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SPARSITY BASED PANSHARPENING AND A NEW PANSHARPENING 

METHOD USING A GUIDING IMAGE 

SUMMARY 

This thesis aims at enhancing spatial resolution quality of multispectral and 

hyperspectral remote sensing satellite images by utilizing a registered panchromatic 

image of the same scene. This technique is called as “Pansharpening” in the literature. 

High spectral resolution images with high spatial details have wide applications in 

precision agriculture, forest protection and monitoring, mineral detection, marine and 

environmental research. However, a single satellite remote sensing sensor cannot 

acquire images which have both high required spatial resolution and high required 

spectral resolution as a result of some technical constraints. Pansharpening is an 

effective image fusion technique to solve this problem by taking advantage of the 

prevailing properties of both pan image and multispectral or hyperspectral image to 

generate high spectral resolution images with high spatial details for the purpose of 

satisfying various demands of remote sensing satellite images. 

This thesis firstly gives an overview of different pansharpening methods and briefly 

classifies the pansharpening methods into the Component Substitution category, the 

Multi-Resolution Analysis category and the model based category. Some important 

methods are analyzed and compared in inter- and intra-categories. 

The second aim of this thesis is to propose a novel pansharpening approach using the 

newly developed Guiding Image BM3D image denoising algorithm. BM3D is an 

effective denoising algorithm. In the proposed algorithm, an external guiding image is 

added as the basic estimate to the Wiener filtering step of the BM3D algorithm and 

this forms the three sub-models of the GIBM3D algorithm. In the thesis, the proposed 

GIBM3D algorithm is applied in a model based pansharpening method. The GIBM3D 

is implemented in every iteration of the Alternating Direction Method of Multipliers 

(ADMM) process in this pansharpening model. 

For comparisons of different pansharpening methods, visual evaluation, quantitative 

evaluation with reference images and without reference images are introduced. Then 

three multispectral and two hyperspectral image datasets are tested to validate the 

performance of proposed ADMM-GIBM3D approach and to compare the performance 

of various pansharpening methods. 

Experimental results in this thesis have demonstrated that the proposed ADMM-

GIBM3D pansharpening method has competitive performance with the existing model 

based pansharpening methods. The results also show that the three sub-models of the 

proposed ADMM-GIBM3D method result in almost equivalent performance. 
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SEYREKLİK TABANLI PANKESKİNLEŞTİRME VE KILAVUZ GÖRÜNTÜ 

KULLANAN YENİ BİR PANKESKİNLEŞTİRME YÖNTEMİ 

ÖZET 

Bu tez çalışmasında multispektral (MS) ve hiperspektral (HS) uzaktan algılama uydu 

görüntülerinin uzamsal çözünürlük kalitesinin artırılması amaçlamaktadır. Bu problem 

ve ilgili çözüm yöntemleri literatürde genel olarak “pankeskinleştirme” 

(pansharpening) başlığı altında incelenmektedir. 

Uydu teknikleri ve uygulamaları hızla geliştikçe, artan miktarda uydu uzaktan 

algılama görüntüleri genel kullanıma sunulmaktadır. Farklı platformlar ve sensörler 

uydu görüntülerinin çözünürlük kalitesini belirler. Uzamsal detaylara sahip yüksek 

spektral çözünürlüklü görüntüler, tarım, orman koruma ve izleme, mineral algılama, 

deniz ve çevre araştırmalarında önemli ve geniş uygulamalara sahiptir. Bununla 

birlikte, tek bir uydu uzaktan algılama sensörü, bazı teknik kısıtlamalar nedeniyle hem 

gereken yüksek uzamsal çözünürlüğe hem de yüksek gereken spektral çözünürlüğe 

sahip görüntüleri elde edemez: 1) Sensöre girecek radyasyon enerjisinin sınırlaması 

vardır. 2) Yüksek uzamsal kaliteli MS / HS görüntünün veri hacmi çok büyük 

ölçüdedir. Bu platformda sınırlı veri depolama kapasitesi ve platformdan yer alıcısına 

iletim bant genişliğinin yetersizliği sorunlarına neden olabilir. Uzaktan algılama ile 

elde edilen uydu görüntülerinin çeşitli uygulama taleplerini karşılamak için hem 

yüksek uzamsal çözünürlüğe, hem de yüksek spektral çözünürlüğe sahip olması 

istenmektedir. Pankeskinleştirme, yüksek uzamsal detaylara sahip ve yüksek spektral 

çözünürlükte görüntüler üretmek için, hem pankromatik (PAN) görüntüsünün hem de 

çoklu- spektral veya hiperspektral görüntünün üstün özelliklerinden yararlanarak bu 

sorunu çözmek için geliştirilmiş etkili bir görüntü füzyon tekniğidir. Bu kaynaştırma 

işleminde, pankromatik görüntünün uzamsal içeriği ve MS / HS görüntünün spektral 

içeriği mümkün olduğu kadar korunmalıdır. Böylece kestirilen son görüntünün 

mümkün olduğu kadar orijinal (aranan) görüntünün hem uzamsal hem de spektral 
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detaylarını içermesi sağlanabilir. Pankeskinleştirme bunun dışında görüntü 

yorumlama, nesne tanıma, sınıflandırma ve değişiklik tespiti gibi önemli diğer bazı 

uydu görüntü temelli uygulamalar için çok önemli bir ön işleme aşamasını 

oluşturmaktadır. 

Bu tezin ilk kısmında, farklı pankeskinleştirme yöntemleri genel bir şekilde 

incelenmekte ve farklı yaklaşımlar açıklanmaktadır. Pankeskinleştirme yöntemleri 

Bileşen Değiştirme (Component Sunstitution-CS), Çoklu Çözünürlük Analizi (Multi 

Resolution Analysis- MRA) ve model tabanlı algoritmalar altsınıflarına ayrılmaktadır. 

CS kategorisi, PAN görüntüsünün yüksek çözünürlüklü uzamsal içeriğinin, MS / HS 

görüntüsünün düşük çözünürlüklü uzamsal içeriğinin yerini almasıyla gerçeklenir. 

Çoklu Çözünürlüklü Analiz kategorisi genel olarak, PAN görüntü üzerinden 

pankeskinleştirilmiş MS / HS görüntülerini elde etmek ve uzamsal yapı detaylarını 

vermek için uzamsal filtreler kullanır. Model temelli pankeskinleştirme yöntemleri 

kategorisinde ise genel olarak gözlemlenen MS / HS ve PAN görüntülerine ilişkin 

matematiksel bir model oluşturulur. 

Tez kapsamında, literatürde önerilmiş çok sayıda yaklaşım arasından önemli görülen 

bazı pankeskinleştirme yöntemlerini detaylı şekilde analiz edip karşılaştırdık. CS 

kategorisinde yer alan pankeskinleştirme yöntemleri MS görüntüler için görece daha 

iyi uzamsal kalite sağlar. MRA kategorisinde yer alan pankeskinleştirme yöntemleri 

ise MS görüntüleri için daha iyi spektral kalite üretir. HS pankeskinleştirme açısından, 

MRA kategorisi genellikle CS kategorisinden daha iyi performans gösterir. Model 

tabanlı yöntemler hem MS hem de HS pankeskinleştirme için iyi performans gösterir. 

Bununla birlikte, model tabanlı yöntemler CS ve MRA kategori yöntemleriyle 

karşılaştırıldığında çok daha fazla işlem zamanı gerektirmektedir.  

Bu tez kapsamında geçmişte önerilmiş model tabanlı ve özyinelemeli yöntemlere 

dayanarak, yeni bir pankeskinleştirme yaklaşımı önerilmektedir. Literatürde daha önce 

sunulmuş olan Block Matching 3D (BM3D) etkili bir görüntü gürültü giderme 

algoritmasıdır. Yeni geliştirilen pankeskinleştirme yöntemi, BM3D içinde bir kılavuz 

görüntü kullanımını ortaya koymaktadır. Böylece Kılavuz Görüntü BM3D (Guiding 

Image BM3D-GIBM3D) olarak isimlendirdiğimiz, model tabanlı ve özyinelemeli yeni 

bir pankeskinleştirme yaklaşımı ortaya konulmaktadır.  
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BM3D, yinelemeli özyinelemeli pankeskinleştirme yöntemleri için literatürde 

kullanılmış etkili ve güçlü bir görüntü gürültü giderme algoritmasıdır. BM3D 

algoritmasının Wiener filtreleme basamağında temel bir görüntü kestirimine ihtiyaç 

duyulmaktadır. Bu tezde, BM3D algoritmasının pankeskinleştirme uygulamasında 

kullanımının performansını arttırmak için gürültü giderilmiş görüntü kestirimleri 

yerine, pankeskinleştirme sonucu elde edilmiş harici kılavuz görüntülerinin kullanımı 

önerilmektedir. Burada önerilen kılavuz görüntü kullanımı, Wiener filtreleme 

adımının blok eşleştirme aşamasında gruplama performansını artırmakta ve buna ek 

olarak 3D spektral katsayıların Wiener filtrelenmesinde başarımı iyileştirmektedir. 

Kılavuz görüntünün kullanımı, Wiener filtreleme adımında daha iyi gruplama ve daha 

iyi filtreleme için referans olarak işlev görmektedir. 

