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Hindiya (c). Vertical arrows correspond the days when 50% of annual 
discharge is reached. .......................................................................... ..93 
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Figure 5.19 : The HDM simulation results of reference (solid line) and future !       
periods (dashed line; blue for mid-century, red for end of the century) 
forced with dynamically downscaled the ECHAM5 A2 scenario 
output. Left column corresponds to changes in the mean monthly 
discharges (m3/s). Right column corresponds to changes in the fraction 
of accumulated discharges. Vertical arrows correspond the days when 
50% of annual discharge is reached. ...................................................94!

Figure 5.20 : The HDM simulation results of reference (solid line) and future !       
periods (dashed line; blue for mid-century, red for end of the century) 
forced with dynamically downscaled the CCSM3 A1FI scenario 
output. Left column corresponds to changes in the mean monthly 
discharges (m3/s). Right column corresponds to changes in the fraction 
of accumulated discharges. Vertical arrows correspond the days when 
50% of annual discharge is reached. ...................................................95!

Figure 5.21 : The HDM simulation results of reference (solid line) and future !       
periods (dashed line; blue for mid-century, red for end of the century) 
forced with dynamically downscaled the CCSM3 A2 scenario output. 
Left column corresponds to changes in the mean monthly discharges 
(m3/s). Right column corresponds to changes in the fraction of 
accumulated discharges. Vertical arrows correspond the days when 
50% of annual discharge is reached. ...................................................96!

Figure 5.22 : The HDM simulation results of reference (solid line) and future !       
periods (dashed line; blue for mid-century, red for end of the century) 
forced with dynamically downscaled the CCSM3 B1 scenario output. 
Left column corresponds to changes in the mean monthly discharges 
(m3/s). Right column corresponds to changes in the fraction of 
accumulated discharges. Vertical arrows correspond the days when 
50% of annual discharge is reached. ...................................................97!
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 CLIMATE CHANGE IMPACTS ON THE HYDROLOGY OF THE 
EUPHRATES-TIGRIS BASIN 

SUMMARY 

The Euphrates-Tigris Basin hosts two important snow-fed rivers of the Middle East 
and eastern Anatolia, and its water resources are critical for the hydroelectric power 
generation, irrigation and agriculture in the basin countries, namely Turkey, Syria, 
Iraq and Iran. The headwaters of the basin lies in the Taurus and Zagros Mountains, 
and it’s particularly vulnerable to climate change. This study aims to provide a 
comprehensive assessment of climate change impacts on the hydrology of the basin 
within two research focus: (i) historical climate variability in the basin and (ii) 
regional hydro-climatological consequences of future climate change in the basin.  

In order to reveal historical climate change signals in the basin, observed changes in 
temperature, rainfall and streamflow were investigated. Trend analysis of 
temperature indicates that there has been a striking temperature increase after the 
early 1990s. More pronounced and statistically significant increase in minimum 
temperatures in highlands are detected. In terms of precipitation, no striking change 
is found. The statistical analysis reveals that there are no significant trends in the 
annual streamflow data (i.e., covering 35 years from 1972 to 2006). However, the 
streamflow timings of the Euphrates and Tigris Rivers, are found to be shifting to 
earlier days in the year. Six out of eight stations indicate statistically significant shifts 
between two consecutive 17-years periods (i.e., 1972-1988 and 1990-2006). Among 
these stations, the average shift to earlier times is over 5 days, suggesting earlier 
spring melting of snowpack due to increased temperatures in the second period. A 
striking increase in the discharges takes place during the first half of March, and it is 
observed at all stream gauging sites considered in this study. An analysis based on 
the NCEP/NCAR reanalysis data indicates that warming which results in this 
increase is associated with the switching from the northeasterly flow to southwesterly 
flow over the Black Sea and western Anatolia caused by the weakening of the 
Siberian High over eastern Europe. These changes in the circulation features from 
the first to second periods are found to be very consistent with the positive and 
negative phases of the North Sea-Caspian pattern. 

Hydro-climatic effects of future climate change in the Euphrates-Tigris Basin are 
investigated dynamically downscaled outputs of different GCM (ECHAM5, CCSM3 
and HadCM3)-emissions scenario (A1FI, A2 and B1) simulations. The suite of 
simulations (total five) enables an analysis taking into account the A2 emission 
scenario simulations of three different GCMs (ECHAM5, CCSM3 ve HadCM3) and 
another analysis based on the three different emissions scenario (A1FI, A2 and B1) 
simulations of one GCM (CCSM3). All scenario simulations indicate winter surface 
temperature increases in the entire basin, however, the increase is larger in the 
highlands. The greatest increase in the annual temperature by the end of century 
belongs to the CCSM3 A1FI simulation with an increment of 6.1 oC in the highlands. 
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There is a broad agreement amongst the simulations in terms of the winter 
precipitation decrease in the highlands and northern parts and increase in the 
southern parts of the basin. A remarkable impact of warming could be seen on the 
snow water equivalent in the highlands where each simulation points out statistically 
significant decreases ranging from 55% (lower emissions) to 87% (higher 
emissions). Statistically significant declines (25 to 55%) are found for the annual 
surface runoff of the main headwaters area. Moreover, significant temporal shifts to 
earlier days (between 18 and 39 days depending on the scenario) are projected to 
occur in the surface runoff timing in the headwaters region. Projected annual surface 
runoff changes in all simulations suggest that the territories of Turkey and Syria 
within the basin are most vulnerable to climate change, as they will experience 
significant decreases in the annual surface runoff. Eventually, however, the 
downstream countries, especially Iraq, may suffer more as they rely primarily on the 
water released by the upstream countries. The substantial changes in the hydro-
climate of the basin, therefore, are likely to increase the challenges associated with 
the management of several dam reservoirs and hydropower plants in the basin in 
addition to causing further impacts on physical and biological components of the 
ecosystems along these rivers.  
In addition to analysis of atmospheric model outputs, the impacts of future climate 
changes on river discharges in the basin are investigated via a hydrological discharge 
model (the HDM) using both CMIP3 and CMIP5 outputs. Simulations were carried 
out by using surface runoff and drainage outputs of two low resolution GCMs 
(CMIP3 simulations of ECHAM5 and CMIP5 simulations of MPI-ESM-LR). In 
addition to this, the HDM was forced by high resolution RCM outputs of different 
GCM (ECHAM5, CCSM3) - emissions scenario (A1FI, A2 and B1) simulations. 
Future hydrological discharge simulations indicate a striking decrease in discharge of 
the rivers in the basin. The decrease is more remarkable by the end of the century. 
Another important result of the hydrological discharge simulations is that significant 
temporal shifts to earlier days in the peak of discharges are projected by the end of 
the century. Different model and scenario combinations are in agreement with these 
two main results. High resolution RCM-forced simulations yield more pronounced 
decreases and shifting compared to the low resolution GCM-forced simulations.  
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 "KL"M DE#"!"KL"#"N"N FIRAT-D"CLE HAVZASI H"DROLOJ"S"NE 
OLAN ETK"LER" 

ÖZET 

Fırat-Dicle Havzası, Orta Do!u ve Do!u Anadolu’nun kar ile beslenen iki önemli 
nehrine ev sahipli!i yapar. Havzanın su kaynakları, havza ülkeleri olan Türkiye, 
Suriye, Irak ve #ran için hidroelektrik üretimi, sulama ve tarım gibi alanlarda kritik 
öneme sahiptir. Ancak insano!lunun son yıllarda do!aya ve do!al ya"ama gittikçe 
artan müdahalesi yüzbinlerce, hatta milyonlarca yılda olu"an dengeleri bozmaya 
ba"lamı"tır. Fırat-Dicle Havzası’nın kapsadı!ı bereketli Mezopotamya toprakları ve 
çevresi de bu müdahalelerin yarattı!ı de!i"ikliklerden nasibini almaya ba"lamı"tır. 
Havzanın ana su kaynaklarının oldu!u kar ile kaplı da!lık alanlar, Toros ve Zagros 
Da!ları’nda yer alır ve iklim de!i"ikli!ine kar"ı özellikle savunmasızdır. Bu çalı"ma, 
iki ara"tırma konusu kapsamında, iklim de!i"ikli!inin havza hidrolojisine olan 
etkilerinin kapsamlı bir de!erlendirmesini hedeflemektedir: (i) havzadaki tarihsel 
iklim de!i"ikli!i ve (ii) gelecek iklim de!i"ikli!inin havzadaki bölgesel hidro-
iklimsel sonuçları.  
Havzadaki tarihsel iklim de!i"ikli!i sinyallerini ortaya koymak için, sıcaklık, ya!ı" 
ve akım verilerindeki gözlemlenmi" de!i"iklikler incelenmi"tir. Tarihsel sıcaklık 
verileri havzanın kaynak kısımları için son yıllarda hem minimum hem de 
maksimum sıcaklıklarda istatistiksel olarak anlamlı artı"ların meydana geldi!ini 
göstermektedir. Benzer bir analiz ya!ı"ta herhangi bir önemli de!i"ikli!in olmadı!ını 
ortaya çıkarmı"tır. 1972-2006 yılları arasını kapsayan akım verileri kullanılarak 
yapılan ayrıntılı bir çalı"mada ise, bölgenin yıllık akımlarında anlamlı bir 
de!i"ikli!in olmadı!ı sonucuna varılmı"tır. Ancak, Fırat ve Dicle Nehirleri’nin tepe 
akım zamanlarında erkene kaymalar oldu!u tespit edilmi"tir. Bu çalı"mada kullanılan 
8 akım istasyonundan 6’sında, ardı"ık iki zaman periyodu arasında (1972-1988 ve 
1990-2006) tepe akım zamanlarında 5 gün civarında erkene kaymalar görülmektedir. 
Bu de!i"im istatistiksel olarak anlamlıdır. Ayrıca çalı"mada kullanılan akım 
istasyonlarının hepsinde Mart ayının ilk haftasında akımlarda dikkat çekici bir artı" 
görülmektedir. NCEP/NCAR reanaliz verisi kullanılarak yapılan analizde 
görülmektedir ki ikinci dönemde bu akım artı"ına neden olan ısınmanın Karadeniz ve 
batı Anadolu üzerindeki rüzgar akımlarının kuzeydo!ulu yönlerden güneybatılı 
yönlere do!ru de!i"mesidir. Do!u Avrupa civarındaki Sibirya Yüksek Basıncı’nın 
ikinci dönemde zayıflaması, akımlardaki bu de!i"imin ana nedenidir. Birinci 
dönemden ikinci döneme do!ru olu"an hava sirküklasyonlarındaki bu de!i"iklikler, 
Kuzey Denizi-Hazar Paterni’nin (North Sea-Caspian Pattern, NCP) pozitif ve negatif 
fazları ile oldukça uyumludur.  
Gelecek iklim de!i"ikli!inin havzadaki hidro-iklimsel etkilerini ara"tırmak için 
de!i"ik küresel sirkülasyon modeli (ECHAM5, CCSM3 ve HadCM3) ve emisyon 
(A1FI, A2, B1) çıktılarının dinamik ölçek yöntemi ile küçültülmü" yüksek 
çözünürlüklü projeksiyonları kullanılmı"tır. Toplamda be" farklı simulasyon sonucu 
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ile yapılan bu de!erlendirme ile üç farklı genel sirkülasyon modelinin (ECHAM5, 
CCSM3 ve HadCM3) A2 emisyon senaryosunun ve tek bir modelin (CCSM3) üç 
farklı emisyon senaryosunun (A1FI, A2 ve B1) oldu!u çıktılar analiz edilmi"tir. 
Kullanılan modellerin performans analizleri içinse 1961-1990 periyodu referans 
dönem alınarak, model çıktıları gözlemlerle mukayese edilmi"tir. Dinamik ölçek 
küçültmek için kullanılan bölgesel iklim modelinin (ICTP-RegCM3) performansı 
için de NCEP/NCAR reanaliz verisi dinamik olarak küçültülmü"tür. Modellerin 
de!erlendirilmesinde öncelikli olarak gridlenmi" gözlem verileri (CRU) 
kullanılmı"tır. Ancak nispeten daha yo!un bir gözlem a!ının oldu!u bölgesel bir veri 
grubu da modellerin de!erlendirilmesinde kullanılmı"tır. Reanaliz verisi ile yapılan 
simülasyonlar RegCM3 bölgesel iklim modelinin ya!ı" ve sıcaklıkla beraber üst 
seviyelerdeki de!i"kenleri iyi bir "ekilde simüle edebildi!ini göstermektedir. Ancak, 
bölgesel iklim modeli ya!ı"ı da!lık alanlardan oldu!undan fazla simüle etmektedir. 
Kullanılan üç farklı genel sirkülasyon modelinin, kı" ya!ı"ı ve sıcaklı!ını simüle 
etmede oldukça iyi oldu!u tespit edilmi"tir. ECHAM5 ve HadCM3 modelleri aynı 
zamanda yaz ya!ı"ı ve sıcaklı!ını da iyi simüle etmektedir, ancak CCSM3 
simülasyonları gözlemlere göre kurak ve daha sıcak ko"ullar üretmektedir. Bu 
durum, bölgesel iklim modeline girdi olarak verilen CCSM3 verisinin üst 
seviyelerindeki kuruluktan kaynaklanmaktadır. Daha yo!un gözlem a!ına sahip veri 
setinin kullanılması patern korelasyonunu geli"tirmemekle beraber, gözlem ve model 
çıktıları arasında ya!ı"ın de!i"kenli!i ve ortalama karekök hatası yönlerinden daha 
iyi sonuçlar vermektedir. Genel sonuç olarak, bu çalı"mada de!erlendirilen üç farklı 
genel sirkülasyon model çıktıları, ortaya konulan güçlü ve zayıf yönleri ile beraber 
bu bölge için iklim de!i"ikli!i ve etkileri çalı"malarında kullanılabilir.  
Farklı modellerin farklı emisyon senaryo çıktıları kullanılarak yapılan analizler 
havzada kı" yüzey sıcaklıklarının artaca!ını ve bu artı"ın havzanın yüksek yerlerinde 
daha fazla olaca!ını göstermektedir. En fazla yıllık sıcaklık artı"ı CCSM3 A1FI 
çıktıları ile yapılan ve en kötümser olan simülasyonlarda olup, yüzyıl sonunda 6.1 oC 
artı" öngörülmektedir. Tüm simülasyonlarda, kı" ya!ı"ının havzanın da!lık 
alanlarında ve kuzey kesimlerinde azaldı!ı, havzanın güney kesimlerinde arttı!ı 
yönünde geni" bir uyumluluk vardır. Isınmanın dikkate de!er bir etkisi havzanın 
da!lık kesimlerindeki kar-su e"de!eri de!i"imlerinde görülmektedir. Bu bölgelerde 
tüm simülasyonlar, kar-su e"de!erlerinde %55 (dü"ük emisyon) ile %87 (yüksek 
emisyon) arasında de!i"en ve istatistiksel olarak anlamlı azalmalar öngörmektedir. 
Ana su kaynaklarının oldu!u bölgede ise yıllık yüzey akı"ı de!erlerinde %25 ve %55 
arası, istatistiksel olarak anlamlı azalmalar öngörülmektedir. Ayrıca, ana su 
kaynaklarının oldu!u bölgede, yüzey akı"larının tepe zamanlarında ciddi bir "ekilde 
erkene kaymalar (kullanılan senaryoya göre 18 ve 39 gün arası) tahmin edilmektedir. 
Tüm senaryolarda tahmin edilen yıllık yüzey akı" de!i"imlerine göre, ciddi 
azalmaların öngörüldü!ü havzanın Türkiye ve Suriye toprakları, iklim de!i"ikli!ine 
kar"ı en kırılgan bölgeleridir. Di!er taraftan, havzanın alt ülkeleri, özellikle Irak, 
yukarı taraflardan bırakılan suya öncelikle ihtiyaç duydu!u için sıkıntı çekebilir. Bu 
yüzden havzadaki önemli hidro-iklimsel de!i"iklikler, havzadaki baraj ve hidro-
elektrik santrallerinin yönetimi ile ilgili zorlukların artmasına neden olabilece!i gibi 
havzanın biyolojik ve fizyolojik ekosistem bile"enleri üzerinde daha fazla etkilere 
yol açabilir. 
Atmosfer model çıktılarının analizlerine ek olarak, Max Planck Meteoroloji 
Enstitüsü’nde geli"tirilen bir hidrolojik de"arj modeli (The Hydrological Discharge 
Model) ile gelecek iklim de!i"ikli!inin havzadaki nehir akımlarına olan etkileri 
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ortaya konulmu"tur. #lk a"amada, dü"ük çözünürlüklü iki farklı küresel iklim 
modelin yüzey akı"ı ve drenaj çıktıları hidrolojik de"arj modeli için girdi olarak 
hazırlanıp, simülasyonlar yapılmı"tır. Daha sonra ise yüksek çözünürlüklü bölgesel 
iklim modeli çıktılarının de!i"ik senaryo ve modellerine ait yüzey akı"ı ve drenaj 
verileri ile hidrolojik de"arj modeli çalı"tırılmı"tır. Dü"ük çözünürlüklü verilerle 
çalı"tırılan hidrolojik model sonuçlarında akımın yıllık döngüsünün tam olarak 
simüle edilemedi!i tespit edilmi"tir. Ayrıca, gene bu simülasyonlarda yıllık tepe 
akımının olu"tu!u zamanın da do!ru olarak simüle edilemedi!i görülmü"tür. Bu iki 
ana sonuç, a!ırlıklı olarak küresel iklim modelinden alınan çıktılardaki 
eksikliklerden kaynaklanmaktadır. Havzanın da!lık kesimlerindeki ya!ı"ın ana 
nedeni yüzey topo!rafyasının neden oldu!u orografik ya!ı"lar oldu!u için, dü"ük 
çözünürlüklü çıktılarda bu ya!ı"ın bu da!ılımı yeterince iyi simüle edilemez. Di!er 
taraftan, yüksek çözünürlüklü bölgesel iklim modeli çıktıları ile yapılan hidrolojik 
öteleme simülasyonlarda ise, akımın yıllık döngüsü oldukça iyi çıkmı"tır. Ancak bu 
simülasyonlarda, ıslak aylarda akımın gözlemlere göre fazla simüle edilmesi ve tepe 
akımının zamanlarında yanılma gibi sistematik hatalar da tespit edilmi"tir. Bu hatalar 
ço!unlukla bölgesel iklim model çıktılarındaki, özellikle yıllık ya!ı" döngüsündeki, 
eksikliklerden kaynaklanmaktadır. Gerçekten de, ıslak aylar için gözlemlenmi" ya!ı" 
verisi ile yapılan kar"ıla"tırmalarda, bölgesel iklim model çıktılarına ait ya!ı"ın 
havzanın üst kesimlerinde daha fazla simüle edildi!i tespit edilmi"tir. Ayrıca, 
bölgesel iklim model çıktılarında, geçi" aylarındaki (Mart) daha yüksek sıcaklık 
de!erleri, erken kar erimelerine neden olarak yüksek akım de!erlerinin ortaya 
çıkmasına neden olabilmektedir. 

Atmosfer model çıktılarından elde edilen yüzey akı"ı analizlerine paralel olarak, 
hidrolojik öteleme modelinden elde edilen toplam akımlardaki de!i"imler de 
özellikle yüzyıl sonuna do!ru akımlarda ciddi azalmaların meydana gelece!ini 
öngörmektedir. Ayrıca, gene aynı paralellikte, akımların tepe zamanlarında dikkat 
çekici bir "ekilde erkene kaymalar da öngörülmü"tür. Farklı model ve senaryo 
kombinasyonları bu sonuçlarda hemfikirdir. Yüksek çözünürlüklü bölgesel iklim 
model çıktıları ile yapılan hidrolojik öteleme simülasyonları, dü"ük çözünürlükteki 
küresel iklim modeli çıktıları ile yapılan simülasyonlara nazaran daha belirgin akım 
azalmaları ve tepe akımlarında erkene kaymalar üretmektedir. 
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1.  INTRODUCTION 

It is widely recognized that the increasing temperatures have the potential to greatly 

impact the global and regional hydrological cycle (IPCC, 2007). Geographic areas 

where the water cycle is dominated by snowmelt hydrology are expected to be more 

susceptible to increasing temperatures as they affect the snow cover and seasonality 

of runoff (Stewart et al., 2005; Adam et al., 2009; Özdo!an, 2011; Sen et al., 2011). 

Himalayan region, for instance, is considered highly vulnerable due to the profound 

impacts of climate change on snow cover and glaciers (Xu, 1999; Singh and 

Bengtsson, 2004; Immerzeel et al., 2010). In recent years, the potential impacts of 

climate change on hydrological cycle and water resources in such regions have been 

of interest to many researchers (e.g. Xu, 1999; Hayhoe et al., 2007; Sorooshian et al., 

2008; Chenoweth et al., 2011). These regions are relatively far from the human 

developments, and for this reason, they are also considered to be arguably the best 

places to detect the global climate change signal that is not "contaminated" by the 

small-scale phenomena such as urban heat island effect (Sen et al., 2011). In such 

regions, however, several factors including the inadequate observational network and 

difficulty of maintenance of the available hydrometeorological stations affect the 

quality and quantity of the data that could be used in the climate change studies. 

Furthermore, regional disputes and conflicts may severely complicate the in-situ data 

collection in some of these regions. Studies on the hydroclimatology of the large 

Euphrates and Tigris Basin suffer from all these deficiencies. The problem of the 

lack of adequate data in such studies is usually overcome by the use of the 

atmospheric and hydrological models (e.g. Kavvas et al., 2011). In addition to 

historical analysis, these models are used to generate projections on the future 

changes in the regional hydrology.  

Global Circulation Models (GCMs), whose data are easily accessible by 

hydrologists, are commonly used in large-scale climate change impact studies, and 

they can have a key role to understand future global climatic changes (Fujihara et al., 

2008). The GCMs, on the other hand, provide limited information about the climate 
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change impacts on hydrology and water resources at sub-regional scales. This is 

primarily due to their coarse spatial resolutions, which do not adequately resolve the 

structure of the earth’s surface at these scales (Busuioc et al., 1999). One common 

procedure for obtaining fine scale regional information is to dynamically downscale 

the GCM outputs using a regional climate model (RCM). In recent years, the RCMs 

have been increasingly used to determine the climate change impacts on water 

resources and water cycles using different emissions scenarios (e.g. Wilby et al., 

2000; Hay et al., 2002; Christensen et al., 2004). Due to computational costs of their 

use, however, it is usually difficult for a research group to obtain a set of high-

resolution RCM simulations that amounts to an “ensemble”, which is preferable in 

climate change and impact studies as it allows better analysis of uncertainties. Thus, 

the RCM studies usually involve limited number of simulations, which is also the 

case in the present study. 

