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OPTIMIZING PACKED STRING MATCHING On AVX2 PLATFORM

SUMMARY

Exact string matching, searching for all occurrences of given pattern P on a text 7', is
a fundamental issue in computer science with many applications in natural language
processing, speech processing, computational biology, information retrieval, intrusion
detection systems, data compression, time series analysis and etc. The speed of
string matching is gaining more importance due to today applications of scientific
and industrial are operating on large datasets increasing continuously. Accelerating
the pattern matching operations benefiting from the SIMD parallelism has received
attention in the recent literature, where the empirical results on previous studies
revealed that SIMD parallelism significantly helps, while the performance may even
be expected to get automatically enhanced with the ever increasing size of the SIMD
registers.

The variants of the previously presented EPSM and SSEF algorithms are proposed,
which are originally implemented on Intel SSE4.2 (Streaming SIMD Extensions 4.2
version with 128-bit registers). The new algorithms are designed according to Intel
AVX?2 platform (Advanced Vector Extensions 2 with 256-bit registers) and the gain in
performance is analyzed with respect to the increasing length of the SIMD registers.
Particularly in algorithms based on filtering methods, memory access time can be
the performance bottleneck when working with large decimal values such as 32-bit
filter values calculated from 256-bit registers. Profiling the new algorithms by using
the Intel Vtune Amplifier for detecting performance issues led us to consider the
cache friendliness in the AVX2 platform. Hardware Event-Based Sampling (EBS)
analysis type is selected for profiling on various filter lengths and data structures and
so performance metrics of algorithms are collected. Cache optimization techniques are
applied to overcome the problems particularly addressing the search algorithms based
on filtering.

Experimental comparison of the new solutions with the previously known-to-be-fast
algorithms on small (genome sequence), medium (protein sequence), and large
alphabet (English language) text files with diverse pattern lengths showed that the
algorithms on AVX2 platform optimized cache obliviously outperforms the previous
solutions. It can be inferred from experiments that proposed algorithms are practicable
for today applications. Also, proposed algorithms can be portable to other architectures
like the ARM and AMD using equivalent SIMD instructions with some modifications.
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AVX2 PLATFORMU UZERINDE PAKETLENMIS DIZGI ESLESTIRME
VE OPTIMIZASYONU

OZET

Dizgi eslestirme verilen bir Oriintiinlin P bir metin 7 {izerinde bir veya tiim
eslesmelerini bulma islemi olarak tanimlanabilir ve bilgisayar bilimlerinde iizerinde
genis bir sekilde calisma yapilan temel bir konudur. Dizgi eslestirmenin bir¢ok
alanda uygulamasi vardir, bunlar arasinda dogal dil isleme, ses isleme, hesaplamali
biyoloji, bilgi gerigetirimi, saldir1 tespit sistemleri, arama motorlari, veri sikistirma,
zaman serileri analizi gibi konular sayilabilir. Giiniimiizde farkli alanlardaki verilerin
hizi, kapasitesi ve cesitliligi siirekli artmaktadir, dolayisiyla bu biiyiik veri yiginlar
tizerindeki dizgi eslestirme algoritmalarinin hizlar1 gittikce onem kazanmaktadir.
Ozellikle zaman-kritik uygulamalarda dizgi eslestirme algoritmalariin performansi
en Onemli kriterlerden biridir. Literatiirde dizgi eslestirme problemin tipine gore
kategorilere ayrilmistir; tam, yaklasik, dairesel, karmasik, sira-korumali olarak
eslestirme tipleri mevcuttur.

Bu caligmada tam dizgi eslestirme icin paketleme metoduna dayali yeni algoritmalar
geligtirilmigtir. Tam dizgi eslestirme bir metin iizerinde verilen Oriintliniin tam
eslesen alt dizgilerini bulma olarak tamimlanmaktadir. Bu tezde yeni Onerilen
paketlenmis dizgi eslestirme algoritmalarinda SIMD (Single Instruction Multiple
Data) teknolojisinden yararlanilmistir. SIMD teknolojisi bir komutla ayn1 anda ¢oklu
veri iizerinde islem yapma olanagi sunmaktadir. Ayrica gelistirilen algoritmalarda
optimum ¢6ziime ulagmak icin algoritmalar {izerinde analiz yapilarak optimizasyonlar
uygulanmustir.

1970 yilindan giiniimiize cok sayida dizgi eslestirme algoritmalart sunulmustur,
giiniimiizde ise daha iyi sonuclara ulasabilmek amaciyla yeni bakis acilariyla
yontemler gelistirilmeye devam edilmektedir. SIMD ile parallestirmeye dayali
yontemlerle dizgi eslestirme operasyonunu hizlandirma son yillarda literatiirde
goriilmeye baslanmigtir.  Yapilan deneysel calismalarda SIMD ile veri seviyesinde
paralellestirme ©nemli derecede hizlanma saglamaktadir, ayrica artan '"register"
boyutlariyla bu performans artisinin devam etmesi beklenmektedir. Bu calismada daha
once 128 bit "register" boyutuna sahip "Intel SSE4.2 (Streaming SIMD Extensions
4.2)" teknolojisi iizerinde gelistirilen EPSM ve SSEF algoritmalarinin yeni optimal
varyantlar1 Onerilmistir. ~ Yeni Onerilen algoritmalar 256 bit "register" boyutuna
sahip Intel AVX2 (Advanced Vector Extensions 2) platformu iizerinde gelistirilmistir
ve artan "register" boyutuna karsilik performansin nasil arttif1 ve hangi sorunlarla
karsilasildig1 analiz edilmistir. Bu baglamda Intel Vtune Amplifier uygulamasi ile
algoritmalar iizerinde profilleme ile performans darbogazlar: tespit edilerek sebepleri
arastirllmis ve bu bilgiler 15181nda algoritmalar diizenlenmistir.

Calismada oncelikle AVX2 "intrinsic" fonksiyonlar1 kullanilarak 256-bit veri {izerinde
sabit zamanda calisan kelime-boyu komutlar tanimlanmigti. ~ Daha sonra bu

xxiii



kelime-boyu komutlar kullanilarak yeni algoritmalar gelistirilmistir. AVX2 platformu
izerinde calisgan bu komutlardan bahsedecek olursak; "kelime-boyu kargilastirma
komutu" argiiman olarak aldigi iki adet 256-bit veriyi karsilagtirarak egslestirme
sonuglarii 32 bit veri biciminde vermektedir. "Kelime-boyu eslestirme komutu" ise
256 bit iki veride dortlii karakter gruplar iizerinde 16 adet Mutlak Farklar Toplami
(SAD) hesaplayarak eslesme olan durumlar1 belirlemekte ve eslesme sonuglarini
32-bit veri olarak dondiirmektedir. "Kelime-boyu degistirme komutu" iki adet 256
bit veri lizerinde 32 karakterlik boliitlerin yerlerini degistirerek istenen veri diizenini
saglamakta, bu yer degistirme iglemini argiiman olarak aldig1 istenen siralamay1 temsil
eden degiskene gore uygulamaktadir. Tantmlanan diger "kelime-boyu filtre hesaplama
komutu" 256 bitlik veri iizerinde kaydirma islemi yaptiktan sonra tiim baytlarin en
anlamli bitlerini kullanarak 32 bitlik fitre de8erini iiretir. Kaydirma islemindeki
kaydirma miktari iizerinde islem yapilan verinin dahil oldugu alfabeye gore belirlenen
0 ile 7 arasinda bir degerdir.

Kelime-boyu komutlar kullanilarak EPSMA (EPSMA-1,2,3) ve SSEFA algoritmalari
onerilmistir. ESPMA-1 algoritmasi Oriintii boyunun 8’den kii¢iik oldugu durumlar i¢in
gelistirilmigtir ve temeli "kelime-boyu karsilagtirma komutu" kullanimina dayanmak-
tadir. Oriintii boyunun 8 ile 32 arasinda oldugu durumlar icin "kelime-boyu eslestirme
komutu" baz alinarak EPSMA-2 algoritmas: tasarlanmistir. ~ Ayrica EPSMA-2
algoritmasinda ardigil eslestirme komutlar1 arasinda "kelime-boyu degistirme komutu"
verinin diizenlenmesi amaciyla kullanilmigtir. EPSMA-3 algoritmasi ise "kelime-boyu
filtre hesaplama komutu" ile filtreleme metoduna dayanmaktadir ve boyu 32 ile 64
arasinda olan Oriintiiler i¢in uygundur. 16 karakterlik boliitii temsil eden filtre 16
bitten olusmaktadir ve bir filtre hesaplama komutuyla ayni1 anda 16 bitlik 2 adet filtre
elde edilmektedir. EPSMA-3’de filtreler ayr1 ayr1 uygulanarak olasi eslesme adaylari
elde edilir ve bu adaylar tizerinde tam eslesme karsilastirmasi yapilir. Boyu 64’den
biiyiik olan uzun oriintiiler i¢in ise SSEFA algoritmasi Onerilmigtir ve bu algoritma
da "kelime-boyu karsilagtirma komutu" tabanl filtreleme yaklagimina dayanmaktadir.
Ancak SSEFA’da filtreler 32 karakter boliitii baz alinarak hesaplandigindan her 32
karakteri 32 bitten olusan bir filtre degeri temsil eder. 32-bit filtre degeri indeks
olarak kabul edilip filtre vektorii olusturuldugunda ise vektoriin boyutu filtre degerinin
alabilecegi maksimum deger ile belirlenir. 32 bit filtre degeri kullanildiginda vektoriin
boyutu 4GB olacaktir, metin iizerinde her filtre arama igleminde vektoriin ilgili
elemanina erigsim gerekeceginden hafizaya erisimdeki gecikmeler performans iizerinde
onemli bir performans kisit1 olusturacaktir.

