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QUANTIFICATION OF SAHARAN DUST INFLUENCES ON EASTERN 
MEDITERRANEAN AIR QUALITY VIA ATMOSPHERIC MODELING 

SUMMARY 

According to the World Health Organization (WHO), air pollution is a major 
environmental risk to health for urban population in both developed and developing 
countries and particulate matter (PM) affects more people than any other pollutant. 
Particles less than 10 micrometers are called PM10, and fine inhalable particles, with 
diameters that are generally 2.5 micrometers and smaller are called PM2.5. Among 
sources of particulate matter, mineral dust is one of main contributors of natural aerosol 
emissions on a global basis contributing around 22% and Sahara is the main contributor 
to the global dust budget.  

Epidemiologic studies show that there is a clear link between the dust and adverse 
health problems such as respiratory diseases, cardiovascular diseases, pulmonary and 
systemic inflammation. Aside from its effects on human health, transported dust also 
affects ecosystem by transporting a variety of chemicals and microbial agents (such as 
bacteria, fungi, and viruses) from source area to other regions. Dust can have both 
physical and chemical impacts on plants. For instance, it may serve essential nutrients 
for plant growth such as iron, and phosphorus, yet microbial agents that can be carried 
thousands of miles in the atmosphere, might be pathogenic to the plants causing rust 
and other plant disorders. Mineral dust also has a direct role on the radiation budget 
and regional climate and has a semi-direct effect on cloud cover. 

Air pollution is one of the major environmental problems in the Mediterranean basin 
since the limit values of the pollutants are often exceeded. Saharan dust intrusions into 
the Mediterranean Basin affects 427 million people living in the 21 countries 
surrounding it. Considering its location, Turkey is downwind of Europe and on the 
crossroad of long-range dust transport and local emissions, meaning high amount of 
population living in Turkey are exposed to high PM concentration. The contribution of 
Saharan dust on PM concentration is still unclear in the Eastern Mediterranean, 
especially in Western Turkey, where significant industrial sources and metropolitan 
areas (i.e., Istanbul, Ankara and Izmir) are located. This study aims to quantify the 
contribution of Saharan dust on high levels of PM10 that was measured in April 2008 
via ground observations, satellite data and atmospheric models. 
Ground observations that is used in this study were obtained from the Turkish Ministry 
of Environment and Urbanization for the year 2008. Data analysis of the ground 
observations showed April 2008 had significantly higher values compared to other 
warm season months with a monthly mean of ~87 µg/m3, where the annual mean PM10 
concentration of 2008 was found to be ~82 µg/m3. It is known from the literature that 
the transition seasons are usually associated with dust transport from Sahara Desert in 
the Mediterranean Basin. One method to understand the complex nature of aerosol 
formation is via atmospheric models. In the real atmosphere, both meteorological 
factors (such as wind speed and direction, turbulence, radiation, clouds, and 
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precipitation) and chemical processes (such as deposition, and transformations) play 
important roles on air quality and they are coupled. The interaction of meteorological 
factors on air quality and atmospheric transport of pollutants is well accepted and they 
can no longer be conducted separate from each other. 
Within this scope, we utilized the Real-time Air Quality Modeling System (RAQMS), 
which is an online global aerosol and chemistry assimilation and forecasting system 
that was run at 2x2 degrees horizontal resolution, to explore the possible effects of 
Saharan dust on high levels of PM10 measured in Turkey in April 2008. The RAQMS 
chemical scheme was developed at NASA Langley Research Center, and the aerosol 
module incorporates the Goddard Ozone Chemistry Aerosol Radiation and Transport 
(GOCART) mechanism. RAQMS simulates sulfate (SO4

-2), dust, black carbon (BC), 
organic carbon (OC) and sea-salt aerosols that are known as the major tropospheric 
aerosol components. The model results showed that the high levels of PM10 observed 
for April 2008 are related to a Saharan dust outbreak. Due to its coarse resolution (2x2 
degree) and inability to resolve local topographic variations, RAQMS was found to 
over predict the surface PM10 concentration over Turkey by up to a factor of 5.  

Continuation of the RAQMS research, the higher resolution (30km outer and 10 km 
nested domains) online-coupled regional Weather Research and 
Forecasting/Chemistry model (WRF-Chem), a version of the non-hydrostatic model 
WRF, was utilized. In order to include dust transport from North Africa through lateral 
boundary conditions (LBC), 6 hourly RAQMS 2x2 degree global analyses was used 
for 30km run. For background aerosol, GOCART simple aerosol module within the 
WRF-chem is used. For anthropogenic emissions, two different emission inventories 
are used, 1×1 degree spatial resolution RETRO (REanalysis of the 
TROpospheric)/EDGAR (Emission Database for Global Atmospheric Research) and 
0.1×0.1 degree spatial resolution EDGAR HTAP (EDGAR: Emission Database for 
Global Atmospheric Research of the Joint Research Centre, JRC, in cooperation with 
the Task Force on Hemispheric Transport of Air Pollution (TF HTAP)), to investigate 
the spatial and temporal distribution of Saharan mineral dust transport over the Eastern 
Mediterranean (-10.0° W–60.0° E, 30.0° S–70.0° N) for the same time period. The WRF-
Chem results were found to be significantly improved compared to the previous 
RAQMS study. WRF-Chem HTAP outer and nest domain were able to more accurately 
resolve local emissions that influence the ground observations than the WRF-Chem 
EDGAR run. The comparison between ground observations to the WRF-Chem HTAP 
model predictions indicated that the model was able to simulate dust transport patterns 
and the concentrations in a successful way.  
Followed by WRF-Chem study, we investigated the impacts of satellite data 
assimilation through assimilation of the Moderate Resolution Imaging 
Spectroradiometer (MODIS (collection 6)) total aerosol optical depth (AOD) retrieval 
products (at 550 nm wavelength) from Terra satellite within the National Centers for 
Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-
dimensional variational (3DVAR) data assimilation system by using the same 
configuration that was used for WRF-Chem experiment. The simple GOCART aerosol 
module that is implemented in WRF-Chem modeling system was used to assimilate 3-
D mass concentration of 14 aerosol variables within the model including hydrophilic 
and hydrophobic components of atmospheric aerosols such as sea salt, dust, organic 
carbon (OC), black carbon (BC), and sulfate. Two nested domain (10km) experiments 
were designed to evaluate the impact of AOD DA on predicted PM10 concentrations 
over Turkey by using the same LBC obtained from 30km domain. Both 10km 
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experiments used the same physical and chemistry options, but one experiment did not 
employ DA (10km_NoAssim) and the other employed 3DVAR DA (10km_Assim) 
that updated the 14 aerosol profiles of GOCART aerosol module. 

When we compared average model outputs with the observation means, we found that 
both 10km (10km_NoAssim and 10km_Assim) analyses show higher level of 
variability in the PM10 values compared to 30km_Assim run. Among the 10km runs 
though, 10km_NoAssim run showed higher level of variability than the 10km_Assim 
run. So, assimilation lowers the variability especially for the days when high dust event 
occurred. Daily comparison of surface PM10 measurements to model outputs showed 
that higher resolution domains (10km_Assim and 10km_NoAssim) overestimate daily 
surface mean PM10 values more than lower resolution domain (30km_Assim) does for 
the high dust event days. 

In order to explore differences in aerosol AOD assimilation between the high resolution 
domain (10km) and the 30km runs, we have interpolated 30km_Assim run to the 10km 
grid. Based on the PM10 differences averaged over the surface sites for 30km runs and 
10km runs, April 1 and April 13, 2008 are chosen in order to further explore the 
consistency of the aerosol assimilation at 30 and 10km resolution.  
On April 1st low dust event day, over the central Anatolia, within the higher resolution 
domain, the predictions tend to increase due to the 30km_Assim domain influence 
through the LBC. This increase in higher resolution domain is corrected by employing 
assimilation by moving the predictions towards the observations. For the eastern part 
of the domain on April 1, the impacts of assimilation are similar for the 30 and 10km 
experiments indicating LBC impact is small. 
On April 13th, when dust is the dominant aerosol, 30km_Assim run shows higher PM10 
concentrations than the 30km_Control run. The local emissions, as well as LBC from 
the 30km domain, add additional enhancements to 10km domain resulting an 
overestimation in 10km_NoAssim domain (due the large negative differences between 
30km_Assim and 10km_NoAssim). Relatively small differences between the two 
10km domains again shows that assimilation tends to move the 10km predictions closer 
to the surface observations during this high dust event. 

This demonstrates that, in our study, although the nested domains tend to over predict 
the PM10 concentrations comparing to the 30km domain, assimilation of satellite AOD 
retrievals moves the model forecasts towards the surface observations within the 10km 
resolution domains especially on high dust event days.  
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SAHRA TOZUNUN DOĞU AKDENİZ HAVA KALİTESİ ÜZERİNDEKİ 
ETKİLERİNİN ATMOSFER MODELİYLE BELİRLENMESİ 

ÖZET 

Dünya Sağlık Örgütü (WHO)’ne göre hava kirliliği, Dünya’daki tüm canlı türlerini 
etkileyen ve insan sağlığı üzerinde ciddi etkileri olan çevresel bir risktir. Amerika 
Birleşik Devletleri Çevre Koruma Ajansı (USA EPA)’nın altı yaygın kirleticisinden bir 
tanesi olan Partikül Madde (PM), hava içinde uzun süre askıda kalabilen, katı ve sıvı 
halde bulunan maddelerdir. PM boyut olarak aerodinamik çapı 0.1 µm’den küçük olan 
çok (ultra) ince partiküller, 0.1 µm ile 2.5 µm (2.5 µm dahil) arasında olan ince 
partiküller, 2.5 µm ile 10 µm arasında olan kaba (course) partiküller ve 10 µm’den 
büyük kaba partiküller olarak sıniıflandırılmaktadır. Partikül madde insan kaynaklı 
olabildiği gibi doğal kaynaklı da olabilir. Doğal partikül madde kaynaklarının %22’lik 
bölümünü mineral çöl tozu oluşturmaktadır ve Sahra Çölü bilinen en büyük çöl tozu 
kaynağıdır. Partikül madde (PM) diğer tüm hava kirleticilerine oranla insan sağlığı 
üzerinde en fazla negatif etkisi olan kirleticidir.  

Son yıllarda yapılan epidemiolojik çalışmalar hava kirliliğinin insan sağlığı üzerindeki 
ciddi etkilerini açıkça ortaya koymaktadır. Dolaşım yolları hastalıkları, akciğer iltihabı, 
sistemik inflamasyon gibi hastalıklar bu etkilerden birkaçına örnektir. Bunu yanı sıra 
özellikle çöl tozlarının astım hastalarının kriz sıklığını artırdığı, dünyada çöl 
tozlarından etkilenen bölgelerde astım hastalığı oranının fazla olduğu literatürde birçok 
çalışmayla ortaya konmuştur. İnsan sağlığı üzerindeki olumsuz etkilerinin yanı sıra toz 
taşınımının ekosistemler üzerinde de etkisi vardır. Örneğin; rüzgârlar vasıtasıyla 
çöllerden kalkarak atmosfere karışan toz partikülleri atmosferik taşınım ile çok uzak 
bölgelere kadar ulaşırken aynı zamanda kaynak bölgeye ait kimyasal ve mikrobiyal 
ajanları (bakteri, fungus, virüs) da beraberlerinde getirirler. Çöl tozları içerisinde 
barındırdığı demir, alüminyum gibi mineraller bitkilerin gelişimini hızlandırırken aynı 
zamanda mikrobiyal ajanlar sebebiyle bitkilerde çeşitli hastalık ve bozulmalara neden 
olmaktadır. Mineral tozun iklim sistemi üzerindeki etkileri de literatürde büyük yer 
kaplamaktadır. Tozun iklim sistemi üzerinde güneş ve yer kaynaklı radyasonunu 
yansıtma ve absorplama özellikleri ile bulut albedosu ve yağış özelliklerini değiştirmek 
gibi etkileri vardır.      

Akdeniz Havzası’nda hava kirliliği sınır değerleri çoğunlukla aşıldığı için bu bölgede 
yaşayan toplam 427 milyon kişi hava kirliliğinden negatif bir şekilde etkilenmektedir.  
Bu bölge için yapılan çalışmalarda yüksek partikül madde konsantrasyonu ile özellikle 
bahar aylarında olan Sahra Çölü kaynaklı toz taşınımı arasında bir ilişki olduğu 
bulunmuştur. Sahra Çölü’nden taşınan tozun yanı sıra, Türkiye bulunduğu coğrafya 
nedeniyle gerek Avrupa’dan gelen antropojenik kaynaklı kirleticilere, gerekse lokal 
kaynaklı kirleticilere maruz kalmaktadır. Her ne kadar yüksek partikül madde 
konsantrasyonu ile Sahra Çölü tozu arasında bir bağlantı olduğu bilinse de, Sahra 
tozunun özellikle endüstiyel aktivitenin yoğun olduğu metropolitan alanlardaki 
kirliliğe olan katkısının ne kadar olduğu belirsizliği de hala sürmektedir. Bu çalışma 
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Sahra tozunun yüksek partikül madde konsantrasyonuna olan katkısının yer 
gözlemleri, uydu verileri ve fiziksel modeler kullanılarak belirlenmesini 
amaçlanmaktadır. 

Çalışmada kullanılan ve 2008 senesine ait olan PM10 yer gözlemleri  T.C. Çevre ve 
Şehircilik Bakanlığı'ndan alınmıştır. Yapılan veri analizine göre 2008 yılı Nisan ayına 
ait veriler diğer ılıman aylara kıyasla daha yüksek PM10 konsantrasyon değerlerine 
sahiptir. 2008 yılına ait ortalama PM10 konsantrasyonu ~82 µg/m3 olarak 
hesaplanmışken, Nisan ayı ortalaması ~87 µg/m3 olarak bulunmuştur. Nisan ayı 
içindeki en yüksek günlük PM10 konsantrasyon ortalaması 14 Nisan 2008 tarihinde 
~170 µg/m3 olarak hesaplanmıştır. Bu değer sadece Nisan ayı içinde değil, 2008 yılı 
içinde ölçülen en yüksek konsantrasyon değeridir. Nisan ayı günlük PM10 
konsantrasyon değerleri Avrupa Komisyonu’nun belirledigi günlük PM10 
konsantrasyon sınır değeri olan 50 µg/m3’den daha yüksek seviyelerde hesaplanmıştır.  

Aerosollerin kompleks yapısını anlamak için atmosferik modeller kullanılmaktır. 
Gerçek atmosferde rüzgar hızı ve yönü, radyasyon, bulut oluşumu, yağış oluşumu ve 
türbulans gibi meterolojik faktörler hava kalitesi üzerinde önemli etkiye sahiptir ve bu 
etkiler birbirlerinden ayrı düşünülemez. Örneğin; atmosfer kimyası meteorolojiyi 
Dünya’nin enerji bütçesini değiştirerek doğrudan veya bulut yoğusma çekirdeği gibi 
davranarak dolaylı olarak etkileyebilir. Bulutlar, rüzgarlar ve yağış gibi meteorolojik 
parametreler ise atmoferdeki kimyasal madde dönüşümü, taşınımı ve depozisyonu gibi 
prosesler üzerinde etkilidir. 