1.1 Motivation  

There is no doubt that enhanced greenhouse forcing has been unequivocally altering 

the radiative balance of the atmosphere, causing changes in climatic variables 

(Houghton et al., 1990). The Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC, 2007) points out that the Middle East, which lies in 

the east of the Mediterranean Basin, is one of the most vulnerable regions to the 

global climate change. Indeed, downscaling studies (e.g. Gao et al., 2006; Önol and 

Semazzi, 2009), providing greater details for the region, demonstrate significant 

large-scale reductions in precipitation besides increases in temperatures by the end of 

the twenty-first century. Intriguingly, just to the north of the basin, e.g., the Alps, the 

Carpathians, the Black Sea Basin and the Caucasus mountains, the same studies 

generally indicate increases in precipitation. According to these results, summer 

mean temperature differences indicate that temperature increase reaches up to 5-6 oC 

over the Eastern Mediterranean Basin. These results suggest that such changes in 

climatic variables can have significant impacts on the hydrological process by 

causing variations in snow cover, runoff and evapotranspiration in different scales. 

The Euphrates-Tigris Basin (hereafter ETB) hosts the two important snow-fed rivers 

of the Middle East, and its water resources are critical for the hydroelectric power 

generation, irrigation and domestic use in the basin countries, namely Turkey, Syria, 
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Iraq and Iran. Kavvas et al. (2011) developed a regional hydroclimate model, which 

consists of different modules such as atmosphere, snow, soil/vegetation and river, for 

water balance assessment of the ETB. They successfully modeled water balance of 

the basin based on the hydrologic period of water years 1957 through 1969, which 

represents the period prior to the construction of large dams. Based on the actual 

observed data, they reproduced via the model that approximately 90% of the 

Euphrates flow originates in Turkey, whereas 46% of the Tigris flow originates in 

Turkey. It is only very recently that studies for the climate change impacts on 

regional hydrology and water cycle have been performed for the ETB. Akyurek et al. 

(2011) analyzed changes in snow-covered area over the upper Euphrates Basin in 

Turkey by using the MODIS snow products for 10 years (2000 - 2009). They 

reported no significant changes in the extent of the snow-covered area over this 

relatively short period. Özdo!an (2011) assessed the effects of climate change on the 

amount of water stored in snowpack in the mountains of the ETB using a 

hydrological model and a set of regional climate change simulations driven by 

thirteen different GCM outputs forced with two greenhouse gas emissions scenarios. 

This recent study reports substantial declines (between 10 and 60%) in the available 

snow water, particularly under the A2 scenario, by the end of this century. Greatest 

changes (over 50%) were found to take place in lower elevations. Despite some 

uncertainties in both GCMs and hydrological model, the study of Özdo!an (2011) 

shows that climate change could seriously affect the water resources and lead to 

serious disputes among the countries that have territories in the ETB. Chenoweth et 

al. (2011) investigated the likely effects of climate change on the water resources of 

the eastern Mediterranean and Middle East regions using a high-resolution climate 

model forced by lateral boundary conditions from the HadCM3, driven by SRES 

A1B scenario. They found that the average annual Euphrates-Tigris river discharge 

could decline by 9.5% by 2040-2069 with the greatest decline (12%) in Turkey, 

while it is only 4% in Iraq. They also found further decrease in river discharge by 

2070-2099; however, the decrease is less than 1%. Kitoh et al. (2008) estimated a 

discharge decrease of 29 - 73% for the Euphrates River by the end of the present 

century (2080-2099) based on moderate and high emissions scenario simulations 

carried out by a super-high-resolution GCM. Nohara et al. (2006) also reported a 

40% decrease in the annual streamflow of the Euphrates River based on simulations 

of nineteen coupled-atmosphere-ocean GCMs under A1B scenario.  
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1.2 Purpose 

Water has historically played a central role in the civilizations of the ETB, especially 

of Mesopotamia, which is the fertile land between the Euphrates and Tigris Rivers. 

The increasing population together with climate change makes the future of the water 

resources an important issue in the region. The objective of the present study is 

therefore to provide a compherensive analysis for past and future climate change 

impacts on the hydrology of the ETB within two research topics: (i) historical 

climate variability in the basin and (ii) regional hydro-climatological consequences 

of future climate change in the basin (Figure 1.1).  

 

Figure 1.1 : Purpose diagram and research questions of the thesis. 

1.3 Method and Thesis Plan 

In order to demonstrate historical climate variability, an investigation of how 

changes in hydrometeorological variables and large-scale patterns affect regional 

hydrology in the context of changing climate was carried out using the 

meteorological and streamflow stations. A diagnostic study for changes in the 

snowmelt-derived streamflow in the Euphrates Basin was performed as well as trend 

analysis for temperature and precipitation data from meteorological observations. 

Hydro-climatic effects of future climate change in the basin have been investigated 

using dynamically downscaled outputs of different GCM (ECHAM5, CCSM3 and 

HadCM3)-emissions scenario (A1FI, A2 and B1) simulations via a regional climate 

model (RegCM3), obtained from a UNDP project (MDG-F 1680) entitled with 

“Enhancing the capacity of Turkey to adapt to climate change”. Atmospheric model 

performance evaluation in terms of precipitation and temperature was perfomed by 

comparing the reference period simulations with the observations. The future climate 

change impact assessments were then achieved through a comparison of the 
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projected climate changes with the corresponding modeled climatology for the 

reference period. The suite of simulations (total five) enables an analysis taking into 

account the A2 emission scenario simulations of three different GCMs (ECHAM5, 

CCSM3 ve HadCM3) and another analysis based on the three different emissions 

scenario (A1FI, A2 and B1) simulations of one GCM (CCSM3). In addition to 

analysis of atmospheric model outputs, the impacts of future climate changes on river 

discharges in the basin have been investigated via a hydrological discharge model 

(the HDM). Simulations have been carried out by using surface runoff and drainage 

outputs of two low resolution GCMs (ECHAM5, MPI-ESM-LR). In addition to this, 

the HDM was forced by high resolution RCM outputs of different GCM (ECHAM5, 

CCSM3) - emissions scenario (A1FI, A2 and B1) simulations. Flow diagram of the 

atmospheric and hydrological modeling part of the study is given in Figure 1.2. 

  

Figure 1.2 : Flow diagram of future climate change assessment in the basin. 

The next section (Chapter 2) describes the basin and its climate. Chapter 3 provides 

the observational dataset and observed climate change impacts in the basin. Model 

descriptions, RCM simulations with performance evaluation and hydro-

climatological consequences of future climate change in the basin are demonstrated 

in Chapter 4. Hydrological discharge model and simulations are provided in Chapter 

5. Finally, the results and conclusions are discussed in Chapter 6.  
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2.  STUDY BASIN  

The ETB is a major basin in the Middle East, and it drains an area of approximately 

880000 sq km (Figure  2.1). The basin lies in the territories of Iraq (46%), Turkey 

(22%), Iran (19%), Syria (11%), Saudi Arabia (1.9%) and Jordan (0.03%) (FAO, 

2009).  

 

Figure 2.1 : Location and border of the Euphrates-Tigris Basin on a digital elevation 
     map derived from GTOPO30, Global 30 Arc-Secon Elevation Data. 

The ETB is characterized by the two snow-fed rivers, the Euphrates and Tigris, 

which originate from the eastern Anatolia with heights of up to 4500 meters. Not 

only for feeding the southeastern Turkey and Mesopotamian lowlands but also for 

transporting the products of erosion across the southern portion of the Anatolian 

microplate and the Arabian Platform of Turkey, Syria, and Iraq (since it drains the 
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youngest collision within the Alpine-Himalayan orogenic belt), the ETB has been 

constituted a key role in hydrological and geological characteristics of the 

Mesopotamian civilization (Nicoll, 2009). The Euphrates River (with an annual total 

flow around 30 billion cubic meters (FAO, 2009)) originates in eastern Turkey and 

feeds the southeastern Turkey, much of northern and eastern Syria and 

Mesopotamian lowlands of Iraq with a mouth at the head of the Persian/Arabian Gulf 

(Kolars and Mitchell, 1991). The eastern Anatolian mountains of Turkey provide 

approximately 90% of the Euphrates total annual flow, modest contributions come 

from the Syrian highlands and only minimal additions come from Iraq (Gruen, 2000; 

FAO, 2009). The Tigris River (with an annual total flow around 50 billion cubic 

meters (FAO, 2009)) originates in the eastern Taurus Mountains of southeastern 

Turkey near Lake Van. It flows across the Mesopotamian lowlands by following the 

base of the Zagros Mountains and reaches its outlet at the Persian Gulf. The 

southeastern Anatolian mountains of Turkey contribute approximately 50% of the 

total Tigris flow, whereas the remaining flow comes from numerous tributaries that 

originate in the Zagros Mountains between Iraq and Iran (Gruen, 2000; FAO, 2009).  

The basin has a rich history and culture. It hosted “The Cradle of the Civilization” 

and the region is called as “Mesopotamia”, a Greek name that has a meaning of land 

between the rivers. Due to flat and vast alluvial plain between the Euphrates and 

Tigris Rivers, The Fertile Crescent region hosted the earliest civilizations as people 

formed permanent settlements (Figure 2.2). Throughout much of its history 

Mesopotamia was divided into two halves, north (Subir) and south (Sumer), based on 

differences in language, geography, cultural spheres of influence and the use of 

irrigation (Walshaw, 1999). The northern plains were covered by rain-fed 

agricultural plains, while the southern plains were fed through drawn from the 

Euphrates (Weiss, 1986). The majority of Mesopotamian cultures thrived first in the 

south, reaching the north only through long term residence and slow invasion 

(Walshaw, 1999). The importance of rivers for the earliest civilizations were based 

on transportation, fertile soils leaved by river floods and irrigation. With such a vast 

fertile areas under favorable climate conditions, many developments such as 

urbanization, civilization, agriculture, mathematics and astronomy took place in that 

area. Moreover, it hosted the first empire that is under the rule of Sargon of Akkad 

and his descendants, the Akkadians more than 4000 years ago (Weiss et al., 1993).  



 
 

9 

 

Figure 2.2 : The earliest civilizations in flat alluvial plain between the Euphrates and  
mmmhmmm   Tigris Rivers called as “The Fertile Crescent” (Url-1). öfmmkm öööö 

In modern civilizations, these rivers have been at the center of international disputes 

over water availability and use (Daoudy, 2004). The basin is marked as water-

stressed and the region is notorious for water scarcity as ever greater demands are 

placed on limited water resources through population growth and economic 

development (Chenoweth et al., 2011). Table 2.1 provides basic socioeconomic and 

water resources data for the main countries around and inside the basin, including 

volume of precipitation, internal water resources, and percentage of available water 

resources used (Chenoweth et al., 2011). With rapid population growth (i.e. the 

population in this region quadrupled in 55 years, increased from 46 million in 1950 

to 180 million in 2005 (USCB, 2009)) and industrialization, renewable water 

potential per capita per year has been decreasing. Furthermore, the issue of water 

rights became a point of contention for Iraq, Syria and Turkey, beginning in the 

1960’s when Turkey implemented the Southeastern Anatolian Project, a 30-billion-

dolar investment, which aims to generate energy (SAPRDA 2009) and to irrigate vast 

semi-arid plains in southeastern Turkey via constructing 19 hydropower plants and 

22 dams. The amount and quality of the water received by the downstream have been 

reduced then. Lastly, the 2008 drought in Iraq and Syria sparked new negotiations 

between the basin countries over transboundary river flows. However, water is still at 

the center of the international disputes among the countries in the Middle East and 

the disputes are expected to grow in the future as a result of climate change impacts 

on the region. 
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Table 2.1 : Basic socioeconomic and water resources data for Iraq, Syria and Turkey. Table adapted from Chenoweth et al., 2011.* 

Country Area 
(km2) 

Human 
Development 

Level 

GDP per 
Capita 
(PPP $) 

2009 
Population 

(x 106) 

Volume of 
Precipitation 

(km3 yr-1) 

Internal 
Renewable 

Water 
Resources 
(km3 yr-1) 

Current Water 
Withdrawals as a 

Percentage of 
Total Renewable 
Water Resources 

 
Iraq 

 

 
438,320 

 
- 

 
- 

 
30.747 

 
94.7 

 
35.2 

 
85.3 

 
Syria 

 
185,180 

 
medium 

 
4,760 

 

 
21.906 

 
46.7 

 
7.0 

 
61.5 

 
Turkey 

 

 
783,560 

 
high 

 
13,359 

 
74.817 

 
459.5 

 
227.0 

 
18.3 

* Sources are the Food and Agriculture Organization (FAO, AQUASTAT, 2009), United Nations Population Division (2009), and United Nations Development 
Programme (2010). GDP, gross domestic product; PPP, purchasing power parity. All dollar values are given in U.S. dollars. 
 
 
 
 



11 
 
 

2.1 Climate of the Basin 

Water availability, rather than temperature, is the key climatic determinant for life in 

semiarid expanses across the planet (deMenocal, 2001). Not only for hosting broad 

river-fed agricultural lands in the south and snow-covered mountains in the north, but 

also being extremely vulnerable to any reductions in available surface and ground 

water, the ETB has been inevitably sensitive to climate variability since the 

beginning of the earliest civilizations. In one hand, for instance, under favorable 

climate conditions between 2300 and 2200 BC, Akkadian Empire dominated over 

the Mesopotamian region, which is linked productive but remote rain-fed agricultural 

lands of northern Mesopotamia with the irrigation agriculture tracts of southern 

Mesopotamian cities (deMenocal, 2001). On the other hand, climatic changes are 

thought to punctuate and redirect cultural trajectories in the late prehistoric-early 

historic Eastern Mediterranean and Mesopotamian regions (Weiss et al., 1993; 

deMenocal, 2001; Kaniewski et al., 2010). For instance, drought hypothesis was 

developed by Weiss (1982) to explain the Late Bronze Age (LBA) collapse, which 

was a period of collapse of cities and states from Greece through Mesopotamia to 

Egypt. Weiss et al. (1993) concluded that the desertification and desertion of the 

Habur Plains between ~2200 and 1900 BC engendered the collapse of the Akkadian 

Empire, and the attendant displacement of Hurrian, Gutian, and Amorite populations 

into southern Mesopotamia. Moreover, several studies based on regional 

paleoenvironmental proxy data has indicated that striking decrease in rainfall that is 

also correlated with minima in the Euphrates and Tigris river discharges from 1150 

to 950 BC, is one of the main reasons for the declining of the Babylonian and 

Assyrian Empires between 1200 and 900 BC (Brinkman, 1968; Kay and Johnson, 

1981; Neumann and Parpola, 1987; Alpert and Neumann, 1989; Kaniewski et al., 

2010). Natural climate variability and forcings such as solar forcing, ocean 

circulation changes, atmospheric teleconnections and volcanic eruptions have been 

considered to explain the such these late Holocene climate variabilities in the basin 

and its surrounding in several studies (e.g. Weiss et al., 1993; Bond et al., 2001; 

deMenocal, 2001; Kaniewski et al., 2010). For instance, deMenocal (2001) 

highlighted a possible atmospheric teleconnection mechanism which relates the 
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aridification of Mesopotamia near 2100 BC with the onset of cooler sea surface 

temperatures in the North Atlantic.  

Having being located between sub-tropical and mid-latitude regions, and influenced 

by several climate factors, the ETB region must be considered as a climate hot spot. 

Therefore, one should know about the general climate characteristics of the region, 

before any assessment of anthropogenic climate change impacts. The climate of the 

ETB is mainly determined by the large-scale circulation patterns, teleconnections and 

regional topography. Highlands of the ETB demonstrate the characteristics of cold-

continental climate, while lowlands are classified as hot desert climate and hot semi-

arid climate according to Köppen climate classification (Figure 2.3). In summer both 

lowlands and highlands of the ETB are under the influence of tropical air masses, 

whereas in winter the highlands are broadly under the influence of polar air masses 

(Figure 2.4). In the cold half of the year, maritime polar air masses from the Atlantic 

with a track over eastern Europe favor the cyclogenesis over the eastern 

Mediterranean, which are responsible for the majority of the annual precipitation in 

eastern Mediterranean and many parts of the ETB (Alpert et al., 1990; Cullen and 

deMenocal, 2000; Lionello et al., 2006; Romem et al., 2007).  

 

Figure 2.3 : Köppen climate classification and highlands and lowlands of the basin. 

The cyclones crossing the eastern Mediterranean are the main moisture sources of 

orographic precipitation in the Taurus and Zagros Mountains located inside the ETB. 

One of the major climate characteristics of the ETB is the domination of subtropical 

high-pressure system during summer that leads to summer dryness in lowlands. The 

thermal low centered over Persian Gulf that is a branch of the Asian monsoon low 

Highlands 

Lowlands 
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also influences the ETB by bringing dryer air from over Asian continent (Rohling 

and Hilgen, 1991; Krichak et al., 2010).  

 

Figure 2.4 : Air massess influencing the Euphrates-Tigris Basin and its surrounding. 

Large-scale circulation patterns and atmospheric teleconnections also influence the 

climate of the ETB. A robust signal between winter precipitation over the ETB and 

North Atlantic Oscillation (NAO) was documented by several diagnostic studies 

(Hurrel, 1995; Cullen et al., 2002; Trigo et al., 2004). The North Sea-Caspian Pattern 

(NCP) is also reported to have strong influence on the temperature variability of the 

ETB (Kutiel and Benaroch, 2002; Kutiel et al., 2002; Türke! and Erlat, 2009). In a 

recent study, Sen et al. (2011) found a striking increase in the discharges of the 

Anatolian tributaries of the Euphrates and Tigris Rivers during the first half of March 

in recent years, which causes a shift in the peak flows to earlier days. According to 

their analysis based on NCEP/NCAR Reanalysis data, warming that results in this 

increase is associated with the switching from the northeasterly flow to southwesterly 

flow over the Black Sea and western Anatolia caused by the weakening of the 

Siberian High over eastern Europe, which are found to be very consistent with the 

positive and negative phases of the NCP identified by Kutiel and Benaroch (2002). 

Except from the large-scale effects, the region is also under influence of important 

local factors such as sea surface temperature (SST) and orography. In a recent study, 

sensitivity of precipitation in the Anatolian Peninsula to increased SSTs in the 

surrounding seas was investigated through regional climate model sensitivity 

Continental Tropical

Marine Tropical

Continental Polar

Marine Polar
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simulations and it was highlighted that the additional heat and moisture gained over 

the warmer eastern Mediterranean Sea are carried over the eastern Anatolia (Bozkurt 

and Sen, 2011). The moisture advection makes statistically significant increases in 

the winter precipitation in large areas in the eastern Anatolia, which are the main 

headwaters of the Euphrates and Tigris Rivers. In terms of orographic influences, 

eastward propagation moisture flux towards the basin results in a greater likelihood 

of orographic precipitation over the Taurus and Zagros mountain ranges (Evans et 

al., 2004).  

Due to surrounding mountains, interior steppe and deserts of Syria and Iraq receive 

very little amount of precipitation (Evans et al., 2004). Annual rainfall in the 

lowlands is about 300 mm, while it reaches to about 600 mm in the highlands 

(Bozkurt et al., 2012). The basin receives much of the precipitation in winter. Annual 

average surface temperatures of lowlands and highlands are about 20 oC and 9 oC, 

respectively (Figure 2.5). Monthly fractions of the streamflow gauging stations 

located in the headwaters of the Euphrates and Tigris Rivers in eastern Anatolia 

indicate that 60-80% of their total annual flows occur in March-June period with a 

peak in April (Sen et al., 2011). This is a good indicator of the fact that these rivers 

are primarily fed by snowmelt runoff. 
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Figure 2.5 : 30-year (1961-1990) observed mean annual precipitation (a) and 
temperature (b) distribution in the basin. 
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3.  OBSERVED CLIMATE CHANGES IN THE BASIN  

3.1 Data and Method 

In order to demonstrate observed climate changes and its impacts in the basin, by 

using meteorological and streamflow stations, an investigation of how changes in 

hydrometeorological variables and large-scale patterns affect regional hydrology in 

the context of changing climate was carried out. A diagnostic study for changes in 

the snowmelt-derived streamflow in Euphrates Basin was performed as well as trend 

analysis for temperature and precipitation data from meteorological observations. 

Results of observed changes in streamflow of the Euphrates and Tigris Rivers 

together with the atmospheric teleconnections influencing these changes was 

published by Sen et al. (2011) in which I was involved as co-author. Therefore, 

streamflow analysis in this chapter  mainly consists of the analyzes and results in Sen 

et al. (2011). Analyzes covering the whole basin in terms of precipitation and 

temperature are based on the data provided by University of East Anglia, Climate 

Research Unit (CRU). The CRU global climate dataset consists of multi-variate 0.5o 

latitude by 0.5o longitude resolution monthly climatology for global land areas 

(Figure 3.1). The number of the CRU stations within the basin is 26. In addition to 

the CRU data, a regional dataset of precipitation and temperature in the main 

headwaters of the basin, which is based on relatively dense gauging network is also 

used to see how it affects the results (Figure 3.2). The regional dataset (17 stations in 

the main headwaters region) is provided by Turkish State Meteorological Service 

(TSMS). These data are first subjected to the Mann-Kendall (MK) trend test to 

determine whether there is statistically significant trends in precipitation and 

temperature between 1961 and 2002. General information for the MK test and its 

algorithm are provided in Appendix A.  

Streamflow records were obtained from Turkish General Directorate of Electrical 

Power Resources Survey and Development Administration Hydro-Climatic Data 

Network for 21 stations. It should be noted that these two rivers are an essential part 
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of the Southeastern Anatolian Project, a 30-billion-dollar investment which aims to 

produce energy (SAPRDA, 2009) and to irrigate vast semi-arid plains in the 

southeastern parts of Turkey via constructing 19 hydro-power plants and 22 dams. 

Streamflow measurements at downstream locations of dams and/or hydro-power 

plants were excluded in this study since such man-made structures might divert 

streamflow from its natural characteristics. 

 

Figure 3.1 : CRU station data distribution over the globe and the ETB. 

f 

 

 

 

 

 

 

Figure 3.2 : Meteorological stations in the main headwaters of the basin. 

After filtering the data for location, length and quality, 8 gauging stations remain to 

be used for analysis. All these stations have 35-year continuous daily measurements 

between 1972 and 2006. We also used daily surface temperature data in the analysis 

that were obtained from the TSMS for six sites in (or near) the basins that feed the 

tributaries of Euphrates and Tigris rivers. Locations of the climate stations as well as 

streamflow measurement sites are given in Figure 3.3. Informations about the 

streamflow gauging stations used in this part can be found in Table 3.1. In order to 
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investigate the corresponding changes in the atmospheric fields, data from 

NCEP/NCAR Reanalysis  was used (Kalnay et al., 1996).  

