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COMPUTATIONAL METHODS FOR INTEGER FACTORIZATION 

SUMMARY 
 

Integer factorization is the task of finding the prime factors of a composite number. 
Since integer factorization is a computationally expensive task, today many digital 
security systems rely on its difficulty. Many systems use the difficulty of integer 
factorization for assuring security. Today, RSA cryptosystem, which takes its name 
from its inventors, Rivest, Shamir and Adleman, dating back to 1977, is widely used 
for secure communication. RSA is a public key cryptosystem, which uses two 
asymmetric keys. The concept of asymmetric keys was firstly presented by Whitfield 
Diffie and Martin E. Hellman in 1976.  

 
Integer factorization has always been an attractive field of research for mathematicians 
and computer scientists. Many scientists developed algorithms for factoring large 
integers, however none of them are useful with regard to the limitations of the 
computational power we have as of today.  
 
Daniel Shanks’ SQUFOF Algorithm, which was developed using Binary Quadratic 
Forms is one of the most popular algorithms for integer factorization, however it is not 
efficient due to the computational power it requires. Nari, Ozdemir and Yaraneri took 
this algorithm another step further and developed a new algorithm. By using a 
multiplier which lies within an interval calculated using the factors of the integer, the 
new algorithm can easily factor large semiprimes. The multiplier selected from the 
interval accelerates integer factorization. However, finding the interval without 
knowing the factors is difficult. Some properties of the intervals are studied in this 
thesis. 
 
In this work, new SQUFOF with a multiplier algorithm’s parallel and serial versions 
were implemented on multiple platforms. The platforms include C++ and Julia. C++ 
is one of the most recognised programming languages in the world due to its 
widespread usage for decades. In contrast, Julia is a very young programming 
language with rising popularity. For achieving parallelism on multiple processors, MPI 
is used on C++, Julia has its own libraries for supporting parallelism. The Distributed.jl 
library is an open source library, which is suggested for writing parallel code on Julia. 
Not only CPUs, but also GPUs can be used for parallelism, therefore some experiments 
with CUDA were conducted.  
 
The benchmarks show that the cuGMP library written in C++ for representing Big 
Integers (integers larger than 64 bits) on GPUs is not successful. Julia is slower than 
C++ for parallel computations, however, considering its high level features which 
makes programming easier, it proves itself to be a fast and efficient programming 
language. C++ with MPI is nearly two times faster than Julia, however writing code  
in C++ using MPI is a more difficult task than achieving parallelism in Julia. The 
benchmarks are shown in this thesis.
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ÇARPANLARA AYIRMA İÇİN HESAPLAMALI YÖNTEMLER 

ÖZET 
 

Whitfield Diffie ve Martin E. Hellman 1976 yılında geliştirdikleri anahtar değiştirme 
yöntemiyle kriptografi alanında büyük bir değişikliğe imza attılar. Bu buluşla 
bilgisayar dünyasının en önemli ödülü olan Turing ödülünün de sahibi olan bilim 
insanları, geleneksel şifreleme yöntemlerinin aksine biri kapalı (diğer insanların 
ulaşımına kapalı), diğeri açık (diğer insanların ulaşımına açık) olmak üzere çift 
anahtarla iletişim halinde olanların yeni bir anahtar oluşturup şifrelemeleri fikrini 
gündeme getirdiler. Açık anahtar değiştirme yöntemi, üzerinde iletişim kurulan kanal 
güvenilir olmasa da gizli ortak anahtar oluşmasını sağlar.   

 
Diffie ve Hellman’nın geliştirdikleri anahtar değiştirme methodu, 1977 yılında adını 
onu bulanlardan alan RSA kriptosisteminin de gelişimine sebep oldu. RSA 
kriptosistemi, adını onu geliştiren Rivest, Shamir ve Adleman’dan almaktadır. Ortaya 
çıktığı 1977 yılından bu yana RSA kriptosistemi dijital güvenlik dünyasının belkemiği 
haline gelmiştir.  

 
RSA kriptosisteminin güvenilirliğinin altında iki asal sayının çarpımından oluşan bir 
sayının çarpanlara ayrılmasının zorluğu yatar. Rivest, Shamir ve Adleman’ın sahibi 
olduğu RSA dijital güvenlik firması, 2007 yılına kadar “RSA Challenge” ismi altında 
100 basamaklı ve daha büyük yarı asal sayıların çarpanlarına ayrılmasını teşvik eden 
bir yarışma düzenliyordu.  

 
RSA kriptosistemi ile iletişim kurmak isteyen herkesin iki adet anahtar sahibi olması 
gerekmektedir. Bu anahtarların bir tanesi açık, bir tanesi kapalı olmalıdır. Anahtarların 
her biri aslında bir sayıdır, bu sayılardan kapalı olan anahtarın başkalarının eline 
geçmesi büyük güvenlik sorununa sebep olur. Örneğin kapalı anahtarı ele geçiren kişi, 
anahtarın asıl sahibiymişçesine başkalarıyla iletişim kurabilir, anahtarın asıl sahibine 
gelen mesajları okuyabilir. Açık anahtar ise sistemin mantığı itibariyle herkese 
görünmektedir. 

 
RSA kullanarak iletişim kurmak isteyen kişi ilk olarak n yarı asal sayısını seçer, n 
sayısının çarpanları p ve q asal sayılardır. p ve q sayılarının asallığından emin olmak 
için asallık testleri yapılmalıdır, Solovay-Strassen Asallık Testi, Fermat Asallık Testi, 
Miller-Rabin Asallık Testi asallık durumunun kontrolü için kullanılabilir. Fermat 
Asallık Testi yüksek doğruluk oranına sahiptir, fakat bulmayı garanti ettiği şey 
asallıktan ziyade asal olmama durumudur. n sayısının faktörlerine ayrılmasının 
zorluğunun sebebi sayının çok büyük bir sayı olmasıdır. Örneğin Bitcoin için gizli 
(kapalı) anahtarın uzunluğu 256 bittir. (p-1)*(q-1) sayısından Uzatılmış Öklit 
Algoritması ile açık anahtar e sayısının çarpmaya göre tersi bulunur. e sayısının 
çarpmaya göre tersi olan d sayısı kapalı (gizli) anahtardır. Gizli anahtarı bulmak 
isteyen bir kişinin n yarı asal sayısını çarpanlarına ayırmadan gizli anahtara ulaşması 
çok zordur.
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Büyük tam sayıların çarpanlarına ayrılması muazzam bir hesaplama gücü 
gerektirdiğinden geleneksel bilgisayarlardan çok daha hızlı olan kuantum 
bilgisayarlarla bu işlemin yapılması çok daha hızlı olacaktır, fakat günümüzde 
kuantum bilgisayarların yaygınlaşmaması, kuantum bilgisayarlara ulaşımın neredeyse 
imkansız olması, kuantum bilgisayarlar için tasarlanan algoritmaların geleneksel 
algoritmalardan farklı olması gerekliliği sebebiyle çalışmalar daha çok geleneksel 
bilgisayarlar üzerinden yürütülmektedir. Peter Shor’un algoritması 

 adımda n sayısını çarpanlarına 
ayırabilmektedir.   
 
Bu çalışmada üzerinde durulan Daniel Shanks’in yaratıcısı olduğu Shanks Algoritması 
ise geleneksel Von Neumann Mimarili bilgisayarlarda çalışmaktadır. Shanks 
Algoritması yaygın olarak kullanılmamaktadır, zira hız ve hesaplama gücünün kritik 
olduğu bu işlem için çok yavaş kalmaktadır. Shanks Algoritması sayılar teorisinin 
birtakım kavramları üzerine kurulmuştur. Bu kavramlar arasında grup teorisi, ikili 
kuadratik formlar gösterilebilir. Nari, Özdemir ve Yaraneri Shanks Algoritmasını 
geliştirerek ikili kuadratik formların kullanıldığı yeni bir algoritma geliştirmişlerdir. 
Bu tezde, geliştirilmiş yeni algoritma üzerinde performans karşılaştırılması 
yapılmıştır.   
 
