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EXPLORING THE POSSIBILITIES OF GEOSPATIAL BIG DATA 

MANIPULATION USING NOSQL 

SUMMARY 

With the rapid population increase in the cities, the need for a powerful, dynamic city 

management is becoming more crucial. In order to overcome the problems appearing 

as the cities grow (e.g. transportation, resource management, pollution, waste disposal, 

ect.), the smart city concept comes into prominence. Smart city is a comprehensive 

system that utilizes various data coming from different sources, provides storing, 

monitoring and analyzing infrastructure, and delivers solutions for the problems and 

activities. The handling of the unstructured data continuously coming from different 

sources and expanding in size (i.e. big data) is the main struggle. Especially, 

considering that most of the data is georeferenced, geospatial indexing and processing 

for that kind of big data is of high importance. Current traditional relational database 

systems have strong geospatial functionalities in a part of them (e.g. Postgresql), 

however they have two major limitations. First is the fixed column-based schema 

structure, which obstructs the unstructured data import, and the second is the hardware 

dependency on the performance. Therefore, to cover the scalability and flexibility 

needs of big data management, NoSQL (Not Only SQL) databases are developed. 

NoSQL databases are non-relational and unstructured, hence can store different types 

of data altogether. They are horizontally scalable, which means performance can be 

increased by adding machines into the system. Furthermore, NoSQL data storing 

functionalities support nested hierarchical data models, which is not available in 

relational databases. Nevertheless, it is still a discussion if SQL based relational 

databases can be replaced by NoSQL.  Based on the studies comparing these two, not 

all NoSQL databases perform better than SQL databases. On the other hand, two of 

the most popular NoSQL databases (i.e. MongoDB and Couchbase) are found to have 

superior performance than corresponding SQL databases in many aspects. In this 

study, we aimed to experiment on MongoDB on a single server, by importing a big 

geolocated traffic data and pollution sensor data, and performing aggregate queries, 

geospatial functions and correlation analysis on it.  Based on the results MongoDB 

showed a satisfying performance despite few constraints and gaps, especially for 

applying geospatial joins. This study can be carried further investigating the ways to 

execute more complex geospatial queryies on MongoDB, and by using larger data sets, 

additional servers, other NoSQL based systems and/or supportive tools.  
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NOSQL KULLANARAK MEKANSAL BÜYÜK VERİ İŞLEME 

OLANAKLARININ ARAŞTIRILMASI 

ÖZET 

Şehirlerdeki hızlı nüfus artışı ile birlikte güçlü, dinamik bir şehir yönetimine duyulan 

ihtiyaç gittikçe daha büyük bir önem kazanmaktadır. Şehirler büyüdükçe ortaya çıkan 

sorunların üstesinden gelmek için (ulaşım, kaynak yönetimi, kirlilik, atık bertarafı, vb.) 

akıllı şehir konsepti öne çıkmaktadır. Akıllı şehir, çeşitli kaynaklardan gelen farklı 

tipte verileri kullanan, depolama, gözlemleme ve analiz altyapısı sağlayan ve sorunlara 

ve aktivitelere yönelik çözümler sunan kapsamlı bir sistemdir. Bu tür bir sistemin en 

önemli girdisi değişik kaynaklardan sürekli olarak gelen ve biriken verilerdir. 

Farklı veri kaynaklarından ve sensörlerden gelen kesintisiz veri akışı büyük boyutlu 

ve yapılandırılmamış bir veri havuzu oluşturur. Bu tür veriyi tanımlamak için büyük 

veri terimi ortaya çıkmıştır. Çeşitli uzmanlık alanları arasında farklı tanımları olmasına 

rağmen, büyük veriler için en yaygın kullanılan tanımı, geleneksel yöntemlerle 

kolayca depolanamayan, işlenemeyen veya analiz edilemeyen, çoğunlukla 

yapılandırılmamış büyük miktarlarda veridir. Büyük verilerin ana özellikleri, hacmi, 

kendi içinde çeşitliliği, farklı veri türleri ve yaklaşımlarına sahip olması, sürekli bir 

akış içinde birikmesi ve ortaya çıkarması zor olan yüksek değerler içermesidir. 

Şehirlerdeki çoklu veri kaynaklarından ve sensörlerden gelen büyük veriler trendler, 

davranışlar, gerçek zamanlı çözümler vb. hakkında değerli bilgiler içerir, bu sebeple 

analiz edilmeleri önemli bir konudur. 

Büyük verilerle ilgili en önemli komplikasyon, verinin işlenmesi ve anlamlı bilgilerin 

çıkarılması olmuştur. Mevcut geleneksel yaklaşımda, SQL (Structured Querying 

Language) tabanlı ilişkisel veritabanları yaygın olarak kullanılır. SQL, karmaşık 

sorgular gerçekleştirme ve sağlam ve istikrarlı bir altyapı oluşturma kapasitesine sahip, 

güçlü bir sorgulama dilidir. Öte yandan, ilişkisel veritabanlarında veriler önceden 

oluşturulmuş veritabanı şemasına göre yapılandırılmalıdır, bu durum düzensiz verinin 

içe aktarımını engellemekte. çeşitli veri türlerini aynı yerde depolanmasını 

destekleyememekte ve faklı türde verileri ön düzenleme yapmadan birlikte 

işleyememektedir. Ayrıca performansı donanıma bağlıdır ve bilgisayar kapasitesi 

güçlendirilerek artırılabilir, ancak yine de donanım özellikleriyle sınırlıdır. 

Geleneksel SQL veritabanlarının bu tür yetersizlikleri nedeniyle NoSQL (Not Only 

SQL) veritabanları geliştirilmiştir. Bunlar, geleneksel veritabanı sistemlerinin 

eksiklikleri olan esneklik ve performans sorunlarını çözümleyecek şekilde 

tasarlanmıştır. NoSQL veritabanları SQL tabanlı olanlar gibi standart bir sisteme sahip 

değildir. Her veri tabanı kendi modeline, veri formatına ve sorgulama diline sahiptir 

ve hepsi farklı amaçlara hizmet edebilir.  

NoSQL, temel olarak geleneksel tablolar yerine yoğunluklu olarak “anahtar: değer” 

çiftleri ya da JSON (JavaScript Object Notation) benzeri döküman formatı kullanan, 

ilişkisel olmayan, düzensiz bir veritabanı sistemidir. Bu, yapılandırılmamış verilerin 

aynı veri tabanında depolanmasını ve elastik şema yönetimi ile esneklik sağlamaktadır. 

Performans donanıma daha az bağımlıdır ve yükü dağıtmak için daha fazla sunucu ya 

da bilgisayar eklenerek performans arttırılabilir, böylece daha büyük veri kümelerini 

yönetmek mümkündür. JSON benzeri veri formatı sayesinde NoSQL sistemler 

ilişkisel veritabanı sistemleri tarafından doğru şekilde desteklenmeyen ağaç benzeri 

hiyerarşik veri depolamayı destekleyebilimektedir. Benzer şekilde, yine klasik ilişkisel 
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veritabanı sistemlerinde uygulanamayan hiyerarşik veri modellerini de 

desteklenebilmektedir. 

