
Beniz .YZJYB1Ğ

Bepartment of ,omputational (cience and Tngineering

,omputational (cience and Tngineering 9rogramme

snabilim Balı b Verhangi 2ühendislikt kilim
9rogramı b Verhangi 9rogram

Y(7s0k5J 7T,V0Y,sJ 50Y)TZ(Y7İ� Y0N1Z2s7Y,(Y0(7Y757T

2o(co 7VT(Y(

F50T lCuA

,12957s7Y10sJ 2T7V1B(N1Z Y07TUTZ Ns,71ZYÜs7Y10

Y(7s0k5J 7T,V0Y,sJ 50Y)TZ(Y7İ� Y0N1Z2s7Y,(Y0(7Y757T

,12957s7Y10sJ 2T7V1B(N1Z Y07TUTZ Ns,71ZYÜs7Y10

2o(co 7VT(Y(

Beniz .YZJYB1Ğ
ĞgCluduCClp

Bepartment of ,omputational (cience and Tngineering

,omputational (cience and Tngineering 9rogramme

snabilim Balı b Verhangi 2ühendislikt kilim
9rogramı b Verhangi 9rogram

7hesis sdvisorb sssoco 9rofo Tnver ÖÜBT2İZ

F50T lCuA

VsÜİZs0 lCuA

İ(7s0k5J 7T.0İ. Ü0İ)TZ(İ7T(İ� kİJİŞİ2 T0(7İ7Ü(Ü

ÇsZ9s0JsZs sİYZ2s İÇİ0 VT(s9Js2sJY İÖ07T2JTZ

İÜ.(T. Jİ(s0(7TÜİ

Beniz .YZJYB1Ğ
ĞgCluduCClp

Vesaplamalı kilim ve 2ühendislik snabilim Balı

Vesaplamalı kilim ve 2ühendislik 9rogramı

snabilim Balı b Verhangi 2ühendislikt kilim
9rogramı b Verhangi 9rogram

7ez Banışmanıb Boço Bro Tnver ÖÜBT2İZ

 vii

 To my mother İkbal and father Melih,

 viii

 ix

FOREWORD

I would like to thank my advisor Enver Özdemir, my family and friends for supporting
me throughout this process. I am grateful to my grandfather, aunts and cousin for
encouraging me. Special thanks to Cem Kocagil for proofreading.

May 2019 Deniz KIRLIDOĞ

 x

 xi

TABLE OF CONTENTS

Page

FOREWORD ... ix

TABLE OF CONTENTS ... xi
ABBREVIATIONS ... xiii
LIST OF TABLES ... xv
LIST OF FIGURES ... xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 1

2. DIFFIE-HELLMAN KEY EXCHANGE AND RSA .. 3
2.1 Public Key Cryptography and Diffie-Hellman Key Exchange 3

2.2 RSA Cryptosystem ... 8
3. INTEGER FACTORIZATION .. 17

3.1 Binary Quadratic Forms and Groups ... 17
3.2 Shanks’ SQUFOF Algorithm and Improving SQUFOF 18

3.3 Taking Shanks’ Algorithm a Step Further ... 26
3.4 Factoring a Semiprime ... 30

4. BENCHMARKS .. 33
4.1 Serial Code Comparison .. 33

4.2 Parallel Code Comparison ... 33
5. CONCLUSION AND FUTURE WORK ... 37

REFERENCES ... 39
CURRICULUM VITAE .. 41

 xii

 xiii

ABBREVIATIONS

CPU : Central Processing Unit
CRT : Chinese Remainder Theorem
CUDA : Compute Unified Device Architecture
GMP : GNU Multiple Precision Arithmetic Library
GPU : Graphics Processing Unit
HPC : High Performance Computing
JIT : Just-in-Time
LLVM : Low Level Virtual Machine
MPI : Message Passing Interface
PKCS : Public Key Cryptography Standard
SQUFOF : Square Forms Factorization
UHEM : Ulusal Yüksek Başarımlı Hesaplama Merkezi

 xiv

 xv

LIST OF TABLES

Page

Table 3.1: GMP cuGMP Comparison..23
Table 3.2: Calculated Interval Beginning and Ends..27
Table 3.3: Factorization Results Using Intervals..28
Table 4.1: Julia vs C++ Serial Code Results...33

 xvi

 xvii

LIST OF FIGURES

Page

Figure 2.1: Conventional Cryptosystem with Single Key Source…………………....3
Figure 2.2: Public Key Cryptosystem...…………………………………….……......4
Figure 2.3: Diffie-Hellman Key Exchange Man-In-The-Middle Attack Scenario......5
Figure 2.4: Communication Interception After Man-In-The-Middle Attack...............6
Figure 2.5: Diffie-Hellman Key Exchange Colour Analogy………………………....7
Figure 2.6: Diffie-Hellman Key Exchange Flow……………………………….........8
Figure 2.7: RSA Flow…………………………………………………………..........9
Figure 2.8: RSA Flow When an Eavesdropper Factors n………………….………...13
Figure 3.1: Julia Performance Comparison………………………………………....24
Figure 3.2: log(<RSA_NUM, INTERVAL_END>)..29
Figure 3.3: log(<RSA_NUMBER_DIGITS>, <INTERVAL_END>).......................30
Figure 4.1: Julia vs C++ Parallel Code Results…………………………………......34
Figure 4.2: Julia Efficiency………………………………………………………....34
Figure 4.3: Julia Speedup…………………………………………………………...35
Figure 4.4: C++/MPI Efficiency………………………………………………........35
Figure 4.5: C++/MPI Speedup……………………………………………………...35

 xviii

 xix

COMPUTATIONAL METHODS FOR INTEGER FACTORIZATION

SUMMARY

Integer factorization is the task of finding the prime factors of a composite number.
Since integer factorization is a computationally expensive task, today many digital
security systems rely on its difficulty. Many systems use the difficulty of integer
factorization for assuring security. Today, RSA cryptosystem, which takes its name
from its inventors, Rivest, Shamir and Adleman, dating back to 1977, is widely used
for secure communication. RSA is a public key cryptosystem, which uses two
asymmetric keys. The concept of asymmetric keys was firstly presented by Whitfield
Diffie and Martin E. Hellman in 1976.

Integer factorization has always been an attractive field of research for mathematicians
and computer scientists. Many scientists developed algorithms for factoring large
integers, however none of them are useful with regard to the limitations of the
computational power we have as of today.

Daniel Shanks’ SQUFOF Algorithm, which was developed using Binary Quadratic
Forms is one of the most popular algorithms for integer factorization, however it is not
efficient due to the computational power it requires. Nari, Ozdemir and Yaraneri took
this algorithm another step further and developed a new algorithm. By using a
multiplier which lies within an interval calculated using the factors of the integer, the
new algorithm can easily factor large semiprimes. The multiplier selected from the
interval accelerates integer factorization. However, finding the interval without
knowing the factors is difficult. Some properties of the intervals are studied in this
thesis.

In this work, new SQUFOF with a multiplier algorithm’s parallel and serial versions
were implemented on multiple platforms. The platforms include C++ and Julia. C++
is one of the most recognised programming languages in the world due to its
widespread usage for decades. In contrast, Julia is a very young programming
language with rising popularity. For achieving parallelism on multiple processors, MPI
is used on C++, Julia has its own libraries for supporting parallelism. The Distributed.jl
library is an open source library, which is suggested for writing parallel code on Julia.
Not only CPUs, but also GPUs can be used for parallelism, therefore some experiments
with CUDA were conducted.

The benchmarks show that the cuGMP library written in C++ for representing Big
Integers (integers larger than 64 bits) on GPUs is not successful. Julia is slower than
C++ for parallel computations, however, considering its high level features which
makes programming easier, it proves itself to be a fast and efficient programming
language. C++ with MPI is nearly two times faster than Julia, however writing code
in C++ using MPI is a more difficult task than achieving parallelism in Julia. The
benchmarks are shown in this thesis.

 xx

 xxi

ÇARPANLARA AYIRMA İÇİN HESAPLAMALI YÖNTEMLER

ÖZET

Whitfield Diffie ve Martin E. Hellman 1976 yılında geliştirdikleri anahtar değiştirme
yöntemiyle kriptografi alanında büyük bir değişikliğe imza attılar. Bu buluşla
bilgisayar dünyasının en önemli ödülü olan Turing ödülünün de sahibi olan bilim
insanları, geleneksel şifreleme yöntemlerinin aksine biri kapalı (diğer insanların
ulaşımına kapalı), diğeri açık (diğer insanların ulaşımına açık) olmak üzere çift
anahtarla iletişim halinde olanların yeni bir anahtar oluşturup şifrelemeleri fikrini
gündeme getirdiler. Açık anahtar değiştirme yöntemi, üzerinde iletişim kurulan kanal
güvenilir olmasa da gizli ortak anahtar oluşmasını sağlar.

