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HYPERSPECTRAL IMAGE COMPRESSION USING GRAPH
SIGNAL PROCESSING AND

WAVELET-BASED SPECTRAL DECORRELATION

SUMMARY

In recent years, remote sensing is playing a very important role in the military and
agriculture areas of research. Using sensors placed onboard in a remote object, we can
analyze the soil contents or finding mineral deposits in a particular area of the world.
In order to do this, large volumetric data are captured in the form of photography using
hyperspectral imaging. Due to their large size, there exists a hardware bottleneck that
doesn’t allow us to record a lot of data. Therefore, it is very important that we compress
the hyperspectral images while preserving the quality in order to capture more images
onboard.

In this thesis, we introduce a novel method of compressing hyperspectral image(HSI)
while preserving the quality. In order to achieve an efficient compression, the HSI
is spectrally and spatially decorrelated. We apply a five-level Discrete Wavelet
Transform (DWT) to spectrally decorrelate the image and losslessly compressed the
detail coefficients using JPEG 2000.

We apply graph Fourier transform to the last seven approximation coefficients and
save only a few coefficients with the highest values that will enable us to reconstruct
the image back. The novelty of this method relies on transforming band coefficients
of a signal on the graph . We reconstruct the lowest bands by taking the Inverse Graph
Fourier Transform and reconstruct the HSI using Inverse Discrete Fourier Transform .

The quality of the HSI is measured using PSNR metrics because it is the most
commonly used metrics for comparing losslessly compressed images. Two types of
Hyperspectral Image datasets are used to implement our coding scheme: Airborne
Visible Imaging Spectrometer (AVIRIS) dataset and Hyperion dataset.
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ÇİZGE İŞARET İŞLEME VE DALGACIK TABANLI İZGE
ILINTISIZLEŞTIRMEYE SPEKTRAL DEKORELASYON DAYALI

HİPERSPEKTRAL İMGE SIKIŞTIRMA

ÖZET

Son yıllarda, uzaktan algılama askeri ve tarım araştırma alanlarında çok önemli bir rol
oynamaktadır. Uzak bir nesneye yerleştirilmiş sensörleri kullanarak, toprak içeriklerini
analiz edebilir veya dünyanın belirli bir bölgesinde mineral tortuları bulabiliriz. Bunu
yapmak için büyük hacimler veriler, hiperspektral görüntüleme kullanılarak fotoğraf
şeklinde yakalanır. Donanım kısıtlamalarından ötürü bu büyük boyutlu fotoğraflardan
oluşan veri setlerini depolayamiyoruz.Bu yüzden, hiperspektral imgeleri kalitelerinden
odun vermeden şıkıştırabilmek çok önemlidir.

Uzaktan algılama, temas etmeden hedef alandan yansıtılan elektromanyetik radyasy-
onu kaydederek bir alanın özelliklerini ölçme işlemi olarak tanımlanır. Ticari
uzaktan algılama hiperspektral görüntüleme sistemlerinin iyileştirilmesi ile, çok sayıda
alanların görüntülenmesi araştırmacılar için çok kolay hale gelmiştir ve tarım, çevre
,askeri uygulamalar, dünya minerallerini keşfetme, orman izleme gibi alanlarda
kullanılmasına olanak sağlamıştır.

Spektral yansıma hiperspektral görüntüleme sistemi tarafından yakalanır ve disper-
siyon elemanları yansıyan ışığı farklı bitişik dalga boylarına ayırmak için kullanılır.
Her dalga boyu belirli bir dalga boyu dedektörü tarafından yakalanır. Spektral yansıma,
çalisilan nesne veya alanlar icin parmak izi olarak davranir, cunku farklı malzemeler
isigi . Spektral yansıma şekli her nesne veya malzeme, böylece nesneleri farklı
anlatmak kolay inceleniyor için farklıdır.

Hiperspektral görüntüler, görüntüyü sürekli bir elektromanyetik spektrumla
kaydedilmiş görüntüler şeklinde saklayarak büyük hacimler verilerdir. Bu, her
pikselin 16 veya 12 bit olarak depolandığı bir 3B küpte biçiminde sonuçlanir. Büyük
boyutu, bircok veriyi ayni anda kaydedebilmeyi olanaksiz hale getiren bir darboğaz
yaratiyor. iste bu nedenle, daha fazla goruntuyu saklayabilmek icin hiperspektral
sikistirmanin onemi ortaya cikiyor.

Uzlamsal ve spektral artiklik gibi iki turu olan, Hiperspektral Goruntu (HSI) icindeki
gereksiz bilgileri kaldirarak olusturulur. Bunlardan ilki yedek piksel arasindaki
uzlamsal etki alaninda olusurken ikincisi ve en buyuk artiklik kaynagi olani ise bitisik
bandlarda yakalanan dalga boyunda olusur.

Spektral etki alanında, biz ayrık dalgacık dönüşümler kullanarak hiperspektral görüntü
dekorelasyon yapiyoruz. Biz birden fazla filtre dekorelasyon yapılmış katsayılarını
tamsayı katsayıları içine kayan sayılar kaynaklanan kaybı en aza indirmek için
kaldırmak için kullandık. Görüntünün decorrelated olduğu iki etki alanı vardır.
Spektral etki alanında, piksel arasındaki korelasyon azaltmak için görüntülerin
decorrelated beş kez ayrı Wavelet dönüşümler kullandık. Görüntü ters ayrık Wavelet
Transform kullanılarak yeniden oluşturulur. Uzamsal etki alanında, sadece birkaç
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katsayılar ile sinyali yeniden oluşturmak için Graph Fourier Transform kullanıyoruz.
Biz Laplacian eigenvektörler Fourier temeli olarak hareket grafik Laplacian inşa.
Grafik sinyali ters grafik Fourier dönüşümü alarak kullanılarak yeniden oluşturulur.
Katsayılar sayısına bağlı olarak, biz atmak sinyal katsayıları ters Fourier eigenbasis
kullanılarak tahmin edilir.

Bu tezde, kaliteyi korurken Hiperspektral görüntüyü (HSI) şıkıştırmak için yeni bir
yöntem tanıtıyoruz. Verimli bir sıkıştırma elde etmek için, HSI ışıksal ve yüzeysel
olarak ayrıştırılır. Imgeleri spektral olarak ayrıştırmak icin beş aşamalı Discrete
Wavelet Transform (DWT) uygulandi ve katsayılar JPEG 2000 kullanilarak kayipsiz
bir sekilde sikistirildi.

En küçük yedi katsayiya graf Fourier transformu uygulandi ve imgeleri geri
dönüstürmek için en yuksek degere sahip birkaç katsayı kaydedildi. Bu metodun
yeniligi graftaki bir sinyalin frekans katsayılarınıin dönşturulmesiyle ilgilidir. Frekans
bandındaki düşük katsayılar kullanilarak Inverse Discrete Wavelet Transform (IDWT)
ile imgeler tekrar elde edildi. Hiperspektral imgeler de Inverse Discrete Wavelet
Transform geri elde edildi.

Biz beş seviyeli ayrık dalgacık dönüşümü uyguladıktan sonra kodlama şeması
kullanıyoruz. Bizim kodu dekorelasyondan cikan en son yedi bantlarıda uyguluyoruz.

Biz son yedi yaklaşma katsayıları için grafik Fourier dönüşümü uygulamak ve bize
görüntüyü geri yeniden oluşturmasını sağlayacak en yüksek değerlerle yalnızca birkaç
katsayıları kaydediyoruz. Bu yöntem, yenilenen grafik üzerinde bir sinyal bant
katsayıları dönüştürmesine dayanır.

