

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

M.Sc. THESIS

CLASSIFICATION OF THE MOTOR EEG SIGNALS BY

USING DEEP NEURAL NETWORKS

Leyla ABILZADE

Department of Applied Informatics

Applied Informatics Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

DECEMBER 2019

DECEMBER 2019

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

CLASSIFICATION OF THE MOTOR EEG SIGNALS BY

USING DEEP NEURAL NETWORKS

M.Sc. THESIS

Leyla ABILZADE

 (708181011)

Department of Applied Informatics

Applied Informatics Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Prof. Dr. Tamer ÖLMEZ

ARALIK 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ  BİLİŞİM ENSTİTÜSÜ

DERİN SİNİR AĞLARI KULLANARAK MOTOR EEG SİNYALLERİNİN

SINIFLANDIRILMASI

YÜKSEK LİSANS TEZİ

Leyla ABILZADE

(708181011)

Bilişim Uygulamaları Anabilim Dalı

Bilişim Uygulamaları Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Prof. Dr. Tamer ÖLMEZ

v

Thesis Advisor : Prof. Dr. Tamer ÖLMEZ

 İstanbul Technical University

Jury Members : Prof. Dr. Ertuğrul KARAÇUHA

 İstanbul Technical University

Leyla Abilzade, a M.Sc. student of ITU Informatics Institute student ID 708181011,

successfully defended the thesis entitled “CLASSIFICATION OF THE MOTOR

EEG SIGNALS BY USING DEEP NEURAL NETWORKS”, which she prepared

after fulfilling the requirements specified in the associated legislations, before the

jury whose signatures are below.

Date of Submission : 15 November 2019

Date of Defense : 9 December 2019

 Doç. Dr. Gökhan BİLGİN

 Yıldız Technical University

vi

vii

To my mother,

viii

ix

FOREWORD

I want to thanks to my advisor Prof.Dr. Tamer ÖLMEZ for all his efforts in

encouraging and helping me in this study. Also, I am very grateful to Prof. Zumray

DOKUR and Phd. Nuri KORHAN for assisting and supporting me in accomplishing

my thesis.

December 2019

Leyla ABILZADE

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS ... xi
ABBREVIATIONS ... xiii

LIST OF THE SYMBOLS .. xv
LIST OF TABLES ... xvii

LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ... xxiii
1. INTRODUCTION .. 1

2. MOTOR ELECTROENCEPHALOGRAM SIGNALS 7
3. COMMON SPATIAL PATTERNS AS PREPROCESSING 13
4. CLASSIFICATION OF THE MOTOR EEG SIGNALS 17

4.1 Architecture of Deep Neural Network ... 17
4.2 Classification Process by using DNN .. 20

4.3 Classification Process by using CSP and DNN ... 22
5. COMPUTER SIMULATIONS ... 25

5.1 BCI Database ... 25

5.2 Classification Without Preprocessing Stage .. 27
5.3 Classification with Preprocessing Stage .. 27

5.4 Generalization of the Proposed Frameworks ... 27
5.5 Performances obtained by studies in literature .. 28

6. CONCLUSION .. 33
REFERENCES ... 35

APPENDICES .. 39
APPENDİX A. Preparation of EEG Data Sets in MATLAB 40
APPENDİX B. Traing and Testing Algorithms of DNN in Python Language 45

CURRICULUM VITAE .. 55

xii

xiii

ABBREVIATIONS

BCI : Brain Computer Interface

BMI : Brain Machine Interface

CNN : Convolutional Neural Network

CSP : Common Spatial Patterns

CSSP : Common Saptio Spectral Patterns

DL : Deep Learning

DNN : Deep Neural Network

EEG : Electroencephalogram

ERD : Event Related Desynchronization

ERP : Event Related Potentials

ERS : Event Related Synchronization

FCL : Fully Connected Layer

FCNN : Fully Connected Neural Network

fMRI : Functional magnetic resonance imaging

FW1 : Framework 1

FW2 : Framework 2

MEG : Magnetoencephalography

MI : Motor Imagery

ReLU : Rectified Linear Unit

SAE : Stacked Autoencoder

VAE : Variational Autoencoder

xiv

xv

LIST OF THE SYMBOLS

𝒀 : Spatially filtered amplitude values

𝑾 : Spatial filters

𝑿 : Matrix of amplitude values

𝑹𝒊 : Normalized covariance matrix

λ : Diagonal matrix

𝑺 : Whitening transformation

xvi

xvii

LIST OF TABLES

Page

Table 5.1: Generalized comparison of FW1 and FW2..28

Table 5.2: Performances of Test Set accuracies obtained by two methods in

Literature and in this study...28

Table 5.3: Subject-specific classification accuracies in FW1....................................29

Table 5.4: Subject-specific classification accuracies in FW2....................................29

Table 5.5: Distribution of input sizes of conv. layers for each subject in FW1.........30

Table 5.6: Distribution of input sizes of conv. layers for each subject in FW2.........31

xviii

xix

LIST OF FIGURES

Page

Figure 1.1 : Electroencephalogram. .. 1

Figure 1.2 : Topography of motor cortex labelled with red on the cerebral cortex .. 2

Figure 1.3 : Procedure for MI based BCI system. .. 3

Figure 2.1 : The placement of electrodes according to the 10-20 system. (a) side

view, (b) top view. ... 8

Figure 2.2 : EEG frequency bands on time domain. ... 10

Figure 2.3 : Architecture of BCI. .. 11

Figure 3.1 : EEG signals spatially filtered using the CSP algorithm. 16

Figure 4.1.1: Example of convolutional filter (2x2) convolving with 3x3 input data

with one stride which produce 2x2 feature map. 18

Figure 4.1.2: Example of max-pooling (2x2) on input data (4x4) with two strides. 18

Figure 4.1.3: FCNN with three layers; five inputs in the first layer; three hidden

units in the second layer and two outputs in the last layer. 19

Figure 4.1.4: Plot of ReLU. .. 19

Figure 4.2.1: CNN model for proposed framework 1. .. 20

Figure 4.2.2: Architecture for proposed CNN+FCNN. .. 21

Figure 4.3.1: Framework 2 model. ... 23

Figure 5.1.1: Timing scheme (the top) and sample picture (the bottom) of training

data without feedback. ... 26

Figure 5.1.2: Positions of C3, C4 and Cz. This figure shows positions of C3, C4 and

Cz (indicated by ellipses) according to the international 10-20 system. 26

xx

xxi

CLASSIFICATION OF THE MOTOR EEG SIGNALS BY USING DEEP

NEURAL NETWORKS

SUMMARY

The brain-computer interface (BCI), establishing relationship between brain and

devices have become increasingly important recent times. Both being able to

communicate with disabled people and playing video games without effort increases

the value of the subject. However, the classification achievements of BCI that obtained

by conventional methods have not yet reached the desired levels. In this respect, it

forces to search for new methods that will improve the classification performance. It

is observed that using deep learning techniques has achieved the desirable higher

performances. In this thesis, the deep neural networks (DNN) were used to classify the

EEG (electroencephalogram) signals to increase classification output.

In this study the proposed network models were applied on dataset of the BCI

Competition 2008. The database contains inputs obtained from nine subjects. There

are five EEG recordings for each subject collected at different times by three electrodes

C3,C4 and Cz. During training feedback was used for three records. This informs the

subject how accurately he/she performed the task, but in this study, the feedback

records have not been used. To describe the experiment, each subject is asked to

imagine moving his or her right or left hand in accordance with the direction of the

arrow shown on the screen and EEG was recorded on each experiment. Therefore, the

EEG features contain information only belonging to two classes.

In this study, the effects of channel number on classification performance were

investigated. In this context, two methods will be compared: (i) EEG data from 3

channels are filtered by a filter with 5 different frequency bands. In this case, the

number of channels increases to 15. EEG data from 15 channels are parsed using the

Common Spatial Pattern (CSP) method and the signals at the CSP output are delivered

to the deep neural network for classification. (ii) EEG data from 3 channels are directly

transmitted to the deep neural network for classification. In general, it is desirable that

the number of channels be large in order to classify the EEG data more accurately.

However, this makes the system even more complicated. With the new channels that

are increased in the study, both classification performance is increased and system

complexity is reduced.

In this study, the effects of channel number on classification performance were

investigated. In this context, two methods will be compared: (i) EEG data from 3

channels are directly employed by deep neural (DNN) for classification. (ii) EEG data

from 3 channels are filtered by five bandpass filters. In this case, the number of

channels increase to 15. EEG data from 15 channels are extracted to the features using

the CSP method and the signals at the output of the CSP are then delivered to the deep

neural network for classification. In general, it is desirable that the number of channels

be large in order to classify the EEG data more accurately. However, this makes the

xxii

system even more complicated. But in this study the created extra channels can both

reduce complexity and increase classification performance.

In this study, generalization of DNN is also examined. BCI systems are often designed

depending on the subject. Therefore, there exist 9 different DNN for each subject. But

doing so could make disadvantage for CSP to achieve its best performance, even

though CSP is known best feature extractor method. This disadvantage overcame by

using the DNN with CSP for the whole data together that collected from nine subjects.

In this study, EEG data is extracted in MATLAB environment by using prefiltering

and CSP method. Then DNN has been used to train the extracted features on the

GeForce 2080 Nvidia graphics card and coded by using the Tensorflow library in

Python in the Linux environment. In total 80% of the EEG data was used for training

set and other 20% is used for the test set. In this thesis, a new BCI method (filter +

CSP + deep neural network) has been developed which gives high classification

performance.

xxiii

DERİN SİNİR AĞLARI KULLANARAK MOTOR EEG SİNYALLERİNİN

SINIFLANDIRILMASI

ÖZET

Zaman geçtikçe, teknolojik yenilikler hayatımızın vazgeçilmezleri haline geliyor. Bu

durumda, insanlar aralıksız yeni keşifler yapmayı veya diğerlerinin yaptıklarını

geliştirerek diğerlerinden daha iyi sonuçlar elde etmeyi amaçlar. Bu teknolojik

deneylerin türünde, eğitimde veya günlük yaşamımızda olsun, genel olarak insan

yaşamını kolaylaştırması amaçlanmaktadır. BCI (Beyin bilgisayar arayüzü) da tam

olarak bu sinifa dahildir.

BCI son dönemlerde araştırma konularında önemli ölçüde değer kazanmaya

başlamıştır. Gerek engelli insanlarla iletişim kurulması, yaşam kalitesinin arttırılması;

gerekse oyun sektöründe kullanılma potansiyelinin yüksek oluşu konunun insani ve

ticari yönden değerini arttırmaktadır. Oyun ekipmanından yapay organlara kadar çok

çeşitli uygulamalarda kullanılan BCI teknolojisinin başlıca amacı, insan beyni ile

elektronik cihaz arasında hiçbir bir periferik sinir yolu olmayan ara iletişim kanalı

oluşturmaktır.