Optimal filtre uzunlugu ve veri tipini belirlemek i¢in Intel Vtune Amplifier araci ile
performans analizi yapilmistir. Vtune Amplifier Intel tarafindan gelistirilen yiiksek
performansli hesaplama alaninda modern mimariler {izerinde performans analizi
yaparak olas1 sorunlarin kaynagini tespit eden ve daha hizli uygulamalar icin yol
gosteren bir analiz aracidir. Hafizaya erisim analizi i¢in "Hardware Event-Based
Sampling (EBS)" analiz tipi segilerek farkli filtre uzunluklar1 ve veri tipleri i¢in gecen
siireler, komut basina ¢evrim sayis1 (CPI) ve L1 kayip oram1 (miss rate) degerleri elde
edilmistir. Yapilan analizler sonucu hafizaya erismede onbellegin optimal kullanimi
acisindan en uygun filtrenin 14 bit uzunlugunda oldugu ve filtrelerin bagh liste yarine
array yapisinda tutulmasi gerektigi tespit edilmistir. Arama isleminde filtrelemeden
gecebilen eslesme aday1 sayisini azaltmak i¢in 32 bit ham filtrenin her bir yarisindaki
ayrik bitlerden olusan 2 adet 14 bit filtre ardigil olarak uygulanmustir.
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Algoritmalar C programlama dilinde yazilmistir, performans testleri ise dizgi
eslestirme i¢in test platformu sunan ve literatiirdeki bilinen tiim algoritmalar1 igeren
SMART ile yapilmigtir. Performans karsilastirma islemi X alfabe boyutu 4 olan
genom sekansi, 20 olan protein sekansi ve 128 olan ingilizce metin olmak iizere
3 farkli verisetinde ve literatiirde en hizli olarak bilinen diger algoritmalar teste
eklenerek farkli Oriintii uzunluklart tizerinde yapilmistir. Performans testleri tam
dizgi eslestirme problemi i¢in yeni Onerilen algortimalarin 6nceki en verimli olarak
kabul edilen algoritmalardan farkli oriintii uzunluklar: ve alfabe boylart seceneklerinin
%90’nindan fazlasinda daha iyi sonug verdigini gostermistir. Sonug olarak gelistirilen
algoritmalarin farkli alfabelerde ve Oriintii boylarinda pratik uygulamalar i¢in son
derece kullanigh oldugu sdylenebilir. Gelecekte ise onerilen algoritmalar ARM, AMD
gibi diger iglemci mimarilerindeki esdeger SIMD fonksiyonlariyla modifiye edilerek
o mimarilerde de calisabilecek hale getirilip algoritmalart kullanan uygulamalarin
taginabilirligi arttirilabilir.

XXV






1. INTRODUCTION

1.1 String Matching

String matching, finding one or all occurrences of given string (also called pattern)
on a text, is a fundamental and widely studied issue in Computer Science. As
a subdomain of text processing, string matching gains more importance with the
progress and spread technology. Particularly, volume, variety and velocity of data are
increasing day to day on different areas thus the speed of string matching is gaining
importance. String matching has many applications in diverse fields such as such as
natural language processing, information retrieval, data compression, computational
biology and chemistry, intrusion detection systems, image and signal processing,
speech processing, time series analysis. Due to its wide usage in various applications,
string matching is a subject that continues to be studied. In literature, there are various
types of string matching as exact, approximate, circular, jumbled, order-preserving

matches. These matching types are described below.

Exact Matching: Finding all conditions where pattern P occurs exactly same as a

substring of text.

» Approximate Matching: Finding all approximate occurrences of the pattern in the

text with finite number chraracters.

* Circular Matching: Finding all occurrences the circular rotations of a pattern in a

text.
* Jumbled Matching: Finding all permuted occurrences of a pattern in a text.

* Order-Preserving Matching: Finding all the substrings which have the same length

and relative order (numerical order of numbers in a string) as the pattern in a text.

On the other hand, string matching algorithms are classified into 4 classes in terms of

method by Faro and Lecroq [1]:



Table 1.1 : Types of string matching.

Sample Text: the quick brown fox jumps
Exact Match: brown fox

Approximate Match: grown fix

Circular Match: own foxbr

Jumbled Match: wonb xrof

Text
W

Order-Preserving Match:

VR 9 °
Y o Ve
. Pattern

1. Comparison Algorithms: apply comparisons between characters.

2. Automata Algorithms: make use of deterministic automata.

3. Bit-parallelism Algorithms: simulate the behavior of non-deterministic automata.
4. Packed Algorithms: multiple characters are packed and comparing are performed

in bulk.

1.2 Purpose of Thesis

In this work new efficient algorithms are developed using packed method for exact
string matching which has more usage areas according to the other types of string
matching. Processing time of string matching is crucial for today applications and
scientific researches where the large amount of data are stored and streamed. SIMD
(Single Instruction Multiple Data) technology is used for packed string matching and

then cache optimization is applied with profiling to achieve optimum solution.

1.3 Literature Review

Numerous string matching algorithms have been presented since the 1970s with the
various theoretical point of view. Even so, new methods are still being developed
to achieve better searching times. Knuth-Morris-Pratt algorithm is based on finite
automata with @(m) and @ (n) time complexity [2]. Boyer-Moore algorithm is a
combination of heuristic approaches which are "bad character heuristic" and "good
suffix heuristic" with @ (mn) worst-case time complexity (best case time @ (n/m)) [3].
Backward-DAWG- Matching algorithm (BDM) [4] is based on the suffix automaton
for the reversed pattern and it has asymptotic optimum average time complexity

O (n(logs m)/m) especially for the long pattern.

2



Filter based solutions have been also developed for string matching, Karp-Rabin
algorithm [5] is the first filtering algorithm using a hashing function with & (mn)
time complexity but @ (n m) expected running time. Another filtering algorithm is
Q-Gram (QF) which is based on consecutive q-grams in the text with @ (mn) worst

case complexity and @ (ng/(m — q)) best case complexity.

An extensive review of the string matching algorithms between 2000-2010 and
comprehensive experimental evaluation of 85 exact string matching algorithms are

presented by Faro and Lecroq, [6] [7] respectively.

In recent years, the usage of SIMD (Single Instruction Multiple Data) instructions
in string matching algorithms is appeared [8—12]. Tarhio et al. [13] newly proposed
the algorithm compares 16 or 32 characters in parallel by applying SSE2 and AVX2
instructions besides they use the increasing order for comparisons of pattern symbols to
achieve better results. In this work, Intel-AVX2 (Advanced Vector Extensions 2) based
variations of the EPSM [8] and SSEF [9] algorithms are proposed from a different
point of view. Especially, practical efficiency of new algorithms is focused on while
developing algorithms and so the algorithms are optimized in this manner according to

the profiling results.

1.4 Thesis Structure

The sections of the thesis are arranged as follows; firstly notions of exact string
matching, SIMD technology and used Intel AVX?2 intrinsics are explained in chapter 2
named as BASICS. In chapter 3 PROPOSED ALGORITHMS, word-size instructions
which are the main component of algorithms are discussed in details. Then EPSMA
(EPSMA-1,2,3) and SSEFA algorithms are expressed, also profiling and cache
optimization of algorithms are given as the next topic of chapter 3. Experimental
results of performance comparisons are presented in tables and figures for various
dataset types and pattern lengths in chapter 4 EXPERIMENTAL RESULTS. Finally,
results are evaluated and potential future works are given in chapter 5 called as

CONCLUSION AND RECOMMENDATIONS.






2. BASICS

In this section, firstly terminology of exact string matching is given, after that Intel
SIMD and AVX2 technology is explained in detail with related intrinsics which will

be used in new algorithms.

2.1 Notions of Exact String Matching

The exact string matching problem is described as counting all the occurrences of a

pattern P of length m in a text 7" of length n assuming m < n, over a finite alphabet Z.

String p of length m 0 can be defined as character array p[0...m — 1] over the finite
alphabet X of size o and pli| corresponds the (i + 1)-st character for 0 <i m. Substring
of p between indexes (i + 1)-st and the (j + 1)-st characters is represented by pli... ]
while 0 < i < j m. Also it can be expressed as p; p[i] and p popi...pm—1. Using
notations above, exact string matching is searching of condition as popi...pm—1 =
titi1...tim—1 where the text is T fot;...t,. Bitwise operators are employed on computer
words in the algorithms such as bitwise AND "&", bitwise OR "I" and left shift "<"

where computer word size is denoted by w.

A string can be represented as S sosi...s5x—1 where k is the number of the characters
and each character corresponds to the single byte. The bits of single byte s; can be
defined as bit array like s; bbb b, bEbLY, where b)) is the msb bit. The chunk of
32-byte is represented as C' $32.i532.i1532.12---532.31 SO string is described in terms of
32-byte chunks as § COC'C?...C* where z = [(k - 1)/32 | and 0 < i < z. If k value
is not divisible by 32, the last chunk C* is incomplete and zero padding is applied for
the rightmost empty part as s; =0 where k-1</. The number of 32-byte chunks of text
(T) and pattern (P) are shown as N = [ n/32 | and M = [ m/32 |. The chunk and byte

symbols of text (T") and pattern (P) are presented such as:
+ Text Representation: single byte #;, 0 < i < n; 32-byte chunks: Y/, 0 <i<N

 Pattern Representation: single byte p;, 0 <i < m; 32-byte chunks: R,0<i<M



Chunks: Y0 y! yN-1

Bytes: toty...131 | 132133...163 ‘ ‘ f32~(N—1)t32~(N—1)1---tn—l ‘
Chunks: R? R! RM-1

Bytes: popi..-p3i P32P33---P63\ \P32.(M H)P32.m 1)1---Pm 1
2.2 SIMD

SIMD (Single Instruction Multiple Data) technology allows one instruction can be
operated at the same time on multiple data items. In 1996, Michael J. Flynn classified
the computer architectures according to the number of instruction and data stream into
four major categories as SISD, SIMD, MISD and MIMD [14]. This classification
becomes a reference tool for designing of modern processors. On the other hand
modern microprocessor architectures may have more than one of defined classification

type above.

SISD: Single instruction operates on single data element

e.g.: Traditional von Neumann single CPU computer

SIMD: Single instruction operates on multiple data elements

e.g.: Array processor, Vector processor

MISD: Multiple instructions operate on single data element
e.g.: Fault-tolerant computers, Near memory computing (Micron Automata

processor).

MIMD: Multiple instructions operate on multiple data:

e.g.: Multiprocessor, Multithreaded processor

The following figure depicts the high-level computer architectures in terms of Flynn’s
classifications. In the diagrams, PU corresponds the "Processing Unit" that performs

the instruction.
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Figure 2.1 : Flynn’s classification.

Also Parallelism can be categorized in terms of application as TLP, DLP, and ILP.

* Task Level (Thread-level) Parallelism (TLP): Multiple processes/tasks/threads
sequences of the same application can be executed simultaneously. However, it may
has some bottlenecks in practice like communication/synchronization overheads

according to the algorithm characteristics.

* Data Level Parallelism (DLP): One Instruction can be executed concurrently on
multiple data streams such as SIMD parallelism. Non-regular data access pattern

and memory bandwidth can be significant issues in total performance.

* Instruction Level Parallelism (ILP): Several independent instructions of program
can be operated in parallel (overlapping instructions) by a processor. ILP, also
callled Fine-grained parallelism, is constrained by the potential data and control

dependencies.

SIMD technology was first used as the vector processor of ILLIAC IV in the
1966, it became as the basis for vector supercomputer of Cray, CDC Star-100

and Texas Instruments ASC in the early 1970s. Afterwards, vector processor was
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defined separately from SIMD processor because of the time-space duality, therefore
SIMD operation was accepted as a array processing [15]. On the other hand,
modern computer architectures combine array and vector processing by applying data

parallelism in both time and space.