Shanks Algoritması’nın geliştirilmiş hali Özdemir ve Yaraneri’nin ortaya attığı üzere 
belli bir interval  (sayı aralığı) arasından seçilen bir r sayısı ile hızlandırılabilmektedir. 
Bu interval çarpanlarına ayrılması istenen n sayısının çarpanları p ve q kullanılarak 
hesaplanmaktadır. Yeterli hesaplama gücüne sahip olunduğunda çarpımlara ayrılması 
istenen sayıya yakın daha önce çarpanlarına ayrılmış sayılardan yararlanmak mümkün 
olabilir. 
 
İkili kuadratik formlar  şeklinde ifade edilir. Bu formun 
ikili kuadratik form olabilmesi için diskriminant deltanın aşağıdaki koşulları sağlaması 
gerekmektedir ( ). İlk koşul ∆ mod 4’ün bir veya sıfıra eşit olmasıdır, 
ikinci koşul ise b sayısının mod 2’de diskriminant deltaya eşit olması zorunluluğudur. 
a, b, c sayılarının en büyük ortak bölenlerinin 1 olduğu durumda, ikili kuadratik 
formun ilkel olduğu söylenir. Bu çalışmada da ilkel ikili kuadratik formlar 
kullanılmıştır.  
 
Bu çalışmada, aralarında denklik ilişkisi olan ikili kuadratik formlar kullanılarak 
yaratılan bir döngü ile yarı asal sayıları çarpanlara ayırma işleminin nasıl 
yapılabileceği anlatılmaktadır.   
 
Bu kadar yüksek hesaplama gücü ve hız gerektiren bir işlemi paralelleştirmek 
gerekmektedir. Ayrıca, 64 bitten çok daha büyük sayılarla uğraşıldığından klasik 
double değişkenler bu konuda işe yaramamaktadır. Büyük tam sayıları ifade etmek, 
onlarla yüksek hızlarda işlemler yapabilmek için GMP kütüphanesi kullanılmıştır. 
GMP kütüphanesi açık kaynak kodlu ifade edebileceği sayı büyüklüğü teoride sonsuza 
eşit olan bir kütüphanedir. Tam sayılarla yapılabilecek neredeyse tüm işlemler bu 
kütüphanede bulunmaktadır. 1991 yılında ilk defa yayınlanmış olan bu kütüphane 
işlemlerin hızlı olmasına odaklanmıştır ve gönüllülerin katkılarıyla neredeyse her yıl 
yeni özellikler, hata düzeltmeler ile gelişmeye devam etmektedir, üzerine eklentiler 
yapılmaktadır. 
  

O((log n)2(log log n)(log log log n))

f (x , y) = a x2 + bx y + c y2

Δ = b2 − 4ac
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GMP kütüphanesi (özellikle tamsayı fonksiyonları) genellikle kriptografi alanında 
çalışmalar yapan bilim insanları tarafından aktif olarak güvenle kullanılmaktadır. Bu 
çalışmada da kullanılan her platformda GMP kütüphanesinin tamsayı 
fonksiyonlarından faydalanılmıştır. 

 
Shanks Algoritması’nın hızlandırıcı çarpanlı yeni versiyonu çeşitli platformlarda 
denendi. Bu platformlar arasında dünyada en çok bilinen ve on yıllardır aktif olarak 
kullanılan C++, yeni fakat giderek daha da yaygın olarak kullanılan Julia programlama 
dili de var. Ayrıca sadece Julia ve C++’ın üzerinde çalıştığı ile CPU değil, GPU 
üzerinde de CUDA ile çeşitli denemeler yapıldı, fakat sonuçlar yeterince başarılı 
bulunmadı. 

 
GPU üzerindeki denemelerden iyi sonuçlar alınamadı, büyük sayılar için kullanılan 
GMP kütüphanesinin GPU mimarisi için yazılmış resmi bir kütüphanesi olmadığından 
Github’daki açık kaynak kodlu projeler üzerinden gidildi. Bulunan GPU üzerinde 
çalışan cuGMP kütüphanesi ile CPU üzerinde çalışan GMP kütüphanesinin 
performansları karşılaştırıldığında, CUDA için yazılan cuGMP kütüphanesinin 
oldukça düşük performanslı olduğu görüldü. Yapılan testlerin sonuçları raporda da yer 
aldı.  
 
C++ ve Julia karşılaştırılması için hem seri, hem paralel kodlar yazıldı. Julia’nın C ve 
C++ kütüphanelerini rahatlıkla çağırabilmesi sebebiyle Julia kodlarında da büyük tam 
sayıların temsili, büyük tam sayılarla yapılan işlemler için doğrudan GMP kütüphanesi 
kullanıldı. 
 
C++ ile paralelleştirme için üzerinde 1991 yılından itibaren çalışılan MPI kullanıldı. 
Artık standartlaşmış bir protokol haline gelmiş olan MPI için yazılmış farklı işletim 
sistemlerinde çalışan birçok farklı derleyici bulunmaktadır. Paralel işlemcilerin 
birbirleriyle haberleşmelerini sağlayan MPI için oldukça fazla programlama dilinden 
çağrılabilen farklı işlevde birçok fonksiyona sahiptir.        
 
MPI proses seviyesinde paralelliği sağlamaktadır. Aynı zamanda iplik seviyesinde 
paralelleştirme imkanı da sağlar. Bu çalışmada ise MPI kütüphanesinin proses 
seviyesinde paralelleştirme olanaklarından yararlanılmıştır.   
 
Julia, okunabilirliği oldukça yüksek olan, dolayısıyla öğrenmesi de kolay olan, 
popülaritesi giderek artan yeni nesil bir programlama dilidir. An itibariyle internette 
en çok aranan 21. programlama dili olarak listelerde yer almaktadır. Özellikle yüksek 
başarımlı hesaplamalar için dizayn edilmiş bu dil, paralel platformlarda C++/MPI 
kadar yüksek performanslı olmasa da ilerleyen zamanlarda prosesler arası iletişim 
daha da hızlanırsa birçok alanda C++ popülaritesine ulaşma imkanına sahip olabilir. 
Seri kodlar karşılaştırıldığında, Julia’nın gücü görülebilmektedir, hesaplama süresi 
arttıkça Julia performans açısından C++’ı geride bırakmaktadır. Bu tezin de son 
bölümünde karşılaştırmalar yer almaktadır. 
 
Günümüzde giderek artan hesaplama gücü ihtiyacını giderebilmek için artık elimizde 
birçok farklı programlama dili, standart ve kütüphane bulunmaktadır. Bu çalışmada 
İTÜ UHEM’in Sarıyer makinasındaki CPU ve GPUlar kullanılarak birtakım 
karşılaştırmalar yapıldı. Amaç, yarı asal bir sayıyı çarpanlarına ayırmakla beraber 
bilgisayar dünyasındaki standartları ve yenilikleri karşılaştırarak, hesaplama 
imkanlarını gözden geçirmektir.   
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1. INTRODUCTION 
 
  
Integer factorization is the task of finding the factors of a large integer. Integer 

factorization is an active field of research since security of many digital systems depend 

on the difficulty of factoring a large integer into its prime factors. Today, many systems 

from various areas use RSA cryptosystem for confidentiality. Confidentiality is an 

important concept in our modern world where illegal collection of data is very common 

and dangerous. Cryptosystems enable us to encrypt our data for preventing people (other 

than we allow) to read, change or use our data. Not only today, but also in history hiding 

private content and messages has always been an important issue. First known 

cryptosystem dates back to 1900 BC and today RSA cryptosystem is widely accepted 

[1].  

The difficulty of integer factorization lies within the insufficient computational power 

of today’s computers. Until quite recently, it was assumed that quantum computers were 

going to be much more efficient than today’s computers. However, this theory is now 

suspicious [2]. Therefore, it can be said that integer factorization will most probably be 

an important problem even if we start using quantum computers. Until quantum 

computers become feasible and cryptographers prove that RSA cryptosystem is 

trustworthy in these systems, research in this area will continue. As of today, we are 

bound to use RSA on traditional Von Neumann Architecture computers. 