Yukarıda özetlendiği gibi, önerilen yeni Kılavuz Görüntü BM3D (GIBM3D) 

algoritması Wiener filtreleme adımının temel kestirim girişini harici bir kılavuz 

görüntü ile değiştirmektedir. Tez kapsamında GIBM3D algoritması için üç ayrı alt 

model oluşturulmaktadır. Tezde önerilen bu üç farklı GIBM3D algoritması yapısı, 

model tabanlı ve özyinelemeli bir pankeskinleştirme çerçevesi içinde kullanılarak 

pankeskinleştirmeye uygulanmıştır. Bu kapsamda GIBM3D, pankeskinleştirme için 

“Alternating Direction Method of Multipliers” (ADMM) tabanlı özyinelemeli bir 

algoritmanın yineleme adımlarının bir alt bileşeni olarak gerçeklenmektedir. GIBM3D, 

her bir ADMM yinelemesinde iyileştirilmiş bir görüntü kestirimi oluşturmak için 

gürültü giderici bir düzenleme (regularization) adımı olarak kullanılmaktadır. 

Kullanılan kılavuz görüntünün kalitesine göre, ADMM-GIBM3D algoritması 

tarafından üretilen pankeskinleştirme sonuçları değişiklik göstermektedir. 

Tez kapsamında farklı pankeskinleştirme yöntemlerinin karşılaştırılması için görsel 

değerlendirme ve referans görüntüleri karşılaştırma içeren nicemsel değerlendirmeler 

yapılmıştır. Referans görüntü ile nicel değerlendirmede, gözlenen görüntü işaretleri 

referans olarak kullanılan mevcut bir MS / HS görüntüsünden sentetik olarak 

üretilmektedir. Gözlemi oluşturan görüntüler pankeskinleştirilmekte, ve üretilen sonuç 

görüntüleri referans ile karşılaştırılarak değerlendirilme yapılmaktadır. 

Önerilen ADMM-GIBM3D yaklaşımının ve literatürde sunulmuş farklı tiplerde rakip 

pankeskinleştirme yaklaşımlarının performanslarını karşılaştırmak için üç adet 
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multispektral ve iki hiperspektral görüntü veri seti üzerinde kapsamlı benzetimler 

gerçeklenmiştir. 

Bu tezin benzetim sonuçları, önerilen ADMM-GIBM3D pankeskinleştirme 

yönteminin mevcut model tabanlı pankeskinleştirme yöntemleriyle rekabetçi bir 

performansa sahip olduğunu göstermiştir. Bunun dışında sonuçlar, önerilen ADMM-

GIBM3D yönteminin her üç alt modelinin neredeyse eşdeğer performansa sahip 

olduğunu göstermektedir. 
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1.  INTRODUCTION 

As satellite techniques and applications rapidly advance, an increasing amount of 

satellite remote sensing images are made available to the public. Some commercial 

satellites like SPOT, LANSAT and IKONOS provide multispectral (MS) with 

panchromatic (PAN) images, EO and AVIRIS providing Hyperspectral (HS) images 

[1].  

Different platforms and sensors determine the resolution quality of satellite images 

(Figure 1.1). Regarding the spatial resolution, it represents the measuring ability of the 

sensor to resolve the smallest object or the measure of the ground area which is imaged 

into the Instantaneous Field of View (IFOV) of the remote sensing system. Spectral 

resolution depicts the number of total bands or the spectral width of single band in 

digital image. PAN image has only one single wide-width band that is located in 

visible spectrum and some commercial satellites can provide even below a half-meter 

spatial resolution PAN image. MS image generally has three to more than ten bands 

in visible to near-infrared wavelengths. However, HS images usually have hundreds 

of narrower spectral bands [1]. 

 

 

 

 

 

Figure 1.1: Spatial and spectral differences among PAN, MS and HS images. 
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High spectral resolution images with good spatial quality are widely employed in 

precision agriculture, forest protection and monitoring, mineral detection, marine and 

environmental research. In order for better interpretation capabilities and more reliable 

results, these applications require the satellite remote sensing images to contain rich 

geometric details and spectral information. 

However, images that have high spectral resolution with high spatial details cannot be 

acquired by a single satellite remote sensing sensor. This is mainly due to the following 

two restrictions: 

(1) There is limitation for incoming radiation energy to be received into the sensor [2]. 

Generally, MS/HS sensor has larger number and narrower width of spectral bands 

which only collect specific narrow spectrum of energy leading to a lower image Signal 

to Noise Ratio (SNR). For the purpose of maintaining a relatively good image SNR 

and balancing the tradeoff [2] between the spectral and spatial resolution quality, the 

MS/HS sensor is designed with a larger IFOV to collect more light and this causes a 

lower spatial quality. However, in contrast, PAN sensor with a single wider band in 

the visible spectrum has a smaller IFOV which generates relatively good spatial 

resolution image [2].  

(2) The high spatial quality MS/HS image data volume is greatly large [2]. Compared 

to the bundled poor spatial quality MS/HS image with a higher spatial quality PAN 

image data volume, the high spatial quality MS/HS image data volume is significantly 

larger which can result in a big problem of limited data storage capacity on board and 

bandwidth transmission from platform to ground receiver [3].  

Considering these constraints, an image fusion technique which can fuse together the 

observed poor spatial quality MS/HS image and a higher spatial quality PAN image to 

generate a corresponding high spatial quality MS/HS image, is necessary to satisfy the 

practical utilizations of satellite images. In this fusing process, spatial composition of 

panchromatic image and spectral composition of MS/HS image ought to be preserved 

as completely as possible so that the final estimated image can provide both spatial 

and spectral details of observed images as much as possible. The fusion technique is 

the well-known pansharpening. 
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Pansharpening aims at taking advantage of both the geometric spatial structures of 

panchromatic image and the spectral composition of MS/HS image to generate a fused 

high spatial quality MS/HS image. Such synthetic images are in high demand in some 

commercial applications like Bing Maps and Google Earth [4]. Pansharpening is also 

a crucial pre-processing stage for some other satellite imagery based applications, for 

example in scene interpretation [5], object recognition [6], classification [7] and 

change detection [8]. Figure 1.2 shows the principle of pansharpening process. 

 

 

 

 

 

 

Figure 1.2: Basic principle of Pansharpening process. 

1.1 Purpose of Thesis 

This thesis research firstly gives a general classification of various pansharpening 

methods which can be utilized for both MS images and HS images. In recent years, 

many improved conventional or newly proposed pansharpening methods have 

emerged. The differences and similarities among different methods need to be clearly 

noted and studied. This thesis generally classifies the pansharpening approaches into 

three groups: the Component Substitution (CS) category, the Multi-Resolution 

Analysis (MRA) category and the model based category. 

Another purpose of the thesis is to improve a model based pansharpening method by 

using a proposed Guiding Image Block-Matching 3D (GIBM3D) denoising algorithm. 

Different MS and HS datasets are tested and compared under the proposed model. 

Experiments also give competitive results of the proposed model. 

Pansharpened image HS/MS image PAN image 
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1.2 Outline of Thesis 

The thesis contains five chapters. A brief introduction of the pansharpening technique 

background including its applications and some technical constraints is given in 

Chapter 1. 

In Chapter 2, an overview of different pansharpening methods are presented and a 

general classification for these methods is summarized as follows: CS category, MRA 

category and the model based category. Then, some important representative 

pansharpening methods are discussed and compared. 

In Chapter 3, the BM3D denoising algorithm is firstly introduced and based on this the 

Guiding Image BM3D (GIBM3D) denoising algorithm is proposed. Then a model 

based pansharpening method is presented in detail, where the GIBM3D is used inside 

an ADMM based pansharpening algorithm. The resulting newly proposed ADMM-

GIBM3D pansharpening method is explained in detail. 

In Chapter 4, the proposed ADMM-GIBM3D pansharpening method and some 

selective representative methods are implemented on five different image datasets. 

Then, the experimental results are displayed and compared in the following sections. 

Finally, Chapter 5 concludes this thesis and presents possible subsequent work for the 

proposed GIBM3D denoising algorithm. 
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2.  OVERVIEW OF PANSHARPENING METHODS 

With the development of pansharpening techniques, many researchers are trying to 

give a renewed set of classification categories for various pansharpening methods.  

In [9, 10], pansharpening methods are broadly grouped into two groups: basic CS 

category methods and MRA category methods. In [11], pansharpening methods are 

classified into CS group, MRA group and regularization based methods. They 

formulate an image formation model from the final estimated MS image to the low-

resolution quality MS and PAN observation images according to the compressed 

sensing theory [11]. Using sparse regularization, the high spatial quality MS image can 

be restored from its degraded versions. In [12], pansharpening methods are grouped 

into CS class, MRA class and Bayesian class which is a particular case for variational 

methods. The Bayesian method is used to deal with an inverse problem via the 

posterior distribution in the Bayesian framework model [12]. In [13], pansharpening 

methods are classified into four classes: CS class, MRA class, model based class and 

sparse reconstruction (SR) class. They group the methods which build a relationship 

model between targeted image and the observed images as an ill-posed problem into 

the model based class. In [3], pansharpening methods are classified into CS group, 

MRA group and variation optimization based group. In [2], [14], pansharpening 

methods are classified into four classes: CS class, MRA class, hybrid class and model 

based class. In terms of Hybrid class, it combines the advantages of both CS class and 

MRA class, and it can be regarded as an improved version of CS class or MRA class. 

They also group the compressive sensing methods, the sparse representation methods 

and the Bayesian fusion into the model based methods. CS and MRA family are the 

most popular and well-known pansharpening methods. Meanwhile there are many 

other existing pansharpening methods which are  derivative versions of Bayesian 

framework [15] methods, sparse representation  methods [16, 17], variational 

optimization [18–20] methods. They are based on some specific theoretical image 
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models [16]. Therefore, they can be roughly summarized as the model based methods. 

