İSTANBUL TEKNİK ÜNİVERSİTESİ ★ AVRASYA YER BİLİMLERİ ENSTİTÜSÜ

İSTANBUL PALEOZOYİĞİNİN PALEOMANYETİK VERİLERLE İNCELENMESİ ve HERSİNİYEN OROJENEZİNDEKİ YERİ

DOKTORA TEZİ Nalan LOM CEBECİ

Katı Yer Bilimleri Anabilim Dalı

Jeodinamik Programı

NİSAN 2017

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ AVRASYA YER BİLİMLERİ ENSTİTÜSÜ</u>

İSTANBUL PALEOZOYİĞİNİN PALEOMANYETİK VERİLERLE İNCELENMESİ ve HERSİNİYEN OROJENEZİNDEKİ YERİ

DOKTORA TEZİ Nalan LOM CEBECİ (602102002)

Katı Yer Bilimleri Anabilim Dalı

Jeodinamik Programı

Tez Danışmanı: Prof. Dr. A.M. Celal ŞENGÖR

NİSAN 2017

İTÜ, Avrasya Yer Bilimleri Enstitüsü'nün 602102002 numaralı Doktora Öğrencisi Nalan LOM CEBECİ, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "İSTANBUL PALEOZOYİĞİNİN PALEOMANYETİK VERİLERLE İNCELENMESİ ve HERSİNİYEN OROJENEZİNDEKİ YERİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Prof. Dr. A.M. Celal ŞENGÖR İstanbul Teknik Üniversitesi	
Jüri Üyeleri :	Prof. Dr. Timur USTAÖMER İstanbul Üniversitesi	
	Prof. Dr. Erdin BOZKURT Orta Doğu Teknik Üniversitesi	
	Doç. Dr. Turgay İŞSEVEN İstanbul Teknik Üniversitesi	
	Doç. Dr. Gürsel SUNAL İstanbul Teknik Üniversitesi	

Teslim Tarihi: 17 Mart 2017Savunma Tarihi: 14 Nisan 2017

ÖNSÖZ

Bu tez, İTÜ Avrasya Yer Bilimleri Enstitüsü'ndeki doktora eğitimim süresince çalıştığım paleotektonik, paleomanyetizma ve yapısal jeoloji hakkında öğrendiklerimi özetler niteliktedir. TÜBİTAK 113Y081 numaralı proje kapsamında gerçekleştirilmiştir.

Tezim, konu üzerinde harcadığım emek dışında, yetişmem için katkıda bulunanların da emekleri sonucudur. Bu satırlar ile öncelikle paleotektonik konusunda çalışma fırsatını sağlayan, bilgi ve tecrübelerini benimle paylaşan, değerli kütüphanesinde çalışmama olanak sunan hocam Prof. Dr. A. M. Celal Şengör'e teşekkürlerimi sunuyorum. Çalışmanın her safhasında büyük emeği geçen Semih Can Ülgen'e, saha çalışmalarında yol gösterici olan Necdet Özgül, Daniel Bernoulli, Robin Cocks, paleomanyetizma arazi ve laboratuvar çalışmalarında yardımcı olan Matthew Domeier, Doc. Dr. Turgay İşseven, Elijah Aller, Sercan Kayın, Nurcan Kaya'ya, laboratuvarlarında çalışmama imkan sağlayan Ivar Giæver Jeomanyetizma Laboratuvarı sorumlusu Trond Torsvik'e, Doç. Dr. Yılmaz İspir Paleomağnetizma Laboratuvarı sorumlusu Doç. Dr. Mualla Cengiz Çinku'ya, arazi çalışmalarımda bana eşlik eden Fatih Yılmaz, Gönenç Göçmengil, Cengiz Zabcı, Gürsel Sunal, Buse Turunçtur ve Durmuş Kadir Cebeci'ye teşekkür ediyorum. Ayrıca bana destek oldukları için İstanbul Teknik Üniversitesi Avrasya Yerbilimleri'ndeki ve Jeoloji Mühendisliği'ndeki arkadaşlarıma, Sevim ve Murat Tuncay'a ve Ailem'e teşekkürlerimi sunuyorum.

Nisan, 2017

Nalan LOM CEBECİ (Jeofizik Müh.)

İÇİNDEKİLER

<u>Sayfa</u>

ICINDEVILED	ONSOZ5
IÇINDEKILEK SEMRAI I ED	יייייייע איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער איזער מ
CIZEL CE L'ISTESI	
çızelge listesi sekit tistesi	13
ŞEKIL DISTEST	13 17
OZET	
1 CIRIS	····· 1
1 1 Calisma Alani	د۱
1.7 Çalışmanın Amacı	······
1 3 Vöntemler	······
1 3 1 Paleomanyetizma calısmaları	
1 3 2 Petrografi calışmaları	10
1 3 3 Paleontoloji calismalari	
1 4 Önceki Calısmalar	
P. P. Oliceki çalışınalar	
2 1 Paleozovik Yaslı Birimler	15
2.1.1 Kocatöngel Formasyonu	15
2 1 2 Kurtköv Formasyonu	
2 1 3 Kinaliada Formasyonu	18
2.1.4 Avdos Formasyonu	18
2.1.5 Yavalar Formasyonu	
2.1.6 Pelitli Formasvonu	
2.1.7 Pendik Formasyonu	
2.1.8 Denizlikövü Formasvonu	
2.1.9 Trakva Formasvonu	
2.2 Mesozovik Yaslı Birimler	
2.2.1 Kapaklı Formasvonu	
2.2.2 Erikli Formasyonu	
2.2.3 Demirciler Formasyonu	
2.2.4 Ballıkaya Formasyonu	
2.2.5 Tepecik Formasyonu	
2.2.6 Kocatarla Formasyonu	
2.2.7 Çiftalan Formasyonu	
2.2.8 Köseler Formasyonu	
2.2.9 Bakırlıkıran Formasyonu	
2.2.10 Çerkeşli Formasyonu	
2.2.11 Hereke Konglomeraları	
2.2.12 Kutluca Kireçtaşı	
2.2.13 Sarıyer Grubu	
2.2.14 Cavusbası Granodivoriti	

3. PALEOMANYETİZMA ÇALIŞMALARI	31
3.1 Kocatöngel-Kurtköy Formasyonları	33
3.2 Aydos Formasyonu	39
3.3 Yayalar Formasyonu	40
3.4 Pelitli Formasyonu	43
3.5 Pendik Formasyonu	44
3.6 Denizliköyü Formasyonu	46
3.7 Trakya Formasyonu	48
3.8 Gebze Grubu	50
3.9 Sarıyer Grubu	51
3.10 Manyetik Anizotropi Çalışmaları	53
3.11 Yüksek Sıcaklık Süseptibilite Ölçüleriyle Manyetik mineral ve Domen	
Yapısının Belirlenmesi	54
3.12 Paleomanyetik Numunelerin Petrografi Çalışmaları	57
4. PALEOMANYETİZMA TARTIŞMA VE SONUÇ	61
5. PALEONTOLOJİ ÇALIŞMALARI	71
6. HERSİNİYEN OROJENEZİ	73
6.1 Yöntem: Orojenik Kuşakların Karşılaştırmalı Anatomisi	79
6.2 Bohemya Masifi	81
6.2.1 Moldanubiyen Zonu (Moldanubicum sensu stricto)	81
6.2.2 Tepla Barrandiyen	82
6.2.3 Saksotüringiyen	83
6.2.4 Orta Alman Kristalin Zonu (Mitteldeutsche Krystallinschwelle)	83
6.2.5 Kuzey Fillit Zonu	84
6.2.6 Renohersiniyen Zonu	84
6.2.7 Hersiniyen Molası (Sub-Varisk Zonu)	85
6.2.8 Brunovistuliyen Bloğu	85
6.2.9 Moravo-Silezyen Zonu	86
6.3 Massif Central	87
6.4 Armorika	87
6.5 İberya Masifi	88
6.5.1 Güney Portekiz Zonu	89
6.5.2 Ossa-Morena Zonu	89
6.5.3 Orta İberya Zonu	89
6.5.4 Batı Asturiya-Leonese Birimi	89
6.5.5 Kantabriya Zonu	90
6.5.6 Pireneler	90
6.6 Avalonya	90
7. HERSİNİYEN DAĞ KUŞAĞININ OLUŞUMU: YENİ BİR MODEL	91
7.1 Magmatik Yayların Belirlenmesi	91
7.1 Büyük Ölçekli Doğrultu Atımlı Fay Sistemleri	92
8. TARTIŞMA	97
9. SONUÇLAR	. 101
KAYNAKLAR	. 103
EKLER	. 137
ÖZGEÇMİŞ	. 291

SEMBOLLER

- τ : Rölaksasyon zamanı
- c : Sabit
- V : Dane hacmi
- Hc : İç direnme kuvveti
- Js : Mıknatıslanma şiddeti
- K : Boltzman sabiti
- T : Sıcaklık
- D : Sapma açısı
- I : Eğim açısı
- Tc : Curie Sıcaklığı
- K : Prezisyon parametresi
- α95 : Emniyet çemberi
- DN : Değerlendirmeye katılan numune sayısı
- TN : Toplam numune sayısı

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 3.1	: Paleomanyetizma çalışmalarında örneklemenin yapıldığı	
	lokasyonlar ve onların ait olduğu formasyonlar	32
Çizelge 3.1.1	: Kocatöngel-Kurtköy formasyonlarının demanyetizasyon	
-	işlemlerine tabi tutulan örnek sayıları	35
Çizelge 3.2.1	: Aydos Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan	
	örnek sayıları	<u>39</u>
Çizelge 3.3.1	: Yayalar Formasyonu'nun demanyetizasyon işlemlerine tabi	
	tutulan örnek sayıları	41
Çizelge 3.4.1	: Pelitli Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan	
	örnek sayıları	43
Çizelge 3.5.1	: Pendik Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan	
	örnek sayıları	45
Çizelge 3.6.1	: Denizliköyü Formasyonu'nun demanyetizasyon işlemlerine tabi	
	tutulan örnek sayıları	47
Çizelge 3.7.1	: Trakya Formasyonu demanyetizasyon işlemlerine tabi tutulan	
	örnek sayıları	49
Çizelge 3.9.1	: Sarıyer Grubu'nun demanyetizasyon işlemlerine tabi tutulan örnek	
	sayıları	52
Çizelge 4.1	: Mevkilerin tektonik düzeltme öncesi ve sonrası kalıntı	
~	mıknatıslanma ve İstatiksel parametreleri	62
	-	

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 1.1	• Türkiye'nin tektono-stratiorafik birimleri b) İstanbul tektonik	
şenn 101	birliğinin tektono-stratigrafik birimleri, calışma alanı şınırları	
	dikdörtgen icerisinde gösterilmistir	2
Sekil 1.3.1	: Paleomanyetizma arazi calısmalarında kullanılan ekipmanlar	4
Sekil 1.3.2	Paleomanyetik karot örneğinin yönlendirme sistemi	5
Şekil 1.3.3	Paleomanyetik karot örneğinin kesme isleminde kullanılan ekipman	
	ve ölcüme hazırlanmış standart paleomanyetik numuneler	5
Sekil 1.3.4	: Oslo Üniversitesi'nde ölcümlerin vapıldığı laboratuvar ortamı	6
Şekil 1.3.5	: Demanvetizasvon islemine sokulan manvetik vektörün asamaları	7
Şekil 1.3.6	: Alternatif alan demanvetizasvon isleminin calısma prensibi	9
Şekil 1.3.7	: Yerkürenin enlem- aksivel dipol alan vektör iliskisi	10
Şekil 2.1	: İstanbul Paleozoviği'nin genelleştirilmiş stratigrafik keşiti	16
Şekil 2.1.1	: Kocatöngel Formasvonu'nun genel özelliklerini vansıtan yüzlek	
3	(Polonezköv)	16
Sekil 2.1.2	: Kurtköv Formasvonu Bakacak Üvesi'ne ait vüzlek (Alemdağ	
3	kavsağı)	17
Sekil 2.1.3	: Kurtköv Formasvonu Sürevvapasa Üvesi'ne ait vüzlek (Basıbüvük)	17
Şekil 2.1.4	: Avdos Formasyonu'na ait vüzlek (Avdos Ormanı günevi)	19
Şekil 2.1.5	: Yavalar Formasyonu'na ait yüzlek (Hereke, Kocaeli)	20
Şekil 2.1.6	: Pelitli Formasyonu'na ait kirectaslarının görüldüğü vüzlek	
30000 -0000	(Cubuklu, Bevkoz)	21
Sekil 2.1.7	: Pelitli Formasyonu'na ait kirectasları icerisinde fosillerin	
3	görüldüğü yüzlek (Beykoz)	21
Sekil 2.1.8	: Pendik Formasvonu'na ait kumtası-silttası icerisinde trilobit ve	
3	brakvapod fosillerin görüldüğü yüzlek (Anadolu Hisarı, Göksu	
	Deresi cevresi)	22
Sekil 2.1.9	: Denizlikövü Formasvonu'na ait vumrulu kirectaslarının görüldüğü	
	vüzlek (Denizlikövü)	23
Sekil 2.1.10	: Trakya Formasyonu'nun görüldüğü yüzlek (Maslak)	24
, Sekil 2.1.11	: Denizliköyü Formasyonu'na ait bu örnekte bir kıvrım bindirme	
3	kusağı olarak gelisen İstanbul'un sahip olması gereken	
	décollement yüzeyi mostra ölceğinde görülmektedir	24
Sekil 2.2.1	: İstanbul ve Kocaeli Mesozovik birimlerinin genellestirilmis	
.j	stratigrafik kesiti	25
Sekil 2.2.2	: Sarıyer Grubu'na ait soğuma kolonlarının görüldüğü	
3	andezitik-bazaltik bilesimdeki vüzlek. Karaburun (Bakıs vönü:	
	Kuzey)	28
Şekil 3.1	: İstanbul ve Kocaeli illerinden toplanan paleomanyetik	
	örneklerin lokasyonları	31
	· · · · · · · · · · · · · · · · · · ·	•

Şekil 3.1.1	: Mahmut Şevket Paşa mevkinde Kocatöngel Formasyonu	
	örneklemesine ait yüzlek	34
Şekil 3.1.2	: Mahmut Şevket Paşa mevkinde Kurtköy Formasyonu Bakacak	
	Uyesi örneklemesine ait yüzlek	34
Şekil 3.1.3	: Göçbeyli mevkinde Kurtköy Formasyonu Süreyyapaşa Uyesi	
	örneklemesine ait yüzlek	35
Şekil 3.1.4	: Kocatöngel Formasyonu a) MSD2A kodlu örneğe ait ısıl	
	demanyetizasyon grafiği b) MSD4A kodlu örneğe ait AF	
	demanyetizasyon grafiği	36
Şekil 3.1.5	: Kurtköy Formasyonu Bakacak Üyesi a) ALM6B kodlu örneğe ait ısıl	
	demanyetizasyon grafiği, b) ALM11A kodlu örneğe ait AF	
	demanyetizasyon grafiği	37
Şekil 3.1.6	: Kurtköy Formasyonu Süreyyapaşa Üyesi a) GOC2A kodlu örneğe	
	ait 1s1l demanyetizasyon grafiği, b) GOC3A kodlu örneğe ait AF	
	demanyetizasyon grafiği	38
Şekil 3.2.1	: Aydos Dağı lokasyonunda örnekleme yapılan mostra	39
Şekil 3.2.2	: a) AD8A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) AD10A	
	kodlu örneğe ait AF demanyetizasyon grafiği	40
Şekil 3.3.1	: Hereke'de örnekleme yapılan mostra	41
Şekil 3.3.2	: Yayalar Formasyonu a) HRK11A kodlu örneğe ait ısıl	
	demanyetizasyon grafiği, b) HRK2A kodlu örneğe ait AF	
	demanyetizasyon grafiği	42
Şekil 3.4.1	:Tuzla'da örneklenen mostra	43
Şekil 3.4.2	: a) MF1A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) MF11A	
	kodlu örneğe ait AF demanyetizasyon grafiği	44
Şekil 3.5.1	: Mihrabat Korusu lokasyonunda örnekleme yapılan mostra	45
Şekil 3.5.2	: Pendik Formasyonu a) FSM3A kodlu örneğe ait ısıl	
	demanyetizasyon grafiği, b) FSM7A kodlu örneğe ait AF	
	demanyetizasyon grafiği	46
Şekil 3.6.1	: Cumaköy lokasyonunda örnekleme yapılan mostra	47
Şekil 3.6.2	: Denizliköyü Formasyonu a) DK8B kodlu örneğe ait ısıl	
	demanyetizasyon grafiği, b) DK1B kodlu örneğe ait AF	
	demanyetizasyon grafiği	48
Şekil 3.7.1	: Pirinçci Köyü lokasyonunda Trakya Formasyonu'na ait örnekleme	
	yapılan mostra	49
Şekil 3.7.2	: Trakya Formasyonu a) BL7A kodlu örneğe ait ısıl demanyetizasyon	
	grafiği, b) BL10A kodlu örneğe ait AF demanyetizasyon grafiği	50
Şekil 3.8.1	: a) GD1A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) GD7A	
	kodlu örneğe ait AF demanyetizasyon grafiği	51
Şekil 3.9.1	: Kilyos sahilinde örnekleme yapılan mostra	52
Şekil 3.9.2	: a) AH3C kodlu örneğe ait ısıl demanyetizasyon grafiği, b) KL7A	
0.1.1.40.4	kodlu örneğe ait AF demanyetizasyon grafiği	53
Şekil 10.1	: Yamulma eksenleri ile manyetik anizotropi verilerinin ilişkisi	54
Şekil 3.11.1	I: I itanyumlu manyetit ve farklı domen yapısındaki manyetit için	
a 1 1 a 14 a	teorik süseptibilite-sicaklik eğrisi	55
Şekil 3.11.2	2: AK mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi	55
Şekil 3.11.3	5: OV mevkisine ait yüksek sicaklik-süseptibilite değişim eğrisi	56
Şekil 3.11.4	SK mevkisine ait yüksek sicaklik-süseptibilite değişim eğrisi	56
Şekil 3.11.5	: IFF mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi	57
Şekil 3.11.6	b: MSD mevkısıne aıtyüksek sıcaklık-süseptibilite değişim eğrisi	57

Şekil 3.12.1 : Kurtköy Formasyonu Bakacak üyesine ait AT 6 örneğinin	
10x büyütmeli görüntüsü. Çift nikol görüntüsünde epidot	
tanesi görülmekte, tek nikol görüntüsünde ise kuvars damarı	
görülmektedir. Genel olarak ilksel plajioklaslar yaygın ve	
serisitleşme, kloritleşme mevcut. Düşük dereceli metamorfizma	
veya hidrotermal alterasyon ürünü olduğu söylenebilir	
(Resmin bir kenarı 1.8 mm)	58
Sekil 3.12.2 : Kurtköy Formasyonu Bakacak üyesini kesen sokuluma ait DDM14	
örneğinin 10x büyütmeli görüntüsü. Plajioklas, kuvars, amfibol ve	
biotit içeren örneğin içerisindeki altere amfibol görülmektedir.	
Amfibol minerali ilksel seklini korumakla beraber neredeyse	
tamamen klorite dönüşmüş ve kenar zonunda opasitleşme	
gelismistir (Resmin bir kenarı 1.8 mm)	58
Sekil 3.12.3 : Kurtköy Formasyonu Bakacak üyesini kesen sokuluma ait DDM11	
örneğinin 10x büyütmeli görüntüsü. Plaijoklas, kuvars, amfibol ve	
biotit iceren örneğin icerisindeki muhtemelen magnetit olan opak	
mineral görülmektedir. Opak mineraller damarlar icerisinde kava	
icerisinde düzensiz bir sekilde gelismislerdir (Resmin bir kenarı	
1.8 mm)	59
Sekil 3.12.4 : Gümüsdere Formasvonuna ait GD 8 örneğinin 4x büvütmeli	
görüntüsü. Klinopiroksen ve plaijokalstan olusan diabaz örneğinde	
plaijoklaslar serisitlesmis, talk ve kalsit olusumları mevcut	
(Resmin bir kenarı 4.2 mm)	59
Sekil 3.12.5 : Pelitli Formasyonuna ait GZL5 örneğinin 4x büyütmeli	
görüntüsü. Fosilli kirectası örneğinde ikincil kalsit damarlar ve	
bunlar etrafında büyük taneli opak mineraller meycut (Resmin	
bir kenarı 4.2 mm)	59
Şekil 3.12.6 : Kurtköy Formasyonu Süreyyapaşa Üyesine ait SUL5 örneğinin 4x	
büyütmeli görüntüsü. Bu kumtaşı örneğinde %25-30 kuvars,	
%25-30 oranında ise opak mineraller, %15 plajioklas mevcuttur.	
Plajioklaslar serisitlesmistir. Taneler arası opak mineraller ile	
doldurulmuş, görünümde ilmenit veya magnetit olabilecek	
iskelet benzeri yapı gözükmektedir (Resmin bir kenarı 4.2 mm)	60
Şekil 3.12.7 : Kurtköy Formasyonu Süreyyapaşa Üyesine ait SUL örneğinin 10x	-
büyütmeli görüntüsü. %45-50 kuvars barındıran % 30 kalsit	
çimentolu kumtaşı. Kuvarsça zengin klastlara sahip örnekte	
dalgalı sönme, kuvarslardaki mineral uzamaları ve taneler	
arasındaki reaksiyon yapıları bu malzemelerin metamorfik bir	
kökenden gelmiş olabileceğine işarat etmektedir. Bunun yanı sıra	
kayada tali oranda muskovit ve ver ver polikristalen kuvars da ver	
almaktadır. (Resmin bir kenarı 1.8 mm)	60
Sekil 4.1 : Alt Ordovisyen yaşlı kiltaşları ve silttaşlarına ait a) Tektonik	-
düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası	
mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu	
yıldız ile gösterilmistir), c) Bu birimlere ait McElhinny kıvrım testi	63
Sekil 4.2 : Alt-Orta Ordovisven arkozlarına ait a) Tektonik düzeltme öncesi	-
mevki ortalamaları, b) Tektonik düzeltme sonrası mevki	
ortalamaları (İstanbul'un günümüzdeki konumu turuncu vıldız ile	
gösterilmiştir.), c) Bu birimlere ait McElhinny kıvrım testi	64

Şekil	4.3	: Üst Ordovisyen-Alt Silüriyen yaşlı kayaçlara ait a) Tektonik düzeltme	e
		öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki	
		ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile	
		gösterilmiştir), c) Bu birimlere ait McElhinny kıvrım testi	64
Şekil	4.4	: Üst Silüriyen-Alt Devon yaşlı kayaçlara ait a) Tektonik düzeltme	
		öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki	
		ortalamaları (Istanbul'un günümüzdeki konumu turuncu yıldız ile	
		gösterilmiştir), c) Bu birimlere ait McElhinny kıvrım testi	65
Şekil	4.5	: Orta-Ust Devoniyen yaşlı kayaçlara ait a) Tektonik düzeltme öncesi	
		mevki ortalamaları, b) Tektonik düzeltme sonrası mevki	
		ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile	
~ • •		gösterilmiştir.), c) Bu birimlere ait McElhinny kıvrım testi	<u>66</u>
Şekil	4.6	: Alt Karbonifer yaşlı kayaçlara ait a) Tektonik düzeltme öncesi mevki	
		ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları	
		(İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir.),	
0 1 11	4 7	c) Bu birimlere ait McElhinny kivrim testi	<u>6</u> 7
Şekii	4./	: Erken Kretase yaşlı magmatiklerden alınan KL ve KLY kodlu	
		b) Telstenik digaltma gannag mayliya ait harhin kanat nymuna	
		(İstorbul'un cünümüzdeki konumu turuncu yıldız ile cösterilmiştir)	68
Sabil	51	(Istanoul un gunumuzdeki konumu turuncu yndiz ne gosterinniştir)	<u>00</u> 71
Şekil	5.1	• a) Brachyspirifer b) Meganterid	71
Şekil	5. <u>2</u> 6 1	• İlk defa Suess (1886) tarafından cizilen Varisk ve Armorik dağlarını	/1
ŞUMI	0.1	gösteren harita	74
Sekil	6.2	: Kossmat (1927) tarafından cizilen Hersiniyen zonlarını gösteren harita	74
Sekil	6.3	: Avrupa Hersiniveni'nin zonlarını gösteren harita	75
Şekil	6.4	: Avrupa Hersiniyeni'nin zonlarını gösteren harita	76
Şekil	6.5	: Wegener (1920) tarafından hazırlanmış ilk Pangaea çizimi	77
Şekil	6.6	: Farklı çalışmalarda ortaya konulmuş Pangaea modelleri a) Pangaea	
		A-1, b) Pangaea A-2, c) Pangaea B	78
Şekil	6.7	: Solda erken Perm Pangaea B, sağda geç Perm'e ait	
		Pangaea A rekonstrüksiyonları	79
Şekil	6.1.]	I : Hendek gerilemesi ile birlikte magmatik yayın göç etmesi	80
Şekil	6.2.1	: Bohemya Masifi'nin zonlarını gösteren harita	
Şekil	6.2.2	2 : Franz Eduard Suess tarafından çizilmiş olan Saksotüringiyen'in	
		K-G kesidi. Bu kesit babasi Eduard Suess'e yolladiği mektupta	
0.1.11	()	bulunmaktadir	83
Şekil	6.3.	I : Massif Central ve içerisindeki birimler	<u>8</u> 7
Şekil	0.5.	: Iberya Masifinin zonlarini gosteren harita	_88
Şekil	/.1.	a zilmlar	02
Salii	Q 1	uagiiiiiiaii • Magmatik yaylarin sacıldığı ortamlar a) Üalü aklam b) Handak	. 73
ŞCKII	0.1	gerilemesi c) Vanal atım sistemlərini biçməsi d) Kənət zonu	
		gernemesi, e) i anai anni sistemierini uiçinesi, u) Kenet zunu- magmatik yay ardalanması	96
		magmank yay aluaranmasi.	.70

İSTANBUL PALEOZOYİĞİNİN PALEOMANYETİK VERİLERLE İNCELENMESİ ve HERSİNİYEN OROJENEZİNDEKİ YERİ

ÖZET

Rodop-Pontid kıtasının bir parçası olan İstanbul tektonik birliği Neoproterozoyik metamorfik bir temel üzerine yerleşmiş Paleozoyik bir istif ile tanımlanır. İstanbul sınırları içerisinde bu istif Ordovisyen'den erken Karbonifer'e sürekli bir gelişim gösterir. Üst Karbonifer molasına geçen Alt Karbonifer fliş çökelleri ve hemen ardından gelen uyumsuzluk ile Avrupa Hersinidleri'ne benzerlik gösterir.

İstanbul Paleozoyik parçası (İstanbul+Çamdağ+Zonguldak) hakkında genel bir tektonik yorum yapılamayacak kadar küçük bir alanı işgal etmektedir. Bu nedenle öncelikle ait olduğu düşünülen Hersiniyen Orojen'i ele alınmıştır. Avrupa Hersinidlerinden elde edilen 1138 adet yüksek kaliteli izotopik yaş verisi Ediyakaran'dan başlayıp geç Karbonifer'e kadar faaliyet göstermiş olan ve Gondwana-Land'ın kuzey kıta kenarını oluşturan bir magmatik yayın ürünleri olarak yorumlanmıştır. Elde edilen veriler bu magmatik yayın Hersiniyen Sistemi'nin bel kemiğini oluşturduğunu göstermektedir. Bu çalışmada bu yaya "Protogonos" (= ilk oluşan) adı verilmiştir. Yaş verilerine ek olarak manyetik anomali haritaları ve kılavuz hatlar kullanılarak bu yayın uzanımı ve gelişimi takip edilmiştir.

Bu tez kapsamında yapılan paleomanyetik gözlemler, İstanbul Paleozoyik parçasının Hersiniyen Orojeni'nin içerisindeki konumu belirlemek amacıyla yapılmıştı. Ancak İstanbul'u oluşturan tüm Paleozoyik kayaçların ikincil mıknatıslanmaya maruz kalmış olmaları Paleozoyik'teki mıknatıslanmalarını kaybetmelerine sebep olmuştur. Yapılan gözlemler yeniden mıknatıslanmanın genellikle Kenozoyik dönemin son evresinde olduğunu göstermiştir. Bu nedenle İstanbul tektonik birliğine ait paleoenlem ya da dönme bilgisi elde etmek mümkün olmamıştır. Bu sonuç, bu tezin önemli sonuçlarından biri olup bundan sonra İstanbul'da paleomanyetik gözlemlerle vakit kaybedilmemesini sağlayacaktır.

İstanbul Paleozoyik parçasının Gondwana-Land kökenli olduğu gösterilmiş olan Moezya ve Tepla-Barrandiyum birliği ile birlikte Protogonos yayının ardında, Orta Karbonifer'e kadar Gondwana-Land'a ait olduğu düşünülmektedir. Moezya'nın batısından itibaren meydana gelen Gondwana-Land/Lavrusya çarpışması Avrupa ve Kuzey Amerika'da Hersinid orojenik kuşağını oluşturmuş, Moezya'nın batısında kalan kesim ise Gondwana-Land'ın Paleo-Tetis kenarını oluşturarak tektonik evrimine Kimmeridler olarak devam etmiştir. Bu evrim de Jura'da Kimmerid çarpışması ile son bulmuştur. Bu şekilde Karadeniz çevresinde herhangi bir Hersiniyen (veya bir diğer adıyla Varisk) olaylarının olmadığı tespit edilmiştir. Burada sunulan Hersinid modeli tamamen orijinal bir model olup bugüne kadar dünyada ileri sürülen Hersinid evrim modellerinden tamamen farklıdır. Bu modelin eldeki stratigrafik, paleontolojik ve yapısal verilerle diğer modellerden daha uyumlu olduğu görülmüştür.

PALAEAOMAGNETIC RESEARCH ON THE PALAEOZOIC OF ISTANBUL AND THE PLACE OF THE LATTER IN HERCYNIDES

SUMMARY

The Istanbul tectonic unit is a part of a bigger continental fragment called the Rhodope-Pontide Fragment, and it consists, at the base, of a Neoproterozoic crystalline basement. This basement is overlain by a continuous, well-developed sedimentary sequence extending from the Lower Ordovician to the Upper Carboniferous. The Palaeozoic sequence commences with laminated siltstones and shales. The following thick arkoses are covered by Upper Ordovician-Lower Silurian feldspathic quartz arenite representing a low energy open shelf, probably tidal and beach environment. The basin became progressively deeper and more stable during the Silurian and Devonian. Lower-Middle Devonian nodular limestones show a transition from open shelf to a slope setting. Continuous deepening Lower Carboniferous black lydites. The basin, which was tectonically stable from the Ordovician to the end of the Devonian, became a site of turbiditic flysch deposition and tectonically active during the Early Carboniferous. The Carboniferous flysch marks the progress of a collision. That collision created a dominantly (now) west vergent marginal fold and thrust belt on the eastern side of the Bosphorus and what now seems an east vergent (but with many inconsistencies) on the western side as a retrocharriage. The structural style of folds and faults requires a décollement underneath the whole city which thrusts the entire structure westward.

The İstanbul Zone has a complicated deformation history related to the Hercynide (or Scythide), Cimmeride and Alpide orogenies. Although the region of Istanbul shows a weak metamorphism and a weak cleavage development, constraining the entire history of the deformation in the İstanbul Zone marginal fold and thrust belt is a difficult task, primarily due to the multiple deformation phases. But yet it is not impossible. The Palaeozoic sequence is cut by late Cretaceous plutonics together with dacitic and andesitic dykes. This arc magmatism is ascribed to the north-dipping subduction of the Neo-Tethyan ocean along the İzmir-Ankara-Erzincan suture. The Palaeozoic sequence is unconformably overlain by Permian and younger sedimentary strata. Istanbul tectonic unit resembles the Hercynides with its abundant Lower Carboniferous flysch deposits passing into Upper Carboniferous molasse and with a sharp unconformity upon its sediments.

The Palaeozoic sequences of Istanbul and Zonguldak have been compared and correlated with similar sequences in Europe, including the Moesian platform in Romania and Bulgaria, Moravo-Silesia (Brunovistulian) in the Czech Republic and the Rhenohercynian zone in Germany and Belgium, all deposited on the northern passive margin of the Rheic ocean. The Istanbul Zone is treated as a part of Avalonia. However, continuous transgressive sedimentation and absence of collision related magmatics or volcaniclastic sediments rule out this relationship. By contrast, the Istanbul sequence resembles the Pyrenees, the Carnic Alps, the Bohemian (Saxo-Thuringian) sequences and thus northern Gondwana-Land of the Palaeozoic times.

The zircon ages from its Neoproterozoic basement suggest that İstanbul Zone once was located at the north-eastern margin of Gondwana-Land, recent paleontological studies place the İstanbul Zone to about 30–40^oS for early Ordovician. Devonian fauna shows similarities with Thuringia, Rhenish Massif, Cantabrian Mountains, Pyrenees, Holy Cross Mts. and North Africa.

In this study a total of 688 samples were obtained from 54 sites around İstanbul and Kocaeli. 465 samples collected from the Palaeozoic sedimentary rocks and 223 samples belong to the dykes that cut these sediments and lavas, and related ashes, tuffs that overlay these sediments. 624 standard palaeomagnetic specimens were prepared from 688 samples, and 547 of them are successfully completed their demagnetization steps.

The specimens were demagnetized in the laboratory by using both AF and thermal treatments depending on their effectiveness. After demagnetization treatments, 290 specimens showed stable demagnetization patterns and majority of these samples have a characteristic remanent magnetization component close to the present day geomagnetic field. Palaeomagnetic data processing were made on RemaSoft 3.0 and IAPD2014 softwares. Demagnetization studies demonstrate variable degrees of overprinting in a large number of samples. After the application of the tilt correction, %70 of the specimens failed the fold test at site level (early Ordovician siltstones; late Silurian-early Devonian limestones; late Devonian limestones; early Carboniferous turbidites). Rest of them clearly got scattered with increasing α 95 and decreasing k values (mid Ordovician conglomerates; mid-late Devonian shales; late Ordovician-early Silurian sandstone and siltstones). This secondary magnetization, acquired during or after the folding event, constitutes evidence of pervasive remagnetization that can be caused viscous remanent magnetization.

The İstanbul tectonic unit (İstanbul-Çamdağ-Zonguldak) occupies a rather small area that makes its tectonic evolution hard to reconstruct. This raises the necessity of dealing with the European Hercynides. The Hercynides of Europe are part of a large (~1000 km broad and ~8000 km long) Palaeozoic mountain belt, which was formed as a result of diachronic collision between Laurussia±Baltica and Gondwana-Land at the end of the Carboniferous. This system extends from the Caucasus to the Appalachians.

In this thesis we mainly focused on European side of this orogenic belt and used methodology of comparative anatomy of orogens. Every orogenic belt has its own organs represented by distinctive rocks. Fore-arc, arc, back-arc basin, a continental shelf (clastic shelf, shallow shelf, and/or carbonate platform) are basic organs of an orogenic belt. These organs may not be present in every orogenic belt but the most common feature among all these organs is the magmatic arc. Magmatic rock types are strongly related to geodynamic environments. Well-typed and well-dated magmatic rocks can be used as indicators of geodynamic environments, and even further as tracers of geodynamic evolution. To identify the magmatic arcs, the intermediate and felsic magmatic rocks, namely granodiorites, diorites, andesites, granites, and rhyolites are used. For this purpose geological maps of the Germany, Spain, England, France, Czech Republic, Austria, Poland were digitized and mapped as one geological map. ~2700 high quality isotopic age data are collected from the literature. 1138 of them are interpreted as products of a single magmatic arc which had been active from the Ediacaran to the late Carboniferous on the northern margin of Gondwana-Land. The magmatic anomaly maps also used to track this magmatic fragments. This magmatic arc is herein named "Protogonos" (=the first born) in this study. Magnetic anomaly maps and structural trend lines are used as supplements in identifying the extent and evolution of Protogonos.

Palaeomagnetic studies revealed remagnetization in the Palaeozoic rocks of İstanbul. The timing of this event coincides with the latest Cainozoic. As a result of this remagnetization we are unable to find a paleolatitude or a rotation for the Palaeozoic rocks.

The final step of this thesis is reconstructing the tectonic units and find a proper place for İstanbul tectonic unit. The magmatic arc is the key point in this reconstruction. The fragments of this magmatic arc repositioned according to the displacements on the major transform faults at that time. For this purpose, we used Pangaea B reconstruction template to replace the tectonic units.

We propose a retro-arc setting for the İstanbul tectonic unit with Moesia and Tepla-Barrandium behind the Protogonos magmatic arc as part of Gondwana-Land until the medial Carboniferous. While the western part of Hercynian orogen went through collision and formed an orogenic belt from North America and North-western Africa to Moesia, the eastern part including the İstanbul tectonic unit remained untouched by this collision and continued its tectonic evolution as a part of Palaeo-Tethys margin. This episode is ended in Jurassic with the Cimmeride collision. This leads us to the conclusion that no Hercynian event is present in the İstanbul tectonic unit.

1. GİRİŞ

1.1 Çalışma Alanı

Rodop-Pontid fragmanının bir parçası olan İstanbul tektonik birliği Türkiye'nin kuzeybatısında yer almaktadır (Şek. 1.1). Çevresindeki tektonik birimlerden oldukça farklı bir yapı sergileyen İstanbul tektonik birliği, erken Paleozoyik'ten günümüz aralığında çeşitli yaşlarda kaya birimlerini kapsaması, oldukça karmaşık bir yapısal sürecin izlerini taşıması ve güncel tektonik hareketlerinin etkin olduğu Marmara ve Batı Karadeniz Bölgelerinde yer alması nedeniyle, 19. yy'den bu yana yerli ve yabancı birçok araştırmacının dikkatini çekmiş ve üzerinde çalışılmıştır. Tezin başlıca ilgi alanı; İstanbul tektonik birliği içerisinde yer alan İstanbul Paleozoyiği olarak adlandırılan kaya topluluğudur. Batıda Çatalca'dan başlayıp doğuda Gebze'ye kadar uzanan bölge içerisinde yüzeyleyen birimler Bolu yöresinde açığa çıkan Neoproterozoyik metamorfik bir temeli örten ve Erken Ordovisyen-Erken Karbonifer aralığını temsil eden transgressif Paleozoyik çökelleriyle, Permiyen-Erken Triyas karasallaşma evresini izleyen Orta-Geç Triyas ve Geç Kretase-Erken Kenozoyik yaşlı kaya birimleri ile temsil edilmektedir (Özgül, 2011). Bu kuşak boyunca izlenen çökel birimler ?Devoniyen ve Kretase yaşlı sokulumlar ile kesilmişlerdir. Bu tez çalışmasında Gebze-Çatalca arasında kalan bölgede mostra veren çökel birimler ve bunları kesen Kretase yaşlı sokulumlar incelenmiştir.

İstanbul tektonik birliği Paleozoyik istifi aralarında Romanya ve Bulgaristan'daki Moezya Platformu, Çek Cumhuriyeti'ndeki Moravo-Silezya (Brunovistuliyen), Belçika ve Almanya'daki Renohersinyen olmak üzere Reik Okyanusu'nun kuzey pasif kıta kenarını temsil eden birçok istif ile deneştirilmiştir. Ancak tüm bu deneştirmeler henüz tatminkâr olmaktan uzaktır. Örneğin, İstanbul tektonik birliğinin aksine Renohersinyen içinde ofiyolit barındıran tipik bir yığışım karmaşığıdır. Hersiniyen deformasyonu Orta Avrupayı, Alplerin kuzeyini etkileyen son büyük ölçekli orojenik olaydır. Bu nedenle İstanbul tektonik birliğini Avrupa-Hersiniyen Dağ Kuşağı içinde yorumlamak oldukça mantıklıdır.

Şekil 1.1 : Türkiye'nin tektono-stratigrafik birimleri, b) İstanbul tektonik birliğinin tektonostratigrafik birimleri, çalışma alanı sınırları dikdörtgen içerisinde gösterilmiştir.

İstanbul tektonik birliğine kıyısı olan okyanusun dalma-batma yönü hala tartışmalıdır. Henüz tanımlanamayan Devoniyen-Karbonifer yaşlı magmatik bir yay ile çarpıştığı düşünülmektedir. Trakya Formasyonu'nun Karbonifer yaşlı flişleri de bu çarpışma sürecinin delilleridir. İstanbul Paleozoyiği Hersiniyen Orojenezi'nin bir parçası olarak düşünüldüğünden bu orojenezi de detaylı olarak ele almak gereği doğmuştur. Karşılaştırılmalı orojenez anatomisi yöntemiyle çalışılan Hersiniyen Orojeni'nin gelişimi incelenerek çarpışma öncesi coğrafyası için çözümler sunulmuştur. Bu çalışmada ise Alpler'in kuzeyinde kalan İber Yarımadası'ndan Çek Cumhuriyeti doğusuna kadar olan bölgede bulunan Neoproterozoyik-Permiyen yaş aralığındaki magmatik ve volkanik kökenli kayalar ele alınmıştır.

1.2 Çalışmanın Amacı

Bu çalışmanın konusu olan İstanbul Paleozoyik istifi, hem içerdiği kayaçlar, hem de içinde meydana gelmiş olan jeolojik olayların zamanlaması bakımından Avrupa Hersiniyen sistemini oluşturduğu düşünülen Reik ve Teik okyanuslarının her ikisinin karışımı bir özellik sunmaktadır. Avrupa'da hiçbir bölge, İstanbul'daki kadar sürekli, az başkalaşıma uğramış ve nispeten hafif bir deformasyon geçirmiş kayaçları sergileyen ve açık bir mostra zenginliğine sahip değildir. İstanbul Paleozoyik istifinde yapılacak stratigrafik, paleomanyetik, ve yapısal çalışmalar bize ilk kez erken Paleozoyik'ten geç Paleozoyik'e uzanan yaklaşık 170 milyon yıllık bir tarihçeyi ve bu tarihçe sayesinde Avrupa'daki Hersiniyen sisteminin gerçek geometrisinin ne olması gerektiğini bildirecektir. Bugüne kadar ortaya konan Hersiniyen Orojenezi ve Pangea çözümleri tatmin edici olmaktan uzaktır. Bu çalışma ile birlikte Hersinidler için yeni bir evrim modeli ortaya konması hedeflenmiştir.

Bu tez "İstanbul Paleozoyiği'nin Tektonik Evriminin İncelenmesi" adlı TÜBİTAK projesi kapsamında gerçekleştirilmiştir. Araştırma 2013-2016 öğretim yılı içerisinde, İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, Katı Yer Bilimleri Ana Bilim Dalında Doktora Tezi olarak hazırlanmıştır.

1.3 Yöntemler

1.3.1 Paleomanyetizma çalışmaları

Katılaşım kayaçların oluşumu ve çökel kayaçların çökelimi sırasında, kayaçların içeriğinde bulunan manyetik mineraller, bulundukları bölgedeki yerin manyetik alanı doğrultusunda mıknatıslanma kazanırlar. Kazandıkları bu mıknatıslanmayı uygun koşullar altında günümüze kadar taşırlar. Kayaçlarda kaydedilen mıknatıslanma yönlerini kullanarak yer manyetik alanının değişimlerini, kayaçların dönmesi ve yer değiştirmesini inceleyen bilim dalına Paleomanyetizma adı verilir.

Yer manyetik alanı, iç ve dış kaynaklı olmak üzere farklı kaynakların toplamından oluşmaktadır. Egemen kaynak yerkürenin sıvı dış çekirdeğindeki konveksiyon akımlarının katı iç çekirdek ile etkileşime girerek oluşturduğu manyetik alandır. İkincil katkı ise yerküre içerisinde bulunan mıknatıslanmaya sahip kayaçların etkileridir. Bu iki etki nispeten durağan olarak kabul edilirken zamanla hızla değişen üçüncü katkı ise yerküre dışı kaynaklı alanlardır. Yer manyetik alanını etkileyen en sönük etki ise okyanus sirkülasyonundan kaynaklanmaktadır.

