ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

COMPUTATIONAL METHODS FOR INTEGER FACTORIZATION

M.Sc. THESIS

Deniz KIRLIDOG

Department of Computational Science and Engineering

Computational Science and Engineering Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

COMPUTATIONAL METHODS FOR INTEGER FACTORIZATION

M.Sc. THESIS

Deniz KIRLIDOG
(702151002)

Department of Computational Science and Engineering

Computational Science and Engineering Programme

Thesis Advisor: Assoc. Prof. Enver OZDEMIR

JUNE 2019

ISTANBUL TEKNIK UNiVERSITESI % BiLiSiM ENSTIiTUSU

CARPANLARA AYIRMA ICIN HESAPLAMALI YONTEMLER

YUKSEK LiSANS TEZIi

Deniz KIRLIDOG
(702151002)

Hesaplamah Bilim ve Miihendislik Anabilim Dah

Hesaplamah Bilim ve Miihendislik Programi

Tez Damismani: Doc. Dr. Enver OZDEMIR

HAZIRAN 2019

Deniz KIRLIDOG. a M.Sc. student of ITU Informatics Institute student ID
702151002, successfully defended the thesis entitled “COMPUTATIONAL
METHODS FOR INTEGER FACTORIZATION”, which she prepared after fulfilling
the requirements specified in the associated legislations, before the jury whose
signatures are below.

Thesis Advisor : Assoc. Prof. Enver OZDEMIR
istanbul Technical University

Jury Members : Assoc. Prof. Ergiin YARANERI
istanbul Technical University

Asst. Prof. Elif SEGAH OZTAS
Karamanoglu Mehmetbey University

Date of Submission :3 May 2019
Date of Defense : 14 June 2019

To my mother Ikbal and father Melih,

vii

FOREWORD

I would like to thank my advisor Enver Ozdemir, my family and friends for supporting
me throughout this process. I am grateful to my grandfather, aunts and cousin for
encouraging me. Special thanks to Cem Kocagil for proofreading.

May 2019 Deniz KIRLIDOG

X

TABLE OF CONTENTS

Page
FOREWORD......uuiiiiiiiiticiininssisssisnsssicssssssssssesssssssssesssssssssssssssssssssssssssssssssssssans ix
TABLE OF CONTENTS ..cuicvirinrinnnisnnnnisissessesssossss xi
ABBREVIATIONS ...ccouiiiiininnnsnisnississieissssssssssssssssssisssssssssssssssssssssssssssssssssossossss xiii
LIST OF TABLEScouitiitiininicinsinsenssnssissississsons XV
LIST OF FIGURESuuiitiiiinninnennninsnninnenssnssssesssessssessssssssssssassssessssssssesss xvii
SUMMARY ..ccouiiiinieinicsnnissnensncsssncssessssssssassssessssssssssssassssesssssssassssassssssssasssassssasssses Xix
075 || V. AN A A — xxi
1. INTRODUCTION....ucouiuinuisinecsessessesssssssssissessessnes 1

1.1 PUIPOSE OF THESIS ..cuvieiiiiiiieiiieiieeie ettt 1
2. DIFFIE-HELLMAN KEY EXCHANGE AND RSA......ccccvvtiinnnnniccsssnnrecsssnnnes 3
2.1 Public Key Cryptography and Diffie-Hellman Key Exchange.................. 3
2.2 RSA CryptOSYSteIM.....ccoouiieiriiieiiiieeiieeeitee ettt e st eieeesreeesbeeesibeesnareesaeeas 8
3. INTEGER FACTORIZATION ...ucovinuiruisissicsessessessessassssssesssssessessssassssssssssnsons 17
3.1 Binary Quadratic Forms and Groupscccceeevueeneesieeniesiireieeseeeeeans 17
3.2 Shanks’ SQUFOF Algorithm and Improving SQUFOF.......................... 18
3.3 Taking Shanks’ Algorithm a Step Further............cccccooeviviiiniiienienieee 26
3.4 Factoring @ SEMIPIIMEcccueeevieriieeieeiienieeieeeteeieesreeseesveeseessneeseens 30
4. BENCHMARKS ...cuiiiiiiriinininisinsenssnssississiessons 33
4.1 Serial Code COMPATISONcvveeurieriieeiieiieeiteeire et eteeree e eiee e eaee e 33
4.2 Parallel Code COMPATISONccvieruiieiieiieeiieniieeieeeieeree e eiee e eeee e 33
5. CONCLUSION AND FUTURE WORKucovnvtrrensunsnississicecsessessssssssssssesssanes 37
REFERENCES......ciiiiiniiniissinnissiissecsessnsssissssssesssessssssssssssssssssssssessssssssssssssss 39
CURRICULUM VITARE....cuicvininrensnnsrnssississississanes 41

Xi

ABBREVIATIONS

CPU
CRT
CUDA
GMP
GPU
HPC
JIT
LLVM
MPI
PKCS
SQUFOF
UHEM

: Central Processing Unit

: Chinese Remainder Theorem

: Compute Unified Device Architecture

: GNU Multiple Precision Arithmetic Library
: Graphics Processing Unit

: High Performance Computing

: Just-in-Time

: Low Level Virtual Machine

: Message Passing Interface

: Public Key Cryptography Standard

: Square Forms Factorization

: Ulusal Yiiksek Bagarimli Hesaplama Merkezi

Xiii

LIST OF TABLES

Page
Table 3.1: GMP cuGMP COmPariSON........cc.eervreiiienieeiienieeiienieereesnesveesieeeseenenes 23
Table 3.2: Calculated Interval Beginning and Ends..........cccccooevieiiieiiiniiiiiiniree, 27
Table 3.3: Factorization Results Using Intervals...........ccccooevevrieniiienieniiiinieieeee, 28
Table 4.1: Julia vs C++ Serial Code Results...........ccceevvieiieniieniiniieiieeieceesie e 33

XV

LIST OF FIGURES

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:

Page
Conventional Cryptosystem with Single Key Source......................... 3
Public Key CryptoSyStem.........ovuiiiiiitieit e e e, 4
Diffie-Hellman Key Exchange Man-In-The-Middle Attack Scenario......5
Communication Interception After Man-In-The-Middle Attack............... 6
Diffie-Hellman Key Exchange Colour Analogy..............c.ccoeviinnn 7
Diffie-Hellman Key Exchange Flow............c..cooiiiiiiiiiii i, 8
RSA FIOW. ..t e, 9
RSA Flow When an Eavesdropper Factorsn...................ccooeieni. 13
Julia Performance CompariSON.oouvvueeniiiiinneeiinieaeannannennns 24
log(SRSA NUM, INTERVAL END>)....ccceviiiiininiiieieieieeenne 29
log(<RSA_NUMBER DIGITS>, <INTERVAL END>).........cceeueneene. 30
Julia vs C++ Parallel Code Results..........ccooooeiiiiiiiiiiiiine, 34
Julia EffiCIency....ooeii i 34
Julia Speedup.o 35
CHH/MPILEffICIONCY . ..o, 35
CHH/MPL SPeedUP. ..ottt 35

Xvil

COMPUTATIONAL METHODS FOR INTEGER FACTORIZATION

SUMMARY

Integer factorization is the task of finding the prime factors of a composite number.
Since integer factorization is a computationally expensive task, today many digital
security systems rely on its difficulty. Many systems use the difficulty of integer
factorization for assuring security. Today, RSA cryptosystem, which takes its name
from its inventors, Rivest, Shamir and Adleman, dating back to 1977, is widely used
for secure communication. RSA is a public key cryptosystem, which uses two
asymmetric keys. The concept of asymmetric keys was firstly presented by Whitfield
Diffie and Martin E. Hellman in 1976.

Integer factorization has always been an attractive field of research for mathematicians
and computer scientists. Many scientists developed algorithms for factoring large
integers, however none of them are useful with regard to the limitations of the
computational power we have as of today.

Daniel Shanks’ SQUFOF Algorithm, which was developed using Binary Quadratic
Forms is one of the most popular algorithms for integer factorization, however it is not
efficient due to the computational power it requires. Nari, Ozdemir and Yaraneri took
this algorithm another step further and developed a new algorithm. By using a
multiplier which lies within an interval calculated using the factors of the integer, the
new algorithm can easily factor large semiprimes. The multiplier selected from the
interval accelerates integer factorization. However, finding the interval without
knowing the factors is difficult. Some properties of the intervals are studied in this
thesis.

In this work, new SQUFOF with a multiplier algorithm’s parallel and serial versions
were implemented on multiple platforms. The platforms include C++ and Julia. C++
is one of the most recognised programming languages in the world due to its
widespread usage for decades. In contrast, Julia is a very young programming
language with rising popularity. For achieving parallelism on multiple processors, MPI
is used on C++, Julia has its own libraries for supporting parallelism. The Distributed.jl
library is an open source library, which is suggested for writing parallel code on Julia.
Not only CPUs, but also GPUs can be used for parallelism, therefore some experiments
with CUDA were conducted.

The benchmarks show that the cuGMP library written in C++ for representing Big
Integers (integers larger than 64 bits) on GPUs is not successful. Julia is slower than
C++ for parallel computations, however, considering its high level features which
makes programming easier, it proves itself to be a fast and efficient programming
language. C++ with MPI is nearly two times faster than Julia, however writing code
in C++ using MPI is a more difficult task than achieving parallelism in Julia. The
benchmarks are shown in this thesis.