In recent years, many different effective deep-learning (DL) based methods like 

convolutional neural network (CNN) [21] and generative adversarial network (GAN) 

[22] have been introduced into the pansharpening area. In [23], a three-layer 

architecture Convolutional Neural Network  based pansharpening method is proposed. 

In [24], a Deep Residual Network (DRN) is proposed to fully utilize the high non-

linearity of DL model. In [22], a Generative Adversarial Network (GAN) 

pansharpening method is proposed with a generator of two-stream fusion architecture 

and a discriminator of fully convolutional network. 

In this thesis based on the previous discussion as shown in Table 2.1, various 

traditional pansharpening methods will be grouped into CS category, MRA category 

and model based category with a new DL based category. Such classification of 

pansharpening methods can contribute to easier and clearer comparisons among 

different pansharpening categories. 

Table 2.1: Different categories of pansharpening methods. 

Category Method References 

CS 
PCA/GFPCA [25, 26] 

GS/GSA [27, 28] 

MRA 

SFIM [29] 

HPF [30] 

MTF-GLP [31, 32] 

Model based 
variational model [18, 33] 

compressive sensing based [11] 

DL based CNN/GAN/DRN [21, 22-24] 

2.1 Component Substitution (CS) category 

CS based pansharpening methods are important and widely used in some commercial 

remote sensing software like ERDAS, ENVI, ESRI and PCI due to its less time 

consumption, simplicity and good performance [3]. 

The CS family substitutes the low-resolution spatial (structural) composition of 

MS/HS image by using the higher-resolution spatial composition of PAN image. The 

process can be found in Figure 2.1 as a diagram. The high-resolution spatial 



7 

 

information is generated by subtracting the combined low-resolution spatial 

composition of MS/HS image from the PAN image.  

The CS family approaches differ in how to get the substituted low-resolution spatial 

composition of MS/HS image by separating the spatial and spectral compositions. 

They also differ by how much high-resolution information is added into the MS/HS 

image, which is how much gain is multiplied by the injected high-resolution details 

[3]. This general notion can be presented as: 

 Ĥ = H̃ + g(P − IL)  (2.1) 

In Eq. 2.1 and in Figure 2.1, Ĥ is the final target MS/HS image, H̃ is the resampled 

pan-scale MS/HS image, g represents the gain values of injected high-resolution 

information, P is normalized PAN image. IL is combined low-resolution component 

from MS/HS image [3].  

 

 

 

 

 

Figure 2.1: Pansharpening flowchart of CS family. 

Various CS family methods try to optimize the composition of the IL and the gain g. 

The correlation of IL  and PAN image determines the distortion degree of final 

estimated image. The greater the correlation, the smaller is the distortion. Histogram 

matching must be performed before the substitution process is executed.  This ensures 

that similar statistical characteristics (mean and variance value) for the PAN images 

and the substituted compositions [2].  
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Gram-Schmidt (GS) method has become a popular CS-based pan-sharpening methods 

since it was published in 1998 [27]. The flowchart of GS approach is shown in Figure 

2.2. In GS, IL is generated as given in Eq. (2.2) with equal weights 
1

N
 along the spectral 

dimension. 

 IL = (
1

N
) ∑ H̃N

1  (2.2) 

Here, N denotes the total number of bands in MS/HS image.  

Gain g is a vector g=[g1, g2 … gN] which equals the ratio of the covariance matrix of 

pan-scale H̃ with synthesized low-resolution information IL , to the variance of the 

synthesized low-resolution information IL. This is calculated as follows: 

 g =
cov(H̃, IL)

var( IL)
  (2.3) 

 

 

 

 

 

Figure 2.2: Pansharpening flowchart of GS method. 

An improved version of GS method is GS Adaptive (GSA) [28]. In GSA method the 

weights for synthesizing IL are determined by minimizing mean square errors of the 

downsampled MS/HS-scale pan image P̃ and the low-resolution information,  

 IL̃ = ∑ wi ∙ Ĥi
N
i=1  , (wi = Ĥi\P̃ )  (2.4) 

Then, the obtained weights are applied to generate the pan-scale low-resolution 

information: 

(
1

N
) ∑ H̃N

1  
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Ĥ 



9 

 

 IL = ∑ wĩ ∙ H̃N
i=1   (2.5) 

Another important CS based pansharpening method is Principal Component Analysis 

(PCA) method [25]. It assumes the first PC of MS/HS image contains almost all low-

resolution spatial composition and the others contain spectral composition. Therefore, 

the first PC is substituted by PAN image, followed by inverse PCA algorithm to 

generate the target image. 

PCA pansharpening method can be implemented fast, and it can keep the spatial 

structure well. However, it has the serious shortcoming of spectral distortion. In [26], 

a Guided Filter (GF) PCA as shown in Figure 2.3 was proposed, assuming that the first 

i<<n PCs contain most information and the remaining (n-i) PCs mainly contain noise 

information. Before the inverse PCA is implemented, a GF is applied to the first i PCs. 

The guided PAN image is also used together with the GF to preserve the spatial 

structure composition, and denoising is applied to the residual PCs. Compared to the 

simple PCA algorithm, GFPCA can preserve spectral information better, however it 

introduces serious spatial blur. In this sense, GFPCA is not only a CS based method, 

but also an MRA based method which will be reviewed next. 

 

 

 

 

 

 

Figure 2.3: Pansharpening flowchart of GFPCA method. 
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2.2 Multiresolution Analysis (MRA) category 

The Multiresolution Analysis (MRA) family usually utilizes some spatial filters on 

PAN image to yield spatial structure details added into the MS/HS images to derive 

pansharpened MS/HS images. The details for MRA approach are shown in Figure 2.4. 

Compared to CS family methods with composite low spatial resolution term IL from 

the MS/HS image which always leads to significant spectral distortions, MRA family 

approaches always apply some low-pass filters to generate IL term from PAN image. 

Thus, MRA family has a better spectral consistency. However, because of the design 

of the fitting filters, the complexity and calculation time for this family of methods are 

increased when compared to CS family [34]. 

 

 

 

 

 

 

Figure 2.4: Pansharpening flowchart of MRA family. 

The MRA methods differ in how they obtain the low-resolution information PL that is 

generated from the PAN image P and how much weight of details needs to be injected 

to the MS/HS images. The pansharpening process is summarized as follows: 

 Ĥ = H̃ + g(P − PL)   (2.6) 

 Ĥ is the final target MS/HS image. H̃ represents resampled MS/HS image. And g 

denotes gain values. P represents normalized PAN image. PL is different from the IL 

of CS family methods. It represents low-pass composition of PAN image.  
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In [30], a High Pass Filter (HPF) is directly used to collect high quality spatial 

component from PAN image which is denoted by (P − PL). 

The Smoothing Filter-based Intensity Modulation (SFIM) [29] method utilizes low- 

pass filter to generate the low-resolution information PL. The gain g equals the ratio of 

each band of  H̃ and low-resolution component PL. As shown in Figure 2.5, these steps 

are given as follows:  

 g =
H̃

PL
  (2.7) 

 PL = P ∗ hLP  (2.8) 

 Ĥ = H̃ +
H̃

PL
(P − P ∗ hLP)   (2.9) 

The resulting equation is as given below. 

 Ĥ =
H̃

PL
P  (2.10) 

hLP is a low-pass filter (e.g. an averaging filter). Gain g is calculated on each single 

band of HS image.  

 

 

 

 

 

 

Figure 2.5: Pansharpening flowchart of the SFIM method. 
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pyramid. In some Gaussian pyramidal methods, they also calculate gain by the ratio of 

the covariance of H ̃ with the low-passed  PL  and the variance of  PL , which is g =

cov(H ̃, PL)

var( PL)
. 

2.3 Model based category 

Another important category for pansharpening methods is model based family of 

pansharpening algorithms. As shown in Figure 2.6, model based family usually builds 

a relationship model from the final estimated image to the observed MS/HS and PAN 

images.  

 

 

 

 

 

Figure 2.6: Pansharpening flowchart of Model based family. 

This observation model based fusion process is regarded as an inverse problem which 

generally has three constraining terms: PAN constraint term, spectral constraint term 

and regularization constraint term. The first two terms constrain the target 

pansharpened image to be consistent with the observed images. The third 

regularization term can impose image model constraints using different priors [3]. 

These different regularization terms include total variation (TV) prior [35], Huber-

Markov prior [36], nonlocal prior [18], and other possible regularizers [3]. The general 

observation model for the pansharpening problem in a model based setting is expressed 

as follows [3]: 

 E(z)=λ1‖α1(z) − PAN‖+λ2‖α2(z) − zΩ‖ +λ3 p(z)  (2.11) 
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Here, z represents the target estimate, zΩ represents resampled MS/HS image, λ1, λ2 

and λ3 represent the balance factors among the three terms. α1 and α2 represent the 

imaging formation operations denoting how the observed images are formed from the 

target image z. ‖ ‖ represents norm calculations on the discrete multichannel data. 

p(z) denotes different priors used for regularization, such as TV or wavelet sparsity. 

Bayesian inference model is a good way to tackle the inverse problem of solving Eq. 

(2.11) for z. In [15], in the Bayesian estimation model, the operators α1(∙) and α2(∙) 

have been chosen to represent blurring or subsampling operations. Next, a Monte Carlo 

algorithm based on Markov chains is used to optimize the model function. In [37], the 

operators α1(∙), α2(∙)  and the prior p (∙)  are constructed by using the multi-order 

gradients which obey the Gaussian distribution. Then, an ADMM [38] algorithm is 

applied to minimize the energy equation Eq. (2.11). 

