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EXPLORING THE POSSIBILITIES OF GEOSPATIAL BIG DATA
MANIPULATION USING NOSQL

SUMMARY

With the rapid population increase in the cities, the need for a powerful, dynamic city
management is becoming more crucial. In order to overcome the problems appearing
as the cities grow (e.g. transportation, resource management, pollution, waste disposal,
ect.), the smart city concept comes into prominence. Smart city is a comprehensive
system that utilizes various data coming from different sources, provides storing,
monitoring and analyzing infrastructure, and delivers solutions for the problems and
activities. The handling of the unstructured data continuously coming from different
sources and expanding in size (i.e. big data) is the main struggle. Especially,
considering that most of the data is georeferenced, geospatial indexing and processing
for that kind of big data is of high importance. Current traditional relational database
systems have strong geospatial functionalities in a part of them (e.g. Postgresql),
however they have two major limitations. First is the fixed column-based schema
structure, which obstructs the unstructured data import, and the second is the hardware
dependency on the performance. Therefore, to cover the scalability and flexibility
needs of big data management, NoSQL (Not Only SQL) databases are developed.
NoSQL databases are non-relational and unstructured, hence can store different types
of data altogether. They are horizontally scalable, which means performance can be
increased by adding machines into the system. Furthermore, NoSQL data storing
functionalities support nested hierarchical data models, which is not available in
relational databases. Nevertheless, it is still a discussion if SQL based relational
databases can be replaced by NoSQL. Based on the studies comparing these two, not
all NoSQL databases perform better than SQL databases. On the other hand, two of
the most popular NoSQL databases (i.e. MongoDB and Couchbase) are found to have
superior performance than corresponding SQL databases in many aspects. In this
study, we aimed to experiment on MongoDB on a single server, by importing a big
geolocated traffic data and pollution sensor data, and performing aggregate queries,
geospatial functions and correlation analysis on it. Based on the results MongoDB
showed a satisfying performance despite few constraints and gaps, especially for
applying geospatial joins. This study can be carried further investigating the ways to
execute more complex geospatial queryies on MongoDB, and by using larger data sets,
additional servers, other NoSQL based systems and/or supportive tools.
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NOSQL KULLANARAK MEKANSAL BUYUK VERI iISLEME
OLANAKLARININ ARASTIRILMASI

OZET

Sehirlerdeki hizli niifus artisi ile birlikte gii¢lii, dinamik bir sehir yonetimine duyulan
ihtiyag gittik¢e daha biiyiik bir onem kazanmaktadir. Sehirler biiyiidiik¢e ortaya ¢ikan
sorunlarin listesinden gelmek i¢in (ulasim, kaynak yonetimi, kirlilik, atik bertarafi, vb.)
akillr sehir konsepti 6ne ¢ikmaktadir. Akilli sehir, cesitli kaynaklardan gelen farkli
tipte verileri kullanan, depolama, gdzlemleme ve analiz altyapisi saglayan ve sorunlara
ve aktivitelere yonelik ¢6zliimler sunan kapsamli bir sistemdir. Bu tir bir sistemin en
onemli girdisi degisik kaynaklardan surekli olarak gelen ve biriken verilerdir.

Farkli veri kaynaklarindan ve sensorlerden gelen kesintisiz veri akisi biyUk boyutlu
ve yapilandirilmamig bir veri havuzu olusturur. Bu tiir veriyi tanimlamak igin biiyiik
veri terimi ortaya ¢ikmistir. Cesitli uzmanlik alanlari arasinda farkli tanimlar1 olmasina
ragmen, biiyliik veriler i¢in en yaygin kullanilan tanimi, geleneksel yOntemlerle
kolayca depolanamayan, islenemeyen veya analiz edilemeyen, c¢ogunlukla
yapilandirilmamis biiylik miktarlarda veridir. Biiyiik verilerin ana 6zellikleri, hacmi,
kendi icinde ¢esitliligi, farkli veri tiirleri ve yaklasimlarina sahip olmasi, siirekli bir
akis icinde birikmesi ve ortaya c¢ikarmasi zor olan yiiksek degerler icermesidir.
Sehirlerdeki ¢oklu veri kaynaklarindan ve sensorlerden gelen biiyiik veriler trendler,
davraniglar, gergek zamanl ¢éziimler vb. hakkinda degerli bilgiler igerir, bu sebeple
analiz edilmeleri 6nemli bir konudur.

Biiyiik verilerle ilgili en 6nemli komplikasyon, verinin islenmesi ve anlamli bilgilerin
cikarilmas1 olmustur. Mevcut geleneksel yaklagimda, SQL (Structured Querying
Language) tabanl iligkisel veritabanlar1 yaygin olarak kullanilir. SQL, karmasik
sorgular gergeklestirme ve saglam ve istikrarli bir altyap1 olusturma kapasitesine sahip,
gii¢lii bir sorgulama dilidir. Ote yandan, iliskisel veritabanlarinda veriler 6nceden
olusturulmus veritabani semasina gére yapilandirilmalidir, bu durum diizensiz verinin
ice aktarimimm engellemekte. cesitli veri tiirlerini ayni1 yerde depolanmasin
destekleyememekte ve fakli tiirde verileri On diizenleme yapmadan birlikte
isleyememektedir. Ayrica performansi donanima baglidir ve bilgisayar kapasitesi
giiclendirilerek artirilabilir, ancak yine de donanim 6zellikleriyle sinirlidir.
Geleneksel SQL veritabanlariin bu tiir yetersizlikleri nedeniyle NoSQL (Not Only
SQL) veritabanlar1 gelistirilmistir. Bunlar, geleneksel veritaban1 sistemlerinin
eksiklikleri olan esneklik ve performans sorunlarimi ¢6ziimleyecek sekilde
tasarlanmistir. NoSQL veritabanlar1 SQL tabanli olanlar gibi standart bir sisteme sahip
degildir. Her veri taban1 kendi modeline, veri formatina ve sorgulama diline sahiptir
ve hepsi farkli amaglara hizmet edebilir.

NoSQL, temel olarak geleneksel tablolar yerine yogunluklu olarak “anahtar: deger”
ciftleri ya da JSON (JavaScript Object Notation) benzeri dokiiman formati kullanan,
iligkisel olmayan, diizensiz bir veritabani sistemidir. Bu, yapilandirilmamis verilerin
ayni veri tabaninda depolanmasini ve elastik sema yonetimi ile esneklik saglamaktadir.
Performans donanima daha az bagimlhidir ve yiikii dagitmak i¢in daha fazla sunucu ya
da bilgisayar eklenerek performans arttirilabilir, boylece daha biiyiik veri klimelerini
yonetmek miimkiindiir. JSON benzeri veri formati sayesinde NoSQL sistemler
iligkisel veritabani sistemleri tarafindan dogru sekilde desteklenmeyen aga¢ benzeri
hiyerarsik veri depolamay1 destekleyebilimektedir. Benzer sekilde, yine klasik iliskisel
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veritaban1  sistemlerinde uygulanamayan hiyerarsik veri modellerini de
desteklenebilmektedir.