XiX

CARPANLARA AYIRMA IiCiN HESAPLAMALI YONTEMLER

OZET

Whitfield Diffie ve Martin E. Hellman 1976 yilinda gelistirdikleri anahtar degistirme
yontemiyle kriptografi alaninda biiylik bir degisiklie imza attilar. Bu bulusla
bilgisayar diinyasinin en 6nemli 6diilii olan Turing 6diiliiniin de sahibi olan bilim
insanlar1, geleneksel sifreleme yontemlerinin aksine biri kapali (diger insanlarin
ulagimina kapali), digeri agik (diger insanlarin ulasimina acik) olmak flizere ¢ift
anahtarla iletisim halinde olanlarin yeni bir anahtar olusturup sifrelemeleri fikrini
giindeme getirdiler. A¢ik anahtar degistirme yontemi, lizerinde iletisim kurulan kanal
giivenilir olmasa da gizli ortak anahtar olusmasini saglar.

Diffie ve Hellman’nin gelistirdikleri anahtar degistirme methodu, 1977 yilinda adim
onu bulanlardan alan RSA kriptosisteminin de gelisimine sebep oldu. RSA
kriptosistemi, adin1 onu gelistiren Rivest, Shamir ve Adleman’dan almaktadir. Ortaya
ciktig1 1977 yilindan bu yana RSA kriptosistemi dijital giivenlik diinyasinin belkemigi
haline gelmistir.

RSA kriptosisteminin giivenilirliginin altinda iki asal sayinin ¢arpimindan olusan bir
saymnin carpanlara ayrilmasinin zorlugu yatar. Rivest, Shamir ve Adleman’in sahibi
oldugu RSA dijital giivenlik firmasi, 2007 yilina kadar “RSA Challenge” ismi altinda
100 basamakli ve daha biiylik yar1 asal sayilarin ¢arpanlaria ayrilmasini tesvik eden
bir yarisma diizenliyordu.

RSA kriptosistemi ile iletisim kurmak isteyen herkesin iki adet anahtar sahibi olmasi
gerekmektedir. Bu anahtarlarin bir tanesi agik, bir tanesi kapali olmalidir. Anahtarlarin
her biri aslinda bir sayidir, bu sayilardan kapali olan anahtarin baskalarinin eline
gecmesi biiyiik giivenlik sorununa sebep olur. Ornegin kapali anahtar1 ele gegiren kisi,
anahtarin asil sahibiymisc¢esine baskalariyla iletisim kurabilir, anahtarin asil sahibine
gelen mesajlar1 okuyabilir. Acik anahtar ise sistemin mantig1 itibariyle herkese
goriinmektedir.

RSA kullanarak iletisim kurmak isteyen kisi ilk olarak n yar1 asal sayisini seger, n
sayisinin ¢arpanlari p ve q asal sayilardir. p ve q sayilarinin asalligindan emin olmak
icin asallik testleri yapilmalidir, Solovay-Strassen Asallik Testi, Fermat Asallik Testi,
Miller-Rabin Asallik Testi asallik durumunun kontrolii i¢in kullanilabilir. Fermat
Asallik Testi yiiksek dogruluk oranina sahiptir, fakat bulmayi garanti ettigi sey
asalliktan ziyade asal olmama durumudur. n sayisinin faktdrlerine ayrilmasinin
zorlugunun sebebi sayinm ¢ok biiyiik bir say1 olmasidir. Ornegin Bitcoin igin gizli
(kapali) anahtarin uzunlugu 256 bittir. (p-1)*(q-1) sayisindan Uzatilmis Oklit
Algoritmasi ile agik anahtar e sayisinin ¢arpmaya gore tersi bulunur. e sayisinin
carpmaya gore tersi olan d sayis1 kapali (gizli) anahtardir. Gizli anahtar1 bulmak
isteyen bir kisinin n yar1 asal sayisin1 ¢arpanlarina ayirmadan gizli anahtara ulagmasi
¢ok zordur.

XX1

Biiyiik tam sayilarin ¢arpanlarina ayrilmast muazzam bir hesaplama giicii
gerektirdiginden geleneksel bilgisayarlardan ¢ok daha hizli olan kuantum
bilgisayarlarla bu islemin yapilmasi ¢ok daha hizli olacaktir, fakat giiniimiizde
kuantum bilgisayarlarin yayginlagmamasi, kuantum bilgisayarlara ulagimin neredeyse
imkansiz olmasi, kuantum bilgisayarlar i¢in tasarlanan algoritmalarin geleneksel
algoritmalardan farkli olmasi gerekliligi sebebiyle calismalar daha ¢ok geleneksel
bilgisayarlar {izerinden yiiriitiilmektedir. Peter ~ Shor’un algoritmasi
O((log n)*(log log n)(log log log n)) adimda n sayisint ¢arpanlarina
ayirabilmektedir.

Bu calismada tizerinde durulan Daniel Shanks’in yaraticist oldugu Shanks Algoritmasi
ise geleneksel Von Neumann Mimarili bilgisayarlarda c¢alismaktadir. Shanks
Algoritmasi yaygin olarak kullanilmamaktadir, zira hiz ve hesaplama giiciiniin kritik
oldugu bu islem i¢in ¢ok yavas kalmaktadir. Shanks Algoritmasi sayilar teorisinin
birtakim kavramlari iizerine kurulmustur. Bu kavramlar arasinda grup teorisi, ikili
kuadratik formlar gosterilebilir. Nari, Ozdemir ve Yaraneri Shanks Algoritmasini
geligtirerek ikili kuadratik formlarin kullanildig1 yeni bir algoritma gelistirmislerdir.
Bu tezde, gelistirilmis yeni algoritma {izerinde performans karsilastirilmasi
yapilmustir.

Shanks Algoritmasi’nin gelistirilmis hali Ozdemir ve Yaraneri’nin ortaya attig1 {izere
belli bir interval (say1 aralig1) arasindan segilen bir r sayisi ile hizlandirilabilmektedir.
Bu interval ¢arpanlarina ayrilmasi istenen n sayisinin c¢arpanlari p ve q kullanilarak
hesaplanmaktadir. Yeterli hesaplama giicline sahip olundugunda ¢arpimlara ayrilmasi
istenen sayiya yakin daha 6nce ¢arpanlarina ayrilmis sayilardan yararlanmak miimkiin
olabilir.

ikili kuadratik formlar f(x,y) = ax*+ bxy + cy* seklinde ifade edilir. Bu formun
ikili kuadratik form olabilmesi i¢in diskriminant deltanin asagidaki kosullari saglamasi
gerekmektedir (A = b? — 4ac). ilk kosul A mod 4’iin bir veya sifira esit olmasidur,
ikinci kosul ise b sayisinin mod 2’de diskriminant deltaya esit olmasi zorunlulugudur.
a, b, c sayilarmin en biiyiik ortak bdlenlerinin 1 oldugu durumda, ikili kuadratik
formun ilkel oldugu soylenir. Bu calismada da ilkel ikili kuadratik formlar
kullanilmistir.

Bu c¢alismada, aralarinda denklik iliskisi olan ikili kuadratik formlar kullanilarak
yaratilan bir dongili ile yar1 asal sayilar1 carpanlara ayirma isleminin nasil
yapilabilecegi anlatilmaktadir.

Bu kadar yiliksek hesaplama giicii ve hiz gerektiren bir islemi paralellestirmek
gerekmektedir. Ayrica, 64 bitten ¢ok daha biiyiik sayilarla ugrasildigindan klasik
double degiskenler bu konuda ise yaramamaktadir. Biiyiik tam sayilar1 ifade etmek,
onlarla yliksek hizlarda iglemler yapabilmek i¢cin GMP kiitiiphanesi kullanilmstir.
GMP kiitiiphanesi agik kaynak kodlu ifade edebilecegi say1 biiyiikliigii teoride sonsuza
esit olan bir kiitiiphanedir. Tam sayilarla yapilabilecek neredeyse tiim islemler bu
kiitiiphanede bulunmaktadir. 1991 yilinda ilk defa yayinlanmis olan bu kiitiiphane
islemlerin hizli olmasina odaklanmistir ve goniilliilerin katkilariyla neredeyse her yil
yeni Ozellikler, hata diizeltmeler ile gelismeye devam etmektedir, tizerine eklentiler
yapilmaktadir.

xxil

GMP kiitiiphanesi (6zellikle tamsay1 fonksiyonlar1) genellikle kriptografi alaninda
caligmalar yapan bilim insanlar1 tarafindan aktif olarak giivenle kullanilmaktadir. Bu
calismada da kullanilan her platformda GMP kiitiiphanesinin tamsay1
fonksiyonlarindan faydalanilmistir.

Shanks Algoritmasi’nin hizlandirict c¢arpanlt yeni versiyonu g¢esitli platformlarda
denendi. Bu platformlar arasinda diinyada en ¢ok bilinen ve on yillardir aktif olarak
kullanilan C++, yeni fakat giderek daha da yaygin olarak kullanilan Julia programlama
dili de var. Ayrica sadece Julia ve C++’1n iizerinde ¢alistigi ile CPU degil, GPU
tizerinde de CUDA ile ¢esitli denemeler yapildi, fakat sonuglar yeterince basarili
bulunmadi.

