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AUTOMATED SCORING OF CERBB2 RECEPTORS
USING HISTOGRAM BASED ANALYSIS OF

IMMUNOHISTOCHEMISTRY BREAST CANCER TISSUE IMAGES

SUMMARY

In this study, novel image analysis techniques for scoring CerbB2 receptors in breast
cancer tissue specimen images of patients with suspected breast cancer are proposed.
Visual expression of invasive breast cancer with immunohistochemistry(IHC) allows
evaluation of CerbB2 receptors. In invasive breast cancer, tumors are evaluated in 4
different stages as Score 0, Score 1, Score 2 and Score 3 by applying IHC method.
Score 3 tumors are considered suitable for treatment specific to the CerbB2 protein,
which is considered ineffective for score 0 and score 1. Score 2 is the borderline
which means some tumors can benefit from treatment. Throughout this analysis, new
modalities in the treatment which is called ’targeted therapy’ is used for pathological
assessment of the receptor status in the tumor with CerbB2 receptors, therefore a
therapy is advised for breast cancer. For this purpose, pathological images obtained by
using Immunohistochemistry (IHC) were analyzed to determine CerbB2 score levels
at cellular level. Two different datasets were obtained for use in the study. The first
dataset was digitized by using microscope and camera from the obtained tissue slides.
The second dataset is obtained from a dataset that can be accessed publicly. Firstly,
images are separated into hematoxylin (H-Blue) and diaminobenzidine (DAB-Brown)
color channels and cell centers and cell membranes are determined. Subsequently,
membrane intensity histograms are extracted by the proposed image analysis method,
so features for each cell are obtained. Finally, obtained attributes are trained with some
classifiers like Long-Short Term Memory(LSTM), KNN, Decision Trees, obtained by
experimental methods, therefore classification models was created. The datasets were
classified as both cell-based and image-based. The CerbB2 scoring system consisting
of 4 classes image-based classification has left behind similar methods with 91,43%
accuracy. As for the accuracy of cell-based accuracy, 77,56% was achieved and it was
predicted that this accuracy could be increased in future studies. Each step in the study
is explained in detail and experimental results are presented in comparison to other
state-of-the-art methods.
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İMMÜNOHİSTOKİMYA MEME KANSERİ GÖRÜNTÜLERİNİN
HİSTOGRAM TABANLI ANALİZ KULLANILARAK

CERBB2 RESEPTÖRLERİNİN OTOMATİK OLARAK SKORLANMASI

ÖZET

Bu çalışmada, meme dokusunda şüpheli durumla karşılaşılan hastaların meme
dokusu görüntülerinde mutasyona uğramış CerbB2 reseptörlerini puanlamak için
yeni görüntü analiz tekniği önerilmiştir. Invaziv meme kanserinin immünohis-
tokimya(ImmunoHistoChemistry) ile boyanarak tümör hücrelerinin çeperinde oluşan
boyanma miktarından ve boyanmanın hücreyi çevrelemesinden yola çıkılarak CerbB2
reseptörlerinin değerlendirilmesi sağlanır. İnvaziv meme kanserinde tümörler, IHC
yöntemiyle 0+, 1+, 2+ ve 3+ olmak üzere 4 farklı aşamada değerlendirilir. Skor
3+ olarak tanımlanmış tümörler CerbB2 proteinine özgü bir tedaviye uygun olarak
kabul edilir. Skor 0+ ve Skor 1+ için bu tedavi etkisiz kabul edilir. Skor 2, bazı
tümörlerin tedavinin işe yarayacağı veya tedavi alması gerektiği anlamına gelen sınır
çizgisidir. Kısaca açıklayacak olursak bu skorlama yöntemi kanser hastasının hangi
tedaviyi alması gerektiğini belirler. Görsel anlamda da ifade edersek, Skor 3+ tipinde
sınıflandırılan dokularda tamamıyla hücre çeperi boyanmış ve boyamanın yoğun olduğu
hücre sayısı bütün tümör bölgesinde bulunan hücre saysının %10’undan fazladır.
Çevresel hücre çeperi boyanması tamamlanmamış ve orta derece yoğunlukta boyama
olan hücrelerin sayısı %10’dan fazla veya çevresel hücre çeperi boyanması tamamlanmış
ve yoğun boyanmış hücre sayısı %10’dan küçük ve %1’den daha fazla bulunuyorsa bu
özellikleri gösteren dokular Skor 2+ olarak değerlendirilmektedir. Skor 3+ pozitif olarak
değerlendirilirken Skor 2+ belirsiz olarak değerlendirilmekte ve bu tür vakalar altın
standart(gold standard) olarak tanımlanan Florosan In Situ Hibritleme(Fluorescence
In Situ Hybridization-FISH) yöntemi ile genetik olarak incelenerek tanımlanmaktadır.
FISH sonucu eğer pozitif çıkarsa Skor 3+ gibi bir tedavi, negatif çıkarsa Skor 1+ gibi
bir tedavi uygulanır. Çevresel boyonması zayıf ve zar zor seçilebilen ve tamamen
çevrelemeyen hücre sayısı %10’un üzerinde olan ve ilk iki şartı sağlamayan tümörler
Skor 1+ olarak değerlendirilmektedir. Bu üç şartı sağlamayan tümörler ise Skor 0+
olarak değerlendirilir ve Skor 1+ ile Skor 0+ özelliği gösteren tümörler negatif olarak
değerlendirilmektedir.