Bunlarla birlikte, NoSQL sorgulama dilleri standartlaştırılmamıştır, her veritabanının 

kendi sorgulama dili vardır, dolayısıyla karmaşık sorguları gerçekleştirmek SQL'e 

göre daha zorludur. 

Ayrıca, yüksek frekanslı işlemleri desteklemek için kullanılabilse de, NoSQL 

veritabanları ilişkisel olanlar kadar stabil değildir. 

Varolan verilerin çoğunluğunun coğrafi olduğu ve coğrafi referanslı verilerin miktarı 

her yıl ciddi bir şekilde arttığı düşünüldüğünde, bu tür büyük verilerin coğrafi olarak 

indekslenebilmesi ve işlenebilmesi büyük önem taşımaktadır. Bu sebeple SQL ya da 

NoSQL, coğrafi özellikli büyük veri işlenecek her veritabanında ölçeklenebilir coğrafi 

sorgulama ve analiz işlevlerinin olması ve yeterliliği mühim bir kriterdir.  

Genel olarak SQL ve NoSQL tabanlı veritabanlarını karşılaştıran çalışmalara 

bakıldığında, NoSQL veritabanları her zaman SQL veritabanlarından daha iyi 

performans göstermemektedir. Öte yandan, en popüler NoSQL veritabanlarından 

ikisinin (MongoDB ve Couchbase), birçok açıdan karşılaştırıldıkları SQL 

veritabanlarından daha üstün performans gösterdiği gözlemlenmiştir. Özel olarak 

coğrafi sorgulama kapasitelerine bakıldığında ilişkisel veritabanlarının güçlü ve 

standart SQL tabanlı sorgulama özellikleri dolayısıyla oldukça komplike coğrafi 

analizler yapabildiği, NoSQL veritabanlarının ise bir kısmının coğrafi indexleme 

kapasitesiyle beraber temel coğrafi analizleri de yapabildiği ve üçüncü parti 

yazılımlarla daha da derin analizler koşturulabildiği görülmektedir. 

Bu çalışmada, coğrafi büyük verileri bir NoSQL veritabanına aktarma olasılıklarını ve 

metodolojilerini araştırmak ve bu veri tabanının verimliliğini veri işleme, sorgulama, 

coğrafi fonksiyonlar ve analizler açısından test etmek amaçlanmıştır. Uygulama için 

Milan şehrinin bir senelik büyük trafik ve hava kirliliği verileri NoSQL veritabanına 

işlenmiş, ayrıca bu veritabanı tarafından desteklenen bazı temel mekansal işlevler test 

edilmiştir. Kullanılan trafik verisi, trafikteki araçlardan yaklaşık 30 saniyelik frekansla 

alınan hız verisidir. Tekil araç bilgisi içerdiği için hassas ve gizli olan bu veri 

anonimize edilerek kullanılmıştır. Hava kirliliği verisi ise Milan şehri merkezini 

kapsayan 11 hava gözlem istasyonunda toplanan ve internet üzerinden paylaşılan  

gözlemlerden alınmıştır.  

Araştırma yaygın kullanılan, JSON benzeri döküman tabanlı ve ücretsiz bir NoSQL 

veritabanı olan MongoDB için yapılmıştır. Bu veritabanının tercih edilmesi mekansal 

indeksleme seçeneğine sahip, büyük veri erişiminde ve sorgulamalarında verimli, 

esnek ve yaygın kullanımı nedeniyle önemli miktarda dokümantasyona sahip 

olmasından ötürüdür.  

Çalışma kapsamında eldeki veri kullanım koşullarına uygun bir şekilde işlenerek 

MongoDB içine aktarılmış ve temel toplu (aggregate) sorgular, coğrafi fonksiyonlar 

ve korelasyon analizleri denenerek veritabanı test edilmiştir. Verilerin hazırlanması ve 

aktarımı python betik dili ile yapılmıştır. Veritabanına erişim ve sorgulamalar için 

MongoDB Compass ve NoSQLBooster programlarından faydalanılmıştır.  

Çalışmanın sonuçlarına göre MongoDB bazı veritabanının standart fonksiyonlarına 

bağlı sınırlamalar (örneğin korelasyon analizinin direk olarak mümkün olmaması) ve 

mekansal katman birleştirme konusundaki eksiklerinin dışında olumlu bir performans 

göstermiştir.  

Bu bağlamda, toplu sorgular ve tek koleksiyonlardaki temel mekansal sorguların 

MongoDB'nin güçlü yönü olduğu görülmektedir. Fakat karmaşık sorgulama ve 

mekansal birleştirme fonksiyonlarında zayıflıkları bulunmaktadır. Genel olarak, 

üçüncü parti yazılımların daha karmaşık analizler yapmak için kullanılabileceği göz 
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önüne alındığında, MongoDB'nin büyük veri yönetimi için tercih edilebilir bir 

veritabanı olduğu söylenebilmektedir. 

Bu çalışma MongoDB üzerinde karmaşık mekansal sorguların uygulanma yollarının 

araştırılmasıyla, daha büyük veri setleri ve ek sunucu kullanımı ile, diğer NoSQL 

tabanlı sistemler ve destekleyici araçların incelenmesiyle ve elde edilen analiz 

sonuçlarından şehir yönetimi konusunda faydalanılma olanaklarının tahkik 

edilmesiyle farklı açılardan daha ileri götürülebilmesi mümkündür.  
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1.  INTRODUCTION 

In this age, human population is fast moving from rural areas to cities. According to 

United Nations, by 2050, 70% of the population will be living in the urban areas 

(Diaconita et al., 2018). The drastic increase of the inhabitance in cities will also bring 

problems in urban planning, employment, habitation, transportation, share of energy 

sources, natural resources management, pollution and so forth. Hence, structuring a 

well-organized, flexible, scalable, efficient and sustainable city planning is very 

important in that aspect which brings us to smart city concept. Smart city is a digital 

infrastructure using Information Communication Technology (ICT) and Internet of 

Things (IoT) technologies, in other words, a thorough system providing storage, 

monitoring, analysis and solution of the activities and problems in cities. Continuous 

data collection from different sources in the urban zone such as networks, services, 

cameras and sensors is crucial for smart cities (Malik et al., 2017). Especially, sensor 

data, which is basically an output from any kind of sensor storing and/or reacting to 

changes in surroundings, can be considered as the main data source for IoT and smart 

cities. As it is continuously streamed, the size of this sensor data can be huge and the 

growth in the unstructured data obtained from different sources introduced the term 

big data that is one of the most important trending topics (Li et all, 2016).  