Diffie ve Hellman’nın geliştirdikleri anahtar değiştirme methodu, 1977 yılında adını
onu bulanlardan alan RSA kriptosisteminin de gelişimine sebep oldu. RSA
kriptosistemi, adını onu geliştiren Rivest, Shamir ve Adleman’dan almaktadır. Ortaya
çıktığı 1977 yılından bu yana RSA kriptosistemi dijital güvenlik dünyasının belkemiği
haline gelmiştir.

RSA kriptosisteminin güvenilirliğinin altında iki asal sayının çarpımından oluşan bir
sayının çarpanlara ayrılmasının zorluğu yatar. Rivest, Shamir ve Adleman’ın sahibi
olduğu RSA dijital güvenlik firması, 2007 yılına kadar “RSA Challenge” ismi altında
100 basamaklı ve daha büyük yarı asal sayıların çarpanlarına ayrılmasını teşvik eden
bir yarışma düzenliyordu.

RSA kriptosistemi ile iletişim kurmak isteyen herkesin iki adet anahtar sahibi olması
gerekmektedir. Bu anahtarların bir tanesi açık, bir tanesi kapalı olmalıdır. Anahtarların
her biri aslında bir sayıdır, bu sayılardan kapalı olan anahtarın başkalarının eline
geçmesi büyük güvenlik sorununa sebep olur. Örneğin kapalı anahtarı ele geçiren kişi,
anahtarın asıl sahibiymişçesine başkalarıyla iletişim kurabilir, anahtarın asıl sahibine
gelen mesajları okuyabilir. Açık anahtar ise sistemin mantığı itibariyle herkese
görünmektedir.

RSA kullanarak iletişim kurmak isteyen kişi ilk olarak n yarı asal sayısını seçer, n
sayısının çarpanları p ve q asal sayılardır. p ve q sayılarının asallığından emin olmak
için asallık testleri yapılmalıdır, Solovay-Strassen Asallık Testi, Fermat Asallık Testi,
Miller-Rabin Asallık Testi asallık durumunun kontrolü için kullanılabilir. Fermat
Asallık Testi yüksek doğruluk oranına sahiptir, fakat bulmayı garanti ettiği şey
asallıktan ziyade asal olmama durumudur. n sayısının faktörlerine ayrılmasının
zorluğunun sebebi sayının çok büyük bir sayı olmasıdır. Örneğin Bitcoin için gizli
(kapalı) anahtarın uzunluğu 256 bittir. (p-1)*(q-1) sayısından Uzatılmış Öklit
Algoritması ile açık anahtar e sayısının çarpmaya göre tersi bulunur. e sayısının
çarpmaya göre tersi olan d sayısı kapalı (gizli) anahtardır. Gizli anahtarı bulmak
isteyen bir kişinin n yarı asal sayısını çarpanlarına ayırmadan gizli anahtara ulaşması
çok zordur.

 xxii

Büyük tam sayıların çarpanlarına ayrılması muazzam bir hesaplama gücü
gerektirdiğinden geleneksel bilgisayarlardan çok daha hızlı olan kuantum
bilgisayarlarla bu işlemin yapılması çok daha hızlı olacaktır, fakat günümüzde
kuantum bilgisayarların yaygınlaşmaması, kuantum bilgisayarlara ulaşımın neredeyse
imkansız olması, kuantum bilgisayarlar için tasarlanan algoritmaların geleneksel
algoritmalardan farklı olması gerekliliği sebebiyle çalışmalar daha çok geleneksel
bilgisayarlar üzerinden yürütülmektedir. Peter Shor’un algoritması

 adımda n sayısını çarpanlarına
ayırabilmektedir.

Bu çalışmada üzerinde durulan Daniel Shanks’in yaratıcısı olduğu Shanks Algoritması
ise geleneksel Von Neumann Mimarili bilgisayarlarda çalışmaktadır. Shanks
Algoritması yaygın olarak kullanılmamaktadır, zira hız ve hesaplama gücünün kritik
olduğu bu işlem için çok yavaş kalmaktadır. Shanks Algoritması sayılar teorisinin
birtakım kavramları üzerine kurulmuştur. Bu kavramlar arasında grup teorisi, ikili
kuadratik formlar gösterilebilir. Nari, Özdemir ve Yaraneri Shanks Algoritmasını
geliştirerek ikili kuadratik formların kullanıldığı yeni bir algoritma geliştirmişlerdir.
Bu tezde, geliştirilmiş yeni algoritma üzerinde performans karşılaştırılması
yapılmıştır.

Shanks Algoritması’nın geliştirilmiş hali Özdemir ve Yaraneri’nin ortaya attığı üzere
belli bir interval (sayı aralığı) arasından seçilen bir r sayısı ile hızlandırılabilmektedir.
Bu interval çarpanlarına ayrılması istenen n sayısının çarpanları p ve q kullanılarak
hesaplanmaktadır. Yeterli hesaplama gücüne sahip olunduğunda çarpımlara ayrılması
istenen sayıya yakın daha önce çarpanlarına ayrılmış sayılardan yararlanmak mümkün
olabilir.

İkili kuadratik formlar şeklinde ifade edilir. Bu formun
ikili kuadratik form olabilmesi için diskriminant deltanın aşağıdaki koşulları sağlaması
gerekmektedir (). İlk koşul ∆ mod 4’ün bir veya sıfıra eşit olmasıdır,
ikinci koşul ise b sayısının mod 2’de diskriminant deltaya eşit olması zorunluluğudur.
a, b, c sayılarının en büyük ortak bölenlerinin 1 olduğu durumda, ikili kuadratik
formun ilkel olduğu söylenir. Bu çalışmada da ilkel ikili kuadratik formlar
kullanılmıştır.

Bu çalışmada, aralarında denklik ilişkisi olan ikili kuadratik formlar kullanılarak
yaratılan bir döngü ile yarı asal sayıları çarpanlara ayırma işleminin nasıl
yapılabileceği anlatılmaktadır.

Bu kadar yüksek hesaplama gücü ve hız gerektiren bir işlemi paralelleştirmek
gerekmektedir. Ayrıca, 64 bitten çok daha büyük sayılarla uğraşıldığından klasik
double değişkenler bu konuda işe yaramamaktadır. Büyük tam sayıları ifade etmek,
onlarla yüksek hızlarda işlemler yapabilmek için GMP kütüphanesi kullanılmıştır.
GMP kütüphanesi açık kaynak kodlu ifade edebileceği sayı büyüklüğü teoride sonsuza
eşit olan bir kütüphanedir. Tam sayılarla yapılabilecek neredeyse tüm işlemler bu
kütüphanede bulunmaktadır. 1991 yılında ilk defa yayınlanmış olan bu kütüphane
işlemlerin hızlı olmasına odaklanmıştır ve gönüllülerin katkılarıyla neredeyse her yıl
yeni özellikler, hata düzeltmeler ile gelişmeye devam etmektedir, üzerine eklentiler
yapılmaktadır.

O((log n)2(log log n)(log log log n))

f (x , y) = a x2 + bx y + c y2

Δ = b2 − 4ac

 xxiii

GMP kütüphanesi (özellikle tamsayı fonksiyonları) genellikle kriptografi alanında
çalışmalar yapan bilim insanları tarafından aktif olarak güvenle kullanılmaktadır. Bu
çalışmada da kullanılan her platformda GMP kütüphanesinin tamsayı
fonksiyonlarından faydalanılmıştır.

Shanks Algoritması’nın hızlandırıcı çarpanlı yeni versiyonu çeşitli platformlarda
denendi. Bu platformlar arasında dünyada en çok bilinen ve on yıllardır aktif olarak
kullanılan C++, yeni fakat giderek daha da yaygın olarak kullanılan Julia programlama
dili de var. Ayrıca sadece Julia ve C++’ın üzerinde çalıştığı ile CPU değil, GPU
üzerinde de CUDA ile çeşitli denemeler yapıldı, fakat sonuçlar yeterince başarılı
bulunmadı.

GPU üzerindeki denemelerden iyi sonuçlar alınamadı, büyük sayılar için kullanılan
GMP kütüphanesinin GPU mimarisi için yazılmış resmi bir kütüphanesi olmadığından
Github’daki açık kaynak kodlu projeler üzerinden gidildi. Bulunan GPU üzerinde
çalışan cuGMP kütüphanesi ile CPU üzerinde çalışan GMP kütüphanesinin
performansları karşılaştırıldığında, CUDA için yazılan cuGMP kütüphanesinin
oldukça düşük performanslı olduğu görüldü. Yapılan testlerin sonuçları raporda da yer
aldı.

