

ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

OPTIMIZING PACKED STRING MATCHING On AVX2 PLATFORM

M.Sc. THESIS

Mehmet Akif AYDOĞMUŞ

Department of Computational Science and Engineering

Computational Science and Engineering Master Programme

DECEMBER 2018

ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

OPTIMIZING PACKED STRING MATCHING On AVX2 PLATFORM

M.Sc. THESIS

Mehmet Akif AYDOĞMUŞ
(702121013)

Department of Computational Science and Engineering

Computational Science and Engineering Master Programme

Thesis Advisor: Assoc. Prof. Dr. M. Oğuzhan KÜLEKCİ

DECEMBER 2018

İSTANBUL TEKNİK ÜNİVERSİTESİ F BİLİŞİM ENSTİTÜSÜ

AVX2 PLATFORMU ÜZERİNDE PAKETLENMİŞ DİZGİ EŞLEŞTİRME
VE OPTİMİZASYONU

YÜKSEK LİSANS TEZİ

Mehmet Akif AYDOĞMUŞ
(702121013)

Hesaplamalı Bilim ve Mühendislik Anabilim Dalı

Hesaplamalı Bilim ve Mühendislik Yüksek Lisans Programı

Tez Danışmanı: Assoc. Prof. Dr. M. Oğuzhan KÜLEKCİ

ARALIK 2018

Mehmet Akif AYDOĞMUŞ, a M.Sc. student of ITU Informatics Institute Engineering
and Technology 702121013 successfully defended the thesis entitled “OPTIMIZING
PACKED STRING MATCHING On AVX2 PLATFORM”, which he/she prepared af-
ter fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. M. Oğuzhan KÜLEKCİ
Istanbul Technical University

Jury Members : Prof. Dr. Mustafa Ersel KAMAŞAK
Istanbul Technical University

Assoc. Prof. Dr. M. Oğuzhan KÜLEKCİ
Istanbul Technical University

Assoc. Prof. Dr. Gökhan Bilgin
Yıldız Technical University

Date of Submission : 16 November 2018
Date of Defense : 12 December 2018

v

vi

To my family,

vii

viii

FOREWORD

Firstly, I would like to express my most sincere gratitude to my supervisor Assoc. Prof.
Dr. Muhammed Oğuzhan Külekci for his guidance, patience and valuable suggestions
in thesis research and scientific publication. It has been an enormous pleasure and
privilege to have worked with him.

I’m truly grateful for the continuous technical support of UHEM staff about clusters
systems and tools while running and profiling program. Also, I would like to thank
co-worker Semih Tunacı for usage of his laboratory workstation when developing the
initial programs on the Intel Xeon processor.

A special thanks to my family for their support and motivation during academic studies
and whole my life.

December 2018 Mehmet Akif AYDOĞMUŞ

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
SYMBOLS... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ...xxiii
1. INTRODUCTION .. 1

1.1 String Matching .. 1
1.2 Purpose of Thesis ... 2
1.3 Literature Review ... 2
1.4 Thesis Structure .. 3

2. BASICS.. 5
2.1 Notions of Exact String Matching.. 5
2.2 SIMD .. 6
2.3 Intel SIMD and AVX2.. 8
2.4 Used AVX2 Intrinsics For New Algorithms... 9

3. PROPOSED ALGORITHMS.. 13
3.1 Word-Size Instructions ... 13

3.1.1 wscmp_a(a, b) (word-size compare instruction on AVX2) 13
3.1.2 wsmatch_a(a, b) (word-size matching instruction on AVX2) 14
3.1.3 wspermute_a(a,b) (word-size permute instruction on AVX2) 15
3.1.4 wsfilter_a(C,K) (word-size filter computing instruction on AVX2) 16
3.1.5 popcnt(a) instruction ... 17

3.2 EPSMA Algorithms.. 18
3.2.1 EPSMA-1 ... 18
3.2.2 EPSMA-2 ... 18
3.2.3 EPSMA-3 ... 20

3.3 SSEFA Algorithm... 21
3.4 Profiling and Optimization ... 24

3.4.1 Intel Vtune Amplifier .. 24
3.4.2 Memory analysis and cache optimization .. 26

3.4.2.1 Filter length analysis.. 27
3.4.2.2 Data type analysis .. 29

4. EXPERIMENTAL RESULTS ... 31
4.1 Results for EPSMA Algorithms (patlen<64) .. 31

xi

4.2 Results for SSEFA Algorithm (patlen>64) .. 34
5. CONCLUSIONS AND RECOMMENDATIONS.. 37
REFERENCES.. 39
CURRICULUM VITAE... 43

xii

ABBREVIATIONS

AVX : Advanced Vector Extensions
CPI : Cycle Per Instructions
CPU : Central Processing Unit
EBS : Event-Based Sampling
EPSM : Exact Packed String Matching
GCC : GNU Compiler Collection
GPU : Graphical Processing Unit
HPC : High-Performance Computing
Patlen : Pattern Length
L1, L2 : Level-1, Level-2
SAD : Sum of Absolute Difference
SSE : Streaming SIMD Extensions
SSEF : Streaming SIMD Extensions Filtering
UHeM : Ulusal Yüksek Başarımlı Hesaplama Merkezi (National HPC Center)
OS : Operating System

xiii

xiv

SYMBOLS

Σ : Alphabet Size
ms : Mili Second
KB : Kilo Byte
MB : Mega Byte
Hz : Hertz
P : Pattern
T : Text
m : pattern length
n : text size

xv

xvi

LIST OF TABLES

Page

Table 1.1 : 2Types of string matching. ..
Table 3.1 : K shifting values of datasets. ... 16
Table 3.2 : Properties of Intel Vtune Amplifier Collectors. 24
Table 3.3 : Intel Microarchitecture Hardware Events (uops:micro-operations).... 26
Table 3.4 : Hardware Event values for various vector lengths. 28
Table 3.5 : Time and rate values for various vector lengths.................................. 29
Table 3.6 : Hardware event metrics for array and linked-list structures. 30
Table 3.7 : Time and rate values for array and linked-list structures. 30
Table 4.1 : Test platform. .. 31
Table 4.2 : Running times for genome sequence when pattern length < 64. 32
Table 4.3 : Running times for protein sequence when pattern length < 64........... 32
Table 4.4 : Running times for English text when pattern length < 64................... 33
Table 4.5 : Running times for genome sequence when pattern length > 64. 34
Table 4.6 : Running times for protein sequence when pattern length > 64. 35
Table 4.7 : Running times for English text when pattern length > 64. 35

xvii

xviii

LIST OF FIGURES

Page

Figure 2.1 : 7Flynn’s classification. ..
Figure 2.2 : 9YMM registers share bits with the XMM registers.
Figure 2.3 : Sketch of VPCMPEQB operation. .. 10
Figure 2.4 : Sketch of VMPSADBW instruction.. 11
Figure 2.5 : Sketch of VPERM2F128 operation. .. 11
Figure 2.6 : Sketch of VPERMD operation .. 12
Figure 2.7 : Sketch of VPSLLQ operation.. 12
Figure 3.1 : Example operation of word-size compare instruction. 13
Figure 3.2 : Example operation of word-size match instruction. 14
Figure 3.3 : Example operation of word-size permute instruction. 15
Figure 3.4 : The sketch of filter computing. ... 17
Figure 3.5 : Example operation of the word size filter instruction........................ 17
Figure 3.6 : Appropriate pattern alignment. .. 22
Figure 3.7 : Analysis types of Vtune Amplifier. .. 26
Figure 3.8 : Sample results of EBS analysis on Vtune Amplifier. 28
Figure 4.1 : Times for genome sequence, pattern length<64. 33
Figure 4.2 : Times for protein sequence, pattern length<64. 33
Figure 4.3 : Times for English text, pattern length<64. .. 34
Figure 4.4 : Times for genome sequence, pattern length>64. 36
Figure 4.5 : Times for protein sequence, pattern length>64. 36
Figure 4.6 : Times for English text, pattern length>64. 36

xix

xx

OPTIMIZING PACKED STRING MATCHING On AVX2 PLATFORM

SUMMARY

Exact string matching, searching for all occurrences of given pattern P on a text T , is
a fundamental issue in computer science with many applications in natural language
processing, speech processing, computational biology, information retrieval, intrusion
detection systems, data compression, time series analysis and etc. The speed of
string matching is gaining more importance due to today applications of scientific
and industrial are operating on large datasets increasing continuously. Accelerating
the pattern matching operations benefiting from the SIMD parallelism has received
attention in the recent literature, where the empirical results on previous studies
revealed that SIMD parallelism significantly helps, while the performance may even
be expected to get automatically enhanced with the ever increasing size of the SIMD
registers.

The variants of the previously presented EPSM and SSEF algorithms are proposed,
which are originally implemented on Intel SSE4.2 (Streaming SIMD Extensions 4.2
version with 128-bit registers). The new algorithms are designed according to Intel
AVX2 platform (Advanced Vector Extensions 2 with 256-bit registers) and the gain in
performance is analyzed with respect to the increasing length of the SIMD registers.
Particularly in algorithms based on filtering methods, memory access time can be
the performance bottleneck when working with large decimal values such as 32-bit
filter values calculated from 256-bit registers. Profiling the new algorithms by using
the Intel Vtune Amplifier for detecting performance issues led us to consider the
cache friendliness in the AVX2 platform. Hardware Event-Based Sampling (EBS)
analysis type is selected for profiling on various filter lengths and data structures and
so performance metrics of algorithms are collected. Cache optimization techniques are
applied to overcome the problems particularly addressing the search algorithms based
on filtering.

Experimental comparison of the new solutions with the previously known-to-be-fast
algorithms on small (genome sequence), medium (protein sequence), and large
alphabet (English language) text files with diverse pattern lengths showed that the
algorithms on AVX2 platform optimized cache obliviously outperforms the previous
solutions. It can be inferred from experiments that proposed algorithms are practicable
for today applications. Also, proposed algorithms can be portable to other architectures
like the ARM and AMD using equivalent SIMD instructions with some modifications.

xxi

xxii

˙ ˙ ˙ ˙ ˙AVX2 PLATFORMU ÜZERINDE PAKETLENMIŞ DIZGI EŞ LEŞ TIRME
˙ ˙VE OPTIMIZASYONU

ÖZET

Dizgi eşleştirme verilen bir örüntünün P bir metin T üzerinde bir veya tüm
eşleşmelerini bulma işlemi olarak tanımlanabilir ve bilgisayar bilimlerinde üzerinde
geniş bir şekilde çalışma yapılan temel bir konudur. Dizgi eşleştirmenin birçok
alanda uygulaması vardır, bunlar arasında do ğal dil işleme, ses işleme, hesaplamalı
biyoloji, bilgi gerigetirimi, saldırı tespit sistemleri, arama motorları, veri sıkıştırma,
zaman serileri analizi gibi konular sayılabilir. Günümüzde farklı alanlardaki verilerin
hızı, kapasitesi ve çeşitliliği sürekli artmaktadır, dolayısıyla bu büyük veri yı ğınları
üzerindeki dizgi eşleştirme algoritmalarının hızları gittikçe önem kazanmaktadır.
Özellikle zaman-kritik uygulamalarda dizgi eşleştirme algoritmalarının performansı
en önemli kriterlerden biridir. Literatürde dizgi eşleştirme problemin tipine göre
kategorilere ayrılmıştır; tam, yaklaşık, dairesel, karmaşık, sıra-korumalı olarak
eşleştirme tipleri mevcuttur.

Bu çalışmada tam dizgi eşleştirme için paketleme metoduna dayalı yeni algoritmalar
geliştirilmiştir. Tam dizgi eşleştirme bir metin üzerinde verilen örüntünün tam
eşleşen alt dizgilerini bulma olarak tanımlanmaktadır. Bu tezde yeni önerilen
paketlenmiş dizgi eşleştirme algoritmalarında SIMD (Single Instruction Multiple
Data) teknolojisinden yararlanılmıştır. SIMD teknolojisi bir komutla aynı anda çoklu
veri üzerinde işlem yapma olana ğı sunmaktadır. Ayrıca geliştirilen algoritmalarda
optimum çözüme ulaşmak için algoritmalar üzerinde analiz yapılarak optimizasyonlar
uygulanmıştır.