Big data has long been a controversial topic due to the difficulties of describing its 

characteristics and therefore developing the methodology to extract meaningful 

information. Divisions on big data is mostly on the definition of it across different 

domains, still most common definition of big data is, huge amounts of data which is 

generally unstructured, cannot be easily stored, processed or analyzed with 

conventional methods (Li et all, 2016). In addition to that definition, Chen et al. (2014) 

reviewed several different definitions of big data and summarized the main features of 

it as 4Vs: Volume (i.e. big size data), Variety (i.e. different data types and approaches), 

Velocity (i.e. continuously populated and streamed), Value (contains high value that 

is hard to extract). However, the most significant complication about big data is not 
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the definition of it, but the processing and extraction of meaningful information (i.e. 

value) from it have been the hardest to tackle on big data. 

In traditional approach, SQL (Structured Querying Language) based relational 

databases are commonly used with a very strong querying language to handle the data 

with capability to perform complex queries and establishing a robust and stable 

infrastructure. On the other hand, relational databases are table based with fixed 

columns and data should be structured according to the pre-constructed database 

schema, which is resulting in a rigid structure to be able to insert because it cannot 

support various data types. Performance depends on the hardware, and can be 

increased by upgrading it, yet still limited to hardware capabilities.  

Due to these limitations, NoSQL (Not Only Structured Query Language) logic is 

developed. NoSQL is a non-relational, distributed database system using mainly 

‘’key:value” pairs as documents instead of traditional tables. This approach allows 

storing unstructured data altogether in the same database, thus it provides flexibility 

with elastic schema management. Performance is less dependent on the hardware and 

can be increased by adding more servers to distribute the load, therefore it is possible 

to manage much larger datasets. Thanks to JSON (JavaScript Object Notation) like 

data format, NoSQL supports tree-like hierarchical data storage which is not properly 

supported by relational database systems. Hierarchical data model support is a 

significant reason to prefer NoSQL for big data processing.  Along with these, NoSQL 

querying languages are not standardized, each database has its own querying language, 

consequently, performing complex queries is less efficient than SQL. Moreover, 

although it can be used as a database to support high amount of actions such as 

purchasing, NoSQL is not as stable as relational databases.  

It is important to underline the fact that most of the data is georeferenced, and 

according to the common assumption 80% of it is spatial (Hahmann et al., 2011). 

Furthermore, as indicated by Lee and Kang (2015), the percentage of the geolocated 

data is drastically rising which is an evidence that personal location data amount is 

increasing by 20% every year. To handle such geospatial big data, the database, 

whether traditional SQL or new generation NoSQL should have scalable geospatial 

data processing features.  
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In this context, the aim of the study is to investigate the possibilities and methodologies 

to import big geospatial data (e.g. satellite imageries, mobile tracking, traffic, 

meteorology, temperature, pollution, etc.) into a NoSQL database and to test efficiency 

of that database in terms of data processing, querying, geospatial functions and 

analyzing. Although there are some studies (see Chapter 2) focusing on NoSQL 

database performance on web services, real time applications, comparisons vs classic 

relational database systems on architecture, there is still a little known about querying 

and geospatial analysis functionalities of NoSQL database systems. Therefore, we will 

use big traffic and pollution data to be processed and imported in one of the NoSQL 

databases; and test some basic geospatial functions that is supported by that database. 

In the next chapter, we will present a literature overview on relational and non-

relational databases, their applications, and geospatial functionalities and capabilities. 

In Chapter 3, a case study to test functionalities of a NoSQL database will be explained, 

and this chapter is followed by the results of the case study including the problems 

faced during the application. Finally, in Chapter 5, general conclusions will be drawn, 

and further possibilities will be discussed. 
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2.  LITERATURE REVIEW 

With the recent advances in technology, new data sources arise and the need for rapid 

information exchange is emerging. However, data collected from various sources in 

large amounts, which is called big data, brings its own challenges for storing, 

management and processing. Li et al. (2016) listed some of the fundamental challenges 

as efficient representation and modeling, analyzing, mining and visualizing and quality 

assessment of geospatial big data. According to them, further development and 

research needs to focus on the following areas: real time spatial indexing algorithms, 

better data mining algorithms, more efficient and complex visualization considering 

task and user needs (e.g. online 3D visualization tools), more effective quality 

assessment approaches, more sophisticated definition of semantics and ontology 

relationships.  

To meet the most of the needs mentioned above, non-relational databases have been 

developed and rapidly replacing the relational databases such as PostgreSQL, Oracle 

and MySQL. Unlike relational databases, these non-relational databases which are 

called as NoSQL vary in terms of their architecture, flexibility, scalability and abilities 

to store, manage, query and transfer the data. Existing NoSQL data system 

architectures can be classified as key:value, document, graph and column based 

databases (Zafar et al., 2016). Figure 2.1 demonstrates the data model, strength and 

weaknesses of these four database types in detail by providing examples. Querying 

varies in each of these NoSQL database types and majority of them requires additional 

scripts to perform complex queries.  

Along with the new approaches NoSQL provides, it still remains a question whether 

NoSQL databases can completely replace traditional relational databases. Therefore, 

comparisons between the performances of SQL and NoSQL databases are required in 

different aspects.  

In 2013, Li and Manoharan tested the performances (i.e. run time) of basic operations 

which are instantiation, read, write, delete and iteration for six NoSQL databases (i.e. 
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Cassandra, Couchbase, CouchDB, Hypertable, MongoDB, RavenDB) and compared 

with Microsoft SQL Server Express. According to the results, instantiation for MS 

SQL Server, Couchbase and MongoDB is significantly slower than others. For read 

and delete operations, MongoDB and Couchbase performed better than MS SQL 

Server compared to the others, although for write operation Couchbase, MongoDB, 

Cassandra and Hypertable were better than MS SQL. In terms of iteration no valuable 

difference observed in the performance. 

 

Figure 2.1 : Database Types (Zafar et al., 2016). 

In another study, the functionalities of the most popular four databases reviewed 

together as seen in Table 2.1, and an experiment performed to compare the webservice 

response times for relational Azzure  SQL database and NoSQL based Azzure 

Document DB (Baralis et al., 2017). Results revealed that Document DB responses 

considerably faster than Azzure SQL, whereas Azzure SQL is better in managing 

simultaneous requests.  

A different SQL versus NoSQL comparison based on the insert time, disk usage, 

memory usage and querying time is executed by Lian et al. (2018) using MongoDB 

and PostgreSQL. MongoDB was found explicitly advantageous for insert time and 

querying time, and no remarkable difference observed for memory usage, nevertheless 

in terms of disk usage PostgreSQL was found to be more beneficial. 

It has been mentioned in previous chapter that most of the big data is spatial, hence 

one of the most important aspects to evaluate is the geospatial functionalities of 

NoSQL. Although there are numerous NoSQL databases present in the market now, 

only  few  of  them  are  spatial.  Agarwal  and  Rajan (2017)   underline   that   spatial  
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Table 2.1 : Qualitive comparison of the functionalities of four geospatial databases (Baralis et al., 2017). 

