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CLASSIFICATION OF THE MOTOR EEG SIGNALS BY USING DEEP 

NEURAL NETWORKS 

SUMMARY 

The brain-computer interface (BCI), establishing relationship between brain and 

devices have become increasingly important recent times. Both being able to 

communicate with disabled people and playing video games without effort increases 

the value of the subject. However, the classification achievements of BCI that obtained 

by conventional methods have not yet reached the desired levels. In this respect, it 

forces to search for new methods that will improve the classification performance. It 

is observed that using deep learning techniques has achieved the desirable higher 

performances. In this thesis, the deep neural networks (DNN) were used to classify the 

EEG (electroencephalogram) signals to increase classification output. 

In this study the proposed network models were applied on dataset of the BCI 

Competition 2008. The database contains inputs obtained from nine subjects. There 

are five EEG recordings for each subject collected at different times by three electrodes 

C3,C4 and Cz. During training feedback was used for three records. This informs the 

subject how accurately he/she performed the task, but in this study, the feedback 

records have not been used. To describe the experiment, each subject is asked to 

imagine moving his or her right or left hand in accordance with the direction of the 

arrow shown on the screen and EEG was recorded on each experiment. Therefore, the 

EEG features contain information only belonging to two classes. 

In this study, the effects of channel number on classification performance were 

investigated. In this context, two methods will be compared: (i) EEG data from 3 

channels are filtered by a filter with 5 different frequency bands. In this case, the 

number of channels increases to 15. EEG data from 15 channels are parsed using the 

Common Spatial Pattern (CSP) method and the signals at the CSP output are delivered 

to the deep neural network for classification. (ii) EEG data from 3 channels are directly 

transmitted to the deep neural network for classification. In general, it is desirable that 

the number of channels be large in order to classify the EEG data more accurately. 

However, this makes the system even more complicated. With the new channels that 

are increased in the study, both classification performance is increased and system 

complexity is reduced. 

In this study, the effects of channel number on classification performance were 

investigated. In this context, two methods will be compared: (i) EEG data from 3 

channels are directly employed by deep neural (DNN) for classification. (ii) EEG data 

from 3 channels are filtered by five bandpass filters. In this case, the number of 

channels increase to 15. EEG data from 15 channels are extracted to the features using 

the CSP method and the signals at the output of the CSP are then delivered to the deep 

neural network for classification. In general, it is desirable that the number of channels 

be large in order to classify the EEG data more accurately. However, this makes the 
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system even more complicated. But in this study the created extra channels can both 

reduce complexity and increase classification performance. 

In this study, generalization of DNN is also examined. BCI systems are often designed 

depending on the subject. Therefore, there exist 9 different DNN for each subject. But 

doing so could make disadvantage for CSP to achieve its best performance, even 

though CSP is known best feature extractor method. This disadvantage overcame by 

using the DNN with CSP for the whole data together that collected from nine subjects. 

In this study, EEG data is extracted in MATLAB environment by using prefiltering 

and CSP method. Then DNN has been used to train the extracted features on the 

GeForce 2080 Nvidia graphics card and coded by using the Tensorflow library in 

Python in the Linux environment. In total 80% of the EEG data was used for training 

set and other 20% is used for the test set. In this thesis, a new BCI method (filter + 

CSP + deep neural network) has been developed which gives high classification 

performance. 
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DERİN SİNİR AĞLARI KULLANARAK MOTOR EEG SİNYALLERİNİN 

SINIFLANDIRILMASI 

ÖZET 

Zaman geçtikçe, teknolojik yenilikler hayatımızın vazgeçilmezleri haline geliyor. Bu 

durumda, insanlar aralıksız yeni keşifler yapmayı veya diğerlerinin yaptıklarını 

geliştirerek diğerlerinden daha iyi sonuçlar elde etmeyi amaçlar. Bu teknolojik 

deneylerin türünde, eğitimde veya günlük yaşamımızda olsun, genel olarak insan 

yaşamını kolaylaştırması amaçlanmaktadır. BCI (Beyin bilgisayar arayüzü ) da tam 

olarak bu sinifa dahildir.  

BCI son dönemlerde araştırma konularında önemli ölçüde değer kazanmaya 

başlamıştır. Gerek engelli insanlarla iletişim kurulması, yaşam kalitesinin arttırılması; 

gerekse oyun sektöründe kullanılma potansiyelinin yüksek oluşu konunun insani ve 

ticari yönden değerini arttırmaktadır. Oyun ekipmanından yapay organlara kadar çok 

çeşitli uygulamalarda kullanılan BCI teknolojisinin başlıca amacı, insan beyni ile 

elektronik cihaz arasında hiçbir bir periferik sinir yolu olmayan ara iletişim kanalı 

oluşturmaktır. 

Bağımsız ve pratik BCI türü olmasından dolayı, MI (hayali motor) çeşitli BCI en 

popüler metodlardan biridir. Hayali motor hareketler, gerçekte hiçbir fiziksel vücut 

haraketi yapmadan onun hayalini beyinde canlandırmaktır. Buna, sağ elin,sol elin veya 

ayaklarımızı hareket etdiriyor gibi düşünmek örnek ola bilir. MI hareketleri zamanı, 

beyinde sinyaller oluşmaya başlar ve bu motor sinyaller beyin bölgesinin üst-orta 

kısmında yerleşen motor korteksde üretiliyor ve genel olarak beş sınıfa ayrılıyor: 

α,β,θ,λ,γ. Her biri farklı frekans aralığını kapsıyor ve her biri farklı durumlarda 

yaranıyor, örneğin uyku zamanı veya ayık olduğumuz durumlar. Bu sinyalleri 

toplamak için çeşitli yöntemler kullanılıyor: Manyetoensefalografi (MEG), 

Elektroensefalogram (EEG), veya Fonksiyonel manyetik rezonans görüntüleme 

(fMRI) vb. Bilimsel araştırmalarda, örneğin, BCI'da en çok tercih edilen sinyal 

toplama yöntemi tam olarak EEG'dir. Non-invaziv olması EEG'yi tercih etmek için 

önemli sebeplerden biridir, çünkü bu teknik sinyal kaydı sırasında ameliyat 

gerektirmez. EEG başka bir deyişle- elektroansefalo, kafanın farklı bölgelerinde 

yerleştirilmiş elektrodlar, bu elektrodların bağlandığı amplifaktör ile insan beyninde 

üretilen sinyelleri kağıt üzerinde veya bilgisayarda basıyor. EEG bir çok alanda 

kullanıla bilinir: tıpta, deneysel araştırma labaratuarlarında ve saire. Epilepsi, beyin 

tümörü, hafıza bozuklukları, uyku problemleri, felç vb. birçok hastalıklar bile EEG 

kullanılarak tespit edilebilinir. Burada, BCIda sağlam veya hasta insanlar üzerinde 

farklı deneyler yapılarak tüm bedeni veya bedeninin bir kısmı felç olan insanlara bir 

tür yardımda bulunmak istenilir. Deneyler sırasında, EEG ile toplanılan beyinde 

üretilen sinyaller daha sonra sınıflandırılma adlandırılan prosedürde kullanılır. Mesela 

eğer deney sırasında sağ veya sol elimizi hareket etdirdiyimizi hayel etmeyi isterlerse, 

sınıflandırma yaparak toplanmış sinyallerin hangisinin sağ ve hangisinin sol el hayali 

hareket zamanı beyinde üretildiğini bula biliriz. Fakat bu o kadar da kolay bir işlem 

değildir. Sınıflandırma zamanı daha yüksek ve başarılı sonuçlar almak için herkes 
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farklı yöntemler kullanır. Ancak klasik yöntemlerle elde edilen sınıflama başarımları 

henüz istenilen düzeylere ulaşamamıştır. Bu bağlamda hızlı ve sınıflama başarımı 

yüksek yeni yöntemlerin araştırılması son derece önemlidir. Son yıllarda derin 

öğrenme konusunda yüksek sınıflama başarımları elde edildiği gözlenmektedir.  

Bu tez çalışmasında EEG işaretleri, yüksek sınıflama başarımı olan derin sinir ağları 

kullanılarak sınıflandırılmıştır.  

Çalışmada geliştirilen ağ modelleri, 2008 yarışmasında yayınlanan ve Graz 

Universitesi tarafından gerçekleştirilmiş veri tabanı üzerinde denenmiştir. 2008 

yarışma veri tabanında 9 denek bulunmaktadır. Her denek için farklı zamanlarda 

alınmış 5 EEG kaydı bulunmaktadır. Kayıtlar alınırken 3 tanesi için geri besleme 

kullanılmıştır. Yani, kayıt alınırken ekranda gösterilen komutun ne kadar doğrulukla 

icra edildiği geri besleme ile deneğe bildirilir. Bu çalışmada geri besleme 

kullanılmadan alınan kayıtlar kullanılmiş ve elde edilmiş olan sonuçların bu kayıtlarda 

bile yüksek başarı kazana bildiği gösterilmiştir. Her deneğe hayali motor haraketleri 

icra etmesi istenilir, yani, 7 saniye kapsamında ekranda gösterilen okun yönüne uygun 

olarak sağ veya sol elini hareket ettirdigini düşünmesi istenlir ve bu sırada EEG 

kayıtları toplanır. Dolayısıyla EEG işaretlerinde sadece iki sınıfa ait bilgi 

bulunmaktadır. Kayıtlarda 3 kanaldan (C3, C4, Cz) alınan EEG verileri 

bulunmaktadır. 