With technological advances, we have more opportunities and platforms for 

computational studies. In this thesis, new and traditional ways of computation are 

discussed and compared.    
 

1.1 Purpose of Thesis 
 
This study focuses on more than a single aim, first one is to prove the Shanks’ algorithm 

with a multiplier method computationally and explain how to factor a semiprime using 

the new algorithm. The multiplier selected from an interval whose formulations are 

given in following chapters accelerates Daniel Shanks’ SQUFOF algorithm. The 

computations show that, thanks to the multiplication, even 768 bit semiprime numbers
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can be factored in seconds. Another purpose is to compare young and traditional 

platforms of computation and their parallelization potentials.  

Julia is a very young programming language focusing mostly on performance and ease 

of use. This new programming language attracts not only software engineers and 

computer scientists, but also programmers from different backgrounds with different 

fields of expertise. C++, the backbone of many systems shows its speed, but it is 

difficult for people without software engineering background to use it. In today’s 

world, in which we have limitless data, computation lies in the heart on many scientific 

researches. Julia may be an alternative due its readability for people who are not 

comfortable with low level C++ code. In this study, a brief history of RSA, public key 

cryptography and integer factorization is found. Methods for breaking RSA are 

discussed and the history of attacks to some cryptosystems are elaborated.    
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2. DIFFIE-HELLMAN KEY EXCHANGE AND RSA 
 
2.1 Public Key Cryptography and Diffie-Hellman Key Exchange  
 
 
RSA Cryptosystem is a public key cryptosystem. Its name comes from its inventors: 

Rivest, Shamir, Adleman. The concept of public key cryptosystem was firstly 

discussed by Diffie and Hellman’s 1976 paper named “New Directions in 

Cryptography” [3]. In contrast to conventional old-fashioned encryption and 

decryption methods, Diffie and Hellman propose a new system in which 

communicating parties have two keys: one public and one private. Figures below taken 

from “New Directions in Cryptography” show the difference of conventional 

cryptosystems and public key cryptosystems.   

 
Figure 2.1: Conventional Cryptosystem with Single Key Source. 

  
 
The figure above describes the conventional system: communicating parties (Alice and 

Bob) share one secret key: K. The message P is encrypted by K by the sender Alice 

using the encryption function . The receiver Bob decrypts the message P using the 

same key K with the decryption function .    

SK

S−1
K
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Figure 2.2: Public Key Cryptosystem. 

 
 

The figure above shows the public key cryptosystem proposed by Diffie and Hellman. 

In this system, there are two keys:  is the deciphering key (private key) and  is 

the enciphering key (public key). The sender and the receiver do not have the same 

key source in contrast to the old-fashioned cryptosystem in Figure 2.1. The 

communicating parties agree on two numbers and these two numbers become their 

public keys. Also, both of them select an integer privately and these integers become 

their private keys. There are two different key sources for each communicating party. 

Once Discrete Logarithm Problem has a solution, Diffie-Hellman Key Exchange is no 

longer secure. Discrete Logarithm Problem is solved when c can be extracted from 

!"	$%&	' (a and n are known).  

Communicating parties create a key for their communication and transmit data to each 

other using networks. However, this kind of communication is open to Man-In-The-

Middle Attacks. The scenario below shows an example for Man-In-The-Middle Attack 

for Diffie-Hellman Key Exchange. 

Here we have Alice and Bob, who wish to exchange keys and there is Darth, a person 

who wants to imitate Alice or Bob (q is a global large prime) [4]. The flow of data, 

which is visualized in the figure below shows the Man-In-The-Middle Attack Scenario 

for Diffie-Hellman Key Exchange. 

  

DK EK



 5 

 
Figure 2.3: Diffie-Hellman Key Exchange Man-In-The-Middle Attack Scenario. 

 
 

Now, even though Alice and Bob think they are communicating with each other, they 

are actually communicating with Darth. The eavesdropper Darth can pretend to be 

Alice or Bob. He can easily read private messages written by Alice and Bob. Darth 

now shares the key K1 with Bob and K2 with Alice. Alice and Bob are unaware of the 

situation. Below, you can see the flow of communication. 
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Figure 2.4: Communication Interception After Man-In-The-Middle Attack. 

 
The flow shows that Darth can read any message sent to Bob by using his key with 

Alice. Also, he can imitate Alice and send messages to Bob as if he is Alice. He can 

alter the original message from Alice or he can send a completely different message. 

This security flaw in key exchange can be fixed using authentication. If 

communicating parties authenticate each other, Man-in-the-Middle Attack is no longer 

a problem. There are different ways of authenticating each other. Digital signatures 

and public-key certificates can be used for solving this issue [4]. 

Let’s take a look at digital signatures and public-key certificates which are widespread 

solutions for communicating parties to acknowledge each other. Digital signatures are 

a good way of preventing imitators like Darth in the example above. Their benefits are 

not only preventing imitators but also preventing dispute among communicating 

parties. One of the popular digital signatures, El Gamal Digital Signature keeps 

date/time, content of the message at the time of signature within. In case of a dispute, 

a neutral third party can expose the truth. 

Alice wants to send 
message M to Bob. 

She calculates 
ME=E(K2,M)

Darth intercepts ME 
and decrypts M using 

his shared key K2. 
Darth sends Bob ME2 = 

E(K1,M2)

Bob decrypts ME2 with 
K1.

ME

ME

ME2
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The National Institute of Standards and Technology proposed Digital Signature 

Standard based on El Gamal and Schnorr and today it is widely used as a standard in 

order to prevent claims of forgery. Public-key certificates consist of public key, owner 

identifier and a block signed by a trusted third party. Third party should be a 

trustworthy organisation like governments or international firms [4]. The certificate 

makes sure that the owner has the corresponding private key of the public key. 

Diffie-Hellman Key Exchange is often explained visually with the colour analogy, 

which is shown below [5]: 

 

 
 

Figure 2.5: Diffie-Hellman Key Exchange Colour Analogy. 

 

The illustration points out that communicating parties obtain the same secret in the end 

of the process. More detailed flowchart can be seen below: (p is a large prime and  

is the primitive root modulo p. Assume we have the equation  ≡ a mod n, g is called 

the primitive root modulo n if gcd(a,n) = 1. The number k is the discrete 

logarithm of a to the base g modulo n .  [6] ) 

 

α

gk
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Figure 2.6: Diffie-Hellman Key Exchange Flow. 
 

 

Diffie-Hellman Key Exchange is reliable, because calculating discrete logs is very 

difficult. If someone can easily compute discrete logs, this algorithm is no longer 

reliable. If the eavesdropper Darth can compute discrete logs, he can obtain K and 

break the system. If Darth can compute y from  (  is public as stated above) and x 

from , the system is no longer useful.  However, as of today, Discrete Log Problem 

has no solution. 

 
2.2 RSA Cryptosystem 

 

In 1978, Rivest, Adleman and Shamir proposed a system for secure and private 

electronic mail transfer. They state that the public key cryptography system invented 

by Diffie and Hellman lies in the heart of their newly-proposed RSA system. To  

αy α

α x
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understand their system, one has to know some mathematical theorems and algorithms, 

namely Euler’s Theorem and Euclidean Algorithm. 

Euler’s Theorem says that if  (p, q prime) and , then  

                                                              (2.1)                

Note that:  .  

In order to find decrypting key d from encrypting key e, we should find the modular 

multiplicative inverse of e modulo . The modular multiplicative 

inverse is found using Extended Euclidean Algorithm. We have the following 

equation: 

                                             (2.2) 

When we reduce Equation 2.2 to modulo , we get 

                                        (2.3) 

Extended Euclidean Algorithm solves the equations of form Equation 2.3. Equation 

2.3 is derived from Equation 2.2, which is our initial problem: finding decrypting 

(private) and encrypting (public) keys. 

Using the theories and algorithms above, Rivest, Shamir and Adleman developed RSA 

cryptosystem in 1978. The figure below explains the algorithm visually. 