Bunlarla birlikte, NoSQL sorgulama dilleri standartlastirilmamaistir, her veritabaninin
kendi sorgulama dili vardir, dolayisiyla karmasik sorgular1 gerceklestirmek SQL'e
gore daha zorludur.

Ayrica, yliksek frekansli islemleri desteklemek i¢in kullanilabilse de, NoSQL
veritabanlari iligkisel olanlar kadar stabil degildir.

Varolan verilerin gogunlugunun cografi oldugu ve cografi referansli verilerin miktari
her yil ciddi bir sekilde arttig1 diisiiniildiigiinde, bu tiir biiyiik verilerin cografi olarak
indekslenebilmesi ve islenebilmesi biiyiikk 6nem tagimaktadir. Bu sebeple SQL ya da
NoSQL, cografi 6zellikli biiyiik veri islenecek her veritabaninda 6l¢eklenebilir cografi
sorgulama ve analiz iglevlerinin olmas1 ve yeterliligi miithim bir kriterdir.

Genel olarak SQL ve NoSQL tabanli veritabanlarin1 karsilastiran caligmalara
bakildiginda, NoSQL veritabanlar1 her zaman SQL veritabanlarindan daha iyi
performans gostermemektedir. Ote yandan, en popiiler NoSQL veritabanlarindan
ikisinin (MongoDB ve Couchbase), bircok ac¢idan karsilastirildiklar1 SQL
veritabanlarindan daha iistiin performans gosterdigi gozlemlenmistir. Ozel olarak
cografi sorgulama kapasitelerine bakildiginda iligkisel veritabanlarinin giiclii ve
standart SQL tabanli sorgulama ozellikleri dolayisiyla olduk¢a komplike cografi
analizler yapabildigi, NoSQL veritabanlarmin ise bir kisminin cografi indexleme
kapasitesiyle beraber temel cografi analizleri de yapabildigi ve ftgiincii parti
yazilimlarla daha da derin analizler kosturulabildigi goriilmektedir.

Bu ¢alismada, cografi biiyiik verileri bir NoSQL veritabanina aktarma olasiliklarini ve
metodolojilerini arastirmak ve bu veri tabaninin verimliligini veri igleme, sorgulama,
cografi fonksiyonlar ve analizler acisindan test etmek amaglanmistir. Uygulama icin
Milan sehrinin bir senelik biiyiik trafik ve hava kirliligi verileri NoSQL veritabanina
islenmis, ayrica bu veritabani tarafindan desteklenen bazi temel mekansal iglevler test
edilmistir. Kullanilan trafik verisi, trafikteki araglardan yaklasik 30 saniyelik frekansla
alman hiz verisidir. Tekil ara¢ bilgisi icerdigi icin hassas ve gizli olan bu veri
anonimize edilerek kullanilmistir. Hava kirliligi verisi ise Milan sehri merkezini
kapsayan 11 hava gozlem istasyonunda toplanan ve internet iizerinden paylasilan
gozlemlerden alinmistir.

Aragtirma yaygin kullanilan, JSON benzeri dokiiman tabanli ve iicretsiz bir NoSQL
veritabani olan MongoDB i¢in yapilmistir. Bu veritabaninin tercih edilmesi mekansal
indeksleme secenegine sahip, biiyiik veri erisiminde ve sorgulamalarinda verimli,
esnek ve yaygin kullannmi nedeniyle 6nemli miktarda dokiimantasyona sahip
olmasindan otiirtidir.

Calisma kapsaminda eldeki veri kullanim kosullarina uygun bir sekilde islenerek
MongoDB igine aktarilmis ve temel toplu (aggregate) sorgular, cografi fonksiyonlar
ve korelasyon analizleri denenerek veritabani test edilmistir. Verilerin hazirlanmasi ve
aktarimi python betik dili ile yapilmigtir. Veritabanina erisim ve sorgulamalar igin
MongoDB Compass ve NoSQLBooster programlarindan faydalanilmistir.
Caligmanin sonuglarina gére MongoDB baz1 veritabaninin standart fonksiyonlarina
bagli sinirlamalar (6rnegin korelasyon analizinin direk olarak miimkiin olmamasi) ve
mekansal katman birlestirme konusundaki eksiklerinin disinda olumlu bir performans
gostermistir.

Bu baglamda, toplu sorgular ve tek koleksiyonlardaki temel mekansal sorgularin
MongoDB'nin giiclii yonii oldugu goriilmektedir. Fakat karmasik sorgulama ve
mekansal birlestirme fonksiyonlarinda zayifliklar1 bulunmaktadir. Genel olarak,
ticlincii parti yazilimlarin daha karmasik analizler yapmak icin kullanilabilecegi goz
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Online alindiginda, MongoDB'nin biiyiik veri yonetimi icin tercih edilebilir bir
veritabani oldugu sdylenebilmektedir.

Bu ¢alisma MongoDB {izerinde karmasik mekansal sorgularin uygulanma yollarinin
arastirtlmasiyla, daha bilyuk veri setleri ve ek sunucu kullanimi ile, diger NoSQL
tabanl sistemler ve destekleyici araglarin incelenmesiyle ve elde edilen analiz
sonuglarindan gehir yonetimi konusunda faydalanilma olanaklarinin tahkik
edilmesiyle farkli agilardan daha ileri gotrilebilmesi mimkuandr.
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1. INTRODUCTION

In this age, human population is fast moving from rural areas to cities. According to
United Nations, by 2050, 70% of the population will be living in the urban areas
(Diaconita et al., 2018). The drastic increase of the inhabitance in cities will also bring
problems in urban planning, employment, habitation, transportation, share of energy
sources, natural resources management, pollution and so forth. Hence, structuring a
well-organized, flexible, scalable, efficient and sustainable city planning is very
important in that aspect which brings us to smart city concept. Smart city is a digital
infrastructure using Information Communication Technology (ICT) and Internet of
Things (IoT) technologies, in other words, a thorough system providing storage,
monitoring, analysis and solution of the activities and problems in cities. Continuous
data collection from different sources in the urban zone such as networks, services,
cameras and sensors is crucial for smart cities (Malik et al., 2017). Especially, sensor
data, which is basically an output from any kind of sensor storing and/or reacting to
changes in surroundings, can be considered as the main data source for 10T and smart
cities. As it is continuously streamed, the size of this sensor data can be huge and the
growth in the unstructured data obtained from different sources introduced the term
big data that is one of the most important trending topics (Li et all, 2016).

Big data has long been a controversial topic due to the difficulties of describing its
characteristics and therefore developing the methodology to extract meaningful
information. Divisions on big data is mostly on the definition of it across different
domains, still most common definition of big data is, huge amounts of data which is
generally unstructured, cannot be easily stored, processed or analyzed with
conventional methods (Li et all, 2016). In addition to that definition, Chen et al. (2014)
reviewed several different definitions of big data and summarized the main features of
itas 4Vs: Volume (i.e. big size data), Variety (i.e. different data types and approaches),
Velocity (i.e. continuously populated and streamed), Value (contains high value that

is hard to extract). However, the most significant complication about big data is not



the definition of it, but the processing and extraction of meaningful information (i.e.
value) from it have been the hardest to tackle on big data.