Bağımsız ve pratik BCI türü olmasından dolayı, MI (hayali motor) çeşitli BCI en

popüler metodlardan biridir. Hayali motor hareketler, gerçekte hiçbir fiziksel vücut

haraketi yapmadan onun hayalini beyinde canlandırmaktır. Buna, sağ elin,sol elin veya

ayaklarımızı hareket etdiriyor gibi düşünmek örnek ola bilir. MI hareketleri zamanı,

beyinde sinyaller oluşmaya başlar ve bu motor sinyaller beyin bölgesinin üst-orta

kısmında yerleşen motor korteksde üretiliyor ve genel olarak beş sınıfa ayrılıyor:

α,β,θ,λ,γ. Her biri farklı frekans aralığını kapsıyor ve her biri farklı durumlarda

yaranıyor, örneğin uyku zamanı veya ayık olduğumuz durumlar. Bu sinyalleri

toplamak için çeşitli yöntemler kullanılıyor: Manyetoensefalografi (MEG),

Elektroensefalogram (EEG), veya Fonksiyonel manyetik rezonans görüntüleme

(fMRI) vb. Bilimsel araştırmalarda, örneğin, BCI'da en çok tercih edilen sinyal

toplama yöntemi tam olarak EEG'dir. Non-invaziv olması EEG'yi tercih etmek için

önemli sebeplerden biridir, çünkü bu teknik sinyal kaydı sırasında ameliyat

gerektirmez. EEG başka bir deyişle- elektroansefalo, kafanın farklı bölgelerinde

yerleştirilmiş elektrodlar, bu elektrodların bağlandığı amplifaktör ile insan beyninde

üretilen sinyelleri kağıt üzerinde veya bilgisayarda basıyor. EEG bir çok alanda

kullanıla bilinir: tıpta, deneysel araştırma labaratuarlarında ve saire. Epilepsi, beyin

tümörü, hafıza bozuklukları, uyku problemleri, felç vb. birçok hastalıklar bile EEG

kullanılarak tespit edilebilinir. Burada, BCIda sağlam veya hasta insanlar üzerinde

farklı deneyler yapılarak tüm bedeni veya bedeninin bir kısmı felç olan insanlara bir

tür yardımda bulunmak istenilir. Deneyler sırasında, EEG ile toplanılan beyinde

üretilen sinyaller daha sonra sınıflandırılma adlandırılan prosedürde kullanılır. Mesela

eğer deney sırasında sağ veya sol elimizi hareket etdirdiyimizi hayel etmeyi isterlerse,

sınıflandırma yaparak toplanmış sinyallerin hangisinin sağ ve hangisinin sol el hayali

hareket zamanı beyinde üretildiğini bula biliriz. Fakat bu o kadar da kolay bir işlem

değildir. Sınıflandırma zamanı daha yüksek ve başarılı sonuçlar almak için herkes

xxiv

farklı yöntemler kullanır. Ancak klasik yöntemlerle elde edilen sınıflama başarımları

henüz istenilen düzeylere ulaşamamıştır. Bu bağlamda hızlı ve sınıflama başarımı

yüksek yeni yöntemlerin araştırılması son derece önemlidir. Son yıllarda derin

öğrenme konusunda yüksek sınıflama başarımları elde edildiği gözlenmektedir.

Bu tez çalışmasında EEG işaretleri, yüksek sınıflama başarımı olan derin sinir ağları

kullanılarak sınıflandırılmıştır.

Çalışmada geliştirilen ağ modelleri, 2008 yarışmasında yayınlanan ve Graz

Universitesi tarafından gerçekleştirilmiş veri tabanı üzerinde denenmiştir. 2008

yarışma veri tabanında 9 denek bulunmaktadır. Her denek için farklı zamanlarda

alınmış 5 EEG kaydı bulunmaktadır. Kayıtlar alınırken 3 tanesi için geri besleme

kullanılmıştır. Yani, kayıt alınırken ekranda gösterilen komutun ne kadar doğrulukla

icra edildiği geri besleme ile deneğe bildirilir. Bu çalışmada geri besleme

kullanılmadan alınan kayıtlar kullanılmiş ve elde edilmiş olan sonuçların bu kayıtlarda

bile yüksek başarı kazana bildiği gösterilmiştir. Her deneğe hayali motor haraketleri

icra etmesi istenilir, yani, 7 saniye kapsamında ekranda gösterilen okun yönüne uygun

olarak sağ veya sol elini hareket ettirdigini düşünmesi istenlir ve bu sırada EEG

kayıtları toplanır. Dolayısıyla EEG işaretlerinde sadece iki sınıfa ait bilgi

bulunmaktadır. Kayıtlarda 3 kanaldan (C3, C4, Cz) alınan EEG verileri

bulunmaktadır.

Çalışmada kanal sayısının sınıflama başarımı üzerindeki etkileri incelenmiştir. Bu

bağlamda iki metot karşılaştırılacaktır:

(i) 3 kanaldan gelen EEG verileri, sınıflandırılması için direkt olarak derin sinir ağına

(DNN) verilmektedir. Burda, öznitelik çıkarmak için başarılı sonuçları ile popüler olan

Evrişimsel Sinir Ağı (CNN), sınıflandırma için ise Tamamen Bağlı Sinir Ağı (FCNN)

kullanılmaktadır.

(ii) 3 kanaldan gelen EEG verileri, 5 farklı frekans bandına sahip süzgeçle süzülür. Bu

durumda kanal sayısı, 15'e yükselir. 15 kanaldan gelen EEG verileri, Ortak Uzamsal

Örüntü (CSP) metodu kullanılarak ayrıştırılır ve CSP çıkışındaki sinyalleri önce CNN

daha sonra ise FCNN metodunu kullanarak sınıflmadırma yapılır.

Genelde EEG verilerinin daha doğru sınıflandırılabilmeleri için kanal sayısının büyük

olması istenilmektedir. Ancak bu durum, sistemi daha da karmaşık hale getirebiliyor.

Çalışmada sanal olarak arttırılan yeni kanalllar ile hem sınıflama başarımı arttırılır hem

de sistem karmaşası azaltılır.

Çalışmada aynı zamanda derin sinir ağının genelleme özelliği de incelenmektedir.

Beyin bilgisayar arayüzü sistemleri genellikle kişiye bağlı tasarlanmaktadır. Bu

nedenle önce 9 deneğin her biri için ayrı bir derin sinir ağı bulunmuştur. Her ne kadar

CSP basitlikle güçlü bir yöntem olsa da, bazı eksiklikleri de mevcutdur. CSP'nin beyin

bilgisayar arayüzlerinde motor hareketindeki başarısı büyük ölçüde ERD (olaya dayalı

senkronizasyon) ve ERS (olaya dayalı senkronizasyon) denilen fizyolojik olaylara

bağlıdır ve bu yöntem çoğunlukla bireysel sistemlerde kullanılır. CSP ile yüksek

sınıflama başarımı elde edilmesine karşın aslında CSP'nin kişiye/deneğe bağlı olması

metodun bir dezavantajıdır. Bu dezavantaj, derin sinir ağı kullanılarak giderilmiştir.

Bu bağlamda tüm 9 deneğe ait veri kullanılarak deneklerin hepsi için tek bir derin sinir

ağı bulunmuştur.

Çalışmada EEG verileri, MATLAB ortamında ayrıştırılır. Filtreler ve CSP metodu

kullanılarak veriler ayrı ayrı dizinlere yazılır. Daha sonra, dizinlere ayrıştırılan veriler,

derin sinri ağını eğitmek için kullanılır. Derin sinir ağlarının eğitimi, GeForce 2080

xxv

Nvidia grafik kartına sahip bir iş istasyonunda yapılmıştır. Derin sinir ağı modelleri,

Linuks ortamında Python dilinde Tensorflow kütüphanesi kullanılarak kodlanmıştır.

Toplam EEG veri kaydının %80'si eğitim kümesi için; diğer %20'si ise test kümesi

için kulllanılmaktadır. Bu tezde yüksek sınıflama başarımı veren, şahıstan bağımsız

yeni bir beyin blgisayar arayüzü metodu (filter + CSP + derin sinir ağı) geliştirilmiştir.

xxvi

1

1. INTRODUCTION

For decades, human brain has been studied for various purposes. These purposes span

from extracting information from human brain by using brain imaging techniques[1]

to transmitting the information into another environment in order to accomplish a

given task[2].

BCI, or sometimes known as BMI (brain machine interface) allows computers to read

signals created by human brain. Several methods can be challenged to learn brain

activity within BCI system. Invasive and non-invasive methods are the most popular

techniques that are broadly used. Invasive methods are developed to derive brain

signals directly from human brain by surgery, while in non-invasive methods

electrodes placed on the human scalp to measure brain activity. Because of its cheap

and better resolution ability, the EEG is preferable type of non-invasive BCI methods

(Figure 1.1).

Figure 1.1: Electroencephalogram [13].

Motor imagery (MI), widely used mental task where a subject imagining himself or

herself moving any body part, like hand, tongue, feet and etc. MI signals, together with

Event related potentials(ERP) are the only signals that has been proven to work

efficiently on BCI(Brain Computer Interface) tasks[3]. There exists motor cortex

2

region in the cerebral cortex which produces brain waves while executing MI

movements (Figure 1.2).

BCI systems help to record EEG signals that is produces in human brain during

performing motor actions. Signals are collected by electrodes attached to the specific

scalp regions. Using collected signals people try to analyze brain diseases and offer

cure. Figure 1.3 shows procedure of EEG signals collected in BCI system during

implementing MI tasks.

Figure 1.2: Topography of motor cortex labelled with red on the cerebral cortex [14].

Researchers have developed toolboxes and libraries in python such as Gumpy, MNE,

Wyrm in order to make it easy to process the corresponding signals [4][5][6].

However, these tools are still not enough compact and easy to use. Therefore,

MATLAB and Python are used together in most cases in order to employ BCI models.

3

Figure 1.3: Procedure for MI based BCI system [15].

As seen from the Figure 1.3, MI BCI combines 4 main stages, namely: data collection,

preprocessing, signal processing and translation to device commands. In the first stage,

signals are collected, digitalized and stored with the help of EEG recorder and

electrodes. In preprocessing stage collected signals involved to be filtered, cleaned and

transformed and so on. Signal processing stage itself combine feature extraction and

classification phases. To discriminate EEG signals, feature extraction is used. To

determine the classes corresponding to different mental states, extracted features then

pass to classification phase. Finally, categorized signals are translated to device

commands such as wheelchair, drone or robotic something. To obtain better

classification results in this research area, many studies have been done, and offered

various methods.

CNN (Convolutional Neural Network), as one of the most popular deep learning

models, serves to extract EEG features. In [16], researchers used CNN and SAE

(stacked autoencoders) method in classifying signals recorded by EEG during

performing mental task. Achieved accuracy result was 77.6%. Many studies have

applied CSP algorithm, known as popular preprocessing stage. For example, Yang et

al. [17] used CSP features in their CNN model to classify MI EEG measurements, and

reached accuracy to 69.27%. Also, Aghaei et al. [18] proposed CSSP (common spatio

spectral patterns) algorithm which required less computation and then Ang et al. [19]

offered to use CSP with filter bank in order to obtain higher classification results.