In [18, 33], a variational model is proposed by assuming that the geometric 

composition of MS/HS image is included in the corresponding PAN image. PAN 

should be produced by linearly combining different channels from MS/HS image with 

mixing coefficients which correspond to α1. zΩ is related to target pansharpened image 

z by firstly using low-pass filter and then subsampling which can now be represented 

by α2. The prior utilized is variational regularization or nonlocal regularization. In [18, 

33], they use iterative optimization method or gradient descent method to optimize the 

energy function Eq. (2.11) to get to the target image. 

In [11] compressed sensing (CS) theory based pansharpening method is proposed. This 

theory assures that the final estimate x can be properly reconstructed from the noisy 

image y under sparse regularization. 

 α̂ = arg min‖α‖0    subject to‖y − Φα‖2
2 ≤ ε   (2.12) 

Here, ‖α‖0 represents the number of nonzero elements in α. Φ denotes basis elements 

which form a dictionary. ε is the reconstruction error. α is the sparse representation of 

x using the atoms of dictionary Φ [39]. The estimated x can be calculated by x = Φα̂. 
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Model based pansharpening methods are being rapidly developed with the 

introduction of new models. Compared to the CS family and MRA family, model 

based pansharpening family has less spatial and spectral distortion [12]. However, 

owing to the complexity and large amount of calculation, model based family 

generally consumes more time and computational resources compared to CS family 

and MRA family pansharpening methods. 
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3.  SPARSITY BASED PANSHARPENING 

Sparse representation in recent years has attracted considerable interests in image 

restoration [40, 41], image denoising [42] and image superresolution [43]. As shown 

in Figure 3.1 sparse representation assumes that for “well-behaved” natural images 

neighboring pixels have strong correlation [39]. Hence, natural images can be sparsely 

represented over some basis elements set such as an overcomplete dictionary. 

 

 

 

 

 

 

 

 

Figure 3.1: Principle of sparse representation. 

Sparse representation theory supposes that for any image x ∈ ℝn, there exists a matrix 

D ∈ ℝn×K  called as a dictionary, which contains K prototype base elements, also 

referred to as atoms. The image x can be expressed approximately by linearly 

combining atom images in D, that is x = Dα. Here, n < 𝐾, hence D forms a dictionary 

which allows redundancy in describing x [41]. α is the sparse coefficient vector.  α has 

many possible values. The sparse representation problem  is to find a α which has as 

few nonzero components as possible [11]. It is defined as follows: 

Image patch x Overcomplete matrix D Sparse coefficient α 

n × 1 n × K 
K × 1 

‖α‖0 ≪ n 
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 α̂ = arg min‖α‖0    s. t. ‖Dα − x‖2
2 = 0  (3.1) 

where‖α‖0 represents the number of nonzero elements in α. 

Practically, we only observe a part of measurements y of x [11], 

 y = Lx = LDα  (3.2) 

where L ∈ ℝm×n(m< 𝑛) denotes the encoding process of CS theory [44]. x can be 

properly reconstructed from the noisy image y with 

 α̂ = arg min‖α‖0    subject to‖y − LDα‖2
2 ≤ ε   (3.3) 

The denoised or reconstructed image x̂ can be recovered by x̂ = LDα̂. 

3.1 BM3D image model 

Block-matching 3-D (BM3D) image model is based on overcomplete sparse 

representation. It was first introduced in image denoising [45] with exciting results, 

and its efficient performance has been utilized in image deblurring [46], 

superresolution [47] and image reconstruction [48]. BM3D algorithm groups similar 

2D image blocks (image patches) into 3D block cubes as shown in Figure 3.2 to 

enhance the sparsity in transform domain. In this thesis, BM3D is used as a regularizer 

to solve a model based pansharpening problem. BM3D as a denoising regularizer is 

implemented in every iteration of an iterative process to enhance the pansharpening 

performance. 

In [49], the BM3D analysis and synthesis framework is introduced in detail, and the 

complicated BM3D analysis framework is summarized as a multiplication by a single 

matrix forming a nontight frame [48] as follows: 

 ω = Φx  (3.4) 

Here, x ∈ ℂN  is the vectorized noisy image. ω ∈ ℂM  stores 3-D group spectrum 

coefficients and is called as joint 3-D groupwise spectrum. Matrix Φ represents the 

BM3D analysis operation. The blocks which are similar to the reference blocks (i.e. 
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currently processed one) are stacked together into a 3D group (array) according to 

some similarity criterion. Since each pixel may be located in different blocks due to 

the similarity, blocks can cover each other and the pixel number in the 3D cube is 

much greater than the one in the actual image [49]. Hence, Φ ∈ ℂM×N with M ≫ N in 

fact implements an overcomplete sparsity transform into the 3D space [48].  

 

 

 

 

 

 

Figure 3.2: Block-matching of patches into 3D array according to similarity 

(reference block with thick borders) [45]. 

The denoising process of BM3D algorithm is shown in Figure 3.3. In the 3D transform 

space, collaborative filtering such as hard-thresholding filtering or Wiener filtering 

performs a denoising strategy on formed groups. Then, inverse 3D transform is 

implemented on all the blocked groups, and the denoised image blocks are transformed 

back to the original positions by averaging all the obtained denoised image blocks with 

weights due to their overlapping [45, 49]. This inverse transform process in  is depicted 

as  

 x = ψω (3.5) 

ψ ∈ ℂM×N in [49] denotes the synthesis frame [48]. Both Φ and ψ employ the 3D 

transform which is combined with 2-D intrablock transforms and cube transforms [49]. 

This combination of transforms efficiently improves the approximation of spectral 

image [49], makes use of the 3D block cube structure and cuts down the computational 

complexity greatly compared with a 2-D blockwise transform [48]. 
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Figure 3.3: Flowchart of the BM3D denoising algorithm [45]. 

3.2 Proposed Guiding-Image-BM3D model  

There are two main steps in the original BM3D model as shown in Figure 3.4. The 

first step is implemented with a hard-thresholding filter to remove the noise, and we 

call the first step the “Hard-thresholding step” for simplicity. The result of the Hard-

thresholding step is the basic image estimate, and this is one of the two inputs of the 

second step. In the second step, the Wiener filter is implemented using two 3D 

transformed inputs, where the inputs are the basic estimate and the noisy image. We 

call the second step as the Wiener filtering step for simplicity. The basic estimate here 

is mainly used to enhance grouping performance of block-matching in the Wiener 

filtering step. Secondly it acts as the pilot signal to determine the Wiener shrinkage 

coefficients for the 3D energy spectrum [45]. In some sense, the basic estimate acts as 

a reference for better grouping and coefficient calculation in the Wiener filtering step. 

 

 

 

 

Figure 3.4: Simplified flowchart of the BM3D denoising algorithm. 
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In this thesis, a new Guiding Image BM3D (GIBM3D) model (Figure 3.5) is proposed 

to enhance the performance of pansharpening methods which utilize denoising as a 

substep of an iterative pansharpening method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flowchart of proposed GIBM3D denoising algorithm. (a) GIBM3D-w 

sub-model, (b) GIBM3D-wth sub-model, (c) GIBM3D-thw sub-model. 

In the Guiding Image BM3D approach proposed in this thesis, the essential idea is to 
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With this idea, there are three main sub-GIBM3D-models which can be generated. The 

first sub-model (GIBM3D-w in Figure 3.5a) uses a single Wiener filtering step with 

two inputs, where one input is the external guiding image acting as a basic estimate 

and the second input is the noisy image. The second sub-model (GIBM3D-wth in 

Figure 3.5b) adds the thresholding step after the first sub-model GIBM3D-w. Hence, 

the output of the first sub-model is further processed in the subsequent Hard-

thresholding step using a proper sigma value. The third sub-model (GIBM3D-thw in 

Figure 3.5c) adds a thresholding step before the first sub-model GIBM3D-w. This way, 

the Hard-thresholding step with a proper sigma produces the preprocessed noisy image, 

and this preprocessed noisy image and a guiding external image form the two inputs 

of the secondary guiding-image based Wiener filtering step. 

3.3 HySure: A model based pansharpening method 

In Section 2.3, the general model based pansharpening framework has been introduced 

using the energy formula E(z)=λ1‖α1z − PAN‖+λ2‖α2z − zΩ‖ +λ3 p(z). Here, a more 

detailed energy function will be presented. 

Let Yh ∈ ℝLh×nhrepresent the observed MS/HS image. Assume it has Lh bands and nh 

pixels in each band. Let Yp ∈ ℝLp×np  (Lh > Lp and np > 𝑛h ) represent the given 

PAN image, and assume it has Lp  spectral bands and np  pixels. Let Z ∈ ℝLh×np 

denote the final estimated high spatial quality MS/HS image, and assume it has Lh 

spectral bands and np pixels. The inverse imaging model can be presented as follows: 

 Yh = Zα1 + Nh (3.6) 

 Yp = α2Z + Np (3.7) 

Here, α1 and α2  denote how the observed images are formed from the estimated 

MS/HS image, respectively. In general we can assume that α1 represents the process 

of blurring and subsampling, and α2 denotes spectral responses of sensor. Hence α1 =

BM and α2 = R, where B ∈ ℝnp×npis the blurring matrix, M ∈ ℝnp×nh is subsampling 

operator and R ∈ ℝLp×Lh is spectral response matrix. Matrix B and R are assumed to 
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be known, and they can also be estimated from the data [19]. Nh and Np  denote 

independent and identically distributed (i.i.d.) noises. Estimating Z depicts an inverse 

problem which can be tackled by applying a variational formulation. Therefore the 

estimated image Ẑ is the solution of the following optimization function: 

 Ẑ ∈
arg min

Z
1

2
‖Yh − ZBM‖F

2 +
λp

2
‖Yp − RZ‖

F

2
+ λφφ(Z) (3.8) 

Here, ‖ ‖F
2 denotes squared ℓ2 norm and φ is a regularizer function. 