Bu analizler çerçevesinde, yeni bir tedavi yöntemi olarak önerilen ’hedefli
tedavi’, CerbB2 reseptörleri ile tümördeki reseptör durumunun patolojik olarak
değerlendirilmesinde kullanılır ve kişiye özel bir kanser tedavisi önerilir. Buradaki
en önemli handikap ise Skor 2+ olarak tanımlanan vakalarda yaşanan belirsizliklerdir.
Bazı vakalarda patologlar tek başlarına karar vermekte zorlanıp ek görüş almak isterler.
Aynı vaka için iki farklı patolog iki farklı skor verebilmektedir ve bu da gözlemciler
arası tutarsızlığa(Interobserver Discrepancy) sebep olmaktadır. Bu tezde hedeflenen ise
patologlara bir ek görüş olacak başarımlar veren bir sınıflandırma aracı geliştirip, bunun
tanı koyma aşamasına katkı vermesini sağlamaktır. Bu amaçla, immünohistokimya
(IHC) kullanılarak boyanmış farklı iki kanaldan elde edilen patolojik görüntüler, hücre
ve tümör bölgesi düzeylerinde CerbB2 skor seviyelerini belirlemek için analiz edilmiştir.
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Çalışmada kullanılmak üzere iki farklı veri seti elde edilmiştir. İlk veri seti, Medipol
Üniversitesi Patoloji Ana Bilim Dalı’ndan elde edilen doku slaytları kullanılarak
mikroskop ve kamera aracılığı ile 40X büyütmede dijitalleştirilmiştir. Bu veri
kümesinde 13 farklı doku örneğinden 198 adet görüntü bulunmaktadır. Bu 191
görüntünün 41 tanesi ’Skor 0+’, 42 tanesi ’Skor 1+’, 52 tanesi ’Skor 2+’ ve 56 tanesi
’Skor 3’ olarak tanı konulmuş vakalardan elde edilmiştir. Hazırlanan bu veri kümesinin
105 tanesi eğitim kümesi, 86 tanesi ise test kümesi olarak ayarlanmıştır. Bu veri
kümesinde invaziv tümör bölgesinde bulunan toplamda 62431 adet hücre saptanmış
olup bu hücrelerin 24656 adedi eğitim için sınıflandırıcılara verilmiş olup geriye kalan
kısmı test için kullanılmıştır. İkinci veri seti, Warwick Üniversitesi tarafından halka açık
olarak erişilebilen bir veri kümesinden elde edilmiştir. Bu veri kümesinde 79 adet IHC
ile boyanmış tüm slayt görüntüsü(Whole Slide Image-WSI) bulunmaktadır. Bunların 51
tanesi eğitim kümesi olarak, 28 tanesi test kümesi olarak ayarlanmıştır. Bu görüntüler
çok büyük çözünürlükte oldukları için işlenmesi güçtür. Bu aşamada her bir görüntü
40X büyütmede, belirli boyutlarda(1376x1040) parçalara ayrılmış, içlerinden invaziv
tümör bölgeleri tek tek seçilmiştir.

Elde edilen bu veri kümeleri öznitelik çıkarımı için uygun hale getirilir. Daha sonra,
görüntüler hematoksilen (H) ve diaminobenzidin (DAB) renk kanallarına ayrılır ve hücre
merkezleri ve hücre membranları belirlenir. Hücreler hematoksilen ile boyandıkları
için mavi, tümör bölgeleri ise diaminobenzidin ile boyandıkları için kahverengi
olarak görünür. Burada iki farklı boyayı birbirinden ayırıp tek bir kanal olarak elde
edebilmek için Renk Dekonvolüsyonu(Color Deconvolution) yapılmaktadır. Renk
Dekonvolüsyonu yönteminde her bir renk uzayı için belirlenmiş olan filtreler kullanılır.
Örneğin bir IHC görüntüsü hematoksilen ve diaminobenzidin için oluşturulmuş
filtreden geçirildiğinde sonuç olarak tek başına hematoksilen görüntüsü, tek başına
diaminobenzidin görüntüsü ve arkaplan görüntüsü elde edilir. Hücre merkezlerinin
belirlenmesinde hematoksilen görüntüsü bir takım eşikleme yöntemleri ile birlikte
su yolu çizgisi(Watershed) yöntemi kullanılarak işlenir. Su yolu çizgisi yönteminde
birbirine değen, üst üst gelmiş hücreler birbirlerinden ayrılmış olurlar ve hücre
merkezleri doğru bir biçimde tespit edilir. Yine bir takım eşikleme yöntemleri(Otsu
Thresholding) kullanılarak membran(tümör) bölgeleri diaminobenzidin görüntüsünden
tespit edilir. Daha sonra, membran yoğunluğu histogramları(Membrane Instensity
Histogram-MIH) olarak isimlendirilen görüntü analiz yöntemi ile bir takım öznitelik
vektörleri çıkarılır, böylece her hücre için bir vektör elde edilir. Membran yoğunluğu
histogramını elde ederken, daha önce bulunmuş olan hücre merkezlerinden yola çıkarak,
hücre çeperinden 360 adet farklı piksel değeri elde edilir. Hücre merkezinden hücre
çeperlerine doğru çekilen okların membran boyasına ilk ulaştığı yer ve sonrasındaki 10
noktanın piksel değerlerinin ortalaması alınır. Bu 360 noktanın 10 piksel kalınlıktaki
çeperinden elde edilmiş ortalama piksel değerlerinin histogramı elde edilir ve bu
histogram 16’ya kuantalanır. Burada belirtilen 10 piksel kalınlığı 2713 hücre örneğinden
deneysel olarak test edilip elde edilen sonuçlara göre belirlenen membran kalınlığıdır.
Bu, 40X büyütme kullanılarak elde edilen IHC ile boyanmış meme tümörü hücrelerinin
ortalama membran kalınlığı 10 piksel olarak tanımlanır demektir. Sonuç olarak her bir
hücre için 1x16’lık bir öznitelik vektörü elde edilmiş olur. Buradaki en büyük problem
invaziv ve in situ tümörlerinin tespit edilmesidir. Kanserli doku üzerinde çoğu zaman
invaziv bölgeleri ile in situ bölgeler birbirleri ile aynı özelliği göstermektedir. Ancak
skorlama işlemi uygulanırken in situ bölgeler dikkate alınmamaktadır. Bu problemi
aşmak için patologların görüşüne ihtiyaç duyulmaktadır. Patologların yardımı ile eğitim
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kümesi oluşturulmuş ve bu küme tek tek işaretlenerek eğitim kümesi hazırlanmıştır. Elde
edilen 1x16 boyutlu öznitelik vektörleri Z-Skorlama yöntemi kullanılarak normalize
edilmiş ve sınıflandırıcılar için uygun hale getirilmiştir.