Database 
Supported    

Geometry objects 

Main  supported 

geometry   functions 

Supported  Spatial  

indexes 

Compatibility with  

GeoServer 
DaaS Horizontal  scalability 

PostGIS Point, 

LineString, Polygon, 

MultiPoint, 

MultiLineString, 

MultiPolygon, 

GeometryCollec tion 

PostGIS supports 

the              Open 

Geospatial 

Consortium (OGC)   

methods on        

geometry instances 

B-Tree  index  R 

Tree index, GiST index 

Yes No No 

Azure SQL Database Point LineString, 

Polygon, MultiPoint, 

MultiLineString, 

MultiPolygon, 

GeometryCollection 

Azure           SQL 

Database 

supports          the 

Open  Geospatial 

Consortium (OGC)   

methods on        

geometry instances 

2d  plane   index, B-trees Yes Yes     (Microsoft Azure         

cloud computing 

platform) 

No 

MongoDB Point, 

LineString, Polygon, 

MultiPoint, 

MultiLineString, 

MultiPolygon, 

GeometryCollection 

Inclusion, 

Intersection, Dis 

tance/Proximity 

2dsphere    index, 

2d index 

Yes (based on the 

unsupported  external 

MongoDB plug-in  

included in  GeoTools) 

Yes   (MongoDB 

Atlas          cloud 

service) 

Yes (sharding) 

DocumentDB Point, 

LineString, Polygon, 

MultiPoint, 

MultiLineString, 

MultiPolygon, 

GeometryCollection 

Inclusion,     Dis- 

tance/Proximity 

2d   plane   index, 

quadtree 

Yes (based on the 

unsupported external 

MongoDB plug-in  

included in  GeoTools) 

Yes     (Microsoft 

Azure          cloud 

computing platform) 

Yes (sharding) 
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functionalities are quite recent for NoSQL databases, still a lot of improvement and 

investigation are needed. They also summarized the geometric operations of 

PostgreSQL/PostGIS, MongoDB and CouchDB as seen in Table 2.2, and tested the 

ones present in both PostgreSQL/PostGIS and MongoDB. As a result, MongoDB run 

almost 10 times faster for the common functions between them. This demonstrates that 

while PostgreSQL/PostGIS has wider geospatial functionalities, MongoDB performs 

faster with limited capabilities. 

Table 2.2 : Geo-functions of the databases (Agarwal, S., & Rajan, K. S., 2017). 

PostGIS MongoDB CouchBase 

ST  Within $geoWithin BBOX 

ST  Intersects $geolntersects  

ST  DWithin + Order by 

dist 
$near + param(Distance)  

ST   Area     

 

Zhang et al., (2014) has investigated the performance of storage and accessibility by 

importing and storing a big shapefile into MongoDB. According to them, MongoDB 

was considerably stronger than traditional relational database systems for handling 

massive amounts of data. 

Although there is still a need for more research to investigate the superiorities and gaps 

of NoSQL databases, and to evaluate advance functionalities with recent 

developments, the studies carried out until today indicate that MongoDB and 

Couchbase performs better than SQL databases in most cases. MongoDB and 

Couchbase perform significantly better especially when the shared functionalities 

between relational and NoSQL databases are considered. However, the rest of the 

NoSQL databases have weak performances compared to both relational and 

MongoDB and Couchbase databases. For that reason, we decided to use MongoDB in 

our study by thoroughly investigating both the basic functionalities including import 

of a big data, aggregate and spatial queries, more complex analysis such as correlation.  

 

 



9 

 

 

3.  CASE STUDY 

The purpose of the case study is to evaluate implementation and processing of big 

geospatial traffic data and pollution data from sensors in a NoSQL database. For that, 

first all data is preprocessed to implement in the database, and after importing basic 

aggregate and geospatial queries performed. Additionally, correlation between traffic 

and pollution data is calculated. 

3.1 Study Area 

The study performed for the city of Milan, the capital of Lombardy region and second 

biggest city in terms of population in Italy. Specific area is selected within a bounding 

box around the city center, as seen in Figure 3.1.  

 

Figure 3.1 : Study area. 
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The date is limited to a range from 01/01/2016 to 31/12/2016 for a complete year, 

based on available verified data. Pollution data is obtained from ARPA Lombardia 

(Agenzia Regionale per la Protezione dell’Ambiente Lombardia, in English: Regional 

Agency of Lombardy for Protecting the Environment), and traffic data is attained from 

a European navigation, mapping and traffic company TomTom B.V. 

3.2 Materials 

3.2.1 Data 

In this section, detailed information on characteristics, acquisition, distribution, 

temporal availability and completeness of the data used in the study is given, as this 

information is significant for interpreting results.  

3.2.1.1 Traffic data 

The data provided by TomTom B.V. Traffic Center is the probe counts product 

consisting of the speed data per vehicle with less than half minute temporal accuracy. 

This is a historical data collected from the vehicles in the traffic using TomTom 

products. From this data it is also possible to derive the number of cars present in the 

roads at a certain moment. As an important point, the provided data is of a specific 

TomTom product which stores data for a filtered set of vehicles. It contains only a part 

of the vehicles in the traffic, it does not have full coverage of the real-world situation 

and limited to the vehicles registered in this product.  It is designed that way due to 

business reasons and to guarantee consistency within the product.  

It is necessary to underline that this data is very sensitive and confidential since it has 

location and speed of each vehicle with a very high temporal intensity, therefore cannot 

be shared outside the company. Even within the company, the data for a single vehicle 

is not traced and never used alone. The products derived from this data are statistical 

information on traffic behavior, such as intensity of vehicles on a road per week days, 

business hours, day and night, ect. [Url-1]. For this reason, we had to anonymize the 

data before any use.  

Similar to the area and date range defined for the case study, traffic information was 

gathered for the center of Milan, from 01/01/2016 to 31/12/2016. The huge amount of 
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data was delivered in four datasets, one for each tile covering the city center, as shown 

in figure 3.2. Datasets include textual information with millions of rows, ordered as 

slices per road edge. Normally raw vehicle probe data has point locations, but this 

product is processed and mapped to TomTom road elements and raw locations are 

redundant. Each slice in datasets contains information on road edge at first row and 

the rest belongs to the vehicle information. Among vehicle information, only epoch 

time and speed of the vehicle are considered for the study. The size of the four datasets 

for center of Milan in year of 2016 is around 111 GB in total. Additionally, as these 

datasets do not contain the geometries of roads, geometry is obtained from TomTom 

2016 base map. 

 

Figure 3.2 : Distribution of the data. 

3.2.1.2 Pollution data 

Pollution data for the city of Milan is retrieved from the observations published by the 

ARPA Lombardia, which is the agency dealing with the environmental issues of 

Lombardy region in Italy. Their activities contain monitoring the environmental 

indicators such as water, air, waste, soil, natural hazards, noise etc., and taking 

preventive and actions [Url-2]. In this study, we focus on the observations related to 
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air pollution. ARPA Lombardia has total 137 air quality monitoring stations installed 

in Lombardy, stores the pollutant values such as Nitrogen oxides (NO/NO2), 

Particulate Matter (PM10/PM2.5), Carbon monoxide (CO), Black Carbon (BC), 

Benzene (C6H6), Sulfur dioxide (SO2) with hourly frequency. The observed values 

are released in the official website of ARPA Lombardia, besides, validated by the 

agency except for the data from last six months. 