In traditional approach, SQL (Structured Querying Language) based relational
databases are commonly used with a very strong querying language to handle the data
with capability to perform complex queries and establishing a robust and stable
infrastructure. On the other hand, relational databases are table based with fixed
columns and data should be structured according to the pre-constructed database
schema, which is resulting in a rigid structure to be able to insert because it cannot
support various data types. Performance depends on the hardware, and can be
increased by upgrading it, yet still limited to hardware capabilities.

Due to these limitations, NoSQL (Not Only Structured Query Language) logic is
developed. NoSQL is a non-relational, distributed database system using mainly
“’key:value” pairs as documents instead of traditional tables. This approach allows
storing unstructured data altogether in the same database, thus it provides flexibility
with elastic schema management. Performance is less dependent on the hardware and
can be increased by adding more servers to distribute the load, therefore it is possible
to manage much larger datasets. Thanks to JSON (JavaScript Object Notation) like
data format, NoSQL supports tree-like hierarchical data storage which is not properly
supported by relational database systems. Hierarchical data model support is a
significant reason to prefer NoSQL for big data processing. Along with these, NoSQL
querying languages are not standardized, each database has its own querying language,
consequently, performing complex queries is less efficient than SQL. Moreover,
although it can be used as a database to support high amount of actions such as

purchasing, NoSQL is not as stable as relational databases.

It is important to underline the fact that most of the data is georeferenced, and
according to the common assumption 80% of it is spatial (Hahmann et al., 2011).
Furthermore, as indicated by Lee and Kang (2015), the percentage of the geolocated
data is drastically rising which is an evidence that personal location data amount is
increasing by 20% every year. To handle such geospatial big data, the database,
whether traditional SQL or new generation NoSQL should have scalable geospatial

data processing features.



In this context, the aim of the study is to investigate the possibilities and methodologies
to import big geospatial data (e.g. satellite imageries, mobile tracking, traffic,
meteorology, temperature, pollution, etc.) into a NoSQL database and to test efficiency
of that database in terms of data processing, querying, geospatial functions and
analyzing. Although there are some studies (see Chapter 2) focusing on NoSQL
database performance on web services, real time applications, comparisons vs classic
relational database systems on architecture, there is still a little known about querying
and geospatial analysis functionalities of NoSQL database systems. Therefore, we will
use big traffic and pollution data to be processed and imported in one of the NoSQL
databases; and test some basic geospatial functions that is supported by that database.

In the next chapter, we will present a literature overview on relational and non-
relational databases, their applications, and geospatial functionalities and capabilities.
In Chapter 3, a case study to test functionalities of a NoSQL database will be explained,
and this chapter is followed by the results of the case study including the problems
faced during the application. Finally, in Chapter 5, general conclusions will be drawn,

and further possibilities will be discussed.






2. LITERATURE REVIEW

With the recent advances in technology, new data sources arise and the need for rapid
information exchange is emerging. However, data collected from various sources in
large amounts, which is called big data, brings its own challenges for storing,
management and processing. Li et al. (2016) listed some of the fundamental challenges
as efficient representation and modeling, analyzing, mining and visualizing and quality
assessment of geospatial big data. According to them, further development and
research needs to focus on the following areas: real time spatial indexing algorithms,
better data mining algorithms, more efficient and complex visualization considering
task and user needs (e.g. online 3D visualization tools), more effective quality
assessment approaches, more sophisticated definition of semantics and ontology

relationships.

To meet the most of the needs mentioned above, non-relational databases have been
developed and rapidly replacing the relational databases such as PostgreSQL, Oracle
and MySQL. Unlike relational databases, these non-relational databases which are
called as NoSQL vary in terms of their architecture, flexibility, scalability and abilities
to store, manage, query and transfer the data. Existing NoSQL data system
architectures can be classified as key:value, document, graph and column based
databases (Zafar et al., 2016). Figure 2.1 demonstrates the data model, strength and
weaknesses of these four database types in detail by providing examples. Querying
varies in each of these NoSQL database types and majority of them requires additional

scripts to perform complex queries.

Along with the new approaches NoSQL provides, it still remains a question whether
NoSQL databases can completely replace traditional relational databases. Therefore,
comparisons between the performances of SQL and NoSQL databases are required in

different aspects.

In 2013, Li and Manoharan tested the performances (i.e. run time) of basic operations

which are instantiation, read, write, delete and iteration for six NoSQL databases (i.e.
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Cassandra, Couchbase, CouchDB, Hypertable, MongoDB, RavenDB) and compared
with Microsoft SQL Server Express. According to the results, instantiation for MS
SQL Server, Couchbase and MongoDB is significantly slower than others. For read
and delete operations, MongoDB and Couchbase performed better than MS SQL
Server compared to the others, although for write operation Couchbase, MongoDB,
Cassandra and Hypertable were better than MS SQL. In terms of iteration no valuable

difference observed in the performance.

CouchDB, MongoDB :rmm;on Simple DB,
Collection of key value m
Connections Document Dat: S:J?;‘Gd Key
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Query Perfarmance, No T Walkrete Stared Data
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whole graph to get answer

Figure 2.1 : Database Types (Zafar et al., 2016).

In another study, the functionalities of the most popular four databases reviewed
together as seen in Table 2.1, and an experiment performed to compare the webservice
response times for relational Azzure SQL database and NoSQL based Azzure
Document DB (Baralis et al., 2017). Results revealed that Document DB responses
considerably faster than Azzure SQL, whereas Azzure SQL is better in managing

simultaneous requests.

A different SQL versus NoSQL comparison based on the insert time, disk usage,
memory usage and querying time is executed by Lian et al. (2018) using MongoDB
and PostgreSQL. MongoDB was found explicitly advantageous for insert time and
querying time, and no remarkable difference observed for memory usage, nevertheless

in terms of disk usage PostgreSQL was found to be more beneficial.

It has been mentioned in previous chapter that most of the big data is spatial, hence

one of the most important aspects to evaluate is the geospatial functionalities of

NoSQL. Although there are numerous NoSQL databases present in the market now,

only few of them are spatial. Agarwal and Rajan (2017) underline that spatial
6



Table 2.1 : Qualitive comparison of the functionalities of four geospatial databases (Baralis et al., 2017).