Time-space Duality:

* Array processor: Instruction performs the operation on multiple data items at the

same time using different spaces.

* Vector processor: Instruction performs the operation on multiple data items in

consecutive time steps using the same space.

At first, SIMD technology is developed for multimedia purposes such as image and au-
dio file processing, moreover it has been used in scientific researches in course of time
like cryptography,text and data processing. Besides super-computers, microprocessor
vendors also supply SIMD processing for workstation and desktop-computer due to
widespread of SIMD usage in the applications. Therefore modern ISAs (Instruction
Set Architectures) include SIMD operations, for instance; Intel MMX/SSEn/AVX,
PowerPC(IBM) AltiVec, ARM Advanced SIMD etc.

2.3 Intel SIMD and AVX2

In 1996, Intel introduced SIMD as the MMX (MultiMedia eXtension) technology
with Pentium processor which designed especially for improved performance on
multi-media applications. After that, Intel released SSE (Streaming SIMD Extensions)
and INTEL AVX (Advanced Vector Extensions) in order to provide more acceleration
with SIMD techolongy operated on wider register lengths. Intel Xeon Processor which
has AVX2 instructions and floating point fused multiply-add (FMA) instructions is

used for new algorithms in this work.

Intel AVX2 (Advanced Vector Extensions) includes various intrinsics operated on
256-bit register data, providing enhanced functionality for broadcast/permute opera-
tions, vector shifting/permutation operations and fetch instructions for non-contiguous
data elements from memory. AVX2 architecture consists of the 16 256-bit YMM
registers called YMMO-YMM 15 and 32-bit control/status register called MXCSR [16].
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Figure 2.2 : YMM registers share bits with the XMM registers.

By the way 128 less significant bits of YMM registers are overlapped with the older
128-bit XMM registers used for Intel SSE as shown in figure 2.2

2.4 Used AVX2 Intrinsics For New Algorithms

Operation of instructions are sketched using the "Intel 64 and IA-32 Architectures

Software Developer’s Manual" [17].

* _mm256_setr_epi32 :
prototype: __m?256i _mm?256_setr_epi32 (int €7, int €6, int €3, int e4, int €3, int €2,
int el, int €0)
description: Intrinsic sets packed 32-bit integer with the given values in reverse

order and stores the result in 256-bit data.

* _mm256_movemask_epi8:
prototype: int _mm?256_movemask_epi8 (__m?256i a)
description: Intrinsic creates mask from the most significant bit of each 8-bit
element in a, and store the result in 32-bit data.

instruction: vpmovmskb r32, ymm

* _mm_popcnt_u32:

prototype: int _mm_popcnt_u32 (unsigned int a)
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description: Intrinsic counts the number of bits set to 1 in unsigned 32-bit integer
a, and return that count in 32-bit data.

instruction: popcnt 132, r32

* _mm256_cmpeq_epiS8 :
prototype: __m256i _mm256_cmpeq_epi8 (__m?256i a, __m256i b)
description: Intrinsic compares packed 8-bit integers in 256-bit a and 256-bit b for
equality, and returns the result as 256-bit data.

instruction: vpcmpedb ymm, ymm, ymm

266 A8 A0 - - 16§ 0

ymm2, a

ymm3, b

if afi}=b[1]; fi[=1
otherwise; f[]=0

ymmi, r

Upper lower

Figure 2.3 : Sketch of VPCMPEQB operation.

e _mm256_mpsadbw_epus8:

prototype: __m?256i _mm?256_mpsadbw_epu8 (__m?256i srcl, __m256i src2, const
int imm§)

description: Intrinsic computes the multiple packed sums of absolute difference
(SAD) between given 4-byte sub-vector from src2 data and eight subsequent 4-byte
sub-vector from srcl data. imm8 variable is the offset and specifies the starting
point of quadruplets on src2. 8 packed SAD values are calculated on each 128-bit
lanes of 256-bit data (src2) separately as depicted in figure 2.4, eventually 16
packed SAD values are obtained in total.

instruction: vmpsadbw ymm, ymm, ymm, imm

* _mm256_permute2f128_si256 :

prototype: __m2561 _mm256_permute2f128_si256 (__m256 a, __m256 b,

int imm§)

description: Intrinsic shuffles 128-bit fields selected by imm8 from a and b, and
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returns the result of permute operation in 256-bit data. The source for the first
destination 128-bit field is selected by imm8[1:0] and the source for the second
destination field is selected by imm8[5:4] as shown in figure 2.5.

instruction: vperm2£128 ymm, ymm, ymm, imm

Imm{4:3]*32+128
255 224 192 I 128

Srec2 A
. Imm[5]*32+128

Destination

Imm[1:0]*32
1

s. Diff. .
o \r:1m[2] 32

127 96 64

Src2 /
Fvd
>

Srci

0
Destination
Figure 2.4 : Sketch of VMPSADBW instruction.
src2| Y1 | Yo |
SRC1| X1 \ | / xof |
selected by imm8
DESTI X0, X1, YO, or Y1 | X0, X1, YO, or Y1

Figure 2.5 : Sketch of VPERM2F128 operation.
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e _mm256_permutevar8x32_epi32 :
prototype: __m2561 _mm?256_permutevar8x32_epi32(__m256i a, __m?256i idx)

description: Intrinsic shuffles 32-bit integers between across lanes using the input

permute variable idx and stores the result in 256-bit data as depicted in figure 2.6.
instruction: vpermd ymm, ymm, ymm

Latency:1, Throughput:1 (for Intel Broadwell architecture)

256 128 0

idx : ymm2 5 4 6 3 3 3 0 0

a:ymm3 | 23 22 21 20 19 18 17 16

VPERMD ymml, ymm2, ymm3

b :ymm1 21 20 22 19 19 19 16 16

Figure 2.6 : Sketch of VPERMD operation

o _mm256_slli_epi64 :
prototype: __m256i _mm256_slli_epi64(__m?256i a, int imm8)
description: Intrinsic left shifts packed 64-bit integers by input imm8 while
padding zeros and stores the result in 256-bit data as shown in figure 2.7.
instruction: vpsllg ymm, ymm, imm

Latency:1, Throughput:1 (for Intel Broadwell architecture)

256 192 128 64
ymm2 I

specified |
by imm8

ymm1 ‘ . .. * I

Upper lower

Figure 2.7 : Sketch of VPSLLQ operation.
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3. PROPOSED ALGORITHMS

Initially in this chapter, descriptions of word-size instructions which are composed of

AV X2 intrinsics are given, after that newly proposed exact matching algorithms based

on word-size instructions are presented in detail.

3.1 Word-Size Instructions

Specialized word-size instruction could be emulated in constant time by using AVX?2

intrinsics previously described in section 2.4.

3.1.1 wscmp_a(a, b) (word-size compare instruction on AVX2)

Before, wscmp instruction is defined as; a = apaj...aq—1 and b = bob,...b;_1, WSCMpP

returns an  bit value, r = rory...rq—1 where r; = 1 if and only if a;=b;, r;=0 otherwise.

wscmp_a operation can be emulated with 256-bit SIMD intrinsics instead of using

128-bit intrinsics as used in EPSM algorithm.

h<+ _mm256_cmpeq_epi8 (a,b)

r< _mm256_movemask_epi8 (h)

Char: 1 2 3 4 5 30 31 32
a: | 01110100 | 01100011 | 01100111 | 01100001 | 01100011 01100001 | 01110100 | 01100111
b: | 01100011 | 01100001 | 01100111 | 01110100 | 01100011 01100011 | 01110100 | 01100001
) wscmp_a (a, b) 4
r 0 0 1 0 1 0 1 0
Figure 3.1 : Example operation of word-size compare instruction.
_mm256_cmpeq_epi8 instruction compares packed 8-bit integers

in

256-bit a and 256-bit b for equality, and returns the result as 256-bit data.

_mm256_movemask_epi8 instruction creates mask using the most significant bit

of each 8-bit element in 256-bit 4 and returns the 32-bit result as » . The diagram 3.1

shows an example of the wscmp_a(a; b) operation when working with characters
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in ASCII code on 256-bit registers, assuming a and b variables are composed of 32

characters such as a:”tcgac...atg” and b:’cagtc...cta”.

3.1.2 wsmatch_a(a, b) (word-size matching instruction on AVX2 )

wsmatch instruction is defined as; a = apa;...aq—1 and b = bob;...bo—1, WSMatch
returns an ¢ bit integer value, r = rory...rq—1 where r; = 1 if and only if a;; = b; for
Jj=0...k—1[8]. Also, let z be a 256-bit register with all elements are set to zero by
_mm256_setzero_si256 intrinsic. Operation of wsmatch instruction is emulated

with 256-bit SIMD intrinsics named as wsmatch_a instead of using 128-bit intrinsics.

h<+ _mm256_mpsadbw_epu8 (a,b,immy)
h<+ _mm256_cmpeq_epi8 (hz)

r+ _mm256_movemask_epi8 (h)

_mm256_mpsadbw_epul intrinsic calculates 16 SADs (Sum of Absolute Differ-
ence) in total, however, operates on 128-bit lanes separately instead of the whole
256-bit data. This condition requires additional shuffling of input data in order to
properly arrange the data bytes compatible with instruction. Meanwhile, the following
wspermute_a intrinsic can used to make this shuffling. The diagram 3.2 includes an
example of the wsmatch_a(a; b) operating with characters in ASCII code on 256-bit

registers, assuming a:”’gatcatgct...” (32 characters) and b:’tcat” (4 characters).

Char: 1 2 3 4 5 6 7 8 . 32

a: | 01100111 | 01100001

JI110100 | 01100011 | 01100001 | 01110100 | 01100111 | 01100011

b: | 01110100 | 01100011 | 01100001 | 01110100

I wsmatch_a(a, b) |

I 0 0 1 0 0 0 0 0

Figure 3.2 : Example operation of word-size match instruction.

As shown in the above example 3.2, characters of a3 : 6] and b[1 : 4] are same as “tcat”
(in decimal:"116-99-97-116"; in binary:"01110100-01100011-01100001-01110100").
Therefore, SAD value will be zero between these quadruplets, a[3 : 6] and b[1 : 4].
In result, r[3] value will be 1 after applying _mm?256_cmpeq_epi8 intrinsic with zero

array z and masking operation by _mm256_movemask_epi8.
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3.1.3 wspermute_a(a,b) (word-size permute instruction on AVX2 )

wspermute_a instruction corresponds to the wsblend instruction of EPSM algorithm

and it arranges the 256-bit input data in the right order required for SADs operation.