Son olarak, elde edilen özellikler Uzun-Kısa Süreli Bellek (LSTM), KNN, Karar
Ağaçları gibi bazı sınıflandırıcılar ile eğitilerek, sınıflandırma modelleri oluşturulmuştur.
Veri kümeleri hem hücre temelli hem de görüntü temelli olarak sınıflandırılmıştır. Hücre
tabanlı sınıflandırmada her bir hücrenin skoru belirlenip gerçek skoru ile karşılaştırılır
ve ona göre başarım çıkarılır. Görüntü tabanlı sınıflandırmada ise o görüntüde bulunan
doku bölgesindeki bütün hücreler değerlendirilir ve yukarıda bahsedilen skorlama
kurallarına göre(örn: Skor 3+ hücre sayısı %10’dan yüksek ise Skor 3.) sınıflandırma
yapılır. LSTM sınıflandırıcısı kullanılırken maksimum devir sayısı(Maximum Epochs)
50 olarak belirlenmiş optimizasyon olarak da ADAM kullanılmıştır. Bunlara ek olarak
bütün sınıflandırıcılarda 5 kat çapraz doğrulama(5 Fold Cross Validation) kullanılarak
validasyon başarımları elde edilmiştir. 4 sınıf hücre temelli sınıflandırmadan oluşan
CerbB2 puanlama sistemi,en yüksek başarımı Ensemble Boosted Trees yönteminde
almış olup validasyon başarımlarında % 87,60 ve görüntü temelli test başarımlarında
%91,43 doğrulukla benzer yöntemleri geride bırakmıştır. Hücreye dayalı sınıflandırma
doğruluğu ise %77,56 ile karar ağacı sınıflandırıcıları kullanılarak elde edilmiştir ve
gelecekteki çalışmalarda bu doğruluğun artırılabileceği öngörülmektedir. Bir tümör
bölgesinde bütün hücre tiplerinden de bulunabilecek olması hücre tabanlı başarıma
göre görüntü tabanlı başarımın düşük çıkmasına sebep olmaktadır. Çalışmadaki her
adım ayrıntılı olarak açıklanmakta ve deneysel sonuçlar diğer son teknoloji yöntemlerle
karşılaştırılarak sunulmaktadır.
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1. INTRODUCTION

Today, breast cancer is one of the most well-known and the most under-researched

cancer type in the world. Since technology has been developing day by day, detection

of breast cancer and its treatment has been faster and accurate by co-working of

various disciplines. In daily routine, cancer is diagnosed by pathologists, using light

microscopes [3] in this way, the images seen on microscopy can also be used as an

optical test sample. As a result, not only physicians are working on detection of cancer

on tissue specimen, but also engineers could contribute to this process by technological

developments. In this regard, both robotic devices and computer-assisted approaches

have started to be used in the cancer diagnosis by microscopic image analysis [4].

Therefore, evaluation of tissue specimens became an engineering problem to be utilized

by computer and electronical resources.

1.1 Purpose of Thesis

Although main aim of the microscopic image analysis which is a topic of digital

pathology is to diagnose cancer, until now it is effectively used for cell counting, cell

segmentation, and cell scoring [5]. There is interobserver discrepancy in most of the

scoring systems used in pathology practice such as percentage of Ki67, ER, PR, Liver

Steatosis [6]. In this point, computer-aided scoring systems could help to overcome this

discrepancy problem, and speed up the process.

In the treatment of cancer, chemotherapy (CT) is a frequently used choice, but usual

CT agents also damage native tissues as well as cancer cells [7]. Recent developments

unabled physicians to use new methods termed ’targeted therapy’ which only destroy

the cancer cell, labeled by some cell markers [8]. CerbB2 is a transmembrane protein

belonging to epidermal growth factor receptor (EGFR) family and located on the

chromosome 17q12 is overexpressed in 15-20 % of the breast carcinomas [9] [10] [11].

CerbB2 mutated breast carcinomas have worse prognosis but are suitable for a targeted

therapy agent called trastuzumab [12]. In CerbB2 mutated breast tumors, tumor cells
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have increased CerbB2 protein, which is located on the cell membrane. Pathologists can

detect CerbB2 overexpression with two methods. The gold standard method is In Situ

Hybridization (ISH) that shows directly gene amplification on the chromosome [13].

Since this method is expensive, time consuming and not easily applicable, in practice,

most laboratories use Immuno Histo Chemistry (IHC) at the first line [14]. By IHC,

increased CerbB2 protein on the cell membrane is demonstrated by using antibodies

against this protein, after protein-antibody binding, a stain, called chromogen, is used

for visualization. With IHC, pathologist evaluates the intensity/darkness, continuity and

the extensity of the stain in the tumor cells [15]. For standardization of the evaluation

among pathologists and concordance with FISH (Fluorescent in Situ Hybridization) [16],

ASCO/CAP 2013 score scale system recommendations are used [1]. According to

these recommendations, tumors are categorized into four groups based on their staining

observations, namely, Score 0+, Score 1+, Score 2+ and Score 3+ in Table 1.1 and

Fig. 1.1. Tumors having Score 3+, are suitable for the treatment targeted CerbB2

protein. For tumors with Score 0+ and 1+, this therapy is not effective. Score 2+ is

the borderline group which means some of the tumors with Score 2+ have CerbB2

mutations in DNA and can benefit from targeted therapy and some of them have not.

Therefore, for this group of tumors, the gold standard method ISH must be used for

higher accuracy [14] [15] [16] [1]. CerbB2 is a prognostic, predictive and therapeutic

marker, but the targeted therapy against CerbB2 is expensive and have cardiotoxicity.

