

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

M.Sc. THESIS

JUNE 2019

EXPLORING THE POSSIBILITIES OF GEOSPATIAL BIG DATA

MANIPULATION USING NOSQL

Thesis Advisor: Assoc. Prof. Dr. Ahmet Özgür DOĞRU

Ezgi ERGİN

Department of Applied Informatics

Geographical Information Technologies Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY  INFORMATICS INSTITUTE

EXPLORING THE POSSIBILITIES OF GEOSPATIAL BIG DATA

MANIPULATION USING NOSQL

M.Sc. THESIS

Ezgi ERGİN

 (706161005)

Department of Applied Informatics

Geographical Information Technologies Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Assoc. Prof. Dr. Ahmet Özgür DOĞRU

HAZİRAN 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ  BİLİŞİM ENSTİTÜSÜ

NOSQL KULLANARAK MEKANSAL BÜYÜK VERİ İŞLEME

OLANAKLARININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ

Ezgi ERGİN

(706161005)

Bilişim Uygulamaları Anabilim Dalı

Coğrafi Bilgi Teknolojileri Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Assoc. Prof. Dr. Ahmet Özgür DOĞRU

v

Thesis Advisor : Assoc. Prof. Dr. Ahmet Özgür DOĞRU

 İstanbul Technical University

Jury Members :

Ezgi Ergin, a M.Sc. student of ITU Informatics Institute student ID 706161005

successfully defended the thesis/dissertation entitled “EXPLORING THE

POSSIBILITIES OF GEOSPATIAL BIG DATA MANIPULATION USING

NOSQL”, which he/she prepared after fulfilling the requirements specified in the

associated legislations, before the jury whose signatures are below.

Date of Submission : 3 May 2019

Date of Defense : 14 June 2019

vi

vii

To my family,

viii

ix

FOREWORD

This thesis has been conducted with a collaboration of the Department of Geographical

Information Technologies in Istanbul Technical University, Turkey and

Geoinformatics Engineering Department in Politecnico di Milano, Italy, from

February 2018 till May 2019.

During this long period in different countries, many people assisted me with great

value, directly or indirectly. I would like to take this chance to thank all of them,

starting with my advisor Assoc. Prof. Dr. Ahmet Özgür Doğru for all his understanding

and support all the time for everything, without him I would not be able to accomplish

this study and progress in my professional carreer. Besides, I would like to express my

gratitude to Prof. Maria Antonia Brovelli and Daniele Oxoli for their help to structure

the methodology of the study, seeking answers to all technical questions along with

me and for their hospitality during my time in Italy; to all my colleagues in TomTom

particularly Ravi Chauhan for providing me the valuable data I need and allowing me

to study along with work; to my little brother Barış Ergin for his organizational

support; to Ahmet Erdem for providing me the hardware and Candan Eylül Kilsedar

for encouraging me all the time. And finally, last but not the least, my dear friend

Merve Keskin for literally being by my side during the toughest time of this study and

being a great companion.

Thank you all, I do appreciate all the help I received and I am grateful for everything

I have learned during this study.

May 2019

Ezgi ERGİN

(Geomatics Engineer)

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

LIST OF TABLES ... xv
LIST OF FIGURES ... xvii
SUMMARY ... xix
ÖZET .. xxi

1. INTRODUCTION .. 1
2. LITERATURE REVIEW .. 5
3. CASE STUDY .. 9

3.1 Study Area .. 9
3.2 Materials ... 10

3.2.1 Data ... 10
3.2.1.1 Traffic data ... 10

3.2.1.2 Pollution data ... 11
3.2.2 Software used in the study .. 13

3.2.3 Hardware used in the study ... 15
3.3 Methodology .. 15

3.3.1 Server establishment ... 16

3.3.2 Preprocessing of the data .. 16

3.3.2.1 Traffic data preprocessing .. 16
3.3.2.2 Pollution data preprocessing .. 17

3.3.3 Processing and analysis ... 18

3.3.3.1 Individual data statistics for traffic .. 18
3.3.3.2 Individual data statistics for pollution .. 18

3.3.3.3 Spatial querying ... 18
3.3.3.4 Correlation analysis between traffic and pollution 18

4. RESULTS ... 19

4.1 Results of Preprocessing of Data ... 19
4.2 Results of Processing and Analysis .. 20

4.3 General Results .. 21
5. CONCLUSIONS .. 23
REFERENCES ... 25

APPENDICES .. 27
APPENDIX A .. 28

APPENDIX B .. 32
APPENDIX C .. 34

CURRICULUM VITAE .. 43

xii

xiii

ABBREVIATIONS

ARPA : Regional Agency for Protecting the Environment

GUI : Graphical User Interface

ICT : Information Communication Technology

IDE : Integrated Development Environment

IoT : Internet of Things

JSON : JavaScript Object Notation

NoSQL : Not Only Structured Query Language

SQL : Structured Querying Language

WGS84 : World Geodetic System 1984

xiv

xv

LIST OF TABLES

Page

Table 2.1 : Qualitive comparison of the functionalities of four geospatial databases 7

Table 2.2 : Geo-functions of the databases. .. 8

Table 3.1 : Availability percentages of the pollution data .. 12

Table 4.1 : Import times .. 19

Table 4.2 : Query runtimes .. 20

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : Database Types (Zafar et al., 2016)... 6

Figure 3.1 : Study area. ... 9

Figure 3.2 : Distribution of the data. ... 11
Figure 3.3 : Shrads distributes data over multiple servers [Url-4]. 14
Figure 3.4 : Workflow. .. 15

xviii

xix

EXPLORING THE POSSIBILITIES OF GEOSPATIAL BIG DATA

MANIPULATION USING NOSQL

SUMMARY

With the rapid population increase in the cities, the need for a powerful, dynamic city

management is becoming more crucial. In order to overcome the problems appearing

as the cities grow (e.g. transportation, resource management, pollution, waste disposal,

ect.), the smart city concept comes into prominence. Smart city is a comprehensive

system that utilizes various data coming from different sources, provides storing,

monitoring and analyzing infrastructure, and delivers solutions for the problems and

activities. The handling of the unstructured data continuously coming from different

sources and expanding in size (i.e. big data) is the main struggle. Especially,

considering that most of the data is georeferenced, geospatial indexing and processing

for that kind of big data is of high importance. Current traditional relational database

systems have strong geospatial functionalities in a part of them (e.g. Postgresql),

however they have two major limitations. First is the fixed column-based schema

structure, which obstructs the unstructured data import, and the second is the hardware

dependency on the performance. Therefore, to cover the scalability and flexibility

needs of big data management, NoSQL (Not Only SQL) databases are developed.

NoSQL databases are non-relational and unstructured, hence can store different types

of data altogether. They are horizontally scalable, which means performance can be

increased by adding machines into the system. Furthermore, NoSQL data storing

functionalities support nested hierarchical data models, which is not available in

relational databases. Nevertheless, it is still a discussion if SQL based relational

databases can be replaced by NoSQL. Based on the studies comparing these two, not

all NoSQL databases perform better than SQL databases. On the other hand, two of

the most popular NoSQL databases (i.e. MongoDB and Couchbase) are found to have

superior performance than corresponding SQL databases in many aspects. In this

study, we aimed to experiment on MongoDB on a single server, by importing a big

geolocated traffic data and pollution sensor data, and performing aggregate queries,

geospatial functions and correlation analysis on it. Based on the results MongoDB

showed a satisfying performance despite few constraints and gaps, especially for

applying geospatial joins. This study can be carried further investigating the ways to

execute more complex geospatial queryies on MongoDB, and by using larger data sets,

additional servers, other NoSQL based systems and/or supportive tools.

xx

xxi

NOSQL KULLANARAK MEKANSAL BÜYÜK VERİ İŞLEME

OLANAKLARININ ARAŞTIRILMASI

ÖZET

Şehirlerdeki hızlı nüfus artışı ile birlikte güçlü, dinamik bir şehir yönetimine duyulan

ihtiyaç gittikçe daha büyük bir önem kazanmaktadır. Şehirler büyüdükçe ortaya çıkan

sorunların üstesinden gelmek için (ulaşım, kaynak yönetimi, kirlilik, atık bertarafı, vb.)

akıllı şehir konsepti öne çıkmaktadır. Akıllı şehir, çeşitli kaynaklardan gelen farklı

tipte verileri kullanan, depolama, gözlemleme ve analiz altyapısı sağlayan ve sorunlara

ve aktivitelere yönelik çözümler sunan kapsamlı bir sistemdir. Bu tür bir sistemin en

önemli girdisi değişik kaynaklardan sürekli olarak gelen ve biriken verilerdir.

