 HIPS_REORDER D=# 0 No reordering inside the subdomain to minimize fill-in, =1 reordering 

inside the subdomain to minimize fill-in. This option is only used in the recursive ITERATIVE 

preconditioneur.  

D 0  #D 15 HIPS_SCALENBR =[1-] this value is used to set the number of time the normalisation is 

applied to the matrix. One should set a value >1 only in special case. 

D 0  #D 16 HIPS_MASTER = the master process, zero is the default. 

D 0  #D 17 HIPS_COARSE_GRID =#HIPS developers reserved. 

D 1  #D 18 HIPS_CHECK_GRAPH = [0, 1] (default 1) : set this option to 1 if you want to check (and 

repair) the matrix 

adjacency graph. This option ensures the graph is symmetric and that there is no double edge. 

D 1  #D 19 HIPS_CHECK_MATRIX = [0, 1] (default 1) : set this option to 1 if you want to check (and 

repair) the 

coefficients matrix. This option check if there are coefficient with the same indices and sum them up 

in this case. 

D 1  #D 20 HIPS_DUMP_CSR =# HIPS developers reserved. 

D 0  #D 21 HIPS_IMPROVE_PARTITION =# HIPS developers reserved. 

D 0  #D 22 HIPS_TAGNBR =# HIPS developers reserved. 

D 0  #D 23 HIPS_SHIFT_DIAG = HIPS developers reserved. 

D 0  #D 24 HIPS_GRAPH_SYM = set this option to 0, if 

D 0  #D 25 HIPS_GRID_DIM = HIPS developers reserved. you are sure that the graph you give to HIPS is 

symmetric ; 
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this disable the graph symmetrization 

D 0  #D 26 HIPS_GRID_3D = HIPS developers reserved. 

D 0  #D 27 HIPS_DISABLE_PRECOND = [0, 1] if set to 1 then when new matrix coefficient are entered 

the preconditioner is not recalculated in HIPS.Nevertheless, this option is taken into account only if a 

preconditioner has already been computed. 

D 1  #D 28 HIPS_FORTRAN_NUMBERING =[0, 1] (default 1) : numbering in indexes array will start at 

0 or 1. This options modify the default numbering for the inputs and returns in all HIPS’s functions 

D 0 #D 29 HIPS_DOF =[1-] (default 1) : number of unknowns per node in the matrix non-zero pattern 

graph(degree of freedom). 

D 0 D 0 #HIPS_PIVOTING =[0, 1] (default 0) : disable or enable column pivoting in ILUT (only for 

unsymmetric matrix).This 

option is not yet fully implemented in parallel. 

R 0.0  #R 0 HIPS_PREC = Wanted norm error at the end of solve. 

R 0.0  #R 1 HIPS_DROPTOL0 = 

R 0.005  #R 2 HIPS_DROPTOL1 = 

R 0.0  #R 3 HIPS_DROPSCHUR = fff 

R 0.0  #R 4 HIPS_DROPTOLE = 

R 0.0  #R 5 HIPS_AMALG = fff 
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