Grafikler, karmaşık veri yapılarını modellemek ve veri içeriği arasındaki etkileşimler-
den yararlanmak için bize izin verir. Grafik Sinyal Işleme araçlarını kullanarak, grafik
düğümlerini bir grafiğe bağlı sinyaller olarak modelleyerek ayrıca sinyal filtreleme ve
Fourier Transform gibi klasik sinyal işleme araçlarını grafik üzerine uygulayabiliriz.

Grafik sinyal işleme yöntemleri ayrıca piksellerin normal 2B ızgaralar oluşturacağı
resimler ve videolar gibi düzenli grafiklere dağıtılır. Görüntüler, piksellerin grafiğin
düğümlerini oluşturabileceği ve yakınlığı kenarları olarak kullanılabileceği normal
grafikler olarak görüntülenebilir.

İki adet hiperspektral görüntü seti kullandık: AVIRIS ve HYPERION veri kümeleri,
genel olarak kullanılabilen veriler. Hiperspektral görüntüler, hesaplamalı karmaşıklığı
azaltmak için daha küçük bir boyuta kırpılmıştir. Kodlama şemamiz ile elde
edilen sonuçlar, yontemimizin JPEG 2000 sıkıştırma şeması ile karşılaştırıldığında,
görüntü kalitesinde diğer bazı yöntemlerle birlikle bir gelişme gösterir. Hiperspektral
görüntüleri sıkıştırmak için tercih ettiğimiz yönteme göre çok iyi PSNR değerleri elde
etmeyi başardık. HSI kalitesi, kayıpsız sıkıştırılmış görüntüleri karşılaştırmak için en
sık kullanılan ölçümlerden olan PSNR metrikleri ile ölçüldü.

Kodlama düzenimizin sonuçlarını daha da iyileştirmek ve diğer yöntemlerle
karşılaştırmak için, aynı küp boyutuna sahip aynı Hiperspektral görüntülerin standart
bir veri kümesi olarak kullanılması gerektiğini düşünüyoruz. Araştırmacılar çoğu
küpün hangi kısmını ve hangi uçuş numarasını kullandılar belirtmiyor beri.

Gelecekteki çalışmanıza göre, yeniden oluşturulmuş Hiperspektral görüntünün
kalitesini artırmak için grafik filtreleme, grafik dalga boyları vb. gibi daha fazla
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grafik sinyal Işleme aracı kullanırız. Daha fazla araştırma hiperspektral görüntüleri
sıkıştırmak için başka yollar bulma yapılacaktır.
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1. INTRODUCTION

Remote sensing is defined as the process of measuring the characteristics of an

area by recording the electromagnetic radiation that is reflected from the target area

without being in contact with it. With the improvement of commercial remote sensing

hyperspectral imaging systems, capturing a large number of areas has become very

easy for researchers to study and the application spread in fields, such as agriculture,

environmental and forest monitoring, military applications and the exploration of Earth

minerals.

Figure 1.1 : Hyperspectral imaging sensor. Wavelength detectors capture a
continuous range of wavelength reflected from the remote area/

In Fig 1.1, the spectral reflectance is captured by the hyperspectral imaging system

and dispersing elements are used to separate the reflected light into different adjacent

wavelengths. Each wavelength is captured by a specific wavelength detector. The

spectral reflectance acts as a fingerprint for the object or the area to be studied because

different materials scatter or absorb the light in a different manner from other objects.

The shape of the spectral reflectance is different for every objects or material that is

being studied so it is easy to tell objects apart.

Teke et al., point out the importance of using hyperspectral imaging in crop yield

estimation, plant monitoring, etc [1], The HSI increases the precision and accuracy of

1



the knowledge related to crop yields and plant disease detection. The content of the

soil minerals can be detrimental to the crop yield causing small harvest and famine.

Also, changes in leaf colors may suggest an infection occurring in plant and leaves.

Obtaining this important information early can help farmers taking action before being

too late to do something. Govender et al. has shown that remote sensing can reduce

labor time and cost of mapping the vegetation fields [2].

Briottet et al. have pointed out the important use of hyperspectral images in military

applications. Hyperspectral images are able to capture objects that can hide from

normal cameras due to the continuous band of wavelengths that are able to differentiate

object with similar wavelengths. The experiment conducted bt Briottet and his

colleagues were able to detect hidden targets that were not captured by the human

eye.

Hyperspectral images are large volumetric data stored in form of images whose image

is saved with a continuous electromagnetic spectrum. This results in a 3D cube where

each pixel is stored in 16 or 12 bits. In Fig 1.2, we have the spectral response of a

Figure 1.2 : 3D Hyperspectral Image. Each pixel contains a continuous bands of
wavelengths.

pixel obtained by the Airborne Visible Infra Red Imaging Spectrometer (AVIRIS). The

response of the hyperspectral images obtained by AVIRIS contains 224 wavelengths

whereas Hyperion hyperspectral images contain 220 wavelengths.

2



1.1 Literature Review

Hyperspectral image compression is achieved by removing redundant information in

the hyperspectral image. There are two types of redundancy in an HSI: spatial and

spectral redundancy. Spectral redundancy, which is the biggest source of redundancy

in a hyperspectral image, occurs in the wavelength captured in the adjacent bands.

Spatial redundancy occurs in the spatial domain between pixels.

Figure 1.3 : General method of compressing/decompressing a hyperspectral image.

There have been several studies done comparing hyperspectral image methods. Bilgin

et al. have compared several methods for compressing hyperspectral images as 3D

cubes as well as treating the whole image as a wave. They found out that the method

that produces the best result is SPIHT [3].

Most compression techniques are categorized into two categories: lossy and lossless

[4]. Lossless compression schemes are used in very important fields such as the

military and medicine where image quality and accuracy are very important. The

reconstructed image is identical to the original image but the compression ratio is very

low compared to lossy schemes. In lossy schemes, we have a loss of image quality

and only an approximation of the original image is obtained. This results in a higher

compression ratio. This scheme is generally used in audio and video files where the

degradation of the original signal not very noticeable.

1.1.1 Lossless compression

There are several algorithms that are used to compress an image in a losses manner.

Lempel-Ziv-Welch (LZW) algorithm compresses the files by reading every token

3



separately and combines them to strings. The strings are then coded into shorter codes

and the repeated string is compressed using the assigned code in the code table. [5]

Zhang et al., deploy a statistical-based algorithm for compressing the hyperspectral

image in a lossless manner. Huffman coding encodes tokens or characters of the input

files by assigning them a variable-length code. The length of these codes depends on

the frequency of the characters in the data. The most frequent characters get a small

code where the least frequent characters are assigned a large code [6].

J.Mielikainen et al. have used arithmetic coding to losslessly compress their

hyperspectral image. The method consists of three steps: clustering, prediction, and

coding [7]. In the clustering stage, clusters are formed in such a way that the entropy

is minimized. The prediction step is achieved a linear predictor and the result between

original and reconstructed pixel values are entropy encoded with the help of a range

coder.

Lookup Tables (LUT) are another example of lossless compression schemes. In this

scheme, LP Tables are used to search faster previous bands faster for the pixel with an

equal value of the pixel to be coded. This method has outperformed other schemes of

losslessly compressing images in the band interleaved by line [8].

Töreyin et al., in their paper, have studied the compression ratio gains of integer

coefficient discrete wavelet transforms. The hyperspectral images are spectrally

decorrelated using integer-based discrete wavelet transforms in order to reduce the

correlation between the bands. They have shown that decorrelating the hyperspectral

images in the spectral domain with integer coefficients discrete wavelet transforms

their compression rations [9].

In another paper, Töreyin uses the fractional wavelet transform instead of discrete

wavelet transforms. Fractional wavelet transforms decomposes the signal into

signals with different lengths. To achieve their high compression ratio by spectrally

decorrelating the hyperspectral image using an unbalanced lazy lifting structure [10].