C++ ve Julia karşılaştırılması için hem seri, hem paralel kodlar yazıldı. Julia’nın C ve
C++ kütüphanelerini rahatlıkla çağırabilmesi sebebiyle Julia kodlarında da büyük tam
sayıların temsili, büyük tam sayılarla yapılan işlemler için doğrudan GMP kütüphanesi
kullanıldı.

C++ ile paralelleştirme için üzerinde 1991 yılından itibaren çalışılan MPI kullanıldı.
Artık standartlaşmış bir protokol haline gelmiş olan MPI için yazılmış farklı işletim
sistemlerinde çalışan birçok farklı derleyici bulunmaktadır. Paralel işlemcilerin
birbirleriyle haberleşmelerini sağlayan MPI için oldukça fazla programlama dilinden
çağrılabilen farklı işlevde birçok fonksiyona sahiptir.

MPI proses seviyesinde paralelliği sağlamaktadır. Aynı zamanda iplik seviyesinde
paralelleştirme imkanı da sağlar. Bu çalışmada ise MPI kütüphanesinin proses
seviyesinde paralelleştirme olanaklarından yararlanılmıştır.

Julia, okunabilirliği oldukça yüksek olan, dolayısıyla öğrenmesi de kolay olan,
popülaritesi giderek artan yeni nesil bir programlama dilidir. An itibariyle internette
en çok aranan 21. programlama dili olarak listelerde yer almaktadır. Özellikle yüksek
başarımlı hesaplamalar için dizayn edilmiş bu dil, paralel platformlarda C++/MPI
kadar yüksek performanslı olmasa da ilerleyen zamanlarda prosesler arası iletişim
daha da hızlanırsa birçok alanda C++ popülaritesine ulaşma imkanına sahip olabilir.
Seri kodlar karşılaştırıldığında, Julia’nın gücü görülebilmektedir, hesaplama süresi
arttıkça Julia performans açısından C++’ı geride bırakmaktadır. Bu tezin de son
bölümünde karşılaştırmalar yer almaktadır.

Günümüzde giderek artan hesaplama gücü ihtiyacını giderebilmek için artık elimizde
birçok farklı programlama dili, standart ve kütüphane bulunmaktadır. Bu çalışmada
İTÜ UHEM’in Sarıyer makinasındaki CPU ve GPUlar kullanılarak birtakım
karşılaştırmalar yapıldı. Amaç, yarı asal bir sayıyı çarpanlarına ayırmakla beraber
bilgisayar dünyasındaki standartları ve yenilikleri karşılaştırarak, hesaplama
imkanlarını gözden geçirmektir.

 xxiv

 1

1. INTRODUCTION

Integer factorization is the task of finding the factors of a large integer. Integer

factorization is an active field of research since security of many digital systems depend

on the difficulty of factoring a large integer into its prime factors. Today, many systems

from various areas use RSA cryptosystem for confidentiality. Confidentiality is an

important concept in our modern world where illegal collection of data is very common

and dangerous. Cryptosystems enable us to encrypt our data for preventing people (other

than we allow) to read, change or use our data. Not only today, but also in history hiding

private content and messages has always been an important issue. First known

cryptosystem dates back to 1900 BC and today RSA cryptosystem is widely accepted

[1].

The difficulty of integer factorization lies within the insufficient computational power

of today’s computers. Until quite recently, it was assumed that quantum computers were

going to be much more efficient than today’s computers. However, this theory is now

suspicious [2]. Therefore, it can be said that integer factorization will most probably be

an important problem even if we start using quantum computers. Until quantum

computers become feasible and cryptographers prove that RSA cryptosystem is

trustworthy in these systems, research in this area will continue. As of today, we are

bound to use RSA on traditional Von Neumann Architecture computers.

With technological advances, we have more opportunities and platforms for

computational studies. In this thesis, new and traditional ways of computation are

discussed and compared.

1.1 Purpose of Thesis

This study focuses on more than a single aim, first one is to prove the Shanks’ algorithm

with a multiplier method computationally and explain how to factor a semiprime using

the new algorithm. The multiplier selected from an interval whose formulations are

given in following chapters accelerates Daniel Shanks’ SQUFOF algorithm. The

computations show that, thanks to the multiplication, even 768 bit semiprime numbers

 2

can be factored in seconds. Another purpose is to compare young and traditional

platforms of computation and their parallelization potentials.

Julia is a very young programming language focusing mostly on performance and ease

of use. This new programming language attracts not only software engineers and

computer scientists, but also programmers from different backgrounds with different

fields of expertise. C++, the backbone of many systems shows its speed, but it is

difficult for people without software engineering background to use it. In today’s

world, in which we have limitless data, computation lies in the heart on many scientific

researches. Julia may be an alternative due its readability for people who are not

comfortable with low level C++ code. In this study, a brief history of RSA, public key

cryptography and integer factorization is found. Methods for breaking RSA are

discussed and the history of attacks to some cryptosystems are elaborated.

 3

2. DIFFIE-HELLMAN KEY EXCHANGE AND RSA

2.1 Public Key Cryptography and Diffie-Hellman Key Exchange

RSA Cryptosystem is a public key cryptosystem. Its name comes from its inventors:

Rivest, Shamir, Adleman. The concept of public key cryptosystem was firstly

discussed by Diffie and Hellman’s 1976 paper named “New Directions in

Cryptography” [3]. In contrast to conventional old-fashioned encryption and

decryption methods, Diffie and Hellman propose a new system in which

communicating parties have two keys: one public and one private. Figures below taken

from “New Directions in Cryptography” show the difference of conventional

cryptosystems and public key cryptosystems.

Figure 2.1: Conventional Cryptosystem with Single Key Source.

The figure above describes the conventional system: communicating parties (Alice and

Bob) share one secret key: K. The message P is encrypted by K by the sender Alice

using the encryption function . The receiver Bob decrypts the message P using the

same key K with the decryption function .

SK

S−1
K

 4

Figure 2.2: Public Key Cryptosystem.

The figure above shows the public key cryptosystem proposed by Diffie and Hellman.

In this system, there are two keys: is the deciphering key (private key) and is

the enciphering key (public key). The sender and the receiver do not have the same

key source in contrast to the old-fashioned cryptosystem in Figure 2.1. The

communicating parties agree on two numbers and these two numbers become their

public keys. Also, both of them select an integer privately and these integers become

their private keys. There are two different key sources for each communicating party.

Once Discrete Logarithm Problem has a solution, Diffie-Hellman Key Exchange is no

longer secure. Discrete Logarithm Problem is solved when c can be extracted from

!"	$%&	' (a and n are known).

Communicating parties create a key for their communication and transmit data to each

other using networks. However, this kind of communication is open to Man-In-The-

Middle Attacks. The scenario below shows an example for Man-In-The-Middle Attack

for Diffie-Hellman Key Exchange.

Here we have Alice and Bob, who wish to exchange keys and there is Darth, a person

who wants to imitate Alice or Bob (q is a global large prime) [4]. The flow of data,

which is visualized in the figure below shows the Man-In-The-Middle Attack Scenario

for Diffie-Hellman Key Exchange.

DK EK

 5

Figure 2.3: Diffie-Hellman Key Exchange Man-In-The-Middle Attack Scenario.

Now, even though Alice and Bob think they are communicating with each other, they

are actually communicating with Darth. The eavesdropper Darth can pretend to be

Alice or Bob. He can easily read private messages written by Alice and Bob. Darth

now shares the key K1 with Bob and K2 with Alice. Alice and Bob are unaware of the

situation. Below, you can see the flow of communication.

 6

Figure 2.4: Communication Interception After Man-In-The-Middle Attack.

The flow shows that Darth can read any message sent to Bob by using his key with

Alice. Also, he can imitate Alice and send messages to Bob as if he is Alice. He can

alter the original message from Alice or he can send a completely different message.

This security flaw in key exchange can be fixed using authentication. If

communicating parties authenticate each other, Man-in-the-Middle Attack is no longer

a problem. There are different ways of authenticating each other. Digital signatures

and public-key certificates can be used for solving this issue [4].

Let’s take a look at digital signatures and public-key certificates which are widespread

solutions for communicating parties to acknowledge each other. Digital signatures are

a good way of preventing imitators like Darth in the example above. Their benefits are

not only preventing imitators but also preventing dispute among communicating

parties. One of the popular digital signatures, El Gamal Digital Signature keeps

date/time, content of the message at the time of signature within. In case of a dispute,

a neutral third party can expose the truth.

Alice wants to send
message M to Bob.

She calculates
ME=E(K2,M)

Darth intercepts ME
and decrypts M using

his shared key K2.
Darth sends Bob ME2 =

E(K1,M2)

Bob decrypts ME2 with
K1.