- imm8 : index variable for permute function

h = _mm256_permute2f128_si256 (a, b, imm8);
permute = _mm256_setr_epi32 (0, 1, 2, 0, 2, 3, 4, 0);
r = _mm256_permutevar8x32_epi32 (h, permute);

_mm256_permute2f128_si256 intrinsic shuffles 128-bit data lanes of
256-bit a and b according to the imm8& and return the arranged data in 256-bit
h. _mm256_setr_epi32 intrinsic assigns eight input data with the packed
32-bit integer to 256-bit data in reverse order and returns the created 256-bit data
as permute. Finally, the _mm256_permutevar8x32_epi32 shuffles 32-bit
integers between across lanes using the input permute variable and returns the 256-bit
result named as r. An example operation of wspermute_a instruction is given in the
figure 3.3.

imm8 variable : 33, permute variable: "0, 1, 2, 0, 2, 3, 4, 0".

Byte 14 .. 28-32

a abed | efgh | yjkl | mnop | qrst | uvyz | xyab | maes

b hijk | Ignp | rsfb | sath aolt | heru | cmbz | yxxv

_mm256_permuteZ2fl28_si256(a,b, 33)

h qrst | uvyz | xyab | maes | hijk | Ignp | rstb | sath

_mm256_permutevar8x32_epi32 (h,permute)

r qrst | uvyz | xyab | grst xyab | maes | hijk | qgrst

Figure 3.3 : Example operation of word-size permute instruction.
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3.1.4 wsfilter_a(C,K) (word-size filter computing instruction on AVX2)

wsfilter_a specialized word-size packed instruction calculates the filter values using
shift value K on 32-byte chunks C. This instruction can be emulated in constant time

by the following AVX?2 intrinsics functions.

- K : Shift value according to the al phabet
D4+ _mm256_sl1li_epi6d (C,K)

[+ _mm256_movemask_epi8 (D)

Shifting operation is performed by _mm256_s11i_epi64(a,i) Instruction
which left shifts 256-bit data by input i while padding zeros and masking operation
is performed by _mm256_movemask_epi8 (a) instruction which creates 32-bit
mask from msb of each 32 bytes stored as 256-bit register. The following diagram
sketches the operation of filter computing using AVX2 intrinsics on 32-byte chunks

C/ of pattern and text.

Filter calculation has two main operations as shifting and masking of 32-byte blocks.
Shifting operation is required to make the filter more distinguishable. If text characters
are inside in the first 128 of ASCII table, msb of each character is O so all filters will
become zero without shifting. The most informative bit of text characters should
be determined to create distinguishing filters. A convenient method is taking into
account only the alphabet (IZI bytes) with assuming the text characters have a uniform
distribution. K shifting values of data sets which will be used for experimental

evaluation of algorithms are given in the table 3.1.

Table 3.1 : K shifting values of datasets.

Data Set > KValue
1 Genome Sequence 4 5
2 Protein Sequence 20 7
3 English Language Text 128 7

Filter computing over 256-bit chunk (32 char) bit with representation is sketched in the

diagram 3.4.
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32:j ,32:j 32-_;‘| 32:51 ;321 32:j1 | 32-j31 , 3231 32.j31
by by by b e by || By B L b

_mm256_s1li_epi64 (C/, K)

U
32.j 132:j 32.j1 .32:j1 32.j31 ;.32-31
b by 0 | b e 0 | B e 0
4
_mm256_movemask_epi8
32.j 132 P 32:j31
325 ;132 32.j:
| b b by P

Figure 3.4 : The sketch of filter computing.

An example operation of wsfilter_a instruction is given in the figure 3.5 where
shifting value K is 7 and sample text is composed of 32 characters given as

"abcdefghijklmnopgrstuvwxyz 01234" .

Byte | 2 3 4 5 6 ... 27 28 29 30 31 32
ASCIT | a b c d e f .. |0 1 2 3 4
Dec 97 (98 | 99 | 100 | 101 [ 102 | .. | 32 [48 | 49 |50 | 51 |52

J _mm256_s11i_epi6d (text,K) |

D 128 |48 | 177 | 49 [ 178 | 50 | ... | 128 | 16| 152 | 24 | 153 | 25

J _mm256_movemask_epi8 (D)

Filter 1431654741

Figure 3.5 : Example operation of the word size filter instruction

3.1.5 popcnt(a) instruction

popcnt instruction corresponds to the _mm_popcnt_u32 (a) instruction which
counts the number of bits set to 1 in input a which is unsigned 32-bit integer and

returns the count value.
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3.2 EPSMA Algorithms

EPSM(Exact Packed String Matching) algorithm is implemented using SSE intrinsics
operated on 128-bit registers called as XMM [8]. In the EPSMA(EPSM on AVX2) is
the new version of EPSM algorithm, AVX?2 intrinsics are utilized which operate on
256-bit registers called as YMM. For discrete ranges of pattern lengths, three types
of EPSMA algorithm are developed for most optimum solution in its range such as
EPSMA-1, EPSMA-2 and EPSMA-3. These algorithms are essentially composed of
word-size instructions aforementioned in section 3.1, descriptions and pseudo codes

of developed algorithms are given below.

3.2.1 EPSMA-1

The EPSMA-1 algorithm is developed for short patterns therefore it is used for pattern
lengths which are smaller than 8. The algorithm is based on wscmp_a instruction
described above. It has two main phase; the preprocessing of the algorithm (lines 2-5)
and the searching phase (lines 6-13) as shown in EPSMA-1 pseudo code, algorithm
1. It can be said that by taking into account description of wscmp_a, p[0...m — 1]
has occurrence starting at position j of 7; if and only if r; = 1. Occurrence count is
calculated by popcnt instruction (line 10) and carry bits obtained by masking are
stored (line 11) for comparison on the next loop. Besides, if there is a remaining part

at the end of the text, the naive check method is applied for this text part (line 12-13).

3.2.2 EPSMA-2

The EPSMA-2 algorithm is designed by taking advantage of wsmatch_a instruction
which implements the multiple SADs operation. It is convenient for pattern lengths
from 8 to 32, while it could be used for greater pattern length, the performance
of algorithm decreases experimentally. This algorithm benefits from the filtering
technique, 2-stage filtering is applied sequentially using 8 characters (4+4) of pattern

assigned in the preprocessing phase (lines 2-3).
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Algorithm 1 EPSMA-1 Algorithm Pseudo Code

1. procedure EPSMA1( pm,t,n)

2 n' < 32 *(n/32) //last index divisible by 32
3 fori< Oto(m-1) do

4 for j <+ 0to (32-1) do

5: Bi[j] «+ pli]
6
7
8
9

fori<0to(n'/32)-1 do
for j<~Oto(m-1) do
sj < wscmp_a( T;, B )
: r< (s;<j)(carry; > (32))
10: count <— count + popent(r )

11: carry; < s; & mask;
12: for j < n'—32ton do
13: check position at(j —m ) // for last remaining part

At the first stage wsmatch_a instruction is applied to first 4 characters p’| (line 6).

If there is a matching for this 4 characters r value will be greater than zero, then first

stage will be passed (line 7) and program flow will step into second stage. Wsmatch_a

instruction is applied again to second 4 characters p/, (line 9) after shuffling the text 7;

to make the data in the right order for new comparison. (line 8).

r value which is greater than zero after wsmatch_a operation in second stage implies
that there is a one at least or more matching for 8 characters. If pattern length (/)
equals 8, the algorithm reports pattern occurrence easily (lines 11-12), otherwise the

naive check is performed to possible positions starting at ; *32 regarding r (line 13).

In order to arrange the text data required for applying wsmatch_a instruction to
second 16-byte chunk of text, wspermute_a instruction described in 3.1.3 is used
(lines 14). 2-stage filtering operations are performed for the second part of each
loop (lines 15-22) similarly applied as the previous part (lines 6-13). Additionally,
when pattern length m is between 16 and 32, 4 characters of the pattern are skipped
while assigning characters in the preprocessing phase (line 2-3) in order to filter more

selectively. So, second character assignment (line 3) is like that;
—p’2 <« pl8..11] for 16 <m 32

Finally, if the last chunk has a remaining part of text, naive check method will be

applied for this part to attain complete matching.
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Algorithm 2 EPSMA-2 Algorithm Pseudo Code

1: procedure EPSMA2( pm,t,n)
2 P} < pl0.3]

3 ph <« pl4..7]

4: idx +— _mm?256_setr_epi32(1,2,3,0,3,4,5,0)
5: fori<0to(n/32)-1 do
6

7

8

9

r < wsmatch_a( 7, p} )
if 7 >0 then
S < vpermd(7;, idx)
: r < wsmatch_a(S, p} )
10: if r >0 then

11: if m =8 then

12: report occurences at (i*32 + r)
13: else check position at (i*32 + r)

14: S < wspermute_a( 7;, T;; )

15: r < wsmatch_a( S, p} )

16: if > 0 then

17: S < vpermd(S, idx)

18: r < wsmatch_a( S, p5 )

19: if » >0 then

20: if m =8 then

21: report occurences at (i*32+16 + r)
22: else check position at (i*32+16 + r)

3.2.3 EPSMA-3

The EPSMA-3 algorithm uses the filtering approach inspiring by SSEF algorithm [9].
16-bit filters are operated for filtering stage as in SSEF algorithm but in EPSMA-3 the
calculation of filters are made on 256-bit data chunks, unlike SSEF. This algorithm
utilizes wsfilter_a instruction which composed of shifting and masking operations as
described in 3.1.4. After filter computing performed on 256-bit data separate filters f;
and f>, which have 14-bit filter length giving the best performance, are extracted from
32-bit filter f (line 9 and 15). In the preprocessing phase (line 2-10) all possible filters
of the pattern are computed and then stored as an array of filters in FilterArray; and

FilterArray;.

In the searching phase (lines 11-20), if filters f1 and f> computed on text chunks (lines
14-15) exist in FilterArray, and FilterArray, respectively, the naive comparison
will be applied separately (line 17 and line 19) to check whether there is an exact
occurrence of the pattern. For shifting operation of filter computing, K values

represented in table 3.1 are used in EPSMA-3. Furthermore, the loop of searching
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phase is unrolled by a factor of 2 in order to achieve optimal performance. EPSMA-3

algorithm is used for pattern lengths which are between 32 and 64 (32 <m 64 ).

Algorithm 3 EPSMA-3 Algorithm Pseudo Code

: procedure EPSMA3 ( p,m,t,n)
: L+ [m/16]-1
: FilterArray o < 0

1
2
3
4: mask < O0x3FFF

5: K <a, 0 <a <38, according to the alphabet;

6 fori<0to(16-L +1)do

7 d < _mm?256_set_epi8 (pis31, .- Pi)

8 f < wsfilter_a( d,K)

9 ftemp < 1> 2 ; f| + ftemp&mask ; fr < ftemp > 16

10: FilterArray, o[ fi12] < FilterArray 7[ fip] Uiip
Bk whilei< N do

12: if L =2 then

13: T; < vperm2f128 _a( T;, Ti+1, 32)

14: f < wsfilter_a(7;,K)

15: ftemp <> 2 ; fi + ftemp&mask ; fr < ftemp > 16
16: for all j € FilterArray, [ fi] do

17: check occurrence at( £35.(;)— ; )

18: for all j € FilterArray, [ fo] do

19: check occurrence at( 3;.(;)—; )

20: i< i+L

3.3 SSEFA Algorithm

SSEFA (SSEF on AVX?2) is a new variation of SSEF algorithm which has filter based
approach composed of filtering and the verification phases. SSEFA is designed for
exact matching of long patterns such as greater sizes than 64 (64 <m). All filter values
of possible pattern alignments should be calculated to catch all location of matching
candidates. For this purpose primarily, appropriate alignments on the given pattern are

examined in the following part.