A.Karaca et al. have proposed a bimodal conventional recursive least squares based

predictive method for compressing the hyperspectral images in lossless mode. Their

method consist on predicting each pixel value by adding the dot product of input and
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weight vectors. Their method achieves good compression ratios and it is achieved with

a lower computation time [11].

Lossless compression of the hyperspectral images is very important in the field of

medicine where the accuracy and the perfect reconstruction is of high importance.

However, other fields such as graphics, audio, and video domains can tolerate the loss

of signal. The signal can be reconstructed with part of the original signal. This results

in a higher compression ratio and achieves the desired result. Below are shown some

of the lossy compression schemes.

1.1.2 Lossy compression

Lossy compressions schemes are based on transform coding. It allows for more

image compression and hyperspectral image on-board capturing. Transform coding

techniques are based on spectral and spatial decorrelation since the correlation occurs

in the spectrum axis of the hyperspectral image.

Mihaela et al. uses the Karhunen-Loeve Transformation (KLT) to spectrally

decorrelate the hyperspectral image and Discrete Wavelet Transform (DWT) to

spatially decorrelate the hyperspectral image and encode it using JPEG 2000. This

method can compress the HSI with a high compression ratio while preserving quality

but it suffers from computational complexity [12].

S.Lim et al. have constructed a 3D set partition embedded block to spatially and

spectrally decorrelate the HSI using a 3D Discrete Wavelet Transform. This method

has proved to compress with high compression ration while preserving the rate

distortion. [13].

Z.Gundogar et al. have developed a compression technique named tridiagonal folded

matrix enhanced multivariance products representation (TFEMPR). The authors treat

the image as a matrix and use the concept of a folded matrix to binary decompose a

matrix resulting in low computational complexity and low distortion ratio [14].

Julide et al., have used Haar filter to spectrally decorrelate the hyperspectral images

and compressing it with sparse coding. The hyperspectral image is decomposed using

the Haar filter and is compressed using online dictionary learning [15].
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H.Jawdhari et al., in his thesis, has proposed a method of compressing hyperspectral

images in lossy mode. The hyperspectral image is spectrally decorrelated

using discrete wavelet transform and the low bands are compressed using sparse

representatins whereas high bands are compressed using JPEG 2000. [16].

1.1.3 Graph signal processing

Graphs allow us to model complex data structures and exploit the interactions among

the data content. Using Graph Signal Processing tools, we can model graph nodes as

signals relying on a graph and apply classical signal processing tools, such as signal

filtering and Fourier Transform onto graphs.

In machine learning tasks, Zhu et al. uses Graph Signal Processing to estimate labels

in unsupervised learning problems [17]. Sandryhaila et al., design graph filters applied

to sensor malfunction and data classification of partially labeled data [18]. Graph

Signal Processing is also used in recommendation systems. By effectively exploiting

the connection between the attributes, Huang et al., have increased the accuracy of

predicting similar attributes [19].

Graph Signal Processing has also been deployed into regular graphs such as images

and videos where pixels form regular 2D grids. Images can be viewed as regular

graphs where pixels form the nodes of the graph and their proximity can be used

as edges. G.Cheung et al. have used Graph Signal Processing tools, such as Graph

Fourier Transform and graph spectral filtering for image compression, image filtering,

etc [20]. W.Hu et al., use GSP to compress piecewise smooth images by minimizing

the representation cost for each pixel block [21].

There are several works done on using Graph Signal Processing to compress

Hyperspectral Images. In [22], A.Ortega et al., use graph wavelets to compress

hyperspectral images by decorrelating the hyperspectral images in the spatial and

spectral domain. The images are divided into groups of several bands with a similar

spectral response and encode it.

1.2 Purpose of Thesis
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In this thesis, we are introducing a novel lossy compression scheme that uses Discrete

Wavelet Transform and Graph Fourier Transform to compress hyperspectral images.

In the spectral domain, we decorrelate the hyperspectral image using Discrete Wavelet

Transforms. We have used several filters to lift the decorrelated coefficients into integer

coefficients in order to minimize the loss arising from floating numbers. There are

two domains in which the image is decorrelated. In the spectral domain, we have

used Discrete Wavelet Transforms where the images are decorrelated five times in

order to reduce the correlation among the pixels. The image is reconstructed using

Inverse Discrete Wavelet Transform. In the spatial domain, we use Graph Fourier

Transform to reconstruct the signal with only a few coefficients. We construct the graph

Laplacian where the Laplacian eigenvectors act as Fourier basis. The graph signal is

reconstructed using by taking the inverse graph Fourier transform. Depending on the

number of coefficients, the signal coefficients that we discard are estimated using the

inverse Fourier eigenbasis. The coding scheme has low computational complexity and

it can be applied onto onboard systems. Our aim was to research new methods of

compressing hyperspectral images.
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2. METHODOLOGY

In this chapter, we will explain the method used for compressing the hyperspectral

images. We will start by decorrelating the images using integer-to-integer discrete

wavelet transform. We have used several filters such as Haar, 9/7-M, 2/6, 2/10 and

5/3. The approximation details of the five-level DWT are approximated using Graph

Fourier Transform. In the end, we reconstruct the images using the inverse integer

discrete wavelet transform.

2.1 Integer coefficient based Discrete Wavelet Transforms

In order to increase the compression ratio while preserving the image quality, we must

decorrelate the hyperspectral image in the spatial and the spectral domains. In the

spectral domain, we apply integer based discrete wavelet transform and we split the

original image into two cubes of detail and approximation coefficients.

Figure 2.1 : Hyperspectral Image decomposition using Discrete Wavelet Transform.

The discrete wavelet transform decomposition of the image is shown in figure 2.1. We

have applied high pass and low pass filters and we have decorrelated the image in the

spectral domain. There are several integers to integer wavelet filters used for this step

of the method such as Haar, 2/6, 2/10, 5/3, CDF 9/7-m.
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David Adams, in his doctorate thesis, offers several integer wavelets transform based

on the lifting framework [23]. Given an input signal x[i], we split the signal into

highpass and lowpass subands and denote them as d0[i] = x[2i+1] and s0[i] = x[2i].

2.1.1 Spectral decorrelation, integer based forward transformations

Haar filter transformation is one of the easiest and the most used for compression

purposes. Its computational complexity is very low since it only needs two operations

to transform the input signal.

Table 2.1 : Transformation coefficients used for integer discrete wavelet transforms.

Filter Formula

Haar
d[i] = d0[i]− s0[n]

s[i] = s0[i]+
⌊1

2d[i]
⌋

5/3
d[i] = d0[i]−b1

2 (s0[i+1]+ s0[i])c
s[i] = s0[i]+ b1

4(d[i]+d[i−1])+ 1
2

9/7-m
d[i] = d0[i]+

⌊ 1
16 ((s0[i+2]+ s0[i−1])−9(s0[i+1]+ s0[i]))+ 1

2

⌋
s[i] = s0[i]+

[1
4(d[i]+d[i−1])+ 1

2

⌋
2/6

d1[i] = d0[i]− s0[i]
s[i] = s0[i]+ b1

2d1[i]c
d[i] = d1[i]+ b1

4(−s[i+1]+ s[i−1])+ 1
2c

2/10
d1[i] = d0[i]− s0[i]

s[i] = s0[i]+ b1
2d1[n]c

d[i] = d1[i]+ b 1
64(22(s[i−1]− s[i+1])+3(s[i+2]− s[i−2]))+ 1

2c

The forward transformation makes sure that the approximation and detail coefficients

are integers so that the losses in the rounding minimizes. Haar filter and 5/3 filter

are the fastest and the least computationally complex compared to the 2/6 and 2/10

wavelet filters. This arises due to the extra forward transform that should be taken to

decompose the coefficients. The inverse transforms can be deduced using the same

forward transform formulas in reverse order.