4

In [7] Zhang et al. compared an algorithm that contains Morlet Wavelet

Transformation(MWT) and neural nets with CNN by using BCI competition II dataset

III which contains 280 trials that are obtained during the MI task of right and left hand.

They have concluded that WNN’s computational efficiency is limited. Therefore,

CNN performs better. In [8] Jun yang and his coworkers have combined CNN,

Discrete Wavelet Transformation, and RNN in their study that intents to uncover the

patterns of different EEG tasks. In their experiment, EEG recordings of 6 subjects were

used for classifying MI (left hand) and MI (Right Foot). Recordings of 7 subjects were

used for classifying MI (left hand) and MI (Right Hand). They also classified the

samples of MI tasks in which the imagination of left hand and tongue was the two

different tasks. This experiment is carried out with 12 subjects. They have concluded

that RNN(LSTM) combined with DWT and CNN is a relatively more accurate

classifier than CNN alone and more capable of handling subject independency in

multi-task BCI applications.

In [9] Kumar et. Al. By using the dataset 4a of BCI competition 3(140trials Left Hand,

140 Trials for Right Hand) tried to reveal the patterns via Autoencoders and then

evaluated the performance of the network. They have minimized the maximum error

while keeping the network computationally efficient by using RBM in combination

with CSP.

In [10] jin zhang et al. have transformed first 10 seconds of Motor imagery signals

into images by utilizing STFT(Short Time Fourier Transform) and tried a couple of

activation functions with a CNN model that contains 7 layers. According to their study

the activation function called SELU (scaled exponential linear unit) performs better

than ELU (exponential linear unit) and RELU (Rectified Linear Unit). Having noted

that SELU works better with STFT, it is not proven to work better than RELU in the

cases where STFT is not used.

In another study[11], Huijuan Yang et. al. have combined CNN and a technique called

ACSP (Augmented CSP) that is created by exploiting FBCSP and Wide Band CSP(4-

30HZ). The purpose of this complicated(sophisticated) approach is to obtain as many

features as possible and eliminate the not so important ones in the CNN structure so

that the feature selection process would be automated. This approach has been more

accurate in classifying some subjects. However, in terms of average accuracy, it did

not reach the desired level of success(did not beat FBCSP).

5

In [12] Xiang Zhang et. al. employed convolutional recurrent neural network and an

autoencoder for classifying Physionet database that is consisted of trials from 10

different subjects whose MI tasks are imagination of Left hand, Right Hand, Both

hands and both feet. This network had considerable success in classifying physionet

database (95.53 maximum accuracy). However, this scenario needs to be repeated with

all subjects because subject independency and generalization ability is of a crucial

importance in BCI.

In this study two main frameworks are created in order to observe and understand the

type of the change in the success of the networks and discuss how to create more

accurate systems in the interpretation of BCI. Dataset is taken from a publicly

available BCI competition(BCI IV dataset 2b) This dataset consists of 9 subjects that

imagined to move their right hands and left hands during the trials that has been

repeated 280 times in the experiment.

In the first framework the raw EEG is fed into the network that consists of 4(and 5 in

one subject) convolutional layers and one fully connected layer(FCL). The raw EEG

of each subject have been split into train and test sets. Then, they are fed into the

networks of their own. Then raw EEGs of all subjects are fed into the same network.

The purpose of this was to evaluate the inter-subject pattern dependency of the

framework. Observation of how successful different the behavior of the classifier is

when being subjected to different sources of BCI signals.

In the second framework the raw EEG is fed into the network that consists of 4

convolutional layers and one FCL. In the name of exploiting the information in

different frequencies the signals are subjected to 5 different band-pass filters before

they are fed into CSP and their corresponding features are extracted. The outputs of

CSP filters are connected to a network that is identical to the network that is used in

the first experiment. Just like the first framework the data of each subject is split into

two parts as train and test dataset. 9 identical classifiers are evaluated separately, each

having its own success rate in classifying motor imagery tasks. Finally, instead of

feeding training sets one by one, all training sets are put together and fed into one

network. Then the performance of the network is evaluated separately for each subject.

6

7

2. MOTOR ELECTROENCEPHALOGRAM SIGNALS

An electroencephalogram (EEG) is a measurement of electrical signals that flow in the

cerebral cortex. During activation of the brain cells, the produced signals are then

generating an electrical field on the scalp that can be measured by the EEG recording

system. Obtained measurements by the synaptic currents from the brain can

demonstrate the brain function which gives us motivation to use EEG to measure

electrical activity of the brain. The term of EEG combines the concepts of electro-

(recording electrical activity), encephalo- (extraction the signals from the scalp), and

gram- (drawing or writing). EEG plays vital role in our life in detection, diagnosing

and even in treatment of several brain disorders on human subjects.

It was Richard Caton (1942-1926) who first recorded brain generated electrical signals

by using a galvanometer and two electrodes placed over the scalp in 1875, but Hans

Berger (1873-1941), a psychiatrist was the one who first invented EEG in 1924[20].

Then the A.E. Kornmüller recognized the importance of multichannel recordings to

cover a wider area of the brain region.

To describe the recent EEG, we think about combination of electrodes (or electrode

cap) with the set of amplifiers followed by filter and pen type registrars. The electrodes

used on EEG recording are usually made of high-quality silver/silver chloride discs

(Ag-AgCl) with long flexible wire, plugged into the amplifier. While recording

process a conductive gel (charged with ions) is used on the electrode surface to make

the system able to collect potensials (nerve impulses) from the brain neurons. To start

the process first, the electrodes need to be distributed to specific regions on the scalp

by the standards of internationally recognized 10/20 system [21], where 10% and 20%

refers the distances between adjoining electrodes.Figure 2.1 shows distribution of 20

electrodes around the circumference of the subject`s head according to the 10/20

system [22].

8

Figure 2.1: The placement of electrodes according to the 10-20 system. (a) side view, (b)

top view.

9

Electrode labels denoted with capital letters represent the area of the cerebral cortex:

pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), and central (C).

Here, while odd-numbered electrodes (1,3,5,7) correspond the left side, even numbers

(2,4,6,8) correspond the right side on the head. And also, there exist electrodes indexed

with “z” which means midline lobe. Additionally, the reference electrodes are used at

the earlobes indicated with A1 and A2.

After locating electorodes on individual head, he/she is instructed to close his/her eyes

and relax. Switching system on, one can see brain pattern in the form of sinusoidal

wave shapes on the monitor. Based on their frequency ranges brain waves seperated

into five essential band groups.

(i) Alpha rhythms (α, 8-13Hz): these waves can be discovered in adults during

mental inactivity or under relaxation. They can be detected in the occipital

locations of the brain.

(ii) Beta rhythms (β, 13-30Hz): beta waves appear during active thinking,

focusing or concentrating in normal adults. They are seen mostly around

tumoural regions.

(iii) Theta rhythms (θ, 4-8Hz): Play an important role for children and infants.

They can be defined especially during deep sleep. It is considered that high

theta waves are abnormal for awake adults.

(iv) Delta rhythms (δ, 0.5-4Hz): they can be also detected during deep sleep.

(v) Gamma rhythms (γ, >30Hz): the occurrence of the gamma waves is rare

and they have been used to detect specific diseases. The region of these

waves cover frontocentral area on the brain.

Above described information tells us that not all frequency bands emphasize the same

function. The following Figure 2.2 [23] depict typical brain rhythms.

https://en.wikipedia.org/wiki/Prefrontal_cortex
https://en.wikipedia.org/wiki/Frontal_lobe
https://en.wikipedia.org/wiki/Temporal_lobe
https://en.wikipedia.org/wiki/Parietal_lobe
https://en.wikipedia.org/wiki/Occipital_lobe

10

Figure 2.2: EEG frequency bands on time domain.

After obtaining upper mentioned neural signals by EEG, one can efficiently use them

on various purposes:

Medical use: for diagnosing several brain disorders such as, epileptic seizures, brain

tumors, sleep disorders and so on.

Research use: classification, clustering BCI based motor imagery (MI) movements

recorded by EEG. Brain-computer interface (BCI) is the communication pathway

where subjects are involved to perform specific motor imagery movements through

EEG recording system. MI is a mental process where one imagine about for instance

moving his/her arm without actually accomplishing it in real. MI signals typically, are

obtained from the motor cortex part of the brain. Analyzing MI EEG signals give us

an opportunity to translate the brain activity into device commands which then in the

future can assist paralyzed or locked people to complete specific movements by using

device commands (see Figure 2.3).

As shown in the Figure 2.3 there two stages in signal processing: feature extraction

and classification stage which play important role in translating brain waves to the

commands. In the subsequent sections the feature extraction and classification

methods will be discussed.

11

It is also worth to mention that while extraction features two main frequency bands

should be taken into consideration. Based on the mental task type, EEG patterns can

differ in frequency bands. The one considerable band comprise the bands of µ and β

which leads the decrease of EEG during imagination of left hand movement and called

event-related desynchronisation (ERD).The other band includes only β band and

happen just after the MI task and called event-related synchronisation (ERS).

Figure 2.3: Architecture of BCI

Motor Imagery

Experiment

EEG Signal

Acquisition

Signal

Processing

Control

Devices

12

13

3. COMMON SPATIAL PATTERNS AS PREPROCESSING

The first stage of EEG signal processing is to convert obtained brain waves into the

action of accomplishing the subject`s intent. In this stage “feature extraction” plays an

important role. As mentioned on former section, feature extraction aims to symbolize

the raw data obtained from EEG signals in the form of “features”. It prepares the

acquired signals to be able to be translated into the BCI commands. To carry out this

action feature extraction demonstrate the isolation of the important features from noise

in the signal. A basic feature can be a voltage difference between two electrodes and

set of these features arrange a vector, called a feature vector.

Feature extraction can be divided to number of several steps. The first step is a

preprocessing. This step also includes different procedures in itself:

• Prefiltering

• Normalization

• Spatial filtering

Prefiltering procedure mainly, eliminate unuseful frequencies out of specific band and

pass indicated frequency range. More detailed information about this procedure will

be provided on further sections of this thesis.

Regarding normalization, here mean values first are subtracted from each signal and

then divided by its variance. It is the way that signals are adjusted so the analysis of

signals can be simplified in this procedure.

The process of weighting and combining the voltage signals obtained from the scalp

is known as spatial filtering. Spatial filters are designed to improve EEG source

localization and can be described in a matrix form [26]:

(3.1)

14

or in an equation form as follow:

𝑌 = 𝑊𝑋 (3.2)

where rows and columns of X denote P signal samples from one P channel

respectively; rows of W matrix combine set of N channel weights; and the Y matrix

constitute M spatially filtered channels with P samples on each channel. There exist

two major classes in determining W spatial filter: data-independent and data-

dependent spatial filter. In this section will focus mainly to the CSP - one of the well-

known methods of data-dependent filters. First, CSP [27] will briefly reviewed and

then the prior knowledge about its properties will be discussed.