GPU iizerindeki denemelerden iyi sonuglar alinamadi, biiyiik sayilar i¢in kullanilan
GMP Kkiitliphanesinin GPU mimarisi i¢in yazilmig resmi bir kiitiiphanesi olmadigindan
Github’daki ac¢ik kaynak kodlu projeler iizerinden gidildi. Bulunan GPU {izerinde
calisgan cuGMP Kkiitliphanesi ile CPU iizerinde ¢alisan GMP Kkiitiiphanesinin
performanslar1 karsilastirildiginda, CUDA i¢in yazilan cuGMP kiitiiphanesinin
oldukga diisiik performansli oldugu goriildii. Yapilan testlerin sonuglari raporda da yer
ald1.

C++ ve Julia kargilagtirilmasi i¢in hem seri, hem paralel kodlar yazildi. Julia’nin C ve
C++ kiitliphanelerini rahatlikla cagirabilmesi sebebiyle Julia kodlarinda da biiyiik tam
sayilarin temsili, biiyiik tam sayilarla yapilan islemler i¢in dogrudan GMP kiitiiphanesi
kullanildi.

C++ ile paralellestirme i¢in {izerinde 1991 yilindan itibaren ¢aligilan MPI kullanildi.
Artik standartlagsmis bir protokol haline gelmis olan MPI i¢in yazilmis farkl isletim
sistemlerinde c¢alisgan bircok farkli derleyici bulunmaktadir. Paralel islemcilerin
birbirleriyle haberlesmelerini saglayan MPI i¢in olduk¢a fazla programlama dilinden
cagrilabilen farkli islevde bir¢ok fonksiyona sahiptir.

MPI proses seviyesinde paralelligi saglamaktadir. Ayni zamanda iplik seviyesinde
paralellestirme imkani da saglar. Bu c¢alismada ise MPI kiitiiphanesinin proses
seviyesinde paralellestirme olanaklarindan yararlanilmistir.

Julia, okunabilirligi oldukca yiiksek olan, dolayisiyla 6grenmesi de kolay olan,
popiilaritesi giderek artan yeni nesil bir programlama dilidir. An itibariyle internette
en ¢ok aranan 21. programlama dili olarak listelerde yer almaktadir. Ozellikle yiiksek
basarimli hesaplamalar i¢in dizayn edilmis bu dil, paralel platformlarda C++/MPI
kadar yliksek performansli olmasa da ilerleyen zamanlarda prosesler arasi iletisim
daha da hizlanirsa bir¢ok alanda C++ popiilaritesine ulagsma imkanina sahip olabilir.
Seri kodlar karsilagtirildiginda, Julia’nin giicii goriilebilmektedir, hesaplama siiresi
arttikca Julia performans agisindan C++’1 geride birakmaktadir. Bu tezin de son
boliimiinde karsilastirmalar yer almaktadir.

Giliniimiizde giderek artan hesaplama giicii ihtiyacini giderebilmek i¢in artik elimizde
birgok farkli programlama dili, standart ve kiitiiphane bulunmaktadir. Bu ¢alismada
ITU UHEM’in Sartyer makinasindaki CPU ve GPUlar kullamlarak birtakim
karsilagtirmalar yapildi. Amag, yar1 asal bir sayiy1 ¢arpanlarina ayirmakla beraber
bilgisayar diinyasindaki standartlar1 ve yenilikleri karsilastirarak, hesaplama
imkanlarini gézden gegirmektir.

XXxiii

1. INTRODUCTION

Integer factorization is the task of finding the factors of a large integer. Integer
factorization is an active field of research since security of many digital systems depend
on the difficulty of factoring a large integer into its prime factors. Today, many systems
from various areas use RSA cryptosystem for confidentiality. Confidentiality is an
important concept in our modern world where illegal collection of data is very common
and dangerous. Cryptosystems enable us to encrypt our data for preventing people (other
than we allow) to read, change or use our data. Not only today, but also in history hiding
private content and messages has always been an important issue. First known
cryptosystem dates back to 1900 BC and today RSA cryptosystem is widely accepted
[1].

The difficulty of integer factorization lies within the insufficient computational power
of today’s computers. Until quite recently, it was assumed that quantum computers were
going to be much more efficient than today’s computers. However, this theory is now
suspicious [2]. Therefore, it can be said that integer factorization will most probably be
an important problem even if we start using quantum computers. Until quantum
computers become feasible and cryptographers prove that RSA cryptosystem is
trustworthy in these systems, research in this area will continue. As of today, we are
bound to use RSA on traditional Von Neumann Architecture computers.

With technological advances, we have more opportunities and platforms for
computational studies. In this thesis, new and traditional ways of computation are

discussed and compared.

1.1 Purpose of Thesis

This study focuses on more than a single aim, first one is to prove the Shanks’ algorithm
with a multiplier method computationally and explain how to factor a semiprime using
the new algorithm. The multiplier selected from an interval whose formulations are
given in following chapters accelerates Daniel Shanks’ SQUFOF algorithm. The

computations show that, thanks to the multiplication, even 768 bit semiprime numbers

1

can be factored in seconds. Another purpose is to compare young and traditional
platforms of computation and their parallelization potentials.

Julia is a very young programming language focusing mostly on performance and ease
of use. This new programming language attracts not only software engineers and
computer scientists, but also programmers from different backgrounds with different
fields of expertise. C++, the backbone of many systems shows its speed, but it is
difficult for people without software engineering background to use it. In today’s
world, in which we have limitless data, computation lies in the heart on many scientific
researches. Julia may be an alternative due its readability for people who are not
comfortable with low level C++ code. In this study, a brief history of RSA, public key
cryptography and integer factorization is found. Methods for breaking RSA are

discussed and the history of attacks to some cryptosystems are elaborated.

2. DIFFIE-HELLMAN KEY EXCHANGE AND RSA

2.1 Public Key Cryptography and Diffie-Hellman Key Exchange

RSA Cryptosystem is a public key cryptosystem. Its name comes from its inventors:
Rivest, Shamir, Adleman. The concept of public key cryptosystem was firstly
discussed by Diffie and Hellman’s 1976 paper named ‘“New Directions in
Cryptography” [3]. In contrast to conventional old-fashioned encryption and
decryption methods, Diffie and Hellman propose a new system in which
communicating parties have two keys: one public and one private. Figures below taken
from “New Directions in Cryptography” show the difference of conventional

cryptosystems and public key cryptosystems.

~—P{CRYPTANALYST |—#

MESSAGE

SOURCE ~P TRANSMITTER RECEIVER

C:SK(P)
K } .
KEYL 9 N
SOURCE

Figure 2.1: Conventional Cryptosystem with Single Key Source.

The figure above describes the conventional system: communicating parties (Alice and

Bob) share one secret key: K. The message P is encrypted by K by the sender Alice

using the encryption function Sg. The receiver Bob decrypts the message P using the

same key K with the decryption function Sk .

I— CRYPTANALYST (b

I
v

MESSAGE |..) .
[souncs P TRANSMITTER 4P RECEIVER
f P

KEY | KEY
SOURCE #! SOURCE #2

Figure 2.2: Public Key Cryptosystem.

The figure above shows the public key cryptosystem proposed by Diffie and Hellman.
In this system, there are two keys: Dy is the deciphering key (private key) and Ey is
the enciphering key (public key). The sender and the receiver do not have the same
key source in contrast to the old-fashioned cryptosystem in Figure 2.1. The
communicating parties agree on two numbers and these two numbers become their
public keys. Also, both of them select an integer privately and these integers become
their private keys. There are two different key sources for each communicating party.
Once Discrete Logarithm Problem has a solution, Diffie-Hellman Key Exchange is no
longer secure. Discrete Logarithm Problem is solved when ¢ can be extracted from
a® mod n (a and n are known).

Communicating parties create a key for their communication and transmit data to each
other using networks. However, this kind of communication is open to Man-In-The-
Middle Attacks. The scenario below shows an example for Man-In-The-Middle Attack
for Diffie-Hellman Key Exchange.

Here we have Alice and Bob, who wish to exchange keys and there is Darth, a person
who wants to imitate Alice or Bob (q is a global large prime) [4]. The flow of data,
which is visualized in the figure below shows the Man-In-The-Middle Attack Scenario

for Diffie-Hellman Key Exchange.

Darth the anacker
produces two random
private keys Dyp and
Dsp and then finds the
corresponding public

keys Eypand Exp

Alice sends her public
key Ea 10 Bob Ea

Darth intercepts Ex,
sends Eyp to Bob. He
then computes K2

=(Ex) %2p mod q Bob computes K1 =
(E;0)”s mod q. Bob
sends Eg 0 Alice.

(<]

S

\

Darth obtains Eg
dlegally, sends Eaxp 10
Alice and computes K1

=(Ea)®iomodq. [E;oe] Alce computes K2 =
(E20)°a mod q

Figure 2.3: Diffie-Hellman Key Exchange Man-In-The-Middle Attack Scenario.