Farklı veri kaynaklarından ve sensörlerden gelen kesintisiz veri akışı büyük boyutlu

ve yapılandırılmamış bir veri havuzu oluşturur. Bu tür veriyi tanımlamak için büyük

veri terimi ortaya çıkmıştır. Çeşitli uzmanlık alanları arasında farklı tanımları olmasına

rağmen, büyük veriler için en yaygın kullanılan tanımı, geleneksel yöntemlerle

kolayca depolanamayan, işlenemeyen veya analiz edilemeyen, çoğunlukla

yapılandırılmamış büyük miktarlarda veridir. Büyük verilerin ana özellikleri, hacmi,

kendi içinde çeşitliliği, farklı veri türleri ve yaklaşımlarına sahip olması, sürekli bir

akış içinde birikmesi ve ortaya çıkarması zor olan yüksek değerler içermesidir.

Şehirlerdeki çoklu veri kaynaklarından ve sensörlerden gelen büyük veriler trendler,

davranışlar, gerçek zamanlı çözümler vb. hakkında değerli bilgiler içerir, bu sebeple

analiz edilmeleri önemli bir konudur.

Büyük verilerle ilgili en önemli komplikasyon, verinin işlenmesi ve anlamlı bilgilerin

çıkarılması olmuştur. Mevcut geleneksel yaklaşımda, SQL (Structured Querying

Language) tabanlı ilişkisel veritabanları yaygın olarak kullanılır. SQL, karmaşık

sorgular gerçekleştirme ve sağlam ve istikrarlı bir altyapı oluşturma kapasitesine sahip,

güçlü bir sorgulama dilidir. Öte yandan, ilişkisel veritabanlarında veriler önceden

oluşturulmuş veritabanı şemasına göre yapılandırılmalıdır, bu durum düzensiz verinin

içe aktarımını engellemekte. çeşitli veri türlerini aynı yerde depolanmasını

destekleyememekte ve faklı türde verileri ön düzenleme yapmadan birlikte

işleyememektedir. Ayrıca performansı donanıma bağlıdır ve bilgisayar kapasitesi

güçlendirilerek artırılabilir, ancak yine de donanım özellikleriyle sınırlıdır.

Geleneksel SQL veritabanlarının bu tür yetersizlikleri nedeniyle NoSQL (Not Only

SQL) veritabanları geliştirilmiştir. Bunlar, geleneksel veritabanı sistemlerinin

eksiklikleri olan esneklik ve performans sorunlarını çözümleyecek şekilde

tasarlanmıştır. NoSQL veritabanları SQL tabanlı olanlar gibi standart bir sisteme sahip

değildir. Her veri tabanı kendi modeline, veri formatına ve sorgulama diline sahiptir

ve hepsi farklı amaçlara hizmet edebilir.

NoSQL, temel olarak geleneksel tablolar yerine yoğunluklu olarak “anahtar: değer”

çiftleri ya da JSON (JavaScript Object Notation) benzeri döküman formatı kullanan,

ilişkisel olmayan, düzensiz bir veritabanı sistemidir. Bu, yapılandırılmamış verilerin

aynı veri tabanında depolanmasını ve elastik şema yönetimi ile esneklik sağlamaktadır.

Performans donanıma daha az bağımlıdır ve yükü dağıtmak için daha fazla sunucu ya

da bilgisayar eklenerek performans arttırılabilir, böylece daha büyük veri kümelerini

yönetmek mümkündür. JSON benzeri veri formatı sayesinde NoSQL sistemler

ilişkisel veritabanı sistemleri tarafından doğru şekilde desteklenmeyen ağaç benzeri

hiyerarşik veri depolamayı destekleyebilimektedir. Benzer şekilde, yine klasik ilişkisel

xxii

veritabanı sistemlerinde uygulanamayan hiyerarşik veri modellerini de

desteklenebilmektedir.

Bunlarla birlikte, NoSQL sorgulama dilleri standartlaştırılmamıştır, her veritabanının

kendi sorgulama dili vardır, dolayısıyla karmaşık sorguları gerçekleştirmek SQL'e

göre daha zorludur.

Ayrıca, yüksek frekanslı işlemleri desteklemek için kullanılabilse de, NoSQL

veritabanları ilişkisel olanlar kadar stabil değildir.

Varolan verilerin çoğunluğunun coğrafi olduğu ve coğrafi referanslı verilerin miktarı

her yıl ciddi bir şekilde arttığı düşünüldüğünde, bu tür büyük verilerin coğrafi olarak

indekslenebilmesi ve işlenebilmesi büyük önem taşımaktadır. Bu sebeple SQL ya da

NoSQL, coğrafi özellikli büyük veri işlenecek her veritabanında ölçeklenebilir coğrafi

sorgulama ve analiz işlevlerinin olması ve yeterliliği mühim bir kriterdir.

Genel olarak SQL ve NoSQL tabanlı veritabanlarını karşılaştıran çalışmalara

bakıldığında, NoSQL veritabanları her zaman SQL veritabanlarından daha iyi

performans göstermemektedir. Öte yandan, en popüler NoSQL veritabanlarından

ikisinin (MongoDB ve Couchbase), birçok açıdan karşılaştırıldıkları SQL

veritabanlarından daha üstün performans gösterdiği gözlemlenmiştir. Özel olarak

coğrafi sorgulama kapasitelerine bakıldığında ilişkisel veritabanlarının güçlü ve

standart SQL tabanlı sorgulama özellikleri dolayısıyla oldukça komplike coğrafi

analizler yapabildiği, NoSQL veritabanlarının ise bir kısmının coğrafi indexleme

kapasitesiyle beraber temel coğrafi analizleri de yapabildiği ve üçüncü parti

yazılımlarla daha da derin analizler koşturulabildiği görülmektedir.

Bu çalışmada, coğrafi büyük verileri bir NoSQL veritabanına aktarma olasılıklarını ve

metodolojilerini araştırmak ve bu veri tabanının verimliliğini veri işleme, sorgulama,

coğrafi fonksiyonlar ve analizler açısından test etmek amaçlanmıştır. Uygulama için

Milan şehrinin bir senelik büyük trafik ve hava kirliliği verileri NoSQL veritabanına

işlenmiş, ayrıca bu veritabanı tarafından desteklenen bazı temel mekansal işlevler test

edilmiştir. Kullanılan trafik verisi, trafikteki araçlardan yaklaşık 30 saniyelik frekansla

alınan hız verisidir. Tekil araç bilgisi içerdiği için hassas ve gizli olan bu veri

anonimize edilerek kullanılmıştır. Hava kirliliği verisi ise Milan şehri merkezini

kapsayan 11 hava gözlem istasyonunda toplanan ve internet üzerinden paylaşılan

gözlemlerden alınmıştır.