In order to detect the changes in the streamflow timing, researchers have used 

different measures, such as ‘spring pulse onset’ that define the date when snowmelt 

streamflow begins to cause an increase in discharge in spring or early summer 

(Cayan et al., 2001), and ‘center time’ (CT) that defines the date that marks the 

timing of the center of mass of annual flow (Stewart et al., 2005). In this study, CT 

was adopted as the measure to detect any shifts in streamflow timing. In the first part 

of the analysis, the CT dates were estimated and then the significance of the 

differences between two periods were assessed using the Monte Carlo test. The CT 

dates were estimated and then the significance of the differences between two 

periods were assessed using the Monte Carlo test. The CT dates were estimated from 

the daily streamflow measurements for every year at all measurement sites.  The CT 

data were then divided into two periods of 17 years (i.e. 1972–88 and 1990– 2006), 

and mean values were compared for possible changes (named as actual difference).  

 

Figure 3.3 : Locations of the streamflow gauging (triangles) and climate stations        
 (red full circles) analyzed in observed climate changes.
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Table 3.1 : Information about the streamflow gauging stations used in the study (Note: E: Euphrates and T: Tigris). 

 

 

 

 

 

 
 

a    Station number used in General Directorate of Electrical Power Resources Survey and Development Administration in Turkey. 
b     Mean and median monthly flows and center time dates are calculated for the period 1972 -2006. 
c    MAMJ stands for March, April, May and June 
E: Euphrates 
T: Tigris 

 Station 
No. 

Name Latitude Longitude Altitude 
(Basin average) 
[Highest elevation] 
(m) 

Drainage 
area 
 
(km2) 

Mean 
annual 
flow 
(m3/s) b 

Median 
annual 
flow 
(m3/s) b 

Fraction 
of 
MAMJc 

discharge 
(%) 

Center 
Time 
Date 

2102 E. - Palu 38o41`18`` 39o55`52`` 852   (1856) [4032] 25515 242.75 230.11 77 Apr 18 
2122 E. - Tutak 39o32`19`` 42o46`49`` 1552 (2142) [3505] 5882 48.24 47.35 79 Apr 26 
2133 E. - Melekbahçe 39o02`45`` 39o31`34`` 875   (1861) [3338] 3284 85.72 87.73 64 Apr 28 
2156 E. - Ba!ı"ta" 39o26`05`` 38o27`04`` 865   (1937) [3530] 15562 148.95 150.16 58 Apr 26 
2157 E. - Karaköprü 38o47`02`` 41o29`43`` 1250 (1636) [2919] 2173 25.14 23.17 77 Apr 8 
2164 E. - Çaya!zı 38o48`31`` 40o33`17`` 990   (1753) [2824] 2232 33.43 31.75 79 Apr 11 
2610 T. - Baykan 38o09`41`` 41o46`57`` 910   (1620) [2601] 640 18.22 17.48 70 Apr 8 
2620 T. - Üzümcü 37o29`11`` 43o33`56`` 1072 (2420) [3894] 5270 58.80 58.35 72 May 8 
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In addition to CT methodology, which provides a time-integrated view of the 

changes in the streamflow, daily and monthly differences in the streamflow averages 

between two periods were provided in order to show when the changes actually 

occur. In the second part of the analysis, the NCEP/NCAR reanalysis data was used 

(surface temperature, 10 m wind fields, 850 hPa level temperature, and 500 hPa level 

temperature and wind fields) to investigate the changes in the large-scale surface and 

atmospheric fields that may be related to the striking increase in the discharges at the  

beginning of the major spring pulse in the second period. 

3.2 Analyses and Results  

3.2.1 Temperature 

Figure 3.4 shows time series and the MK trend analysis of CRU-based annual 

maximum, mean and minimum temperature in the highlands of the basin for the 

period of 1961-2002 (see Figure 2.3 for the highlands and lowlands of the basin). 

The time series were formed bu averaging the CRU stations within the highlands, 

and then the MK test was applied to the time series (see Figure 3.1 for the CRU 

stations distributed in the basin). 

 

Figure 3.4 : Averaged ime series and Mann-Kendall trend analysis of CRU-based 
             annual maximum, mean and minimum temperature (oC) in the       

        highlands for the period of 1961-2002. 

After filtering Ranges of annual maximum, mean and minumum temperatures are 

between 14-16 oC, 8-10 oC, 2-4 oC, respectively. There is a stkriking warming period 

beginning from the early 1990s, which is not statistically significant. However, 

although the CRU dataset is treated as the primary observational dataset to assess the 
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observed climate changes, this dataset might have poor representation of main 

climate variables over the mountainous region. Therefore, in addition to trend 

analysis of the CRU dataset, a regional dataset of TSMS which has relatively dense 

network over the mountainous region was used. Figure 3.5 demonstrates time series 

and the MK trend analysis of the TSMS stations in the main headwaters of the basin 

(see Figure 3.2 for the TSMS stations distributed in the main headwaters of the 

basin). The most striking point is that warming period beginning from the early 

1990s has lead to statistically significant warming trend in the main headwaters 

region, which is more pronounced for minimum temperature (Figure 3.5f). This is 

crucially important because the snow-covered mountans are dominated over the main 

headwaters of the basin and statistically warming trend especially in the minimum 

temperature in that region may have profound implications for the snow cover and 

runoff.  

 

Figure 3.5 : Averaged ime series and Mann-Kendall trend analysis of annual  
maximum, mean and minimum temperature (oC) of Turkish State d   
Meteorological Service stations in the main headwaters of the basin         
for the period of 1961-2002.dddddddddddddddddddddddddddddddl 

Figure 3.6 demonstrates time series and the MK trend analysis of CRU-based annual 

maximum, mean and minimum temperature in the lowlands of the basin for the 

period of 1961-2002. Annual maximum, mean and minumum temperatures for the 

lowlands range between 26-29 oC, 19-21 oC, 12-14 oC, respectively. As it is observed 

in highlands temperature, annual maximum, mean and minimum temperature in the 

lowlands indicate a striking warming in recent years, which are statistically 

significant for the mean and minimum temperatures (Figure 3.6d, f).  
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Figure 3.6 : Averaged time series and Mann-Kendall trend analysis of CRU-based 
             annual maximum, mean and minimum temperature (oC) in the       

        lowlands for the period of 1961-2002.l 

3.2.2 Precipitation 

Figure 3.7 shows time series and the MK trend analysis of CRU-based annual 

precipitation in the highlands and lowlands of the basin for the period of 1961-2002. 

Annual precipitation amount is higher in the highlands because of high elevation and 

orography. Annual precipitation amount for the highlands ranges between 500 and 

800 mm, while it ranges between 200 and 400 mm for the lowlands. MK trend 

analysis indicates no statistically significant changes in precipitation for both 

highlands and lowlands. MK trend analysis of the TSMS stations for precipitation in 

the main headwaters of the basin also indicates no statistically significant changes. 

 

Figure 3.7 : Averaged time series and Mann-Kendall trend analysis of CRU-based 
                 annual precipitation (mm) in the highlands and lowlands for the period   

of 1961-2002.ddddl 
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3.2.3 Streamflow 

Monthly discharges of all stations between 1972 and 2006, which indicate year-to-

year variability in peak discharges, are given in Figure 3.8a. Monthly streamflow 

fraction (monthly streamflow over annual streamflow) and air temperature averages 

from the first period (1972-1988) and the changes in these variables in the second 

period are presented in Figures 3.8b through 3.8e.  

 

Figure 3.8 :  (a) Monthly discharges (m3/s) from the eight stations halves shown for 
Palu). Monthly averages of the hydroclimatic variables for the firstllllll 
period [1972-1988] and the changes in the second period (i.e., [1990-ll 
2006] minus [1972-1988]) (b) Streamflow fraction (monthlylllllllllllllll 
streamflow over annual streamflow), (c) change in streamflowllllllllllll 
fraction, (d) air temperature (oC), and (e) change in air temperaturellllll 
(oC).lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

All the rivers show the typical snowfed river characteristics (Figure 3.8b). The 

monthly fractions of the river discharges indicate that significant melting starts in 

March, and ends in June and July. Majority of the peaks occur in April with 20-40% 

of the annual discharge. The peaks of Uzumcu and Bagistas, however, take place in 

May. The difference plot (Figure 3.8c) shows increases mostly occurring in March 

while decreases mostly happening in May, balancing each other. Monthly average 

temperatures (Figure 3.8d) are usually near or below 0 oC at all meteorological 

1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005
0

200

400

600

800

1000

M
on

th
ly 

Di
sc

ha
rg

e 
(m

3 /s
)

(a)                                                                                                                                                              

 

 
Bagistas Baykan Cayagzi Karakopru Melekbahce Palu (Q/2) Tutak Uzumcu

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

of
 D

isc
ha

rg
e

(b)                                                                 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
0.04

0.02

0

0.02

0.04

Di
ffe

re
nc

e 
in

 F
ra

ct
io

ns

(c)                                                                 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
20

10

0

10

20

30

Te
m

pe
ra

tu
re

 (o C)

(d)                                                                 

 

 

Bingol
Mus
Tunceli
Agri
Palu
Bitlis

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
1

0.5

0

0.5

1

1.5

2

Di
ffe

re
nc

e 
(o C)

(e)                                                                 



25 
 
 

stations in December, January and February. March seems to be the transition month 

from below-zero to above-zero temperatures in the region. The monthly differences 

between the temperatures of the two periods indicate consistent warming in almost 

all months (Figure 3.8e). There are substantial increases in winter temperatures (up 

to 1.7 oC), but they are probably not adequate to raise the temperatures over zero in 

large areas in the region. On the other hand, the increases in March (ranging from 0.5 
oC to 1.7 oC) seem to be adequate to expose large lower-elevation areas in the basins 

to positive temperatures.  

The significance of the changes in the annual flows using the same methodology 

applied to the CT data. As can be seen in Table 3.2, differences between two periods 

(1972-1988 and 1990-2006) are not significant at a significance level of 0.1 which 

suggests that there are no statistically significant changes in the annual flow data. 

The differences in CTs of both periods are also provided in Table 3.2 along with the 

significance test results. Except for Baykan and Melekbahce, differences in CTs are 

found to be statistically significant at a significance level of 0.1. Among significant 

sites, the average shift in the CT is 5.2 days. The longest shifts are calculated for 

Karakopru on Euphrates and Uzumcu on Tigris (both 6.8 days). The 4.8-day shift in 

Palu whose drainage area is the largest amongst the stations is also statistically 

significant. 

Table 3.2 : Differences in annual discharges and Center Times, and their Monte     
Carlo (MC) probabilities.dddddddddddddddddddddddddddddddddd 

 Annual Runoff Center Time 
Station Diff* (m3/s) MC prob. Diff* (days) MC prob. 
Palu 8.46 0.63 4.8 0.97 
Cayagzi 1.14 0.64 5.8 0.98 
Karakopru 0.49 0.56 6.8 0.98 
Tutak 1.63 0.64 3.5 0.92 
Melekbahce -0.53 0.46 1.9 0.79 
Baykan 0.76 0.62 3.1 0.80 
Bagistas -6.86 0.24 3.5 0.91 
Uzumcu 2.03 0.60 6.8 0.99 

* Difference of the second period [1990-2006] from the first period [1972-1988] 

The differences in daily discharges indicate a noticeable increase in the discharges 

during the first half of March, and it is observed at all stream gauging sites. Figure 

3.9 shows the differences in daily discharges and surface temperatures between two 
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periods for four station pairs. The stream gauging stations are the Palu and thos of its 

three sub-basins, and the temperature stations are the nearest ones to the gauging 

stations. It is clear from the plot that the discharge of the second period increases in 

the rising limb while decreases in the recession limb of the major spring pulse 

(Figures 3.9a, c, e and g). The pulse-type increase in the discharges during the first 

half of March in the second period is intriguing. The daily surface temperature 

observations from the nearby climate stations indicate mostly increases in the second 

period (Figures 3.9b, d, f and h).  

 

Figure 3.9 : Daily average discharges (m3/s) (left column) and surface temperatures 
        (oC) (right column) from two periods (black shading indicates thel  

          excess daily discharge or surface temperature in the second period and 
        the gray shading indicates the excess daily discharge or surfacellllll  
        temperature in the first period): (a) for Tutak, (b) for Agri, (c) forll        

           Karakopru, (d) for Mus, (e) for Cayagzi, (f) for Bingol, (g) for Palu,lllll 
and (h) for Palu.llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll  

In order to investigate the causes such substantial increases in surface temperatures, 

average large scale atmospheric fields obtained from the NCEP/NCAR Reanalysis 

data for both periods were compared for the time period between February 25 and 

March 5 (Figure 3.10). In the first period (1972-1988), the Siberian High is strong 

over eastern Europe causing easterly and northeasterly surface winds to blow over 
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the Black Sea, the Aegean Sea and the western and northeastern parts of the 

Anatolian Peninsula (Figure 3.10a, c). Typically, the easterly and northeasterly winds 

carry cold and dry air over these areas (Bozkurt and Sen, 2011). In the second period 

(1990-2006), the Siberian High weakens over Europe and the sea level pressures 

over the Anatolian Peninsula increase slightly. The surface winds start to blow from 

the western to southern directions (i.e. westerly, southwesterly, and southerly winds) 

over the aforementioned areas in response to the changes in the sea level pressures. 

At 500 hPa level, the negative heigh anomaly over the Scandinavian Peninsula and 

positive height anomaly over the eastern Mediterranean-Black Sea region weaken the 

ridge-trough pattern and result in more westerly flow over Europe and the 

Mediterranean Sea in the second period (Figure 3.10b, d).  

 

Figure 3.10 : Average (25 February-5 March) large-scale surface and atmospheric 
           fields calculated for the first period (1972-1988) (contours or wind  
           vectors in black) and the changes (i.e. (1990-2006) minus (1972- 

  1988)) (shaded or the wind vectors (in red) in the second period: (a)l 
  sea level pressure (hPa), (b) 500 hPa level geopotential height (m),ll         

          (c) surface wind vectors (m/s), (d) 500 hPa wind vectors (m/s), (e)            
       surface temperature (oC), and (f) 500 hPa level temperature (oC). 

llllllllllllllllllll  
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Because of its relatively high elevation, eastern Anatolia is subject to negative or 

near-zero surface temperatures between 25 February and 5 March (Figure 3.10e). In 

the second period, the surface temperatures increase (up to 2 oC) over this region. 

The temperature change at the 500 hPa level reveals a consistent pattern with the 

geopotential height changes, indicating cooling over a region centered at the 

Norwegian Sea and warming over a region elongated from the Mediterranean Sea to 

the northwestern Asia (Figure 3.10f). The largest warming (over 2 oC), however, 

occurs over the Aeagean Sea and western Turkey. A time-longitude diagram of 850 

hPa temperature differences (i.e. the second period minus the first period) clearly 

illustrates the propagation of warmer air from over the Balkans and Aegean Sea 

toward eastern Anatolia after about 25 February (Figure 3.11). The largest warming 

in the region occurs on the first three days of March. 

 

Figure 3.11 : Time-longitude diagram of  850 hPa level temperature difference (oC) 
   between two periods (i.e. (1990-2006) minus (1972-1988)) along thel 

         latitude 39oN, which passes through the headwaters area of thellllll 
Euphrates Rivers between approximately 40 and 42oE. 

llllllllllllllllllllllllllllllllllllllllllllllllllllllll 
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It is recognized that the teleconnections may help identify changes in the circulations 

and the climate characteristics of certain regions in the world. For this reason, the 

daily values of the NAO and the NCP indices, which are known to influence the 

climate of Europe and the Mediterranean basin (e.g. Hurrel, 1995; Kutiel and 

Benaroch, 2002), were analyzed. When the NAO index is positive (i.e. low-pressure 

anomalies over the Icelandic region and high-pressure anomalies over the subtropical 

Atlantic), the conditions are wetter and warmer than average over northern Europe 

and drier and colder than average over the Mediterranean regions (Visbech et al., 

2001). Cullen and deMenocal (2000) report that winter temperature and precipitation 

records in Turkey will reflect a cooler and drier climate during a positive phase of 

NAO. In the present study, the daily SLP differences obtained using the nearest grid 

points to Ponta Delgado (37.8° N, 25.7° W), Azores and Reykjavik (64.1° N, 21.9° 

W), Iceland were standardized using the 1948-2010 climatological daily mean and 

standard deviation. The NAO index is found to have mostly positive or near-zero 

values for both periods (Figure 3.12a). It does not show a noteworthy difference 

between two periods and it most likely has little or no effect on the changes. 

 

Figure 3.12 : Daily values of the North Atlantic Oscillation index (a) and North-Sea   
          Caspian Pattern index (b).  llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll  
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In general, the positive NCP index implies northeasterly flow toward the Balkans 

and the western parts of the Anatolian Peninsula, resulting in cooler temperatures, 

while the negative NCP index implies increased southwesterly anomaly circulation 

toward these areas, resulting in above normal temperatures (Kutiel and Benaroch, 

2002). Kutiel et al. (2002) identifies the continential Anatolian Plateau as the region 

where the NCEP has the maximum impact on surface temperatures. More recently, 

Türke! and Erlat (2009) suggest that extreme phases of the NCP index are more 

capable than those of the NAO index for explaining the variability in average winter 

temperatures in Turkey. In the present study, the differences in the average 500 hPa 

geopotential heights for the boxes of (0°, 55° N; 10° E, 55° N) and (50° E, 45° N; 

60° E, 45° N) were calculated, and then, standardized by using the 1948-2010 

climatological daily mean and standard deviation. The NCP index tends to have 

negative values (negative phase) for the days after February 25 in the second period 

(Figure 3.12b). There are important differences between the index values of both 

periods. The difference is especially remarkable from 25 February to 4 March. As 

suggested by Kutiel and Benaroch (2002), the negative NCP index values imply 

enhanced southwesterly anomaly circulation toward the Anatolian Peninsula 

resulting in higher surface temperatures there. Therefore, a mostly negative NCP 

index could be the reason behind the remarkable increase in the early-March 

snowmelt discharges in the eastern Anatolia in the second period.  
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4.  CLIMATE MODEL SIMULATIONS  

In order to determine the second research question of this study (see Figure 1.1), 

hydro-climatic effects of future climate change in the basin have been investigated 

using dynamically downscaled outputs of different GCM (ECHAM5, CCSM3 and 

HadCM3)-emissions scenario (A1FI, A2 and B1) simulations via a regional cliamte 

model (RegCM3), obtained from a UNDP project (MDG-F 1680) entitled with 

“Enhancing the capacity of Turkey to adapt to climate change”. This chapter of the 

thesis consists of two parts: (i) Evaluation of the reference period and (ii) The future 

climate change impact assessments. Evaluation of the reference period was achieved 

through a compherensive evaluation of the both RCM and GCMs used in this study. 

The future climate change impact assessments were then achieved through a 

comparison of the projected climate changes with the corresponding modeled 

climatology for the reference period. The suite of simulations (total five) enables an 

analysis taking into account the A2 emission scenario simulations of three different 

GCMs (ECHAM5, CCSM3 ve HadCM3) and another analysis based on the three 

different emissions scenario (A1FI, A2 and B1) simulations of one GCM (CCSM3). 

4.1 Evaluation of the Reference Period 

GCMs are the main tools to generate climate change projections based on emission 

scenarios. These projections are widely used to study the impacts of the climate 

change on different components of the climate system at global and continental 

scales (e.g. Russel et al., 2000; Gregory et al., 2002; Hu and Wu, 2004; Wang, 2005). 

The GCMs, on the other hand, provide limited information about the climate change 

impacts at regional and sub-regional scales. This is primarily due to their coarse 

spatial resolutions, which do not adequately resolve the structure of the earth's 

surface at these scales (Busuioc et al., 1999). One common procedure for obtaining 

fine scale regional information is to dynamically downscale the GCM outputs using a 

RCM. In recent years, the RCMs have been increasingly used in climate change 

studies (e.g. Giorgi et al., 1994; Huntingford et al., 2003; Giorgi et al., 2004b; Önol 
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and Semazzi, 2009) as well as climate research including diagnostic studies (e.g. 

McGregor, 1997; Wang et al., 2004) and climate sensitivity studies (e.g. Messager et 

al., 2004; Martinez-Castro et al., 2006; Sen et al., 2004a; Sen et al., 2004b; Bozkurt 

and Sen, 2011). 

The model-based climate change studies usually include a present-day simulation in 

addition to a future simulation. The main reasons to have present-day simulations 

are, first, to demonstrate the performance of the model in comparison with the 

observations, and second, to have a reference simulation over which the future 

simulations could be evaluated consistently. Although there is considerable 

confidence that climate models are capable of representing many important mean 

climate features, they still harbor uncertainties (IPCC, 2007). Because the RCMs are 

driven by the GCM outputs, the uncertainties propagate down to the RCM outputs in 

a regional climate change study. Therefore, a thorough evaluation of GCM outputs 

on the regional scale together with the performance evaluation of the RCM is needed 

to provide more reliable and accurate assessments of the regional climate change 

simulations. Giorgi and Francisco (2000) carried out a comprehensive assessment of 

uncertainties in regional climate change projections by five-coupled atmosphere-

ocean GCMs (AOGCMs) for different anthropogenic forcing scenarios over different 

regions. They found that intermodel variability with inter-scenario is dominant 

source of uncertainty in the regional climate change simulations by AOGCMs. They 

also stated that uncertainties in predicted regional changes by AOGCMs would be 

transmitted to any regionalization technique used to get fine scale regional 

information from AOGCMs. Duffy et al. (2006) assessed how well the different 

RCM/GCM combinations simulate aspects of the present climate in the Western U.S. 

by using four RCMs and two different GCMs. Their results indicated similar 

precipitation overestimation in both driving GCM and RCM results, which suggests 

that the GCMs play a substantial role in regional model precipitation bias. It is also 

virtually conventional to provide the performance of an RCM that is generally forced 

by a reanalysis dataset, in order to evaluate the role of the RCM as a source of bias 

(e.g., Han and Roads, 2004; Sylla et al., 2010). Bergant et al. (2007) stated that an 

evaluation of an RCM through an investigation of systematic errors in model 

simulations provides an overview of the model performance in dynamical 

downscaling studies. Furthermore, an evaluation of an RCM is needed to provide a 
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valid baseline statistics for the assessment of seasonal predictions and climate change 

scenarios simulated with RCMs (Seth et al., 2007). Giorgi et al. (2004a) examined 

climatic means, interannual variability and trends for the 30-year period between 

1961 and 1990 with an RCM driven by the Hadley Centre global model (HadAMH). 