Çalışmada kanal sayısının sınıflama başarımı üzerindeki etkileri incelenmiştir. Bu 

bağlamda iki metot karşılaştırılacaktır:  

(i) 3 kanaldan gelen EEG verileri, sınıflandırılması için direkt olarak derin sinir ağına 

(DNN) verilmektedir. Burda, öznitelik çıkarmak için başarılı sonuçları ile popüler olan 

Evrişimsel Sinir Ağı (CNN), sınıflandırma için ise Tamamen Bağlı Sinir Ağı (FCNN) 

kullanılmaktadır. 

(ii) 3 kanaldan gelen EEG verileri, 5 farklı frekans bandına sahip süzgeçle süzülür. Bu 

durumda kanal sayısı, 15'e yükselir. 15 kanaldan gelen EEG verileri, Ortak Uzamsal 

Örüntü (CSP) metodu kullanılarak ayrıştırılır ve CSP çıkışındaki sinyalleri önce CNN 

daha sonra ise FCNN metodunu kullanarak sınıflmadırma  yapılır.  

Genelde EEG verilerinin daha doğru sınıflandırılabilmeleri için kanal sayısının büyük 

olması istenilmektedir. Ancak bu durum, sistemi daha da karmaşık hale getirebiliyor. 

Çalışmada sanal olarak arttırılan yeni kanalllar ile hem sınıflama başarımı arttırılır hem 

de sistem karmaşası azaltılır.  

Çalışmada aynı zamanda derin sinir ağının genelleme özelliği de incelenmektedir. 

Beyin bilgisayar arayüzü sistemleri genellikle kişiye bağlı tasarlanmaktadır. Bu 

nedenle önce 9 deneğin her biri için ayrı bir derin sinir ağı bulunmuştur. Her ne kadar 

CSP basitlikle güçlü bir yöntem olsa da, bazı eksiklikleri de mevcutdur. CSP'nin beyin 

bilgisayar arayüzlerinde motor hareketindeki başarısı büyük ölçüde ERD (olaya dayalı 

senkronizasyon) ve ERS (olaya dayalı senkronizasyon) denilen fizyolojik olaylara 

bağlıdır ve bu yöntem çoğunlukla bireysel sistemlerde kullanılır. CSP ile yüksek 

sınıflama başarımı elde edilmesine karşın aslında CSP'nin kişiye/deneğe bağlı olması 

metodun bir dezavantajıdır. Bu dezavantaj, derin sinir ağı kullanılarak giderilmiştir. 

Bu bağlamda tüm 9 deneğe ait veri kullanılarak deneklerin hepsi için tek bir derin sinir 

ağı bulunmuştur.  

Çalışmada EEG verileri, MATLAB ortamında ayrıştırılır. Filtreler ve CSP metodu 

kullanılarak veriler ayrı ayrı dizinlere yazılır. Daha sonra, dizinlere ayrıştırılan veriler, 

derin sinri ağını eğitmek için kullanılır. Derin sinir ağlarının eğitimi, GeForce 2080 
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Nvidia grafik kartına sahip bir iş istasyonunda yapılmıştır. Derin sinir ağı modelleri, 

Linuks ortamında Python dilinde Tensorflow kütüphanesi kullanılarak kodlanmıştır. 

Toplam EEG veri kaydının %80'si eğitim kümesi için; diğer %20'si ise test kümesi 

için kulllanılmaktadır. Bu tezde yüksek sınıflama başarımı veren, şahıstan bağımsız 

yeni bir beyin blgisayar arayüzü metodu (filter + CSP + derin sinir ağı) geliştirilmiştir.    
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1. INTRODUCTION 

For decades, human brain has been studied for various purposes. These purposes span 

from extracting information from human brain by using brain imaging techniques[1] 

to transmitting the information into another environment in order to accomplish a 

given task[2].   

BCI, or sometimes known as BMI (brain machine interface) allows computers to read 

signals created by human brain. Several methods can be challenged to learn brain 

activity within BCI system. Invasive and non-invasive methods are the most popular 

techniques that are broadly used. Invasive methods are developed to derive brain 

signals directly from human brain by surgery, while in non-invasive methods 

electrodes placed on the human scalp to measure brain activity. Because of its cheap 

and better resolution ability, the EEG is preferable type of non-invasive BCI methods 

(Figure 1.1).  

 

Figure 1.1: Electroencephalogram [13]. 

Motor imagery (MI), widely used mental task where a subject imagining himself or 

herself moving any body part, like hand, tongue, feet and etc. MI signals, together with 

Event related potentials(ERP) are the only signals that has been proven to work 

efficiently on BCI(Brain Computer Interface) tasks[3]. There exists motor cortex 
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region in the cerebral cortex which produces brain waves while executing MI 

movements (Figure 1.2).  

BCI systems help to record EEG signals that is produces in human brain during 

performing motor actions. Signals are collected by electrodes attached to the specific 

scalp regions. Using collected signals people try to analyze brain diseases and offer 

cure. Figure 1.3 shows procedure of EEG signals collected in BCI system during 

implementing MI tasks. 

 

Figure 1.2: Topography of motor cortex labelled with red on the cerebral cortex [14]. 

Researchers have developed toolboxes and libraries in python such as Gumpy, MNE, 

Wyrm in order to make it easy to process the corresponding signals [4][5][6]. 

However, these tools are still not enough compact and easy to use. Therefore, 

MATLAB and Python are used together in most cases in order to employ BCI models.  
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Figure 1.3: Procedure for MI based BCI system [15]. 

 

As seen from the Figure 1.3, MI BCI combines 4 main stages, namely: data collection, 

preprocessing, signal processing and translation to device commands. In the first stage, 

signals are collected, digitalized and stored with the help of EEG recorder and 

electrodes. In preprocessing stage collected signals involved to be filtered, cleaned and 

transformed and so on. Signal processing stage itself combine feature extraction and 

classification phases. To discriminate EEG signals, feature extraction is used. To 

determine the classes corresponding to different mental states, extracted features then 

pass to classification phase. Finally, categorized signals are translated to device 

commands such as wheelchair, drone or robotic something. To obtain better 

classification results in this research area, many studies have been done, and offered 

various methods. 

CNN (Convolutional Neural Network), as one of the most popular deep learning 

models, serves to extract EEG features. In [16], researchers used CNN and SAE 

(stacked autoencoders) method in classifying signals recorded by EEG during 

performing mental task. Achieved accuracy result was 77.6%. Many studies have 

applied CSP algorithm, known as popular preprocessing stage. For example, Yang et 

al. [17] used CSP features in their CNN model to classify MI EEG measurements, and 

reached accuracy to 69.27%. Also, Aghaei et al. [18] proposed CSSP (common spatio 

spectral patterns) algorithm which required less computation and then Ang et al. [19] 

offered to use CSP with filter bank in order to obtain higher classification results. 
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In [7] Zhang et al. compared an algorithm that contains Morlet Wavelet 

Transformation(MWT) and neural nets with CNN by using BCI competition II dataset 

III which contains 280 trials that are obtained during the MI task of right and left hand. 

They have concluded that WNN’s computational efficiency is limited. Therefore, 

CNN performs better. In [8] Jun yang and his coworkers have combined CNN, 

Discrete Wavelet Transformation, and RNN in their study that intents to uncover the 

patterns of different EEG tasks. In their experiment, EEG recordings of 6 subjects were 

used for classifying MI (left hand) and MI (Right Foot). Recordings of 7 subjects were 

used for classifying MI (left hand) and MI (Right Hand). They also classified the 

samples of MI tasks in which the imagination of left hand and tongue was the two 

different tasks. This experiment is carried out with 12 subjects. They have concluded 

that RNN(LSTM) combined with DWT and CNN is a relatively more accurate 

classifier than CNN alone and more capable of handling subject independency in 

multi-task BCI applications. 

In [9] Kumar et. Al. By using the dataset 4a of BCI competition 3(140trials Left Hand, 

140 Trials for Right Hand) tried to reveal the patterns via Autoencoders and then 

evaluated the performance of the network. They have minimized the maximum error 

while keeping the network computationally efficient by using RBM in combination 

with CSP. 

In [10] jin zhang et al. have transformed first 10 seconds of Motor  imagery signals 

into images by utilizing STFT(Short Time Fourier Transform) and tried a couple of 

activation functions with a CNN  model that contains 7 layers. According to their study 

the activation function called SELU (scaled exponential linear unit) performs better 

than ELU (exponential linear unit) and RELU (Rectified Linear Unit). Having noted 

that SELU works better with STFT, it is not proven to work better than RELU in the 

cases where STFT is not used.  

In another study[11], Huijuan Yang et. al. have combined CNN and a technique called 

ACSP (Augmented CSP) that is created by exploiting FBCSP and Wide Band CSP(4-

30HZ). The purpose of this complicated(sophisticated) approach is to obtain as many 

features as possible and eliminate the not so important ones in the CNN structure so 

that the feature selection process would be automated. This approach has been more 

accurate in classifying some subjects. However, in terms of average accuracy, it did 

not reach the desired level of success(did not beat FBCSP).  
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In [12] Xiang Zhang et. al. employed convolutional recurrent neural network and an 

autoencoder for classifying Physionet database that is consisted of trials from 10 

different subjects whose MI tasks are imagination of Left hand, Right Hand, Both 

hands and both feet. This network had considerable success in classifying physionet 

database (95.53 maximum accuracy). However, this scenario needs to be repeated with 

all subjects because subject independency and generalization ability is of a crucial 

importance in BCI.  