ME

ME

ME2

 7

The National Institute of Standards and Technology proposed Digital Signature

Standard based on El Gamal and Schnorr and today it is widely used as a standard in

order to prevent claims of forgery. Public-key certificates consist of public key, owner

identifier and a block signed by a trusted third party. Third party should be a

trustworthy organisation like governments or international firms [4]. The certificate

makes sure that the owner has the corresponding private key of the public key.

Diffie-Hellman Key Exchange is often explained visually with the colour analogy,

which is shown below [5]:

Figure 2.5: Diffie-Hellman Key Exchange Colour Analogy.

The illustration points out that communicating parties obtain the same secret in the end

of the process. More detailed flowchart can be seen below: (p is a large prime and

is the primitive root modulo p. Assume we have the equation ≡ a mod n, g is called

the primitive root modulo n if gcd(a,n) = 1. The number k is the discrete

logarithm of a to the base g modulo n . [6])

α

gk

 8

Figure 2.6: Diffie-Hellman Key Exchange Flow.

Diffie-Hellman Key Exchange is reliable, because calculating discrete logs is very

difficult. If someone can easily compute discrete logs, this algorithm is no longer

reliable. If the eavesdropper Darth can compute discrete logs, he can obtain K and

break the system. If Darth can compute y from (is public as stated above) and x

from , the system is no longer useful. However, as of today, Discrete Log Problem

has no solution.

2.2 RSA Cryptosystem

In 1978, Rivest, Adleman and Shamir proposed a system for secure and private

electronic mail transfer. They state that the public key cryptography system invented

by Diffie and Hellman lies in the heart of their newly-proposed RSA system. To

αy α

α x

 9

understand their system, one has to know some mathematical theorems and algorithms,

namely Euler’s Theorem and Euclidean Algorithm.

Euler’s Theorem says that if (p, q prime) and , then

 (2.1)

Note that: .

In order to find decrypting key d from encrypting key e, we should find the modular

multiplicative inverse of e modulo . The modular multiplicative

inverse is found using Extended Euclidean Algorithm. We have the following

equation:

 (2.2)

When we reduce Equation 2.2 to modulo , we get

 (2.3)

Extended Euclidean Algorithm solves the equations of form Equation 2.3. Equation

2.3 is derived from Equation 2.2, which is our initial problem: finding decrypting

(private) and encrypting (public) keys.

Using the theories and algorithms above, Rivest, Shamir and Adleman developed RSA

cryptosystem in 1978. The figure below explains the algorithm visually.

Figure 2.7: RSA Flow

n = p * q gcd(a , n) = 1
aϕ(n) ≡ 1 (mod n)

ϕ(n) = (p − 1) * (q − 1)

(q − 1) * (p − 1)

d * e + (p − 1) * (q − 1) * y = 1
(p − 1) * (q − 1)

d * e ≡ 1 (mod (p − 1) * (q − 1))

 10

In their paper “A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems”, Rivest, Shamir and Adleman explain how to use the proposed system

effectively. They offer solutions to problems related to difficulties of putting the

cryptosystem into practice. Since computational power has limitations, they explain

the “exponentiation by repeated squaring and multiplication” [7] procedure for

calculating effectively. Calculating requires

multiplications and divisions using the procedure. Let be e’s

binary representation and C = 1. The procedure is [7]:

Step 1. Repeat steps 1a and 1b for i = k, k − 1, . . . , 0:

 Step 1a. Set C = % n.

 Step 1b. If = 1, then C = (C · M) % n.

Step 2. Stop. C is the encrypted form of M.

RSA cryptosystem requires two large prime numbers p and q. n, which is equal to p*q,

has to be computationally expensive to factor, since correct factorization of n will

break the system, nobody should be able to find p and q from n. In order to find a large

prime of x digits, prime number theorem says that approximately

numbers should be tested before finding a prime number [8]. If we want a 10 digit

prime number, we should test approximately numbers.

For primality testing, Rivest, Shamir and Adleman suggest using a probabilistic

algorithm by Solovay and Strassen. This algorithm selects a random number a from a

uniform distribution on {1, . . . , b − 1}, and tests the following condition [9]:

 (2.4)

J(a, b) is the Jacobi symbol [7].

Apart from Solovay-Strassen Primality Test, there are other ways for detecting

primality: Fermat Primality Test and Miller-Rabin Primality Test. These algorithms

can be used while selecting p and q, too.

For testing primality of n using Fermat Primality Test, we should choose a random

integer a with 1 < a < n-1. If the following condition holds, n is probably prime [10]:

 (2.5)

Me mod n Me mod n 2 * log2e

2 * log2e ekek−1 . . . e0

C2

ei

(ln 10x) / 2

ln(1010) / 2 ≈ 12

gcd(a , b) = 1 an d J(a , b) ≡ a(b−1)/2 mod b

an−1 ≡ 1 mod n

 11

Fermat Primality Test is highly accurate for large n. However, it guarantees

compositeness, not primality.

For conducting Miller-Rabin Primality Test for n, we should select a random integer

a which is greater than 1 and less than n - 1. We also have an odd m which satisfies

 . Below is the algorithm [10]:

 Step 1. Compute .

 Step 2. If , stop and declare that n is

 PROBABLY prime.

 Step 3. Repeat steps 3a, 3b and 3c for i=1, 2, …. ,k-1:

 Step 3a. Calculate .

 Step 3b. If , stop and declare that n is composite.

 Step 3c. If , stop and declare that n is PROBABLY

prime.

 Step 4. If then n is composite.

For selecting secure p and q, RSA inventors also state that p and q should have the

same number of digits and both p-1 and q-1 should have very large prime factors. Also,

 should be small [7].

Another number that should be selected is the decryption exponent d. We should select

d and then derive the encryption exponent e using the Extended Euclidean Algorithm

explained before. The decryption exponent d must be coprime to

, so must hold. Any prime number larger

than maximum(p, q) is okay, the primality can be tested with one of the test described

above (Solovay-Strassen, Miller-Rabin, Fermat). After choosing d, the Extended

Euclidean Algorithm returns e, the encryption exponent.

After describing the flow of RSA cryptosystem in detail, we should also mention the

possible security flaws and ways of breaking the system. Rivest, Shamir and Adleman

handle the security under four subtitles: Factoring n, Computing without

Factoring n, Determining d Without Factoring n or Computing , Computing d in

Some Other Way.

n − 1 = 2k * m

b0 ≡ am mod n

b0 ≡ 1 mod n or b0 ≡ − 1 mod n

bi ≡ b2
i−1 mod n

bi ≡ 1 mod n

bi ≡ − 1 mod n

bk−1 ≢ − 1 mod n

gcd((p − 1), (q − 1))

ϕ(n) = (p − 1) * (q − 1) gcd(d , ϕ(n)) = 1

ϕ(n)
ϕ(n)

 12

Factoring n, which is very difficult as mentioned before, breaks the system. However,

since n is equal to multiplication of two large primes, it is computationally exhaustive

and takes a lot of time. Some factoring algorithms exist, but they are not fast and

feasible enough to conclude that RSA is not safe. At the time of publication of RSA

cryptosystem, the fastest algorithm computed factors of n in steps

[7]. As of today, Shor’s Algorithm, which is named after its creator Peter Shor,

factorizes large numbers very quickly and efficiently, however it is a quantum

algorithm, it runs on quantum computers. Peter Shor states in his paper “Polynomial-

Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer” that the quantum factoring algorithm has asymptotically

 complexity on a quantum computer, along

with a polynomial amount of post-processing complexity on a von Neumann

Architecture computer which is required for conversion of output [11]. General

Number Field Sieve is the fastest factorization algorithm for classical computers.

Its complexity for factoring a semiprime integer n (consisting of ⌊ ⌋+1 bits) is

 where c is a constant which can take three

different values [12].

 must be kept secret because the decryption exponent d can easily be derived

using Extended Euclidean Algorithm (encryption exponent e is public). As explained

before, .

Determining decryption exponent d without factoring n or computing is not

easier than factoring n, therefore it is infeasible. In order to compute d in some other

way, one has to find a solution to Discrete Logarithm Problem, which has no feasible

solution as of today. Deriving d from (c is the encrypted message, so both

c and n are public) is an example of Discrete Logarithm Problem.

In his paper “Twenty Years of Attacks on the RSA Cryptosystem” Dan Boneh

summarized the possible kinds of attack under five topics: Factoring Large

Semiprimes, Elementary Attacks, Low Public Exponent, Low Private Exponent and

Implementation Attacks [13].

Since and , (n and e are public), one can

derive the private/decrypting exponent d after obtaining p and q. See the flow below

(ln(n)) ln(n) /ln(ln(n))

O((log n)2(log log n)(log log log n))

log2n

O(exp[c * (log n)1/3 * (log log n)2/3])

ϕ(n)

d * e ≡ 1 mod ϕ(n)
ϕ(n)

cd mod n

n = p * q d * e ≡ 1 (mod (p − 1)(q − 1))

 13

for breaking the cryptosystem using factorization of large integer . Note that

Darth is an eavesdropper who wants to read the messages in a communication without

permissions from communicating parties.