Kayaçlar farklı yollarla mıknatıslanma kazanırlar. Hem magmatik/volkanik hem de çökel kayaçlar kimyasal bozunmalara maruz kalarak ikincil mıknatıslanmalara sahip olurlar. Birçok manyetik mineral viskoz kalıcı mıknatıslanmadan etkilenir. Mıknatıslanmanın farklı bileşenleri bir araya gelerek doğal kalıcı mıknatıslanmayı (NRM) oluşturur. Paleomanyetizma laboratuvar çalışmalarının amacı ise toplam vektör olan doğal kalıcı mıknatıslanmadan yaş, kaynak ve güvenilirlik bilgisine ulaşılabilen bileşenleri ayırt etmektir.

1.3.1.1 Paleomanyetizma arazi çalışmaları ve örnek toplanıp hazırlanması

Yönlü örneklerin toplanabilmesi için bu çalışmada benzinle çalışan, taşınabilir, elmas uçlu STIHL marka karotiyer, Pomeroy marka karot yönlendirici, Brunton marka jeolog pusulası, ekipmana uygun su pompası, konumlandırma için Garmin marka GPS kullanılmıştır (Şekil 1.3.1).

Şekil 1.3.1 : Paleomanyetizma arazi çalışmalarında kullanılan ekipmanlar.

Delme işlemi yapılırken karotun tek parça halinde ve düzgün çıkarılabilmesi için öncesinden örneklenecek mostranın çatlaksız ve nispeten az ayrışmaya uğramış kısımları tercih edilir. Delme işlemi tamamlandıktan sonra karotiyerin yerine karot yönlendirici yerleştirilerek örneğin kuzeyle yaptığı açı (Azimut) ve düşey düzlemle yaptığı açı okunur (Şekil 1.3.2). Güneşin konumu ve hava durumuna bağlı olarak güneş pusulası okuması da gerçekleştirilir. Mıknatıslanma şiddeti yüksek olabilecek volkanik kayalar ile etrafta ölçümü etkileyebilecek metal varlığında bu okumalar daha da önem kazanmaktadır.

Şekil 1.3.2 : Paleomanyetik karot örneğinin yönlendirme sistemi a) Arazi örneği; b) Şematik gösterimi (Butler, 1992).

Güneş pusulası okumaları yapıldıkları saat ve dakika ile not edilirler, bunu yaparken ölçümün yapıldığı bölgenin saat dilimini kaydetmek de sonrasında büyük kolaylık getirir. Araziden toplanan örnekler üstüne kodları ve doğrultuları işaretlendikten sonra ayrı olarak paketlenip laboratuvar ortamına götürülürler.

1.3.1.2 Paleomanyetizma laboratuvar çalışmaları

Araziden toplanan numunelerin, laboratuvar çalışmalarında kullanılan ölçüm aletleri ile ölçülebilmesi için, belli standartlar doğrultusunda ölçümlere hazırlanması gerekmektedir. Bu nedenle araziden toplanan karot numuneleri taş kesme makinesi yardımıyla kesilerek 1 inç uzunluğunda ve 1 inç çapında silindirik küçük numuneler haline dönüştürülür. Kesme işlemi tamamlandıktan sonra karot numunesi üzerindeki numunenin doğrultusunu gösteren referans çizgisi ve mevki adları küçük numunelerin üzerine aktarılır (Şekil 1.3.3).

Şekil 1.3.3 : Paleomanyetik karot örneğinin kesme işleminde kullanılan ekipman ve ölçüme hazırlanmış standart paleomanyetik numuneler.

Arazi çalışmalarında elde edilen 54 mevkiye ait örneklerin çoğunluğu Oslo Üniversitesi The Centre for Earth Evolution and Dynamics (CEED) Ivar Giæver Jeomanyetik Laboratuvarı'nda, volkanik kökenli olanlar ise Yılmaz İspir Paleomağnetizma Laboratuvarı'nda kesilip, ölçülmüştür (Şekil 1.3.4).

Şekil 1.3.4 : Oslo Üniversitesi'nde ölçümlerin yapıldığı laboratuvar ortamı.

Arazi çalışmaları sırasında kayaçlardan alınan yönlü örnekler laboratuvar ortamında analiz edilerek öncelikle demanyetizasyon işleminden geçirilir, ardından Doğal Kalıcı Mıknatıslanma yönleri belirlenir, yerin manyetik alanının jeolojik geçmişteki durumu saptanıp bölgenin günümüzdeki manyetik konumu ile karşılaştırılarak değerlendirme 1.3.5). Katılaşım kayaçların mıknatıslanma siddeti yapılır (Şekil çökel kayaçlarınkinden daha yüksektir. Paleomanyetizmanın ilk evrelerinde, çok zayıf mıknatıslanmaya sahip çökel kayaçların kalıntı mıknatıslanmalarını belirlemek için var olan aletlerin duyarlılığının yetersiz oluşu katılaşım kayaçların tercih edilmesine sebep olmuştur. Zamanla Spinner magnetometrelerinin gelişimi ve Cyrogenic magnetometrelerin ortaya çıkmasıyla günümüzde çökel kayaçlarda mıknatıslanmasın yönü ve şiddeti hassasiyetle belirlenebilmektedir. Bu çalışmada AGICO marka JR 6A Spinner Manyetometre kullanılmıştır. Paleomanyetizma çalışmaları, levhaların yerküre üzerindeki paleocoğrafik konumunun belirlenmesinden, güncel volkanik faaliyetlerine ve yer kürenin manyetik alan değişimlerinin saptanmasına kadar geniş bir uygulama alanına sahiptir.

Şekil 1.3.5 : Demanyetizasyon işlemine sokulan manyetik vektörün aşamaları.

Isıl Demanyetizasyon: Kayaçlar oluşumları esnasında o an içinde bulundukları manyetik alan doğrultusunda bir mıknatıslanma kazanırlar. Bu mıknatıslanmanın kazanılabilmesi için içsel enerji seviyesinin aşılması gerekmektedir. Bu enerji seviyesi "bloklama sıcaklığı" (J_S.V.H_C) olarak adlandırılır. Bununla birlikte, termal enerji (k.T) kayacın sahip olduğu mıknatıslanmada salınımlara neden olur; kayacın sahip olduğu mıknatıslanmada salınımlara neden olur; kayacın sahip olduğu mıknatıslanmada salınımlara neden olur; kayacın sahip olduğu mıknatıslanmada salınımlara neden olur; kayacın sahip olduğu mıknatıslanmada salınımlara neden olur; kayacın sahip olduğu mıknatıslanmatını bir kavram geliştirilmiştir. Rölaksasyon zamanı" (Neel, 1949) olarak adlandırılan bir kavram geliştirilmiştir. Rölaksasyon zamanı manyetik danelerin mıknatıslanmaların yitirme süresini tanımlar ve aşağıdaki ifade ile belirtilir.

$$\frac{1}{\tau} = ce^{-\frac{VH_{c}J_{s}}{2kT}}$$
(1.1)

Burada;

τ: Rölaksasyon zamanı

c : Sabit

V : Dane hacmi

Hc : İç direnme kuvveti

Js : Mıknatıslanma şiddeti

k : Boltzman sabiti

T : Sıcaklık

olarak tanımlanmaktadır.

Sabit bir sıcaklıkta rölaksasyon zamanı dane hacmi (V) ve iç direnme kuvveti (Hc)'ye bağlıdır. Bu durumda küçük daneler düşük, büyük daneler ise büyük rölaksasyon zamanına sahip olacaklardır. Düşük rölaksasyon zamanına sahip olan danelerin zaman içinde asıl mıknatıslanmalarını yitirerek kazandıkları ikincil mıknatıslanmalara viskoz kalıcı mıknatıslanma adı verilir. Eğer (1.1) denkleminde " $H_c.J_s/2k$ " yerine "A" yazılırsa denklem aşağıdaki gibi olur (1.2).

$$\frac{1}{\tau} = ce^{-\frac{V}{T}A}$$
(1.2)

Denklemdeki "c" ve "A" sabit olduğundan, "V/T" oranında T'deki değişim rölaksasyon zamanını büyük ölçüde değiştirecektir. Buna göre, ısıl demanyetizasyon işlemi sırasında numuneyi kademeli bir şekilde ısıtmakla, her kademede numune içindeki belli daneciklere ait "V/T" oranının küçülmesi sağlanır. Dolayısıyla kayacın mıknatıslanmasından sorumlu bazı daneciklerin rölaksasyon zamanı küçülmüş ve sahip oldukları mıknatıslanmalar yok edilmiş olur.

Kayaçların ısı iletim katsayıları çok düşüktür. Bu nedenle, ısıtma işlemi sırasında numunelerin yavaş yavaş ısıtılmasına ve uygulanan sıcaklık adımlarında 20-30 dakika bekleterek sıcaklığın numunenin iç kesimlerine kadar nüfuz etmesine dikkat edilmesi gerekir.

Alternatif Alan Demanyetizasyon: Bu yöntemdeki esas işlem örneği manyetik alanasız bir ortamda şiddeti ve uygulama zamanı bilinen değişken manyetik alana maruz bırakmaktır. Manyetik alanın dalga formu zamana bağlı olarak büyüklüğü lineer azalan sünizoiddir. Manyetik alanın sıfırlandığı bir ortamda alternatif alan kademeli olarak azaltılır ve her seferinde bir öncekine göre ters yönde uygulanır (Şekil 1.3.6). Koersivitesi uygulanan alandan düşük olan daneler bu alanın etkisi altına girerek aynı yönde mıknatıslanır. Bu işlem adım adım arttırıldığında birbirine zıt alanlar oluşur ve her seferinde bu alanların kalıcı mıknatıslanmaya olan katkıları sıfır olur.

Şekil 1.3.6 : Alternatif alan demanyetizasyon işleminin çalışma prensibi.

Ortalama paleomanyetik alan vektörü doğrultularını kullanarak yapılan analiz çalışmaları genellikle jeolojik geçmişte bütünlüğünü korumuş kara parçalarına uygulanır. Bu çalışmalarla söz konusu kara parçasının jeolojik geçmişte geçirdiği dönme (rotasyon) veya ötelenme hareketlerinin yönü ve zamanı saptanmaya çalışılır. Kutup Dolanım Eğrileri hipotezi jeolojik zamanda bir araya gelen herhangi iki kıta veya bölgenin, paleomanyetik kutuplarının da o zaman için birbirine uyması gerektiğini öngörür. Bununla beraber eğer bu kıtalar birleşip belli bir jeolojik zaman aralığında beraber hareket ettilerse tüm bu zaman boyunca paleomanyetik kutupları da birbirlerine uymalıdır. Yaşı bilinen bir kayaç üzerinde yapılan ölçülerle, belli bir noktada, eski manyetik alanın yönünü (zamanımızın coğrafi dilimlerine göre sapma açısı ve inklinasyon) belirtecek yeterli derecede bilgilerin mevcut olduğunu düşünülürse, o noktaya göre eski kutup belirlenebilir.

Bu değerler belirlendikten sonra eski kutbun, zamanımıza göre koordinatlarını elde etmek için stereografik bir dilimleme kullanılabilir. Eski kutuptan başlayarak, aralıklı ufak çemberler çizmek suretiyle, kutbun paralelleri yani paleoenlemleri bulunabilir. Enlem ile inklinasyon arasında sabit bir eşitlik bulunduğundan aynı zamanda, eşit eğilim eğrileri de belirlenebilir (Şekil 1.3.7). Bu eğriler, aynı jeolojik çağa ait, kutbu bulunmuş olan bölgenin izoklinik eğrileridir. Paleomanyetik verilerin toparlanması, kısaca, aynı bir jeolojik çağa, fakat çeşitli tektonik ünitelere ait kutupları çakıştırma işleminden ibarettir. Diğer bir deyimle, kıtaların çeşitli ünitelerinin izoklinik eğrileri arasındaki ilgiyi bulmaktır. Dünya yüzeyinde bir noktadaki aksiyel dipol alanı vektörünün eğim açısı 'I' ile noktanın enlemi ' λ ' arasında

$$tgI = 2tg\lambda \implies \lambda = arctg\left(\frac{1}{2}tgI\right)_{(1.3)}$$

(1.3) bağıntısı vardır. Bu eşitlik ile alınan numunelerin kalıcı mıknatıslanmalarını kazandıkları zamandaki enlemleri hesaplanabilir.

Şekil 1.3.7 : Yerkürenin enlem- aksiyel dipol alan vektör ilişkisi (Butler, 1992).

Arazide seçilen kayaçlardan alınan numuneler laboratuvarda incelendikten sonra bu kayaç birimine ait ortalama mıknatıslanma doğrultusu saptanır. Bölge yalnızca dönme hareketi geçirmişse, mıknatıslanma doğrultusunun sapma açısı sıfırdan farklı (D≠0) çıkar. Eğer bölge yalnızca kuzey ve güney yönlü paleomanyetik ölçümlerle saptanabilecek büyüklükte ötelenme hareketi geçirmişse paleomanyetik alan vektörünün eğim açısı aksiyel dipol alanının eğim açısından farklı bulunur. Ancak sadece doğu-batı doğrultulu ötelenme hareketi yapmış ise bu hareketin paleomanyetik verilerle saptanabilmesi imkansızdır.

Bir kara parçasının belli bir jeolojik devirde dünya yüzeyindeki konumunu belirlemek için kaya parçası, paleomanyetik ölçümlerinden elde edilen 'I' açısından hesaplanan 'ø' enlemine getirilir. Daha sonra mıknatıslanma vektörünün sapma açısı 'D=0' olacak şekilde konumu etrafında döndürülür ve orijinal konumu bulunmuş olur. Tüm bu işlemler yapılırken kara parçasının en yakın jeolojik geçmişteki yeri belirlenip daha yaşlı devirlere doğru gidilir ve son konumundan diğerine geçerken en küçük hareketi yapmış olmasına dikkat edilir.

1.3.2 Petrografi çalışmaları

Petrografi çalışmaları kapsamında ilgilenilen kaya türlerinden ince kesitler hazırlanarak İTÜ Avrasya Yer Bilimleri Enstitüsü İnce Kesit Laboratuvarı'nda petrografi mikroskobunda incelemeleri yapılmıştır.

1.3.3 Paleontoloji çalışmaları

Bu çalışma kapsamında İstanbul Paleozoyiği içerisinde tanımlanmış fosil literatürü araştırılmış ve tek bir liste altında toplanmıştır. Arazi çalışmalarında ise bol makro fosilli olduğu bilinen Pendik Formasyonu'ndan brakiyopod örnekleri toplanarak Londra Doğa Tarihi Müzesi'ne, Robin Cocks'a yollanmış ve tayinleri gerçekleştirilmiştir.

1.4 Önceki Çalışmalar

Bölgenin tektonik evrimini belirlemek adına yapılan çalışmaların başlıcaları; Tollman (1965 & 1968), Ustaömer ve Robertson (1993), Okay ve diğ.(1994), Kalvoda ve diğ. (2003), Bozkurt ve diğ. (2008), Okay ve diğ.(2008), Özgül ve Şengör (2009), Ustaömer ve diğ. (2009), Şengör ve Özgül (2010), Okay ve diğ. (2011) tarafından gerçekleştirilmiştir.

Tollman (**1965, 1968**) İstanbul tektonik birliğinin Istranca Masifi dahil olmak üzere tüm Batı Pontidleri üzerleyen büyük bir napın kalıntısını temsil ettiğini öne sürmüştür.

Ustaömer ve Robertson (1993) İstanbul tektonik birliğinin geçmişini olası iki farklı aşamada anlatmışlardır. İlki İstanbul tektonik birliğinin Gondwana'ya ait olduğu ancak daha sonra Lavrasya ile birleştiği, ikincisi Karadeniz havzası açılına kadar Lavrasya'nın güney kıyısına ait olduğudur.

Okay ve diğ. (**1994**) Kretase öncesi İstanbul tektonik birliğinin Odessa kıta sahanlığı, Moezya platformu ve Kırım arasında bulunduğu, Albiyen-erken Eosen boyunca Batı Karadeniz Havzası'nın açılmasıyla, iki transform fay boyunca güneye sürüklendiğini öne sürmüşlerdir.

Kalvoda ve diğ. (2003) çalışmalarında Neoproterozoyik ve Paleozoik dönemde İstanbul tektonik birliği ile Brunovistuliyen arasındaki benzerlikleri göstermişlerdir. İstanbul ve Zonguldak'taki çökel birimler Moravya Karstı ve Ludmirov fasiyesleri ile ilişkilendirilirken, Bolu Masifi'nin de Brno Masifi ile olan benzerliğinden bahsedilmiştir. Geç Viseyan- erken Namuryen ile Westphaliyen-Stephaniyen dönemlerinde benzer Variskan Deformasyonunun gözlendiği bu iki ünite arasındaki sıkı korelasyona dayanarak İstanbul tektonik birliğini Renohersinyen ve Orta Avrupa'daki SubVariskan Zonu'nun muadili olarak yorumlamışlardır. **Bozkurt ve diğ.** (2008) İstanbul'un çevresindeki birimlerden belirgin bir farklılık gösterdiğini vurgulayan çalışmalarında Variskan metamorfizması görülmeyen bu tektonik birliği İngiltere, KB Avrupa Kanada'nın Maritime bölgesindeki Avalonya temeli ile ilişkili olduğunu, İstanbul tektonik birliğinin Avalonya'nın doğu kısmını temsil ettiğini öne sürmüşlerdir. Çalışmaya göre, İstanbul tektonik birliği bugünkü konumuna sol yanal fayların denetimi ile yerleşmiştir.

Okay ve diğ. (2008) İstanbul tektonik birliğinin Kadomiyen kristalen temelinin Geç Proterozoyik yaşlı olduğunu, Ordovisyen granitlerinin İstanbul tektonik birliğinin Gondwana'dan riftleşerek ayrılması sırasında (Reik okyanusunun oluşumu sırasında) sokulduğunu belirtmiştir. Ayrıca İstanbul ve Sakarya tektonik birliklerinin temel yaşı, Paleozoyik stratigrafisi, paleobiyocoğrafyası ve jeolojik evrimi ile Avalonya ve Armorika ile karşılaştırılabileceğini öne sürmüştür.

Özgül ve Şengör (2009) İstanbul tektonik birliğinin stratigrafik gelişimini Ordovisyen arkozlarının soğuk Godwana-Land koşullarını temsil ettiğini öne sürerek Teik Okyanusu'nun güney kenarını oluşturan Montagne Noir ile deneştirmişlerdir. Orta Devoniyen faunasının tipik bir Reik Okyanusu faunası olduğunu iddia etmişlerdir. Bu iki okyanusun İstanbul civarında, gelişmekte olan İskitidlerin kuzey kenarı boyunca, doğuda Paleo-Tetisi oluşturacak şekilde birleştiğini öne sürmüşlerdir. Bu nedenle İstanbul tektonik birliği Pangea'nın oluşumu sırasında Hersinidler ile İskitidleri birbirine bir köprü niteliğindedir.

Ustaömer ve diğ. (2011) Ordovisyen kuvarsitleri üzerinde yapılan kaynak alan analizleri ve zirkon yaşlandırma analizlerinden ağırlıklı olarak Mezo-Paleo Proterozoyik yaşları elde etmişler ve İstanbul tektonik birliğinin Gondwana'nın KB kenarında Amazonya'ya yakın bir yerde bulunduğunu belirtmişlerdir.

Şengör ve Özgül (2010) Yayımladıkları yapı kesitleri, tüm ilin jeolojik yapısını gösteren ilk kesitlerdir ve eldeki kısıtlı veriye dayanan kontrol ve düzeltmeye ihtiyaç gösterecek bir varsayım olarak sunulmuşlardır.

Okay ve diğ. (2011) İstanbul Alt Karbonifer kumtaşları için yaptıkları kumtaşı petrografisi ve zirkon-rutil yaşları çalışmasında kaynak alanın Neoproterozoyik bir temel ve bu temeli üzerleyen geç Devon-erken Karbonifer magmatik-metamorfik kayalardan oluştuğunu belirtmişlerdir. İstanbul tektonik birliğinin Karbonifer flişi malzemesinin, İstanbul tektonik birliğine çarpan bir Armorikan levhacığından gelmiş

olduğunu düşünerek Karbonifer'de İstanbul tektonik birliğinin merkezi Avrupa'ya yakın bir bölgede yer aldığını ve Trans-Avrupa kenedi boyunca sol yönlü bir makaslama ile Kretase'de Karadeniz kuzeyindeki konumuna ulaştığını öne sürmüşlerdir.

Okay ve Topuz (2017) Geç Paleozoyik'te İstanbul Zonu'nun Moezya ve İskitid Platformu ile birlikte Lavrusya'nın güneye bakan sınırında bulunduklarını ve Variskan Orojenezi'nin kıvrım ve bindirme kuşağını temsil ettiklerini öne sürmüşlerdir. Çalışmalarında Karadeniz Bölgesi'nde çarpışma yaşanmadığını ve bu bölgenin Paleo-Tetis Okyanusu kenarında gelişimine devam ettiğini belirtmişleridir.

Bölgenin paleomanyetik evrimini belirlemek amacıyla yapılan başlıca çalışmalar; Evans ve diğ. (1991), Öksüm ve diğ. (2015).

Evans ve diğ. (1991) İstanbul tektonik birliğinde yaptıkları çalışmada İstanbul tektonik birliğinin Lavrasya'nın güney kenarına ait olduğu savını temel alarak 2 farklı modele göre yorum yapmışlardır. İlki İstanbul Napı ve Balkan parçalarının Paleotetis'in kapanmasına bağlı olarak yanal atımlı hareketlerle dönmeye maruz kaldığı ikincisi ise dönmenin olmadığı durumda Paleozoyik birimlerin Lavrasya'nın güneyi ile bağlantılı olduğu ve ayrılıp Lavrasya ile tekrar bir araya geldiğinde bloğun kuzeyinde bir kenet oluşturduğudur (İstanbul Napı). Çalışmalarında önemli miktardaki numunelerinde remanyetizasyona rastlamışlardır. Erken ve Orta Karbonifer yaşlı olduğunu öne sürdükleri bu olayı kıvrım testi gerçekleştiremediklerinden tam olarak detaylandıramamaktadırlar. Paleozoyikte Lavrasya'nın güney yarım kürenin düşük enlemelerinde, Gondwana-Land'ın ise güney yarımkürede yüksek enlemlerde (40⁰- 50⁰) olmasından dolayı İstanbul tektonik birliğini Lavrasya'nın bir uzantısı olarak düşünmüşlerdir. Kısıtlı numune sayısına dayanan çalışmalarının daha kapsamlı olarak tekrar ele alınmasını gerektiğini de belirtmişlerdir.

Öksüm ve diğ. (2015) İstanbul ve Çamdağ-Yığılca bölgelerinin Ordovisiyen kayaçlarını inceleyen araştırmacılar İstanbul Bölgesi için 16°G, Çamdağ-Yığılca Bölgesi için 31°G ve her iki bölgenin birlikte değerlendirilmesi durumunda ise tüm İstanbul tektonik birliği için 22°G paleoenlemlerini hesaplanmışlardır. Paleoenlem ve önceki zirkon analizlerinde yola çıkarak Erken Paleozoyik'te Baltık kıtasından riftleşmiş, yanal atımlı faylar boyunca hareket ederek Karbonifer' de Lavrasya'ya eklendiğini, ya da Amazonya kıtası civarında Gondwana Land'dan riftleşerek yine
yanal atımlı faylar boyunca uzun mesafeler katederek Karbonifer'de Lavrasya'ya eklendiğini öne sürmüşlerdir.

Bölgenin Paleozoyik yaşlı kayaçların paleontolojisi hakkında yapılan başlıca çalışmalar; Kozlu ve diğ. (2002), Noble ve diğ. (2008), Nazik ve diğ. (2012), Sayar ve Cocks (2012), Göncüoğlu ve diğ. (2014).

Kozlu ve diğ. (2002) Çamdağ'da yaptıkları çalışmada Geç Silüriyen Konodontlarını incelemiş Karnik Alpleri, Prag Havzası, GB Sardinya, Urallar-Kordilerya bölgeleriyle benzerlik gösterdiğini belirtmişlerdir.

Noble ve diğ. (2008) Baltalimanı Formasyonu Radyolaryalarında yaptıkları çalışmadan bu birimin yaşını Fransa, Orta Pireneler, Almanya'da bulunan eşlenikleri ile beraber değerlendirerek Orta-Üst Turneziyen olarak belirlemişlerdir

Nazik ve diğ. (2012) İstanbul, Denizliköyü bölgesinde yaptıkları çalışmada Fameniyen (Ü. Devon.) Ostrokodlarını inceleyerek bunların Türingiyen, Renik Masifi, Kantabriya Dağları, Pireneler, Kutsal Haç Dağları, K. Afrika ve Çin ile benzerlik sunduğunu öne sürmüşlerdir.

Sayar ve Cocks (2012) İstanbul ve Yığılca'da Gözdağı Formasyonu'ndan topladıkları brakyapodlar üzerinde yaptıkları çalışmada Geç Ordovisyen Hirnantian brakyapod faunasını belirlemişler ve bu bilgiye dayanarak bu bölgelerin orta enlemlerde olması gerektiğini (~ 40^0 G) öne sürmüşlerdir.

Göncüoğlu ve diğ. (2014) Zonguldak'ta Bakacak Formasyonu üzerinde yaptıkları çalışmada erken-orta Ordovisyen graptolitleri tespit etmişler ve bu bölgeyi Peri-Gondwana ile ilişkili olarak düşünmüşleridir.

2. BÖLGESEL JEOLOJİ

2.1 Paleozoyik Yaşlı Birimler

İstanbul tektonik birliği orta-yüksek dereceli metamorfizmaya uğramış Neoproterozoyik yaşlı, muhtemelen Pan-Afrikan bir temel (Ustaömer ve diğ. 2005; Chen ve diğ. 2002) ve üzerine gelen Alt-Ordovisyen'den Alt Karbonifere kadar uzanan, sürekli, iyi gelişmiş, yer yer düşük derece metamorfizmaya maruz kalmış çökel bir istiften meydana gelmektedir (Şekil 2.1; EK A). Bu Paleozoyik istif Alt Ordovisyen-Orta Ordovisyen aralığında regresif bir özellik sunarken Orta Ordovisyen-Alt Karbonifer aralığında transgressif olarak gözlemlenir. Ediyakaran (548-545 My) Rb-Sr mika yaşları elde eden Chen et al. (2002) bölgede meydana gelen Hersiniyen, Kimmerid, Alpin orojenezleri sırasında mika yaşlarını sıfırlamaya yetecek kadar bölgenin ısınmadığını öne sürmüştür.

2.1.1 Kocatöngel Formasyonu

İstanbul Paleozoyiği'nin en alt birimi olan Kocatöngel Formasyonu'nun temel ile olan ilişkisi İstanbul il sınırları içerisinde gözlenmez. Gözlemler ise İstanbul tektonik birliğinin doğusundan gelmektedir. İstanbul içerisindeki gri-yeşil ince laminalı şeylsilttaşı ardalanmasını ilk Gedik ve diğ. (2002) belirlemiştir. Özgül (2012) bu çökellerin varv yapıları gösterdiğini, Gedik ve diğ. (2002) ise derin deniz ortamına ait olduklarını öne sürmüşlerdir. Prof. Daniel Bernoulli birlikteliğinde gerçekleştirdiğimiz arazi çalışmalarında ise bu istifin denizel ya da gölsel türbiditler olduğu kanısına varılmıştır. Tüm Bouma serisi gözlemlenmese de dereceli tabakalanma, paralel laminasyon Mahmut Şevket Paşa köyü doğusunda görülmektedir.

nifer	Orta		Trakya Fm.	
Karbo	Alt			
en	Üst		Denizli Köyü Fm.	
voniy	Orta			
)e/			Pendik Fm.	
	Alt			
	Pridoli		Politli Em	
	Ludlow			
yen	Wenlock			
Silür	Llandovery			
	Üst		Yayalar Fm.	
/en			Audos Em	
visy	Orta		Kinaliada Fm.	
rdo		oo	Kurtköy Fm.	
0	Alt		Kocatöngel Fm.	

Şekil 2.1 : İstanbul Paleozoyiği'nin genelleştirilmiş stratigrafik kesiti.

Şekil 2.1.1 : Kocatöngel Formasyonu'nun genel özelliklerini yansıtan yüzlek (Polonezköy).

2.1.2 Kurtköy Formasyonu

Kocatöngel Formasyonu'nu üzerleyen Kurtköy Formasyonu'nun alt seviyeleri moryeşil renkte arkozik şeyl-silttaşı-kumtaşı ardalanmasından oluşurken üst seviyelere doğru kaba taneli kumtaşı ve konglomeralara geçiş yapar. Paeckelmann'ın (1938) "Hauptkonglomerate und Arkose-Horizont" olarak tanımladığı birim Haas (1968) tarafından Kurtköy Formasyonu olarak adlandırılmıştır. Türbidit akıntısı olarak başlayan çökelme sığ denizel koşullara ardından da karasal ortama dönüşmüştür. Gedik ve diğ. (2002) formasyonun alt kısmının delta ortamında çökeldiğini öne sürmüştür. Çakıltaşı/kumtaşı/kiltaşı geçişlerinin kısa mesafelerde olması ve formasyonun bir kilometreden fazla olan kalınlığı bunun tektonik olarak aktif çöküntü alanında oluştuğunu işaret etmektedir. Bol miktarda feldspat tanesi içermesi ve bunların da ayrışmamış halde bulunmaşı nedeniyle Kurtköy Formasyonu'nun ya kurak veya soğuk veya muhtemelen kurak ve soğuk bir ortamda çökeldiği söylenebilir. Görür ve diğ. (1997) iklimsel koşulların Ordovisyen Buzullaşması (Sahra Buzullaşması) ile alakalı olduğunu önermiştir. Hem Kocatöngel hem de Kurtköy formasyonlarının yaşları stratigrafik olarak tanımlanmıştır. Dean ve diğ. (2000) Zonguldak, Karadere mevkiinde acritarch fosillerine dayanarak Kurtköy Formasyonu'nun benzer seviyeleri için Tremadokyen (Üst Ordovisyen) yaşı tespit etmiştir. Bu çalışmalara istinaden Kurtköy ve Kocatöngel formasyonlarının yaşı Alt Ordovisyen olarak kabul edilmiştir (Özgül 2012).

Şekil 2.1.2 : Kurtköy Formasyonu Bakacak Üyesi'ne ait yüzlek (Alemdağ kavşağı).

Şekil 2.1.3 : Kurtköy Formasyonu Süreyyapaşa Üyesi'ne ait yüzlek (Başıbüyük)

Kurtköy Formasyonu literatürde ikiye ayrılır. Formasyonun alt kısmını oluşturan ince laminalı kiltaşları ve silttaşları Bakacak Üyesi (Şekil 2.1.2) olarak adlandırılırken, arkozik kumtaşlarını içeren birim ise Süreyyapaşa Üyesi (Şekil 2.1.3) olarak adlandırılmıştır.

2.1.3 Kınalıada Formasyonu

Kurtköy Formasyonu'nun karasal kırıntılıları Kınalıada Formasyonu'nun feldspatik kumtaşları ve kuvars arenitleri ile devam eder. Bu formasyon Özgül (2011, 2012) tarafından ayrı bir formasyon olarak haritalansa da Kaya (1978) ve Önalan (1981) Aydos Formasyonu'nun bir üyesi olarak düşünmüşlerdir. Arazi çalışmalarında ise Kınalıada Formasyonu'nu Aydos Formasyonu'ndan ayırt etmek mümkün olmamıştır.

2.1.4 Aydos Formasyonu

Kurtköy Formasyonu ile yanal geçişli olan Aydos Formasyonu çökelleri gel-git ortamını karakterize etmektedir (Şekil 2.1.4). İlk olarak Paeckelmann (1938) tarafından farkedilen bu birim Önalan (1981) tarafından formasyon adı altında tanımlanmıştır. Aydos Formasyonu plaj veya lagün ortamında çökeldiği düşünülen kuvars arenit, kuvars konglomeraları ve şeyller ile temsil edilir. Bu formasyonun çökelmesiyle regresyon rejimi yerini transgresyona bırakmıştır. Haas (1968) ve Önalan (1981) rapor ettikleri iz fosillere dayanarak Üst Ordovisyen yaşını önermişlerdir. Özgül (2012) Aydos Formasyonu'nu geçişli olarak üzerleyen Yayalar Formasyonu'nu hesaba katarak Üst Ordovisyen-Alt Silüryen olarak kabul etmiştir. Güncel yaş verileri göz önünde bulundurularak (Sayar ve Cocks 2013) bu çalışmada Aydos Formasyonu'nun yaşı Orta-Üst Ordovisyen olarak kabul edilmiştir. Aydos Formasyonu'nuna ait kırıntılı zirkonlar üzerinde kaynak analizi için yapılan U-Pb yaşlandırmaları sonucunda İstanbul tektonik birliğinin Amazon Kratonu'ndan beslendiğini öne sürerek Gondwana-Land'ın parçası olduğunu belirtmiştir (Ustaömer ve diğ. 2011). İstanbul tektonik birliğinin Avrupa masifleri ile olan çökelme ortamları benzerliği, Pan-Afrikan özelliği sergileyen bir temele sahip oluşu, Orta Ordovisyen için Bohemya Masifi ile gösterdiği fauna benzerliği (Sayar 1964), geç Ordovisyen yaşlı Hirnantian faunasının 30-40°S paleoenlemi işaret etmesi, arkozların soğuk ve kuru çökelme ortamı gereği etkilendiği düşünülen Sahra buzullaşmasına olan yakınlığı nedeniyle Gondwana-Land kökenli oluşu mantığa yatkındır.

Şekil 2.1.4 : Aydos Formasyonu'na ait yüzlek (Aydos Ormanı güneyi).

2.1.5 Yayalar Formasyonu

Aydos Formasyonu'nu takip eden bol mikalı feldspatik kumtaşından oluşan Yayalar Formasyonu ilk olarak Paeckelmann (1938) tarafından "Halysites-Grauwacken-Horizont" olarak tanımlanmış sonrasında Haas (1968) Yayalar Formasyonu olarak adlandırmıştır (Şekil 2.1.5). Tüysüz ve diğ. (2004) tarafından hazırlanan stratigrafik komisyon kitabında Önalan'ın (1981) adlandırması tercih edildiğinden Gözdağı Formasyonu olarak da anılmıştır. Barındırdığı brakyapod, conularya, graptolit, konodont fosilleri dolayısıyla (Sayar 1964, 1979, 1984; Haas 1968; Önalan 1981; Göncüoğlu ve diğ. 2006) Llandoverian (Alt Silüryen) yaşında kabul edilmiştir. Sayar ve Cocks (2013) tarafından yapılan çalışma ise Yayalar Formasyonu'nun taban yaşının Üst Ordovisyen'e kadar indiğini göstermiştir.

Şekil 2.1.5 : Yayalar Formasyonu'na ait yüzlek (Hereke, Kocaeli).

2.1.6 Pelitli Formasyonu

Yayalar Formasyonu'nun ön delta fasiyesinin ardından havzada derinleşme devam ederek sığ denizel kireçtaşlarının çökelmesine olanak sağlamıştır. Pelitli Formasyonu'na ait bu kireçtaşları ilk olarak Penck (1919) tarafından çalışılmış ve birçok isimle anılmıştır. Fosil açısından (mercan, krinoid, brakyapod, stromatoporoyid) zengin olan bu birim Üst Silüryen-Alt Devoniyen yaş aralığına denk gelmektedir (Haas 1968; Abdüsselamoğlu 1977; Saydam 2005; Göncüoğlu ve diğ. 2006). Pelitli Formasyonu genel olarak açık kıta sahanlığındaki resif kenarını ve sıcak iklim koşullarını temsil etmektedir (Şekil 2.1.6; Şekil 2.1.7).

Şekil 2.1.6 : Pelitli Formasyonu'na ait kireçtaşlarının görüldüğü yüzlek (Çubuklu, Beykoz).

Şekil 2.1.7 : Pelitli Formasyonu'na ait kireçtaşları içerisinde fosillerin görüldüğü yüzlek (Beykoz)

2.1.7 Pendik Formasyonu

Pendik Formasyonu'nun mikalı ve bol fosilli şeylleri Pelitli kireçtaşlarını uyumlu olarak üzerler. Bu birim ilk olarak Paeckelmann (1938) tarafından "Pendik Schichten" adıyla tanımlanmış sonrasında farklı araştırmacılar tarafından Kartal Formasyonu olarak adlandırılmıştır (Önalan 1981; Tüysüz ve diğ. 2004). Özellikle formasyonun taban kısmı makrofosilce çok zengindir (Şekil 2.1.8). Makrofosiller elde edilen yaşlar

formasyon için Alt-Orta Devoniyen yaşlarını göstermektedir (Paeckelmann 1938; Babin 1973; Carls 1973; Gandl 1973; Kaya 1973; Önalan 1981; Dojen ve diğ. 2004; Sayar ve Cocks 2013).

Şekil 2.1.8 : Pendik Formasyonu'na ait kumtaşı-silttaşı içerisinde trilobit ve brakyapod fosillerin görüldüğü yüzlek (Anadolu Hisarı, Göksu Deresi çevresi).

2.1.8 Denizliköyü Formasyonu

Uyumlu olarak üzerleyen Denizli Köyü Formasyonu kireçtaşı, şeyl, yumrulu kireçtaşı, fosfatlı silis yumruları içeren radyolaryalı çörtlerden oluşur (Şekil 2.1.9). Bu birim oksijence zengin, açık deniz koşullarını temsil etmektedir. Farklı paleontolojik çalışmalar geç Emsiyen-Turneziyen yaşı vermektedir (Abdüsselamoğlu 1963; Haas 1968; Noble ve diğ. 2008). Formasyonun en üst kısmı kireçtaşından yoksun olarak sadece fosfatlı çört içerir.

Şekil 2.1.9 : Denizliköyü Formasyonu'na ait yumrulu kireçtaşlarının görüldüğü yüzlek (Denizliköyü).

2.1.9 Trakya Formasyonu

Derin denizel Denizli Köyü Formasyonu üzerine Trakya Formasyonu'nun kalın türbiditik kireçtaşı arakatkılı fliş çökelleri gelir (Şekil 2.1.10). Bu birimdeki ilk çalışmayı yapan Penck (1919) bunun karasal çökeller olduğunu düşünmüştür. Paeckelmann (1938) ise bunları denizel çökeller olarak kabul etmiş ve Almanya'daki Kulm serisi ile deneştirmeye çalışmıştır. Birimden elde edilen fosiller geç Turneziyen-geç Viseyen yaşı vermektedir (Abdüsselamoğlu 1963; Kaya ve Mamet 1971; Mamet 1973; Göncüoğlu ve diğ. 2006). Fliş içerisindeki deformasyon ve üzerleyen birimlerle arasındaki uyumsuzluk araştırmacıların bu fliş çökeliminin Avrupa'daki Hersiniyen Orojenezi ile ilgili olduğunu düşünmesine sebep olmuştur (Paeckelmann 1938; Ketin 1959; Görür ve diğ. 1997). Okay ve diğ. (2011) kaynağı Armorika Masifi olduğunu öne sürdükleri geç Devoniyen-erken Karbonifer magmatik ve metamorfik bir temelden beslendiğini önermiştir. Ancak, İstanbul tektonik birliğinin Hersinidleri oluşturan çarpışma esnasındaki konumu hala tartışmalıdır.

Şekil 2.1.10 : Trakya Formasyonu'nun görüldüğü yüzlek (Maslak).

İstanbul Paleozoyiği'ndeki esas yapısal bileşen K-G yönlü bindirmelerdir. Bu bindirme faylarının verjansı batı yönlü olup, tüm istifin bu deformasyonu geçekleştirebilmesi için bir décollement yüzeyinin gerekliliği kaçınılmazdır (Şengör ve Özgül 2011).

Şekil 2.1.11 : Denizliköyü Formasyonu'na ait bu örnekte bir kıvrım bindirme kuşağı olarak gelişen İstanbul'un sahip olması gereken décollement yüzeyi mostra ölçeğinde görülmektedir (Denizliköyü).

Yüksek dereceli metamorfizmanın eksikliği ve deformasyon yapılarının sığ oluşu İstanbul Paleozoyiği'nin kıvrım ve bindirme kuşağında yer aldığını göstermektedir. Ön ülke veya ard ülkede olduğuna dair elimizde henüz bir bilgi yoktur. Ancak küçük ölçekli yapılar ve fliş içerisinde herhangi bir ofiyolit malzemesinin bulunmaması ard ülke seçeneğini güçlendirmektedir.

2.1.9 Sancaktepe Graniti

Erken Karbonifer sonu meydana gelen ve tam olarak da açıklığa kavuşmamış çarpışma sonucu bölge kıvrımlanıp, faylanmış ve nihayetinde yükselerek su seviyesinin üstüne çıkmıştır. Permiyen granit sokulumları ve karasal çökellerle temsil edilir. Sancaktepe Graniti (253.7±1.75 My) Avrupa'da da yaygın olan Hersiniyen sonrası çarpışma rejiminin bir ürünü olarak değerlendirilmektedir (Bürküt 1966; Yılmaz 1977; Yılmaz-Şahin ve diğ. 2010).

2.2 Mesozoyik Yaşlı Birimler

Permiyen?- erken Triyas karasal çökelleri uyumsuz olarak Paleozoik birimleri üzerler. Mesozoyik birimler İstanbul ve Kocaeli'nde birbirinden farklı özellikler göstermektedir (Şekil 2.14).

Şekil 2.2.1 : İstanbul ve Kocaeli Mesozoyik birimlerinin genelleştirilmiş stratigrafik kesiti.

2.2.1 Kapaklı Formasyonu

Triyas istifi Kocaeli'nde Kapaklı Formasyonu olarak adlandırılan ve üstüne geldiği birimlerin kırıntılılarını barındıran kırmızı renkli konglomera, kumtaşı ve silttaşı ile başlar (Altınlı 1968; Tüysüz ve diğ. 2004). Toula'nın (1898) Rothliegendes olarak adlandırdığı bu çökeller sıcak ve kurak bir iklimi işaret etmektedir. Permo-Triyas yaşlı Kapaklı Formasyonu'nun içerdiği bazalt ve riyolit katkıları Triyas'ta Orta Asya'dan

Güney Avrupa'ya uzanan gerilmeli yanal atım rejiminin (Natal'in ve Şengör 2005) etkisine girerek riftleştiği düşünülmektedir.

2.2.2 Erikli Formasyonu

Kapaklı Formasyonu sığ denizel kireçtaşı ve kırıntılılardan oluşan İskitiyen yaşlı Erikli Formasyonu'na geçiş yapar (Özgül 2011). Bu formasyon ilk olarak Yurtsever (1982) tarafından tanımlanmıştır.

2.2.3 Demirciler Formasyonu

Alt Triyas Demirciler Formasyonu'nun kumlu kireçtaşı karasal ortamdan plaj ortamına geçildiğini göstermektedir (Tüysüz ve diğ. 2004).

2.2.4 Ballıkaya Formasyonu

İskitiyen ?-Aniziyen yaşlı Ballıkaya Formasyonu dolomit kireçtaşı ve dolomit içerir. Demirciler Formasyonu'na nazaran ortamın derinleştiği açık kıta sahanlığına ulaşıldığını göstermektedir (Yurtsever 1982).