Araştırma yaygın kullanılan, JSON benzeri döküman tabanlı ve ücretsiz bir NoSQL

veritabanı olan MongoDB için yapılmıştır. Bu veritabanının tercih edilmesi mekansal

indeksleme seçeneğine sahip, büyük veri erişiminde ve sorgulamalarında verimli,

esnek ve yaygın kullanımı nedeniyle önemli miktarda dokümantasyona sahip

olmasından ötürüdür.

Çalışma kapsamında eldeki veri kullanım koşullarına uygun bir şekilde işlenerek

MongoDB içine aktarılmış ve temel toplu (aggregate) sorgular, coğrafi fonksiyonlar

ve korelasyon analizleri denenerek veritabanı test edilmiştir. Verilerin hazırlanması ve

aktarımı python betik dili ile yapılmıştır. Veritabanına erişim ve sorgulamalar için

MongoDB Compass ve NoSQLBooster programlarından faydalanılmıştır.

Çalışmanın sonuçlarına göre MongoDB bazı veritabanının standart fonksiyonlarına

bağlı sınırlamalar (örneğin korelasyon analizinin direk olarak mümkün olmaması) ve

mekansal katman birleştirme konusundaki eksiklerinin dışında olumlu bir performans

göstermiştir.

Bu bağlamda, toplu sorgular ve tek koleksiyonlardaki temel mekansal sorguların

MongoDB'nin güçlü yönü olduğu görülmektedir. Fakat karmaşık sorgulama ve

mekansal birleştirme fonksiyonlarında zayıflıkları bulunmaktadır. Genel olarak,

üçüncü parti yazılımların daha karmaşık analizler yapmak için kullanılabileceği göz

xxiii

önüne alındığında, MongoDB'nin büyük veri yönetimi için tercih edilebilir bir

veritabanı olduğu söylenebilmektedir.

Bu çalışma MongoDB üzerinde karmaşık mekansal sorguların uygulanma yollarının

araştırılmasıyla, daha büyük veri setleri ve ek sunucu kullanımı ile, diğer NoSQL

tabanlı sistemler ve destekleyici araçların incelenmesiyle ve elde edilen analiz

sonuçlarından şehir yönetimi konusunda faydalanılma olanaklarının tahkik

edilmesiyle farklı açılardan daha ileri götürülebilmesi mümkündür.

xxiv

1

1. INTRODUCTION

In this age, human population is fast moving from rural areas to cities. According to

United Nations, by 2050, 70% of the population will be living in the urban areas

(Diaconita et al., 2018). The drastic increase of the inhabitance in cities will also bring

problems in urban planning, employment, habitation, transportation, share of energy

sources, natural resources management, pollution and so forth. Hence, structuring a

well-organized, flexible, scalable, efficient and sustainable city planning is very

important in that aspect which brings us to smart city concept. Smart city is a digital

infrastructure using Information Communication Technology (ICT) and Internet of

Things (IoT) technologies, in other words, a thorough system providing storage,

monitoring, analysis and solution of the activities and problems in cities. Continuous

data collection from different sources in the urban zone such as networks, services,

cameras and sensors is crucial for smart cities (Malik et al., 2017). Especially, sensor

data, which is basically an output from any kind of sensor storing and/or reacting to

changes in surroundings, can be considered as the main data source for IoT and smart

cities. As it is continuously streamed, the size of this sensor data can be huge and the

growth in the unstructured data obtained from different sources introduced the term

big data that is one of the most important trending topics (Li et all, 2016).

Big data has long been a controversial topic due to the difficulties of describing its

characteristics and therefore developing the methodology to extract meaningful

information. Divisions on big data is mostly on the definition of it across different

domains, still most common definition of big data is, huge amounts of data which is

generally unstructured, cannot be easily stored, processed or analyzed with

conventional methods (Li et all, 2016). In addition to that definition, Chen et al. (2014)

reviewed several different definitions of big data and summarized the main features of

it as 4Vs: Volume (i.e. big size data), Variety (i.e. different data types and approaches),

Velocity (i.e. continuously populated and streamed), Value (contains high value that

is hard to extract). However, the most significant complication about big data is not

2

the definition of it, but the processing and extraction of meaningful information (i.e.

value) from it have been the hardest to tackle on big data.

In traditional approach, SQL (Structured Querying Language) based relational

databases are commonly used with a very strong querying language to handle the data

with capability to perform complex queries and establishing a robust and stable

infrastructure. On the other hand, relational databases are table based with fixed

columns and data should be structured according to the pre-constructed database

schema, which is resulting in a rigid structure to be able to insert because it cannot

support various data types. Performance depends on the hardware, and can be

increased by upgrading it, yet still limited to hardware capabilities.

Due to these limitations, NoSQL (Not Only Structured Query Language) logic is

developed. NoSQL is a non-relational, distributed database system using mainly

‘’key:value” pairs as documents instead of traditional tables. This approach allows

storing unstructured data altogether in the same database, thus it provides flexibility

with elastic schema management. Performance is less dependent on the hardware and

can be increased by adding more servers to distribute the load, therefore it is possible

to manage much larger datasets. Thanks to JSON (JavaScript Object Notation) like

data format, NoSQL supports tree-like hierarchical data storage which is not properly

supported by relational database systems. Hierarchical data model support is a

significant reason to prefer NoSQL for big data processing. Along with these, NoSQL

querying languages are not standardized, each database has its own querying language,

consequently, performing complex queries is less efficient than SQL. Moreover,

although it can be used as a database to support high amount of actions such as

purchasing, NoSQL is not as stable as relational databases.

It is important to underline the fact that most of the data is georeferenced, and

according to the common assumption 80% of it is spatial (Hahmann et al., 2011).

Furthermore, as indicated by Lee and Kang (2015), the percentage of the geolocated

data is drastically rising which is an evidence that personal location data amount is

increasing by 20% every year. To handle such geospatial big data, the database,

whether traditional SQL or new generation NoSQL should have scalable geospatial

data processing features.

3

In this context, the aim of the study is to investigate the possibilities and methodologies

to import big geospatial data (e.g. satellite imageries, mobile tracking, traffic,

meteorology, temperature, pollution, etc.) into a NoSQL database and to test efficiency

of that database in terms of data processing, querying, geospatial functions and

analyzing. Although there are some studies (see Chapter 2) focusing on NoSQL

database performance on web services, real time applications, comparisons vs classic

relational database systems on architecture, there is still a little known about querying

and geospatial analysis functionalities of NoSQL database systems. Therefore, we will

use big traffic and pollution data to be processed and imported in one of the NoSQL

databases; and test some basic geospatial functions that is supported by that database.

In the next chapter, we will present a literature overview on relational and non-

relational databases, their applications, and geospatial functionalities and capabilities.

In Chapter 3, a case study to test functionalities of a NoSQL database will be explained,

and this chapter is followed by the results of the case study including the problems

faced during the application. Finally, in Chapter 5, general conclusions will be drawn,

and further possibilities will be discussed.

4

5

2. LITERATURE REVIEW

With the recent advances in technology, new data sources arise and the need for rapid

information exchange is emerging. However, data collected from various sources in

large amounts, which is called big data, brings its own challenges for storing,

management and processing. Li et al. (2016) listed some of the fundamental challenges

as efficient representation and modeling, analyzing, mining and visualizing and quality

assessment of geospatial big data. According to them, further development and

research needs to focus on the following areas: real time spatial indexing algorithms,

better data mining algorithms, more efficient and complex visualization considering

task and user needs (e.g. online 3D visualization tools), more effective quality

assessment approaches, more sophisticated definition of semantics and ontology

relationships.