It is stated that the model successfully reproduces not only the basic features of the 

observed mean surface climate over Europe but also its seasonal evolution.  

The eastern Mediterranean - Black Sea region (hereafter EMBS) includes 

southeastern Europe, Anatolian Peninsula, Caucasus, northeast Africa and the ETB. 

The fourth assessment report of Intergovernmental Panel on Climate Change (IPCC 

AR4) highlights the Mediterranean Basin as one of the most vulnerable zones in the 

world in terms of climate change. Likewise, Giorgi (2006) defined the Mediterranean 

region as one the most vulnerable climate change “hotspots” in future climate change 

projections. The GCM simulations largely agree on a basinwide precipitation 

reduction in the Mediterranean (IPCC, 2007). The RCM simulations, which provide 

higher detail about the changes, indicate precipitation reductions in the basin as well; 

however, they also show increases to the north of the basin, which is usually not 

resolved by the GCMs (e.g., Gao et al., 2006). Within the UNDP project, we have 

carried out a climate change study that involves the downscaling of the present-day 

and future simulations of different GCM outputs with different scenarios for the 

EMBS region. In addition, a reanalysis-data forced simulation with the same RCM 

for the same present-day period was performed. The subject of the evaluation of the 

reference period is, therefore, twofold: first to present and evaluate the high-

resolution climatology of the dynamically downscaled outputs from three global 

circulation models, the MPI-ECHAM5, NCAR-CCSM3 and HadCM3; second to 

demonstrate, for this region, the performance of the RCM (RegCM3), which is used 

in all downscaling runs of this study. 

4.1.1 Model descriptions, data, and experiment design 

4.1.1.1 Regional climate model 

In this study, RegCM3 of the International Centre for Theoretical Physics in Italy 

was used. RegCM3 is an upgraded version of RegCM2 (Giorgi et al., 1993a,b), and 

it is a primitive equation, hydrostatic, compressible, limited area model with sigma-

pressure vertical coordinate. RegCM3 includes the land surface model BATS 
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(Biosphere-Atmosphere Transfer Scheme; Dickinson et al., 1993), the non-local 

boundary layer scheme of Holtslag et al. (1990), the radiative transfer package of 

CCM3 (Community Climate Model Version 3; Kiehl et al., 1996), the ocean surface 

flux parameterization of Zeng et al. (1998), a simplified version of the explicit 

moisture scheme of Hsie et al. (1984), a large-scale cloud and precipitation scheme 

which accounts for the sub-grid scale variability of clouds (Pal et al., 2000), and 

several options for cumulus convection (Anthes, 1977; Grell, 1993; Emanuel and 

Zivkovic-Rothman, 1999). Grell (1993) with Fritsch and Chappell (1980) closure 

was selected as cumulus convection scheme for the model simulations. Brief 

descriptions of the main physical schemes used in the RegCM3 are given below. 

More detailed descriptions of physical parameterizations and model dynamics of the 

RegCM3 model can be found in Pal et al. (2007). 

Radiation scheme 

The radiation scheme of the RegCM3 is the same as that of the NCAR-CCM3. !-

Eddington approximation (Kiehl et al., 1996) is used for solar radiation component 

that accounts for the effect of O3, H2O, CO2, and O2. The cloud scattering and 

absorption parameterizations are also included in order to determine cloud influence 

on solar radiation. The infrared calculation accounts for effect of CO2, H2O, O3 

gases.   

Land surface model 

The interactions between the soil, vegetation, and atmosphere are parameterized 

using BATS1e, which is described in detail by Dickinson et al. (1993). BATS 

describe the role of vegetation and interactive soil moisture in modifying the surface-

atmosphere exchanges of momentum, energy, and water vapor (Figure 4.1). 20 

vegetation types are avaliable in the present version.  

For the water content of the soil layers the soil hydrology calculations are performed. 

The soil hydrology calculations include predictive equations accounted for 

precipitation, snowmelt, canopy foliage drip, evapotranspiration, surface runoff, 

infiltration below the root zone, and diffusive exchange of water between soil layers 

for the water content of the soil layers. The near surface turbulent fluxes of sensible 

heat, moisture, and momentum are calculated using a standard surface drag 

coefficient formulation based on surface-layer similarity theory. The atmospheric 
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stability in the surface layer and the surface roughness length are the factors that 

affect the drag coefficient. 

 

Figure 4.1 : Representation of BATS (Url-2).  

Planetary boundary layer scheme 

The planetary boundary layer (PBL) scheme of Holtslag et al. (1990) is the scheme 

used in the RegCM3 model. The scheme is used for calculation of turbulent 

transports of sensible heat, momentum, and water vapor in the PBL over land and 

ocean. The PBL scheme is based on non-local diffusion that takes into account 

countergradient fluxes resulting from large-scale eddies in an unstable, well-mixed 

atmosphere. Refer to Holtslag et al. (1990) and Holtslag and Boville (1993) for a 

more detailed description. 
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Convective precipitation scheme 

There are three convective schemes in order to compute convective precipitation: 

Grell scheme (Grell, 1993), Modified-Kuo scheme (Anthes, 1977), and MIT-

Emanuel scheme (Emanuel, 1991; Emanuel and Zivkovic-Rothman, 1999). Grell’s 

cumulus convection parameterization is used as convective precipitation scheme in 

this study. In this scheme, clouds are defined as two steady state circulations; an 

updraft and a downdraft. There is no direct mixing between the cloudy air and the 

environmental air except at the top and bottom of the circulations.  

The Grell scheme convective closure assumption can be of two typess. In the Fritsch 

and Chappell (1980) closure assumption (FC80) convection removes the avaliable 

buoyant energy at a given time scale. It is designed to represent convections which 

typically occur in mid-latitudes. In the Arakawa and Schubert (1974) closure 

assumption (AS74) convection stabilizes the environment as fast as the large-scale 

destabilizes it. It is designed to represent convections which tend to be the most 

common form of convection. 

Large-scale precipitation scheme 

The subgrid explicit moisture scheme (SUBEX) developed by Pal et al. (2000) is 

used as large-scale precipitation scheme in RegCM3. SUBEX considers the subgrid 

variability in clouds by linking the average grid cell relative humidity to the cloud 

fraction and cloud water following the work of Sundqvist (1989). For a more detailed 

description and formulation of SUBEX refer to Pal et al. (2000).  

Model structure 

Figure 4.2 demonstrates the schematic representation of the model structure. 

RegCM3 is mainly composed of two parts: pre-processing and post-processing. In 

pre-processing part, it is necessary to complete two steps before performing the 

model. In the first step, the domain with grid intervals is defined and landuse and 

elevation data are interpolated to the model grids, which are carried out in "Terrain" 

part. The landuse and elevation data from a latitude-longitude grid to the cartesian 

grid of the chosen domain are horizontally interpolated by the Terrain program. The 

elevation data is used from the United States Geological Survey (USGS). Both the 

landuse and elevation data files are available at 60, 30, 10, 5, 3, and 2 minute 

resolutions. In this study, the topography and land use are interpolated to the model 

grids from a global dataset at 10 minute resolution. 
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Land cover and vegetation classes of the domain are important for determining 

atmospheric properties of the domain. Atmospheric paramteres such as temperature, 

precipitation and moisture are affected by not only the topography of the domain but 

also land cover of the domain. The Global Land Cover Characterization (GLCC) 

datasets are used for the vegetation/landuse data. The GLCC dataset is derived from 

1 km Advanced Very High Resolution Radiometer (AVHRR) data spanning April 

1992 through March 1993, for the 20 types of vegetation/landuse data. 

 

Figure 4.2 : Structure of RegCM3 (Figure adopted from Önol, 2007).  

In the second step, the initial and boundary condition (ICBC) program interpolates 

global reanalysis data or GCM outputs and SST data into the RegCM3 grid. The 

available options for SST data are: the Global Sea Surface Temperature (GISST; 

1871-2002; monthly mean) data from the Hadley Centre, UK and the Optimum 

Interpolation Sea Surface Temperature (OISST; 1981-2005; weekly and monthly) 

from the National Ocean and Atmosphere Administration, USA. For the ICBC fields, 

several reanalysis datasets (NCEP-NCAR, ERA40, ECMWF) and GCM outputs 

(ECHAM, HadCM, fvGCM, CCSM etc.) can be used in the RegCM3. The boundary 

condition data files are prepared for every at 00, 06, 12, 18 UTC, and these data are 

used to up-date model time integration at the lateral boundaries.  
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Post-processing part of is responsible for producing suitable output files of averaged 

variables in commonly used formats such as NetCDF or GrADS. Raw outputs of 

RegCM3 simulations are composed of four types: atmospheric (ATM, 3-

dimensional: westerly and southerly wind, air temperature, geopotential height etc.), 

radiation (RAD, 3-dimensional: solar radiation, cloud cover etc.), surface (SRF, 2-

dimensional: precipitation, 2-m temperature, evapotranspiration, etc.) and chemistry 

(CHE, 3-dimensional: surface emission, tracer mixing etc.). The re-analysis and 

GCM outputs data files used in this study, are described in the next section. These 

files are used for the initial affected by not only the topography of the domain but 

also land cover of the domain. 

4.1.1.2 GCMs 

MPI-ECHAM5 

European Centre Hamburg Model version 5 (ECHAM5) is the fifth generation of the 

ECHAM atmospheric general circulation model, developed at the Max Planck 

Institute for Meteorology (MPI), Hamburg, Germany. Its development based on a 

global numerical weather prediction model developed at the ECMWF (Simmons et 

al., 1989), and since then, it has been continually developed at the MPI. 

Main components of the ECHAM5 are briefly described as follows. Detailed 

information can be found in Roeckener et al. (2003, 2004). The part describing the 

main components of ECHAM5 is based on the Roeckener et al. (2003, 2004). 

ECHAM5 is based on spectral dynamical core. Vertical structure of the model is 

described by a hybrid coordinate system. The sigma system at the lowest model level 

gradually transforms into a pressure system in the lower stratosphere. Troposphere-

lower stratosphere depth reaches to 10 hPa with a total of either 19 or 31 levels. In 

the middle atmosphere the computation level reaches to 0.01 hPa with either 39 or 90 

levels. A truncated series of spherical harmonics is employed to represent vorticity, 

divergence, temperature and the logarithm of surface pressure in the horizontal. A 

flux-form semi-Lagrangian scheme (Lin and Rood, 1996) is used for passive tracer 

transport, i.e., for the water components (vapor, liquid, solid) and for chemical 

substances. 

Shortwave radiation used in ECHAM5 for calculating radiative transfer of solar 

energy within the atmosphere (Foquart and Bonnel, 1980) uses the Eddington 
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approximation for the integration over the zenith and azimuth angles and the delta-

Eddington approximation for the reflectivity of a layer. The scheme includes 

Rayleigh scattering, absorption by water vapor and ozone, both varying in space and 

time, and CO2+N2O+CO+CH4+O2 as uniformly mixed gases. Interactions between 

scattering processes and absorption are considered for water vapor and for the 

uniformly mixed gases, but not for ozone, because gaseous absorption is assumed to 

dominate in the stratosphere. The computation of transmissivities and reflectivities 

across a vertical column is split into two separate calculations for the cloud-free part 

and the cloudy part. The scheme has four spectral bands, one for visible+UV range, 

and three for the near infrared. The interaction of scattering processes and gaseous 

absorption is considered only in the near infrared bands. Single scattering properties 

of clouds have been determined on the basis of Mie calculations using idealized size 

distributions for both cloud droplets and ice crystals (Rockel et al., 1991). 

Longwave radiation scheme in ECHAM5 is based on Rapid Radiative Transfer 

Model (RRTM) developed by Mlawer et al. (1997). The RRTM scheme computes 

fluxes in the spectral range 10 cm-1 to 3000 cm-1. The computation is organized in 16 

spectral bands and includes line absorption by H2O, CO2, O3, CH4, N2O, CFC-11, 

CFC-12 and aerosols. Aerosols are considered in all spectral bands. 

In terms of cumulus convection, a mass flux is employed for shallow, mid-level and 

deep convection (Tiedtke, 1989) with modifications for deep convection according to 

Nordeng (1994). The scheme is based on steady state equations for mass, heat, 

moisture, cloud water and momentum for an ensemble of updrafts and downdrafts 

including turbulent and organized entrainment and detrainment. Turbulent 

entrainment and detrainment rates are specified differently for the three types of 

cumulus convection. Organized entrainment (for deep convection only) takes place 

as inflow of environmental air into the cumulus updraft when the cloud parcels 

accelerate upwards, that is, when the buoyancy is positive. Organized detrainment 

occurs where the air parcels decelerate, that is, when the buoyancy becomes 

negative. Thus, organized entrainment and detrainment is related to cloud activity 

itself. 

The turbulent surface fluxes for momentum, heat and moisture are obtained from 

bulk transfer relationships involving the difference of the respective model variable 
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(wind components, potential temperature, humidity) between the surface and the 

lowest model level (about 30m above ground), the wind velocity at that level and the 

transfer coefficients. Approximate analytical expressions in terms of roughness 

length and bulk Richardson number, are employed for momentum and heat, 

respectively. Over land, the roughness length is a function of subgrid-scale 

orography and vegetation. Transpiration is limited by stomatal resistance, and bare 

soil evaporation is limited by the availability of soil water. Above the surface layer 

the eddy diffusion method is applied. 

The surface temperature is obtained from the surface energy balance equation using 

an implicit coupling scheme that is unconditionally stable and allows to 

synchroneously calculate the respective prognostic variables and surface fluxes 

(Schulz et al., 2001). The surface temperature is used as boundary condition to 

determine the vertical profile within the 5-layer soil model assuming vanishing heat 

fluxes at the bottom (10m). For snow covered land a mass-weighted mixture of soil 

and snow is applied to determine the thermal properties. Four reservoirs are defined 

for the water components: (1) snow at the canopy, (2) snow at the surface, (3) liquid 

water at the canopy, and (4) soil water. Surface runoff and drainage are obtained 

from a scheme, which takes into account the heterogeneous distribution of field 

capacities within a grid-cell (Dümenil and Todini, 1992). For diagnostic purposes 

and for coupling to an ocean model, a hydrological discharge model is applied 

(Hagemann and Dümenil-Gates, 2001). A simple scheme is used for calculating the 

water temperature, ice thickness and ice temperature of lakes. Changes in water level 

are not considered. The dataset of land surface parameters utilized in ECHAM5 has 

been compiled by Hagemann (2002) from a global distribution of major ecosystem 

types that was made available by the U.S. Geological Survey with a basic resolution 

of 1 km. These parameters are the background albedo of snow-free land (with 

corrections for the Sahara desert according to satellite data), vegetation effect on 

roughness length (in addition to that of subgrid-scale orography), fractional 

vegetation cover, fractional forest cover, leaf area index, plant available and total soil 

water holding capacity. 
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NCAR-CCSM3 
The Community Climate System Model version 3 (CCSM3) is a coupled model of 

the atmosphere, ocean, sea ice, and land surface linked through a coupler that 

exchanges fluxes and state information among these components. It was released in 

2004 and information about the model given below is based on Collins et al. (2006a).  

The main components of the CCSM3 system are based on: the Community 

Atmosphere Model version 3 (CAM3) (Collins et al., 2004, 2006b), the Community 

Land Surface Model version 3 (CLM3) (Oleson et al., 2004; Dickinson et al., 2006), 

the Community Sea Ice Model version 5 (CSIM5) (Briegleb et al., 2004), and the 

Parallel Ocean Program version 1.4.3 (POP) (Smith and Gent, 2002). 

Atmospheric component of CCSM3 is based upon the Eulerian spectral dynamical 

core with triangular spectral truncation at 31, 42, and 85 wavenumbers. The zonal 

resolution at the equator ranges from 3.75o to 1.41o for the T31 and T85 

configurations. The vertical structure employs 26 levels with a hybrid terrain-

following coordinate. The developed atmospheric core of the CCSM3 system 

includes signficant changes to the dynamics, cloud and precipitation processes, 

radiation processes, and treatment of aerosols. The cloud and precipitation processes 

include separate prognostic treatments of liquid and ice condensate; advection, 

detrainment, and sedimentation of cloud condensate; and separate treatments of 

frozen and liquid precipitation (Boville et al., 2006). The radiation scheme includes a 

generalized treatment of cloud geometrical overlap (Collins et al., 2002a; 2006c). A 

prescribed distribution of sulfate, soil dust, carbonaceous species, and sea salt 

derived from a three-dimensional assimilation (Collins, 2001; Rasch et al., 2001) is 

used to calculate the direct effects tropospheric aerosols on the radiative fluxes and 

heating rates (Collins et al., 2002b). The corresponding effects of stratospheric 

volcanic aerosols are parameterized following Ammann et al. (2003). Indirect effects 

of aerosols on cloud albedo and cloud lifetime are not incorporated in CAM3. 

The ocean core employs a dipole grid with a nominal horizontal resolution of 3o or 

1o. The vertical dimension is treated using a depth coordinate with 25 levels 

extending to 4.75 km in the 3o version and 40 levels extending to 5.37 km in the 1o 

version. The 1o grid has 320 zonal points and 384 meridional points. 
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The land model is integrated on the same horizontal grid as the atmosphere, although 

each grid box is further divided into a hierarchy of land units, soil columns, and plant 

types. There are 10 subsurface soil layers in CLM3. Land units represent the largest 

spatial patterns of sub-grid heterogeneity and include glaciers, lakes, wetlands, urban 

areas, and vegetated regions. CLM3 simulates energy and moisture exchanges 

between land and atmosphere. Radiative transfer, turbulent fluxes, and heat storage 

in soil are the main processes of the energy exchange between land and atmosphere 

(Figure 4.3). In addition to this, CLM3 has detailed representation of the hydrologic 

cycle, including infiltration, runoff, multi-layer snow accumulation and melt, 10-

layer soil water, soil evaporation and transpiration (Figure 4.4). The new land model 

of CCSM3 is based upon a nested subgrid hierarchy of scales representing land units, 

soil or snow columns, and plant functional types (Bonan et al., 2002; Oleson et al., 

2004). CCSM3 includes the effects of competition for water among plant functional 

types in its standard configuration.  

 

Figure 4.3 : Biogeophysics scheme of CLM3 (Bonan, 2002).   

Sea-ice component of CCSM3 includes modifications to the formulation of ice 

dynamics, sea ice albedos, and exchanges of salt between sea ice and the surrounding 

ocean. The horizontal advection of sea ice is treated with incremantal remapping 

(Libscomb and Hunke, 2004). The momentum equation has been modified using 

scaling arguments to better simulate marginal ice under drift (Connolley et al., 2004). 
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Salt and freshwater exchange between the sea ice and surrounding ocean are 

calculated using a nonzero, constant reference salinity of sea ice in CCSM3 (Schmidt 

et al., 2004). The albedo parameterization in CCSM3 matches observations of the 

seasonal dependence of the albedo on snow depth, ice thickness, and temperature 

within the uncertainty of the measurements in the Arctic and Antarctic (Perovich et 

al., 2002; Brandt et al., 2005). 

 
Figure 4.4 : Hydrological cycle in CLM3 (Bonan, 2002).  

 
HadCM3 

Hadley Centre Coupled Model version 3 (HadCM3) is a coupled atmosphere- ocean 

GCM developed at the Hadley Cenre in the United Kingdom. Information about the 

model given below is based on Gordon et al. (2000).  

HadCM3 is composed of two main components: the atmospheric component and the 

ocean component. Hadley Centre Atmosphere Model version 3 (HadAM3) is a 

version of the UKMO unified forecast and climate model run with a horizontal 

resolution of 2.5o x 3.75o. The horizontal grid is based on Arakawa-B grid and it has 

96 x 73 grid points on the scalar grid (pressure, temperature and moisture); the vector 

grid is offset by 1/2 a grid box. The vertical structure employs 19 levels with a 

hybrid vertical coordinate. The radiation scheme consists of two parts, solar 

(shortwave) and thermal (longwave) (Edwards and Slingo, 1996), using six 

shortwave bands and eight longwave bands. The radiation scheme includes the 
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effects of greenhouse gases of H2O, CO2, O3, CH4, N2O, CFC-11 and CFC-12. A 

parameterisation of a simple background aerosol climatology (Cusack et al., 1998) is 

also included. In the convection scheme, all processes related with heat exchange, 

updrafts and downdrafts including turbulent and organized entrainment and 

detrainment are implemented in the convective cloud model, and lead to an 

increment of the cloud potential temperature. After updating the cloud properties, the 

scheme finds out the impact on the environment. The expressions for the net change 

of environmental potential temperature and specific humidity are quite involved and 

can be found in Gregory and Rowntree (1990). Moreover, the convection scheme has 

been improved by adding a parametrisation of the direct impact of convection on 

momentum (Gregory et al., 1997). There are five boundary layer levels and the 

boundary layer scheme is based on Smith (1993). It determines the transport 

processes of momentum, latent heat and sensible heat in the lowest atmospheric 

levels and at the surface. HadCM3 includes a new land surface scheme called 

MOSES (Met Office Surface Exchange Scheme) (Cox et al., 1998). The land model 

has T63 resolution, and 6 soil layers (temperature and water/ice). There are 9 soil 

types and 13 vegetation types (one soil type and one vegetation type per grid point). 

It includes the representation of the freezing and melting of soil moisture and the 

formulation of evaporation includes the dependence of stomatal resistance on 

temperature, vapour pressure and CO2. 

Hadley Centre Ocean Model version 3 (HadOM3) is the core of ocean model in 

HadCM3. The ocean model has a resolution of 1.25o x 1.25o with 20 levels (Cox, 

1984). So, there are six ocean grid points for every atmospheric one and each high 

latitude ocean grid box can have partial sea ice cover. The vertical levels are 

distributed to provide enhanced resolution near to the ocean surface and are the same 

as those in the previous coarser horizontal resolution version of the model (Johns et 

al., 1997). The topography was taken from the ETOPO5 (1988) 1/12o resolution 

dataset and interpolated onto the model grid. The detailed information about the 

ocean model can be found in Gordon et al. (2000). The atmosphere and ocean 

models are coupled once per day. The atmospheric model is run for a day and the 

fluxes are accumulated each atmospheric model time step. At the end of the day 

these fluxes are passed to the ocean model and then the ocean model is run for a day. 