Now, even though Alice and Bob think they are communicating with each other, they
are actually communicating with Darth. The eavesdropper Darth can pretend to be
Alice or Bob. He can easily read private messages written by Alice and Bob. Darth
now shares the key K1 with Bob and K2 with Alice. Alice and Bob are unaware of the

situation. Below, you can see the flow of communication.

Alice wants to send
message M to Bob.
She calculates
Me=E(K2,M)

Mg

Darth intercepts Mg
and decrypts M using Mg
his shared key K2. | I
Darth sends Bob Mg; =

E(K1,M,) M

Bob decrypts Mg, with
K1.

Figure 2.4: Communication Interception After Man-In-The-Middle Attack.

The flow shows that Darth can read any message sent to Bob by using his key with
Alice. Also, he can imitate Alice and send messages to Bob as if he is Alice. He can
alter the original message from Alice or he can send a completely different message.
This security flaw in key exchange can be fixed using authentication. If
communicating parties authenticate each other, Man-in-the-Middle Attack is no longer
a problem. There are different ways of authenticating each other. Digital signatures
and public-key certificates can be used for solving this issue [4].

Let’s take a look at digital signatures and public-key certificates which are widespread
solutions for communicating parties to acknowledge each other. Digital signatures are
a good way of preventing imitators like Darth in the example above. Their benefits are
not only preventing imitators but also preventing dispute among communicating
parties. One of the popular digital signatures, El Gamal Digital Signature keeps
date/time, content of the message at the time of signature within. In case of a dispute,

a neutral third party can expose the truth.

The National Institute of Standards and Technology proposed Digital Signature
Standard based on El Gamal and Schnorr and today it is widely used as a standard in
order to prevent claims of forgery. Public-key certificates consist of public key, owner
identifier and a block signed by a trusted third party. Third party should be a
trustworthy organisation like governments or international firms [4]. The certificate
makes sure that the owner has the corresponding private key of the public key.

Diffie-Hellman Key Exchange is often explained visually with the colour analogy,

which is shown below [5]:
Alice Bob

Ic_ - ,J] Common Paint -l

+ '-T

- +
- Secret Color

| Public Transport

assume that
mixture separation

S 15 QXpansive

- Secrel Color

Common Secret -

Figure 2.5: Diffie-Hellman Key Exchange Colour Analogy.

The illustration points out that communicating parties obtain the same secret in the end
of the process. More detailed flowchart can be seen below: (p is a large prime and a
is the primitive root modulo p. Assume we have the equation g* = a mod n, g is called
the primitive root modulo n if gecd(a,n) = 1. The number k is the discrete

logarithm of a to the base g modulo n . [6])

has no solution.

Alice chooses x with 1
<z x <= p2

Bob chooses y with 1
<z y<=p.2

Alice sends o* mod p
to Bob

3 MO P

Bob sends o mod p 10
Alice

Akce calculates the
session key K=(a")*
mod p

Bob calculates the
session key K=(a*)r
mod p

Figure 2.6: Diffie-Hellman Key Exchange Flow.

2.2 RSA Cryptosystem

8

Diffie-Hellman Key Exchange is reliable, because calculating discrete logs is very
difficult. If someone can easily compute discrete logs, this algorithm is no longer
reliable. If the eavesdropper Darth can compute discrete logs, he can obtain K and
break the system. If Darth can compute y from & (a is public as stated above) and x

from a”, the system is no longer useful. However, as of today, Discrete Log Problem

In 1978, Rivest, Adleman and Shamir proposed a system for secure and private
electronic mail transfer. They state that the public key cryptography system invented
by Diffie and Hellman lies in the heart of their newly-proposed RSA system. To

understand their system, one has to know some mathematical theorems and algorithms,
namely Euler’s Theorem and Euclidean Algorithm.
Euler’s Theorem says that if n = p * g (p, g prime) and gcd(a,n) =1, then

a®?™ =1 (mod n) 2.1)
Note that: p(n) =(p —1)*(g—-1) .
In order to find decrypting key d from encrypting key e, we should find the modular
multiplicative inverse of e modulo (g —1)*(p —1). The modular multiplicative
inverse is found using Extended Euclidean Algorithm. We have the following
equation:

d¥e+(p-D*@g-D*y=1 (2.2)
When we reduce Equation 2.2 to modulo (p — 1) * (g — 1), we get

d*e=1(mod (p—-1)*(q—-1)) (2.3)
Extended Euclidean Algorithm solves the equations of form Equation 2.3. Equation
2.3 is derived from Equation 2.2, which is our initial problem: finding decrypting
(private) and encrypting (public) keys.
Using the theories and algorithms above, Rivest, Shamir and Adleman developed RSA
cryptosystem in 1978. The figure below explains the algorithm visually.

Bob chooses 2 distinct large
primes p and q. then he
calculates n = p * q. Bob also
chooses decryption exponent

such that ged(d, (p-1)* (g-1)
1. Then he finds e, encrypson
exponent using Extended
Euclidean Algorthm.
(d*e=1mod(p-1)* (g-1))
Bob sends (n, ¢) 10 Alice

Alice writes message m. (if
m>n, she breaks the message
into blocks where block size s

smaller than n) Alice then
computes ¢ = m* mod n
Alice sends < 1o Bob

Bob computes m =c* mod n

Figure 2.7: RSA Flow

9

In their paper “A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems”, Rivest, Shamir and Adleman explain how to use the proposed system
effectively. They offer solutions to problems related to difficulties of putting the
cryptosystem into practice. Since computational power has limitations, they explain
the “exponentiation by repeated squaring and multiplication” [7] procedure for
calculating M¢ mod n effectively. Calculating M mod n requires 2*log,e
multiplications and 2 * log,e divisions using the procedure. Let ee,_;...¢, be e’s

binary representation and C = 1. The procedure is [7]:

Step 1. Repeat steps 1aand 1b fori=k, k—1,...,0:
Step 1a. Set C = C? % n.
Step 1b. If ¢, =1, then C = (C - M) % n.

Step 2. Stop. C is the encrypted form of M.

RSA cryptosystem requires two large prime numbers p and g. n, which is equal to p*q,
has to be computationally expensive to factor, since correct factorization of n will
break the system, nobody should be able to find p and ¢ from ». In order to find a large
prime of x digits, prime number theorem says that approximately (In 10%) /2
numbers should be tested before finding a prime number [8]. If we want a 10 digit
prime number, we should test approximately /7(10'°) / 2 ~ 12 numbers.
For primality testing, Rivest, Shamir and Adleman suggest using a probabilistic
algorithm by Solovay and Strassen. This algorithm selects a random number a from a
uniform distribution on {1, ..., b — 1}, and tests the following condition [9]:
ged(a,b) = 1 and J(a,b)=a® V"2 mod b (2.4)
J(a, b) is the Jacobi symbol [7].
Apart from Solovay-Strassen Primality Test, there are other ways for detecting
primality: Fermat Primality Test and Miller-Rabin Primality Test. These algorithms
can be used while selecting p and ¢, too.
For testing primality of n using Fermat Primality Test, we should choose a random
integer a with 1 < a < n-1. If the following condition holds, 7 is probably prime [10]:
a" ' =1modn (2.5)

10

Fermat Primality Test is highly accurate for large n. However, it guarantees
compositeness, not primality.
For conducting Miller-Rabin Primality Test for n, we should select a random integer
a which is greater than 1 and less than n - /. We also have an odd m which satisfies
n—1=2%m Below is the algorithm [10]:
Step 1. Compute by = a™ mod n.
Step 2. If by =1 mod n or by=—1mod n, stop and declare that n is
PROBABLY prime.
Step 3. Repeat steps 3a, 3b and 3¢ for i=1, 2, ,k-1:
Step 3a. Calculate b, = b> | mod n,

Step 3b. If b, = 1 mod n, stop and declare that n is composite.
Step 3c. If b; = — 1 mod n, stop and declare that n is PROBABLY
prime.

Step 4. If b;,_; # — 1 mod n then n is composite.

For selecting secure p and ¢, RSA inventors also state that p and ¢ should have the
same number of digits and both p-7 and g-/ should have very large prime factors. Also,
ged((p —1),(g — 1)) should be small [7].

Another number that should be selected is the decryption exponent d. We should select
d and then derive the encryption exponent e using the Extended Euclidean Algorithm
explained before. The decryption exponent ¢ must be coprime to
pm)=(p—-1)*(g—1), so gcd(d, p(n)) =1 must hold. Any prime number larger
than maximum(p, q) is okay, the primality can be tested with one of the test described
above (Solovay-Strassen, Miller-Rabin, Fermat). After choosing d, the Extended
Euclidean Algorithm returns e, the encryption exponent.

After describing the flow of RSA cryptosystem in detail, we should also mention the
possible security flaws and ways of breaking the system. Rivest, Shamir and Adleman
handle the security under four subtitles: Factoring n, Computing ¢(n) without
Factoring n, Determining d Without Factoring n or Computing ¢ (n), Computing d in
Some Other Way.