To meet the most of the needs mentioned above, non-relational databases have been

developed and rapidly replacing the relational databases such as PostgreSQL, Oracle

and MySQL. Unlike relational databases, these non-relational databases which are

called as NoSQL vary in terms of their architecture, flexibility, scalability and abilities

to store, manage, query and transfer the data. Existing NoSQL data system

architectures can be classified as key:value, document, graph and column based

databases (Zafar et al., 2016). Figure 2.1 demonstrates the data model, strength and

weaknesses of these four database types in detail by providing examples. Querying

varies in each of these NoSQL database types and majority of them requires additional

scripts to perform complex queries.

Along with the new approaches NoSQL provides, it still remains a question whether

NoSQL databases can completely replace traditional relational databases. Therefore,

comparisons between the performances of SQL and NoSQL databases are required in

different aspects.

In 2013, Li and Manoharan tested the performances (i.e. run time) of basic operations

which are instantiation, read, write, delete and iteration for six NoSQL databases (i.e.

6

Cassandra, Couchbase, CouchDB, Hypertable, MongoDB, RavenDB) and compared

with Microsoft SQL Server Express. According to the results, instantiation for MS

SQL Server, Couchbase and MongoDB is significantly slower than others. For read

and delete operations, MongoDB and Couchbase performed better than MS SQL

Server compared to the others, although for write operation Couchbase, MongoDB,

Cassandra and Hypertable were better than MS SQL. In terms of iteration no valuable

difference observed in the performance.

Figure 2.1 : Database Types (Zafar et al., 2016).

In another study, the functionalities of the most popular four databases reviewed

together as seen in Table 2.1, and an experiment performed to compare the webservice

response times for relational Azzure SQL database and NoSQL based Azzure

Document DB (Baralis et al., 2017). Results revealed that Document DB responses

considerably faster than Azzure SQL, whereas Azzure SQL is better in managing

simultaneous requests.

A different SQL versus NoSQL comparison based on the insert time, disk usage,

memory usage and querying time is executed by Lian et al. (2018) using MongoDB

and PostgreSQL. MongoDB was found explicitly advantageous for insert time and

querying time, and no remarkable difference observed for memory usage, nevertheless

in terms of disk usage PostgreSQL was found to be more beneficial.

It has been mentioned in previous chapter that most of the big data is spatial, hence

one of the most important aspects to evaluate is the geospatial functionalities of

NoSQL. Although there are numerous NoSQL databases present in the market now,

only few of them are spatial. Agarwal and Rajan (2017) underline that spatial

7

Table 2.1 : Qualitive comparison of the functionalities of four geospatial databases (Baralis et al., 2017).

Database
Supported

Geometry objects

Main supported

geometry functions

Supported Spatial

indexes

Compatibility with

GeoServer
DaaS Horizontal scalability

PostGIS Point,

LineString, Polygon,

MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollec tion

PostGIS supports

the Open

Geospatial

Consortium (OGC)

methods on

geometry instances

B-Tree index R

Tree index, GiST index

Yes No No

Azure SQL Database Point LineString,

Polygon, MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollection

Azure SQL

Database

supports the

Open Geospatial

Consortium (OGC)

methods on

geometry instances

2d plane index, B-trees Yes Yes (Microsoft Azure

cloud computing

platform)

No

MongoDB Point,

LineString, Polygon,

MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollection

Inclusion,

Intersection, Dis

tance/Proximity

2dsphere index,

2d index

Yes (based on the

unsupported external

MongoDB plug-in

included in GeoTools)

Yes (MongoDB

Atlas cloud

service)

Yes (sharding)

DocumentDB Point,

LineString, Polygon,

MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollection

Inclusion, Dis-

tance/Proximity

2d plane index,

quadtree

Yes (based on the

unsupported external

MongoDB plug-in

included in GeoTools)

Yes (Microsoft

Azure cloud

computing platform)

Yes (sharding)

8

functionalities are quite recent for NoSQL databases, still a lot of improvement and

investigation are needed. They also summarized the geometric operations of

PostgreSQL/PostGIS, MongoDB and CouchDB as seen in Table 2.2, and tested the

ones present in both PostgreSQL/PostGIS and MongoDB. As a result, MongoDB run

almost 10 times faster for the common functions between them. This demonstrates that

while PostgreSQL/PostGIS has wider geospatial functionalities, MongoDB performs

faster with limited capabilities.

Table 2.2 : Geo-functions of the databases (Agarwal, S., & Rajan, K. S., 2017).

PostGIS MongoDB CouchBase

ST Within $geoWithin BBOX

ST Intersects $geolntersects

ST DWithin + Order by

dist
$near + param(Distance)

ST Area

Zhang et al., (2014) has investigated the performance of storage and accessibility by

importing and storing a big shapefile into MongoDB. According to them, MongoDB

was considerably stronger than traditional relational database systems for handling

massive amounts of data.

Although there is still a need for more research to investigate the superiorities and gaps

of NoSQL databases, and to evaluate advance functionalities with recent

developments, the studies carried out until today indicate that MongoDB and

Couchbase performs better than SQL databases in most cases. MongoDB and

Couchbase perform significantly better especially when the shared functionalities

between relational and NoSQL databases are considered. However, the rest of the

NoSQL databases have weak performances compared to both relational and

MongoDB and Couchbase databases. For that reason, we decided to use MongoDB in

our study by thoroughly investigating both the basic functionalities including import

of a big data, aggregate and spatial queries, more complex analysis such as correlation.

9

3. CASE STUDY

The purpose of the case study is to evaluate implementation and processing of big

geospatial traffic data and pollution data from sensors in a NoSQL database. For that,

first all data is preprocessed to implement in the database, and after importing basic

aggregate and geospatial queries performed. Additionally, correlation between traffic

and pollution data is calculated.

3.1 Study Area

The study performed for the city of Milan, the capital of Lombardy region and second

biggest city in terms of population in Italy. Specific area is selected within a bounding

box around the city center, as seen in Figure 3.1.

Figure 3.1 : Study area.

10

The date is limited to a range from 01/01/2016 to 31/12/2016 for a complete year,

based on available verified data. Pollution data is obtained from ARPA Lombardia

(Agenzia Regionale per la Protezione dell’Ambiente Lombardia, in English: Regional

Agency of Lombardy for Protecting the Environment), and traffic data is attained from

a European navigation, mapping and traffic company TomTom B.V.

3.2 Materials

3.2.1 Data

In this section, detailed information on characteristics, acquisition, distribution,

temporal availability and completeness of the data used in the study is given, as this

information is significant for interpreting results.

3.2.1.1 Traffic data

The data provided by TomTom B.V. Traffic Center is the probe counts product

consisting of the speed data per vehicle with less than half minute temporal accuracy.

This is a historical data collected from the vehicles in the traffic using TomTom

products. From this data it is also possible to derive the number of cars present in the

roads at a certain moment. As an important point, the provided data is of a specific

TomTom product which stores data for a filtered set of vehicles. It contains only a part

of the vehicles in the traffic, it does not have full coverage of the real-world situation

and limited to the vehicles registered in this product. It is designed that way due to

business reasons and to guarantee consistency within the product.

It is necessary to underline that this data is very sensitive and confidential since it has

location and speed of each vehicle with a very high temporal intensity, therefore cannot

be shared outside the company. Even within the company, the data for a single vehicle

is not traced and never used alone. The products derived from this data are statistical

information on traffic behavior, such as intensity of vehicles on a road per week days,

business hours, day and night, ect. [Url-1]. For this reason, we had to anonymize the

data before any use.