The updated SSTs and sea ice extents are then passed back to the atmospheric model.  
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4.1.1.3 Data and experiment design 

The climate simulations defining the 30-yr climatology between 1961 and 1990 were 

performed using RegCM3 with lateral boundary conditions derived from one 

reanalysis dataset - NCEP/NCAR Reanalysis I (Kalnay et al., 1996) - and three 

different GCMs, IPCC-AR4 simulations of MPI-ECHAM5, NCAR-CCSM3 and 

HadCM3. The NCEP/NCAR Reanalysis data are available at 6-h intervals with a 

resolution of 2.5o x 2.5o in the horizontal and 17 pressure levels. The SST data for 

NCEP/NCAR Reanalysis simulation was prescribed from GISST dataset with a 

resolution of 1o x 1o (Rayner et al., 2003). Bilinear interpolation method was applied 

to interpolate the forcing fields horizontally and simple linear interpolation was 

applied to transfer GCM outputs into the RegCM3 vertical sigma coordinate. Land 

use and vegetation data were derived from the GLCC data at 10-minute resolution. 

The properties of input data are given in Table 4.1.  

Table 4.1 : Information about the global datasets used in the modeling study. 

       Resolution 
Institution Model Dataset/Run SST Spatial  Temporal 
NCEP/NCAR -- Reanalysis I GISST T62 6-hour 
 
 
NCAR CCSM3 b30.030e 

Skin  
Temp. T85 6-hour 

 
 
Max Planck ECHAM5 EH5.OM.20C.1 

Ocean 
Model T63/L31 6-hour 

 
 
Hadley 
Center HadCM3 

HadAM3P; 
baseline#1 

Ocean 
Model 2.5ox3.75o 6-hour 

 

The simulations were performed over the EMBS domain with 27 km horizontal 

resolution resulting in 144 x 100 grid points (Figure 4.5). The number of vertical 

levels was defined as 18 sigma levels (top of the model at 5 hPa). Due to the extent 

of the model domain, which has diverse terrain features, five different sub-regions 

were defined to look into the regional performance of the models (see Figure 4.5). 

The Fertile Crescent sub-region covers the ETB and it gives a clue about the model 

performance over the basin. The simulations were performed continuously from 1 
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January 1960 to 31 December 1990. First year of simulations was selected as ‘spin-

up’ period, and thus, discarded in all simulations. For the evaluation of the 

dynamically downscaled GCM outputs and RegCM3 performance, the simulation 

results were compared with both the driving fields from NCEP/NCAR Reanalysis 

data and the gridded datasets of CRU of the University of East Anglia, UK (Mitchell 

and Jones 2005). The CRU data are available at 0.5o grid spacing over the land areas 

only. TSMS climate observations is also used in the analysis. TSMS provided 

monthly mean temperature and monthly precipitation data from 247 meteorological 

stations (for the distribution of the stations see Bozkurt and Sen, 2011).  

 

Figure 4.5 : Model domain, topography and sub-regions used in the evaluation.  

4.1.2 Results 

Results of the evaluation of the reference period was published by Bozkurt et al. 

(2012). Therefore, the results provided here mainly consist of the analyzes and 

results in Bozkurt et al. (2012). In this section, climatology of the wet-cold (DJF) and 

dry-hot (JJA) seasons for large-scale fields of the input data and the model output for 

the period of 1961-1990 is presented. Wind vectors and specific moisture at 850 hPa 

are compared in order to assess the ability of the model to simulate typical 

circulation patterns and moisture fluxes over the domain. Then DJF and JJA 

comparisons of precipitation and temperature patterns for the entire domain is 
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presented. For the Fertile Crescent sub-region, area averaged values of all seasons 

are presented. 

4.1.2.1 Low-level wind and moisture 

It is conventional to evaluate first the ability of the RCM to simulate the large-scale 

atmospheric fields so that biases in the regional simulation can be understood well. 

Figure 4.6 shows the 30-year winter and summer averages of the 850-hPa moisture 

and wind vectors from NCEP/NCAR Reanalysis (interpolated to RegCM3 grids in 

the model domain) and the differences in the same fields between downscaled (using 

RegCM3) and interpolated reanalysis data. In winter (Figure 4.6a), the ETB and its 

surroundings are under the influence of westerly airflow carrying moisture from the 

North Atlantic region, and this situation is illustrated in the NCEP/NCAR Reanalysis 

data. In summer (Figure 4.6b), Azores High and Monsoonal Low extend towards 

Mediterranean Sea, and thus, their northwesterly winds dominate the air circulation 

of the 850-hPa level over the basin. The NCEP/NCAR Reanalysis data indicate 

moister conditions over the highlands of the basin and relatively dryer conditions 

over the lowlands. The difference plots (Figure 4.6c and d) indicate, in general, that 

the RegCM3 simulation driven by the reanalysis reproduces consistently the main 

characteristics of the moisture distribution and wind vectors at 850 hPa for both 

seasons. The RegCM3 simulation does not generate any domain-wide positive or 

negative bias in the large-scale fields. However, it tends to yield slightly dryer 

conditions over eastern Turkey and the ETB in both winter and summer.  

It could be said that the major uncertainty in the regional climate modeling comes 

from the GCMs whose outputs are used to drive the RCMs. It is therefore important 

to first quantify the differences between the outputs of different GCMs used in a 

multi-GCM downscaling study. Figure 4.7 illustrates the winter and summer 

differences in the large-scale fields (i.e., 850-hPa moisture and wind fields) between 

the three GCMs and NCEP/NCAR Reanalysis by treating the latter as reference. 

Despite some substantial differences in the large-scale fields, which could cause 

important differences in the simulated climate parameters, it could be said that the 

GCM fields broadly agree amongst themselves as well as with the same reanalysis 

fields. All three models tend to simulate a dryer 850-hPa level over the Middle East, 
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which covers the ETB, in winter (Figure 4.7a, c, e) and a dryer 850-hPa level for the 

whole domain in summer (Figure 4.7b, d, f) compared to the reanalysis data.  

 

Figure 4.6 : Thirty-year winter (a) and summer (b) averages of the 850-hPa specific 
          moisture (g/kg) and wind vectors (m/s) from NCEP/NCAR Reanalysis 
          (interpolated to the RegCM3 grids), and the winter (c) and summer (d)  

     differences of them from the same fields generated by RegCM3 ssd
 simulation that is driven by NCEP/NCAR Reanalysis. dds 

4.1.2.2 Surface variables 

Precipitation 

The EMBS region receives much of the precipitation in winter. Figure 4.8 shows the 

distribution of 30-year average winter (DJF) precipitation from the dynamically 

downscaled outputs of NCEP/NCAR Reanalysis, ECHAM5, CCSM3 and HadCM3 

together with gridded observation data of CRU. The figure also includes 30-year 

average winter surface wind vectors from the same RegCM3 simulations. The CRU 

data illustrate the fact that the western looking sides of the mountain ranges receive 

more precipitation in the EMBS region (Figure 4.8a). These mountain ranges lift and 

cool the moisture laden westerly flow and cause orographic precipitation. The 

NCEP/NCAR Reanalysis simulation produces a similar but more pronounced 
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precipitation pattern compared to that of CRU (Figure 4.8b). Overall, the RegCM3 

simulations driven by GCM outputs agree with the CRU precipitation, but they also 

generate higher precipitation amounts over mountainous areas in which the ETB is 

included too as does the reanalysis simulation (Figure 4.8c, d, e). The positive bias 

could be caused by the insufficient station network, especially in the mountainous 

regions, resulting in the underestimation of the precipitation for such regions in CRU 

data as well as by the problems in the model itself. Previous studies (e.g., Önol and 

Semazzi, 2009; Bozkurt and Sen, 2011) noted the observational deficiency over the 

complex terrain in Turkey.  

 

Figure 4.7 : 30-year average differences in the 850-hPa specific moisture (g/kg) and 
           wind vectors (m/s) between GCMs and NCEP/NCAR Reanalysis (all w
         are interpolated to RegCM3 grids). The first row is for the winter (a) d

           and summer (b) differences of ECHAM5, the second row for the winter 
       (c) and summer (d) differences of CCSM3, and the third row for thed 

winter (e) and summer (f) differences of HadCM3.kkj  
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Figure 4.8 : Distribution of 30-year winter precipitation (mm) from the gridded ddd
         observation data of CRU (a), the dynamically downscaled outputs of  

           NCEP/NCAR Reanalysis (b), ECHAM5 (c), CCSM3 (d) and HadCM3 
        (e). Also included is 30-year winter average of surface wind vectorsd

 (m/s) from the model simulations. ddddddddfffddddddddd 

The CRU data indicate relatively wet conditions in the areas in the north of 40oN and 

dry conditions in the south of this latitude during the summer season (Figure 4.9a). 

This pattern is fairly well simulated by the reanalysis simulation although it is again 

more pronounced because of the higher precipitation amounts in the wet areas 

(Figure 4.9b). The reanalysis simulation demonstrates the prevalence of the northerly 

winds in most of the domain. Note that the relatively high Anatolian Peninsula 

(average elevation is around 1000 m) acts like a barrier in front of the northerly flow 

causing orographic precipitation in the northern sections while dry conditions in the 

interior and southern parts. Note also that the peninsula divides the northerly airflow 

into two branches; one blows towards east forming a cyclonic circulation over the 

eastern Black Sea, which causes abundant precipitation along the mountains of 

northeastern Turkey and Caucasus, and another one that uses the Aegean Sea as an 



51 
 
 

easy passage to reach to the eastern parts of the Mediterranean Sea. The precipitation 

and surface wind fields of the ECHAM5 simulation look substantially like those of 

the reanalysis simulation (Figure 4.9c). The CCSM3 simulation generates 

comparatively dry conditions for all over the domain (Figure 4.9d). It should be 

mentioned that the CCSM3 output of 850 hPa specific humidity that is interpolated 

to model grids indicates quite dry conditions all over the domain compared to the 

same field from other models as well as that of reanalysis (see Figure 4.7d). 

Therefore, the dryness could be related to the poor performance of this GCM in 

simulating the summer moisture fields in the EMBS region as well as in the ETB. 

The precipitation pattern yielded by the HadCM3 simulation agrees with that of the 

CRU, in general (Figure 4.9e). As in the reanalysis and ECHAM5 simulations, it also 

simulates the wet areas wetter compared to the CRU data.  

 

Figure 4.9 : Distribution of 30-year summer precipitation (mm) from the gridded d
         observation data of CRU (a), the dynamically downscaled outputs of  

            NCEP/NCAR Reanalysis (b), ECHAM5 (c), CCSM3 (d) and HadCM3 
         (e). Also included is 30-year winter average of surface wind vectorsd

 (m/s) from the model simulations. ldddddddddddddddddd 
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For a more quantitative analysis, the simulated seasonal precipitations for the Fertile-

Crescent sub-region with the CRU data (see Figure 4.5 for the sub-regions). Figure 

4.10 presents the simulated and observed seasonal precipitations averaged for the 

Fertile-Crescent sub-region over the 1961-1990 period (the averaging includes only 

the land grids in the sub-region). The figure also includes the root-mean-square 

(RMS) differences between the model estimated precipitation and CRU precipitation 

for the same sub-region. There are seasonality differences between the observed 

precipitation amounts of the region.  

 

Figure 4.10 : Thirty-year seasonal precipitation (mm) averaged for the Fertile- 
    Crescent sub-region from dynamically downscaled outputs ofllllllll 

     NCEP/NCAR Reanalysis, ECHAM5, CCSM3 and HadCM3lllllllllll 
   together with gridded observation data of CRU (full squares). Also 
              shown are the root-mean-square differences (RMSD; mm) for thell 

    model estimated  precipitations (crosses).llllllllllddddddddd 

The Fertile Crescent is characterized by winter maximum and summer minimum in 

precipitation seasonal distribution. The peak seasonal precipitation amount is around 

100 mm in the Fertile Crescent. Figure 4.10 clearly shows that the reanalysis 

simulation tends to overestimate the precipitation in almost all seasons. The 

overestimation is usually larger in the spring than the other seasons. The seasonal 

RMS differences in the reanalysis simulation are large in the Fertile Crescent 

regions. The performance of the two GCM simulations (ECHAM5 and HadCM3) in 

estimating the seasonal precipitation is mostly comparable for the Fertile Crescent 

region, and they mostly agree with the reanalysis simulation. The same could be 

stated for the CCSM3 simulation of winter precipitation. Differing largely from other 

GCM simulations, however, the CCSM3 simulation tends to underestimate the 
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precipitation in other seasons. The RMS difference, which is comparatively large, is 

also an indication of the poor performance of the CCSM3 simulation.  

Temperature 
The EMBS region region lies in the mid latitudes where atmospheric vortexes carry 

cold polar air from high latitudes to lower latitudes in winter. Furthermore, the 

Siberian High occasionally extends towards Europe and brings cold air to the Black 

Sea region (Bozkurt and Sen, 2011). Figure 4.11 demonstrates the spatial distribution 

of 30-year average winter temperature (2 meter) from the dynamically downscaled 

outputs of NCEP/NCAR Reanalysis, ECHAM5, CCSM3 and HadCM3 together with 

gridded observation data of the CRU.  

 

Figure 4.11 : Distribution of 30-year winter temperature (oC) from the gridded ddd
             observation data of CRU (a), the dynamically downscaled outputs of 
              NCEP/NCAR Reanalysis (b), ECHAM5 (c), CCSM3 (d) and dddddd 

   HadCM3 (e). djdddddddddddddddddddddddddddddddd 
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The average winter temperatures are typically below zero in the north of the 45oN 

latitude (Figure 4.11a). In addition, they are below zero over the mountainous areas 

in the ETB. The average winter surface temperatures are between 0 oC and -3 oC in 

the highlands of the ETB that are usually under the influence of the Siberian High. 

Average winter temperatures can rise to around 15oC in the lowlands of the ETB. 

The reanalysis simulation yields a very consistent temperature pattern with the CRU 

data (Figure 4.11b). Overall, the downscaled simulations of the three GCM outputs 

capture well the average winter temperature distributions (Figure 4.11c, d, e). 

Nonetheless, there are noticeable differences between the modeled and observed 

temperatures. For instance, the ECHAM5 simulation estimates warmer temperatures 

for the Balkans and the northern parts of the domain. Likewise, the temperature 

estimations of the CCSM3 simulations are also higher than the gridded observations 

over the same areas. The HadCM3 simulation yields cooler temperatures over the 

Anatolian Peninsula and the Zagros region. 

In addition to the factors such as the insolation, elevation and the distance from the 

seas, the circulations related to the Azores High and the Monsoonal Low determine 

the summer temperature distribution in the EMBS region. Figure 4.12 shows the 30-

year average summer temperatures from the model simulations as well as the CRU 

data. The typical summer temperatures are over 30 oC in the large inland parts of the 

ETB (Figure 4.12a). Despite its proximity to this area, the highlands of the ETB 

observes relatively cooler temperatures (usually less than 24 oC) because of its higher 

elevation. The reanalysis simulation yields a temperature distribution that is highly 

consistent with that of the CRU data (Figure 4.12b). Despite some differences, the 

ECHAM5 and HadCM3 simulations agree well with both the CRU data and the 

reanalysis simulation (Figure 4.12c, d). The CCSM3 simulation captures well the 

spatial distribution of the summer temperatures, but it has an obvious positive bias 

throughout the domain, especially over the ETB (Figure 4.12e). This may be related 

to the comparatively dry conditions in the outputs of the CCSM3 model that are used 

to drive the RegCM3 simulation.  

Figure 4.13 illustrates the simulated and observed seasonal temperatures averaged 

for the Fertile-Crescent sub-region over the 1961-1990 period. RMS differences 

between the model estimations and CRU data are also included in the figure. 

Seasonal cycle of temperature is fairly well simulated by the reanalysis simulation 
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and the seasonal RMS difference is usually low for the reanalysis simulation 

(between 1oC and 2 oC).  

The seasonal temperatures estimated by the ECHAM5 simulation are generally in 

good agreement with those of both the observations and reanalysis simulation. The 

HadCM3 simulation strikingly underestimates the winter and autumn temperatures. 

The summer temperature bias for the CCSM3 simulation is remarkable and it is 

around 4 oC. The RMS differences are usually comparable in magnitude for the three 

GCM downscaling simulations. Few exceptions include the higher RMS difference 

for summer for the CCSM3 simulation and the higher difference for winter for the 

HadCM3 simulation in the Fertile Crescent.  

 

Figure 4.12 : Distribution of 30-year summer temperature (oC) from the gridded dd
            observation data of CRU (a), the dynamically downscaled outputs of 

              NCEP/NCAR Reanalysis (b), ECHAM5 (c), CCSM3 (d) and dd!dddd 
  HadCM3 (e). djdddddddddddddddddddddddddddddddd 
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Figure 4.13 : Thirty-year seasonal temperature (oC) averaged for the Fertile- 
             Crescent sub-region from dynamically downscaled outputs of  

     NCEP/NCAR Reanalysis, ECHAM5, CCSM3 and HadCM3lllllllllll 
   together with gridded observation data of CRU (full squares). Also 
              shown are the root-mean-square differences (RMSD; oC) for thellll 

model estimated  precipitations (crosses).lllllllll 

4.2 Hydro-Climatic Effects of Future Climate Change 

4.2.1 Approach 

After performing a comprehensive reference period evaluation, dynamically 

downscaled outputs from three GCMs, the MPI-ECHAM5, NCAR-CCSM3 were 

then used to assess the future hydro-climatic changes in the ETB. Three different 

GCM simulations (MPI-ECHAM5, NCAR-CCSM3 and HadCM3) based on A2 

(mid-high) emissions scenario and three different emissions scenario (A1FI (higher), 

A2 (mid-high), and B1 (lower)) simulations of one GCM (NCAR CCSM3) (see 

Table 4.2 for the relevant datasets) were used. Based on the analysis of evaluation of 

the reference period for all three GCMs, and the performance of RegCM3 in 

simulating the climatology of the eastern Mediterranean - Black Sea region, 

including the ETB, it was highlighted that RegCM3 driven by the reanalysis data is 

able to simulate the precipitation and surface temperature as well as the upper level 

fields reasonably well. It, however, tends to overestimate the precipitation in the 

mountainous areas in the region. The evaluation of the reference period further 

suggests that the RegCM3 simulations forced by the GCM outputs reproduce the 
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regional climate fairly well. Differing largely from other GCM simulations, however, 

the CCSM3 simulation underestimates the precipitation in seasons other than winter, 

which is most likely a result of the dryness in the upper levels of the original outputs.  

Table 4.2 :  Information about the global datasets used in the modeling part.  

 

Scenarios for possible Greenhouse Gases (GHG) such as carbon dioxide, methane 

and nitrous oxide concentration changes that are based on Special Report on 

Emissions Scenarios (SRES) are stated in the Third Assessment Report (2000). The 

SRES scenarios were defined to explore future developments in the global 

environment with special reference to the production of GHGs. The SRES are 

composed of four narrative storylines (Figure 4.14), labelled A1, A2, B1 and B2. 

Each storyline corresponds different social, economic, technological, and 

environmental developments. The storylines are summarized as follows 

(Nakicenovic et al., 2000): 

• A1 storyline and scenario family: a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, 

and rapid introduction of new and more efficient technologies.  

• A2 storyline and scenario family: a very heterogeneous world with 

continuously increasing global population and regionally oriented economic 

growth that is more fragmented and slower than in other storylines.  

• B1 storyline and scenario family: a convergent world with the same global 

population as in the A1 storyline but with rapid changes in economic 

structures toward a service and information economy, with reductions in 

Institution Model Dataset/Run 
Emission 
Scenario 

Period 

NCEP/NCAR -- Reanalysis I Observation 1961-1990 

NCAR CCSM3 b30.030e 

Observation 1961-1990 
A2 2001-2099 
A1FI 2001-2099 
B1 2001-2099 

Max Planck ECHAM5 EH5.OM.20C.1 Observation 1961-1990 
A2 2001-2099 

HADLEY HadCM3 
HadAM3P:base
line#1 

Observation 1961-1990 
A2 2071-2099 
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material intensity, and the introduction of clean and resource-efficient 

technologies.  

• B2 storyline and scenario family: a world in which the emphasis is on local 

solutions to economic, social, and environmental sustainability, with 

continuously increasing population (lower than A2) and intermediate 

economic development.  

 

Figure 4.14 : Schematic illustration of the SRES storylines (figure adopted from 
Nakicenovic et al., 2000). ddddddddddddddddd 

Different emission scenarios have been applied in various climate models to predict 

future atmospheric conditions. IPCC (2007) states that the best estimate of projected 

global average surface warming for the higher scenario (A1FI) is 4.0 oC (likely range 

is 2.4 oC to 6.4 oC) and for the mid-high scenario (A2) is 3.4 oC (likely range is 2.0 
oC to 5.4 oC). The likely range of temperature increase for the lower scenario (B1) is 

between 1.1 oC and 2.9 oC. Figure 4.15 demonstrates the multi-model temperature 

variability of six different projections from 20th to 21th centuries (IPCC, 2007). 

The ETB is investigated in two parts as highlands and lowlands (see Figure 2.3) by 

mainly considering the elevation differences that depict two primary precipitation 

regimes. A shapefile including the borders of the ETB was used to identify the 



59 
 
 

boundaries of the ETB on the elevation map of RegCM3 with a spatial resolution of 

27 km. Using the same map, lowlands are classified as the areas where the elevation 

is below 1000 m and highlands corresponding to the areas where the elevation is 

greater than 1000 m, mainly constituting the headwaters of the ETB. In addition to 

the elevation-based analysis, projected changes in the surface runoff are also 

assessed according to the territories of the four major countries (Iraq, Iran, Syria and 

Turkey) within the ETB. 

 

Figure 4.15 : Multi-model global anomalies relative to 1980-1999 mean are shown 
           as solid lines. Shaded areas correspond to one standard deviation  
          range. Four different scenarios are shown in different colors (IPCC, 

2007). ddddddddddddddddddddddddddddddddddd 

4.2.2 Projected climate change scenarios 

In this section, hydroclimatic parameters (i.e., surface temperature, precipitation, 

surface runoff, evapotranspiration, and snow water equivalent (SWE)) from the 

outputs of the downscaled GCM climate simulations for two 30-year periods, 2041-

2070 and 2071-2099 are analyzed. In addition to a spatial analysis, assessments of 

the changes in these parameters based on elevation (as lowlands and highlands) and 

countries that have territories in the ETB (i.e., Iraq, Iran, Syria and Turkey) are 

provided. 
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4.2.2.1 Spatial changes 

Temperature 
Increase in winter (DJF) temperatures over the mountainous regions has the potential 

to impact the regional hydrological cycle leading to snow cover decrease and 

temporal shifts in snowmelt surface runoff. It could also affect the climate dynamics 

of the region by perturbing the regional-scale snow-albedo feedbacks. Figure 4.16 

shows the projected changes in winter mean surface temperatures of five different 

simulations for the 2071-2099 period relative to the reference period of 1961-1990. 