Bu çalışmada, Sahra tozunun Türkiye üzerindeki etkilerini görebilmek ve yer 
gözlemlerinden hesaplanan yüksek PM10 konsantrasyonuna katkısını anlamak 
amacıyla ilk aşamada RAQMS (Real-time Air Quality Modeling System) modeli 
çalıştırılmıştır. RAQMS 2x2 derece yatay çözünürlüğe sahip, online, yani atmosferik 
prosesler ve kimyasal proseslerin birlikte çaliştırıldığı, global bir aerosol asimilasyon 
ve tahmin modelidir. RAQMS kimyasal şeması NASA Langley Araştırma 
Merkezi’nde geliştirilmiştir, aerosol modülü olarak Goddard Ozone Chemistry Aerosol 
Radiation and Transport (GOCART) kullanılmıştır. RAMQS modeli sülfat (SO4

-2), toz, 
karbon (BC), organik carbon (OC) ve deniz tuzu aerosollerini simule eder (hidrofilik 
ve hidrofobik bileşenler de dahildir.). RAQMS model sonuçları Nisan 2008’de 
gözlemlenen yüksek PM10 konsantrasyonunun Sahra tozuyla ilişkili olduğunu 
göstermiştir. Model tahmini yer gözlemleriyle benzer sonuçlar göstermiştir. Ancak 
RAQMS modelinin düşük çözünürlüklü olması ve lokal topografik etkileri tam olarak 
çözememiş olmasından dolayı tahmin değerleri gözlem değerlerinden yaklaşık 5 kat 
daha fazla çıkmıştır.   
Bu çalışmanın ikinci aşamasında daha yüksek çözünürlüklü (30km ana domain ve 10 
km nest domain), online, bölgesel WRF-Chem (Weather Research and 
Forecasting/Chemistry) modeli kullanılmıştır. WRF-Chem, hidrostatik olmayan WRF 
modelinin kimya içeren versiyonudur. WRF-Chem atmosferdeki küçük miktardaki gaz 
karışımları ve partikül maddeleri meteorolojik alanlarla birlikte eş zamanlı olarak 
simule eder. Modelin meteorolojik bileşenleri ile hava kalitesi bileşenleri aynı grid 
içinde çalışır ve aynı taşınım şemasına sahiptir. WRF-Chem 30km çözünürlüklü ana 
domain batıda Avrupa, doğuda Hazar Denizi, kuzeyde İskandinavya ve güneyde Sahra 
Çölü ile sınırlıdır  (-10.0° Batı boylamı–60.0° Doğu boylamı, 30.0° Güney paraleli–
70.0° Kuzey paraleli). Doğu-batı yönünde 190 grid, kuzey güney yönünde 158 grid 
noktasına, düşeyde 35 seviyeye sahiptir. 10km çözünürlüklü nest domain ise 
Türkiye’yi içine alacak şekilde doğu-batı yönünde 262 grid, kuzey güney yönünde 181 
grid noktasına, düşeyde de 35 seviyeye sahiptir. Kuzey Afrika’dan taşınan tozu model 



 xxv 

alanı içine katabilmek amacıyla 2x2 derecelik RAQMS global model kullanılarak 
yanal sınır koşulları (LBC) oluşturulmuştur. Bu çalışmada iki farklı emisyon envanteri 
kullanılarak yüksek toz taşınımının olduğu günlerde lokal emisyonların etkisi 
belirlenmeye calışılmıştır. Bu envanterlerden ilki 1x1 derece yersel çözünürlüğe sahip 
RETRO (REanalysis of the TROpospheric)/EDGAR (Emission Database for Global 
Atmospheric Research) emisyon envanteri, diğeri de 0.1×0.1 derece yersel 
çözünürlüğe sahip EDGAR HTAP (EDGAR: Emission Database for Global 
Atmospheric Research of the Joint Research Centre, JRC, Task Force on Hemispheric 
Transport of Air Pollution (TF HTAP)) emisyon envanteridir. EDGAR emisyon 
envanteri kullanılarak çalıştırılan model sonuçları, özellikle antropojenik kirleticiler 
lokal bağlamda çözümlenemediği için, HTAP emisyon envanteri kullanılarak 
koşturulan model sonuçlarına kıyasla daha düşük değerler vermiştir. Öte yandan daha 
yüksek çözünürlüğe sahip emisyon envanteri olan HTAP lokal emisyonlari 
hesaplamalara katabilmiş ve tozun etkisinin az olduğu günlerde model sonuçlarını 
gözlemlere yaklaştırmıştır. WRF-Chem model sonuçları RAQMS model sonuçlarına 
kıyasla yer gözlemleri ve model sonuçları arasındaki hata/yanlılık (bias) değerlerini 
azaltarak sonuçların geliştirilmesini sağlamıştır.  

Çalışmanın bir sonraki bölümünde Terra uydusu üzerinde bulunan MODIS (collection 
6) (Moderate Resolution Imaging Spectroradiometer) sensörüne ait Aerosol Optik 
Kalinlik (AOD) (550 nm dalgaboyuna ait) değerleri algoritmasi kullanılarak WRF-
Chem modeli içinde bulunan GOCART aerosol modülüne ait AOD verileri asimile 
edimiştir. Data asimilasyonu için Amerika Birleşik Devletleri Milli Cevresel Tahmin 
Merkezi (U.S. National Centers for Environmental Prediction (NCEP)) tarafından 
geliştirilmiş Gridpoint Statistical Interpolation (GSI) üç boyutlu değişken (3DVAR) 
data asimilasyon sistemi kullanılmıştır. WRF-Chem modelini koşturmak için 
kullanılan konfigürasyonun aynısı GSI veri asimilasyon sistemi kullanılarak koşturulan 
WRF-Chem deneyi için de kullanılmıştır. WRF-Chem model sistemi kapsamında 
bulunan GOCART aerosol modülüne ait 14 aerosol tipinin kütle konsantrasyonu 3 
boyutlu olarak asimile edilmiştir. 30km çözünürlüklü ana domainin Sınır Tabaka 
koşulları (LBC); daha önceki deneyde olduğu gibi yine 2 derece yatay çözünürlüğe 
sahip global model olan RAQMS model kullanılarak oluşturulmuştur. Daha sonra 
30km çözünürlüğe sahip model kullanılarak 10km nest domain için gerekli olan LBC 
belirlenmiştir. 30km_Assim sınır koşulları kullanılarak koşturulan 10km çözünürlüğe 
sahip domain icin iki farklı analiz yapılmıştır. Bunlardan ilki 10km domain içine veri 
asimilasyon yöntemi uygulanarak (10km_Assim), diğeri de asimilasyon yöntemi 
uygulanmayarak (10km_NoAssim) yapılmıştır. Model sonuçları yer gözlemleriyle 
karşılaştırıldığında 10km_Assim ve 10km_NoAssim model sonuçlari 30km_Assim 
model sonuçlarına göre daha yüksek çıkmıştır. 10km model sonuçları arasında ise 
10km_NoAssim sonuçlari 10km_Assim’e oranla daha yüksek değerler gösterme 
eğilimindedir. 
Aerosol data asimilasyon tekniğinin farklı çözünürlüğe sahip domainler (30km ve 
10km) üzerindeki etkisini anlamak amacıyla interpolasyon yöntemi uygulanarak 
30km_Assim model gridleri 10km grid için hesaplanmıştır. Türkiye geneli için model 
alanı içinde bulunan yer gözlem istasyon lokasyonlarındaki model tahminlerinin 
günlük ortalamaları hesaplanmış ve 30km (30km_Assim ve 30km_Control) ve 10km 
(10km_Assim ve 10km_NoAssim) domainler arasındaki farklar kullanılarak 
asimilasyonun etkileri daha detaylı incelenmiştir. Bu analiz için düşük toz 
konsantrasyonun olduğu 1 Nisan günü ile yüksek toz konsantrasyonunun olduğu 13 
Nisan tarihleri seçilmiştir.  
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1 Nisan’da 30km model (30km_Assim ve 30km_Control) sonuç farkları kullanılarak 
hazırlanan yer haritalarına göre 30km_Assim daha düşük tahmin değerleri 
göstermektedir (İç Anadolu ve çevresi için). 10km domainde ise asimilasyon tekniği 
uygulanmadan çalıstırılan model sonucu (10km_NoAssim) asimilasyon uygulanarak 
koşturulan modele kıyasla daha yüksek değerler göstermiştir. Yani 10km domain 
içerisinde asimilasyon model sonuçlarını yer gözlemlerine yaklaştırma eğilimindedir. 
Model alanının doğu sınırı için gerek 30km gerekse 10km model sonucları benzer 
değerler vermiştir. 10km domain içinde asimilasyon hesaplamaları düzelterek 30km 
domainden gelen yüksek konsantrasyon değerlerini yer gözlemlerine yaklaştırmıştır. 
Bunun sonucu olarak da model alanının doğusu için model farkları birbirlerine yakın 
çıkmıştır. 

Yüksek toz taşınımının olduğu 13 Nisan günü, 30km çözünürlüğe sahip model 
sonuçları arasından asimilasyon uygulanan deney kontrol deneyine kıyasla daha 
yüksek değerler vermiştir. Bu yüksek lokal emisyon değerleri 30km_Assim LBC 
vasıtasıyla 10km domain içindeki tahmin değerlerinin daha da artmasına sebep 
olmuştur. Fakat 10km domainlerin arasındaki farklar asimilasyon uygulanarak 
çalıstırılan modelin PM10 tahminlerini düşürerek tahminlerin yer gözlemlerine 
yaklaşmasını sağladığını göstermiştir.  
Her iki gün için de 10km çözünürlüğe sahip domain tahmin sonuçları 30km 
çözünürlüğe sahip domain tahmin sonuçlarından yüksek çıkmıştır. Bunun 
sebeplerinden biri 30km_Assim domaininin 10km domaine yanal sınırlar vasıtasıyla 
olan etkisidir. Düsük çözünürlüklü domainden daha yüksek çözünürlüklü domaine 
geçiş sırasında da emisyon alanlarının daha detaylı çözümlenmesinden dolayı emisyon 
değerleri artmaktadır. Fakat her iki gün için de asimilasyon yüksek çözünürlükteki 
domain içinde bu etkiyi düzeltme ve tahminleri yer gözlemlerine yaklaştırma 
eğilimindedir. Bu eğilim yüksek toz taşınımının olduğu günlerde düşük toz taşınımının 
olduğu günlere kıyasla daha fazladır.  
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1. INTRODUCTION 

1.1 Background Information  

Fine solid particles or liquid droplets suspended in the atmosphere are defined as 

aerosols (Prospero et al, 1983; Hinds, 1999). Particulate matter (PM) is an end product 

of complex chemical and physical processes, and they can be classified based on their 

source characteristics indicated by aerosol composition. Aerosol types can be defined 

as natural (e.g. sea-salt, windblown mineral dust, biogenic materials, natural gas-to-

particle conversion products) and anthropogenic (e.g. soot, smoke, road dust, products 

from the conversion of anthropogenic gases) on the basis of sources. They can also be 

classified as tropospheric and stratospheric, which impacts their atmospheric residence 

time, which can vary from days to weeks. Particle production occurs by either being 

directly emitted into the atmosphere (primary) or indirectly (secondary) derived from 

the subsequent reactions of emitted gases. Chemical processes and physical 

modifications changes size distribution and chemical composition of the particle 

(Prospero et al, 1983).  

Among sources of particulate matter, sea-salt and mineral dust are main contributors 

of natural aerosol emission contributing around 90% (68% for sea salt aerosol and 22% 

for natural dust) (Bellouin and Haywood, 2015). Sahara considered to be the largest 

dust source on Earth with estimation of annual dust emission ranges between 130 to 

760 Tg yr-1 while global dust emission estimates range between 1000 to 3000 Tg yr-1 

(Engelstaedter et al, 2006). In a study conducted by Tanaka and Chiba, a comparison 

is made between nine potential dust source regions including North and South Africa, 

the Arabian Peninsula, Central Asia, eastern and western China, North and South 

America, and Australia to investigate the contribution of those dust sources to the 

global dust budget (2006).  

A six-year simulation (1990 to 1995) done by MASINGAR (Model of Aerosol Species 

IN the Global AtmospheRe) model showed that North Africa (the Sahara Desert) is the 

greatest contributor to the global dust budget accounting for 58% of the total global 

dust emission (Tanaka and Chiba, 2006). Sahara produces around 2×108 tons of 
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aerosols annually, and they get transported towards the Atlantic Ocean, to the 

Mediterranean Sea and as well Southern Europe (Mitsakou et al, 2008; Kallos et al, 

2007: Querol et al, 2004). In the Mediterranean it has been shown that high levels of 

PM10 is correlated with the African dust intrusion (Querol et al, 2009). One of the recent 

studies indicated that African dust contribution to PM10 concentration decreases 

exponentially with latitude (from south to north) and increases longitudinally from 

25ºE eastwards (Pey et al, 2013). 

1.2 Hypothesis 

Saharan desert is known to be the largest natural dust source in the world. Literature 

reviews suggest that dust transport from North Africa to Mediterranean Basin occurs 

in the transition seasons. Under certain conditions, such as cyclones, dust plumes reach 

as far as Anatolian Peninsula (Kubilay et al, 2000). Contributions of natural sources to 

high PM values in the eastern Mediterranean is studied by Koçak et al. (2007) and it is 

found that 40% of the PM10 exceedances originated as consequence of mineral dust 

particles from the Saharan Desert.  

One of the areas with largest aerosol optical depth (AOD)s (up to about 1.0 or 0.6 

according to TOMS and MODIS, respectively) is the Anatolian plateau, which is 

mainly affected by desert dust (Hatzianastassiou et al, 2009). Therefore, it is suspected 

that Saharan dust has a major effect on Eastern Mediterranean air quality. 

1.3 Research Questions 

The overall research question is to understand and quantify the effect of Saharan dust 

in the Eastern Mediterranean. Specifically, the research questions to be addressed in 

this study are: 

1) Is there any quantitative impact of Saharan dust on Eastern Mediterranean air 

quality, especially in Anatolian Peninsula? 

2) What is the effect of other aerosols on Eastern Mediterranean’s, especially Anatolian 

peninsula’s, air quality during a dust outbreak?  

3) What is the impact of emission inventories in terms of identifying local emissions 

during the dust outbreak in order to improve the results? 

4)  What is the impact of model resolution on dust predictions? 
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 5) How does assimilation of satellite data impact dust predictions? 

 1.4 Literature Study  

When dust is transported from the source area to other regions, a variety of chemicals 

and microbial agents (such as bacteria, fungi, and viruses) are also transported affecting 

ecosystem and human health (Griffin, 2007; Grishkan et al, 2012). Epidemiologic 

studies show that there is a clear link between the particulate matter (PM) and adverse 

health problems such as respiratory (i.e., asthma) disease, cardiovascular diseases (i.e., 

accelerated atherosclerosis, altered cardiac), pulmonary and systemic inflammation, 

lung cancer and even death (Pope III. et al, 2004; Atkinson et al, 2001; Peters et al, 

2000). Moreover, it is stated that there is a less well-understood, sporadic linkage 

between PM and cerebrovascular disease (such as stroke). A 10-µg/m3 increase in PM10 

results in a 1.03% increase for hospital admission for ischemic stroke, while a 10 µg/m3 

increase in ambient PM2.5 increases the risk of hospitalization for cerebrovascular 

events by 0.8% (Anderson et al, 2012).  