Similar to the area and date range defined for the case study, traffic information was

gathered for the center of Milan, from 01/01/2016 to 31/12/2016. The huge amount of

11

data was delivered in four datasets, one for each tile covering the city center, as shown

in figure 3.2. Datasets include textual information with millions of rows, ordered as

slices per road edge. Normally raw vehicle probe data has point locations, but this

product is processed and mapped to TomTom road elements and raw locations are

redundant. Each slice in datasets contains information on road edge at first row and

the rest belongs to the vehicle information. Among vehicle information, only epoch

time and speed of the vehicle are considered for the study. The size of the four datasets

for center of Milan in year of 2016 is around 111 GB in total. Additionally, as these

datasets do not contain the geometries of roads, geometry is obtained from TomTom

2016 base map.

Figure 3.2 : Distribution of the data.

3.2.1.2 Pollution data

Pollution data for the city of Milan is retrieved from the observations published by the

ARPA Lombardia, which is the agency dealing with the environmental issues of

Lombardy region in Italy. Their activities contain monitoring the environmental

indicators such as water, air, waste, soil, natural hazards, noise etc., and taking

preventive and actions [Url-2]. In this study, we focus on the observations related to

12

air pollution. ARPA Lombardia has total 137 air quality monitoring stations installed

in Lombardy, stores the pollutant values such as Nitrogen oxides (NO/NO2),

Particulate Matter (PM10/PM2.5), Carbon monoxide (CO), Black Carbon (BC),

Benzene (C6H6), Sulfur dioxide (SO2) with hourly frequency. The observed values

are released in the official website of ARPA Lombardia, besides, validated by the

agency except for the data from last six months.

For this study, hourly observations from 11 stations in center of Milan are considered.

Distribution of the stations in scope can be seen in figure 3.2. The data is downloaded

with a date range from 1/1/2016 to 31/12/2016. The reason to use the data from 2016

is to benefit from the most recent officially validated pollution data by ARPA

Lombardia at the time the study started.

Another point to mention is that there are some gaps in the data, values are not

available for every hour. Furthermore, not all pollutants are observed in all stations,

each station monitors a limited set of pollutants. In Table 3.1 the completeness of the

pollutants per station can be seen.

Table 3.1 : Availability percentages of the pollution data.

Station name Pollutant Formula availability

Milano - viale Marche Nitrogen dioxide NO2 98.7%

Milano - viale Marche Carbon monoxide CO 97.6%

Milano - viale Marche Nitrogen oxides NO 98.7%

Milano - viale Marche Benzene C6H6 91.4%

Milano - P.zza Zavattari Nitrogen dioxide NO2 96.2%

Milano - P.zza Zavattari Carbon monoxide CO 94.5%

Milano - P.zza Zavattari Benzene C6H6 84.7%

Milano - P.zza Zavattari Nitrogen oxides NO 96.2%

Milano - Verziere Nitrogen dioxide NO2 98.5%

Milano - Verziere Ozone O3 90.0%

Milano - Verziere Nitrogen oxides NO 98.4%

Milano - Verziere Particulate matter PM10 96.4%

Milano - viale Liguria Nitrogen dioxide NO2 88.3%

Milano - viale Liguria Carbon monoxide CO 92.5%

Milano - viale Liguria Nitrogen oxides NO 88.4%

Milano - Parco Lambro Nitrogen dioxide NO2 95.3%

Milano - Parco Lambro Ozone O3 89.9%

Milano - Parco Lambro Nitrogen oxides NO 95.3%

13

Table 3.1 (continued) : Availability percentages of the pollution data.

Station name Pollutant Formula availability

Milano - via Senato Nitrogen dioxide NO2 97.0%

Milano - via Senato Benzene C6H6 85.0%

Milano - via Senato Carbon monoxide CO 91.0%

Milano - via Senato Nitrogen oxides NO 97.0%

Milano - via Senato BlackCarbon BC 87.1%

Milano - via Senato Particulate matter PM10 96.4%

Milano - via Senato Particulate matter PM2.5 93.7%

Milano - P.zza Abbiategrasso Nitrogen dioxide NO2 88.7%

Milano - P.zza Abbiategrasso Nitrogen oxides NO 88.6%

Milano - Pascal Città Studi Benzene C6H6 91.9%

Milano - Pascal Città Studi Ammonia NH3 84.7%

Milano - Pascal Città Studi Nitrogen dioxide NO2 88.6%

Milano - Pascal Città Studi Sulfur dioxide SO2 87.5%

Milano - Pascal Città Studi BlackCarbon BC 99.2%

Milano - Pascal Città Studi Particulate matter PM2.5 89.9%

Milano - Pascal Città Studi Nitrogen oxides NO 90.0%

Milano - Pascal Città Studi Ozone O3 98.8%

Settimo Milanese Nitrogen dioxide NO2 81.9%

Settimo Milanese Nitrogen oxides NO 81.9%

Corsico Nitrogen dioxide NO2 96.2%

Corsico Ozone O3 94.1%

Corsico Carbon monoxide CO 87.4%

Corsico Nitrogen oxides NO 96.2%

Pero Nitrogen dioxide NO2 83.6%

Pero Nitrogen oxides NO 83.3%

3.2.2 Software used in the study

Based on the literature review, MongoDB is recognized to be the most convenient

NoSQL database for this study due to its geospatial functionalities and processing

performance, therefore application is done with that database.

MongoDB is a free to use, JSON like document based NoSQL database used by many

big companies which is highly flexible, efficient in accessing and querying big data,

having also spatial indexing option [Url-3]. As it is one of the most widely used

NoSQL databases, there is a considerable amount of documentation and information

exchange on any kind of issues related to MongoDB.

14

MongoDB is structured with collections under databases, which are bundles of

documents. Documents are the single entries of a database. There is also a term cluster

in MongoDB terminology which is the pieces of server called shrad that forms the

collections and databases, which shows the horizontal scalability of MongoDB, as seen

in figure 3.3.

Figure 3.3 : Shrads distributes data over multiple servers [Url-4].

For database management MongoDB Compass is used, which is the GUI (Graphical

User Interface) coming with MongoDB installation. Preprocessing of data and imports

into Mongodb are done using Python scripting language. Additionally, an open source

software NoSQLBooster, which is an IDE (Integrated Development Environment) for

MongoDB used for building and running queries on the database [Url-5].

15

3.2.3 Hardware used in the study

The computer used in the study has below system properties:

• Disk: 250GB SSD (Solid State Drive)

• RAM: 8GB (+8GB Virtual RAM)

• Processor: Intel Core i7-2630QM CPU@ 2.00GHz x 8

• Operating system: Linux Ubuntu 18.04 (bionic)

3.3 Methodology

The methodology applied in this study is shown in the flowchart in Figure 3.4, and all

steps after data acquisition are explained below.

Figure 3.4 : Workflow.

16

3.3.1 Server establishment

As database, MongoDB 4.0.9 Community version was setup. Installation included the

MongoDB GUI for viewing and managing the database. Server was established locally

on desktop within one cluster, not sharded. One database was created (named as

“milan”) to put all the data in, and inside this database, two collections were formed;

“probe” and “pollution”.

To preprocess the data into document format and import it into the database, Python

3.6 with Anaconda distribution was installed due its effective library handling

capabilities. For preprocessing and database connections, pandas, numpy and

pymongo libraries are also utilized. Lastly, NoSQLBooster 5.7.1 was installed to

perform queries on the database.

3.3.2 Preprocessing of the data

MongoDB is a document based database as mentioned in previous chapters, thus, the

main preprocessing step is to format all the data as documents to be able to import into

database.