 
Figure 2.7: RSA Flow 

n = p * q gcd(a , n) = 1
aϕ(n) ≡ 1 (mod n)

ϕ(n) = (p − 1) * (q − 1)

(q − 1) * (p − 1)

d * e + (p − 1) * (q − 1) * y = 1
(p − 1) * (q − 1)

d * e ≡ 1 (mod (p − 1) * (q − 1))
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In their paper “A Method for Obtaining Digital Signatures and Public-Key 

Cryptosystems”, Rivest, Shamir and Adleman explain how to use the proposed system 

effectively. They offer solutions to problems related to difficulties of putting the 

cryptosystem into practice. Since computational power has limitations, they explain 

the “exponentiation by repeated squaring and multiplication” [7] procedure for 

calculating  effectively. Calculating  requires  

multiplications and  divisions using the procedure. Let  be e’s 

binary representation and C = 1. The procedure is [7]: 

 

Step 1. Repeat steps 1a and 1b for i = k, k − 1, . . . , 0:  

 Step 1a. Set C =  % n.  

 Step 1b. If  = 1, then C = (C · M) % n.  

Step 2. Stop. C is the encrypted form of M. 

 

RSA cryptosystem requires two large prime numbers p and q. n, which is equal to p*q, 

has to be computationally expensive to factor, since correct factorization of n will 

break the system, nobody should be able to find p and q from n. In order to find a large 

prime of x digits, prime number theorem says that approximately  

numbers should be tested before finding a prime number [8]. If we want a 10 digit 

prime number, we should test approximately  numbers. 

For primality testing, Rivest, Shamir and Adleman suggest using a probabilistic 

algorithm by Solovay and Strassen. This algorithm selects a random number a from a 

uniform distribution on {1, . . . , b − 1}, and tests the following condition [9]: 

                               (2.4) 

J(a, b) is the Jacobi symbol [7]. 

Apart from Solovay-Strassen Primality Test, there are other ways for detecting 

primality: Fermat Primality Test and Miller-Rabin Primality Test. These algorithms 

can be used while selecting p and q, too. 

For testing primality of n using Fermat Primality Test, we should choose a random 

integer a with  1 < a < n-1. If the following condition holds, n is probably prime [10]: 

                                           (2.5) 

Me mod n Me mod n 2 * log2e

2 * log2e ekek−1 . . . e0

C2

ei

(ln 10x) / 2

ln(1010) / 2 ≈ 12

gcd(a , b) = 1 an d J(a , b) ≡ a(b−1)/2 mod b

an−1 ≡ 1 mod n
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Fermat Primality Test is highly accurate for large n. However, it guarantees 

compositeness, not primality. 

For conducting Miller-Rabin Primality Test for n, we should select a random integer 

a which is greater than 1 and less than n - 1. We also have an odd m which satisfies 

 . Below is the algorithm [10]: 

 Step 1. Compute . 

 Step 2. If , stop and declare that n is 

  PROBABLY prime.  

 Step 3. Repeat steps 3a, 3b and 3c for i=1, 2, …. ,k-1: 

  Step 3a. Calculate . 

  Step 3b. If ,  stop and declare that n is composite. 

  Step 3c. If , stop and declare that n is PROBABLY 

prime. 

 Step 4. If  then n is composite. 

 

For selecting secure p and q, RSA inventors also state that p and q should have the 

same number of digits and both p-1 and q-1 should have very large prime factors. Also, 

 should be small [7]. 

Another number that should be selected is the decryption exponent d. We should select 

d and then derive the encryption exponent e using the Extended Euclidean Algorithm 

explained before. The decryption exponent d must be coprime to 

, so  must hold. Any prime number larger 

than maximum(p, q) is okay, the primality can be tested with one of the test described 

above (Solovay-Strassen, Miller-Rabin, Fermat). After choosing d, the Extended 

Euclidean Algorithm returns e, the encryption exponent.  

After describing the flow of RSA cryptosystem in detail, we should also mention the 

possible security flaws and ways of breaking the system. Rivest, Shamir and Adleman 

handle the security under four subtitles: Factoring n, Computing  without 

Factoring n, Determining d Without Factoring n or Computing , Computing d in 

Some Other Way. 

 

 

n − 1 = 2k * m

b0 ≡ am mod n

b0 ≡ 1 mod n or b0 ≡ − 1 mod n

bi ≡ b2
i−1 mod n

bi ≡ 1 mod n

bi ≡ − 1 mod n

bk−1 ≢ − 1 mod n

gcd((p − 1), (q − 1))

ϕ(n) = (p − 1) * (q − 1) gcd(d , ϕ(n)) = 1

ϕ(n)
ϕ(n)
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Factoring n, which is very difficult as mentioned before, breaks the system. However, 

since n is equal to multiplication of two large primes, it is computationally exhaustive 

and takes a lot of time.  Some factoring algorithms exist, but they are not fast and 

feasible enough to conclude that RSA is not safe. At the time of publication of RSA 

cryptosystem, the fastest algorithm computed factors of n in  steps 

[7]. As of today, Shor’s Algorithm, which is named after its creator Peter Shor, 

factorizes large numbers very quickly and efficiently, however it is a quantum 

algorithm, it runs on quantum computers. Peter Shor states in his paper “Polynomial-

Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum 

Computer” that the quantum factoring algorithm has asymptotically 

 complexity on a quantum computer, along 

with a polynomial amount of post-processing complexity on a von Neumann 

Architecture computer which is required for conversion of output [11]. General 

Number Field Sieve is the fastest factorization algorithm for classical computers. 

Its complexity for factoring a semiprime integer n (consisting of ⌊ ⌋+1 bits) is 

 where c is a constant which can take three 

different values [12].  

 must be kept secret because the decryption exponent d can easily be derived 

using Extended Euclidean Algorithm (encryption exponent e is public). As explained 

before, .     

Determining decryption exponent d without factoring n or computing  is not 

easier than factoring n, therefore it is infeasible. In order to compute d in some other 

way, one has to find a solution to Discrete Logarithm Problem, which has no feasible 

solution as of today. Deriving d from  (c is the encrypted message, so both 

c and n are public) is an example of Discrete Logarithm Problem. 

In his paper “Twenty Years of Attacks on the RSA Cryptosystem” Dan Boneh 

summarized the possible kinds of attack under five topics: Factoring Large 

Semiprimes, Elementary Attacks, Low Public Exponent, Low Private Exponent and 

Implementation Attacks [13]. 

Since  and , (n and e are public), one can 

derive the private/decrypting exponent d after obtaining p and q. See the flow below 

(ln(n)) ln(n) /ln(ln(n))

O((log n)2(log log n)(log log log n))

log2n

O(exp[c * (log n)1/3 * (log log n)2/3])

ϕ(n)

d * e ≡ 1 mod ϕ(n)
ϕ(n)

cd mod n

n = p * q d * e ≡ 1 (mod (p − 1)(q − 1))
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for breaking the cryptosystem using factorization of large integer . Note that 

Darth is an eavesdropper who wants to read the messages in a communication without 

permissions from communicating parties. 

 

 
Figure 2.8: RSA Flow When an Eavesdropper Factors n. 

 
RSA cryptosystem relies on the difficulty of factoring large integers into their prime 

factors. The flow shows that if an eavesdropper Darth could factor n into p and q, RSA 

would no longer be secure. As mentioned above, the current factorization algorithms 

for classical computers are not sufficient for this task and quantum computers are 

owned and used by limited number of institutions.   

Elementary attacks on RSA cryptosystem spoils users’ mistakes while using and/or 

establishing the system. For example, instead of generating different , using 

a fixed n causes security flaws. Assume a central authority provides its user i with a 

unique pair , however users share the same . A message to user x 

 (message is m,  is user x’s public key) can be read by user y, because user 

y can extract  easily since user y knows p, q, p-1, q-1 and . For “blinding” attack,  

 

n = p * q

n = p * q

ei, di n = p * q

mx = mex ex

dx ex
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using one-way hash to the message before signing is a solution, therefore it is no threat 

anymore [13]. 