2.2.5 Tepecik Formasyonu

Geç Aniziyen-erken Karniyen yaşındaki Tepecik Formasyonu bolca Ammonit içeren kireçtaşı ve çakmaktaşı barındırır. Üstüne geldiği Ballıkaya Formasyonu'na göre de daha derin bir çökelme ortamını temsil eder (Erguvanlı 1947; Altınlı ve diğ. 1970; Yurttaş-Özdemir 1971). Kırmızı, yumrulu, pelajik kireçtaşından oluşan bu formasyonun üst kısımları Jura Neo-Tetis Okyanusu'nun Ammonitico Rosso veya Hallstatt Fasiyesi'nin özellikleri gösterir. Formasyonun en üst kısımında Halobia sp.içeren fliş tipi çökel istifinden oluşur (Nicora 1973; Yurttaş-Özdemir 1973; Gedik 1975; Dağer 1980; Sestini 1988).

2.2.6 Kocatarla Formasyonu

İstanbul'un kuzeybatısında, Kilyos civarında Triyas yaşlı birimler bindiren dilimler halinde görülmektedir. İskitiyen (Alt Triyas) yaşlı Kocatarla Formasyonu gaz boşlukları içeren, ileri derecede ayrışmış, uniform, masif bazaltik lav akıntısından oluşur. Uyumsuz olarak Karbonifer yaşlı birimleri örter. Bu lav akıntıları Kapaklı Formasyonu içerisindeki bazalt katkıları ile deneştirilebilir (Kaya ve Lys 1979- 1980).

2.2.7 Çiftalan Formasyonu

Kocatarla Formasyonu'nun ardından gelen Çiftalan Formasyonu beyazımsı, kalın tabakalı masif, ince ile kaba arası taneli sublitarenit ve kuvarsarenitten meydana gelmektedir. Çiftalan Formasyonu ile Kocatarla Formasyonu arasındaki ilişki mostrada gözlenememektedir.

2.2.8 Köseler Formasyonu

Geç İskitiyen-Aniziyen yaşlı Köseler Formasyonu esas olarak dolomit kireçtaşından oluşmaktadır. Yaş ve litoloji benzerliğine dayanarak Kocaeli Triyası'ndaki Ballıkaya Formasyonu ile deneştirilebilir.

2.2.9 Bakırlıkıran Formasyonu

Kocaeli'nde görülen Tepecik Formasyonu İstanbul'da gözlenmez, ancak Karniyen? yaşlı Bakırlıkıran Formasyonu her iki bölgede de bulunur ve çeşitli sayıda fosil içeren kumtaşından oluşur.

2.2.10 Çerkeşli Formasyonu

Geç Triyas ve Jura yaşlı kayaçlar bölgede bulunmazken, erken Kretase ise Gebze'de küçük bir bölge haricinde herhangi bir yerde rapor edilmemiştir. Kaya ve diğ. (1987) Triyas yaşlı birimlerin üzerine uyumsuz olarak gelen Çerkeşli Formasyonu bu birimlerinden türeyen kireçtaşı, konglomeralardan oluşur. Konglomeraların hamurunda bulunan foraminifer ve şeyller içerindeki ammonit fosilleri Alt Kretase (Valanjiniyen) yaşı vermektedir. Jura yaşlı birimlerin bulunmaması orojenik olaylar sırasında ve sonrasında bölgenin yükselip aşınmaya maruz kalmasıyla açıklanabilir.

2.2.11 Hereke Konglomeraları

Geç Kretase Kimmerid deformasyonundan sonra yeni bir transgresyon dönemidir. Kretase yaşlı birimler Paleozoyik ve Triyas yaşlı birimleri uyumsuz olarak üzerler. Kocaeli'ndeki Hereke konglomeraları (Hereke Pudingi) çeşitli boydaki tanelerden oluşur ve yüksek enerjili bir ortamı işaret eder (Erguvanlı 1949; Altınlı ve diğ. 1970). Alaca pembe rengi İstanbul'un en gözde yapı taşı olmasını sağlamıştır.

2.2.12 Kutluca Kireçtaşı

Kampaniyen yaşlı Kutluca Kireçtaşı Hereke konglomeraları ile yatay geçişlidir. Bu birim Erguvanlı (1949) tarafından rudist kireçtaşı (Gebzetaşı) olarak da adlandırılmıştır.

2.2.13 Sarıyer Grubu

İstanbul'un doğusunda konglomeralar çökelirken, kuzeyde ise Sarıyer Grubu'nun andezitik volkanikleri Karadeniz sahili boyunca tüm Pontidleri kaplar. İstanbul'da Sarıyer Grubu olarak, daha doğuda ise Yemişliçay Grubu olarak adlandırılan bu birim bazaltik ve andezitik tüfler, aglomeralar, lav akıntıları, volkanik kökenli kumtaşları ve şeyllerden meydana gelir (Ketin ve Gümüş 1963; Tüysüz ve diğ. 2004) (Şekil 2.15). Gedik ve diğ. (2005) volkanik kökenli serilerden geç Santoniyen-Kampaniyen yaşlı planktonik foraminifer ve nanofosiller tanımlamıştır.

Şekil 2.2.2 : Sarıyer Grubu'na ait soğuma kolonlarının görüldüğü andezitik-bazaltik bileşimdeki yüzlek, Karaburun (Bakış yönü: Kuzey)

2.2.14 Çavuşbaşı Granodiyoriti

Çavuşbaşı granodiyoriti ve ona bağlı olarak gelişen andezitik dayklar İstanbul'un birçok yerinde gözlenmektedir. Geç Kretase yaşlı (67.91±0.63 My ve 67.59±0.5 My) Çavuşbaşı Granodiyoriti ince-orta tane boylu granodiyoritik-tonalitik bileşime sahip,

I tipi kalk-alkalik karakterdedir (Yılmaz-Şahin ve diğ. 2012). Kalk-alkalin andezitikdasitik bileşimdeki dayklardan yapılan U-Pb yaşlandırma çalışmaları 72.49±0.79 My'dan 65.44±0.93 My'a uzanan yaş aralığı vermektedir (Aysal ve diğ. 2015). Pontidlerin kuzey sınırı boyunca uzanan bu magmatik yayın kaynağı Neo-Tetis okyanusunun İzmir-Ankara-Erzincan kenedi boyunca kuzeye dalması sonucudur (Şengör ve Yılmaz 1981; Keskin ve Tüysüz 1999).

3. PALEOMANYETİZMA ÇALIŞMALARI

Arazi çalışmalarında elde edilen 54 mevkiye ait örneklerin çoğunluğu Oslo Üniversitesi The Centre for Earth Evolution and Dynamics (CEED) Ivar Giæver Jeomanyetik Laboratuvarı'nda, volkanik kökenli olanlar ise Yılmaz İspir Paleomağnetizma Laboratuvarı'nda kesilip, ölçülmüştür.

Arazi çalışmaları sırasında kayaçlardan alınan yönlü örnekler laboratuvar ortamında analiz edilerek öncelikle demanyetizasyon işleminden geçirilir, ardından Doğal Kalıcı Mıknatıslanma yönleri belirlenir, yerin manyetik alanının jeolojik geçmişteki durumu saptanıp bölgenin günümüzdeki manyetik konumu ile karşılaştırılarak değerlendirme yapılır.

Şekil 3.1: İstanbul ve Kocaeli illerinden toplanan paleomanyetik örneklerin lokasyonları.

Palaeomanyetik çalışmalar kapsamında sağlıklı numunelerin alınabilmesi için ilk olarak çalışma alanında bulunan ve formasyonları en iyi şekilde temsil edecek mostra alanları belirlenmiştir. İlk etapta Alt Ordovisyen- Alt Karbonifer yaş aralığındaki çökel birimlerden ardından Kretase yaşlı volkanik sokulumlardan örnekler toplanmıştır. Arazi çalışmalarında Stihl marka karotiyer ile ona uyumlu elmas uçlu kesici uç takımı kullanılmıştır.

İstanbul tektonik birliğinin Paleozoyik ve geç Kretase kayaları üzerinde yapılan paleomanyetizma çalışmaları kapsamında 54 farklı mevkiden toplam 688 yönlü karot numune toplanmıştır. Sedimanter kayaçlar içerisindeki çatlak sistemleri ve çoğunlukla bu kayaçların ayrışmış olarak yüzlek vermesi sebebi ile toplanan karot numuneler kesim aşamasında parçalanarak dağılmış ve paleomanyetik ölçümler için standart numune haline getirilememiştir. Bazı örneklerde ise kasıtlı olarak ayrışma yüzeyine yakın silindirik numuneler tercih edilmemiştir. Bu nedenle elde edilen standart paleomanyetik numune adedi 624 ile sınırlı kalmıştır. Hazırlanan 624 numuneden ise 547 tanesi demanyetizasyon işlemlerinden başarı ile geçmiştir. Demanyetizasyon işlemlerinden başarı ile geçmiştir. Demanyetizasyon işlemleri sonrası paleomanyetik değerlendirmeler, Remasoft 3.0 ve IAPD2014 yazılımlarında yapılmıştır. Metinde verilen grafikler Remasoft 3.0'a aittir.

	Örnekleme Alanı	Enlem	Boylam	Formasyon	Yaş	
1	MSD (Mahmut Şevket Dereiçi)	41.141	29.1867	Kocatängol Em	Alt Ordevieven	
2	PK (Polonez köy)	41.106	29.1988	Kocatonger Fill.	Alt Ordovisyen	
3	MSP (Mahmut Şevket Paşa Köyü)	41.146	29.187			
4	ALM (Alemdağ)	41.042	29.2758			
5	DDM (Değirmendere)	41.054	29.1322			
6	CMH (Cumhuriyet)	41.116	29.2658			
7	TD (Taşdelen)	41.055	29.2752			
8	YV (Yeşilvadi)	41.125	29.4851	Kurtköv Em	Alt Ordovisvon	
9	GOC (Göçbeyli)	40.915	29.4586	Kultkoy Fill.	Alt Oldovisyen	
10	SUL (Sultanbeyli)	41.967	28.2882			
11	ISK (İshaklı)	41.06	29.5849			
12	BB (Başıbüyük)	40.956	29.1554			
13	BB (Başıbüyük 2)	40.954	29.1643			
14	AT (Ataköy)	41.003	29.1064			
15	AD (Aydos Dağı)	40.926	29.2334	Audos Em	Orta-Üst	
16	ADE (Aydos Dağı)	40.91	29.2389	Ayuus Fill.	Ordovisyen	
17	HRK (Hereke)	40.797	29.6624		Üct	
18	CMK (Cumaköy)	40.909	29.4938	Vavalar Em	Usi Ordovisvon-Alt	
19	MAE (Ümraniye)	41.05	29.1271	Tayaidi Fill.	Silünyon	
20	OV (Ovacık)	40.966	29.5073		Siluryen	

Çizelge 3.1 : Paleomanyetizma çalışmalarında örneklemenin yapıldığı lokasyonlar ve onların ait olduğu formasyonlar.

	Örnekleme Alanı	Enlem	Boylam	Formasyon	Yaş	
21	TP (Tuzla)	40.825	29.336			
22	CB (Çubuklu)	41.103	29.0859		Alt Silünyon	
23	BY (Beykoz)	41.143	29.0955		Alt Shuryen	
24	MF (Mollafenari)	40.89	29.4972	Dolitli Em		
25	TEMA	40.833	29.4651	Pentii Fili.		
26	TVS (Tavşanlı)	40.881	29.249		Üst Silüryen–Alt	
27	GZL (Güzelyalı)	40.858	29.2846		Devonian	
28	FT (Fatih)	41.081	29.0965			
29	MK (Mihrabat Korusu)	41.095	29.0702	Dondik Em	Alt-Orta	
30	FSM (Fatih Sultan Mehmet)	41.092	29.0732	Penuk Fili.	Devoniyen	
31	CUM (Cumaköy)	40.894	29.5372		Üst Dovonivon Alt	
32	DK (Denizliköyü)	40.901	29.5519	Denizliköyü Fm.	Varbonifor	
33	GK (Göksu)	41.076	29.0651		Karbonnen	
34	PRC (Pirinçci)	41.169	28.8451			
35	PRK (Pirinçci)	41.168	28.8484			
36	CBC (Cebeci)	41.122	28.8831			
37	AYZ (Ayazağa)	41.139	28.9563			
38	AL (Alibeyköy)	41.093	28.9316	Trakya Fm.	Alt Karbonifer	
39	DR (Dereseki)	41.158	29.1362			
40	BL (Baltalimanı)	41.092	29.0487			
41	ITU (İstanbul Teknik Üniversitesi)	41.106	29.0203			
42	AK (Ayazağa Köyü)	41.11	29.0056			
43	GD (Gümüşdere)	41.226	28.9754	Diyabaz	Trivac	
44	KT (Kocataş Tepesi)	41.166	29.0376	Silttaşı	TTiyas	
45	KT (Kocataş Tepesi)	41.166	29.0376			
46	YM (Yayalar Mevkii)	40.906	29.2657			
47	AH (Anadolu Hisarı)	41.092	29.0661			
48	TFF (Riva)	41.204	29.2149			
49	SK (Sahilköy)	41.215	29.3892	Sarivor Grubu	Üct Krotaca	
50	KB (Karaburun)	41.213	29.3903	Sanyer Grubu	Ust Kretase	
51	PS (Paşamandıra)	41.182	29.2324			
52	KLY (Kilyos)	41.254	29.039			
53	KL (Kilyos)	41.255	29.0417			
54	DEM (Demirci Köy)	41.249	29.0734			

Çizelge 3.1 (devam) : Paleomanyetizma çalışmalarında örneklemenin yapıldığı lokasyonlar ve onların ait olduğu formasyonlar.

3.1 Kocatöngel-Kurtköy Formasyonları

Kocatöngel ve Kurtköy formasyonlarından toplamda 149 karot numune toplanıp 153 adet standart paleomanyetik numune üretilmiştir (Şekil 3.1.1; 3.1.2; 3.1.3). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri yöntem ile demanyetizasyon işlemlerine devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.1.1'de verilmiştir.

Şekil 3.1.1 : Mahmut Şevket Paşa mevkisinde Kocatöngel Formasyonu örneklemesine ait yüzlek.

Şekil 3.1.2 : Mahmut Şevket Paşa mevkisinde Kurtköy Formasyonu Bakacak Üyesi örneklemesine ait yüzlek.

Şekil 3.1.3 : Göçbeyli mevkisinde Kurtköy Formasyonu Süreyyapaşa Üyesi örneklemesine ait yüzlek.

Çizelge 3.1.1 : Kocatöngel-Kurtköy formasyonlarının demanyetizasyon işlemlerine tabi tutulan örnek sayıları.

		Üretilen	Isıl yöntemle	AF yöntemle
	Toplanan	standart	demanyetize	demanyetize
Mevki	karot	paleomanyetik	edilen numune	edilen örnek
adı	sayısı	numune sayısı	sayısı	sayısı
MSD	11	8	6	2
РК	10	14	10	4
MSP	15	15	11	4
ALM	11	11	9	2
DDM	15	13	2	11
СМН	10	10	8	2
TD	10	14	12	2
YV	12	8	8	0
GOC	9	9	8	1
SUL	10	9	2	7
ISK	10	9	7	2
BB	16	23	15	5
AT	10	10	8	2
TOPLAM	149	153	106	44

Kurtköy ve Kocatöngel formasyonlarına ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.1.4, 3.1.5 ve 3.1.6' da verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK B'de verilmiştir.

Şekil 3.1.4 : Kocatöngel Formasyonu a) MSD2A kodlu örneğe ait ısıl demanyetizasyon grafiği b) MSD4A kodlu örneğe ait AF demanyetizasyon grafiği.

Şekil 3.1.5 : Kurtköy Formasyonu Bakacak Üyesi a) ALM6B kodlu örneğe ait ısıl demanyetizasyon grafiği, b) ALM11A kodlu örneğe ait AF demanyetizasyon grafiği.

Şekil 3.1.6 : Kurtköy Formasyonu Süreyyapaşa Üyesi a) GOC2A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) GOC3A kodlu örneğe ait AF demanyetizasyon grafiği.

3.2 Aydos Formasyonu

Aydos Formasyonu'ndan toplamda 15 karot numune toplanıp 8 adet standart paleomanyetik numune üretilmiştir (Şekil 3.2.1). Aydos Formasyonu kuvarsitleri sınırlı noktalarda mostra vermekte ve masif yapısıyla birçok noktada tabaka doğrultu ve eğimini tayin etmek mümkün olmamıştır. Aşındırıcı niteliği delme işlemini zorlaştırmıştır. Öksüm ve diğ. (2015)'de güvenilir sonuçlar vermeyen Aydos Formasyonu bu nedenle sadece mıknatıslanma özelliklerini test etmek amacıyla örneklenmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.1.2'de verilmiştir.

Şekil 3.2.1 : Aydos Dağı lokasyonunda örnekleme yapılan mostra.

Çizelge 3.2.1 : Aydos Formasyonu'nun d	lemanyetizasyon	ı işlemlerine ta	bi tutulan	örnek sayıları
--	-----------------	------------------	------------	----------------

			Isıl yöntemle	
	Toplanan	Üretilen standart	demanyetize	AF yöntemle
Mevki	karot	paleomanyetik	edilen numune	demanyetize edilen
adı	sayısı	numune sayısı	sayısı	örnek sayısı
AD	10	3	2	1
ADE	5	5	5	Х
TOPLAM	15	8	7	1

Aydos Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.2.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK C'de verilmiştir.

Şekil 3.2.2 : a) AD8A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) AD10A kodlu örneğe ait AF demanyetizasyon grafiği.

3.3 Yayalar Formasyonu

Yayalar Formasyonu'ndan toplamda 39 karot numune toplanıp 38 adet standart paleomanyetik numune üretilmiştir (Şekil 3.3.1). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri yöntem ile demanyetizasyon işlemlerine devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.3.1'de verilmiştir.

Şekil 3.3.1 : Hereke'de örnekleme yapılan mostra.

~				
('izelge 3 3 1 · Yavalar	Formasyonu'nun de	emanvetizasvon isle	emlerine tahi tutular	örnek savıları
Çizeige 5.5.1 . Tayalal	i ormasyona nun a	emanyetizasyon işie	mierme aor tatalar	former saymarr.

		Üretilen standart	lsıl yöntemle	AF yöntemle
	Toplanan karot	paleomanyetik	demanyetize edilen	demanyetize edilen
Mevki adı	sayısı	numune sayısı	numune sayısı	örnek sayısı
HRK	11	8	6	2
СМК	8	6	2	4
MAE	10	14	2	12
OV	10	10	8	2
TOPLAM	39	38	18	20

Yayalar Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.3.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK D'de verilmiştir.

Şekil 3.3.2 : Yayalar Formasyonu a) HRK11A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) HRK2A kodlu örneğe ait AF demanyetizasyon grafiği.

3.4 Pelitli Formasyonu

Pelitli Formasyonu'ndan toplamda 83 karot numune toplanıp 88 adet standart paleomanyetik numune üretilmiştir (Şekil 3.4.1). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri yöntem ile demanyetizasyon işlemlerine devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.4.1'de verilmiştir.

Şekil 3.4.1 : Tuzla'da örneklenen mostra.

Mevki adı	Toplanan karot sayısı	Üretilen standart paleomanyetik numune sayısı	lsıl yöntemle demanyetize edilen numune sayısı	AF yöntemle demanyetize edilen örnek sayısı
ТР	9	11	9	2
СВ	14	21	6	15
BY	9	10	7	2
MF	11	10	2	8
TEMA	10	8	6	2
TVS	10	8	6	2
GZL	10	10	8	2
FT	10	10	8	2
TOPLAM	83	88	52	35

Çizelge 3.4.1 : Pelitli Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan örnek sayıları.

Pelitli Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.4.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK E'de verilmiştir.

Şekil 3.4.2 : a) MF1A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) MF11A kodlu örneğe ait AF demanyetizasyon grafiği.

3.5 Pendik Formasyonu

Pendik Formasyonu'ndan toplamda 18 karot numune toplanıp 20 adet standart paleomanyetik numune üretilmiştir (Şekil 3.5.1). Bu formasyona ait kumtaşları çoğunlukla dayanımsızdır bu nedenle tek parça halinde örnek almak her zaman mümkün olmamıştır. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.5.1'de verilmiştir.

Şekil 3.5.1 : Mihrabat Korusu lokasyonunda örnekleme yapılan mostra.

			Isıl yöntemle	
	Toplanan	Üretilen standart	demanyetize	AF yöntemle
Mevki	karot	paleomanyetik	edilen numune	demanyetize
adı	sayısı	numune sayısı	sayısı	edilen örnek sayısı
MK	8	10	5	5
FSM	10	10	8	2
TOPLAM	18	20	13	7

Çizelge 3.5.1 : Pendik Formas	yonu'nun deman	yetizasyon işlem	lerine tabi tutulan	örnek sayılar
-------------------------------	----------------	------------------	---------------------	---------------

Pendik Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.5.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK F'de verilmiştir.

Şekil 3.5.2 : Pendik Formasyonu a) FSM3A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) FSM7A kodlu örneğe ait AF demanyetizasyon grafiği.

3.6 Denizliköyü Formasyonu

Denizliköyü Formasyonu'ndan toplamda 31 karot numune toplanıp 34 adet standart paleomanyetik numune üretilmiştir (Şekil 3.6.1). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri yöntem ile demanyetizasyon işlemlerine devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.6.1'de verilmiştir.

Şekil 3.6.1 : Cumaköy lokasyonunda örnekleme yapılan mostra.

Mevki adı	Toplanan karot sayısı	Üretilen standart paleomanyetik numune sayısı	lsıl yöntemle demanyetize edilen numune sayısı	AF yöntemle demanyetize edilen örnek sayısı
CUM	10	7	2	5
DK	11	17	12	5
GK	10	10	8	2
TOPLAM	31	34	22	12

Çizelge 3.6.1 : Denizliköyü Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan örnek sayıları.

Denizliköyü Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.6.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK G'de verilmiştir.

Şekil 3.6.2 : Denizliköyü Formasyonu a) DK8B kodlu örneğe ait ısıl demanyetizasyon grafiği, b) DK1B kodlu örneğe ait AF demanyetizasyon grafiği.

3.7 Trakya Formasyonu

Trakya Formasyonu'ndan toplamda 93 karot numune toplanıp 102 adet standart paleomanyetik numune üretilmiştir (Şekil 3.7.1). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri yöntem ile demanyetizasyon işlemlerine devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.7.1'de verilmiştir.

Şekil 3.7.1 : Pirinççi Köyü lokasyonunda Trakya Formasyonu'na ait örnekleme yapılan mostra.

Trakya Formasyonu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.7.2' de verilmiştir. Geri kalan mevkilerin demanyetizasyon diyagramları ise EK H'de verilmiştir.

	Toplanan	Üretilen standart	lsıl vöntemle	AF yöntemle demanyetize
Mevki	karot	paleomanyetik	demanyetize edilen	edilen örnek
adı	sayısı	numune sayısı	numune sayısı	sayısı
PRC	11	9	9	0
PRK	11	12	12	0
CBC	9	9	9	0
AYZ	9	9	9	0
AL	9	9	7	2
DR	9	11	2	9
BL	10	10	8	2
ITU	14	11	7	4
AK	11	22	16	6
TOPLAM	93	102	79	23

Çizelge 3.7.1 : Trakya Formasyonu'nun demanyetizasyon işlemlerine tabi tutulan örnek sayıları.

Şekil 3.7.2 : Trakya Formasyonu a) BL7A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) BL10A kodlu örneğe ait AF demanyetizasyon grafiği.

3.8 Gebze Grubu

Gümüşdere mevkisinde Gebze Grubu'na ait Triyas yaşlı diyabazlardan çökel örneklerle kıyaslanmak üzere 11 adet karot numune toplanmış, 10 adet standart paleomanyetik numune üretilmiştir. 2 numune ısıl olarak demanyetize edilirken, 8 numune AF yöntemi ile demanyetize edilmiştir. Bu formasyona ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alan-şiddet değişim eğrileri Şekil 3.8.1' de verilmiştir.

Şekil 3.8.1 : a) GD1A kodlu örneğe ait ısıl demanyetizasyon grafiği, b) GD7A kodlu örneğe ait AF demanyetizasyon grafiği

3.9 Sarıyer Grubu

Bu çalışmada Üst Ordovisyen-Alt Silüriyen yaşlı Yayalar Formasyonu'nu içerisinde haritalanan ancak yapılan Zr yaşlandırmaları sonucunda Permiyen-Triyas yaşında

olduğu belirlenen kiltaşı-silttaşı birimi ve onu kesen volkanik sokulum (Geç Kretase) bulunmaktadır. Pişmiş doku testi yapabilmek içim önce sokulumdan örnek alınmış ardından dokanak zonun ve çökel birimin kendisinden ölçüm alınmıştır. Sarıyer Grubu'ndan toplamda 109 karot numune toplanıp 190 adet standart paleomanyetik numune üretilmiştir (Şekil 3.9.1). Bu numunelerden öncelikle pilot numuneler seçilip hem ısıl hem de AF demanyetizasyon işlemlerinden geçirilmiş ardından en iyi cevap verdikleri ile demanyetizasyon işlemlerine yöntem devam edilmiştir. Demanyetizasyon işlemlerine tabi tutulan örnek sayıları Çizelge 3.9.1'de verilmiştir. Sarıyer Grubu'na ait birer örneğin ısısal temizleme ve alternatif alan temizleme sonucu elde edilen Zijderweld diyagramları ile sıcaklık-şiddet ve alternatif manyetik alanşiddet değişim eğrileri Şekil 3.9.2' de verilmiştir.

Şekil 3.9.1 : Kilyos sahilinde örnekleme yapılan mostra

Çizelge 3.9.1 : Sarıyer Grubu'nun demanyetizasyon işlemlerine tabi tutulan örnek sayıları.

			lsıl yöntemle	
		Üretilen standart	demanyetize	AF yöntemle
Mevki	Toplanan karot	paleomanyetik	edilen numune	demanyetize
adı	sayısı	numune sayısı	sayısı	edilen örnek sayısı
КТ	17	27	21	6
YM	9	18	13	5
AH	6	14	9	5
TFF	14	34	0	34
SK	9	7	0	7
КВ	11	11	0	11
PS	10	19	0	19
KLY	9	12	0	12
KL	10	14	0	14
DEM	14	34	0	34
TOPLAM	109	190	43	147

Şekil 3.9.2 : a) AH3C kodlu örneğe ait ısıl demanyetizasyon grafiği, b) KL7A kodlu örneğe ait AF demanyetizasyon grafiği

3.10 Manyetik Anizotropi Çalışmaları

Sedimanter kayaçlardan alınan tüm örnekler ve bunları kesen AH ve YM kodlu magmatik örneklerin anizotropi ölçümleri The Centre for Earth Evolution and Dynamics (CEED) Ivar Giæver Jeomanyetik Laboratuvarı'nda gerçekleştirilmiştir. 509 paleomanyetik numunenin AMS ölçümler yapılırken örneklerin çatlaksız ve bütün olmalarına özen gösterilmiştir. Çalışmanın çıktıları EK J'de verilmiştir.

Şekil 3.10.1 : Yamulma eksenleri ile manyetik anizotropi verilerinin ilişkisi (Issachar 2013'ten değiştirilmiştir).

3.11 Yüksek Sıcaklık Süseptibilite Ölçüleriyle Manyetik mineral ve Domen Yapısının Belirlenmesi

Kaya manyetizması çalışmaları kapsamında yapılan düşük ve yüksek sıcaklık süseptibilite ölçümleri neticesinde manyetik mineral tanımlaması ve domen yapısı hakkında bilgi elde edilmektedir. Şekil 3.11.1'de, (Thompson ve Oldfield 1986) tarafından bu konuda hazırlanan süseptibilite sıcaklık eğrisinde; tek domenli, çok domenli ve süperparamanyetik manyetit minerali ve Titanyumlu manyetit mineralinin değişim eğrisi görülmektedir.

Bu proje kapsamında 54 sayıdaki mevkide yapılan kaya manyetizması çalışmalarında Şekil 3.11.2 ve Şekil 3.11.3'de sırasıyla verilen AK ve OV kodlu mevkilerin 400°C'ler civarında maksimum süseptibilite değerine ulaştığı ve yüksek bir eğimle 600°C civarında minimuma vardığı gözlenmektedir. AK ve OV mevkilerinin eğrileri Şekil 3.11.1'deki karakteristik eğri ile karşılaştırıldığında bu mevkilerdeki kayaçların mıknatıslanmasından tek domenli Manyetit'in sorumlu olduğu söylenebilir.

Şekil 3.11.1 : Titanyumlu manyetit ve farklı domen yapısındaki manyetit için teorik süseptibilitesıcaklık eğrisi (Thompson ve Oldfield, 1986).

Şekil 3.11.2 : AK mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi.

Şekil 3.11.4 ve Şekil 3.11.5'de sırasıyla verilen SK2 ve TFF8 no'lu mevkilerin 320°C'ler civarında maksimum süseptibilite değerine ulaştığı, daha sonra 500°C civarında bir dirsek yaparak çok yüksek bir eğimle 640°C civarında minimuma vardığı gözlenmektedir. Söz konusu süseptibilite değişimi Şekil 3.11.1 ile karşılaştırıldığında

bu mevkilerdeki kayaçların mıknatıslanmasından çok domenli Manyetit'in sorumlu olduğu anlaşılmaktadır.

Şekil 3.11.3 : OV mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi.

Şekil 3.11.4 : SK mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi.

Şekil 3.11.5 : TFF mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi.

Şekil 3.11.6: MSD mevkisine ait yüksek sıcaklık-süseptibilite değişim eğrisi.

Şekil 3.11.6'da ise MSD mevkisinden MSD 2A kodlu kiltaşına ait sıcaklıksüseptibilite değerleri gözükmektedir. Bu tip eğriler Paleozoyik kayaçlar arasında yaygındır.

3.12 Paleomanyetik Numunelerin Petrografi Çalışmaları

Paleomanyetik karot numunelerinden standart örnek oluşturulduktan sonra arta kalan kısımlardan ince kesitler hazırlanmış ve genel yapı araştırılmıştır. Paleomanyetizma

çalışmalarında gözlemlenen tekrar mıknatıslanmanın sebebini anlayabilmek için kayaç içerisindeki ayrışma, manyetik minerallerin oluşumu, bunların ikincil olup olmadığı araştırılmıştır. Örneklerde görüldüğü üzere kayacın birincil dokusuna aykırı ikincil opak mineral oluşumları yaygındır. Bozunma çökel örneklerde oldukça yaygındır.

Şekil 3.12.1 : Kurtköy Formasyonu Bakacak üyesine ait AT 6 örneğinin 10x büyütmeli görüntüsü. a) Çift nikol görüntüsünde epidot tanesi görülmekte, b) tek nikol görüntüsünde ise kuvars damarı görülmektedir. Genel olarak ilksel plajioklaslar yaygın ve serisitleşme, kloritleşme mevcut. Düşük dereceli metamorfizma veya hidrotermal alterasyon ürünü olduğu söylenebilir (Resmin bir kenarı 1.8 mm).

Şekil 3.12.2 : Kurtköy Formasyonu Bakacak üyesini kesen sokuluma ait DDM14 örneğinin 10x büyütmeli a) Tek Nikol, b) Çift Nikol görüntüsü. Plajioklas, kuvars, amfibol ve biyotit içeren örneğin içerisindeki altere amfibol görülmektedir. Amfibol minerali ilksel şeklini korumakla beraber neredeyse tamamen klorite dönüşmüş ve kenar zonunda opasitleşme gelişmiştir (Resmin bir kenarı 1.8 mm).

Şekil 3.12.3 : Kurtköy Formasyonu Bakacak üyesini kesen sokuluma ait DDM 14 örneğinin 10x büyütmeli a) Tek Nikol, b) Çift Nikol görüntüsü. Plajioklas, kuvars, amfibol ve biyotit içeren örneğin içerisindeki muhtemelen manyetit olan opak mineral görülmektedir. Opak mineraller damarlar içerisinde kaya içerisinde düzensiz bir şekilde gelişmişlerdir (Resmin bir kenarı 1.8 mm).

Şekil 3.12.4 : Gümüşdere Formasyonuna ait GD 8 örneğinin 4x büyütmeli görüntüsü. Klinopiroksen ve plajioklastan oluşan diyabaz örneğinde plajioklaslar serisitleşmiş, talk ve kalsit oluşumları mevcut (Resmin bir kenarı 4.2 mm).

Şekil 3.12.5 : Pelitli Formasyonuna ait GZL5 örneğinin 4x büyütmeli görüntüsü. Fosilli kireçtaşı örneğinde ikincil kalsit damarlar ve bunlar etrafında büyük taneli opak mineraller mevcut (Resmin bir kenarı 4.2 mm).

Şekil 3.12.6 : Kurtköy Formasyonu Süreyyapaşa Üyesine ait SUL5 örneğinin 4x büyütmeli görüntüsü. Bu kumtaşı örneğinde %25-30 kuvars, %25-30 oranında ise opak mineraller, %15 plajioklas mevcuttur. Plajioklaslar serisitleşmiştir. Taneler arası opak mineraller ile doldurulmuş, görünümde ilmenit veya manyetit olabilecek iskelet benzeri yapı gözükmektedir (Resmin bir kenarı 4.2 mm).

Şekil 3.12.7 : Kurtköy Formasyonu Süreyyapaşa Üyesi'ne ait SUL örneğinin 10x büyütmeli a, b)Tek Nikol, c) Çift Nikol görüntüsü. %45-50 kuvars barındıran % 30 kalsit çimentolu kumtaşı. Kuvarsça zengin klastlara sahip örnekte dalgalı sönme, kuvarslardaki mineral uzamaları ve taneler arasındaki reaksiyon yapıları bu malzemelerin metamorfik bir kökenden gelmiş olabileceğine işaret etmektedir. Bunun yanı sıra kayada tali oranda muskovit ve yer yer polikristalen kuvars da yer almaktadır. (Resmin bir kenarı 1.8 mm)

4. PALEOMANYETİZMA TARTIŞMA VE SONUÇ

İstanbul Paleozoyik istifini oluşturan Alt Ordovisyen-Alt Karbonifer yaş aralığındaki çökel birimlerden ve bunları kesen veya üzerleyen Üst Kretase yaşlı magmatik birimlerden alınan örnekler ısıl ve AF demanyetizasyon işlemlerinden geçirildikten sonra IAPD programı kullanılarak Fisher istatistik diyagramları çizdirilmiştir. Mıknatıslanmanın bileşenleri incelenirken PCA veri işlemine giren örnek sayısının 5'ten fazla olması (PCA>5) ve her bir numunenin güvenilirliğini belirleyen alfa çemberi yarıçaplarının 15'ten küçük olması (α 95 <15°) koşulları temel alınmıştır. Örneklerin deklinasyon ve inklinasyon değerleri EK2'de verilmiştir. ALM, AT, SUL, TEMA, PRC, PRK, AYZ kodlu örnekler numune bazında α 95 <15° koşulunu sağlayamadıkları için değerlendirmelerden çıkarılmışlardır. Sonuçlar formasyon bazında çizdirilmek yerine yaşları ortak olan birimler beraber çizilmiştir. Çizelge 4'te mevkilere ait tektonik düzeltme öncesi ve sonrası kalıntı mıknatıslanma ve İstatiksel parametreleri verilmiştir.

Şekil 4.1'de Alt Ordovisyen yaşlı kiltaşları ve silttaşlarına ait Fisher istatistik diyagramları görülmektedir. Tektonik düzeltme öncesi 6 mevkiden 4'ünün mevki ortalamalarının α95 yarıçapları kabul edilemeyecek derecede büyüktür. Tektonik düzeltme sonrası ise mevki ortalamaları nispeten kümelenerek her bir mevkiinin α95 yarıçapl küçülmüş olsa da güvenilir değildir. McElhinny kıvrım testi mıknatıslanmanın kıvrım sonrası olduğunu göstermektedir.

Şekil 4.2'de Alt Ordovisyen yaşlı arkozik kumtaşları ve konglomeralarına ait Fisher istatistik diyagramları görülmektedir. 5 mevkiden 3'ü İstanbul'un günümüz konumu etrafında toplanmakta ve tektonik düzeltme sonrası mevkiler saçılmaktadır. Bunun sebebi içerdikleri çört, kiltaşı, kuvars, metamorfik kayaç parçaları gibi farklı özellikte taneler içermesi ve bunların ikincil mıknatıslanmaya farklı tepki göstermeleri olabilir. Kıvrım testi "belirgin değil" olarak sonuç vermiş olsa da verilerin birincil mıknatıslanma olarak yorumlanamayacağı açıktır.

MEVKİ	DEC	INC	α95	DEC(tektonik)	INC(tektonik)	α95
BY	322.7	64	9.9	331.4	34.9	12.1
СВ	342.9	52.6	2	338.8	40.4	23.1
FT	2.1	57.8	1.8			
GZL	2.6	63.1	4.1	232.8	82	19.2
MF	85.8	64.4	46.4	187.5	76.6	50.6
ТР	22.9	53.3	3.2	338.3	40.4	23.1
TVS	188.9	83.1	70.8	220.1	19.6	88.2
MSD	16.2	26.4	43.2	9.6	58.7	51.4
РК	43.9	87.3	7.9	271	7.4	8
MSP	326	23.1	39	284.8	23.1	36.7
DDM	7.4	59.9	20.7	3.8	36	26.7
СМН	312.3	32.3	73.5	282.1	-2.2	96.3
TD	295.9	50.8	31.5	8.3	47.6	30.6
GOC	17.6	59.9	6.1	90	62.3	14.9
BB1	212.4	15	27.5	205.5	-1.4	27.5
ISK	346.7	55.6	7	138.8	75.9	52
YV	280.9	24.1	23.3	292.1	15.7	23.6
BB2	40.9	60.2	39.3	129.5	37.4	37.4
MK	31.8	56.2	15.2	310.2	33.5	15.2
FSM	10.1	47.4	4.5	31.3	13.4	4.5
CUM	11	62.7	9.9	89.2	45.8	15
DK	44.9	64.8	3.3	88.6	5	6.9
GK	15.1	43.8	11.6	262	63.6	13.8
HRK	318.1	49.2	15.2	312.5	15	25.2
СМК	359.9	35.6	34.5	41.2	42.4	34.7
MAE	28.9	73.8	42.6	44	49.6	42.8
OV	2.8	55.8	11.4	322.4	54.6	11.4
CBC	348.6	54.1	8.6	336	67.4	8.6
AK	40.9	28.4	34.7	0.9	26.7	42
DR	12.5	66.7	9.1	27.1	16.3	38.4
İTU	23.2	43	13.7	32.6	12.2	16.3
BL	27.4	39.9	2.7	44.2	13	4.1

Çizelge 4.1 : Mevkilerin tektonik düzeltme öncesi ve sonrası kalıntı mıknatıslanma ve İstatiksel parametreleri.

Şekil 4.1 : Alt Ordovisyen yaşlı kiltaşları ve silttaşlarına ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir), c) Bu birimlere ait McElhinny kıvrım testi.

Öksüm ve diğ. (2015) Alt Ordovisyen silttaşları ve kuvarsitlerinden elde ettiği verilerden sadece silttaşları için birincil mıknatıslanmayı hesaplamıştır, kuvarsitleri güvenilir bulmamıştır. Ancak yapılan hesaplamalar dönme bileşeni ihmal edilerek sadece inklinasyon verilerine dayanılarak yapılmıştır.

Şekil 4.3'de Üst Ordovisyen-Alt Silüriyen yaşlı kayaçlara ait Fisher istatistik diyagramları görülmektedir. Benzer bir sonuç burada da görülmektedir. Tektonik düzeltme öncesi İstanbul'un günümüz konumu etrafında kümelenen mevki ortalamaları tektonik düzeltmeler yapılınca iyice saçılmıştır. Mevki sayısı azlığı nedeniyle kıvrım testi "belirgin değil" çıktısı vermiştir.

Şekil 4.2 : Alt-Orta Ordovisyen arkozlarına ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir.), c) Bu birimlere ait McElhinny kıvrım testi.

Şekil 4.3 : Üst Ordovisyen-Alt Silüriyen yaşlı kayaçlara ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir).

Şekil 4.3 (devam): Üst Ordovisyen-Alt Silüriyen yaşlı kayaçlara ait c) Bu birimlere ait McElhinny kıvrım testi.

Şekil 4.4 : Üst Silüriyen-Alt Devon yaşlı kayaçlara ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir), c) Bu birimlere ait McElhinny kıvrım testi.

Şekil 4.4'de Üst Silüriyen-alt Devon yaşlı kayaçlara ait Fisher istatistik diyagramları görülmektedir. Tektonik düzeltme öncesi günümüz konumuna yakın bir mıknatıslanma gösteren örnekler tektonik düzeltme sonrası farklı noktalara saçılmıştır. Kıvrımlanma sonrası kazanılmış mıknatıslanma olduğu kıvrım testinde de rahatlıkla izlenmektedir.

Şekil 4.5 : Orta-Üst Devoniyen yaşlı kayaçlara ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir.), c) Bu birimlere ait McElhinny kıvrım testi.

Şekil 4.5'de Orta-Üst Devoniyen yaşlı kayaçlara ait Fisher istatistik diyagramları görülmektedir. Pendik Formasyonu ve Denizliköyü Formasyonu'nu içeren bu istatistik diyagramında doğal kalıcı mıknatıslanma vektörleri günümüz konumuyla birebir uyuşmaktadır. Pendik Formasyonu'ndan alınan örnekler tekdüze tabakalanmanın görüldüğü bölgelerden alınmıştır. Bu nedenle kıvrım testi gerçekleştirmek için gerekli veriler sağlanamamıştır. Denizliköyü Formasyonu'na ait kıvrım testi bu kayaçların kıvrımlanma sonrası mıknatıslandığını açıkça göstermektedir.

Şekil 4.6'da Alt-Orta Karbonifer yaşlı kayaçlara ait Fisher istatistik diyagramları görülmektedir. Tektonik düzeltme öncesi İstanbul'un günümüz konumu etrafında toplanan mevki ortalamaları, tektonik düzeltme sonrası saçılmakta ve mevkilerin α95 yarıçapı büyümektedir. Kıvrım testi mıknatıslanmanın birincil olmadığını göstermektedir.

Şekil 4.6 : Alt Karbonifer yaşlı kayaçlara ait a) Tektonik düzeltme öncesi mevki ortalamaları, b) Tektonik düzeltme sonrası mevki ortalamaları (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir.), c) Bu birimlere ait McElhinny kıvrım testi.

Yukarıda gösterilen grafikler Üst Silüriyen-Alt Karbonifer aralığındaki kayaçların ikincil mıknatıslanmadan etkilendiklerini gösterir niteliktedir. Bu yaş aralığındaki kayaçlar hem mevki hem de mevki ortalamaları bazında kıvrım testini geçememişlerdir. Alt-Ordovisyen-Alt Silüriyen aralığındaki kayaçlar ise kıvrım testinde belirgin bir özellik göstermemiş ancak tektonik düzeltme öncesi günümüz konumuna benzerlikleri tektonik düzeltme sonrası saçılmalarıyla mıknatıslanmanın birincil olmadığına dair belirtiler sunmuşlardır. α 95 yarıçaplarının kabul edilebilir değerlerde olmadığı da gözlenmektedir. Tüm yaş gruplarında hakim bir günümüz yer manyetik alanı etkisi mevcuttur.

Bu ikincil mıknatıslanmanın sebebini anlamak için Paleozoyik kayaçlara sokulan dayklar ve bunların karşılığı olan volkanik çökeller ile lavlar da örneklenmiştir. Buradaki amaç çıkacak doğal kalıcı mıknatıslanma vektörlerinin karşılaştırılarak ikincil mıknatıslanmanın bölgedeki volkanizma ile alakalı olup olmadığını test etmektir. Geç Kretase yaşlı magmatiklerden yapılan paleomanyetik çalışmalar bu verilerin veri seti arttırılması ile güvenilir sonuç vereceğini göstermiştir ancak sınırlı sayıdaki örnekler dahi Paleozoyik yaşlı sedimanter kayaçlardan açıkça farklılık göstermektedir. Şekil 4.7'de yaşlı kayaçlara ait Fisher istatistik diyagramları görülmektedir. Bu diyagramlar mevki ortalamaları yerine her bir numuneyi temsil etmektedir.