Database Supporteql Main supporte_:d Suppc_)rted Spatial Compatibility with Daas Horizontal scalability
Geometry objects geometry functions indexes GeoServer
PostGIS Point, PostGIS supports B-Tree index R Yes No No
LineString, Polygon, the Open Tree index, GiST index
MultiPoint, Geospatial
MultiLineString, Consortium (OGC)
MultiPolygon, methods on
GeometryCollec tion  geometry instances
Azure SQL Database Point LineString, Azure SQL 2d plane index, B-trees Yes Yes (Microsoft Azure No
Polygon, MultiPoint, Database cloud computing

MongoDB

DocumentDB

MultiLineString,
MultiPolygon,
GeometryCollection

Point,
LineString, Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollection

Point,
LineString, Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollection

supports the
Open Geospatial
Consortium (OGC)
methods on
geometry instances

Inclusion,
Intersection, Dis
tance/Proximity

Inclusion, Dis-
tance/Proximity

2dsphere index,
2d index

2d plane index,
quadtree

Yes (based on the
unsupported external
MongoDB plug-in
included in GeoTools)

Yes (based on the
unsupported external
MongoDB plug-in
included in GeoTools)

platform)

Yes (MongoDB
Atlas cloud
service)

Yes (Microsoft
Azure cloud
computing platform)

Yes (sharding)

Yes (sharding)




functionalities are quite recent for NoSQL databases, still a lot of improvement and
investigation are needed. They also summarized the geometric operations of
PostgreSQL/PostGIS, MongoDB and CouchDB as seen in Table 2.2, and tested the
ones present in both PostgreSQL/PostGIS and MongoDB. As a result, MongoDB run
almost 10 times faster for the common functions between them. This demonstrates that
while PostgreSQL/PostGIS has wider geospatial functionalities, MongoDB performs

faster with limited capabilities.

Table 2.2 : Geo-functions of the databases (Agarwal, S., & Rajan, K. S., 2017).

PostGIS MongoDB CouchBase
ST Within $geoWithin BBOX
ST Intersects $geolntersects
ST DW'th(;?S: Oracigy $near + param(Distance)
ST Area

Zhang et al., (2014) has investigated the performance of storage and accessibility by
importing and storing a big shapefile into MongoDB. According to them, MongoDB
was considerably stronger than traditional relational database systems for handling

massive amounts of data.

Although there is still a need for more research to investigate the superiorities and gaps
of NoSQL databases, and to evaluate advance functionalities with recent
developments, the studies carried out until today indicate that MongoDB and
Couchbase performs better than SQL databases in most cases. MongoDB and
Couchbase perform significantly better especially when the shared functionalities
between relational and NoSQL databases are considered. However, the rest of the
NoSQL databases have weak performances compared to both relational and
MongoDB and Couchbase databases. For that reason, we decided to use MongoDB in
our study by thoroughly investigating both the basic functionalities including import

of a big data, aggregate and spatial queries, more complex analysis such as correlation.



3. CASE STUDY

The purpose of the case study is to evaluate implementation and processing of big
geospatial traffic data and pollution data from sensors in a NoSQL database. For that,
first all data is preprocessed to implement in the database, and after importing basic
aggregate and geospatial queries performed. Additionally, correlation between traffic
and pollution data is calculated.

3.1 Study Area

The study performed for the city of Milan, the capital of Lombardy region and second
biggest city in terms of population in Italy. Specific area is selected within a bounding
box around the city center, as seen in Figure 3.1.

Figure 3.1 : Study area.




The date is limited to a range from 01/01/2016 to 31/12/2016 for a complete year,
based on available verified data. Pollution data is obtained from ARPA Lombardia
(Agenzia Regionale per la Protezione dell’ Ambiente Lombardia, in English: Regional
Agency of Lombardy for Protecting the Environment), and traffic data is attained from

a European navigation, mapping and traffic company TomTom B.V.

3.2 Materials
3.2.1 Data

In this section, detailed information on characteristics, acquisition, distribution,
temporal availability and completeness of the data used in the study is given, as this

information is significant for interpreting results.
3.2.1.1 Traffic data

The data provided by TomTom B.V. Traffic Center is the probe counts product
consisting of the speed data per vehicle with less than half minute temporal accuracy.
This is a historical data collected from the vehicles in the traffic using TomTom
products. From this data it is also possible to derive the number of cars present in the
roads at a certain moment. As an important point, the provided data is of a specific
TomTom product which stores data for a filtered set of vehicles. It contains only a part
of the vehicles in the traffic, it does not have full coverage of the real-world situation
and limited to the vehicles registered in this product. It is designed that way due to

business reasons and to guarantee consistency within the product.

It is necessary to underline that this data is very sensitive and confidential since it has
location and speed of each vehicle with a very high temporal intensity, therefore cannot
be shared outside the company. Even within the company, the data for a single vehicle
is not traced and never used alone. The products derived from this data are statistical
information on traffic behavior, such as intensity of vehicles on a road per week days,
business hours, day and night, ect. [Url-1]. For this reason, we had to anonymize the
data before any use.

Similar to the area and date range defined for the case study, traffic information was
gathered for the center of Milan, from 01/01/2016 to 31/12/2016. The huge amount of
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data was delivered in four datasets, one for each tile covering the city center, as shown
in figure 3.2. Datasets include textual information with millions of rows, ordered as
slices per road edge. Normally raw vehicle probe data has point locations, but this
product is processed and mapped to TomTom road elements and raw locations are
redundant. Each slice in datasets contains information on road edge at first row and
the rest belongs to the vehicle information. Among vehicle information, only epoch
time and speed of the vehicle are considered for the study. The size of the four datasets
for center of Milan in year of 2016 is around 111 GB in total. Additionally, as these
datasets do not contain the geometries of roads, geometry is obtained from TomTom
2016 base map.

lilano"Parco’ Lambro
filano*Marché

Settimo'Milz > - 2B I : 3 Milano Pascal'Citta Studi

N0 Zavattari

5= Milano

~ Traffic Dataset | Traffic Dataset 3

—— Traffic Dataset 2 Traffic Dataset 4 A Menitoomg Stations irtSeape

Figure 3.2 : Distribution of the data.

3.2.1.2 Pollution data

Pollution data for the city of Milan is retrieved from the observations published by the
ARPA Lombardia, which is the agency dealing with the environmental issues of
Lombardy region in Italy. Their activities contain monitoring the environmental
indicators such as water, air, waste, soil, natural hazards, noise etc., and taking
preventive and actions [Url-2]. In this study, we focus on the observations related to
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air pollution. ARPA Lombardia has total 137 air quality monitoring stations installed
in Lombardy, stores the pollutant values such as Nitrogen oxides (NO/NO2),
Particulate Matter (PM10/PM2.5), Carbon monoxide (CO), Black Carbon (BC),
Benzene (C6H6), Sulfur dioxide (SO2) with hourly frequency. The observed values
are released in the official website of ARPA Lombardia, besides, validated by the
agency except for the data from last six months.

For this study, hourly observations from 11 stations in center of Milan are considered.
Distribution of the stations in scope can be seen in figure 3.2. The data is downloaded
with a date range from 1/1/2016 to 31/12/2016. The reason to use the data from 2016
is to benefit from the most recent officially validated pollution data by ARPA

Lombardia at the time the study started.