11

Factoring n, which is very difficult as mentioned before, breaks the system. However,
since # is equal to multiplication of two large primes, it is computationally exhaustive
and takes a lot of time. Some factoring algorithms exist, but they are not fast and

feasible enough to conclude that RSA is not safe. At the time of publication of RSA

cryptosystem, the fastest algorithm computed factors of » in (/ n(n))\/W steps
[7]. As of today, Shor’s Algorithm, which is named after its creator Peter Shor,
factorizes large numbers very quickly and efficiently, however it is a quantum
algorithm, it runs on quantum computers. Peter Shor states in his paper “Polynomial-
Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer” that the quantum factoring algorithm has asymptotically
O((log n)’(log log n)(log log log n)) complexity on a quantum computer, along
with a polynomial amount of post-processing complexity on a von Neumann
Architecture computer which is required for conversion of output [11]. General

Number Field Sieve is the fastest factorization algorithm for classical computers.

Its complexity for factoring a semiprime integer n (consisting of | log,n |+1 bits) is

O(explc *(log n)l3 * (log log n)?3]) where ¢ is a constant which can take three
different values [12].

¢ (") must be kept secret because the decryption exponent d can easily be derived
using Extended Euclidean Algorithm (encryption exponent e is public). As explained
before, d *e =1 mod ¢(n).

Determining decryption exponent d without factoring n or computing ¢ () is not
easier than factoring n, therefore it is infeasible. In order to compute d in some other
way, one has to find a solution to Discrete Logarithm Problem, which has no feasible
solution as of today. Deriving d from ¢? mod n (c is the encrypted message, so both
¢ and n are public) is an example of Discrete Logarithm Problem.

In his paper “Twenty Years of Attacks on the RSA Cryptosystem” Dan Boneh
summarized the possible kinds of attack under five topics: Factoring Large
Semiprimes, Elementary Attacks, Low Public Exponent, Low Private Exponent and
Implementation Attacks [13].

Since n =p*q and d *e =1 (mod (p — 1)(g — 1)), (n and e are public), one can

derive the private/decrypting exponent d after obtaining p and g. See the flow below

12

for breaking the cryptosystem using factorization of large integer n = p * g. Note that
Darth is an eavesdropper who wants to read the messages in a communication without

permissions from communicating parties.

Since (n, e) pair is public,
Darth obtains (n,e) pair of
Bob without any effort.

y

Darth factors n, finds p
and q. He knows that
d*e=1mod (p-1)* (g-1)

v
Using the Extended
Euclidean Algorithm,

Darth finds the modular
multiplicative inverse d of
e modulo (p-1) * (g-1).

v

Darth can read any
message written to Bob
using d, the decryption

exponent.

Figure 2.8: RSA Flow When an Eavesdropper Factors n.

RSA cryptosystem relies on the difficulty of factoring large integers into their prime
factors. The flow shows that if an eavesdropper Darth could factor » into p and ¢, RSA
would no longer be secure. As mentioned above, the current factorization algorithms
for classical computers are not sufficient for this task and quantum computers are
owned and used by limited number of institutions.

Elementary attacks on RSA cryptosystem spoils users’ mistakes while using and/or
establishing the system. For example, instead of generating different n = p * g, using
a fixed n causes security flaws. Assume a central authority provides its user i with a
unique pair e;,d;, however users share the same n =p *q. A message to user x

m, = m (message is m, e, is user x’s public key) can be read by user y, because user

y can extract d, easily since user y knows p, q, p-1, g-1 and e”. For “blinding” attack,

13

using one-way hash to the message before signing is a solution, therefore it is no threat
anymore [13].
Low private exponent d is an advantage regarding computation time, however it is a

serious threat to security. Michael Wiener proved in 1988 that for n = p *q with
1 1
q <p <2q whend < Enz, one can easily find d [13].

Low public exponent can be a security threat, too. However it is not as dangerous as
using a low private exponent. There are many kinds of attacks, Coppersmith’s
Theorem is the base theorem of the most powerful attacks in case of a low public

exponent [14]. The theorem is:

“Let n be an integer and f € Z[x] be a monic polynomial of degree d. Set

1
x =nd ‘ for some € > 0. Then, given (n, f) Darth can efficiently find all
integers | xo| < x for which f(xy) = 0 mod n holds. LLL algorithm used

here dominates the execution time [15].”

Note that LLL is a basis reduction algorithm.

Implementation attacks focus on the vulnerabilities of the RSA cryptosystem when it
is put in practice in different kinds of practical fields. Various implementations are
adapted in various fields. For example, timing attacks can be used for attacking
financial systems. Dan Boneh describes a timing attack as measuring the time it takes
a smart card to perform a RSA decryption or signature and then derive decryption
exponent d from this information. The repeated squaring algorithm is used for timing
attacks. The binary representation of d is d,,d,,_; . . d. The repeated squaring algorithm

4 mod n in the end:

computes ¢ = m
Step 1. Setz =m, c=1.
Step 2. Repeat steps 2a, 2b i=0,1,2, ,n:
Step2a.Ifd;=1,c =c*z mod n
Step 2b. z =z mod n

d

Step 3. Return ¢ = m® mod n

14

Note that dy = 1 because d is a prime number greater than 2, therefore it must be an
odd number.

m is the signature produced by the smartcard. Darth, who wants to break the system,
asks for many signatures, measures the generation time for each signature m (7°) and
measures the time for the smart card to compute m * m*> mod n for each signature m
(¢). For each d,d,_, ..d;, starting from d; to d, Kocher inspects the behaviours of T
and t, and he concludes that when T and t are highly correlated, the value of d; is 1,
when they act independently, the value of d; is 0 [16].

There are some ways to prevent this kind of attack. Boneh informs of two precautions:
first one is to add delays which will result in constant time of modular exponentiation.
Second precaution is blinding by Rivest, Boneh summarizes this method in his survey:
The smart card selects a number 7 € Z and calculates m' = m *r® mod n before

the decryption of m. After this, the smart card calculates ¢’ = (m')? mod n and sets
c’ L

¢ = — mod n. This results in the application of d to a random message m’ which is
r

not known by Darth [13].

Another kind of Timing Attack is called Random Faults. Random Faults Attack takes
advantage of usage of CRT. CRT is used in calculation of m? mod n because usage
of CRT speeds up the operation. CRT is used in the following way:

d, and d, are integers such that d, = d mod (p — 1) and d, =d mod (g — 1). Bob

computes ¢, = m mod p and ¢, = m mod qg. Then he calculates

c=T,*c,+T,*c, mod n where

T = {1 mod p and T, = {0 mod p (2.6)

Boneh, DeMillo and Lipton discovered that while generating the signature c, even a
simple one-bit mistake can cause Darth to compute p and g from n. Padding
mechanisms are a way of preventing Random Faults attack.

Bleichenbacher’s Attack on PKCS 1 is an attack which spoils a flaw in padding
mechanism of the old PKCS. Bleichenbacher discovered the potential threat and now
this mechanism is no longer used.

15

After explaining more than a decade of attacks on the RSA cryptosystem, Dan Boneh
states that none of these attacks can break the cryptosystem. After years of widespread

usage and countless attacks, RSA still dominates the industry.

16

3. INTEGER FACTORIZATION

3.1 Binary Quadratic Forms and Groups

An equation of form f(x,y) = ax®>+bxy +cy?iscalled a binary quadratic form. We

have the discriminant A = b? — 4ac for each binary quadratic form. The following

conditions are compulsory:

A=1mod 4 or A=0mod 4
b=Amod?2

If a binary quadratic form is primitive, then gcd(a,b,c) =1 [17]. Binary quadratic

forms form a group which is called class group. A group (S,*) consisting of

ag, ay, a,, . . a, with operation * has four properties:

a,*a, e S where 0 <=x<=nand 0<=y<=n
(a,*ay)*a,=a,*(a,*a,) where

O<=x<=nand 0<=y<=nand 0<=z<=n
There exists an identity e such that

e*a,=a,and a,*e = a, where

O<=x<=nand 0<=y<=n

Each element has an inverse such that

a,*a,=a

* —
y*a,=e where

O<=x<=nand 0<=y<=n

The order of a group is equal to the number of elements in a group.

(Zg, +) is an example of a group. This group consists of {0,1,2,3,4,5}, its order is 6

and it satisfies the conditions above:

17

e Forexample:14+3=4mod 6 and 4+2=0mod 6.

e Forexample: (4+2)+5=5mod 6 and 4+ (2+5)=5mod 6
e The identity is equal to 0. For example: 3+ 0 =3 mod 6

e Forexample:1+5=0mod 6 and 24+4=0mod 6

Let a be an element in a group G. The smallest n such that a" = e (e is identity) is

called the order of a. For example, assume that we have a group (Z5,., *) . The order

of this group is 2016. We know that 2016 = 25%33* 7 The order of 1999 is 1008
since 1999'%% = 1 mod 2017 and 1008 = 2**32* 7 The fact that 2016 is divisible
by 1008 is no coincidence. Any element in group G has order dividing the order of G.
Since binary quadratic forms are groups, the features explained above hold for them,

too. For my purpose, which is factoring large integers, binary quadratic forms can be

used. When we select A = n, which is a semiprime and p and ¢ are its factors, we

can obtain a Binary Quadratic Form.