1970 yılından günümüze çok sayıda dizgi eşleştirme algoritmaları sunulmuştur,
günümüzde ise daha iyi sonuçlara ulaşabilmek amacıyla yeni bakış açılarıyla
yöntemler geliştirilmeye devam edilmektedir. SIMD ile paralleştirmeye dayalı
yöntemlerle dizgi eşleştirme operasyonunu hızlandırma son yıllarda literatürde
görülmeye başlanmıştır. Yapılan deneysel çalışmalarda SIMD ile veri seviyesinde
paralelleştirme önemli derecede hızlanma sa ğlamaktadır, ayrıca artan "register"
boyutlarıyla bu performans artışının devam etmesi beklenmektedir. Bu çalışmada daha
önce 128 bit "register" boyutuna sahip "Intel SSE4.2 (Streaming SIMD Extensions
4.2)" teknolojisi üzerinde geliştirilen EPSM ve SSEF algoritmalarının yeni optimal
varyantları önerilmiştir. Yeni önerilen algoritmalar 256 bit "register" boyutuna
sahip Intel AVX2 (Advanced Vector Extensions 2) platformu üzerinde geliştirilmiştir
ve artan "register" boyutuna karşılık performansın nasıl arttı ğı ve hangi sorunlarla
karşılaşıldı ğı analiz edilmiştir. Bu ba ğlamda Intel Vtune Amplifier uygulaması ile
algoritmalar üzerinde profilleme ile performans darbo ğazları tespit edilerek sebepleri
araştırılmış ve bu bilgiler ışı ğında algoritmalar düzenlenmiştir.

Çalışmada öncelikle AVX2 "intrinsic" fonksiyonları kullanılarak 256-bit veri üzerinde
Daha sonra busabit zamanda çalışan kelime-boyu komutlar tanımlanmıştır.

xxiii

kelime-boyu komutlar kullanılarak yeni algoritmalar geliştirilmiştir. AVX2 platformu
üzerinde çalışan bu komutlardan bahsedecek olursak; "kelime-boyu karşılaştırma
komutu" argüman olarak aldığı iki adet 256-bit veriyi karşılaştırarak eşleştirme
sonuçlarını 32 bit veri biçiminde vermektedir. "Kelime-boyu eşleştirme komutu" ise
256 bit iki veride dörtlü karakter grupları üzerinde 16 adet Mutlak Farklar Toplamı
(SAD) hesaplayarak eşleşme olan durumları belirlemekte ve eşleşme sonuçlarını
32-bit veri olarak döndürmektedir. "Kelime-boyu değiştirme komutu" iki adet 256
bit veri üzerinde 32 karakterlik bölütlerin yerlerini değiştirerek istenen veri düzenini
sağlamakta, bu yer değiştirme işlemini argüman olarak aldığı istenen sıralamayı temsil
eden değişkene göre uygulamaktadır. Tanımlanan diğer "kelime-boyu filtre hesaplama
komutu" 256 bitlik veri üzerinde kaydırma işlemi yaptıktan sonra tüm baytların en
anlamlı bitlerini kullanarak 32 bitlik fitre değerini üretir. Kaydırma işlemindeki
kaydırma miktarı üzerinde işlem yapılan verinin dahil olduğu alfabeye göre belirlenen
0 ile 7 arasında bir değerdir.

Kelime-boyu komutlar kullanılarak EPSMA (EPSMA-1,2,3) ve SSEFA algoritmaları
önerilmiştir. ESPMA-1 algoritması örüntü boyunun 8’den küçük olduğu durumlar için
geliştirilmiştir ve temeli "kelime-boyu karşılaştırma komutu" kullanımına dayanmak-
tadır. Örüntü boyunun 8 ile 32 arasında olduğu durumlar için "kelime-boyu eşleştirme
komutu" baz alınarak EPSMA-2 algoritması tasarlanmıştır. Ayrıca EPSMA-2
algoritmasında ardışıl eşleştirme komutları arasında "kelime-boyu değiştirme komutu"
verinin düzenlenmesi amacıyla kullanılmıştır. EPSMA-3 algoritması ise "kelime-boyu
filtre hesaplama komutu" ile filtreleme metoduna dayanmaktadır ve boyu 32 ile 64
arasında olan örüntüler için uygundur. 16 karakterlik bölütü temsil eden filtre 16
bitten oluşmaktadır ve bir filtre hesaplama komutuyla aynı anda 16 bitlik 2 adet filtre
elde edilmektedir. EPSMA-3’de filtreler ayrı ayrı uygulanarak olası eşleşme adayları
elde edilir ve bu adaylar üzerinde tam eşleşme karşılaştırması yapılır. Boyu 64’den
büyük olan uzun örüntüler için ise SSEFA algoritması önerilmiştir ve bu algoritma
da "kelime-boyu karşılaştırma komutu" tabanlı filtreleme yaklaşımına dayanmaktadır.
Ancak SSEFA’da filtreler 32 karakter bölütü baz alınarak hesaplandığından her 32
karakteri 32 bitten oluşan bir filtre değeri temsil eder. 32-bit filtre değeri indeks
olarak kabul edilip filtre vektörü oluşturulduğunda ise vektörün boyutu filtre değerinin
alabileceği maksimum değer ile belirlenir. 32 bit filtre değeri kullanıldığında vektörün
boyutu 4GB olacaktır, metin üzerinde her filtre arama işleminde vektörün ilgili
elemanına erişim gerekeceğinden hafızaya erişimdeki gecikmeler performans üzerinde
önemli bir performans kısıtı oluşturacaktır.

Optimal filtre uzunluğu ve veri tipini belirlemek için Intel Vtune Amplifier aracı ile
performans analizi yapılmıştır. Vtune Amplifier Intel tarafından geliştirilen yüksek
performanslı hesaplama alanında modern mimariler üzerinde performans analizi
yaparak olası sorunların kaynağını tespit eden ve daha hızlı uygulamalar için yol
gösteren bir analiz aracıdır. Hafızaya erişim analizi için "Hardware Event-Based
Sampling (EBS)" analiz tipi seçilerek farklı filtre uzunlukları ve veri tipleri için geçen
süreler, komut başına çevrim sayısı (CPI) ve L1 kayıp oranı (miss rate) değerleri elde
edilmiştir. Yapılan analizler sonucu hafızaya erişmede önbelleğin optimal kullanımı
açısından en uygun filtrenin 14 bit uzunluğunda olduğu ve filtrelerin bağlı liste yarine
array yapısında tutulması gerektiği tespit edilmiştir. Arama işleminde filtrelemeden
geçebilen eşleşme adayı sayısını azaltmak için 32 bit ham filtrenin her bir yarısındaki
ayrık bitlerden oluşan 2 adet 14 bit filtre ardışıl olarak uygulanmıştır.

xxiv

Algoritmalar C programlama dilinde yazılmıştır, performans testleri ise dizgi
eşleştirme için test platformu sunan ve literatürdeki bilinen tüm algoritmaları içeren
SMART ile yapılmıştır. Performans karşılaştırma işlemi Σ alfabe boyutu 4 olan
genom sekansı, 20 olan protein sekansı ve 128 olan ingilizce metin olmak üzere
3 farklı verisetinde ve literatürde en hızlı olarak bilinen diğer algoritmalar teste
eklenerek farklı örüntü uzunlukları üzerinde yapılmıştır. Performans testleri tam
dizgi eşleştirme problemi için yeni önerilen algortimaların önceki en verimli olarak
kabul edilen algoritmalardan farklı örüntü uzunlukları ve alfabe boyları seçeneklerinin
%90’nından fazlasında daha iyi sonuç verdiğini göstermiştir. Sonuç olarak geliştirilen
algoritmaların farklı alfabelerde ve örüntü boylarında pratik uygulamalar için son
derece kullanışlı olduğu söylenebilir. Gelecekte ise önerilen algoritmalar ARM, AMD
gibi diğer işlemci mimarilerindeki eşdeğer SIMD fonksiyonlarıyla modifiye edilerek
o mimarilerde de çalışabilecek hale getirilip algoritmaları kullanan uygulamaların
taşınabilirliği arttırılabilir.

xxv

xxvi

1. INTRODUCTION

1.1 String Matching

String matching, finding one or all occurrences of given string (also called pattern)

on a text, is a fundamental and widely studied issue in Computer Science. As

a subdomain of text processing, string matching gains more importance with the

progress and spread technology. Particularly, volume, variety and velocity of data are

increasing day to day on different areas thus the speed of string matching is gaining

importance. String matching has many applications in diverse fields such as such as

natural language processing, information retrieval, data compression, computational

biology and chemistry, intrusion detection systems, image and signal processing,

speech processing, time series analysis. Due to its wide usage in various applications,

string matching is a subject that continues to be studied. In literature, there are various

types of string matching as exact, approximate, circular, jumbled, order-preserving

matches. These matching types are described below.

• Exact Matching: Finding all conditions where pattern P occurs exactly same as a

substring of text.

• Approximate Matching: Finding all approximate occurrences of the pattern in the

text with finite number chraracters.

• Circular Matching: Finding all occurrences the circular rotations of a pattern in a

text.

• Jumbled Matching: Finding all permuted occurrences of a pattern in a text.

• Order-Preserving Matching: Finding all the substrings which have the same length

and relative order (numerical order of numbers in a string) as the pattern in a text.

On the other hand, string matching algorithms are classified into 4 classes in terms of

method by Faro and Lecroq [1]:

1

Sample Text: the quick brown fox jumps

Exact Match: brown fox
Approximate Match: grown fix
Circular Match: own foxbr
Jumbled Match: wonb xrof

Order-Preserving Match:

1. Comparison Algorithms: apply comparisons between characters.

2. Automata Algorithms: make use of deterministic automata.

3. Bit-parallelism Algorithms: simulate the behavior of non-deterministic automata.

4. Packed Algorithms: multiple characters are packed and comparing are performed

in bulk.

1.2 Purpose of Thesis

In this work new efficient algorithms are developed using packed method for exact

string matching which has more usage areas according to the other types of string

matching. Processing time of string matching is crucial for today applications and

scientific researches where the large amount of data are stored and streamed. SIMD

(Single Instruction Multiple Data) technology is used for packed string matching and

then cache optimization is applied with profiling to achieve optimum solution.

1.3 Literature Review

Numerous string matching algorithms have been presented since the 1970s with the

various theoretical point of view. Even so, new methods are still being developed

to achieve better searching times. Knuth-Morris-Pratt algorithm is based on finite

automata with O(m) and O(n) time complexity [2]. Boyer-Moore algorithm is a

combination of heuristic approaches which are "bad character heuristic" and "good

suffix heuristic" with O(mn) worst-case time complexity (best case time O(n/m)) [3].

Backward-DAWG- Matching algorithm (BDM) [4] is based on the suffix automaton

for the reversed pattern and it has asymptotic optimum average time complexity

O(n(logσ m)/m) especially for the long pattern.

2

Table 1.1 : Types of string matching.

Filter based solutions have been also developed for string matching, Karp-Rabin

algorithm [5] is the first filtering algorithm using a hashing function with O(mn)

time complexity but O(n m) expected running time. Another filtering algorithm is

Q-Gram (QF) which is based on consecutive q-grams in the text with O(mn) worst

case complexity and O(nq/(m−q)) best case complexity.

An extensive review of the string matching algorithms between 2000-2010 and

comprehensive experimental evaluation of 85 exact string matching algorithms are

presented by Faro and Lecroq, [6] [7] respectively.

In recent years, the usage of SIMD (Single Instruction Multiple Data) instructions

in string matching algorithms is appeared [8–12]. Tarhio et al. [13] newly proposed

the algorithm compares 16 or 32 characters in parallel by applying SSE2 and AVX2

instructions besides they use the increasing order for comparisons of pattern symbols to

achieve better results. In this work, Intel-AVX2 (Advanced Vector Extensions 2) based

variations of the EPSM [8] and SSEF [9] algorithms are proposed from a different

point of view. Especially, practical efficiency of new algorithms is focused on while

developing algorithms and so the algorithms are optimized in this manner according to

the profiling results.

1.4 Thesis Structure

The sections of the thesis are arranged as follows; firstly notions of exact string

matching, SIMD technology and used Intel AVX2 intrinsics are explained in chapter 2

named as BASICS. In chapter 3 PROPOSED ALGORITHMS, word-size instructions

which are the main component of algorithms are discussed in details. Then EPSMA

(EPSMA-1,2,3) and SSEFA algorithms are expressed, also profiling and cache

optimization of algorithms are given as the next topic of chapter 3. Experimental

results of performance comparisons are presented in tables and figures for various

dataset types and pattern lengths in chapter 4 EXPERIMENTAL RESULTS. Finally,

results are evaluated and potential future works are given in chapter 5 called as

CONCLUSION AND RECOMMENDATIONS.

3

4

2. BASICS

In this section, firstly terminology of exact string matching is given, after that Intel

SIMD and AVX2 technology is explained in detail with related intrinsics which will

be used in new algorithms.

2.1 Notions of Exact String Matching

The exact string matching problem is described as counting all the occurrences of a

pattern P of length m in a text T of length n assuming m� n, over a finite alphabet Σ.