The development of EEG based BCIs require fast and relaible classification methods

to distinguish EEG features relating with imagery movements. The method of CSP has

been achieved the successful classification results on motor imagery experiments. It

was first applied to detect abnormal brain waves recorded on EEG [28], but then

J.Müller-Gerking et al. [29] used CSP to discriminate the different populations of

EEG. It efficiently differentiates classes by maximizing variance of one class while

minimizing other class. Let’s go deep to CSP model and analyze its discriminative

ability.

The goal of this algorithm is that to use linear transformation leading the projection of

multi-dimensional EEG into the low-dimensional space by the projection matrix.

Before moving to projection matrix lets first analyze the following optimization

problem:

𝑅𝑖 =
𝑋𝑖𝑋𝑖

′

𝑡𝑟𝑎𝑐𝑒(𝑋𝑗𝑋𝑗
′)

 (3.3)

where,𝑅𝑖 denotes normalized covariance matrix and 𝑋𝑖 denotes the preprocessed EEG

signal matrix in the two conditions (imagination of the left and right hand movement)

with dimensions 𝑁 × 𝑇 (𝑋𝑖 ∈ ℝ𝑁×𝑇) in other words an epoch, where i is the epoch

number per class, N is the number of channels and T is the number of samples per

channel. 𝑋′ is the transpose of X and trace() function computes the sum of the diagonal

elements. Thinking that we have two classes we need to calculate 𝑅𝑖 for i trials and

average sum of the trials for each class. Then we need to sum averaged spatial

covariances described as below:

15

𝑅 = 𝑅̅𝑙𝑒𝑓𝑡 + 𝑅̅𝑟𝑖𝑔ℎ𝑡 (3.4)

Afterwards, R can be decomposed as

𝑅 = 𝐵𝜆𝐵′ (3.5)

where λ is a diagonal matrix of eigenvalues and B is a corresponding eigenvector.

Using the formula of whitening transformation for simultaneous diagonalization

𝑆 = √𝜆−1𝐵′ (3.6)

The spatial covariances 𝑅𝑙𝑒𝑓𝑡 and 𝑅𝑟𝑖𝑔ℎ𝑡 can be transformed as

𝑃𝑙𝑒𝑓𝑡 = 𝑆𝑅̅𝑙𝑒𝑓𝑡𝑆′ = 𝑈𝜆𝑙𝑒𝑓𝑡𝑈′ (3.7)

 𝑃𝑟𝑖𝑔ℎ𝑡 = 𝑆𝑅̅𝑟𝑖𝑔ℎ𝑡𝑆′ = 𝑈𝜆𝑟𝑖𝑔ℎ𝑡𝑈′ (3.8)

where U indicates orthonormal and 𝑃𝑙𝑒𝑓𝑡, 𝑃𝑟𝑖𝑔ℎ𝑡 share common eigenvectors, since

𝑃𝑙𝑒𝑓𝑡 + 𝑃𝑟𝑖𝑔ℎ𝑡 = 𝑆𝑅̅𝑆′ = 1 (3.9)

which corresponds to the sum of the two diagonal matrices of eigenvalues

𝜆𝑙𝑒𝑓𝑡 + 𝜆𝑟𝑖𝑔ℎ𝑡 = 𝐼 (3.20)

I is the identity matrix. Assuming that eigenvalues are sorted in a descending order,

the feature vectors of two population of EEG can be discriminated by the first and the

last eigenvectors of U which proof discriminative ability of spatial filtering. We can

then obtain projection matrix 𝑊 from the whitened covariance matrices of EEG as

following:

𝑊 = (𝑈′𝑆)′ (3.31)

where rows of 𝑊 are the stationary spatial filters and columns of the 𝑊′ is called the

common spatial patterns, in other words the CSP. Using CSP algorithm the

16

decomposition of matrix W and an eigenvector can be generated as described on

equation (3.2).

The use of CSP is illustrated in Figure 3.1[25] below shows four spatial filters that try

to maximize the variance of signals of left hand class MI, while minimizing right hand

class MI (first top two filters) and vice versa (last bottom two filters). This can be seen

as in light and dark grey windows indicating of right and left hand motor imagery,

respectively.

Figure 3.1: EEG signals spatially filtered using the CSP algorithm.

In a nutshell, we can summarize this section that, CSP filtering is highly recommended

classification method which can efficiently discriminate class features by maximizing

the variance of EEG signals relating to one class while minimizing the other.

Right Hand MI Left Hand MI

17

4. CLASSIFICATION OF THE MOTOR EEG SIGNALS

4.1 Architecture of Deep Neural Network

This section aims to give the essential background information about the context of

CNN and FCNN (fully connected neural network). CNN in other words, ConvNet is

the feedforward neural network in the deep learning, constructed to learn the necessary

features and proposed by [30].

The information in the feedforward neural network flows forward from multiple layers

in which each node in the layers represents a linear combination of input. Then these

linear combinations are converted to non-linear activation functions and move to the

subsequent layer.

It forms the layers of neurons with three dimensions: width, height, depth (size of filter,

input layer and output respectively). There exist the three main subjects one should

know about CNN architecture: convolutional layer, pooling layer and activation

functions.

Here on the network, convolutional layers play an important building block role that

does the most computations in. Each convolutional layer consists of filters that can be

convolved with the input data stride by stride. The stride for sliding filter should be

specified in advance. If filter slides with one stride it means it moves one pixel at one

time, or two strides then two pixels. While moving along the pixels, an activation map

is produced in response which create an output layer (or input of the next layer) (see

Figure 4.1.1).

Pooling or in another word sub-sampling layer, on the other hand is used between

convolutional layers to reduce computation and parameter size in the network. It

downsamples every slice of input spatially. There typical options of pooling layer are:

• Mean pooling

• Max pooling

• Sum pooling

18

To compare the types, it has been proven that max pooling can perform better

performance in compare to mean pooling. Max-pooling serves to reduce the size of the

input. Example for max-pooling is described on Figure 4.1.2.

Figure 4.1.1: Example of convolutional filter (2x2) convolving with 3x3 input data with

one stride which produce 2x2 feature map.

Figure 4.1.2: Example of max-pooling (2x2) on input data (4x4) with two stride.

But many people suggest to eliminate the pooling layer on the CNN architecture as it

can remove the valuable parameters which can be disregarded.

Activations play the worthy part in neural network designs. They can show how on the

network, inputs are transforming. It is preferable to use non-linear functions as they

allow network to create a complex function which increases ability of learning. There

exist several traditional activation functions that have been used by researchers. The

Rectified Linear Unit (ReLU) is one of the most widely used and also utilized on the

proposed frameworks in this thesis. It removes negative pixels in the activation map

and sets them to zero[31]:

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑧) (4.4)

19

There are several advantages of ReLU as it is much more efficient and provides much

more accuracy compared to other activation functions. Also, thanks to ReLU every

activated neuron can pass to the following layer.

Figure 4.1.3: Plot of ReLU [32].

FCNN (Fully Connected Neural Network), the inspired variant of MLP (multilayer

perceptron) and modeled with CNN which plays classifier role. It helps to classify the

features extracted by CNN. All the neurons here have the connection with the previous

layer. Figure 4.1.4 [33] below shows basic example for FCNN architecture:

Figure 4.1.4: FCNN with three layers; first layer with five inputs; second layer with

three hidden units and last layer with two outputs.

To summarize the above network as a function 𝑓: ℝ𝑁 → ℝ𝑀, where N and M are

dimensions for input and output respectively [34]. The output function:

𝑓(𝑥) = 𝑠(𝑊2(𝑠(𝑊1𝑥 + 𝑏1)) + 𝑏2) (4.2)

where 𝑊𝑙 ∈ ℝ𝑁𝑙×𝑁𝑙−1 indicates weight matrix between the layers of l and (l-1). The

weight that connects the node j with i in layers l and l-1 respectively, can be represented

as 𝑤𝑗𝑖
𝑙 ∈ 𝑊𝑙. 𝑏𝑙 ∈ ℝ𝑁𝑙 , is the bias vector and produce a linear shift of weights and

inputs. An activation function that is used equation (4.2) is described as s() which plays

a role of serving a non-linear transformation in data.

20

4.2 Classification Process by using DNN

In order to better learn and analyze the recently famous BCI-based EEG data, many

researchers have applied deep learning (DL) methods. Because of its more

advantageous aspects, most authors have preferred to use the CNN among the DL

algorithms.

In this part of the chapter we will look the details of proposed first method called

Framework1(FW1). This framework presents an application of CNN+FCNN without

of any preprocessing stage to classify motor imagery intents recorded by EEG. In

FW1, the CNN+FCNN is applied to raw MI-EEG data directly to extract and classify

the features respectively (see Figure 4.2.1). During the training step in this

classification method both whole data (all data that is collected from nine subjects)

and nine separate data which belong to nine subjects were experienced. 80% of the

total EEG data is used for the training set and other 20% is used for the test set. To

understand the general idea about proposed framework, the model that is experienced

on the whole data will only be explained in detail below. In this model the network

combines 4 convolutional layers, 1 input layer and 1 fully connected layer, 1 hidden

layer and 1 output layer which is shown on Figure 4.2.2 and explained below in detail.

Figure 4.2.1: CNN model for proposed framework 1.

21

Figure 4.2.2: Architecture for proposed CNN+FCNN.

Figure 4.2.2: Architecture for proposed CNN+FCNN.

22

(1) The first layer (L0) is input layer in the form of 3x750 matrix, where 3 indicates

number of channels (C3, C4 and Cz), and 750 is the number samples recorded

from each channel.

(2) The convolutional layers (Co1, Co2, Co3, Co4) or in another word hidden

layers can be called. These layers serve to extract spatial features by

convolving the BCI based EEG signals with 7 filters (one stride) which results

20 feature maps at the end of the layer. Speed up the learning “batch

normalization” is applied followingly. Doing so, we let layer to learn

independently. As activation function, ReLU is used to all hidden layers. These

layers are repeated 4 times.

(3) F5 (750x20): fully connected layer (FCL) where each neuron is connected with

of all neurons on layer Co4. In this layer the output of the previous layer is

flattened and then connected to H6-hidden layer. Also, dropout layer is added

next to H6 to reduce overfitting.

(4) H6: One more hidden layer with 1024 neurons is followed after F5 to perform

the classification. To help decreasing interdependent learning, we need dropout

layer again to be used right after H6.

(5) O7: the output layer with two neurons representing two classes (lef hand and

right hand) of the problem.

4.3 Classification Process by using CSP and DNN

The second proposed method, called Framework 2 (FW2) consists of 3 progressive

stages: (i) prefiltering using multiple butterworth band pass filters, (ii) spatial filtering

using the CSP algorithm(preprocessing) and (iii) feature extraction and classification

using CNN and FCNN deep learning algorithms.

1. Prefiltering: the first step, using a filter bank that splits the EEG data into the multi-

frequency bands using a fifth-order butterworth at 250 Hz sampling frequency.