Hence, it is important to choose correct patients. Also, there is an interobserver

discrepancy among pathologists especially for tumors with Score 2, so determination of

the tumor CerbB2 status is critical [17].
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Table 1.1 : CerbB2 score scale system based on ASCO/CAP 2013
recommendations [1].

Score Type Definition

Score 0 (negative) No staining is observed or membrane staining that is
incomplete and is faint/barely perceptible and within
≤10% of tumor cells.

Score 1 (negative) Incomplete membrane staining that is faint/barely perceptible
and within >10% of tumor cells.

Score 2 (equivocal) Circumferential membrane staining that is incomplete and/or
weak/moderate and within > 10% of tumor cells or complete
and circumferential membrane staining that is intense and
within ≤10% of tumor cells.

Score 3 (positive) Circumferential membrane staining that is complete, intense,
and within > 10% of tumor cells.

Figure 1.1 : Sample breast carcinoma tissue images with (a) Score 0+, (b) Score 1+,
(c) Score 2+, and (d) Score 3+. Membranous staining becomes perceptible

as scores increase. Tumors with a Score 3+ which have intense and
uniform circumferential staining are considered as suitable for the targeted

CerbB2 protein treatment by pathologists.
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1.2 Literature Review

There are similar studies in the literature aiming at identifying CerbB2 mutated

regions [18] [19]. The performance of the proposed method is compared with the

free digital image analysis software presented in [18], which is the only available tool to

realize automated tissue scoring [19]. A pixel-level feature set is extracted from HER2

stained tissue images to classify overexpressed and underexpressed regions. Different

from the method in [19], a membrane based cell identification method is proposed to

perform automated tissue scoring. Hence, tissue samples are classified in more than

two classes. Cell detection stage of the proposed method is an extension of an earlier

multi-level thresholding based study [20]. In addition to the multi-level thresholding

based cell nucleus identification, cell membranes are also segmented by utilizing

radial lines emanating from the center of the cell nucleus. In another study [21], the

algorithm consists of three stages Color Pixel classification, cell nuclei segmentation and

membrane staining classification. In first step, membrane pixels and cell nuclei pixels

are taken out from image by using linear regression classifier. Then, Cell nuclei regions

are obtained from the cell nucleus pixels extracted based on connected component

analysis. At the last step, membrane completeness and staining intensity features are

taken out by using cell nuclei regions. After that, these features are classified by using

minimum cluster distance(MCD). Cordeiro et al. developed an algorithm [22]. In this

algortihm, they used histogram inRGB and HSV color space in addition to mean and

standard deviation per color channel in order to extrack color features. For texture

features, they used different classifiers like lbp, pftas, svm, knn etc. In patient phase,

they classified 250x250 size of patches by using SVM, MLP, KNN(k=1 best result)

and decision tree classifiers. Ficarra et al. reported a method which consists of steps

detection of cellular membrane, computation of approxiamate membrane, and detection

of final cellular membrane [23]. In first phase, they described morphologh-based method

to segment nuclear profiles [24] [25]. They used these nuclear profiles in order to detect

cellular membranes. After that, voronoi diagrams [26] and delenuay triangulation [27]

was used to find individual centers and approxiamate cellular membrane according to

minimum distance criterion. Then, using a scanning procedure on approxiamate cell

membrane with constant width, they extracted final cellular membrane. Di Cataldo
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et al. have focused on unsupervised color clustering and automated segmentaiton of

the cellular membrane based on color seperation and morphological processing [28]

. In the first phase, color clustering is based on color deconvolution [2]. In second

phase their method uses color and morphological information to extract cancerous tissue

from non-cancerous region. In another method, Saha et al. proposed a productive deep

learning model with minimum user effect. They called this model as Her2Net [29]. They

developed a traezoidal LSTM connection topology to improve performance of proposed

method. According to authors of the Her2Net, this procedure can be explained as a new

way of segmentation of cell membrane and nucleus detection. In smilar approach [30]

to the previous method, authors developed a convolution network. In cell segmentation

phase, they used color deconvolution [2] method to extract each channel as H, DAB

and background. Then, segmenting cells by using watershed algorithm from H channel.

In cell classification phase, they used two different method like classical machine

learning workflow with feature extraction and convolutional neural network(ConvNet).

Chang et al. have extracted co-occurrence matrix features at feature extraction phase

as Entropy, Angular Second Moment, Mean, Contrast, etc [31]. To eliminate these

features the Sequential Floating Forward Selection(SFFS) [32] is used. In classification

phase, authors benefited from three SVM classifiers to classify each cancer phases. In

another method [33], authors used an active learning with deep network to detect cell

membranes. The method was developed by using convolutional neural networks. This

network was designed as a pixel classifier that classifies whether a pixel is membrane.

In this [34] work, the authors used Convolution Network to classify CerbB2 whole

slide images without neither membrane segmentation nor cell segmentation. They used

128x128 sized patches to classify images. They’ve had a success that can’t be ignored.

In various study in the literature, there are a lot of study for automated analysis and

scoring of HER2(CerbB2) with high success results based on pixelwise analyse [35],

color histogram [36], geometric features [37].
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1.3 Hypothesis

In this study, in order to mitigate the interobserver discrepancy, novel image analysis

methods are developed to determine the score of the CerbB2 tissue sample. For this

purpose, tissue samples are analyzed on a cellular basis where each cell is identified

using membrane based feature extraction and classification methods. This study was

conducted by a group of computer scientists and medical researchers. Tissue specimens

are prepared and sample images in Fig. 1.1 are acquired at the department of medical

pathology, Medipol University Hospital, Istanbul and second datasets are acquired

Computer Science Department, University of Warwick.

Contributions of this study are given as follows:

• a hybrid multi-level thresholding and radial line based cell detection method is

developed,

• a Membrane Intensity Histogram (MIH) based cell identification method is

developed,

• a tissue specimen image dataset is prepared,

for CerbB2 mutated breast carcinoma automated IHC stained tissue scoring purposes.
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2. PROPOSED METHOD

Stages of the CerbB2 mutated breast carcinoma automated tissue scoring system are

presented in Fig. 2.1 Sample tissue images, CerbB2 tissue specimen is divided into

two sub-regions namely cell nuclei and cell membrane to benefit from pixel values

of hematoxylin and diaminobenzidine which are used for background staining. Then

multilevel thresholding is explained for detection of cell nuclei and cell membrane by

using gray level binary images. In the last part, how the classes are grouped by using

IHC, how the SVM classify the scores based on the features is explained in details of

subsections in followings.