String p of length m 0 can be defined as character array p[0...m− 1] over the finite

alphabet Σ of size σ and p[i] corresponds the (i + 1)-st character for 0≤ i m. Substring

of p between indexes (i + 1)-st and the (j + 1)-st characters is represented by p[i... j]

while 0 ≤ i ≤ j m. Also it can be expressed as pi p[i] and p p0 p1...pm−1. Using

notations above, exact string matching is searching of condition as p0 p1...pm−1 =

titi1...tim−1 where the text is T t0t1...tn. Bitwise operators are employed on computer

words in the algorithms such as bitwise AND "&", bitwise OR "|" and left shift "�"

where computer word size is denoted by w.

A string can be represented as S s0s1...sk−1 where k is the number of the characters

and each character corresponds to the single byte. The bits of single byte si can be

defined as bit array like si bi
0bi

1bi
2bi

3bi
4bi

5bi
6bi

7 where bi
0 is the msb bit. The chunk of

32-byte is represented as Ci s32·is32·i1s32·i2...s32·i31 so string is described in terms of

32-byte chunks as S C0C1C2...Cz where z = b(k - 1)/32 c and 0 ≤ i ≤ z. If k value

is not divisible by 32, the last chunk Cz is incomplete and zero padding is applied for

the rightmost empty part as sl =0 where k-1<l. The number of 32-byte chunks of text

(T) and pattern (P) are shown as N = d n/32 e and M = d m/32 e. The chunk and byte

symbols of text (T) and pattern (P) are presented such as:

• Text Representation: single byte ti, 0 ≤ i < n; 32-byte chunks: Y i, 0 ≤ i < N

• Pattern Representation: single byte pi, 0 ≤ i < m; 32-byte chunks: Ri, 0 ≤ i < M

5

Y 0 Y 1 ... Y N−1

t0t1...t31 t32t33...t63 ... t32·(N−1)t32·(N−1)1...tn−1

R0 R1 ... RM−1

p0 p1...p31 p32 p33...p63 ... p32·(M−1)p32·(M−1)1...pm−1

2.2 SIMD

SIMD (Single Instruction Multiple Data) technology allows one instruction can be

operated at the same time on multiple data items. In 1996, Michael J. Flynn classified

the computer architectures according to the number of instruction and data stream into

four major categories as SISD, SIMD, MISD and MIMD [14]. This classification

becomes a reference tool for designing of modern processors. On the other hand

modern microprocessor architectures may have more than one of defined classification

type above.

• SISD: Single instruction operates on single data element

e.g.: Traditional von Neumann single CPU computer

• SIMD: Single instruction operates on multiple data elements

e.g.: Array processor, Vector processor

• MISD: Multiple instructions operate on single data element

e.g.: Fault-tolerant computers, Near memory computing (Micron Automata

processor).

• MIMD: Multiple instructions operate on multiple data:

e.g.: Multiprocessor, Multithreaded processor

The following figure depicts the high-level computer architectures in terms of Flynn’s

classifications. In the diagrams, PU corresponds the "Processing Unit" that performs

the instruction.

6

Chunks:
Bytes:

Chunks:
Bytes:

Figure 2.1 : Flynn’s classification.

Also Parallelism can be categorized in terms of application as TLP, DLP, and ILP.

• Task Level (Thread-level) Parallelism (TLP): Multiple processes/tasks/threads

sequences of the same application can be executed simultaneously. However, it may

has some bottlenecks in practice like communication/synchronization overheads

according to the algorithm characteristics.

• Data Level Parallelism (DLP): One Instruction can be executed concurrently on

multiple data streams such as SIMD parallelism. Non-regular data access pattern

and memory bandwidth can be significant issues in total performance.

• Instruction Level Parallelism (ILP): Several independent instructions of program

can be operated in parallel (overlapping instructions) by a processor. ILP, also

callled Fine-grained parallelism, is constrained by the potential data and control

dependencies.

SIMD technology was first used as the vector processor of ILLIAC IV in the

1966, it became as the basis for vector supercomputer of Cray, CDC Star-100

and Texas Instruments ASC in the early 1970s. Afterwards, vector processor was

7

defined separately from SIMD processor because of the time-space duality, therefore

SIMD operation was accepted as a array processing [15]. On the other hand,

modern computer architectures combine array and vector processing by applying data

parallelism in both time and space.

Time-space Duality:

• Array processor: Instruction performs the operation on multiple data items at the

same time using different spaces.

• Vector processor: Instruction performs the operation on multiple data items in

consecutive time steps using the same space.

At first, SIMD technology is developed for multimedia purposes such as image and au-

dio file processing, moreover it has been used in scientific researches in course of time

like cryptography,text and data processing. Besides super-computers, microprocessor

vendors also supply SIMD processing for workstation and desktop-computer due to

widespread of SIMD usage in the applications. Therefore modern ISAs (Instruction

Set Architectures) include SIMD operations, for instance; Intel MMX/SSEn/AVX,

PowerPC(IBM) AltiVec, ARM Advanced SIMD etc.

2.3 Intel SIMD and AVX2

In 1996, Intel introduced SIMD as the MMX (MultiMedia eXtension) technology

with Pentium processor which designed especially for improved performance on

multi-media applications. After that, Intel released SSE (Streaming SIMD Extensions)

and INTEL AVX (Advanced Vector Extensions) in order to provide more acceleration

with SIMD techolongy operated on wider register lengths. Intel Xeon Processor which

has AVX2 instructions and floating point fused multiply-add (FMA) instructions is

used for new algorithms in this work.

Intel AVX2 (Advanced Vector Extensions) includes various intrinsics operated on

256-bit register data, providing enhanced functionality for broadcast/permute opera-

tions, vector shifting/permutation operations and fetch instructions for non-contiguous

data elements from memory. AVX2 architecture consists of the 16 256-bit YMM

registers called YMM0-YMM15 and 32-bit control/status register called MXCSR [16].

8

Figure 2.2 : YMM registers share bits with the XMM registers.

By the way 128 less significant bits of YMM registers are overlapped with the older

128-bit XMM registers used for Intel SSE as shown in figure 2.2

2.4 Used AVX2 Intrinsics For New Algorithms

Operation of instructions are sketched using the "Intel 64 and IA-32 Architectures

Software Developer’s Manual" [17].

• _mm256_setr_epi32 :

prototype: __m256i _mm256_setr_epi32 (int e7, int e6, int e5, int e4, int e3, int e2,

int e1, int e0)

description: Intrinsic sets packed 32-bit integer with the given values in reverse

order and stores the result in 256-bit data.

• _mm256_movemask_epi8:

prototype: int _mm256_movemask_epi8 (__m256i a)

description: Intrinsic creates mask from the most significant bit of each 8-bit

element in a, and store the result in 32-bit data.

instruction: vpmovmskb r32, ymm

• _mm_popcnt_u32:

prototype: int _mm_popcnt_u32 (unsigned int a)

9

description: Intrinsic counts the number of bits set to 1 in unsigned 32-bit integer

a, and return that count in 32-bit data.

instruction: popcnt r32, r32

• _mm256_cmpeq_epi8 :

prototype: __m256i _mm256_cmpeq_epi8 (__m256i a, __m256i b)

description: Intrinsic compares packed 8-bit integers in 256-bit a and 256-bit b for

equality, and returns the result as 256-bit data.

instruction: vpcmpeqb ymm, ymm, ymm

Figure 2.3 : Sketch of VPCMPEQB operation.

• _mm256_mpsadbw_epu8:

prototype: __m256i _mm256_mpsadbw_epu8 (__m256i src1, __m256i src2, const

int imm8)

description: Intrinsic computes the multiple packed sums of absolute difference

(SAD) between given 4-byte sub-vector from src2 data and eight subsequent 4-byte

sub-vector from src1 data. imm8 variable is the offset and specifies the starting

point of quadruplets on src2. 8 packed SAD values are calculated on each 128-bit

lanes of 256-bit data (src2) separately as depicted in figure 2.4, eventually 16

packed SAD values are obtained in total.

instruction: vmpsadbw ymm, ymm, ymm, imm

• _mm256_permute2f128_si256 :

prototype: __m256i _mm256_permute2f128_si256 (__m256 a, __m256 b,

int imm8)

description: Intrinsic shuffles 128-bit fields selected by imm8 from a and b, and

10

returns the result of permute operation in 256-bit data. The source for the first

destination 128-bit field is selected by imm8[1:0] and the source for the second

destination field is selected by imm8[5:4] as shown in figure 2.5.

instruction: vperm2f128 ymm, ymm, ymm, imm

Figure 2.4 : Sketch of VMPSADBW instruction.

Figure 2.5 : Sketch of VPERM2F128 operation.

11

• _mm256_permutevar8x32_epi32 :

prototype: __m256i _mm256_permutevar8x32_epi32(__m256i a, __m256i idx)

description: Intrinsic shuffles 32-bit integers between across lanes using the input

permute variable idx and stores the result in 256-bit data as depicted in figure 2.6.

instruction: vpermd ymm, ymm, ymm

Latency:1, Throughput:1 (for Intel Broadwell architecture)

Figure

2.6

:

Sketch

of

VPERMD

operation

•

_mm256_slli_epi64

:

prototype:

__m256i

_mm256_slli_epi64(__m256i

a,

int

imm8)

description:

Intrinsic

left

shifts

packed

64-bit

integers

by

input

imm8

while

padding

zeros

and

stores

the

result

in

256-bit

data

as

shown

in

figure

2.7.

instruction:

vpsllq

ymm,

ymm,

imm

Latency:1,

Throughput:1

(for

Intel

Broadwell

architecture)

Figure 2.7 : Sketch of VPSLLQ operation.

12

3. PROPOSED ALGORITHMS

Initially in this chapter, descriptions of word-size instructions which are composed of

AVX2 intrinsics are given, after that newly proposed exact matching algorithms based

on word-size instructions are presented in detail.

3.1 Word-Size Instructions

Specialized word-size instruction could be emulated in constant time by using AVX2

intrinsics previously described in section 2.4.

3.1.1 wscmp_a(a, b) (word-size compare instruction on AVX2)

Before, wscmp instruction is defined as; a = a0a1...aα−1 and b = b0b1...bk−1, wscmp

returns an α bit value, r = r0r1...rα−1 where ri = 1 if and only if ai=bi, ri=0 otherwise.

wscmp_a operation can be emulated with 256-bit SIMD intrinsics instead of using

128-bit intrinsics as used in EPSM algorithm.

h← _mm256_cmpeq_epi8(a,b)

r← _mm256_movemask_epi8(h)

Figure 3.1 : Example operation of word-size compare instruction.

_mm256_cmpeq_epi8 instruction compares packed 8-bit integers in

256-bit a and 256-bit b for equality, and returns the result as 256-bit data.

_mm256_movemask_epi8 instruction creates mask using the most significant bit

of each 8-bit element in 256-bit h and returns the 32-bit result as r . The diagram 3.1

shows an example of the wscmp_a(a; b) operation when working with characters

13

in ASCII code on 256-bit registers, assuming a and b variables are composed of 32

characters such as a:”tcgac...atg” and b:”cagtc...cta”.

3.1.2 wsmatch_a(a, b) (word-size matching instruction on AVX2)

wsmatch instruction is defined as; a = a0a1...aα−1 and b = b0b1...bα−1, wsmatch

returns an α bit integer value, r = r0r1...rα−1 where ri = 1 if and only if ai j = b j for

j = 0...k − 1 [8]. Also, let z be a 256-bit register with all elements are set to zero by

_mm256_setzero_si256 intrinsic. Operation of wsmatch instruction is emulated

with 256-bit SIMD intrinsics named as wsmatch_a instead of using 128-bit intrinsics.

h← _mm256_mpsadbw_epu8(a, b, imm8)

h← _mm256_cmpeq_epi8(h, z)

r← _mm256_movemask_epi8(h)

_mm256_mpsadbw_epu8

intrinsic

calculates

16

SADs

(Sum

of

Absolute

Differ-

ence)

in

total,

however,

operates

on

128-bit

lanes

separately

instead

of

the

whole

256-bit

data.

This

condition

requires

additional

shuffling

of

input

data

in

order

to

properly

arrange

the

data

bytes

compatible

with

instruction.

Meanwhile,

the

following

wspermute_a

intrinsic

can

used

to

make

this

shuffling.

The

diagram

3.2

includes

an

example

of

the

wsmatch_a(a;

b)

operating

with

characters

in

ASCII

code

on

256-bit

registers,

assuming

a:”gatcatgct...”

(32

characters)

and

b:”tcat”

(4

characters).

Figure 3.2 : Example operation of word-size match instruction.