In this study two main frameworks are created in order to observe and understand the 

type of the change in the success of the networks and discuss how to create more 

accurate systems in the interpretation of BCI.  Dataset is taken from a publicly 

available BCI competition(BCI IV dataset 2b) This dataset consists of 9 subjects that 

imagined to move their right hands and left hands during the trials that has been 

repeated 280 times in the experiment.  

In the first framework the raw EEG is fed into the network that consists of 4(and 5 in 

one subject) convolutional layers and one fully connected layer(FCL). The raw EEG 

of each subject have been split into train and test sets. Then, they are fed into the 

networks of their own. Then raw EEGs of all subjects are fed into the same network.  

The purpose of this was to evaluate the inter-subject pattern dependency of the 

framework. Observation of how successful different the behavior of the classifier is 

when being subjected to different sources of BCI signals.  

In the second framework the raw EEG is fed into the network that consists of 4 

convolutional layers and one FCL. In the name of exploiting the information in 

different frequencies the signals are subjected to 5 different band-pass filters before 

they are fed into CSP and their corresponding features are extracted. The outputs of 

CSP filters are connected to a network that is identical to the network that is used in 

the first experiment. Just like the first framework the data of each subject is split into 

two parts as train and test dataset. 9 identical classifiers are evaluated separately, each 

having its own success rate in classifying motor imagery tasks. Finally, instead of 

feeding training sets one by one, all training sets are put together and fed into one 

network. Then the performance of the network is evaluated separately for each subject. 
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2. MOTOR ELECTROENCEPHALOGRAM SIGNALS 

An electroencephalogram (EEG) is a measurement of electrical signals that flow in the 

cerebral cortex. During activation of the brain cells, the produced signals are then 

generating an electrical field on the scalp that can be measured by the EEG recording 

system. Obtained measurements by the synaptic currents from the brain can 

demonstrate the brain function which gives us motivation to use EEG to measure 

electrical activity of the brain. The term of EEG combines the concepts of electro- 

(recording electrical activity), encephalo- (extraction the signals from the scalp), and 

gram- (drawing or writing). EEG plays vital role in our life in detection, diagnosing 

and even in treatment of several brain disorders on human subjects.  

It was Richard Caton (1942-1926) who first recorded brain generated electrical signals 

by using a galvanometer and two electrodes placed over the scalp in 1875, but Hans 

Berger (1873-1941), a psychiatrist was the one who first invented EEG in 1924[20]. 

Then the A.E. Kornmüller recognized the importance of multichannel recordings to 

cover a wider area of the brain region. 

To describe the recent EEG, we think about combination of electrodes (or electrode 

cap) with the set of amplifiers followed by filter and pen type registrars. The electrodes 

used on EEG recording are usually made of high-quality silver/silver chloride discs 

(Ag-AgCl) with long flexible wire, plugged into the amplifier. While recording 

process a conductive gel (charged with ions) is used on the electrode surface to make 

the system able to collect potensials (nerve impulses) from the brain neurons. To start 

the process first, the electrodes need to be distributed to specific regions on the scalp 

by the standards of internationally recognized 10/20 system [21], where 10% and 20% 

refers the distances between adjoining electrodes.Figure 2.1 shows distribution of 20 

electrodes around the circumference of the subject`s head according to the 10/20 

system [22]. 
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Figure 2.1: The placement of electrodes according to the 10-20 system. (a) side view, (b) 

top view. 
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Electrode labels denoted with capital letters represent the area of the cerebral cortex: 

pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), and central (C). 

Here, while odd-numbered electrodes (1,3,5,7) correspond the left side, even numbers 

(2,4,6,8) correspond the right side on the head. And also, there exist electrodes indexed 

with “z” which means midline lobe. Additionally, the reference electrodes are used at 

the earlobes indicated with A1 and A2.  

After locating electorodes on individual head, he/she is instructed to close his/her eyes 

and relax. Switching system on, one can see brain pattern in the form of sinusoidal 

wave shapes on the monitor. Based on their frequency ranges brain waves seperated 

into five essential band groups. 

(i) Alpha rhythms (α, 8-13Hz): these waves can be discovered in adults during 

mental inactivity or under relaxation. They can be detected in the occipital 

locations of the brain. 

(ii) Beta rhythms (β, 13-30Hz): beta waves appear during active thinking, 

focusing or concentrating in normal adults. They are seen mostly around 

tumoural regions. 

(iii) Theta rhythms (θ, 4-8Hz): Play an important role for children and infants. 

They can be defined especially during deep sleep. It is considered that high 

theta waves are abnormal for awake adults.  

(iv) Delta rhythms (δ, 0.5-4Hz): they can be also detected during deep sleep. 

(v) Gamma rhythms (γ, >30Hz): the occurrence of the gamma waves is rare 

and they have been used to detect specific diseases. The region of  these 

waves cover frontocentral area on the brain. 

Above described information tells us that not all frequency bands emphasize the same 

function. The following Figure 2.2 [23] depict typical brain rhythms. 

https://en.wikipedia.org/wiki/Prefrontal_cortex
https://en.wikipedia.org/wiki/Frontal_lobe
https://en.wikipedia.org/wiki/Temporal_lobe
https://en.wikipedia.org/wiki/Parietal_lobe
https://en.wikipedia.org/wiki/Occipital_lobe
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Figure 2.2: EEG frequency bands on time domain. 

After obtaining upper mentioned neural signals by EEG, one can efficiently use them 

on various purposes:  

Medical use: for diagnosing several brain disorders such as, epileptic seizures, brain 

tumors, sleep disorders and so on. 

Research use: classification, clustering BCI based motor imagery (MI) movements 

recorded by EEG. Brain-computer interface (BCI) is the communication pathway 

where subjects are involved to perform specific motor imagery movements through 

EEG recording system. MI is a mental process where one imagine about for instance 

moving his/her arm without actually accomplishing it in real. MI signals typically, are 

obtained from the motor cortex part of the brain. Analyzing MI EEG signals give us 

an opportunity to translate the brain activity into device commands which then in the 

future can assist paralyzed or locked people to complete specific movements by using 

device commands (see Figure 2.3). 

As shown in the Figure 2.3 there two stages in signal processing: feature extraction 

and classification stage which play important role in translating brain waves to the 

commands. In the subsequent sections the feature extraction and classification 

methods will be discussed. 
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It is also worth to mention that while extraction features two main frequency bands 

should be taken into consideration. Based on the mental task type, EEG patterns can 

differ in frequency bands. The one considerable band comprise the bands of µ and β 

which leads the decrease of EEG during imagination of left hand movement and called 

event-related desynchronisation (ERD).The other band includes only β band and 

happen just after the MI task and called event-related synchronisation (ERS).  

                    

Figure 2.3: Architecture of BCI 
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3. COMMON SPATIAL PATTERNS AS PREPROCESSING 

The first stage of EEG signal processing is to convert obtained brain waves into the 

action of accomplishing the subject`s intent. In this stage “feature extraction” plays an 

important role. As mentioned on former section, feature extraction aims to symbolize 

the raw data obtained from EEG signals in the form of “features”. It prepares the 

acquired signals to be able to be translated into the BCI commands. To carry out this 

action feature extraction demonstrate the isolation of the important features from noise 

in the signal. A basic feature can be a voltage difference between two electrodes and 

set of these features arrange a vector, called a feature vector.  

Feature extraction can be divided to number of several steps. The first step is a 

preprocessing. This step also includes different procedures in itself: 

• Prefiltering 

• Normalization 

• Spatial filtering 

Prefiltering procedure mainly, eliminate unuseful frequencies out of specific band and 

pass indicated frequency range. More detailed information about this procedure will 

be provided on further sections of this thesis.  

Regarding normalization, here mean values first are subtracted from each signal and 

then divided by its variance. It is the way that signals are adjusted so the analysis of 

signals can be simplified in this procedure. 

The process of weighting and combining the voltage signals obtained from the scalp 

is known as spatial filtering. Spatial filters are designed to improve EEG source 

localization and can be described in a matrix form [26]: 

 

(3.1) 
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or in an equation form as follow: 

𝑌 = 𝑊𝑋 (3.2) 

where rows and columns of X denote P signal samples from one P channel 

respectively; rows of W matrix combine set of N channel weights; and the Y matrix 

constitute M spatially filtered channels with P samples on each channel. There exist 

two major classes in determining W spatial filter: data-independent and data-

dependent spatial filter. In this section will focus mainly to the CSP - one of the well-

known methods of data-dependent filters. First, CSP [27] will briefly reviewed and 

then  the prior knowledge about its properties will be discussed.  

The development of EEG based BCIs require fast and relaible classification methods 

to distinguish EEG features relating with imagery movements. The method of CSP has 

been achieved the successful classification results on motor imagery experiments. It 

was first applied to detect abnormal brain waves recorded on EEG [28], but then 

J.Müller-Gerking et al. [29] used CSP to discriminate the different populations of 

EEG. It efficiently differentiates classes by maximizing variance of one class while 

minimizing other class. Let’s go deep to CSP model and analyze its discriminative 

ability.  

The goal of this algorithm is that to use linear transformation leading the projection of 

multi-dimensional EEG into the low-dimensional space by the projection matrix. 