3.3.2.1 Traffic data preprocessing

The traffic data consists of slices of information per road edge, but as the count of

vehicles per road is not known, the beginning and the ending of these slices are not

known as well. As the first step, a list of beginning and ending line numbers were

extracted from the datasets, by reading through all file and detecting keywords for the

beginning of slices. This list of line numbers was used as an input for the rest of

preprocessing.

As mentioned in Chapter 3.2.1.1, the traffic data is confidential and sensitive, and

before using it must be anonymized. For practical reasons, this anonymization was

done by aggregating and calculating the average speed and total amount of vehicles

per hour for each road and excluding the rest of the information. In this way, traffic

data and pollution data have become consistent as both have hourly frequency.

Another important reason for this decision is, the 16MB document size limitation in

MongoDB [Url-6].

17

Using the list of line numbers, all slices per road were detected and aggregated per

hour. Aggregation output was translated into a document format containing road id

(e.g. segment id), direction of flow, total amount of vehicles and a list of values. This

list contains time, average speed and count of vehicles for each hour where data is

present. Following this, the geometry from 2016 TomTom base map was linked to the

road and appended into the document to finalize it. The reference coordinate system

was WGS84 (World Geodetic System 1984). When the document is complete, it was

imported into MongoDB under “probe” cluster.

All these steps for preprocessing and import were executed with a python script. For

aggregations pandas and numpy, for database connection pymongo libraries were used

(see Appendix A for the python code).

3.3.2.2 Pollution data preprocessing

The pollution data includes one metadata file with station and export information, and

one value file with hourly values for the complete year. Each export contains only one

station and pollutant values. In addition to this, a third file with geometries for all the

stations was present.

First, all these station metadata and value files for different stations and pollutants were

merged into one metadata and one value file for the ease of data processing. These two

files were read together to link correct values to correct stations and to create one

document for each station and pollutant combination. This document contains station

name, station id, pollutant, data availability percentage and a list of survey values with

time and pollution.

Second, the coordinates of the stations in WGS84 datum were appended to the

documents from a separate file (i.e. mentioned as third file previously) by linking with

the station names. This step was necessary because the pollution data exported from

ARPA Lombardia does not contain the geometry. Finally, the documents were

imported into MongoDB under “pollution” cluster.

Merging metadata and value files was performed with a batch script, whereas

document creation and import were handled with a python script using pymongo

library for database connection (see Appendix B for the python code).

18

3.3.3 Processing and analysis

Once data is implemented, below analyses were tried and tested by running queries on

database (see Appendix C for the queries on MongoDB).

3.3.3.1 Individual data statistics for traffic

To have some idea on the data, the averages per hour calculated by querying on

MongoDB, using aggregate pipeline. Query can be improved by grouping day (from

6:00 to 18:00) and night (from 18:00 to 6:00), each weekday, working days (i.e.

Monday to Friday) and weekends (i.e. Saturday and Sunday), month and season, etc.

3.3.3.2 Individual data statistics for pollution

Similar statistics to traffic data was created also for pollution data, again using

MongoDB aggregate functionalities.

3.3.3.3 Spatial querying

For the correlation analysis, the average hourly values for the road edges around

stations were needed. First, the road edges around stations selected using “$geonear”

function in MongoDB. Second, averages per hour calculated for all the roads around

each station. This is a combination of aggregate queries and spatial queries.

3.3.3.4 Correlation analysis between traffic and pollution

According to research done on MongoDB documentation, there is no functionality to

calculate correlation in MongoDB. That kind of analysis could be done with python,

by calling the results from spatial query with averaged hourly traffic values around

stations, and the station values in python to process. As this is not a MongoDB

functionality, and not in scope of the aim of this work, that step is skipped.

19

4. RESULTS

MongoDB appeared to have favorable performance overall, although some results

expose areas of improvement.

4.1 Results of Preprocessing of Data

Preprocessing of traffic data was the biggest problem of this study. The preliminary

aggregation had to be done in python before importing the data into the database, due

to the confidentiality issues of the data and document size limitation in MongoDB.

During this preprocess in python, as more slices are preprocessed, runtime for one slice

increased exponentially, resulting in an unacceptable processing time. Many aspects

reviewed and tested to overcome this issue without any success yet.

Considering that issue is not related to the database and aim of the study is to

experiment on the database performance, at the end only a part of the roads inside a

polygon in, distriuted among 4 different data files were selected and imported into the

database for the sake of the study. After lots of trials, most with most efficient

preprocessing method tested, it took 538.96 hours, around 23 days pure processing

time in total, only for half of the data.

As an important note to mention, almost all of this time spent for preprocessing. Import

into MongoDB took 9.35 min for complete data, all rest of the time spent was for

preprocessing.

For pollution data, preprocessing step was quite fast, all preprocessing and import

completed in 14.9 seconds.

In Table 4.1 time spend for preprocessing and import per amount of docs can be seen.

Table 4.1: Import times

Data
Count

of docs

Total preprocessing

time (seconds)

Only import

time (seconds)

Traffic data 28613 1940270.26 561.04

Pollution data 43 14.31 0.8

20

4.2 Results of Processing and Analysis

Statistics for traffic and pollution data were created using aggregate query functions,

which are run on one collection, without any join operation. These statistical

aggregations were easy to perform and resulted in short times, demonstrating the

strength of aggregation queries in MongoDB. While queries on unnested objects were

extremely fast, nested objects values were slower.

Spatial querying functions were available in MongoDB, and they performed well for

queries on one collection, with geospatial index. Although, geospatial joins across two

collections were not possible without any third party tool or script.

Correlation analysis was not achievable with built-in functionalities of MongoDB.

Therefore, for this analysis is MongoDB can be only used to retrieve the necessary

data. With a test for that kind of action action, also reading and retrieving performance

of MongoDB was comprehended as well, which is one of the strongest aspects of it.

Runtimes for queries performed and amount of docs returned can be seen in below

Table 4.2.

Table 4.2 : Query runtimes

Query
Count of docs

returned

Runtime

(Seconds)

export road ids 28613 7.633

count roads 1 7.337

compare total value counts of segments with

sum of counts per hour (includes nested

values)

28555 185.695

get overall hourly averages (includes nested

values)

8784 243.066

get overall hourly averages per pollutant

(includes nested values)

68543 0.666

select roads within 50m around point

coordinates

8 0.201

select roads within 100m around point

coordinates

23 0.462

select roads within 250m around point

coordinates

68 0.768

select roads within 500m around point

coordinates

88 0.835

21

4.3 General Results

During the initiation of this study, first database tested was couchdb, but due to limited

querying functionalities and insufficient interface, it was decided to change the

database to be tested.

Secondly Couchbase is tested. With it, querying and basic functionalities were simpler

but imports were excessively slow, therefore database changed once again. It was later

understood that the main reason for slow import rate was looping over very big text

files during preprocessing, but MongoDB was slightly faster.

After having problems with two NoSQL databases, finally, experiment conducted and

completed with MongoDB.

22

23

5. CONCLUSIONS

In this work, it was aimed to test the functionalities of a NoSQL database and generally

review the performance and capabilities, including geospatial querying options.

As a result of the study, it is observed that aggregate queries and basic spatial queries

on single collections are the strength of MongoDB. Whereas, gaps in complex

querying and spatial joining functionalities are the weak sides of it. While running very

fast for the first level elements in documents, queries on nested elements are giving

results much slower. Overall, taking into account that third party softwares can be

utilized to perform more complex analyses in MongoDB, it may be asserted that

MongoDB is a preferable database for big data management.

The main problem found about MongoDB is the inability of performing complex cross

queries on the database. In following works, new ways of querying on MongoDB can

be investigated. Also, other NoSQL database systems can be analysed in the same way

and supportive tools and engines can be explored in order to develop stronger systems.