As shown in the above example 3.2, characters of a[3 : 6] and b[1 : 4] are same as ”tcat”

(in decimal:"116-99-97-116"; in binary:"01110100-01100011-01100001-01110100").

Therefore, SAD value will be zero between these quadruplets, a[3 : 6] and b[1 : 4].

In result, r[3] value will be 1 after applying _mm256_cmpeq_epi8 intrinsic with zero

array z and masking operation by _mm256_movemask_epi8.

14

3.1.3 wspermute_a(a,b) (word-size permute instruction on AVX2)

wspermute_a instruction corresponds to the wsblend instruction of EPSM algorithm

and it arranges the 256-bit input data in the right order required for SADs operation.

h = _mm256_permute2f128_si256 (a, b, imm8);

permute = _mm256_setr_epi32(0, 1, 2, 0, 2, 3, 4, 0);

r = _mm256_permutevar8x32_epi32(h, permute);

_mm256_permute2f128_si256 intrinsic shuffles 128-bit data lanes of

256-bit a and b according to the imm8 and return the arranged data in 256-bit

h. _mm256_setr_epi32 intrinsic assigns eight input data with the packed

32-bit integer to 256-bit data in reverse order and returns the created 256-bit data

as permute. Finally, the _mm256_permutevar8x32_epi32 shuffles 32-bit

integers between across lanes using the input permute variable and returns the 256-bit

result named as r. An example operation of wspermute_a instruction is given in the

figure 3.3.

imm8 variable : 33, permute variable: "0, 1, 2, 0, 2, 3, 4, 0".

Figure 3.3 : Example operation of word-size permute instruction.

15

 - imm8 : index variable for permute function

3.1.4 wsfilter_a(C,K) (word-size filter computing instruction on AVX2)

wsfilter_a specialized word-size packed instruction calculates the filter values using

shift value K on 32-byte chunks C. This instruction can be emulated in constant time

by the following AVX2 intrinsics functions.

D← _mm256_slli_epi64(C,K)

f ← _mm256_movemask_epi8(D)

Shifting operation is performed by _mm256_slli_epi64(a,i) instruction

which left shifts 256-bit data by input i while padding zeros and masking operation

is performed by _mm256_movemask_epi8(a) instruction which creates 32-bit

mask from msb of each 32 bytes stored as 256-bit register. The following diagram

sketches the operation of filter computing using AVX2 intrinsics on 32-byte chunks

C j of pattern and text.

Filter calculation has two main operations as shifting and masking of 32-byte blocks.

Shifting operation is required to make the filter more distinguishable. If text characters

are inside in the first 128 of ASCII table, msb of each character is 0 so all filters will

become zero without shifting. The most informative bit of text characters should

be determined to create distinguishing filters. A convenient method is taking into

account only the alphabet (|Σ| bytes) with assuming the text characters have a uniform

distribution. K shifting values of data sets which will be used for experimental

evaluation of algorithms are given in the table 3.1.

Data Set Σ K Value
1 Genome Sequence 4 5
2 Protein Sequence 20 7
3 English Language Text 128 7

Table 3.1 : K shifting values of datasets.

Filter computing over 256-bit chunk (32 char) bit with representation is sketched in the

diagram 3.4.

16

- K : Shift value according to the alphabet

Figure 3.4 : The sketch of filter computing.

An example operation of wsfilter_a instruction is given in the figure 3.5 where

shifting value K is 7 and sample text is composed of 32 characters given as

"abcdefghijklmnopqrstuvwxyz 01234" .

Figure 3.5 : Example operation of the word size filter instruction

3.1.5 popcnt(a) instruction

popcnt instruction corresponds to the _mm_popcnt_u32(a) instruction which

counts the number of bits set to 1 in input a which is unsigned 32-bit integer and

returns the count value.

17

3.2 EPSMA Algorithms

EPSM(Exact Packed String Matching) algorithm is implemented using SSE intrinsics

operated on 128-bit registers called as XMM [8]. In the EPSMA(EPSM on AVX2) is

the new version of EPSM algorithm, AVX2 intrinsics are utilized which operate on

256-bit registers called as YMM. For discrete ranges of pattern lengths, three types

of EPSMA algorithm are developed for most optimum solution in its range such as

EPSMA-1, EPSMA-2 and EPSMA-3. These algorithms are essentially composed of

word-size instructions aforementioned in section 3.1, descriptions and pseudo codes

of developed algorithms are given below.

3.2.1 EPSMA-1

The EPSMA-1 algorithm is developed for short patterns therefore it is used for pattern

lengths which are smaller than 8. The algorithm is based on wscmp_a instruction

described above. It has two main phase; the preprocessing of the algorithm (lines 2-5)

and the searching phase (lines 6-13) as shown in EPSMA-1 pseudo code, algorithm

1. It can be said that by taking into account description of wscmp_a, p[0...m− 1]

has occurrence starting at position j of Ti if and only if r j = 1. Occurrence count is

calculated by popcnt instruction (line 10) and carry bits obtained by masking are

stored (line 11) for comparison on the next loop. Besides, if there is a remaining part

at the end of the text, the naive check method is applied for this text part (line 12-13).

3.2.2 EPSMA-2

The EPSMA-2 algorithm is designed by taking advantage of wsmatch_a instruction

which implements the multiple SADs operation. It is convenient for pattern lengths

from 8 to 32, while it could be used for greater pattern length, the performance

of algorithm decreases experimentally. This algorithm benefits from the filtering

technique, 2-stage filtering is applied sequentially using 8 characters (4+4) of pattern

assigned in the preprocessing phase (lines 2-3).

18

Algorithm 1 EPSMA-1 Algorithm Pseudo Code
1: procedure EPSMA1(p,m,t,n)
2: n′← 32 *(n /32) // last index divisible by 32
3: for i← 0 to (m -1) do
4: for j← 0 to (32-1) do
5: Bi[j] ← p[i]
6: for i← 0 to (n′/32)- 1 do
7: for j← 0 to (m - 1) do
8: s j ← wscmp_a(Ti, B j)
9: r← (s j � j) | (carry j � (32-j))

10: count← count + popcnt(r)
11: carry j ← s j & mask j

12: for j← n′−32 to n do
13: check position at(j−m) // for last remaining part

At the first stage wsmatch_a instruction is applied to first 4 characters p′1 (line 6).

If there is a matching for this 4 characters r value will be greater than zero, then first

stage will be passed (line 7) and program flow will step into second stage. wsmatch_a

instruction is applied again to second 4 characters p′2 (line 9) after shuffling the text Ti

to make the data in the right order for new comparison. (line 8).

r value which is greater than zero after wsmatch_a operation in second stage implies

that there is a one at least or more matching for 8 characters. If pattern length (m)

equals 8, the algorithm reports pattern occurrence easily (lines 11-12), otherwise the

naive check is performed to possible positions starting at i*32 regarding r (line 13).

In order to arrange the text data required for applying wsmatch_a instruction to

second 16-byte chunk of text, wspermute_a instruction described in 3.1.3 is used

(lines 14). 2-stage filtering operations are performed for the second part of each

loop (lines 15-22) similarly applied as the previous part (lines 6-13). Additionally,

when pattern length m is between 16 and 32, 4 characters of the pattern are skipped

while assigning characters in the preprocessing phase (line 2-3) in order to filter more

selectively. So, second character assignment (line 3) is like that;

- p′2← p[8..11] for 16≤m 32

Finally, if the last chunk has a remaining part of text, naive check method will be

applied for this part to attain complete matching.

19

Algorithm 2 EPSMA-2 Algorithm Pseudo Code
1: procedure EPSMA2(p,m,t,n)
2: p′1← p[0..3]
3: p′2← p[4..7]
4: idx← _mm256_setr_epi32(1,2,3,0,3,4,5,0)
5: for i← 0 to (n/32)- 1 do
6: r ← wsmatch_a(Ti, p′1)
7: if r >0 then
8: S← vpermd(Ti, idx)
9: r ← wsmatch_a(S, p′2)

10: if r >0 then
11: if m =8 then
12: report occurences at (i*32 + r)
13: else check position at (i*32 + r)
14: S← wspermute_a(Ti, Ti1)
15: r ← wsmatch_a(S, p′1)
16: if r > 0 then
17: S← vpermd(S, idx)
18: r ← wsmatch_a(S, p′2)
19: if r >0 then
20: if m =8 then
21: report occurences at (i*32+16 + r)
22: else check position at (i*32+16 + r)

3.2.3 EPSMA-3

The EPSMA-3 algorithm uses the filtering approach inspiring by SSEF algorithm [9].

16-bit filters are operated for filtering stage as in SSEF algorithm but in EPSMA-3 the

calculation of filters are made on 256-bit data chunks, unlike SSEF. This algorithm

utilizes wsfilter_a instruction which composed of shifting and masking operations as

described in 3.1.4. After filter computing performed on 256-bit data separate filters f1

and f2, which have 14-bit filter length giving the best performance, are extracted from

32-bit filter f (line 9 and 15). In the preprocessing phase (line 2-10) all possible filters

of the pattern are computed and then stored as an array of filters in FilterArray1 and

FilterArray2.

In the searching phase (lines 11-20), if filters f1 and f2 computed on text chunks (lines

14-15) exist in FilterArray1 and FilterArray2 respectively, the naive comparison

will be applied separately (line 17 and line 19) to check whether there is an exact

occurrence of the pattern. For shifting operation of filter computing, K values

represented in table 3.1 are used in EPSMA-3. Furthermore, the loop of searching

20

phase is unrolled by a factor of 2 in order to achieve optimal performance. EPSMA-3

algorithm is used for pattern lengths which are between 32 and 64 (32≤ m 64).

Algorithm 3 EPSMA-3 Algorithm Pseudo Code
1: procedure EPSMA3 (p,m,t,n)
2: L← [m/16] - 1
3: FilterArray1,2← /0
4: mask← 0x3FFF
5: K← a, 0≤ a < 8, according to the alphabet;
6: for i← 0 to (16 ·L + 1) do
7: d← _mm256_set_epi8 (pi+31, ..., pi)
8: f ← wsfilter_a(d,K)
9: f temp← f� 2 ; f1← f temp&mask ; f2← f temp� 16

10: FilterArray1,2[f1,2] ← FilterArray1,2[f1,2] ∪ i1,2
11: while i < N do
12: if L =2 then
13: Ti← vperm2f128 _a(Ti, Ti+1, 32)
14: f ← wsfilter_a(Ti,K)
15: f temp← f� 2 ; f1← f temp&mask ; f2← f temp� 16
16: for all j ∈ FilterArray1 [f1] do
17: check occurrence at(t32·(i)− j)

18: for all j ∈ FilterArray2 [f2] do
19: check occurrence at(t32·(iL)− j)

20: i← i + L

3.3 SSEFA Algorithm

SSEFA (SSEF on AVX2) is a new variation of SSEF algorithm which has filter based

approach composed of filtering and the verification phases. SSEFA is designed for

exact matching of long patterns such as greater sizes than 64 (64≤m). All filter values

of possible pattern alignments should be calculated to catch all location of matching

candidates. For this purpose primarily, appropriate alignments on the given pattern are

examined in the following part.

The zero-based address of the last 32-byte chunk of pattern not including zero padding

is represented by L symbol as L = b m/32 c - 1. For instance, let’s assume m=120,

32-byte chunks of the pattern are like that R = R0R1R2R3 in this case. 24 bytes of last

chunk R3 are composed of the pattern, therefore remaining 8 bytes are padded with

zero and L value becomes L = b 120/32 c-1=2. If h is defined as 0 ≤ h < b N/L c,

21

the chunks which filter computing is performed can be represented such as Y h·L+L. If

there is a proper alignment of the pattern from Y h·L and Y h·L+(L−1) according to the

filter value, naive comparison on remaining part of the candidate text will be applied

to find possible matching. Appropriate alignments of pattern bytes are sketched

in the following diagram 3.6 when computing the filters on 32-byte chunks from

Y i where i = h ·L and all bytes of last chunk represented by Y i+L are filled with patterns.

Figure 3.6 : Appropriate pattern alignment.

Fundamentally, SSEFA algorithm has two phases as preprocessing (lines 2-10) and

searching (lines 11-19) as depicted in pseudo-code 4. The preprocessing phase

includes the initializations of variables and the calculation of filter values over the given

pattern. wsfilter_a instruction explained in 3.1.4 is used (line 8) to calculate 32-bit

filter f values on 256-bit data chunks which are created by _mm256_set_epi8

(line 7) intrinsic with pattern bytes. In the searching phase, the outer loop operates

on 32-byte chunks Y i of text T in steps of L where i=h ·L+L and 0 ≤ h < b N/L c. Also

distinguishing bit position is assigned to K variable used for shifting while applying

the wsfilter_a instruction.