Considering the considerably large volume of the hyperspectral image data, [19] 

proposed to translate the data representation into a subspace having a relatively lower 

dimension due to the large correlation among different spectral bands [50]. The 

spectral vector of size Lh tends actually to live in a subspace of dimension Ls, with 

Ls ≪ Lh . Let E ∈ ℝLh×Ls  represent a basis of an identified subspace. The high 

dimensional image Z can be expressed as Z=EX, and here X ∈ ℝLs×np  with much 

lower dimension will be estimated instead of Z. E ∈ ℝLh×Ls can be identified through 

some existing methods like VCA [51], PCA and singular value decomposition (SVD). 

With above transformation, the optimization function can be written as follows: 

 X̂ ∈
arg min

X
1

2
‖Yh − EXBM‖F

2 +
λp

2
‖Yp − REX‖

F

2
+ λφφ(X) (3.9) 

The first two terms are observation fidelity terms, which preserve the spatial and 

spectral information. The third term imposes constraint or prior. 

To solve the optimization function, a Split Augmented Lagrangian Shrinkage (SALSA) 

algorithm [52] is used in [19] as an example of ADMM. Firstly, the optimization 

variable X is splitted into four new variables: a new X that actually equals to the 

original X with three auxiliary variablesV1, V2  and V3 . Thus, the new optimization 

problem is as follows: 

 X̂, V1̂, V2̂, V3̂ ∈
arg min

X, V1, V2, V3

1

2
‖Yh − EV1M‖F

2 +
λp

2
‖Yp − REV2‖

F

2
+ λφφ(V3) 
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 subject to V1 = XB, V2 = X, V3 = X (3.10) 

The augmented Lagrangian [53] of above problem can be given as follows: 

 ℒ(X, V, D) =
1

2
‖Yh − EV1M‖F

2 +
λp

2
‖Yp − REV2‖

F

2
+ λφφ(V3) 

 +
μ

2
(‖XB − V1 − D1‖F

2 + ‖X − V2 − D2‖F
2 + ‖X − V3 − D3‖F

2)  (3.11) 

Here, D = (D1, D2, D3) is the Lagrange multiplier, also called as a dual variable [38]. 

μ is the penalty parameter. 

The solution to this optimization problem is first to keep V as a constant while solving 

a minimization function for X. Then X is kept as constant while solving a minimization 

function for V. For the different V terms, the same minimization strategy is used. 

Hence, all the terms not to be solved are kept as constants, while the minimization 

function is solved with respect to one of them. After the minimization steps, all the 

dual variables are updated. The detailed solving process is given in the following 

section. 

Minimize function for one variable while keeping others fixed: 

Xk+1 =
arg min

X
 ‖XB − V1 − D1‖F

2 + ‖X − V2 − D2‖F
2 + ‖X − V3 − D3‖F

2, (3.12)

 V1
k+1 =

arg min
V1

1

2
‖Yh − EV1M‖F

2 +
μ

2
 ‖Xk+1B − V1 − D1

k‖
F

2
,  (3.13) 

 V2
k+1 =

arg min
V2

 
λp

2
‖Yp − REV2‖

F

2
+

μ

2
‖Xk+1 − V2 − D2

k‖
F

2
, (3.14) 

 V3
k+1 =

arg min
V3

 λφφ(V3) +
μ

2
‖Xk+1 − V3 − D3

k‖
F

2
, (3.15) 

Update Lagrange multipliers: 

 D1
k+1 = D1

k + V1
k+1 − Xk+1B, (3.16) 

 D2
k+1 = D2

k + V2
k+1 − Xk+1, (3.17) 
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 D3
k+1 = D3

k + V3
k+1 − Xk+1. (3.18) 

Above calculating process is repeated until specific criteria is satisfied. The 

minimization regarding X, V1 and V2 are quadratic problems, and they can be solved 

by using FFT [19]. Following [19], the respective solutions of the first three 

minimization functions Eq.(3.12) to Eq.(3.14) are given as follows: 

 Xk+1 = [(V1
k + D1

k)BT + (V2
k + D2

k) + (V3
k + D3

k)][BBT + 2I]−1, (3.19) 

 V1
k+1 = [EET + μI]−1[ETYh + μ(Xk+1B − D1

k)] ⊙ M 

 +(Xk+1B − D1
k) ⊙ (1 − M), (3.20) 

 V2
k+1 = [λpETRTRE + μI]−1[λpETRTYp + μ(Xk+1 − D2

k)]. (3.21) 

As for Eq. (3.15), its solution is dependent on the choice of regularizer term φ. In [19], 

a vector total variation (VTV) prior is utilized as the regularizer. 

 φ(X)def
=

∑ √∑ {[(XDh)rc]2 + [(XDv)rc]2}Ls
r=1

np

c=1  (3.22) 

Here, r and c represent row and column indices, respectively.  Dh  and Dv  help to 

calculate row differential and column differential of the image. Therefore, V3  is  

splitted into two variables XDh  and XDv . Hence, the fourth function becomes as 

follows: 

 [V3
k+1, V4

k+1] =
arg min

V3, V4
 λφφ(V3, V4) +

μ

2
‖Xk+1Dh − V3 − D3

k‖
F

2
 

 +
μ

2
‖Xk+1Dv − V4 − D4

k‖
F

2
 (3.23) 

The Eq. (3.23) can be solved with vector-soft thresholding function [19]. 

Actually, the regularizer term φ can be replaced by any state of the art denoisers. 
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3.4 Proposed ADMM-GIBM3D pansharpening method 

In the iterations of ADMM, the estimate function is decoupled to the prior term and 

forward model terms [54]. This modular structure [55] is an important feature for 

ADMM algorithm. The first three forward imaging terms, Eq. (3.12) to Eq.(3.14), can 

be treated as inversion steps. The regularization term Eq.(3.15) can be treated as a 

denoising step. In the denoising term, Xk+1 − D3
k is regarded as the “noisy” observed 

image, and V3 is regarded as the “clean” estimated image. Thus, the denoising term 

becomes the optimization of the residual between ( Xk+1 − D3
k)  and V3  by using 

regularizer φ. 

In [54], Venkatakrishnan et al. proposed to replace φ by using different off-the-shelf 

image denoisers in ADMM iterations. The new challenge of the assumption is whether 

the algorithm will converge. This critical problem has been studied and discussed in 

the literature [55]. For many image reconstruction problems this algorithm has been 

demonstrated with competitive performance.  

In this thesis, the proposed GIBM3D denoising algorithm is utilized in each iteration 

of the ADMM algorithm. GIBM3D is used as the regularizer φ on the “noisy” image 

(Xk+1 − D3
k) to generate the “clean” denoised image V3  in each ADMM iteration. 

Hence, for GIBM3D regularizer the solution to V3
k+1 is given as follows. 

 V3
k+1 = φ(Xk+1 − D3

k) (3.24) 

Here GIBM3D algorithm replaces the regularizer φ. Afterwards, we return the value 

of V3
k+1 to update the Lagrange multipliers and perform the iterations until the criteria 

is satisfied. The overall ADMM algorithm with all its steps is given in Alg.1. 
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Algorithm 1: ADMM- GIBM3D pansharpening 

 Input: Yh, Yp, R, B, E, M, λp, μ, guiding image; 

1: Initialization: D1
0 = D2

0 = D3
0 = Initial image, V1

0 = V2
0 = V3

0 = Initial image; 

2: for k := 0, 1, 2, 3, … K, do 

3: Compute Xk+1 by applying (3.19); 

4: Compute V1
k+1 by applying (3.20); 

5: Compute V2
k+1 by applying (3.21); 

6: Compute V3
k+1 by applying (3.24); the GIBM3D is used here. 

7: Renew D1
k+1 by applying (3.16); 

8: Renew D2
k+1 by applying (3.17); 

9: Renew D3
k+1 by applying (3.18); 

10: k := k+1; 

11: end for 
12: Obtain high spatial resolution MS/HS image: Ẑ = EXK+1; 

13: Output: Ẑ. 
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4.  SIMULATION 

4.1 Performance measurement  

The easiest approach to measure the quality of estimated image is by human eyes. 

However, due to the subjectivity of visual evaluation, the quality of an image may vary 

from one person to another. Therefore, it is critical to set up numerical measurement 

approaches for quality assessment. 

Generally, the absence of reference image in satellite image processing techniques 

makes it hard to quantitatively measure the quality of estimated image.  

To solve the problem of not existing original reference image, Wald et al [56] proposed 

to synthesize the MS/HS and PAN image from the given available MS/HS images used 

as a reference. Zhou et al. [57] proposed to assess the pansharpened image with 

observed images respectively to get the corresponding spectral and spatial distortion. 

Also, there are other approaches that use no reference, like Quality with No Reference 

(QNR) index [58]. 

4.1.1 Visual evaluation 

The visual evaluation as shown in Table 4.1 can be implemented on the sharpness, 

contrast, texture and size of roads, cars and buildings of the pansharpened image 

according specific application.  

Table 4.1: Visual evaluation for image quality assessment [59]. 

Grade Absolute assessment Relative assessment in a group 

1 Excellent The best level 

2 Good Better than average level 

3 Fair Average level 

4 Poor Lower than average level 

5 Very Poor The lowest 
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Visual evaluation is more dependent on the evaluator’s experience and also on viewing 

conditions. However, evaluation points can be also allocated to quantify the quality of 

the image qualitatively [59]. Then, a weighted mean on each item is calculated to 

obtain the final overall quality score. 