Another point to mention is that there are some gaps in the data, values are not
available for every hour. Furthermore, not all pollutants are observed in all stations,
each station monitors a limited set of pollutants. In Table 3.1 the completeness of the

pollutants per station can be seen.

Table 3.1 : Availability percentages of the pollution data.

Station name Pollutant Formula availability

Milano - viale Marche Nitrogen dioxide NO2 98.7%
Milano - viale Marche Carbon monoxide CO 97.6%
Milano - viale Marche Nitrogen oxides NO 98.7%
Milano - viale Marche Benzene C6H6 91.4%
Milano - P.zza Zavattari Nitrogen dioxide NO2 96.2%
Milano - P.zza Zavattari Carbon monoxide CO 94.5%
Milano - P.zza Zavattari Benzene C6H6 84.7%
Milano - P.zza Zavattari Nitrogen oxides NO 96.2%
Milano - Verziere Nitrogen dioxide NO2 98.5%
Milano - Verziere Ozone 03 90.0%
Milano - Verziere Nitrogen oxides NO 98.4%
Milano - Verziere Particulate matter PM10 96.4%
Milano - viale Liguria Nitrogen dioxide NO2 88.3%
Milano - viale Liguria Carbon monoxide CO 92.5%
Milano - viale Liguria Nitrogen oxides NO 88.4%
Milano - Parco Lambro Nitrogen dioxide NO2 95.3%
Milano - Parco Lambro Ozone 03 89.9%
Milano - Parco Lambro Nitrogen oxides NO 95.3%
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Table 3.1 (continued) : Availability percentages of the pollution data.

Station name Pollutant Formula availability
Milano - via Senato Nitrogen dioxide NO2 97.0%
Milano - via Senato Benzene C6H6 85.0%
Milano - via Senato Carbon monoxide CO 91.0%
Milano - via Senato Nitrogen oxides NO 97.0%
Milano - via Senato BlackCarbon BC 87.1%
Milano - via Senato Particulate matter PM10 96.4%
Milano - via Senato Particulate matter PM2.5 93.7%
Milano - P.zza Abbiategrasso  Nitrogen dioxide NO2 88.7%
Milano - P.zza Abbiategrasso  Nitrogen oxides NO 88.6%
Milano - Pascal Citta Studi Benzene C6H6 91.9%
Milano - Pascal Citta Studi Ammonia NH3 84.7%
Milano - Pascal Citta Studi Nitrogen dioxide NO2 88.6%
Milano - Pascal Citta Studi Sulfur dioxide S0O2 87.5%
Milano - Pascal Citta Studi BlackCarbon BC 99.2%
Milano - Pascal Citta Studi Particulate matter PM2.5 89.9%
Milano - Pascal Citta Studi Nitrogen oxides NO 90.0%
Milano - Pascal Citta Studi Ozone 03 98.8%
Settimo Milanese Nitrogen dioxide NO2 81.9%
Settimo Milanese Nitrogen oxides NO 81.9%
Corsico Nitrogen dioxide NO2 96.2%
Corsico Ozone 03 94.1%
Corsico Carbon monoxide CcO 87.4%
Corsico Nitrogen oxides NO 96.2%
Pero Nitrogen dioxide NO2 83.6%
Pero Nitrogen oxides NO 83.3%

3.2.2 Software used in the study

Based on the literature review, MongoDB is recognized to be the most convenient
NoSQL database for this study due to its geospatial functionalities and processing

performance, therefore application is done with that database.

MongoDB s a free to use, JSON like document based NoSQL database used by many
big companies which is highly flexible, efficient in accessing and querying big data,
having also spatial indexing option [Url-3]. As it is one of the most widely used
NoSQL databases, there is a considerable amount of documentation and information

exchange on any kind of issues related to MongoDB.
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MongoDB is structured with collections under databases, which are bundles of
documents. Documents are the single entries of a database. There is also a term cluster
in MongoDB terminology which is the pieces of server called shrad that forms the
collections and databases, which shows the horizontal scalability of MongoDB, as seen

in figure 3.3.

Figure 3.3 : Shrads distributes data over multiple servers [Url-4].

For database management MongoDB Compass is used, which is the GUI (Graphical
User Interface) coming with MongoDB installation. Preprocessing of data and imports
into Mongodb are done using Python scripting language. Additionally, an open source
software NoSQLBooster, which is an IDE (Integrated Development Environment) for

MongoDB used for building and running queries on the database [Url-5].
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3.2.3 Hardware used in the study

The computer used in the study has below system properties:
e Disk: 250GB SSD (Solid State Drive)
e RAM: 8GB (+8GB Virtual RAM)
e Processor: Intel Core i7-2630QM CPU@ 2.00GHz x 8

e Operating system: Linux Ubuntu 18.04 (bionic)

3.3 Methodology

The methodology applied in this study is shown in the flowchart in Figure 3.4, and all

steps after data acquisition are explained below.

Data Collection Server Establishment
: o ada A ‘ :

begic 3 [ Setup
‘ |  Preliminary nstal -
| ! » . —»| connections &

analysis MongoDB
‘ ‘ ? test
a Station locations ! | ¥
,> ARP,
\ A

Preprocessing of data and implementation

> — —> —> —
Start L
roce |
$ Process > > >
Processing and Analysis
; Stats for pollution >
Stats for traffic data oo LHO) Spatial queries Correlation

data

Figure 3.4 : Workflow.
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3.3.1 Server establishment

As database, MongoDB 4.0.9 Community version was setup. Installation included the
MongoDB GUI for viewing and managing the database. Server was established locally
on desktop within one cluster, not sharded. One database was created (named as
“milan”) to put all the data in, and inside this database, two collections were formed;

“probe” and “pollution”.

To preprocess the data into document format and import it into the database, Python
3.6 with Anaconda distribution was installed due its effective library handling
capabilities. For preprocessing and database connections, pandas, numpy and
pymongo libraries are also utilized. Lastly, NoSQLBooster 5.7.1 was installed to

perform queries on the database.

3.3.2 Preprocessing of the data

MongoDB is a document based database as mentioned in previous chapters, thus, the
main preprocessing step is to format all the data as documents to be able to import into

database.

3.3.2.1 Traffic data preprocessing

The traffic data consists of slices of information per road edge, but as the count of
vehicles per road is not known, the beginning and the ending of these slices are not
known as well. As the first step, a list of beginning and ending line numbers were
extracted from the datasets, by reading through all file and detecting keywords for the
beginning of slices. This list of line numbers was used as an input for the rest of

preprocessing.