 

Figure 4.16 : Dynamically downscaled 2-m winter temperature changes (°C) by the 
   end of the century (2071-2099) relative to 1961-1990 reference period 
            for (a) HadCM3 A2 scenario, (b) ECHAM5 A2 scenario, (c) CCSM3 
           A2 scenario, (d) CCSM3 A1FI scenario and (e) CCSM3 B1 scenario. 
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Surface temperatures are projected to increase by about 1.5-5 oC across the entire 

ETB. It is apparent that the projected temperature changes indicate more warming in 

the highlands of the ETB. The A2 scenario simulations reveal that the HadCM3 and 

ECHAM5 simulations yield more pronounced winter warming in the highlands of 

the ETB with increment values of about 4-4.5 oC. The increases simulated by 

CCSM3 for the same scenario have slightly lower values than the other models. The 

CCSM3 simulations of different scenarios indicate greater increases under A1FI and 

A2 scenarios compared to B1 scenario in winter temperatures by the end of the 

century. The A1FI scenario simulation has the greatest increase in winter 

temperatures, as expected, and the amount of warming is more pronounced in the 

eastern Anatolian highlands with approximately 4.5 oC. Projected increase in winter 

temperatures in the ETB for B1 scenario ranges between 0.9-1.8 oC by the end of this 

century. The summer temperatures are usually projected to increase more than the 

winter temperatures (not shown here). It should be also noted that warm season 

temperature increases will most likely lead to increases in temperature extremes, by 

increasing the number of days that fall above the present-day high temperature 

thresholds for warm temperatures and decreasing the days that fall below cold 

temperature thresholds (Hayhoe et al., 2007). Indeed, as being influenced by the 

subtropical high-pressure system during summer that leads to summer dryness in 

lowlands, the ETB seems to be one of the most vulnerable basins to drought and 

extreme heat events. For instance, A2 scenario simulation of ECHAM5 indicate 

substantial increase in the summer largest number of consecutive days when daily 

maximum temperature is larger than 35 oC in the lowlands (more than 25 days) by 

the end of the present century. 

Precipitation 

Highlands of the ETB receive much of the precipitation in winter season, which falls 

mostly in the form of snow. During the winter, moisture flux towards the ETB with 

an airflow moving from west to east over the Mediterranean indicates a greater 

likelihood of orographic precipitation in the Taurus and Zagros mountain ranges 

(Evans, 2004). Thus, any change in precipitation in the winter season has a direct 

impact on the amount of snowpack that stores the water in winter. Figure 4.17 

indicates the projected changes in winter precipitation of five different simulations 

for the 2071-2099 period relative to the 1961-1990 reference period. Statistically 
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significant changes in precipitation were determined using the Student’s t test with 

95% confidence level for every model grid for each simulation, and the areas were 

hatched accordingly. General information for the Student's t test and its algoritgm are 

provided in Appendix B. 

 

Figure 4.17 : Dynamically downscaled winter precipitation changes (mm) by the 
   end of the century (2071-2099) relative to 1961-1990 referencellllll 
              period for (a) HadCM3 A2 scenario, (b) ECHAM5 A2 scenario, (c) 

               CCSM3 A2 scenario, (d) CCSM3 A1FI scenario and (e) CCSM3 B1 
scenario.llllllllllllllllllllllllllllllllllllllllllllllllllllllll 

In general, there is a broad agreement in the changes among the simulations, which 

indicate decreases in the precipitation in the highlands and northern parts of the ETB 

and increases in the southern parts of the basin where the changes are mostly 

statistically significant in the HadCM3 and CCSM3 simulations. The statistically 
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significant changes are mostly confined to the western parts of the ETB in the 

ECHAM5 simulation. By the end of the present century, the winter precipitation is 

projected to decrease between 20 and 30% in the highlands of the ETB and some 

parts of the lowlands in the A2 scenario simulations. Precipitation increases in the 

southern parts of the ETB is more pronounced in the HadCM3 simulation, with high 

percentage increments (Figure 4.17a). The different scenario simulations of CCSM3 

demonstrate similar patterns for the changes in the precipitation, with more 

pronounced precipitation increases in the southern parts of the ETB under A1FI 

scenario. Precipitation decreases in the northern parts of the ETB and eastern 

Anatolian mountains under A2 and A1FI scenarios are about 20%. These changes 

are mostly significant at 95% confidence level. Lower percentage decrements  

(between 5 and 20%) with less statistically significant areas are depicted under B1 

scenario.  

Snow water equivalent (SWE) 

Snow cover over the highlands of the ETB plays a key role in the regional 

hydrological cycle. Majority of the water resources of the basin is fed by snowmelt 

runoff from the snow-capped eastern Taurus and Zagros mountains. The response of 

the snow cover to climate warming is, therefore, crucially important to assess the 

impacts of climate change on the water resources of the ETB. Figure 4.18 shows the 

projected absolute and relative changes in the winter SWE of five different 

simulations for 2071-2099 period relative to the reference period of 1961-1990. In 

terms of absolute changes (mm), each simulation indicates substantial decreases 

across the eastern Anatolian mountains of Turkey, which majorly constitutes the 

headwaters of the Euphrates and Tigris Rivers. By the end of the century, according 

to the A2 scenario simulations, SWE reductions larger than 100 mm are projected to 

occur in the headwaters of the Euphrates and Tigris rivers. Relative decreases in 

SWE in the highlands of the ETB are mostly from 70% to 90% in the A2 scenario 

simulations. The CCSM3 simulation for B1 scenario indicates 30 - 50% decreases in 

SWE in the mountainous regions. The relative changes (%) at the higher elevations 

are generally less than those at the lower elevations, which means that higher regions 

are distinguishably less affected by warming. The SWE reductions in the headwaters 

of the ETB have a direct impact on the discharges of the Euphrates and Tigris rivers, 

which will be discussed later. Based on all scenario simulations, it could be said that 
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the altitudinal gradient of SWE response to climate change will likely result in the 

disappearance of snow cover at the lower elevations (under 1000 m). 

 

Figure 4.18 : Dynamically downscaled absolute winter snow water equivalent  
             changes (background color pattern; in mm) and relative changese  
   (contour lines; %) by the end of the century (2071-2099) relative to 
             1961-1990 reference period for (a) HadCM3 A2 scenario, (b)   
   ECHAM5 A2 scenario, (c) CCSM3 A2 scenario, (d) CCSM3 A1FI  

scenario and (e) CCSM3 B1 scenario. fddddddd 

4.2.2.2 Elevation-based analysis 

For a more quantitative assessment, the ETB is investigated in two parts, highlands 

(> 1,000 m) and lowlands (< 1,000 m), due to marked areal differences in 

topography and corresponding contrasting features in landscape. Figure 4.19 

demonstrates precipitation-temperature cross-plot of the projected annual 
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temperature and precipitation differences of five different simulations for 2071-2099 

period relative to the 1961-1990 reference period. The values correspond to the 

changes of grid-averaged values in the highlands and lowlands (oC for temperature, 

% for precipitation).  

 

 

Figure 4.19 : Annual average elevation-based changes in 2-m temperature (°C) and 
   precipitation (%) by the end of the century (2071-2099) relative to the 
   1961-1990 reference period. Empty markers denote the average values 

           below 1000 m and solid markers denote the average values overd   
           1000 m. Red colors represent different scenario outputs of CCSM3  
           simulations (triangle for A2 scenario, square for B1 scenario and  
           circle for A1FI scenario). Green star denotes HadCM3 A2 scenario  

             changes and blue quadrilateral denotes ECHAM5 A2 scenariodddddd   
changes.dvdddjdddddddddddddddddddddddddddd 

The A2 scenario simulations indicate a broad agreement in the annual temperature 

increases in the highlands by the end of the century, with the greatest increment in 

CCSM3 (5 oC) and the lowest increment in ECHAM5 (4.5 oC) (see Table 4.3). The 

A2 scenario simulations also indicate that temperature increases in the highlands are 

slightly larger than those in the lowlands, except ECHAM5 simulations. The greatest 

increases in annual temperature by the end of the century belong to the CCSM3 A1FI 

simulation with an increment of 6.1 oC in the highlands (Table 4.3). The CCSM3 

simulations depict a 3.5 oC difference between the A1FI and B1 scenarios in both the 

highlands and lowlands. In terms of annual precipitation change, one of the most 
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striking points is that the A2 scenario simulations of ECHAM5 and HadCM3 yield 

slight increase in precipitation in the lowlands by the end of the century. All the 

others indicate a consistent decrease in precipitation. In the highlands, the A2 

scenario simulations indicate a consistent decrease in precipitation ranging from 6 to 

24% (see Table 4.3). The most pronounced decrease in precipitation is demonstrated 

in the CCSM3 simulations in the highlands (33% for A1FI, 24% for A2 and 18% for 

B1).  

In addition to the projected changes for temperature and precipitation, we look into 

the changes in the surface runoff timing in the water year as well as in the amount of 

annual surface runoff in the highlands, especially in the region covering the 

headwaters of the Euphrates and Tigris Rivers in Turkey. Figure 4.20 shows 

reference and projected fractions of accumulated surface runoff for the headwaters 

based on ECHAM5 A2 simulation. Vertical arrows correspond to the days when 

50% of annual surface runoff is reached. This methodology, which is analogous to 

the center time (CT) concept (Stewart et al., 2005), is used to detect the shifts in the 

surface runoff timing. Note that the surface runoff is not routed to the basin outlet.  

 

Figure 4.20 : Long-term area averaged fraction of accumulated surface runoff in the 
            headwaters of the Euphrates and Tigris Rivers in the eastern Anatolia 
            mountains of Turkey. Black solid line denotes the fractions indddddd 
           reference period (1961-1990) of the ECHAM5 simulation, and black 
           dashed line denotes the NCEP/NCAR Reanalysis simulation for thed 
           same period. Projected future fractions are shown with green and red 

             lines for the periods of 2041-2070 and 2071-2099, respectively.ddddd 
             Vertical arrows correspond the days when 50% of annual surfacedddd 

  runoff is reached.ddddddddddddddddddddddddddddddd 
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For the reference period, fraction of the accumulated surface runoff is in good 

agreement with that of reanalysis simulation. CT date of the reference period is 

marked as the 24th of March. Projected fractions for the 2041-2070 period indicate a 

shift to the 4th of March. As the increase in temperature is more pronounced by the 

end of the century, which means earlier melting of snow, the temporal change is 

found to be 38 days corresponding to the 14th of February (temporal changes are 

found to be between 18 days (B1 scenario) and 39 days (A1FI scenario) in the other 

simulations). It should be also noted that these changes are statistically significant at 

95% confidence level based on the Student’s t test. Figure 4.21 illustrates the average 

annual surface runoff from the ECHAM5 simulations for the same region. The 

model simulates an average annual total surface runoff of 228 mm for the reference 

period, and it is clearly seen that the annual surface runoff is projected to decrease in 

both future periods. The reduction is more pronounced in the last period, with a 

statistically significant reduction of about 25% (all other simulations also indicate 

reduction in the annual surface runoff ranging from 35 to 55%). 

 

Figure 4.21 : Annual area averaged surface runoff values from the ECHAM5  
     simulations for the headwaters of the Euphrates and Tigris Rivers in 

   the eastern Anatolia mountains of Turkey. Color bars represent the 
    periods: black for 1961-1990, green and red for 2041-2070 andffff! 
             2071-2099 respectively. Lines indicate the standard deviations forl  

corresponding periods. ffffflfffffflffffffffffffffff 
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Table 4.3 summarizes the projected changes of annual temperature, precipitation, 

evaporation and SWE in the highlands and lowlands of the entire basin. Annual 

temperature increases in all simulations are statistically significant at 99.9% 

confidence level. Annual precipitation is generally projected to decrease in the 

highlands and to increase in the lowlands. Some of these changes are found to be 

statistically significant at different confidence levels, whereas changes in ECHAM5 

simulations are found to be mostly insignificant. Projected changes in annual 

evapotranspiration indicate generally statistically significant decreases in the basin 

by the end of the century. Such decreases should be primarily related with the 

projected decreases in precipitation in these regions. A more striking impact of 

warming could be seen on the SWE in the highlands. All simulations point out 

substantial decreases in SWE in the highlands for both periods of 2041-2070 and 

2071-2099, and these reductions are found to be statistically significant. 

Much of the highlands of the ETB lies in Turkey, therefore, the values for the 

highlands given in Table 4.3 broadly reflect the projected changes in the highlands in 

the territory of Turkey. The changes in the lowland areas of Turkey within the basin, 

however, differ largely from those of the lowland areas of the whole basin (see Table 

4.3). Major differences appear in precipitation and evaporation. Apparently, the 

lowland areas within Turkey will be subject to more drying in comparison to the 

lowlands of the whole basin.   

4.2.2.3 Country-based analysis 

Water resources availability, which will be affected greatly by the climate change 

especially in the arid and semi-arid regions, is a sensitive issue for the countries 

within the ETB. For this reason, a country-based analysis of the changes in the 

surface water of the basin is included. The country borders within the ETB are 

determined and then reference and projected annual surface runoff (mm) of four 

countries (Iran, Iraq, Syria and Turkey) based on the ECHAM5 A2 simulation for 

2041-2070 and 2071-2099 periods are demonstrated (Figure 4.22). The relatively 

high annual surface runoff in the territory of Turkey within the ETB for the reference 

period (approximately 150 mm) indicates that this part of ETB is the main source of 

water in the basin, and it is apparent that the annual surface runoff is projected to 

decrease substantially for both 2041-2070 and 2071-2099 periods. 



69 
 
 

Table 4.3 : Annual absolute values of reference period (1961-1990) and future periods (2041-2070 and 2071-2099) for temperature,  
          precipitation, evaporation and snow water equivalent in the highlands and lowlands of the whole basin and in the lowlands  

                 of Turkey within the basin. Red, green and blue colors are for significant changes at 99.9%, 95%, and 90% confidence levels, 
respectively. ffffffffffffff ffffffffffffffffffffffff ffffffffffffffffffffffff ffffffffffffffffffffffff ffffffffffffffffffffffffffff 

 
WHOLE BASIN 

 
TURKEY 

  
HIGHLANDS 

 
LOWLANDS 

                      
                          LOWLANDS          

 

 HISTORICAL 
(1961-1990) 

2041-2070 2071-2099 HISTORICAL 
(1961-1990) 

2041-2070 2071-2099 HISTORICAL 
(1961-1990) 

2041-2070 2071-2099 

Temperature          
ECHAM5 A2 9.5 oC 11.8 (+2.3oC) 14 (+4.5oC) 21.4 oC 24 (+2.6oC) 26.2 (+4.8 oC) 15.7 oC 17.9 (+2.2oC) 20.1 (+4.4 oC) 
HadCM3 A2 8.7 oC  13.4 (+4.7oC) 20.2 oC  24.9 (+4.7oC) 14.9 oC  19.6 (+4.7oC) 
CCSM3 A2 10.9 oC 13.9 (+3oC) 15.9 (+5 oC) 22.4 oC 25.4 (+3oC) 27.2 (+4.8oC) 17.1 oC 20 (+2.9oC) 22 (+4.9oC) 
CCSM3 A1F1 10.9 oC 15 (+4.1oC) 17 (+6.1oC) 22.4 oC 26.2 (+3.8oC) 28.1 (+5.7oC) 17.1 oC 21.1 (+4oC) 23.1 (+6oC) 
CCSM3 B1 10.9 oC 13 (+2.1oC) 13.5 (+2.6oC) 22.4 oC 24.4 (+2oC) 24.7 (+2.3oC) 17.1 oC 19.1 (+2oC) 19.5 (+2.4oC) 
Precipitation          
ECHAM5 A2 653 mm/yr 663 (+1.5%) 613 (-6.1%) 190 mm/yr 219 (+15.3%) 196 (+3.1%) 430 mm/yr 429 (-0.2%) 382 (-11.2%) 
HadCM3 A2 553 mm/yr  477 (-13.7%) 95 mm/yr  97 (+2.1%) 376 mm/yr  313 (-16.7%) 
CCSM3 A2 410 mm/yr 370 (-9.8%) 313 (-23.6%) 54 mm/yr 57 (+5.5%) 46 (-14.8%) 218 mm/yr 201 (-7.8%) 162 (-25.7%) 
CCSM3 A1F1 410 mm/yr 293 (-28.5%) 273(-33.4%)  54 mm/yr 42 (-22.2%) 49 (-9.2%) 218 mm/yr 145 (-33.5%) 141 (-35.3%) 
CCSM3 B1 410 mm/yr 379 (-7.6%) 334 (-18.5%) 54 mm/yr 47 (-13%) 49 (-9.2%) 218 mm/yr 197 (-9.6%) 172 (-21.1%) 
Evaporation          
ECHAM5 A2 427 mm/yr 463 (+8.4%) 457 (+7.0%) 158 mm/yr 172 (+8.9%) 155 (-1.9%) 368 mm/yr 367 (-0.3%) 333 (-9.5%) 
HadCM3 A2 374 mm/yr  370 (-1.1%) 85 mm/yr  84 (-1%) 329 mm/yr  284 (-13.7%) 
CCSM3 A2 274 mm/yr 282 (+2.9%) 258 (-5.8%) 52 mm/yr 56 (+7.7%) 47 (-9.6%) 192 mm/yr 181 (-5.7%) 149 (-22.4%) 
CCSM3 A1F1 274 mm/yr     238 (-13%) 230 (-16%) 52 mm/yr 43 (-17.3%) 50 (-3.8%) 192 mm/yr 137 (-28.6%) 134 (-30.2%) 
CCSM3 B1 274 mm/yr 279 (+1.8%) 257 (-6.2%) 52 mm/yr 47 (-9.6%) 49 (-5.8) 192 mm/yr 179 (-6.8%) 159 (-17.2) 
SWE          
ECHAM5 A2 35 mm 15 (-57.1%) 5 (-85.7%) 0 mm 0 0 0 mm 0 0 
HadCM3 A2 34 mm  6.8 (-80%) 0 mm 0 0 0 mm 0 0 
CCSM3 A2 31 mm 12 (-61.3%) 7 (-77%) 0 mm 0 0 0 mm 0 0 
CCSM3 A1F1 31 mm 8 (-74.2%) 4 (-87%) 0 mm 0 0 0 mm 0 0 
CCSM3 B1 31 mm 21 (-32.2%) 14 (-54.8%) 0 mm 0 0 0 mm 0 0 



70 
 
 

 

Figure 4.22 : Annual area averaged surface runoff values from the ECHAM5  
     simulations for the countries (Iran, Iraq, Syria and Turkey)llllllllllllll 
   within the Euphrates-Tigris Basin. Color bars represent the periods: 
   black for 1961-1990, green and red for 2041-2070 and 2071-2099 l
   respectively. Lines indicate the standard deviations forslllllllllllllllll

 corresponding periods.dddddddddddddddddddddddd 

The annual surface runoff of Syrian territory within the basin (approximately 15 mm) 

is projected to remain virtually unchanged. For Iranian territory, the annual surface 

runoff is simulated to increase in the future, however, the increase is more 

pronounced for the 2041-2070 period. The annual surface runoff is projected to 

increase for the Iraqi territory for both future periods. The projected increase in 

precipitation in the southern parts of the ETB is likely the major reason behind the 

surface runoff increase in this region. Evapotranspiration also increases in this region 

but the increase is comparatively small. Önol and Semazzi (2009) argue that the 

enhanced moisture transfer from the regions of Red Sea, Persian Gulf and 

Mediterranean Sea together with the changes in the low-level circulation is probably 

responsible for the autumn precipitation increases in the southern parts of the ETB. 
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Using downscaled data from the NCEP/NCAR reanalysis for the present and the 

CCSM3 A2 scenario simulation for the future, Evans (2008) studied the projected 

changes in the storms affecting the eastern Fertile Crescent region on the basis of 

water vapor fluxes. He found a dramatic shift in the water vapor transport courses 

from westerly to southerly directions largely during the transition seasons, especially 

autumn, which implies enhanced transportation of water vapor from the Red Sea, 

Persian Gulf, and Arabian Sea towards the southern parts of the ETB. 

Figure 4.23 shows projected changes of annual surface runoff (%) for the four 

countries (Iran, Iraq, Syria and Turkey) within the ETB from five different 

simulations for 2071-2099 period relative to the 1961-1990 reference. One of the 

most striking points is that all the simulations agree on a reduction in the surface 

runoff for the territory of Turkey in the ETB, which ranges from 25 to 55% for the 

simulations. Except for the CCSM3 A2 simulation, the A2 simulations point out 

surface runoff increase (more than 50%) for the Iraqi territory. Together with 

HadCM3 A2 simulation the CCSM3 simulations indicate substantial decreases in the 

surface runoff in the Syrian part by the end of the century (between 21 and 39%). In 

the case of Iranian part of the basin, surface runoff is projected to decrease by 12 to 

24% in CCSM3 simulations, whereas it is projected to increase by 11% in ECHAM5 

A2 simulation. 

 

Figure 4.23 : Annual area averaged surface runoff changes (%) for Iran, Iraq, Syria 
              and Turkey by the end of the century (2071-2099) relative to the dddd

           1961-1990 reference period. Color bars denote different simulations: 
              green for HadCM3 A2, blue for ECHAM5 A2, yellow for CCSM3ddd
            A2, red for CCSM3 A1FI and orange for CCSM3 B1.dddddddsssssss 
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5.  HYDROLOGICAL DISCHARGE MODEL SIMULATIONS  

It has now become more important to use surface outputs of atmospheric models 

such as snow water equivalence and runoff, which are calculated by using 

precipitation, temperature, wind speed components, humidity, long wave and short 

wave radiation, in similar physically-based hydrologic models for 

hydrometeorological studies (e.g. Xu, 1999; Lin et al., 2006; Bell et al., 2007; 

Sorooshian et al., 2008). In addition to this, hydrological simulations obtained from 

atmospheric models by using different climate scenarios are important to 

demonstrate climate change impacts on the hydrological cycle (Christensen et al., 

2004; Sorooshian et al., 2008). Coupled atmosphere-hydrology models are also used 

for flood and heavy rainfall forecasting (e.g. Bartholmes and Todini, 2005; 

Tomassetti et al., 2005; Verdecchia et al., 2008).  