Before moving to projection matrix lets first analyze the following optimization 

problem: 

𝑅𝑖 =
𝑋𝑖𝑋𝑖

′

𝑡𝑟𝑎𝑐𝑒(𝑋𝑗𝑋𝑗
′)

 (3.3) 

where,𝑅𝑖 denotes normalized covariance matrix and 𝑋𝑖 denotes the preprocessed EEG 

signal matrix in the two conditions (imagination of the left and right hand movement) 

with dimensions 𝑁 × 𝑇 (𝑋𝑖 ∈ ℝ𝑁×𝑇) in other words an epoch, where i is the epoch 

number per class, N is the number of channels and T is the number of samples per 

channel. 𝑋′ is the transpose of X and trace() function computes the sum of the diagonal 

elements. Thinking that we have two classes we need to calculate 𝑅𝑖 for i trials and 

average sum of the trials for each class. Then we need to sum averaged spatial 

covariances described as below: 
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𝑅 = 𝑅̅𝑙𝑒𝑓𝑡 + 𝑅̅𝑟𝑖𝑔ℎ𝑡         (3.4) 

Afterwards, R can be decomposed as 

𝑅 = 𝐵𝜆𝐵′ (3.5) 

where λ is a diagonal matrix of eigenvalues and B is a corresponding eigenvector. 

Using the formula of whitening transformation for simultaneous diagonalization 

𝑆 = √𝜆−1𝐵′ (3.6) 

The spatial covariances 𝑅𝑙𝑒𝑓𝑡 and 𝑅𝑟𝑖𝑔ℎ𝑡 can be transformed as 

𝑃𝑙𝑒𝑓𝑡 = 𝑆𝑅̅𝑙𝑒𝑓𝑡𝑆′ = 𝑈𝜆𝑙𝑒𝑓𝑡𝑈′ (3.7) 

 

 𝑃𝑟𝑖𝑔ℎ𝑡 = 𝑆𝑅̅𝑟𝑖𝑔ℎ𝑡𝑆′ = 𝑈𝜆𝑟𝑖𝑔ℎ𝑡𝑈′ (3.8) 

where U indicates orthonormal and  𝑃𝑙𝑒𝑓𝑡, 𝑃𝑟𝑖𝑔ℎ𝑡 share common eigenvectors, since 

𝑃𝑙𝑒𝑓𝑡 + 𝑃𝑟𝑖𝑔ℎ𝑡 = 𝑆𝑅̅𝑆′ = 1 (3.9) 

which corresponds to the sum of the two diagonal matrices of eigenvalues 

𝜆𝑙𝑒𝑓𝑡 + 𝜆𝑟𝑖𝑔ℎ𝑡 = 𝐼 (3.20) 

I is the identity matrix. Assuming that eigenvalues are sorted in a descending order, 

the feature vectors of two population of EEG can be discriminated by the first and the 

last eigenvectors of U which proof discriminative ability of spatial filtering. We can 

then obtain projection matrix 𝑊 from the whitened covariance matrices of EEG as 

following: 

𝑊 = (𝑈′𝑆)′   (3.31) 

where rows of 𝑊 are the stationary spatial filters and columns of the 𝑊′ is called the 

common spatial patterns, in other words the CSP. Using CSP algorithm the 
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decomposition of matrix W and an eigenvector can be generated as described on 

equation (3.2). 

The use of CSP is illustrated in Figure 3.1[25] below shows four spatial filters that try 

to maximize the variance of signals of left hand class MI, while minimizing right hand 

class MI (first top two filters) and vice versa (last bottom two filters). This can be seen 

as in light and dark grey windows indicating of right and left hand motor imagery, 

respectively. 

 

Figure 3.1: EEG signals spatially filtered using the CSP algorithm. 

In a nutshell, we can summarize this section that, CSP filtering is highly recommended 

classification method which can efficiently discriminate class features by maximizing 

the variance of EEG signals relating to one class while minimizing the other. 

 

 

 

 

 

 

 

 

 

 

Right Hand MI Left Hand MI 



17 

 

4. CLASSIFICATION OF THE MOTOR EEG SIGNALS 

4.1 Architecture of Deep Neural Network 

This section aims to give the essential background information about the context of 

CNN and FCNN (fully connected neural network). CNN in other words, ConvNet is 

the feedforward neural network in the deep learning, constructed to learn the necessary 

features and proposed by [30]. 

The information in the feedforward neural network flows forward from multiple layers 

in which each node in the layers represents a linear combination of input. Then these 

linear combinations are converted to non-linear activation functions and move to the 

subsequent layer. 

It forms the layers of neurons with three dimensions: width, height, depth (size of filter, 

input layer and output respectively). There exist the three main subjects one should 

know about CNN architecture: convolutional layer, pooling layer and activation 

functions. 

Here on the network, convolutional layers play an important building block role that 

does the most computations in. Each convolutional layer consists of filters that can be 

convolved with the input data stride by stride. The stride for sliding filter should be 

specified in advance. If filter slides with one stride it means it moves one pixel at one 

time, or two strides then two pixels. While moving along the pixels, an activation map 

is produced in response which create an output layer (or input of the next layer) (see 

Figure 4.1.1). 

Pooling or in another word sub-sampling layer, on the other hand is used between 

convolutional layers to reduce computation and parameter size in the network. It 

downsamples every slice of input spatially. There typical options of pooling layer are: 

• Mean pooling 

• Max pooling  

• Sum pooling 
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To compare the types, it has been proven that max pooling can perform better 

performance in compare to mean pooling. Max-pooling serves to reduce the size of the 

input. Example for max-pooling is described on Figure 4.1.2.  

 

Figure 4.1.1: Example of convolutional filter (2x2) convolving with 3x3 input data with 

one stride which produce 2x2 feature map.  

 

Figure 4.1.2: Example of max-pooling (2x2) on input data (4x4) with two stride.  

But many people suggest to eliminate the pooling layer on the CNN architecture as it 

can remove the valuable parameters which can be disregarded.  

Activations play the worthy part in neural network designs. They can show how on the 

network, inputs are transforming. It is preferable to use non-linear functions as they 

allow network to create a complex function which increases ability of learning. There 

exist several traditional activation functions that have been used by researchers. The 

Rectified Linear Unit (ReLU) is one of the most widely used and also utilized on the 

proposed frameworks in this thesis. It removes negative pixels in the activation map 

and sets them to zero[31]: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑧) (4.4) 
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There are several advantages of ReLU as it is much more efficient and provides much 

more accuracy compared to other activation functions. Also, thanks to ReLU every 

activated neuron can pass to the following layer.  

 
Figure 4.1.3: Plot of ReLU [32]. 

FCNN (Fully Connected Neural Network), the inspired variant of MLP (multilayer 

perceptron) and modeled with CNN which plays classifier role. It helps to classify the 

features extracted by CNN. All the neurons here have the connection with the previous 

layer. Figure 4.1.4 [33] below shows basic example for FCNN architecture: 

 
Figure 4.1.4: FCNN with three layers; first layer with five inputs; second layer with 

three hidden units and last layer with two outputs. 

To summarize the above network as a function 𝑓: ℝ𝑁 → ℝ𝑀, where N and M are 

dimensions for input and output respectively [34]. The output function: 

𝑓(𝑥) = 𝑠(𝑊2(𝑠(𝑊1𝑥 + 𝑏1)) + 𝑏2) (4.2) 

where 𝑊𝑙 ∈ ℝ𝑁𝑙×𝑁𝑙−1 indicates weight matrix between the layers of l and (l-1). The 

weight that connects the node j with i in layers l and l-1 respectively, can be represented 

as 𝑤𝑗𝑖
𝑙 ∈ 𝑊𝑙. 𝑏𝑙 ∈ ℝ𝑁𝑙 , is the bias vector and produce a linear shift of weights and 

inputs. An activation function that is used equation (4.2) is described as s() which plays 

a role of serving a non-linear transformation in data.  
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4.2 Classification Process by using DNN 

In order to better learn and analyze the recently famous BCI-based EEG data, many 

researchers have applied deep learning (DL) methods. Because of its more 

advantageous aspects, most authors have preferred to use the CNN among the DL 

algorithms. 

In this part of the chapter we will look the details of proposed first method called 

Framework1(FW1). This framework presents an application of CNN+FCNN without 

of any preprocessing stage to classify motor imagery intents recorded by EEG. In 

FW1, the CNN+FCNN is applied to raw MI-EEG data directly to extract and classify 

the features respectively (see Figure 4.2.1). During the training step in this 

classification method both whole data (all data that is collected from nine subjects) 

and nine separate data which belong to nine subjects were experienced. 80% of the 

total EEG data is used for the training set and other 20% is used for the test set. To 

understand the general idea about proposed framework, the model that is experienced 

on the whole data will only be explained in detail below. In this model the network 

combines 4 convolutional layers, 1 input layer and 1 fully connected layer, 1 hidden 

layer and 1 output layer which is shown on Figure 4.2.2 and explained below in detail. 

 

Figure 4.2.1: CNN model for proposed framework 1. 
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Figure 4.2.2: Architecture for proposed CNN+FCNN. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2: Architecture for proposed CNN+FCNN. 
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(1) The first layer (L0) is input layer in the form of 3x750 matrix, where 3 indicates 

number of channels (C3, C4 and Cz), and 750 is the number samples recorded 

from each channel. 

(2) The convolutional layers (Co1, Co2, Co3, Co4) or in another word hidden 

layers can be called. These layers serve to extract spatial features by 

convolving the BCI based EEG signals with 7 filters (one stride) which results 

20 feature maps at the end of the layer. Speed up the learning “batch 

normalization” is applied followingly. Doing so, we let layer to learn 

independently. As activation function, ReLU is used to all hidden layers. These 

layers are repeated 4 times. 