As mentioned in Chapter 3.2.1.1, the traffic data is confidential and sensitive, and
before using it must be anonymized. For practical reasons, this anonymization was
done by aggregating and calculating the average speed and total amount of vehicles
per hour for each road and excluding the rest of the information. In this way, traffic
data and pollution data have become consistent as both have hourly frequency.
Another important reason for this decision is, the 16MB document size limitation in
MongoDB [Url-6].
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Using the list of line numbers, all slices per road were detected and aggregated per
hour. Aggregation output was translated into a document format containing road id
(e.g. segment id), direction of flow, total amount of vehicles and a list of values. This
list contains time, average speed and count of vehicles for each hour where data is
present. Following this, the geometry from 2016 TomTom base map was linked to the
road and appended into the document to finalize it. The reference coordinate system
was WGS84 (World Geodetic System 1984). When the document is complete, it was

imported into MongoDB under “probe” cluster.

All these steps for preprocessing and import were executed with a python script. For
aggregations pandas and numpy, for database connection pymongo libraries were used
(see Appendix A for the python code).

3.3.2.2 Pollution data preprocessing

The pollution data includes one metadata file with station and export information, and
one value file with hourly values for the complete year. Each export contains only one
station and pollutant values. In addition to this, a third file with geometries for all the

stations was present.

First, all these station metadata and value files for different stations and pollutants were
merged into one metadata and one value file for the ease of data processing. These two
files were read together to link correct values to correct stations and to create one
document for each station and pollutant combination. This document contains station
name, station id, pollutant, data availability percentage and a list of survey values with

time and pollution.

Second, the coordinates of the stations in WGS84 datum were appended to the
documents from a separate file (i.e. mentioned as third file previously) by linking with
the station names. This step was necessary because the pollution data exported from
ARPA Lombardia does not contain the geometry. Finally, the documents were

imported into MongoDB under “pollution” cluster.

Merging metadata and value files was performed with a batch script, whereas
document creation and import were handled with a python script using pymongo

library for database connection (see Appendix B for the python code).
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3.3.3 Processing and analysis

Once data is implemented, below analyses were tried and tested by running queries on

database (see Appendix C for the queries on MongoDB).

3.3.3.1 Individual data statistics for traffic

To have some idea on the data, the averages per hour calculated by querying on
MongoDB, using aggregate pipeline. Query can be improved by grouping day (from
6:00 to 18:00) and night (from 18:00 to 6:00), each weekday, working days (i.e.

Monday to Friday) and weekends (i.e. Saturday and Sunday), month and season, etc.

3.3.3.2 Individual data statistics for pollution

Similar statistics to traffic data was created also for pollution data, again using

MongoDB aggregate functionalities.

3.3.3.3 Spatial querying

For the correlation analysis, the average hourly values for the road edges around
stations were needed. First, the road edges around stations selected using “$geonear”
function in MongoDB. Second, averages per hour calculated for all the roads around

each station. This is a combination of aggregate queries and spatial queries.

3.3.3.4 Correlation analysis between traffic and pollution

According to research done on MongoDB documentation, there is no functionality to
calculate correlation in MongoDB. That kind of analysis could be done with python,
by calling the results from spatial query with averaged hourly traffic values around
stations, and the station values in python to process. As this is not a MongoDB
functionality, and not in scope of the aim of this work, that step is skipped.
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4. RESULTS

MongoDB appeared to have favorable performance overall, although some results

expose areas of improvement.

4.1 Results of Preprocessing of Data

Preprocessing of traffic data was the biggest problem of this study. The preliminary
aggregation had to be done in python before importing the data into the database, due
to the confidentiality issues of the data and document size limitation in MongoDB.
During this preprocess in python, as more slices are preprocessed, runtime for one slice
increased exponentially, resulting in an unacceptable processing time. Many aspects

reviewed and tested to overcome this issue without any success yet.

Considering that issue is not related to the database and aim of the study is to
experiment on the database performance, at the end only a part of the roads inside a
polygon in, distriuted among 4 different data files were selected and imported into the
database for the sake of the study. After lots of trials, most with most efficient
preprocessing method tested, it took 538.96 hours, around 23 days pure processing

time in total, only for half of the data.

As an important note to mention, almost all of this time spent for preprocessing. Import
into MongoDB took 9.35 min for complete data, all rest of the time spent was for

preprocessing.

For pollution data, preprocessing step was quite fast, all preprocessing and import

completed in 14.9 seconds.
In Table 4.1 time spend for preprocessing and import per amount of docs can be seen.

Table 4.1: Import times

Count  Total preprocessing  Only import

Data of docs time (seconds) time (seconds)
Traffic data 28613  1940270.26 561.04
Pollution data 43 14.31 0.8
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4.2 Results of Processing and Analysis

Statistics for traffic and pollution data were created using aggregate query functions,
which are run on one collection, without any join operation. These statistical
aggregations were easy to perform and resulted in short times, demonstrating the
strength of aggregation queries in MongoDB. While queries on unnested objects were

extremely fast, nested objects values were slower.

Spatial querying functions were available in MongoDB, and they performed well for
queries on one collection, with geospatial index. Although, geospatial joins across two

collections were not possible without any third party tool or script.

Correlation analysis was not achievable with built-in functionalities of MongoDB.
Therefore, for this analysis is MongoDB can be only used to retrieve the necessary
data. With a test for that kind of action action, also reading and retrieving performance

of MongoDB was comprehended as well, which is one of the strongest aspects of it.

Runtimes for queries performed and amount of docs returned can be seen in below
Table 4.2.

Table 4.2 : Query runtimes

Count of docs Runtime

Query returned (Seconds)
export road ids 28613 7.633
count roads 1 7.337
compare total value counts of segments with 28555 185.695
sum of counts per hour (includes nested
values)
get overall hourly averages (includes nested 8784 243.066
values)
get overall hourly averages per pollutant 68543 0.666
(includes nested values)
select roads within 50m around point 8 0.201
coordinates
select roads within 100m around point 23 0.462
coordinates
select roads within 250m around point 68 0.768
coordinates
select roads within 500m around point 88 0.835

coordinates
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4.3 General Results

During the initiation of this study, first database tested was couchdb, but due to limited
querying functionalities and insufficient interface, it was decided to change the

database to be tested.

Secondly Couchbase is tested. With it, querying and basic functionalities were simpler
but imports were excessively slow, therefore database changed once again. It was later
understood that the main reason for slow import rate was looping over very big text

files during preprocessing, but MongoDB was slightly faster.

After having problems with two NoSQL databases, finally, experiment conducted and
completed with MongoDB.
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5. CONCLUSIONS

In this work, it was aimed to test the functionalities of a NoSQL database and generally

review the performance and capabilities, including geospatial querying options.

As a result of the study, it is observed that aggregate queries and basic spatial queries
on single collections are the strength of MongoDB. Whereas, gaps in complex
querying and spatial joining functionalities are the weak sides of it. While running very
fast for the first level elements in documents, queries on nested elements are giving
results much slower. Overall, taking into account that third party softwares can be
utilized to perform more complex analyses in MongoDB, it may be asserted that

MongoDB is a preferable database for big data management.

The main problem found about MongoDB is the inability of performing complex cross
queries on the database. In following works, new ways of querying on MongoDB can
be investigated. Also, other NoSQL database systems can be analysed in the same way

and supportive tools and engines can be explored in order to develop stronger systems.