The zero-based address of the last 32-byte chunk of pattern not including zero padding
is represented by L symbol as L = | m/32 | - 1. For instance, let’s assume m=120,
32-byte chunks of the pattern are like that R = R°R' R?R? in this case. 24 bytes of last
chunk R> are composed of the pattern, therefore remaining 8 bytes are padded with

zero and L value becomes L = | 120/32 |-1=2. If h is defined as 0 < h < | N/L |,
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the chunks which filter computing is performed can be represented such as Y2+, If

there is a proper alignment of the pattern from YL and y#L+(L—1)

according to the
filter value, naive comparison on remaining part of the candidate text will be applied
to find possible matching. Appropriate alignments of pattern bytes are sketched
in the following diagram 3.6 when computing the filters on 32-byte chunks from

Y where i = h- L and all bytes of last chunk represented by Y+ are filled with patterns.

Chunks | V! yi+l yiL-l yiHL
Bytes | 132 ... | Bp(is1) ‘ o | e | 132 (i4L-1) ‘ | Bo(irL) ‘ ‘ 132.(i+L)+31
Pattern
132 | PO - P32 o | e | P3(LY) | e | P32L | e P32.1431
132.i+1 Po - P31 o | o | P32(L-1)-1 | e | PB2LAL | e P32-1+30
132.i431 - PO \ P1 | \ | P32(L-1)-31 l \ P32.1-31 | \ PaL
132.(i+L)-2 Po | P1 P2 P33
132.(i+L)-1 Po P1 P32

Figure 3.6 : Appropriate pattern alignment.

Fundamentally, SSEFA algorithm has two phases as preprocessing (lines 2-10) and
searching (lines 11-19) as depicted in pseudo-code 4. The preprocessing phase
includes the initializations of variables and the calculation of filter values over the given
pattern. wsfilter_a instruction explained in 3.1.4 is used (line 8) to calculate 32-bit
filter f values on 256-bit data chunks which are created by _mm256_set_epi8
(line 7) intrinsic with pattern bytes. In the searching phase, the outer loop operates
on 32-byte chunks Y of text T in steps of L where i=h-L+Land 0 < h< | N/L |. Also
distinguishing bit position is assigned to K variable used for shifting while applying

the wsfilter_a instruction.

After wsfilter_a operation (line 8 and 12), filter f is composed of 32-bit data,
therefore, the filter can get a decimal value between 0 and 232 (4294967295:4GB).
Filter values are used as indexes while creating the filter vectors (line 10) and the
size of the filter vector is determined by the maximum value of the filter f can get.

If 32-bit filters are used, vector size becomes extremely large as 4GB, in that case,
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memory access latencies in searching phase will cause the performance bottleneck.
Filters vector could not fit in lower level caches and memory access time becomes a
constraint in overall matching performance. Memory access analysis is applied using
hardware event metrics on Intel Vtune Amplifier to detect memory issues and find
optimal filter length. Detailed descriptions of memory analysis and optimization are

given in the next section named as "Cache Profiling and Optimization" 3.4.

Algorithm 4 SSEFA Algorithm Pseudo Code

procedure SSEFA ( p,m,t,n)
: L+ [m/32]-1

1:
2
3 FilterArray o < 0

4: shift < 18 ; mask «+— 0x3FFF

5: K < a, 0 <a <38, according to the alphabet;
6 fori< 0to(32-L +1)do

7 d + _mm?256_set_epi8 (pi+31,.., p;)

8 f < wsfilter_a(d,K)

9 f1 < > shift ; fr < { & mask

10: FilterArraylyz[ f172] — FilterArrayl,z[ f172] U l'172
11: whilei< N do

12: f < wsfilter_a(7;,K)

13: f1 <> shift

14: for all j € FilterArray, [ fi] do

15: fr « f & mask

16: for all j € FilterArray, [ f>] do

17: if P [t30.(i-0)+j--132.(i-L)+ j4m-1] then

18: pattern occurrence at( 132.(i—L)+j )

19: i< i+L

As a result of memory access profiling, 2-stage filtering approach with 14-bit filter
length gives the best performance. 14-bit wide filters f; and f, are extracted from
32-bit filter f (line 9,12 and 15). Filter f] is obtained by shifting operation with shi ft
value (18) so f; gets 14 high-order bits (left-most bits) of 32-bit f. On the other
hand, filter f, is obtained by masking operation using mask (Ox3FFF) and f, gets 14
low-order bits (right-most bits) of 32-bit f. Reduced 14-bit filters f; and f> exists
as indexes in the arrays named as FilterArray, and FilterArray;, respectively (line
10), then these filter arrays will be used for searching the filters calculated on text
chunks (line 14 and 16). FilterArray is utilized like a guard for first level filtration so

FilterArray[i] value is set 1 where filter exists otherwise set to 0. FilterArray; is used
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as the secondary filtering to decrease the number of verification of exact pattern and
the possible beginning position of the pattern in the text is assigned to FilterArray;|i]
regarding filter, otherwise set to 0. If 2-stage filtering is passed successfully over chunk
Y, a full verification will be performed between P and 132.(i-L)+j -+ 132-(i-L)+j4m-1 USING ]

value of FilterArray,[f] where 0 < j 32-L.

3.4 Profiling and Optimization

Performance analysis of HPC(high-performance computing) system is a crucial point
while developing efficient applications for modern architectures. Analysis results
can guide software developers for tuning the algorithms and improving the algorithm
performance. In this section, firstly Intel Vtune Performance Analyzer is explained
and then hardware-based performance measurements of the developed algorithm and

applied optimizations on SSEFA are presented.

3.4.1 Intel Vtune Amplifier

Intel Vtune Amplifier is integrated performance analyzer tool used to detect hardware
bottlenecks for HPC application or system on Intel modern microarchitectures.
Vtune Amplifier uses hardware data collectors to show the performance issues in
a user-friendly format, so it provides focusing on code tuning effort and achieving
the best performance improvement in the least amount of time. Vtune can be run
with GUI(Graphical User Interface) or CLI(command-line interface) on Linux and
Windows platform, also performance analyses can be made by the remote terminal

over the network.

Table 3.2 : Properties of Intel Vtune Amplifier Collectors.

Hardware Collector Software Collector

Uses the on chip Performance Uses OS interrupts

Monitoring Unit (PMU)
Optionally collects call stacks Call stacks show calling sequence
Requires a driver No driver required
Ims sampling interval, low overhead 10ms sampling interval
Advanced Hotspots Basic Hotspots

Microarchitecture and Platform Analysis Threading: Concurrency, Lock/Waits etc.
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Analyzes of VTune Amplifier are based on sampling performance data collected

with Hardware Collector or Software Collector, these collection types also named

as

Hardware Event-based Sampling Collection and User-Mode Sampling/Tracing

Collection [18]. Basic properties and analysis types are presented in the table 3.2,

later detailed descriptions of analysis types are given.

Hotspots Analysis: This analysis is used as a starting point to analyze your
algorithm. It shows application flow and functions that took the most CPU time
to execute. It is a practical way to identify performance-critical code sections in
the application and explore memory consumption (RAM) over time with memory

objects.

Parallelism Analyzes: 1t can be used for parallel compute-sensitive applications for
overall performance analysis. Threading analysis provide Effective CPU Utilization
metrics for measurement of threading efficiency such as Total Thread Count, Wait

Time with Poor CPU Utilization, Spin and Overhead Time.

Microarchitecture Analyzes: It helps to detect the issues affecting the performance
related to hardware-level. "Microarchitecture Exploration" analysis type is a
starting point of hardware-level analysis. "Memory Access" analysis type gives
a set of metrics that show issues about memory access such as Memory Bound,

Loads, Stores, LLC (Last-level cache) Miss Count, Average Latency.

The Platform Analyzes: These analysis types are used for monitoring CPU, GPU
system and power usage for the application. Platform analysis group includes
various subtypes such as CPU/GPU Concurrency, System Overview, Input and

Output analysis, CPU/FPGA Interaction, Platform Profiler etc.

Source Code Analysis: Performance problem associated with the source code and
exact machine instruction(s) can be identified using this type of analysis. Source
codes and related assembly instructions and CPU times are presented in the same

pane to quickly identify the hotspot lines.

Custom Analysis: New custom analysis can be created using the data collectors

provided by the VTune Amplifier or any other custom collector. PMU events
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monitored by the Vtune Amplifier can be added to custom analysis and some

options are configurable if required like "CPU sampling interval value".

A view of analysis types on Vtune Amplifier GUI is depicted in the figure 3.7, analysis

options are grouped on the left of GUI for selection.

™ Choose Target and Analysis Type

@ Analysis Target| |

f By Basic Hotspots
- Algorithm Analysis Identify your most time-consuming source code. This analysis type cannot be used to profile the system but must either launch an application
A one. This analysis type uses user-mode sampling and tracing collection. Learn more (F1)

-\ Advanced Hotspo
A Concurrency
A Locksand Waits | cpy sampling interval, ms: |10 s
- A& HPC Performance
=-lc7 Microarchitecture An:
A General Exploratio | ["] Analyze OpenMP regions
- Memory Access
A TSX Exploration © Details
A TSX Hotspots
A SGX Hotspots
-z Platform Analysis
A CPU/GPU Concun
-A GPU Hotspots
A Disk Input and Ou
-4 Custom Analysis
- A& Hardware Event-b
A Memory Access 0

| & Highly accurate CPU time collection is disabled for this analysis. To enable this feature, run the product with the administrative privileges,

[ ] Analyze user tasks, events, and counters

Figure 3.7 : Analysis types of Vtune Amplifier.

3.4.2 Memory analysis and cache optimization

Memory Access Analysis identifies memory-related issues especially high memory

access time when data can not fit in the L1 or L2 caches.

Table 3.3 : Intel Microarchitecture Hardware Events (uops:micro-operations).

Hardware Event Name Definition
MEM_LOAD_UOPS_RETIRED.L1_HIT: Retired load uops with L1 cache hits as data sources.
MEM_LOAD_UOPS_RETIRED.L1_MISS: Retired load uops missed L1 cache as data sources.
MEM_LOAD_UOPS_RETIRED.L2_HIT: Retired load uops with L2 cache hits as data sources.