4.1.2 Quantitative evaluation with reference 

In [56], Wald et al. proposed a general paradigm (Figure 4.1) that is widely used for 

assessing the fused image quantitatively. They proposed to synthetically generate the 

observed image from the given available MS/HS image, which is utilized as a 

reference. Then, they pansharpen the observed images and assess the estimated results 

by comparing with reference. This assessment is based on the consistency and 

synthesis properties of a well-pansharpened image. These properties firstly require that 

the given MS/HS image ought to get generated as close as possible with proper 

degradation from synthetic pansharpened image. Secondly, this synthetic estimated 

image ought to be close to true high spatial quality MS/HS image. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flowchart for Wald’s protocol [12]. 

Pansharpened Estimated image 

Ẑ 

Quality measurement 
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Observed low spatial quality 
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For the quantitative analysis of pansharpening performance, many quality 

measurement metrics have been proposed. In this thesis, five widely utilized quality 

evaluation metrics are presented for performance comparisons among pansharpening 

methods. Namely these are the root mean square error (RMSE), erreur relative globale 

adimensionnelle de synthèse (ERGAS: relative dimensionless global error), the 

spectral angular mapper (SAM), the peak signal-to-noise ratio (PSNR) and the cross 

correlation (CC). Let X̂ ∈ ℝLh×np  denote estimated image and X ∈ ℝLh×np  denote 

reference image both having Lh bands and  np pixels in each band. 

RMSE: It is used to evaluate ℓ2 error between estimated image X̂ and reference X by 

computing the variation pixelwise. 

 RMSE(X̂, X) =
‖X̂−X‖

F

√Lh∗np
  (4.1) 

‖X‖F is the ℓ2 norm (Euclidean distance) of X. The closer the estimated image X̂ is to 

reference X, the less ℓ2 error there will be and the closer the value of RMSE is to 0. 

The ideal RMSE value is 0. 

ERGAS [60] is utilized to evaluate final estimated image pertaining to normalized 

average error over each band. Increasing value of ERGAS may be attributed to the 

distortion of the estimated image. Lower value indicates more similar result to the 

reference image. 

 ERGAS(X̂, X) = 100d√ 1

Lh
∑ (

RMSEk

mean(Xk)
)

2
Lh

k=1
 (4.2) 

Here, k represents the kth band. RMSEk is the kth band RMSEk = ‖X̂k − Xk‖
F √np⁄ , 

and d is defined as the spatial resolution ratio of observed images. 

PSNR assesses the final estimated image in terms of maximum possible value to the 

noise in decibels (dB). For an 8-bit gray level image, the maximum possible value 

is, MAX.I = 28 − 1 = 255. The better pansharpened image generally produces higher 

PSNR. However, due to the sensitivity variation of human eye's response to the error, 

PSNR may not be proportional to visual quality. 
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 PSNR = 20 ⋅ log10
MAX.I

RMSE
 (4.3) 

CC is used to assess the spatial quality and is defined as follows: 

 CC(X̂, X) =
1

Lh
∑ CCS(X̂k, Xk)

Lh
k=1  (4.4) 

Let A, B represent two single-band images with same size np.  μA = 1
np

∑ Aj
np

j=1  is mean 

value of A. CCS is defined as follows. 

 CCS(A, B) =
∑ (Aj−μA)(Bj−μB)

np
j=1

√∑ (Aj−μA)
2

∑ (Bj−μB)
2np

j=1

np
j=1

 (4.5) 

SAM is a significant metric to quantify the spectral distortion. Let 𝐱{n} =

[𝐱1，{n}, …，𝐱Lh，{n}]  denote the nth pixel vector of the reference X which has Lh 

bands. Then the SAM for estimated image X̂ and reference X is defined as given below. 

 SAM(X̂, X) =
1

np
∑ arccos (

〈𝐗{n}̂,𝐱{n}〉

‖𝐱{n}̂ ‖
F

‖𝐱{n}‖
F

)
np

j=1
 (4.6) 

Here, 〈𝐱{n}̂ , 𝐱{n}〉 = 𝐱{n}̂ T𝐱{n}  is the inner product between 𝐱{n}̂  and 𝐱{n} . SAM 

measures the performance to preserve the spectrum, and its optimal value is zero which 

denotes the spectral shape of the estimated image completely matches that of the 

reference image without any spectral distortion. 

4.1.3 Quantitative evaluation without reference 

In [58], QNR protocol is proposed to evaluate the pansharpened image without any 

reference. QNR includes two basic indexes, Dλ which represents spectral distortion 

and Ds which represents spatial distortion. QNR is obtained with Quality Index (QI) 

which was proposed in [61]. 

For an image x as a reference and an image y to be compared, the corresponding QI is 

defined below. 
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 Q(x, y) =
4σxy∙x̅∙y̅

(σx
2+σy

2)(x̅2+y̅2)
 (4.7) 

Here, σxy  represents covariance coefficient of image x and y. x̅ and y̅  represent 

average values of x and y. σx
2 represents variance of image x. σy

2 represents variance 

of image y. 

For the spectral distortion index Dλ, it is obtained by calculating the diversity between 

the QI of fused image bands and the QI of given observed low-resolution MS/HS 

image bands. Dλ is defined as, 

 Dλ = √
1

Lh(Lh−1)
∑ ∑ |Q(Gl̂, Gr̂) − Q(Gl ,̃ Gr̃)|

pLh

r=1,r≠l

Lh

l=1

p
 (4.8) 

where Lh  denotes band number.  Q(Gl̂, Gr̂)  is QI of two bands in fused image Ĝ . 

Q(Gl ,̃ Gr̃) is the QI of two bands in given observed low spatial quality MS/HS image. 

p can be regarded as the used norm value, and it can take values such as p=1 or p=2. 

For the spatial distortion index Ds, it is obtained by calculating the diversity of QI of 

final estimated image with observed PAN image to QI of observed MS/HS image with 

same scale PAN image. 

 Ds = √
1

Lh
∑ |Q(Gl̂, P) − Q(Gl ,̃ P̃)|

qLh

l=1

q
 (4.9) 

Here, Lh  is total band number. Gl̂  is estimated image. P represents observed PAN 

image. Gl̃ represents observed MS/HS image. P̃ represents the MS/HS-scale degraded 

observed PAN image. Q denotes the QI; q can be regarded as the norm value. 

Although keeping Dλ and Ds separate is essential for the sake of comparison, a single 

index QNR [58] is proposed to trade off the Dλ and Ds values.  

 QNR = (1 − Dλ)α ∙ (1 − Ds)β (4.10) 

α  and β  are used to balance the importance of the spectral and spatial quality 

respectively. Generally, α and β are set to one, indicating the same importance.  
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Dλ and Ds denote spectral distortion and spatial distortion respectively. In contrast, (1- 

Dλ) and (1- Ds) denote spectral quality and spatial quality respectively. For Dλ and Ds 

the expected ideal values are zeros and for QNR it is one which indicate there is no 

spectral and spatial distortions. 

4.2 Datasets 

Three Hyperspectral datasets and three multispectral datasets are used for simulations 

in this thesis [12]. Because of the unavailability of PAN images in the datasets, the 

PAN and HS images used in this thesis are generated from the given available datasets. 

They will be used as references in line with the Wald’s protocol. 

The detailed summaries of all datasets are listed in Table 4.2. 

Table 4.2: Properties of the datasets. 

Datasets Dimensions Ratio Bands Instruments 

Moffett PAN 95×185 HS 19×37 5 176 AVIRIS 

KSC PAN 150×150 HS 30×30 5 142 AVIRIS 

DE2 PAN 500×500 MS 100×100 5 4 DEIMOS-2 

IK PAN 320×320 MS 64×64 5 4 IKONOS 

WV2 PAN 320×320 MS 64×64 5 8 World View-2 

(1) The Moffett field dataset: The size of this HS dataset is 395×185×176 (too noisy 

bands were removed). The spatial resolution is 20m covering a spectral range 0.4–

2.5μm. This imageset is taken by Airborne Visible and Infrared Imaging Spectrometer 

(AVIRIS). For generated PAN image, its dimension is 95×185 and for generated HS 

image it is 19×37 with a downsampling ratio of five. 

(2) The Kennedy Space Center (KSC) dataset: The size of this dataset is 512×614×142 

(some low SNR noisy bands are removed from the original dataset). The spatial 

resolution is 18m covering a spectral range 0.4–2.5μm. This dataset is acquired by 

NASA AVIRIS. For generated PAN image, its dimension is 150×150 and for 

generated HS image it is 30×30 with a downsampling ratio of five. 

(3) Multispectral datasets: The three MS datasets are acquired by DEIMOS-2, 

GeoEye1, World View2 and IKONOS respectively.  
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4.3 Implementation 

The PAN and MS/HS images are synthesized from given MS/HS datasets respectively 

in accordance with Wald’s protocol [56]. 

In terms of the general comparisons among different pansharpening methods, some 

well-known methods, which are utilized for both Multispectral and Hyperspectral 

pansharpening, are selected. These methods include PCA, GFPCA, GS,GSA from the 

CS group and HPF, SFIM from the MRA group. All these methods have been analyzed 

in detail in section 2. 

For comparison with pansharpening methods from the model-based category, 

ADMM-BM3D and HySure methods are selected. In the experiments, the results of 

ADMM-BM3D methods vary greatly, with serious stripe noise especially in the case 

of hyperspectral pansharpening. To solve this problem, an initiation is assigned to the 

iteration parameters. The initiation used in this thesis for the convenience of 

comparison is generated from the HySure method with 100 iterations. 