2.2 Discrete Wavelet Transform

Images can be decomposed into several levels. In our case, since the coefficients

compressed using graph Fourier transform are saved using 16 bits. For this reason, we
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need to decompose more than three levels. For this reason, we will be experimenting

using four-level and five-level discrete wavelet transforms.

2.2.1 Four-level discrete wavelet transform

Our method consists of compressing most of the image and using Graph Fourier

Transform only on a few bands of the image. We start by doing a four-level Discrete

Wavelet Transform decomposition and using Graph Fourier Transform on the LLLL

bands. Using Graph Fourier Transform has some drawbacks since every pixel is saved

either with 16 bits or 12 bits.

Figure 2.2 : A four-level Discrete Wavelet Transform of AVIRIS hyperspectral
images. Boxes in red show that the images are compressed using
JPEG-2000 compression scheme and the last fourteen bands are

reproduced using Graph Fourier Transform.

This increases the memory allocation needed to save the desired coefficients of the

Graph Fourier Transform. Using GFT on the 14 will take a lot of memory so the

coding scheme will be inefficient and will lose its purpose.

The results of doing a four-level Discrete Wavelet Transform will be discussed in the

next chapter. We deduce that the four-level Discrete Wavelet Transform will not yield

good results since pixels of the last 14 bands will be saved with 16 or 12 bits.

Therefore, we need to do one more Discrete Wavelet Transform decomposition so we

can use only 7 out of 14 bands. By doing this, we will decorrelate the hyperspectral

image, even more, this will improve the compression result even higher.
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Figure 2.3 : A four-level Discrete Wavelet Transform of AVIRIS hyperspectral
images. Boxes in red show that the images are compressed using
JPEG-2000 compression scheme and the last fourteen bands are

reproduced using Graph Fourier Transform.

2.2.2 Five-level discrete wavelet transform

Having decided that the five-level Discrete Wavelet Transform will produce us the best

result we will apply our method, Graph Fourier Transform, on the last bands of the

whole DWT process. Firstly we will use GFT on LLLLL bands and then we will use

GFT on LLLLH bands. They have the same number of bands so they occupy the same

memory size. below we have shown the process for both methods and in the results

section, we will obtain and discuss obtained from the hyperspectral images.

As we can see from Figure 2.4, we firstly decorrelate the hyperspectral image using

five-level Discrete Wavelet Transform and decompose the image five times thus

creating six cubes from the original image. H, LH, LLH, LLLH, LLLLL cubes are

compressed in lossy mode with low and high compression ratios. We apply Graph

Fourier transform on the detail coefficients or LLLLH bands. We compress the other

bands using JPEG-2000 in lossy mode with different ratios.

The second method is very similar to the previous one. As we can see from Figure 2.5,

we apply a five-level Discrete Wavelet Transform and decompose the image five times

thus creating six cubes from the original image. H, LH, LLH, LLLH, LLLLH cubes

are compressed in lossy mode with low and high compression ratios. We apply Graph

Fourier Transform on the approximation coefficients or LLLLL bands. We compress

the other bands using JPEG-2000 in lossy mode with different ratios.
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Figure 2.4 : A five-level Discrete Wavelet Transform decomposes the image five
times thus creating six cubes from the original image. The bands from H,
LH, LLH, LLLH, LLLLL cubes are compressed in lossy mode with low
and high compression ratios and Graph Fourier Transform is applied to
LLLLH bands Boxes in red show that the images are compressed using

JPEG-2000 compression scheme and the last seven bands are reproduced
using Graph Fourier Transform.

To achieve a BPS of 0.1 we compress the cubes 160 times their original size. In our

case, the original cubes have a size of 28 MB compressing the image 160 reduces the

HSI size to just 0.175 MB.

2.3 Graph Fourier Transform

The novelty of our coding scheme is using Graph Fourier Transform [20]. It is a new

technique of treating graphs as signals and nodes as signal values. We apply graph

signal processing tools to regular and irregular graphs. Signal processing on the graph

has a lot of applications in the fields of social networks [24], World Wide Web [25],

sensor malfunction [26], etc.

In our case, we treat each band as of the hyperspectral image as a graph where nodes

are the pixels and each node value is equal to the pixel intensity. When converted to

a graph, our image has a regular 2D shape. In order to continue, we must convert our

graph into a matrix.

Given a graph G={V, E}, where V is the set of nodes and E is the set of edges, we

can formulate the Graph Laplacian as the matrix so mathematical operations can be
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Figure 2.5 : A five-level Discrete Wavelet Transform decompose the image five times
thus creating six cubes from the original image. H, LH, LLH, LLLH,
LLLLH. We apply Graph Fourier Transform onto the LLLLL bands
Boxes in red show that the images are compressed using JPEG-2000
compression scheme and the last seven bands are reproduced using

Graph Fourier Transform.

applied. To formulate the Graph Laplacian we must find the adjacency matrix and the

degree matrix.

Adjacency matrix, A, is the matrix representation of edge weights that occur among the

nodes. The simplest weight is expressed as 1 or 0 where 1 means there is a connection

between the nodes and 0 means there is no connection between the nodes. A graph

with N nodes will give us an adjacency matrix of N × N shape. There are several

metrics to find the edge weight between two nodes and it depends on the application.

In our case, the weight matrix is expressed as below [27]:

wi, j = exp

(
−
∥∥Ii− I j

∥∥2
2

σ2

)
(2.1)

where i and j are the two nodes, Ii and I j are the intensity of the pixels i and j and σ is

a parameter. There are several other metrics to calculate the similarity between pixels

and the readers can read the paper above for more information.

We continue by defining the Degree matrix, D, as an N × N matrix whose entries

describe the number of connections each node has. It is a sparse matrix whose

non-diagonal entries are zero.
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Laplacian matrix is the translation of a graph from a geometric shape to a matrix

formulation. It is defined as the degree matrix minus the adjacency matrix and contains

every information related to the graph. Having defined D and A we compute the Graph

Laplacian matrix as follows:

L = D−A (2.2)

where each element is defined as :

Li j =


deg(i), if i = j
−wi j, if (i, j) ∈ E
0, otherwise

(2.3)

In the end, for a graph with N nodes, we end up with a Graph Laplacian matrix of

shape N × N where each node and its edges are numerically defined for processing.

Below, in Figure 2.6, we have shown a graph representation of a 7 × 7 image. We can

see that the adjacency matrix has a shape of 49 × 49 from the weight of the last node.

Graph signal Processing helps us capture valuable information that is recorded in the

edges.

Figure 2.6 : A graph representation of a 7 image.
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As can be seen, the first node is connected with the second node and the eighth node

and their edge weight is calculated according to the above weight equation whereas the

last node is connected with node 42 and node 48.

To compress the images we use Graph Fourier Transform. We transform the signal

in the graph using GFT and use only save a few coefficients to reconstruct the signal

back. We start by Eigen-decomposing the Laplacian matrix as such :

L = XΛX−1 (2.4)

where Λ is the set of eigenvalues, X is the set of orthonormal eigenvectors. We define

graph Fourier transform as X−1 and we can transform an image as shown below:

x̂ = X−1x (2.5)

where x is the transformed signal. we can reconstruct the original signal by taking the

inverse graph Fourier transform as shown in the equation below:

x = Xx̂ (2.6)

Graph Fourier transform has proven to be very effective in reconstructing signals

on graphs. It is mostly used in image compression by picking a few coefficients to

reconstruct the original signal.

2.4 Hyperspectral Image Reconstruction

After selecting only a few coefficients from the last seven bands we can reconstruct

the hyperspectral image by taking the Inverse Discrete Wavelet Transform. After

decompressing the spectral bands we join the cube back and measure the image quality

between the original and the reconstructed hyperspectral images. From figure 2.4

we can see the process of reconstructing the hyperspectral image. The bands are

up-sampled by a factor of two. In the end, we will have a reconstructed hyperspectral

image with the same shape.
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Figure 2.7 : Hyperspectral Image reconstruction using using inverse discrete wavelet
transform.