Figure 2.1 : Workflow of the proposed IHC Stained CerbB2 mutated breast carcinoma
automated tissue scoring system. Tissue samples are fed into the system in

order to obtain the resulting ASCO/CAP 2013 tissue score [1].
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2.1 Color Deconvolution

Immuno Histo Chemistry (IHC) is a frequently used staining process for detection

of antigens in tissue samples [38]. There are various histochemical staining methods

developed for different proteins, cytoplasm, cell nuclei and cell membrane. The most

common differential staining methods over the color approximations are hematoxylin

(H-Blue) and diaminobenzidine (DAB-Brown) [2]. In this study, H and DAB colored

digital pathology images are analyzed. Once the prepared tissue slides are digitized,

acquired images are first decomposed into H and DAB color channels by the color

deconvolution method in [2]. Color deconvolution method relies on the utilization

of the so-called optical density matrix. Each stain type has its own optical density

coefficients which are used to determine the corresponding transformation matrix, T.

The transformation matrix for hematoxylin, eosin and DAB staining is shown in (Eq.

2.1).

T =

0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

 (2.1)

A sample result of the color deconvolution method is shown in Fig. 2.2, where the

original digital pathology image is decomposed into DAB and Hematoxylin channels.

These channels are used for ”hybrid cell detection” and ”Membrane Intensity Histogram

(MIH)” based cell identification purposes. Let D be dab channel of the region of tissue,

H be hematoxylin channel of the region of tissue.
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Figure 2.2 : Decomposition of H and DAB channels using the color deconvolution
method in [2].

2.2 Hybrid Cell Detection Method

Once the image is decomposed into DAB (D-brown) and Hematoxylin (H-blue)

channels, cell nuclei centers are determined by utilizing a multi-level thresholding based

algorithm applied on Hematoxylin channel(H), and a radial line based cell membrane

detection algorithms applied on DAB channel(D). These algorithms constitute the

hybrid cell detection method.
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2.3 Cell Nuclei Detection

Spatial high-frequency content within cell nuclei regions in Fig. 2.3(a) are suppressed

by median filtering as in Fig. 2.3(b). This step is followed by Otsu thresholding

method which finds the threshold that maximizes the between-class and minimizes

the within-class variances of background and foreground regions [39]. The resulting

binary image obtained by Otsu thresholding is shown in Fig. 2.3(c). The figure contains

connected cell regions from which it is hard to determine separate nuclei centers. In

order to mitigate this issue, a multi-level thresholding based approach is followed. This

approach includes the distance transform stage in which regions with intensity values

above the Otsu threshold are labelled with respect to their distance from the pixels with

intensity values below the Otsu threshold in Fig. 2.3(d) [40]. This way, each cell nuclei

center attains the local maximum distance label value. To determine local maxima, a

multi-level thresholding approach is carried out by sweeping the whole dynamic range

of intensity values from the highest to the lowest one. Masks obtained for a decreasing

set of threshold values are shown in Figs.2.3(e)-2.3(h). Consequently, center pixels of

cell nuclei, which happen to be the local-distance-label-value maxima, are determined,

as shown in Fig. 2.3(i). The proposed cell nuclei detection algorithm is presented below.

Let HB be binary image of H, HD be distance transform of HB :
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Figure 2.3 : Stages of the cell nuclei detection algorithm (a): Hematoxylin Image (H),
(b): Gray Level Hematoxylin Image, (c): Binary Hematoxylin Image (HB)
(d): Distance transformed mage (HD), (e-h): Images that are thresholded
with different threshold value. Green parts of the cells that were detected
for the first time by using different threshold value represent the first cell
centers, and red parts of the cells represent cell centers that are already

listed, (i): Result Image.

2.4 Cell Membrane Detection

Cell nuclei centers determined from the cell nuclei detection algorithm are fed as input

to the cell membrane detection algorithm, as well as the binary mask obtained from

the DAB channel after color deconvolution. Radial lines emanating from cell nuclei

centers are traversed until the first DAB mask pixel is reached as shown in Fig. 2.4(a).

The pixel location is kept in a list called ”membrane polygon points list”. This process

is repeated for a full cycle around the cell nucleus to populate the membrane polygon
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points list. Hence, the cell membranes around the cell nuclei are determined Fig. 2.4(b).

Details of the algorithm are presented below in Algorithm 3.

Figure 2.4 : (a) Radial lines (black arrows) emanating from cell nuclei centers (red
dots) are traversed until the first DAB mask pixel is reached. (b) Cell

membranes around the cell nuclei (red polygons) are determined by the
”Cell Membrane Detection Algorithm”. (c) Extended cell membrane

region for MIH extraction.

Algorithm 1 Get Rounded Value Algorithm.
1: procedure GETROUNDEDVAL(valReal : Real)
2: Result = Floor(valReal)
3: if valReal ≥ Result +0.5 then
4: Inc(Result)
5: end if
6: Return Result
7: end procedure

Algorithm 2 Get Next Point Algorithm.
1: procedure GETNEXTPOINT(LineEq : T line, Slope : Real)
2: if (LineEq.m < 1) and (LineEq.m≥ 0) then
3: Result.X := Pcc.X +Shi f tVal
4: Result.Y := GetRoundedVal(LineEq.GetYCoor(Result.X))
5: else if (LineEq.m < 0) and (LineEq.m >−1) then
6: Result.X := Pcc.X−Shi f tVal
7: Result.Y := GetRoundedVal(LineEq.GetYCoor(Result.X))
8: else
9: Result.Y := Pcc.Y +Shi f tVal