MEM_LOAD_UOPS_RETIRED.L2_MISS: Retired load uops missed L2. Unknown data source excluded.
MEM_LOAD_UOPS_RETIRED.L3_HIT: Retired load uops with L3 cache hits as data sources.
MEM_LOAD_UOPS_RETIRED.L3_MISS: Retired load uops missed L3. Excludes unknown data source.
INST_RETIRED.ANY: counts the number of instructions retired from execution.

CPU_CLK_UNHALTED.THREAD: counts the number of cycles while the thread is not in a halt.
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Hardware Event-Based Sampling (EBS) Analysis, also known as Performance
Monitoring Counter (PMC) analysis, is selected for collecting event metrics values
related to caches from the microarchitecture. Hardware events mentioned in table
3.3 particularly related to L1 and L2 caches are added to memory analysis on Vtune

Amplifier Tool.

Cache Miss Rate: Cache miss is a condition where the data requested for processing
by the application is not found in the related cache memory. Cache miss rate is a
critical parameter on the measurement of cache performance and it can be expressed

as equation 3.1 in terms of hardware event metrics collected on Vtune [19].

MEM _LOAD UOPS_RETIRED.L; MISS
Mi = " = = 1,2, 1
L FG INST _RETIRED.ANY #1,23  G.D

High cache miss rate implies that the advantage of the cache memory performance
cannot be utilized exactly. The processor waste more time accessing the requested

data if data doesn’t exist in lower level caches.

CPI Rate: CPI (Cycles per Instruction), is a master performance metric for the
analysis with hardware event-based sampling collections on Intel Vtune Amplifier.
It indicates how many cycles have been executed to complete related instruction.
Modern processor architectures can execute four instructions per cycle therefore
theoretical best CPI value is 0.25. In general, high CPI value shows that performance
decrease of the application which could be caused by issues such as memory stalls,
long latency instructions, branch misprediction or instruction starvation. CPI value
can be reduced as a result of optimizations using hardware-related metrics which

identifies what is causing high CPI.

3.4.2.1 Filter length analysis

In order to find the optimal filter vector length of SSEFA Algorithm, Hardware
Event-Based Sampling (EBS) Analysis is applied while increasing the vector lengths

from 4KB to 4GB. L3 cache hits and misses are removed from results because these
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values are zero for all conditions. in the figure 3.8, a sample results view of Hardware
Event-Based Sampling (EBS) Analysis on Vtune Amplifier GUI is depicted. Elapsed
Time, CPU Time, CPI Rate and Hardware Event Count are given in the Summary

section of Vtune Amplifier GUIL

Table 3.4 : Hardware Event values for various vector lengths.

List Size 4KB 16KB 64KB 256KB 1MB 4MB
CPU_CLK_UNHALTED.THREAD 612,000,918 610,00,915 612,000,918 612,000,918 622,000,933 652,000,978
INST_RETIRED.ANY 1,352,002,028 1,354,002,025 1,350,002,025 1,354,002,031 1,356,002,034  1,358,002,037

MEM_LOAD_UOPS-RETIRED.L1_HIT  1,004,001,506 992,001,488  1,000,001,500 1,000,001,500 1,004,001,506 996,001,494

MEM_LOAD_UOPS_RETIRED.L1_MISS 2,400,072 2,300,072 2,600,078 2,600,078 2,640,078 2,675,260
MEM_LOAD_UOPS_RETIRED.L2_HIT 1,200,036 1,600,048 1,000,030 800,024 600,018 600,018
MEM_LOAD_UOPS_RETIRED.L2_MISS 0 0 0 0 0 0
List Size 16MB 64MB 256MB 1GB 4GB
CPU-CLK-UNHALTED.THREAD 732,001,098 844,001,266  2,222,003,333  6,928,010,392  25,738,038,607
INST-RETIRED.ANY 1,368,002,052  1,426,002,139 1,640,002,460 2,500,003,750  5,942,008,913

MEM-LOAD-UOPS-RETIRED.L1-HIT 992,001,488  1,012,001,518 1,020,001,530 1,052,00,578  1,220,001,830

MEM-LOAD-UOPS-RETIRED.L1-MISS 2,800,078 3,200,096 4,400,132 8,600,258 25,400,762
MEM-LOAD-UOPS-RETIRED.L2-HIT 600,018 1,000,030 1,200,036 3,000,090 9,000,270
MEM-LOAD-UOPS-RETIRED.L2-MISS 0 0 0 0 0

s | [P B O=E® IWeIcome ” r048runsaz ” r049runsaz ” ros0run...

& Hardware Event-based Sampling Analysis - Hardware Events viewpoint

4 Collection Log 5 Analysis Target & Analysis Typpe & Summary && Event Count & Sample Count & ¢

Elapsed Time : 0.218s

CPU Time 0.206s
CF| Rate 0.449
Total Thread Count: 7
Paused Time 0s

Hardware Events

Hardware Event Type Hardware Event Count  Hardware Event Sample Count  Events Per Sample
CPU_CLK_UNHALTED REF_TSC 494,000,741 247 2000003
CPU_CLK_UNHALTED THREAD 604,000,906 302 2000003
CYCLE_ACTMITY.STALLS_L2_PENDING 28,000,042 7 2000003
INST_RETIRED.ANY 1,346,002,019 673 2000003
MEWM_LOAD_UOPS_RETIRED.L1_HIT 996,001,494 249 2000003
MEW_LOAD_UOPS_RETIRED L1_MISS 1,400,042 7 100003
MEWM_LOAD_UOPS_RETIRED.LZ_HIT 600,018 3 100003
WMEW_LOAD_UOPS_RETIRED L2_MISS 0 0 50021
WMEM_LOAD_UOPS_RETIRED L3_HIT 0 0 50021
WMEM_LOAD_UOPS_RETIRED.L3_MISS 0 0 1o0007

Figure 3.8 : Sample results of EBS analysis on Vtune Amplifier.
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Hardware Event Metrics values measured over 100 test samples on SSEFA algorithm
are shown in the table 3.4. L1 Miss Rate calculated with equation 3.1, CPI Rate and

Elapsed Time values are given for different lengths in the table 3.5.

Table 3.5 : Time and rate values for various vector lengths.

List Size 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB 4GB

Elapsed Time [ms] 0.218 0.210 0224 0.215 0222 0234 0264 0360 0.782 2413 8.927
CPI-Rate 0453 0450 0454 0452 0459 0480 0.535 0.718 1.355 2771 4.532

L1 MissRate %  1.775 1.698 1.925 1920 1946 1969 2.046 2244 2683 3.440 4274

It can be seen in the table 3.5 the best CPI rate is 0.450 and L1 miss rate is 1.698
at the size of 16384 where the mask is composed of 14-bit 1. However, if the only
single 14-bit filter is used at filtration, there will be fewer filtering on match candidates
of text chunks. For the purpose of increasing the selectivity of filtering operation,
two-stage filtering method (applying 2x14-bit filters) is used therefore the number of

full verification decreases.

Reduced filters using in 2-stage filtering are FilterArray, and FilterArray, as shown
in pseudo-code of SSEFA and both of them are composed of distinct bits from separate
halves of the main 32-bit filter. FilterArray, contains filters consisted of highest 14
bits (leftmost) of 32-bit filter whereas filters of FilterArray, consist of lowest 14 bits
(rightmost). Formally, reduced filters ( two 14 bit filters f1 and {2) are represented in

terms of bit items like that;

32-bit filter , f;:b,bi by b,
reduced filter 1, fii: bbb} ... b1,

reduced filter 2, fo;: bl gb!obly .. bL,

These reduced filters are represented in line 8-9 of pseudo-code of SSEFA.

3.4.2.2 Data type analysis

Filters are stored as a linked-list in SSEF algorithm [20] however accessing an element

maybe a little slower due to using "nodes" on linked-list. Links are allocated at
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random separate locations which can cause cache misses while trying to access the
pointer. On the other hand, if number of the filters is fixed, the array structure can be
used to hold filters which can allow fast random access. Data of array structure are
stored in contiguous memory therefore it improves cache spatial locality. In the table
3.6, hardware event metric values collected from Intel Vtune Amplifier are given in

table 3.6 when filters are stored in the array and linked-list structures.

Table 3.6 : Hardware event metrics for array and linked-list structures.

Structure / Patlen Array, 64 Linked-List, 64  Array, 512  Linked-List, 512
CPU-CLK-UNHALTED.THREAD 598,000,897 612,000,918 592,000,909 606,000,909
INST-RETIRED.ANY 1,350,002,025  1,354,002,031  1,344,002,016 1,386,002,019

MEM-LOAD-UOPS-RETIRED.L1-HIT 992,001,488 996,001,500 996,001,488 996,001,494

MEM-LOAD-UOPS-RETIRED.L1-MISS 2,600,078 2,800,072 1,400,048 1,600,048
MEM-LOAD-UOPS-RETIRED.L2-HIT 1,800,054 1,600,048 600,018 800,024
MEM-LOAD-UOPS-RETIRED.L2-MISS 0 0 0 0

CPI Rate, Elapsed Time values and calculated L1 Miss Rate are presented for the

array and linked-list structures in the table 3.7.

Table 3.7 : Time and rate values for array and linked-list structures.

Structure / Patlen Array, 64 Linked-List, 64 Array, 512 Linked-List, 512

Elapsed Time 0.205 0.222 0.191 0.202
CPI-Rate 0.443 0.455 0.440 0.453

L1Miss Rate 1.925 2.067 1.041 1.154

As can be seen from the table 3.7, using array structure gives the better result
than linked-list type when memory access is the major factor in processing such as
accessing a value over fixed numbers of filters. Also, the linear probing method is
applied to the array structure for collision handling of filter values. Linear probing
method defines as: if related spot is occupied, continue moving through the array
structure until a free spot will be found. This method also known as open-addressing

hashing strategy.
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4. EXPERIMENTAL RESULTS

Algorithms have been implemented in the C programming language and SMART
(String Matching Algorithms Research Tool) [21] is used to compare the performances

of the algorithms.

Table 4.1 : Test platform.

Component Property
CPU Intel Xeon E5-2680 v4
L1d cache 32KB, 64B line size, 4 Latency Cycles
L1i cache 32KB, 64B line size, 4 Latency Cycles
L2 cache 256KB, 64B line size, 12 Latency Cycles
L3 cache 35MB, 64B line size, 40+ Latency Cycles
OS CentOS 7 x86-64

GCC Version 4.8.5 20150623 (UHeM System Default Version)

GCC compiler is used with std=gnu99 mode and full optimization option is selected
by -O3 flag. Three dataset types are used; genome sequence ( 1X|=4), protein sequence
(1Z1=20) and natural language text (English language, |ZI=128 ) provided by the Smart
research tool and dataset sizes are 200MB. Test data is loaded to the memory in the
context of 32-byte aligned by union structure using __m2561 AVX2 data type. All tests
run over 100 times by setting pset (size of the set of patterns) is 100. Algorithms using
in comparison are selected by scanning all existing algorithms on SMART Tool. Only
the best result of algorithms is presented using q-grams and these q values are reported
as apices. Search times of algorithms at result tables are expressed in milliseconds and

best results of each pattern length have been boldfaced.