Low private exponent d is an advantage regarding computation time, however it is a 

serious threat to security. Michael Wiener proved in 1988 that for  with 

 when , one can easily find d [13]. 

Low public exponent can be a security threat, too. However it is not as dangerous as 

using a low private exponent. There are many kinds of attacks, Coppersmith’s 

Theorem is the base theorem of the most powerful attacks in case of a low public 

exponent [14].  The theorem is: 

 

“Let n be an integer and  be a monic polynomial of degree d. Set 

 for  some . Then, given (n, f) Darth can efficiently find all 

integers  for which  holds. LLL algorithm used 

here dominates the execution time [15].” 

 

Note that LLL is a basis reduction algorithm. 

Implementation attacks focus on the vulnerabilities of the RSA cryptosystem when it 

is put in practice in different kinds of practical fields. Various implementations are 

adapted in various fields. For example, timing attacks can be used for attacking 

financial systems. Dan Boneh describes a timing attack as measuring the time it takes 

a smart card to perform a RSA decryption or signature and then derive decryption 

exponent d from this information. The repeated squaring algorithm is used for timing 

attacks. The binary representation of d is . The repeated squaring algorithm 

computes  in the end: 

 

 Step 1. Set z = m, c = 1. 

 Step 2. Repeat steps 2a, 2b i=0,1,2, …. ,n: 

  Step 2a. If ,  

  Step 2b.  

 Step 3. Return  

 

n = p * q

q < p < 2q d < 1
3 n

1
4

f ∈ ℤ[x]

x = n
1
d −ϵ ϵ ≥ 0

|x0 | < x f (x0) = 0 mod n

dndn−1 . . d0

c ≡ md mod n

di = 1 c ≡ c * z mod n

z ≡ z2 mod n

c ≡ md mod n
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Note that  because d is a prime number greater than 2, therefore it must be an 

odd number. 

m is the signature produced by the smartcard. Darth, who wants to break the system, 

asks for many signatures, measures the generation time for each signature m ( ) and 

measures the time for the smart card to compute  for each signature m 

. For each , starting from  to  Kocher inspects the behaviours of T 

and t, and he concludes that when T and t are highly correlated, the value of  is 1, 

when they act independently, the value of  is 0 [16]. 

There are some ways to prevent this kind of attack. Boneh informs of two precautions: 

first one is to add delays which will result in constant time of modular exponentiation. 

Second precaution is blinding by Rivest, Boneh summarizes this method in his survey: 

The smart card selects a number   and calculates  before 

the decryption of m. After this, the smart card calculates  and sets 

. This results in the application of d to a random message  which is 

not known by Darth [13]. 

Another kind of Timing Attack is called Random Faults. Random Faults Attack takes 

advantage of usage of CRT. CRT is used in calculation of  because usage 

of CRT speeds up the operation. CRT is used in the following way: 

 and  are integers such that  and . Bob 

computes  and . Then he calculates 

 where  

 

                                            (2.6) 

 

Boneh, DeMillo and Lipton discovered that while generating the signature c, even a 

simple one-bit mistake can cause Darth to compute p and q from n. Padding 

mechanisms are a way of preventing Random Faults attack. 

Bleichenbacher’s Attack on PKCS 1 is an attack which spoils a flaw in padding 

mechanism of the old PKCS. Bleichenbacher discovered the potential threat and now 

this mechanism is no longer used. 

d0 = 1

T

m * m2 mod n

(t) dndn−1 . . d1 d1 dn

di

di

r ∈ ℤ*n m′� ≡ m * re mod n

c′� ≡ (m′�)d mod n

c ≡ c′�
r

mod n m′�

md mod n

dp dq dp ≡ d mod (p − 1) dq ≡ d mod (q − 1)

cp ≡ mdp mod p cq ≡ mdq mod q

c ≡ T1 * cp + T2 * cq mod n

T1 = {1 m od p
0 m od q a n d T2 = {0 m od p

1 m od q



 16 

After explaining more than a decade of attacks on the RSA cryptosystem, Dan Boneh 

states that none of these attacks can break the cryptosystem. After years of widespread 

usage and countless attacks, RSA still dominates the industry. 
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3. INTEGER FACTORIZATION 
 
3.1 Binary Quadratic Forms and Groups 
 
An equation of form  is called a binary quadratic form. We 

have the discriminant  for each binary quadratic form. The following 

conditions are compulsory: 

 

•  

•  
 

If a binary quadratic form is primitive, then  [17]. Binary quadratic 

forms form a group which is called class group. A group (S,*) consisting of 

 with operation * has four properties: 

 

•  

•  
  

• There exists an identity e such that 

  

  

• Each element has an inverse such that 

  

  

 

The order of a group is equal to the number of elements in a group.  

 is an example of a group. This group consists of , its order is 6 

and it satisfies the conditions above: 

f (x , y) = a x2 + bx y + c y2

Δ = b2 − 4ac

Δ ≡ 1 mod 4 or Δ ≡ 0 mod 4
b ≡ Δ mod 2

gcd(a , b, c) = 1

a0, a1, a2, . . an

ax * ay ϵ S where 0 < = x < = n an d 0 < = y < = n

(ax * ay) * az = ax * (ay * az) where

0 < = x < = n an d 0 < = y < = n an d 0 < = z < = n

e * ax = ax an d ax * e = ax where

0 < = x < = n an d 0 < = y < = n

ax * ay = ay * ax = e where

0 < = x < = n an d 0 < = y < = n

(Z6, + ) {0,1,2,3,4,5}



 18 

 

• For example: . 

• For example:  

• The identity is equal to 0. For example:  

• For example:  

 

Let a be an element in a group G. The smallest n such that  (e is identity) is 

called the order of a. For example, assume that we have a group . The order 

of this group is 2016. We know that . The order of 1999 is 1008 

since  and . The fact that 2016 is divisible 

by 1008 is no coincidence. Any element in group G has order dividing the order of G.  

Since binary quadratic forms are groups, the features explained above hold for them, 

too. For my purpose, which is factoring large integers, binary quadratic forms can be 

used. When we select , which is a semiprime and p and q are its factors, we 

can obtain a Binary Quadratic Form. 

 

3.2 Shanks’ SQUFOF Algorithm and Improving SQUFOF 
 

Daniel Shanks developed an integer factorization algorithm back in the 1970s using 

Binary Quadratic Forms. However, as of today, Shanks’ algorithm is not used due to 

its non efficiency in practice. The intention is to take Shanks’ algorithm a step further 

using the multiplier method found by Nari, Ozdemir and Yaraneri and implement the 

new parallel algorithm using cutting-edge technology devices. Also, since the parallel 

codes will run on different environments executing different codes, we will be able to 

see the advantages and disadvantages of each platform. 

Assume we have the binary quadratic form  and gcd(a,b,c) 

= 1. The discriminant D of f is . For any given integer m, which 

represents the binary quadratic form f ( ), the equation 

  holds. It can be seen that when D < 0, m and a have the 

same sign. Given two binary quadratic forms  and : 

                              (3.1) 

1 + 3 ≡ 4 mod 6 an d 4 + 2 ≡ 0 mod 6
(4 + 2) + 5 ≡ 5 mod 6 an d 4 + (2 + 5) ≡ 5 mod 6

3 + 0 ≡ 3 mod 6
1 + 5 ≡ 0 mod 6 an d 2 + 4 ≡ 0 mod 6

an = e

(Z*2017, * )

2016 = 25 * 33 * 7
19991008 ≡ 1 mod 2017 1008 = 24 * 32 * 7

Δ = n

f (x , y) = a x2 + bx y + c y2

D = b2 − 4ac

m = a x2 + bx y + c y2

4am = (2a x + by)2 − D y2

f f ′�

f (x , y) = a x2 + bx y + c y2 = (x , y)( a b /2
b /2 c ) (x

y)



 19 

and  

                                                              (3.2) 

 

If a 2x2 matrix A=  with determinant(A) = 1 satisfies the condition  

,  

then f and f’ are congruent. If there is a prime number s which divides the discriminant 

D, then binary quadratic forms which look like (s,rs,c) can be produced. This type of 

binary quadratic forms is called ambiguous. A reduced binary quadratic form is 

obtained when   and . There exists finite 

number of reduced forms for each D. Also, there exists a congruent reduced form for 

f=(a,b,c) which has the same discriminant D. For negative discriminants, there is only 

one reduced form, however, there may be more than one reduced forms for positive 

discriminants. Two reduced forms  and  belong to the same 

class, which means that they are adjacent, if . Reduced form f has 

two neighbours (f' and (x’,b’',a)) and its neighbours are congruent under the following 

matrix transformation [18]: 

                                                        (3.3) 

The set of reduced forms with its neighbours form a cycle and two reduced forms are 

congruent if and only if they are in the same cycle. Since there are finite number of 

reduced forms, in the end, the first reduced form will be obtained again after moving 

in the same direction [18].  