3.2 Shanks’ SQUFOF Algorithm and Improving SQUFOF

Daniel Shanks developed an integer factorization algorithm back in the 1970s using
Binary Quadratic Forms. However, as of today, Shanks’ algorithm is not used due to
its non efficiency in practice. The intention is to take Shanks’ algorithm a step further
using the multiplier method found by Nari, Ozdemir and Yaraneri and implement the
new parallel algorithm using cutting-edge technology devices. Also, since the parallel
codes will run on different environments executing different codes, we will be able to
see the advantages and disadvantages of each platform.

Assume we have the binary quadratic form f(x,y) = ax®>+bxy +cy? and ged(a,b,c)
= 1. The discriminant D of f is D = b?—4ac. For any given integer m, which
represents the binary quadratic form f (m =ax*+bxy +cy?), the equation
dam = 2ax + by)2 — Dy2 holds. It can be seen that when D < 0, m and a have the

same sign. Given two binary quadratic forms f and f”:
f(x,y):cwc2+19xy+cy2=(x,y)<bc/l2 b£2> @) (3.1)

18

and

fix,y)=(@,b,c")=ax>+b'xy +c'y? (3.2)

a
If a 2x2 matrix A=<y §> with determinant(A) = 1 satisfies the condition

(a’ b’/2> _ <a 7> (a b/2> <a ﬂ)

b2 ¢’ g o)\vr2 ¢)J\y &)

then f'and f” are congruent. If there is a prime number s which divides the discriminant
D, then binary quadratic forms which look like (s,7s,¢) can be produced. This type of
binary quadratic forms is called ambiguous. A reduced binary quadratic form is
obtained when 0 <b < \/B and \/5 -b < 2lal| < \/B + b. There exists finite
number of reduced forms for each D. Also, there exists a congruent reduced form for
f=(a,b,c) which has the same discriminant D. For negative discriminants, there is only
one reduced form, however, there may be more than one reduced forms for positive
discriminants. Two reduced forms f = (a,b,c) and f" = (¢, b’, ¢’) belong to the same
class, which means that they are adjacent, if '+ b = 0 mod 2c. Reduced form f'has

two neighbours (f" and (x’,b "',a)) and its neighbours are congruent under the following

0 -1
1 b+b' (3.3)
2c

The set of reduced forms with its neighbours form a cycle and two reduced forms are

matrix transformation [18]:

congruent if and only if they are in the same cycle. Since there are finite number of
reduced forms, in the end, the first reduced form will be obtained again after moving
in the same direction [18].

In order to factor the semiprime n= p*q, the information above can be used. Nari,
Ozdemir and Yaraneri proved that given integers ¢ and c’, the order of prime forms
(p.p.c) and (q,q,c’) is equal 1 if discriminant is equal » and assuming p < q, (p,kp,c’)
is a reduced binary quadratic form which has discriminant #. The purpose of the new
algorithm is to find the neighbours of (7,b,c) using matrix transformation (3.3) until
(p.kp,c’) is found. Note that (7,b,c) is the reduced form of (1,1,(n-1) /4), which is the
identity element of the class. When (p,kp,c’) is found, p, which is a factor of n is no

more secret. The execution time to reach (p,kp,c’) depends on the number of elements

19

in the cycle. If the cycle consists of moderate number of elements, the factorization of
n can be completed in polynomial time [18].

Below is the pseudocode of the algorithm used in this thesis derived from Nari,
Ozdemir and Yaraneri’s algorithm. Note that we have a binary quadratic form
consisting of (a, b, ¢). For parallelization, MPI is used. MPI enables us to run the code
with different r values on different hosts. For calculation with large integers, GMP is
used. “mpz_t” type is GMP’s type for handling large integers. The parallel C++
pseudocode for SQUFOF with multiplier “#”” can be found below:

function calc c(a, b, c, delta) {
¢ = floor((b"2 - delta) / (4a))
}

function calc_step(c, delta, b, step, delta_s){
step = floor((delta s +b)/2¢c)

}

function calc_b(step, b, ¢){
b=2%*step*c-b
}

function set initial delta_and b _and c(delta, b, ¢){
tmp 4 = delta % 4
delta_sqrt = floor(sqrt(delta)
tmp 2 =delta sqrt % 2
iftmp 4 ==
b=tmp 2==07?delta sqrt-1: delta sqrt
elseif tmp 4 ==
b=tmp 2==17delta sqrt-1: delta sqrt
else
delta = 4*delta
delta_sqrt =(floor(sqrt(delta))
tmp 2 =delta sqrt % 2
20

b=tmp 2==17delta sqrt-1:delta sqrt
end

(delta,b, (floor((b"2 - delta) / 4)))
§

int loop(logn, a, c, delta, b, step, delta_s, first delta, r){
res=0
while loop_cnt < (logn / 5)
calc_step(step, c, delta, b, delta_s)
a=c
calc_b(step, c,b)
calc_c(a, b, c, delta)

temp = gcd(a, first_delta)

if ((temp !=1 && temp =2 && temp =4 && temp !=71) || a==1)

res =1
break
end
end
res
}
function main() {
int size = <NUMBER OF PROCESSORS>
int rank = <PROCESSOR ID>
delta = <NUMBER TO BE FACTORED>
first_delta = delta
r = <MULTIPLIER FOR DELTA>
while (true){
tmp =1% 4
if tmp==0)
break;
r=r+1;

}

21

first r=r
int global sum = 0;
int loop_res;
intlc=1;
while (global sum == 0) {
r = first r+ 100 * rank * Ic;
delta = first_delta * r
set initial delta and b _and c(delta, b,c);
a=1
delta_s = sqrt(delta);
logn = log(delta, 2);
loop res = loop(logn, a, c, delta, b, step, delta_s, first delta, r);
MPIL::COMM_ WORLD.MPI::Comm::Allreduce(&loop_res, &global sum,
1, MPL INT, MPI_SUM);
le++;

}

return O;

}

In a parallel environment using x different processors, we will have x different “7”’s.
Choosing r is very important, because a “good” r can result in factoring the number in
few steps. This will be further elaborated later. After processors execute the loop in
the “int loop” function for at most /og(n)/5 times, they return an integer. If this integer
is equal 1, then we stop processing, because this means a factor is found. When the
integer returned from the “int loop” function equals 0, then we find a different » and
execute the “int loop” function again.

GMP library is used in the code. In its official website, GMP is described as an open
source and free library for high precision arithmetic on rational numbers, integers and
floating-point numbers. GMP has no limits as long as there is available memory on the
host machine [19].

The fact that GMP has no precision limits (when the machine has available memory)

makes it very appealing for computational engineers and cryptographers.

22

As stated, code above achieves parallelism through MPI which provides
communication mechanisms among the CPUs. In the code above, the only
communication performed is:
MPIL::COMM_WORLD.MPI::Comm::Allreduce(&loop res, &global sum, 1,
MPI_INT, MPI_SUM);
This command is executed after all processors finish the int loop function. If a
processor has the result loop_res equal 1, it means that a factor is found. The line above
sums up loop res from each processor and saves the value into global sum variable.
When global sum is greater than or equal to 1, we can say that we find a factor.
MPD’s biggest problem is communication, even if this code executes
MPI::Comm::Allreduce function for not so many times, communication is a burden.
Also, MPI is just for CPUs, however GPUs are very suitable for time-consuming
computations. NVIDIA describes CUDA as a platform which enables concurrency
using the power of GPUs. NVIDIA asserts that using CUDA speeds computation up
through parallelization [20].
However, there is no proper, up-to-date GMP Biglnt library available for CUDA.
There are some libraries, but benchmarks show that even addition operation using
them is up to 300 times slower than performing addition on CPU using GMP. Below,
you can see the benchmarks of cuGMP which can be found on Github.

(https://github.com/trubus/cuGMP).

Table 3.1: GMP cuGMP Comparison.

Operation Iteration OperandSizeBits GMPMicrosecs cuGMPMicrosecs

+ 0 1024 2 289
+ 1 1024 0 303
+ 2 1024 0 290
+ 3 1024 0 310
+ 4 1024 1 300
+ 5 1024 0 282
+ 6 1024 0 296
+ 7 1024 0 277
+ 8 1024 0 277

23

However, a GPU code for Shanks’ algorithm was written using cuGMP in order to
have no doubts. The results prove that cuGMP is not favourable.

Another platform I used is Julia. Julia’s popularity is rising every year due to its
advantages [21]. Compared to C++ which I used with MPI, Julia is very easy to work
on. It uses C language’s GMP library, so there is no need to search other libraries
which may not be reliable and up-to-date. Another advantage of Julia is that it is very
fast. Figure 3.1 below shows a comparison of Julia with other languages in terms of

speed. The figure is taken from Julia Language’s official website [22]:

10 °

10

10

10

L]
10 ° O O 0 ° ° o ° .
C Julia LuaJIT Rust Go Fortran Java JavaScript Matlab Mathematica Python R Octave
benchmark

® iteration_pi_sum
matrix_multiply
matrix_statistics

® parse_integers
print_to_file

® recursion_fibonacci
recursion_quicksort
userfunc_mandelbrot

Figure 3.1: Julia Performance Comparison.