4.1 Results for EPSMA Algorithms (patlen<64)

The performance of EPSMA algorithm is compared with the following algorithms on
SMART platform.

- BNDM: Backward Nondeterministic DAWG Matching by Navarro and Raffinot [22];
- BNDMq: The Backward DAWG Matching algorithm with g-grams [4];
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BSDMq: Backward-SNR-DAWG-Matching (BSDM) by Faro and Lecroq [23];
EBOM: the Extended Backward Oracle Matching algorithm [24];

- EPSM: fast packed string matching for short patterns by Faro and Kiilekci [8];
FSBNDMq: Forward Simplified BNDM using g-grams by Peltola and Tarhio [25];

MEMCMP: direct usage of "memcmp" function of C library;

N32-freq: compares 32 characters using AVX2 where comparison order given by

nondecreasing probability of pattern symbols [13];

N32-fixed: compares 32 characters using AVX2, comparison order is fixed [13];

SKIPq: combination of Skip-Search and the Hashq algorithms [26];

SBNDMgq: implementation of the Simplified BNDM with g-grams (SBNDMq) [4];
- TVSBS: combination of Berry Ravindran and SSABS algorithms [27];

UFNDMgq: implementation of the Shift Or with g-grams algorithm [4] ;

WEFRq: efficient algorithm based on a weak factor recognition and hashing [28];

Table 4.2 : Running times for genome sequence when pattern length < 64.

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62
BNDMq 194992 158.120  87.28% 56639  49.15¢  47.23¢  37.81¢  36.08¢ 329400 32380 31400 31050 3065 32410 30540
BOM2 22724 16499 14831 14718 10922 103.47 85.16 75.58 69.45 61.32 54.52 56.05 48.16
BSDMq 182022 96073 72204 49744 4461@ 437240 355700 336460 31650 314506 31097 30467 2044 30947  2979(7
EBOM 171.94 13241 14237 11669 11476  114.88 88.72 84.24 7044 64.97 60.60 54.54 48.99 50.48 43.94
EPSM 31.07 3329 43.81 42.81 44.22 47.26 33.04 34.03 31.94 30.91 29.40 30.00 29.68 30.65 29.08
EPSMA 26.86 28.23 3125 2922 30.94 31.96 32.86 3178 29.88 28.27 27.84 28.34 27.31 27.63 27.49
FSBNDM 212.29 166.15  111.66%)  94.04®) 90392 65.43"2)  6097("2)  50.98"2)  46.68M"2) 4415 44.26% 434402 48382 43.99W2)
FSBNDMq 204 4129 106.79%) 749140 523861 473741 46,0741 37.48Y 3527 31880  31.63(%) 3099V  31.000 302206V 3252060 30.5461)
MEMCMP  540.10 64099 74005 81021  820.17 72005  680.59 76075 86052 89049 82009  890.16 76037  790.00 77241
N32freq  2917® 3210 31939 30845 322260 33020 3095) 32507 30919 31729 31659 31589 3075 33019 31199
N32-fixed 29 0620 32055 31915 305050 31846 326509 30419 32895 300609 312405 311305 313609 30430 32655 30860
SBNDMq  183.292  139.132)  86.204 566114 49.61¢)  47.53@) 38570  37.174)  34.08¢)  32.846)  31.836) 312800 30326 32.530)  30.69(9
SKIPq 173.552 1162540 78.29% 52729 46.86¢) 45316 36.81°  34.87¢) 31550 3165 31609 31450 293209 30927 29300
SSEF - - - - - - - - - 58.74 49.68 35.92 37.92 36.40
TVSBS-W8 - - 19623 17556 17776 13176 12831 99.42 101.02 96.73 87.72 84.12 91.63 80.43
UFNDMq - - 6104%  53.968  5216®  4041®  40.008 3621 3505®) 3500 3501 3406  37.10®) 34460
WFRq 213502 15374 85739 58119 51.76%  46.58¢) 374200 34919 33439 31999 30,979 30220 20020 30415 28970
Table 4.3 : Running times for protein sequence when pattern length < 64.

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62
BNDMq 121173  63.19%) 4554  3748® 37.720)  33.010) 34.75%)  3238%  31.83¢)  31.56%  30.15(%)  29.37) 2923 29.64  29.12)
BOM2 15624 13495  98.06 91.83 94.67 76.04 69.77 5227 4578 4573 38.28 33.73 31.68 31.26 29.50
BSDMq 99620 5944 48020 38420 377900 332100 33.97¢) 3278 3197 32204 30934 29144 29039 29124 2800
EBOM 87.10 50.32 39.93 34.07 34.77 31.54 33.72 30.86 30.87 3238 30.18 29.67 29.26 29.07 28.66
EPSM 31.85 35.47 33.62 31.07 33.49 32.36 34.42 31.90 31.06 31.66 3035 29.57 29.02 29.38 28.92
EPSMA 27.73 28.83 30.62 27.60 28.29 28.63 3034 2797 28.12 29.52 2833 27.22 26.18 26.90 2545
FSBNDM 109.20 69.49 5114 4292 4274 36.30 37.88 31.97 3249 33.75  30.04"9  29.55W9 2938(W4  30,03W4) 29, 16"
FSBNDMq 108952V 6035200 43240200 36530200 363561 3178631 3307061 30,1280 3067031 3142060 29216V 2896030 2901631 29,0953) 283561
MEMCMP  410.11 51534 53096  610.32  590.86 59491  507.26 67211  630.67 66049  621.84 61059  597.82  660.38 63567
N32-freq  29.162  30550) 29442  28050) 30.100) 28.416) 31.34(3  29.053  29.97G) 31.46() 29.35()  2862()  28.483  29.23()  28.130)
N32-fixed  28.18% 30460 295100 28268  30.36% 28280 31489 29550 3018%) 31370 205040 28883 28637 29433 28020
SBNDMq  11540%  60.38% 4442  36.60%7 36.91% 32.62% 34390 30252 3085 31.59@ 2940 2848  28.41% 29204  28.18¥
SKIPq 10873 65.88%)  53.10)  43.19@)  41.55%)  34.60¢  34.85¢)  30.80¢) 30.89() 31.82(% 2976  2877() 28319  28.88(H) 275204
SSEF - . . . . . - _ _ 58.49 57.52 35.81 36.60 35.41
TVSBS-W8  161.27 98.60 7125 54.96 54.79 45.02 44.48 3591 34.51 35.95 31.28 29.98 29.73 29.16 28.09
UFNDMq 19373 97482 7422 50570 54450 46190 44479 35542 34010 34.100  31.41Q  3046@ 2094?2873 27392

WFRq 133913 7574 54290)  46.53%)  43.130) 345400 359200 30.43%)  30.98H)  32.020  29.74(%) 290209  28.83%) 2878  27.80%
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Table 4.4 : Running times for English text when pattern length < 64.

m 2 4 6 8 10 12 16 20 24 28 32 40 48 56 62
BNDMq 129682 70 10®  5646®) 551930 47514 4054 3630¢ 34104 3265¢ 31139 3034 29260 2907 28704 28 589
BOM2 15119 13414 12707 11093 90.81 82.06 65.94 58.65 50.18 47.19 4521 .17 44.63 4327
BSDMq  103.97% 60442 50902 46713  41.73%)  37.74¢ 34520 32765 31980  31.800 31446 30050 29100 28580 28,640
EBOM 100.05 60.69 5136 5068 46.87 44.56 43.42 4227 4121 4023 39.06 36.77 38.90 36.30 34.05
EPSM 31.48 32.54 36.43 4152 38.80 38.13 3274 32.67 3112 30.56 28.93 28.01 27.83 27.07 26.87
EPSMA 26.94 27.37 31.81 31.67 29.73 29.77 28.70 28.42 27.03 26.67 25.80 25.09 24.71 24.13 23.26
FSBNDM  130.47 8309 68.00 63.11  57.479 49.01%) 46369 40457 38684 36.35W2  34.56M4)  3234(W4)  31.570W4 31.200M) 30.920v4)
FSBNDMq  127.8120  67.39Q0  51.610D 472200 417560 3896031 353440 33,4040 320840 31.43¢0  30.884D 294651 29,0840  28.7514D 2847141
MEMCMP  430.84 47610  560.84 54093 60090  600.76  621.13 64032 64029  670.72 67862  680.78  710.80 68038  670.58
N32-freq  30.09%) 29894  29.87¢)  30.73%)  31.03%) 3036 3020  30.07%) 29.17() 291000  28.8903)  28.48) 2803  28.010  27.10Q)
N32-fixed  29.95@ 29600 3016 3078%) 31260 30.62®0 30220 30383  29.450) 29070 29,033 28.56%) 281200 281300 27.150)
SBNDMq  122.62®@ 67310 543500 52,680 47504 4420 3648 34394 32820 31.17@ 30264 29.83@  2950¢  29.01¢)  28.55¢
SKIPq 112,142 65862 53.06%) 52702)  44.60%)  39.43%) 3536 33314 32984 3155 31.204) 3035 2944 28.95%)  28.50(4
SSEF - - - - - - - - - - 58.44 55.68 40.92 36.92 35.27
TVSBS-W8  169.07 98.88 71.21 64.94 56.84 48.18 45.17 39.50 38.21 36.78 35.68 35.57 38.41 37.22 36.80
UFNDMq  118.71® 17853  66.67%) 6807) 58518 4596  43.77®) 38258 35430  3234® 32028 31.86® 32110 3315®) 32408
WFRq 139.43%) 7738 589900  57.832)  46.27%) 392500 3613 33.58%) 314400  3L08%  30.61*) 2920 28854  28.51¢)  28.104
50- —e— BSDMq
—*— EPSM
—4— EPSMA
45- —e— FSBNDMq
—<— N32-Fixed
SKIPq
w40
E
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E
=]
35-
30-
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Figure 4.1 : Times for genome sequence, pattern length<64.
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Figure 4.2 : Times for protein sequence, pattern length<64.
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Figure 4.3 : Times for English text, pattern length<64.

Time values are also represented in the above figures for more apprehensible
interpretation of results. It can be seen from the figures, EPSMA is faster than almost

all previous most competitive exact string matching algorithms in the literature.

4.2 Results for SSEFA Algorithm (patlen>64)

SSEFA-1 and SSEFA-2, non-optimized versions of SSEFA, are added in algorithm
test list for comparison between optimized SSEFA. Hereby, it can be seen how cache

optimization can effect the overall performance.