(3) F5 (750x20): fully connected layer (FCL) where each neuron is connected with 

of all neurons on layer Co4. In this layer the output of the previous layer is 

flattened and then connected to H6-hidden layer. Also, dropout layer is added 

next to H6 to reduce overfitting. 

(4) H6: One more hidden layer with 1024 neurons is followed after F5 to perform 

the classification. To help decreasing interdependent learning, we need dropout 

layer again to be used right after H6. 

(5) O7: the output layer with two neurons representing two classes (lef hand and 

right hand) of the problem. 

4.3 Classification Process by using CSP and DNN 

The second proposed method, called Framework 2 (FW2) consists of 3 progressive 

stages: (i) prefiltering using multiple butterworth band pass filters, (ii) spatial filtering 

using the CSP algorithm(preprocessing) and (iii) feature extraction and classification 

using CNN and FCNN deep learning algorithms. 

1. Prefiltering: the first step, using a filter bank that splits the EEG data into the multi-

frequency bands using a fifth-order butterworth at 250 Hz sampling frequency. 

Total 5 band pass filters are used, namely, 6-12Hz, 12-18Hz, 18-24Hz, 24-30Hz, 
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30-36Hz. We use prefiltering prior to spatial filtering to deal with the sensitivity 

of the CSP to artifacts such as to noise or eye blinking in the EEG records and 

achieve better feature extraction results.Various bands of the filter bank exist that 

are effective, but the most effective frequency ranges in classification MI EEG are 

shown to encompasses beta and mu frequency bands [35]. 

2. Spatial filtering:  the second step plays role of spatial filtering where the algorithm 

of CSP execute the feature extraction. This preprocessing phase is used to detect 

ERD (Event-Related Desynchronization) and ERS (Event-Related 

Synchronization), which are very important in subsequent calculations [36][37]. In 

order for extracting features, it is necessary to obtain the most distinctive ERD and 

ERS to select the best appropriate frequency band that suits for each subject.  

3. Classifcation: the 3rd stage that employs CNN and FCNN to perform a feature 

extraction and classification of EEG features that is successfully preprocessed by 

CSP. Various studies in [39] [40] showed that using CNN model can yield to better 

results on the BCI based EEG datasets. 

Figure 4.3.1 illustrates the classification of two-class MI EEG signals according to 

FW2. 

 

Figure 4.3.1: Framework 2 model. 

 

 

 

 

 



24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

5. COMPUTER SIMULATIONS 

5.1 BCI Database 

In this study, we used the EEG data that presented on BCI Competition Dataset IIb[41]. 

Dataset comprise two classes of MI tasks (left hand and right hand) recorded from nine 

subjects on two separate(different) days. In total five sessions were provided per 

subject, including 3 training and 2 evaluation sessions. We will work only with the 

first two sessions of training part that consist of 240 trials without feedback in total 

(120 trials per session, 60 trials per class). Here each trial begins with a fixation cross 

and a short acoustic tone (1 kHz, 70 ms) to prepare a subject to focus on the following 

command will be displayed on the monitor. At time t=3s a cue in the form of arrow 

appear pointing to the left or right on the screen to guide the subject to execute the 

corresponding MI tasks of left hand and right hand respectively till t=7s. Afterward a 

trial continues with a break that lasts 1.5s. The paradigm for one trial is illustrated in 

Figure 5.1.1. 

The data for each session collected over bilaterally arranged three bipolar channels 

(C3, Cz and C4) according to the 10/20 system (see Figure 5.1.2). 

In this section, the experimental results of proposed methods have been reported. The 

classification performances were calculated by distributing 80% of the data (each 

session separately) for training set and 20% for testing set. In general, two techniques 

employed using BCI dataset: FW1(model without preprocessing stage) and FW2 

(model with preprocessing stage) have been described above. MATLAB programs are 

applied to raw motor EEG signals. GDF files can be loaded by using SioSig toolbox, 

available for free at http://biosig.sourceforge.net/ and all the calculated classification 

accuracies on the test set are conducted using Python codes running on Ubuntu Linux 

workstation. Corresponding results represented on the tables below. The workstation 

used in this study has 32 core CPUs of 2.7 GHz with GeForce GTR2080 Graphics 

card. 
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Figure 5.1.1: Timing scheme (the top) [41] and sample picture (the bottom) [42]of 

training data without feedback. 

 

Figure 5.1.2: Locations of C3, C4 and Cz considering the conventional 10/20 system 

[41]. 
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5.2 Classification Without Preprocessing Stage 

The classification accuracies achieved by FW1 is described in detail as follows. During 

signal processing, no any preprocessing stage is used. Raw data is directly employed 

by CNN+FCNN. Method is experienced on every 9 datasets belonging 9 subjects (S1, 

S2, S3, S4, S5, S6, S7, S8, S9) and the best accuracy value for each subject has showed 

on the Table 5.3 Moreover, the averaged result that is calculated over 9 subjects is 

reported in the table too. During classification of datasets, different convolution layer 

size is used in CNN architecture. Table 5.5 describes layer sizes that is calculated for 

each subject. 

5.3 Classification with Preprocessing Stage 

To see the effect, FW2 was constructed with preprocessing in compare to FW1. Here, 

first CSP is used as feature extraction and then followed by CNN+FCNN to classify 

the two class MI EEG measurements. CSP interpreted to be the most effective method 

as feature extr

actor in classifying two class MI datasets [43]. But as it has sensitivity to noise and 

other artifacts [44], it is recommended to use CSP with prefiltering stage [45] where 

input data first filtered between 6-36 Hz bandpass frequencies. Obtained results is 

described on Table 5.4. 

Table 5.6 show the distributed input sizes of a maximum of 5 convolutional layers 

(Layer 1, Layer 2, Layer 3, Layer 4, Layer 5) calculated for each 9 subjects 

(S1,S2,S3,S4,S5,S6,S7,S8,S9) in FW1 and FW2 respectively. Input size is indicated 

with three values where first value – I is filter size, second value – F is filter size and 

third value – O is output size. 

5.4 Generalization of the Proposed Frameworks 

Evaluated performances of proposed frameworks experienced on motor imagery EEG 

data and comparison results have been carried for FW1 and FW2 based on the 

performances that is obtained on whole data and subject-specific data as shown on 

Table 5.1. 
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From obtained results, that is described above on the table, it is obviously seen that 

proposed second method – FW2 experienced on 9 different subject specific datasets 

gives superior averaged accuracy value of 74% among the other results. 

5.5 Performances obtained by studies in literature 

Offered two methods in the literature by Dai and Tabar, experienced on BCI 

Competition IV dataset have been also compared with the test set accuracy value 

obtained in this study. It is necessary to mention that, as those authors used the whole 

data to calculate the performance we will only compare the result calculated using 

whole data where accuracy is 72.4%. 

Table 5.1: Generalized comparison of FW1 and FW2. 

 Whole 

Data 

The Means of Accuracies 

obtained from each subject 

Training 

Accuracy 
100% 100% 

Test 

Accuracy 

FW1 

64.3% 61.2% 

Test 

Accuracy 

FW2 

72.4% 74% 

Table 5.2: Performances of Test Set accuracies obtained by two methods in Literature 

and in this study. 

Studies Accuracies for Test Set 

In Dai' study [46] 78.2% 

In Tabar' study [16] 

 

77.6% 

 

Proposed Method 72.4% 
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Table 5.3: Subject-specific classification accuracies in FW1. 

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean  

 

Training Accuracy 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

Test  Accuracy 

 

 

60.2% 

 

59% 

 

55.7% 

 

87.6% 

 

58.1% 

 

48.2% 

 

61.2% 

 

60% 

 

59.3% 

 

61.2% 

 

Table 5.4: Subject-specific classification accuracies in FW2. 

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean  

Training Accuracy 
 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

Test Accuracy 

 

79.1% 

 

61.9% 

 

63.2% 

 

94.2% 

 

72.5% 

 

82.9% 

 

66% 

 

72.3% 

 

65% 

 

74% 
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Table 5.5: Distribution of input sizes of convolutional layers for each subject in FW1. 

Subject 

 

                           

Layer 1 I,F,O Layer 2 I,F,O 

 

Layer 3 I,F,O Layer 4 I,F,O 

 

Layer 5 I,F,O 

 

S1  3,5,40 40,5,40 40,5,40 40,5,40 NA 

 

S2                        

 

3,18,20 

 

20,18,20 

 

20,18,20 

 

20,18,20 

 

NA 

 

S3                        

 

3,15,40 

 

40,15,40 

 

40,15,40 

 

40,15,40 

 

40,15,40 

 

S4                        

 

3,15,20 

 

20,15,20 

 

20,15,20 

 

20,15,20 

 

NA 

 

S5                        

 

3,15,20 

 

20,15,20 

 

20,15,20 

 

20,15,20 

 

NA 

 

S6                        

 

3,15,20 

 

20,15,20 

 

20,15,20 

 

20,15,20 

 

NA 

 

S7                        

 

3,15,20 

 

20,15,20 

 

20,15,20 

 

20,15,20 

 

NA 

 

S8                        

 

3,15,20 

 

20,15,20 

 

20,15,20 

 

20,15,20 

 

NA 

 

S9                        

 

3,18,17 

 

17,18,17 

 

17,18,17 

 

17,18,17 

 

NA 

 

 



31 

Table 5.6: Distribution of input sizes of convolutional layers for each subject in FW2. 