In the end, the reconstructed and original hyperspectral cube must be of equal shape.

Next chapter, we will be discussing the datasets used and the results obtained by our

novel compression scheme. A comparison with JPEG 2000 compression standard with

being shown and the results will be compared with other compressing methods. Below

figures show the reconstruction of a hyperspectral image using a five-level Inverse

Discrete Wavelet Transform.

Figure 2.8 : A five-level Inverse Discrete Wavelet Transform of the hyperspectral
images.

In figure 2.8, we have used Inverse Graph Fourier Transform to compress the LLLLL

bands by saving only a small number of coefficients and reducing the size needed to
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record all the 7 bands. We decompress each band from the other LLLLH, LLLH, LLH,

LH, and H cubes and use Inverse Discrete Wavelet Transform to reconstruct the image.

Figure 2.9 : A five-level Inverse Discrete Wavelet Transform of the hyperspectral
images.

2.5 JPEG-2000 Compression Scheme

We compress most of the hyperspectral images using JPEG-2000. It is created by

the Joint Photographic Experts Group (JPEG) in 2000 and it is one of the most used

schemes for lossy and lossless compression. JPEG-2000 offers better image quality

preservation compared to JPEG. There are several methods to measure the image

quality degradation of the reconstructed image. JPEG-2000 can compress grayscale

and multi-band images in lossy and lossless mode.

The most widely used quality metrics are Peak Signal to Noise Ratio (PSNR) and

Mean Square Error (MSE). As stated by Hore et al, there are similarities and

differences between these quality metrics [28]. Michael W. Marcellin et al, in their

paper, points out that there are several dominant features of JPEG-2000 such as low

bit-rate compression performance, progression transmitting by component, quality,

and resolution, implementation with limited memory, etc [29].

2.6 Peak Signal to Noise Ratio (PSNR)

There are several metrics used to measure the quality of the images. Most of them are

categorized as subjective and objective methods. Subjective based metrics are based
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on human judgment whereas objective methods are based with reference to the original

image. In our research, we will continue with objective based metrics as we want to

compare the original image and the reconstructed image.

MSE metrics measures the average of the squared difference between the estimated

pixel and its original pixel. Given an image X and the reconstructed image Y , their

MSE value is:

MSE =
1

MNL

M

∑
i=1

N

∑
j=1

L

∑
i=1

(X(i, j,k)−Y (i, j,k))2 (2.7)

where M, N, and L are the pixel’s row, column, and band location. It is always positive

and a small value correspond to a high quality for the reconstructed image.

The PSNR is one of the most useful metrics that is used to calculate the image quality.

Given an image X and the reconstructed image Y , their PSNR value is:

PSNR(dB) = 20 · log10

(
2B−1√

MSE

)
(2.8)

where B is the number of bits a pixel is stored. In our case, B has values of 12 and

16. A high PSNR value means there is a low distortion between the reconstructed and

original hyperspectral image.

In our research, we use the PSNR since is the most commonly used metrics for lossy

compression coding schemes.
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3. DATASETS AND EXPERIMENTAL RESULTS

When applying Graph Fourier Transform into hyperspectral images of 256 × 256 we

saw that it takes the computer more that one day to eigendecompose the image and

do computation on it. For this reason, in order to reduce the computational time and

complexity, we split the 256× 256 hyperspectral image into 16× 16 blocks and apply

Graph Fourier Transforms to each block. In the end, the reconstructed hyperspectral is

formed by joining the smaller blocks.

There are two methods to do this. In the first method, the Graph Fourier Transform

is applied to the last approximation sub-bands after the five-level Discrete Wavelet

Transform is applied to the hyperspectral image. We apply the Graph Fourier

Transform onto the 16 × 16 blocks and reconstruct the approximation sub-bands

back by joining all the small blocks. We finish by applying Inverse Discrete Wavelet

Transform to reconstruct the hyperspectral image.

The second method, we split the original image into 16× 16 blocks and apply Discrete

Wavelet Transform, Graph Fourier Transform and Inverse Discrete Wavelet Transform

onto each block and calculate the PSNR value for each block. In the end, we calculate

the PSNR value for the whole image by averaging the smaller blocks of PSNR values.

In this thesis, we have used publicly available Hyperspectral images obtained by

AVIRIS which have 224 bands. We have also used images obtained by Hyperion

imaging system. Hyperion is a hyperspectral sensor able to capture 242 bands [30]. At

last, we have used Pavia University hyperspectral image captured by ROSIS imaging

system. Pavia University HSI contains 103 bands with each pixel written in 16

bits [31]. For our experiments, we only compare a small portion of the whole cube

to reduce computational time.

Our images have a size of 256×256× 224 when we use AVIRIS hyperspectral images,

256×256× 128 when we use Botswana hyperspectral image and 256×256×96 when

we use Pavia University HSI in order to decompose the images five times. We can
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compare them with th other state-of-the-art methods. We compare the coding scheme

with other methods such as: TFEMPR [14], LASSO [32] , CPPCA [33], SIP [34],

gOMP [35], BCS PL-2DBS + 2D DDWT [36], BCS SPL-2DBS + 2D DDWT [37] .

Table 3.1 : Hyperspectral Image Datasets. Images are captured with different imaging
systems and they have different band number. For our experiments, we

will use only a portion of the images, more specifically, 256×256.

Name Sample No Lines No Bands No Bit-depth

Lunar Lake 614 3686 224 16

Jasper Ridge 614 2587 224 16

Low Altitude 614 1432 224 16

Botswana 256 1476 242 16

Pavia University 340 610 103 16

3.1 Jasper Ridge HSI

Before comparing our coding scheme with the other schemes, we have obtained PSNR

values for different BPS values for Jasper Ridge Hyperspectral Image. This image is

captured using AVIRIS hyperspectral imaging sensor and it captures 224 bands of the

same area.

In Figure 3.1 we have shown the Jasper Ridgehyperspectral images, whose each band

captures a different wavelength reflected from the area. As seen band number 10

shows a river which cannot be seen in the other bands. Bands 50 and 100 have minor

differences between them. we can see some green regions in band 100 that can be

associated with green fields.

Firstly we will start comparing the two methods mentioned at the beginning of this

chapter. The first method consists of splitting the cube into 16×16 mini cubes and

applying our method onto each mini cube and calculating the PSNR value by taking

the average of all the mini cubes. The second method, called the whole cube method,

consists in spectrally decorrelating the hyperspectral image five times and applying the

graph Fourier transform only on the last bands of the decorrelated cube.
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Figure 3.1 : Jasper Ridge band 10, 50, 100.

From Table 3.2 we see that the 16 × 16 blocks method gives better results than using

GFT only on the last decorrelated bands. bands. There is no major difference between

the filters used. In both methods, the Haar filter produces the lowest PSNR value

whereas 9/7-m and 2/10 filters produce the best PSNR value. There is no significant

difference among the PSNR values since the bitrate value is 0.1 and the loss in image

quality is very high.

Table 3.2 : Comparison of the two methods for BPS = 0.1 applied to the Jasper Ridge
Hyperspecral Image.

Filter
Methods

Whole Image 16 × 16 Blocks

PSNR (dB) PSNR (dB)
Haar 58.54 58.72
5/3 58.93 59.10
2/6 58.92 59.11

CDF 9/7-m 53.93 59.14
2/10 58.96 59.14

From Table 3.3, we can see that 16 × 16 coding scheme performs better than the

whole image coding scheme for a BPS of 0.3. Compared with the other filters 2/6 filter

produces the highest PSNR value together with 9/7-m. Although, we must say that the

difference is very small.