Association between short-term exposure to major air pollutants (ozone, carbon 

monoxide, nitrogen dioxide, sulfur dioxide, and PM10 and PM2.5) is assessed and all of 

them except ozone is found to be significantly associated with a near-term increase in 

myocardial infarction risk (Mustafic et al, 2012). Air pollution is also listed as one of 

the trigger factors of myocardial infarction. A change of 30 µg/m³ in the daily mean 

PM10 would result a change in myocardial infarction incidence by 4.8% while a change 

of 10 µg/m³ would be associated with a 1.6% change. Even 1 µg/m³ change in PM10 

would change incidence by 0.16% (Nawrot et al, 2011).  

In their study, Tobias et al. (2011) showed a 10 µg/m3 increase in coarse particulate 

matter (PM2.5-10) during Saharan dust outbreaks also increases total mortality by 2.8% 

compared to 0.6% increase during non-dust days in Madrid. Sajani et al. (2011) stated 

that for people over 75 years old, the respiratory death rates increase by 22% on the 

days with Sahara dust. Even though literature shows an association of PM to adverse 

health problems, further explorations such as chemical characterization and toxicity of 

the particle are needed to understand impact of Sahara dust outbreak on human health, 

especially in Mediterranean Basin (Karanasiou et. al, 2012). In their study, Vodonos et 

al. (2014) stated that in the Eastern Mediterranean, high PM10 concentration due to dust 

transport exacerbates the rate of hospitalization for chronic obstructive pulmonary 
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disease (COPD) mainly for elderly people and women. Mallone (2011) showed that 

during Saharan dust episodes, cardiac and circulatory mortality rate increases due to 

the toxicological and inflammatory effects of particles originating from desert sources.  

Mineral dust also affects other important processes in the Earth’s system such as marine 

ecosystems. Increases in transatlantic dust transport decreases the vitality of Caribbean 

coral reefs (Shinn et al, 2000). Long-range dust transform from North Africa causes an 

increase in the numbers of viable fungal spores and other microorganisms by factor 2 

to 3 where they settle in the Caribbean marine environment (Griffin et al, 2001). 

Saharan dust has an important impact on nutrient cycles, soil formation and sediment 

cycles in both oceanic and terrestrial ecosystems not only in the source area but also 

around the world due to its long range transport across the Atlantic Ocean, the 

Mediterranean Sea and the Red Sea, to the Americas, Europe and the Middle East 

(Goudie and Middleton, 2001). The dust observed during the wet seasons of Amazon 

Basin is believed to be of Saharan origin, which is delivered by storm systems with 

horizontal scales of thousands of kilometers that associated with major pulses of 

rainfall (Swap et al, 1992). Saharan dust decreases the solubility of trace metals such 

as Cu, Zn and Pb, thus increases the pH of rainwater (Guerzoni et al, 1997). 

Particulate matter influences climate system due to either direct effect through 

scattering and absorbing the shortwave solar radiation or indirect effects by acting as 

cloud condensation nuclei (CCN). Studies show that Saharan dust particles commonly 

act as CCN, modifying the cloud development and precipitation formation. (Twohy et 

al, 2009; Levin et al, 2005). In their study Smoydzin et al. (2012), showed that high 

concentration of mineral dust can enhance ice crystal formation, however it does not 

make a significant change in total precipitation amount, except when there is an 

orographic ascent. This causes glaciation of the clouds and increasing local rainfall 

amount. It is predicted that annual average contribution of mineral dust to cloud 

condensation nuclei is around 40% and to cloud droplet number concentration is around 

23.8% (Karydis et al, 2011).  

In their study Perlwitz and Miller (2010) reexamined the link between aerosols and 

clouds that depends on changes in specific humidity induced by aerosol heating using 

Goddard Institute for Space Studies (GISS) climate model. Although in some areas, 

their model agreed with the conventional description of the semi-direct effect of 

reducing the low cloud cover due to aerosol heating, overall net effect is an 
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enhancement of low cloud cover with increasing soil dust particle absorption for all 

seasons except for winter in Northern Hemisphere (Huang et al, 2014). 

Change in the amount of dust load is shown to affect surface radiative heat flux and sea 

surface temperatures (SST), as well (Foltz and McPhaden 2008). Mineral dust has a 

direct role on radiation budget and regional climate while having a semi-direct effect 

on cloud cover by reducing it. After a severe dust storm originated in the Gobi desert, 

it is found that dust radiative forcing accounts for 42% total aerosol forcing at the 

surface (Han et al, 2012). For the same dust event, it is stated that direct radiative 

forcing by dust aerosols decreases ground temperature and wind speed in dust deflation 

region and the dust radiative forcing causes a surface cooling of −0.6 °C to −1.0 °C 

(Han et al, 2013).  

In their study, Zhao et al. (2011) investigated radiative forcing of dust and its impact 

on precipitation over the West Africa monsoon (WAM) region and results show that 

dust modified the surface energy budget and increased atmospheric stability in the 

daytime leading to a reduction of late afternoon precipitation. Chemical and physical 

analyses also show that mineral dust aerosols act like ice nuclei seed particles on which 

cirrus ice crystals form by sublimating (Cziczo et al, 2013).  

1.4.1 Mediterranean region facts 

Communication from the Commission to the Council and the European Parliament 

Establishing an Environment Strategy for the Mediterranean (2006) defines the 

Mediterranean as the largest European sea. It is shared by 427 million people living in 

the 21 countries and territories surrounding it.  

Pollution is a major problem in the area having a direct effect on neighboring countries 

and natural systems such as air, soil, water and biodiversity since pollutant air quality 

limits are often exceeded. The Environmental Performance Index (EPI) (Hsu et al, 

2014) scores a country’s performance on high-priority environmental issues including 

air, water and soil pollution with 100 being considered the best performance.  

The mean overall score for 178 countries around the world is 50.68. European countries 

score 68.83 and countries within the Mediterranean Basin score 60.84 out of 100. 

Although the Mediterranean Basin score is higher than world average, it is still lower 

than the European countries. The Mediterranean has a fragile environment and for 

several countries, ongoing deterioration costs billions of Euros annually. This is mainly 
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due to its location being a crossroad of air masses, where anthropogenic emissions, 

mainly from Europe, Balkans and the Black Sea, meet with natural emissions from 

Northern Africa.  

In addition to regional transport of natural and anthropogenic pollution sources, local 

sources also have significant effects on air pollution levels in the area (Kanakidou et 

al, 2011). Studies conducted to identify the major factors controlling the variability of 

the background aerosols in Mediterranean region indicate that PM in the Eastern 

Mediterranean region specified by higher levels of crustal material and sulphate than 

Western Mediterranean region (Querol et al, 2009). Atmospheric dynamics and 

emission sources of the Mediterranean Basin have an absolute impact on complex 

nature of aerosol chemical composition and levels in the Mediterranean Basin making 

it distinguishable from the other parts of Europe (Querol et al, 2009).  It is found that 

Mediterranean lower troposphere has lower air quality, especially in summer due to 

Mediterranean being a crossroad of the intercontinental transport of aerosols (Lelieveld 

et al, 2002). In southeastern part of the Mediterranean, during the February–April 

period, contribution of African dust is shown to be as high as 80% to the PM10 

concentration (Pey et al, 2013). Even in the urban regions of Eastern Mediterranean, 

there is a significant contribution of long-range pollution transport (i.e. African dust) 

(Kanakidou et al, 2011).  

There are studies conducted for the Mediterranean to quantify the relationship between 

Saharan dust outbreaks and PM10 concentration using satellite data, ground 

measurements and modeling systems. The Mediterranean Sea is one of the areas in the 

world having a particularly optically thick aerosol layer. It is shown that Saharan dust 

outbreaks over the Eastern Mediterranean follow a pathway starting from the Northern 

Africa to the Eastern Mediterranean Sea (Papayannis et al, 2005).   

In their work, Gerasopoulos et al. (2006) identified the factors that control PM levels 

in Eastern Mediterranean region and they stated that the significant PM10 levels should 

be attributed to dust outbreaks that are transported via southerly air mass from the 

Sahara Desert. Bouchlaghem et al. (2009) presented Saharan dust outbreaks affecting 

Tunisian coast and its impact on PM10. The relationship between high levels of PM10 

and intrusions of Saharan dust over the Iberian Peninsula is studied by Rodriguez et al. 

(2001). In both studies it is found that the average daily PM10 concentration values are 

higher on the days with Saharan dust contribution than the days with no dust event. 
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Kallos et al. (2006) and Mitsakou et al. (2008) both used SKIRON atmospheric 

modeling system to compare dust event forecasts with PM10 concentrations obtained 

from monitoring stations. It is found that contribution of annual dust concentration to 

daily mean PM10 concentration is greater than 10%. In another study, particulate matter 

samples collected in the North Atlantic free troposphere at Izaña Global Atmospheric 

Watch (GAW) observatory were analyzed. The results show that there is a repeated 

mixing of desert dust with pollution aerosols (Rodríguez et al, 2011). CALIOPE 

(CALIdad del aire Operacional Para España) modeling system is used to characterize 

aerosols over Europe and it is found that local anthropogenic emissions, Saharan dust 

and atmospheric dynamics at synoptic scale are dominantly effecting aerosol levels 

over Europe. High levels of PM10 and aerosol optical depth (AOD) are linked to the 

desert dust transport from North Africa that has a 40% contribution to the total aerosol 

budget in Southern Europe (Basart et al, 2012).   

In a previous study an integrated air quality system is used to see the interaction of 

anthropogenic emissions sources on Sahara dust concentrations. CMAQ (Community 

Multi-scale Air Quality Model) anthropogenic outputs DREAM (Dust 

REgional Atmospheric Model) desert dust forecasts are coupled in an online 

operational way (Jiménez-Guerrero et al, 2008). However, with this approach physical 

and chemical interaction of natural aerosols with man-made aerosol is neglected.  

1.4.2 Air quality management systems 

In order to give a complete deterministic description, such as emission sources, 

meteorological processes, physical and chemical transformations, of the ambient 

pollutant concentrations that threaten public health, atmospheric chemistry modeling 

systems are often used. The use of atmospheric models plays an important role due to 

their capability to simulate aerosol distributions, emission and transport (Daly and 

Zannetti, 2007). In the real atmosphere meteorological factors and chemical processes 

are coupled, meaning atmospheric composition can influence both Earth's radiation 

budget and climate directly by scattering and absorbing radiation or indirectly by acting 

as a cloud condensation nuclei affecting cloud formation and precipitation. The 

interaction of meteorological factors on air quality and atmospheric transport of 

pollutants is well accepted and they can no longer be conducted separate from each 

other (Grell et al, 2005; Baklanov et al, 2014). An ‘‘online’’ Weather Research and 

Forecasting/Chemistry model (WRF-Chem), a version of the non-hydrostatic model 
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WRF (Skamarock et al, 2001), simulates trace gases and particulates simultaneously 

with the meteorological fields by using the same transport scheme (mass and scalar 

preserving) and the same grid (horizontal and vertical components) (Grell et al, 2005; 

Fast et al, 2006).  

While there are many studies that use WRF-Chem to understand atmospheric 

phenomenon, such as ozone chemical formation (Tie et al, 2007; Tie et al, 2013), 

NOx emissions, ozone chemistry and NOx oxidation productions analysis (Chen et al, 

2013), annual simulations of tropospheric ozone and related species (Kumar et al, 

2012), simulation of wildfire plume transport (Sessions et al, 2011), quantification of 

spatial and temporal variability of column integrated trace gases (Follette-Cook et al, 

2015), only a few examples exist that focus on natural dust related problems. Khan et 

al. (2015) utilized WRF-Chem to reproduce the meteorological environment and 

spatial and size distributions of dust over northwest Africa. It was found that orographic 

lifting, land and sea breeze interactions are the key mechanisms that form the aerosol 

plume. 

 In another study, the WRF-Chem model was used to investigate seasonal and inter-

annual variations of Asian dust balance, its direct radiative forcing, and estimates of 

the dust lifecycle contributions from transport, and dry and wet deposition (Chen et al, 

2014). In this study it was found that the WRF-Chem model was successful in 

simulating overall characteristics of mineral dust over the dust source region and dust 

direct radiative forcing, which resulted in atmospheric warming and surface and TOA 

(top of atmospheric) cooling over East Asia. Kumar et al. (2014) used WRF-Chem over 

northern India to simulate the spatial and temporal distributions of dust plumes. The 

results showed an underestimation of aerosol optical depth compared to the Aerosol 

Optical Depth (AOD) values obtained from AERONET sites. 

Remote sensing is another useful tool for air quality for surface concentration 

estimations, and improvement of emission inventories of trace gases and aerosol. 

Capabilities of satellite remote sensing of tropospheric aerosols and physical processes 

affecting their accuracy and precision are well explained in Martin V. R.’s review 

(2008). Although it is difficult to detect dust aerosols due to having short lifetime, 

strong interactions with local and regional aerosols and synoptic conditions, both 

visible (VS) and infrared (IR) spectral bands can be used to detect dust plumes in the 

atmosphere. In order to distinguish dust particles, magnitude of the difference of 
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reflectance in VS bands or brightness temperature (BT) in IR bands can be used (Zhao, 

2012). Four satellite dust retrieval products (MODIS, SEVIRI, MIRS and IASI) are 

compared to each other to identify strengths and weaknesses of each algorithm in order 

to detect dust loading over the Sahara Desert. MODIS is found to retrieve dust loading 

better at low dust events. It is shown that other than dust loading, meteorological 

conditions and land surface properties also plays a critical role for dust detection 

(Banks et al, 2013). The inference of ground PM concentration is primarily retrieved 

from GOES over the eastern United States. MODIS (The Moderate Resolution Imaging 

Spectroradiometer) sensor on board of Aqua and Terra satellite and MIRS (Multi-angle 

Imaging SpectroRadiometer) on board of Terra satellite is being used to retrieve aerosol 

optical depth (AOD), which is columnar aerosol loading of the atmosphere (Martin 

2008; Streets et al, 2013). MODIS can also be used to distinguish dust from smoke and 

maritime aerosols for evaluation of the African dust column concentration. Using 

satellite data, Kaufman et al. (2005) found that 240 ± 80 Tg of dust are transported 

annually from Africa to the Atlantic Ocean. They also established that 140 ± 40 Tg of 

the dust deposits in the Atlantic Ocean, 50 Tg fertilizes the Amazon Basin, 50 Tg 

reaches the Caribbean and 20 Tg returns to Africa and Europe (Kaufman et al, 2005). 