After wsfilter_a operation (line 8 and 12), filter f is composed of 32-bit data,

therefore, the filter can get a decimal value between 0 and 232 (4294967295:4GB).

Filter values are used as indexes while creating the filter vectors (line 10) and the

size of the filter vector is determined by the maximum value of the filter f can get.

If 32-bit filters are used, vector size becomes extremely large as 4GB, in that case,

22

memory access latencies in searching phase will cause the performance bottleneck.

Filters vector could not fit in lower level caches and memory access time becomes a

constraint in overall matching performance. Memory access analysis is applied using

hardware event metrics on Intel Vtune Amplifier to detect memory issues and find

optimal filter length. Detailed descriptions of memory analysis and optimization are

given in the next section named as "Cache Profiling and Optimization" 3.4.

Algorithm 4 SSEFA Algorithm Pseudo Code
1: procedure SSEFA (p,m,t,n)
2: L← [m/32] - 1
3: FilterArray1,2← /0
4: shi f t← 18 ; mask← 0x3FFF
5: K← a, 0≤ a < 8, according to the alphabet;
6: for i← 0 to (32 ·L + 1) do
7: d← _mm256_set_epi8 (pi+31, .., pi)
8: f ← wsfilter_a(d,K)
9: f1← f� shift ; f2← f & mask

10: FilterArray1,2[f1,2] ← FilterArray1,2[f1,2] ∪ i1,2
11: while i < N do
12: f ← wsfilter_a(Ti,K)
13: f1← f� shift
14: for all j ∈ FilterArray1 [f1] do
15: f2← f & mask
16: for all j ∈ FilterArray2 [f2] do
17: if P [t32·(i-L)+ j...t32·(i-L)+ j+m-1] then
18: pattern occurrence at(t32·(i−L)+ j)

19: i← i + L

As a result of memory access profiling, 2-stage filtering approach with 14-bit filter

length gives the best performance. 14-bit wide filters f1 and f2 are extracted from

32-bit filter f (line 9,12 and 15). Filter f1 is obtained by shifting operation with shi f t

value (18) so f1 gets 14 high-order bits (left-most bits) of 32-bit f . On the other

hand, filter f2 is obtained by masking operation using mask (0x3FFF) and f2 gets 14

low-order bits (right-most bits) of 32-bit f . Reduced 14-bit filters f1 and f2 exists

as indexes in the arrays named as FilterArray1 and FilterArray2 respectively (line

10), then these filter arrays will be used for searching the filters calculated on text

chunks (line 14 and 16). FilterArray1 is utilized like a guard for first level filtration so

FilterArray1[i] value is set 1 where filter exists otherwise set to 0. FilterArray2 is used

23

as the secondary filtering to decrease the number of verification of exact pattern and

the possible beginning position of the pattern in the text is assigned to FilterArray2[i]

regarding filter, otherwise set to 0. If 2-stage filtering is passed successfully over chunk

Y i, a full verification will be performed between P and t32·(i-L)+ j...t32·(i-L)+ j+m-1 using j

value of FilterArray2[f] where 0≤ j 32 ·L .

3.4 Profiling and Optimization

Performance analysis of HPC(high-performance computing) system is a crucial point

while developing efficient applications for modern architectures. Analysis results

can guide software developers for tuning the algorithms and improving the algorithm

performance. In this section, firstly Intel Vtune Performance Analyzer is explained

and then hardware-based performance measurements of the developed algorithm and

applied optimizations on SSEFA are presented.

3.4.1 Intel Vtune Amplifier

Intel Vtune Amplifier is integrated performance analyzer tool used to detect hardware

bottlenecks for HPC application or system on Intel modern microarchitectures.

Vtune Amplifier uses hardware data collectors to show the performance issues in

a user-friendly format, so it provides focusing on code tuning effort and achieving

the best performance improvement in the least amount of time. Vtune can be run

with GUI(Graphical User Interface) or CLI(command-line interface) on Linux and

Windows platform, also performance analyses can be made by the remote terminal

over the network.

Hardware Collector Software Collector

Uses the on chip Performance
Monitoring Unit (PMU) Uses OS interrupts

Optionally collects call stacks Call stacks show calling sequence
Requires a driver No driver required

1ms sampling interval, low overhead 10ms sampling interval
Advanced Hotspots Basic Hotspots

Microarchitecture and Platform Analysis Threading: Concurrency, Lock/Waits etc.

Table 3.2 : Properties of Intel Vtune Amplifier Collectors.

24

Analyzes of VTune Amplifier are based on sampling performance data collected

with Hardware Collector or Software Collector, these collection types also named

as Hardware Event-based Sampling Collection and User-Mode Sampling/Tracing

Collection [18]. Basic properties and analysis types are presented in the table 3.2,

later detailed descriptions of analysis types are given.

• Hotspots Analysis: This analysis is used as a starting point to analyze your

algorithm. It shows application flow and functions that took the most CPU time

to execute. It is a practical way to identify performance-critical code sections in

the application and explore memory consumption (RAM) over time with memory

objects.

• Parallelism Analyzes: It can be used for parallel compute-sensitive applications for

overall performance analysis. Threading analysis provide Effective CPU Utilization

metrics for measurement of threading efficiency such as Total Thread Count, Wait

Time with Poor CPU Utilization, Spin and Overhead Time.

• Microarchitecture Analyzes: It helps to detect the issues affecting the performance

related to hardware-level. "Microarchitecture Exploration" analysis type is a

starting point of hardware-level analysis. "Memory Access" analysis type gives

a set of metrics that show issues about memory access such as Memory Bound,

Loads, Stores, LLC (Last-level cache) Miss Count, Average Latency.

• The Platform Analyzes: These analysis types are used for monitoring CPU, GPU

system and power usage for the application. Platform analysis group includes

various subtypes such as CPU/GPU Concurrency, System Overview, Input and

Output analysis, CPU/FPGA Interaction, Platform Profiler etc.

• Source Code Analysis: Performance problem associated with the source code and

exact machine instruction(s) can be identified using this type of analysis. Source

codes and related assembly instructions and CPU times are presented in the same

pane to quickly identify the hotspot lines.

• Custom Analysis: New custom analysis can be created using the data collectors

provided by the VTune Amplifier or any other custom collector. PMU events

25

monitored by the Vtune Amplifier can be added to custom analysis and some

options are configurable if required like "CPU sampling interval value".

A view of analysis types on Vtune Amplifier GUI is depicted in the figure 3.7, analysis

options are grouped on the left of GUI for selection.

Figure 3.7 : Analysis types of Vtune Amplifier.

3.4.2 Memory analysis and cache optimization

Memory Access Analysis identifies memory-related issues especially high memory

access time when data can not fit in the L1 or L2 caches.

Hardware Event Name Definition

MEM_LOAD_UOPS_RETIRED.L1_HIT: Retired load uops with L1 cache hits as data sources.

MEM_LOAD_UOPS_RETIRED.L1_MISS: Retired load uops missed L1 cache as data sources.

MEM_LOAD_UOPS_RETIRED.L2_HIT: Retired load uops with L2 cache hits as data sources.

MEM_LOAD_UOPS_RETIRED.L2_MISS: Retired load uops missed L2. Unknown data source excluded.

MEM_LOAD_UOPS_RETIRED.L3_HIT: Retired load uops with L3 cache hits as data sources.

MEM_LOAD_UOPS_RETIRED.L3_MISS: Retired load uops missed L3. Excludes unknown data source.

INST_RETIRED.ANY: counts the number of instructions retired from execution.

CPU_CLK_UNHALTED.THREAD: counts the number of cycles while the thread is not in a halt.

26

Table 3.3 : Intel Microarchitecture Hardware Events (uops:micro-operations).

Hardware Event-Based Sampling (EBS) Analysis, also known as Performance

Monitoring Counter (PMC) analysis, is selected for collecting event metrics values

related to caches from the microarchitecture. Hardware events mentioned in table

3.3 particularly related to L1 and L2 caches are added to memory analysis on Vtune

Amplifier Tool.

Cache Miss Rate: Cache miss is a condition where the data requested for processing
by the application is not found in the related cache memory. Cache miss rate is a
critical parameter on the measurement of cache performance and it can be expressed
as equation 3.1 in terms of hardware event metrics collected on Vtune [19].

MEM

LOAD

U

OPS

RET

IRED.Li

MISS
LiMissRate

≡

_

_

_

_
 i: 1,

2,

3

(3.1)
INST

RET

IRED.ANY_

High

cache

miss

rate

implies

that

the

advantage

of

the

cache

memory

performance
 cannot

be

utilized

exactly.

The

processor

waste

more

time

accessing

the

requested
 data

if

data

doesn’t

exist

in

lower

level

caches.

CPI

Rate:

CPI

(Cycles

per

Instruction),

is

a

master

performance

metric

for

the

 analysis

with

hardware

event-based

sampling

collections

on

Intel

Vtune

Amplifier.

 It

indicates

how

many

cycles

have

been

executed

to

complete

related

instruction.

 Modern

processor

architectures

can

execute

four

instructions

per

cycle

therefore

 theoretical

best

CPI

value

is

0.25.

In

general,

high

CPI

value

shows

that

performance

 decrease

of

the

application

which

could

be

caused

by

issues

such

as

memory

stalls,

 long

latency

instructions,

branch

misprediction

or

instruction

starvation.

CPI

value

 can

be

reduced

as

a

result

of

optimizations

using

hardware-related

metrics

which

 identifies

what

is

causing

high

CPI.

3.4.2.1 Filter length analysis

In order to find the optimal filter vector length of SSEFA Algorithm, Hardware

Event-Based Sampling (EBS) Analysis is applied while increasing the vector lengths

from 4KB to 4GB. L3 cache hits and misses are removed from results because these

27

values are zero for all conditions. in the figure 3.8, a sample results view of Hardware

Event-Based Sampling (EBS) Analysis on Vtune Amplifier GUI is depicted. Elapsed

Time, CPU Time, CPI Rate and Hardware Event Count are given in the Summary

section of Vtune Amplifier GUI.

List Size 4KB 16KB 64KB 256KB 1MB 4MB

CPU_CLK_UNHALTED.THREAD 612,000,918 610,00,915 612,000,918 612,000,918 622,000,933 652,000,978

INST_RETIRED.ANY 1,352,002,028 1,354,002,025 1,350,002,025 1,354,002,031 1,356,002,034 1,358,002,037

MEM_LOAD_UOPS-RETIRED.L1_HIT 1,004,001,506 992,001,488 1,000,001,500 1,000,001,500 1,004,001,506 996,001,494

MEM_LOAD_UOPS_RETIRED.L1_MISS 2,400,072 2,300,072 2,600,078 2,600,078 2,640,078 2,675,260

MEM_LOAD_UOPS_RETIRED.L2_HIT 1,200,036 1,600,048 1,000,030 800,024 600,018 600,018

MEM_LOAD_UOPS_RETIRED.L2_MISS 0 0 0 0 0 0

List Size 16MB 64MB 256MB 1GB 4GB

CPU-CLK-UNHALTED.THREAD 732,001,098 844,001,266 2,222,003,333 6,928,010,392 25,738,038,607

INST-RETIRED.ANY 1,368,002,052 1,426,002,139 1,640,002,460 2,500,003,750 5,942,008,913

MEM-LOAD-UOPS-RETIRED.L1-HIT 992,001,488 1,012,001,518 1,020,001,530 1,052,00,578 1,220,001,830

MEM-LOAD-UOPS-RETIRED.L1-MISS 2,800,078 3,200,096 4,400,132 8,600,258 25,400,762

MEM-LOAD-UOPS-RETIRED.L2-HIT 600,018 1,000,030 1,200,036 3,000,090 9,000,270

MEM-LOAD-UOPS-RETIRED.L2-MISS 0 0 0 0 0

Figure 3.8 : Sample results of EBS analysis on Vtune Amplifier.

28

Table 3.4 : Hardware Event values for various vector lengths.

Hardware Event Metrics values measured over 100 test samples on SSEFA algorithm

are shown in the table 3.4. L1 Miss Rate calculated with equation 3.1, CPI Rate and

Elapsed Time values are given for different lengths in the table 3.5.

List Size 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB 4GB

Elapsed Time [ms] 0.218 0.210 0.224 0.215 0.222 0.234 0.264 0.360 0.782 2.413 8.927

CPI-Rate 0.453 0.450 0.454 0.452 0.459 0.480 0.535 0.718 1.355 2.771 4.532

L1 Miss Rate % 1.775 1.698 1.925 1.920 1.946 1.969 2.046 2.244 2.683 3.440 4.274

It can be seen in the table 3.5 the best CPI rate is 0.450 and L1 miss rate is 1.698

at the size of 16384 where the mask is composed of 14-bit 1. However, if the only

single 14-bit filter is used at filtration, there will be fewer filtering on match candidates

of text chunks. For the purpose of increasing the selectivity of filtering operation,

two-stage filtering method (applying 2x14-bit filters) is used therefore the number of

full verification decreases.