Total 5 band pass filters are used, namely, 6-12Hz, 12-18Hz, 18-24Hz, 24-30Hz,

23

30-36Hz. We use prefiltering prior to spatial filtering to deal with the sensitivity

of the CSP to artifacts such as to noise or eye blinking in the EEG records and

achieve better feature extraction results.Various bands of the filter bank exist that

are effective, but the most effective frequency ranges in classification MI EEG are

shown to encompasses beta and mu frequency bands [35].

2. Spatial filtering: the second step plays role of spatial filtering where the algorithm

of CSP execute the feature extraction. This preprocessing phase is used to detect

ERD (Event-Related Desynchronization) and ERS (Event-Related

Synchronization), which are very important in subsequent calculations [36][37]. In

order for extracting features, it is necessary to obtain the most distinctive ERD and

ERS to select the best appropriate frequency band that suits for each subject.

3. Classifcation: the 3rd stage that employs CNN and FCNN to perform a feature

extraction and classification of EEG features that is successfully preprocessed by

CSP. Various studies in [39] [40] showed that using CNN model can yield to better

results on the BCI based EEG datasets.

Figure 4.3.1 illustrates the classification of two-class MI EEG signals according to

FW2.

Figure 4.3.1: Framework 2 model.

24

25

5. COMPUTER SIMULATIONS

5.1 BCI Database

In this study, we used the EEG data that presented on BCI Competition Dataset IIb[41].

Dataset comprise two classes of MI tasks (left hand and right hand) recorded from nine

subjects on two separate(different) days. In total five sessions were provided per

subject, including 3 training and 2 evaluation sessions. We will work only with the

first two sessions of training part that consist of 240 trials without feedback in total

(120 trials per session, 60 trials per class). Here each trial begins with a fixation cross

and a short acoustic tone (1 kHz, 70 ms) to prepare a subject to focus on the following

command will be displayed on the monitor. At time t=3s a cue in the form of arrow

appear pointing to the left or right on the screen to guide the subject to execute the

corresponding MI tasks of left hand and right hand respectively till t=7s. Afterward a

trial continues with a break that lasts 1.5s. The paradigm for one trial is illustrated in

Figure 5.1.1.

The data for each session collected over bilaterally arranged three bipolar channels

(C3, Cz and C4) according to the 10/20 system (see Figure 5.1.2).

In this section, the experimental results of proposed methods have been reported. The

classification performances were calculated by distributing 80% of the data (each

session separately) for training set and 20% for testing set. In general, two techniques

employed using BCI dataset: FW1(model without preprocessing stage) and FW2

(model with preprocessing stage) have been described above. MATLAB programs are

applied to raw motor EEG signals. GDF files can be loaded by using SioSig toolbox,

available for free at http://biosig.sourceforge.net/ and all the calculated classification

accuracies on the test set are conducted using Python codes running on Ubuntu Linux

workstation. Corresponding results represented on the tables below. The workstation

used in this study has 32 core CPUs of 2.7 GHz with GeForce GTR2080 Graphics

card.

26

Figure 5.1.1: Timing scheme (the top) [41] and sample picture (the bottom) [42]of

training data without feedback.

Figure 5.1.2: Locations of C3, C4 and Cz considering the conventional 10/20 system

[41].

27

5.2 Classification Without Preprocessing Stage

The classification accuracies achieved by FW1 is described in detail as follows. During

signal processing, no any preprocessing stage is used. Raw data is directly employed

by CNN+FCNN. Method is experienced on every 9 datasets belonging 9 subjects (S1,

S2, S3, S4, S5, S6, S7, S8, S9) and the best accuracy value for each subject has showed

on the Table 5.3 Moreover, the averaged result that is calculated over 9 subjects is

reported in the table too. During classification of datasets, different convolution layer

size is used in CNN architecture. Table 5.5 describes layer sizes that is calculated for

each subject.

5.3 Classification with Preprocessing Stage

To see the effect, FW2 was constructed with preprocessing in compare to FW1. Here,

first CSP is used as feature extraction and then followed by CNN+FCNN to classify

the two class MI EEG measurements. CSP interpreted to be the most effective method

as feature extr

actor in classifying two class MI datasets [43]. But as it has sensitivity to noise and

other artifacts [44], it is recommended to use CSP with prefiltering stage [45] where

input data first filtered between 6-36 Hz bandpass frequencies. Obtained results is

described on Table 5.4.

Table 5.6 show the distributed input sizes of a maximum of 5 convolutional layers

(Layer 1, Layer 2, Layer 3, Layer 4, Layer 5) calculated for each 9 subjects

(S1,S2,S3,S4,S5,S6,S7,S8,S9) in FW1 and FW2 respectively. Input size is indicated

with three values where first value – I is filter size, second value – F is filter size and

third value – O is output size.

5.4 Generalization of the Proposed Frameworks

Evaluated performances of proposed frameworks experienced on motor imagery EEG

data and comparison results have been carried for FW1 and FW2 based on the

performances that is obtained on whole data and subject-specific data as shown on

Table 5.1.

28

From obtained results, that is described above on the table, it is obviously seen that

proposed second method – FW2 experienced on 9 different subject specific datasets

gives superior averaged accuracy value of 74% among the other results.

5.5 Performances obtained by studies in literature

Offered two methods in the literature by Dai and Tabar, experienced on BCI

Competition IV dataset have been also compared with the test set accuracy value

obtained in this study. It is necessary to mention that, as those authors used the whole

data to calculate the performance we will only compare the result calculated using

whole data where accuracy is 72.4%.

Table 5.1: Generalized comparison of FW1 and FW2.

 Whole

Data

The Means of Accuracies

obtained from each subject

Training

Accuracy
100% 100%

Test

Accuracy

FW1

64.3% 61.2%

Test

Accuracy

FW2

72.4% 74%

Table 5.2: Performances of Test Set accuracies obtained by two methods in Literature

and in this study.

Studies Accuracies for Test Set

In Dai' study [46] 78.2%

In Tabar' study [16]

77.6%

Proposed Method 72.4%

29

Table 5.3: Subject-specific classification accuracies in FW1.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

Training Accuracy

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Test Accuracy

60.2%

59%

55.7%

87.6%

58.1%

48.2%

61.2%

60%

59.3%

61.2%

Table 5.4: Subject-specific classification accuracies in FW2.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

Training Accuracy

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Test Accuracy

79.1%

61.9%

63.2%

94.2%

72.5%

82.9%

66%

72.3%

65%

74%

30

Table 5.5: Distribution of input sizes of convolutional layers for each subject in FW1.

Subject

Layer 1 I,F,O Layer 2 I,F,O

Layer 3 I,F,O Layer 4 I,F,O

Layer 5 I,F,O

S1 3,5,40 40,5,40 40,5,40 40,5,40 NA

S2

3,18,20

20,18,20

20,18,20

20,18,20

NA

S3

3,15,40

40,15,40

40,15,40

40,15,40

40,15,40

S4

3,15,20

20,15,20

20,15,20

20,15,20

NA

S5

3,15,20

20,15,20

20,15,20

20,15,20

NA

S6

3,15,20

20,15,20

20,15,20

20,15,20

NA

S7

3,15,20

20,15,20

20,15,20

20,15,20

NA

S8

3,15,20

20,15,20

20,15,20

20,15,20

NA

S9

3,18,17

17,18,17

17,18,17

17,18,17

NA

31

Table 5.6: Distribution of input sizes of convolutional layers for each subject in FW2.

Subject

Layer 1 I,F,O Layer 2 I,F,O

Layer 3 I,F,O Layer 4 I,F,O

S1 20,23,20 20,23,20 20,23,20 20,23,20

S2

6,13,20

20,13,20

20,13,20

20,13,20

S3

2,3,20

20,3,20

20,3,20

20,3,20

S4

12,3,30

30,3,30

30,3,30

30,3,30

S5
 10,13,30

30,13,30

30,13,30

30,13,30

S6

2,13,20

20,13,20

20,13,20

20,13,20

S7

2,13,30

30,13,30

30,13,30

30,13,30

S8

14,3,30

30,3,30

30,3,30

30,3,30

S9

10,23,20

20,23,20

20,23,20

20,23,20

32

33

6. CONCLUSION

As time passes, technological innovations become indispensable in our lives. In this

case, people incessantly aim to make new discoveries or improve what others did. In

general, all these technological innovations, whether in medicine, in education or in

our daily lives, are aimed at facilitating human life. BCI is one method which is used

exactly in this type of studies. Here, different experiments are carried out on healthy

or disabled people, in order to help people with brain disorders such as paralyzed

people. While conducting the experiments, subjects involved in the experiment are

fitted with a number of electrodes or a cap consisting of electrodes on their heads.

Obtained results are collected by EEG recorder. EEG, in other words, the

electroencephalogram prints the signals produced in the human brain on paper or

computer with the help of electrodes placed in different parts of the scalp. EEG can be

used in many fields: medicine, experimental research laboratories and so on. Even

many diseases: such as epilepsy, brain tumor, memory disorders, sleep problems,

stroke and etc. can be detected using EEG. In scientific researches, for example in BCI,

the most preferred signal collection method is exactly EEG. Being non-invasive makes

EEG preferable, as this technique requires no surgery during signal recording.

Speaking of experiments, experiments with BCI are performed in different ways,

based on purposes. But since only one of them is used in this study, it is considered

appropriate to mention only one of them.

Study has been completed on “BCI Competition IV, Dataset IIb” dataset, which is

online available. Nine subjects took part during two-class MI experiments. And each

is asked to perform MI of left hand and right hand during both training and test

experiments. In total five sessions were provided per subject, including 3 training and

2 evaluation sessions. Many studies in the literature have used this dataset to calculate

the classification accuracies by proposing various classifier models. In [16],

researchers introduced CNN+SAE (Stacked Autoencoder) method and achieved to the

accuracy value of 77.6%. In [46], researchers were able to increase the performance to

78.2% by using CNN+VAE (Variational Autoencoder). But this study presents two

34

separate methods, namely Framework-1 (FW1) and Framework-2 (FW2) for

classification MI based EEG measurements. The first introduced method - FW1 utilize

deep learning-based scheme: CNN+FCNN directly to the input raw data, while second

one – FW2 use preprocessing stage with prefiltering+CSP followed by CNN+FCNN

classifier. Each framework experienced for both whole dataset and 9 subject- specific

datasets. It is necessary to mention that, we used only the first two sessions of training

part that consist of 240 trials without feedback in total (120 trials per session,60 trials

per class). Using 80% (96 trials) for training and 20% (24 trials) for test of each session

and then summing (96 (session 1) +96 (session 2); 24 (session 1) +24 (session 2)) them

make a homogeneous distribution between all trials. To give details about results: we

obtained classification performances of 64.3% and 72.4% by using whole data; 61.2%

and 74% bu using 9 differet subject specific datasets in FW1 and FW2 respectively. It

is clearly seen that, using preprocessing stage in FW2 can lead to more efficient result.