Moreover, the dataset created can be used to extract some meaningful results from the
data in line with the smart city needs, such as usage of sensor data for decision making
and city management, enhancing interpolated pollution models with traffic data, it can
be even enriched with sensor data coming from other sources such as meteorological

data and open new areas of investment.
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APPENDIX A

Python code to create list of beginning and ending line numbers for slices:

# -*- coding: utf-8 -*-

Created on Wed May 9 16:18:36 2018

@author: ergin

infiles =

['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4538368n0l.txt’,
'Imedia/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4546560n0l.txt’",
'Imedia/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4538368n0l.txt’,
'Imedia/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4546560n01.txt"]

#use UTF8 without BOM!

#infiles = ['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/samples/sample_.txt']

#use UTF8 without BOM!

out_file ='/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/segments_20190406.txt'

seg_ids = {}
segments = open(out_file, "a")

##H# With keys ###
v=len(infiles)
for k in range(v):
infile=infiles[k]
with open(infile) as f:
for ids, line in enumerate(f):
if line.split(" )[0] == 'DSEG"
seg_ids[ids] = line.split(’ )[2]+" "+line.split(" )[3]
for i,j in seg_ids.items():
segments.writelines(str(i) + ' '+ str(j))
seg_ids ={}

segments.close()

Python code to preprocess and import traffic data:
# -*- coding: utf-8 -*-

Created on Fri May 25 18:00:20 2018

@author: ergin

import time
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from itertools import islice
import pandas as pd
import numpy as np

start_time = time.time()
##input file path or paths - use UTF8 without BOM!

#infile = '/home/ezgi/Desktop/Milan/sample.txt'

infile = 'Thome/ezgi/Desktop/Milan/00901120e4538368n0l.txt'

#infile = '/home/ezgi/Desktop/Milan/00901120e4546560n0l.txt'

#infile = '/home/ezgi/Desktop/Milan/00917504e4538368n0l.txt’

#infile = '/home/ezgi/Desktop/Milan/00917504e4546560n01.txt'
segidfile="/home/ezgi/Desktop/Milan/first_imp_00901120e4538368n0l.txt'
#segidfile = 'Thome/ezgi/Desktop/Milan/first_imp_00901120e4546560n0l.txt'
#segidfile = 'Thome/ezgi/Desktop/Milan/first_imp_00917504e4538368n0l.txt’
#segidfile = 'Thome/ezgi/Desktop/Milan/first_imp_00917504e4546560n01.txt’
geof = 'Thome/ezgi/Desktop/Milan/geom.txt'

###mongodb connection

dbname = 'probe’

from pymongo import MongoClient
db=MongoClient(‘localhost’, 27017).milan
collection=db[dbname]

### find segment start index list for all
#seg_ids = {}

#with open(infile) as f:

# for ids, line in enumerate(f):

# if line.split(' ")[0] == 'DSEG"

# seg_ids[ids] = int(line.split(" )[3])

#or directly give the segids list in dictionary from file
file=open(segidfile, "r").read()

seg_ids=eval(file)

file=""

print("--- %s seconds prep segids ---" % (time.time() - start_time))
print("--- count of segids: ", len(seg_ids))

## slice file for each segment
inp = open(infile, 'r")
geodf = pd.read_csv(geof, sep ="\t', encoding = 'utf-8")
geodf = geodf.drop(columns="Type")
bulk=[]
for i in range(0,len(seg_ids)):
# start_time_per_seg =time.time()
##select the segment
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inp.seek(0)
segment_slice = islice(inp,list(seg_ids.keys())[i],
(list(seg_ids.keys())[i]+list(seg_ids.values())[i]+1))
segment = list(segment_slice)
##define header and initiate document
header = segment[0].split(' )
doc = {'seqg":str(header[2][1:]),'dir":str(header[2][0]),tot":int(header[3])}
##define contents
lines =[]
for _, line in enumerate(segment[1:]):
line_split = line.split(" ")
##convert epoche to datetime
t_orj = int(line_split[1])
t = time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime(t_orj))
##create new line
new_line = [t, float(line_split[2]), int(line_split[5])]
lines.append(new_line)
##tsummarize contents
df=pd.DataFrame(lines, columns=('t','speed’, 'cover"))
lines =]
df['t'] = pd.to_datetime(df['t"], format="%Y-%m-%dT%H:%M:%S")
df = df.set_index(pd.Datetimelndex(df['t]))
del df['t]
df avg = df.resample("H").mean()
df_count = df.resample('H").count()
df a clean = df_avg.dropna(axis=0, how="all")
df_c_clean = df_count.replace(0,np.nan).dropna(axis=0, how="all’)
df_final = pd.concat([df _a_clean.speed, df _c_clean.cover],
axis=1).rename(columns={'speed": 'avg_speed', ‘cover": ‘count'})
df =]
df_avg =[]
df _count =[]
df_a clean =]
df ¢ clean =]

##append summary into document as list

segment_tags =[]

for j in df_final.index:
d={"tm": str(j),

"spd™:float(df_final['avg_speed’][j]),"cnt":int(df_final[‘count’][j])}

segment_tags.append(d)

doc.update({"values":segment_tags})

segment_tags =[]

df_final =[]

geofltr = geodf['segid] == header[2][1:]

g = {'geometry":{'type":"LineString",
‘coordinates’.eval(list(geodf[geofltr]['‘coordinates])[0]) } }

doc.update(g)

bulk.append(doc)
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doc=[]
if len(bulk)>1000:

print("--- %s seconds bulk prep complete---" % (time.time() - start_time))
print("--- count of segments: ", len(bulk))

##bulk insert into mongodb
collection.insert_many(bulk)

print("--- %s seconds bulk insert complete---" % (time.time() - start_time))
bulk=[]

else:
continue

print("--- %s seconds last bulk prep complete---" % (time.time() - start_time))
print("--- count of segments: ", len(bulk))

##bulk insert into mongodb
collection.insert_many(bulk)

print("--- %s seconds bulk insert complete---" % (time.time() - start_time))
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APPENDIX B

Python code to preprocess and import pollution data:

# -*- coding: utf-8 -*-

Created on Fri May 25 18:00:20 2018

@author: ergin

import time
start_time = time.time()

##input file path or paths - use UTF8 without BOM!
values =
'Imedia/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_values.txt

legenda =
'Imedia/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_legenda.t
xt'

geof =
'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/Stazioni_scope_g
eom.geojson'