10: Result.X := GetRoundedVal(LineEq.GetXCoor(Result.Y ))
11: end if
12: Return Result
13: end procedure
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Algorithm 3 Cell Membrane Detection Algorithm.
1: for Θ = 0→ 359 do
2: m := tan((Θ∗Π)/360);
3: LineEq :=CreateLine(Pcc,m);
4: for i = 0→MaxShi f tVal−1 do
5: NextP := GetNextPoint(LineEq,Pcc, i);
6: if RDB.PixelData[NextP.x,NextP.y] == 255 then
7: PPList[m] := NextP;
8: Break
9: else

10: Continue;
11: end if
12: end for
13: end for

Let Pcc be cell center point, RDB be binary image of DAB channel of tissue region under

consideration, Θ be angle of line, slope(m) be the slope of the straight line that comes

from the center of the cell, createLine function creates line equation, MaxShiftVal is the

farthest point to go, PPList is Cell Membrane Polygon point list.

It can be seen the visual expression of all stage of the Hybrid Cell Detection Method in

Fig. 2.5.
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Figure 2.5 : Hybrid cell detection method.
14



2.5 Membrane Intensity Histogram (MIH) Extraction

Once the membrane polygon points lists are populated, neighboring pixels of membrane

points extending outwards for a constant number of, d - many, pixels are further

analyzed. To that extent, histograms corresponding to average intensity values of

pixels around membrane points extending along each radial direction within a ring

of width ”d pixels” encircling the membrane, are estimated. This d-many pixels are

determined to be 10, which is the sum of the standard deviation and the average of the

PDF obtained from the 2713 cells giving the figure 2.7. These histograms are called

”Membrane Intensity Histogram (MIH)” and they are used as feature vectors for cell

identification. Average intensity values of 360 points in every cell which is occurred by

cell membrane polygons. Then, 256 pixel values over the all points are quantized and

16 sized features are obtained in Fig. 2.9. At the fig. 2.8, average radius of the cells is

18,71. Accordingly, some of the 360 points will repeat themselves. This repeat does not

change the characteristic properties of the membrane. In addition, since the radiuses

of the cells are not very large, the algorithm will never skip information from the cell

membrane. A sample histogram corresponding to the region is presented in Fig. 2.6.

For convenience, we adopt polar coordinates to represent pixel locations of the image I,

as I(r,θ). Let O be the center point of the cell, r(X) be the distance of a point X to O,

and θ(X) be the angle between the positive-x axis and the ray
−→
OX . Average intensity

value of the membrane pixels along the θ − th direction, CAvθ
, is defined as:

CAvθ
=

1
d

r(B)

∑
r=r(A)

I(r,θ(A)) (2.2)

Note that, d = r(B)− r(A), and θ(A) = θ(B). A visual representation for calculation

of the CAvθ
value is illustrated in Fig. 2.6.

For each cell, one gets 360-many CAvθ
values. We apply a 16-bin uniform quantization

on the histogram of these values to estimate the MIH-based features (cf. Fig. 2.9).
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Figure 2.6 : Visual representation for calculation of the CAvθ
value.

Figure 2.7 : Pdf of Membrane thickness of cells. Mean is 6.7 px, Standard Deviation is
4.86. This value and pdf is obtained from 2713 cells.
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Figure 2.8 : Pdf of Radius of cells. Mean is 18.71 px, Standard Deviation is 5.95. This
value and pdf is obtained from 2713 cells.

Figure 2.9 : Displaying of 16 sized vectors by quantizing 256 average pixel values of
360 points. Left: Number of Pixel, Bottom: Sixteen Level Histogram.
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After creation of MIH vectors, labels (scores) are added for each image MIH vector

as ”0”, ”1”, ”2”, ”3”. These labels were assigned knowledges that are shared by

pathologists who have shared tissue specimen images, since the pathologists could

analyze CerbB2 status of the tumor. These known labels are kept into an array lists

corresponding to the related cells. In guidance of this studies, every label group is

mapped to their correspondences for getting largest size of train labels, so it is obtained

four main classes and this is followed by classification.

2.6 Membrane Intensity Histogram (MIH) Based Cell Identification

Membrane Intensity Histograms (MIHs) are used as feature vectors of size Q. These

vectors are fed into a cell identification module utilizing LSTM and Classification

Learner of MATLAB to classify MIH based features into four separate score classes,

namely, Score 0+, Score 1+, Score 2+ and Score 3+ [41]. For identification purposes at

the cellular level, a deep learning LSTM layers and a lot of decision trees classification

method were used. Details of the training phase of classifiers are presented below.

These datasets are normalized by using Z-Score method which limits the value of train

and test data between [-1,1] as advised in the method [42]. The normalized data set for

the models planned to be created using different classifiers is appropriately separated for

the training and testing phase. Then the 5 fold cross-validation method has been used to

more accurately divide the test and training set [43]. Since 10 folds cross validation

uses 90% of the data for the training, cross validation can cause wrong prediction of test

performance. In this regard, 5 folds cross validation was prefered for training to improve

robustness of the classifiers [44] [45] [46]. In figure 2.10, Hybrid Cell Detection Method

and Membrane Intensity Histogram Extraction are presented by explaining step by step.
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Ri: ith Region of tissues.

RiH : Hematoxylin Channel of the ith Region of Tissue.

Ci: ith Cell of the ith Region of Tissue.

RiD: DAB Channel of the ith Region of Tissue.

CiH : Hematoxylin Channel of the ith Cell.

CiD: DAB Channel of the ith Cell.

CiHB
:Binary Image of Hematoxylin Channel of the ith Cell.

CiDB
:Binary Image of DAB Channel of the ith Cell.

Hi: Histogram of the ith Cell.

RiC jVn: nth vector member of MIH vector of jth cell of ith Region of the tissue.
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2.7 Computational Complexity

According to all of the steps of the proposed method, let ‘N’ be the total number of

pixels in a sample tissue image and ‘m’ be the number of cells in the image. Then, the

complexity of the proposed method is given by:

O(N)+O(m) (2.3)

Computational complexity can be seen in table 2.1 for per step.