Reduced filters using in 2-stage filtering are FilterArray1 and FilterArray2 as shown

in pseudo-code of SSEFA and both of them are composed of distinct bits from separate

halves of the main 32-bit filter. FilterArray1 contains filters consisted of highest 14

bits (leftmost) of 32-bit filter whereas filters of FilterArray2 consist of lowest 14 bits

(rightmost). Formally, reduced filters (two 14 bit filters f1 and f2) are represented in

terms of bit items like that;

32-bit filter , fi bi
0bi

1bi
2...b

i
31

reduced filter 1 , f1i ... b i
13

reduced filter 2 , f2i bi
18bi

19bi
20...b

i
31

These reduced filters are represented in line 8-9 of pseudo-code of SSEFA.

3.4.2.2 Data type analysis

Filters are stored as a linked-list in SSEF algorithm [20] however accessing an element

maybe a little slower due to using "nodes" on linked-list. Links are allocated at

29

Table 3.5 : Time and rate values for various vector lengths.

bi
0bi

1bi
2:

:

:

random separate locations which can cause cache misses while trying to access the

pointer. On the other hand, if number of the filters is fixed, the array structure can be

used to hold filters which can allow fast random access. Data of array structure are

stored in contiguous memory therefore it improves cache spatial locality. In the table

3.6, hardware event metric values collected from Intel Vtune Amplifier are given in

table 3.6 when filters are stored in the array and linked-list structures.

Linked-List, 512Array, 512Linked-List, 64Array, 64Structure / Patlen

606,000,909592,000,909612,000,918598,000,897CPU-CLK-UNHALTED.THREAD

1,386,002,0191,344,002,0161,354,002,0311,350,002,025INST-RETIRED.ANY

996,001,494996,001,488996,001,500992,001,488MEM-LOAD-UOPS-RETIRED.L1-HIT

1,600,0481,400,0482,800,0722,600,078MEM-LOAD-UOPS-RETIRED.L1-MISS

800,024600,0181,600,0481,800,054MEM-LOAD-UOPS-RETIRED.L2-HIT

0000MEM-LOAD-UOPS-RETIRED.L2-MISS

CPI Rate, Elapsed Time values and calculated L1 Miss Rate are presented for the

array and linked-list structures in the table 3.7.

Structure / Patlen Array, 64 Linked-List, 64 Array, 512 Linked-List, 512

Elapsed Time

 CPI-Rate

L1Miss Rate

0.205

0.443

1.925

0.222

0.455

2.067

 0.191

0.440

1.041

0.202

0.453

1.154

As can be seen from the table 3.7, using array structure gives the better result

than linked-list type when memory access is the major factor in processing such as

accessing a value over fixed numbers of filters. Also, the linear probing method is

applied to the array structure for collision handling of filter values. Linear probing

method defines as: if related spot is occupied, continue moving through the array

structure until a free spot will be found. This method also known as open-addressing

hashing strategy.

30

Table 3.6 : Hardware event metrics for array and linked-list structures.

Table 3.7 : Time and rate values for array and linked-list structures.

4. EXPERIMENTAL RESULTS

Algorithms have been implemented in the C programming language and SMART

(String Matching Algorithms Research Tool) [21] is used to compare the performances

of the algorithms.

Component Property

CPU Intel Xeon E5-2680 v4
L1d cache 32KB, 64B line size, 4 Latency Cycles
L1i cache 32KB, 64B line size, 4 Latency Cycles
L2 cache 256KB, 64B line size, 12 Latency Cycles
L3 cache 35MB, 64B line size, 40+ Latency Cycles

OS CentOS 7 x86-64
GCC Version 4.8.5 20150623 (UHeM System Default Version)

GCC compiler is used with std=gnu99 mode and full optimization option is selected

by -O3 flag. Three dataset types are used; genome sequence (|Σ|=4), protein sequence

(|Σ|=20) and natural language text (English language, |Σ|=128) provided by the Smart

research tool and dataset sizes are 200MB. Test data is loaded to the memory in the

context of 32-byte aligned by union structure using __m256i AVX2 data type. All tests

run over 100 times by setting pset (size of the set of patterns) is 100. Algorithms using

in comparison are selected by scanning all existing algorithms on SMART Tool. Only

the best result of algorithms is presented using q-grams and these q values are reported

as apices. Search times of algorithms at result tables are expressed in milliseconds and

best results of each pattern length have been boldfaced.

4.1 Results for EPSMA Algorithms (patlen<64)

The performance of EPSMA algorithm is compared with the following algorithms on

SMART platform.

- BNDM: Backward Nondeterministic DAWG Matching by Navarro and Raffinot [22];

- BNDMq: The Backward DAWG Matching algorithm with q-grams [4];

31

Table 4.1 : Test platform.

- BSDMq: Backward-SNR-DAWG-Matching (BSDM) by Faro and Lecroq [23];

- EBOM: the Extended Backward Oracle Matching algorithm [24];

- EPSM: fast packed string matching for short patterns by Faro and Külekci [8];

- FSBNDMq: Forward Simplified BNDM using q-grams by Peltola and Tarhio [25];

- MEMCMP: direct usage of "memcmp" function of C library;

- N32-freq: compares 32 characters using AVX2 where comparison order given by

nondecreasing probability of pattern symbols [13];

- N32-fixed: compares 32 characters using AVX2, comparison order is fixed [13];

- SKIPq: combination of Skip-Search and the Hashq algorithms [26];

- SBNDMq: implementation of the Simplified BNDM with q-grams (SBNDMq) [4];

- TVSBS: combination of Berry Ravindran and SSABS algorithms [27];

- UFNDMq: implementation of the Shift Or with q-grams algorithm [4] ;

- WFRq: efficient algorithm based on a weak factor recognition and hashing [28];

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62

BNDMq 194.99(2) 158.12(2) 87.28(4) 56 . 63(4) 49.15 (4) 47.23(4) 37.81(4) 36.08(4) 32.94(6) 32.38(6) 31.40(6) 31.05(6) 30.65(6) 32.41(6) 30.54(6)

BOM2 − − 227.24 164.99 148.31 147.18 109.22 103.47 85.16 75.58 69.45 61.32 54.52 56.05 48.16

BSDMq 182.02(2) 96.07(3) 72.20(4) 49 . 74(4) 44.61(4) 43.72(4) 35.57(6) 33.64(6) 31.65(7) 31.45(6) 31.09(7) 30.46(7) 29.44(7) 30.94(7) 29.79(7)

EBOM 171.94 132.41 142.37 116.69 114.76 114.88 88.72 84.24 70.44 64.97 60.60 54.54 48.99 50.48 43.94

EPSM 31.07 33.29 43.81 42.81 44.22 47.26 33.04 34.03 31.94 30.91 29.40 30.00 29.68 30.65 29.08

EPSMA 26.86 28.23 31.25 29.22 30.94 31.96 32.86 31.78 29.88 28.27 27.84 28.34 27.31 27.63 27.49

FSBNDM − 212.29 166.15 111.66(4) 94.04(2) 90.39(W 2) 65.43(W 2) 60 . 97(W 2) 50.98(W 2) 46.68(W 2) 44 . 15(W 2) 44.26(W 2) 43.44(W 2) 48 . 38(W 2) 43.99(W 2)

FSBNDMq 204 . 41(20) 106.79(31) 74 . 91(41) 52.38(41) 47.37(41) 46.07(41) 37.48(62) 35.27(62) 31.88(61) 31.63(62) 30.99(61) 31.00(61) 30.22(61) 32.52(61) 30.54(61)

MEMCMP 540.10 640.99 740.05 810.21 820.17 720.05 680.59 760.75 860.52 890.49 820.09 890.16 760.37 790.00 772.41

N32-freq 29.17 (2) 32.10(5) 31.93(5) 30 . 84(5) 32.22(5) 33.02(5) 30.95(5) 32.50(7) 30.91(5) 31.72(5) 31.65(5) 31.58(5) 30.75(5) 33.01(5) 31.19(5)

N32-fixed 29.06(2) 32.05(5) 31.91(5) 30 . 50(5) 31.84(5) 32.65(5) 30.41 (5) 32.89(5) 30.06(5) 31.24(5) 31.13(5) 31.36(5) 30.43(5) 32.65(5) 30.86(5)

SBNDMq 183.29(2) 139.13(2) 86.20(4) 56 . 61(4) 49.61(4) 47.53(4) 38.57(5) 37.17(4) 34.08(4) 32.84(6) 31.83(6) 31.28(6) 30.32(6) 32.53(6) 30.69(6)

SKIPq 173.55(2) 116.25(3) 78.29(4) 52 . 72(4) 46.86(4) 45.31(4) 36.81(6) 34.87(6) 31.55(6) 31.65(6) 31.60(6) 31.45(7) 29.32(6) 30.92(7) 29.30(7)

SSEF 58.74 49.68 35.92 37.92 36.40

TVSBS-W8 196.23 175.56 177.76 131.76 128.31 99.42 101.02 96.73 87.72 84.12 91.63 80.43

UFNDMq 61 . 04(8) 53.96(8) 52.16(8) 40.41(8) 40.00(8) 36.21(8) 35.05(8) 35.00(8) 35.01(8) 34.06(8) 37.10(8) 34.46(8)

WFRq 213.50(2) 153.74(2) 85.73(3) 58 . 11(4) 51.76(5) 46.58(4) 37.42(5) 34.91(4) 33.43(5) 31.99(5) 30.97(5) 30.22(5) 29.02(5) 30.41(5) 28.97(5)

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62

BNDMq 121 . 17(2) 63.19(2) 45.54(2) 37.48 (2) 37.72(2) 33.01(2) 34.75(2) 32.38(4) 31.83(4) 31.56(4) 30.15(4) 29.37(2) 29.23(2) 29.64(2) 29.12(2)

BOM2 156.24 134.95 98.06 91.83 94.67 76.04 69.77 52.27 45.78 45.73 38.28 33.73 31.68 31.26 29.50

BSDMq 99 .62(2) 59.44(2) 48.02(3) 38.42 (3) 37.79(3) 33.21(3) 33.97(4) 32.78(4) 31.97(4) 32.20(4) 30.93(4) 29.14(4) 29.03(4) 29.12(4) 28.00(4)

EBOM 87.10 50.32 39.93 34.07 34.77 31.54 33.72 30.86 30.87 32.38 30.18 29.67 29.26 29.07 28.66

EPSM 31.85 35.47 33.62 31.07 33.49 32.36 34.42 31.90 31.06 31.66 30.35 29.57 29.02 29.38 28.92

EPSMA 27.73 28.83 30.62 27.60 28.29 28.63 30.34 27.97 28.12 29.52 28.33 27.22 26.18 26.90 25.45

FSBNDM 109.20 69.49 51 . 14 42 . 92 42 . 74 36.30 37.88 31.97 32.49 33.75 30.04(W4) 29.55(W4) 29 . 38(W4) 30.03(W4) 29.16(W4)

FSBNDMq 108.95(21) 60.35(20) 43.24(20) 36.53(20) 36 . 35(31) 31 . 78(31) 33 . 07(31) 30.12(31) 30.67(31) 31.42(31) 29.21(31) 28.96(31) 29.01(31) 29.09(31) 28.35(31)

MEMCMP 410.11 515.34 530.96 610.32 590.86 594.91 507.26 672.11 630.67 660.49 621.84 610.59 597.82 660.38 635.67

N32-freq 29.16(2) 30.55(3) 29.44(2) 28.05 (3) 30.10(3) 28.41(3) 31.34(3) 29.05(3) 29.97(3) 31.46(3) 29.35(3) 28.62(3) 28.48(3) 29.23(3) 28.13(3)

N32-fixed 28.18(2) 30.46(3) 29.51(5) 28.26(3) 30.36(3) 28.28(3) 31.48(3) 29.55(3) 30.18(3) 31.37(3) 29.52(3) 28.88(3) 28.63(3) 29.43(3) 28.02(3)

SBNDMq 115 . 40(2) 60.38(2) 44.42(2) 36.60(2) 36.91(2) 32.62(2) 34.39(2) 30.25(2) 30.85(4) 31.59(4) 29.40(4) 28.48(2) 28.41(4) 29.20(4) 28.18(4)

SKIPq 108 . 73(2) 65.88(2) 53.10(2) 43.19(2) 41.55(4) 34.60(4) 34.85(4) 30.80(4) 30.89(4) 31.82(4) 29.76(4) 28.77(4) 28.31(4) 28.88(4) 27.52(4)

SSEF − − − − − − − − − − 58.49 57.52 35.81 36.60 35.41

TVSBS-W8 161.27 98.60 71.25 54.96 54.79 45.02 44.48 35.91 34.51 35.95 31.28 29.98 29.73 29.16 28.09

UFNDMq 193 . 73(2) 97.48(2) 74.22(2) 59.57(2) 54.45 (2) 46.19(2) 44.47(2) 35.54(2) 34.01(2) 34.10(2) 31.41(2) 30.46(2) 29.94(2) 28.73(2) 27.39(2)

WFRq 133 . 91(2) 75.74(2) 54.29(3) 46.53(2) 43.13(3) 34.54(3) 35.92(3) 30.43(4) 30.98(4) 32.02(4) 29.74(4) 29.02(5) 28.83(4) 28.78(4) 27.80(4)

32

Table 4.2 : Running times for genome sequence when pattern length < 64.