From Table 3.4, we can see that 16 × 16 coding scheme performs better than the

whole image coding scheme for a BPS of 0.5. Compared with the other filters 2/6 filter

produces the highest PSNR value. The difference is very small.
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Table 3.3 : Comparison of the two methods for BPS = 0.3 applied to the Jasper Ridge
Hyperspecral Image.

Filter
Methods

Whole Image 16 × 16 Blocks

PSNR (dB) PSNR (dB)
Haar 62.53 62.64
5/3 63.1 63.21
2/6 63.45 63.61

CDF 9/7-m 63.16 63.27
2/10 63.56 63.72

Table 3.4 : Comparison of the two methods for BPS = 0.5 applied to the Jasper Ridge
Hyperspectral Image.

Filter
Methods

Whole Image 16 × 16 Blocks

PSNR (dB) PSNR (dB)
Haar 64.16 64.27
5/3 64.72 64.81
2/6 65.49 65.62

CDF 9/7-m 64.92 65.03
2/10 65.63 65.77

We have shown that 16 × 16 blocks coding scheme gives better PSNR values for all

BPS values for all filters. In Jasper Ridge hyperspectral image, 2/10 filter outputs the

best result in most of the cases, although, the difference is not very large. We will

move on the second part of our coding scheme.

Since the last output of a five-level discrete wavelet transform are two small cubes

with the same shape, we want to use Graph Fourier Transform on both of them and

compute which one of the cubes, LLLLL or LLLLH, outputs the highest PSNR. When

we use graph Fourier transform on the LLLLL bands we will be compressing the

approximation coefficients and when we use graph Fourier transform on the LLLLH

we will be compressing the detail coefficients.

As we can see from Table 3.5, for a BPS of 0.1 using Graph Fourier Transform on

LLLLL bands gives better PSNR values. When we use LLLLH bands, we see similar

results with small change for all the filters. When we compress LLLLL bands, we

conclude that the 2/10 filter gives the best PSNR value of 59.14 dB for a bitrate equal

to 0.1.
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Table 3.5 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.1

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 56.23 58.72
5/3 56.35 59.10
2/6 56.22 59.11

CDF 9/7-m 56.33 59.10
2/10 56.19 59.14

Table 3.6 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.3

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 58.00 62.64
5/3 58.54 63.21
2/6 57.97 63.61

CDF 9/7-m 58.42 63.27
2/10 57.93 63.72

In Table 3.6, for a BPS of 0.3 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 2/6 gives the best PSNR value of 63.72 dB. It

is important to mention that there is not a huge difference between the results between

different filters but there is a significant difference if we apply Graph Fourier Transform

between sub-bands. LLLLH bands contain detail coefficients whereas LLLLL contain

approximation coefficients.

In Table 3.7, for a BPS of 0.5 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 9/7-m gives the best PSNR value of 63.72

dB for a BPS equal to 0.5. It is important to mention that there is not a huge difference

between the results from different filters. They produce similar results with a small

difference among them.

At Table 3.8, we have presented the highest values of each filter produced for each

bitrate value. We see that by using the Haar filter, our PSNR value increases from

58.72 dB to 64.27 dB. Filter 2/10 produces the best results where

When we compare the filters we see that 2/10 produces the highest PSNR values for

each BPS.
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Table 3.7 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.5

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 56.23 64.27
5/3 64.72 64.81
2/6 65.49 65.62

CDF 9/7-m 64.92 65.03
2/10 65.63 65.77

Table 3.8 : PSNR (dB) vs BPS for Jasper Ridge Hyperspectral Image.

Filter
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
Haar 58.72 62.65 64.27
5/3 59.10 63.21 64.81
2/6 59.11 63.61 65.62

CDF 9/7-m 59.10 63.72 65.03
2/10 59.15 63.60 65.77

In Figure 3.2, we have plotted the PSNR vs BPS for all filters of the Jasper Ridge

hyperspectral image. As we previously stated, 2/10 integer based filter produces a

better result than the Haar filter. Also, we see that 2/10 filter output approximately the

same result as 2/10 filter.

Figure 3.2 : A comparion of different filter for Jasper Ridge hyperspectral image.
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To conclude with Jasper Ridge, we have compressed the image using different filters

and compared the reconstructed hyperspectral image with the original hyperspectral

images by their PSNR values. We can see from Table 3.9 that the PSNR values increase

when BPS increases. The 9/7-m filter, which is commonly used for lossy compression,

gives almost a good result as 2/10 and 2/6 filters but the computation time is higher.

Compression of the hyperspectral image using 2/10 filter gives the highest PSNR value

for all bit rate values.

Table 3.9 : Comparison of our compression scheme with other methods for Jasper
Ridge HSI.

Filter
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
GFT + DWT 59.15 63.6 65.77

SIP 58.06 66.74 71.34
CPPCA 30.20 71.31 76.40
LASSO 59.30 70.60 73.71

TFEMPR 70.99 80.50 83.51
gOMP 59.40 70.01 71.14

BCS PL-2DBS + 2D DDWT 50.60 54.18 57.11
BCS SPL-2DBS + 2D DDWT 50.30 53.67 56.45

Compared with other methods, our method produces better results than block

compressed sensing methods, is on par with methods such as SIP and gOMP but

lags behind methods such as LASSO and TFEMPR. We believe that our method of

compressing the images with JPEG 2000 in lossless mode reduces the quality of the

images when we go to BPS values of 0.1, 0.3 and 0.5.

3.2 Low Altitude HSI

In Figure 3.3 we have shown the Low Altitude hyperspectral image bands where each

band captures a different wavelength reflected from the area. We can see that band

number 10 shows segmented parcels of fields whereas band 50 and 100 shows a small

lake in the upper part of the image.

After determining that compressing the images in 16 × 16 blocks and using Graph

Fourier Transform on LLLLL band outputs the highest PSNR values. For this reason,
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for the rest of the images, we will be compressing out images using this compression

scheme.

Figure 3.3 : Low Altitude band 10, 50, 100.

We continue compressing the Low Altitude hyperspectral image for different BPS

values. We will decorrelate the spectral bands using five integer based filters such

as Haar, 2/6, 2/10, 5/3, 9/7-m. We will follow the same path and we will be comparing

between LLLLL and LLLLH bands.

Table 3.10 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.1

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 54.89 57.04
5/3 55.14 57.32
2/6 55.91 57.45

CDF 9/7-m 54.19 57.27
2/10 54.88 57.51

As we can see from Table 3.10, for a BPS of 0.1 using Graph Fourier Transform on

LLLLL bands gives better PSNR values. When we use LLLLH bands, we see similar

results with small change for all the filters. When we use LLLLL bands, we conclude

that the filter 2/10 gives the best PSNR value of 57.51 dB for a BPS equal to 0.1.

In Table 3.11, for a BPS of 0.3, using Graph Fourier Transform on LLLLL bands

gives better PSNR values. We see that the filter 2/6 gives the best PSNR value of

61.75 dB for a BPS equal to 0.3. It is important to mention that there is not a huge
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Table 3.11 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.3

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 56.81 60.89
5/3 57.47 61.15
2/6 56.81 61.63

CDF 9/7-m 57.40 61.09
2/10 59.56 61.75

difference between different filters but there is a significant difference if we apply

Graph Fourier Transform between LLLLL or LLLLH. LLLLH bands contain detail

coefficients whereas LLLLL contain approximation coefficients.

In Table 3.12, for a BPS of 0.5 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 9/7-m gives the best PSNR value of 63.50

dB for a BPS equal to 0.5.

Table 3.12 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.5

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 59.58 62.24
5/3 60.24 62.44
2/6 59.62 63.35

CDF 9/7-m 60.03 62.49
2/10 59.56 63.50

It is important to mention that there is not a huge difference between the results from

different filters. They produce similar results with a small difference among them

Table 3.13 : PSNR Vs BPS for Low Altitude Hyperspecral Image.