Hydrological discharge models are mainly used to compute the discharge of a given 

catchment to a specific point via mathematical expressions (Hagemann and Dümenil,  

1998). The ranges of types of hydrological discharge models are based on the spatial 

representation of the models. For instance, lumped models ignore spatial 

heterogeneity and act the catchment as a single box. Semi-distributed models consist 

of smaller sub-catchments based on topography. Fully distributed models take into 

account spatial heterogeneity and reflect spatial variations of hydrometeorological 

parameters such as precipitation and temperature as well as spatial occurrence of 

watershed characteristics such as soils, slope and land cover (Chow et al., 1998). In 

general, both semi-distributed and fully distributed models have some advantages 

compared to the lumped models such as better representation of spatial variability 

within the catchment. On the other hand, because of increased heterogeneity they 

contain a large number of parameters and in most cases, a model parameterization is 

needed, which simplifies the representation of sub-grid processes. Moreover, large 

amounts of input data is are required to drive the semi-distributed and fully 

distributed hydrological discharge models. Meteorological observations and 

monitoring data are commonly used to calibrate and to validate the hydrological 
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discharge models. However, climatological data such as precipitation and 

temperature derived from climate models are alternatively used to drive the 

hydrological discharge models in regions where inadequate observational network 

take place.  

In hydrological discharge models, it is extremely important to explain and interpret 

the effect of topography on the surface (Beven, 1989). Topography affects not only 

the type of soil, surface cover and rainfall but also the flow path and drainage 

networks (Yuan and Ren, 2004). By using the topography data to obtain a suitable 

flow chart for a particular area is the first and the most basic step of hydrological 

simulations. In many physical and lumped-distributed hydrological models 

topography data is processed through some software programs such as GIS and flow 

chart is obtained. Many different approaches have been developed in order to obtain 

the most accurate flow chart by using the topography data (e.g. Tribe, 1992; Coppola 

et al., 2007). One of the methods used to develop hydrologic routing algorithm is to 

define each grid as a reservoir and to calculate the flow from cell-to-cell and finally 

to reach the basin outlet by collecting the flow. In this method, land is divided into 

small pieces and each piece is assumed to be homogenous and flow from each piece 

is transferred to the bottom one (Sausen et al., 1994; Sushama et al., 2004). 

5.1 The Hydrological Discharge Model (HDM) 

The HDM is a state of the art river routing model developed by Hagemann and 

Dümenil (1998). The model calculates the river discharge by taking into 

consideration the lateral waterflow on the land surface grid cells. The main purpose 

of the model is to employ three water storages for every model grid cell (Figure 5.1):  

• Overland flow 

• Baseflow 

• Riverflow 

Overland flow and baseflow use surface runoff and drainage as input from land 

surface scheme of another model. Both of the input fields are interpolated to HDM 

grid. Riverflow is fed by inflow from other gridboxes. The sum of the three flow 

processes gives the total grid box outflow and enters the down-stream box in the next 
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time step. These different modes of lateral flow are controlled by model parameters, 

which are defined by topography gradient between gridboxes, the slope within a 

gridbox, the gridbox length, the lake area and the wetland fraction of a particular 

gridbox (Hageman and Dümenil, 1998). 

The model takes into account the linear reservoir in order to represent the flow 

processes in hydrology.  A linear reservoir denotes the outflow Q as the proportion 

of actual filling S to retention time k that is defined as the average residence time of 

water within the reservoir (Singh, 1998) (5.1). 

Q(t)= 1
k
•S(t)  (5.1) 

By relating Q to the inflow I the continuity equation is satisfied (5.2). 

 

Figure 5.1 : Overview about the general structure of the HDM (Hagemann and  
      Dümenil, 1998). ddddddddddddddddddddddddddddddddd 

dS(t)
dt

= I(t)!Q(t)  (5.2) 

A linear differential equation for the discharge Q with one parameter k is derived 

from the Equations (5.1) and (5.2).  
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k dQ(t)
dt

= I(t)!Q(t)  (5.3) 

In the HDM, the cascade of n equal linear reservoirs (typically 5), which have the 

same retention coefficient k, denotes the riverflow. In this case, the outflow from the 

reservoir i equals the inflow into the reservoir i+1 and Equation (5.3) is applied to 

each reservoir. Both the overland flow and the baseflow are represented by a single 

linear reservoir with retention coefficients. 

Besides the different lateral flows, another crucial part of the HDM is a routing 

scheme that is based on the land surface topography. Drainage network controlled by 

the surface topography determines the direction of water flow on the surface as well 

as the catchment boundaries in the model. In the drainage network of the model, it is 

assumed that every grid cell drains into the neighboring grid cell with the lowest 

elevation. Derived drainage network by taking into consideration elevation 

differences should therefore match the actual surface river system. Spatial resolution 

of the surface topography dataset is the key factor that directly affects the quality of 

the drainage network. In addition to drainage network, real catchments and their 

model counterparts should be equal to each other. In the HDM there eight 

possibilities of outflow directions: the four main directions (N, E, S, W) and the four 

diagonal directions (NE, SE, SW, NW) (Figure 5.2). 

 

Figure 5.2 : River flow directions in the HDM. Direction 5 corresponds the     
   discharge trap. ddddddddddddddddddddddddddddddddd 
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Further information about the HDM and its structure can be found in Hageman and 

Dümenil (1998). 

5.2 Modifications, Data and Approach 

5.2.1 Modifications 

The HDM is applied on a global scale. Daily surface runoff and drainage are the 

inputs fields required for driving the HDM and they can be derived from the various 

GCMs with different spatial resolutions. Therefore, their spatial resolutions are 

interpolated from the respective GCM grid to the HDM grid resolution. Although the 

HDM has originally been designed for global scale, the input fields derived from the 

RCMs can be also used for driving the model. RCM fields are interpolated to the 0.5o 

x 0.5o the HDM grid and the model produces discharge on a global scale with 

“empty” fields over areas outside the RCM domain.  

As it is stated in the model description part, the actual river direction flow and its 

model counterpart must match each other. Therefore, a major task before the 

analyzing of climate change impacts on Euphrates-Tigris Rivers is to check whether 

the model represent the actual river network flow and catchment boundary well or 

not. If needed, an adjustment of the model topography by defining a new river flow 

directions is carried out via model calibration. For this aim, the HDM was applied to 

the ETB in the off-line mode using the daily surface runoff and drainage data of 

GCM-ECHAM5, which has a spatial resolution of 1.875o x 1.875o. By using the 30-

year reference period (1961-1990) simulations, the HDM was validated against to 

available streamflow gauges in the basin. Moreover, simulated river flow network 

was matched with the actual river flow. By taking into consideration the 

inconsistencies related with river directions, required modifications were done in the 

model parameter file that contains river direction and riverflow, overflow and 

baseflow variables. Therefore, in the first stage, two simulations were carried out by 

using GCM-ECHAM5 driving fields on a global scale for the period of 1961-1990:  

• Experiment-1: Simulations done with default parameter file 

• Experiment-2: Simulations done with prescribed parameter file 
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Figure 5.3 represents the real ETB catchment boundary together with river flow 

network. Murat and Karasu Rivers in the upper parts of the Euphrates Basin, which 

flow from east to west and merge around Keban, mainly feed the Euphrates River. 

Then, the Euphrates River flows in the southward and southeastward directions. The 

Tigris River originates in the eastern Taurus Mountains of southeastern Turkey near 

Lake Van. It flows across the Mesopotamian lowlands by following the base of the 

Zagros Mountains. The Euphrates and the Tigris Rivers merge with each other 

around Al-Basrah before flowing on to the Persian Gulf. 

 

Figure 5.3 : River flow network of the ETB (Zakharova et al., 2007) 

Figure 5.4 shows the river direction and corresponding river flow network of the 

ETB, represented by the HDM from the Experiment1. Comparing with the real river 

flow network in Figure 5.3, three main inconsistencies can be outlined: 

• Murat River has a southwestward direction in the upper parts of the 

Euphrates Basin and it flows to the Tigris River 

• The Tigris River flows to the Euphrates River in Syrian territory 

• The Tigris River flows to the Euphrates River around Hindiya 

By taking into the three inconsistencies, the river paths of the Euphrates and the 

Tigris Rivers were prescribed in the parameter file of the HDM. After prescribing 
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and changing the parameters, the resulting model river flow network from the 

Experimen-2 has an acceptable degree of reliability and validity (Figure 5.5). 

 

Figure 5.4 : River direction and corresponding river flow network of the ETB  
           represented by the HDM in Experiment-1. Three mainllllllllllll 

 inconsistencies are shown with red circles.llllllllllllllllll 

The most striking improvement of the river flow network takes place in the upper 

parts of the Euphrates Basin and it represents well the east to west flows of the Murat 

and Karasu Rivers. Moreover, the HDM consistently reproduces merging point of 

the two rivers with the prescribed parameter file. Finally, the Euphrates and the 

Tigris Rivers merge with each other around Al-Basrah before flowing on to the 

 

  



80 
 
 

Persian Gulf (Figure 5.3) and this property is captured well by the HDM in the 

Experiment-2. 

 

Figure 5.5 : River direction and corresponding river flow network of the ETB  
     represented by the HDM after prescribing and changing the     

parameters in Experiment-2.llllllllllllllllllllllllllllllll 

5.2.2 Data and approach 

Different input fields from the two GCMs (ECHAM5, MPI-ESM-LR) and from the 

dynamically downscaled outputs of ECHAM5 and CCSM3, obtained from the 

UNDP project (MDG-F 1680) entitled with “Enhancing the capacity of Turkey to 

Adapt to Climate Change”, were used to drive the HDM. Detailed information about 
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the dynamically downscaled outputs and evaluation of the reference period can be 

found in Bozkurt et al. (2012).  

MPI-ESM-LR (Max Planck Institute for Meteorology-Earth System Model-Low 

Resolution) is a coupled earth system model (Hagemann et al., 2012). It employs the 

coupling of the atmosphere, ocean and land surface through energy, momentum, 

water and important trace gases exchanges. It includes ECHAM6 in the atmosphere  

in T63 resolution (Stevens et al., 2012), MPI-OM in the ocean at approximately 1.6o 

resolution with 40 vertical layers (Jungclaus et al., 2012) and JSBACH for land 

surfaces (Brovkin et al., 2009; Brovkin et al., 2012). 

A new radiative scheme in the atmosphere, a new aerosol climatology and the 

incorporation of the carbon cycle including ocean biogeochemistry and and 

interactive and dynamic vegetation scheme at the land surface are the main 

differences between the MPI-ESM and its predecessor ECHAM5/MPIOM. In terms 

of horizontal resolution there is no difference, however, MPI-ESM has 47 vertical 

atmospheric levels (LR) which has higher atmospheric layers than the 

ECHAM5/MPIOM with 31 levels. 

The period after IPCC-AR4 was released, it was clear that the new scenarios were 

needed for use by the research community. As a result of several substantial studies 

and efforts, climate research community pointed out an updated process of  scenarios 

that aims at documenting the emissions, concentrations, and land-cover change 

projections of the so-called "Representative Concentration Pathways" (RCPs) (Moss 

et al., 2010). The RCPs are named according to their four different 2100 radiative 

forcing level (W m-2) as calculated and reported by the individual groups (RCP 2.6 

from PBL/IMAGE, RCP 4.5 from PNNL/MiniCAM, RCP 6.0 from NIES/AIM, and 

RCP 8.5 from IIASA/MESSAGE) (Figure 5.7). The radiative forcing estimates are 

based on the forcing of greenhouse gases and other forcing agents, however, direct 

impacts of albedo or the forcing of mineral dust is not included (Moss et al., 2010). 

The main purpose of the RCPs is to provide time series of radiative forcing, 

concentration and emissions of greenhouse gases and land-use change for the climate 

research community to condcut new climate model experiments and produce new 

climate scenarios (van Vuuren et al., 2011).  
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The RCP 4.5 scenario of MPI-ESM-LR used to drive the HDM, corresponds a 

stabilization scenario in which total radiative forcing is stabilized before 2100 via 

mitigation methods such as employment of a range technologies and strategies for 

reducing greenhouse gas emissions (Clarke et al., 2007). Detailed information about 

the RCPs can be found in Moss et al. (2010). 

 

Figure 5.6 : Radiative forcing changes (W m-2) relative to pre-industrial conditions 
         (a). Bold coloured lines show the four RCPs with the corresponding  

          groups; thin lines show individual scenarios. Energy and industry CO2 
            emissions for the RCP candidates are presented in right column (b).ddd 
          The range of emissions in the post-SRES literature is presented for the 
          maximum and minimum (thick dashed curve) and 10th to 90thdddddd
         percentile (shaded area). Blue shaded area corresponds to mitigation  

           scenarios; grey shaded area corresponds to reference scenarios; pinkdd 
           area represents the overlap between reference and mitigation scenarios 

(Moss et al., 2010).ddddddddddddddddddddddddddd 
Daily surface runoff and drainage outputs of the RCM simulations that have a spatial 

resolution of 27 km are used as input fields for the HDM (see Table 5.2). In these 

cases, the RCM outputs are interpolated to the standard the HDM grid (0.5o x 0.5o) 

and the discharge simulation is carried out on a global scale, with “empty” input 

fields over areas outside the RCM domain. The simulations were carried out for both 

reference period and future period. For all cases, 30-year control climate simulations 

of present climate were validated against to the observations. Finally, in terms of 

climate change impacts on the river discharges in the ETB, differences between the 

future and reference periods are presented. In order to validate the simulation results 

against to observations, three streamflow gauging stations were used (Figure 5.6). 

Information about the stations is given in Table 5.1.  
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Figure 5.7 : Streamflow gauging stations used to validate the HDM. 

Since the availability of discharge measurement differs among the stations, the 

validation period is based on different periods of time for the individual gauging 

stations. Then, in terms of climate change impacts on the river discharges in the 

ETB, differences between the future and reference periods are presented. All the 

input fields used in the HDM simulations are given in Table 5.2. 

Table 5.1 : Information about the streamflow gauging stations. 

Station Name Coordinates Altitude 
(m) 

Drainage 
Area (km2) 

Palu 38.69N, 39.93E 852 25515 
Ba!ı"ta" 39.43N, 38.45E 865 15562 
Hindiya 32.72N, 44.27E 28 274100 

 

Table 5.2 : Input files used for driving the HDM. 

 Input Fields 
Emission 
Scenario 

 
Period 

GCM 

MPI-ECHAM5 
 

Observation 1961-1990 
A1B 2071-2100 

MPI-ESM-LR 
 

Observation 1971-2000 
RCP 4.5 2071-2100 

RCM 

NCEP/NCAR Observation 1961-1990 
MPI-ECHAM5 

 
 

Observation 1961-1990 
A2 2040-2100 
B1 2040-2100 

NCAR-CCSM3 Observation 1961-1990 
A2 2040-2100 

A1F1 2040-2100 
B1 2040-2100 
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5.3 Simulation Results 

This section includes the simulation results of the HDM that is forced by GCM and 

RCM outputs for both reference and future periods. In terms of reference period 

simulations, 30-year daily surface runoff and baseflow from GCMs, ECHAM5 

(1961-1990) and MPI-ESM-LR (1971-2000) and from dynamically downscaled 

outputs of ECHAM5 (1961-1990) and CCSM3 (1961-1990) were used to drive the 

HDM. In terms of future period simulations, simulations forced with GCM outputs 

were carried out for 2071-2100 period, while RCM-forced simulations covered 

2040-2609 and 2070-2099 periods. All the simulations were carried out by using the 

prescribed parameter file. 

5.3.1 Reference period simulation results 

5.3.1.1 GCM-forced simulations 

Figure 5.8 shows the mean annual cycle of the Palu and Ba!ı"ta" streamflow gauging 

stations together with the HDM simulations forced by ECHAM5 and MPI-ESM-LR. 

The Palu station has a peak discharge in April, while the Ba!ı"ta" station has in May 

and this is an indicator of typical snow-fed river characteristics. In general, snow 

melt-dominated characteristics of the rivers are reproduced by the HDM in both 

ECHAM5 and MPI-ESM-LR cases. However, ECHAM5-forced simulations have 

less flow in the peak season and timing of the annual peak discharge corresponds to 

March for the both Palu and Ba!ı"ta" streamflow gauging stations, which are earlier 

compared to the observations. Simulations of MPI-ESM-LR input fields yield better 

match with the observations, especially for the peak season (Figure 5.8b, d). 

Moreover, timing of the annual peak discharge for the Ba!ı"ta" station is reproduced 

by the HDM. 

It’s crucially important to validate the model results over relatively bigger sub-

catchments of the ETB. Hindiya streamflow gauging station, which has a drainage 

area of 274100 km2, is a good sample for this aim. The validation of the HDM 

discharge simulations against to the Hindiya gauging station is presented in Figure 

5.9. As it is in upper parts of the basin, ECHAM5-forced simulation indicates earlier 

timing of the annual peak discharge and less flow in the peak season (Figure 5.9a). 

Although MPI-ESM-LR-forced simulation also reproduces less magnitude of the 
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observed discharge during the peak season, it reasonably reproduces the annual cycle 

and the timing of the annual peak discharge (Figure 5.9b). 

 

Figure 5.8 : Mean monthly discharge (m3/s) for the Palu (left column) and Ba!ı"ta" 
        (right column) streamflow gauging stations (solid line) and the HDdd 
         Model simulations (dashed line). Top panel corresponds to thed  

            simulations forced by ECHAM5 input fields. Bottom paneldddddddddd 
       corresponds to the simulations forced by MPI-ESM-LR input fields.l 

 

Figure 5.9 : Mean monthly discharge (m3/s) for the Hindiya streamflow gauging 
           station (solid line) and the HDM simulations (dashed line). Top  

              panel corresponds to the simulations forced by ECHAM5 input fields. 
             Bottom panel corresponds to the simulations forced by MPI-ESM-LR   

input fields.llllllllllllllllllllllllllllllllllllllllllllllllllllllll 

a)

b)

c)

d)

a)

b)
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The general bias in the timing of the annual peak and peak season discharge in the 

ECHAM5-forced simulations can be caused by shortcomings of the ECHAM5 input 

fields. Since the surface orography is the main source of the precipitation over the 

highlands of the ETB, coarse resolution of the ECHAM5 may not adequate to 

represent the spatial distribution of precipitation especially over the upper parts of 

the basin. Indeed, comparison of 30-year average annual precipitation distribution 

from the ECHAM5 and CRU observation indicates drier conditions in the ECHAM5 

(Figure 5.10).  

 

Figure 5.10 : 30-year average annual precipitation (mm) distribution for CRU (top 
panel) and ECHAM5 (bottom panel).lllllllllllllllld 

Moreover, annual cycle of precipitation of the ECHAM5 compared to the Palu 

meteorological station, yield  a poor match in the spring season, which may be 

accounted for the low peak season discharge in the HDM simulations forced by 

ECHAM5 input fields (Figure 5.11).  

5.3.1.2 RCM-forced simulations 

Figure 5.12 shows the mean annual cycle of the Palu, Ba!ı"ta" and Hindiya 

streamflow gauging stations together with the HDM simulations forced by GCMs 

(ECHAM5, MPI-ESM-LR) and RCM outputs (NCEP/NCAR, ECHAM5, CCSM3).  
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Figure 5.11 : Mean monthly precipitation (mm) for the Palu meteorological station 
and corresponding grid from ECHAM5.ddffffddd 

 

Figure 5.12 : Mean monthly discharge (m3/s) for the Palu (a), Ba!ı"ta" (b) and  
    Hindiya (c) streamflow gauging stations and the HDMlllllll"dddddd 
     simulation results forced by GCMs (ECHAM5, MPI-ESM-LR) andl 

   RCM outputs (NCEP/NCAR, ECHAM5, CCSM3).lllllllllllll 

In contrast to GCM-forced simulations, RCM-forced simulations reasonably 

reproduce the annual cycle of discharge. Overestimation of the peak of discharge and 

 a)

 b)

 c)
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bias in the timing of the springtime snowmelt peak of discharge compared to 

observations persist. In general, overestimation of discharge during the cold season 

can be caused by shortcomings of the regional climate model, especially related to 

the annual cycle of precipitation. Indeed, observed annual cycle of precipitation 

compared with RCM simulations in the upper Euphrates Basin indicate an 

overestimation of precipitation in the cold season, which is more pronounced in 

NCEP/NCAR and ECHAM5 simulations (Figure 5.13a). 

 

Figure 5.13 : Observed and simulated mean monthly precipitation (mm) and    
 temperature (oC) for the upper Euphrates Basin.l 

One of the most striking points in Figure 5.12 is that highest differences in discharge 

take place in March and April months, in which snow melting dominates. In addition 

to precipitation overestimation in these months, observed annual cycle of 

temperature compared with RCM simulations point out an overestimation of 
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temperature during the winter months and early spring (Figure 5.13b). Therefore, 

warmer temperature values in transition month (March) may be accounted for high 

discharge values in RCM-forced simulations. 

5.3.2 Projected discharge simulations 

5.3.2.1 GCM-forced simulations 

Figure 5.14 shows the 30-year mean annual discharges of the HDM simulations 

forced with the ECHAM5 and MPI-ESM-LR input fields (Figure 5.14a, c) for the 

reference periods, which are 1961-1990 for the ECHAM5 and 1971-2000 for the 

MPI-ESM-LR driven simulations. The figure also depicts 30-year mean annual 

discharge differences from the reference period by the end of the century (2071-

2100). The ECHAM5 driven simulation of future period is based on SRES A1B 

emission scenario. The MPI-ESM-LR driven simulation of future period was carried 

out under RCP 4.5 scenario. 

In general, both GCM-forced simulations indicate striking decreases in discharges of 

the Euphrates and Tigris Rivers. The MPI-ESM-LR forced simulations yield more 

decrease in the discharges (Figure 5.14d). Mean annual discharge is projected to 

decrease by 15-20 % in the upper parts of the basin and the main routing paths of the 

Euphrates and Tigris Rivers for the ECHAM5 forced simulations, while it is 

projected to decrease by 20-25 % for the MPI-ESM-LR forced simulations. On the 

other hand, the ECHAM5 forced simulations indicate slightly decrease in discharge 

over the southeastern parts of the basin by the end of the century under the A1B 

emission scenario (Figure 5.14b).  