And in order to get better performance, study suggests classifying the collected

subject-specific datasets separately.

35

REFERENCES

[1] D. Tan and A. Nijholt., 2010: “Brain-computer interfaces and human-computer

interaction,” in Brain-Computer Interfaces, Springer, 2010, pp. 3–19.

[2] K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He., 2013:

“Quadcopter control in three-dimensional space using a noninvasive

motor imagery-based brain–computer interface,” J. Neural Eng., vol.

10, no. 4, p. 46003, 2013.

[3] F. Lotte and I. B. Sud-ouest., 2012: “BCI’s Beyond Medical Applications.pdf,”

pp. 26–34, 2012.

[4] Z. Tayeb et al., 2018: “Gumpy: A Python toolbox suitable for hybrid brain–

computer interfaces,” J. Neural Eng., vol. 15, no. 6, p. 65003, 2018.

[5] B. Venthur, S. Dähne, J. Höhne, H. Heller, and B. Blankertz., 2015:“Wyrm: A

brain-computer interface toolbox in python,” Neuroinformatics, vol.

13, no. 4, pp. 471–486, 2015.

[6] A. Gramfort et al., 2014:“MNE software for processing MEG and EEG data,”

Neuroimage, vol. 86, pp. 446–460, 2014.

[7] Z. Zhang et al., 2019: “A Novel Deep Learning Approach With Data

Augmentation to Classify Motor Imagery Signals,” IEEE Access, vol.

7, pp. 15945–15954, 2019.

[8] J. Yang, S. Yao, and J. Wang., 2018: “Deep Fusion Feature Learning Network

for MI-EEG Classification,” IEEE Access, vol. 6, pp. 79050–79059,

2018.

[9] S. Kumar, A. Sharma, K. Mamun, and T. Tsunoda., 2016: “A deep learning

approach for motor imagery EEG signal classification,” in 2016 3rd

Asia-Pacific World Congress on Computer Science and Engineering

(APWC on CSE), 2016, pp. 34–39.

[10] J. Zhang, C. Yan, and X. Gong., 2017:“Deep convolutional neural network for

decoding motor imagery based brain computer interface,” in 2017 IEEE

International Conference on Signal Processing, Communications and

Computing (ICSPCC), 2017, pp. 1–5.

[11] H. Yang, S. Sakhavi, K. K. Ang, and C. Guan., 2015: “On the use of

convolutional neural networks and augmented CSP features for multi-

class motor imagery of EEG signals classification,” Proc. Annu. Int.

Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 2620–

2623, 2015.

[12] X. Zhang, L. Yao, Q. Z. Sheng, S. S. Kanhere, T. Gu, and D. Zhang., 2018:

“Converting your thoughts to texts: Enabling brain typing via deep

feature learning of eeg signals,” in 2018 IEEE International Conference

36

on Pervasive Computing and Communications (PerCom), 2018, pp. 1–

10.

[13] Dr.Mridha., “EEG”, http://drmridha.com/services/eeg

[14] Sage,G. (1971). Introduction to motor behavior: a neuropsychological approach,

Addison-Wesley series in physical education, Addison-Wesley Pub.

Co., http://books.google.com.tr/books?id=F0VqAAAAMAAJ.

[15] G. Xu et al., 2019: "A Deep Transfer Convolutional Neural Network Framework

for EEG Signal Classification", IEEE Access, vol.7, pp. 112767-

112776.

[16] Y. R. Tabar and U. Halici., 2017: “A novel deep learning approach for

classification of EEG motor imagery signals,” J. Neural Eng., vol. 14,

no. 1, p. 16003.

[17] H. Yang, S. Sakhavi, K. K. Ang, C. Guan., 2015: "On the use of convolutional

neural networks and augmented CSP features for multi-class motor

imagery of EEG signals classification", Proc. 37th Annu. Int. Conf.

IEEE Eng. Med. Biol. Soc. (EMBC), pp. 2620-2623, Aug.

[18] A. S. Aghaei, M. S. Mahanta, K. N. Plataniotis., 2013: "Separable common

spatio-spectral pattern algorithm for classification of EEG

signals", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp.

988-992, May.

[19] A. Ashok, A. K. Bharathan, V. R. Soujya, P. Nandakumar., 2013: "Tikhonov

regularized spectrally weighted common spatial patterns", Proc. Int.

Conf. Control Commun. Comput. (ICCC), pp. 315-318, Dec.

[20] Massimo, A., 2004: “In Memoriam Pierre Gloor (1923-2003): an appreciation’,

Epilepsia, 45(7), July,882

[21] H.H. Jasper. 1958: The ten-twenty electrode system of the International

Federation. Electroencephalography and Clinical Neurophysiology,

371-375

[22] S. Sanei and J. A. Chambers., 2007: EEG Signal Procesing, JohnWiley& Sons,

New York, NY, USA.

[23] M. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas., 2015: A New EEG

Acquisition Protocol for Biometric Identification Using Eye Blinking

Signals, I.J. Intelligent Systems and Applications, 06, 48-54

[24] Blankertz B., Tomioka R., Lemm S., Kawanabe M., Müller K.-R.,

(2008b). Optimizing spatial filters for robust EEG single-trial

analysis. IEEE Signal Process. Mag. 25, 41–

5610.1109/MSP.2008.440844

[25] Fabien Lotte., 2014: “A Tutorial on EEG Signal Processing Techniques for

Mental State Recognition inBrain-Computer Interfaces”, Eduardo Reck

Miranda; Julien Castet. Guide to Brain-ComputerMusic Interfacing,

Springer.

[26] Jonathan Wolpaw and Elizabeth Winter Wolpaw., 2012: “Brain–Computer

Interfaces: Principles and Practice”, Oxford Scholarship Online: May

http://drmridha.com/services/eeg

37

[27] Fukunaga, K. (1990).,” Introduction to Statistical Pattern Recognition, 2nd Ed”

NewYork:Academic Press.

[28] Z. J. Koles., 1991 : “The quantitative extraction and topographic mapping of the

abnormal components in the clinical EEG,” Electroenc. Clin.

Neurophys., vol. 79, pp. 440–447.

[29] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg., 1999 : “Designing

optimal spatial filters for single-trial EEG classification in a movement

task,” Electroenc. Clin. Neurophys.

[30] Y.LeCun, L.Bottou, Y.Bengio, and P.Haffner., 1998: “Gradient-based learning

applied to document recognition”, proceeding of the IEEE, vol.86,

pp.2278-2324. Nov. Pages 8,9,15.

[31] F.-F. Li and A. Karpathy., 2015: “Stanford CS231n course materials.”

http://cs231n. github.io/convolutional-networks/. Accessed: 03-09-

2015. pages 9, 12, 15

[32] Saugat Bhattarai., “What is Activation Functions in Neural Network (NN)?”,

https://saugatbhattarai.com.np/what-is-activation-functions-in-neural-

network-nn/

[33] Ian Walker., 2015: “Deep Convolutional Neural Networks for Brain Computer

Interface using Motor Imagery”, Department of Computing Imperial

College of Science, Technology and Medicine. 4 September.

[34] T.D. Team., 2013: “Deep learning tutorials”,

http://deeplearning.net/tutorial/index.html, pages 9,18

[35] G.Pfurtscheller and et al., 1997: “EEG-based discrimination between

imagination of right and left hand movement”, Electroencephalography

and Clinical Neurophysiology Volume 103, Issue 6, December, Pages

642-651

[36] Pfurtscheller G, Aranibar A., 1979: “Evaluation of event-related

desynchronization (ERD) preceding and following voluntary self-paced

movement”, Electroencephalogr Clin Neurophysiol. Feb;46(2):138-46

[37] Pfurtscheller G1, Lopes da Silva FH., 1999 : “Event-related EEG/MEG

synchronization and desynchronization: basic principles”, Clin

Neurophysiol. Nov;110(11):1842-57.

[38] Y Lu, H Jiang, W Liu., 2017: “Classification of EEG Signal by STFT-CNN

Framework: Identification of Right-/left-hand Motor Imagination in

BCI Systems”, CENet2017 22-23 July Shanghai, China.

[40] Hyeon Kyu Lee ; Young-Seok Choi and et al., 2018: “A convolution neural

networks scheme for classification of motor imagery EEG based on

wavelet time-frequency image”, International Conference on

Information Networking (ICOIN)

[41] Robert Leeb, Claudia Keinrath, Reinhold Scherer, et al., 2007: “Brain–

Computer Communication: Motivation, Aim, and Impact of Exploring

a Virtual Apartment”, IEEE Transactions on Neural Systems And

Rehabilitation Engineering, Vol. 15, No. 4, December

https://saugatbhattarai.com.np/what-is-activation-functions-in-neural-network-nn/
https://saugatbhattarai.com.np/what-is-activation-functions-in-neural-network-nn/
http://deeplearning.net/tutorial/index.html
https://www.sciencedirect.com/science/article/abs/pii/S0013469497000801#!
https://www.sciencedirect.com/science/journal/00134694
https://www.sciencedirect.com/science/journal/00134694
https://www.sciencedirect.com/science/journal/00134694/103/6
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pfurtscheller%20G%5BAuthor%5D&cauthor=true&cauthor_uid=86421
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aranibar%20A%5BAuthor%5D&cauthor=true&cauthor_uid=86421
https://www.ncbi.nlm.nih.gov/pubmed/86421
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pfurtscheller%20G%5BAuthor%5D&cauthor=true&cauthor_uid=10576479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lopes%20da%20Silva%20FH%5BAuthor%5D&cauthor=true&cauthor_uid=10576479
https://www.ncbi.nlm.nih.gov/pubmed/10576479
https://www.ncbi.nlm.nih.gov/pubmed/10576479
https://ieeexplore.ieee.org/author/37086370063
https://ieeexplore.ieee.org/author/37086370669

38

[42] Zhichuan Tang and et al., 2016: “A Brain-Machine Interface Based on

ERD/ERS for an Upper-Limb Exoskeleton Control”, 6(12),

2050; https://doi.org/10.3390/s16122050

[43] Pfurtscheller G, Aranibar A., 1979: “Evaluation of event-related

desynchronization (ERD) preceding and following voluntary self-paced

movement”, Electroencephalogr Clin Neurophysiol. Feb;46(2):138-

46.

[44] Grosse-Wentrup M, Liefhold C, Gramann K, Buss M., (2009), Beamforming

in non-invasive brain–computer interfaces. IEEETrans Biomed Eng

56(4):1209–1219

[45] Kai Keng Ang, ZhengYang Chin and et al., 2012: “Filter bank common spatial

pattern algorithm on BCI competition IV Datasets 2a and 2b”, Front.