24

Julia also supports parallelism effectively. Three levels of parallelism offered by this
language are:

1. Julia Coroutines (Green Threading)

2. Multi-Threading

3. Multi-Core or Distributed Processing
I used Multi-Core Processing since I ran my code on multiple CPUs of UHEM’s
Sariyer Cluster. In contrast to MPI/C++, there is no explicit message passing in Julia’s
multi-core processing. I used a distributed for loop in order to achieve parallelization.
There are other ways of achieving parallelism, too. The Distributed module provides
different data structures and functions for parallel and distributed computations.
Below, you can see the Julia pseudocode used for factoring RSA numbers. Note that
calc ¢, calc step, calc b, set initial delta and b and ¢ and loop functions’

pseudocodes are the same.

function main()
first_delta=<NUMBER TO BE FACTORED>
r = <MULTIPLIER FOR DELTA>
global sum =0

iter = 1;

whiler % 4 1=0
r=r+l

end

while global sum == 0
global sum = @distributed (+) for i = l:nprocs()-1
rr=r+ 100 * (myid() - 1) * iter + 1
(delta,b,c) = set _initial delta and b and c(Biglnt(first delta
* 11))
delta_s = BigInt(floor(sqrt(delta)))
loop(log(delta), BigInt(1), b, c, delta, delta_s,first delta, rr)
end
iter = iter + 1
end
end

25

The @everywhere macro is used for making functions visible to other processors other
than the master processor. The setprecision(5000) function sets the precision to 5000
bits for operations with Biglnt data structure. The @distributed macro is for creating
a distributed loop, after each loop iteration, the results returned are added because of
the (+) sign.

A programmer can easily recognise the difference in readability levels of each code.
Julia is not as fast as MPI/C++, however, it is more practical to write and read Julia

code. I will share the benchmarks later in this thesis.

3.3 Taking Shanks’ Algorithm a Step Further

As I have stated earlier in this thesis, my main intention was to find a mechanism for
factoring a large integer. Previously, Nari, Ozdemir and Yaraneri developed an
extension for Shanks’ Algorithm as explained before. They assert that given n = a * f8
(a # £ 1, a and p are integers and coprime such that b # 0) and a prime number c,

there exists an integer t and interval I such that:

t == a?f*2c + b)? (3.1)
and
_1\2 2
I:= <(V’+ﬁi D ,(W;i“) > (3.2)

Ozdemir and Yaraneri state that an integer “7” selected from this interval accelerates
Shanks’ Algorithm and enables us to factor n. We can only test this hypothesis with
previously-factored integers since @ and f (factors of n) are used for calculating the
interval. My aim is to find a connection between successful “r”’s and » in order to
factor other semiprime numbers which were not factored. r % 4 must be equal 1.

The table below shows the intervals. Note that for RSA-100 and RSA-110,

¢ =7987998710999017000000000013700000000045300003090000000247,

for RSA-120, RSA-129, RSA-130 c =
79879987109912312312312313901700000000001370000000004530000309000000
0339.

We have two intervals because we have two prime factors. Note that “Interval 1”’s are

calculated with the smaller factor. As the number 7 increases, the factors increase,

prime number ¢ should increase, too.
26

Table 3.2: Calculated Interval Beginning and Ends.

Begin-1 End-1 Begin-2 End-2
R 2417405370274 2417405370274 2694774596120 269477459612
6784185142961 6784185142961 2089875037806 020898750378
S 1434389953507 1434389953507 3443402222279 063443402222
0304637894885 0304637894885 4606674830286 279460667483
A 3565663871101 3565663871101 3172975563977 028631729755
6334933840197 6334933840197 3383719340914 639773383719
3068447111795 3068447111795 2394269467385 340914239426
- 9444807568022 9444807568022 8812260929412 946738588122
1 9869023958261 9870617784977 9348788885949 609294129350
471666885
0
0
R 2437264405040 2437264405040 2672817346721 267281734672
9906260774080 9906260774080 6456311378434 164563113784
S 3552403448931 3552403448931 1548376943869 341548376943
4044248957973 4044248957973 2516216816060 869251621681
A 3778580586875 3778580586875 9879420312172 606098794203
5251107205576 5251107205576 6593414019462 121726593414
4762291675508 4762291675508 9361706586942 019462936170
- 5235181041957 5235181041957 0985271670110 658694209852
1 3789064494653 3789064505089 9440858476145 716701109440
858487073
1
0
R 1205274642158 1205274642158 5404878151797 540487815179
0310855461743 0310855461743 4011051651301 740110516513
S 2030512903405 2030512903405 9145760232914 019145760232
6675630309474 6675630309474 5458644219027 914545864421
A 1618131759927 1618131759927 2847072175699 902728470721
7555179339636 7555179339636 6594911708125 756996594911
3422577230392 3422577230392 1794767022036 708125179476
- 0709267863150 0709267863150 9015636379955 702203690156
1 3931925857311 3931925857311 1005756682449 363799551005
7218046220929 7218046220929 5337112962942 756682449533
2 3738419241877 3830587216991 4764725878590 711296294249
57 81 89 599034862344
0 1
R 2718706507480 2718706507480 2396125717281 239612571728
6864907985358 6864907985358 6218858519923 162188585199
S 3457001718486 3457001718486 6252475319510 236252475319
3429734718649 3429734718649 8384335019837 510838433501
A 1911897423901 1911897423901 7103323261192 983771033232
3107477449650 3107477449650 6440795139500 611926440795
4958287433875 4958287433875 2424343514224 139500242434
- 4976307393480 4976307393480 8426466255824 351422484264
1 2273689382970 2273689382970 2413722264565 662558242413
9545156394058 9545156394058 9079561474222 722264565907
8176056183852 8176075685128 8407223361458 956147422284
9 5 985 072251922410
9 89

27

R 2224501620791 22245016207 292845935441340340 292845935441
7483972715920 91748397271 979380231528289722 340340979380
S 0539632128000 59200539632 505341507676725549 231528289722
0159868945712 12800001598 229927505899803085 505341507676
A 8328123281819 68945712832 523592538748485336 725549229927
7361292162491 81232818197 948226241696948946 505899803085
6978761547026 36129216249 999789242471802821 523592538748
- 8138616592342 16978761547 270695053599292706 485336948226
1 7209238864810 02681386165 5 241696948946
2802142045385 92342720923 999789242471
3 5937794984104 88648102802 802821270695
01 14204538559 053615395107
0 37796387523 7

17

Let’s try to factor the RSA numbers above using the serial versions of Julia and
MPI/C++ codes above. Note that the number we select from the intervals () mod 4

should be equal 1.

Table 3.3: Factorization Results Using Intervals.

Begin-1 End-1 Begin-2 End-2
RSA- FAIL SUCCESS FAIL SUCCESS
100
RSA- FAIL SUCCESS FAIL SUCCESS
110
RSA- FAIL SUCCESS FAIL SUCCESS
120
RSA- FAIL SUCCESS FAIL SUCCESS
129
RSA- FAIL SUCCESS FAIL SUCCESS
130
RSA- FAIL SUCCESS FAIL SUCCESS
576
RSA- FAIL SUCCESS FAIL SUCCESS
220
RSA- FAIL SUCCESS FAIL SUCCESS
230

28

The pattern above is obvious: with a number 7 close to interval ends, RSA numbers
can be factored in less than a second. After discovering this fact, experiments were
made with the averages of the interval beginnings and ends. The results show that the
averages are ‘“‘successful”, which means that the averages accelerate Shanks’
Algorithm in contrast to interval beginnings. Another point results prove is that the
calculated interval ends are not actually the ends, numbers larger than interval ends
accelerate factorization.

Experiments and the interval formulae show that, the interval length decrease as the
number to be factored increases (while using the same prime number c).

In order to discover a meaningful relationship between intervals and RSA numbers,
log(RSA—NUMBER,INTERVAL — BEGIN — OR — END) was calculated. As
the RSA-Number increases,
log(RSA— NUMBER,INTERVAL — BEGIN — OR — END) decreases. So, for
semiprime numbers X and Y, if Y > X, then

log(X,INTERVAL — BEGIN — OR - END) > log(Y,INTERVAL — BEGIN — OR — END).

The plot below explains the situation for Interval Ends:

OQI<FASA NUM <INT_ENDO>)

1.2}

A A i A A A A A A
RSAI100 RSA110 RSA120 RSA129 RSAI130 RSASTS RSAZ20 RSA230 RSATES

Figure 3.2: log(<RSA_NUM, INTERVAL END>).

The plot makes more sense when the x-axis is replaced with the number of decimal

digits of each RSA number since we can see the slope more clearly.

29

w— OO (<DIGITS> <INT_END>)

A i A
120 150 180 210

Figure 3.2: log(<RSA_ NUMBER_DIGITS>, <INTERVAL END>).

3.4 Factoring a Semiprime

5s=152260502792253336053561837813263742971806811497100625256164029200
9551300230960365734328241360708667 is a semiprime consisting of 100 digits. The
prime number c is set to :
15000000000000000000000098098098090000000000000000000000000000000000
00000000000000092384203984098234293.

The semiprime subject to factorization is greater than RSA-100 and less than RSA-
110. Therefore an interval of number “#”’s which accelerates Shanks’ Algorithm exists

around:

(Slog(s,log(RSA 100,RSA100_INTERVAL_END)) slog(s,lag(RSAl 10,RSA110_INTERVAL_END)))
, .