A coupled meteorology–chemistry model is often utilized to forecast aerosol 

concentrations in air quality modeling. However, it is limited to spatial and temporal 

resolutions as well as physical and chemical processes, which are often simplified the 

real atmosphere. Pollutant transport and transformations in coupled atmospheric 

models are also strongly driven by uncertain external parameters, such as input data 

(emissions), initial and boundary conditions of pollutants from a larger-scale 

simulation, and meteorological fields, they introduce uncertainties and contribute to 

inaccurate Air Quality (AQ) forecasts (Wang et al, 2014; Bocquet et al, 2015). In order 

to improve the accuracy of the input data of model forecasts (e.g. initial conditions 

and/or boundary conditions), and correct the errors caused by the uncertainties of the 

model inputs in order to improve model forecasts of aerosols, aerosol data assimilation 

(DA) methods are used in atmospheric models (Talagrand, 1997, Niu et al, 2008; Liu 

et al, 2011; Schwartz et al., 2012; Wang et al, 2014; Pagowski et al, 2014). These 

previous studies have shown that the use of satellite observations and aerosol optical 

depth (AOD) products can improve the accuracy of the analyzed aerosol distributions 

and forecasts during the times when the satellite data are available (Zhang et al, 2008; 

Shi et al, 2011).  
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There are many DA studies that use satellite-derived aerosol products in chemical 

transport models. Collins et al. (2001) used optimal interpolation (OI) approach in order 

to constrain AOD forecasts for planning the deployment of ships and aircraft by using 

AVHRR (Advanced Very High Resolution Radiometer) data. Zhang et al. (2008) used 

a two-dimensional variational (2DVAR) approach to integrate satellite observations 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) product in order 

to improve aerosol forecasts and global AOD analyses. In their study Saide et al. (2013) 

developed an ability to use the NOAA Grid-point Statistical Interpolation (GSI) (Wu 

et al., 2002), a three dimensional variational (3DVAR) approach to assimilate AOD 

products within WRF-Chem forecasts. Sekiyama et. al., (2010) successfully 

assimilated aerosol backscatter measurements from the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO) by using a four-dimensional 

ensemble Kalman filter approach. Benedetti et al. (2009) focused on the theoretical 

architecture and practical implementation of the operational four-dimensional 

variational (4D-Var) aerosol assimilation system that uses retrievals of optical depth 

from the MODIS sensor on the Aqua and Terra satellites. Their analysis showed that 

the DA brought the model AOD closer to the observations and assimilation tended to 

improve the aerosol distribution over the polluted areas.  Liu et al. (2011) used 3DVAR 

approach in their study to assimilate MODIS total AOD retrieval products from both 

Terra and Aqua satellites to constrain dust storm predictions over East Asia. In order 

to assimilate AOD, they developed a single-step aerosol DA system within the National 

Centers for Environmental Prediction (NCEP) operational GSI (Kleist et al., 2009) 

3DVAR meteorological DA tool, which is coupled to the WRF-Chem model. They 

showed that assimilating MODIS AOD improves aerosol analyses compared to 

independent AOD observations from the Aerosol Robotic Network (AERONET) and 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface 

PM10 observations and that the system can be used as a tool to generate better dust 

storm forecasts. In 2014 Pagowski et al. developed a package that consists of software 

for calculating background error covariance statistics and for converting satellite data 

to BUFR (Binary Universal Form for the Representation of meteorological data) 

format, which GSI requires. This implementation of the GSI can be used to assimilate 

MODIS aerosol optical depth at 550 nm with WRF-Chem and is used in the present 

study. The studies mentioned above contributed significantly for our understanding of 

the extent of global and regional dust influences, however the dust contribution in 
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Eastern Mediterranean is still unclear, where significant industrial sources and 

metropolitan areas with population higher than 3 million people (i.e. Istanbul, Ankara, 

Izmir) are located. In this study we aim to fill this gap via analysis of satellite data and 

atmospheric models. 

The following chapters present the data (i.e. ground observations), the models utilized 

to quantify the effect of Saharan dust on high levels of PM10 measured in the Anatolian 

Peninsula, results and discussions of RAQMS experiment (Chapter 2), WRF-Chem 

Control experiment (Chapter 3), WRF-Chem MODIS Assimilation experiment 

(Chapter 4) and overall conclusions (Chapter 5). 
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2.  REAL-TIME AIR QUALITY MODELING SYSTEM EXPERIMENT 

This chapter gives information about the Real-time Air Quality Modeling System 

(RAQMS) that is utilized to explore the possible effects of Saharan dust on high levels 

of PM10 measured in Turkey and its results. RAQMS model is compared with 118-air 

quality stations distributed throughout Turkey (81 cities) for April 2008.   

This chapter is published in Science of the Total Environment in 2014 that is entitled 

as “The contribution of Saharan dust in PM10 concentration levels in Anatolian 

Peninsula of Turkey” (Kabatas, B., Unal, A., Pierce, R.B., Kindap, T., and Pozzoli, L.: 

The contribution of Saharan dust in PM10 concentration levels in Anatolian Peninsula 

of Turkey, Sci. Total Environ., 488–489, 413–421, 2014). 

2.1 Data 

2.1.1 Ground-based data 

This study used the ground observations conducted in Turkey by Turkish Ministry of 

Environment and Urbanization. Daily averages of PM10 data are computed from the 

hourly data obtained from 118-air quality stations distributed throughout Turkey (81 

cities) for 2008. The monitoring system’s instrument is using beta Gauge, which allows 

an accurate determination of particulate concentration under all conditions, to measure 

mass of particulates. US EPA also certifies beta Gauge monitoring system due to 

advantages of its being automated and reduced sample handling. The data provided by 

the Turkish Ministry of Environment and Urbanization undergoes QA/QC (Quality 

Assurance, Quality Control). However, we further conducted a QA/QC of our own. 

The original data is hourly. When estimating daily average values we have ignored the 

days where more than 25 % of the data are missing. Furthermore, data were checked 

individually to identify possible outliers. However, we have not observed such data. 

Figure 2.1 presents the monthly box plots of PM10 obtained from the 118 air quality 

stations throughout the year 2008. In box plot, the box boundaries represent the upper 

(75%) and lower quartiles (25%) while the horizontal line shows the median of the 

data. 
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Figure 2.1 : Monthly PM10 concentration of 2008 for Anatolian Peninsula (Kabatas 

et al, 2014). 

Whiskers above and below the box show the locations of the smallest and largest values 

of dataset. Mean values of the data are shown with red dots in the box plot with the 

confidence intervals around them (within 1.96 standard deviations). The length of the 

box indicates data variability. In this case, months of January, February, March, April, 

August and December have more variation in the data while the rest of the months have 

small variation. In some months, the mean value seems to be larger than median, as in 

March, April, May, June, July, August, September and October, where most of the 

values are small, but there are some exceptionally large values. As seen in the figure, 

monthly PM10 averages are smaller in the warm seasons, except August. Annual 

average of PM10 concentration in 2008 was 81.7 µg/m3 with a standard deviation (sd) 

of 23.4 µg/m3.  Seasonal averages reach 111.5 µg/m3 in winter (sd=29.6 µg/m3), 80.3 

µg/m3 in spring (sd=32.5 µg/ m3), 62.5 µg/ m3 in summer (sd=15.5 µg/ m3) and 72.5 

µg/ m3 in fall months (sd= 20.9 µg/ m3). High levels of PM10 during the winter is 

expected since during this period pollution sources (both local and regional) are 

significant and atmospheric conditions do not favor dispersion. High PM concentration 

measured in summer months (in this case August) are expected due to biomass burning.  

In July 31, 2008, a forest fire broke out in the Mediterranean province of Antalya. It 

lasted 5 days and was extinguished on August 4, 2008, resulting in the destruction of 

more than 15000 hectares of woodlands (Ayberk et al, 2010; Kavgaci et al, 2010). 

Thus, high values of PM10 observed in August can be explained by biomass burning. 

Also, it is important to note that month of April had significantly high PM10 values with 

an average of 86.7 µg/ m3 with standard deviation of 29.5 µg/ m3. Maximum PM10 
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values were recorded on April 14, 2008 with a daily average of 170 µg/ m3 (which is 

also the maximum PM10 observation measured in the year 2008). As known from the 

studies, peak PM10 values caused by Saharan dust outbreaks occur in the transition 

seasons (Rodriguez et al, 2001; Gerasopoulos et al, 2006; Kallos et al, 2007; Mitsakou 

et al, 2008; Querol et al, 2009, Gkikas et al, 2012). A recent study states that dust 

transport occurs over the Mediterranean to Europe during all seasons, however, the 

highest AOD due to Saharan dust aerosol is observed in spring in Western Europe 

(15°W–5°E), it is in spring and summer season over Central Europe (5°E–25°E) and 

in spring and autumn over Eastern Europe (25°–40°E) (Israelevich et al, 2012). PM10 

data for April 2008, as seen in Figure 2.2, suggests a possible contribution of Saharan 

dust to high PM10 levels over Turkey at this time. 

 
Figure 2.2 : Boxplot of daily PM10 concentration for April 2008. Red dots show daily 

mean PM10 concentrations and the European Commission daily PM10 standard (50 
µg/m3) is shown with red line (Kabatas et al, 2014). 

Since all the values are above European Commission’s air quality standard for PM10, 

daily 50 µg/m3, another threshold is used to determine episode. First, days lying within 

2 standard deviations (59 µg/m3) of the mean (86.6 µg/m3) are identified. Including ±2 

days to this identified range; period between April 11 and April 18, 2008 is selected as 

our episode in this analysis. 

2.1.2 RAQMS model description 

The Real-time Air Quality Modeling System (RAQMS) is a unified, meteorological 

and chemical modeling system for assimilating satellite observations of atmospheric 
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chemical composition throughout the troposphere and stratosphere. The model also 

provides real time forecasts of trace gas and aerosol distributions (Pierce et al, 2003, 

2007; Verma et al, 2009). It extends from surface to around 60 km with 35 vertical 

levels. The University of Wisconsin-Madison hybrid isentropic coordinate model is the 

RAQMS dynamical core (Schaack et al, 2004; Pierce et al, 2007). The RAQMS 

chemical scheme was developed at NASA Langley Research Center (Pierce et al, 2003, 

2007) and the aerosol module incorporates the Goddard Ozone Chemistry Aerosol 

Radiation and Transport (GOCART) mechanism (Chin et al, 2002, 2003). RAQMS 

simulates sulfate (SO4
2-), dust, black carbon (BC), organic carbon (OC), and sea-salt 

aerosols that are known as the major tropospheric aerosol components (Chin et al, 

2002). RAQMS predicts dust loadings for four size bins (effective radius of 0.8, 1.5, 

2.5, and 4.0 microns). Dust emissions are determined based on a static dust source 

function associated with regions of topographic depressions, soil composition, 10-

meter wind speed, and a threshold velocity which is dependent on dust size and surface 

wetness (Ginoux, 2001). 

The RAQMS aerosol analysis used in the current study is from a retrospective 4-month 

(February–May 2008) 2 x 2˚ that includes hourly assimilation of MODIS Aerosol 

Optical Depth (AOD) from instruments onboard the Terra and Aqua satellites (Remer 

et al, 2005). RAQMS aerosol concentrations were initially set to zero on February 15st 

and assimilation of the MODIS AOD retrievals began on March 1st, 2008. RAQMS 

meteorological forecasts were re-initialized at 6-hour intervals using the National 

Ocean and Atmospheric Adminstration (NOAA) Global Data Assimilation System 

(GDAS) meteorological analyses.  The RAQMS aerosol analysis is in good agreement 

with April 2008 global Aeronet aerosol optical depth measurements with a correlation 

coefficient of 0.7 and a mean bias of 0.05 (Natarajan et al, 2012). 

2.1.3 Satellite data overview 

Satellite data are used for validation of the RAQMS predictions of the impact of long 

range transport on high PM10 values measured in ground air quality stations located in 

Turkey. High-resolution vertical profiles of clouds and aerosols are provided from 

CALIOP, which is the primary instrument carried by the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIPSO includes a 

two-channel (532 and 1064 nm) polarization lidar that provides qualitative information 

on particle size. It helps not only in discrimination of cloud and aerosol, but also the 
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identification of aerosol types (Winker et al, 2007). MODIS (The Moderate Resolution 

Imaging Spectroradiometer) Aerosol Product (MOD04 for Terra, MYD04 for Aqua), 

Collection 5 is used to get information about AOD (at 550 nm), which represents 

columnar aerosol loading of the atmosphere. Figure 2.3 (a) and (b) shows the aerosol 

optical depth (AOD) obtained from Terra and Aqua MODIS for April 14, 2008, 

respectively. 

(a)                                          (b) 

 
Figure 2.3 : AOD obtained from (a) MOD04 (Terra) and (b) MYD04 (Aqua) aerosol 

product for Eastern Mediterranean basin analyzed for April 14, 2008, when the 
maximum PM10 level was recorded (Kabatas et al., 2014). 

In figure 2.3 AOD values vary between a minimum of 0 and a maximum of 1. AOD 

ranges between 0.5 and 0.7 for the western part of the peninsula whereas it is between 

0.7 and 1.0 for the eastern part (which could be related to dust contribution in cloud 

free condition) for Terra MODIS. For Aqua MODIS, similar conclusions can be made 

with a slight change in the AOD values. Since Aqua and Terra MODIS have different 

viewing angles and over pass time, visualization of the data differs in the same way. 

Dust load transport and its path from North Africa to Turkey can better be seen on 

Aqua MODIS imaginary with higher AOD values than its vicinity over the desert. 

2.2 Results of RAQMS Experiment 

The lowest model level output (~60m above the surface) from the RAQMS model is 

extrapolated to the surface and used for the comparison of in-situ PM10 observations. 

For this purpose, we have utilized total PM10 (µg/ m3) concentration, which includes 



	

	 18 

dust, sea salt, BC, OC and SO4
2-. RAQMS analyses show that in April 2008, dust 

aerosols account for 96.6% of total PM10 mass at the surface PM10 sites while other 

species (i.e. sea salt, BC, OC, SO4
2-) account for only 3.4%. Figure 2.4 shows box plot 

of daily PM10 surface concentration for April 2008 obtained from RAQMS aerosol 

analysis. Red dots on the figure show daily mean values and whiskers show 10% and 

90% range of data.  

 
Figure 2.4 : Box plot of daily PM10 concentration for April 2008 obtained from 

RAQMS (Kabatas et al, 2014). 

Maximum mean value is observed via RAQMS on April 14 with value of 898 µg/m3 

while the maximum mean value observed on April 14 via ground observations was 170 

µg/m3. Unlike ground observations, model output show higher values on the last three 

days of April (28-29-30 April) with daily mean values higher than their medians, with 

values of 121 µg/m3, 106 µg/m3, 99 µg/m3 and 432 µg/m3, 468 µg/m3, 407 µg/m3 

respectively. Overall, the model prediction is consistent with the 118 ground station 

observations as the model captures the temporal variability and spatial distribution. The 

only exception is for the period between 28 and 30 April, where the model shows an 

increasing trend while the observations have a decreasing trend. A significant 

correlation is found between the model and in situ observations (The correlation 

coefficient is 0.87). Since dust is the primary component of PM10 load according to the 

model, we used the surface dust prediction to understand the effect of dust transport on 

surface PM10 in Turkey. Figure 2.5 shows RAQMS surface level dust mass for Eastern 
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Mediterranean for 11-18 April 2008. In Figure 2.5a (11 April) high levels of PM10 can 

be seen over Italy and Greece and southeastern part of Turkey. It is likely that high 

levels of PM10 over the Southeastern Turkey are due to previous dust intrusions from 

Sahara or other source regions. The dust cloud moves towards northwestern part of 

Turkey on April 12 (figure 2.5b) and on April 13 (figure 2.5c), the cloud dominates the 

whole region. Saharan dust clouds cover the entire Turkey on April 14, coinciding with 

the maximum PM10 concentration measured at the ground stations.    