Şekil 4.7 : Erken Kretase yaşlı magmatiklerden alınan KL ve KLY kodlu örneklerin Fisher istatistik diyagramları a) Tektonik düzeltme öncesi, b) Tektonik düzeltme sonrası mevkisine ait her bir karot numune (İstanbul'un günümüzdeki konumu turuncu yıldız ile gösterilmiştir).

Örneklerin tektonik düzeltme öncesi günümüz konumundan farklı bir konum göstermeleri ve ters kutuplanmaya sahip olmaları birincil olabileceklerine dair ihtimalleri güçlendirmektedir. Örnek sayısının arttırılmasıyla Geç Kretase için de bir paleoenlem ve dönme bilgisi elde etmek mümkün gözükmektedir. Bölgeyi etkileyen ve ikincil mıknatıslanmaya neden olay herneyse Kretase yaşlı birimleri etkilemediği görülmektedir. Ancak İstanbul'un kuzeyinde yaygın olarak görülen bu volkaniklere ait tabaka doğrultu/eğim bilgilerini elde etmek çok güçtür. Sadece Kilyos sahilinde epiklastikler olarak karşımıza çıkan birimler tektonik düzeltme yapmaya imkân vermiştir. Andezitik-bazaltik bileşimdeki sokulumlar kolon yapıları oluştursa da, TFF kodlu Riva örneğinde olduğu gibi bu kolonların yerleşimi açısal olarak birbirlerinden farklılık göstermektedir. Bu nedenle basit bir inklinasyon düzeltmesi yapmak mümkün değildir.

Bölgedeki kayaçlar ve mıknatıslanma özellikleri değerlendirildiğinde Paleozoyik kayaçların viskoz kalıcı mıknatıslanmaya maruz kaldıkları gözükmektedir. Viskoz Kalıcı Mıknatıslanma (VKM) mıknatıslanabilir bir maddenin uygulanan dış bir

manyetik alan içerisinde zamana bağlı olarak kazandığı mıknatıslanma çeşididir (Sanver, 1992; Dunlo, 2007). Oluştuğu andaki ısı, uygulanan manyetik alan ne kadar yüksekse ve uygulama zamanı ne kadar uzunsa o kadar kuvvetli olur. Şiddetli olduğu durumlarda Doğal Kalıcı Mıknatıslanmadan (DKM) ayırmak güçleşir, özellikle de çökel kayaçlar gibi düşük şiddete sahip kayaçlarda. Kimi zaman VKM'yi kaldırmak DKM'nin de yok edilmesine sebep olur. Yüksek koersiviteye sahip hematit, pirotit, titanomanyetit, titanohematit gibi minerallerin bulunduğu durumlarda sıkça karşılaşılır. Bu çalışmada ise demanyetizasyon adımlarında VKM ile birlikte DKM verisi de silindiğinden kayacın DKM'sı elde edilememiştir. Bu nedenle manyetik süseptibilitenin anizotropi ölçüm sonuçları da kullanılamamıştır.

5. PALEONTOLOJİ ÇALIŞMALARI

Bu çalışma kapsamında İstanbul Paleozoyiği içerisinde tanımlanmış fosil literatürü araştırılmış ve tek bir liste altında toplanmıştır, bu liste EK J'de sunulmuştur. Arazi çalışmalarında ise bol makro fosilli olduğu bilinen Pendik Formasyonu'ndan Brakiyopod örnekleri toplanarak Londra Doğa Tarihi Müzesi'ne, Robin Cocks'a yollanmış ve tayinleri gerçekleştirilmiştir.

Şekil 5.1 : a) Mesoleptostrophia kartalensis, b) Schizophoria

Şekil 5.2 : a) Brachyspirifer, b) Meganterid

Erken Emsiyen yaşında olduğu belirlenen bu fosiller kaynak olarak Renik-Bohemya fasiyesini işaret etmektedir. İstanbul bu fasiyesin tanımlanabildiği en doğu alanı temsil etmektedir.

6. HERSİNİYEN OROJENEZİ

Paleozoyik sonunda Gondwana-Land'a ait mikro levhalar ile Lavrusya'nın çarpışması sonucu Kafkaslardan Apalaşlara kadar uzanan 1000 km genişliğinde 8000 km uzunluğunda bir orojenik kuşak meydana gelmiştir (Suess 1886; Bertrand 1887; Dewey ve Burke 1973; Arthaud ve Matte 1977; Matte, 2001; Franke, 2006; Kröner ve Romer, 2013). Bu orojenik kuşak literatürde Hersiniyen veya Variskan olarak adlandırılmıştır.

Alplerin kuzeyindeki birimlerin daha yaşlı bir sistemin ürünü oldukları fikri ilk defa Suess (1886) tarafından ortaya atılmıştır. Suess Avrupa'daki bu sistemi Armorikan ve Varisk olarak ikiye ayırmıştır. Armorikan, Fransa'nın Armorikan yarımadasını (Brittany, Normandy, Cotentin, Vendee), Güney İngiltere'yi (Cornwall ve Devon), Güney İrlanda (Dingle körfezi-Dungarvan hattı güneyi) ve Massif Central'in batı kanadını kapsarken, Varisk Massif Central'in doğu kanadını, Vosges ve Karaorman'ı, Harz dağlarını, Şistli Ren Masifini, Bohemya Masifi'ni kapsar. Orojeneze ismini veren tip lokalite *Provincia Variscorum* olarak bilinen Almanya'nın Hof şehridir (*Curia Variscorum sensu* Suess 1885). Armorikan ve Varisk yapıları Suess (1888)'de detaylıca tartışılmıştır. Suess (1886) Armorik ve Varisk sistemlerini Permiyen öncesi sistemi olarak adlandırmıştır.

Hersiniyen adı ise ilk defa Bertrand (1887) tarafından Avrupadaki tüm Karbonifer kıvrımlarını betimlemede kullanılmıştır. Bu nedenle bu kuşaktan bahsederken Hersiniyen adı tercih edilmiştir. Döneminin önemli araştırmacılarından Stille (1920) bu orojeni fazlarına ayırmış, Breton (geç Devoniyen-erken Karbonifer), Südetik Fazı (erken–geç Karbonifer), Asturiyen (Geç Karbonifer) ve Saaliyen Fazı (Karbonifer sonrası-erken Permiyen) Falz Fazı (Roliegend-Zechstein arası) olarak 5 ayrı başlık altında incelemiştir.

Şekil 6.1 : İlk defa Suess (1886) tarafından çizilen Varisk ve Armorik dağlarını gösteren harita.

Günümüzde hala kullanılan birimlerin ayrımı ise ilk defa Kossmat (1927) tarafından öne sürülmüştür. Buna göre Hersiniyen orojeni 4 bölüme ayrılmaktadır. Vestfal Zonu ve önülke, Renohersiniyen Zonu, Saksotüringiyen ve Südet Zonu, Moldanubiyen Bölgesi. Bu tanımlamaları Hersiniyen orojeninin doğu kesimi için öne sürmüştür. Günümüzde ise bu bölgeler esas alınarak orojenin geri kalan bölümüyle deneştirmeleri yapılmaktadır.

Şekil 6.2 : Kossmat (1927) tarafından çizilen Hersiniyen zonlarını gösteren harita.

Başlangıçta Renohersinyen Zonu, Orta-Alman Kristalin Yükselimi, Saksotüringiyen Zonu ve Moldanubiyen Zonu olarak parçalara ayrılan Hersinidler bugünkü kullanımında daha detaylı küçük parçalara ayrılmıştır. Günümüzde genel olarak Hersinidler ikiye ayrılır. Anglo-Brabant Masifi, Renohersiniyen Zonu, Harz dağları, Moravo-Silezyen Zonu'nu kapsayan Hersiniyen Orojenezi'nin kıvrım ve bindirme kuşağını temsil eden düşük dereceli veya hiç metamorfizmaya uğramamış Paleozoyik sedimanlarla temsil edilen dış Hersinidler (Externides) ve faklı derecelerde metamorfizmaya uğramış, sinorojenik sedimantasyon ve volkanizma ile temsil edilen İç Hersinidler (Internides). Burada Pan-Afrikan kökenli kıtasal bloklar bir araya gelirler. Kuzey Armorikan Masifi, Tepla-Barrandiyen, Saksotüringiyen Masifleri Hersiniyen Orojenezi'nin deformasyonundan görece az etkilenmiş bloklarıdır. Bunların aksine Armorikan Masifi'nin Leon bölgesi, Massif Central, Vosges ve Kara Orman, Orta Alman Kristalin Zonu, Saksotüringiyenin allokton kısımları, batı Südetler, Moldanubiyen Zonu yüksek derece metamorfizmasına maruz kalmış üniteleridir. Dış Hersinidler Lavrusya'ya ait birimleri ve kenedin kendisini kapsarken, Hersinidler Reik okyanusunun aktif sınırı boyunca uzanan parçaları İç oluşturmaktadır. Bu iki ünitenin sınırı Reik Okyanusu'nun kenet zonudur.

Şekil 6.3 : Avrupa Hersiniyeni'nin zonlarını gösteren harita (Franke 2006'dan değiştirilmiştir). Çarpışma sırasında ve sonrasında ise granitlerin sokulumu ile yüksek sıcaklık-düşük basınç metamorfizması bölgede egemen olurken, diyagonal gerçekleşen çarpışma

bölgede muazzam sağ yanal atımlı fayların çalışmasına ve Gondwana-Land/Lavrusya sınırı boyunca toplamda 2500-3000 km'ye varan yer değiştirmeye neden olmuştur (Şengör ve diğ. 2012). Bu haliyle çarpışma öncesi Pangea B konfigürasyonunda olan süper kıta çarpışma sonunda Pangea A biçimine dönüşmüştür (Irwing 1977; Muttoni ve diğ. 2003).

Şekil 6.4 : Avrupa Hersiniyeni'nin zonlarını gösteren harita (Ballevre 2009).

Şu an okyanuslarla ayrılan kıtaların bir zamanlar bir arada olup süperkıta oluşturdukları ve büyük bir okyanus ile çevrelendikleri fikri ile bu fikirden doğan Tetis ve Pangea terimleri geçtiğimiz yüzyılın en popüler konularındandır. Atlas Okyanusu'nun çökmesi ile birbirinden ayrı düşen kıtalar fikrini savunan önceki düşünürlerin aksine Varenio (1650, Lib I, s. 333) Amerika'nın tufan sırasında sürüklenerek Avrupa ve Afrika'dan koparıldığını öne sürerek kıtaların ayrılması fikrini ilk dile getiren düşünürdür. Süperkıtaya ait ilk yeniden yapılandırma denemesi ise Antonio Snider-Pellegrini (1858) tarafından yapılmıştır. Ancak Pangaea adının ilk kullanılması Wegener (1920)'dir ve yayınında adı Pangäa olarak yer almaktadır. Çalışmasında kıtaların kendilerini döndürmek suretiyle kıyıları boyunca denk getirmiş ve uydurmak için bazı kıtaların şeklini bozmuştur (örn. Hindistan) (Şekil 6.5). Kıyılar boyunca birbiri üzerine binen alanlar oluşmuştur. Bu haliyle teorisi büyük ilgi görse

de aynı zamanda büyük eleştiri de almıştır. Günümüzde 3 farklı Pangaea modeli üzerinden tartışmalar devam etmektedir.

Wegener'in orijinal fikriyle büyük benzerlikler gösteren Pangaea A1 modeli Bullard ve diğ. (1965) tarafından öne sürülmüştür. Özellikle Atlas Okyanusu çevresi için geometrik olarak yeniden yapılandırma yapılmıştır (Şekil 6.6a).

Şekil 6.5 : Wegener (1920) tarafından hazırlanmış ilk Pangaea çizimi.

Van der Voo ve French (1974) Pangaea A1 modelini bir adım ileriye götürerek paleomanyetik verilerle de desteklemeye çalışmışlardır (Şekil 6.6b). Bu modelin bir öncekinden asıl farkı Güney Amerika ve Afrika'nın güney Sahra'da bulunan bir kutup etrafında ~20⁰'lik dönmeyle yerlerine oturtulmasıdır. Bu sayede kıtalar arasında daha iyi bir form yakalandığı düşünülmüştür. Bu yapılandırma Pangaea A2 olarak literatürde yer almaktadır. Pangaea B modeli ilk defa Irwing (1977) tarafından ortaya atılmıştır (Şekil 6.6c). Bu modelde Gondwana-Land A2 yapılandırmasından farklı bir kutup etrafında ~35⁰ saat yönünde döndürülmüştür. Pangaea A modellerinin Triyas'ta sebep olduğu kıtasal çakışmaları, Gondwana-Land'ı Lavrusya'ya göre doğuya kaydırarak çözmüştür. Triyas çakışmaları için yaratılan bu model daha sonraları düzeltilerek erken Permiyen için kullanılmıştır (Muttoni ve diğ. 2003). Bu kıtaların birbirlerine göre kaydırılabilmeleri için toplamda ~3000 km'lik bir yanal atım sistemi gerekmektedir. Bu atım miktarı birçok çalışmacı tarafından kabul edilmemekle beraber Pangaea-A/Pangaea-B kutuplaşması yaratmıştır. Günümüzde ise yaygın olarak kabul gören durum erken Permiyen'de Pangaea B, geç Permiyen'de ise Pangaea A kıta yapılandırmalarının geçerli olduğudur.

Şekil 6.6 : Farklı çalışmalarda ortaya konulmuş Pangaea modelleri a) Pangaea A-1 Bullard ve diğ.
(1965), b) Pangaea A-2, Van der Voo ve French (1974), c) Pangaea B Irwing (1977); Morel ve Irwing (1981) (Domeier ve diğ. 2012'den alıntıdır, pembe alanlar yerleri kesin olmayan parçalardır).

Bir diğer model de Pangaea C olarak Smith ve diğ. (1981) tarafından paleomanyetik verilere dayanılarak ortaya atılmıştır. Bu modelde Güney Amerika Güneydoğu Avrupa'ya karşılık gelecek şekilde ötelenmiştir. Bu model Pangaea B modelinden çok daha fazla atımı gerektirmektedir. Ancak çok süre geçmeden modelin sahipleri dahi bu fikirden vazgeçmişlerdir. Hersiniyen Orojenik kuşağı günümüzde hala tartışmalıdır. Yanal atımlarla biçilmiş olan bu bölge Paleozoyik ve öncesi yaşlı masiflerin deneştirilmesini zorlaştırmakta ve bölgede parçalar halinde gözlemlenen dalma-batma kaynaklı ürünler birden fazla okyanusun dalması, kısa zaman dilimlerinde kenar okyanuslarının açılıp kapanması ile açıklanabilmektedir. Ancak bu öne sürülen geometriler, tutarlı bir hikaye sunmaktan uzaktırlar. Bu nedenle bu

çalışmada Hersiniyen Orojenezi'nin parçaları modern verilerin bir sentezi yapılarak baştan ele alınmış, tektonik evrim yeniden kurgulanmaya çalışılmıştır.

Şekil 6.7 : Solda erken Permiyen Pangaea B, sağda geç Permiyen'e ait Pangaea A rekonstrüksiyonları (Aubele ve diğ. 2014).

6.1 Yöntem: Orojenik Kuşakların Karşılaştırmalı Anatomisi

Dünya çapında yaklaşan levha sınırları incelendiğinde anatomik olarak benzer özellik sundukları açıkça görülür. Dalma-batma zonları özellikleri birbirinden farklılaşabilen organlara sahiptirler. Bunlar magmatik yay, yay-önü ve yay-ardı havzaları, bunlara eşlik eden klastik, sığ denizel veya karbonat platformlarından oluşabilen kıtasal sahanlık. Bu organlar dalma-batma zonun karakterine (sıkısmalı-nötr-gerilmeli) göre kimi zaman tam olarak gelişmeyebilirler. Ancak magmatik yaylar neredeyse her dalma-batma zonunun vazgeçilmez öğesidir. Bunun istisnası genişliği 1000 km bulmayan okyanusların daldığı alanlardır (Güney Çin). Dalma-batma sürecinin başlangıç neden ve koşulları hala tam olarak anlaşılamamış olsa da bu süreci başlatmak ciddi bir enerji gerektirmektedir ve dinamik yapısı göz önüne alındığında bir kere başlamış olan bu olayı durdurmak çok güçtür. Bu nedenle dalma-batma zonları uzun süre yaşayıp mekânsal olarak sürekli olmaya eğilimlilerdir. Bu zonlar içerisindeki magmatik yaylar ise sürekli ve bir hat boyunca oluşurlar. Dalan levhanın gerilemesi durumunda ise cephe halinde ver değiştirirler. Karakteristik olarak hendeğe yakın taraf çizgisel bir cephe sunarken hendeğe uzak taraf ise dağınık bir cephe olarak gözlenir. Bu çalışmada çapışma öncesi senaryoyu belirlemek için magmatik yaylar esas alınmıştır. Magmatik yayları tanımlamak için magmatik yay toleyitleri, ortaç ve felsik bileşimdeki magmatik kayalar, yani granodiyorit, diyorit, andezit, granit ve riyolitler ve kenet zonlarında bu kayaçlara eşlik eden gabro, bazalt, tonalit ile dalma-batma ile

ilişkili olan metamorfik kayaçlar, eklojit, mavişist haritalanarak bunlara ait izotopik yaşlar toplanmıştır. Bu sayede magmatik yayının konumunu ve zaman içerisindeki gelişimini izlemek hedeflenmiştir. Sadece granit ve riyolitlerin görüldüğü bölgeler ise dikkatle ele alınmıştır. Bunlar dalma-batma ile ilişkilendirilebilecekleri gibi çarpışma ürünü olma ihtimalleri de vardır. Fliş havzaları genellikle yay önü olarak kabul edilirler, özellikle de içerisinde melanj görüldüğü zaman, ancak melanjlar çok yaygın olarak ortaya çıkmazlar. Hem magmatik yay hem de yay önü/yığışım karmaşıkları yüksek basınç-düşük sıcaklık metamorfikleri ile birlikte görülürler.

Şekil 6.1.1: Hendek gerilemesi ile birlikte magmatik yayın göç etmesi.

Yay-ardı havzaları ise daha çok molas çökelleri ve gerilmeli dalma-batma zonlarında ise spilit alkali bazaltlar, bazen de siyenit ve trakitler gibi okyanusal kökene sahip kayaçlarla temsil edilirler. Bu yapılar mevcut yayı bölerek açılabilirler bu durumda volkano-sedimanter çökeller bu havzaları doldurarak riftleşme sürecinin başladığını gösterirler.

Kılavuz hatlar: Bir bölgede, bir kesit boyunca görülen tüm doğrultuların ortalamasını ifade eden çizgilere verilen addır. Bu doğrultular şunlar olabilir:

- 1. Tabaka doğrultuları,
- 2. Kıvrım ekseni doğrultuları,
- 3. Kıvrım eksen düzlemi doğrultuları,
- 4. Fay düzlemi doğrultuları,
- 5. Foliyasyon (șistozite, gnaysosite, vs.) doğrultuları,

6. Sokulumların (dayklar, plütonlar vs.) uzun eksenlerinin doğrultuları,

7. Jeolojik yapının oluşturduğu topoğrafik öğe (vadiler, doruk çizgileri vs.) doğrultuları.

Birden fazla deformasyona maruz kalmış alanlarda bir orojenik kuşağın konumunu belirleyebilmek için en uygun yöntem magmatik yay cepheleriyle birlikte kılavuz hatlarının çizilmesidir. Bu sayede farklı deformasyon fazları birbirinden ayırt edilerek doğrusal yapıların hangi sisteme ait oldukları belirlenebilir.

6.2 Bohemya Masifi

Bohemya Masifi Avrupa'da Hersinidlerin açıkça gözlenebildiği, 100.000 km²'ye varan yüzey genişliği ile en büyük masiflerden (Eduard Suess'ün horstlarından) biridir. Harita üzerinde Paleozoyik yaşlı kayaçların dağılımına bakıldığında neredeyse kare şeklinde gözükmektedir. Bugünkü morfolojisi Kenozoyik olaylarına bağlı olarak gelişmiştir. Bohemya Masifindeki en yaşlı kayaçlar Paleoproterozoyik eratemine kadar inmektedir. Bohemya Masifi'nin ünite ayrımları lito-tektonik olarak yapılmıştır. Ancak yapılan yeni çalışmalar bu birimlerin de kendi içlerinde homojen olmadıklarını göstermektedir.

6.2.1 Moldanubiyen Zonu (Moldanubicum sensu stricto)

Bohemya Masifi'nin güney kısmında yer alır. Hersiniyen Orojenezi'nin kök bölgelerinden birini temsil ettiği düşünülmektedir. Çoğunlukla orta-yüksek derecede metamorfizmaya uğramış gnayslar ve Karbonifer'deki yaygın magmatik sokulumlara bağlı olarak gelişen yüksek sıcaklık metamorfitlerinden oluşur. Metamorfize olmuş temel, kökleri güneydoğudaki Tepla-Barrandiyen'e kadar uzanan, granülit ve eklojit içeren ve güneydoğuya bindiren naplarla örtülüdür (Franke 1989). 3 ayrı lito-tektonik birime ayrılmıştır. Monoton Grup, Türlü (Varied) Grup ve Gföhl Ünitesi. En altta bulunan Monoton Grup biyotit-plajioklas içeren para ve ortognayslar, amfibolit ve nadiren eklojit içeren merceklerden meydana gelir. Türlü Grup, kuvarsit, mermer, grafit şist, amfibolit ardalanmasından oluşan paragnayslardan ve granitik gnayslardan meydana gelir. En üstte bulunan Gföhl ünitesi ise yüksek basınç granülitlerinden ve bunlarla beraber görülen granat-spinel peridotitler, piroksenitler, az miktarda eklojit, migmatize olmuş ortognays, amfibolit ve metagabrolardan oluşur (Chab ve diğ. 2010; Linnemann ve diğ. 2008; Zak ve diğ. 2014). Gföl Birimi bindirmeler ile diğer iki birim üzerine yerleşmiştir bu nedenle literatürde aynı zamanda Gföhl Napı olarak da bilinir (Tollmann, 1982).

Şekil 6.2.1 : Bohemya Masifi'nin zonlarını gösteren harita (Schulmann ve diğ. 2004'ten alınmıştır).

6.2.2 Tepla Barrandiyen

Moldanubiyen Zonu'ndan KD-GB doğrultulu büyük bir sağ yanal atımlı fay ile ayrılır. Erken Devoniyen'de orta basınç metamorfizmasından etkilenmiş Kambro-Ordovisyen sokulumlarının görüldüğü Pan-Afrikan bir temele sahiptir (Matte, 1990; Chlupac 1998; Pitra ve diğ. 1999). Bu etkiler daha çok birimin kuzey ve batı sınırında görülürken, birimin merkezinde metamorfizmaya uğramamış Kambriyen-Orta Devoniyen yaşlı kayaçlar, alt yeşilşist derecesinde metamorfize olmuş Pan-Afrikan temeli uyumsuz olarak örter.

Bu zon Kuzey Armorika Zonu ile de deneştirilmektedir (Misar ve diğ. 1983). Çekirdeğindeki Pan-Afrikan temel üzerine Alt Kambriyen silisiklastikleri uyumsuz olarak gelir ve istif üst Kambriyen felsik volkanitleri ile devam eder. Prag havzasında erken Ordovisyen transgresyonunu takip eden Orta Ordovisyen volkanitleri, Silüriyen graptolitli şeylleri ve Devoniyen kireçtaşları bulunur. Prag Havzası Ordovisyen birimleri, metamorfizmaya uğramamış, bol fosilli, şeyl ve kumtaşlarını içeren sürekli istifiyle ünlüdür (Barrande 1852).

6.2.3 Saksotüringiyen

Geç Neoproterozoyik volkano-sedimanter istif ile bunun içerisine sokulmuş geç Neoproterozoyik-erken Kambriyen granitoid komplekslerinden oluşur. Bu Pan-Afrikan temel uyumsuz olarak erken Paleozoyik Atlantik tipi kıta kenarını temsil eden volkano-sedimanter istiflerle örtülüdür (Zak ve diğ. 2014). Geç Ordovisyen ve Fameniyen pelajik çökellerle, Fameniyen-Vizeyen derin denizel çökelleriyle temsil edilirler (McCann ve diğ. 2008). Hem temel hem de üzerine gelen sedimanter birimler Kambro-Ordovisyen, geç Devoniyen-erken Karbonifer protolit yaşlı ortognays ve bimodal volkanitlerine ev sahipliği yaparlar. Bölge yeşil/mavi şist fasiyesi ve ardından yüksek sıcaklık-yüksek basınç metamorfizmasına maruz kalmış, bindirmeler sırasında tekrar deforme olarak orta basınç-orta sıcaklık koşullarında (yeşilşist fasiyesinde) metamorfize olmuştur. Metamorfize olmuş Ediyakaran protolitlerinin bulunduğu en tipik bölgelerden biri Erzgebirge'dir. KD-GB doğrultulu bu yapı 5600 km²'lik bir alan kaplar. Burada naplarla KB'ya taşınmış Paleozoyik birimler gözlenir. Kuzeyde Orta Alman Kristalin Zonu'ndan KD-GB doğrultulu faylarla ayrılır. Güneybatı sınırı Frankoniyen Hattı (Franconian Line) ile temsil edilir. Güneydoğuda Ohre Grabeni (Eger Grabeni), batıda ise Südetler ile sınırlandırılır. Saksotüringiyen Zonu Gondwana-Land kenarında oluşmuştur, hatta yapılan detaylı SHRIMP U-Pb yaşlandırmaları bu birimin Batı Afrika ile ilişkili olduğunu göstermektedir (Linnemann ve diğ. 2004).

6.2.4 Orta Alman Kristalin Zonu (Mitteldeutsche Krystallinschwelle)

350 km uzunluğunda GB-KD doğrultulu kristalin kayaçların açığa çıktığı bir kuşaktır. Güneybatıda Vosges'lardan başlayarak kuzeydoğuya doğru Odenwald, Spessart, Ruhla Kristalin Kompleksi ve Kyffhauser Dağlarında açığa çıkar. Orta Alman Kristalin zonuna ait ksenolitler Saar-Nahe havzasında, Werra, Türingiyen çukurluğundaki sondajlarda bulunur. Bu zon orta-yüksek derece metamorfizmaya uğramış gnays ve granitik kayaçlardan oluşur. Bu zonun tek bir masif kütle olmadığı, Hersiniyen orojenezi sırasında bir araya gelen farklı kaya birimlerinden oluştuğu düşünülmektedir (Zeh 2010).

Şekil 6.2.2 : Franz Eduard Suess tarafından çizilmiş olan Saksotüringiyen'in K-G kesidi. Bu kesit babası Eduard Suess'e yolladığı mektupta bulunmaktadır.

Saksotüringiyenin para-otokton birimlerine dahil olan çok düşük dereceli metamorfizma ürünleri 6 bölgede ortaya çıkar. Bunlar; Schwarzburg Antiklinali, Torgau-Doberlug Senklinali, Kuzey Sakson Antiklinali, Lausitz Bloğu ve Münchberg Massifi. Bölgede KB-GD doğrultulu yanal atımlı faylar egemendir. Hersiniyen Orojenezi'nin son etabında bileşimi değişken granitler (S-, A-, I- tiplerinde) sokulmuşlardır (Chab ve diğ. 2010; Zak ve diğ. 2014; Linnemann ve diğ. 2008).

6.2.5 Kuzey Fillit Zonu

Kuzeybatıda şistli Ren Masifi'nin ve Harz Dağları'nın düşük dereceli metamorfikleri ile güneydoğuda Orta Alman Kristalin Zonu arasında kalan dar bir kuşaktır. Renohersiniyen ve Armorika'dan türeyen çok düşük-düşük derecede metamorfikler ve volkaniklerden oluşmaktadır. Cocks ve Fortey (1982)'ye göre Reik Kenedinin bir parçasıdır.

6.2.6 Renohersiniyen Zonu

Şistli Ren Masifi (Ardenler, Taunus, Eifel, Hünsrück), Harz Dağları, Güney İrlanda ve Güneybatı İngiltere'nin kuzey kısmını kapsayan Renohersiniyen Zonu, Dış Hersinidlerin kıvrım ve bindirme zonuna karşılık gelir (Franke 1995). Zon içerisinde KB verjanslı kıvrımlar ve bindirmeler gözlenir (Weber 1981). Birimin karşılığının Bohemya Masifi'nde Moravo-Silezyen Zonu, Iberya'da Ossa-Morena Zonu olduğu düşünülmektedir (Stille 1951; Behr ve diğ. 1984; Şengör 2013). Erken Devoniyen ve geç Karbonifer'de güneydoğuya dalan levhanın önülkesinde oluşmuştur. Ordovisyen ve Silüriyen çökelleri Şistli Ren Masifi'nde sadece antiklinallerde ve az miktarda ortaya çıkmaktadır. Ardenlerde ise Kambriyen-Ordovisyen mostraları geniş yer kaplamaktadırlar. Zonun büyük kısmı Alt-Orta Devoniyen şelf kırıntılıları ve karbonatlardan oluşur. İstifin güney kısmı, erken Devoniyen Okyanus ortası sırtı tipi metabazaltlar, Frazniyen-Alt Karbonifer fliş çökelleri içeren geniş bir nap tarafından örtülüdür (Franke 1989). Erken Devoniyen-Vizeyen'de bimodal volkanizma bölgede etkili olmuştur. Zon içerisindeki metamorfizma düşük basınç-düşük sıcaklık metamorfizması olup kıvrımlanma esnasındaki deformasyona bağlı olarak gelişmiştir (Weber 1981). Renohersiniyen Zonu'nun güneyinde bulunan Taunus ve Hunsrück'da bu deformasyon daha şiddetli izlenir. Franke (1995), Renohersiniyen Zonu'nun erken Ordovisyen'de açılan ve Devoniyen'den önce kapanan ardından tekrar açılan bir okyanusun tabanına sahip olduğunu ileri sürmüştür.

6.2.7 Hersiniyen Molası (Sub-Varisk Zonu)

Kossmat (1927)'ın Vestfal Zonu olarak haritaladığı sinorojenik ve kömür içeren kırıntılıların olduğu bölgedir. Renohersiniyen Zonu'nun kuzeybatıya genişlemesi sırasında ve sonrasında orojenik cephenin kuzeyinde oluşan molas havzasıdır. Bu havzalardan en meşhuru Ruhr Havzası'dır. Sığlaşan denizel istif Namuriyen-Vestfaliyen zamanında kömür biriktiren havzaya dönüşmüştür. Renohersiniyen içerisinde devam eden kıvrım ve bindirme olayları molas havzalarını da etkilemiştir (Littke ve diğ. 2000). Doğuda Güney Portekiz Zonu ile deneştirilmektedir (Şengör 2013). Günümüz literatüründe Renohersiniyen Zonu'nun bir parçası olarak düşünülmektedir.

6.2.8 Brunovistuliyen Bloğu

Bohemya Masifi'nin ve İç Hersinidlerin en doğusunda yer alan birimdir. Yaklaşık 30.000 km² alan kaplar ve ağırlıklı olarak çökellerle örtülü Peri Gondwana-Land temeline sahiptir. Temeli hem yüksek dereceli (gnayslar-migmatitler) hem de düşük dereceli (fillitler ve benzerleri) metamorfik birimlerden oluşur. Bloğun doğu kısmı (Slavkov Birimi) ada yayı ürünü olup, Orta Avrupa'da Neoproterozoyik kıta gelişiminin iyi görüldüğü ender yerlerdendir. Bloğun batı kısmı Thaya Kubbesi tekrar işlenmiş kratonik malzemeden oluşur ve Gondwana-Land'ın parçası olarak yorumlanmaktadır (Finger ve diğ. 2000). Bu iki birim arasında Prekambriyen metabazitlerinin bulunduğu K-G doğrultulu bir kuşak yer alır. Brunovistuliyen Zonu
içerisindeki olayların zamansal dağılımı Tepla-Barrandiyen ve Saksotüringiyen ile benzerlik göstermemektedir. Kalvoda ve diğ. (2008) bu birimin erken Paleozoyik'te Baltika'nın bir parçası olduğunu Hersiniyen Orojenezi sırasında ise Lavrusya'nın güney kenarını oluşturduğunu, stratigrafik kayda bakarak ise batıda Avolonya'ya doğuda İstanbul Zonu'na benzediğini öne sürmüştür.

6.2.9 Moravo-Silezyen Zonu

Bohemya Masifi'nin en doğusu ve güneydoğusunu oluşturur ve kısmen Kuzey Karpatlar'ın altında kaybolur. Dış Hersinidlerin bir üyesidir (Stille 1951; Kroner ve diğ. 2008). Zayıf bir şekilde deforme olmuş Pan-Afrikan temel, Orta Devoniyen pembe kumtaşları ve geç Devon-erken Karbon karbonat platformu ile örtülüdür, ünlü Moravya karstı adını buradan alır. Yapılan sondaj çalışmaları bu örtünün Karpat yayönüne kadar uzandığını hatta Moezya'ya kadar da uzanabileceğini göstermiştir (Burchfiel 1975). Orta Vizeyen-Namuriyen molas havzası batıdaki metamorfitlerden beslenmiş sintektonik bir havza özelliğindedir. Moravo-Silezyen Zonu üst Karbonifer'de özellikle Moldanubiyen sınırı boyunca deforme olmuştur. Karbonifer birimleri aynı stratigrafik düzeyi kullanarak sıyrılmış naplar halinde karbonat platformuna bindirmiştir. Karbonifer öncesi KB-GD enine faylar bu deformasyonun dağılımında oldukça etkilidirler. Karbonifer birimlerin geçirdikleri deformasyon kuzeydoğuya gittikçe ve Moldanubiyen sınırına yaklaştıkça artar. Moravo-Silezyen ile Moldanubiyen arasındaki sınır geniş, düşük açılı, KB eğimli bir makaslama zonu ile temsil edilir. Moravo-Silezyen Zonu, granitik temeli üzerine gelen sığ denizel platform çökelleri ve Kulm fasiyesi molas çökelleriyle Massif Central, Montagne Noire ve Pireneler'e benzerlik gösterir (Matte 1990).

Moravo-Silezyen Zonu güneyden kuzeye Moravya, Südet ve ön Südet olmak üzere 3 başlık altında incelenebilir. Bu bölgedeki yüksek dereceli metamorfizma geçirmiş gnays ve granülitler, eklojit içeren Moldanubiyen Zonu, Thaya ve Svratka pencerelerinde görülebildiği üzere Moravo-Silezyen Zonu üzerine bindirir. Südetlerde Moravo-Silezyen Zonu orta dereceli metamorfizmaya uğramış metasedimanter kayaçlar ve gnayslardan oluşan Lugikum Zonu ile bir araya gelir.

6.3 Massif Central

Hersiniyen volkanik ve metamorfik kayaçlarının yüzeylendiği en büyük alanlardan biridir. Gondwana-Land kökenli Massif Central geç Silüriyen-erken Devon yüksek basınç metamorfizmasına maruz kalmış ve bu geç Karbonifer'e kadar devam etmiştir. Metamorfik napların birleşiminden oluşur (Faure 2009). Alttan üste; Gondwana-Land'a ait Atlantik tipi kıta kenarı kayaçları ve onları üzerleyen geç Paleozoyik yay-önü çökelleri; Karbonifer migmatitik granit-gnayslarını örten Stefaniyen çökelleriyle temsil edilir.

Şekil 6.3.1 : Massif Central ve içerisindeki birimler (Santallier 1994).

6.4 Armorika

Suess (1886) tarafından ilk defa Armorika Dağları olarak tanımlanan tektonik birlik Van der Voo (1979) tarafından paleomanyetik verilere dayanarak ayrı bir kıtacık olarak öne sürülmüştür. Avrupadaki batı Hersinidleri (Almanya, Fransa), Kuzey İspanya'yı, Güney İngiltere'yi kapsamaktadır. Ballevre ve diğ. (2009)'ne göre KB Fransa ve Güney Masif Central'i içermektedir. Masifin batı ucu Biscay Körfezi'nin diğer yanında bulunan İberya Zonu, Galiçya, Asturya ve Kantabriya zonlarına bağlanmaktadır. Deneştirmelerindeki anlaşmazlıklar nedeniyle Armorika'nın sınırları çalışmacıdan çalışmacıya değişmektedir. Geç Karbonifer yanal atım sistemleriyle biçilen Armorika Masifi 4 bölümde incelenir. Léon Birimi, Kuzey, Orta ve Güney Armorika Zonları. Bu zonlar Devoniyen ve Karbonifer'de geçirdikleri deformasyon derecelerine göre birbirlerinden ayrılırlar. Paleozoyik istif ile uyumsuz olarak örtülen neredeyse hiç deforme olmamış Proterozoyik temel Kuzey ve Orta Armorika zonlarında ortaya çıkar. Deformasyonu lokalize eden yanal atım sistemleri sayesinde bu iki zon daha az daralmaya maruz kalmıştır. Bunun tersine Léon Birimi ve Güney Armorika deformasyonun en şiddetli görüldüğü yerlerdir. Armorika Masifi'nin Gondwana-Land kökenli olduğu, Pan-Afrikan orojenezi sırasında Batı Afrika Kratonu'na ait olduğu düşünülmektedir (Ballevre ve diğ. 2009).

6.5 İberya Masifi

İber Yarımadası'nın batı ve kuzeybastısını oluşturan bu masif dıştan içe 5 birimle incelenir. Bunlar; Güney Portekiz Zonu, Ossa-Morena Zonu, Orta İberya Zonu, Batı Asturiya-Leonese Zonu, Kantabriya Zonu'dur.

Şekil 6.5.1 : İberya Masifinin zonlarını gösteren harita (Vera 2004).

6.5.1 Güney Portekiz Zonu

Bu zon İberya'nın en güneybatısını oluşturur. Otokton Devoniyen-Karbonifer Atlantik tipi kıta kenarı istifi ile ofiyolit ve derin deniz çökelleri gibi okyanus kalıntılarını içeren allokton birimlerden meydana gelir. Erken Paleozoyik ve öncesi birimler bu zon içerisinde gözlenmez. Deformasyona uğrayan bu zon içerisine Karbonifer Sierra Norte batoliti sokulum yapar. Bölge sonrasında Stefaniyen yaşlı faylarla biçilmiştir (Ribeiro 1981; Abalos ve diğ. 2002).

6.5.2 Ossa-Morena Zonu

Prekambriyen temel ve onun üzerine gelen çökel birimlerinden oluşur. Alt Kambriyen platform çökellerini spilit ardalanmalı kalın şist-kuvarsit tabakaları izler. Ordovisyen şeylleri ile bazik ve asidik volkanizmanın yaygın görüldüğü Silüriyen istifleri, Alt-Orta Devoniyen platform çökelleriyle örtülüdür. Üst Devoniyen flişleri alttaki birimlerden büyük bir uyumsuzluk ile ayrılır. Bu uyumsuzluk Hersiniyen deformasyonunun ilk fazı olarak yorumlanmıştır. İspanya'nın en yaşlı kayaçları Badajoz-Cordoba makaslama zonu boyunca ortaya çıkar, burada kalksilikatlar ve siyah meta çörtler ile birlikte görülen gnayslar, amfibolitler ve eklojitler bulunur (Valladares ve diğ. 2002). Ana deformasyon fazı bölgede kilometre ölçeğinde B-GB'ya verjanslı devrik kıvrımlar ve bindirmeler yaratmıştır (Matte 1991).

6.5.3 Orta İberya Zonu

Galicia-Trás-os-Montes birimini de kapsar. Hem düşük hem de yüksek dereceli metamorfizmaya uğramış birimler ile bunları kesen granitoidlerden oluşur. Karakteristik olarak Arenig yaşlı Armorika kuvarsti, geç Proterozoyik-Kambriyen yaşlı temel üzerine uyumsuz olarak gelir (Abalos ve diğ. 2002). Ordovisyen yaşlı kayaçlar yaygın ve bol fosilli olarak görülür (Gutierrez-Marco ve diğ. 2002). Ordovisyen-Karbonifer istifi karasal çökellerle başlayıp derin denizel birimlere geçiş yapar, Üst Devon-Alt Karbon türbiditik istifi ile son bulur (Vilas ve De San Jose 1990). Bu haliyle tipik bir Atlantik tipi kıta kenarını temsil etmektedir.

6.5.4 Batı Asturiya-Leonese Birimi

İberya Masifi'nin Paleozoyik istifinin erken Kambriyen'den erken Permiyen'e kadar bütünüyle görüldüğü yerlerdendir. Kantabriya Zonu ile Orta İberya Zonu arasındaki geçiş birimlerini oluşturur. Kalınlığı 3000 m'ye varan Kambriyen-Ordovisyen silisiklastik kayaçlar yaygın olarak görülür. Paleozoyik istifi Prekambriyen temel üzerine uyumsuz olarak gelir.

6.5.5 Kantabriya Zonu

İberya'nın kuzeyinde bulunan ve İbero-Armorikan yayının en iç bölgesini oluşturur ve Batı Asturya-Leonese biriminden Narcea Antiformu ile ayrılır. Prekambriyen'den Karbonifer'e kadar uzanan neredeyse hiç metamorfizmaya uğramamış sığ-denizel çökel bir istifle tanımlanır. Bu istif şiddetli bir şekilde kıvrımlanmış ve naplar halinde bindirmiştir (Wallace 1972). Bu haliyle doğuya verjanslı kıvrım ve bindirme kuşağını temsil etmektedir. Naplar kurtulma yüzeyi olarak Alt-Orta Kambriyen (Lancara Fm.) kireçtaşı ve dolomitlerini kullanmışlardır. İç bükey yapısıyla oldukça heterojen bir yapı sunar (Abalos ve diğ. 2002).

6.5.6 Pireneler

Fransa-İspanya sınırında yer alan Pireneler 400 km uzunluğunda 40-80 km genişliğinde dar bir dağ sırasıdır. Kuzey-Eksen-Güney zonlar olmak üzere 3 bölümde incelenir. Alpin Orojenezi öncesi kayaç toplulukları Eksen bölgede bulunur. Karadokiyen-erken Karbonifer yaş aralığındaki çökel birimlerden oluşur. Bu birimler bölgedeki magmatizmaya bağlı olarak düşük basınç-yüksek sıcaklık metamorfizmasına uğramıştır. Gerilmeli-yanal atımlı bir ortamda deforme olmuş birimler dar milonit zonları oluşturur. Yanal atımlar ise bölgede saat yönünde bir dönmeye neden olmuştur (Rutten 1969; Abalos ve diğ. 2002).

6.6 Avalonya

Paleomanyetik ve paleobiyostratigrafik verilere dayanılarak tanımlanmış kıtacıktır (Scotese ve McKerrow 1990). Hersiniyen orojenik kuşağının kuzey önülkesini oluşturur. İrlanda'dan başlayıp, Belçika üzerinden Kuzey Almanya ve Polonya'nın bir kısmını içine alır. İber yarımadasındaki Ossa-Morena Zonu'da Avalonya ile deneştirilmektedir (Kroner ve Romer 2013). Atlantik Okyanusu'nun karşı kıyısında ise Newfoundland'ın güneyini, New Brunswick ve Nova Scotia sahillerini kapsar. Kuzeydeki sınırları keskin bir şekilde Iapetus ve Tornquist kenetleri ile belirlenmiştir. Bu zonlar Avalonya'yı Kuzey Amerika ve Baltika'dan ayırırlar. Güneyde ise Reik kenedi İç Hersinidlerle sınırını oluşturur (Matte 2001).