For this study, hourly observations from 11 stations in center of Milan are considered. 

Distribution of the stations in scope can be seen in figure 3.2. The data is downloaded 

with a date range from 1/1/2016 to 31/12/2016. The reason to use the data from 2016 

is to benefit from the most recent officially validated pollution data by ARPA 

Lombardia at the time the study started.  

Another point to mention is that there are some gaps in the data, values are not 

available for every hour. Furthermore, not all pollutants are observed in all stations, 

each station monitors a limited set of pollutants. In Table 3.1 the completeness of the 

pollutants per station can be seen. 

Table 3.1 : Availability percentages of the pollution data. 

Station name Pollutant Formula availability 

Milano - viale Marche  Nitrogen dioxide NO2 98.7% 

Milano - viale Marche  Carbon monoxide CO 97.6% 

Milano - viale Marche  Nitrogen oxides NO 98.7% 

Milano - viale Marche  Benzene C6H6 91.4% 

Milano - P.zza  Zavattari  Nitrogen dioxide NO2 96.2% 

Milano - P.zza  Zavattari  Carbon monoxide CO 94.5% 

Milano - P.zza  Zavattari  Benzene C6H6 84.7% 

Milano - P.zza  Zavattari  Nitrogen oxides NO 96.2% 

Milano - Verziere  Nitrogen dioxide NO2 98.5% 

Milano - Verziere  Ozone O3 90.0% 

Milano - Verziere  Nitrogen oxides NO 98.4% 

Milano - Verziere  Particulate matter PM10 96.4% 

Milano - viale Liguria  Nitrogen dioxide NO2 88.3% 

Milano - viale Liguria  Carbon monoxide CO 92.5% 

Milano - viale Liguria  Nitrogen oxides NO 88.4% 

Milano - Parco Lambro  Nitrogen dioxide NO2 95.3% 

Milano - Parco Lambro  Ozone O3 89.9% 

Milano - Parco Lambro  Nitrogen oxides NO 95.3% 
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Table 3.1 (continued) :  Availability percentages of the pollution data. 

Station name Pollutant Formula availability 

Milano - via Senato  Nitrogen dioxide NO2 97.0% 

Milano - via Senato  Benzene C6H6 85.0% 

Milano - via Senato  Carbon monoxide CO 91.0% 

Milano - via Senato  Nitrogen oxides NO 97.0% 

Milano - via Senato  BlackCarbon BC 87.1% 

Milano - via Senato  Particulate matter PM10 96.4% 

Milano - via Senato  Particulate matter PM2.5 93.7% 

Milano - P.zza Abbiategrasso  Nitrogen dioxide NO2 88.7% 

Milano - P.zza Abbiategrasso  Nitrogen oxides NO 88.6% 

Milano - Pascal Città Studi  Benzene C6H6 91.9% 

Milano - Pascal Città Studi  Ammonia NH3 84.7% 

Milano - Pascal Città Studi  Nitrogen dioxide NO2 88.6% 

Milano - Pascal Città Studi  Sulfur dioxide SO2 87.5% 

Milano - Pascal Città Studi  BlackCarbon BC 99.2% 

Milano - Pascal Città Studi  Particulate matter PM2.5 89.9% 

Milano - Pascal Città Studi  Nitrogen oxides NO 90.0% 

Milano - Pascal Città Studi  Ozone O3 98.8% 

Settimo Milanese  Nitrogen dioxide NO2 81.9% 

Settimo Milanese  Nitrogen oxides NO 81.9% 

Corsico  Nitrogen dioxide NO2 96.2% 

Corsico  Ozone O3 94.1% 

Corsico  Carbon monoxide CO 87.4% 

Corsico  Nitrogen oxides NO 96.2% 

Pero  Nitrogen dioxide NO2 83.6% 

Pero  Nitrogen oxides NO 83.3% 

 

3.2.2 Software used in the study 

Based on the literature review, MongoDB is recognized to be the most convenient 

NoSQL database for this study due to its geospatial functionalities and processing 

performance, therefore application is done with that database.  

MongoDB is a free to use, JSON like document based NoSQL database used by many 

big companies which is highly flexible, efficient in accessing and querying big data, 

having also spatial indexing option [Url-3]. As it is one of the most widely used 

NoSQL databases, there is a considerable amount of documentation and information 

exchange on any kind of issues related to MongoDB.  
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MongoDB is structured with collections under databases, which are bundles of 

documents. Documents are the single entries of a database. There is also a term cluster 

in MongoDB terminology which is the pieces of server called shrad that forms the 

collections and databases, which shows the horizontal scalability of MongoDB, as seen 

in figure 3.3. 

 

Figure 3.3 : Shrads distributes data over multiple servers [Url-4].  

For database management MongoDB Compass is used, which is the GUI (Graphical 

User Interface) coming with MongoDB installation.  Preprocessing of data and imports 

into Mongodb are done using Python scripting language. Additionally, an open source 

software NoSQLBooster, which is an IDE (Integrated Development Environment) for 

MongoDB used for building and running queries on the database [Url-5]. 
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3.2.3 Hardware used in the study 

The computer used in the study has below system properties:  

• Disk: 250GB SSD (Solid State Drive)  

• RAM: 8GB (+8GB Virtual RAM) 

• Processor: Intel Core i7-2630QM CPU@ 2.00GHz x 8 

• Operating system: Linux Ubuntu 18.04 (bionic) 

3.3 Methodology 

The methodology applied in this study is shown in the flowchart in Figure 3.4, and all 

steps after data acquisition are explained below. 

 

Figure 3.4 : Workflow. 
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3.3.1 Server establishment 

As database, MongoDB 4.0.9 Community version was setup. Installation included the 

MongoDB GUI for viewing and managing the database. Server was established locally 

on desktop within one cluster, not sharded.  One database was created (named as 

“milan”) to put all the data in, and inside this database, two collections were formed; 

“probe” and “pollution”.   

To preprocess the data into document format and import it into the database, Python 

3.6 with Anaconda distribution was installed due its effective library handling 

capabilities. For preprocessing and database connections, pandas, numpy and 

pymongo libraries are also utilized. Lastly, NoSQLBooster 5.7.1 was installed to 

perform queries on the database. 

3.3.2 Preprocessing of the data 

MongoDB is a document based database as mentioned in previous chapters, thus, the 

main preprocessing step is to format all the data as documents to be able to import into 

database.  

3.3.2.1 Traffic data preprocessing 

The traffic data consists of slices of information per road edge, but as the count of 

vehicles per road is not known, the beginning and the ending of these slices are not 

known as well. As the first step, a list of beginning and ending line numbers were 

extracted from the datasets, by reading through all file and detecting keywords for the 

beginning of slices. This list of line numbers was used as an input for the rest of 

preprocessing.  