(a)                                                      (b) 

  

(c)                                                                  (d) 

  
Figure 2.5 : RAQMS outputs of dust concentrations at the surface for Eastern 

Mediterranean for the selected episode (a–h refers to April 11–18, 2008, respectively) 
(Kabatas et al, 2014). 
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(e)                                   (f) 

  

(g)                 (h) 

  
Figure 2.5 (continued) : RAQMS outputs of dust concentrations at the surface for 
Eastern Mediterranean for the selected episode (a–h refers to April 11–18, 2008, 

respectively) (Kabatas et al, 2014). 

The Saharan dust transport continues on April 15 and then gets weaker by the end of 

the episode. Atmospheric conditions are also favorable for dust transport from North 

Africa to Turkey. Since RAQMS has spatial resolution by 2°, a mesoscale, non-

hydrostatic meteorological model WRF (Weather Research and Forecasting) is also 

used to simulate higher resolution meteorological conditions (Skamarock et al, 2001; 

Michalakes et al, 2001; Skamarock and Klemp, 2008). Figure 2.6a shows the synoptic 

conditions simulated with RAQMS meteorological parameters (Mean sea level 

pressure along with wind vectors at 00Z on April 15th, 2008). 
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(a) 

 

(b) 

 
Figure 2.6 : Synoptic conditions obtained from (a) RAQMS and (b) WRF for April 

15, 2008, at 00:00 UTC. Both of the model results show mean sea-level pressure 
along with the wind vectors at the peak of the episode (Kabatas et al, 2014). 

Two domains have been set up for the meteorological model, which are 30 km and 10 

km resolution. Simulation that presented here is the domain with a horizontal resolution 

of 30 km that covers Europe in the west, Caspian Sea, Scandinavia and Sahara Desert. 

10 km nested domain focuses on Anatolian Peninsula including large urban areas and 

megacities such as Istanbul, Izmir and Ankara. The physical options used are WSM 3-

class simple ice scheme, RRTM (rapid radiative transfer model) radiation scheme, 
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Kain–Fritsch (new Eta) cumulus scheme, YSU (Yonsei University scheme) boundary 

layer parameterization scheme. 

Figure 2.6 (b) shows atmospheric conditions obtained via WRF for April 15, 2008 at 

00:00 UTC. The similar pressure and wind pattern that is obtained via RAQMS can be 

seen in WRF simulation. Although the synoptic patterns from both models show 

similar pattern, WRF shows mesoscale features that are not present in the RAQMS 

analysis. High-pressure system located on eastern Mediterranean Sea and low-pressure 

system located on central Europe creates a channel that helps Saharan dust transport 

over Mediterranean Sea to Turkey. 

2.3 Discussion of RAQMS Experiment 

The comparison with Turkey surface PM10 measurements shows that RAQMS 

overestimates maximum daily mean PM10 values by a factor of 5.25 on April 14, 2008. 

We use CALIPSO measurements to verify the RAQMS aerosol analysis and 

understand why this overestimate occurs. Figure 2.7 shows CALIPSO total aerosol 

extinction at 23:55Z on April 14, 2008 during the period of maximum PM10 

concentrations.  

 
Figure 2.7 : Path of CALIPSO and its total extinction output over Turkey on April 
14, 2008. CALIPSO shows deeper mixing of the aerosol over Turkey starting from 

south to north part of the peninsula (Kabatas et al, 2014). 

Extinction is a measure of attenuation of the light passing through the atmosphere due 

to the scattering and absorption by aerosol particles. The satellite’s path extends from 
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Turkey south to the North African coast. Dashed lines show the altitude of potential 

temperature surfaces from the RAQMS analysis. Figure 2.8 shows RAQMS analyzed 

aerosol extinction profiles along the CALIPSO path. RAQMS shows a shallow layer 

of enhanced aerosol extinction below 2 km with uniform aerosol extinctions in excess 

of 0.2 km-1 over the Mediterranean and generally larger than 0.1 km-1 over Turkey, 

where the enhanced aerosol extinction is restricted to a shallow inversion layer near the 

surface. CALIPSO shows similar, although less uniform, extinction enhancements 

below 2 km over the Mediterranean but shows aerosol extinctions up to nearly 6 km 

over Turkey.  

 

 
Figure 2.8 : RAQMS total extinction output over Turkey on April 14, 2008. It shows 
a shallow (and stronger) layer near the surface, where there is a very strong inversion 

over Turkey (Kabatas et al, 2014). 

In order to understand why RAQMS may underestimate aerosol lofting over Turkey, 

we compared the RAQMS and a higher resolution atmospheric model (Weather 

Research and Forecasting (WRF) model) surface elevation, planetary boundary layer 

depths, and potential temperature distributions along the CALIPSO track at 00:00UTC 

on April 15, 2008 (Figure 2.9). Red color represents RAQMS model outputs and black 

color represents WRF model outputs while dashed lines show the planetary boundary 

layer height and solid lines show surface elevation. The 30km WRF simulation is able 

to better represent the topographic features along the CALIPSO track and shows a 

deeper planetary boundary layer over the Southern Coast of Turkey. The WRF 

potential temperature distribution does not show the shallow inversion layer near the 
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surface that was found in the RAQMS model. These comparisons suggest that RAQMS 

underestimates the lofting of the dust aerosols over Turkey due to the surface inversion 

and consequently overestimates the surface concentrations.  

 
Figure 2.9 : Cross section of WRF potential temperature (K) along CALIPSO track 
at 00:00 UTC on April 15, 2008. The bold lines indicate the surface elevation (solid) 
and planetary boundary layer height (dashed) for the 30km WRF (black) and 2° × 2° 

RAQMS (red) models (Kabatas et al, 2014). 
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3. WRF-CHEM CONTROL EXPERIMENT 

In this chapter, the higher resolution online-coupled regional Weather Research and 

Forecasting model with chemistry (WRF-Chem) model, driven by RAQMS lateral 

boundary conditions, is utilized using two different emission inventories 

(RETRO/EDGAR and EDGAR HTAP) to investigate the spatial and temporal 

distribution of Saharan mineral dust transport over the Eastern Mediterranean for the 

same time period. This is the first WRF-Chem study investigating natural dust 

influences on air quality in the Eastern Mediterranean, especially in Anatolian 

Peninsula. 

3.1 Ground Observations and Model Description 

Same dataset that is analyzed in the first chapter is used as ground observations for 

WRF-Chem experiment. Ground observations used in this study are conducted by the 

Turkish Ministry of Environment and Urbanization. Analysis of ground observations 

are well explained in Figure 2.1 and Figure 2.2. Mean value of PM10 concentration for 

April 2008 was found to be ~87 µg/m3 (annual mean PM10  concentration in 2008 was 

81.7 µg/m3). Maximum mean PM10 values were found on April 14, 2008 with a daily 

average around 170 µg/m3, which was also the highest PM10 value of the year 2008 

(Kabatas et al, 2014).  

In this chapter, we have utilized a regional online atmospheric model, Weather 

Research and Forecasting model with chemistry (WRF-Chem) (Grell et al, 2005), with 

higher resolution (30km outer and 10 km nested domains) to investigate the spatial and 

temporal distribution of Saharan mineral dust transport over Eastern Mediterranean in 

April 2008. We use RAQMS lateral boundary conditions coupled to an online WRF-

Chem version 3.5.1 configured to cover Eastern Mediterranean (30km outer domain) 

and Anatolian Peninsula (10km nested domain) to determine how model resolution 

effects the PM10 predictions. Figure 3.1 shows both domains on top of a topography 

map showing terrain height. WRF-Chem, a version of WRF (Skamarock et al, 2001), 

is an online coupled model that allows aerosol, air quality, weather and climate 
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interactions simultaneously. For this study, we used the simple GOCART aerosol 

option in WRF-Chem.  GOCART (Chin et al, 2000) simulates five major tropospheric 

aerosol types within the model including hydrophilic and hydrophobic components of 

atmospheric aerosols such as sea salt, dust, organic carbon (OC), black carbon (BC), 

and sulfate. 

 
Figure 3.1 : WRF-Chem domains configured to cover Eastern Mediterranean (30km 
outer domain) and Anatolian Peninsula (10km inner domain) with topography map. 

GOCART module represents emission, advection, convection, diffusion, dry 

deposition and wet deposition that are related to aerosol species’ evolution. GOCART 

dust emission scheme simulates the dust emission as a function of surface wind speed, 

and surface wetness. Sea salt emission from the ocean is mainly a function of wind 

speed at 10 m, similar to dust uplifting (Chin et al, 2000, 2002; Ginoux et al., 2001). In 

this study, the size distribution is modeled into five size bins for dust and four size bins 

for sea salt. For the first part of the study, the global anthropogenic emission inventories 

are obtained from the RETRO (REanalysis of the TROpospheric) chemical 

composition data collected over the past 40 years (available for the 1960–2000) 

(Schultz et al, 2007) and the EDGAR (Emission Database for Global Atmospheric 

Research) (Olivier et al, 1996). The RETRO emission data has a 0.5° × 0.5° spatial 

resolution and global coverage, with monthly temporal resolution, and is based on the 

year 2000. It provides global annual emission data of several greenhouse gases (e.g., 

CO2, CH4 and N2O) as well as some precursor gases. EDGAR provides past and present 

global anthropogenic emissions of greenhouse gases and air pollutants (such as N20, 
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CO2, CO, CH4, SO2, SF6, NOx and NMVOC) with a 1° x 1° spatial resolution. EDGAR 

emissions do not vary in time. In order to prepare emission fields from a large set of 

source databases, WRF-Chem uses a preprocessor (PREP-CHEM-SRC). This 

comprehensive tool aims at preparing emission fields of trace gases and aerosols for 

use in the model (Freitas et al, 2011). For the second part of this experiment, we used 

EDGAR HTAP anthropogenic emission inventory (EDGAR: Emission Database for 

Global Atmospheric Research of the Joint Research Centre, JRC, in cooperation with 

the Task Force on Hemispheric Transport of Air Pollution (TF HTAP)) (Janssens-

Maenhout et al, 2012) that consists monthly 0.1° x 0.1° global grids for year 2008. We 

substituted HTAP SO2, OC, BC, PM10, PM2.5 emissions from Energy, Industry, 

Transport, and Residental sectors in original EDGAR emission inventory that is 

implemented in WRF-Chem modeling system to create higher resolution 

anthropogenic emissions. Hereafter RETRO/EDGAR emission inventory referred to as 

EDGAR and EDGAR/HTAP emission inventory referred to as HTAP. Biomass 

burning emissions are produced from Wild Fire Automated Biomass Burning 

Algorithm (WF-ABBA) wildfire products (Prins and Menzel, 1994).  For the region of 

this study, WF-ABBA uses SEVIRI data to detect and characterize biomass burning. 

Biomass emissions are updated every 24 hours.  

The simulation presented here is the dust storm that impacted Eastern Mediterranean, 

especially Anatolian Peninsula, for April 2008. The outer WRF-Chem domain, with a 

horizontal resolution of 30 km, covers Europe in the west, Caspian Sea in the east, 

Scandinavia in the north and Sahara in the south (Figure 3.1). WRF-Chem version 3.5.1 

is configured to cover Eastern Mediterranean (-10.0°W–60.0°E, 30.0° S–70.0°N) with 

190 west-east and 158 north-south grid points and 35 vertical layers up to 10 hPa. The 

high-resolution nested domain has 10 km horizontal resolution, 262 west-east, 181 

north-south grid points and the same 35 vertical layers as the 30 km outer domain.  

The following physical parameterizations were included for both outer and nested runs: 

the Noah land surface model, Mellor-Yamada-Janjic Planetary Boundary Layer (PBL) 

(Zaviša and Janjić, 1994) and the New Grell Cumulus Parameterization scheme. 

Meteorological fields are initialized and lateral boundary conditions are obtained from 

6 hourly NOAA NCEP GFS (Global Forecast System) analyses. Aerosol lateral 

boundary conditions are obtained from 6 hourly RAQMS 2x2 degree global analyses. 

Since the simulation domain of this study does not cover North Africa, a significant 
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portion of main dust source area is not included in the outer domain. However, by using 

2x2 degree global RAQMS analysis, dust transport from North Africa is included 

through lateral boundary conditions. WRF-Chem was run in the above configuration 

for entire month of April 2008. 

3.2 Results of the WRF-Chem Experiment 

From the ground observations, the maximum mean daily PM10 concentration was 

observed on April 14, 2008 with a daily mean value of ~170 µg/m3, which is also the 

maximum PM10 concentration measured throughout 2008, and the minimum mean 

daily PM10 concentration was observed on April 17, 2008 with a daily mean value of 

(~53 µg/m3) (see Figure 2.2). WRF-Chem EDGAR 30km outer domain, WRF-Chem 

HTAP 30km outer and 10 km nested domain box plot results are presented in Figures 

3.2a, 3.2b and 3.2c, respectively. Lower and upper hinges of the boxplot represent 10th 

and 90th percentile of the data. Presence of outliers in some of the data points (both 

models and observations) results in mean values being greater, on average, than median 

values. Comparison of daily PM10 concentration of ground observations, WRF-Chem 

HTAP outer domain (30km) and nested domain (10 km), and WRF-Chem EDGAR 

outer domain (30km) can be seen from Figure 3.2d.  

The model daily mean prediction averaged over all ground observation sites (118 

stations) is consistent with observations suggesting that the model captures the overall 

temporal evolution very well, yet all runs tend to overestimate the high values of PM10 

(high dust event on April 14) while they underestimate low PM10 events (low dust event 

on April 17). It should be noted that there is high variability in the PM10 observation 

data especially on April 7th, 13th, 14th, 19th, 20th, 25th, and 27th. When we compare the 

model output specifically on high PM10 event days (April 13th, 14th,15th) that we 

calculated from 118 ground observations distributed throughout Turkey (figure 2.2), 

we observe that WRF-Chem EDGAR (Outer) and WRF-Chem HTAP (Inner) has 

similar level of variability while WRF-Chem HTAP (Outer) has significantly lower 

variability. It should be noted that the over prediction of WRF-Chem is much less than 

the RAQMS over prediction (see Figure 2.4). Utilizing a higher resolution regional 

model has improved the representation of planetary boundary layer (PBL) dynamics 

which resulted in an overestimation of the predictions by factor of 5 from the previous 

2x2 degree resolution RAQMS model analysis. 
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(a) 

 

(b) 

 
Figure 3.2 : Daily mean (red line) and boxplots of daily PM10 concentration     

obtained from WRF-Chem EDGAR 30 km outer domain (a), WRF-Chem HTAP 
30km outer domain (b), WRF-Chem HTAP 10 km nested domain (c) and time series 

comparisons for daily PM10 concentration (d). Red dashed lines show European 
Commission daily PM10 standard (50 µg/m3). 
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(c) 

 
(d) 

 
Figure 3.2 (continued) : Daily mean (red line) and boxplots of daily PM10 

concentration obtained from WRF-Chem EDGAR 30 km outer domain (a), WRF-
Chem HTAP 30km outer domain (b), WRF-Chem HTAP 10 km nested domain (c) 

and time series comparisons for daily PM10 concentration (d). Red dashed lines show 
European Commission daily PM10 standard (50 µg/m3). 