Figure 2.8: RSA Flow When an Eavesdropper Factors n.

RSA cryptosystem relies on the difficulty of factoring large integers into their prime

factors. The flow shows that if an eavesdropper Darth could factor n into p and q, RSA

would no longer be secure. As mentioned above, the current factorization algorithms

for classical computers are not sufficient for this task and quantum computers are

owned and used by limited number of institutions.

Elementary attacks on RSA cryptosystem spoils users’ mistakes while using and/or

establishing the system. For example, instead of generating different , using

a fixed n causes security flaws. Assume a central authority provides its user i with a

unique pair , however users share the same . A message to user x

 (message is m, is user x’s public key) can be read by user y, because user

y can extract easily since user y knows p, q, p-1, q-1 and . For “blinding” attack,

n = p * q

n = p * q

ei, di n = p * q

mx = mex ex

dx ex

 14

using one-way hash to the message before signing is a solution, therefore it is no threat

anymore [13].

Low private exponent d is an advantage regarding computation time, however it is a

serious threat to security. Michael Wiener proved in 1988 that for with

 when , one can easily find d [13].

Low public exponent can be a security threat, too. However it is not as dangerous as

using a low private exponent. There are many kinds of attacks, Coppersmith’s

Theorem is the base theorem of the most powerful attacks in case of a low public

exponent [14]. The theorem is:

“Let n be an integer and be a monic polynomial of degree d. Set

 for some . Then, given (n, f) Darth can efficiently find all

integers for which holds. LLL algorithm used

here dominates the execution time [15].”

Note that LLL is a basis reduction algorithm.

Implementation attacks focus on the vulnerabilities of the RSA cryptosystem when it

is put in practice in different kinds of practical fields. Various implementations are

adapted in various fields. For example, timing attacks can be used for attacking

financial systems. Dan Boneh describes a timing attack as measuring the time it takes

a smart card to perform a RSA decryption or signature and then derive decryption

exponent d from this information. The repeated squaring algorithm is used for timing

attacks. The binary representation of d is . The repeated squaring algorithm

computes in the end:

 Step 1. Set z = m, c = 1.

 Step 2. Repeat steps 2a, 2b i=0,1,2, …. ,n:

 Step 2a. If ,

 Step 2b.

 Step 3. Return

n = p * q

q < p < 2q d < 1
3 n

1
4

f ∈ ℤ[x]

x = n
1
d −ϵ ϵ ≥ 0

|x0 | < x f (x0) = 0 mod n

dndn−1 . . d0

c ≡ md mod n

di = 1 c ≡ c * z mod n

z ≡ z2 mod n

c ≡ md mod n

 15

Note that because d is a prime number greater than 2, therefore it must be an

odd number.

m is the signature produced by the smartcard. Darth, who wants to break the system,

asks for many signatures, measures the generation time for each signature m () and

measures the time for the smart card to compute for each signature m

. For each , starting from to Kocher inspects the behaviours of T

and t, and he concludes that when T and t are highly correlated, the value of is 1,

when they act independently, the value of is 0 [16].

There are some ways to prevent this kind of attack. Boneh informs of two precautions:

first one is to add delays which will result in constant time of modular exponentiation.

Second precaution is blinding by Rivest, Boneh summarizes this method in his survey:

The smart card selects a number and calculates before

the decryption of m. After this, the smart card calculates and sets

. This results in the application of d to a random message which is

not known by Darth [13].

Another kind of Timing Attack is called Random Faults. Random Faults Attack takes

advantage of usage of CRT. CRT is used in calculation of because usage

of CRT speeds up the operation. CRT is used in the following way:

 and are integers such that and . Bob

computes and . Then he calculates

 where

 (2.6)

Boneh, DeMillo and Lipton discovered that while generating the signature c, even a

simple one-bit mistake can cause Darth to compute p and q from n. Padding

mechanisms are a way of preventing Random Faults attack.

Bleichenbacher’s Attack on PKCS 1 is an attack which spoils a flaw in padding

mechanism of the old PKCS. Bleichenbacher discovered the potential threat and now

this mechanism is no longer used.

d0 = 1

T

m * m2 mod n

(t) dndn−1 . . d1 d1 dn

di

di

r ∈ ℤ*n m′� ≡ m * re mod n

c′� ≡ (m′�)d mod n

c ≡ c′�
r

mod n m′�

md mod n

dp dq dp ≡ d mod (p − 1) dq ≡ d mod (q − 1)

cp ≡ mdp mod p cq ≡ mdq mod q

c ≡ T1 * cp + T2 * cq mod n

T1 = {1 m od p
0 m od q a n d T2 = {0 m od p

1 m od q

 16

After explaining more than a decade of attacks on the RSA cryptosystem, Dan Boneh

states that none of these attacks can break the cryptosystem. After years of widespread

usage and countless attacks, RSA still dominates the industry.

 17

3. INTEGER FACTORIZATION

3.1 Binary Quadratic Forms and Groups

An equation of form is called a binary quadratic form. We

have the discriminant for each binary quadratic form. The following

conditions are compulsory:

•

•

If a binary quadratic form is primitive, then [17]. Binary quadratic

forms form a group which is called class group. A group (S,*) consisting of

 with operation * has four properties:

•

•

• There exists an identity e such that

• Each element has an inverse such that

The order of a group is equal to the number of elements in a group.

 is an example of a group. This group consists of , its order is 6

and it satisfies the conditions above:

f (x , y) = a x2 + bx y + c y2

Δ = b2 − 4ac

Δ ≡ 1 mod 4 or Δ ≡ 0 mod 4
b ≡ Δ mod 2

gcd(a , b, c) = 1

a0, a1, a2, . . an

ax * ay ϵ S where 0 < = x < = n an d 0 < = y < = n

(ax * ay) * az = ax * (ay * az) where

0 < = x < = n an d 0 < = y < = n an d 0 < = z < = n

e * ax = ax an d ax * e = ax where

0 < = x < = n an d 0 < = y < = n

ax * ay = ay * ax = e where

0 < = x < = n an d 0 < = y < = n

(Z6, +) {0,1,2,3,4,5}

 18

• For example: .

• For example:

• The identity is equal to 0. For example:

• For example:

Let a be an element in a group G. The smallest n such that (e is identity) is

called the order of a. For example, assume that we have a group . The order

of this group is 2016. We know that . The order of 1999 is 1008

since and . The fact that 2016 is divisible

by 1008 is no coincidence. Any element in group G has order dividing the order of G.

Since binary quadratic forms are groups, the features explained above hold for them,

too. For my purpose, which is factoring large integers, binary quadratic forms can be

used. When we select , which is a semiprime and p and q are its factors, we

can obtain a Binary Quadratic Form.

3.2 Shanks’ SQUFOF Algorithm and Improving SQUFOF

Daniel Shanks developed an integer factorization algorithm back in the 1970s using

Binary Quadratic Forms. However, as of today, Shanks’ algorithm is not used due to

its non efficiency in practice. The intention is to take Shanks’ algorithm a step further

using the multiplier method found by Nari, Ozdemir and Yaraneri and implement the

new parallel algorithm using cutting-edge technology devices. Also, since the parallel

codes will run on different environments executing different codes, we will be able to

see the advantages and disadvantages of each platform.

Assume we have the binary quadratic form and gcd(a,b,c)

= 1. The discriminant D of f is . For any given integer m, which

represents the binary quadratic form f (), the equation

 holds. It can be seen that when D < 0, m and a have the

same sign. Given two binary quadratic forms and :

 (3.1)

1 + 3 ≡ 4 mod 6 an d 4 + 2 ≡ 0 mod 6
(4 + 2) + 5 ≡ 5 mod 6 an d 4 + (2 + 5) ≡ 5 mod 6

3 + 0 ≡ 3 mod 6
1 + 5 ≡ 0 mod 6 an d 2 + 4 ≡ 0 mod 6

an = e

(Z*2017, *)

2016 = 25 * 33 * 7
19991008 ≡ 1 mod 2017 1008 = 24 * 32 * 7

Δ = n

f (x , y) = a x2 + bx y + c y2

D = b2 − 4ac

m = a x2 + bx y + c y2

4am = (2a x + by)2 − D y2

f f ′�

f (x , y) = a x2 + bx y + c y2 = (x , y)(a b /2
b /2 c) (x

y)

 19

and

 (3.2)

If a 2x2 matrix A= with determinant(A) = 1 satisfies the condition

,

then f and f’ are congruent. If there is a prime number s which divides the discriminant

D, then binary quadratic forms which look like (s,rs,c) can be produced. This type of

binary quadratic forms is called ambiguous. A reduced binary quadratic form is

obtained when and . There exists finite

number of reduced forms for each D. Also, there exists a congruent reduced form for

f=(a,b,c) which has the same discriminant D. For negative discriminants, there is only

one reduced form, however, there may be more than one reduced forms for positive

discriminants. Two reduced forms and belong to the same

class, which means that they are adjacent, if . Reduced form f has

two neighbours (f' and (x’,b’',a)) and its neighbours are congruent under the following

matrix transformation [18]:

 (3.3)

The set of reduced forms with its neighbours form a cycle and two reduced forms are

congruent if and only if they are in the same cycle. Since there are finite number of

reduced forms, in the end, the first reduced form will be obtained again after moving

in the same direction [18].