7. HERSİNİYEN DAĞ KUŞAĞININ OLUŞUMU: YENİ BİR MODEL

Bu çalışmayı gerçekleştirmek için Almanya, İngiltere, İsviçre, Avusturya ve Fransa'nın dijital jeoloji haritaları kullanılmış, Çek Cumhuriyeti, İspanya, Portekiz ve Slovakya için mevcut 1.1.000.000 ölçeğindeki jeoloji haritaları Arc Map programı ile dijitalleştirilmiştir. Avrupa ve Afrika'da Hersiniyen masiflerinin görüldüğü alanlardan izotopik yaş tayinleri literatürden derlenmiştir. Toplamda 2775 veri elde edilmiş, bunlardan 1138'i yay ile alakalı ürünler olarak saptanmış ve haritalanmıştır (Şekil K.1; L.1; M.1). Masiflerin daha genç birimler altında kaldığı bölgeleri saptayabilmek için ise mevcut manyetik anomali haritaları kullanılmıştır (Şekil N.1). Yay magmatizmasının görüldüğü bölgeleri anlamlı tektonik parçalara ayırabilmek için çizilmiş olan kılavuz hatlar da haritaya eklenmiştir (Şekil O.1).

7.1 Magmatik Yayların Belirlenmesi

Dünya üzerindeki magmatik yaylar incelendiğinde bunların ortalama 40-50 km genişliğinde bir cephe oluşturdukları gözlenmektedir. Bu yaylar içerisinde en genişi sıkışmalı bir orojenik kuşak olan Andlar'dır ve tüm Tersiyer boyunca devam eden magmatizması 100 km genişliğe ancak ulaşmıştır. Avrupa Hersinidleri ele alındığında bu yay cephelerinin hem ortalamanın üstünde bir genişliğe sahip olduğu hem de yayların tekrarlandığı görülmektedir. İberya ve Bohemya masiflerinde bu yayların en dar bölgesi 500 ile 700 km genişliğe sahiptir. Bölge ele alındığında şu çıkarımlar yapılabilir;

- Bohemya Masifi Hersinidlerin dağılımının en düzensiz olduğu yerlerden biridir. Kare biçimindeki yapısı oluşumunda yanal atımlı fayların egemen olduğunun açık göstergesidir. Bohemya Masifi için en az 3 farklı magmatik yayın bir araya geldiği söylenebilir.
- Avusturya'da kendisini belli eden yay parçaları Pireneler'e kadar uzanan bir hat oluşturmaktadır.
- Bohemya Masifi'nin kuzeyinden başlayıp Vosges-Karaorman ve Massif Central'i geçip Güney Armorika'ya kadar uzanan bir yay cephesi daha tespit

edilmiştir. Bu yayın Massif Central'de yaptığı büklümün Paris Havzası altındaki manyetik anomaliye sebep olan magmatiklerle ilişkili olabileceği literatürde belirtilmiştir (Thiery ve diğ. 2009)

- Kuzey Armorika'da 2 yay parçası daha tanımlanmıştır. Bu yaylardan kuzeyde bulunanı en son Ordovisyen yaşı veren magmatik kayaçları barındırmaktadır. Bu nedenle faaliyetinin diğer yaylar gibi sürekli olmadığı düşünülmektedir. Kuzey Armorika sınırları içerisinde kalan Bretonya sahillerinden başlayan farklı bir yay parçası da belirlenmiştir. Bunun Güney Armorika'da yer alan yayın devamı olabileceği düşünülmektedir.
- İberya Masifi 2 farklı yay cephesini göstermektedir. Bu gelişim zamansal olarak da takip edilmektedir.

7.1 Büyük Ölçekli Doğrultu Atımlı Fay Sistemleri

Staub (1928)'den beri Hersiniyen Orojeninin ve Paleo-Tetis Okyanusu'nun Lavrusya ile Gondwana-Land'ın çarpışması sonucu oluştuğu bilinmektedir. Ancak geç Karbonifer Permiyen'e ait kıta yapılandırmaları hala sorunludur. Bunun en büyük sebeplerinden biri ise orojene dahil olmuş kıta parçalarının rijid kabul edilip bunlar içerisindeki yamulmanın hesaba katılmamış olmasıdır. Hersinidlerin bugünkü konumlarını belirleyen en önemli etkenlerden biri de yanal atım sistemleridir. Yanal atım sistemlerinin Hersiniyen orojenezi içerisindeki etkisi ilk defa detaylı olarak Arthaud ve Matte (1977) tarafından çalışılmıştır. Çalışmalarında Apalaşlar'dan Urallara kadar uzanan bir zon içerisindeki sağ yanal atımlı fayların kuzeyde Avrupa, Kanada Kalkanı ve Grönland ile güneyde Afrika arasındaki yer değiştirmeyi karşıladıklarını belirtmişlerdir. Bu çalışmada ise Karbonifer'de faal olduğunu bilinen faylar haritalanarak bunların tespit edilen yaylarla ilişkisi incelenmiştir (Şekil 7.4). Avrupa içerisindeki büyük yanal atım sistemleri şunlardır;

Trans-Avrupa Fayı: Doğu Avrupa Kratonu'nun Baltika, Avalonya ve Gondwana-Land kökenli birimleriyle sınırını teşkil eder. Kuzey Denizi'nden başlayıp Karpatlar'a kadar uzanan yaklaşık 3000 km uzunluğunda bir fay zonudur. Jeofizik araştırmalar zayıf bir litosfere sahip olduğunu ve fay zonunun 55 km derine uzandığını göstermiştir. Fay zonu büyük sedimanter havzalara ev sahipliği yapmaktadır (Pharaoh ve diğ. 1997).

Şekil 7.1.1 : Magmatik cepheler ve Karbonifer yaşlı yanal atımlı fayların dağılımları. Yay cepheleri kırmızı, faylar siyah olarak çizilmiştir. P-T. F.: Porto-Tomar fayı; B-C.F: Badajoz-Cordoba Fayı; B-P. F: Biscay-Kuzey Pireneler Fayı; S.H.F.: Sillon Houiller Fayı; C.F.: Cevennes Fayı; G.A.F: Güney Armorika Fayı; F.F.: Frankonya Fayı; E.F.: Elbe Fayı; S.İ.F.: Südet İçi Fayı

Elbe Fay Sistemi: BKB-DGD doğrultulu sağ yanal atımlı Elbe ve Odra faylarını içeren fay sistemidir. Kuzey Alman Havzası'ndan Südetlerin kuzey sınırına kadar uzanır. Geç Karbonifer ve Permiyen'de aktif olduğu düşünülmektedir. Harz Dağları'nın doğusunda 30 km yanal atım gösteren bu fay sistemi, Kuzey Sakson Sinform'unda 20 km olarak görülmektedir. Güneydoğuda ise atımı 50 km'ye kadar çıkmaktadır. Rajlich (1987) manyetik anomalileri kullanarak yanal atımın 100-120 km olduğunu öne sürmüştür.

Südet içi Fay Zonu KKB-GGD doğrultulu bu fay zonu Elbe ve Odra faylarına paralel olarak uzanır. Sağ yanal atımlı bu fayın Aleksandrowski ve diğ. (1997)'ne göre 50-300 km arasında değişen atımı vardır. Fay zonunu kaplayan Karkonoz Graniti (330-310 My) ise bu fayın aktivitesi için üst yaş sınırı vermektedir.

Frankonya Fayı: KB-GD doğrultulu bu fay Geç Karbon-erken Perm boyunca sağ yanal olarak çalışmıştır. Fay zonu boyunca açılan çek-ayır havzalar Permo-Karbon karasal çökelleri ve volkanitleri ile doludur (Zeh ve Brätz 2004; McCann ve diğ. 2008)

Bavyera-Pfahl Makaslama Zonu: KB-GD doğrultulu fay Frankonya Fayı ile aynı doğrultudadır. Bavyera, Tuna ve Diendorf faylarını kapsayan bir zondur. Fay Zonu boyunca yaygın magmatizma gözlenir. Erken Karbonifer'de harekete geçtiği

düşünülen bu fay zonunun içerisindeki milonitlerde yapılan gözlemler sağ yanal doğrultu atımlı olduğunu göstermektedir (Siebel ve diğ. 2005)

Pay de Bray Fayı (Bristol Kanalı-Bray Fayı): Reik Okyanusu kenedini temsil eden Güney İngiltere'den başlayıp Fransa'da Vosges'lara kadar uzanan fay hattıdır. Mesozoyik birimleri de etkileyen bu fay zonu Hersiniyen orojenezinde sağ yanal olarak çalışmıştır (Matte ve diğ. 1986). Fay zonundaki manyetik ve gravite verileri fay zonu içerisinde mafik kayaçların olduğunu göstermektedir (Bois ve diğ. 1994)

Güney Armorika Fay zonu: Sağ yanal atımlı bir fay sistemidir. KB-GD doğrultulu bu fay zonu kuzeybatıda dar bir zon içerisinde uzanır, güneye ilerledikçe kollara ayrılır. Fay zonu boyunca geç Paleozoyik magmatikleri sokulmuş ve faylar ile atılmışlardır. Milonitleşme yaygın olarak görülür. Fay Zonu üzerine Stefaniyen ve Vestfaliyen havzaları yerleşmiştir. Bu zondaki granitler 25 km atım gösterse de bunun daha fazla olabileceği düşünülmektedir (Arthaud ve Matte 1977). Matte ve diğ. (1986) toplam atımın 200 km'den fazla olduğunu öne sürmüştür.

Sillon Houiller Fayı: En genç Stefaniyen kömür havzalarını öteleyen bu fay sol yanaldır. KKD-GGB doğrultulu 900 km uzunluğundaki bu fay Limousin ile Doğu Massif Central'i birbirinden ayırır. Fay zonunda bulunun milonit zonu 300 My yaşındaki granit ile kesilmektedir (Burg ve diğ. 1990). Thiery ve diğ. (2009) bu fay zonunun Paris Havzası altında bulunan manyetik anomali ile ilişkili olduğuna değinerek bu iki yapının tek bir süreksizliği temsil ettiğini öne sürmüştür. Manyetik anomalinin güneyde bittiği alanda, Masif Central'in kuzeyinde açığa çıkan kuvars diyoritler bu anomalinin Vizeyen yaşlı mafik sokulumlar sebebiyle meydana gelebileceğini göstermektedir.

Biscay-Kuzey Pireneler Fayı: İberya Masifi'ni Avrupa'nın geri kalanından ayırır. Sağ yanal çalışan bu fayın Hersiniyen Orojenezi sırasındaki atımı 150 km olarak tahmin edilmektedir. Geç Kretase sonrası çarpışmada tekrar aktif hale gelmiştir (Arthaud ve Matte 1977).

Badajoz-Cordoba Makaslama Zonu: İspanya'nın güneybatısında Ossa-Morana Zonu ile Orta İberya Zonu arasında yer alır. KB-GD uzanımlı bu fay zonu sol yanal atımlıdır. Minimum yanal atım 72 km olarak hesaplanmıştır (Burg ve diğ. 1981).

Porto-Tomar Makaslama Zonu: K-G doğrultulu sağ yanal atımlı faylardan meydana gelir (Dinis ve diğ. 2012).

Yüksek Atlas Fayı: K60D/K70D uzanımlı bu dar fay zonu Yüksek Atlasların Permiyen öncesi birimlerini kesmektedir (Sintubin ve diğ. 1997). Bu sitem içerisindeki ana faylardan biri olan Tizi n'Test fayı 50 km atım gösteren sağ yanal bir faydır.

8. TARTIŞMA

Dünya üzerindeki dalma-batma zonlarının dinamik yapısı göz önüne alındığında bu yapıların uzun süre yaşayıp zamansal ve mekânsal olarak sürekli olmaya eğimli oldukları görülmektedir. Yapı olarak ise ince ve uzun bir hat teşkil etmektedirler ve bunlar üzerinde oluşan magmatik yaylar da aynı davranışı sergilerler. Kısacası magmatik yayı takip edebilmek, onu oluşturan dalma-batmayı da tekrar şekillendirmeye olanak sağlayabilir. Ancak dalma-batma ile ilişkili magmatik yayların tek bir hat oluşturmadığı durumlar da mevcuttur (Şekil 8.1). Bu düzensiz dağılım üçlü eklemlerde, hendek gerilemesinde ya da yanal atım sistemlerinin egemen olduğu durumlarda gelişebilir. Fakat art arda kenet zonu ve magmatik yayın tekrarlandığı ortamlar doğal olarak mevcut değildir. Bunların en iyi örneklerinden biri olan güneydoğu Asya'da dahi tek bir yay parçalanarak tekrarlanmıştır (Hall 1996).

Şekil 8.1 : Magmatik yayların saçıldığı ortamlar, a) Üçlü eklem, b) Hendek gerilemesi, c) Yanal atım sistemlerini biçmesi, d) Kenet zonu-magmatik yay ardalanması.

Avrupa Hersinidleri içerisinde tespit edilmiş olan yay parçaları önceden de belirtildiği üzere olağandan geniş bir alan kaplamaktadır, Ediyakaran'dan geç Karbonifer'e kadar sürekli bir yaş verisinin elde edilmesi ve bunların belli bir düzen içerisinde dağılmış olmaları bunların tek bir yayın ürünü oldukları fikrini akıllara getirmiştir. Avrupa içerisindeki yanal atım sistemleri ise bu yayı ötelemek ve birbiri ardına dizmek için hem uygun dağılıma hem de uygun atım yönlerine sahiptirler. Yay parçalarını belirleyip bunları peşi sıra dizen sistemi tanımladıktan sonraki adım ise geç Karbonifer-erken Permiyen paleocoğrafyasını tekrar kurgulamaktır. Bu yay parçalarının tek bir yayı temsil ettiğini ve bu yayında ince uzun bir hat oluşturduğunu varsayarak bu parçaları yanal atım sistemleri üzerinde kaydırarak uç uca eklendi ve sonuçta Ediyakaran'dan Üst Karbonifer'e kadar aktif olmuş tek bir yay oluşturuldu (Şekil P.1). Bu yaya bu çalışmada "Protogonos" (= ilk oluşan) adı verilmiştir. Oluşturulan bu yay erken Permiyen paleocoğrafyasını yansıtan Pangaea B modelinin temel alındığı paleocoğrafya haritası üzerine yerleştirildiğinde Gondwana-Land'ın kuzey kenarını çevrelediği ve bu modelin gerekli gördüğü Lavrusya ile Gondwana-Land arasındaki 3000-3500 km'lik atımı da mümkün kıldığı görülmüştür. Şekil P.1'de görülen rekonstrüksiyonu oluşturmak için Sağdıç (2015) tarafından öne sürülen geç Permiyen-erken Triyas rekonstürksiyonu temel alınmış, bu çalışmadan yola çıkılarak rekonstüksiyon zamanda bir adım daha geriye taşınarak modifiye edilmiştir. Avrupa Hersinidlerine ait parçalar rekonstrüksiyonda yerlerine yerleştirildikten sonraki adım ise İstanbul tektonik birliği için uygun olan yeri tespit etmektir. Bu kararı vermeyi sağlayacak paleomanyetik bir paleoenlem bu çalışmada tekrar mıknatıslanma sebebiyle elde edilememiştir. Ancak eldeki paleontoloji, stratigrafi ve yayına hazırlanmakta olan çökel kayaçlar içerisinde yapılan kırıntılı zirkon yaş verileri (Semih Can Ülgen, 2017, sözlü görüşme) İstanbul tektonik birliğinin bu yaydan çok uzakta olmadığını göstermektedir. Fakat İstanbul ve çevresinde İç Hersinidler'de görüldüğü gibi bir metamorfizma, okyanusal malzeme veya çarpışma ile alakalı granitlerin bulunmayışı (Sancaktepe graniti biyotit granit olup, muskovit bulundurmaması ve çevresinde çarpışmaya dair bir belirteç olmaması bakımından bu çalışmada çarpışma graniti olarak düşünülmemiştir) İstanbul'u bu yayın önüne değil ardına koymanın uygun olacağının kanıtlarıdır. İstanbul tektonik birliğinin Moezya ile benzerliği farklı çalışmacılar tarafından ortaya konulmuştur (Okay ve diğ. 1994; Kalvoda ve Babek 2010). İstanbul'un kuzeybatısında yer alan Istranca Masifi'ne ait ortognayslar üzerinde yapılan kırıntılı zirkon yaşlandırma çalışmaları bu masifin

içerisinde 650-340 My arasında var olmuş bir magmatik yayın ürünlerine sahip olduğu ve geç Karbonifer magmatiklerinin ise bizzat magmatik bir yayın parçası olduğu belirtilmiştir (Sunal ve diğ. 2006; 2008). Bu bilgiden yola çıkarak Istranca Masifi Protogonos Yayı'nın bir parçası olarak düşünülmüş, İstanbul ve eşleniği Moezya ise yay ardı bölgesinde yerleştirilmiştir. İstanbul içerisinde gözlenen bindirme cephelerinin ise geri-bindirme yapıları oldukları düşünülmektedir. Bu gözlemden yola çıkarak İstanbul tektonik birliğinin 100-110° kadar dönmüş olması gerekmektedir, ancak bunu kanıtlayacak paleomanyetizma verisi bu çalışmadan üretilememiştir.

9. SONUÇLAR

İstanbul Paleozoyiği'nin paleocoğrafyasını anlayabilmek için Avrupa Hersiniyen sisteminin baştan ele alınması gerekmiştir, çünkü İstanbul Paleozoyik parçası (aslında İstanbul+Çamdağ+Zonguldak) genel bir tektonik yorum yapılamayacak kadar küçük bir alanı işgal etmektedir. Üstelik yapılan tüm paleomanyetik gözlemler, İstanbul Paleozoyik parçasını oluşturan tüm kayaçların ikincil mıknatıslanmaya maruz kalarak Paleozoyik'teki manyetizmalarını kaybettiklerini göstermiştir. Yapılan gözlemler yeniden mıknatıslanmanın genellikle Kenozoyik dönemde olduğunu göstermekle beraber, mıknatıslanmanın daha ziyade bu zamanın en son devrelerine rast geldiğini etmektedir. Bu nedenle tektonik umulanın isaret yorumda, aksine, paleomanyetizmadan yararlanmak mümkün olmamıştır.

Pendik Formasyonu içerisinde yeni bulunan Brakiyopod fosilleri üzerinde Dr. Robin Cocks tarafından yapılan çalışmalar, bu fosil grubunun Renik fasiyesine ait olduğunu göstermiştir. Bu da İstanbul parçasının Renik Okyanusu, yani Avrupa Hersiniyeni ile doğrudan bir bağlantısı olduğunun kanıtıdır.

Tüm Avrupa Hersiniyen sistemi içerisinde elde edilmiş olan yüksek kaliteli izotopik yaşlardan 1138 noktanın Ediyakaran'dan başlayıp geç Karbonifer'e kadar faaliyet göstermiş olan ve Gondwana-Land'ın kuzey kıta kenarını oluşturan bir magmatik yayın ürünlerini temsil ettiği görülmüştür. 1947 ilave noktada yapılan yaş gözlemleri ise söz konusu yay yorumunu desteklemektedir. Elde edilen veriler bu magmatik yayın eskiden Hersiniyen Sistemi diye bilinen sistemin bel kemiğini oluşturduğu görülmüştür. Bu yaya bu çalışmada "Protogonos" (= ilk oluşan) adı verilmiştir. Ayrıca Avrupa'da Paleozoyik birimlerini etkileyen yapısal kılavuz hatlar haritalanarak yayların tektonik gidişleri hakkında ek veriler bulunmuştur.

Eldeki tüm veriler Protogonos yayının Avrupa'da Bohemya üzerinden Doğu ve Güney Karpatlara, oradan da Balkanidler'e geldiğini göstermektedir. Yapılan rekonstrüksiyonlarda en az Jura'ya kadar Moezya'nın bugünkü konumundan 180° farklı bir konumda olduğu, bugün Moezya'nın güneyinde olan Paleozoyik Balkanidlerinin o zaman kuzeyde olduğu görülmüştür. Lavrusya'nın güneyi boyunca meydana gelen 2500-3000 km'lik sağ yanal atımın neden olduğu bu dönme esnasında İstanbul parçası da 100-110° kadar saat yönünde dönmüştür. Tekrar mıknatıslanmaya uğramış kayaçlar bu tezi paleomanyetik verilerle test etme imkanı sunmamıştır.

Tezin en önemli sonucu, İstanbul Paleozoyik parçasının Moezya ve Bohemya Masifi'nin Tepla-Barrandiyum birliği ile birlikte Protogonos yayının ardında, Orta Karbonifer'e kadar Gondwana-Land'a ait olduğudur. Moezya'nın batısından itibaren meydana gelen Gondwana-Land/Lavrusya çarpışması Avrupa ve Kuzey Amerika'da Hersinid orojenik kuşağını oluşturmuş, Moezya'nın doğusunda kalan kesim ise Gondwana-Land'ın Paleo-Tetis kenarını oluşturarak tektonik evrimine devam etmiştir. Bu evrim de Jura'da Kimmerid çarpışması ile son bulmuştur. Bu şekilde Karadeniz çevresinde herhangi bir Hersiniyen (veya bir diğer adıyla Varisk) olaylarının olmadığı tespit edilmiştir.

KAYNAKLAR

- Ábalos, B., Carreras, J., Druguet, E., Escuder Viruete, J., Gómez Pugnaire, M. T., Lorenzo Álvarez, S., ... & Gil-Ibarguchi, J. I. (2002). Variscan and pre-Variscan tectonics. The geology of Spain, *Springer*, 155-183.
- Abati, J., Dunning, G. R., Arenas, R., García, F. D., Cuadra, P. G., Catalán, J. M., & Andonaegui, P. (1999). Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex. *Earth and Planetary Science Letters*, 165(2), 213-228.
- Abati, J., Gerdes, A., Suárez, J. F., Arenas, R., Whitehouse, M. J., & Fernández,
 R. D. (2010). Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. *Geological Society of America Bulletin*, 122(1-2), 219-235.
- Abdüsselamoğlu, Ş. (1963). İstanbul Boğazı doğusunda mostra veren Paleozoyik arazide Stratigrafik ve paleontolojik yeni müşahedeler. *Maden Tetkik ve Arama Enstitüsü Dergisi* 60, 1–7.
- Abdüsselamoğlu, M.Ş. (1977). The Paleozoic and Mesozoic in the Gebze Region. Explanatory text and excursion guide book. *IVth Colloquium on Geology of the Aegean Region*. İTÜ Maden Fak. İstanbul.
- Aguado, B. V., Azevedo, M. R., Schaltegger, U., Catalán, J. M., & Nolan, J. (2005). U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. *Lithos*, 82(1), 169-184.
- Aguilar, C., Liesa, M., Castiñeiras, P., & Navidad, M. (2014). Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U–Pb age zircon dating. *Journal of the Geological Society*, *171*(2), 181-192.
- Alexandre, P., de Veslud, C. L. C., Cuney, M., Ruffet, G., Virlogeux, D., & Cheilletz, A. (2002). Datation 40 Ar/39 Ar des leucogranites sous couverture du complexe plutonique de Charroux–Civray (Vienne). *Comptes Rendus Geoscience*, 334(16), 1141-1148.
- Aleksandrowski, P., Kryza, R., Mazur, S., & Zaba, J. (1997). Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. *Geological Magazine*, 134(05), 727-739.
- Alonso Olazabal, A., Ortega, L. A., Menéndez, M., Carracedo, M., & Aranguren, A. (2003). Nuevos datos geocronológicos Rb-Sr del plutón de Campanario-La Haba (batolito de Los Pedroches, Extremadura). *Geogaceta*, (34), 167-170.
- Altınlı, E. (1968). İzmit-Hereke-Kurcadağ alanının jeoloji incele¬mesi. Maden Tetkik ve Arama Enstitüsü Dergisi 71: 1-26.
- Altınlı, I. E., Soytürk, N. & Saka, K. (1970). Hereke-Tavşancıl-Tepecik alanının jeolojisi. *İstanbul Üniversitesi Fen Fakültesi Mecmuası* B 35 (1-2): 69-75.

- Andonaegui, P., Castiñeiras, P., Cuadra, P. G., Arenas, R., Martínez, S. S., Abati, J., ... & Catalán, J. M. (2012). The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. *Lithos*, 128, 84-99.
- Anthes, G., Reischmann, T., (2001). Timing of granitoid magmatism in the eastern mid-German crystalline rise. *Journal of Geodynamics* 31:119-143
- Antić, M., Peytcheva, I., von Quadt, A., Kounov, A., Trivić, B., Serafimovski, T.,
 ... & Wetzel, A. (2016). Pre-Alpine evolution of a segment of the North-Gondwanan margin: Geochronological and geochemical evidence from the central Serbo-Macedonian Massif. *Gondwana Research*, 36, 523-544.
- Antunes, I.M.H.R., Neiva, A.M.R., Silva, M.M.V.G, Corfu, F., (2009). The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). *Lithos* 111: 168–185
- Arenas Martín, R., Sánchez Martínez, S., Castiñeiras García, P., Jeffries, T. E., Díez Fernández, R., & Andonaegui Moreno, P. (2009). The basal tectonic mélange of the Cabo Ortegal Complex (NW Iberian Massif): a key unit in the suture of Pangea. *Journal of Iberian Geology*, 35(2), 85-125.
- Von Arthaber, G., E., (1914). Die Trias von Bithynien (Anatolien). Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients: c27, ss. Ss. 87-206, Levhalar XI-XVIII.
- Arthaud, F., & Matte, P. (1977). Late Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. *Geological Society of America Bulletin*, 88(9), 1305-1320.
- Aubele, K., Bachtadse, V., Muttoni, G., & Ronchi, A. (2014). Paleomagnetic data from Late Paleozoic dykes of Sardinia: Evidence for block rotations and implications for the intra-Pangea megashear system. *Geochemistry*, *Geophysics, Geosystems*, 15(5), 1684-1697.
- Augier, R., Choulet, F., Faure, M., Turrillot, P. (2015). A turning-point in the evolution of the Variscan orogen: the ca. 325 Ma regional partial-melting event of the coastal South Armorican domain (South Brittany and Vendée, France). *Bull. Soc. géol. France*, t. 186, no 2-3, pp. 63-91.
- Auvray, B., Macé, J., Vidal, P., & Van der Voo, R. (1980). Rb-Sr dating of the Plouézec volcanics, N Brittany: implications for the age of red beds ('Series rouges') in the northern Armorican Massif. *Journal of the Geological Society*, 137(2), 207-210.
- Awdankiewicz, M., Awdankiewicz, H., Kryza, R., & Rodionov, N. (2010). SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe. *Geological Magazine*, 147(01), 77-85.
- **Aysal N., Keskin M., Peytcheval., Duru, O. & Akgündüz, S.** (2015). Geochronology, geochemistry and isotope systematics of a mafic intermediate dyke complex in the Istanbul zone, northern Turkey. *Goldschmidt 2015* Abstracts:155.

- Azor, A., Rubatto, D., Simancas, J. F., González Lodeiro, F., Martínez Poyatos, D., ...& Matas, J. (2008). Rheic Ocean ophiolitic remnants in southern Iberia questioned by SHRIMP U-Pb zircon ages on the Beja-Acebuches amphibolites. *Tectonics*, 27(5).
- **Babin, C.** (1973). Bivalvia of the Kartal formation of Devonian age, Istanbul, Paleozoic of Istanbul. *Ege Üniversitesi Fen Kitaplar Serisi*, 40, 37-89.
- Balintoni, I., Balica, C., Ducea, M. N., Hann, H. P., & Şabliovschi, V. (2010). The anatomy of a Gondwanan terrane: the Neoproterozoic–Ordovician basement of the pre-Alpine Sebeş–Lotru composite terrane (South Carpathians, Romania). *Gondwana Research*, 17(2), 561-572.
- Ballèvre, M., Bosse, V., Ducassou, C., & Pitra, P. (2009). Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. *Comptes Rendus Geoscience*, 341(2), 174-201.
- Ballevre, M., Fourcade, S., Capdevila, R., Peucat, J. J., Cocherie, A., & Fanning, C. M. (2012). Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): Implications for the breakup of Gondwana. *Gondwana Research*, 21(4), 1019-1036.
- Bandrés, A., Eguíluz, L., Pin, C., Paquette, J. L., Ordóñez, B., Le Fèvre, B., ... & Ibarguchi, J. G. (2004). The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. *International Journal of Earth Sciences*, 93(5), 860-885.
- Barboni, M., Schoene, B., Ovtcharova, M., Bussy, F., Schaltegger, U., Gerdes, A., (2013). Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. *Chemical Geology* 342: 76–93.
- **Barrande, J.** (1852). Système Silurien Du Centre de la Bohême: Ire Partie: *Recherches Paléontologiques* (Vol. 1). Chez l'auteur et éditeur.
- **Barrie, C.T., Amelin, Y., Pascual, E.** (2002). U–Pb Geochronology of VMS mineralization in the Iberian Pyrite Belt. *Mineralium Deposita:* 37: 684–703
- Be Mezeme, E., Cocherie, A., Faure, M., Legendre, O., & Rossi, P. (2006). Electron microprobe monazite geochronology of magmatic events: examples from Variscan migmatites and granitoids, Massif Central, France. *Lithos*, 87(3), 276-288.
- Bea, F., Montero, P., & Molina, J. F. (1999). Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia. *The Journal of geology*, 107(4), 399-419.
- Bea, F., Montero, P. G., Gonzalez-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., ... & Zinger, T. (2006). Zircon thermometry and U–Pb ionmicroprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. *Journal of the Geological Society*, 163(5), 847-855.

- Beard, B. L., Medaris, L. G., Johnson, C. M., Brueckner, H. K., & Mísař, Z. (1992). Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. *Contributions to Mineralogy and Petrology*, 111(4), 468-483.
- Behr, H. J., Engel, W., Franke, W., Giese, P., & Weber, K. (1984). The Variscan belt in Central Europe: main structures, geodynamic implications, open questions. *Tectonophysics*, 109(1-2), 15-40.
- Berger, J., Féménias, O., Ohnenstetter, D., Bruguier, O., Plissart, G., Mercier, J.
 C. C., & Demaiffe, D. (2010). New occurrence of UHP eclogites in Limousin (French Massif Central): age, tectonic setting and fluid–rock interactions. *Lithos*, 118(3), 365-382.
- Bernard-Griffiths, J., Peucat, J. J., Cornichet, J., de Léon, M. I. P., & Ibarguchi, J. G. (1985). U-Pb, Nd isotope and REE geochemistry in eclogites from the Cabo Ortegal Complex, Galicia, Spain: an example of REE immobility conserving MORB-like patterns during high-grade metamorphism. *Chemical Geology: Isotope Geoscience Section*, 52(2), 217-225.
- Bertrand, J. M., Guillot, F., & Leterrier, J. (2000). Âge Paléozoïque inférieur (U— Pb sur zircon) de métagranophyres de la nappe du Grand-Saint-Bernard (zona interna, vallée d'Aoste, Italie). *Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science*, 330(7), 473-478.
- Bertrand, J.-M., Leterrier, J., Cuney, M., Brouand, M., Stussi, J.-M., Delaperrière, E., Virlogeux, D. (2001). Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (seuil du Poitou) et de Vendée. Géologie de la France, n° 1-2, pp. 167-189, 11 fig., 4 table.
- Bertrand, J. M., Pidgeon, R. T., Leterrier, J., Guillot, F., Gasquet, D., & Gattiglio, M. (2000). SHRIMP and IDTIMS U-Pb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont). Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 225-248.
- Bertrand, M. (1887). La Chaine des Alpes et La Formation du Continent Européen. *Imperie de Lagny*.
- Bois, C., Cazes, M., Choukroune, P., Gariel, O., Hirn, A., Le Gall, B., ... & Pinet, B. (1994). Seismic reflection images of the pre-Mesozoic crust in France and adjacent areas. In *Pre-Mesozoic Geology in France and Related Areas* (pp. 3-48). Springer Berlin Heidelberg.
- Borkowska, M., Choukroune, P., Hameurt, J., & Martineau, F. (1990). A geochemical investigation of the age, significance, and structural evolution of the Caledonian–Variscan granite–gneisses of the Snieznik metamorphic area, central Sudetes, Poland. *Geologia Sudetica*, 25(1-2), 1-27.
- Bosse, V., Feraud, G., Ruffet, G., Ballevre, M., Peucat, J.-J., Jong, K. (2000). Late Devonian subduction and early-orogenic exhumation of eclogite-facies rocks from the Champtoceaux Complex (Variscan belt, France). *Geological Journal*. 35: 297-325.
- **Boutin, R., Montigny, R. & Thuizat, R.** (1995). Chronologie K–Ar et 39Ar/40Ar du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. *Géologie de la France*,1, 3-25.

- **Bozkurt, E., Winchester, J.A., Yiğitbaş, E., Ottley, C.J.,** (2008). Proterozoic ophiolites and mafic–ultramafic complexes marginal to the İstanbul Block: An exotic terrane of Avalonian affinity in NW Turkey. *Tectonophysics*, 461, 240–251.
- Breiter, K., Koller, F., Scharbert, S., Siebel, W., Škoda, R., & Frank, W. (2007). Two-mica granites of the Plechý (Plockenstein) pluton in the Triple-point area of Austria, the Czech Republic and Germany. *Jb Geol BA*, *147*, 527-544.
- Van Breemen, O., Aftalion, M., Bowes, D. R., Dudek, A., Mísař, Z., Povondra, P., & Vrána, S. (1982). Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, 73(02), 89-108.
- Bröcker, M., Klemd, R., Cosca, M., Brock, W., Larionov, A.N. and Rodionov, N. (2009). The timing of eclogite facies metamorphism and migmatization in the Orlica–Snieznik complex, Bohemian Massif: constraints from a multimethod geochronological study. *Journal of metamorphic Geology*, 27, 385–403.
- Bues, C., Dörr, W., Fiala, J., Vejnar, Z., & Zulauf, G. (2002). Emplacement depths and radiometric ages of Paleozoic plutons of the Neukirchen–Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). *Tectonophysics*, *352*(1), 225-243.
- **Bullard, E., Everett, J.E., Smith, A.G.** (1965). The fit of continents around the Atlantic. Philosophical Transactions of the Royal Society of London 258 (1088), 41–51.
- **Burchfiel, B.C.** (1975). Geology of Romania. Geological. Society of America Special Publications, 158: 82 pp.
- Burg, J-P., Brun, J-P., Van Den Driessche, V. (1990). The Sillon Houller (French Massif Central) : A transfer fault during crustal thinning of the variscan belt?. *C.R. Acad. Sci. Paris.* T. 311, Série II, p. 147-152.
- Burg, J. P., Iglesias, M., Laurent, P., Matte, P., & Ribeiro, A. (1981). Variscan intracontinental deformation: the Coimbra—Cordoba Shear Zone (SW Iberian Peninsula). *Tectonophysics*, 78(1-4), 161-177.
- Bussy, F., & Cadoppi, P. (1996). U-Pb zircon dating of granitoids from the Dora-Maira massif (western Italian Alps). *Schweizerische Mineralogische und Petrographische Mitteilungen*, 76, 217-233.
- Bussy, F., Hernandez, J., & Von Raumer, J. (2000). Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges–Mont Blanc Massifs, Western Alps). *Geological Society of America Special Papers*, 350, 221-233.
- Butler, R. F., & Butler, R. F. (1992). *Paleomagnetism: magnetic domains to geologic terranes* (Vol. 319). Boston: Blackwell Scientific Publications.
- **Bürküt, Y.** (1966). *Kuzeybatı Anadolu'da yeralan plütonların mukayeseli-jenetik etüdü*. (Doktora Tezi), İTÜ Maden Fakültesi, İstanbul, 272 s.

- Cambeses, A., Scarrow, J. H., Montero, P., Molina, J. F., & Moreno, J. A. (2015). SHRIMP U–Pb zircon dating of the Valencia del Ventoso plutonic complex, Ossa-Morena Zone, SW Iberia: Early Carboniferous intra-orogenic extensionrelated 'calc-alkaline'magmatism. *Gondwana Research*, 28(2), 735-756.
- Carls, P. (1973). Strophomenids of the Lower Devonian Kartal formation, Istanbul, Paleozoic of Istanbul. *Ege Üniversitesi Fen Fakültesi Kitaplar Serisi*, 40(1), 90-94.
- Caroff, M., Labry, C., Le Gall, B., Authemayou, C., Grosjean, D. B., & Guillong, M. (2015). Petrogenesis of late-Variscan high-K alkali-calcic granitoids and calc-alkalic lamprophyres: The Aber-Ildut/North-Ouessant complex, Armorican Massif, France. *Lithos*, 238, 140-155.
- Carracedo, M., Gil Ibarguchi, J. I., García de Madinabeitia, S., & Berrocal, T. (2005). Geocronología de los granitoides hercínicos de la serie mixta: edad U-Th-Pb TOTAL de monacitas del Plutón de cabeza de Araya (Zona centro ibérica) y de las manifestaciones filonianas asociadas. *Revista de la Sociedad Geológica de España*, 18(1-2), 77-88.
- Carracedo, M., Paquette, J. L., Olazabal, A. A., Zalduegui, J. S., De Madinabeitia, S. G., Tiepolo, M., & Ibarguchi, J. G. (2009). U–Pb dating of granodiorite and granite units of the Los Pedroches batholith. Implications for geodynamic models of the southern Central Iberian Zone (Iberian Massif). *International Journal of Earth Sciences*, 98(7), 1609.
- Carte géologique à 1/1 000 000 métropole Image et vecteur (6ème édition révisée): BRGM, Orléans.
- Casas, J. M., Castiñeiras, P., Navidad, M., Liesa, M., & Carreras, J. (2010). New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigó massif. *Gondwana Research*, 17(2), 317-324.
- **Castiñeiras, P., García, F. D., & Barreiro, J. G.** (2010). REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes. *Lithos*, *116*(1), 153-166.
- Cháb, J. (2010). Basement: Variscan orogen. Outline of the Geology of the Bohemian Massif: the Basement Rocks and their Carboniferous and Permian Cover (ed. J. Cháb), 27-113.
- Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., ... & Zapletal, J. (2010). Outline of the Geology of the Bohemian Massif. Czech Geological Survey, Prague, 1-296.
- Cháb, J., Stráník, Z., Eliáš, M., (2007). Geologická Mapa České Republiky 1 : 500 000: Česká Geologická Služba, Praha 1 sheet.
- **Chambaudet, A., Mars, M., Peucatt, J.J., Rebetez, M.**, (1985). Radiometric Datings And Cooling History in The Northern Armorican Massif (Northern French Brittany). *The Fourth International Fission-Track Dating Workshop*. S 404.
- Chen, F., & Siebel, W. (2004). Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif. *European Journal of Mineralogy*, 16(5), 777-788.

- Chen, F., Siebel, W., Satir, M. (2003). Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of twoVariscan Stype granites from the NWBohemian Massif. *International Journal of Earth Sciences*, 92, 173-184.
- Chen F., Siebel W., Satir M., Terzioğlu M. & Saka K. (2002). Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. *International Journal of Earth Sciences* 91: 469-481.
- Chicharro, E., Boiron, M. C., López-García, J. Á., Barfod, D. N., & Villaseca, C. (2016). Origin, ore forming fluid evolution and timing of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews, 72, 896-913.
- Chlupac, I., Havlicek, V., Kriz, J., Kukal, Z. & Storch, P. (1998). Palaeozoic of the Barrandian (Cambrian to Devonian). *Czech Geological Survey*. Prague183+11
- Cocherie, A., Guerrot, C., Fanning, C. M., & Genter, A. (2004). Datation U–Pb des deux faciès du granite de Soultz (Fossé rhénan, France). *Comptes Rendus Geoscience*, *336*(9), 775-787.
- Cocherie, A., Baudin, T., Autran, A., Guerrot, C., Fanning, C. M., & Laumonier,
 B. (2005). U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). *Bulletin de la Société géologique de France*, 176(3), 269-282.
- Cocks, L.R.M. veFortey, R.A., (1982). Faunal evidence for oceanic seperations in the Palaeozoic of Britain. *Journal of Geological Society*, London, 155, 595-598
- Costa, M. M., Neiva, A. M. R., Azevedo, M. R., & Corfu, F. (2014). Distinct sources for syntectonic Variscan granitoids: Insights from the Aguiar da Beira region, Central Portugal. *Lithos*, 196, 83-98.
- **Dağer, Z.** (1980). Les foraminifères du Trias de la Péninsula de Kocaeli, Turquie. (Doktora Tezi), University of Geneva, Switzerland, 47 p.
- **Dallmeyer, R. D., D'Lemos, R. S., Strachan, R. A., & Mueller, P. A.** (1991). Tectonothermal chronology of early Cadomian arc development in Guernsey and Sark, Channel Islands. *Journal of the Geological Society*, *148*(4), 691-702.
- Dallmeyer, R. D., D'Lemos, R. S., & Strachan, R. A. (1994). Timing of Cadomian and Variscan tectonothermal activity, La Hague and Alderney, North Armorican Massif: Evidence from 40Ar/39Ar mineral ages. *Geological Journal*, 29(1), 29-44.
- Dallmeyer, R. D., Strachan, R. A., & D'Lemos, R. S. (1991). Chronology of Cadomian tectonothermal activity in the baie de Saint-Brieuc (north Brittany), France: evidence from 40Ar/39Ar mineral ages. *Canadian Journal of Earth Sciences*, 28(5), 762-773.
- Dallmeyer, R. D., Neubauer, F., & Höck, V. (1992). Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. *Tectonophysics*, 210(1-2), 135-153.

- **Dallmeyer, R. D., Fonseca, P. E., Quesada, C., & Ribeiro, A**. (1993). 40Ar/39Ar mineral age constraints for the tectonothermal evolution of a Variscan suture in southwest Iberia. *Tectonophysics*, 222(2), 177-194.
- **Dallmeyer, R. D., & Urban, M.** (1998). Variscan vs Cadomian tectonothermal activity in northwestern sectors of the Teplá-Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. *Geologische Rundschau*, 87(1), 94-106.
- **Dean, W. T., Monod, O., Rickards, R. B., Demir, O., & Bultynck, P.** (2000). Lower Palaeozoic stratigraphy and palaeontology, Karadere–Zirze area, Pontus mountains, northern Turkey. *Geological Magazine*, *137*(05), 555-582.
- **Debon, F., Guerrot, C., Ménot, R. P., Vivier, G., & Cocherie, A.** (1998). Late Variscan granites of the Belledonne massif (French western Alps): an early Visean magnesian plutonism. *Schweizerische Mineralogische und Petrographische Mitteilungen*, 78(1), 67-85.
- Denèle, Y., Paquette, J. L., Olivier, P., & Barbey, P. (2012). Permian granites in the Pyrenees: the Aya pluton (Basque Country). *Terra Nova*, 24(2), 105-113.
- **Dewey, J. F., & Burke, K. C.** (1973). Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. *The Journal of Geology*, *81*(6), 683-692.
- **Dias, G., Leterrier, J., Mendes, A., Simoes, P. P., & Bertrand, J. M.** (1998). U–Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). *Lithos*, *45*(1), 349-369.
- Diaz-Alvarado, J., Castro, A., Fernández, C., & Moreno-Ventas, I. (2011). Assessing bulk assimilation in cordierite-bearing granitoids from the Central System Batholith, Spain; experimental, geochemical and geochronological constraints. *Journal of Petrology*, 52(2), 223-256.
- Diaz-Alvarado, J., Fernández, C., Castro, A., & Moreno-Ventas, I. (2013). SHRIMP U–Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions: Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain. *Lithos*, 175, 104-123.
- **Diaz Fernández, R., Castiñeiras, P., & Barreiro, J. G.** (2012). Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin. *Gondwana Research*, 21(4), 1066-1079.
- **Diaz Fernández, R., & Pereira, M. F.** (2016). Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and U< img border=. *Tectonophysics*, *691*, 290-310.
- Díaz García, F., Arenas, R., Martínez Catalán, J. R., González del Tánago, J., & Dunning, G. R. (1999). Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. *The Journal of* geology, 107(5), 587-605.
- Dombrowski, A., Okrusch, M., Richter, P., Henjes-Kunst, F., Höhndorf, A., & Kröner, A. (1995). Orthogneisses in the Spessart Crystalline Complex, northwest Bavaria: Silurian granitoid magmatism at an active continental margin. *Geologische Rundschau*, 84(2), 399-411.
- **Domeier, M., Van der Voo, R., & Torsvik, T. H.** (2012). Paleomagnetism and Pangea: the road to reconciliation. *Tectonophysics*, *514*, 14-43.