Table 2.1 : Computational complexity per step.

Method Complexity
Color Deconvolution O(N)

Cell Detection O(N)
MIH O(m)

Identification O(m)
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3. EXPERIMENTAL SETUP

3.1 Data Set

In order to evaluate the scoring performance of the proposed technique, following

experiments are carried out using two different databases. One of them is tissue

specimens from patients with breast cancer at department of medical pathology, Istanbul

Medipol University Hospital. Second one is the Department of Computer Science,

University of Warwick, United Kingdom [47]. These specimens were processed over

the tissue images consisting of cell patches are obtained to be analyzed for Computer

Aided Diagnosis [48] [49].

First database are digitized by Argenit Kameram digital microscopy system, which

consists of Zeiss Axio Scope A1 bright field microscope, 40X objective, 0.63X camera

adaptor, Kameram 2 CCD camera (with 1.4 mega pixel sensor resolution), PC and

Kameram software. The mosaic image acquisition tool of Kameram software is used

to capture the panoramic images of tissue regions which are larger than the camera

view area. Acquired images are further analyzed using a sequence of image analysis

techniques developed specifically for automated tissue scoring. Second database were

digitized by using Hamamatsu NanoZoomer C9600 scanner. The first database consists

of 13 different cases and a total of 191 tissue images with 1360x1024(widthxheigth)

resolutions, 105 of them were used for training, 86 of them were used for testing. 41 of

them are diagnosed as ’Score 0+’ (negative), 47 of them are diagnosed as ’Score 1+’,

52 of them are diagnosed as ’Score 2+’ and 56 of them are diagnosed as ’Score 3+’ and,

the dataset has number of 62431 cells.
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These tissue images are arranged into files which consist of 4 main score classes and

are shared accordingly in [50]. Also to the best of authors’ knowledge, this is the

second publicly available IHC stained tissue image data set for CerbB2 mutated breast

carcinoma automated tissue scoring purposes after Warwick University [47]. The second

database consists of 79 IHC stained Whole Slide Image(WSI) i.e 51 WSI for training

and 28 WSIs for testing. These WSIs have size of 100000x80000(widthxheigth).

3.2 Patch Selection

In this step, feature extraction was applied without any changes in the resolution of

the first database. In second database, WSIs were cropped at 40X magnification with

size of 1376x1040(widthxheight) without any intersection between cropped images

and without low resolution from mentioned resolution. After that, feature extraction

was applied to the second database also. The biggest problem here is the detection

of invasive and in situ tumors. In situ regions with invasive regions on cancerous

tissue often show the same property with each other. However, in situ regions are not

taken into account when scoring. In order to overcome this problem, the opinion of

pathologists is needed. At this stage, in situ regions were extracted from the images

obtained with the help of pathologists, and classifiers were given only cell features

obtained from invasive regions.
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4. EXPERIMENTAL RESULTS

These specimens that were mentioned in part 3.2 were processed over the tissue images

consisting of cell patches are obtained to be analyzed for Computer Aided Diagnosis

[48] [49]. All these tissue samples are diagnosed with cancer and scored by pathologists

based on their own expertise and FISH technique which is accepted as the gold standard

for breast cancer scoring [1]. Both database are trained by using Long-Short Term

Memory(LSTM) layer and Classification Learner Tool of MATLAB. Classification

learner tool of MATLAB was used to evaluate the scoring performance of proposed

technique, several classifiers was used like Coarse Tree, Fine Tree, Ensemble-Bagged

Tree, Fine KNN, Cosine KNN, Medium KNN etc. After the features were extracted

by membrane intensity histogram using noval methods such as color deconvolution,

multilevel thresholding and radial lines, first database was formed with 62431 cells

from 198 tissue images. In first dataset 24656 cells, in second dataset 342568 cells that

each cell is describing with 16 sized MIH vector were trained by using classification

learner tool of MATLAB with 5 fold cross validation. In deep learning LSTM classifier,

options were set as number of hidden units are 100, maximum epochs is 50, mini batch

size is 27, adam [51] were used for optimization.

Accuracy which is shown as (Eq. 1.1), measures success of classifiers with proportion

of number of correct prediction to total number prediction, is calculated as follows:

A =
∑

n
l=0 Pl

∑
n
l=0 Tl

x100 (4.1)

where l express labels, P symbolize true predictions and T is used to represent total

number prediction regardless of correctness.

In table 4.1, Warwick University datasets’ tissue based Training Accuracy and their

scoring systems Criteria 1 points that is mentioned in [47] can be seen. According

to test results, Cosine KNN classifier gives highest result. Then, this point is ranked

as 6th among the Her2Contest’ contestants without bonus points and 7th with bonus
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points. Satisfactory results were obtained from several classifiers, and the results that

we obtained when we compared our scores with the scores of other competitors show

the success of MIH method. People who share the second database with us only give us

the ground truth of the training set. Since we don’t have the ground truth of the test set,

we’re unable to report both cell-based and case-based test success. We sent them the

scores we obtained as a result of the test and we can evaluate our position according

to the other competitors by using the points sent to us according to their own scoring

systems.

Table 4.1 : Performance of the classifiers on Warwick dataset.

CLASSIFIER Validation
Accuracy

Her2Contest
Points Bonus Points Total

LSTM %99.84 347,5 9,5 357
Disabled PCA %99.99 355 2,5 357,5

Fine Tree %99.99 367,5 6 373,5
Medium Tree %99.99 332,5 14 346,5
Coarse Tree %97.7 320 7 327
Fine KNN %95.7 337,5 13,5 351

Medium KNN %94.7 347,5 14 361,5
Coarse KNN %91.1 347,5 16 363,5
Cosine KNN %93.9 385 15 400

Weighted KNN %95.4 322,5 12,5 335
Ensemble Bagged Trees %99.9 322,5 12,5 335
Ensemble RUSBoosted %99.3 322,5 12,5 335
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Table 4.2 : Accuracy performances of MIH-based method with various classifiers on
the clinical test dataset are presented in comparison with the

ImmunoMembrane method in [17]. Samples presented in the test dataset
consists of unseen data. Results indicate that MIH-based cell identification

approach has higher accuracy independent of the classifier type. Best
performing classifier and corresponding accuracy values are printed in

boldface letters.