Another parameter that should be kept in mind is the length of intervals. For RSA-100,
the interval length is around 3 * 10%4, for RSA-110, the interval length is around 10%°
. The interval length for the number to be factored is at least 10* and at most 3 * 10>*
Since log(RSA — 100,RSA — 100_INTERVAL_END),
log(RSA —110,RSA — 110_INTERVAL_END),

log(RSA —120,RSA — 120_INTERVAL_END),

log(RSA — 129,RSA — 129_INTERVAL_END) are known, in order to find
log(s,S_INTERVAL _END), a factorization function was used. The Newton

30

interpolation code written in Julia [23] was modified due to its inability to run with
integers of size larger than 64 bits. According to the function obtained from Newton
interpolation s72.06619590888562183171 is close to the interval end. Since the factors
of s are actually known, its interval ends can be calculated. The interval end for s is
(using s’s smaller factor):
85242470593140523480578268674184216176646374853810143182703116602157
92177864716346011131262549601568160070715884474700560782020462320377
29545117738884163583184654239339088307731998546912879319350625834333
7.

The interval end guessed without using the factor is:
85242470593140523480578268674184216176646374855022507311494722302466
08251233720575284447736458127224393706750855009608370266869082124063
96196500894119421209520435745009193818139901413402616885379678954100
7.

The difference of calculated interval and guessed interval is:
12123641287916057003081607336900422927331647390852565623363603497053
49078094848486198036866665138315523525762633578150567010551040790286
64897375660290531197670. The interval length for s is smaller than the interval
length for RSA-100 and greater than the interval length for RSA-110. 3*10% is
smaller than the interval length for s (since s is very close to RSA-100) , therefore it is
used as step while trying to find the correct interval. Using 1000 processors, the factor

0100

is found after approximately 4 * 1 iterations using the codes above.

31

4. BENCHMARKS

4.1 Serial Code Comparison

Serial versions of Julia and C++ codes were compared while factoring RSA-100, RSA-
140 and RSA-230. Each code was run for 50 times in order to eliminate misleading
results. Since Julia has a JIT compiler in contrast to C++, the compilation time was
subtracted from Julia benchmarks. RSA-100 was factored after 700, RSA-140 was
factored after 4300, RSA-230 was factored after 4400 iterations. The RSA-230-2
column shows the results when RSA-230 is factored after 147 iterations. The RSA-

230-3 column shows the result after 14668 iterations.

Table 4.1: Julia vs C++ Serial Code Results.

RSA-100 RSA-140 RSA-230 RSA-230-2 RSA-230-3

Julia 0.712 5.0136 8.0248 0.461 25.792
seconds seconds seconds seconds seconds

C++ 0.539 5.1442 12.044 0.402 40.147
seconds seconds seconds seconds seconds

The results show that when the number of loop iterations increase, Julia’s performance
gets better. Julia is a dynamic language and uses LLVM. JIT compiler and LLVM

together results in more optimized code.

4.2 Parallel Code Comparison

The graph below shows the factorization of RSA-100 with 1, 5, 10, 20 processors

with each programming language.

33

O JULA O C++/MPI

70 6
52,5
35
0O
175 0
0 0O
o
o O
0 10 15 20

Figure 4.1: Julia vs C++ Parallel Code Results.

The x-axis shows the number of processors while the y-axis shows the execution time.
It can be seen that Julia is faster than C++ if the serial code is run, however, C++ and
MPI together result in a perfect efficient and speedup in contrast to Julia. For
measuring the performance of parallel code, Efficiency (E) and Speedup (S) are two

key concepts. The graphs below show the efficiency and speedup. Efficiency (E) is

S 1

equal E =— while Speedup (S) is equal § =——— (N is the number of
N d-p+=

processors, p is the portion of execution time which is affected by more number of

processors and s shows how many times p is faster with more processors).

O Julia Efficiency

0,375

0,125

10 20
Figure 4.2: Julia Efficiency.

(44

34

O Julia Speadup

5
3,75
25
1,25
0
5 10 20
Figure 4.3: Julia Speedup.
O C++/MPI Efficiency
097
0,943
0,915
0,888
0,86
5 10 20
Figure 4.4: C++/MPI Efficiency.
O C++/MPI Speedup
18
135
9
45
0
5 10 20

Figure 2.5: C++/MPI Speedup.
35

For both parallel platforms, it is observed that efficiency drops as number of processors
increase. The main reason for this decrease in efficiency is the lag due to network. As
the number of processors increase, the number and size of data transfers increase, too.
In MPI, when x processors are used, the number of data transfers is equal 2x -2 since
MPI_Allreduce performs a reduction in the root processor (x-/ data transfers) and then
broadcasts the result to other non-root processors (x-/ data transfers).

Julia’s efficiency is very poor when compared to MPI’s efficiency. With 5 processors,
MPT’s efficiency is equal 0.96 which is very close to maximum efficiency of 1. Also,
MPI achieves nearly linear speedup which shows that each CPU’s utilization rate is

nearly 100%.

36

5. CONCLUSION AND FUTURE WORK

The computation results show that another method for integer factorization can be
used. If intervals are guessed correctly, factorization of a semiprime can be
accomplished in less than a second. However, the formula does not calculate the
interval end and interval beginning precisely. The beginning is larger than the
calculated beginning and the end is larger than the calculated interval end.

Tests were run using multiple programming languages. The results show that Julia can
be an alternative for programmers in the future due to its simplicity and speed.
However, using Julia’s distributed for loop is not a good alternative for programmers
who demand efficiency and speedup. The refinement of the Distributed.jl library is my
next aim. A CUDA code was also tested, however since GMP libraries for GPUs do
not have good performance, the results were disappointing. The future work includes
refactoring and enhancing the GMP libraries for CUDA. Also, finding a better
approximation method for intervals of semiprimes whose factors are not known is

another goal.

37

REFERENCES

[1] Url-1 <https://access.redhat.com/blogs/766093/posts/1976023>, date retrieved
02.05.2019.
[2] Url-2 <https://www.wired.com/2014/06/d-wave-quantum-speedup>, date
retrieved 02.05.2019.
[3] Diffie, W.& Hellman, M. (1976), November. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22, 644-654.
[4] Stallings, W. (2010). Cryptography and Network Security. New York, NY:
Prentice Hall.
[5] Url-3 <https://commons.wikimedia.org/wiki/File:Diffie-
Hellman _Key Exchange.png>, date retrieved 02.05.2019.
[6] Url-4 <http.//mathworld.wolfram.com/PrimitiveRoot.htm[>, date retrieved
02.05.2019.
[7] Rivest, R & Shamir, A. & Adleman, L. (1977), April. Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, 26,
96-99.
[8] Niven, I. & Zuckermann, H. & Montgomery, H. (1960). An Introduction to the
Theory of Numbers. Hoboken, NJ: John Wiley & Sons.
[9] Solovay, R. & Strassen, V. (1977). A Fast Monte Carlo Test for Primality. SIAM
Journal on Computing, 6, 84-85.
[10] Washington, L. & Trappe, W. (2006). Introduction to Cryptography with
Coding Theory. Upper Saddle River, NJ: Pearson Prentice Hall.
[11] Shor, P. (1995), August. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26,
1484-1509.
[12] Url-5 <http://mathworld wolfram.com/NumberFieldSieve. html>, date retrieved
02.05.2019.
[13] Boneh, D. (2006). Twenty Years of Attacks on the RSA Cryptosystem.
American Mathematical Society, 46, 203-213.

39

[14] Wiener, M. (1989). Cryptanalysis of Short RSA Secret Exponents. I[EEE
Transactions on Information Theory, 36, 553-558.

[15] Coppersmith, D. (1997). Small Solutions to Polynomial Equations, and Low
Exponent RSA Vulnerabilities. Journal of Cryptology, 10, 233-260.

[16] Kocher, P. (1996). Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. CRYPTO '96 Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, 104-113.

[17] Buell, D. (1989). Binary Quadratic Forms Classical Theory and Modern
Computations. New York, NY: Springer Verlag.

[18] Nari, K., Ozdemir E., Yaraneri, E. (2017), October. ikili Kuadratik Formlar
ile Carpanlara Ayirma. Journal of Engineering Technology and Applied Sciences, 2,
101-111.

[19] Url-6 <http://gmplib.org>, date retrieved 02.05.2019.

[20] Url-7 <https://developer.nvidia.com/cuda-zone>, date retrieved 02.05.2019.
[21] Url-8 <http://pypl.github.io/PYPL.html>, date retrieved 02.05.2019.

[22] Url-9 <https://julialang.org/benchmarks>, date retrieved 02.05.2019.

[23] Url-10 <http.//homepages.math.uic.edu/~jan/mcs47 1/divdifpol.pdf>, date
retrieved 02.05.2019.

40

CURRICULUM VITAE

Name Surname :Deniz Kirlidog

Date and Place of Birth :20.09.1991 - Australia

Address :ITU Ayazaga Kampusu Koru Yolu ARI3 Binasi

No:1001

E-Mail :deniz.kirlidog@gmail.com

B.Sc :Bilkent University, Department of Computer
Engineering

PRESENTATIONS ON THE THESIS:

e Kirhdog, Deniz, 2019: Computational Methods for Integer Factorization.

International Congress of Energy, Economy and Security Presentation, April 6-7

2019, Istanbul, Turkey.

41