In order to factor the semiprime n= p*q, the information above can be used. Nari,

Ozdemir and Yaraneri proved that given integers c and c’, the order of prime forms

(p,p,c) and (q,q,c’) is equal 1 if discriminant is equal n and assuming p < q, (p,kp,c’)

is a reduced binary quadratic form which has discriminant n. The purpose of the new

algorithm is to find the neighbours of (1,b,c) using matrix transformation (3.3) until

(p,kp,c’) is found. Note that (1,b,c) is the reduced form of (1,1,(n-1) /4), which is the

identity element of the class. When (p,kp,c’) is found, p, which is a factor of n is no

more secret. The execution time to reach (p,kp,c’) depends on the number of elements

f ′�(x , y) = (a′�, b′�, c′�) = a′�x2 + b′�x y + c′�y2

(α β
γ δ)

(a′� b′ �/2
b′�/2 c′�) = (α γ

β δ) (a b /2
b /2 c) (α β

γ δ)

0 < b < D D − b < 2 |a | < D + b

f = (a , b, c) f ′� = (c, b′ �, c′�)
b′�+ b ≡ 0 mod 2c

(
0 −1
1 b + b′�

2c)

 20

in the cycle. If the cycle consists of moderate number of elements, the factorization of

n can be completed in polynomial time [18].

Below is the pseudocode of the algorithm used in this thesis derived from Nari,

Ozdemir and Yaraneri’s algorithm. Note that we have a binary quadratic form

consisting of . For parallelization, MPI is used. MPI enables us to run the code

with different r values on different hosts. For calculation with large integers, GMP is

used. “mpz_t” type is GMP’s type for handling large integers. The parallel C++

pseudocode for SQUFOF with multiplier “r” can be found below:

function calc_c(a, b, c , delta) {

 c = floor((b^2 - delta) / (4a))

}

function calc_step(c, delta, b, step, delta_s){

 step = floor((delta_s + b) / 2c)

}

function calc_b(step, b, c){

 b = 2 * step * c - b

}

function set_initial_delta_and_b_and_c(delta, b, c){

 tmp_4 = delta % 4

 delta_sqrt = floor(sqrt(delta)

 tmp_2 = delta_sqrt % 2

 if tmp_4 == 1

 b = tmp_2 == 0 ? delta_sqrt - 1 : delta_sqrt

 elseif tmp_4 == 0

 b = tmp_2 == 1 ? delta_sqrt - 1 : delta_sqrt

 else

 delta = 4*delta

 delta_sqrt =(floor(sqrt(delta))

 tmp_2 = delta_sqrt % 2

(a , b, c)

 21

 b = tmp_2 == 1 ? delta_sqrt - 1 : delta_sqrt

 end

 (delta,b, (floor((b^2 - delta) / 4)))

}

int loop(logn, a, c, delta, b, step, delta_s, first_delta, r){

 res = 0

 while loop_cnt < (logn / 5)

 calc_step(step, c, delta, b, delta_s)

 a = c

 calc_b(step, c,b)

 calc_c(a, b, c, delta)

 temp = gcd(a, first_delta)

 if ((temp != 1 && temp != 2 && temp != 4 && temp != r) || a==1)

 res = 1

 break

 end

 end

 res

}

function main() {

 int size = <NUMBER OF PROCESSORS>

 int rank = <PROCESSOR ID>

 delta = <NUMBER TO BE FACTORED>

 first_delta = delta

 r = <MULTIPLIER FOR DELTA>

 while (true){

 tmp = r% 4

 if (tmp == 0)

 break;

 r = r+ 1;

 }

 22

first_r = r

int global_sum = 0;

int loop_res;

int lc = 1;

 while (global_sum == 0) {

 r = first_r + 100 * rank * lc;

 delta = first_delta * r

 set_initial_delta_and_b_and_c(delta, b,c);

 a = 1

 delta_s = sqrt(delta);

 logn = log(delta, 2);

 loop_res = loop(logn, a, c, delta, b, step, delta_s, first_delta, r);

 MPI::COMM_WORLD.MPI::Comm::Allreduce(&loop_res, &global_sum,

1, MPI_INT, MPI_SUM);

 lc++;

}

return 0;

}

In a parallel environment using x different processors, we will have x different “r”s.

Choosing r is very important, because a “good” r can result in factoring the number in

few steps. This will be further elaborated later. After processors execute the loop in

the “int loop” function for at most times, they return an integer. If this integer

is equal 1, then we stop processing, because this means a factor is found. When the

integer returned from the “int loop” function equals 0, then we find a different r and

execute the “int loop” function again.

GMP library is used in the code. In its official website, GMP is described as an open

source and free library for high precision arithmetic on rational numbers, integers and

floating-point numbers. GMP has no limits as long as there is available memory on the

host machine [19].

The fact that GMP has no precision limits (when the machine has available memory)

makes it very appealing for computational engineers and cryptographers.

log(n)/5

 23

As stated, code above achieves parallelism through MPI which provides

communication mechanisms among the CPUs. In the code above, the only

communication performed is:

MPI::COMM_WORLD.MPI::Comm::Allreduce(&loop_res, &global_sum, 1,

MPI_INT, MPI_SUM);

This command is executed after all processors finish the int loop function. If a

processor has the result loop_res equal 1, it means that a factor is found. The line above

sums up loop_res from each processor and saves the value into global_sum variable.

When global_sum is greater than or equal to 1, we can say that we find a factor.
MPI’s biggest problem is communication, even if this code executes

MPI::Comm::Allreduce function for not so many times, communication is a burden.

Also, MPI is just for CPUs, however GPUs are very suitable for time-consuming

computations. NVIDIA describes CUDA as a platform which enables concurrency

using the power of GPUs. NVIDIA asserts that using CUDA speeds computation up

through parallelization [20].

However, there is no proper, up-to-date GMP BigInt library available for CUDA.

There are some libraries, but benchmarks show that even addition operation using

them is up to 300 times slower than performing addition on CPU using GMP. Below,

you can see the benchmarks of cuGMP which can be found on Github.

(https://github.com/trubus/cuGMP).

Table 3.1: GMP cuGMP Comparison.

Operation Iteration OperandSizeBits GMPMicrosecs cuGMPMicrosecs

+ 0 1024 2 289

+ 1 1024 0 303

+ 2 1024 0 290

+ 3 1024 0 310

+ 4 1024 1 300

+ 5 1024 0 282

+ 6 1024 0 296

+ 7 1024 0 277

+ 8 1024 0 277

 24

However, a GPU code for Shanks’ algorithm was written using cuGMP in order to

have no doubts. The results prove that cuGMP is not favourable.

Another platform I used is Julia. Julia’s popularity is rising every year due to its

advantages [21]. Compared to C++ which I used with MPI, Julia is very easy to work

on. It uses C language’s GMP library, so there is no need to search other libraries

which may not be reliable and up-to-date. Another advantage of Julia is that it is very

fast. Figure 3.1 below shows a comparison of Julia with other languages in terms of

speed. The figure is taken from Julia Language’s official website [22]:

Figure 3.1: Julia Performance Comparison.

 25

Julia also supports parallelism effectively. Three levels of parallelism offered by this

language are:

 1. Julia Coroutines (Green Threading)

 2. Multi-Threading

 3. Multi-Core or Distributed Processing

I used Multi-Core Processing since I ran my code on multiple CPUs of UHEM’s

Sariyer Cluster. In contrast to MPI/C++, there is no explicit message passing in Julia’s

multi-core processing. I used a distributed for loop in order to achieve parallelization.

There are other ways of achieving parallelism, too. The Distributed module provides

different data structures and functions for parallel and distributed computations.