Figures 3.3a, b and c show the scatterplots for comparison of individual daily ground 

observations to the WRF-Chem HTAP outer domain (30km), WRF-Chem HTAP 

nested domain (10km), and WRF-Chem EDGAR outer domain (30km), respectively. 

Each color in the scatterplot represents the number of data points falling into each 
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scatterplot bin. Both the 30 km and 10 km WRF-Chem HTAP runs overestimate the 

ground observations with observations minus model biases of -6.75 µg/m3 and -11.14 

µg/m3, respectively.   

      (a)                                                                   (b) 

 
                                          (c) 

 
Figure 3.3 : Scatter plots for WRF-Chem HTAP outer (30 km horizontal resolution) 
(a), nested (10 km horizontal resolution) (b), and WRF-Chem EDGAR outer (30 km 

horizontal resolution) (c) runs, respectively. 

The 30km WRF-Chem EDGAR run underestimates the ground observations with 

observations minus model biases of (2.10 µg/m3). Although the number of data points 

falling within each scatterplot bin is higher and along the linear line in HTAP runs, the 

correlation of both HTAP runs is slightly lower (0.471 for 30 km outer domain and 

0.478 for the 10 km nested domain) than the 30km EDGAR run (0.494). WRF-Chem 

EDGAR run underestimates the frequency of relatively high observed PM10 values 

(>50µg/m3). Root mean squared error (RMSE) of WRF-Chem EDGAR is smaller than 
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WRF-Chem HTAP 30km and 10km runs (58.7 µg/m3, 60.75 µg/m3, 63.59 µg/m3, 

respectively). Using a higher resolution emission inventory leads to changes in biases 

from low values to higher values in different signs. That causes HTAP to overestimate 

the observations more than the EDGAR does. Higher resolution emission inventory 

adds more variance leading to the increase in RMSE values. 

Correlations between ground observations from all 118-ground stations and the WRF-

Chem HTAP 10km nested run is found to be 0.48 when dust fraction is over 50% and 

0.247 when the dust fraction is less than 50%. Correlations between ground 

observations and WRF-Chem HTAP 30km run is found to be 45% when the dust 

fraction is more than 50% and 31% when the dust fraction is less than 50%. For WRF-

Chem EDGAR run, however, when dust is not the dominant aerosol (dust fraction is 

less than 50%), the correlation between WRF-Chem EDGAR output to ground 

observations is found to be lower than 0.1 and when dust is the dominant aerosol the 

correlation between the model outputs and the ground observations are found to be 

0.49. This points out that, the higher resolution emission inventory HTAP improves the 

overall predictions compared to EDGAR results when the dust fraction is less that 50%, 

and among two HTAP runs (30km and 10km), the WRF-Chem 10km HTAP run cannot 

adequately predict the PM10 that is associated with the local emissions especially when 

dust is not the dominated aerosol as well as explains the high RMSE results for 10km 

HTAP run (See Figure 3.3b). 

In order to understand the impact of utilizing two different anthropogenic emission 

inventories, monthly mean surface PM10 concentrations of HTAP run, EDGAR run, 

and the difference between HTAP and EDGAR runs are plotted for April 2008 and 

shown in Figure 3.4. In the figure, the upper left panel shows the monthly mean PM10 

concentration of the WRF-Chem HTAP (Outer) run, upper right panel shows the 

monthly mean PM10 concentration of the WRF-Chem EDGAR (Outer) run, lower left 

panel shows the difference between the two runs (HTAP-EDGAR).  

Although the monthly mean predictions from both runs show similar concentrations to 

each other over Turkey with higher values in the eastern part of the country (~150 

µg/m3), and lower values in the western part of the country (~70 µg/m3), the difference 

map indicates that HTAP run suggest ~50 µg/m3 higher PM10 predictions than EDGAR 

run, especially in the western and northwestern part of Turkey, where the most 

industrialized zones are located (i.e. Istanbul, Izmir, Kocaeli).  
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Figure 3.4 : Surface monthly PM10 Concentration for April 2008 from HTAP (upper 
left panel), EDGAR (upper right panel) and difference between HTAP and EDGAR 

(lower left panel).  

Model results can be used to understand the aerosol transport during the dust event as 

can be seen from Figures 3.5a-h for both WRF-Chem HTAP outer (30km horizontal 

resolution) and nested (10km horizontal resolution) domains for April 11-18, 2008 in 

order to include high PM10 event days. During the high dust event that occurred on 

April 14, 2008 (Figure 3.5d), WRF-Chem HTAP nested run shows higher daily surface 

aerosol concentrations (~ 2.3 log10 or 200 µg/m3) than the daily mean ground 

observations (colored circles, ~170 µg/m3) for the same day, while during the low dust 

event that occurred on April 17, 2008 (Figure 3.5g), WRF-Chem HTAP nested shows 

lower (~1.56 log10 or 37 µg/m3) values than the measured surface aerosol 

concentrations (~53 µg/m3). Saharan dust dominates the whole region when it is 

transported from North Africa over the Mediterranean Sea to Turkey with surface 

values around 250 µg/m3 (~ 2.4 log10) throughout the high dust event episode (11-18 

April 2008). During the dust event starting on April 11, 2008, dust is transported from 

North Africa over the Mediterranean Sea to Turkey from the southwest (Figure 3.5a).  
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(a)                             (b) 

   
(c)                                                                   (d) 

    

 (e)                                                                    (f) 

      

Figure 3.5 : WRF-Chem HTAP daily output for outer  and nested domain with 
ground observations (colored circles) for April 11-18, 2008 (a-h, respectively) 

episode. Surface wind vectors are shown in black arrows. 
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(g)                                                                    (h) 

      

Figure 3.5 (continued) : WRF-Chem HTAP daily output for outer and nested 
domain with ground observations (colored circles) for April 11-18, 2008 (a-h, 

respectively) episode. Surface wind vectors are shown in black arrows. 

For the first few days (between the dates of April 11-14, 2008), dust intrusions affect 

the western part of Turkey as well as southern Italy and southeastern Balkans (Figure 

3.5a-d). For the rest of the episode, after April 15, 2008, the Saharan dust cloud covers 

Turkey, moving towards eastern part of Turkey by the end of the episode.  

Clean air is transported from the northwest into the region towards the end of the 

episode (starting on April 16, 2008) showing that the region was influenced by 

relatively clean continental air (Figure 3.5f-g).  

Figure 3.6 shows average lateral boundary conditions for dust during the episode 

represented above (11-18 April, 2008) for the 10 km-nested run for each boundary of 

the domain (south, north, west and east) in order to understand the impact of dust that 

is transported from 30km domain into the nest domain. 

Dust is transported into the nested domain from the southwest with average value of 

~300 µg/m3 during this episode (11-18 April, 2008). Over Turkey, average dust 

concentration is around 150 µg/m3 for the same episode (11-18 April 2008).  

The dust cloud reaches up to 6 km in the southwest part of the domain and is then 

transported over Turkey which is much better agreement with CALIPSO observations 

(see Figure 2.7). This also shows that utilizing a higher resolution (30km and 10km) 

WRF-Chem model performs better than the 2x2 degree global RAQMS analysis (see 

Figure 2.8). 
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Figure 3.6 : Lateral boundary conditions obtained from RAQMS for south, north, 

west and east directions for WRF-Chem HTAP 10km nested domain. 

3.3 Discussion of the WRF-Chem Experiment 

Figures 3.7a and 3.7b show two different stations located in the western part of Turkey. 

Station Denizli is located in the southwestern part of Turkey at 37.77 °N, 29.04 °E and 

was chosen due to having high daily mean PM10 concentrations (236 µg/m3) on the 

high dust event day (April 14, 2008). Station Kocaeli Dilovasi, which is located in the 

northwestern part of the country (40.77 °N, 29.52 °E) (Figure 3.7b), was chosen due to 

its location within one of the most industry-based and polluted zones of Turkey with a 

share of industry in Gross National Product of 73% (Hamzaoglu et al, 2011). Dilovasi, 

serves 45 different sectors including metal, chemistry and energy for 185 companies in 

total, and with its bowl shaped topography, tends to trap local emissions, leading to 

poor air quality in the region (Demiray et al, 2012). The upper panels of Figure 3.7a 

and b show the time series of ground observations (black), WRF-Chem HTAP outer 

domain with 30 km horizontal resolution (red), WRF-Chem HTAP nested domain with 

10 km horizontal resolution (green), and WRF-Chem EDGAR outer domain with 30 

km horizontal resolution (blue). The lower panels Figure 3.7a and b show aerosol 
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speciation for the WRF-Chem HTAP nested (10km) domain only for two different 

ground observation stations. 

 (a) 

 
(b)  

 
Figure 3.7 : Time series for ground observations, WRF-Chem HTAP outer (30km) 
(red) and nested (10km) (green) domains, and WRF-Chem EDGAR outer domain 

(30km) (blue) (upper panel); and AOD speciation for the WRF-Chem HTAP nested 
(10km) domain only (lower panel) for two different ground observation stations ((a) 

Denizli and (b) Kocaeli sites). Locations of both stations are shown on the map with a 
blue circle. HTAP_O refers to WRF-Chem HTAP outer domain, HTAP_N refers to 
WRF-Chem HTAP nested domain, and EDGAR_O refers to WRF-Chem EDGAR 

outer domain in the upper panel. Key for speciation is given for the lower panel with 
each color representing different species. 
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For Denizli station, WRF-Chem HTAP and EDGAR outer domains have slightly 

higher correlation (both around 0.826) than WRF-Chem HTAP nested domain (0.812). 

WRF-Chem HTAP outer domain has slightly lower bias (28.4 µg/m3) compared to the 

WRF-Chem EDGAR outer domain (30.06 µg/m3) leading to a slightly better prediction 

of PM10. Time series of ground observations and the model runs for Denizli station 

(Figure 3.6a, upper panel) show the similar patterns except for WRF-Chem HTAP 

nested domain. WRF-Chem HTAP nested domain has the lowest bias among all the 

runs with a value of 22.1 µg/m3, leading to an overestimation of surface PM10 values 

compared to the outer domains. The dominant aerosol type is found to be dust for this 

station as can be seen from the bottom panel of Figure 3.7a which shows the aerosol 

speciation for WRF-Chem HTAP nested domain (10km) only. When Saharan dust is 

transported over Turkey, it dominates the region for both EDGAR and HTAP runs. The 

Kocaeli station (Figure 3.7b), on the other hand, is located at one of the most polluted 

zones of Turkey and using two different emission inventories with different resolutions 

show a significant difference in terms of daily mean values of surface PM10 

concentration and aerosol speciation.  

Although the correlation between ground observations and WRF-Chem HTAP outer 

and nested domains are lower (0.59 and 0.48, respectively) than the WRF-Chem 

EDGAR outer domain (0.66), HTAP outer and nested domains (-11.12 µg/m3 and -

13.06 µg/m3, respectively) reduce the bias by 50 µg/m3 comparing to the WRF-Chem 

EDGAR outer domain (42.02 µg/m3). Underestimation of WRF-Chem EDGAR outer 

domain can be seen in Figure 3.7b upper panel where WRF-Chem HTAP outer and 

nested domains show a better agreement of predicting surface PM10 concentrations. 

For both of the stations, during the high dust event on April 14 when the maximum 

PM10 concentration was observed throughout Turkey, dust is found to be the dominant 

aerosol species, while during the low dust event days such as April 16 and April 17 the 

dominant aerosol is found to be a combination of sea salt, sulfate and other primary 

aerosol for Kocaeli station (Figure 3.7b, lower panel).  

At each site, for WRF-Chem EDGAR run when the model predicts low values the 

model results tend to be lower than ground observations. These underestimates are 

most likely due to underestimates of local anthropogenic emissions. This points to 

issues with using the relatively coarse resolution anthropogenic emissions to represent 

local emissions within the domain. At Denizli station where anthropogenic emissions 
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are lower than the dust emissions, all models result show similar patterns to each other, 

on the other hand, at Kocaeli station, where the anthropogenic effect is more dominant; 

WRF-Chem HTAP results show better prediction and speciation of PM10 concentration. 

The higher resolution emission inventory HTAP improves the overall predictions 

compared to EDGAR results, and among two HTAP runs (30km and 10km) when the 

dust fraction is less that 50%, WRF-Chem HTAP 30km domain better predicts the local 

emissions better than HTAP 10km domain.  

Emission inventories are the basic input and also a major source of error to atmospheric 

chemical transport model results. Those errors may be due to the inherent uncertainty 

and the selection of representative emission factors for a given area (Markakis et al, 

2012). In their study, Russel and Denise (2000) discussed the strengths and weaknesses 

of air quality models. They tried to address the level of uncertainty in air quality model 

predictions resulting from using different emission inventories but the same 

meteorology. They stated the major uncertainties are due to the model input that was 

being processed rather than the model itself. They indicated that the emission 

inventories were mainly based on a local source and then allocated over the domain 

causing sub-grid-scale fluctuations, which means emission inventories were not 

accurately resolved at the same scale as the model. In their study, Im et al. (2014), 

simulated major gaseous and particulate pollutant levels over Europe in 2008 and 

compared the results with surface observations from the EMEP stations. It is shown 

that the lack of representation of both anthropogenic and natural emissions in northern 

and southern Europe result in significant differences for those regions in the model 

performance. In another study that was done for Europe, the differences between 

ground observations and results of the CALIOPE air quality modelling system with a 

12 km horizontal resolution were attributed to uncertainties in the chemical speciation 

of primary pollutants in the emission inventory (Basart et al, 2012). The parameters 

that affect the accuracy of emissions in Turkey are listed by Markakis et al. (2012) who 

point to the lack of emission factors mainly for the local emissions and the lack of 

temporal profiles.  
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4. WRF-CHEM MODIS ASSIMILATION EXPERIMENT 

In this chapter, WRF-Chem model with aerosol data assimilation (DA) is utilized with 

the same model configuration of the previous WRF-Chem study (Chaper 3). The 

NOAA Gridpoint Statistical Interpolation (GSI) data analysis system is used to 

assimilate Moderate Resolution Imaging Spectoradiometer (MODIS (collection 6)) 

Terra aerosol optical depth (AOD) retrievals over the region for April 2008 in order to 

see the consistency of aerosol DA within this multi-nested modeling framework. Real-

time Air Quality Modeling System (RAQMS) 2°×2° global analyses are used to 

provide the LBC for two 30km runs with and without GSI aerosol DA (Hereafter 

30km_Assim or 30km_Control). The 30km_Assim run was then used to provide LBC 

for two higher resolution (10km horizontal resolution) nested runs to further improve 

the representation of complex topography and explore the effects of model resolution 

on aerosol DA. 10km runs are utilized with and without DA (Hereafter 10km_Assim 

and 10km_NoAssim, respectively). This is the first WRF-Chem MODIS DA study 

investigating natural dust influences on air quality in Anatolian peninsula. 