Filter
BPS

0.1 0.3 0.5

Haar 57.04 dB 60.89 dB 62.24 dB
5/3 57.32 dB 61.15 dB 62.44 dB
2/6 57.45 dB 61.63 dB 63.35 dB

CDF 9/7-m 57.27 dB 61.09 dB 62.49 dB
2/10 57.51 dB 61.75 dB 63.50 dB

29



From Table 3.13, we compressed the image using different filters and compared the

reconstructed hyperspectral image with the original hyperspectral images by their

PSNR values. As bit rate increases we see an increase in PSNR values. The 9/7-m

filter, which is commonly used for lossy compressions, gives almost a good result as

filer 2/10 and 2/6. Their higher result also results in higher computation time.

Compression of the hyperspectral image using 2/10 filter gives the highest PSNR value

for all bit rate values. We use these values when comparing our coding scheme with

other methods.

Figure 3.4 : A comparion of different filter for Low Altitude hyperspectral image.

Compared with other methods, our method is on par with methods such as SIP and

gOMP but lags behind methods such as LASSO and TFEMPR. We believe that our

method of compressing the images with JPEG 2000 in lossless mode reduces the

quality of the images when we go to very small values of BPS such as 0.1, 0.3 or

0.5.

3.3 Lunar Lake HSI

We continue compressing the Lunar Lake hyperspectral image for different BPS

values. We will decorrelate the spectral bands using five integer based filters such

30



Table 3.14 : Comparison of our compression scheme with other methods for Low
Altitude HSI.

Filter
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
GFT + DWT 57.51 61.75 63.50

SIP 58.06 66.74 71.34
CPPCA 30.20 71.31 76.40
LASSO 59.30 70.60 73.71

TFEMPR 70.99 80.50 83.51
gOMP 59.40 70.01 71.14

BCS PL-2DBS + 2D DDWT 47.97 51.67 54.45
BCS SPL-2DBS + 2D DDWT 48.02 51.46 54.40

as Haar, 2/6, 2/10, 5/3, 9/7-m. We will follow the same path we followed with the

other images and we will compare LLLLL and LLLLH bands.

In Figure 3.5 we have shown the Lunar Lake hyperspectral image. Here we have shown

only three bands: 10, 50 and 100.

Figure 3.5 : Lunar Lake band 10, 50, 100.

As we can see from Table 3.14, for a BPS of 0.1 using Graph Fourier Transform on

LLLLL bands gives better PSNR values. When we use LLLLH bands, we see similar

results with small change for all the filters. When we use LLLLL bands, we conclude

that the filter 5/3 gives the best PSNR value of 62.11 dB for a BPS equal to 0.1.

In Table 3.15, for a BPS of 0.3, using Graph Fourier Transform on LLLLL bands

gives better PSNR values. We see that the filter 5/3 gives the best PSNR value of
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Table 3.15 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.1

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 57.74 61.08
5/3 57.80 62.11
2/6 57.74 61.62

CDF 9/7-m 56.76 62.03
2/10 57.72 61.72

68.39 dB for a BPS equal to 0.3. It is important to mention that there is not a huge

difference between different filters but there is a significant difference if we apply

Graph Fourier Transform between LLLLL or LLLLH. LLLLH bands contain detail

coefficients whereas LLLLL contain approximation coefficients.

Table 3.16 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.3

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 60.05 66.00
5/3 60.12 68.39
2/6 60.03 67.90

CDF 9/7-m 60.08 68.27
2/10 59.99 67.33

In Table 3.17, for a BPS of 0.5 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 5/3 gives the best PSNR value of 71.17 dB

for a BPS equal to 0.5. It is important to mention that there is not a huge difference

between the results from different filters. They produce similar results with a small

difference among them.

From Table 3.18, we compressed the image using different filters and compared the

reconstructed hyperspectral image with the original hyperspectral images by their

PSNR values. As bit rate increases we see an increase in PSNR values. The 9/7-m

filter, which is commonly used for lossy compressions, gives almost a good result

as filer 2/10 and 2/6. Their higher result also results in higher computation time.

Compression of the hyperspectral image using a 5/3 filter gives the highest PSNR
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Table 3.17 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.5

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 63.05 67.78
5/3 63.26 71.17
2/6 63.03 68.77

CDF 9/7-m 63.14 70.96
2/10 62.99 69.82

Table 3.18 : PSNR (dB) Vs BPS for Lunar Lake Hyperspecral Image.

Filter
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
Haar 61.08 66.00 67.78
5/3 62.11 68.39 71.17
2/6 61.62 67.90 68.77

CDF 9/7-m 62.03 68.27 70.96
2/10 61.72 67.33 69.82

value for all bit rate values. We use these values when comparing our coding scheme

with other methods.

Figure 3.6 : A comparison of different filter for Lunar Lake hyperspectral image. We
see that 5/3 outputs the best PSNR value compared to the other filters.
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We can see from figure 3.6 that 5/3 filter output the best result among the other filters.

Haar filter, which has the simplest transform, outputs the poorest results for all BPS

values.

Table 3.19 : Comparison of our compression scheme with other methods for Lunar
Lake HSI.

Filter
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
GFT + DWT 62.11 68.39 71.17

SIP 58.86 70.71 72.39
CPPCA 48.43 72.19 76.82
LASSO 59.54 73.34 75.20

TFEMPR 73.67 81.06 83.04
gOMP 58.37 73.84 74.92

BCS PL-2DBS + 2D DDWT 54.62 59.39 63.06
BCS SPL-2DBS + 2D DDWT 54.05 58.18 61.35

Compared with other methods, our method is on par with methods such as SIP and

gOMP but lags behind methods such as LASSO and TFEMPR. We believe that our

method of compressing the images with JPEG 2000 in lossless mode reduces the

quality of the images when we go to very small values of BPS such as 0.1, 0.3 or

0.5.

3.4 Pavia University HSI

In Figure 3.7 we have shown the Pavia University hyperspectral image bands where

each band captures a different wavelength reflected from the area. From the images

below we can see the department buildings. In band number 10, the building roofs

can be seen more clearly whereas in band 100 of the image we can see the area of the

university more clearly.

After determining that compressing the images in 16×16 blocks and using Graph

Fourier Transform on LLLLL band outputs the highest PSNR values.

We compress the Pavia University hyperspectral image for different BPS values. We

will decorrelate the spectral bands using five integer based filters such as Haar, 2/6,

2/10, 5/3, 9/7-m. We will follow the same path and we will be comparing between

LLLLL and LLLLH bands
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Figure 3.7 : Pavia University band 10, 50, 100.

Table 3.20 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.1

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 44.38 50.37
5/3 45.47 48.14
2/6 44.34 50.69

CDF 9/7-m 44.29 48.18
2/10 45.42 50.54

As we can see from Table 3.20, for a BPS of 0.1 using Graph Fourier Transform on

LLLLL bands gives better PSNR values. When we use LLLLH bands, we see similar

results with small change for all the filters. When we use LLLLL bands, we conclude

that the filter 2/6 gives the best PSNR value of 50.69 dB for a BPS equal to 0.1.

Table 3.21 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.3

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 49.24 54.62
5/3 50.16 52.06
2/6 49.19 55.14

CDF 9/7-m 50.05 51.96
2/10 49.13 54.92

In Table 3.21, for a BPS of 0.3, using Graph Fourier Transform on LLLLL bands

gives better PSNR values. We see that the filter 2/10 gives the best PSNR value of
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55.14 dB for a BPS equal to 0.3. It is important to mention that there is not a huge

difference between different filters but there is a significant difference if we apply

Graph Fourier Transform between LLLLL or LLLLH. LLLLH bands contain detail

coefficients whereas LLLLL contain approximation coefficients.