Below, you can see the Julia pseudocode used for factoring RSA numbers. Note that

calc_c, calc_step, calc_b, set_initial_delta_and_b_and_c and loop functions’

pseudocodes are the same.

function main()

first_delta = <NUMBER TO BE FACTORED>

r = <MULTIPLIER FOR DELTA>

global_sum = 0

iter = 1;

while r % 4 != 0

r = r+1

end

while global_sum == 0

global_sum = @distributed (+) for i = 1:nprocs()-1

rr = r + 100 * (myid() - 1) * iter + 1

(delta,b,c) = set_initial_delta_and_b_and_c(BigInt(first_delta

* rr))

 delta_s = BigInt(floor(sqrt(delta)))

 loop(log(delta), BigInt(1), b, c, delta, delta_s,first_delta, rr)

end

iter = iter + 1

end

end

 26

The @everywhere macro is used for making functions visible to other processors other

than the master processor. The setprecision(5000) function sets the precision to 5000

bits for operations with BigInt data structure. The @distributed macro is for creating

a distributed loop, after each loop iteration, the results returned are added because of

the (+) sign.

A programmer can easily recognise the difference in readability levels of each code.

Julia is not as fast as MPI/C++, however, it is more practical to write and read Julia

code. I will share the benchmarks later in this thesis.

3.3 Taking Shanks’ Algorithm a Step Further

As I have stated earlier in this thesis, my main intention was to find a mechanism for

factoring a large integer. Previously, Nari, Ozdemir and Yaraneri developed an

extension for Shanks’ Algorithm as explained before. They assert that given

(are integers and coprime such that) and a prime number c,

there exists an integer t and interval I such that:

 (3.1)

and

 (3.2)

Ozdemir and Yaraneri state that an integer “r” selected from this interval accelerates

Shanks’ Algorithm and enables us to factor n. We can only test this hypothesis with

previously-factored integers since and (factors of n) are used for calculating the

interval. My aim is to find a connection between successful “r”s and n in order to

factor other semiprime numbers which were not factored. r % 4 must be equal 1.

The table below shows the intervals. Note that for RSA-100 and RSA-110,

c = 7987998710999017000000000013700000000045300003090000000247,

for RSA-120, RSA-129, RSA-130 c =

79879987109912312312312313901700000000001370000000004530000309000000

0339.

We have two intervals because we have two prime factors. Note that “Interval 1”s are

calculated with the smaller factor. As the number n increases, the factors increase,

prime number c should increase, too.

n = α * β

α ≠ ± 1, α an d β b ≠ 0

t := α2β2(2c + b)2

I := ((t + 1 − 1)2

β4n
, (t + 1 + 1)2

β4n)

α β

 27

Table 3.2: Calculated Interval Beginning and Ends.

 Begin-1 End-1 Begin-2 End-2

R

S

A

-

1

0

0

2417405370274

6784185142961

1434389953507

0304637894885

3565663871101

6334933840197

3068447111795

9444807568022

9869023958261

2417405370274

6784185142961

1434389953507

0304637894885

3565663871101

6334933840197

3068447111795

9444807568022

9870617784977

2694774596120

2089875037806

3443402222279

4606674830286

3172975563977

3383719340914

2394269467385

8812260929412

9348788885949

269477459612

020898750378

063443402222

279460667483

028631729755

639773383719

340914239426

946738588122

609294129350

471666885

R

S

A

-

1

1

0

2437264405040

9906260774080

3552403448931

4044248957973

3778580586875

5251107205576

4762291675508

5235181041957

3789064494653

2437264405040

9906260774080

3552403448931

4044248957973

3778580586875

5251107205576

4762291675508

5235181041957

3789064505089

2672817346721

6456311378434

1548376943869

2516216816060

9879420312172

6593414019462

9361706586942

0985271670110

9440858476145

267281734672

164563113784

341548376943

869251621681

606098794203

121726593414

019462936170

658694209852

716701109440

858487073

R

S

A

-

1

2

0

1205274642158

0310855461743

2030512903405

6675630309474

1618131759927

7555179339636

3422577230392

0709267863150

3931925857311

7218046220929

3738419241877

57

1205274642158

0310855461743

2030512903405

6675630309474

1618131759927

7555179339636

3422577230392

0709267863150

3931925857311

7218046220929

3830587216991

81

5404878151797

4011051651301

9145760232914

5458644219027

2847072175699

6594911708125

1794767022036

9015636379955

1005756682449

5337112962942

4764725878590

89

540487815179

740110516513

019145760232

914545864421

902728470721

756996594911

708125179476

702203690156

363799551005

756682449533

711296294249

599034862344

1

R

S

A

-

1

2

9

2718706507480

6864907985358

3457001718486

3429734718649

1911897423901

3107477449650

4958287433875

4976307393480

2273689382970

9545156394058

8176056183852

9

2718706507480

6864907985358

3457001718486

3429734718649

1911897423901

3107477449650

4958287433875

4976307393480

2273689382970

9545156394058

8176075685128

5

2396125717281

6218858519923

6252475319510

8384335019837

7103323261192

6440795139500

2424343514224

8426466255824

2413722264565

9079561474222

8407223361458

985

239612571728

162188585199

236252475319

510838433501

983771033232

611926440795

139500242434

351422484264

662558242413

722264565907

956147422284

072251922410

89

 28

R

S

A

-

1

3

0

2224501620791

7483972715920

0539632128000

0159868945712

8328123281819

7361292162491

6978761547026

8138616592342

7209238864810

2802142045385

5937794984104

01

22245016207

91748397271

59200539632

12800001598

68945712832

81232818197

36129216249

16978761547

02681386165

92342720923

88648102802

14204538559

37796387523

17

292845935441340340

979380231528289722

505341507676725549

229927505899803085

523592538748485336

948226241696948946

999789242471802821

270695053599292706

5

292845935441

340340979380

231528289722

505341507676

725549229927

505899803085

523592538748

485336948226

241696948946

999789242471

802821270695

053615395107

7

Let’s try to factor the RSA numbers above using the serial versions of Julia and

MPI/C++ codes above. Note that the number we select from the intervals (r) mod 4

should be equal 1.

Table 3.3: Factorization Results Using Intervals.

 Begin-1 End-1 Begin-2 End-2

RSA-

100

FAIL SUCCESS FAIL SUCCESS

RSA-

110

FAIL SUCCESS FAIL SUCCESS

RSA-

120

FAIL SUCCESS FAIL SUCCESS

RSA-

129

FAIL SUCCESS FAIL SUCCESS

RSA-

130

FAIL SUCCESS FAIL SUCCESS

RSA-

576

FAIL SUCCESS FAIL SUCCESS

RSA-

220

FAIL SUCCESS FAIL SUCCESS

RSA-

230

FAIL SUCCESS FAIL SUCCESS

 29

The pattern above is obvious: with a number r close to interval ends, RSA numbers

can be factored in less than a second. After discovering this fact, experiments were

made with the averages of the interval beginnings and ends. The results show that the

averages are “successful”, which means that the averages accelerate Shanks’

Algorithm in contrast to interval beginnings. Another point results prove is that the

calculated interval ends are not actually the ends, numbers larger than interval ends

accelerate factorization.

Experiments and the interval formulae show that, the interval length decrease as the

number to be factored increases (while using the same prime number c).

In order to discover a meaningful relationship between intervals and RSA numbers,

 was calculated. As

the RSA-Number increases,

 decreases. So, for

semiprime numbers X and Y, if Y > X, then

The plot below explains the situation for Interval Ends:

Figure 3.2: log(<RSA_NUM, INTERVAL_END>).

The plot makes more sense when the x-axis is replaced with the number of decimal

digits of each RSA number since we can see the slope more clearly.

log(RSA − NUMBER, IN TERVA L − BEGIN − OR − END)

log(RSA − NUMBER, IN TERVA L − BEGIN − OR − END)

log(X, IN TERVA L − BEGIN − OR − END) > log(Y, IN TERVA L − BEGIN − OR − END) .

 30

Figure 3.2: log(<RSA_NUMBER_DIGITS>, <INTERVAL_END>).

3.4 Factoring a Semiprime

s=152260502792253336053561837813263742971806811497100625256164029200

9551300230960365734328241360708667 is a semiprime consisting of 100 digits. The

prime number c is set to :

15000000000000000000000098098098090000000000000000000000000000000000

00000000000000092384203984098234293.

The semiprime subject to factorization is greater than RSA-100 and less than RSA-

110. Therefore an interval of number “r”s which accelerates Shanks’ Algorithm exists

around:

(,).