The guiding images used in ADMM-GIBM3D pansharpening are the same as the 

initial images used in the ADMM-BM3D methods for the convenience of comparison 

although the better guiding images produce the better results. There is no initiation 

used for ADMM-GIBM3D methods. 

For the comparison of ADMM-GIBM3D, ADMM-BM3D and HySure methods, the 

iteration numbers are set to the same value of 100 iterations. Parameters λp and μ stay 

the same (with those in HySure method) for all the datasets with fixed values. 

Subspace E is removed in the multispectral pansharpening experiments due to less 

spectral bands. 

The sigma used in ADMM-BM3D and ADMM-GIBM3D-thw is decreasing 

adaptively with the iteration process. The sigma used in ADMM-GIBM3D-wth is 

calculated from the diversity between the input and output of the Wiener filtering step. 
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4.4 Results and comparisons 

In terms of BM3D, Eksioglu and Tanc [62] proposed for image reconstruction to use 

a single Hard-thresholding step instead of the full two steps, since the Wiener filtering 

step does not obviously enhance performance in spite of increasing computational 

complexity. The assumption is also validated successfully in all the experiments of the 

ADMM-BM3D method in this thesis. Therefore, for the ADMM- BM3D method only 

the results of the single Hard-thresholding step are used for comparison. 

As to the ADMM-GIBM3D method, the three sub-models produce similar results in 

all the experiments by using the same λp and μ with a properly optimized sigma. The 

only difference is that ADMM-GIBM3D-w consumes the least time. For this reason, 

the results used for comparison are taken from the ADMM-GIBM3D-w method. The 

results of trying different multiple values for sigma in ADMM-GIBM3D-w method 

also demonstrate that sigma does not affect the Wiener filtering step except the 

consumed time. The bigger sigma results in higher computation time. Therefore, in 

ADMM-GIBM3D-w method, sigma value is set to zero. 

4.4.1 Visual comparison 

The pansharpening results of all methods for all datasets with the reference (REF) 

original MS/HS images have been visualized for visual comparison by combining the 

second to the fourth bands from Figure 4.2 (a) to Figure 4.6 (a). Figure 4.2 (b) to Figure 

4.6 (b) are the 10 times residue of pansharpening results with the REF image for the 

sake of showing the differences between REF image and various pansharpening results. 

That is Residue=10*(REF-result-image). 

For all the datasets, it is apparent that GFPCA produces most blurs compared to other 

methods. In GFPCA a lot of details are missing. PCA performs better than GFPCA in 

all datasets and even better than HPF and SFIM in edge preserving for DE2, IK, dataset. 

For WV2 and two Hyperspectral datasets, HPF and SFIIM preserves more clear edge 

details than PCA. For all datasets, GSA appears better edge preserving performance 

than GS method. In terms of  the residue images, PCA, GFPCA and GS results are 

showing significant difference with the REF image. For spectral information 
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preservation, in IK and WV2 dataset, PCA, GFPCA and GS perform poorly displaying 

serious color distortion. 

The three model based methods HySure, ADMM-BM3D and ADMM-GIBM3D give 

indistinguishably good results with GSA method from Figure 4.2 (a) to Figure 4.6 (a). 

Regarding the residue image from Figure 4.2 (b) to Figure 4.6 (b), the three model 

based methods together with GSA also keep the least residue with the REF image. 

Furthermore, proposed ADMM-GIBM3D keeps less residue than HySure and 

ADMM-BM3D method. This indicates that proposed ADMM-GIBM3D method can 

produce the closest result to REF. Generally, MRA category methods keep spectral 

information better than CS category. Model based method appears better edge and 

spectral preservation performance than CS and MRA category. 

 

Figure 4.2 (a): Pansharpened images for DE2 dataset: (a) REF; (b) PCA; (c) GFPCA; 

(d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; (i) ADMM-BM3D; 

(j) ADMM-GIBM3D; 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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Figure 4.2 (b): Pansharpened image residue with REF for DE2 dataset: (a) REF; (b) 

PCA; (c) GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; 

(i) ADMM-BM3D; (j) ADMM-GIBM3D; 

 

Figure 4.3 (a): Pansharpened images for IK dataset : (a) REF; (b) PCA; (c) GFPCA; 

(d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; (i) ADMM-BM3D; 

(j) ADMM-GIBM3D; 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 



37 

 

 

Figure 4.3 (b): Pansharpened image residue with REF for IK dataset: (a) REF; (b) 

PCA; (c) GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; 

(i) ADMM-BM3D; (j) ADMM-GIBM3D; 

 

Figure 4.4 (a): Pansharpened images for WV2 dataset: (a) REF; (b) PCA; (c) GFPCA; 

(d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; (i) ADMM-BM3D; 

(j) ADMM-GIBM3D; 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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Figure 4.4 (b): Pansharpened image residue with REF for WV2 dataset: (a) REF; (b) 

PCA; (c) GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; 

(i) ADMM-BM3D; (j) ADMM-GIBM3D; 

 

Figure 4.5 (a): Pansharpened images for Moffett dataset: (a) REF; (b) PCA; (c) 

GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; (i) 

ADMM-BM3D; (j) ADMM-GIBM3D; 

 

 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 



39 

 

 

Figure 4.5 (b): Pansharpened image residue with REF for Moffett dataset: (a) REF; 

(b) PCA; (c) GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) 

HySure; (i) ADMM-BM3D; (j) ADMM-GIBM3D; 

 

Figure 4.6 (a): Pansharpened image for KSC dataset: (a) REF; (b) PCA; (c) GFPCA; 

(d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; (i) ADMM-BM3D; 

(j) ADMM-GIBM3D; 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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Figure 4.6 (b): Pansharpened image residue with REF for KSC dataset: (a) REF; (b) 

PCA; (c) GFPCA; (d) GS; (e) GSA; (f) HPF; (g) SFIM; (h) HySure; 

(i) ADMM-BM3D; (j) ADMM-GIBM3D;  

 

Figure 4.7: Spectrum for DE2 dataset. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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Figure 4.8: Spectrum for IK dataset. 

 

Figure 4.9: Spectrum for WV2 dataset. 
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Figure 4.10: Spectrum for Moffett dataset. 

 

Figure 4.11: Spectrum for KSC dataset. 
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From Figure 4.7 to Figure 4.11, the spectrum of some specific pixels is compared. 

Generally, CS family methods (yellow and green lines) differ much more than the 

MRA family methods (blue lines) with the reference image (black lines). And model 

based methods (red lines) also perform as well as MRA methods. 

4.4.2 Quantitative comparisons with reference 

The quantitative results with reference are calculated according to Wald’s protocol. 

Table 4.3 to Table 4.7 show the quantitative comparisons for all datasets. For better 

inter-categories comparison, the best result among all the realized methods is marked 

with bold. For better comparison of the three model-based methods, the best result for 

these three are marked with a shaded (gray) background. GSA, HPF and SFIM having 

9, 11 and 6 bolds respectively outperform other methods. In model based methods, 

ADMM-GIBM3D give better results except rmse and time. This shows the 

competitiveness of the proposed ADMM-GIBM3D method amongst the model-based 

family. For different guiding images generated from different pansharpening results, 

the proposed ADMM-GIBM3D method also shows competitive performance 

compared to the original method which generates the corresponding guiding image. 

Table 4.3: Quantitative results with reference for DE2 dataset. 

DE2 dataset CC SAM RMSE ERGAS PSNR time 

Ideal value 1 0 0 0 higher lower 

PCA 0,9894  5,8605  0,0156  3,6768  34,6477  0,3118  

GFPCA 0,9287  5,1109  0,0319  7,5884  28,1324  1,1729  

GS 0,9898  5,6364  0,0155  3,6544  34,6195  0,3339  

GSA 0,9888  4,1851  0,0132  3,0645  36,9172  0,3989  

HPF 0,9810  3,9598  0,0167  3,9688  34,7251  0,2895  

SFIM 0,9824  3,7913  0,0162  3,8698  35,1904  0,3201  

HySure 0,9889  3,9885  0,0132  3,0755  36,8757  83,4138  

ADMM-BM3D 0,9885  5,0098  0,0134  3,1162  36,8133  203,8823  

ADMM-GIBM3D 0,9889  3,9883  0,0134  3,0517  36,9512  153,5285  
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Table 4.4: Quantitative results with reference for IK dataset. 

IK dataset CC SAM RMSE ERGAS PSNR time 

Ideal value 1 0 0 0 higher lower 

PCA 0,8963  4,0410  0,0280  2,3392  29,9430  0,1324 

GFPCA 0,7481  4,6081  0,0380  3,3043  23,2260  0,1109  

GS 0,9306  3,5063  0,0251  2,1057  30,0906  0,1099  

GSA 0,9413  3,4731  0,0196  1,5839  35,9752  0,1256  

HPF 0,9257  3,4105  0,0218  1,8425  32,9526  0,0811  

SFIM 0,9270  3,3696  0,0218  1,8349  32,4023  0,0801  

HySure 0,9364  3,5960  0,0201  1,6381  34,2653  25,6522  

ADMM-BM3D 0,9331  3,7145  0,0203  1,6653  34,0363  136,1183  

ADMM-GIBM3D 0,9364  3,5960  0,0201  1,6350  34,2840  91,0323  

Table 4.5: Quantitative results with reference for WV2 dataset. 