Table 4.3 : Running times for protein sequence when pattern length < 64.

− − − − − − − − − −
− −
− −

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62

BNDMq 129.68(2) 70.10(2) 56.46(2) 55.19(2) 47.51(4) 40.54(4) 36.30(4) 34.10(4) 32.65(4) 31.13(4) 30.34(4) 29.26(4) 29.07(4) 28.70(4) 28.58(4)

BOM2 − 151.19 134.14 127.07 110.93 90.81 82.06 65.94 58.65 50.18 47.19 45.21 43.17 44.63 43.27

BSDMq 103.97(2) 60.44(2) 50.90(2) 46.71(3) 41.73(3) 37.74(4) 34.52(4) 32.76(5) 31.98(6) 31.80(6) 31.44(6) 30.05(6) 29.10(6) 28.58(6) 28.64(6)

EBOM 100.05 60.69 51.36 50.68 46.87 44.56 43.42 42.27 41.21 40.23 39.06 36.77 38.90 36.30 34.05

EPSM 31.48 32.54 36.43 41.52 38.80 38.13 32.74 32.67 31.12 30.56 28.93 28.01 27.83 27.07 26.87

EPSMA 26.94 27.37 31.81 31.67 29.73 29.77 28.70 28.42 27.03 26.67 25.80 25.09 24.71 24.13 23.26

FSBNDM 130.47 83 . 09 68.00 63.11 57.47(W4) 49.01(W4) 46.36(W 4) 40.45(W4) 38.68(W4) 36.35(W 2) 34.56(W4) 32.34(W4) 31.57(W 4) 31.20(W4) 30.92(W 4)

FSBNDMq 127.81(20) 67.39(20) 51.61(31) 47.22(31) 41.75(31) 38 . 96(31) 35.34(41) 33.40(41) 32 . 08(41) 31.43(41) 30.88(41) 29.46(31) 29.08(41) 28.75(41) 28.47(41)

MEMCMP 430.84 476.10 560.84 540.93 600.90 600.76 621.13 640.32 640.29 670.72 678.62 680.78 710.80 680.38 670.58

N32-freq 30.09(2) 29.89(3) 29.87(3) 30.73(3) 31.03(2) 30.36(2) 30.20(2) 30.07(2) 29.17(3) 29.10(5) 28.89(3) 28.48(2) 28.03(3) 28.01(3) 27.10(2)

N32-fixed 29.95(2) 29.60(3) 30.16 (3) 30.78(3) 31.26(3) 30.62(3) 30.22(3) 30.38(3) 29.45(3) 29.07(3) 29.03(3) 28.56(3) 28.12(3) 28.13 (3) 27.15(3)

SBNDMq 122.62(2) 67.31(2) 54.35(2) 52.68(2) 47.50(4) 44.20(4) 36.48(4) 34.39(4) 32.82(4) 31.17(4) 30.26(4) 29.83(4) 29.50(4) 29.01(4) 28.55(4)

SKIPq 112.14(2) 65.86(2) 53.06(2) 52.70(2) 44.60(4) 39.43(4) 35.36(4) 33.31(4) 32.98(4) 31.55(4) 31.20(4) 30.35(4) 29.44(4) 28.95(4) 28.50(4)

SSEF 58.44 55.68 40.92 36.92 35.27

TVSBS-W8 169.07 98.88 71.21 64.94 56.84 48.18 45.17 39.50 38.21 36.78 35.68 35.57 38.41 37.22 36.80

UFNDMq 118.71(2) 178 . 53(2) 66.67(2) 68.07(2) 58.51(8) 45.96(2) 43.77(8) 38.25(8) 35.43(8) 32.34(8) 32.02(8) 31.86(8) 32.11(8) 33.15 (8) 32.40(8)

WFRq 139.43(2) 77.38(2) 58.99(3) 57.83(2) 46.27(3) 39.25(3) 36.13(4) 33.58(4) 31.44(3) 31.08(4) 30.61(4) 29.20(4) 28.85(4) 28.51(4) 28.10(4)

Figure 4.1 : Times for genome sequence, pattern length<64.

Figure 4.2 : Times for protein sequence, pattern length<64.

33

Table 4.4 : Running times for English text when pattern length < 64.

− − − − − − − − − −

Figure 4.3 : Times for English text, pattern length<64.

Time values are also represented in the above figures for more apprehensible

interpretation of results. It can be seen from the figures, EPSMA is faster than almost

all previous most competitive exact string matching algorithms in the literature.

4.2 Results for SSEFA Algorithm (patlen>64)

SSEFA-1 and SSEFA-2, non-optimized versions of SSEFA, are added in algorithm

test list for comparison between optimized SSEFA. Hereby, it can be seen how cache

optimization can effect the overall performance.

m 64 96 128 192 256 384 512 A768 1024 1280 1536 1792 2048

BNDMq 31.67(6) 30.46(6) 29.70(6) 29.97 (6) 29.56(6) 29 . 80(6) 32.07(6) 29.87(6) 29.91(6) 31 .06(6) 31.00(6) 31.09(6) 28.92(6)

BOM2 51.89 39.45 38.04 35.56 29.67 29.48 28.10 24.53 22.82 22.94 21.83 21.92 20.77

BSDMq 30.22(8) 29.80(8) 29.82(8) 30.10(7) 27.30(8) 27 . 27 (8) 26.84(7) 27.15(7) 27.25(7) 28.47(7) 27.61(7) 28.26(6) 27.17(7)

EBOM 47.15 36.86 35.97 34.79 31.45 29.13 28.76 24.14 22.37 22.63 21.59 21.55 20.55

EPSM 30.33 29.23 28.11 26.47 23.00 21.01 20.01 18.13 17.25 18.26 17.72 17.90 17.04

FSBNDM-Wq 48.36(2) 43.80(2) 48.49(2) 44.24 (2) 43.39(2) 43 . 17(2) 47.80(2) 43.57(2) 43.59(2) 44.18(2) 47.60(2) 44.22(2) 42.25(2)

FSBNDMq 31.75(61) 30.31(61) 31.77(61) 29.86(61) 30.04 (61) 29.71(61) 30.02 (61) 29.84(61) 29 . 73(61) 30.85(61) 30 .91(61) 30.88(61) 29.75(61)

MEMCMP 780.89 900.51 780.82 840.74 830.13 752.03 732.38 741.38 720.72 708.84 760.97 820.90 850.66

N32-freq 32.33(5) 31.01 (5) 32.52(5) 30.44(5) 30.09(5)

N32-fixed 32.05(5) 30.70(5) 32.20(5) 30.86(5) 29.22(5) − − − − − − − −

SBNDMq 31.93(6) 30.54 (6) 32.11(6) 30.10(6) 29.73(6) 28 . 93 (6) 32.23(6) 29.97(6) 28.90(6) 31 .13(6) 30.88(6) 31.03(6) 29.98(6)

SKIPq 30.99(7) 28.30 (6) 29.50(6) 27.94 (6) 26.34(7) 22 . 20 (8) 21.73(8) 18.27(8) 17.03(8) 18.05(8) 17.58(8) 17.74(8) 16.85(8)

SSEF 33.93 29.89 29.16 26.78 24.53 20.01 18.48 17.66 16.35 16.23 16.06 15.81 15.24

SSEFA 28.26 27.64 25.52 23.76 20.66 17.81 15.66 14.29 12.97 13.78 13.62 12.93 12.78

SSEFA-1 130.24 85.70 57.78 52.00 39.49 29.29 28.77 26.51 28.22 25.31 23.81 30.92 24.71

SSEFA-2 70.64 46.37 39.75 34.28 30.87 23.53 21.24 19.72 23.74 19.28 19.02 22.53 19.49

TVSBS-W8 91.12 77.24 78.45 75.81 74.20 75.80 85.59 76.15 76.94 78.25 86.23 79.98 78.61

UFNDMq 36.49(8) 34.38 (8) 33.74(8) 33.88(8) 33.48(8) 33 . 81(8) 35.71(8) 33 .87(8) 33.76(8) 34 .86(8) 35.64(8) 34.79(8) 32.82(8)

WFRq 30.84(5) 28.75(5) 28.65(6) 27.00 (2) 25.12(5) 22 . 12(6) 21.11(7) 18.09 (7) 17.53(7) 18.33(4) 17.48(4) 17.72(4) 16.78(3)

34

Table 4.5 : Running times for genome sequence when pattern length > 64.

− − − − − − − −

m 64 96 128 192 256 384 512 768 1024 1280 1536 1792 2048

BNDMq 30.10(4) 31.16(4) 30 .21(4) 30.32(4) 30.33(4) 30.34(2) 30.25(4) 30.25(4) 29.27(4) 30.69 (2) 30.36(2) 29.19(4) 29.31(4)

BOM2 31.48 31.37 30.45 30.07 28.01 25.09 22.57 21.30 18.97 19.06 20.21 19.46 19.89

BSDMq 29.95(4) 30.68(4) 29.45(4) 29.08(4) 29.35(4) 28.77(4) 29.06(4) 28.64(4) 27.58(4) 29.24 (4) 28.56(4) 27.52 (4) 27.48(4)

EBOM 29.80 30.31 29.11 27.87 26.53 23.59 21.75 20.29 18.94 19.49 20.23 19.44 19.80

EPSM 29.43 29.86 29.01 26.02 23.55 21.03 18.59 18.77 17.69 18.12 18.65 17.71 17.67

FSBNDM-Wq 32.02 (4) 32.84(4) 32 .12(4) 30.67(4) 32.35(4) 30.74(4) 32.19(4) 30.75(4) 29.72(4) 30.94 (4) 30.74(4) 29.88(4) 29.79(4)

FSBNDMq 29.96(31) 30 . 76(31) 29.73(31) 29.89(31) 30.24(31) 29.95(31) 30.03(31) 29.87(31) 28.83(31) 30.34(31) 29.86(31) 28.75(31) 28.86(31)

MEMCMP 660.50 590.94 601.14 596.23 600.87 587.45 602.25 607.47 591.54 613.91 608.38 620.32 590.18

N32-freq 30.41(3) 31.29(3) 30 .31(3) 30.12(3) 30.66(3) − − − − − − − −

N32-fixed 30.04 (3) 30.71(3) 30 .11(3) 29.97(3) 30.10(3)

SBNDMq 30 .38(4) 31.08(4) 30 .22(4) 30.24(4) 30.40(4) 30.22(4) 30.31(4) 30.28(4) 29.17(4) 30.42(4) 30.26(4) 29.08 (2) 29.19(4)

SKIPq 29 .79(4) 30.05(4) 28.28(4) 27.33(4) 25.86(4) 22.08(4) 19.78(8) 18.41(8) 17.11(8) 17.48(8) 18.00(8) 17.04 (8) 16.97(8)

SSEF 34.18 32.52 30.28 27.14 23.13 20.17 18.62 17.26 17.03 16.02 16.94 16.07 15.87

SSEFA 28.16 28.95 27.45 24.88 21.12 17.21 15.40 15.01 14.53 13.90 14.06 13.56 12.56

SSEFA-1 88.27 67.20 48.37 38.91 34.82 28.84 26.73 25.28 24.96 24.50 23.90 24.69 23.78

SSEFA-2 69.31 43.81 36.56 30.81 27.24 23.04 19.76 18.77 18.33 18.32 18.78 19.62 18.32

TVSBS-W8 30.10 28.16 27.75 26.69 27.36 26.97 26.71 25.01 23.14 24.31 23.82 23.38 22.55

UFNDMq 30.03 (2) 29.76(2) 27.79(2) 25.89(2) 29.28(2) 28.41(2) 26.45(2) 26.44(2) 23.42(2) 25.50 (2) 23.59(2) 22.38(2) 23.86(2)