In order to factor the semiprime n= p*q, the information above can be used. Nari, 

Ozdemir and Yaraneri proved that given integers c and c’, the order of prime forms 

(p,p,c) and (q,q,c’) is equal 1 if discriminant is equal n and assuming p < q, (p,kp,c’) 

is a reduced binary quadratic form which has discriminant n. The purpose of the new 

algorithm is to find the neighbours of (1,b,c) using matrix transformation (3.3) until 

(p,kp,c’) is found. Note that (1,b,c) is the reduced form of (1,1,(n-1) /4), which is the 

identity element of the class. When (p,kp,c’) is found,  p, which is a factor of n is no 

more secret. The execution time to reach (p,kp,c’) depends on the number of elements 

f ′�(x , y) = (a′�, b′�, c′�) = a′�x2 + b′�x y + c′�y2

(α β
γ δ)

( a′� b′ �/2
b′�/2 c′� ) = (α γ

β δ) ( a b /2
b /2 c ) (α β

γ δ)

0 < b < D D − b < 2 |a | < D + b

f = (a , b, c) f ′� = (c, b′ �, c′�)
b′�+ b ≡ 0 mod 2c

(
0 −1
1 b + b′�

2c )
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in the cycle. If the cycle consists of moderate number of elements, the factorization of 

n can be completed in polynomial time [18].  

Below is the pseudocode of the algorithm used in this thesis derived from Nari, 

Ozdemir and Yaraneri’s algorithm. Note that we have a binary quadratic form 

consisting of . For parallelization, MPI is used. MPI enables us to run the code 

with different r values on different hosts. For calculation with large integers, GMP is 

used. “mpz_t” type is GMP’s type for handling large integers. The  parallel  C++ 

pseudocode for SQUFOF with multiplier “r” can be found below: 

 

function  calc_c( a,  b, c , delta) { 

 c = floor((b^2 - delta) / (4a)) 

} 

 

function calc_step(c, delta, b, step, delta_s){ 

 step = floor((delta_s + b) / 2c ) 

} 

 

function calc_b(step, b, c){ 

 b = 2 * step * c - b 

} 

 

function set_initial_delta_and_b_and_c(delta, b, c){ 

  tmp_4 = delta % 4 

 delta_sqrt = floor(sqrt(delta) 

 tmp_2 = delta_sqrt % 2 

     if tmp_4 == 1 

          b = tmp_2 == 0 ? delta_sqrt - 1 : delta_sqrt 

     elseif tmp_4 == 0 

          b = tmp_2 == 1 ? delta_sqrt - 1 : delta_sqrt 

     else 

          delta = 4*delta 

          delta_sqrt =(floor(sqrt(delta)) 

          tmp_2 = delta_sqrt % 2 

(a , b, c)
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         b = tmp_2 == 1 ? delta_sqrt - 1 : delta_sqrt 

   end 

   (delta,b, (floor((b^2 - delta) / 4))) 

} 

 

int loop(logn, a, c, delta, b, step, delta_s, first_delta, r){ 

 res = 0 

     while loop_cnt < (logn / 5) 

         calc_step(step, c, delta, b, delta_s) 

          a = c 

          calc_b(step, c,b) 

          calc_c(a, b, c, delta) 

          temp = gcd(a, first_delta) 

          if ((temp != 1 && temp != 2 && temp != 4 && temp != r) || a==1) 

             res = 1 

              break 

          end 

    end 

     res 

} 

function main() { 

 int size = <NUMBER OF PROCESSORS> 

  int rank = <PROCESSOR ID> 

   delta = <NUMBER TO BE FACTORED> 

   first_delta = delta 

   r = <MULTIPLIER FOR DELTA> 

   while (true){ 

      tmp = r% 4 

     if (tmp == 0 ) 

         break; 

     r = r+ 1; 

   } 
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first_r = r 

int global_sum = 0; 

int loop_res; 

int lc = 1; 

 while (global_sum == 0) { 

      r = first_r + 100 * rank * lc; 

     delta = first_delta * r 

     set_initial_delta_and_b_and_c(delta, b,c); 

     a = 1 

     delta_s = sqrt(delta); 

     logn = log(delta, 2); 

    loop_res = loop(logn, a, c, delta, b, step, delta_s, first_delta,  r); 

     MPI::COMM_WORLD.MPI::Comm::Allreduce(&loop_res, &global_sum, 

1, MPI_INT, MPI_SUM); 

            lc++; 

} 

return 0; 

} 

In a parallel environment using x different processors, we will have x different “r”s. 

Choosing r is very important, because a “good” r can result in factoring the number in 

few steps. This will be further elaborated later. After processors execute the loop in 

the “int loop” function for at most  times, they return an integer. If this integer 

is equal 1, then we stop processing, because this means a factor is found. When the 

integer returned from the “int loop” function equals 0, then we find a different r and 

execute the “int loop” function again.  

GMP library is used in the code. In its official website, GMP is described as an open 

source and free library for high precision arithmetic on rational numbers, integers and 

floating-point numbers. GMP has no limits as long as there is available memory on the 

host machine [19]. 

The fact that GMP has no precision limits (when the machine has available memory) 

makes it very appealing for computational engineers and cryptographers. 

 

 

log(n)/5
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As stated, code above achieves parallelism through MPI which provides 

communication mechanisms among the CPUs. In the code above, the only 

communication performed is:  

MPI::COMM_WORLD.MPI::Comm::Allreduce(&loop_res, &global_sum, 1, 

MPI_INT, MPI_SUM); 

This command is executed after all processors finish the int loop function. If a 

processor has the result loop_res equal 1, it means that a factor is found. The line above 

sums up loop_res from each processor and saves the value into global_sum variable. 

When global_sum is greater than or equal to 1, we can say that we find a factor.  
MPI’s biggest problem is communication, even if this code executes 

MPI::Comm::Allreduce function for not so many times, communication is a burden. 

Also, MPI is just for CPUs, however GPUs are very suitable for time-consuming 

computations. NVIDIA describes CUDA as a platform which enables concurrency 

using the power of GPUs. NVIDIA asserts that using CUDA speeds computation up 

through parallelization [20].  

However, there is no proper, up-to-date GMP BigInt library available for CUDA. 

There are some libraries, but benchmarks show that even addition operation using 

them is up to 300 times slower than performing addition on CPU using GMP. Below, 

you can see the benchmarks of cuGMP which can be found on Github. 

(https://github.com/trubus/cuGMP).  

 

Table 3.1: GMP cuGMP Comparison. 

Operation Iteration OperandSizeBits GMPMicrosecs cuGMPMicrosecs 

+ 0 1024 2 289 

+ 1 1024 0 303 

+ 2 1024 0 290 

+ 3 1024 0 310 

+ 4 1024 1 300 

+ 5 1024 0 282 

+ 6 1024 0 296 

+ 7 1024 0 277 

+ 8 1024 0 277 
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However, a GPU code for Shanks’ algorithm was written using cuGMP in order to 

have no doubts. The results prove that cuGMP is not favourable.  