CLASSIFIER Validation
Accuracy

Cell Based
Scoring Accuracy

Tissue Based
Scoring Accuracy

LSTM %88,01 %75,76 %89,52
Disabled PCA %87,00 %75,99 %89,52

Fine Tree %87,00 %75,99 %89,52
Medium Tree %86,80 %76,26 %89,52
Coarse Tree %85,60 %76,99 %84,76
Fine kNN %82,60 %72,80 %83,80

Medium kNN %86,40 %74,17 %89,52
Coarse kNN %85,90 %73,68 %86,66
Cosine kNN %85,70 %76,01 %88,57

Weighted kNN %86,10 %74,17 %86,66
Ensemble Bagged Trees %87,90 %77,39 %90,47

Ensemble Boosted Trees %87,60 %77,40 %91,43
ImmunoMembrane [17] - - %74,07

Table 4.2 shows cell based and tissue based performance of the proposed method on our

clinical dataset. Validation accuracies as well as cell based and tissue based accuracies

are reported for each classifier. As shown in the results, boosted tree based classifiers

over-perform other classifiers both for cell based and tissue based tests.
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4.1 Discussion

In recent years, the data used in many image analysis studies conducted with breast

cancer data show a significant difference in terms of evaluation. These studies also

differ in the use of different chemical dyes in the imaging of tissue samples taken from

patients suspected of breast cancer. In this context, different from the type of chemical

paint used in other works, IHC biomarker was used for the screening of tissue samples

in this study. Then the results of image analysis were compared with the studies using

the same chemistry to screen tissue specimens. These comparisons were executed based

on the Warwick datasets [47] and higher performance achievements were got then some

competitors. Compared to Vandenberghe et al.(2017) [30] results of first dataset, the

78% performance achieved by patch based classification and CNN use is lower than our

91,43% patch based performance.

In table 4.3 and table 4.4, bold cells represent accurate prediction of every scores as

score 0+, score 1+, score 2+, score 3+ respectively. Intersection of columns and rows

show accurate predictions in terms of cell number. Column which is called “Actual”

shows cell based total test numbers in each Scores. “Recall” and “Precision” shows cell

based accuracy for each type of score. While “Precision” shows predicted accuracy

rate, “Recall” presents actual accuray rate. As it is expected, overall test accuracies

are between precision and recall with 76,72% for Cell Based Tissue Scoring, 91,79%

for Patch Based Tissue Scoring. This confusion matrices shows results of Cosine

KNN classifier which gives best result for patch based classification. The confusion

matrices in table 4.4 provides test accuracy with each type of score, it also represents

data distribution. Since Score 2+ has the most confusion between score types, the least

accuracy is obtained in Score 2+ for cell based tissue scoring. In patch phase Score

0+&1+ has most confusion, and the least accuracy obtained in Score 0+&1+. On the

other hand, wrong prediction in test has caused lower accuracy rate, even though the

related score type has high accuracy rates in actually. The most important cause of the

error is the cytoplasmic staining. In cases where membrane staining was not present but

in which cytoplasmic staining was occurring, it was seen that 0+ and 1+ cases behaved

as 2+.
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Table 4.3 : Demonstration of confusion matrices of cell based test data.

SCORES 0 & 1+ 2+ 3+ Actual Recall
0 & 1+ 9962 1423 60 11445 87,04%

2+ 1794 3967 124 5885 67,40%
3+ 1365 1015 5868 8248 71,14%

Predicted 13121 6405 6052 25578 75,19%
Precison 75,92% 61,93% 96,95% 78,26% 76,72%

Table 4.4 : Demonstration of confusion matrices of patch based test data.

SCORES 0 & 1+ 2+ 3+ Actual Recall
0 & 1+ 35 10 0 45 77,77%

2+ 0 27 0 27 100%
3+ 0 0 33 33 100%

Predicted 35 37 33 105 92,59%
Precison 100% 72,97% 100% 90,99% 91,79%
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5. CONCLUSION

A novel image analysis based automated tissue scoring system is developed to determine

the score of CerbB2 receptors in breast cancer tissue specimen images of patients with

suspected breast cancer. The contributions of the study are summarized as:

• The development of a hybrid multi-level thresholding and radial line based cell

detection method,

• The development of a Membrane Intensity Histogram (MIH) based cell identification

method, and,

• The preparation of a tissue specimen image dataset for automated scoring of CerbB2

Receptors.

This study differs substantially from state-of-the-art computer-aided detection methods,

such as the ones using Convolutional Neural Networks [52], as the proposed automated

scoring system depends on dedicated methods exploiting various aspects of breast

cancer tissue specimen images. The currently used first data set in this study are already

available online [50] and this contribute the work specificity. The histogram obtained

at the MIH stage of the proposed method is a unique method for understanding both

completeness and membrane staining of tissue. The 360 different point values are

useful for understanding the completeness in terms of circular information, and the

pixel value of each point indicates the extent of membrane staining. To classify by using

raw image and CNN classifiers seems to be advantageous in terms of achieving higher

performance more quickly considering today’s CPU and GPU capacities. However, it is

more cost-effective to produce problem-specific solutions by feature extraction which

is one of the basic principles of image processing. It also makes great contributions

to academic knowledge. The proposed system is anticipated to assist pathologists by

not only providing an image analysis based scoring tool, but also by mitigating the

interobserver discrepancy.In some cases, pathologists may not be able to decide on their

own. In such cases, two options emerge. The first is to consult with a specialist or group

31



of experts they think is better than their own. The second is to diagnose FISH, which is

a much more expensive method. The second method is often not preferred because of

its cost. Therefore, our goal is to develop a system that can offer additional consultation

to pathologists.
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