- Dörr, W., & Zulauf, G. (2010). Elevator tectonics and orogenic collapse of a Tibetanstyle plateau in the European Variscides: the role of the Bohemian shear zone. *International Journal of Earth Sciences*, 99(2), 299-325.
- Dinis, P., Andersen, T., Machado, G., & Guimarães, F. (2012). Detrital zircon U-Pb ages of a late-Variscan Carboniferous succession associated with the Porto-Tomar shear zone (West Portugal): Provenance implications. Sedimentary Geology, 273, 19-29.
- D'Lemos, R. S., Miller, B. V., & Samson, S. D. (2001). Precise U–Pb zircon ages from Alderney, Channel Islands: growing evidence for discrete Neoproterozoic magmatic episodes in northern Cadomia. *Geological magazine*, 138(06), 719-726.
- **Dojen, C., Özgül, N., Göngüoglu, Y., Göngüoglu, M.C.** (2004). Early Devonian Ostracodes of Thrungian Ecotype from NW Anatolia (Turkey) *N. Jb. Geol. Palänt. Mh.* (12) pp.733-748.
- Dörr, W., Fiala, J., Vejnar, Z., Zulauf, G., (1998). U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). *Geol Rundsch.* 87:135–149.
- Dörr, W., Zulauf, G., Fiala, J., Franke, W., Vejnar, Z. (2002). Neoproterozoic to Early Cambrian history of an active plate margin in the Tepla'–Barrandian unit—a correlation of U–Pb isotopicdilution- TIMS ages (Bohemia, Czech Republic). *Tectonophysics* 352: 65–85
- Dörr, W., Żelaźniewicz, A., Bylina, P., Schastok, J., Franke, W., Haack, U., & Kulicki, C. (2006). Tournaisian age of granitoids from the Odra Fault Zone (southwestern Poland): equivalent of the Mid-German Crystalline High?. *International Journal of Earth Sciences*, 95(2), 341-349.
- Drost, K., Linnemann, U., McNaughton, N., Fatka, O., Kraft, P., Gehmlich, M., ... & Marek, J. (2004). New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). *International Journal of Earth Sciences*, 93(5), 742-757.
- Druguet, E., Castro, A., Chichorro, M., Pereira, M. F., & Fernandez, C. (2014). Zircon geochronology of intrusive rocks from Cap de Creus, Eastern Pyrenees. *Geological Magazine*, 151(06), 1095-1114.
- Eichhorn, R., Höll, R., Loth, G., & Kennedy, A. (1999). Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). International Journal of Earth Sciences, 88(3), 496-512.
- Eichhorn, R., Loth, G., Höll, R., Finger, F., Schermaier, A., & Kennedy, A. (2000). Multistage Variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. *Contributions to Mineralogy and Petrology*, 139(4), 418-435.
- **Erguvanlı, K.** (1947). Kocaeli Triasinda yeni fosil yataklari. *Turkiye Jeoloji Kurumu Bülteni* 1 (1): 158-163. Yıl 6, no 4: 1-16.

- Erguvanlı, K. (1949). Hereke pudingleri ile Gebze taşlarının inşaat bakımından etüdü ve civarlarının jeolojisi. (Doktora Tezi), İstanbul Teknik Üniversitesi, 89 p.
- Essaifi, A., Potrel, A., Capdevila, R., & Lagarde, J. L. (2003). Datation U- Pb: âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). Implications géodynamiques. *Comptes Rendus Geoscience*, 335(2), 193-203.
- **Evans, I., Hall, S.A., Sarıbudak, M.A. And Aykol, A.,** (1991). Preliminary palaeomagnetic results from Palaeozoic rocks of the İstanbul-Zonguldak region, *N.W. Turkey. Bull. Technical University of İstanbul*, 44: 165-190.
- Faure, M., Lardeaux, J. M., & Ledru, P. (2009). A review of the pre-Permian geology of the Variscan French Massif Central. *Comptes Rendus Geoscience*, 341(2), 202-213.
- Faure, M., Sommers, C., Melleton, J., Cocherie, A., & Lautout, O. (2010). The Léon domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline rise? Structural and geochronological insights. *International Journal of Earth Sciences*, 99(1), 65-81.
- Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., & Jackson, S. E. (1998). Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian-Avalonian evolution of northwest Iberia. *Canadian Journal of Earth Sciences*, 35(12), 1439-1453.
- Ferreira, J. A., Martins, H. C. B., & Ribeiro, M. A. (2014). Geocronologia (U-Pb) e Geoquímica do granito do Pedregal. *Comunicações Geológicas*, 101, 89-92.
- Finger, F., Hanžl, P., Pin, C., Von Quadt, A., & Steyrer, H. P. (2000). The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds). Orogenic Processes: Quantification and Modelling in the Variscan Belt. *Geological Society, London, Special Publications*, 179, 103-112.
- Förster, H. J., Rhede, D., Stein, H. J., Romer, R. L., & Tischendorf, G. (2012). Paired uraninite and molybdenite dating of the Königshain granite: implications for the onset of late-Variscan magmatism in the Lausitz Block. *International Journal of Earth Sciences*, 101(1), 57-67.
- Franke, W. (1989). Variscan plate tectonics in Central Europe—current ideas and open questions. *Tectonophysics*, *169*(4), 221-228.
- Franke, W. (1995). III Rhenohercynian Foldbelt, III.A Introduction. Dallmeyer, R. D., Franke, W., & Weber, K. (Eds.) Pre-Permian geology of central and eastern Europe. Springer Science & Business Media.
- Franke, W. (2006). The Variscan orogen in Central Europe: construction and collapse. in Gee, D. G. & Stephenson, R. A. (eds). European Lithosphere Dynamics. *Geological Society, London, Memoirs*, 32, 333-343.
- Friedl, G., Finger, F., Paquette, J. L., von Quadt, A., McNaughton, N. J., & Fletcher, I. R. (2004). Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. *International Journal* of Earth Sciences, 93(5), 802-823.

- Fritz, H., Dallmeyer, R. D., & Neubauer, F. (1996). Thick-skinned versus thinskinned thrusting: Rheology controlled thrust propagation in the Variscan collisional belt (The southeastern Bohemian Massif, Czech Republic-Austria). *Tectonics*, 15(6), 1389-1413.
- Gaab, A. S., Janák, M., Poller, U., & Todt, W. (2006). Alpine reworking of Ordovician protoliths in the Western Carpathians: Geochronological and geochemical data on the Muráñ Gneiss Complex, Slovakia. *Lithos*, 87(3), 261-275.
- Gandl, J. (1973). Trilobites from the Devonian of Istanbul, Paleozoic of Istanbul. *Ege Üniversitesi Fen Kitaplar Serisi*, 40, 95-6.
- García de Madinabeitia, S., Santos Zalduegui, J. F., Gil Ibarguchi, J. I., & Carracedo Sánchez, M. (2003). Geocronologia del plutón de Campanario-La Haba (Badajoz) a partir del análisis de isótopos de Pb en circones y U-Th-Pbtotal en monacitas.
- Gärtner, A., Villeneuve, M., Linnemann, U., El Archi, A., & Bellon, H. (2013). An exotic terrane of Laurussian affinity in the Mauritanides and Souttoufides (Moroccan Sahara). *Gondwana Research*, 24(2), 687-699.
- Gasquet, D., Levresse, G., Cheilletz, A., Azizi-Samir, M. R., & Mouttaqi, A. (2005). Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian–Cambrian transition. *Precambrian Research*, 140(3), 157-182.
- Gebauer, D., Grünenfelder, M., (1979). U–Pb zircon and Rb–Sr mineral dating of eclogites and their country rocks. Example: Münchberg Gneiss Massif, Northeast Bavaria, *Earth Planet. Sci. Lett.* 42: 35–44.
- Gedik İ. (1975). Die Conodonten der Trias auf der Kocaeli-Halbinsel (Türkei). *Palaoentographica* A150: 99-160.
- Gedik İ., Pehlivan Ş., Timur E., Duru Altun İ., Akbaş B., Özcan İ. & Alan İ. (2005). *Kocaeli Yarımadası'nın Jeolojisi*. Mineral Research and Exploration Institue (MTA) of Turkey Rapor no. 10774 (yayınlanmamış).
- Gedik, İ., Tımur, E., Duru, M., Alan, İ., Pehlivan, Ş., Altun, ... & Özcan, İ. (2002). İstanbul Paleozoik istifinde Kocatöngel ve Bakacak Formasyonları: TMMOB Jeoloji Mühendisleri Odası 55. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, Ankara, ss. 97-98.
- Gerdes, A., Friedl, G., Parrish, R. R., & Finger, F. (2003). High-resolution geochronology of Variscan granite emplacement-the South Bohemian Batholith. *Journal of GEOsciences*, 48(1-2), 53-54.
- Giacomini, F., Bomparola, R. M., & Ghezzo, C. (2005). Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: constraints for the Palaeozoic evolution of Southern Europe. *Lithos*, 82(1), 221-248.

- Giacomini, F., Bomparola, R. M., Ghezzo, C., & Guldbransen, H. (2006). The geodynamic evolution of the Southern European Variscides: constraints from the U/Pb geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences of Sardinia (Italy). *Contributions to Mineralogy and Petrology*, *152*(1), 19.
- Gladney, E. R., Braid, J. A., Murphy, J. B., Quesada, C., & McFarlane, C. R. (2014). U–Pb geochronology and petrology of the late Paleozoic Gil Marquez pluton: magmatism in the Variscan suture zone, southern Iberia, during continental collision and the amalgamation of Pangea. *International Journal of Earth Sciences*, 103(5), 1433-1451.
- Gleizes, G., Crevon, G., Asrat, A., & Barbey, P. (2006). Structure, age and mode of emplacement of the Hercynian Bordères-Louron pluton (Central Pyrenees, France). *International Journal of Earth Sciences*, *95*(6), 1039-1052.
- **Glodny, J., Grauert, B., Fiala, J., Vejnar, Z., Krohe, A.,** (1998). Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. *Geol Rundsch.* 87:124–134.
- Gomes, M. E. P., & Neiva, A. M. R. (2002). Petrogenesis of tin-bearing granites from Ervedosa, northern Portugal: the importance of magmatic processes. *Chemie der Erde-Geochemistry*, 62(1), 47-72.
- Göncüoğlu M. C., Özgül N., Gedik İ., Okuyucu C., Saydam G. D., Timur E., Yanev S., BonchevaI., ... & Maliakov Y. (2006). Bulgaristan ve KB Türkiye'deki tektonik birliklerin Paleozoyik istifleri ve korelasyonu. Mineral Research and Exploration Institute (MTA) of Turkey, Rapor no. 10884 (yayımlanmamış).
- Göncüoglu, M. C., Sachanski, V., Gutierrez-Marco, J. C., & Okuyucu, C. (2014). Ordovician graptolites from the basal part of the Palaeozoic transgressive sequence in the Karadere area, Zonguldak Terrane, NW Turkey. *Estonian Journal of Earth Sciences*, 63(4), 227.
- Görür N., Monod O., Okay A. I., Şengör C., Tüysüz O., Yigitbas E., ... & Akkök
 R. (1997). Palaeogeographic and tectonic position of the Carboniferous rocks of the western Pontides (Turkey) in the frame of the Variscan belt. *Bulletin de la Société géologique de France* 168: 197-206.
- Gómez-Pugnaire, M. T., Rubatto, D., Fernández-Soler, J. M., Jabaloy, A., López-Sánchez-Vizcaíno, V., González-Lodeiro, F., ... & Padrón-Navarta, J. A. (2012). Late Variscan magmatism in the Nevado-Filábride Complex: U-Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). *Lithos*, 146, 93-111.
- Guerrot, C., Béchennec, F., & Thiéblemont, D. (1997). Le magmatisme paléozoïque de la partie nord-ouest du domaine sud-armoricain: données géochronologiques nouvelles. *Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science*, 324(12), 977-984.
- Guerrot, C., & Peucat, J. J. (1990). U-Pb geochronology of the Upper Proterozoic Cadomian orogeny in the northern Armorican Massif, France. *Geological Society, London, Special Publications*, 51(1), 13-26.

- Guineberteau, B., Bouchez, J. L., & Vigneresse, J. L. (1987). The Mortagne granite pluton (France) emplaced by pull-apart along a shear zone: Structural and gravimetric arguments and regional implication. *Geological Society of America Bulletin*, 99(6), 763-770.
- Gutiérrez Alonso, G., Fernández Suárez, J., & Jeffries, T. E. (2004). Age and setting of the Upper Neoproterozoic Narcea Antiform volcanic rocks (NW Iberia). Geogaceta, 35. 79-82.
- Gutiérrez-Marco, J. C., Robardet, M., Rábano, I., Sarmiento, G. N., de San José, M. A., Herranz Araújo, P., & Pieren, A. P. (2002). Ordovician, *The geology* of Spain,.31-50 Geological Society of London.
- Haas, W., (1968a). Trilobiten aus dem Silur und Devon von Bithynien (NW-Türkei). *Palaeontographica* 130A, 60 207, Stuttgart.
- Haas W., (1968b). Das Alt-Paläozoikum von Bithynien (Nordwest Türkei). *N. Jahrb. Geol. Pal. Abh.*, v.131, pp.178-242, Stuttgart.
- Hall, R. (1996). Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106(1), 153-184.
- Hammerschmidt, K., Kopp, J., & Haucke, L. (2003). Sm-Nd Dating on Minerals of a Silica Undersaturated, Ca-rich, Crustally Derived Gabbro of the Mid-German Crystalline Zone, drill hole Zullsdorf, Southern Brandenburg (Germany). Zeitschrift Für Geologische Wissenschaften, 225-238.
- Hanel, M., Lippolt, H.J., Kober, B., Wimmenauer, W., (1993). Lower Carboniferous Granulites in the Schwarzwald Basement Near Hohengeroldseck (SW-Germany). *Naturwissenschaften* 80, 25-28.
- Hann, H. P., Chen, F., Zedler, H., Frisch, W., & Loeschke, J. (2003). The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. *International Journal of Earth Sciences*, 92(6), 821-842.
- Hegner, E., Chen, F., & Hann, H. P. (2001). Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. *Tectonophysics*, 332(1), 169-184.
- Henriques, S. B. A., Neiva, A. M. R., Ribeiro, M. L., Dunning, G. R., & Tajčmanová, L. (2015). Evolution of a Neoproterozoic suture in the Iberian Massif, Central Portugal: New U-Pb ages of igneous and metamorphic events at the contact between the Ossa Morena Zone and Central Iberian Zone. *Lithos*, 220, 43-59.
- Hess, J. C., Lippolt, H. J., & Kober, B. (1995). The age of the Kagenfels granite (northern Vosges) and its bearing on the intrusion scheme of late Variscan granitoids. *Geologische Rundschau*, 84(3), 568-577.
- Hofmann, M., Linnemann, U., Gerdes, A., Ullrich, B., & Schauer, M. (2009). Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U-Pb zircon data. *Geological Society, London, Special Publications, 327*(1), 197-214.

- Holdsworth, B. K. (1973). The Radiolaria of the Baltalimani Formation, Lower Carboniferous, Istanbul. *Paleozoic of Istanbul. Ege Universitesi Fen Fakültesi Kitaplar Serisi*, (40), 117-134.
- Holub, F. V., Cocherie, A., & Rossi, P. (1997). Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. *Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science*, 325(1), 19-26.
- Inglis, J. D., Samson, S. D., D'lemos, R. S., & Miller, B. V. (2005). Timing of Cadomian deformation and magmatism within La Hague, NW France. *Journal* of the Geological Society, 162(2), 389-400.
- Irving, E., (1977). Drift of the major continental blocks since the Devonian, *Nature*, 270, 304-309, 1977.
- **Issachar, R.,** (2013). Magnetic Properties of Carbonate Rocks as a Tool for Estimating Strain near the Dead Sea Transform, Northern Israel. *Ministry of Energy and Water Resources Geological Survey of Israel*, Jarusalem, 73 s.
- Janoušek, V., Wiegand, B. A., & Žák, J. (2010). Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. *Journal of the Geological Society*, 167(2), 347-360.
- Janousek, V., & Gerdes, A. (2003). Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. *Journal of GEOsciences*, 48(1-2), 70-71.
- Jarmołowicz-Szulc, K., Halas, S., & Wójtowicz, A. (2009). Radiometric age analyses of rocks from the northern envelope of the Karkonosze massif, the Sudetes, Poland: a comparative geochronological study. *Geochronometria*, 34(1), 33-39.
- Kalt, A., Hanel, M., Schleicher, H., & Kramm, U. (1994). Petrology and geochronology of eclogites from the Variscan Schwarzwald (FRG). *Contributions to Mineralogy and Petrology*, *115*(3), 287-302.
- Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S., & Spacek, P. (2008). Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. *International Journal of Earth Sciences*, 97(3), 497-518.
- Kalvoda, J. Leichmann, J. Babek, O. Melichar, R. (2003). Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic And Paleozoic Tectonostratigraphic Development And Paleogeography. In Geologica Carpathica. Vol. 54, No. 3, P. 139-152.
- **Kaya O.** (1973). The Devonian and Lower Carboniferous stratigraphy of the İstinye, Bostancı and Büyükada subareas, in Kaya O. (ed.), Paleozoic of Istanbul. *Ege Üniversitesi Fen Fakültesi Kitaplar Serisi* 40: 1-36.
- Kaya O. (1978). İstanbul Ordovisyeni ve Siluriyeni. Yerbilimleri, *Hacettepe Üniversitesi Yerbilimleri Enstitüsü* 4: 1-22.

- Kaya, O. & Lys, M., (1980). İstanbul Boğazının batı yakasında (Kilyos) yeni bir Triyas bulgusu. *Maden Tetkik ve Arama Dergisi* 93(93, 94).
- Kaya, O. & Mamet, B. (1971). Biostratigraphy of the Visean Cebecikoy Limestone near Istanbul, Turkey. *The Journal of Foraminiferal Research* 1: 77-80.
- Kaya, O., Weidmann J., Kozur H., Özdemir Ü., Özer S. & Beauvais L. (1987). A new discovery of the Lower Cretaceous in Istanbul, Turkey. *Bulletin of the Mineral Research and Exploration Institute of Turkey* 107: 106-111.
- Kemnitz, H., Romer, R. L., & Oncken, O. (2002). Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). *International Journal of Earth Sciences*, *91*(2), 246-259.
- Keskin, M. & Tüysüz O. (1999). Geochemical evidence for nature and evolution of the rift volcanism related to the opening of the Black Sea, Central Pontides, Turkey. European Union of Geosciences, EUG10 in Strasbourg, Journal of Conference Abstracts, 4: 816.
- Ketin, İ. (1959). Türkiye'nin orojenik gelişmesi. *Maden Tetkik ve Arama Dergisi* 53: 78-86.
- Ketin, İ. & Gümüş, Ö. (1963). Sinop-Ayancık arasında III. bölgeye dahil sahaların jeolojisi. *Turkish Petroleum Corporation*, unpublished technical report 288, 118 p.
- Kirsch, H., Kober, B., & Lippolt, H. J. (1988). Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by40Ar/39Ar and single-zircon207Pb/206Pb measurements. *Geologische Rundschau*, 77(3), 693-711.
- Klein, T., Kiehm, S., Siebel, W., Shang, C. K., Rohrmüller, J., Dörr, W., & Zulauf, G. (2008). Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). *Lithos*, 102(3), 478-507.
- Klötzli, U. S., & Parrish, R. R. (1996). Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. *Mineralogy and Petrology*, 58(3-4), 197-214.
- Kossmat, F. (1927). Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamts Heft1 39+2 harita.
- Košler, J., Bowes, D. R., Konopásek, J., & Míková, J. (2004). Laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses. *European Journal of Mineralogy*, 16(1), 15-22.
- Kováříková, P., Siebel, W., Jelínek, E., Štemprok, M., Kachlík, V., Holub, F. V., & Blecha, V. (2007). Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. *Chemie der Erde-Geochemistry*, 67(2), 151-174.
- Kováříková, P., Siebel, W., Jelínek, E., Štemprok, M., Kachlík, V., Holub, F. V.,
 & Blecha, V. (2010). Dioritic intrusions of the Slavkovský les (Kaiserwald),
 Western Bohemia: their origin and significance in late Variscan granitoid magmatism. *International Journal of Earth Sciences*, 99(3), 545-565.

- Kozlu, H., Goncuoglu, Y., Sarmiento, G., & Goncuoglu, M. C. (2002). First finding of Late Silurian conodonts from the" Orthoceras Limestones", Camdag area, NW Turkey: preliminary constraints for the paleogeography. *Geologica Balcanica*, 32(1), 3-12.
- **Köppel, V.** (1974). Isotopic U-Pb ages of monazites and zircons from the crust-mantle transition and adjacent units of the Ivrea and Ceneri Zones (Southern Alps, Italy). *Contributions to Mineralogy and Petrology*, *43*(1), 55-70.
- Kroner, U., Mansy, J. L., Mazur, S., Aleksandrowski, P., Hann, H. P., Huckriede, H., ... & Zedler, H. (2008). Variscan tectonics. The Geology of Central Europe. In The Geology of Central Europe Volume 1: Precambrian and Palaeozoic. Ed. Tom McCann. *Geological Society of London*, 599-664.
- Kroner, U., & Romer, R. L. (2013). Two plates—many subduction zones: the Variscan orogeny reconsidered. *Gondwana Research*, 24(1), 298-329.
- Kröner, F., (1863). Geognostische Bemerkungen auf einer Reise nach Constantinopel und Besonderen über die in den Umgebungen von Constantinopel verbreiteten devonischen Schichten: in Leonhard, G and Geinitz, H.B., editor, *Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie*, Stuttgart, pp. 513-524.
- Kröner, A., & Willner, A. P. (1998). Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. *Contributions to Mineralogy and Petrology*, 132(1), 1-20.
- Kröner, A., Willner, A. P., Hegner, E., Frischbutter, A., Hofmann, J., & Bergner,
 R. (1995). Latest Precambrian (Cadomian) zircon ages, Nd isotopic systematics and PT evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. *Geologische Rundschau*, 84(3), 437-456.
- Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K. H., Krauss, M., & Eidam, J. (1994). Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. In Active Continental Margins—Present and Past (pp. 357-376). Springer Berlin Heidelberg.
- Kröner, A., Štípská, P., Schulmann, K., & Jaeckel, P. (2000). Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. *Geological Society, London, Special Publications, 179*(1), 175-197.
- Kröner, A., Jaeckel, P., Hegner, E., & Opletal, M. (2001). Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Snežník Complex). *International Journal of Earth Sciences*, 90(2), 304-324.
- **Kryza, R., & Pin, C.** (2010). The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. *Gondwana Research*, *17*(2), 292-305.

- Kryza, R., Schaltegger, U., Oberc-Dziedzic, T., Pin, C., & Ovtcharova, M. (2014).
 Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U–
 Pb zircon study of the Variscan Karkonosze Granite (SW Poland). *International Journal of Earth Sciences*, 103(3), 683-696.
- Kullmann, J. (1973). Goniatite-coral associations from the Devonian of Istanbul, Turkey. *Paleozoic of Istanbul, Ege Universitesi Fen Fakultesi Kitaplar Serisi, Jeoloji, 40, 97-116.*
- Kusiak, M. A., Williams, I. S., Dunkley, D. J., Konečny, P., Slaby, E., & Martin, H. (2014). Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. *Chemical Geology*, 364, 76-92.
- Laurent, A., Janousek, V., Magna, T., Schulmann, K., & Mikova, J. (2014). Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Zulova Pluton, Bohemian Massif. *Journal of Geosciences*, 59(4), 415-440.
- Le Gall, B., Authemayou, C., Ehrhold, A., Paquette, J. L., Bussien, D., Chazot, G., ... & Pastol, Y. (2014). LiDAR offshore structural mapping and U/Pb zircon/monazite dating of Variscan strain in the Leon metamorphic domain, NW Brittany. *Tectonophysics*, 630, 236-250.
- Lima, S.M., Corfu, F., Neiva, A.M.R., Ramos, J.M.F., (2012). Dissecting Complex Magmatic Processes: an in-depth U-Pb Study of the Pavia Pluton, Ossa-Morena Zone, Portugal. *Journal of Petrology* 53:9 p.1887-1911.
- Linnemann, U., Gehmlich, M., Tichomirowa, M., Buschmann, B., Nasdala, L.,
 Jonas, P., ... & Bombach, K. (2000). From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). *Geological Society, London, Special Publications, 179*(1), 131-153.
- Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K., & Tonk, C., (2004). West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?–U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences, 93(5), 683-705.
- Linnemann, U., Romer, R., Pin, C., Aleksandrowski, P., Bula, Z., Geisler, T., ... & Murphy, J. (2008). Precambrian. In The Geology of Central Europe, Volume 1: Precambrian and Palaeozoic (pp. 21-101). The Geological Society Publishing House.
- Littke, R., Büker, C., Hertle, M., Karg, H., Stroetmann-Heinen, V., & Oncken, O. (2000). Heat flow evolution, subsidence and erosion in the Rheno-Hercynian orogenic wedge of central Europe. *Geological Society, London, Special Publications*, 179(1), 231-255.
- Lopez-Sanchez, M. A., Marcos, A., Martínez, F. J., Iriondo, A., & Llana-Fúnez, S. (2015). Setting new constrains on the age of crustal-scale extensional shear zone (Vivero fault): implications for the evolution of Variscan orogeny in the Iberian massif. *International Journal of Earth Sciences*, 104(4), 927-962.

- Lopez-Sanchez, M. A., Aleinikoff, J. N., Marcos, A., Martínez, F. J., & Llana-Fúnez, S. (2016). An example of low-Th/U zircon overgrowths of magmatic origin in a late orogenic Variscan intrusion: the San Ciprián massif (NW Spain). *Journal of the Geological Society*, 173(2), 282-291.
- Loth, G., Eichhorn, R., Höll, R., Kennedy, A., Schauder, P., & Söllner, F. (2001). Cambro-Ordovician age of a metagabbro from the Wildschönau ophiolite complex, Greywacke Supergroup (eastern Alps, Austria): A U-Pb SHRIMP study. *European Journal of Mineralogy*, 13(1), 57-66.
- Maluski, H., Rajlich, P., & Soucek, J. (1995). Pre-Variscan, Variscan and Early Alpine thermo-tectonic history of the north-eastern Bohemian Massif: an 40 Ar/39 Ar study. *Geologische Rundschau*, 84(2), 345-358.
- Maluski, H., & Patoccka, F. (1997). Geochemistry and 40 Ar–39 Ar geochronology of the mafic metavolcanic rocks from the Rýchory Mountains complex (west Sudetes, Bohemian Massif): palaeotectonic significance. *Geological Magazine*, 134(05), 703-716.
- Mamet, B. (1973). Foraminiferal biostratigraphy of the Lower Car¬boniferous Trakya and Heybeliada formations, Istanbul region, Turkey. Paleozoic of Istanbul. Ege Universitesi, Fen Fakültesi, Kitaplar Serisi 40: 137-143.
- Marcoux, E., Cocherie, A., Ruffet, G., Darboux, J. R., & Guerrot, C. (2009). Géochronologie revisitée du dôme du Léon (Massif armoricain, France). *Géologie de la France*, 1, p-19.
- Marheine, D., Kachlik, V., Maluski, H., Patočka, F., & Żelaźniewicz, A. (2002). The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. *Geological Society, London, Special Publications, 201*(1), 133-155.
- Martínez, F. J., Reche, J., & Iriondo, A. (2008). U–Pb Shrimp-RG zircon ages of Variscan igneous rocks from the Guilleries massif (NE Iberia pre-Mesozoic basement). Geological implications. *Comptes Rendus Geoscience*, 340(4), 223-232.
- Martins, H. C. B., Sant'Ovaia, H., & Noronha, F. (2009). Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: an integrated geophysics and geochemical study (NW Iberian Peninsula). *Lithos*, *111*(3), 142-155.
- Matte, P. (1991). Accretionary history and crustal evolution of the Variscan belt in Western Europe. *Tectonophysics*, *196*(3-4), 309-337.
- Matte, P. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. *Terra nova*, *13*(2), 122-128.
- Matte, P., Maluski, H., Rajlich, P., & Franke, W. (1990). Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. *Tectonophysics*, 177(1-3), 151-170.
- Maurel, O., Monié, P., Respaut, J. P., Leyreloup, A. F., & Maluski, H. (2003). Premetamorphic 40 Ar/39 Ar and U–Pb ages in HP metagranitoids from the Hercynian belt (France). *Chemical geology*, *193*(3), 195-214.

- Matte, P., Respaut, J. P., Maluski, H., Lancelot, J. R., & Brunel, M. (1986). The Pays De Bray Fault, a premesozoic ductile dextral strike-slip-fault-Hercynian synmetamorphic deformation (320 Ma) of a Precambrian granite (570 Ma) in the borehole Pays De Bray 201 (Structure and Geochronology U/Pb and Ar-39/Ar-40. *Bulletin de la Société géologique de France*, 2(1), 69-77.
- Maurel, O., Respaut, J. P., Monié, P., Arnaud, N., & Brunel, M. (2004). U-Pb emplacement and 40 Ar/39 Ar cooling ages of the eastern Mont-Louis granite massif (Eastern Pyrenees, France). *Comptes Rendus Geoscience*, 336(12), 1091-1098.
- McCann, T., Skompski S., Poty, E., Dusar, M., Vozarova, A., Schneider, J., ...& Tait, J. (2008). Carboniferous. In The Geology of Central Europe Volume 1: Precambrian and Palaeozoic. Ed. Tom McCann. *Geological Society of London*, 411-529.
- Medaris, L. G., Beard, B. L., Johnson, C. M., Valley, J. W., Spicuzza, M. J., Jelínek, E., & Misar, Z. (1995). Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. *Geologische Rundschau*, 84(3), 489-505.
- Mezger, J. E., Passchier, C. W., & Régnier, J. L. (2004). Metastable staurolite– cordierite assemblage of the Bossòst dome: Late Variscan decompression and polyphase metamorphism in the Axial Zone of the central Pyrenees. *Comptes Rendus Geoscience*, 336(9), 827-837.
- Mikulski, S. Z., Williams, I. S., & Bagiński, B. (2013). Early Carboniferous (Viséan) emplacement of the collisional Kłodzko–Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U–Pb ages. *International Journal of Earth Sciences*, 102(4), 1007-1027.
- Mikulski, S. Z., & Williams, I. S. (2014). Zircon U-Pb ages of granitoid apophyses in the western part of the Kłodzko–Złoty Stok Granite Pluton (SW Poland). *Geological Quarterly*, 58(2), 251-262.
- Miller, B. V., Samson, S. D., & D'Lemos, R. S. (1999). Time span of plutonism, fabric development, and cooling in a Neoproterozoic magmatic arc segment: U–Pb age constraints from syn-tectonic plutons, Sark, Channel Islands, UK. *Tectonophysics*, 312(1), 79-95.
- Miller, B. V., Samson, S. D., & D'Lemos, R. S. (2001). U–Pb geochronological constraints on the timing of plutonism, volcanism, and sedimentation, Jersey, Channel Islands, UK. *Journal of the Geological Society*, *158*(2), 243-251.
- Miller, C., & Thöni, M. (1995). Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. *Chemical Geology*, *122*(1-4), 199-225.
- Mingram, B., Kröner, A., Hegner, E., & Krentz, O. (2004). Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. *International Journal of Earth Sciences*, 93(5), 706-727.
- Misar, Z., Dudek, A., Havlena, V., Weiss, J., (1983). Geologie CSSR I. Cesky masiv. SPN, Praha.
- Moita, P., Munhá, J., Fonseca, P., Pedro, J., Araújo, A., Tassinari, C., & Palacios, T. (2005). Phase equilibria and geochronology of Ossa-Morena eclogites. *CGE Comunicações Em Congressos Científicos Internacionais*.
- Moita, P., Santos, J. F., Pereira, M. F., Costa, M. M., & Corfu, F. (2015). The quartz-dioritic Hospitais intrusion (SW Iberian Massif) and its mafic microgranular enclaves—Evidence for mineral clustering. *Lithos*, 224, 78-100.
- Montero, P., Salman, K., Zinger, T., & Bea, F. (1999). Rb-Sr and single-zircon grain 207 Pb/206 Pb chronology of the Monesterio granodiorite and related migmatites. Evidence of a Late Cambrian melting event in the Ossa-Morena Zone, Iberian Massif. *Estudios geológicos*, 55(1-2), 3-8.
- Montero, P., Talavera, C., Bea, F., Lodeiro, F. G., & Whitehouse, M. J. (2009). Zircon geochronology of the Ollo de Sapo Formation and the age of the Cambro-Ordovician rifting in Iberia. *The Journal of Geology*, *117*(2), 174-191.
- Montero, P., Haissen, F., Mouttaqi, A., Molina, J. F., Errami, A., Sadki, O., Cambeses, A. & Bea, F. (2016). Contrasting SHRIMP U–Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: Implications for the lateral extension of the West African Craton. *Gondwana Research*, *38*, 238-250.
- Morel, P., Irving, E. (1981). Paleomagnetism and the evolution of Pangea. *Journal* of Geophysical Research 86 (B3), 1858–1872.
- Muszynski, A., Machowiak, K., Kryza, R., & Armstrong, R. (2002). SHRIMP U– Pb zircon geochronology of the late-Variscan Zelezniak rhyolite intrusion, Polish Sudetes—preliminary results. *Polskie Towarzystwo Mineralogiczne*— *Prace Specjalne*, 19, 156-158.
- Nagy, E. A., Samson, S. D., & D'Lemos, R. S. (2002). U–Pb geochronological constraints on the timing of Brioverian sedimentation and regional deformation in the St. Brieuc region of the Neoproterozoic Cadomian orogen, northern France. *Precambrian Research*, 116(1), 1-17.
- Nasir, S., Okrusch, M., Kreuzer, H., Lenzt, H., & Höhndorf, A. (1991). Geochronology of the Spessart crystalline complex, mid-German crystalline rise. *Mineralogy and Petrology*, 44(1-2), 39-55.
- Natal'in, B. A., Sunal, G., Gün, E., Wang, B. ve Zhiqing, Y. (2016). Precambrian to Early Cretaceous rocks of the Strandja Massif (northwestern Turkey): evolution of a long lasting magmatic arc 1. *Canadian Journal of Earth Sciences* 53(11): 1312-1335.
- Natal'in B. A. & Şengör A. M. C. (2005). Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. *Tectonophysics*, 404: 175-202.
- Nazik, A., Çapkinoğlu, Ş., & Şeker, E. (2012). Famennian ostracods from the Istanbul zone (Gebze, Kocaeli, NW Turkey) and their paleogeographical relations. *Geologica Carpathica*, 63(5), 355-363.
- Neiva, A. M. R., Dodson, M. H., Rex, D. C., & Guise, P. G. (1995). Radiometric constraints on hydrothermal circulation in cooling granite plutons. *Mineralium Deposita*, *30*(6), 460-468.

- Neiva, A. M. R., Williams, I. S., Ramos, J. M. F., Gomes, M. E. P., Silva, M. M. V. G., & Antunes, I. M. H. R. (2009). Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. *Lithos*, 111(3), 186-202.
- Neiva, A. M. R., Williams, I. S., Lima, S. M., & Teixeira, R. J. S. (2012). U–Pb and 39 Ar/40 Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late-to post-D 3 Variscan granites of the Gouveia area, central Portugal. *Lithos*, 153, 72-83.
- Nesbitt, R. W., Pascual, E., Fanning, C. M., Toscano, M., Saez, R., & Almodovar, G. R. (1999). U–Pb dating of stockwork zircons from the eastern Iberian Pyrite Belt. *Journal of the Geological Society*, *156*(1), 7-10.
- Nicora, A. (1973). Anisian conodonts from the Gebze area, Turkey. *Geological* Society of America, Abstracts with Programs 5 (4): 341-342.
- Noble, P.J., Tekin, U.K., Gedik, İ. ve Pehlivan,Ş., (2008). Middle to Upper Tournasian Radiolaria of The Baltalimani Formation, İstanbul, Turkey. Journal of Paleontology, V. 82, No. 1.
- **Oberc-Dziedzic, T., Kryza, R., & Białek, J.** (2010). Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U-Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. *Geological Quarterly*, *54*(3), 301-324.
- **Oberc-Dziedzic, T., Kryza, R., & Pin, C.** (2015). Variscan granitoids related to shear zones and faults: examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone. *International Journal of Earth Sciences*, *104*(5), 1139-1166.
- **Oggiano, G., Gaggero, L., Funedda, A., Buzzi, L., & Tiepolo, M.** (2010). Multiple early Paleozoic volcanic events at the northern Gondwana margin: U–Pb age evidence from the Southern Variscan branch (Sardinia, Italy). *Gondwana Research*, *17*(1), 44-58.
- Okay, A.I., Şengör, A.M.C. & Görür, N., (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. *Geology*, 22, 267-270.
- Okay, A. I., Bozkurt, E., Satır, M., Yiğitbaş, E., Crowley, Q.G. ve Shang, C. K., (2008). Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. *Tectonophysics* 461(1): 252-264.
- **Okay, A. ve Topuz, G.** (2017) Variscan orogeny in the Black Sea region. *International Journal of Earth Sciences*, Volume 106, Issue 2, pp 569–592.
- **Okay, N., Zack, T., Okay, A. and M. Barth, M.,** (2011). Sinistral transport along the Trans-European Suture Zone: detrital zircon–rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. *Geological Magazine* 148(03): 380-403.
- Olivier, P., Gleizes, G., & Paquette, J. L. (2004). Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). *Geological Society of America Special Papers*, 380, 229-242.

- Olivier, P., Gleizes, G., Paquette, J. L., & Sáez, C. M. (2008). Structure and U–Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. *Journal of the Geological Society*, *165*(1), 141-152.
- Ordonez-Casado, B., Gebauer, D., Schäfer, H. J., Ibarguchi, J. G., & Peucat, J. J. (2001). A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. *Tectonophysics*, 332(3), 359-385.
- **Ordóñez-Casado, B., Martin-Izard, A., & García-Nieto, J.** (2008). SHRIMP-zircon U–Pb dating of the Ni–Cu–PGE mineralized Aguablanca gabbro and Santa Olalla granodiorite: Confirmation of an Early Carboniferous metallogenic epoch in the Variscan Massif of the Iberian Peninsula. Ore Geology Reviews, 34(3), 343-353.
- Öksüm, E., Hisarlı, Z. M., Çinku, M. C., Ustaömer, T., & Orbay, N. (2015). New paleomagnetic results from Ordovician sedimentary rocks from NW Anatolia: Tectonic implications for the paleolatitudinal position of the Istanbul Terrane. *Tectonophysics*, *664*, 14-30.
- Önalan, M. (1981). Pendik Bölgesi ile Adaların Jeolojisi ve Sedimenter Özellikleri. (Doktora Tezi), İstanbul Üniversitesi (yayımlanmamış).
- Özgül, N., (2011). İstanbul İl Alanının Jeolojisi. İstanbul, İstanbul Büyükşehir Belediyesi Deprem ve Zemin İnceleme Müdürlüğü.
- Özgül, N., (2012). Stratigraphy and some structural features of the İstanbul Paleozoic. *Turkish Journal of Earth Sciences* 21(6): 817-866.
- Özgül, N. ve Şengör, A. M. C., (2009). The Istanbul Zone: a connecting link between the Hercynides and the Scythides: *The Geological Society of America 2009 Annual Meeting & Exposition, Abstracts with Programs*, c. 41, no. 7, s. 691.
- Paeckelmann, W., (1925). Beiträge zur Kenntnis des Devon am Bosporus, insbesondere in Bithynien. Abhandlungen der Preußischen Geologischen Landesanstalt, Heft 98, 149 S, 5 Abbildungen, 6 Tafeln.
- Paeckelmann, W, (1938). Neue Beitrage zur Kenntnis des Geologie, Palaontologie und Petrographie der Umgegend von Konstantinople 2. Geologie Thraziens, Bithyniens und der Prinzeninseln. Abhandlungen der Preußischen Geologischen Landesanstalt, Heft 168, 202 p., Berlin.
- Paeckelmann, W. ve Sieverts, H., (1932). Neue Beitrage zur Kenntnis des Geologie, Palaontologie und Petrographie der Umgegend von Konstantinople. I. Obersilurische und devonische faunen der Prinzeninseln, Bithyniens und Thraziens. Abh. *Preussische Geol. Landesanstalt N.F.*, 142, 79 p., Berlin.
- **Paquette, J. L.** (1987). *Comportement des systèmes isotopiques U-Pb et Sm-Nd dans le métamorphisme éclogitique. Chaîne Hercynienne et chaîne Alpine* (Doctoral dissertation, Université Rennes 1).
- Paquette, J. L., Ménot, R. P., Pin, C., & Orsini, J. B. (2003). Episodic and shortlived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. *Chemical Geology*, 198(1), 1-20.

- Paquette, J. L., Peucat, J. J., Bernard-Griffiths, J., & Marchand, J. (1985). Evidence for old Precambrian relics shown by U-Pb zircon dating of eclogites and associated rocks in the Hercynian belt of South Brittany, France. *Chemical Geology: Isotope Geoscience Section*, 52(2), 203-216.
- Parry, M., Stípská, P., Schulmann, K., Hrouda, F., Jezek, J., & Kröner, A. (1997). Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. *Tectonophysics*, 280(1-2), 61-81.
- Pedro, J., Araújo, A., Fonseca, P., Tasinari, C., & Ribeiro, A. (2010). Geochemistry and U-Pb zircon age of the internal Ossa-Morena zone ophiolite sequences: a remnant of Rheic ocean in SW Iberia. *Ofioliti*, 35(2), 117-130.
- Snider-Pellegrini, A. (1858). La Création et ses mystères dévoilés. *Frank and Dentu*, Paris.
- Penck, W. (1919). Grundzüge der Geologie des Bosporus. Veröff entlungen der Institute für Meereskunde, n.f..,A.4, Berlin.
- Pereira, M. F., Silva, J. B., Drost, K., Chichorro, M., & Apraiz, A. (2010). Relative timing of transcurrent displacements in northern Gondwana: U–Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberian Massif (Portugal). *Gondwana Research*, 17(2), 461-481.
- Pereira, M. F., Chichorro, M., Solá, A. R., Silva, J. B., Sánchez-García, T., & Bellido, F. (2011). Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U–Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). *Lithos*, 123(1), 204-217.
- Pereira, M. F., Solá, A. R., Chichorro, M., Lopes, L., Gerdes, A., & Silva, J. B. (2012). North-Gondwana assembly, break-up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. *Gondwana Research*, 22(3), 866-881.
- Pereira, M. F., Castro, A., Chichorro, M., Fernandez, C., Diaz-Alvarado, J., Marti, J., & Rodriguez, C. (2014). Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research, 25(1), 290-308.
- Peucat, J. J., Auvray, B., Hirbec, Y., & Calvez, J. Y. (1984). Granites et cisaillements hercyniens dans le Nord du Massif Armoricain; geochronologie Rb-Sr. Bulletin de la Société Géologique de France, 7(6), 1365-1373.
- Peucat, J. J., Bernard-Griffiths, J., Ibarguchi, J. G., Dallmeyer, R. D., Menot, R. P., Cornichet, J., & De Leon, M. I. P. (1990). Geochemical and geochronological cross section of the deep Variscan crust: The Cabo Ortegal high-pressure nappe (northwestern Spain). *Tectonophysics*, 177(1), 263-292.
- **Peucat, J. J.** (1986). Behaviour of Rb-Sr whole rock and U-Pb zircon systems during partial melting as shown in migmatitic gneisses from the St Malo Massif, NE Brittany, France. *Journal of the Geological Society*, *143*(6), 875-885.
- Pietranik, A., Storey, C., & Kierczak, J. (2013). Niemcza diorites and moznodiorites (Sudetes, SW Poland): a record of changing geotectonic setting at ca. 340 Ma. *Geological Quarterly*, 57(2), 325-334.