As mentioned in Chapter 3.2.1.1, the traffic data is confidential and sensitive, and 

before using it must be anonymized. For practical reasons, this anonymization was 

done by aggregating and calculating the average speed and total amount of vehicles 

per hour for each road and excluding the rest of the information. In this way, traffic 

data and pollution data have become consistent as both have hourly frequency. 

Another important reason for this decision is, the 16MB document size limitation in 

MongoDB [Url-6].  
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Using the list of line numbers, all slices per road were detected and aggregated per 

hour. Aggregation output was translated into a document format containing road id 

(e.g. segment id), direction of flow, total amount of vehicles and a list of values. This 

list contains time, average speed and count of vehicles for each hour where data is 

present. Following this, the geometry from 2016 TomTom base map was linked to the 

road and appended into the document to finalize it. The reference coordinate system 

was WGS84 (World Geodetic System 1984). When the document is complete, it was 

imported into MongoDB under “probe” cluster.  

All these steps for preprocessing and import were executed with a python script. For 

aggregations pandas and numpy, for database connection pymongo libraries were used 

(see Appendix A for the python code).  

3.3.2.2 Pollution data preprocessing 

The pollution data includes one metadata file with station and export information, and 

one value file with hourly values for the complete year. Each export contains only one 

station and pollutant values. In addition to this, a third file with geometries for all the 

stations was present.   

First, all these station metadata and value files for different stations and pollutants were 

merged into one metadata and one value file for the ease of data processing. These two 

files were read together to link correct values to correct stations and to create one 

document for each station and pollutant combination. This document contains station 

name, station id, pollutant, data availability percentage and a list of survey values with 

time and pollution. 

Second, the coordinates of the stations in WGS84 datum were appended to the 

documents from a separate file (i.e. mentioned as third file previously) by linking with 

the station names. This step was necessary because the pollution data exported from 

ARPA Lombardia does not contain the geometry. Finally, the documents were 

imported into MongoDB under “pollution” cluster.  

Merging metadata and value files was performed with a batch script, whereas 

document creation and import were handled with a python script using pymongo 

library for database connection (see Appendix B for the python code). 
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3.3.3 Processing and analysis 

Once data is implemented, below analyses were tried and tested by running queries on 

database (see Appendix C for the queries on MongoDB). 

3.3.3.1 Individual data statistics for traffic 

To have some idea on the data, the averages per hour calculated by querying on 

MongoDB, using aggregate pipeline. Query can be improved by grouping day (from 

6:00 to 18:00) and night (from 18:00 to 6:00), each weekday, working days (i.e. 

Monday to Friday) and weekends (i.e. Saturday and Sunday), month and season, etc.  

3.3.3.2 Individual data statistics for pollution 

Similar statistics to traffic data was created also for pollution data, again using 

MongoDB aggregate functionalities.   

3.3.3.3 Spatial querying 

For the correlation analysis, the average hourly values for the road edges around 

stations were needed. First, the road edges around stations selected using “$geonear” 

function in MongoDB. Second, averages per hour calculated for all the roads around 

each station. This is a combination of aggregate queries and spatial queries.  

3.3.3.4 Correlation analysis between traffic and pollution 

According to research done on MongoDB documentation, there is no functionality to 

calculate correlation in MongoDB. That kind of analysis could be done with python, 

by calling the results from spatial query with averaged hourly traffic values around 

stations, and the station values in python to process. As this is not a MongoDB 

functionality, and not in scope of the aim of this work, that step is skipped. 
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4.  RESULTS 

MongoDB appeared to have favorable performance overall, although some results 

expose areas of improvement.   

4.1 Results of Preprocessing of Data 

Preprocessing of traffic data was the biggest problem of this study. The preliminary 

aggregation had to be done in python before importing the data into the database, due 

to the confidentiality issues of the data and document size limitation in MongoDB.  

During this preprocess in python, as more slices are preprocessed, runtime for one slice 

increased exponentially, resulting in an unacceptable processing time. Many aspects 

reviewed and tested to overcome this issue without any success yet.  

Considering that issue is not related to the database and aim of the study is to 

experiment on the database performance, at the end only a part of the roads inside a 

polygon in, distriuted among 4 different data files were selected and imported into the 

database for the sake of the study. After lots of trials, most with most efficient 

preprocessing method tested, it took 538.96 hours, around 23 days pure processing 

time in total, only for half of the data. 

As an important note to mention, almost all of this time spent for preprocessing. Import 

into MongoDB took 9.35 min for complete data, all rest of the time spent was for 

preprocessing.   

For pollution data, preprocessing step was quite fast, all preprocessing and import 

completed in 14.9 seconds.   

In Table 4.1 time spend for preprocessing and import per amount of docs can be seen. 

Table 4.1: Import times 

Data 
Count 

of docs 

Total preprocessing 

time (seconds) 

Only import 

time (seconds) 

Traffic data 28613 1940270.26 561.04 

Pollution data  43 14.31 0.8 
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4.2 Results of Processing and Analysis 

Statistics for traffic and pollution data were created using aggregate query  functions, 

which are run on one collection, without any join operation. These statistical 

aggregations were easy to perform and resulted in short times, demonstrating the 

strength of aggregation queries in MongoDB. While queries on unnested objects were 

extremely fast, nested objects values were slower.  

Spatial querying functions were available in  MongoDB, and they performed well for 

queries on one collection, with geospatial index. Although, geospatial joins across two 

collections were not possible without any third party tool or script.   

Correlation analysis was not achievable with built-in functionalities of MongoDB. 

Therefore, for this analysis is MongoDB can be only used to retrieve the necessary 

data. With a test for that kind of action action, also reading and retrieving performance 

of MongoDB was comprehended as well, which is one of the strongest aspects of it.   

Runtimes for queries performed and amount of docs returned can be seen in below 

Table 4.2. 

Table 4.2 : Query runtimes 

Query 
Count of docs 

returned 

Runtime 

(Seconds) 

export road ids 28613 7.633 

count roads 1 7.337 

compare total value counts of segments with 

sum of counts per hour (includes nested 

values) 

28555 185.695 

get overall hourly averages (includes nested 

values) 

8784 243.066 

get overall hourly averages per pollutant 

(includes nested values) 

68543 0.666 

select roads within 50m around point 

coordinates 

8 0.201 

select roads within 100m around point 

coordinates 

23 0.462 

select roads within 250m around point 

coordinates 

68 0.768 

select roads within 500m around point 

coordinates 

88 0.835 
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4.3 General Results 

During the initiation of this study, first database tested was couchdb, but due to limited 

querying functionalities and insufficient interface, it was decided to change the 

database to be tested.  

Secondly Couchbase is tested. With it, querying and basic functionalities were simpler 

but imports were excessively slow, therefore database changed once again. It was later 

understood that the main reason for slow import rate was looping over very big text 

files during preprocessing, but MongoDB was slightly faster.  

After having problems with two NoSQL databases, finally, experiment conducted and 

completed with MongoDB.   
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5.  CONCLUSIONS 

In this work, it was aimed to test the functionalities of a NoSQL database and generally 

review the performance and capabilities, including geospatial querying options.  