4.1 Data Description  

4.1.1 Data assimilation GSI/3D-VAR and calculating background error 

covariances  

GSI is unified 3D variational (3DVAR) data assimilation (DA) tool for both global and 

regional applications that is used at the National Centers for Environmental Prediction 

(NCEP) (Kleist et al, 2009). 3DVAR system calculates the best fit analysis based on 

irregularly spaced point observations and a gridded background field which can be 

taken from a short-term model forecast (Schwartz et al, 2012). Therefore, the main task 

of 3DVAR technique is the minimization of the cost function (J), which measures the 

distance between observations and background (model first guess), given by equation 

(4.1) 

                     J(x)≡(x−xb)T B-1(x−xb)�+ (y−H(x))T R-1 (y−H(x))                  (4.1) 



	

 42 

In equation 4.1, x is the analysis vector , xb is the forecast or background vector, y is 

an observation vector, B and R are the background and observation error covariance 

matrices, H is an observation operator which converts model variables to observation 

space. The background error covariance matrix B is a product of error variances and 

spatial correlation matrices. The observation covariance matrix R combines 

measurement and representativeness errors (Purser et al., 2003; Schwartz et al., 2012; 

Pagowski et al., 2014). A model may predict all the prognostic variables, but it only 

updates the analysis variables during DA (Schwartz et al., 2012). In our case, the 

updated analysis variables are 3D mass mixing ratios of the 14 GOCART aerosol 

module variables that is implemented within WRF-Chem at each grid point.  

The Community Radiative Transfer Model (CRTM) (Han et al., 2006) is used to 

convert the aerosol mass mixing ratios to AOD (the H operator in Eq. 4.1) and currently 

only supports GOCART aerosol species, consequently satellite AOD can only be 

assimilated with the GOCART model background within GSI (Pagowski et al. 2014). 

Observation operator, H, also transforms predicted values to observations by 

interpolating model grid points to observations points (Schwartz et al., 2012).  

The Community Radiative Transfer Model (CRTM), developed at the Joint Center for 

Satellite Data Assimilation, is primarily used to compute satellite radiance assimilation 

radiances from microwave and infrared sensors for operational weather forecasting at 

NOAA. It is extended to calculate MODIS AOD as input by using only aerosol profiles 

and this recent developed CRTM-AOD module is integrated with the GSI system. 

CRTM includes GOCART aerosol species profiles which consist of effective radii, 

refractive indices and standard deviations of each aerosol. The size distribution of 

aerosols within each bin size is accepted as logarithmic, the particles are assumed to be 

spherical and externally mixed (Liu et al., 2011; Pagowski et al., 2014).  

Considering all those assumptions, Mie scattering code (van de Hulst, 1957) is applied 

to calculate the mass extinction coefficient for each aerosol type at a particular 

wavelength for each of the 14 aerosols species at all atmospheric layers in order to 

calculate column total AOD (Liu et al., 2011; Schwartz et al., 2011; Pagowski et al., 

2014).  

It is necessary to calculate background error covariance (BEC) statistics for each 

aerosol variable in order to apply 3DVAR algorithm. We use the same implementation 

of AOD DA with Liu et al. (2011) for the calculation of BEC statistics. We constrain 
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the 3-D mass concentration of 14 aerosol species including sulfate, hydrophobic and 

hydrophilic black carbon (BC1 and BC2, respectively), hydrophobic and hydrophilic 

organic carbon (OC1 and OC2, respectively), five dust bins (D1 : 0.2–2.0 µm; D2 : 2.0–

3.6 µm; D3 : 3.6–6.0 µm; D4 : 6.0–12.0 µm; and D5 : 12.0–20.0 µm), and four sea salt 

bins (SS1 : 0.2–1.0 µm; SS2 : 1.0-3.0 µm, SS3: 3.0–10.0 µm; and SS4: 10.0–20.0 µm) 

(Pagowski et al., 2014). BEC for each species is calculated using National 

Meteorological Center (NMC) method (Parrish and Derber, 1992). Differences of 24 

and 12 h 00:00 UTC WRF/Chem forecasts of the aerosol species during the month of 

April, 2008 are used to compute the aerosol BECs for both the 30km and 10km nests. 

30km meteorological fields are initialized and LBC are obtained from 6 hourly NOAA 

NCEP GFS (Global Forecast System) analyses. 30km aerosol LBC are obtained from 

6 hourly RAQMS 2x2 degree global analyses. Two nested domain (10km) experiments 

were designed to evaluate the impact of AOD DA on predicted PM10 concentrations 

over Turkey by using the same LBC obtained from 30km domain. Both 10km 

experiments used the same physical and chemistry options, but one experiment did not 

employ DA (10km_NoAssim) and the other employed 3DVAR DA (10km_Assim) 

that updated the 14 aerosol profiles of GOCART aerosol module. 

4.1.2 MODIS aerosol optical depth (AOD) retrieval product 

The MODIS is a twin sensor aboard NASA’s Terra and Aqua satellites with the ability 

to characterize the spatial and temporal characteristics of the global aerosol optical 

depth fields. MODIS provides radiance measurements in 36 channels at three spatial 

resolutions: 250 m (2 channels), 500 m (5 channels), and 1 km (29 channels) from 0.41 

to 15 µm (410-1500 nm) (Remer et al., 2005). The MODIS aerosol algorithm consists 

of two different algorithms. Dark target algorithm derives aerosols over land and ocean 

(from both Aqua and Terra), which is what we used in our DA experiment, (Remer et 

al., 2005) while the deep blue algorithm derives aerosols over bright land surfaces (only 

available from Aqua) (Hsu et al., 2004; Sayer et al., 2013; Pagowski et al., 2014). 

MODIS retrieved aerosol characteristic was provided at seven wavelengths: 470, 550, 

660, 870, 1240, 1630, and 2130 nm (Liu et al., 2011).  

In our implementation, assimilated observations include the most recent release 

(collection 06) (Levy et al., 2013) of level 2 total AOD aerosol optical depth retrievals 

at 550 nm from MODIS on the Terra satellite. MODIS data come in HDF format at 5 

min segments of the satellite’s orbit. Each pixel corresponds to 10 km × 10 km 
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horizontal resolution at the surface. Since GSI requires observations in BUFR (Binary 

Universal Form for the Representation of meteorological data, Dragosavac, 2007) 

format, software is used to convert from HDF to BUFR for the GSI (Pagowski et al., 

2014).  

One of the major uncertainties in the MODIS AOD retrieval is cloud contamination. 

The main cloud contamination is unresolved residual cirrus clouds that can lead high 

biases in the retrieved AOD (Kaufman et al, 2005). To minimize cloud artifacts, we 

use a cloud fraction threshold of 30%. Pixels having cloud cover more than 30% are 

eliminated. 

4.2 Results of the WRF-Chem MODIS Assimilation Experiments 

Figure 4.1 shows the time series comparisons for daily PM10 concentration of WRF-

Chem 30km_Assim (MODIS) with RAQMS-LBC and WRF-Chem 30km_Control 

(HTAP) with RAQMS-LBC runs (Kabatas et al, 2016) to ground observations. WRF-

Chem 30km assimilation run tends to increase the high values of PM10 concentration 

during the high dust event (11-15 April 2008) compared to WRF-Chem 30km Control 

run. For the rest of the episode, 30km_Assim run shows slightly lower values than the 

30km Control run. Both 30km runs lower the low values the observed PM10 

concentration, while they overestimate the high observed PM10 values. 

 
Figure 4.1 : Time series comparisons for daily PM10 concentration of WRF-Chem 
30km_Assim and WRF-Chem 30km_Control runs (Kabatas et al, 2016) to ground 

observations. 
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Overall, two runs are consistent to each other as they capture same the pattern with the 

ground observations (Boxplot analysis of the ground observations can be seen from the 

figures 2.1 and 2.2). 

WRF-Chem 30km_Assim, WRF-Chem 10km_NoAssim and 10km_Assim box plot 

results are presented in Figures 4.2a, b and c, respectively. Lower and upper hinges of 

the boxplot represent 10th and 90th percentile of the data. Red dashed lines indicate the 

threshold of European Commission daily PM10 standard (50 µg/m3). Red dots show the 

mean values and the horizontal line shows the median of the data. Figure 4.2d shows 

comparison of daily PM10 concentration of ground observations, WRF-Chem 

30km_Assim, WRF-Chem 10km_NoAssim and 10km_Assim.  

It can be seen that the both 10km and 30km model analysis captures the overall 

temporal evolution very well as it is consistent with the daily mean observations 

(Figure 2.2). However, among the two 10km nest experiments, the one that did not 

employ DA have slightly higher values than the one employed DA on the high dust 

event days. On April 14, when the high dust event occurred, all WRF-Chem runs tend 

to overestimate the values while they underestimate low PM10 events on April 17 as 

well as the first few days of beginning of April 2008. 

(a) 

 
Figure 4.2 : WRF-Chem 30km_Assim with RAQMS LBC (a), WRF-Chem 
10km_NoAssim with 30km_Assim LBC (b), WRF-Chem 10km_Assim with 

30km_Assim LBC (c) and time series comparisons for daily PM10 concentration of 
three WRF-Chem runs and ground observations (d). Red dashed lines indicate the 

threshold of European Commission daily PM10 standard (50 µg/m3). 
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(b) 

 

 (c) 

 

Figure 4.2 (continued) : WRF-Chem 30km_Assim with RAQMS LBC (a), WRF-
Chem 10km_NoAssim with 30km_Assim LBC (b), WRF-Chem 10km_Assim with 
30km_Assim LBC (c) and time series comparisons for daily PM10 concentration of 
three WRF-Chem runs and ground observations (d). Red dashed lines indicate the 

threshold of European Commission daily PM10 standard (50 µg/m3). 
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(d) 

 

Figure 4.2 (continued) : WRF-Chem 30km_Assim with RAQMS LBC (a), WRF 
Chem 10km_NoAssim with 30km_Assim LBC (b), WRF-Chem 10km_Assim with 
30km_Assim LBC (c) and time series comparisons for daily PM10 concentration of 
three WRF-Chem runs and ground observations (d). Red dashed lines indicate the 

threshold of European Commission daily PM10 standard (50 µg/m3). 

Although all mean values obtained from ground observations show higher values than 

European Commission daily PM10 standard (50 µg/m3), model analyses during the 

episode is lower than this standard. When we compare average model outputs with the 

observation means, we find that both 10km (10km_NoAssim and 10km_Assim) 

analyses show higher level of variability in the PM10 values compared to 30km_Assim 

run. Among the 10km runs though, 10km_NoAssim run show higher level of 

variability than the 10km_Assim run. So, assimilation lowers the variability especially 

for the days on April 12th,13th, 14th around the time when high dust event occurred. 

Figures 4.3a, b and c show scatterplot comparisons of individual daily ground 

observations to the 30km_Assim with RAQMS LBC, the WRF-Chem 10km_Assim 

with 30km_Assim LBC, and the WRF-Chem 10km_NoAssim with 30km_Assim LBC 

runs, respectively. All runs overestimate the ground observations with observations 

minus model biases of -5 µg/m3, -10 µg/m3, and -11 µg/m3 for 30km_Assim, 

10km_NoAssim and 10km_Assim runs, respectively. The number of data points falling 

within the maximum density bin is higher in 10km_NoAssim, yet the correlation of 
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10km_NoAssim run to ground observations is slightly lower (0.504) than 30km_Assim 

and 10km_Assim runs (0.523 and 0.527, respectively). 

(a)                                                               (b) 

 

                                      (c) 

 
Figure 4.3: Scatter plots for WRF-Chem 30KM_Assim with RAQMS-LBC (a), for 

WRF-Chem 10km_Assim with 30km_Assim-LBC (b), and WRF-Chem 10km_Assim 
with 30km_NoAssim-LBC (c) runs, respectively. 

Although the correlation between 30km_Assim and 10km_Assim runs to ground 

observations are almost the same, 10km_Assim lowers the bias by slightly 

overestimating the frequency of relatively high observed PM10 values (This can be seen 

from Figure 4.2d as well). Root mean squared (RMS) error of 30km_Assim is smaller 

than 10km_Assim and 10km_NoAssim runs (61.04 µg/m3, 64.49 µg/m3, 66.91 µg/m3, 

respectively) indicating a better agreement with observations compared to the higher 

resolution nested runs.  
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4.3 Discussion of the WRF-Chem Assimilation Experiments 

Daily comparison of surface PM10 measurements to model outputs shows that higher 

resolution domains (10km_Assim and 10km_NoAssim) overestimate daily surface 

mean PM10 values more than lower resolution domain (30km_Assim) for the high dust 

event days. Figure 4.4 shows the time series of the impact of aerosol DA expressed at 

PM10 differences averaged over the surface sites for 30km runs (30km_Assim minus 

30km_Control) (black line) and 10km runs (10km_Assim minus 10km_NoAssim) (red 

line). 

Differences between the two 10km runs are generally smaller than the two 30km runs, 

particularly around the high dust event days (14 April ±2 days). For example, on April 

1, where the difference between assimilation and control runs for both 30km and 10km 

are both negative, the difference between two 10km runs (10km_Assim and 

10km_NoAssim) is ~-5 µg/m3, where the difference between two 30km runs 

(30k_Assim and 30km_Conrol) is ~-20 µg/m3. On April 13, where the 30km and 10km 

differences are the opposite sign, the difference between two 10km runs is ~-13 µg/m3, 

which is the highest difference between the two 10km runs. For the same day, the 

difference between the two 30km runs is ~18 µg/m3. 

 
Figure 4.4 : Timeseries of PM10 differences averaged over the sites for 30km runs 

(30km_Assim and 30km_Control) and 10km runs (10km_Assim and 
10km_NoAssim). 

In their study, Tang et al. (2007) stated that LBC is a major contributor to uncertainty 

in the regional air quality models. In mesoscale atmospheric models, such as WRF-
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Chem, global models are being used to obtain the LBC in order to import the influence 

of external forcings. Although the use of global model LBCs can improve regional air 

quality predictions, due to the uncertainties in the global models, differences in model 

formations (i.e. chemical mechanisms) and the horizontal resolution changes between 

the global and the regional models, additional uncertainties are introduced. The 

RAQMS model that we used to obtain LBC for 30km WRF-Chem domain uses the 

same chemical mechanism as the WRF-Chem run utilized in this study, yet coarse 

resolution of RAQMS might add uncertainties within the 30km resolution regional 

model. In order to explore differences in aerosol AOD assimilation between the high 

resolution domain (10km) and the 30km runs, we have interpolated 30km_Assim run 

to the 10km grid (hereafter 30km_Assim) and calculated the differences between 

30km_Assim and 10km_NoAssim run to further investigate the consistency of the 

aerosol assimilation at different resolution domains.  

Figure 4.5 upper left panel shows the daily surface PM10 differences of the two 30km 

runs (30km_Assim and 30km_Control), upper right panel shows the differences 

between the two 10km runs (10km_Assim and 10km_NoAssim) and the difference 

between 30km_Assim interpolated to the 10km grid and 10km_NoAssim is shown in 

the lower left panel for April 1, 2008. Differences between 30km_Assim and 

30km_Control run are ~ -50 µg/m3 over the central and the northwestern part of 

Anatolia on April 1, 2008, which indicates that AOD assimilation has lowered surface 

PM10 compared to the 30km_Control run (As also can be seen from Figure 4.1).  