###mongodb connection

dbname = "pollution’

from pymongo import MongoClient
db=MongoClient('localhost’, 27017).milan
collection=db[dbname]

geom=eval(open(geof).read())['features’]
del geof

heads=[]
with open(legenda) as I:
for idl, rowl in enumerate(l):
header=rowl.split("\t")
head={'st_id":str(header[0]),
'st_name":str(header[1].replace("A\xa0","a").replace(" - "," *).replace(" P.zza
""" ").replace(” viale "," ").replace(™ via "," ").replace(" "," ")),
'sensor_id":str(header[2]),
‘pollutant’:str(header[4]),
‘formula’:str(header[5]),
‘availability":str(header[6]),
'unit":str(header[7]).replace('A',").replace(\n',")}
for i in geom:
st_ng = str(i['properties]['Stazione]).replace("A\xa0","a")
if st_ng==str(head['st_name'):
head.update({'geometry".i['geometry']})
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heads.append(head)
print("--- %s seconds prep headers ---" % (time.time() - start_time))

for i in range(1,len(heads)):
start_time2 = time.time()
doc=headsi]
sensorid=doc['sensor_id']
st_tags=[]
with open(values) as v:
for idv, rowv in enumerate(v):
line=rowv.split("\t")
if str(sensorid)==str(line[0]):
d={"tm":str(line[1]),"poll":float(line[2]) }
st_tags.append(d)
doc.update({"values":st_tags})
st_tags=[]
##insert into mongodb
collection.insert_one(doc)
print("--- %s seconds --- per doc™ % (time.time() - start_time2))

print("--- %s seconds import end ---" % (time.time() - start_time))
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APPENDIX C

/**

*Query to export road ids
*/

use milan

db.probe.aggregate([{

$project: {
dir: 1,
seg: 1
}

ho

$sort: {
_id: -1
}

i)

Runtime: 7.633
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/**

*Query to count roads
*/

use milan

db.probe.aggregate([{

$group: {
_id: {segment:"$segment",direction:"$direction"},
count: { $sum: 1}

}
ho
$match: {
count: {$gt: 0}

1)

Runtime: 7.337
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/**

*Query to compare total value counts of segments with sum of counts per hour
*

db.probe.aggregate(
[

{$unwind: "$values"},

{$group: {

_id: {segment:"$seg",total:"$tot"},
tot: {$sum: "$values.cnt"}

}

— —

Runtime: 185.695
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/**

*Query to get overall hourly averages
*/

db.probe.aggregate(
[

{$unwind: "$values"},

{$group: {

_id: {hour:"$values.tm"},
average: {$avg: "$values.spd"},
count: {$avg: "$values.cnt"}

}

—

Runtime: 243.066
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/**

*Query to get overall hourly averages per pollutant
*

db.pollution.aggregate(
[

{$unwind: "$values"},

{$group: {

_id: {hour:"$values.tm", pollutant:"$pollutant”, formul:"$formula'},
average: {$avg: "$values.poll"},

count: {$avg: "$values.cnt"}

}

Runtime: 0.666

NosQLBoaster for MongoDB

L] B import ~ B Egort » | Moniing v P Test Daia off Schema

el o

[ T —

ervprotieqiocanost - Aggregaie (3) | mianprobegiocaiios:

probe ocamost - Aggregace 2) e-

@ caros - G mian + | Aquey Popen FHeow 4 A v T 7

allutant:*ggcl lutant*, forn st}
i 1
)
]
YR g W »ouoo el
vane D
polian ", fomul s "PMR5") 13 embutes }
4 amibuies
= averege »
et nul
21 Vour - *24.08.2018 00 00 0T, puktant *Parscee sespese PM2 5, formul "PM2 5"} (3t ]
{31 { our :“2Z3:08- D15 O 05 O, palktan - *Faracele sospese FA2 5", formul - "PMZ5"} {3 snbutes }
() (1o 1"22.08- 2015 00.00OY paltam  "Parmeeie sospess PM2S, fomiul "PM25"} {3 embates )
5] (o +*20.08-2018 00 00 0T, patant *Parseste saspess P2 5°, formul - "PM2 5"} (3attutes )
©) (nour Pl pese P25 } {3 ambutes
{7) (o :21-05-2018 OBOG.0X, pakian“Parscele suspess PM25", formul,“PM25"] {3 amitates )
) { hour 20,05 201 06 0303, palkant " Parscate saspess PM25* formul: ‘PM2" | [ ambutes )
(9] { Pour 1 19-95-2016 0G.0%.07", pOINIA | “PaeSIE 595pese PN omul: ‘PM25"} {3 et }
() { o “18-08 2016 000000, peluant: Pasticele socpese PH2E", lomud - PHLE | (A umibates]
My Queries | Sargies ¥ (1) Powr *17-08-2016 05 000" paran: ‘Partcete saspesa P2 ol PR | 13 ambates §
4 =30y Queres empy) E 5-05-2015 C0.00.00", poluanc: “Pastioel sospese P kol : PMZS"} 13 emrbutes )
& Pross kS (19){ heue - 12-06 2016 0080 00, poluant - Paricele sospose P 5", lomud - “PHES | [ mibues
(4] ot 10-06-2015 U000, pltant: “Partioe e scspse P, formul - PIZ | 13 emrbates }
{ R - DB-05-2015 £6,00 007, plluanc: “Paricele sospese PM2, omul - FM2 5"} 13 smibuies )
2 (18){ houe - 22-08.2015.00.00 00", poluant - Partcale scpuse PHE.S",formud - PHZS' | (st}
(17){ hour: "D6-05-2016 COTODC, pelucane: Partice!s Sospsse PMEZS”, Jommus - “PMZS' } {3 et }
(18) [ hets 1242 2015 1200 00" polluant "BlackCaroort. fovwi: BC" | {3 omibates )
{700 13122016 6260 00, pollitant: “BlckCaron, formal - "BC" {3 st |
(23 { howr: *12-12-2015 206000, palucant: "BIaCKCAMDON. formul: *BG" | {3 ambutes
Conyrgnt & nosqbocs us Editon o ShowLog @ Fescark 1231:54 pm

38



/**

*Query to select roads around coordinates
*/

db.probe.aggregate([
{

$geoNear: {
near: { "type": "Point", "coordinates": [ 9.167944507885444,
45.443859723844753 1},
key: "geometry",
distanceField: "dist.calculated",
maxDistance: 50,
}
}

)
limit(500)

Runtime: 0.201
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/**

*Query to select roads around coordinates
*/

db.probe.aggregate([
{

$geoNear: {

near: { "type": "Point", "coordinates": [ 9.167944507885444,
45.443859723844753 1},

key: "geometry",

distanceField: "dist.calculated",

maxDistance: 100,

}

}
)
limit(500)

Runtime: 0.462
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/**

*Query to select roads around coordinates
*/

db.probe.aggregate([
{

$geoNear: {

near: { "type": "Point", "coordinates": [ 9.167944507885444,
45.443859723844753 1},

key: "geometry",

distanceField: "dist.calculated",

maxDistance: 250,

}

}
)
limit(500)

Runtime: 0.768
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/**

*Query to select roads around coordinates

*/
db.probe.aggregate([
{

$geoNear: {

near: { "type": "Point", "coordinates": [ 9.167944507885444,

45.443859723844753 1},
key: "geometry",
distanceField: "dist.calculated",
maxDistance: 500,

}

}
)
limit(500)

Runtime: 0.835
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