As a result of the study,  it is observed that aggregate queries and basic spatial queries 

on single collections are the strength of MongoDB. Whereas, gaps in complex 

querying and spatial joining functionalities are the weak sides of it. While running very 

fast for the first level elements in documents, queries on nested elements are giving 

results much slower. Overall, taking into account that third party softwares can be 

utilized to perform more complex analyses in MongoDB, it may be asserted that 

MongoDB is a preferable database for big data management. 

The main problem found about MongoDB is the inability of performing complex cross 

queries on the database. In following works, new ways of querying on MongoDB can 

be investigated. Also, other NoSQL database systems can be analysed in the same way 

and supportive tools and engines can be explored in order to develop stronger systems.  

Moreover, the dataset created can be used to extract some meaningful results from the 

data in line with the smart city needs, such as usage of sensor data for decision making 

and city management, enhancing interpolated pollution models with traffic data, it can 

be even enriched with sensor data coming from other sources such as meteorological 

data and open new areas of investment.  
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APPENDIX A  

Python code to create list of beginning and ending line numbers for slices: 

 

# -*- coding: utf-8 -*- 

""" 

Created on Wed May  9 16:18:36 2018 

 

@author: ergin 

""" 

 

infiles = 

['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4538368n0l.txt', 

           '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00901120e4546560n0l.txt', 

           '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4538368n0l.txt', 

           '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/00917504e4546560n0l.txt'] 

#use UTF8 without BOM! 

#infiles = ['/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/samples/sample_.txt'] 

#use UTF8 without BOM! 

out_file = '/media/ezgi/IST_RSO/Milan_Thesis/data/Traffic/segments_20190406.txt' 

 

seg_ids = {} 

segments = open(out_file, "a") 

 

 

### With keys ### 

v=len(infiles) 

for k in range(v): 

    infile=infiles[k] 

    with open(infile) as f:  

        for ids, line in enumerate(f): 

            if line.split(' ')[0] == 'DSEG': 

                seg_ids[ids] = line.split(' ')[2]+' '+line.split(' ')[3] 

        for i,j in seg_ids.items(): 

            segments.writelines(str(i) + ' '+ str(j)) 

    seg_ids = {} 

     

segments.close()    

 

 

Python code to preprocess and import traffic data: 

 

# -*- coding: utf-8 -*- 

""" 

Created on Fri May 25 18:00:20 2018 

 

@author: ergin 

""" 

 

import time 
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from itertools import islice 

import pandas as pd 

import numpy as np 

 

start_time = time.time() 

 

##input file path or paths - use UTF8 without BOM! 

 

#infile = '/home/ezgi/Desktop/Milan/sample.txt'  

infile = '/home/ezgi/Desktop/Milan/00901120e4538368n0l.txt'  

#infile = '/home/ezgi/Desktop/Milan/00901120e4546560n0l.txt'  

#infile = '/home/ezgi/Desktop/Milan/00917504e4538368n0l.txt'  

#infile = '/home/ezgi/Desktop/Milan/00917504e4546560n0l.txt'  

segidfile='/home/ezgi/Desktop/Milan/first_imp_00901120e4538368n0l.txt' 

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00901120e4546560n0l.txt'  

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00917504e4538368n0l.txt'  

#segidfile = '/home/ezgi/Desktop/Milan/first_imp_00917504e4546560n0l.txt'  

geof = '/home/ezgi/Desktop/Milan/geom.txt' 

 

###mongodb connection 

dbname = 'probe' 

from pymongo import MongoClient 

db=MongoClient('localhost', 27017).milan 

collection=db[dbname] 

 

 

### find segment start index list for all 

#seg_ids = {} 

#with open(infile) as f:  

#    for ids, line in enumerate(f): 

#        if line.split(' ')[0] == 'DSEG': 

#            seg_ids[ids] = int(line.split(' ')[3]) 

 

             

#or directly give the segids list in dictionary from file 

file=open(segidfile, "r").read() 

seg_ids=eval(file) 

file="" 

             

print("--- %s seconds prep segids ---" % (time.time() - start_time)) 

print("--- count of segids: ", len(seg_ids)) 

 

## slice file for each segment  

inp = open(infile, 'r') 

geodf = pd.read_csv(geof, sep = '\t', encoding = 'utf-8') 

geodf = geodf.drop(columns="Type") 

bulk=[] 

for i in range(0,len(seg_ids)):  

#    start_time_per_seg =time.time()    

    ##select the segment 
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    inp.seek(0) 

    segment_slice = islice(inp,list(seg_ids.keys())[i], 

(list(seg_ids.keys())[i]+list(seg_ids.values())[i]+1))  

    segment = list(segment_slice) 

    ##define header and initiate document 

    header = segment[0].split(' ') 

    doc = {'seg':str(header[2][1:]),'dir':str(header[2][0]),'tot':int(header[3])} 

    ##define contents 

    lines = [] 

    for _, line in enumerate(segment[1:]): 

        line_split = line.split(' ') 

        ##convert epoche to datetime 

        t_orj = int(line_split[1]) 

        t = time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime(t_orj)) 

        ##create new line 

        new_line = [t, float(line_split[2]), int(line_split[5])] 

        lines.append(new_line) 

    ##summarize contents 

    df=pd.DataFrame(lines, columns=('t','speed', 'cover')) 

    lines = [] 

    df['t'] = pd.to_datetime(df['t'], format='%Y-%m-%dT%H:%M:%S') 

    df = df.set_index(pd.DatetimeIndex(df['t'])) 

    del df['t'] 

    df_avg = df.resample('H').mean() 

    df_count = df.resample('H').count() 

    df_a_clean = df_avg.dropna(axis=0, how='all') 

    df_c_clean = df_count.replace(0,np.nan).dropna(axis=0, how='all') 

    df_final = pd.concat([df_a_clean.speed, df_c_clean.cover], 

axis=1).rename(columns={'speed': 'avg_speed', 'cover': 'count'}) 

    df = [] 

    df_avg = [] 

    df_count = [] 

    df_a_clean = [] 

    df_c_clean = [] 

 

    ##append summary into document as list 

    segment_tags =[] 

    for j in df_final.index:             

        d = {"tm": str(j), 

"spd":float(df_final['avg_speed'][j]),"cnt":int(df_final['count'][j])} 

        segment_tags.append(d) 

    doc.update({"values":segment_tags}) 

    segment_tags =[] 

    df_final = [] 

 

    geofltr = geodf['segid'] == header[2][1:] 

    g = {'geometry':{'type':"LineString", 

'coordinates':eval(list(geodf[geofltr]['coordinates'])[0])}} 

    doc.update(g) 

    bulk.append(doc) 
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    doc=[] 

    if len(bulk)>1000: 

      

        print("--- %s seconds bulk prep complete---" % (time.time() - start_time)) 

        print("--- count of segments: ", len(bulk)) 

         

        ##bulk insert into mongodb 

        collection.insert_many(bulk) 