Table 4.5 : Running times for genome sequence when pattern length > 64.

m

64

96

128

192

256

384

512 A768 1024 1280 1536 1792 2048
BNDMgq 31670 30460 29700 29970 29566) 29 80©®  32.076¢) 29.870) 29916 31.06© 31.006) 31.090 289206
BOM?2 51.89 39.45 38.04 35.56 29.67 29.48 28.10 24.53 22.82 22.94 21.83 21.92 2077
BSDMgq 30228 29.80®  29.82® 30,107 27.308) 2727®) 26847  27.157) 27257 28470 27617 28260  27.177)
EBOM 47.15 36.86 3597 34.79 31.45 29.13 28.76 24.14 2237 22.63 21.59 21.55 20.55
EPSM 3033 29.23 28.11 26.47 23.00 21.01 20.01 18.13 17.25 18.26 17.72 17.90 17.04
FSBNDM-Wq 48362  43.80 48.49%  4424? 43392 43170  4780@) 43.57® 435920 44.18@ 47602 44220 42252
FSBNDMq  31.756D 303161 31.77(5D  29.86(6) 30.04(6) 297161 30.02(6) 29.84(61) 29736) 30.8561) 30.916) 30.886) 29.75(6)
MEMCMP  780.89  900.51  780.82  840.74  830.13 75203 73238 74138 72072  708.84  760.97 82090  850.66
N32-freq 32330 31010 32520 30440 30.096) - - _ _ _ _ _ _
N32-fixed 32.05% 30700 32200 30.86°)  29.220) - - - - - - - -
SBNDMq 31930 30540 32,110  30.10©0 29.7306) 28936  32236) 29976 28906 31.1300 30.886) 31.036) 29986
SKIPq 30997 28300 29.506)  27.940) 26347 22208  21.73®)  18.27®)  17.03®)  18.05®) 17588 17.74®)  16.85(
SSEF 33.93 29.89 29.16 26.78 24.53 20.01 18.48 17.66 16.35 16.23 16.06 15.81 15.24
SSEFA 28.26 27.64 25.52 23.76 20.66 17.81 15.66 14.29 1297 13.78 13.62 12.93 12.78
SSEFA-1 13024 8570 57.78 52.00 39.49 29.29 28.77 26.51 28.22 2531 23.81 30.92 2471
SSEFA-2 70.64 46.37 39.75 34.28 30.87 23.53 21.24 19.72 23.74 19.28 19.02 2253 19.49
TVSBS-W8  91.12 77.24 78.45 75.81 74.20 75.80 85.59 76.15 76.94 78.25 86.23 79.98 78.61
UFNDMq  36.49®  3438® 33740 3388®) 3348®) 3381® 35718) 33870  3376®) 34.86® 356408 34790 32828
WEFRq 30840 287500 28,650  27.00@ 251260 22120 21117 1809 17537 18.33¢%) 17484  17.72¢9  16.78(3)

34



Table 4.6 : Running times for protein sequence when pattern length > 64.

m 64 96 128 192 256 384 512 768 1024 1280 1536 1792 2048
BNDMq 30104 31.16%)  30.21¢)  30.324)  3033(%) 30342 30254 3025() 2927 30.69? 30360 29.19¢4)  29.31¢4)
BOM2 31.48 31.37 3045 30.07 28.01 25.09 2257 21.30 18.97 19.06 2021 19.46 19.89
BSDMgq 29959 30.684) 2945@ 29084 29.35¢) 28774 29.06W 28.644) 2758 29244 2856W 275209  27.484)
EBOM 29.80 30.31 29.11 27.87 26.53 23.59 21.75 20.29 18.94 19.49 2023 19.44 19.80
EPSM 29.43 29.86 29.01 26.02 23.55 21.03 18.59 18.77 17.69 18.12 18.65 17.71 17.67
FSBNDM-Wq 32024 32844 321209 30674 32354 30744 3219 30754 2972 30.94®) 30744  29.88¢)  29.794)
FSBNDMq  29.9661) 307661 297331 2989631 30,2461 299561 30,03G1) 298760 2883030 30,3451 29386030 28.7501) 2886031
MEMCMP  660.50  590.94  601.14 59623  600.87  587.45 60225 60747 59154 61391 60838 62032  590.18
N32-freq 30410 31.29¢) 30319  30.12%)  30.66°) - - - - - - -
N3fixed 30040 30713 30110  29976)  30.10® - - - - - - -
SBNDMgq  30.38%)  31.08%) 30.22¢) 30.24() 30404 30224 30314  30.28%) 29.17¢4)  30.424)  30.26¢  29.08®  29.19¢)
SKIPq 20794 30.054)  28.28@ 27334 25864 22084 19.78®) 18411 17.11®  17.48®  18.00®) 17.04®  16.97®)
SSEF 34.18 32.52 30.28 27.14 23.13 20.17 18.62 17.26 17.03 16.02 16.94 16.07 15.87
SSEFA 28.16 28.95 2745 24.88 21.12 17.21 15.40 15.01 14.53 13.90 14.06 13.56 12.56
SSEFA-1 88.27 67.20 48.37 3891 34.82 28.84 26.73 25.28 24.96 24.50 23.90 24.69 23.78
SSEFA-2 69.31 43.81 36.56 30.81 27.24 23.04 19.76 18.77 18.33 18.32 18.78 19.62 1832
TVSBS-W8  30.10 28.16 2775 26.69 2736 2697 26.71 25.01 23.14 2431 23.82 23.38 2255
UFNDMq  3003®  29.762) 27.79%)  2589) 29283  28412) 26.452 26.442) 234200 2550 233590 22382  23.86()
WFRq 29.59) 297150 281809 27294 2537 2239%) 20330 192509 172500 175300 17.80®) 17210  16.920)
Table 4.7 : Running times for English text when pattern length > 64.
m 64 96 128 192 256 384 512 768 1024 1280 1536 1792 2048
BNDMgq 3176@ 30139 31,7500 33464 29.21@ 29994 31.62¢4  31.414) 31779 33.154)  32.84@ 29634 31380
BOM?2 4134 33.92 33.72 33.89 28.44 28.74 29.18 26.45 24.84 24.68 24.45 21.17 2278
BSDMq 30460 28.446)  29.73®)  31,086) 27177 273700 289560  2861(0  29.090 3006 29.846) 26420  28.44®)
EBOM 36.72 33.08 32.64 33.93 28.28 27.55 27.52 24.79 23.83 24.16 23.69 20.57 22.12
EPSM 29.72 29.19 28.85 26.07 22.02 19.57 18.70 18.83 18.76 18.86 19.68 17.92 18.77
FSBNDM-Wq 3741@ 33694  37.174 38564 3317¢  33.92()  3736@ 35094 37.054 38244 38174 33.66@ 35124
FSBNDMq  31.584D 3090(“)  31.41641) 33.324D  29.07¢41) 29.69¢D 31.604D 31.244) 3173641 32,9041 32,6941  29.43¢4D  31.241)
MEMCMP  760.81 71178 63258  600.81  670.06 63348  570.78 58052 59252 61276 60217  610.84  612.23
N32-freq 30490 2928 29563  31.29?)  27.300 - - - _ _ _ _
N32-fixed  30.89¢)  2881%) 30.20% 31.830) 27.880 - - - - - - -
SBNDMq  31.69% 30,014 31.514 33314 29124 29834 31514 313340 3181@ 33039 32994 29534 313014
SKIPq 30.570  28.914)  29.054)  30.204)  24.49®) 2080 19.05® 1753 17.310  1836®)  18.14®) 15348  17.10®)
SSEF 33.63 31.78 3095 28.49 21.30 19.13 17.37 16.20 16.14 17.19 17.12 16.44 16.00
SSEFA 27.94 27.58 27.39 25.67 19.04 15.90 15.67 14.63 14.41 14.92 15.10 13.75 13.43
SSEFA-1 78.04 56.75 54.05 38.50 33.89 36.32 26.09 25.40 24.33 26.42 25.62 23.81 22.87
SSEFA-2 61.29 45.34 38.89 30.99 2631 28.68 19.15 19.04 18.47 19.36 19.58 18.19 17.83
TVSBS-W8  31.99 28.08 28.93 32.73 26.55 27.60 28.24 25.74 25.20 25.10 24.19 21.57 2241
UFNDMq  33.962  2823@ 30234 35762 26432 263120 27.60@ 28362 23232 2490@ 24812 22.34@ 23432
WFRq 302349 27.404)  28.564 297040 23.59¢4)  21.67¢)  20.920) 19389 18.940)  1975() 19.600  16.553) 18.160)

The SSEFA (optimized version) algorithm is compared with the following algorithms

in addition to the previously mentioned algorithms in EPSMA on SMART Tool.

- SSEF: filter based fast matching by using SSE instructions [9];

- SSEFA-1: non-optimized version of SSEFA with unmasked 32-bit filter;

- SSEFA-2: reduced filter length version of SSEFA with single 28-bit filter;

Time values are depicted graphically show that SSEFA algorithm gives better results

for most conditions than other algorithms which are known as fastest in the literature.
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Figure 4.4 : Times for genome sequence, pattern length>64.
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Figure 4.5 : Times for protein sequence, pattern length>64.
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Figure 4.6 : Times for English text, pattern length>64.
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S. CONCLUSIONS AND RECOMMENDATIONS

The new state-of-the-art variations of the EPSM and SSEF algorithms are proposed by
adding new techniques and instructions for the exact string matching problem. AVX2
instructions are utilized and optimizations are applied using analyzes on Intel Vtune
Amplifier to improve overall performance. Besides using AVX2 instructions operated
on 256-bit data for filtering algorithms, optimal bit length of the filter, 2-stage filtering
technique and data structure for storing the values of filters have the significant impacts
on performance. Experiments show that new algorithms are faster than almost all
previous most efficient exact string matching algorithms for various pattern lengths
and alphabet sizes. By the way, EPSMA and SSEFA don’t have the best result at a
few pattern lengths, these lengths are 6, 8, 96 for English text; 6, 12, 128 for protein
sequence and 16 for genome sequence. Time difference between EPSMA and EPSM
algorithms becomes more evident when pattern length is smaller than 16. Likewise,
EPSMA gives better results against to the nearest competitors when pattern length is
greater than 16 but the time difference between EPSMA and others is more stable in
this range. Fine speedups are achieved for SSEFA over old version while changing the
pattern length and text types. Particularly time difference becomes more well-marked
between SSEFA and other algorithms for very long patterns. Eventually, proposed

algorithms are extremely useful for practitioners.

As a future work, new algorithms may be implemented using equivalent SIMD
instructions with some modifications on other architectures like the ARM, AMD.
Furthermore, new efficient word-size instructions can be defined utilizing AVX2
intrinsics for other types of string matching such as approximate, circular matching

and other issues related to string.
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