Differences in the input fields of the ECHAM5 and MPI-ESM-LR may be accounted 

for the different behavior of the projected discharges. Indeed, future and reference 

period differences in total runoff outputs of the raw ECHAM5 and MPI-ESM-LR 

point out striking differences in the southeastern parts of the basin. Raw ECHAM5 

differences indicate an increase in the total runoff over this region Figure 5.15a, 

while it is projected to decrease in the raw MPI-ESM-LR (Figure 5.15b). Figure 5.16 

indicates the mean monthly discharges of the reference and future periods in the 

corresponding model grids of the Palu ve Ba!ı"ta" streamflow gauging stations from 

the ECHAM5 and MPI-ESM-LR forced the HDM simulations. 
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Figure 5.14 : 30-year reference period (1961-1990 for the ECHAM5-forced  
             simulations (a) and 1971-2000 for the MPI-ESM-LR drivend  

    simulations (c)) mean annual discharges (m3/s, top panel) andddddd 
     30-year mean annual discharge differences from the reference period 
    (%, bottom panel). Future projections (2071-2100) of the ECHAM5 
              (b) input fields are based on SRES A1B emission scenario anddddd 

   the MPI-ESM-LR are based on RCP 4.5 scenario.jdddddddd 

In the ECHAM5 forced simulations, the discharge is projected to increase slightly 

between November and January months for the both Palu and Ba!ı"ta" model grids, 

however, it tends to decrease in rest of the year under the SRES A1B emission 

scenario (Fig. 5.16a, c). Overall, the total discharge is projected to decrease for these 

stations by the end of the century. As the increase in temperature is more pronounced 

by the end of the century, which means earlier melting of snow, the slightly increase 

of the discharge between November and January is mainly related with the temporal 

shifts in snowmelt runoff. In the MPI-ESM-LR forced simulations, discharge is 

projected to decrease whole year, which is more pronounced after winter season 

based on RCP 4.5 scenario (Figure 5.16b, d). Moreover, the timing of the annual 

peak discharge tends to shift to earlier month (from May to April). As it is in the 

ECHAM5 forced simulations, the total discharge is projected to decrease for these 

stations by the end of the century.  

 

 
 

  

a)

b)

c)

d)
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Figure 5.15 : 30-year mean annual total runoff differences (%) from the reference 
    period by the end of the century, (a) for the ECHAM5 and (b) for the 

MPI-ESM-LR.ddddddddddddddddddddddddddd 

 

 

Figure 5.16 : The HDM simulations of mean monthly discharge (m3/s) of the  
                 Palu (a, b) and Ba!ı"ta" (c, d) for the reference and future periods.dd 
     Top panel corresponds to the simulations forced by ECHAM5 inputl 
      fields and bottom panel corresponds to the simulations forced byddll 

    MPI-ESM-LR input fields.llllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

 

 

a)

b)

1971-2000
2071-2100

1971-2000
2071-2100

1961-1990
2071-2100

1961-1990
2071-2100
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b)

c)
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As it is in upper parts of the basin, projected discharge simulations of the ECHAM5-

SRES A1B and MPI-ESM-LR-RCP 4.5 demonstrate reductions in discharge for the 

Hindiya too, which is more pronounced for the ECHAM5 forced simulations (Figure 

5.17a). Similarly, earlier timing of the annual peak discharge is projected by the 

simulations. 

 

Figure 5.17 : The HDM simulations of mean monthly discharge (m3/s) of the  
                 Hindiya for the reference and future periods. Top panel correspondsl 
      to the simulations forced by ECHAM5 input fields and bottom panel 
     corresponds to the simulations forced by MPI-ESM-LR input fields. 

In addition to projected mean monthly discharges, it is important to look into the 

changes in the peak discharge timing in the water year. Figure 5.18 shows the 

reference and projected fractions of accumulated discharge for the Palu, Ba!ı"ta" and 

Hindiya streamflow gauging stations. Vertical arrows correspond to the days when 

50% of annual discharge is reached, which analogous to CT. The detailed 

information about the method can be found in Chapter 3. 

CT date of the reference period is marked as the second half of March for the 

ECHAM5 forced simulations and it is marked as the beginning of April for the MPI-

ESM-LR forced simulations. Projected daily discharges indicate more shifting in CT 

dates of each station for the ECHAM5-forced simulations.  

1961-1990
2071-2100

1971-2000
2071-2100

a)

b)
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Figure 5.18 : Fraction of accumulated discharge of reference periods (solid line) and 
            future periods (dashed line) from the ECHAM5 forced (blue) anddddd 
             MPI-ESM-LR forced simulations (red) for the Palu (a), Ba!ı"ta" (b)dd    

         and Hindiya (c). Vertical arrows correspond the days when 50% ofd 
annual discharge is reached.ddddddddddddddddddd 

5.3.2.2 RCM-forced simulations 

Figure 5.19 shows the HDM results of mean monthly discharge and CT date changes 

forced with the dynamically downscaled ECHAM5 A2 scenario. Future period is 

divided into two parts: 2040-2069 and 2070-2099. In the mid-century, it is projected 

that there is a slightly decrease in discharge for the three stations. However, there is 

no striking change in the CT of the discharges. By the end of the century, however, 
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all stations will have less discharge and striking shifts to earlier days are projected 

for the discharge.  

 

Figure 5.19 : The HDM simulation results of reference (solid line) and future  
      periods (dashed line; blue for mid-century, red for end of thedddddd 
                century) forced with dynamically downscaled the ECHAM5 A2fffff 
     scenario output. Left column corresponds to changes in the meanffff 
     monthly discharges (m3/s). Right column corresponds to changes inl
    the fraction of accumulated discharges. Vertical arrows correspondl 

     the days when 50% of annual discharge is reached.d  d 

Figure 5.20, 21, 22 demonstrate the HDM results forced with the dynamically 

downscaled outputs of CCSM3 A1FI, A2 and B1 scenarios. It is clearly depicted that 

discharge is projected to decrease dramatically from the mid-century in higher 

(A1FI) and mid-high (A2) emission scenario simulations. Moreover, striking shifts to 

earlier days are projected for the discharge in the both A1FI and A2 emission 

scenario simulastions. On the other hand, relatively small reductions in discharge and 

shifts are projected in B1 emission scenarios, which has lower emissions. Table 5.3 

presents the date of CT for both reference and future periods in RCM-forced 
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simulations. CT of the discharges occurs in early April in reference period, while it is 

projected to shift to 3-5 weeks to earlier (early and mid March) in future periods. 

 

Figure 5.20 : The HDM simulation results of reference (solid line) and future  
      periods (dashed line; blue for mid-century, red for end of thedddddd 
                century) forced with dynamically downscaled the CCSM3 A1FIfffff 
     scenario output. Left column corresponds to changes in the meanffff 
     monthly discharges (m3/s). Right column corresponds to changes inl
    the fraction of accumulated discharges. Vertical arrows correspondl 

     the days when 50% of annual discharge is reached.d  d 
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Figure 5.21 : The HDM simulation results of reference (solid line) and future  
      periods (dashed line; blue for mid-century, red for end of thedddddd 
                century) forced with dynamically downscaled the CCSM3 A2ddfffff 
     scenario output. Left column corresponds to changes in the meanffff 
     monthly discharges (m3/s). Right column corresponds to changes inl
    the fraction of accumulated discharges. Vertical arrows correspondl 

     the days when 50% of annual discharge is reached.d  d 

 

 

 

 

 

 

 

(a) (b)

(c) (d)

(e) (f )

Palu
(A2)

Palu
(A2)

Bagistas
(A2)

Bagistas
(A2)

Hindiya
(A2)

Hindiya
(A2)



97 
 
 

 

Figure 5.22 : The HDM simulation results of reference (solid line) and future  
      periods (dashed line; blue for mid-century, red for end of thedddddd 
                century) forced with dynamically downscaled the CCSM3 B1ddfffff 
     scenario output. Left column corresponds to changes in the meanffff 
     monthly discharges (m3/s). Right column corresponds to changes inl
    the fraction of accumulated discharges. Vertical arrows correspondl 

     the days when 50% of annual discharge is reached.d  d 
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Table 5.3 : Center time dates of the discharges for Palu, Ba!ı"ta" and Hindiya based 
on different model and scenario forced simulations.ddd 

Palu 1961-1990 2040-2069 2070-2099 
ECHAM5 A2 6 April 

 
19 March 3 March 

CCSM3 A2 4 April 
 

12 March 11 March 

CCSM3 A1FI 4 April 
 

13 March 1 March 

CCSM3 B1 4 April 
 

28 March 18 March 

Ba!ı"ta" 1961-1990 2040-2069 2070-2099 
ECHAM5 A2 3 April 

 
16 March 2 March 

CCSM3 A2 1 April 
 

9 March 9 March 

CCSM3 A1FI 1 April 
 

8 March 26 February 

CCSM3 B1 1 April 
 

25 March 16 March 

Hindiya 1961-1990 2040-2069 2070-2099 
ECHAM5 A2 10 April 

 
23 March 4 March 

CCSM3 A2 11 April 
 

16 March 18 March 

CCSM3 A1FI 11 April 
 

20 March 7 March 

CCSM3 B1 11 April 
 

6 April 25 March 
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6.  CONCLUSIONS  

6.1 Summary and Conclusions 

This study aims to provide a compherensive analysis for past and future climate 

change impacts on the hydrology of the Euphrates-Tigris Basin, which has major 

water resources of the Middle East, within two research topics: (i) historical climate 

variability in the basin and (ii) regional hydro-climatological consequences of future 

climate change in the basin. In order to demonstrate historical climate variability, an 

investigation of how changes in hydrometeorological variables and large-scale 

patterns affect regional hydrology in the context of changing climate was carried out 

using the meteorological and streamflow stations. Hydro-climatic effects of future 

climate change in the basin have been investigated using dynamically downscaled 

outputs of different GCM (ECHAM5, CCSM3 and HadCM3)-emissions scenario 

(A1FI, A2 and B1) simulations via a regional climate model (RegCM3), obtained 

from a UNDP project (MDG-F 1680) entitled with “Enhancing the capacity of 

Turkey to adapt to climate change”. In addition to analysis of atmospheric model 

outputs, the impacts of future climate changes on river discharges in the basin have 

been investigated via a hydrological discharge model (the HDM). Hydrological 

discharge simulations have been carried out by using surface runoff and drainage 

outputs of CMIP3 simulations of ECHAM5 and CMIP5 simulations of MPI-ESM-

LR under different scenarios (A1B for ECHAM5 and RCP 4.5 for MPI-ESM-LR). In 

addition to this, the HDM was forced by high resolution RCM outputs of different 

GCM (ECHAM5, CCSM3) - emissions scenario (A1FI, A2 and B1) simulations.  

6.1.1 Observed climate changes 

Based on the analyses of temperature, precipitation and streamflow observations in 

the basin, the following conclusions can be highlighted:  

• Trend analysis of long-term temperature data (1961-2002) indicates that there 

has been a striking temperature increase after the early 1990s for both 
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highlands and lowlands of the basin. More pronounced and statistically 

significant increase in minimum temperatures in the main headwaters of the 

basin is detected.  

• In terms of precipitation, both highlands and lowlands have no striking 

change based on the trend analysis of long-term precipitation data (1961-

2002). 

• The statistical analysis reveals that there are no significant trends in the 

annual streamflow data in the main headwaters of the basin (i.e., covering 35 

years from 1972 to 2006). However, the streamflow timings of the Euphrates 

and Tigris Rivers, are found to be shifting to earlier days in the year. Six out 

of eight stations indicate statistically significant shifts between two 

consecutive 17-years periods (i.e., 1972-1988 and 1990-2006). Among these 

stations, the average shift to earlier times is over 5 days, suggesting earlier 

spring melting of snowpack due to increased temperatures in the second 

period. 

• A striking increase in the discharges takes place during the first half of 

March, and it is observed at all stream gauging sites in the main headwaters 

area. An analysis based on the NCEP/NCAR reanalysis data indicates that 

warming which results in this increase is associated with the switching from 

the northeasterly flow to southwesterly flow over the Black Sea and western 

Anatolia caused by the weakening of the Siberian High over eastern Europe. 

These changes in the circulation features from the first to second periods are 

found to be very consistent with the positive and negative phases of the North 

Sea-Caspian pattern.  

6.1.2 Hydro-climatic effects of future climate change 

6.1.2.1 Atmospheric model simulation results 

Hydro-climatic spatial changes for the 2071-2099 period and annual hydro-climatic 

elevation-based and country-based changes for two future periods, 2041-2070 and 

2071-2099, point out the following main findings:  

• All scenario simulations indicate surface temperature increases across the 

entire Euphrates-Tigris basin. The increase is comparatively greater over the 
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highlands in winter. Increase in annual surface temperature in the highlands 

ranges between 2.1 oC (lower emissions scenario, B1) and 4.1 oC (higher 

emissions scenario, A1FI) for 2041-2070, whereas it ranges between 2.6 oC 

and 6.1 oC for 2071-2099. Cold season temperature increase has the potential 

to greatly impact the regional hydrological cycle by reducing the snow cover 

and changing the seasonality of surface runoff.  

• In terms of precipitation, there is a broad agreement among the simulations, 

which indicate a decrease in the highlands and northern parts of the basin and 

an increase in the southern parts. Our results confirm the findings of the 

previous studies that demonstrate similar spatial changes of precipitation in 

the ETB (e.g., Evans, 2008; Önol and Semazzi, 2009; Chenoweth et al., 

2011). The changes in precipitation are statistically significant in the large 

areas of the basin in all simulations except for the ECHAM5 simulation. 

Precipitation in the highlands is projected to decrease by 33% under the 

higher emissions scenario (A1FI) simulation of CCSM3 by the end of the 

present century, whereas the A2 scenario simulations produce a decrease 

ranging between 6-24%. 

• Projected changes in the annual evapotranspiration indicate generally 

statistically significant decreases in the basin by the end of the century, which 

is most likely related with the projected decreases in precipitation. 

• A striking impact of warming could be seen on the snow water equivalent in 

the highlands of the basin, which is projected to decrease by 55% for B1 

scenario, 77-85% for A2 scenario and 87% for A1FI scenario. Özdo!an 

(2011) also found substantial declines (between 10% and 60%) in available 

snow water, particularly under the A2 scenario, by the end of this century 

using a hydrological model and a set of regional climate change simulations 

driven by 13 different GCM. The dynamically downscaled simulations in the 

present study indicate therefore more pronounced declines. It is also found 

that the greatest relative changes in the snow cover take place in the lower 

elevations, a result that is also reported by Özdo!an (2011). 

• Based on different model and scenario simulations, the annual total surface 

runoff is found to decrease about 25-55% in the eastern Anatolian mountains 

(main headwaters of the basin) by the end of the 21st century.  
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• One of the most striking consequences of the temperature increases in the 

basin is the 18-39 day shifts to the earlier days in the surface runoff timing 

for the main headwaters of the basin. By analyzing the observations from the 

streamflow gauging stations in this region, Sen et al. (2011) found 

statistically significant shifts to earlier times (over 5 days) in streamflow 

timing in recent decades (no significant changes in the annual streamflow 

were detected for the same period). The climate change projections of the 

present study show significant changes in both total surface runoff and the 

timing of the surface runoff, which implies that the water resources of the 

ETB will be dramatically affected by the climate change. 

• Country-based assessments indicate that the territory of Turkey will likely 

experience more adverse direct effects of the climate change compared to the 

territories of the other countries in the basin. The annual surface runoff is 

projected to decrease by 26-57% in the territory of Turkey by the end of the 

present century. Because much of the headwaters are located in this territory, 

all other countries in the basin are expected to feel the stress for the 

diminishing waters during the twenty first century.  

6.1.2.2 Hydrological discharge simulation results 

Based on the hydrological discharge simulations, the following conclusions can be 

highlighted: 

• The HDM validation points out that the simulations forced with low 

resolution GCM outputs are not able to reproduce seasonal cycle of discharge 

well. Moreover, the simulations do not capture the timing of the annual peak 

discharge. These results are mostly related with the shortcomings of the GCM 

driving fields. Since the surface orography is the main source of the 

precipitation over the highlands of the basin, coarse resolutions of the GCMs 

may not adequate to represent the spatial distribution of precipitation. It 

should be also noted that the simulations forced with the MPI-ESM-LR 

driving fields yield better results compared to ECHAM5-forced simulations.  

• In contrast to GCM-forced simulations, high resolution RCM-forced 

simulations reasonably reproduce the annual cycle of discharge. However, 

overestimation of the discharge during the cold season and bias in the timing 



103 
 
 

of the springtime snowmelt peak of discharge persist in the RCM-forced 

simulations. Overestimation of discharge can be caused by shortcomings of 

the RCM, especially related to the annual cycle of precipitation. Indeed, 

observed annual cycle of precipitation compared with RCM simulations in 

the upper Euphrates Basin indicate an overestimation of precipitation in the 

cold season. Moreover, warmer temperature values in transition month 

(March) may be accounted for high peak discharge values in RCM driven 

simulations. 

• Future hydrological discharge simulations indicate a striking decrease in 

discharge of the Euphrates River. The decrease is more remarkable by the 

end of the century. Another important result of the hydrological discharge 

simulations is that significant temporal shifts to earlier days (3-5 weeks) in 

the center time of the discharges are projected by the end of the century. 

Different model and scenario combinations are in agreement with these two 

main results. High resolution RCM-forced simulations yield more 

pronounced decreases and shifting compared to the low resolutions GCM-

forced simulations. 

6.2 Discussions 

Based on the results of the present study, it could be said that the changes in the 

hydroclimatic parameters may have profound impacts on the physical and biological 

components of the ecosystems in the basin as well as on the socio-economic 

developments of the basin countries. The most likely adverse impact of the climate 

change in the Euphrates-Tigris Basin will be the decreased water availability. 

Combined with the population increase, climate change will further stress the water 

resources of the downstream countries that rely heavily upon the upstream water. 

Chenoweth et al. (2011) suggested that per capita water resources of the Middle East 

is likely to be reduced noticeably due to climate change combined with a rapid 

population growth. There are still plans and investments to construct more dams on 

the Euphrates and Tigris rivers. On one hand, decreased water availability and 

reduced hydropower potential in the future make it questionable to build more dams 

on these rivers for power generation. On the other hand, the temporal change in the 

peak flows may make it necessary to build more dams to compensate the diminishing 
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reservoir attribute of the snow cover to be able to save water for the spring and 

summer when dry conditions prevail in the basin. Construction of more dams in the 

basin, however, causes, in addition to environmental problems, irreversible damages 

to the rich historical and cultural heritage of the region. For instance, planned 

construction of Ilisu Dam on the Tigris River has already been beginning to affect 

the biological, historical and cultural heritage of Hasankeyf, which hosts a unique 

habitat in the upper Mesopotamia (!ekercio"lu et al., 2011). 

Being largely located in an arid and semi-arid region, the Euphrates-Tigris Basin has 

frequent and intense droughts in the past. A severe drought event in the winter of 

2007-2008 had a big impact on the crop yield in the basin in 2008. Irrigation related 

problems (e.g., soil salinization) and changes in land cover combined with the 

changing climatic conditions (warmer temperatures, altered patterns of precipitation 

and surface runoff, changes in soil moisture) may further exacerbate the 

consequences of the future droughts. Land degradation and desertification are other 

possible impacts of climate change in the Euphrates-Tigris Basin. Changes in 

geological settlings such as rock slope stability due to continued snow cover decrease 

over the mountains will result in the rise of the likelihood of the natural hazards such 

as landslides, debris flows and rock flows especially in the foothills regions. This 

will also influence the water quality of the basin due to possible changes in erosion 

patterns and amount of debris carried by. 

According to Hemming et al. (2011) larger ranges in the uncertainty of the future 

precipitation projections of RCM ensemble members compared to GCM ensemble 

members for the Middle East region indicate that increasing the model resolution 

might lead to increases in the sensitivity of the modeled precipitation. As they 

suggest that reducing large uncertainties can be achieved by improving the 

understanding and modeling of large-scale processes and their teleconnections to the 

regional climate, with a more focus on localized processes, further modeling studies 

are needed to analyze and understand the main sources of the modeling uncertainties 

of the climate of the Euphrates-Tigris Basin and its surroundings. Finally, there is a 

clear need to inform the societies on the changing hydroclimatological conditions, 

and comprehensive climate information based on different projections will certainly 

be important to implement the efficient adaptation measures in the basin.  
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APPENDIX A  

The Mann-Kendall test is non-parametric statistical method for trend analyzing in 
data over time. It had been formulated by Mann (1945) as non-parametric test for 
trend detection and the test statistic distribution had been given by Kendall (1975) 
for testing non-linear trend. 

The Mann-Kendall statistics (S) is defined as the sum of the number of positive 
differences minus the number of negative differences. It is formulated as: 

! ! ! !"#!!! !
!

!!!!!

!!!

!!!
!!! (A.1) 

The formulation is applied to a time series of n data points x1, x2, .... xn where xj 
represents the data point at time j. The first step is to determine the sign of the 
difference between xj and xi: 

!"#!!! ! !!! !
!!! !"!!! ! !! !! !!!
!! !"!!! ! !! !! !!!
!!! !"!!! ! !! !! !!

 (A.2) 

The magnitude of S determines the strength of the trend. A very high positive value 
of S represents an increasing trend, a very low negative value represents a decreasing 
trend. The confidence in the trend for the Mann-Kendall statistic is determined using 
a Kendall probability tables. First, variance of S, Var(S) is calculated as follows: 

!"#!!! ! !
!" !!! ! !!!!! ! !!! !!! ! !!!!!! ! !!

!

!
 (A.3) 

Then a normalized test statistic Z is calculated as follows: 

! !

! ! !
!"#!!! !!! ! !"!! ! !!

!! !"!!! ! !!!
! ! !

!"#!!! !!! ! !"!! ! !!
 (A.4) 

The probability of Z is given by: 

!!!! ! !
!! !

!!
!
!  (A.5) 
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APPENDIX B  

The Student's t-test is a statistical hypothesis test that can be used to assess whether 
the means of two groups are statistically different from each. It is employed under a 
null hypothesis and is most commonly applied when the test statistic would follow a 
normal distribution if the value of a scaling term in the test statistic were known. 

In this study, the t-test was applied in order to check the differences between scores 
for reference and future climate simulations. In other words, the difference between 
their means to the spread or variability of their scores has been assessed. The t-value 
can be formulated as follows: 

 

! ! !! ! !!
!!!!!!

 (B.1) 

 

!!!!!! !
!!!
!!
! !!

!

!!
 (B.2) 

where !!is the unbiased estimator of the variance of the two samples and n is the 
dimension of the data. 

Once the t-value is computed, it is compared with values of the table of significance 
in order to test whether the t-value is large enough to say that the difference between 
two groups is not likely to have been a chance finding. To test the significance, it is 
needed to set a risk level (alpha level). In addition to this the degrees of freedom is 
needed to determine for the test and it is given by dimension of the data minus 2. To 
check whether there is a significant change, a standard table of significance is used 
with the determined the alpha level, the degree of freedom, and the t-value.  
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