Subject 

 

                          

Layer 1 I,F,O Layer 2 I,F,O 

 

Layer 3 I,F,O Layer 4 I,F,O 

 

S1  20,23,20 20,23,20 20,23,20 20,23,20 

 

S2                        

 

6,13,20 

 

20,13,20 

 

20,13,20 

 

20,13,20 

 

S3                        

 

2,3,20 

 

20,3,20 

 

20,3,20 

 

20,3,20 

 

S4                        

 

12,3,30 

 

30,3,30 

 

30,3,30 

 

30,3,30 

 

S5                        
   10,13,30 

 

30,13,30 

 

30,13,30 

 

30,13,30 

 

S6                        

 

2,13,20 

 

20,13,20 

 

20,13,20 

 

20,13,20 

 

S7                        

 

2,13,30 

 

30,13,30 

 

30,13,30 

 

30,13,30 

 

S8                        

 

14,3,30 

 

30,3,30 

 

30,3,30 

 

30,3,30 

 

S9                        

 

10,23,20 

 

20,23,20 

 

20,23,20 

 

20,23,20 
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6. CONCLUSION  

As time passes, technological innovations become indispensable in our lives. In this 

case, people incessantly aim to make new discoveries or improve what others did. In 

general, all these technological innovations, whether in medicine, in education or in 

our daily lives, are aimed at facilitating human life. BCI is one method which is used 

exactly in this type of studies. Here, different experiments are carried out on healthy 

or disabled people, in order to help people with brain disorders such as paralyzed 

people. While conducting the experiments, subjects involved in the experiment are 

fitted with a number of electrodes or a cap consisting of electrodes on their heads. 

Obtained results are collected by EEG recorder. EEG, in other words, the 

electroencephalogram prints the signals produced in the human brain on paper or 

computer with the help of electrodes placed in different parts of the scalp. EEG can be 

used in many fields: medicine, experimental research laboratories and so on. Even 

many diseases: such as epilepsy, brain tumor, memory disorders, sleep problems, 

stroke and etc. can be detected using EEG. In scientific researches, for example in BCI, 

the most preferred signal collection method is exactly EEG. Being non-invasive makes 

EEG preferable, as this technique requires no surgery during signal recording. 

Speaking of experiments, experiments with BCI are performed in different ways, 

based on purposes. But since only one of them is used in this study, it is considered 

appropriate to mention only one of them. 

Study has been completed on “BCI Competition IV, Dataset IIb” dataset, which is 

online available. Nine subjects took part during two-class MI experiments. And each 

is asked to perform MI of left hand and right hand during both training and test 

experiments. In total five sessions were provided per subject, including 3 training and 

2 evaluation sessions. Many studies in the literature have used this dataset to calculate 

the classification accuracies by proposing various classifier models. In [16], 

researchers introduced CNN+SAE (Stacked Autoencoder) method and achieved to the 

accuracy value of 77.6%. In [46], researchers were able to increase the performance to 

78.2% by using CNN+VAE (Variational Autoencoder). But this study presents two 
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separate methods, namely Framework-1 (FW1) and Framework-2 (FW2) for 

classification MI based EEG measurements. The first introduced method - FW1 utilize 

deep learning-based scheme: CNN+FCNN directly to the input raw data, while second 

one – FW2 use preprocessing stage with prefiltering+CSP followed by CNN+FCNN 

classifier. Each framework experienced for both whole dataset and 9 subject- specific 

datasets. It is necessary to mention that, we used only the first two sessions of training 

part that consist of 240 trials without feedback in total (120 trials per session,60 trials 

per class). Using 80% (96 trials) for training and 20% (24 trials) for test of each session 

and then summing (96 (session 1) +96 (session 2); 24 (session 1) +24 (session 2)) them 

make a homogeneous distribution between all trials. To give details about results: we 

obtained classification performances of 64.3% and 72.4% by using whole data; 61.2% 

and 74% bu using 9 differet subject specific datasets in FW1 and FW2 respectively. It 

is clearly seen that, using preprocessing stage in FW2 can lead to more efficient result. 

And in order to get better performance, study suggests classifying the collected 

subject-specific datasets separately. 
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A1. Preparation of EEG Data Sets for First Method 

A2. Preparation of EEG Data Sets for Second Method 
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B1. Traing and Testing Algorithms 

B2. Loading MATLAB EEG Data from the file Directories into Python Program 
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APPENDİX A. Preparation of EEG Data Sets in MATLAB 

 

The GDF files can be loaded using the open-source toolbox BioSig, available for free 

at http://biosig.sourceforge.net/. There are versions for MATLAB  as well as a library 

for C/C++. A GDF file can be loaded with the BioSig toolbox with the following 

command in Octave/MATLAB (for C/C++, the corresponding function HDRTYPE* 

sopen and size t sread must be called): 

 

 [s, h] = sload(’B0101T.gdf’); 

A1. Preparation of EEG Data Sets for First Method 

 

clear all 

close all 

 

fparams.filterFreq   = [6,40];        

fparams.filterType   = 'butter'; 

fparams.filterDegree = 5;            

fparams.fs           = 250; 

 

Cha = {'EEG:C3','EEG:Cz','EEG:C4', 'EOG:ch01', 'EOG:ch02', 'EOG:ch03'}; 

 

k1=0; 

k2=0; 

l1=0; 

l2=0; 

 

%--------- Reading EEG GDF File 

EPOCHS1x = parseEpochsIIII2a('B0101T', Cha) ; 

KK              = numel(EPOCHS1x.EPDT); 

EPOCHS1  = filterEpochs(EPOCHS1x,fparams); 

%number of samples 

TT              = size(EPOCHS1.EPDT{1},2); 

%number of channels 

NN             = size(EPOCHS1.EPDT{1},1); 

 

KK1 = floor(KK*0.8); 

 

%----------- Save EEG Data for testing set 

uu1 = 1; 

for k=1:1:KK1         

    DD = EPOCHS1.EPDT{k}; 

    EPOCHST.EPDT{uu1} = DD(1:NN, 1:750);     

    EPOCHST.EPLB(uu1) = EPOCHS1.EPLB(k); 

    uu1 = uu1 + 1; 



41 

end 

 

for k=1:1:uu1-1 

   CC = EPOCHST.EPDT{k};               

   if (EPOCHST.EPLB(k)==1) 

      DD =CC(1:NN,:); 

      file1x =['C:\Users\ITU\Documents\CSP\BB\S2008HTra21\S1\ATr_' 

num2str(k1,'%03d') '.mat' ]; 

      save (file1x, 'DD'); 

      k1 = k1 + 1; 

   end 

   if (EPOCHST.EPLB(k)==2) 

      DD =CC(1:NN,:); 

      

file2x=['C:\Users\ITU\Documents\CSP\BB\S2008THTra21\S2\BTr_'um2str(k2,'%03

d') '.mat' ]; 

      save (file2x, 'DD'); 

      k2 = k2 + 1;       

   end 

   k 

end 

%----------------------------------------------- 

 

%----------- Save EEG Data for Testing set 

uu1 = 1; 

for k=KK1:1:KK         

    DD = EPOCHS1.EPDT{k}; 

    EPOCHSE.EPDT{uu1} = DD(1:NN, 1:750);     

    EPOCHSE.EPLB(uu1) = EPOCHS1.EPLB(k); 

    uu1 = uu1 + 1; 

end 

 

for k=1:1:uu1-1 

   CC = EPOCHSE.EPDT{k};              

   if (EPOCHSE.EPLB(k)==1) 

      DD =CC(1:NN,:);      

      file1x =['C:\Users\ITU\Documents\CSP\BB\S2008HTes21\S1\ATe_' 

num2str(l1,'%03d') '.mat' ]; 

      save (file1x, 'DD'); 

      l1 = l1 + 1; 

   end 

   if (EPOCHSE.EPLB(k)==2) 

      DD =CC(1:NN,:); 

      file2x =['C:\Users\ITU\Documents\CSP\BB\S2008HTes21\S2\BTe_' 

num2str(l2,'%03d') '.mat' ]; 

      save (file2x, 'DD'); 

      l2 = l2 + 1;       

   end 

   k 

end 
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k1 

k2 

l1 

l2 

 

%---------------------------------------------------------------------------------------------------- 

A2. Preparation of EEG Data Sets for Second Method 

clear all 

close all 

 

fparams.filterFreq   = [6,36];      %[6,15];  

fparams.filterType   = 'butter'; 

fparams.filterDegree = 5;           %7 

fparams.fs           = 250; 

 

Cha = {'EEG:C3','EEG:Cz','EEG:C4', 'EOG:ch01', 'EOG:ch02', 'EOG:ch03'}; 

uu1 = 1; 

uu2 = 1; 

 

k1=0;k2=0;k3=0;k4=0; 

l1=0;l2=0;l3=0;l4=0; 

 

% -------------- Reading EEG GDF file  

 

EPOCHS1x = parseEpochsIIII2a('B0101T', Cha) ; 

KK       = numel(EPOCHS1x.EPDT); 

EPOCHS1  = filterEpochs(EPOCHS1x,fparams); 

TT       = size(EPOCHS1.EPDT{1},2); 

NN       = size(EPOCHS1.EPDT{1},1); 

 

KK1 = floor(KK*0.8); 

for k=1:1:KK1         

    DD = EPOCHS1.EPDT{k}; 

    EPOCHST.EPDT{uu1} = DD;     