Another platform I used is Julia. Julia’s popularity is rising every year due to its 

advantages [21]. Compared to C++ which I used with MPI, Julia is very easy to work 

on. It uses C language’s GMP library, so there is no need to search other libraries 

which may not be reliable and up-to-date. Another advantage of Julia is that it is very 

fast. Figure 3.1 below shows a comparison of Julia with other languages in terms of 

speed. The figure is taken from Julia Language’s official website [22]: 

 

 
 

 
 

Figure 3.1: Julia Performance Comparison. 
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Julia also supports parallelism effectively. Three levels of parallelism offered by this 

language are:  

 1. Julia Coroutines (Green Threading) 

 2. Multi-Threading 

 3. Multi-Core or Distributed Processing 

I used Multi-Core Processing since I ran my code on multiple CPUs of UHEM’s 

Sariyer Cluster. In contrast to MPI/C++, there is no explicit message passing in Julia’s 

multi-core processing. I used a distributed for loop in order to achieve parallelization. 

There are other ways of achieving parallelism, too. The Distributed module provides 

different data structures and functions for parallel and distributed computations. 

Below, you can see the Julia pseudocode used for factoring RSA numbers. Note that  

calc_c, calc_step, calc_b, set_initial_delta_and_b_and_c and loop functions’ 

pseudocodes are the same. 

 

function main() 

first_delta = <NUMBER TO BE FACTORED> 

r = <MULTIPLIER FOR DELTA> 

global_sum = 0 

iter = 1; 

while r % 4 != 0 

r = r+1 

end 

while global_sum == 0 

global_sum = @distributed (+) for i = 1:nprocs()-1  

rr = r + 100 * (myid() - 1) * iter + 1 

(delta,b,c) = set_initial_delta_and_b_and_c(BigInt(first_delta 

* rr)) 

            delta_s = BigInt(floor(sqrt(delta))) 

            loop(log(delta), BigInt(1), b, c, delta, delta_s,first_delta, rr)      

end  

iter = iter + 1 

end 

end 
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The @everywhere macro is used for making functions visible to other processors other 

than the master processor. The setprecision(5000) function sets the precision to 5000 

bits for operations with BigInt data structure. The @distributed macro is for creating 

a distributed loop, after each loop iteration, the results returned are added because of 

the (+) sign.  

A programmer can easily recognise the difference in readability levels of each code. 

Julia is not as fast as MPI/C++, however, it is more practical to write and read Julia 

code. I will share the benchmarks later in this thesis.  

 
3.3 Taking Shanks’ Algorithm a Step Further 
 
As I have stated earlier in this thesis, my main intention was to find a mechanism for 

factoring a large integer. Previously, Nari, Ozdemir and Yaraneri developed an 

extension for Shanks’ Algorithm as explained before. They assert that given  

(  are integers and coprime such that ) and a prime number c, 

there exists an integer t and interval I such that: 

       (3.1) 

and 

     (3.2) 

 

Ozdemir and Yaraneri state that an integer “r” selected from this interval accelerates 

Shanks’ Algorithm and enables us to factor n. We can only test this hypothesis with 

previously-factored integers since  and  (factors of n) are used for calculating the 

interval. My aim is to find a connection between successful “r”s and n in order to 

factor other semiprime numbers which were not factored. r % 4 must be equal 1. 

The table below shows the intervals. Note that for RSA-100 and RSA-110,  

c = 7987998710999017000000000013700000000045300003090000000247, 

for RSA-120, RSA-129, RSA-130 c = 

79879987109912312312312313901700000000001370000000004530000309000000

0339. 

We have two intervals because we have two prime factors. Note that “Interval 1”s are 

calculated with the smaller factor. As the number n increases, the factors increase, 

prime number c should increase, too. 

n = α * β

α ≠ ± 1, α an d β b ≠ 0

t := α2β2(2c + b)2

I := ( ( t + 1 − 1)2

β4n
, ( t + 1 + 1)2

β4n )

α β
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Table 3.2: Calculated Interval Beginning and Ends. 

 Begin-1 End-1 Begin-2 End-2 

R

S

A

-

1

0

0 

2417405370274

6784185142961

1434389953507

0304637894885

3565663871101

6334933840197

3068447111795

9444807568022

9869023958261 

2417405370274

6784185142961

1434389953507

0304637894885

3565663871101

6334933840197

3068447111795

9444807568022

9870617784977 

2694774596120

2089875037806

3443402222279

4606674830286

3172975563977

3383719340914

2394269467385

8812260929412

9348788885949 

269477459612

020898750378

063443402222

279460667483

028631729755

639773383719

340914239426

946738588122

609294129350

471666885 

R

S

A

-

1

1

0 

2437264405040

9906260774080

3552403448931

4044248957973

3778580586875

5251107205576

4762291675508

5235181041957

3789064494653 

2437264405040

9906260774080

3552403448931

4044248957973

3778580586875

5251107205576

4762291675508

5235181041957

3789064505089 

2672817346721

6456311378434

1548376943869

2516216816060

9879420312172

6593414019462

9361706586942

0985271670110

9440858476145 

267281734672

164563113784

341548376943

869251621681

606098794203

121726593414

019462936170

658694209852

716701109440

858487073 

R

S

A

-

1

2

0 

1205274642158

0310855461743

2030512903405

6675630309474

1618131759927

7555179339636

3422577230392

0709267863150

3931925857311

7218046220929

3738419241877

57 

 

 

 

 

 

1205274642158

0310855461743

2030512903405

6675630309474

1618131759927

7555179339636

3422577230392

0709267863150

3931925857311

7218046220929

3830587216991

81 

5404878151797

4011051651301

9145760232914

5458644219027

2847072175699

6594911708125

1794767022036

9015636379955

1005756682449

5337112962942

4764725878590

89 

540487815179

740110516513

019145760232

914545864421

902728470721

756996594911

708125179476

702203690156

363799551005

756682449533

711296294249

599034862344

1 

R

S

A

-

1

2

9 

2718706507480

6864907985358

3457001718486

3429734718649

1911897423901

3107477449650

4958287433875

4976307393480

2273689382970

9545156394058

8176056183852

9 

2718706507480

6864907985358

3457001718486

3429734718649

1911897423901

3107477449650

4958287433875

4976307393480

2273689382970

9545156394058

8176075685128

5 

 

2396125717281

6218858519923

6252475319510

8384335019837

7103323261192

6440795139500

2424343514224

8426466255824

2413722264565

9079561474222

8407223361458

985 

239612571728

162188585199

236252475319

510838433501

983771033232

611926440795

139500242434

351422484264

662558242413

722264565907

956147422284

072251922410

89 
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R

S

A

-

1

3

0 

2224501620791

7483972715920

0539632128000

0159868945712

8328123281819

7361292162491

6978761547026

8138616592342

7209238864810

2802142045385

5937794984104

01 

22245016207

91748397271

59200539632

12800001598

68945712832

81232818197

36129216249

16978761547

02681386165

92342720923

88648102802

14204538559

37796387523

17 

292845935441340340

979380231528289722

505341507676725549

229927505899803085

523592538748485336

948226241696948946

999789242471802821

270695053599292706

5 

292845935441

340340979380

231528289722

505341507676

725549229927

505899803085

523592538748

485336948226

241696948946

999789242471

802821270695

053615395107

7 

 

 
Let’s try to factor the RSA numbers above using the serial versions of Julia and 

MPI/C++ codes above. Note that the number we select from the intervals (r) mod 4 

should be equal 1.  

 

Table 3.3: Factorization Results Using Intervals. 