WFRq 29.59(5) 29.71(5) 28.18(5) 27.29(4) 25.37(4) 22.39(4) 20.33(5) 19.25(5) 17.25(3) 17.53 (3) 17.80(3) 17.21 (6) 16.92(3)

m 64 96 128 192 256 384 512 768 1024 1280 1536 1792 2048

BNDMq 31.76(2) 30.13(4) 31 .75(6) 33.46(4) 29.21(4) 29.99(4) 31.62(4) 31.41(4) 31.77(4) 33.15(4) 32.84(4) 29.63 (4) 31.38(4)

BOM2 41.34 33.92 33.72 33.89 28.44 28.74 29.18 26.45 24.84 24.68 24.45 21.17 22.78

BSDMq 30.46(6) 28.44(6) 29.73(8) 31.08(6) 27.17(7) 27.37(6) 28.95(6) 28.61(6) 29.09(6) 30.06 (6) 29.84(6) 26.42(6) 28.44(8)

EBOM 36.72 33.08 32.64 33.93 28.28 27.55 27.52 24.79 23.83 24.16 23.69 20.57 22.12

EPSM 29.72 29.19 28.85 26.07 22.02 19.57 18.70 18.83 18.76 18.86 19.68 17.92 18.77

FSBNDM-Wq 37.41(4) 33.69(4) 37 .17(4) 38.56(4) 33.17(4) 33.92(4) 37.36(4) 35.09(4) 37.05(4) 38.24 (4) 38.17(4) 33.66 (4) 35.12(4)

FSBNDMq 31.58(41) 30 . 90 (41) 31.41(41) 33 .32(41) 29.07(41) 29.69(41) 31.60(41) 31.24(41) 31.73(41) 32.90(41) 32.69(41) 29.43(41) 31.24 (41)

MEMCMP 760.81 711.78 632.58 600.81 670.06 633.48 570.78 580.52 592.52 612.76 602.17 610.84 612.23

N32-freq 30.49(2) 29.28(2) 29.56(2) 31.29(2) 27.30(2) − − − − − − − −

N32-fixed 30.89(3) 28.81(3) 30 .20(3) 31.83(3) 27.88(3)

SBNDMq 31 .69(4) 30.01(4) 31 .51(4) 33.31(4) 29.12(4) 29.83(4) 31.51(4) 31.33(4) 31.81(4) 33.03 (4) 32.99(4) 29.53 (4) 31.30(4)

SKIPq 30 .57(6) 28.91(4) 29.05(5) 30.20(4) 24.49(8) 20.80(8) 19.05(8) 17.53(8) 17.31(8) 18.36 (8) 18.14(8) 15.34(8) 17.10(8)

SSEF 33.63 31.78 30.95 28.49 21.30 19.13 17.37 16.20 16.14 17.19 17.12 16.44 16.00

SSEFA 27.94 27.58 27.39 25.67 19.04 15.90 15.67 14.63 14.41 14.92 15.10 13.75 13.43

SSEFA-1 78.04 56.75 54.05 38.50 33.89 36.32 26.09 25.40 24.33 26.42 25.62 23.81 22.87

SSEFA-2 61.29 45.34 38.89 30.99 26.31 28.68 19.15 19.04 18.47 19.36 19.58 18.19 17.83

TVSBS-W8 31.99 28.08 28.93 32.73 26.55 27.60 28.24 25.74 25.20 25.10 24.19 21.57 22.41

UFNDMq 33.96(2) 28.23(2) 30 .23(4) 35.76(2) 26.43(2) 26.31(2) 27.60(4) 28.36(2) 23.23(2) 24.90 (2) 24.81(2) 22.34(2) 23.43(2)

WFRq 30.23(4) 27.40(4) 28.56(4) 29.70(4) 23.59(4) 21.67(4) 20.92(5) 19.38(5) 18.94(3) 19.75(3) 19.60(3) 16.55 (3) 18.16(3)

The SSEFA (optimized version) algorithm is compared with the following algorithms

in addition to the previously mentioned algorithms in EPSMA on SMART Tool.

- SSEF: filter based fast matching by using SSE instructions [9];

- SSEFA-1: non-optimized version of SSEFA with unmasked 32-bit filter;

- SSEFA-2: reduced filter length version of SSEFA with single 28-bit filter;

Time values are depicted graphically show that SSEFA algorithm gives better results

for most conditions than other algorithms which are known as fastest in the literature.

35

Table 4.6 : Running times for protein sequence when pattern length > 64.

Table 4.7 : Running times for English text when pattern length > 64.

− − − − − − − −

− − − − − − − −

− − − − − − − −

Figure 4.4 : Times for genome sequence, pattern length>64.

Figure 4.5 : Times for protein sequence, pattern length>64.

Figure 4.6 : Times for English text, pattern length>64.

36

5. CONCLUSIONS AND RECOMMENDATIONS

The new state-of-the-art variations of the EPSM and SSEF algorithms are proposed by

adding new techniques and instructions for the exact string matching problem. AVX2

instructions are utilized and optimizations are applied using analyzes on Intel Vtune

Amplifier to improve overall performance. Besides using AVX2 instructions operated

on 256-bit data for filtering algorithms, optimal bit length of the filter, 2-stage filtering

technique and data structure for storing the values of filters have the significant impacts

on performance. Experiments show that new algorithms are faster than almost all

previous most efficient exact string matching algorithms for various pattern lengths

and alphabet sizes. By the way, EPSMA and SSEFA don’t have the best result at a

few pattern lengths, these lengths are 6, 8, 96 for English text; 6, 12, 128 for protein

sequence and 16 for genome sequence. Time difference between EPSMA and EPSM

algorithms becomes more evident when pattern length is smaller than 16. Likewise,

EPSMA gives better results against to the nearest competitors when pattern length is

greater than 16 but the time difference between EPSMA and others is more stable in

this range. Fine speedups are achieved for SSEFA over old version while changing the

pattern length and text types. Particularly time difference becomes more well-marked

between SSEFA and other algorithms for very long patterns. Eventually, proposed

algorithms are extremely useful for practitioners.

As a future work, new algorithms may be implemented using equivalent SIMD

instructions with some modifications on other architectures like the ARM, AMD.

Furthermore, new efficient word-size instructions can be defined utilizing AVX2

intrinsics for other types of string matching such as approximate, circular matching

and other issues related to string.

37

38

REFERENCES

[1] Faro, S. (2016). Exact online string matching bibliography, arXiv preprint
arXiv:1605.05067.

[2] D. E. Knuth, J. H. Morris, J. and Pratt., V.R. (1977). Fast pattern matching in
strings, 6(2), 323–350.

[3] Boyer, R.S. and Moore, J.S. (1977). A fast string searching algorithm,
Communication of the ACM, 20(10), 762–772.

[4] B. Durian, J. Holub, H.P. and Tarhio, J. (2009). Tuning bndm with q-grams.
Proceedings of the Workshop on Algorithm Engineering and Experiments,
ALENEX, pp.29–37.

[5] Karp, R.M. and Rabin, M.O. (1987). Efficient randomized pattern-matching
algorithms, IBM Journal of Research and Development Mathematics and
computing, 31(2), 249–260.

[6] Faro, S. and Lecroq, T. (2013). The exact online string matching problem: A
review of the most recent results, ACM Computing Surveys (CSUR), 45(2).

[7] Faro, S. and Lecroq, T. (2010). The exact string matching problem: a
comprehensive experimental evaluation, arXiv preprint arXiv:1012.2547.

[8] S. Faro, M.K. (2013). Fast packed string matching for short patterns, 15th
Meeting on Algorithm Engineering and Experiments, ALENEX, SIAM,
New Orleans, LA, USA, pp.113–121.

[9] KULEKCI, M.O. (2009). Filter based fast matching of long patterns by using simd
instructions, Prague Stringology Conference, Czech Technical University
in Prague, Czech Republic, pp.118–128.

[10] Tamanna Chhabra, Simone Faro, M.O.K. and Tarhio, J. (2017). Engineering
order-preserving pattern matching with SIMD parallelism, Software:
Practice and Experience, 47, 731–739.

[11] Faro, S. and Kulekci, M.O. (2012). Fast multiple string matching using
streaming SIMD extensions technology, 19th International Symposium
on String Processing and Information Retrieval, volume7608 of LNCS,
pp.217–228.

[12] S. Ladra, O. Pedreira, J.D.N.B. (2012). Exploiting SIMD instructions in
current processors to improve classical string algorithms, The 16th
East European Conference on Advances in Databases and Information
Systems, volume7503 of LNCS, Springer, pp.254–267.

39

[13] J. Tarhio, J.H. and Giaquinta, E. (2017). Technology beats algorithms (in exact
string matching, Software: Practice and Experience, 47(12), 1877–1885.

[14] Flynn, M.J. (1966). Very High-Speed Computing Systems, Proceedings of
the IEEE, 54(12), 1901 – 1909, http://www.cs.utexas.edu/
users/dburger/teaching/cs395t-s08/papers/5_flynn.
pdf.

[15] Mutlu, O., Computer Architecture Lecture Notes, https://safari.ethz.
ch/architecture/fall2017/lib/exe/fetch.php?media=
onur-comparch-fall2017-lecture8-afterlecture.pdf.

[16] Introduction to Intel® Advanced Vector Extensions, https://software.
intel.com/sites/default/files/m/d/4/1/d/8/Intro_
to_Intel_AVX.pdf.

[17] Intel 64 and IA-32 Architectures Software Developer’s Manual, https:
//software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[18] Intel VTune Amplifier 2019 User Guide, https://software.intel.com/
en-us/=vtune-amplifier-help-analyze-performance.

[19] Cache Miss Rates in Intel® VTune™ Amplifier
, https://software.intel.com/en-us/articles/
cache-miss-rates-in-intel-vtune-amplifier-xe.

[20] B. Durian, J. Holub, H.P. and Tarhio, J. (2010). Improving practical exact string
matching, Information Processing Letters 110(4), 148–152.

[21] S. Faro, T. Lecroq, S.B.S.D.M.A.M. (2016). The String Matching Algorithms
Research Tool, Prague Stringology Conference, volume7503 of LNCS,
Springer, Prag, Czech Republic, pp.99–111.

[22] McCaffrey, R. and Abers, G. (2000). G. Navarro and M. Raffinot. Fast and
flexible string matching by combining bit-parallelism and suffix automata,
ACM Journal of Experimental Algorithmics (JEA), 5(4).

[23] Faro S., L.T. (2012). A fast suffix automata based algorithm for exact online
string matching, Implementation and Application of Automata. CIAA,
volume7381 of LNCS, Springer, Berlin, Heidelberg.

[24] Faro, S. and Lecroq, T. (2008). Efficient variants of the
backward-oracle-matching algorithm, Prague Stringology Conference,
Springer, Prag, Czech Republic, pp.146–160.

[25] Peltola, H. and Tarhio, J. (2011). Variations of forward-sbndm, Prague
Stringology Conference, Prag, Czech Republic.

[26] Faro, S. (2016). A very fast string matching algorithm based on condensed
alphabets, Algorithmic Aspects in Information and Management - 10th
International Conference, AAIM.

40

[27] R. Thathoo, A. Virmani, S.L.N.B. and Sekar, K. (2006). TVSBS: A fast exact
pattern matching algorithm for biological sequences, Current Science,
91(1), 47–53.

[28] Domenico Cantone, Simone Faro, A.P. (2017). Speeding Up String Matching by
Weak Factor Recognition, Stringology, pp.242–50.

41

42

CURRICULUM VITAE

Mehmet Akif Aydoğmuş

Place and Date of Birth: Eskişehir, 29.03.1989

E-Mail: aydogmusm@itu.edu.tr

EDUCATION:

• B.Sc.: 2012, Istanbul Technical University, Electronics Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 03-07.2012 Baykar Makina / R&D Engineer (Part Time)

• 2012-2013 AGENA BST / Software Development Engineer

• 2013-2015 NETAŞ / Software Development Engineer

• 2015- TÜBİTAK / Embedded Software Engineer - Researcher

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• M. Akif Aydoğmuş and M. Oğuzhan Külekci, Optimizing Packed String
Matching on AVX2 Platform, VECPAR 2018, 13th International Meeting on High
Performance Computing for Computational Science (São Paulo, Brazil).

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• AYDOGMUS, M. A., KUNTMAN, H. New CMOS realization of ZC-CG-CDBA
and its filter application. In Proceedings of 20th. IEEE Signal Processing And
Communications Applications Conference (SIU 2012). Muğla (Turkey), 2012, p.
18 - 20.

43

	Untitled
	Untitled