In the eastern part of the domain, the difference increases up to ~50 µg/m3 indicating 

that AOD assimilation has increased surface PM10 compared to the 30km_Control run. 

Over the central Anatolia, 10km runs show smaller differences (between -10 to +10 

µg/m3) than found in the 30km experiments (This can be seen from Figure 4.4 as well). 

For the eastern part of the domain, the difference between 10km runs shows the same 

pattern as in 30km differences with higher values in the 10km assimilation run. The 

difference between 30km_Assim and 10km_NoAssim in the central part of Turkey is 

~-20 µg/m3 which results from the 30km_Assim having lower predictions than 

10km_NoAssim, while it is ~30 µg/m3 in the eastern of the Anatolia, indicating 

30km_Assim has higher predictions than the 10km_NoAssim run. The difference 

between 10km_NoAssim and 30km_Assim is larger than the difference between two 

10km runs, which are almost the same over the Central Anatolia. 
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Figure 4.5: Difference of surface daily PM10 concentration between 30km_Assim 

with RAQMS-LBC and 30km_Control with RAQMS-LBC (upper left panel), 
10km_Assim with 30km_Assim-LBC and 10km_NoAssim with 30km_ Assim-LBC 
(upper right panel), 30km_Assim interpolation over 10 km grid and 10km_NoAssim 

with 30km_Assim-LBC (lower left panel) for April 1, 2008. 

Due to higher resolution emissions introduced as the horizontal resolution increases, 

both 10km runs tend to predict higher values than the coarse resolution domain. 

However, among the 10km runs, the one that does not employ DA tends to increase it 

more whereas the run that employs DA tends to move the predictions back towards the 

surface PM10 observations. In the eastern part, however, this influence is negligible 

since assimilation already predicts high values in 30km domain and again since 

10km_Assim corrects the 10km_NoAssim predictions, the impacts of assimilation in 

the 30km domain and 10km domain tend to be similar. 

Figure 4.6 shows the same difference maps for April 13, 2008 which is a high dust 

event day. In this case, the 30km run differences and 10km run differences averaged at 

the surface observation sites have the opposite signs (18 µg/m3 and -13 µg/m3, 

respectively, see Figure 4.4). 
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Figure 4.6: Difference of surface daily PM10 concentration between 30km_Assim 

with RAQMS-LBC and 30km_Control with RAQMS-LBC (upper left panel), 
10km_Assim with 30km_Assim-LBC and 10km_NoAssim with 30km_ Assim-LBC 
(upper right panel), 30km_Assim interpolation over 10 km grid and 10km_NoAssim 

with 30km_Assim-LBC (lower left panel) for April 13, 2008. 

Differences between two 30km runs is ~40 µg/m3 indicating that AOD assimilation has 

increased surface PM10 compared to the 30km_Control run (Also see Figure 4.1). 

Differences between the two 10km runs tend to be negative meaning that AOD 

assimilation has decreased surface PM10 compared to the 10km_NoAssim run (See 

Figure 4.2d). The large negative differences between the 30km_Assim run and 

10km_NoAssim shows that the 10km_NoAssim run is much higher than the 

30km_Assim run over central Turkey on April 13. This is mainly because the 

assimilation enhances the dust transport affecting 30km domain on April 13, resulting 

in overestimation compared to surface observations. 30km domain then influences 

10km domain by carrying this enhancement in through LBC and causing additional 

PM10 over prediction in 10km domain. Since the difference between the two 10km runs 

is smaller than 30km_Assim and 10km_NoAssim, it can be said assimilation within 
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the 10km domain again tends to move the PM10 prediction closer to the observations 

within the 10km domain on high dust event day (See Figure 4.2d). 

Schaap et al (2015) indicated the importance of grid resolution especially for the urban 

signal. Downscaling from a coarser domain to a finer one adds a lot of detail, and this 

causes an increase in high emission areas as the grid size decreases. In our experiment, 

the finer domain predicted higher values than the coarse one, and among the 10km 

runs, the one does not apply DA tends to have higher predicted values than the one that 

employed DA. Considering both 10km runs (10km_Assim and 10km_NoAssim) have 

the same LBC obtained from 30km_Assim run, it can be stated that within the 10km 

domains, assimilation forces the predictions towards the surface observations on high 

dust event day with larger signal than the one on low dust event day due to effect of 

the local emitted  components of surface PM10 (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 54 

 

 

 

 

 

 

 

 

 

 

 



	

 55 

5. CONCLUSIONS 

In this study, we have utilized the atmospheric models to explain the possible effect of 

Saharan dust on high levels of PM10 measured in Turkey. First of all, we analyzed Real-

Time Air Quality Modeling System (RAQMS) results, which is a unified, online global 

aerosol and chemistry assimilation and forecasting system that was run at 2x2 degrees 

in order to quantify the impact of Saharan dust transport over Anatolian Peninsula in 

April 2008 (Kabatas et al, 2014). Observations show that PM10 levels change according 

to the time of the year. During the cold season, high PM10 levels are usually related to 

low boundary layer height and local pollution. In warm seasons, however, PM10 

concentrations are reasonably lower than the cold season. Since Saharan dust outbreaks 

occur in the transition seasons, high levels of measured PM10 in April 2008 is thought 

to be related to Saharan dust outbreak. Satellite data is used for validation and Terra 

MODIS and Aqua MODIS agreed on high AOD values starting from the desert area 

moving over the Mediterranean Sea, and finally to Turkey.  

Dust is found to be the major component of the overall PM10 concentration calculated 

from RAQMS output (96.6% of total PM10 concentration simulated via RAQMS is due 

to dust load). Daily averages of surface level PM10 concentrations at the Turkey ground 

sites are obtained from RAQMS to compare with in situ observations. The results 

suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with 

RAQMS and in situ time series showing similar patterns. The two data sets are found 

to be in agreement with a correlation coefficient of 0.87, although RAQMS over 

predicts the surface PM10 up to a factor of 5. Comparisons between CALIPSO, 

RAQMS and WRF along the CALIPSO track suggest that RAQMS underestimates 

aerosol lofting over Turkey due to a shallow surface inversion within the RAQMS 

model that is likely not present in the real atmosphere, as confirmed by a higher 

resolution WRF simulation. This underestimate in aerosol lofting leads to over 

estimates in surface PM10 concentrations.  

In order to overcome the deficiencies caused by the coarse resolution analysis, we 

utilized a higher resolution, online-coupled WRF-Chem system to investigate spatial 
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and temporal distribution of Saharan mineral dust transport over Eastern 

Mediterranean. The results are found to be significantly improved compared to the 

RAQMS study.  

WRF-Chem version 3.5.1 was employed using the simple GOCART aerosol option 

and was configured to cover Eastern Mediterranean with 30 km horizontal resolution.  

RAQMS lateral boundary conditions were used for 30km run. The 30km run was then 

used to provide lateral boundary conditions for a second higher resolution (10km 

horizontal resolution) nested run to minimize the errors in representing complex 

topography.  

For anthropogenic emission two different emission inventories used. EDGAR is used 

for 30 km (WRF-Chem EDGAR outer) horizontal resolution run only, in order to have 

a base line to see the difference between the two emission inventories, and HTAP 

emission inventory is used for both 30km (WRF-Chem HTAP outer) and 10 km (WRF-

Chem HTAP nest) horizontal resolution domains. The correlations between ground 

observations to the WRF-Chem HTAP outer and nested domain runs are found to be 

0.471 and 0.478, respectively, while the correlation between ground observations to 

the WRF-Chem EDGAR outer domain is found to be 0.494. Root mean square (RMS) 

errors are calculated as ~ 61 µg/m3 for WRF-Chem HTAP outer domain and ~ 64 µg/m3 

for WRF-Chem HTAP nested domain. For WRF-Chem EDGAR outer domain, RMS 

is calculated to be ~59 µg/m3. Although EDGAR run has lower RMS indicating to a 

better fit comparing to HTAP runs, it underestimates the ground observations. 

Introducing higher emission inventory within the model results in WRF-Chem HTAP 

outer and nested domains to have lower bias (-6.7 µg/m3 and -11.1 µg/m3, respectively) 

than WRF-Chem EDGAR outer domain (2.1 µg/m3).  

When dust is the dominant aerosol (dust fraction is more than 50%), the correlations 

between ground observations from all 118-ground stations and the WRF-Chem HTAP 

30km, 10km and WRF-Chem EDGAR 30km runs are found to be 0.45, 0.48 and 0.49, 

respectively. When dust fraction is less than 50% correlations between the ground 

observations to the two HTAP 30km and 10km runs are found to be 0.31 and 0.25, 

while, the correlation between the observations to WRF-Chem EDGAR run is found 

to be 0.07. This shows that WRF-Chem HTAP runs can adequately capture local 

emissions that influence the ground observations better than WRF-Chem EDGAR run 

during periods of lower dust aerosol loading. Among two HTAP runs (30km and 
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10km), the WRF-Chem 30km HTAP run can better predict the PM10 that is associated 

with the local emissions especially when dust is not the dominated aerosol than WRF-

Chem HTAP 10KM run, which also explains the high RMSE results for 10km HTAP 

run. 

A high dust event during April 11-18, 2008 was identified from ground observations 

and was investigated. The most dominant aerosol type for the episode is found to be 

dust, with other aerosols and sulfate as the second and third dominant aerosol types 

during periods with low surface aerosol concentrations, suggesting the transported dust 

cloud over Turkey dominates the whole region. According to the ground observations, 

the highest daily PM10 concentration was observed on April 14, which can also be seen 

from both the 30 km and 10 km WRF-Chem forecasts. April 17 is the day when 

minimum mean daily PM10 concentrations were observed and all model runs agree with 

this as well. All outer and nested model runs tend to increase the PM10 concentration 

relative to observations during high events by 30 µg/m3 and decrease the PM10 

concentration during periods of low PM10 by 30 µg/m3.  

Daily comparison of the both WRF-Chem EDGAR and HTAP 30km run and WRF-

Chem HTAP 10km run to ground observations shows that the nested domain has an 

overall larger low bias than outer domains do, although the correlations between the 

runs and the ground observations are almost the same. In order to understand the 

differences between model and ground observations, two ground stations are chosen 

from the western part of Turkey to avoid eastern part’s complex topography. Station 

Denizli is located at 37.77 °N, 29.04 °E, and is chosen due to having a high daily 

concentration of PM10 (236 µg/m3) measured on the day when daily maximum PM10 

concentration was observed throughout Turkey.  

The second station, Kocaeli Dilovası, is located at 40.77 °N, 29.52 °E and is chosen 

due to its being located within the most polluted zone of Turkey. At Denizli station, all 

model runs agreed with each other since dust is the dominant aerosol species. At 

Kocaeli station, however, other aerosols and sulfate aerosol were found to contribute 

to high levels of PM10 concentration since this station is located within one of the most 

industry-based regions of Turkey. This contribution can be seen from the model 

forecast that utilized the higher resolution HTAP emission inventory. Among WRF-

Chem HTAP runs, however, outer domain better represents the local emissions when 

dust is not a dominant aerosol than HTAP 10km domain. WRF-Chem EDGAR outer 
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domain cannot adequately capture local emissions that influence the ground 

observations which results in larger differences between model prediction and ground 

observations during periods of lower aerosol loading. The representativeness of the 

positioning of 118 ground-based air quality monitoring sites distributed in 81 cities of 

Turkey arises as well as the temporal and spatial resolution of the model emission 

inventories, which are not adequate to represent the local emissions. It showed that this 

deficiency can be improved by using a higher resolution emission inventories.  

After identifying the effect of different emission inventories on quantification of PM10 

concentrations, satellite data assimilation is considered as a next step the consistency 

of the multi-scale modeling system. By using the same configuration that was used 

before for WRF-Chem experiment, we utilized NOAA Gridpoint Statistical 

Interpolation (GSI) data analysis system that is used to assimilate MODIS (collection 

6) AOD retrievals over the region for April 2008. 30km and 10km runs are conducted 

with and without DA (30km_Assim, 30km_Control and 10km_Assim, 

10km_NoAssim, respectively). 

DA experiments showed that all WRF-Chem runs tend to overestimate the high PM10 

events (i.e. around April 14, 2008) while they underestimate the low PM10 events and 

among all models, higher resolution 10km domains yield higher predicted surface PM10 

concentration than coarse 30km domain for high dust event days. Both 10km 

simulations show higher level of variability in the surface PM10 values compared to 

30km_Assim run. Among the 10km runs, 10km_NoAssim run shows higher level of 

variability than the 10km_Assim run, which indicates that assimilation lowers the 

variability especially for the days when high dust event occurred. 

 All runs overestimate the ground observations with biases of -5 µg/m3, -10 µg/m3, and 

-11 µg/m3 for 30km_Assim, 10km_NoAssim and 10km_Assim runs, respectively. 

Correlations between the 10km_NoAssim run to ground observations is found to be 

slightly lower (0.504) than 30km_Assim and 10km_Assim runs (0.523 and 0.527, 

respectively).  

In order to understand the differences between the PM10 forecast and assess the 

consistency between the 30km and 10km assimilation runs, we compared the impacts 

of assimilation in the 30km and 10km experiments at the surface observation sites. 

Based on the PM10 differences averaged over the surface sites for 30km runs and 10km 

runs, April 1 and April 13, 2008 are chosen in order to further explore the consistency 
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of the aerosol assimilation at 30 and 10km resolution, and we compare the 

30km_Assim (interpolated to the 10km grid) to the 10km_NoAssim experiment. 

On April 1, over the central Anatolia, within the higher resolution domain, the 

predictions tend to increase due to the 30km_Assim domain influence through the 

LBC. This increase in higher resolution domain is corrected by employing assimilation 

by moving the predictions towards the observations. For the eastern part of the domain 

on April 1, the impacts of assimilation are similar for the 30 and 10km experiments 

indicating LBC impact is small.  

On April 13, when dust is the dominant aerosol, 30km_Assim run shows higher PM10 

concentrations than the 30km_Control run. The local emissions, as well as LBC from 

the 30km domain, add additional enhancements to 10km domain resulting large 

negative differences between 30km_Assim and 10km_NoAssim domains. Relatively 

small differences between the two 10km domains again shows that assimilation tends 

to move the 10km predictions closer to the surface observations during this high dust 

event. 

This demonstrates that, in our study, although the nested domains tend to over predict 

the PM10 concentrations comparing to the 30km domain, assimilation of satellite AOD 

retrievals moves the model forecasts towards the surface observations within the 10km 

resolution domains especially on high dust event days.  

These results represented here are the first WRF-Chem/WRF-Chem DA study 

investigating natural dust influences (dust and anthropogenic impact together) on air 

quality in the Eastern Mediterranean, especially in Anatolian Peninsula. We tried to 

address the uncertainties in the atmospheric models caused by dust, and approaches 

presented here are useful tools in order to investigate dust impact on air quality, but 

many more challenges remain and need to be addressed in the follow-up studies. We 

hope this study will enlighten the future researches and help us to fully understand the 

characteristics of aerosols and their impact on air quality. 
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