         

        print("--- %s seconds bulk insert complete---" % (time.time() - start_time)) 

        bulk=[] 

    else: 

        continue    

 

 

print("--- %s seconds last bulk prep complete---" % (time.time() - start_time)) 

print("--- count of segments: ", len(bulk)) 

 

##bulk insert into mongodb 

collection.insert_many(bulk) 

 

print("--- %s seconds bulk insert complete---" % (time.time() - start_time)) 

 

  



32 

APPENDIX B  

Python code to preprocess and import pollution data: 

 

# -*- coding: utf-8 -*- 

""" 

Created on Fri May 25 18:00:20 2018 

 

@author: ergin 

""" 

 

import time 

start_time = time.time() 

 

##input file path or paths - use UTF8 without BOM! 

values = 

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_values.txt

'  

legenda = 

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/import_legenda.t

xt'  

geof = 

'/media/ezgi/IST_RSO/Milan_Thesis/data/Pollution/Station_values/Stazioni_scope_g

eom.geojson' 

 

###mongodb connection 

dbname = 'pollution' 

from pymongo import MongoClient 

db=MongoClient('localhost', 27017).milan 

collection=db[dbname] 

 

geom=eval(open(geof).read())['features'] 

del geof 

 

heads=[] 

with open(legenda) as l:  

    for idl, rowl in enumerate(l): 

        header=rowl.split('\t') 

        head={'st_id':str(header[0]), 

             'st_name':str(header[1].replace("Ã\xa0","a").replace(" - "," ").replace(" P.zza 

"," ").replace(" viale "," ").replace(" via "," ").replace("  "," ")), 

             'sensor_id':str(header[2]), 

             'pollutant':str(header[4]), 

             'formula':str(header[5]), 

             'availability':str(header[6]), 

             'unit':str(header[7]).replace('Â','').replace('\n','')} 

        for i in geom: 

            st_ng = str(i['properties']['Stazione']).replace("Ã\xa0","a") 

            if st_ng==str(head['st_name']): 

                head.update({'geometry':i['geometry']}) 
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        heads.append(head) 

 

print("--- %s seconds prep headers ---" % (time.time() - start_time)) 

 

for i in range(1,len(heads)): 

    start_time2 = time.time() 

    doc=heads[i] 

    sensorid=doc['sensor_id'] 

    st_tags=[] 

    with open(values) as v: 

        for idv, rowv in enumerate(v): 

            line=rowv.split('\t') 

            if str(sensorid)==str(line[0]): 

                d={"tm":str(line[1]),"poll":float(line[2])} 

                st_tags.append(d) 

    doc.update({"values":st_tags}) 

    st_tags=[] 

    ##insert into mongodb 

    collection.insert_one(doc) 

    print("--- %s seconds --- per doc" % (time.time() - start_time2)) 

     

 

         

print("--- %s seconds import end ---" % (time.time() - start_time)) 
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APPENDIX C  

 
/** 
*Query to export road ids 
*/ 
 
use milan 
db.probe.aggregate([{ 
$project: { 

dir: 1, 
seg: 1 
} 

}, { 
$sort: { 

_id: -1 
} 

}]) 
 

 
---------------------------------------------------------------------------------------- 
 
Runtime: 7.633 
 
================================================= 
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/** 
*Query to count roads 
*/ 
 
use milan 
db.probe.aggregate([{ 
$group: { 
 _id: {segment:"$segment",direction:"$direction"}, 
 count: { $sum: 1 } 
 } 
}, { 
$match: { 
 count: {$gt: 0} 

} 
}]) 
 
---------------------------------------------------------------------------------------- 
 
Runtime: 7.337 

 
================================================= 
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/** 
*Query to compare total value counts of segments with sum of counts per hour 
*/ 
 
db.probe.aggregate( 
 [ 
     {$unwind: "$values"}, 
     {$group: { 
         _id: {segment:"$seg",total:"$tot"}, 
         tot: {$sum: "$values.cnt"} 
         } 
         
     } 
 ] 
 ) 
 

---------------------------------------------------------------------------------------- 
 
Runtime:  185.695 
 
================================================= 
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/** 
*Query to get overall hourly averages 
*/ 
 
db.probe.aggregate( 
 [ 
     {$unwind: "$values"}, 
     {$group: { 
         _id: {hour:"$values.tm"}, 
         average: {$avg: "$values.spd"}, 
         count: {$avg: "$values.cnt"} 
         } 
         
     } 
 ] 
 ) 
 

 

---------------------------------------------------------------------------------------- 
 
Runtime:  243.066 
 
================================================= 
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/** 
*Query to get overall hourly averages per pollutant 
*/ 
 
db.pollution.aggregate( 
 [ 
     {$unwind: "$values"}, 
     {$group: { 
         _id: {hour:"$values.tm", pollutant:"$pollutant", formul:"$formula"}, 
         average: {$avg: "$values.poll"}, 
         count: {$avg: "$values.cnt"} 
         } 
         
     } 
 ] 
) 
 

---------------------------------------------------------------------------------------- 
 
Runtime:  0.666 
 
================================================= 
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/** 
*Query to select roads around coordinates 
*/ 
 
db.probe.aggregate([ 
   { 
  $geoNear: { 
     near: { "type": "Point", "coordinates": [ 9.167944507885444, 
45.443859723844753 ] } , 
     key: "geometry", 
     distanceField: "dist.calculated", 
     maxDistance: 50, 
  } 
   } 
]) 
.limit(500) 
 
---------------------------------------------------------------------------------------- 
 
Runtime: 0.201 

 
================================================= 
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/** 
*Query to select roads around coordinates 
*/ 
 
db.probe.aggregate([ 
   { 
  $geoNear: { 
     near: { "type": "Point", "coordinates": [ 9.167944507885444, 
45.443859723844753 ] } , 
     key: "geometry", 
     distanceField: "dist.calculated", 
     maxDistance: 100, 
  } 
   } 
]) 
.limit(500) 
 
---------------------------------------------------------------------------------------- 
 
Runtime: 0.462 
 
================================================= 
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/** 
*Query to select roads around coordinates 
*/ 
 
db.probe.aggregate([ 
   { 
  $geoNear: { 
     near: { "type": "Point", "coordinates": [ 9.167944507885444, 
45.443859723844753 ] } , 
     key: "geometry", 
     distanceField: "dist.calculated", 
     maxDistance: 250, 
  } 
   } 
]) 
.limit(500) 
 
---------------------------------------------------------------------------------------- 
 
Runtime: 0.768 

 
================================================= 
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/** 
*Query to select roads around coordinates 
*/ 
 
db.probe.aggregate([ 
   { 
  $geoNear: { 
     near: { "type": "Point", "coordinates": [ 9.167944507885444, 
45.443859723844753 ] } , 
     key: "geometry", 
     distanceField: "dist.calculated", 
     maxDistance: 500, 
  } 
   } 
]) 
.limit(500) 
 
---------------------------------------------------------------------------------------- 
 
Runtime: 0.835 
 
================================================= 
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