Neurosci., 29 March, https://doi.org/10.3389/fnins.2012.00039

[46] Dai M. et al., (2019), EEG Classification of Motor Imagery Using a Novel Deep

Learning Framework, Sensors, 19, 551, pp.1-16.

https://sciprofiles.com/profile/201886
https://doi.org/10.3390/s16122050
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pfurtscheller%20G%5BAuthor%5D&cauthor=true&cauthor_uid=86421
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aranibar%20A%5BAuthor%5D&cauthor=true&cauthor_uid=86421
https://www.ncbi.nlm.nih.gov/pubmed/86421
https://doi.org/10.3389/fnins.2012.00039

39

APPENDICES

APPENDİX A. Preparation of EEG Data Sets in MATLAB

A1. Preparation of EEG Data Sets for First Method

A2. Preparation of EEG Data Sets for Second Method

APPENDİX B. Traing and Testing Algorithms of DNN in Python Language

B1. Traing and Testing Algorithms

B2. Loading MATLAB EEG Data from the file Directories into Python Program

40

APPENDİX A. Preparation of EEG Data Sets in MATLAB

The GDF files can be loaded using the open-source toolbox BioSig, available for free

at http://biosig.sourceforge.net/. There are versions for MATLAB as well as a library

for C/C++. A GDF file can be loaded with the BioSig toolbox with the following

command in Octave/MATLAB (for C/C++, the corresponding function HDRTYPE*

sopen and size t sread must be called):

 [s, h] = sload(’B0101T.gdf’);

A1. Preparation of EEG Data Sets for First Method

clear all

close all

fparams.filterFreq = [6,40];

fparams.filterType = 'butter';

fparams.filterDegree = 5;

fparams.fs = 250;

Cha = {'EEG:C3','EEG:Cz','EEG:C4', 'EOG:ch01', 'EOG:ch02', 'EOG:ch03'};

k1=0;

k2=0;

l1=0;

l2=0;

%--------- Reading EEG GDF File

EPOCHS1x = parseEpochsIIII2a('B0101T', Cha) ;

KK = numel(EPOCHS1x.EPDT);

EPOCHS1 = filterEpochs(EPOCHS1x,fparams);

%number of samples

TT = size(EPOCHS1.EPDT{1},2);

%number of channels

NN = size(EPOCHS1.EPDT{1},1);

KK1 = floor(KK*0.8);

%----------- Save EEG Data for testing set

uu1 = 1;

for k=1:1:KK1

 DD = EPOCHS1.EPDT{k};

 EPOCHST.EPDT{uu1} = DD(1:NN, 1:750);

 EPOCHST.EPLB(uu1) = EPOCHS1.EPLB(k);

 uu1 = uu1 + 1;

41

end

for k=1:1:uu1-1

 CC = EPOCHST.EPDT{k};

 if (EPOCHST.EPLB(k)==1)

 DD =CC(1:NN,:);

 file1x =['C:\Users\ITU\Documents\CSP\BB\S2008HTra21\S1\ATr_'

num2str(k1,'%03d') '.mat'];

 save (file1x, 'DD');

 k1 = k1 + 1;

 end

 if (EPOCHST.EPLB(k)==2)

 DD =CC(1:NN,:);

file2x=['C:\Users\ITU\Documents\CSP\BB\S2008THTra21\S2\BTr_'um2str(k2,'%03

d') '.mat'];

 save (file2x, 'DD');

 k2 = k2 + 1;

 end

 k

end

%---

%----------- Save EEG Data for Testing set

uu1 = 1;

for k=KK1:1:KK

 DD = EPOCHS1.EPDT{k};

 EPOCHSE.EPDT{uu1} = DD(1:NN, 1:750);

 EPOCHSE.EPLB(uu1) = EPOCHS1.EPLB(k);

 uu1 = uu1 + 1;

end

for k=1:1:uu1-1

 CC = EPOCHSE.EPDT{k};

 if (EPOCHSE.EPLB(k)==1)

 DD =CC(1:NN,:);

 file1x =['C:\Users\ITU\Documents\CSP\BB\S2008HTes21\S1\ATe_'

num2str(l1,'%03d') '.mat'];

 save (file1x, 'DD');

 l1 = l1 + 1;

 end

 if (EPOCHSE.EPLB(k)==2)

 DD =CC(1:NN,:);

 file2x =['C:\Users\ITU\Documents\CSP\BB\S2008HTes21\S2\BTe_'

num2str(l2,'%03d') '.mat'];

 save (file2x, 'DD');

 l2 = l2 + 1;

 end

 k

end

42

k1

k2

l1

l2

%--

A2. Preparation of EEG Data Sets for Second Method

clear all

close all

fparams.filterFreq = [6,36]; %[6,15];

fparams.filterType = 'butter';

fparams.filterDegree = 5; %7

fparams.fs = 250;

Cha = {'EEG:C3','EEG:Cz','EEG:C4', 'EOG:ch01', 'EOG:ch02', 'EOG:ch03'};

uu1 = 1;

uu2 = 1;

k1=0;k2=0;k3=0;k4=0;

l1=0;l2=0;l3=0;l4=0;

% -------------- Reading EEG GDF file

EPOCHS1x = parseEpochsIIII2a('B0101T', Cha) ;

KK = numel(EPOCHS1x.EPDT);

EPOCHS1 = filterEpochs(EPOCHS1x,fparams);

TT = size(EPOCHS1.EPDT{1},2);

NN = size(EPOCHS1.EPDT{1},1);

KK1 = floor(KK*0.8);

for k=1:1:KK1

 DD = EPOCHS1.EPDT{k};

 EPOCHST.EPDT{uu1} = DD;

 EPOCHST.EPLB(uu1) = EPOCHS1.EPLB(k);

 uu1 = uu1 + 1;

end

for k=KK1:1:KK

 DD = EPOCHS1.EPDT{k};

 EPOCHSE.EPDT{uu2} = DD;

 EPOCHSE.EPLB(uu2) = EPOCHS1.EPLB(k);

 uu2 = uu2 + 1;

end

% -------------- Reading EEG GDB file

EPOCHS2x = parseEpochsIIII2a('B0102T', Cha) ;

KK = numel(EPOCHS2x.EPDT);

43

EPOCHS2 = filterEpochs(EPOCHS2x,fparams);

TT = size(EPOCHS2.EPDT{1},2);

NN = size(EPOCHS2.EPDT{1},1);

KK2 = floor(KK*0.8);

for k=1:1:KK2

 DD = EPOCHS2.EPDT{k};

 EPOCHST.EPDT{uu1} = DD;

 EPOCHST.EPLB(uu1) = EPOCHS2.EPLB(k);

 uu1 = uu1 + 1;

end

for k=KK2:1:KK

 DD = EPOCHS2.EPDT{k};

 EPOCHSE.EPDT{uu2} = DD;

 EPOCHSE.EPLB(uu2) = EPOCHS2.EPLB(k);

 uu2 = uu2 + 1;

end

%------------ Filtering Process

fparams.filterType = 'butter';

fparams.filterDegree = 5;

fparams.fs = 250;

%fparams.showFilter = 'showFilter';

fparams.filterFreq=[6,12];

A1 = filterEpochs(EPOCHST,fparams);

fparams.filterFreq=[12,18];

A2 = filterEpochs(EPOCHST,fparams);

fparams.filterFreq=[18,24];

A3 = filterEpochs(EPOCHST,fparams);

fparams.filterFreq=[24,30];

A4 = filterEpochs(EPOCHST,fparams);

fparams.filterFreq=[30,36];

A5 = filterEpochs(EPOCHST,fparams);

KK = numel(EPOCHST.EPDT);

uu1=1;

for k=1:1:KK

 DD = [A1.EPDT{k}' A2.EPDT{k}' A3.EPDT{k}' A4.EPDT{k}' A5.EPDT{k}']';

 EPOCHSX.EPDT{uu1} = DD(:, 1:750);

 EPOCHSX.EPLB(uu1) = EPOCHST.EPLB(k);

 uu1 = uu1 + 1;

end

%------------ Filtering Process

fparams.filterFreq=[6,12];

B1 = filterEpochs(EPOCHSE,fparams);

fparams.filterFreq=[12,18];

B2 = filterEpochs(EPOCHSE,fparams);

44

fparams.filterFreq=[18,24];

B3 = filterEpochs(EPOCHSE,fparams);

fparams.filterFreq=[24,30];

B4 = filterEpochs(EPOCHSE,fparams);

fparams.filterFreq=[30,36];

B5 = filterEpochs(EPOCHSE,fparams);

KK = numel(EPOCHSE.EPDT);

uu1=1;

for k=1:1:KK

 DD = [B1.EPDT{k}' B2.EPDT{k}' B3.EPDT{k}' B4.EPDT{k}' B5.EPDT{k}']';

 EPOCHSY.EPDT{uu1} = DD(:, 1:750);

 EPOCHSY.EPLB(uu1) = EPOCHSE.EPLB(k);

 uu1 = uu1 + 1;

end

%--

%----------------- CSP Process

trainparams.m = 5;

[WCSP,L] = train_csp(EPOCHSX.EPDT, EPOCHSX.EPLB, trainparams);

testparams.classifier = 'LDA';

[LABELS,ZTR,ZTSS] = test_csp(EPOCHSY.EPDT, EPOCHSX.EPDT,

EPOCHSX.EPLB, WCSP, testparams);

PERF = perfCalc(LABELS,EPOCHSY.EPLB)

%--

uu1 = numel(EPOCHSX.EPDT);

%------------ Save EEG Data for training set

for k=1:1:uu1

 CC = ZTR{k};

 if (EPOCHSX.EPLB(k)==1)

 DD =CC(:,:);

 file1x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTra21\S1\ATr_'

num2str(k1,'%03d') '.mat'];

 save (file1x, 'DD');

 k1 = k1 + 1;

 end

 if (EPOCHSX.EPLB(k)==2)

 DD =CC(:,:);

 file2x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTra21\S2\BTr_'

num2str(k2,'%03d') '.mat'];

 save (file2x, 'DD');

 k2 = k2 + 1;

 end

 k

end

uu1 = numel(EPOCHSY.EPDT);

45

%------------ Save EEG Data for testing set

for k=1:1:uu1

 CC = ZTSS{k};

 if (EPOCHSY.EPLB(k)==1)

 DD =CC(:,:);

 file1x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTes21\S1\ETe_'

num2str(l1,'%03d') '.mat'];

 save (file1x, 'DD');

 l1 = l1 + 1;

 end

 if (EPOCHSY.EPLB(k)==2)

 DD =CC(:,:);

 file2x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTes21\S2\FTe_'

num2str(l2,'%03d') '.mat'];

 save (file2x, 'DD');

 l2 = l2 + 1;

 end

 k

end

APPENDİX B. Traing and Testing Algorithms of DNN in Python Language

B1. Traing and Testing Algorithms

import tensorflow as tf

import time

from datetime import timedelta

import math

import random

import numpy as np

import os

import dataset2

#Adding Seed so that random initialization is consistent

from numpy.random import seed

seed(1)

from tensorflow import set_random_seed

set_random_seed(2)

#--

train_path = './T2008FCSPTra/'

valid_path = './T2008FCSPTes/'

batch_size1 = len(os.listdir(valid_path+'S1/')) + len(os.listdir(valid_path+'S2/'))

print ("batch_size:",batch_size1)