Another parameter that should be kept in mind is the length of intervals. For RSA-100,

the interval length is around , for RSA-110, the interval length is around

. The interval length for the number to be factored is at least and at most

.Since ,

,

,

 are known, in order to find

, a factorization function was used. The Newton

slog(s,log(RSA100,RSA100_ INTERVAL_END)) slog(s,log(RSA110,RSA110_ INTERVAL_END))

3 * 1054 1049

1049 3 * 1054

log(RSA − 100,RSA − 100_ IN TERVA L _ END)
log(RSA − 110,RSA − 110_ IN TERVA L _ END)
log(RSA − 120,RSA − 120_ IN TERVA L _ END)
log(RSA − 129,RSA − 129_ IN TERVA L _ END)
log(s, S_ IN TERVA L _ END)

 31

interpolation code written in Julia [23] was modified due to its inability to run with

integers of size larger than 64 bits. According to the function obtained from Newton

interpolation s^2.06619590888562183171 is close to the interval end. Since the factors

of s are actually known, its interval ends can be calculated. The interval end for s is

(using s’s smaller factor):

85242470593140523480578268674184216176646374853810143182703116602157

92177864716346011131262549601568160070715884474700560782020462320377

29545117738884163583184654239339088307731998546912879319350625834333

7.

The interval end guessed without using the factor is:

85242470593140523480578268674184216176646374855022507311494722302466

08251233720575284447736458127224393706750855009608370266869082124063

96196500894119421209520435745009193818139901413402616885379678954100

7.

The difference of calculated interval and guessed interval is:

12123641287916057003081607336900422927331647390852565623363603497053

49078094848486198036866665138315523525762633578150567010551040790286

64897375660290531197670. The interval length for s is smaller than the interval

length for RSA-100 and greater than the interval length for RSA-110. is

smaller than the interval length for s (since s is very close to RSA-100) , therefore it is

used as step while trying to find the correct interval. Using 1000 processors, the factor

is found after approximately iterations using the codes above.

3 * 1053

4 * 10100

 32

 33

4. BENCHMARKS

4.1 Serial Code Comparison

Serial versions of Julia and C++ codes were compared while factoring RSA-100, RSA-

140 and RSA-230. Each code was run for 50 times in order to eliminate misleading

results. Since Julia has a JIT compiler in contrast to C++, the compilation time was

subtracted from Julia benchmarks. RSA-100 was factored after 700, RSA-140 was

factored after 4300, RSA-230 was factored after 4400 iterations. The RSA-230-2

column shows the results when RSA-230 is factored after 147 iterations. The RSA-

230-3 column shows the result after 14668 iterations.

Table 4.1: Julia vs C++ Serial Code Results.

 RSA-100 RSA-140 RSA-230 RSA-230-2 RSA-230-3

Julia 0.712

seconds

 5.0136

seconds

8.0248

seconds

0.461

seconds

25.792

seconds

C++ 0.539

seconds

5.1442

seconds

12.044

seconds

0.402

seconds

40.147

seconds

The results show that when the number of loop iterations increase, Julia’s performance

gets better. Julia is a dynamic language and uses LLVM. JIT compiler and LLVM

together results in more optimized code.

4.2 Parallel Code Comparison

The graph below shows the factorization of RSA-100 with 1, 5, 10, 20 processors

with each programming language.

 34

Figure 4.1: Julia vs C++ Parallel Code Results.

The x-axis shows the number of processors while the y-axis shows the execution time.

It can be seen that Julia is faster than C++ if the serial code is run, however, C++ and

MPI together result in a perfect efficient and speedup in contrast to Julia. For

measuring the performance of parallel code, Efficiency (E) and Speedup (S) are two

key concepts. The graphs below show the efficiency and speedup. Efficiency (E) is

equal while Speedup (S) is equal (N is the number of

processors, p is the portion of execution time which is affected by more number of

processors and s shows how many times p is faster with more processors).

Figure 4.2: Julia Efficiency.

E = S
N

S = 1
(1 − p) + p

s

 35

Figure 4.3: Julia Speedup.

Figure 4.4: C++/MPI Efficiency.

Figure 2.5: C++/MPI Speedup.

 36

For both parallel platforms, it is observed that efficiency drops as number of processors

increase. The main reason for this decrease in efficiency is the lag due to network. As

the number of processors increase, the number and size of data transfers increase, too.

In MPI, when x processors are used, the number of data transfers is equal 2x -2 since

MPI_Allreduce performs a reduction in the root processor (x-1 data transfers) and then

broadcasts the result to other non-root processors (x-1 data transfers).

Julia’s efficiency is very poor when compared to MPI’s efficiency. With 5 processors,

MPI’s efficiency is equal 0.96 which is very close to maximum efficiency of 1. Also,

MPI achieves nearly linear speedup which shows that each CPU’s utilization rate is

nearly 100%.

 37

5. CONCLUSION AND FUTURE WORK

The computation results show that another method for integer factorization can be

used. If intervals are guessed correctly, factorization of a semiprime can be

accomplished in less than a second. However, the formula does not calculate the

interval end and interval beginning precisely. The beginning is larger than the

calculated beginning and the end is larger than the calculated interval end.

Tests were run using multiple programming languages. The results show that Julia can

be an alternative for programmers in the future due to its simplicity and speed.

However, using Julia’s distributed for loop is not a good alternative for programmers

who demand efficiency and speedup. The refinement of the Distributed.jl library is my

next aim. A CUDA code was also tested, however since GMP libraries for GPUs do

not have good performance, the results were disappointing. The future work includes

refactoring and enhancing the GMP libraries for CUDA. Also, finding a better

approximation method for intervals of semiprimes whose factors are not known is

another goal.

 38

 39

REFERENCES

[1] Url-1 <https://access.redhat.com/blogs/766093/posts/1976023>, date retrieved

02.05.2019.

[2] Url-2 <https://www.wired.com/2014/06/d-wave-quantum-speedup>, date

retrieved 02.05.2019.

[3] Diffie, W.& Hellman, M. (1976), November. New Directions in Cryptography.

IEEE Transactions on Information Theory, 22, 644-654.

[4] Stallings, W. (2010). Cryptography and Network Security. New York, NY:

Prentice Hall.

[5] Url-3 <https://commons.wikimedia.org/wiki/File:Diffie-

Hellman_Key_Exchange.png>, date retrieved 02.05.2019.

[6] Url-4 <http://mathworld.wolfram.com/PrimitiveRoot.html>, date retrieved

02.05.2019.

[7] Rivest, R & Shamir, A. & Adleman, L. (1977), April. Method for Obtaining

Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, 26,

96-99.

[8] Niven, I. & Zuckermann, H. & Montgomery, H. (1960). An Introduction to the

Theory of Numbers. Hoboken, NJ: John Wiley & Sons.

[9] Solovay, R. & Strassen, V. (1977). A Fast Monte Carlo Test for Primality. SIAM

Journal on Computing, 6, 84–85.

[10] Washington, L. & Trappe, W. (2006). Introduction to Cryptography with

Coding Theory. Upper Saddle River, NJ: Pearson Prentice Hall.

[11] Shor, P. (1995), August. Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26,

1484–1509.

[12] Url-5 <http://mathworld.wolfram.com/NumberFieldSieve.html>, date retrieved

02.05.2019.

[13] Boneh, D. (2006). Twenty Years of Attacks on the RSA Cryptosystem.

American Mathematical Society, 46, 203-213.

 40

[14] Wiener, M. (1989). Cryptanalysis of Short RSA Secret Exponents. IEEE

Transactions on Information Theory, 36, 553-558.

[15] Coppersmith, D. (1997). Small Solutions to Polynomial Equations, and Low

Exponent RSA Vulnerabilities. Journal of Cryptology, 10, 233-260.

[16] Kocher, P. (1996). Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. CRYPTO '96 Proceedings of the 16th Annual

International Cryptology Conference on Advances in Cryptology, 104-113.

[17] Buell, D. (1989). Binary Quadratic Forms Classical Theory and Modern

Computations. New York, NY: Springer Verlag.

[18] Nari, K., Özdemir E., Yaraneri, E. (2017), October. İkili Kuadratik Formlar

ile Çarpanlara Ayırma. Journal of Engineering Technology and Applied Sciences, 2,

101-111.

[19] Url-6 <http://gmplib.org>, date retrieved 02.05.2019.

[20] Url-7 <https://developer.nvidia.com/cuda-zone>, date retrieved 02.05.2019.

[21] Url-8 <http://pypl.github.io/PYPL.html>, date retrieved 02.05.2019.

[22] Url-9 <https://julialang.org/benchmarks>, date retrieved 02.05.2019.

[23] Url-10 <http://homepages.math.uic.edu/~jan/mcs471/divdifpol.pdf>, date

retrieved 02.05.2019.

 41

CURRICULUM VITAE

Name Surname :Deniz Kırlıdoğ

Date and Place of Birth :20.09.1991 - Australia

Address :ITU Ayazaga Kampusu Koru Yolu ARI3 Binası

No:1001

E-Mail :deniz.kirlidog@gmail.com

B.Sc :Bilkent University, Department of Computer

 Engineering

PRESENTATIONS ON THE THESIS:

• Kırlıdoğ, Deniz, 2019: Computational Methods for Integer Factorization.

International Congress of Energy, Economy and Security Presentation, April 6-7

2019, Istanbul, Turkey.