Table 3.22 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.5

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 51.55 57.00
5/3 52.44 54.25
2/6 51.50 57.60

CDF 9/7-m 52.25 53.97
2/10 51.42 57.41

In Table 3.22, for a BPS of 0.5 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 2/10 gives the best PSNR value of 57.41 dB

for a BPS equal to 0.5. It is important to mention that there is not a huge difference

between the results from different filters. They produce similar results with a small

difference among them.

From Table 3.23, we compressed the image using different filters and compared the

reconstructed hyperspectral image with the original hyperspectral images by their

PSNR values.

Table 3.23 : PSNR Vs BPS for Pavia University.

Filter
BPS

0.1 0.3 0.5

Haar 50.37 dB 54.62 dB 57.00 dB
5/3 48.14 dB 52.06 dB 54.25 dB
2/6 50.69 dB 55.14 dB 57.60 dB

CDF 9/7-m 48.18 dB 51.96 dB 53.96 dB
2/10 50.54 dB 54.92 dB 57.41 dB

As bit rate increases we see an increase in PSNR values. The 2/6 filter, which is

commonly used for lossy compressions, gives almost a good result as filer 2/10 and

9/7-m. Their higher result also results in higher computation time.
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Figure 3.8 : A comparion of different filter for Pavia University hyperspectral image.

In figure 3.8, we can see that filter 9/7-m and filter 5/3 produce almost the same result

but lack behind the other filters. Filter 2/6 produces the best result when compared

with the Haar filter and 2/10 filters.

3.5 Botswana HSI

In Figure 3.9 we have shown Botswana hyperspectral image bands where each band

captures a different wavelength reflected from the area. From the images below we can

see the green fields with a small lake.

Figure 3.9 : Botswana HSI band 10, 50, 100.
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After determining that compressing the images in 16×16 blocks and using Graph

Fourier Transform on LLLLL band outputs the highest PSNR values.

We compress the Botswana hyperspectral image for different BPS values. We will

decorrelate the spectral bands using five integer based filters such as Haar, 2/6, 2/10,

5/3, 9/7-m. We will follow the same path and we will be comparing between LLLLL

and LLLLH bands

Table 3.24 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.1

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 51.12 54.03
5/3 51.39 54.39
2/6 51.10 54.35

CDF 9/7-m 51.26 54.36
2/10 51.08 54.34

As we can see from Table 3.24, for a BPS of 0.1 using Graph Fourier Transform on

LLLLL bands gives better PSNR values. When we use LLLLH bands, we see similar

results with small change for all the filters. When we use LLLLL bands, we conclude

that the filter 5/3 gives the best PSNR value of 54.39 dB for a BPS equal to 0.1.

Table 3.25 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.3

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 52.15 57.43
5/3 52.42 58.24
2/6 52.11 58.36

CDF 9/7-m 52.32 58.23
2/10 52.06 58.40

In Table 3.25, for a BPS of 0.3, using Graph Fourier Transform on LLLLL bands

gives better PSNR values. We see that the filter 2/10 gives the best PSNR value of

58.40 dB for a BPS equal to 0.3. It is important to mention that there is not a huge

difference between different filters but there is a significant difference if we apply

Graph Fourier Transform between LLLLL or LLLLH. LLLLH bands contain detail

coefficients whereas LLLLL contain approximation coefficients.

38



Table 3.26 : Compression of LLLLL and LLLLH using Graph Fourier Transform for
BPS = 0.5

Filter
Methods

LLLLH LLLLL

PSNR (dB) PSNR (dB)
Haar 54.13 59.07
5/3 54.09 59.24
2/6 54.13 59.24

CDF 9/7-m 54.26 59.24
2/10 54.09 59.25

In Table 3.26, for a bitrate of 0.5 using Graph Fourier Transform on LLLLL bands gives

better PSNR values. We see that the filter 2/10 gives the best PSNR value of 59.25 dB.

It is important to mention that there is not a huge difference between the results from

different filters. They produce similar results with a small difference among them.

Figure 3.10 : A comparion of different filter for Pavia University hyperspectral
image.

At table 3.27, we have compared the result obtained by the coding scheme for the

Botswana HSI. We compare the PSNR vs BPS for BPS values from 0.1 to 0.5. We see

that filter 20/10 produces the best result for bitrates equal to 0.3 and 0.5. For BPS = 0.1

5/3 filter produces the best result but there is not much difference between the filters.

As for bitrate increase the PSNR value increases but the increase is not very big. The

difference between filters is very small and negligible.
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Table 3.27 : Results of our coding scheme over different bitrates

Filter
BPS

0.1 0.3 0.5

Haar 54.03 dB 57.43 dB 59.07 dB
5/3 54.39 dB 58.24 dB 59.25 dB
2/6 54.35 dB 58.36 dB 59.24 dB

CDF 9/7-m 54.36 dB 58.23 dB 59.24 dB
2/10 54.34 dB 58.40 dB 59.25 dB

In the end, we will show the results of our coding scheme on all images. In table3.28,

we will show the result obtained for all five hyperspectral images and we will compare

their image distortion with three different bitrates

Table 3.28 : Comparison of results for different hyperspectral Images

HSI
BPS

0.1 0.3 0.5

PSNR (dB) PSNR (dB) PSNR (dB)
Pavia University 50.69 55.14 57.60

Botswana 54.39 58.40 59.25
Lunar Lake 62.11 68.39 71.14

Low Altitude 57.45 61.75 63.50
Jasper Ridge 59.15 63.60 65.77

Using our method, Pavia University HSI has a PSNR increase from 50.69 dB to 57.60

dB as bitrate increases from 0.1 to 0.3. The image quality gain is comparable with

the other methods. Our method produces good results since compressing to very low

bitrates means the image quality loss is very high.

The same thing can be said for Botswana HSI. These images are captured with different

imaging systems when compared with the last three hyperspectral images. The gain in

these images is very small when we compare it with the gain that AVIRIS hyperspectral

images produce.

Lunar Lake HSI has the highest gain in image quality with a PSNR increase from 57.45

dB to 71.14 dB. Lunar Lake has the highest PSNR gain when compared with the other

images whereas Botswana HSI has the smallest PSNR gain for the same bitrate values.

We see that the coding scheme can compress hyperspectral images with very low

bitrates while preserving the image quality. Each image PSNR increases as bitrate

increases. Graph Fourier Transform has been used to compress images by treating
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them as signals and using only a few coefficients to reconstruct the images by using

only a few coefficients.
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4. CONCLUSIONS

Here, we introduce a novel compressing scheme for HSI is implemented. in order

to achieve bit-rates between 0.1 and 1, we compress the images using JPEG 2000 in

a lossy mode. We firstly decorrelate the hyperspectral images so we can maximize

the compression ratio while preserving the Image quality. In the spectral domain,

we employ integer based Discrete Wavelet Transform so that the coefficients are

compressed as integer numbers thus reducing memory storage. In the spatial domain,

we used Graph Fourier Transform to efficiently save a few coefficients that will help

us reconstruct the image.

We have used two sets of hyperspectral images: AVIRIS and HYPERION datasets

which are publicly available data. The hyperspectral images were cropped into a

smaller size to reduce computational complexity. Results obtained from our coding

scheme shows us that we have an improvement of image quality when compared to

JPEG 2000 compression scheme and it’s on par with some other methods. We managed

to obtain very good PSNR values with respect to the method we choose to compress

the hyperspectral images.

In order to further improve the results of our coding scheme and to compare it with

the other methods, we believe that the same hyperspectral images with the same cube

size must be used as a standard dataset. Since most of the researchers don’t specify

which part of the cube and which flight number they use. In future work, we will use

more Graph Signal Processing tools such as graph filtering, graph wavelets, etc, to

increase the quality of the reconstructed hyperspectral image. Further research will be

conducted finding other ways to compress the hyperspectral images.
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