- Pin, C., Fonseca, P. E., Paquette, J. L., Castro, P., & Matte, P. (2008). The ca. 350 Ma Beja Igneous Complex: A record of transcurrent slab break-off in the Southern Iberia Variscan Belt?. *Tectonophysics*, 461(1), 356-377.
- Pitra, P., Burg, J. P., & Guiraud, M. (1999). Late Variscan strike-slip tectonics between the Tepla-Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. *Journal of the Geological Society*, *156*(5), 1003-1020.
- Pharaoh, T. C., England, R. W., Verniers, J., & Zelazniewicz, A. (1997). Introduction: geological and geophysical studies in the Trans-European Suture Zone. *Geological Magazine*, 134(05), 585-590.
- **Poller, U., Liebetrau, V., & Todt, W.** (1997). U-Pb single-zircon dating under cathodoluminescence control (CLC-method): application to polymetamorphic orthogneisses. *Chemical Geology*, *139*(1-4), 287-297.
- Propach, G., Baumann, A., Schulz-Schmalschlager, M., & Grauert, B. (2000). Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany.(With 7 figures and 6 tables). *Neues Jahrbuch Fur Geologie und Palaontologie Monatshefte*, (6), 345-377.
- Putiš, M., Ivan, P., Kohút, M., Spišiak, J., Siman, P., Radvanec, M., ... & Demko,
 R. (2009). Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. *Bulletin de la* Société Géologique de France, 180(6), 461-471.
- von Quadt, A., Moritz, R., Peytcheva,I. ve Heinrich, C.A., (2005). 3: Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok– Srednogorie belt, Bulgaria. *Ore Geology Reviews* 27(1): 95-126.
- **Rajlich, P.** (1987). Variszische duktile Tektonik im Böhmischen Massiv. *Geologische Rundschau*, *76*(3), 755-786.
- **Ribeiro, A.** (1981). A geotraverse through the Variscan fold belt in Portugal. *Geol Mijnb*, *60*, 41-44.
- Roberts, M. P., Pin, C., Clemens, J. D., & Paquette, J. L. (2000). Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French Pyrenees. *Journal of Petrology*, 41(6), 809-844.
- Rodriguez, J., Cosca, M. A., Ibarguchi, J. G., & Dallmeyer, R. D. (2003). Strain partitioning and preservation of 40 Ar/39 Ar ages during Variscan exhumation of a subducted crust (Malpica–Tui complex, NW Spain). *Lithos*, 70(3), 111-139.
- **Roger, F., & Matte, P.** (2005). Early Variscan HP metamorphism in the western Iberian Allochthon—A 390 Ma U–Pb age for the Bragança eclogite (NW Portugal). *International Journal of Earth Sciences*, 94(2), 173-179.
- Romeo, I., Lunar, R., Capote, R., Quesada, C., Dunning, G. R., Piña, R., & Ortega, L. (2006). U–Pb age constraints on Variscan magmatism and Ni–Cu– PGE metallogeny in the Ossa–Morena Zone (SW Iberia). *Journal of the Geological Society*, 163(5), 837-846.

- Romeo, I., Capote, R., Tejero, R., Lunar, R., & Quesada, C. (2006). Magma emplacement in transpression: The Santa Olalla Igneous Complex (Ossa-Morena Zone, SW Iberia). *Journal of Structural Geology*, 28(10), 1821-1834.
- Romer, R. L., Thomas, R., Stein, H. J., & Rhede, D. (2007). Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. *Mineralium Deposita*, 42(4), 337-359.
- Ronca, S. A. R. A., Del Moro, A., & Traversa, G. (1999). Geochronology, Sr-Nd isotope geochemistry and petrology of late-Hercynian dyke magmatism from Sarrabus (SE Sardinia). *Periodico di Mineralogia*, 68(3), 231-260.
- Rosas, F. M., Marques, F. O., Ballevre, M., & Tassinari, C. (2008). Geodynamic evolution of the SW Variscides: Orogenic collapse shown by new tectonometamorphic and isotopic data from western Ossa-Morena Zone, SW Iberia. *Tectonics*, 27(6).
- Rossi, P., Oggiano, G., & Cocherie, A. (2009). A restored section of the "southern Variscan realm" across the Corsica–Sardinia microcontinent. *Comptes Rendus Geoscience*, *341*(2), 224-238.
- **Rossi, P., Cocherie, A., & Fanning, C. M.** (2015). Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust. *Bulletin de la Société Géologique de France, 186*(2-3), 171-192.
- Rubio-Ordóñez, A., Valverde-Vaquero, P., Corretgé, L. G., Cuesta-Fernández,
 A., Gallastegui, G., Fernández-González, M., & Gerdes, A. (2012). An Early Ordovician tonalitic–granodioritic belt along the Schistose-Greywacke domain of the Central Iberian zone (Iberian Massif, Variscan belt). *Geological Magazine*, 149(05), 927-939.
- Rutten, M.G. (1969). The Geology of Western Europe. *Elsevier*, Amsterdam XVIII+520.
- Salman, K. (2004). The timing of the Cadomian and Variscan cycles in the Ossa-Morena Zone, SW Iberia: granitic magmatism from subduction to extension. *Journal of Iberian Geology*, 30, 119-132.
- Samson, S. D., & D'Lemos, R. S. (1999). A precise late Neoproterozoic U-Pb zircon age for the syntectonic Perelle quartz diorite, Guernsey, Channel Islands, UK. Journal of the Geological Society, 156(1), 47-54.
- Sánchez-García, T., Quesada, C., Bellido, F., Dunning, G. R., & Del Tánago, J.
 G. (2008). Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa Morena Zone (SW Iberia). *Tectonophysics*, 461(1), 72-90.
- Santallier, D.S. (1994). Part III The Massif Central-Introduction. In: Pre-MesozoicGeology in France and Related Areas. (Editors: J. Chantraine, J. Rolet, D. S. SantallierAnd A.Pique). Springer-Verlag, s. 267-275.
- Santos Zalduegui, J., Schärer, U., Ibarguchi, J. G., & Girardeau, J. (1996). Origin and evolution of the Paleozoic Cabo Ortegal ultramafic-mafic complex (NW Spain): U-Pb, Rb-Sr and Pb-Pb isotope data. *Chemical Geology*, 129(3-4), 281-304.

- Santos Zaldueguia, J., & Schärer, U. (1995). Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica-Tuy allochthon, Galicia, NW Spain. *Chemical Geology*, *121*(1-4), 91-103.
- Sağdıç, N.G. (2015). Geometry and Evolution of the Eastern Part of the Hercynian Orogenic System in Europe and Its Transition to the Scythides (Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, İstanbul.
- Sayar, C., (1962). New observations in the Paleozoic sequence of the Bosphorus and adjoining areas, Istanbul, Turkey. 2nd Inter. Arbeitstagung Silur/Devon Grenze. Symposiumband 222-223, Stuttgart.
- Sayar C. (1964). Ordovician Conulariids from the Bosphorus area, Turkey. *Geological Magazine* 101: 193-197.
- Sayar, C., (1970). Boğaziçi azisinde Ordovisyen Conularia'ları. *Türkiye Jeoloji Kurumu bülteni*, cilt XIII. Reprint from "Bulletin of the Geological Society of Turkey", 1969, No.1-2.
- Sayar, C., (1979). İstanbul Boğazı ve çevresinde Ordovisyen-Siluriyen sınırı. *Türkiye Jeoloji Kurumu bülteni*, 22, 161-167.
- Sayar, C. (1984). İstanbul çevresinde Ordovisyen brakiyopodları. *Türkiye Jeoloji Kurumu Bülteni* 27, 99–109.
- Sayar, C. ve Cocks, R.M. (2013). A new Late Ordovician Hirnantia brachiopod Fauna from NW Turkey, its biostratigraphical relationships and palaeogeographical setting. *Geological Magazine*, page 1 of 18.
- Saydam D. G. (2005). Beykoz, Şile ve Kurtdoğmuş Yöresindeki Erken–Orta Devoniyen Yaşlı İstiflerin Conodont Faunası, İstanbul, Kuzeybatı Türkiye. (Yüksek Lisans Tezi), Fen Bilimleri Enstitüsü, Ankara Üniversitesi.
- Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., & Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and insitu U-Pb isotope, cathodoluminescence and microchemical evidence. *Contributions to Mineralogy and Petrology*, 134(2-3), 186-201.
- Schaltegger, U. (2000). U–Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. *International Journal of Earth Sciences*, 88(4), 814-828.
- Schaltegger, U., & Corfu, F. (1992). The age and source of late Hercynian magmatism in the central Alps: evidence from precise U– Pb ages and initial Hf isotopes. *Contributions to Mineralogy and Petrology*, 111(3), 329-344.
- Schmadicke, E., Mezger, K., Cosca, M.A. and Okrusch, M. (1995). Variscan Sm-Nd and Ar-Ar ages of eclogite facies rocksm from the Erzgebirge, Bohemian Massif. J. Metamorphic Geology, 13, 537-552.
- Schubert, W., Lippolt, H. J., & Schwarz, W. (2001). Early to Middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. *Mineralogy and Petrology*, 72(1-3), 113-132.

- Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopásek, J., Lexa, O., & Štípská, P. (2005). Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. *American Journal of Science*, 305(5), 407-448.
- Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J. M., & Edel, J. B. (2014). Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides. *Geology*, 42(4), 275-278.
- Scotese, C. R., & McKerrow, W. S. (1990). Revised world maps and introduction. *Geological Society, London, Memoirs, 12*(1), 1-21.
- Sestini, N. F. (1988). Anisian Ammonites from Gebze area (Kocaeli Peninsula, Turkey). *Rivista Italiana di Paleontologia e Stratigrafia* 94 (1): 35-80.
- Siebel, W., Blaha, U., Chen, F., & Rohrmüller, J. (2005). Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. *International Journal of Earth Sciences*, 94(1), 8-23.
- Siebel, W., Breiter, K., Wendt, I., Höhndorf, A., Henjes-Kunst, F., & René, M. (1999). Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). *Mineralogy and Petrology*, 65(3-4), 207-235.
- Siebel, W., Shang, C.K., Reitter, E., Rohrmüller, J., Breiter, K. (2008). Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of Emplacement: Constraints from Geochemistry and Zircon 207Pb/206Pb *Chronology Journal of Petrology* v.49, n.10, 1853-1872.
- Siebel, W., Chen, F., & Satir, M. (2003). Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. *International Journal of Earth Sciences*, 92(1), 36-53.
- Siebel, W., Thiel, M., & Chen, F. (2006). Zircon geochronology and compositional record of late-to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). *Mineralogy and Petrology*, 86(1-2), 45-62.
- Sintubin, M., Nefly, M., Rijpens, J., & Van Zegbroek, B. (1997). Faulting history at the eastern termination of the High Atlas fault (Western High Atlas, Morocco). *Geologie en Mijnbouw*, 76(3), 187-195.
- Smith, A. G., Briden, J. C., & Hurley, A. M. (1981). Phanerozoic paleocontinental maps. Cambridge University Press.
- Solá, A. R., Montero, P. L. R. M., Ribeiro, M. L., Neiva, A. M. R., Zinger, T., & Bea, F. (2005). Pb/Pb zircon Age of Carrascal Massif, central Portugal. *Geochimica et Cosmochimica Acta Supplement*, 69, A856.
- Solá, A. R., Pereira, M. F., Williams, I. S., Ribeiro, M. L., Neiva, A. M. R., Montero, P., ... & Zinger, T. (2008). New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: the Urra Formation (SW Iberian Massif, Portugal). *Tectonophysics*, 461(1), 114-129.

- Solá, A. R., Williams, I. S., Neiva, A. M., & Ribeiro, M. L. (2009). U–Th–Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: petrologic and regional implications. *Lithos*, 111(3), 156-167.
- Solé, J., Cosca, M., Sharp, Z., & Enrique, P. (2002). 40 Ar/39 Ar Geochronology and stable isotope geochemistry of Late-Hercynian intrusions from northeastern Iberia with implications for argon loss in K-feldspar. *International Journal of Earth Sciences*, 91(5), 865-881.
- Staub, R., (1928). Der Bewegungsmechanismus der Erde. Gebrüder Borntraeger, Berlin.
- Stille, H. (1920). Über Alter und Art der Phasen variscicher Gebirgsbildung. Nach. Ges. Wiss. Gött., math.-phys. Kl.:218-224.
- Stille, H. (1951). Das mitteleuropäische variszische Grundgebirge im Bild-des gesamteuropäischen. *Beihefte zum Geologischen Jahrbuch* Heft 2, 138s.
- Štípská, P., Schulmann, K., & Kröner, A. (2004). Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). *Journal of Metamorphic Geology*, 22(3), 179-198.
- Stosch, H. G., & Lugmair, G. W. (1990). Geochemistry and evolution of MORBtype eclogites from the Münchberg Massif, southern Germany. *Earth and Planetary Science Letters*, 99(3), 230-249.
- Suess, E., (1886). Über unterbrochene Gebirgsfaltung, Aus dem XCIV. Bande der Sitzb. Der Kais. Akad. Der. Wissench. I. Ablh., 111-117.
- Suess, E. (1888). Das Antlitz der Erde. Zweiter Band. Der Kais. Akademie der Wissenschaften.703s.
- Sunal, G., Natal'in, B. A., Satir, M., & Toraman, E. (2006). Paleozoic magmatic events in the Strandja Massif, NW Turkey. *Geodinamica Acta*, 19(5), 283-300.
- Sunal, G., Satır, M, Natal'in, B.A. ve Toraman, E. (2008). Paleotectonic position of the Strandja Massif and surrounding continental blocks based on zircon Pb-Pb age studies. International Geology Review 50(6): 519-545.
- Şengör, A.M.C. (2013). The Pyrenean Hercynican Keirogen and the Cantabrian Orocline as Genetically Coupled Structures. *Journal of Geodynamics* v.65, pp. 3-21.
- Şengör, A.M.C., Lom, N. ve Ülgen, S.C. (2012). Pangaean Games 2012. Proceedings of the Centenary Meeting of the Paläontologische Gesellschaft, 24-29 September, Berlin.
- Şengör, A. M. C. ve Özgül, N. (2011). İstanbul şehrinin iklimi ve jeolojisi: İstanbul Ansiklopedisi, *NTV Yayınları*, İstanbul.
- Şengör, A. M. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. *Tectonophysics* 75: 181-241.

- Tabaud, A. S., Janoušek, V., Skrzypek, E., Schulmann, K., Rossi, P., Whitechurch, ... & Paquette, J. L. (2015). Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern– Central Variscan Vosges Mts (NE France). Journal of the Geological Society, 172(1), 87-102.
- Talavera, C., Montero, P., Bea, F., Lodeiro, F. G., & Whitehouse, M. (2013). U– Pb zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. *International Journal of Earth Sciences*, 102(1), 1-23.
- Tartese, R., Poujol, M., Ruffet, G., Boulvais, P., Yamato, P., & Košler, J. (2011). New U-Pb zircon and 40 Ar/39 Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France). Comptes Rendus Geoscience, 343(7), 443-453.
- **Teipel, U.** (2003). *Obervendischer und unterordovizischer Magmatismus im Bayerischen Wald* (Doktora Tezi, Imu). Münchner Geol. Hefte A 33 98 S., 29 Abb., 6 Tab. München.
- Teipel, U., Eichhorn, R., Loth, G., Rohrmüller, J., Höll, R., Kennedy, A., (2004). U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician magmatism. *Int J Earth Sci (Geol Rundsch)* 93:782–801.
- Thompson, R. ve Oldfield, F., (1986). Environmental Magnetism. Allen& Unwin, London, xii+227.
- Thiéblemont, D., Guerrot, C., Le Métour, J., & Jézéquel, P. (2001). Le complexe de Cholet-Thouars: un ensemble volcano-plutonique cambrien moyen au sein du bloc précambrien des Mauges. *Géologie de la France*, *1*(2), 7-17.
- Tichomirowa, M., Berger, H. J., Koch, E. A., Belyatski, B. V., Götze, J., Kempe, U., ...& Schaltegger, U. (2001). Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. *Lithos*, 56(4), 303-332.
- Tichomirowa, M., Sergeev, S., Berger, H. J., & Leonhardt, D. (2012). Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). *Contributions to Mineralogy and Petrology*, 164(3), 375-396.
- **Tikhomirova, M.** (2002). Zircon inheritance in diatexite granodiorites and its consequence on geochronology—a case study in Lusatia and the Erzgebirge (Saxo-Thuringia, eastern Germany). *Chemical Geology*, 191(1), 209-224.
- Timmermann, H., Štědrá, V., Gerdes, A., Noble, S. R., Parrish, R. R., & Dörr, W. (2004). The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. *Journal of Petrology*, 45(7), 1311-1338.

- Timmermann, H., Dörr, W., Krenn, E., Finger, F., & Zulauf, G. (2006). Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. *International Journal of Earth Sciences*, 95(4), 629-647.
- The Digital Geological Map of Great Britain project (DiGMapGB-625) 1:625 000: British Geological Survey, Keyworth, Nottingham.
- The Geological Map of Germany 1 : 1 000 000 (GK1000) 4th completely revised edition. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover.
- Thiery, V., Rolin, P., Marquer, D., Cocherie, A., Fanning, C. M., & Rossi, P. (2009). Visean sinistral wrench faulting along the Sillon Houiller in the French Massif Central: Late Variscan tectonic implications. *Bulletin de la Société Géologique de France*, 180(6), 513-528.
- **Tollmann A.,** (1965). Das Strandscha-Fenster: ein neues Fenster der metamorphiden im Alpinen Nordstamm des Balkans. *N. Jb. Palaont. Mh.*, 4, 234-238.
- **Tollmann A.,** (1968). Der Deckenbau im Mediterranean Orogen mit sonderer Berücksichtigung des Balkangebirges. Bull. Geol. Onst. ser. Geotectonics, Stratigraphy and Lithology, 17, 53-60.
- **Tollmann, A.** (1982). Grossräumiger variszicher Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. *Geotektonishe Forschungen Stuttgart*, Heft 64 I-II, 1-91.
- **Toula, F.** (1898). Eine geologische Reise nach Kleinasien (Bosporus und Südküste des Marmarameeres). *Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients* 12 (1): 1-27.
- Trautmann, F., Becq-Giraudon, J. F., Chèvremont, P., Guerrot, C., & Thiéblemont, D. (2002). Datation à 378 Ma du massif du Pertre (Ille-et-Vilaine, Mayenne). Géologie de la France, n° 1, pp. 65-80, 8 fig., 4 tabl., 2 pl. Photos.
- Tropper, P., Finger, F., Krenn, E., Klötzli, U., Piber, A., & Gangl, S. (2016). The Kellerjoch Gneiss (Tyrol, Eastern Alps): An Ordovician pluton with A-type affinity in the crystalline basement nappes north of the Tauern Window. Austrian Journal of Earth Sciences, 109(2).
- Tüysüz, O., Aksay, A. & Yiğitbaş, E. (2004). Batı Karadeniz Litostratigrafi Birimleri. MTA Stratigrafi Komitesi Litostratigrafi Birimleri Serisi 1: 1-92.
- **Ustaömer P. A.** (1999). Pre-Early Ordovician Cadomian arc-type granitoids, the Bolu Massif, west Pontides, northern Turkey: geochemical evidence. International Journal of Earth Sciences 88 (1): 2-12.
- **Ustaömer, T., Robertson, A.H.F.** (1993). A Late Palaeozoic-early Mesozoic marginal basin along the active southern continental margin of Eurasia: evidence from the Central Pontides (Turkey) and adjacent regions Geological Journal 28 (3-4): 219-238.
- Ustaömer, P. A., Ustaömer, T., Collins, A. S., & Robertson, A. H. (2009). Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: magmatism along the developing northern margin of Gondwana. Tectonophysics, 473(1), 99-112.

- **Ustaömer, P. A., Ustaömer, T., Gerdes, A., ve Zulauf, G.** (2011). Detrital zircon ages from a Lower Ordovician quartzite of the Istanbul exotic terrane (NW Turkey): evidence for Amazonian affinity. *International Journal of Earth Sciences* 100(1): 23-41.
- Valvarde Aguado, B., Azevedo, M. R., Schaltegger, U., Catalán, J. M., & Nolan, J. (2005). U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. *Lithos*, 82(1), 169-184.
- Valverde Vaquero, P., Bento dos Santos, T., Clavijo, E. G., Díez Montes, A., Ribeiro, M. L., Solá, A. R., & Dias da Silva, Í. (2011). The Berlengas Archipelago granitoids within the frame of the Variscan Orogeny, W Portugal: new data and insights. In VII Hutton Symposium on Granites and Related Rocks. Abstracts Book, Avila, Spain, 4e9 July (p. 131-132).
- Varenio, B., (1650). Geographica Generalis. In qua affections generals Telluriseplicantur. *Apud Ludovicium Elzevirium*, Amsterdam 786 s.
- Venera, Z., Schulmann, K., & Kröner, A. (2000). Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. *Journal of Structural Geology*, 22(10), 1437-1454.
- Vera, J. A. (Ed.). (2004). Geología de España. Igme. 884s.
- Vialette, Y. (1965). Granitisation hercynienne dans le massif central français. Sci Terre, 369-382.
- Villaseca González, C., Eugercios, L., Snelling, N., Huertas Coronel, M. J., & Castellón, T. (1995). Nuevos datos geocronológicos (Rb-Sr, K-Ar) de granitoides hercínicos de la Sierra de Guadarrama. *Revista de la Sociedad Geológica de España*, 8(3), 137-148.
- Vondrovic, L., Verner, K., Burianek, D., Halodova, P., Kachlik, V., & Mikova, J. (2011). Emplacement, structural and PT evolution of the~ 346 Ma Miretín Pluton (eastern Teplá-Barrandian Zone, Bohemian Massif): implications for regional transpressional tectonics. *Journal of Geosciences*, 56(4), 343.
- Van der Voo, R. (1979). Paleozoic assembly of Pangea: a new plate tectonic model for the Taconic, Caledonian and Hercynian orogenies. *EOS*, Trans. Am. geophys. Un., 60, 241.
- Van der Voo, R., & French, R. B. (1974). Apparent polar wandering for the Atlanticbordering continents: Late Carboniferous to Eocene. *Earth-Science Reviews*, 10(2), 99-119.
- Wallace, P., (1972). The Geology of the Palaeozoic Rocks of the South-Western Part of the Cantabrian Cordillera, North Spain. *Proceedings of the Geologists'* Association Vol. 83, Part 1, Pages 57-73.
- Weber, K. (1981). The structural development of the Rheinische Schiefergebirge. Geol. Mijnbouw, 60(1), 149-159.
- Wegener, A., (1920). Die Entstehung der Kontinente und Ozeane. 2. Baskı. Friedr. Vieweg & Sons, Braunschweig. VIII+135s.

- Wendt, J. I., Kröner, A., Fiala, J., & Todt, W. (1994). U-Pb zircon and Sm-Nd dating of Moldanubian HP/HT granulites from South ohemia, Czech Republic. *Journal of the Geological Society*, 151(1), 83-90.
- Wenzel, T., Mertz, D. F., Oberhänsli, R., Becker, T., & Renne, P. R. (1997). Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hercynian. *Geologische Rundschau*, 86(3), 556-570.
- Winchester, J. A., Pharaoh, T. C. & Verniers, J. (2002). Palaeozoic Amalgamation of Central Europe. *Geological Society, London, Special Publications*, 201, 1-18.
- **Yilmaz İ.** (1977). Absolute age and genesis of the Sancaktepe granite (Kocaeli peninsula). *Bulletin of the Geological Society of Turkey* 20: 17-20.
- Yilmaz-Şahin S., Aysal N., Güngör Y. & Öngen S. (2010). Petrogenesis and shrimp zircon U-Pb dating of some granitoids within the western Pontides, southeastern Balkans, NW Turkey. XIX Congress of Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23-26 September. Geologica Balcanica: 419.
- Yilmaz-Şahin, S., Aysal, N. & Güngör, Y. (2012). Petrogenesis of Late Cretaceous Adakitic Magmatism in İstanbul Zone (Çavuşbaşı granodiorite, NW Turkey). Turkish Journal of Earth Sciences 21: 1029-1045.
- Yurtsever, A. (1982). Kocaeli Triyası biyostratigrafi projesi, Gebze-Hereke-Tepecik alanında Mesozoyik-Senozoyik kayalarının jeolojisi. MTA Rapor no. 7195 (yayımlanmamış).
- Yurttaş-Özdemir, Ü. (1971). Kocaeli Yarımadası, Tepeköy Triası makrofaunası ve biostratigrafisi. *Maden Tetkik ve Arama Dergisi* 77: 57-99.
- **Yurttaş-Özdemir Ü.** (1973). Über den Schieferton Mit Halobia der Halbinsel Kocaeli. Bulletin of the Mineral Research and Exploration Institute 80: 43-49.
- Žák, J., Kratinová, Z., Trubač, J., Janoušek, V., Sláma, J., & Mrlina, J. (2011). Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif. *International Journal* of Earth Sciences, 100(7), 1477-1495.
- Žák, J., Verner, K., Janoušek, V., Holub, F. V., Kachlík, V., Finger, F., ... & Trubač, J. (2014). A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. *Geological Society, London, Special Publications*, 405(1), 169-196.
- Zech, J., Jeffries, T., Faust, D., Ullrich, B., & Linnemann, U. (2010). U/Pb-dating and geochemical characterization of the Brocken and the Ramberg Pluton, Harz Mountains, Germany. *Geologica Saxonica*, 56, 9-24.
- Zeck, H. P., Wingate, M. T. D., & Pooley, G. (2007). Ion microprobe U–Pb zircon geochronology of a late tectonic granitic–gabbroic rock complex within the Hercynian Iberian belt. *Geological Magazine*, *144*(01), 157-177.
- Zeh, A., & Brätz, H. (2004). Timing of Upper Carboniferous-Permian horst-basin formation and magmatism in the NW Thuringian Forest, central Germany: a review. *Geological Society, London, Special Publications, 223*(1), 319-334.

- Zeh, A., Cosca, M. A., Brätz, H., Okrusch, M., & Tichomirowa, M. (2000). Simultaneous horst-basin formation and magmatism during Late Variscan transtension: evidence from 40Ar/39Ar and 207Pb/206Pb geochronology in the Ruhla Crystalline Complex. *International Journal of Earth Sciences*, 89(1), 52-71.
- Zeh, A., & Will, T. M. (2010). The mid-German crystalline zone. *Pre-Mesozoic* Geology of Saxo-Thuringia–from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, 195-220.
- Zeh, A., Williams, I. S., Brätz, H., & Millar, I. L. (2003). Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. *Contributions to Mineralogy and Petrology*, 145(6), 691-706.
- Zeh, A., Gerdes, A., Will, T. M., & Millar, I. L. (2005). Provenance and magmatic– metamorphic evolution of a Variscan Island-arc Complex: constraints from U– Pb dating, petrology, and geospeedometry of the Kyffhäuser Crystalline Complex, Central Germany. *Journal of Petrology*, 46(7), 1393-1420.
- Żelaźniewicz, A., Dörr, W., Bylina, P., Franke, W., Haack, U., Heinisch, H., ... & Kulicki, C. (2004). The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. *International Journal of Earth Sciences*, 93(5), 773-781.
- Zulauf, G., Dörr, W., Fiala, J., & Vejnar, Z. (1997). Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). *Geologische Rundschau*, 86(3), 571-584.

EKLER

- **EK A** : İstanbul ve Kocaeli illerinin genelleştirilmiş jeoloji haritası.
- **EK B** : Kocatöngel-Kurtköy formasyonlarının demanyetizasyon grafikleri.
- **EK C** : Aydos Formasyonu'nun demanyetizasyon grafikleri.
- **EK D** : Yayalar Formasyonu'nun demanyetizasyon grafikleri.
- **EK E** : Pelitli Formasyonu'nun demanyetizasyon grafikleri.
- **EK F** : Pendik Formasyonu'nun demanyetizasyon grafikleri.
- EK G : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri.
- **EK H** : Trakya Formasyonu'nun demanyetizasyon grafikleri.
- **EK I** : Paleomanyetik Örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.
- **EK J** : Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.
- EK K : İzotopik yaşların literatür derlemesi.
- EK L : Avrupa Hersinidlerinin dağılımı.
- EK M : Avrupa Hersinidlerinden derlenen yaş verilerinin dağılımı.
- **EK N** : Ediyakaran-üst Karbonifer yaş aralığındaki yay magmatiklerinin manyetik anomali haritası ile deneştirilmesi.
- **EK O**: Yay ile ilişkili magmatik ve metamorfik kayaçların kılavuz hatlar ile deneştirilerek yay cephelerinin çizilmesi.
- **EK P** : Geç Karbonifer-erken Permiyen'e ait palinspastik yeniden yapılandırma.

EK A : İstanbul ve Kocaeli illerinin genelleştirilmiş jeoloji haritası.

Şekil A.1 : İstanbul ve Kocaeli illerinin genelleştirilmiş jeoloji haritası.

EK B : Kocatöngel-Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

Şekil B.1 (devam) : Kocatöngel ve Kurtköy formasyonlarının demanyetizasyon grafikleri.

EK C : Aydos Formasyonu'nun demanyetizasyon grafikleri.

Şekil C.1 : Aydos Formasyonu'nun demanyetizasyon grafikleri.

EKD : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

Şekil D.1 (devam) : Yayalar Formasyonu'nun demanyetizasyon grafikleri.

EK E : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

Şekil E.1 (devam) : Pelitli Formasyonu'nun demanyetizasyon grafikleri.

EK F : Pendik Formasyonu'nun demanyetizasyon grafikleri.

Şekil F.1 (devam) : Pendik Formasyonu'nun demanyetizasyon grafikleri.

Şekil F.1 (devam) : Pendik Formasyonu'nun demanyetizasyon grafikleri.

Şekil F.1 (devam) : Pendik Formasyonu'nun demanyetizasyon grafikleri.

Şekil F.1 (devam) : Pendik Formasyonu'nun demanyetizasyon grafikleri.

EK G : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri.

Şekil G.1 : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri.

Şekil G.1 (devam) : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri

Şekil G.1 (devam) : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri

Şekil G.1 (devam) : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri

Şekil G.1 (devam) : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri

Şekil G.1 (devam) : Denizliköyü Formasyonu'nun demanyetizasyon grafikleri

EK H : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

Şekil H.1 (devam) : Trakya Formasyonu'nun demanyetizasyon grafikleri.

EK I : Paleomanyetik Örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.

Şekil I .1 : Paleomanyetik örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.

Şekil I .1 (devam) : Paleomanyetik örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.

Şekil I .1 (devam) : Paleomanyetik örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.

Şekil I .1 (devam) : Paleomanyetik örneklere ait manyetik suseptibilitenin anizotropi ölçümleri.

Phylum	class	Order	Family	Genus
		Dillingsellide	Clitambonitidae	Orthisina
		Billingseilida	Gonambonitidae	Kullervo sp.
			Eodevonariidae	Eodevonaria
				Plebeiochonetes
				Chonetes (Chonetes) cf. proliferus
				Chonetes (Chonetes) oblongus
				Chonetes
		Productida	Chonetidae	Chonetes (Chonetes) sarcinulatus
				Chonetes (Plicohonetes) cf. davousti
				Chonetes (Plicohonetes) plebejus
			Strophalosiidae	Strophalosia productoides
			Productellidae	Productella caperata
			Araksalosiidae	Whidbornella caperata
ŏ			Strophodontidae	Megastrophia
d	2220			Strophomena sp.
<u> </u>	stophonet		Christianiidae	Christiania
C-			Aegiromenidae	sp. Aegiromena
a a				aff. Descendens
لم س			Syndielasmatidae	Sowerbyites aff. Hibernicus
			Sowerbyellidae	Eoplectodonta rhombica
				Eoplectodonta
				duplicata
		Strophomenida		Anisopleurella tricostellata
				Leptaena rugosa
			Rafinesquinidae	Leptaena rhomboidalis
				Leptaenopyxis sp.
				Leptaena caperata
			Lentestiidae	
			Leptestildae	Leangella (Diambonia) aff scissa
			Leptostrophiidae	Mesoleptostrophia kartalensis
				Mesoleptostrophia sp.
				Rhenostrophia
				Orthotetina (Schellwienella) ?
			Orthotetidae	umbracula
		Orthotetida		Orthotetina (Schellwienella)
				pencki n. sp.
				Orthotetina (Schelvinella)

EK J: Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller

Çizelge J.1: Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
			Platystrophiidae	Platystrophia lynx
			Orthidae	Sulevorthis (Orthambonites) calligramma
				Orthis
				Onniella aff. Bancrofti
				Onniella aff. Flava
				Dalmanella circularis
				Dalmanella ? circularis
				Dalmanella fornicatimcurvata
				Dalmanella sp. aff. opercularis
				Dalmanella ? Trigeri
				Dalmanella cf. elegantula
				Dalmanella n.sp. 1. aff. elegantula
			Dalmanellidae	Dalmanella n.sp. 2. aff. elegantula
				Dalmanella ?crassiformis
				Dalmanella cf. Fascicularis
				Dalmanella cf. Cimex
	chonellara	Orthida		Dalmanella gervillei
a				Dalmanella gervillei, var.
				ablatiplicata
				Dalmanella n.sp. 1. aff.
β				Dalmanella n sn 2 aff
li c				calligramma
	M			Resserella aff. Llandoveriana
a(\$	~	Productorthidae	Nicolella actoniae
S L			Hesperorthidae	Dolerorthis
ш				aff. Sowerbyana
				Hesperorthis sp.
				Hesperorthis aff. craigensis
			Giraldiellidae	Comatopoma
			Giraidiemade	sp.
			Glyptorthidae	Glyptorthis maritima
				Saukrodictya hibernica
			Saukrodictyldae	Saukrodictya
				CT. POrosa
				Himantia
			Draboviidae	sagittifera
				Hirnantia
				transgrediens
			Wangyuiidae	Toxorthis proteus
			Schizophoriidae	Schizophoria (Proschizophoria) sp.
				Schizophoria provulvaria
				Schizophoria resupinata
				Rhenoschizophoria sp.

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
achiopoda	Alluchonellas	Spiriferida	Spiriferidae	Spirifer Spirifer paradoxus Spirifer (Delthyris) cf. nucula Spirifer (Delthyris) cf. subhystericus Spirifer (Hysterolithes) cf. subhystericus Spirifer (Hysterolithes) pellico Spirifer (Hysterolithes) pellico Spirifer (Hysterolithes) sp. Spirifer (Hysterolithes) carinatus Spirifer (Hysterolithes) sp. aff. carinatus Spirifer (Hysterolithes) sp. aff. carinatus Spirifer (Hysterolithes) subspecious Spirifer (Spirifer) trigeri Spirifer (Reticularia) indifferens Spirifer (Reticularia) sp., Gruppe des Sp. curvatus
Bra			Cyrtiidae	Cyrtina ? heteroclyta Cyrtina heteroclyta var. intermedia
			Hysterolitidae	Havlicekia Hystorolitos sp
				Vandercammenina cf. Trigeri
				Vandercammenina ex gr. Ovetensium
				Euryspirifer cf. Pellicoi
			Liccotraidea	Brachyspiriter crassicosta
			сторати	Lissatrypa sp.
		Atrypida	Atrypidae	Atrypa reticularis
			N 1	Protatrypa aff. Thorslundi
			Nucleospiridae	Nucleospira lens
				Athyris concentrica
		Athyridida	Athyrididae	Athyris ? globula
				Athyris sp.
			5	? Athyris sp.
			Dayiidae	Dayia navicula

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
			Stenoscismatidae	
				Stenoscisma (Camerophoria) sp.
				? Stenoscisma (Camerophoria) sp.ind.
				Rhynchonella endrissi n.sp.
			Rhynchonellidae	Rhynchonella limbata
		Bhynchonellida		Camarotoechia nympha, var.nov. kolihai
		hityhenonemaa		Camarotoechia sp.aff.nucula
			Camarotoechiidae	Camarotoechia sp.aff. tarda
				Camarotoechia daleidensis
	ellata			? Camarotoechia (Plethorhynchus) dunensis
	hon		Eatoniidae	Eatonia bithynica n.sp.
	Muc		Trigonirbynchiidae	Plectothyrella cf. Crassicostis syn.
	A.		Ingoliiliyinciilidae	Rostricellulinae
		Protorthida	Skenidiidae	Skenidioides aff. asteroidea
				? Pentamerus sp.
			Pentameridae	Pentamerus (Conchidium) cf.
a		Pentamerida		pseudoknighti
p			Stricklandiidae	Stricklandia lens
O O			Gypidulidae	? Gypidula sp.
d			Cryptonellidae	Cryptonella sp.
<u>.</u>			Rhipidiothyrididae	Rhenorensselaeria
L L		Terebratulida	Centronellidae	Rensselaeria (Rhenorensselaeria)
) aC				h.sp.an. strigiceps
Sra			Meganterididae	Meganteris oct. ovata suessi
				Meganteris
				Strophodonta clausa
				Strophodonta clausa
				Stropheodonta sp aff_gigas
				Stropheodonta cf. gigas
				Stropheodonta productoides
			Strophodoptidae	Stropheodonta sp.aff, murchisoni
				Stropheodonta sp.aff, herculea
			strophodontidue	Stropheodonta sp.
	Articulata	Strophomenida		Stropheodonta wagranensis
				Stropheodonta (Leptostrophia)
				explanata
				Stropheodonta cf. ivanensis
				Stropheodonta sp.aff. phillipsi
				Leptostrophia explanata
-			Leptostrophildae	Leptostrophia cf. Couviensis
			Amphistrophiidae	Mesodouvillina
	Creation	Constant		Paracraniops aff.
	Craniata	Craniopsida	Craniopsidae	Pararia
	Lingulata	Lingulida	Disciniidae	Orbiculoidea aff. Stincharensis
				Skenidiodes
				Trigeria guerangeri
				Leptadonta clausa

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
				Pleurodictyum bithynicum n. sp.
				Pleurodictyum problematicum
				Pleurodictyum
			Micheliniidae	Constantinopolitanum
				Michelinia tchihatcheffi
				Michelinia (?) geometrica
				Favosites (Palaeofavosites) cf.
				Asper
				Favosites (Aslerocerium) hisinger
				Emmonsia sp.
			Favositidae	Favosites forbesi
		Favositida		Favosites gotlandicus
				Mariusilites osmanicus
				Favosites aff. styriacus
				Favosites cf. saginatus
				Favosites dorothene
				Mesolites interruptus
S				Alveolites straeleni
			Alveolitidae	Alveolites grayi
				Alveolites squamula
				Squameoalveolites sp.
	Anthozoa			Caliapora cf. venusta
-			Coenitidae	Coenites (?) declivis n. sp.
2			Pachyporidae	Thamnopora cf. Cristata
		thozoa	Spongophyllidae	Spongophyllum sedgwicki
ξ				Dohmophyllum bulbosum
-				Xystriphyllum kayai
			Ptenophyllidae	Spongophylloides cf. perfectus
				Spongophylloides grayi
				Acantophyllum cf. filosum
				Acanthophyllum heterophyllum
			Laccophyllidae	Syringaxon (Barandeophyllum)
				bosporianicum
				Syringaxon (Alleyna) (?) sp.
				Syringaxon bosporianicus
			Ptychophyllidae	Ptychophyllum cf. patellatum
				Paterophyllum (?) sp.
			Streptelasmatidae	Dinophyllum (?) sp.
		Stauriida	Cyathophyllidae	Cyathophyllum
			Cydenophymdae	Zaphrentis cf. guillieri
			Zaphrentidae	Zaphrentis cf. endrissi n. sp.
				Zaphrentis endrissi n.sp.
			Amplexidae	Amplexus sp.
				Entelophyllum (syn. Xylodes)
				articulatus
			Entelophyllidae	Entelophyllum (syn Xylodes) cf
				nseudodianthus
				Phaulactis
			Lykophyllidae	Pychactis sh
			Potraiidae	Petraia (?) sn
			reudilude	
				Pseudamplexus (syn.
			Mucophyllidae	Pselophyllum) bithynicum

Çizelge J.1 (devam): Literatüre	en İstanbul Paleozoyiği'n	e ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
		Cystiphyllida	Tryplasmatidae	Tryplasma tabulatum Polyorophe glabra Polyorophe intermedia n. sp.
			Cystiphyllidae	Cystiphyllum siluriense LONSD. n. var. Cochlearica Cystiphyllum cylindricum
			Goniophyllidae	Goniophyllum cf. Pyramidale Calceola sandalina
			Fletcheriidae	Fletcheria tubifera
	_	Rugosa	Laccophyllidae	Neaxon sp. Barrandeophyllum parvum
_	Anthozoa		Pentaphyllidae	Pentaphyllum aff.irregulare
			Zaphrentoididae	Zaphrentoides endrissi
Cnidari		Heliolitida	Heliolitidae	Heliolites asiaminoris Heliolites barrandei n. var. lurcica Heliolites barrandei n. var. maior Heliolites (Stelliporella) Iamelletus WENTZEL n.mut. postera Heliolites interstinctus-decipiens Paeckelmannopora macrophthalma
			Halysitidae	Halysites catenularis L. n.mut. longicatena Halysites escharoides Halysites sp.aff. catenularis Halysites cf. gotlandicus
		Auloporida	Syringoporidae	Syringopora fascicularis L. Syringopora bifurcata
		Sarcinulida	Syringophyllidae	Lyopora amplexoides n.sp.
	Scyphozoa	Conulariida		Exoconularia istanbulensis Exoconularia consobrina Exoconularia cf. E Pyramidata Archaeoconularia fecunda
	Hydrozoa			Roseoporella praecedens n.sp.cf. Lophiostroma schmidti

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
				Cypricardia
			Ctenodontidae	Praectenodonta elegans
				Nuculoidea grandaeva elongata
			Nueuleridee	Palaeoneilo beushauseni
		Nu sul stals	Nuculanidae	Phestia securiformis
		Nuculoida		Nuculoidea cf. curvata
				Nuculites truncatus
			Malletiidae	Nuculites cf. triqueter
				Nuculites ellipticus
				Pterinea concentrica
				Leiopteria sp.
		Dtorioido	Pterineidae	Leiopteria cf. globosa
		Pteriolda		Leiopteria gervillei
				Actinopteria costata
			Pterinopectinoidea	Pterinopecten sp.
	Bivalvia	Modiomorphida	Modiomorphidae	Goniophora
				Eoschizodus nov. sp
		Trigonioida	Myophoriidae	Hefteria nov. sp
-				Toechomya sp.
С С		Veneroida	Mactromyidae	Paracyclas marginata
S(Paracyclas cf. belgica
				Paracyclas cf. rugosa
_			Permophoridae	Pleurodapis sp. aff. multicincta
0			Cardiniidae	Cypricardinia crenistria
\geq			Orthonotidae	Orthonota sp. aff. triplicata
~		Bholadomyoida		Orthonota sp.
		Filolauoiliyolua	Grammysiidae	Grammysia sp.
				Cimitaria acutirostris
		Praecardioida	Antipleuridae	Hercynella
		Ostreida	Pterineidae	Leptodesma n. sp. aff. Rogersi
		Pectinida	Aviculopectinidae	Aviculopecten n.sp.
			Agoniatitidae	Mimagoniatites erbeni
				Mimagoniatites cf. zorgensis
				Mimagoniatites kayai
				Anetoceras (Erbenoceras)
		Goniatitida		solitarium
		Gomatitida	Mimoceratidae	Gyroceratites
	Cephalopoda			Anarcestes lateseptatus
			Anarcestidae	Anarcestes sp.
				Latanarcestes noeggerati
			Pinacitidae	Pinacites jugleri
			Teicherticeratidae	Convoluticeras buluti
		Ammonoidea	Agoniatitidae	Agoniatites cf. Evexus
				 Agoniatites tabuloides

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
				Orthoceras cf. capillosum
				Orthoceras cf. Lorrieri
		Orthocerida	Orthoceratidae	Orthoceras Stambul
				Orthoceras sp. (? capillosum)
	Cephalopoda			Orthoceras cf. Agassizi
			Nautilidae	Cyrtoceras sp.
		Nautilida	Butoceratidae	Trochoceras n. sp. aff. undulatum
			Ratoceratidae	Trochoceras cf. Barrandei
		Oncocerida	Jovellaniidae	? Jovellania kochi
			Pomatiidae	? Cyclostoma striatulum
		Pleurotomarioidea	Pleurotomariidae	Pleurotomaria sp. aff.Orbignyi
		Bellerophontida	Bellerophontidae	Bellerophon (sphaerocyclus) sp.
			Murchisoniidae	Murchisonia sp.aff. anomala
ca	Gastropoda	Murchisoniina	Loxonematidae	Loxonema sp. İnd. (? cf. roemeri) Loxonema cf. Hennahiana
- SL		Euomphalina	Euomphalidae	Fuomphalus sp
lollu				Poleumita (Polytropis) cf. Potens
2				Cyclonema striatulum
				Euomphalus laevis
		Platyceratoidea	Platyceratidae	Platyceras ? hamulus
				Platyceras sp.
			Tentenilitide	Tentaculites acuarius
				Tentaculites cf. alternans
			Tentacuntidae	Tentaculites ? Arcuarius
		Tentaculitida		Tentaculites grandis
	Tentaculita		Chulle Linida	Styliolina laevis
			Stynoinida	Styliolinidae
				? Hyolithes sn
		Hyolitha	Hyolithida	Hyolithes n sn (aff henignensis)
		Coleolidae	Coleolidae	Coleolus sp
		concontrac		

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
			Beyrichiidae	Beyrichia
		Beyrichicopida		Beyrichia Roemeri
				Beyrichia sp.aff. spinosa
			Aechminidae	Aechmina sp.
			Aparchitidae	Aparchites sp.
		Platycopida	Cavellenidae	Sulcella
			Thlinsuridae	Thlipsuridae? Sp.
			mpsundae	Marginohealdia costata
		Podoconida	Healdiidae	Bythocyproidea sp.
		rouocopidu		Tricornina (Bohemina)
	Ostracoda		Bairdiocyprididae	Praepilatina
	Ostracoua		Bandiocyphuluae	Cytherellina inconstans
		Myodocopida		Entomis sp. aff. pelagica
		wyodocopida		Entomis sp. aff. migrans
			Bowrichiidao	Zygobeyrichia roemeri
			Beynchindae	Zygobeyrichia subcylindrica
				Piretella bithynia
		Palaeocopida		Klimphores
				anatolica
				Eochilina paeckelmanni
σ				Gibba schmidti
σ		Metacopida		Jenningsina sp.
0			Acastidae Homalonotidae	Pseudocryphaeus cf. proteus
90				Metacanthina asiatica
				Metacanthina hammerschmidti
ب				Kayserops astiferus
				Acastoides (Acastoides)
4				Contauropygo propomaca
				Centauropyge pronomaea
				Acastoides (Talus)
				Asteropyge asiatica
				Trimerus (Dipleura) fornix
		Phaconida		Parahomalonotus gervillei
	Trilobita	Thacopida		Phacops (phacops)
				pantichionensis
				Phacops (phacops) cf. turco
			Phacopidae	praecedens
				Trimerocephalus mastophthalmus
				Phacops (Phacops) potieri
				Phacops fecundus
				Phacops (trimerocephalus)
				mastophthalmus
				Phacops sp. sp.
			Cheiruridae	Cheirurus (Crotalocephalus)
				sternbergi sternbergi
		Proetida	Proetidae	Dechenella (Basidechenella?) sp.