 Begin-1 End-1 Begin-2 End-2 

RSA-

100 

FAIL SUCCESS FAIL SUCCESS 

RSA-

110 

FAIL SUCCESS FAIL SUCCESS 

RSA-

120 

FAIL SUCCESS FAIL SUCCESS 

RSA-

129 

FAIL SUCCESS FAIL SUCCESS 

RSA-

130 

FAIL SUCCESS FAIL SUCCESS 

RSA-

576 

FAIL SUCCESS FAIL SUCCESS 

RSA-

220 

FAIL SUCCESS FAIL SUCCESS 

 

RSA-

230 

FAIL SUCCESS FAIL SUCCESS 
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The pattern above is obvious: with a number r close to interval ends, RSA numbers 

can be factored in less than a second. After discovering this fact, experiments were 

made with the averages of the interval beginnings and ends. The results show that the 

averages are “successful”, which means that the averages accelerate Shanks’ 

Algorithm in contrast to interval beginnings. Another point results prove is that the 

calculated interval ends are not actually the ends, numbers larger than interval ends 

accelerate factorization. 

Experiments and the interval formulae show that, the interval length decrease as the 

number to be factored increases (while using the same prime number c).  

In order to discover a meaningful relationship between intervals and RSA numbers,

 was calculated. As 

the RSA-Number increases, 

 decreases. So, for 

semiprime numbers X and Y, if Y > X, then 

 

The plot below explains the situation for Interval Ends: 

  

 
Figure 3.2: log(<RSA_NUM, INTERVAL_END>). 

 
The plot makes more sense when the x-axis is replaced with the number of decimal 

digits of each RSA number since we can see the slope more clearly. 

 
 

log(RSA − NUMBER, IN TERVA L − BEGIN − OR − END)

log(RSA − NUMBER, IN TERVA L − BEGIN − OR − END)

log(X, IN TERVA L − BEGIN − OR − END) > log(Y, IN TERVA L − BEGIN − OR − END) .
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Figure 3.2: log(<RSA_NUMBER_DIGITS>, <INTERVAL_END>). 
 
3.4 Factoring a Semiprime  
 
s=152260502792253336053561837813263742971806811497100625256164029200

9551300230960365734328241360708667 is a semiprime consisting of 100 digits. The 

prime number c is set to : 

15000000000000000000000098098098090000000000000000000000000000000000

00000000000000092384203984098234293.  

The semiprime subject to factorization is greater than RSA-100 and less than RSA-

110. Therefore an interval of  number “r”s which accelerates Shanks’ Algorithm exists 

around: 

(  , ). 

Another parameter that should be kept in mind is the length of intervals. For RSA-100, 

the interval length is around , for RSA-110, the interval length is around 

. The interval length for the number to be factored is at least  and at most 

.Since , 

, 

, 

 are known, in order to find 

, a factorization function was used. The Newton  

slog(s,log(RSA100,RSA100_ INTERVAL_END)) slog(s,log(RSA110,RSA110_ INTERVAL_END))

3 * 1054 1049

1049 3 * 1054

log(RSA − 100,RSA − 100_ IN TERVA L _ END)
log(RSA − 110,RSA − 110_ IN TERVA L _ END)
log(RSA − 120,RSA − 120_ IN TERVA L _ END)
log(RSA − 129,RSA − 129_ IN TERVA L _ END)
log(s, S_ IN TERVA L _ END)
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interpolation code written in Julia [23] was modified due to its inability to run with 

integers of size larger than 64 bits. According to the function obtained from Newton 

interpolation s^2.06619590888562183171 is close to the interval end. Since the factors 

of s are actually known, its interval ends can be calculated. The interval end for s is 

(using s’s smaller factor): 

85242470593140523480578268674184216176646374853810143182703116602157

92177864716346011131262549601568160070715884474700560782020462320377

29545117738884163583184654239339088307731998546912879319350625834333

7. 

The interval end guessed without using the factor is: 

85242470593140523480578268674184216176646374855022507311494722302466

08251233720575284447736458127224393706750855009608370266869082124063

96196500894119421209520435745009193818139901413402616885379678954100

7.  

The difference of calculated interval and guessed interval is: 

12123641287916057003081607336900422927331647390852565623363603497053

49078094848486198036866665138315523525762633578150567010551040790286

64897375660290531197670. The interval length for s is smaller than the interval 

length for RSA-100 and greater than the interval length for RSA-110.  is 

smaller than the interval length for s (since s is very close to RSA-100) , therefore it is 

used as step while trying to find the correct interval. Using 1000 processors, the factor 

is found after approximately  iterations using the codes above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 * 1053

4 * 10100
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4. BENCHMARKS 
 

4.1 Serial Code Comparison 
 

Serial versions of Julia and C++ codes were compared while factoring RSA-100, RSA-

140 and RSA-230. Each code was run for 50 times in order to eliminate misleading 

results. Since Julia has a JIT compiler in contrast to C++, the compilation time was 

subtracted from Julia benchmarks. RSA-100 was factored after 700, RSA-140 was 

factored after 4300, RSA-230 was factored after 4400 iterations. The RSA-230-2 

column shows the results when RSA-230 is factored after 147 iterations. The RSA-

230-3 column shows the result after 14668 iterations. 

 

Table 4.1: Julia vs C++ Serial Code Results. 

 RSA-100 RSA-140 RSA-230 RSA-230-2 RSA-230-3 

Julia 0.712 

seconds 

 5.0136 

seconds 

8.0248 

seconds 

0.461 

seconds 

25.792 

seconds 

C++ 0.539 

seconds 

5.1442 

seconds 

12.044 

seconds 

0.402 

seconds 

40.147 

seconds 

 
 
The results show that when the number of loop iterations increase, Julia’s performance 

gets better. Julia is a dynamic language and uses LLVM. JIT compiler and LLVM 

together results in more optimized code. 

 

4.2 Parallel Code Comparison 
 

The graph below shows the factorization of RSA-100 with 1, 5, 10, 20 processors 

with each programming language. 
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Figure 4.1: Julia vs C++ Parallel Code Results. 

 

The x-axis shows the number of processors while the y-axis shows the execution time. 

It can be seen that Julia is faster than C++ if the serial code is run, however, C++ and 

MPI together result in a perfect efficient and speedup in contrast to Julia. For 

measuring the performance of parallel code, Efficiency (E) and Speedup (S) are two 

key concepts. The graphs below show the efficiency and speedup. Efficiency (E) is 

equal  while Speedup (S) is equal  (N is the number of 

processors, p is the portion of execution time which is affected by more number of 

processors and s shows how many times p is faster with more processors). 

 
Figure 4.2: Julia Efficiency. 

 
 

E = S
N

S = 1
(1 − p) + p

s
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Figure 4.3: Julia Speedup. 

 
 

 
Figure 4.4: C++/MPI Efficiency. 

 
Figure 2.5: C++/MPI Speedup. 
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For both parallel platforms, it is observed that efficiency drops as number of processors 

increase. The main reason for this decrease in efficiency is the lag due to network. As 

the number of processors increase, the number and size of data transfers increase, too. 

In MPI, when x processors are used, the number of data transfers is equal 2x -2 since 

MPI_Allreduce performs a reduction in the root processor (x-1 data transfers) and then 

broadcasts the result to other non-root processors (x-1 data transfers). 

Julia’s efficiency is very poor when compared to MPI’s efficiency. With 5 processors, 

MPI’s efficiency is equal 0.96 which is very close to maximum efficiency of 1. Also, 

MPI achieves nearly linear speedup which shows that each CPU’s utilization rate is 

nearly 100%.    
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5. CONCLUSION AND FUTURE WORK 
 
The computation results show that another method for integer factorization can be 

used. If intervals are guessed correctly, factorization of a semiprime can be 

accomplished in less than a second. However, the formula does not calculate the 

interval end and interval beginning precisely. The beginning is larger than the 

calculated beginning and the end is larger than the calculated interval end.  

Tests were run using multiple programming languages. The results show that Julia can 

be an alternative for programmers in the future due to its simplicity and speed. 

However, using Julia’s distributed for loop is not a good alternative for programmers 

who demand efficiency and speedup. The refinement of the Distributed.jl library is my 

next aim. A CUDA code was also tested, however since GMP libraries for GPUs do 

not have good performance, the results were disappointing. The future work includes 

refactoring and enhancing the GMP libraries for CUDA. Also, finding a better 

approximation method for intervals of semiprimes whose factors are not known is 

another goal. 
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