##Network graph params

filter_size_conv1 = 6

46

num_filters_conv1 = 40

filter_size_conv2 = 6

num_filters_conv2 = 40

filter_size_conv3 = 6

num_filters_conv3 = 40

filter_size_conv4 = 6

num_filters_conv4 = 40

fc_layer_size1 = 1024

keep_rate = 0.8

keep_prob=tf.placeholder(tf.float32)

#---

batch_size = 16

validation_size = 0.2

img_size = 750

classes = os.listdir(train_path)

num_classes = len(classes)

#--

count1 = 0

count2 = 0

We shall load all the training and validation images and labels into memory using

openCV

data = dataset2.read_train_sets(train_path, valid_path, img_size, classes,

validation_size=validation_size)

print("Complete reading input data. Will Now print a snippet of it")

print("Number of files in Training-set:\t\t{}".format(len(data.train.labels)))

print("Number of files in Validation-set:\t{}".format(len(data.valid.labels)))

session = tf.Session()

x = tf.placeholder(tf.float32, shape=[None, img_size,num_channels], name='x')

y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')

y_true_cls = tf.argmax(y_true, dimension=1, name ='y_true_cls')

is_training = tf.placeholder(tf.bool , name ='is_training')

def create_weights(shape):

 return tf.Variable(tf.truncated_normal(shape, stddev=0.05))

def create_biases(size):

 return tf.Variable(tf.constant(0.05, shape=[size]))

def create_convolutional_layer(inputx,

47

 num_input_channels,

 conv_filter_size,

 num_filters, MP):

 global is_training, count1

 ## We shall define the weights that will be trained using create_weights function.

 weights = create_weights(shape=[conv_filter_size, num_input_channels,

num_filters])

 ## We create biases using the create_biases function. These are also trained.

 biases = create_biases(num_filters)

 ## Creating the convolutional layer

 layer1 = tf.nn.conv1d(value = inputx,

 filters = weights,

 stride = 1,

 padding = 'SAME')

 layer1 += biases

 BN = tf.layers.batch_normalization(

 inputs = layer1,

 training = is_training

)

 count1 = count1 + 1

 ad = "Layer-CNN" + str(count1)

 ## Output of pooling is fed to Relu which is the activation function for us.

 layer2 = tf.nn.relu(BN)

 print ("layer ------>",layer2.shape)

 return layer2

def create_flatten_layer(layer, NN):

 #We know that the shape of the layer will be [batch_size img_size img_size

num_channels]

 # But let's get it from the previous layer.

 layer_shape = layer.get_shape()

 num_features = layer_shape[1:4].num_elements()

 ## Now, we Flatten the layer so we shall have to reshape to num_features

 if (NN==1):

 layer3 = tf.reshape(layer, [-1, num_features], name = "layer_fc2")

 if (NN==2):

 layer3 = tf.reshape(layer, [-1, num_features], name = "layer_flat")

 print ("layer-flat ------>",layer3.shape)

48

 return layer3

def create_fc_layer(inputx,

 num_inputs,

 num_outputs,

 use_relu):

 global count2

 #Let's define trainable weights and biases.

 weights = create_weights(shape=[num_inputs, num_outputs])

 biases = create_biases(num_outputs)

 layer1 = tf.matmul(inputx, weights) + biases

 count2 = count2 + 1

 ad = "Layer-FNN" + str(count2)

 if use_relu==0:

 layer3 = tf.nn.relu(layer1, name = ad)

 if use_relu==1:

 layer3 = tf.nn.tanh(layer1, name = ad)

 if use_relu==2:

 layer3 = tf.sigmoid(layer1, name = ad)

 print ("layer-fc ------>",layer3.shape)

 return layer3

layer_conv1 = create_convolutional_layer(inputx= x,

 num_input_channels= num_channels,

 conv_filter_size = filter_size_conv1,

 num_filters = num_filters_conv1,

 MP = 0)

layer_conv2 = create_convolutional_layer(inputx= layer_conv1,

 num_input_channels= num_filters_conv1,

 conv_filter_size = filter_size_conv2,

 num_filters = num_filters_conv2,

 MP = 0)

layer_conv3 = create_convolutional_layer(inputx= layer_conv2,

 num_input_channels= num_filters_conv2,

 conv_filter_size = filter_size_conv3,

 num_filters = num_filters_conv3,

 MP = 0)

layer_conv4 = create_convolutional_layer(inputx= layer_conv3,

 num_input_channels= num_filters_conv3,

 conv_filter_size = filter_size_conv4,

 num_filters = num_filters_conv4,

49

 MP = 0)

#--------

layer_flat = create_flatten_layer(layer_conv4, 2)

print ("layer_flat=",layer_flat.shape)

layer_fc1x = tf.nn.dropout(layer_flat,keep_rate)

layer_fc1 = create_fc_layer(inputx= layer_fc1x,

 num_inputs =

 layer_flat.get_shape()[1:4].num_elements(),

 num_outputs = fc_layer_size1,

 use_relu = 0)

#--------

layer_fc1y = tf.nn.dropout(layer_fc1,keep_rate)

layer_fc2 = create_fc_layer(inputx= layer_fc1y,

 num_inputs = fc_layer_size1,

 num_outputs = num_classes,

 use_relu = 0)

#---

y_pred = tf.nn.softmax(layer_fc2, name='y_pred')

y_pred_cls = tf.argmax(y_pred, dimension=1 ,name='y_pred_cls')

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,

labels=y_true, name='cross_entropy')

cost = tf.reduce_mean(tf.square(layer_fc2 - y_true), name='cost')

optimizer = tf.train.AdamOptimizer(learning_rate=0.0001, name =

'optimizer').minimize(cost)

correct_prediction = tf.equal(y_pred_cls, y_true_cls, name='correct_prediction')

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),name

='accuracy')

dogru = tf.reduce_mean(tf.square(layer_fc2 - y_true),name ="dogru")

session.run(tf.global_variables_initializer())

def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss,x_batch,

y_true_batch, x_valid_batch,y_valid_batch):

 global val_acc,acc

 acc = session.run(accuracy, feed_dict=feed_dict_train)

 acc1 = session.run(dogru, feed_dict=feed_dict_train)

 acc2 = session.run(dogru, feed_dict=feed_dict_validate)

 val_acc = session.run(accuracy, feed_dict=feed_dict_validate)

 print ("Epoch:",epoch + 1, "acc:", acc, "val_acc:",val_acc, "val_loss:",val_loss)

50

 print ("Egitim-Hatasi :", acc1, "Test-Hatasi :",acc2)

total_iterations = 0

saver = tf.train.Saver()

def train(num_iteration):

 global total_iterations

 for i in range(total_iterations, total_iterations + num_iteration):

 x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size)

 x_valid_batch, y_valid_batch, _, valid_cls_batch =

data.valid.next_batch(batch_size1)

 feed_dict_tr = {x: x_batch, y_true: y_true_batch,is_training:True}

 feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch,is_training:False}

 extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

 session.run([optimizer, extra_update_ops],feed_dict=feed_dict_tr)

 if i % int(data.train.num_examples/batch_size) == 0:

 val_loss = session.run(cost, feed_dict=feed_dict_val)

 epoch = int(i / int(data.train.num_examples/batch_size))

 show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss,x_batch,

y_true_batch, x_valid_batch,y_valid_batch)

 saver.save(session, './EEG-model')

 total_iterations += num_iteration

train(num_iteration=24000)

B2. Loading MATLAB EEG Data from the file Directories into Python Program

import cv2

import os

import glob

from sklearn.utils import shuffle

import numpy as np

import scipy.io as sio

on = 750

def load_train(train_path, image_size, classes):

 global image

 images = []

 labels = []

 img_names = []

 cls = []

51

 image = np.zeros(on).astype(np.float64)

 print('Going to read training images')

 for fields in classes:

 index = classes.index(fields)

 print('Now going to read {} files (Index: {})'.format(fields, index))

 path = os.path.join(train_path, fields, '*')

 files = glob.glob(path)

 for fl in files:

#-----

 Buf1 = sio.loadmat(fl)

 Buf2 = np.transpose(Buf1['DD'])

#-----

 images.append(Buf2.copy())

 label = np.zeros(len(classes))

 label[index] = 255.0

 labels.append(label.copy())

 flbase = os.path.basename(fl)

 img_names.append(flbase)

 cls.append(fields)

 images = np.array(images)

 labels = np.array(labels)

 img_names = np.array(img_names)

 cls = np.array(cls)

 return images, labels, img_names, cls

class DataSet(object):

 def __init__(self, images, labels, img_names, cls):

 self._num_examples = images.shape[0]

 self._images = images

 self._labels = labels

 self._img_names = img_names

 self._cls = cls

 self._epochs_done = 0

 self._index_in_epoch = 0

 @property

 def images(self):

 return self._images

 @property

 def labels(self):

 return self._labels

 @property

52

 def img_names(self):

 return self._img_names

 @property

 def cls(self):

 return self._cls

 @property

 def num_examples(self):

 return self._num_examples

 @property

 def epochs_done(self):

 return self._epochs_done

 def next_batch(self, batch_size):

 """Return the next `batch_size` examples from this data set."""

 start = self._index_in_epoch

 self._index_in_epoch += batch_size

 if self._index_in_epoch > self._num_examples:

 # After each epoch we update this

 self._epochs_done += 1

 start = 0

 self._index_in_epoch = batch_size

 assert batch_size <= self._num_examples

 end = self._index_in_epoch

 return self._images[start:end], self._labels[start:end], self._img_names[start:end],

self._cls[start:end]

def read_train_sets(train_path, valid_path, image_size, classes, validation_size):

 class DataSets(object):

 pass

 data_sets = DataSets()

 images, labels, img_names, cls = load_train(train_path, image_size, classes)

 images, labels, img_names, cls = shuffle(images, labels, img_names, cls)

 Vimages, Vlabels, Vimg_names, Vcls = load_train(valid_path, image_size, classes)

 Vimages, Vlabels, Vimg_names, Vcls = shuffle(Vimages, Vlabels, Vimg_names,

Vcls)

 if isinstance(validation_size, float):

 validation_size = int(images.shape[0])

 validation_images = Vimages

 validation_labels = Vlabels

 validation_img_names = Vimg_names

 validation_cls = Vcls

53

 train_images = images

 train_labels = labels

 train_img_names = img_names

 train_cls = cls

 data_sets.train = DataSet(train_images, train_labels, train_img_names, train_cls)

 data_sets.valid = DataSet(validation_images, validation_labels,

validation_img_names, validation_cls)

 return data_sets

54

55

CURRICULUM VITAE

Name Surname : Leyla Abilzade

Place and Date of Birth : Azerbaijan, 28 December 1993

E-Mail : suleymanli17@itu.edu.tr

EDUCATION

• Bachelor Degree :2011, Azerbaijan Technical University, Mobile

 Communication Pogram, Radio Engineering

 Telecommunication and Electronic Engineering