    EPOCHST.EPLB(uu1) = EPOCHS1.EPLB(k); 

    uu1 = uu1 + 1; 

end 

 

for k=KK1:1:KK         

    DD = EPOCHS1.EPDT{k}; 

    EPOCHSE.EPDT{uu2} = DD;     

    EPOCHSE.EPLB(uu2) = EPOCHS1.EPLB(k); 

    uu2 = uu2 + 1; 

end 

 

% -------------- Reading EEG GDB file  

 

EPOCHS2x = parseEpochsIIII2a('B0102T', Cha) ; 

KK       = numel(EPOCHS2x.EPDT); 
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EPOCHS2  = filterEpochs(EPOCHS2x,fparams); 

TT       = size(EPOCHS2.EPDT{1},2); 

NN       = size(EPOCHS2.EPDT{1},1); 

 

KK2 = floor(KK*0.8); 

for k=1:1:KK2         

    DD = EPOCHS2.EPDT{k}; 

    EPOCHST.EPDT{uu1} = DD;     

    EPOCHST.EPLB(uu1) = EPOCHS2.EPLB(k); 

    uu1 = uu1 + 1; 

end 

 

for k=KK2:1:KK         

    DD = EPOCHS2.EPDT{k}; 

    EPOCHSE.EPDT{uu2} = DD;     

    EPOCHSE.EPLB(uu2) = EPOCHS2.EPLB(k); 

    uu2 = uu2 + 1; 

end 

 

%------------ Filtering Process 

fparams.filterType      = 'butter'; 

fparams.filterDegree    = 5; 

fparams.fs              = 250; 

%fparams.showFilter      = 'showFilter';  

 

fparams.filterFreq=[6,12]; 

A1  = filterEpochs(EPOCHST,fparams); 

fparams.filterFreq=[12,18]; 

A2  = filterEpochs(EPOCHST,fparams); 

fparams.filterFreq=[18,24]; 

A3  = filterEpochs(EPOCHST,fparams); 

fparams.filterFreq=[24,30]; 

A4  = filterEpochs(EPOCHST,fparams); 

fparams.filterFreq=[30,36]; 

A5  = filterEpochs(EPOCHST,fparams); 

 

KK       = numel(EPOCHST.EPDT); 

uu1=1; 

for k=1:1:KK         

    DD = [A1.EPDT{k}' A2.EPDT{k}' A3.EPDT{k}' A4.EPDT{k}' A5.EPDT{k}' ]';  

    EPOCHSX.EPDT{uu1} = DD(:, 1:750);     

    EPOCHSX.EPLB(uu1) = EPOCHST.EPLB(k); 

    uu1 = uu1 + 1; 

end 

 

%------------ Filtering Process 

fparams.filterFreq=[6,12]; 

B1  = filterEpochs(EPOCHSE,fparams); 

fparams.filterFreq=[12,18]; 

B2  = filterEpochs(EPOCHSE,fparams); 
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fparams.filterFreq=[18,24]; 

B3  = filterEpochs(EPOCHSE,fparams); 

fparams.filterFreq=[24,30]; 

B4  = filterEpochs(EPOCHSE,fparams); 

fparams.filterFreq=[30,36]; 

B5  = filterEpochs(EPOCHSE,fparams); 

 

KK       = numel(EPOCHSE.EPDT); 

 

uu1=1; 

for k=1:1:KK         

    DD = [B1.EPDT{k}' B2.EPDT{k}' B3.EPDT{k}' B4.EPDT{k}' B5.EPDT{k}' ]';  

    EPOCHSY.EPDT{uu1} = DD(:, 1:750);     

    EPOCHSY.EPLB(uu1) = EPOCHSE.EPLB(k); 

    uu1 = uu1 + 1; 

end 

%------------------------------------------ 

 

%----------------- CSP Process 

trainparams.m         = 5;     

[WCSP,L]              = train_csp(EPOCHSX.EPDT, EPOCHSX.EPLB, trainparams); 

testparams.classifier = 'LDA'; 

[LABELS,ZTR,ZTSS]     = test_csp(EPOCHSY.EPDT, EPOCHSX.EPDT, 

EPOCHSX.EPLB, WCSP, testparams); 

PERF                  = perfCalc(LABELS,EPOCHSY.EPLB)  

 

%---------------------------------------------------------- 

 

uu1       = numel(EPOCHSX.EPDT); 

 

%------------ Save EEG Data for training set  

for k=1:1:uu1 

   CC = ZTR{k};               

   if (EPOCHSX.EPLB(k)==1) 

      DD =CC(:,:); 

      file1x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTra21\S1\ATr_' 

num2str(k1,'%03d') '.mat' ]; 

      save (file1x, 'DD'); 

      k1 = k1 + 1; 

   end 

   if (EPOCHSX.EPLB(k)==2) 

      DD =CC(:,:); 

      file2x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTra21\S2\BTr_' 

num2str(k2,'%03d') '.mat' ]; 

      save (file2x, 'DD'); 

      k2 = k2 + 1;       

   end 

   k 

end 

uu1       = numel(EPOCHSY.EPDT); 
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%------------ Save EEG Data for testing set  

for k=1:1:uu1 

   CC = ZTSS{k};              

   if (EPOCHSY.EPLB(k)==1) 

      DD =CC(:,:); 

      file1x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTes21\S1\ETe_' 

num2str(l1,'%03d') '.mat' ]; 

      save (file1x, 'DD'); 

      l1 = l1 + 1; 

   end 

   if (EPOCHSY.EPLB(k)==2) 

      DD =CC(:,:); 

      file2x =['C:\Users\ITU\Documents\CSP\BB\S2008FCSPTes21\S2\FTe_' 

num2str(l2,'%03d') '.mat' ]; 

      save (file2x, 'DD'); 

      l2 = l2 + 1;       

   end 

   k 

end 

APPENDİX B. Traing and Testing Algorithms of DNN in Python Language 

B1. Traing and Testing Algorithms  

import  tensorflow as tf 

import  time 

from  datetime import timedelta 

import  math 

import  random 

import  numpy as np 

import  os 

import  dataset2 

 

 

#Adding Seed so that random initialization is consistent 

from numpy.random import seed 

seed(1) 

from tensorflow import set_random_seed 

set_random_seed(2) 

 

#-------------------------------------------------------------------------------------------------- 

 

train_path      = './T2008FCSPTra/'   

valid_path      = './T2008FCSPTes/' 

batch_size1     = len(os.listdir(valid_path+'S1/')) + len(os.listdir(valid_path+'S2/')) 

print ("batch_size:",batch_size1)   

 

##Network graph params 

 

filter_size_conv1  = 6     
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num_filters_conv1  = 40    

 

filter_size_conv2  = 6    

num_filters_conv2  = 40    

 

filter_size_conv3  = 6    

num_filters_conv3  = 40    

 

filter_size_conv4  = 6      

num_filters_conv4  = 40       

  

fc_layer_size1     = 1024 

keep_rate          = 0.8 

keep_prob=tf.placeholder(tf.float32) 

#------------------------------------------------------------------- 

batch_size         = 16 

validation_size    = 0.2 

img_size           = 750    

classes            = os.listdir(train_path) 

num_classes        = len(classes) 

 

#---------------------------------------------------------------------------------------------------- 

count1 = 0 

count2 = 0 

 

# We shall load all the training and validation images and labels into memory using 

openCV  

data = dataset2.read_train_sets(train_path, valid_path, img_size, classes, 

validation_size=validation_size) 

 

print("Complete reading input data. Will Now print a snippet of it") 

print("Number of files in Training-set:\t\t{}".format(len(data.train.labels))) 

print("Number of files in Validation-set:\t{}".format(len(data.valid.labels))) 

 

 

session     = tf.Session() 

x           = tf.placeholder(tf.float32, shape=[None, img_size,num_channels], name='x') 

 

y_true      = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') 

y_true_cls  = tf.argmax(y_true, dimension=1, name ='y_true_cls') 

 

is_training = tf.placeholder(tf.bool , name ='is_training') 

 

def create_weights(shape): 

    return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) 

 

def create_biases(size): 

    return tf.Variable(tf.constant(0.05, shape=[size])) 

 

def create_convolutional_layer(inputx, 
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               num_input_channels, 

               conv_filter_size, 

               num_filters, MP): 

 

    global is_training, count1 

    ## We shall define the weights that will be trained using create_weights function. 

    weights  = create_weights(shape=[conv_filter_size, num_input_channels, 

num_filters]) 

    ## We create biases using the create_biases function. These are also trained. 

    biases   = create_biases(num_filters) 

 

    ## Creating the convolutional layer 

    layer1   = tf.nn.conv1d(value = inputx, 

                     filters      = weights, 

                     stride       = 1, 

                     padding      = 'SAME') 

 

    layer1  += biases 

     

    BN           = tf.layers.batch_normalization( 

        inputs   = layer1, 

        training = is_training 

    ) 

     

    count1 = count1 + 1 

    ad     = "Layer-CNN" + str(count1) 

 

    ## Output of pooling is fed to Relu which is the activation function for us. 

    layer2     = tf.nn.relu(BN) 

 

    print ("layer ------>",layer2.shape) 

    return layer2 

 

def create_flatten_layer(layer, NN): 

 

    #We know that the shape of the layer will be [batch_size img_size img_size 

num_channels] 

    # But let's get it from the previous layer. 

    layer_shape  = layer.get_shape() 

 

    num_features = layer_shape[1:4].num_elements() 

 