Moreover, the dataset created can be used to extract some meaningful results from the

data in line with the smart city needs, such as usage of sensor data for decision making

and city management, enhancing interpolated pollution models with traffic data, it can

be even enriched with sensor data coming from other sources such as meteorological

data and open new areas of investment.

24

25

REFERENCES

Agarwal, S., & Rajan, K. S. (2017). Analyzing the performance of NoSQL vs. SQL

databases for Spatial and Aggregate queries. In Free and Open Source

Software for Geospatial (FOSS4G) Conference Proceedings (Vol. 17,

No. 1, p. 4).

Baralis, E., Dalla Valle, A., Garza, P., Rossi, C., & Scullino, F. (2017, December).

SQL versus NoSQL databases for geospatial applications. In 2017

IEEE International Conference on Big Data (Big Data) (pp. 3388-

3397). IEEE.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and

applications, 19(2), 171-209.

Diaconita, V., Bologa, A. R., & Bologa, R. (2018). Hadoop Oriented Smart Cities

Architecture. Sensors, 18(4), 1181.

Hahmann, S., Burghardt, D., & Weber, B. (2011). “80% of All Information is

Geospatially Referenced”??? Towards a Research Framework: Using

the Semantic Web for (In) Validating this Famous Geo Assertion. In

Proceedings of the 14th AGILE Conference on Geographic Information

Science.

Lee, J. G., & Kang, M. (2015). Geospatial big data: challenges and opportunities. Big

Data Research, 2(2), 74-81.

Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., ... &

Cheng, T. (2016). Geospatial big data handling theory and methods: A

review and research challenges. ISPRS journal of Photogrammetry and

Remote Sensing, 115, 119-133.

Li, Y., & Manoharan, S. (2013, August). A performance comparison of SQL and

NoSQL databases. In 2013 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing (PACRIM) (pp.

15-19). IEEE.

Lian, J., Miao, S., McGuire, M., & Tang, Z. (2018, October). SQL or NoSQL?

Which Is the Best Choice for Storing Big Spatio-Temporal Climate

Data?. In International Conference on Conceptual Modeling (pp. 275-

284). Springer, Cham.

Malik, K. R., Sam, Y., Hussain, M., & Abuarqoub, A. (2018). A methodology for

real-time data sustainability in smart city: Towards inferencing and

analytics for big-data. Sustainable Cities and Society, 39, 548-556.

Zafar, R., Yafi, E., Zuhairi, M. F., & Dao, H. (2016, May). Big data: the NoSQL

and RDBMS review. In 2016 International Conference on Information

and Communication Technology (ICICTM) (pp. 120-126). IEEE.

Zhang, X., Song, W., & Liu, L. (2014, June). An implementation approach to store

GIS spatial data on NoSQL database. In 2014 22nd international

conference on geoinformatics (pp. 1-5). IEEE.

Url-1 <https://www.tomtom.com/lib/doc/licensing/I.CPC.EN.pdf>, date retrieved

30.04.2019.

26

Url-2 <https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx>, date

retrieved 30.04.2019.

Url-3 <https://www.mongodb.com/what-is-mongodb>, date retrieved 30.04.2019.

Url-4 <https://docs.mongodb.com/v3.0/core/sharding-introduction/>, date retrieved

30.04.2019.

Url-5 <https://nosqlbooster.com/features#QueryMongoDBwithSQL>, date retrieved

30.04.2019.

Url-6 <https://docs.mongodb.com/manual/reference/limits/>, date retrieved

30.04.2019.

27

APPENDICES

APPENDIX A: Python codes to process and import traffic data

APPENDIX B: Python codes to process and import station data

APPENDIX C: Queries on MongoDB

28

APPENDIX A

Python code to create list of beginning and ending line numbers for slices:

-*- coding: utf-8 -*-

"""

Created on Wed May 9 16:18:36 2018

@author: ergin

"""

infiles =

['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4538368n0l.txt',

 '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4546560n0l.txt',

 '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4538368n0l.txt',

 '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4546560n0l.txt']

#use UTF8 without BOM!

#infiles = ['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/samples/sample_.txt']

#use UTF8 without BOM!

out_file = '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/segments_20190406.txt'

seg_ids = {}

segments = open(out_file, "a")

With keys ###

v=len(infiles)

for k in range(v):

 infile=infiles[k]

 with open(infile) as f:

 for ids, line in enumerate(f):

 if line.split(' ')[0] == 'DSEG':

 seg_ids[ids] = line.split(' ')[2]+' '+line.split(' ')[3]

 for i,j in seg_ids.items():

 segments.writelines(str(i) + ' '+ str(j))

 seg_ids = {}

segments.close()

Python code to preprocess and import traffic data:

-*- coding: utf-8 -*-

"""

Created on Fri May 25 18:00:20 2018

@author: ergin

"""

import time

29

from itertools import islice

import pandas as pd

import numpy as np

start_time = time.time()

##input file path or paths - use UTF8 without BOM!

#infile = '/home/ezgi/Desktop/Milan/sample.txt'

infile = '/home/ezgi/Desktop/Milan/00901120e4538368n0l.txt'

#infile = '/home/ezgi/Desktop/Milan/00901120e4546560n0l.txt'

#infile = '/home/ezgi/Desktop/Milan/00917504e4538368n0l.txt'

#infile = '/home/ezgi/Desktop/Milan/00917504e4546560n0l.txt'

segidfile='/home/ezgi/Desktop/Milan/first_imp_00901120e4538368n0l.txt'

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00901120e4546560n0l.txt'

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00917504e4538368n0l.txt'

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00917504e4546560n0l.txt'

geof = '/home/ezgi/Desktop/Milan/geom.txt'

###mongodb connection

dbname = 'probe'

from pymongo import MongoClient

db=MongoClient('localhost', 27017).milan

collection=db[dbname]

find segment start index list for all

#seg_ids = {}

#with open(infile) as f:

for ids, line in enumerate(f):

if line.split(' ')[0] == 'DSEG':

seg_ids[ids] = int(line.split(' ')[3])

#or directly give the segids list in dictionary from file

file=open(segidfile, "r").read()

seg_ids=eval(file)

file=""

print("--- %s seconds prep segids ---" % (time.time() - start_time))

print("--- count of segids: ", len(seg_ids))

slice file for each segment

inp = open(infile, 'r')

geodf = pd.read_csv(geof, sep = '\t', encoding = 'utf-8')

geodf = geodf.drop(columns="Type")

bulk=[]

for i in range(0,len(seg_ids)):

start_time_per_seg =time.time()

 ##select the segment

30

 inp.seek(0)

 segment_slice = islice(inp,list(seg_ids.keys())[i],

(list(seg_ids.keys())[i]+list(seg_ids.values())[i]+1))

 segment = list(segment_slice)

 ##define header and initiate document

 header = segment[0].split(' ')

 doc = {'seg':str(header[2][1:]),'dir':str(header[2][0]),'tot':int(header[3])}

 ##define contents

 lines = []

 for _, line in enumerate(segment[1:]):

 line_split = line.split(' ')

 ##convert epoche to datetime

 t_orj = int(line_split[1])

 t = time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime(t_orj))

 ##create new line

 new_line = [t, float(line_split[2]), int(line_split[5])]

 lines.append(new_line)