WV2 dataset CC SAM RMSE ERGAS PSNR time 

Ideal value 1 0 0 0 higher lower 

PCA 0,8722  8,6261  0,0609  5,7297  24,2597  0,4633  

GFPCA 0,8023  10,3976  0,0732  6,8833  22,2338  1,4245  

GS 0,8749  8,5673  0,0604  5,6762  24,3979  0,7539  

GSA 0,9297  8,2892  0,0484  4,0397  29,3080  0,4412  

HPF 0,9270  7,5992  0,0477  4,2001  28,1834  0,2216  

SFIM 0,9259  7,5537  0,0483  4,2461  26,3295  0,2548  

HySure 0,9086  8,6340  0,0533  4,6670  25,8068  46,6929  

ADMM-BM3D 0,9055  8,8545  0,0535  4,6167  25,8205  134,5606  

ADMM-GIBM3D 0,9086  8,6334  0,0535  4,5222  26,1193  107,7844  

Table 4.6: Quantitative results with reference for Moffett dataset. 

Moffett dataset CC SAM RMSE ERGAS PSNR time 

Ideal value 1 0 0 0 higher lower 

PCA 0,8038  16,5241  0,0696  12,0569  26,4846  1,8505  

GFPCA 0,8232  13,7447  0,0656  12,2503  20,8100  3,6588  

GS 0,8430  14,0699  0,0622  11,0238  26,7791  1,6488  

GSA 0,9318  11,1127  0,0395  7,5600  29,2328  1,3620  

HPF 0,9453  8,9908  0,0359  7,0792  30,7413  0,8454  

SFIM 0,9118  11,3541  0,0468  8,8366  26,6038  1,0496  

HySure 0,9307  9,9191  0,0413  7,7554  27,3271  17,4636  

ADMM-BM3D 0,8965  10,5534  0,0488  9,3227  24,9682  820,6248  

ADMM-GIBM3D 0,9310  9,8179  0,0424  7,2082  27,8199  522,5637  
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Table 4.7: Quantitative results with reference for KSC dataset. 

KSC dataset CC SAM RMSE ERGAS PSNR time 

Ideal value 1 0 0 0 higher lower 

PCA 0,8861  14,9901  0,0845  8,5738  27,0387  1,0487  

GFPCA 0,8189  16,6642  0,1037  10,5030  19,2987  1,2294  

GS 0,8913  15,0570  0,0832  8,4865  26,9780  1,1678  

GSA 0,9072  19,5412  0,0756  7,8060  28,4345  0,8932  

HPF 0,9188  14,3187  0,0682  7,2877  27,6012  0,6472  

SFIM 0,9189  13,3505  0,0683  7,4157  23,3167  0,6627  

HySure 0,9170  15,0357  0,0697  7,4223  25,9765  16,3478  

ADMM-BM3D 0,9011  18,0114  0,0772  8,0010  24,9644  637,0878  

ADMM-GIBM3D 0,9175  14,5590  0,0759  7,0825  26,2767  519,9057  

 

4.4.3 QNR comparisons 

The QNR and Scc results are shown from Table 4.8 to Table 4.12. QNR results show 

inconsistency with visual evaluation and quality metrics with reference. The most 

blurred results by GFPCA method here have the best QNR performance. Therefore, 

QNR is not regarded as the main quality measurement in this thesis.  

Scc is the spatial cross correlation between PAN and result image. Scc better fits visual 

evaluation and quality metrics with reference than QNR metrics. 

Table 4.8: Quantitative results without reference for DE2 dataset. 

DE2 dataset Dλ Ds QNR Scc 

Expected ideal value 0 0 1 1 

PCA 0,1417  0,5777  0,3624  0,9855  

GFPCA 0,1039  0,0239  0,8747  0,8556  

GS 0,1397  0,5805  0,3609  0,9858  

GSA 0,0920  0,5884  0,3738  0,9877  

HPF 0,1086  0,4763  0,4669  0,9511  

SFIM 0,0945  0,4352  0,5114  0,9420  

HySure 0,1082  0,3087  0,6164  0,9838  

ADMM-BM3D 0,1885  0,4538  0,4432  0,9768  

ADMM-GIBM3D 0,1083  0,3135  0,6122  0,9838  
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Table 4.9: Quantitative results without reference for IK dataset. 

IK dataset Dλ Ds QNR Scc 

Expected ideal value 0 0 1 1 

PCA 0,1149  0,5407  0,4066  0,8932  

GFPCA 0,1451  0,0859  0,7815  0,7055  

GS 0,1895  0,5987  0,3253  0,9325  

GSA 0,2939  0,7445  0,1804  0,9643  

HPF 0,2636  0,6115  0,2861  0,9354  

SFIM 0,2635  0,6085  0,2883  0,9342  

HySure 0,3022  0,7159  0,1983  0,9689  

ADMM-BM3D 0,1964  0,6790  0,2579  0,9590  

ADMM-GIBM3D 0,3022  0,7162  0,1980  0,9689  

Table 4.10: Quantitative results without reference for WV2 dataset. 

WV2 dataset Dλ Ds QNR Scc 

Expected ideal value 0 0 1 1 

PCA 0,1099  0,5395  0,4099  0,9070  

GFPCA 0,0775  0,1168  0,8147  0,6885  

GS 0,1090  0,5403  0,4096  0,9063  

GSA 0,1202  0,5577  0,3891  0,8139  

HPF 0,1797  0,5787  0,3456  0,8857  

SFIM 0,1839  0,5558  0,3625  0,8747  

HySure 0,1135  0,5293  0,4173  0,7663  

ADMM-BM3D 0,0920  0,5262  0,4302  0,7483  

ADMM-GIBM3D 0,1135  0,5344  0,4128  0,7663  

Table 4.11: Quantitative results without reference for Moffett dataset. 

Moffett dataset Dλ Ds QNR Scc 

Expected ideal value 0 0 1 1 

PCA 0,0890  0,3949  0,5512  0,8812  

GFPCA 0,0290  0,1457  0,8295  0,8424  

GS 0,0676  0,4284  0,5330  0,8935  

GSA 0,0551  0,3511  0,6131  0,8889  

HPF 0,0536  0,3624  0,6034  0,8716  

SFIM 0,0711  0,3467  0,6069  0,7990  

HySure 0,0501  0,3976  0,5722  0,8744  

ADMM-BM3D 0,0707  0,2316  0,7140  0,7830  

ADMM-GIBM3D 0,0503  0,4084  0,5619  0,8747  
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Table 4.12: Quantitative results without reference for KSC dataset. 

KSC dataset Dλ Ds QNR Scc 

Expected ideal value 0 0 1 1 

PCA 0,0339  0,3794  0,5995  0,8906  

GFPCA 0,0539  0,2611  0,6990  0,8047  

GS 0,0342  0,3864  0,5926  0,8921  

GSA 0,0380  0,3306  0,6440  0,8782  

HPF 0,0479  0,3431  0,6254  0,8686  

SFIM 0,0529  0,3361  0,6288  0,8566  

HySure 0,0538  0,4112  0,5571  0,8717  

ADMM-BM3D 0,0253  0,3367  0,6465  0,8252  

ADMM-GIBM3D 0,0579  0,3923  0,5725  0,8728  
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5.  CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Pansharpening is a significant technique utilized in remote sensing applications of 

image processing. The performance of pansharpening technique controls the quality 

of the final estimated image. In order to generate higher quality pansharpened images, 

many various pansharpening methods have been proposed. This thesis analyzed and 

compared different pansharpening methods and then proposed a new sparsity based 

pansharpening method.  

This thesis analyzed some existing important pansharpening methods and compared 

the advantages and disadvantages, similarities and differences of various 

pansharpening methods. With these analysis and comparisons, this thesis classified 

pansharpening methods into CS category, MRA category and model based category 

methods. CS category pansharpening methods produce better spatial quality for MS 

images. MRA category methods produce better spectral quality for MS images. In 

terms of HS pansharpening, MRA category generally performs better than CS category. 

Model based methods perform well for both MS and HS pansharpening. However, 

model based methods consume much more time in comparison with CS and MRA 

category methods. Based on these previous works, this thesis proposed a novel 

pansharpening method using the newly proposed Guiding Image BM3D image 

denoising algorithm. 

BM3D is an effective and powerful image denoising algorithm, which can be used as 

a prior in iterative pansharpening methods. Thanks to the need of a basic estimate 

image in the Wiener filtering step of the BM3D algorithm, some external guiding 

image can be added to enhance the performance of BM3D algorithm. 

In this thesis, the GIBM3D denoising algorithm is proposed to enhance the 

performance of BM3D denoising algorithm when utilized in iterative pansharpening 
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techniques. The GIBM3D algorithm is coupled into each iteration of an iterative 

ADMM based solution for pansharpening. The introduction of the guiding image 

approach helps to improve the grouping and calculating the Wiener shrinkage 

coefficients in the Wiener filtering step of the BM3D algorithm when used for 

pansharpening. The better is the guiding image, the better are the pansharpening results 

produced by the introduced ADMM-GIBM3D algorithm  

Three MS and two HS datasets are tested to demonstrate the performance of the 

proposed ADMM-GIBM3D pansharpening method. Experimental results have 

illustrate that the three proposed GIBM3D sub-models have the similar results except 

the required computational time for the case of same simulation parameters. The 

ADMM-GIBM3D-w sub-model has the least computational time requirement among 

the three introduced sub-models. Compared to the HySure method and the ADMM-

BM3D method of the same category, the proposed ADMM-GIBM3D appears to have 

competitive performance. 

5.2 Future work 

In the thesis, the proposed GIBM3D is applied to ADMM iteration based multispectral 

and hyperspectral pansharpening techniques. In the future work, the three GIBM3D 

sub-model can be utilized in iterative algorithms, which solve different imaging 

inverse problems such as denoising, deblurring, superresolution and other possible 

applications. 
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