    ## Now, we Flatten the layer so we shall have to reshape to num_features 

    if (NN==1): 

       layer3 = tf.reshape(layer, [-1, num_features], name = "layer_fc2") 

 

    if (NN==2): 

       layer3 = tf.reshape(layer, [-1, num_features], name = "layer_flat") 

 

    print ("layer-flat ------>",layer3.shape) 
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    return layer3 

 

def create_fc_layer(inputx, 

             num_inputs, 

             num_outputs, 

             use_relu): 

 

    global count2 

 

    #Let's define trainable weights and biases. 

    weights  = create_weights(shape=[num_inputs, num_outputs]) 

    biases   = create_biases(num_outputs) 

 

    layer1   = tf.matmul(inputx, weights) + biases 

 

    count2   = count2 + 1 

    ad       = "Layer-FNN" + str(count2) 

 

    if use_relu==0: 

        layer3 = tf.nn.relu(layer1, name = ad) 

    if use_relu==1: 

        layer3 = tf.nn.tanh(layer1, name = ad) 

    if use_relu==2: 

        layer3 = tf.sigmoid(layer1, name = ad) 

 

    print ("layer-fc ------>",layer3.shape) 

    return layer3 

 

layer_conv1 = create_convolutional_layer(inputx= x, 

               num_input_channels=   num_channels, 

               conv_filter_size  =   filter_size_conv1, 

               num_filters       =   num_filters_conv1, 

               MP                = 0) 

 

layer_conv2 = create_convolutional_layer(inputx= layer_conv1, 

               num_input_channels=   num_filters_conv1, 

               conv_filter_size  =   filter_size_conv2, 

               num_filters       =   num_filters_conv2, 

               MP                = 0) 

 

layer_conv3 = create_convolutional_layer(inputx= layer_conv2, 

               num_input_channels=   num_filters_conv2, 

               conv_filter_size  =   filter_size_conv3, 

               num_filters       =   num_filters_conv3, 

               MP                = 0) 

 

layer_conv4 = create_convolutional_layer(inputx= layer_conv3, 

               num_input_channels=   num_filters_conv3, 

               conv_filter_size  =   filter_size_conv4, 

               num_filters       =   num_filters_conv4, 
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               MP                = 0) 

#-------- 

 

layer_flat   = create_flatten_layer(layer_conv4, 2) 

print ("layer_flat=",layer_flat.shape) 

 

layer_fc1x   = tf.nn.dropout(layer_flat,keep_rate) 

layer_fc1    = create_fc_layer(inputx=   layer_fc1x, 

                     num_inputs     =  

 layer_flat.get_shape()[1:4].num_elements(), 

                     num_outputs    =    fc_layer_size1, 

                     use_relu       =   0) 

#-------- 

 

layer_fc1y   = tf.nn.dropout(layer_fc1,keep_rate) 

layer_fc2    = create_fc_layer(inputx=   layer_fc1y, 

                     num_inputs     =   fc_layer_size1, 

                     num_outputs    =   num_classes, 

                     use_relu       =   0) 

 

#------------------------------------------------------------- 

y_pred        = tf.nn.softmax(layer_fc2, name='y_pred') 

y_pred_cls    = tf.argmax(y_pred, dimension=1 ,name='y_pred_cls') 

 

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,   

labels=y_true, name='cross_entropy') 

 

cost          = tf.reduce_mean(tf.square(layer_fc2 - y_true), name='cost') 

 

optimizer     = tf.train.AdamOptimizer(learning_rate=0.0001, name = 

'optimizer').minimize(cost) 

 

correct_prediction = tf.equal(y_pred_cls, y_true_cls, name='correct_prediction') 

accuracy           = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),name 

='accuracy') 

 

dogru              = tf.reduce_mean(tf.square(layer_fc2 - y_true),name ="dogru") 

 

session.run(tf.global_variables_initializer())  

 

def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss,x_batch, 

y_true_batch, x_valid_batch,y_valid_batch): 

    global val_acc,acc 

 

    acc = session.run(accuracy, feed_dict=feed_dict_train) 

    acc1 = session.run(dogru, feed_dict=feed_dict_train) 

    acc2 = session.run(dogru, feed_dict=feed_dict_validate) 

    val_acc = session.run(accuracy, feed_dict=feed_dict_validate) 

 

    print ("Epoch:",epoch + 1, "acc:", acc, "val_acc:",val_acc, "val_loss:",val_loss) 
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    print ("Egitim-Hatasi   :", acc1, "Test-Hatasi   :",acc2)    

 

total_iterations = 0 

saver = tf.train.Saver() 

 

 

def train(num_iteration): 

    global total_iterations 

 

    for i in range(total_iterations, total_iterations + num_iteration): 

 

        x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size) 

        x_valid_batch, y_valid_batch, _, valid_cls_batch = 

data.valid.next_batch(batch_size1) 

 

        feed_dict_tr  = {x: x_batch, y_true: y_true_batch,is_training:True} 

        feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch,is_training:False} 

 

        extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) 

 

        session.run([optimizer, extra_update_ops],feed_dict=feed_dict_tr) 

 

        if i % int(data.train.num_examples/batch_size) == 0: 

            val_loss = session.run(cost, feed_dict=feed_dict_val) 

            epoch = int(i / int(data.train.num_examples/batch_size)) 

            show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss,x_batch, 

y_true_batch, x_valid_batch,y_valid_batch) 

 

            saver.save(session, './EEG-model') 

 

    total_iterations += num_iteration 

 

train(num_iteration=24000) 

B2. Loading MATLAB EEG Data from the file Directories into Python Program 

import  cv2 

import  os 

import  glob 

from  sklearn.utils import shuffle 

import  numpy as np 

import  scipy.io as sio 

 

on    = 750 

 

def load_train(train_path, image_size, classes): 

    global image 

    images = [] 

    labels = [] 

    img_names = [] 

    cls = [] 
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    image = np.zeros(on).astype(np.float64) 

 

    print('Going to read training images') 

    for fields in classes:    

        index = classes.index(fields) 

        print('Now going to read {} files (Index: {})'.format(fields, index)) 

        path = os.path.join(train_path, fields, '*') 

        files = glob.glob(path) 

        for fl in files: 

#----- 

            Buf1 = sio.loadmat(fl) 

            Buf2 = np.transpose(Buf1['DD']) 

#----- 

            images.append(Buf2.copy()) 

            label = np.zeros(len(classes)) 

            label[index] = 255.0 

            labels.append(label.copy()) 

            flbase = os.path.basename(fl) 

            img_names.append(flbase) 

            cls.append(fields) 

    images = np.array(images) 

    labels = np.array(labels) 

    img_names = np.array(img_names) 

    cls = np.array(cls) 

 

    return images, labels, img_names, cls 

 

 

class DataSet(object): 

 

  def __init__(self, images, labels, img_names, cls): 

    self._num_examples = images.shape[0] 

 

    self._images = images 

    self._labels = labels 

    self._img_names = img_names 

    self._cls = cls 

    self._epochs_done = 0 

    self._index_in_epoch = 0 

 

  @property 

  def images(self): 

    return self._images 

 

  @property 

  def labels(self): 

    return self._labels 

 

  @property 
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  def img_names(self): 

    return self._img_names 

 

  @property 

  def cls(self): 

    return self._cls 

 

  @property 

  def num_examples(self): 

    return self._num_examples 

 

  @property 

  def epochs_done(self): 

    return self._epochs_done 

 

  def next_batch(self, batch_size): 

    """Return the next `batch_size` examples from this data set.""" 

    start = self._index_in_epoch 

    self._index_in_epoch += batch_size 

 

    if self._index_in_epoch > self._num_examples: 

      # After each epoch we update this 

      self._epochs_done += 1 

      start = 0 

      self._index_in_epoch = batch_size 

      assert batch_size <= self._num_examples 

    end = self._index_in_epoch 

 

    return self._images[start:end], self._labels[start:end], self._img_names[start:end], 

self._cls[start:end] 

 

def read_train_sets(train_path, valid_path, image_size, classes, validation_size): 

  class DataSets(object): 

    pass 

  data_sets = DataSets() 

 

  images, labels, img_names, cls     = load_train(train_path, image_size, classes) 

  images, labels, img_names, cls     = shuffle(images, labels, img_names, cls)   

 

  Vimages, Vlabels, Vimg_names, Vcls = load_train(valid_path, image_size, classes) 

  Vimages, Vlabels, Vimg_names, Vcls = shuffle(Vimages, Vlabels, Vimg_names, 

Vcls)   

 

  if isinstance(validation_size, float): 

    validation_size = int(images.shape[0]) 

 

  validation_images  = Vimages 

  validation_labels  = Vlabels 

  validation_img_names  = Vimg_names 

  validation_cls  = Vcls 
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  train_images   = images 

  train_labels   = labels 

  train_img_names  = img_names 

  train_cls   = cls 

 

  data_sets.train = DataSet(train_images, train_labels, train_img_names, train_cls) 

  data_sets.valid = DataSet(validation_images, validation_labels, 

validation_img_names, validation_cls) 

 

  return data_sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

 

 

 

 

  



55 

CURRICULUM VITAE 

 

 

 

 

 

Name Surname                   : Leyla Abilzade   

Place and Date of Birth  : Azerbaijan, 28 December 1993 

E-Mail  : suleymanli17@itu.edu.tr 

 

EDUCATION 

• Bachelor Degree              :2011, Azerbaijan Technical University, Mobile 

   Communication Pogram, Radio Engineering  

                                           Telecommunication and Electronic Engineering 

 