 ##summarize contents

 df=pd.DataFrame(lines, columns=('t','speed', 'cover'))

 lines = []

 df['t'] = pd.to_datetime(df['t'], format='%Y-%m-%dT%H:%M:%S')

 df = df.set_index(pd.DatetimeIndex(df['t']))

 del df['t']

 df_avg = df.resample('H').mean()

 df_count = df.resample('H').count()

 df_a_clean = df_avg.dropna(axis=0, how='all')

 df_c_clean = df_count.replace(0,np.nan).dropna(axis=0, how='all')

 df_final = pd.concat([df_a_clean.speed, df_c_clean.cover],

axis=1).rename(columns={'speed': 'avg_speed', 'cover': 'count'})

 df = []

 df_avg = []

 df_count = []

 df_a_clean = []

 df_c_clean = []

 ##append summary into document as list

 segment_tags =[]

 for j in df_final.index:

 d = {"tm": str(j),

"spd":float(df_final['avg_speed'][j]),"cnt":int(df_final['count'][j])}

 segment_tags.append(d)

 doc.update({"values":segment_tags})

 segment_tags =[]

 df_final = []

 geofltr = geodf['segid'] == header[2][1:]

 g = {'geometry':{'type':"LineString",

'coordinates':eval(list(geodf[geofltr]['coordinates'])[0])}}

 doc.update(g)

 bulk.append(doc)

31

 doc=[]

 if len(bulk)>1000:

 print("--- %s seconds bulk prep complete---" % (time.time() - start_time))

 print("--- count of segments: ", len(bulk))

 ##bulk insert into mongodb

 collection.insert_many(bulk)

 print("--- %s seconds bulk insert complete---" % (time.time() - start_time))

 bulk=[]

 else:

 continue

print("--- %s seconds last bulk prep complete---" % (time.time() - start_time))

print("--- count of segments: ", len(bulk))

##bulk insert into mongodb

collection.insert_many(bulk)

print("--- %s seconds bulk insert complete---" % (time.time() - start_time))

32

APPENDIX B

Python code to preprocess and import pollution data:

-*- coding: utf-8 -*-

"""

Created on Fri May 25 18:00:20 2018

@author: ergin

"""

import time

start_time = time.time()

##input file path or paths - use UTF8 without BOM!

values =

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_values.txt

'

legenda =

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_legenda.t

xt'

geof =

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/Stazioni_scope_g

eom.geojson'

###mongodb connection

dbname = 'pollution'

from pymongo import MongoClient

db=MongoClient('localhost', 27017).milan

collection=db[dbname]

geom=eval(open(geof).read())['features']

del geof

heads=[]

with open(legenda) as l:

 for idl, rowl in enumerate(l):

 header=rowl.split('\t')

 head={'st_id':str(header[0]),

 'st_name':str(header[1].replace("Ã\xa0","a").replace(" - "," ").replace(" P.zza

"," ").replace(" viale "," ").replace(" via "," ").replace(" "," ")),

 'sensor_id':str(header[2]),

 'pollutant':str(header[4]),

 'formula':str(header[5]),

 'availability':str(header[6]),

 'unit':str(header[7]).replace('Â','').replace('\n','')}

 for i in geom:

 st_ng = str(i['properties']['Stazione']).replace("Ã\xa0","a")

 if st_ng==str(head['st_name']):

 head.update({'geometry':i['geometry']})

33

 heads.append(head)

print("--- %s seconds prep headers ---" % (time.time() - start_time))

for i in range(1,len(heads)):

 start_time2 = time.time()

 doc=heads[i]

 sensorid=doc['sensor_id']

 st_tags=[]

 with open(values) as v:

 for idv, rowv in enumerate(v):

 line=rowv.split('\t')

 if str(sensorid)==str(line[0]):

 d={"tm":str(line[1]),"poll":float(line[2])}

 st_tags.append(d)

 doc.update({"values":st_tags})

 st_tags=[]

 ##insert into mongodb

 collection.insert_one(doc)

 print("--- %s seconds --- per doc" % (time.time() - start_time2))

print("--- %s seconds import end ---" % (time.time() - start_time))

34

APPENDIX C

/**
*Query to export road ids
*/

use milan
db.probe.aggregate([{
$project: {

dir: 1,
seg: 1
}

}, {
$sort: {

_id: -1
}

}])

--

Runtime: 7.633

===

35

/**
*Query to count roads
*/

use milan
db.probe.aggregate([{
$group: {
 _id: {segment:"$segment",direction:"$direction"},
 count: { $sum: 1 }
 }
}, {
$match: {
 count: {$gt: 0}

}
}])

--

Runtime: 7.337

===

36

/**
*Query to compare total value counts of segments with sum of counts per hour
*/

db.probe.aggregate(
 [
 {$unwind: "$values"},
 {$group: {
 _id: {segment:"$seg",total:"$tot"},
 tot: {$sum: "$values.cnt"}
 }

 }
]
)

--

Runtime: 185.695

===

37

/**
*Query to get overall hourly averages
*/

db.probe.aggregate(
 [
 {$unwind: "$values"},
 {$group: {
 _id: {hour:"$values.tm"},
 average: {$avg: "$values.spd"},
 count: {$avg: "$values.cnt"}
 }

 }
]
)

--

Runtime: 243.066

===

38

/**
*Query to get overall hourly averages per pollutant
*/

db.pollution.aggregate(
 [
 {$unwind: "$values"},
 {$group: {
 _id: {hour:"$values.tm", pollutant:"$pollutant", formul:"$formula"},
 average: {$avg: "$values.poll"},
 count: {$avg: "$values.cnt"}
 }

 }
]
)

--

Runtime: 0.666

===

39

/**
*Query to select roads around coordinates
*/

db.probe.aggregate([
 {
 $geoNear: {
 near: { "type": "Point", "coordinates": [9.167944507885444,
45.443859723844753] } ,
 key: "geometry",
 distanceField: "dist.calculated",
 maxDistance: 50,
 }
 }
])
.limit(500)

--

Runtime: 0.201

===

40

/**
*Query to select roads around coordinates
*/

db.probe.aggregate([
 {
 $geoNear: {
 near: { "type": "Point", "coordinates": [9.167944507885444,
45.443859723844753] } ,
 key: "geometry",
 distanceField: "dist.calculated",
 maxDistance: 100,
 }
 }
])
.limit(500)

--

Runtime: 0.462

===

41

/**
*Query to select roads around coordinates
*/

db.probe.aggregate([
 {
 $geoNear: {
 near: { "type": "Point", "coordinates": [9.167944507885444,
45.443859723844753] } ,
 key: "geometry",
 distanceField: "dist.calculated",
 maxDistance: 250,
 }
 }
])
.limit(500)

--

Runtime: 0.768

===

42

/**
*Query to select roads around coordinates
*/

db.probe.aggregate([
 {
 $geoNear: {
 near: { "type": "Point", "coordinates": [9.167944507885444,
45.443859723844753] } ,
 key: "geometry",
 distanceField: "dist.calculated",
 maxDistance: 500,
 }
 }
])
.limit(500)

--

Runtime: 0.835

===

43

CURRICULUM VITAE

Name Surname: Ezgi Ergin

Place and Date of Birth: İstanbul, 25.01.1989

Address: Gent, Belgium

E-Mail: ezgiergin89@gmail.com

B.Sc.: 2010, İstanbul Technical University, Civil Engineering

Faculty, Department of Geomatics Engineering

Professional Experience and Rewards:

• 2012- …. TomTom International BV., Quality, Training and Methods

Coordinator

• 2011-2012 Sistem AŞ, GIS products Sales & Support

List of Publications and Patents:

▪ Ergin, E., Dogru, A. O. (2019): “An Investigation on Geospatial Functionalities of

MongoDB”, Submitted to International Symposium on Applied Geoinformatics,

Istanbul, Turkey.

▪ “Free & Open Source GIS Technology”, ITU Geomatics Engineering, BSc.

Thesis, Prof. Dr. Rahmi Nurhan Çelik, Dr. Caner Güney, August 2010.