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.
Phylum	class	Order	Family	Genus
				Albaillella paradoxa
				Albaillella Deflandrei
				Albaillella sp. aff. A. Undulata
			Albaillellidae	Albaillella Kayai
				Albaillella cf. Paradoxi
		Albaillellaria		
				Albaillella Indensis ambigua
				Ceratoikiscum avimexpectens
			Ceratoikissidae	Ceratoikiscum berggreni
			Ceratorkiscidae	Ceratoikiscum jucundum
				Lapidopiscum piveteaui
				Pararchocyrtium mirabile
				Pararchocyrtium serrensis
				Archocyrtium castuligerum
				Archocyrtium riedeli
				Archocyrtium lagabriellei
			Archocyrtiidae	Archocyrtium diductum
				Archocyrtium sp.aff. A. Diductum
m l				Archocyrtium Tinnulum
				Polyentactinia aranea
L L				Polyentactinia polygonia
				Archocyrtium sp.
.0	Polycystina		Pylentonemidae	Pylentonema antiqua
d			.,	Pylentonema robusta
σ			Palaeoscenidiidae	Palaeoscenidium sp.
2				Palaeoscenidium cladophorum
				Stigmopshaerostylus sp.
				Stigmopshaerostylus tortispina
				Stigmopshaerostylus vulgaris
				Stigmopshaerostylus istanbulensis
				n.sp.
				Trilonche palimbola
		Entactinaria	Entactiniidae	1. sp. aff. 1. echinata
				Cubaxonium
				Poctaedrospongiosum
				Astroentactinia sp.
				Astroentactinia biaciculata
				Pylomate Spumellaria
				Triconcorboore
			Haplentactiniidae	Triaenosphaera sp.
				Iriaenosphaera sicarus
		Spumellaria		ivieschedea akcetensis n.sp.
		1 - t t f ·	Descude Patrick Products	ivieschedea pyramispinosa
		Latentifistularia	Pseudolitheliidae	retragregnon sycamorensis

Çizelge J.1 (devam): Literatürden İstanbul Paleozoyiği'ne ait derlenmiş fosilller.

Phylum	class	Order	Family	Genus
				Brunsia sp.
			Pseudoammodiscidae	Brunsia pulchra
				Brunsia aff. Spirillinoides
			Terring and Ulder	Eoforschia? sp.
			TournayeIIIdae	Tournayella sp.
				Eotextularia sp.
m l			Palaeospiroplectamminidae	Palaeospiroplectammina sp.
				Palaeospiroplectammina parva
ar				
N.	Foraminifera	Fusulinida		Latiendothyra sp.
				Latiendothyra antiqua
				Latiendothyra inflata
			Endothyridae	Latiendothyra parakosvensis
			2.1.400.1.1.1.440	Spinoendothyra sp.
				Spinoendothyra bellicosta
				Spinoendothyra spinosa
				Endothyra prisca
			Parathuramminidae	Parathurammina sp.
			Archaesphaeridae	Diplosphaerina sp.
				Polygnathus linguiformis
				Polygnathus linguiformis bultyncki
				Polygnathus inflexus
			Polygnathidae	Polygnathus serotinus
				Polygnathus cooperi cooperi
				Ozarkodina regularis
				Ozarkodina carinthiaca
				Ozarkodina cf. arcuata
				Icriodus rectangularis lotzei
				Icriodus cf. vinearum
			Icriodontidae	Icriodus angustoides aicolea
a				leriedus corniger sopriger
at		Conodontonhorida		
o		conocontopriorida		Palmatolonic minuta
Ľ	Conodonta			
Q				Palmatolenis distorta
L L			Palmatolepidae	Palmatolenis inflaxa
				Palmatolepis perlobata
				Palmatolepis gracilis
				Prioniodina smitbi
			Prioniodidae	Hindeodella germana
				Pseudooneotodus beckmanni
				Pseudooneotodus sp.
				Neopanderodus perlineatus
				Neopanderodus transitans
				Belodella devonica
				Belodella resima
				Pelekysgnathus aff. serratus
		Ozarkodinida	Spathognathodontidae	Lanea eleanorae
				Nothognatella sp.
		Cystoporida	Fistuliporidae	Fistulipora solanoides n.sp.
			Atactotoechidae	Atactotoechus sp.
<u>6</u>		Trepostomida		Heterotrypa sp.
aryot	Stenolaemata			Batostoma (?) hüffneri
₩.		Fenestrida	Fenestellidae	Fenestella sp. sp.
		Cryptostomata		Dicranopora sp.
		Fenestrata		Reteporina sp.
Annelida	Polychaeta	Sabellida	Spirorbidae	Spirorbis omphalodes
			•••	Glyptograptus aff. Persculptus syn.
	Graptoloida	Bireclinata	Monograptidae	Graptolite/ diplograptus
Hemichor	·	Graptoloidea	Diplograptidae	Climacograptus aff. Normalis
data				Climacograptus sp.

Çizelge J.1	(devam):	Literatürden	İstanbul	Paleozoyiği'	'ne ait	derlenmiş	fosilller.
-------------	----------	--------------	----------	--------------	---------	-----------	------------

EK K : İzotopik yaşların literatür derlemesi.

_				Massif/		Dated		Age	Error	Interpretation	
Country	Region	Longitude	Lattitude	Unit	Lithology	Mineral	Method	(Ma)	(Ma)	of the age	Reference
Austria	Pennini c Nappes	12.41800	47.06200	Tauern Window	eclogite		Laser ICP- MS	415.0	±17	age of metamorphism	von Quadt et al. 1997
Austria	Pennini c Nappes	12.41800	47.06200	Tauern Window	eclogite		convention al U-Pb	418.0	±18	age of metamorphism	von Quadt et al. 1997
Austria	Pennini c Nappes	12.44600	47.06500	Tauern Window	eclogite		convention al U-Pb	488.0	±12		von Quadt et al. 1997
Austria	Pennini c Nappes	12.43100	47.06400	Tauern Window	eclogite	Grt-WR	Sm/Nd	422.0	±16	age of metamorphism	von Quadt et al. 1997
Spain	Ordenes Comple x	-8.70500	43.10000	Monte Castelo gabbro	Gabbro	Zr	ID-TIMS	499 ± 2		igneous crystalization	Abati et al 1999
Spain	Galicia	-8.97600	43.02400	Malpica- Tui Unit	metagranite	Zr	LA-ICP-MS	494.4 ± 1.7		Emplacement	Abati et al 2010
Spain	Galicia	-8.96000	43.01100	Malpica- Tui Unit	Eclogitic gneiss	Zr	SIMS	493.9 ± 2.6	/	Mafic- intermediate magmatism	Abati et al 2010
Spain	Galicia	-8.96000	43.01100	Malpica- Tui Unit	Eclogite	Zr	SIMS	498 ± 6		Mafic- intermediate magmatism	Abati et al 2010
Spain	Galicia	-8.80000	43.16300	Agualada Unit	Eclogite	Zr	LA-ICP-MS	350.1 ± 1.7		Post-eclogite record	Abati et al 2010
Czech Rep.		15.83700	49.65800	Ransko gabbro-perid otite massif	gabbro–peridotit e	Ni–Cu	Re-Os	341.5	±7.9	emplacement	Ackerman et al. 2013
Portugal	Central Iberian Zone	-8.36200	40.89000	Junqueira granite	slightly deformed granite (syn- tectonic)	Mnz	ID-TIMS	307.8 ± 0.7		age of deformation	Aguado et al 2005
Portugal	Central Iberian Zone	-7.80300	40.71200	Cota-Vise u granite	undeformed coarse porphyritic biotite granite (post- tevtonic)	Zr	ID-TIMS	307.7 ± 7.8		crystalization age	Aguado et al 2005
Portugal	Central Iberian Zone	-7.72400	40.66500	Cota-Vise u granite	undeformed coarse porphyritic biotite granite (post- tevtonic)	Zr	ID-T IMS	305.2 ± 4.4		crystalization age	Aguado et al 2005
France	Eastern Pyrenee s	2.75600	42.44600	Ceret stock gabbro	gabbro	Zr	SHRIMP	307.0±3 . 5		magmatic age	Aguilar et al 2013

Çizelge K.1 : İzotopik yaşların literatür derlemesi.

France	Eastern Pyrenee s	2.76300	42.38800	Sant Llorenç-La Jonquera tonalite	tonalite	Zr	SHRIMP	311.0±0 .9		magmatic age	Aguilar et al 2013
France	Armorica n massif	0.38280	46.16480	Charroux–Civ ray pluton	biotite granite	Bio	Ar-Ar	343.1	+0.8	emplacement	Alexandre et al. 2002
France	Armorica n massif	0.39630	46.09300	Charroux–Civ ray pluton	garnet-bearing leucogranitic vein	Mus	Ar-Ar	338.8	±0.4	?emplacement	Alexandre et al. 2002
France	Armorica n massif	0.41160	46.19560	Charroux–Civ ray pluton	Tonalite calcalcaline and subalcaline	Віо	Ar-Ar	346.4	±0.6	emplacement	Alexandre et al. 2002
France	Armorica n massif	0.44840	46.21020	Charroux–Civ ray pluton	Monzogabbro subalcalin	Bio	Ar-Ar	346.3	±1.1	emplacement	Alexandre et al. 2002
France	Armorica n massif	0.43340	46.12070	Charroux–Civ ray pluton	muscovite± biotite leucogranite	Mus	Ar-Ar	309.3	±0.4		Alexandre et al. 2002
France	Armorica n massif	0.43340	46.12070	Charroux–Civ ray pluton	muscovite± biotite leucogranite	Mus	Ar-Ar	311.6	±0.3		Alexandre et al. 2002
France	French Massif Central	0.95890	46.00640	Blond leucogranite	leucogranite	Zr	U-Pb	319.0	±7	emplacement	Alexandrov et al. 2000
France	Rhine Graben	7.76500	48.93500	Soultz monzogranit e	granite	Zr	U-Pb	331.0	±9	emplacement	Alexandrov et al. 2001
Spain	Central Iberian Zone	-5.75472	38.84556	Campanari o-La Haba pluton	Porfiritic granite	Wr	Rb-Sr	304.4±5 .8		emplacement age	Alonso Olazábal et al 2003
Spain	NW İberia	-8.00000	43.00000	Corredoiras orthogneiss	Granodiorite orthogneiss	Zr	SHRIMP	492.3 <u>+</u> 2 .7		Emplacement	Andonaegui et al 2012
				The Spessart diorite±grano							
Germany	мдсн	9.18895	49.93254	diorite complex	diorite±granodio rite	Zr	Pb/Pb	329.6	±0.8	intrusion age	Anthes&Reischm ann 2001
Germany	MGCH	9.23428	51.78062	Dessau	granite	Zr	Pb/Pb	328.4	±0.1	intrusion age of this granite.	Anthes&Reischm ann 2001
Germany	MGCH	12.94128	51.69259	Pretzsch- Prettin	Alkali granite	Zr		334.5	±3.5	intrusion age of this granite.	Anthes&Reischm ann 2001
Germany	мдсн	12.36511	51.45892	Delitzsch	granite	Zr	ev.	300.2	±1.1	intrusion age of this granite.	Anthes&Reischm ann 2001
	SSM	21.96718	42.75242	Lower Complex	granitoid	Zr	LA-ICP-MS	558.0	±6	emplacement age	Antic et al. 2015
	SSM	22.25537	42.49146	Vlasina Unit	metagranite	Zr	LA-ICP-MS	562.0	±2	emplacement age	Antic et al. 2015
	SSM	22.40928	42.53927	Vlasina Unit	gabbro	Zr	LA-ICP-MS	550.0	±11	emplacement age	Antic et al. 2015
	SSM	22.40483	42.59255	Vlasina Unit	granite	Zr	LA-ICP-MS	521.0	±4	final emplacement age	Antic et al. 2015
	SSM	22.71172	41.98313	Basement of Struma Unit	granite	Zr	LA-ICP-MS	536.0	±7	emplacement age	Antic et al. 2015
	SSM	22.02329	42.84451	Lower Complex	granite	Zr	LA-ICP-MS	328.0	±5	emplacement age	Antic et al. 2015
	SSM	21.98425	42.70347	Lower Complex	granite	Zr	LA-ICP-MS	478.0	±3	emplacement age, youngest magmatic event	Antic et al. 2015
	SSM	22.84946	41.62427	Lower Complex	two-mica orthogneiss	Zr	LA-ICP-MS	472.0	±4	emplacement age	Antic et al. 2015

	SSM	21.83684	42.72573	Lower Complex	amphibolite	Zr	LA-ICP-MS	462.0	+6	emplacement age (at least)	Antic et al. 2015
	SSM	21.72786	42.40346	Lower Complex	granite	Zr	LA-ICP-MS	253.0	+2	emplacement age	Antic et al. 2015
	SSM	21 83415	42 35929	Lower	granite	 7r	LA-ICP-MS	255.0	.2	emplacement	Antic et al.
	00101	21.00410	42.55525	Eastern		21		200.0	±٥	age	Antio et al
	SSM	21.64849	42.35029	Veles Series	metagranite	Zr	LA-ICP-MS	487.0	±17	age	2015
	SSM	21.98425	42.70347	Lower Complex	granite	Zr	LA-ICP-MS	490.0	±2	magmatic age	Antic et al. 2015
	SSM	22.57374	41.87688	Lower Complex	leucocratic vein	Zr	LA-ICP-MS	490.0	±7	magmatic age	Antic et al. 2015
	SSM	22,18345	41.72902	Eastern Veles Series	granite	Zr	LA-ICP-MS	304.0	+3	emplacement	Antic et al. 2015
		22.100.10		Castelo	giuinto			000.5.0	ŦJ	490	
Portugal	W Iberia	-7.44800	39.91600	Branco pluton	Granite	Mz	ID-TIMS	309.5±0 .9		Emplacement	Antunes et al 2008
				Castelo Branco				309.7±0			Antunes et al
Portugal	W Iberia	-7.44800	39.91600	pluton Castelo	Granite	Zr	ID-TIMS	.4		Emplacement	2008
Portugal	W Iberia	-7.44800	39.91600	Branco pluton	Granite	Mz	ID-TIMS	309.7±0 .5		Emplacement	Antunes et al 2008
Portugal	W Iberia	-7.44800	39.91600	Branco pluton	Granite	Zr	ID-TIMS	309.9±1 .1		Emplacement	Antunes et al 2008
Portugal	W Iberia	-7.44800	39.91600	Castelo Branco pluton	Granite	Zr	ID-TIMS	310.1±0 .8		Emplacement	Antunes et al 2008
Portugal	Wilheria	-7 44800	39 91600	Castelo Branco	Granite	M7		310.6±1		Emplacement	Antunes et al
Foliugai	Central Iberian	-7.44800	39.91000	Oledo	Glainte	-		480.5 ±		crystalization	Antunes et al
Portugal	Zone Central	-7.36900	39.97000	pluton	granodiorite	Zr	ID-TIMS	1		age	2009
Portugal	Iberian Zone	-7.35100	39.96900	Oledo pluton	granodiorite	Zr	ID-TIMS	479 ± 4		crystalization age	Antunes et al 2009
Portugal	Central Iberian Zone	-7.27100	39.92000	Oledo pluton	muscovite- biotite granite	Zr+Mnz	ID-TIMS	479 ± 3		crystalization age	Antunes et al 2009
Portugal	Ossa Morena Zone	-7.56528	38.44750	Reguengos de Monsaraz pluton	granodiorite	feldspar - amphib ole	Rb-Sr	297.5 ± 2.9		coolin age	Antunes et al 2010
Portugal	Ossa- Morena Zone	-7.53500	38.42944	Reguengos de Monsaraz pluton	tonalite	Zr	ID-TIMS	337.3 ± 2.3		crystalization age	Antunes et al 2011
	Ossa- Morena	7 50500		Reguengos de Monsaraz	gabbro	_	15 TH 10	337.4 ±		crystalization	Antunes et al
Portugal	Zone	-7.53500	38.42944	pluton Reguengos	diontes	∠r	ID-TIMS	1.1		age	2011
Portugal	Ossa- Morena Zone	-7.53500	38.42944	de Monsaraz pluton	granodiorite	Zr	ID-TIMS	337.8 ± 0.7		crystalization age	Antunes et al 2011
Portugal	Ossa- Morena Zone	-7.53500	38.42944	Reguengos de Monsaraz pluton	gabbro diorites	Zr	ID-TIMS	338.6 ± 0.7		crystalization age	Antunes et al 2011
Spain	Cabo Ortegal Comple	7 80500	43 60000	Somozas Mélanca	Metagranitoid	7r		400 - 1		Chutalization	Arenas et al
spain	x	-1.88500	43.60900	weiange	5	21	эпкімР	499 ± 1		Crystalization	2009

	Cabo Ortegal Comple			Somozas	Tonalitic						Arenas et al
Spain	X	-7.94700	43.53500	Mélange	orthogneiss	Zr	SHRIMP	485 ± 6		Crystalization	2009
France	Armorica n domain	-3.47818	47.71515	Ploemeur massif	leucogranite	Mon	U-Th/Pb	335.0	±6	inherited	AUGIER et al. 2015
France	South Armorica n domain	-3.13143	47.52340	Quiberon massif	granite	Mon	U-Th/Pb	323.0	±6	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.13143	47.52340	Quiberon massif	granite	Mon	U-Th/Pb	330.0	±5	inherited	AUGIER et al. 2015
France	South Armorica n domain	-3.12867	47.52501	Quiberon massif	granite	Mon	U-Th/Pb	335.0	±6	inherited	AUGIER et al. 2015
France	South Armorica n domain	-3.11828	47.49780	Quiberon massif	granite	Mon	U-Th/Pb	328.0	±6	inherited	AUGIER et al. 2015
France	South Armorica n domain	-2.76687	47.69901	Sainte-Anne d'Auray massif	Anatectic granite	Mon	U-Th/Pb	327.0	±9	inherited or prograde age	AUGIER et al. 2015
	South Armorica	0.00470	47.00544	Sainte-Anne d'Auray							AUGIER et al.
France	n domain South	-2.62172	47.63511	massif	Anatectic granite	Mon	U-Th/Pb	335.0	±6	inherited	2015
France	Armorica n domain	-1.77449	46.49101	Sables d'Olonne	granite	Mon	U-Th/Pb	328.0	±4	partial melting event	AUGIER et al. 2015
France	Armorica n domain	-3.41500	47.70031	Ploemeur massif	leucogranite	Mon	U-Th/Pb	320.0	±8	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.40333	47.73311	Ploemeur massif	leucogranite	Mon	U-Th/Pb	316.0	±4	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.39141	47.83899	Hennebont- Quimperlé	granite	Mon	U-Th/Pb	318.0	±4	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.12964	47.52340	Quiberon massif	granite	Mon	U-Th/Pb	320.0	±3	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.11828	47.49780	Quiberon massif	granite	Mon	U-Th/Pb	320.0	±4	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-3.02187	47.59121	Carnac massif	granite	Mon	U-Th/Pb	319.0	±5	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-2.99442	47.64120	Carnac massif	granite	Mon	U-Th/Pb	321.0	±3	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-2.76687	47.69901	Sainte-Anne d'Auray massif	Anatectic granite	Mon	U-Th/Pb	318.0	±3	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-2.64583	47.62890	Sainte-Anne d'Auray massif	Anatectic granite	Mon	U-Th/Pb	317.0	±6	partial melting event	AUGIER et al. 2015
France	South Armorica n domain	-2.62172	47.63511	Sainte-Anne d'Auray massif	Anatectic granite	Mon	U-Th/Pb	317.0	±3	partial melting event	AUGIER et al. 2015
France	N Brittany	-3.00100	48.76000	Series Rouges, Plouezec volcanics	andesitic- trachy andesitic lava	Wr	Rb-Sr	472.0	±5	emplacement	Auvray et al. 1980
Poland	Sudetec	15 82000	50 82479	Karkonosze Granite	Micromonzodiori	7r	I I-Ph	565 0		inherited	Awdankiewicz
Doland	Sudetes	15 82000	50.92470	Karkonosze	Micromonzodiori	7r		505.0	<u>1</u> 4	inhoritod	Awdankiewicz
Poland	Sudetes	15.82900	50.82478	Karkonosze	ue Micromonzodiori	2r	04-D	5/8.0	±6	emplacement of	Awdankiewicz
Poland	Sudetes	15.82900	50.82478	Granite	te	Zr	U-Pb	313.0	±3	the dyke	et al. 2010

				Beja-							
				Acebuches							
Spain	S Iboria	7 77800	37 99500	Amphibolit	Metabasite	7r	CHDIMD	340 ± 4		Crystalization	Azor et al
Spain	S Ibella	-7.77800	37.00000	e unit Roio	(MORB)	21	SHKIWF	340 ± 4		Crystalization	2008
				Acebuches							
				100000000000							
				Amphibolit	Metabasite						Azor et al
Spain	S Iberia	-7.11700	37.80000	e unit	(MORB)	Zr	SHRIMP	334 ± 2		Crystalization	2008
	Souther			Getic-							
	n			Supragetic							
Domonio	Carpath	22 02247	45 55 407	nappe	histite granite	7.		224 7		crystallization	Balintoni et
Romania	lans	23.02217	45.55497	system	biolite granite	ZI	LA-ICP-IVIS	321.7	±1.6	age	ai 2010
	Fastern			Infrabucovi							
	Carpath			nian						crystallization	Balintoni&Bal
Romania	ians	24.77283	47.45428	Nappe	orthogneiss	Zr	LA-ICP-MS	464.3	±1.3	age	ica 2013
	Souther										
	Armorica			Porphyroid	meta-					protolith	Ballèvre et al.
France	n Massif	-3.22500	47.37100	Nappe	rhyoignimbrite	Zr	SHRIMP	494.0	±4	emplacement	2012
	Souther				coarse-grained						
Franco	Armorica	-1.99600	46 64300	Porphyroid	porphyritic	7r		401.0		protolith	Ballevre et al.
France	Couthor	-1.00000	40.04300	марре	meta-myolite	21	SHRIVIP	491.0	±12	empiacement	2012
	Armorica			Para-	undeformed						Ballèvre et al.
France	n Massif	-1.75480	46.64560	autochthon	rhyolite	Zr	SHRIMP	486.0	+4	emplacement	2012
							· · · ·			peak	
										metamorphism	
	Ossa-									(HT	
	Morena -			Merida				553.4 ±		metamorphism	Bandres et al
Spain	Zone	-6.33444	38.96806	Massif	diorite	Grt-Wr	Sm-Nd	1.7)	2004
							×			peak	
	Ossa-									(HT	
	Morena			Merida				555.9 ±		metamorphism	Bandres et al
Spain	Zone	-6.33444	38.96806	Massif	diorite	Grt- Am	Sm-Nd	1.7)	2004
	Ossa-										
	Morena			Merida			×	577.6 ±			Bandres et al
Spain	Zone	-6.33444	38.96806	Massif	diorite	Zr	ID-TIMS	0.6		Crystalization	2004
	Ossa-			Valle de	n o mhuriti o			570 .			Dondroo et el
Spain	Zone	-5 80167	38 70833	na Selena	granite	7r	SHRIMP	573± 14		Crystalization	2004
Opani	20116	-0.00107	30.70033	masan	gianne	21	OFICIAL	14		orystanzation	2004
				St. Jean du	Pegmatitic		ID-TIMS U-				Barboni et al.
France	Brittany	-3.81825	48.70730	Doigt massif	gabbro cumulate	Zr	Pb	347.3	±0.4	emplacement	2013
				St. Jean du	Coarse-grained		ID-TIMS U-				Barboni et al.
France	Brittany	-3.79986	48.71065	Doigt massif	gabbro cumulate	Zr	Pb	347.0	±0.2	emplacement	2013
				St. Jean du	Fine-grained		ID-TIMS U-				Barboni et al.
France	Brittany	-3.79404	48.70564	Doigt massif	gabbro (sill)	Zr	Pb	346.5	±0.3	emplacement	2013
France	Dritte m.	2 77460	49 70502	St. Jean du	Leucocratic	7.	ID-TIMS U-	245.6		o mala com ont	Barboni et al.
France	Dritteriy	-3.77409	40.70392	St. Joan du	Lonalite	21		545.0	±0.3	empiacement	2015 Rarbani at al
France	Brittany	-3 77355	48 70337	Doigt massif	gabbro (sill)	7r	Ph	347 1	±0 2	emplacement	2013
	Sincearry	0.11000	1011 0001	St. Jean du	Microgranular A-		ID-TIMS U-	0.0.12	10.5	emplatement	Barboni et al.
France	Brittany	-3.71760	48.70340	Doigt massif	type granite	Zr	Pb	347.4	±0.2	emplacement	2013
	Iberian								-		
	Pyrite			Lagoa				356.4 ±		crystalization	Barrie et al
Portugal	Belt	-8.45800	38.21700	Salgado	Dacite	Zr	ID-TIMS	0.8		age	2002
	Iberian										
Dente 1	Pyrite	0 40 40-		Lagoa	Desite	7.		356.2 ±		crystalization	Barrie et al
Ропида	Beit	-8.40100	38.22000	Saigado	Dacite	∠r	ID-IIMS	0.7		age	2002
	Pvrite				Green Tuff			353 3 +		crystalization	Barrie et al
Portugal	Belt	-8.16083	37.86389	Aljustrel	(rhyolitic)	Zr	ID-TIMS	3.4		age	2002
	Iberian			,						3	
	Pyrite							349.8 ±		crystalization	Barrie et al
Spain	Belt	-6.60028	37.70167	Riotinto	Rhyolite	Zr	ID-TIMS	0.9		age	2002
<u> </u>											

	Iberian										
Spain	Pyrite Belt	-6.60028	37.70167	Riotinto	Rhyolite	Zr	ID-TIMS	349.8 ± 0.9		crystalization age	Barrie et al 2002
Spain	Iberian Pyrite Belt	-6.59722	37.76583	Campofrio	Biotite tonalite	Zr	ID-TIMS	346.3 ± 0.8		crystalization age	Barrie et al 2002
Spain	lberian Pyrite Belt	-6.08685	37.51144	Las Cruces	Dacite	Zr	ID-TIMS	354.0 ± 0.7		crystalization age	Barrie et al 2002
France	French Massif Central	3.91027	44.52220		Leucogranite dyke	Mon	U–Th–Pb	333.0	+6	migmatization event	Be Mezeme et al. 2006
France	French Massif Central	3.97050	44.60720	Puylaurent migmatite		Mon	U–Th–Pb	322.0	+7	migmatization event	Be Mezeme et al. 2006
	French Massif				Leucogranite					recrystallization during emplacement	Be Mezeme et
France	Central	3.97055	44.60720		dyke	Mon	U–Th–Pb	318.0	±5	dyke	al. 2006
France	French Massif Central	4.06611	44.61270		Leucogranite dyke	Mon	U–Th–Pb	309.0	±4	during emplacement dyke	Be Mezeme et al. 2006
	French Massif				Leucogranite					recrystallization during emplacement	Be Mezeme et
France	Central	4.06611	44.61270		dyke	Mon	U–Th–Pb	311.0	±5	dyke	al. 2006
France	French Massif Central	4.18888	44.54630	Rocles granite	peraluminous granite	Mon	U–Th–Pb	318.0	±3	emplacement	Be Mezeme et al. 2006
Spain	Central Iberia	-5.57700	40.56900	The Avila Batholith	Fuente del Alberche Ieucogranites	WR	Rb-Sr	344 ± 5		Crystalization	Bea et al 1999
Spain	Central Iberia	-4.82700	40.03000	The Avila Batholith	Hoyos granodiorites (south)	WR	Rb-Sr	327 ± 8		Crystalization	Bea et al 1999
Spain	Central Iberia	-5.31600	40.35000	The Avila Batholith	Two mica Plasencia granites (west)	WR	Rb-Sr	297 ± 26		Crystalization	Bea et al 1999
Spain Spain	Central Iberia Central Iberia	-5.31600 -4.84600	40.35000	The Avila Batholith The Avila Batholith	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east)	WR	Rb-Sr Rb-Sr	297 ± 26 295 ± 13		Crystalization Crystalization	Bea et al 1999 Bea et al 1999
Spain Spain Spain	Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200	40.35000 40.25300 40.41100	The Avila Batholith The Avila Batholith The Avila Batholith	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north)	WR WR WR	Rb-Sr Rb-Sr Rb-Sr	297 ± 26 295 ± 13 317 ± 13		Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999
Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000	40.35000 40.25300 40.41100 40.41500	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites	WR WR WR	Rb-Sr Rb-Sr Rb-Sr	297 ± 26 295 ± 13 317 ± 13 305 ± 16		Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999
Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300	40.35000 40.25300 40.41100 40.41500 40.53900	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites	WR WR WR WR	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9		Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999
Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300 -4.81200	40.35000 40.25300 40.41100 40.41500 40.53900 40.41700	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites Alberche monzogranite s	WR WR WR WR WR	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9 306 ± 8		Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999
Spain Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300 -4.81200 -4.81200	40.35000 40.25300 40.41100 40.41500 40.53900 40.41700 39.81575	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith Toledo Anatectic Complex	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites Alberche monzogranite s Arge 's tonalite	WR WR WR WR WR Zr	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr LA-ICP-MS	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9 306 ± 8 308.7 ± 4.4		Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999
Spain Spain Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300 -4.81200 -4.81200 -4.10125 -4.07525	40.35000 40.25300 40.41100 40.41500 40.53900 40.41700 39.81575 39.81069	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith Toledo Anatectic Complex	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites Alberche monzogranite s Arge 's tonalite Guajaraz gabbro	WR WR WR WR WR Zr Zr	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr LA-ICP-MS	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9 306 ± 8 308.7 ± 4.4 311.1 ± 5.2		Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 2006a Bea et al
Spain Spain Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300 -4.81200 -4.81200 -4.07525 -4.07525	40.35000 40.25300 40.41100 40.41500 40.53900 40.41700 39.81575 39.81069 39.85825	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith Toledo Anatectic Complex Toledo Anatectic Complex	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites Alberche monzogranite s Arge 's tonalite Guajaraz gabbro La Bastida gabbro	WR WR WR WR Zr Zr Zr	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr LA-ICP-MS LA-ICP-MS	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9 306 ± 8 308.7 ± 4.4 311.1 ± 5.2 305.6 ± 2		Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 2006a Bea et al 2006a
Spain Spain Spain Spain Spain Spain Spain Spain	Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia Central Iberia	-5.31600 -4.84600 -4.99200 -4.92000 -4.85300 -4.81200 -4.81200 -4.10125 -4.07525 -4.07525 -4.05054 -4.01678	40.35000 40.25300 40.41100 40.41500 40.41500 40.41700 39.81575 39.81069 39.85825 39.85825	The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith The Avila Batholith Toledo Anatectic Complex Toledo Anatectic Complex Toledo Anatectic Complex	Two mica Plasencia granites (west) Two mica Plasencia granites (soth east) Hoyos granodiorites (north) Fuente del Alberche leucogranites Alberche granodiorites Alberche granodiorites Alberche granodiorites Alberche granodiorites Labastida gabbro La Bastida gabbro	WR WR WR WR WR Zr Zr Zr Zr Zr	Rb-Sr Rb-Sr Rb-Sr Rb-Sr Rb-Sr LA-ICP-MS LA-ICP-MS LA-ICP-MS	297 ± 26 295 ± 13 317 ± 13 305 ± 16 310 ± 9 306 ± 8 308.7 ± 4.4 3111.1 ± 5.2 305.6 ± 2 308.2 ± 1.4		Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization Crystalization	Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 1999 Bea et al 2006a Bea et al 2006a Bea et al 2006a Bea et al 2006a

-											
			1			Garnet-					
	Moldanu		1	Moravian		omphacit					
Czech Rep.	bian Zone	16.11500	49.04000	Zone	eclogite	e pairs	Sm-Nd	336.0	±16	eclogite formation	Beard et al. 1992
						Garnet-					
	Moldanu		1	Moravian		omphacit					
Czech Rep.	bian Zone	16.11500	49.04000	Zone	eclogite	e pairs	Sm-Nd	342.0	±9	eclogite formation	Beard et al. 1992
				Kutna Hora-							
	Moldanu		1	Svratka							
Czech Rep.	bian Zone	15.01500	49.89500	Complex	eclogite	Grnt-Wr	Sm-Nd	377.0	+20	eclogite formation	Beard et al. 1992
-	French			-	-					-	
	Massif		1								Berger et al.
France	Central	1 36600	45 63870	Limousin	zoisite eclogite	7r	IA-ICP-MS	412.0	+10	LIHP event	2010
Trance	Eronoh	1.00000	40.00070	Lintousin	zoisite celogite	21	DATCI MIS	412.0	±10	on even	2010
	Massif		1							protolith	Dorgov et al
France	Control	1 26600	45 62970	Limousin	zaisita aslagita	7.		490.0		protoliti	Derger et al.
France	Central	1.30000	45.63870	Limousin	zoisite eclogite	Zr	LA-ICP-IVIS	489.0	±20	emplacement	2010
	French		1							anatectic high	
	Massif									pressure-medium	Berger et al.
France	Central	1.36600	45.63870	Limousin	zoisite eclogite	Zr	LA-ICP-MS	382.0	±7	pressure event	2010
				Cabo	coarse-						Bernard
	NW		1	Ortegal	grained			477 +			Griffiths et al
Spain	Iberia	-7.86900	43.76900	Complex	eclogite	Zr	ID-TIMS	10		protolith	1985
	French										Bernard-
	Massif		1	Limousin	postmetamorphi						Griffits, et al.
France	Central	1.30470	45.66270	tonalite belt	c quartz diorite	Zr	U-Pb	355.0	+2	emplacement	1985
	French										Bernard-
	Massif			Limousin	nostmetamorphi						Griffits et al
Franco	Control	1 44610	45 75470	topolito holt	postificiarito	7r	LL Db	270.0		omplacement	1095
Fiance	Central	1.44010	43.73470	tonalite beit	c quartz dionte	21	0-PD	379.0	±19	empiacement	1965
_	Massif										Bertrand et al.
France	central	0.37790	46.16330		granodiorite	Zr	U-Pb	350.0	±7	emplacement	2001
	Massif			Charroux-					- A		Bertrand et al.
France	central	0.40360	46.21150	Civray massif	diorite	Zr	SHRIMP	327.0	±19	emplacement	2001
							· · · · ·				
	Massif			Charroux-							Bertrand et al.
France	central	0.40360	46.21150	Civray massif	tonalites	Zr	SHRIMP	356.0	±5	emplacement	2001
	Massif					1					Bertrand et al.
France	central	0.43880	46,17380		monzogranite	Zr	U-Pb	349.0	+5	emplacement	2001
	Massif				0						Bertrand et al
France	central	0 65940	46.04360		Granodiorite	7r	LI-Ph	349.0	+7 F	emplacement	2001
Trance	Massif	0.00040	40.04000		Granoulonic	21	015	545.0	17.5	emplacement	Dortrand at al
F	IVI dSSII	0.00700	40 40700			7.	LL DL	255.0			bertranu et al.
France	central	0.66700	46.18700		monzogranite	Zr	U-PD	355.0	±5	emplacement	2001
	Massif										Bertrand et al.
France	central	0.68690	46.21740		quartz diorite	Zr	U-Pb	351.0	±6	emplacement	2001
	Massif		1	Charroux-							Bertrand et al.
France	central	0.40360	46.21150	Civray massif	tonalites	Zr	SHRIMP	360.0	±3	emplacement	2001
	Massif										Bertrand et al.
France	central	-0.82950	46.78200	Vendée	granite	Zr	U-Pb	455.0	±11	emplacement	2001
				Kellerioch							
	Norther		1	aneise							
Austria	n	11 07100	47 22427	(Sobworar	ougonanoim	7.		464.0		intrucion ogo	Plott 2012
Austra	Calcare	11.07102	47.32427	Augongnoi	augengneiss	21	LA-ICF-WS	404.0	±4.1	intrusion age	Diall 2013
	ous Alps		1	Augengnei							
			l	s)							
		-6 50010	30 23090	Bleida Group	Quartz diorite	7r	LI/Ph	586.0	45.0	Emplacement age	Blein et al. 2014
		-0.00010	30.23030	bielda Group	Quartz dionte	21	0/10	580.0	15.0	Emplacement age	Dieirretai. 2014
			1	Bou							
				Loubarad	coarse grained	_					
		-6.58750	30.43360	Group	diorite	Zr	U/Pb	625.0	8.0	emplacement age	Blein et al. 2014
					Granodioritic						
		-6.62740	30.41680	Ophiolites	dyke	Zr	U/Pb	658.0	8.0	Cristallization age	Blein et al. 2014
				Assif		1					
			1	n'Bougmma							
			1	ne gneiss	coarse grained						
		-6.68390	30.38060	complex	granodiorite	Zr	U/Pb	702.0	5.0	Cristallization age	Blein et al. 2014

Poland	CENTRAL	16.93300	50.29600	Gierałtów gneisses	orthogneiss	Wr	Rb-Sr	464.0	+18	emplacement	Borkowska et al. 1990
	Champto			0					110		
	ceaux										BOSSE et al.
France	Complex	-1.79680	47.42360	Cellier Unit	leptynite	phengite	Ar-Ar	340.4	±0.3	exhumation	2000
	Champto										BOSSE et al
France	Complex	-1.79680	47.42360	Cellier Unit	leptynite	phengite	Ar-Ar	340.5	±0.9	exhumation	2000
	Champto									related to	
F	ceaux	1 00000	47 40070	Callian Unit		phengite	Dh.C.	220.0		leucogranitic	BOSSE et al.
France	Complex	-1.98890	47.42270	Cellier Unit	quartz vein	-WR	KD-Sr	320.0	±6	Intrusions	2000
	ceaux									high-pressure	BOSSE et al.
France	Complex	-1.32940	47.29700	Cellier Unit	Eclogite	phengite	Ar-Ar	351.2	±1.4	event	2000
	Champto										
France	Complex	-1 32940	47 29700	Cellier I Init	Eclogite	nhengite	Δr-Δr	352.0		high-pressure	BOSSE et al.
	Champto	1.02040	41.20100		Leiogne	prictigite		552.0	±1.6	event	2000
	ceaux									high-pressure	BOSSE et al.
France	Complex	-1.32940	47.29700	Cellier Unit	Eclogite	phengite	Ar-Ar	352.0	±1.6	event	2000
	Champto					Cet Cav				high processo	DOCCE at al
France	Complex	-1.32940	47.29700	Cellier Unit	Eclogite	WR	Sm-Nd	362.0	+25	event	2000
	Ile de				Grt-Czo bearing				125	Blueschist	
France	Groix	-3.43400	47.62400	Upper unit	blueschist	phengite	Ar-Ar	359.2	±1.4	metamorphism	Bosse et al. 2005
			17 00000	Champ-du-	red granitie,	Amp/bio					Boutin et al.
France	Vosges	6.66000	47.89000	Feu Champ du	granodiorite	/mus	Ar-Ar	331.0	±5	emplacement	1995 Doutin at al
France	Vosges	6.88100	48.01300	Feu	granodiorite	/mus	Ar-Ar	334.7	+6.4	emplacement	1995
					0	Amp/bio			10.4		Boutin et al.
France	Vosges	6.98800	48.12500		leucogranite	/mus	Ar-Ar	331.0	±5	emplacement	1995
			17 00700	Champ-du-	red granitie,	Amp/bio					Boutin et al.
France	Vosges	7.19400	47.86700	Feu	granodiorite	/mus	Ar-Ar	334.6	±2.8	emplacement	1995 Deutin et el
France	Vosges	7,19600	48,17000		leucogranite	Amp/bio /mus	Ar-Ar	334.0	+2.4	emplacement	Boutin et al. 1995
						Amp/bio			12.4		Boutin et al.
France	Vosges	7.21900	48.18800		leucogranite	/mus	Ar-Ar	332.0	±8	emplacement	1995
				Champ-du-	red granitie,	Amp/bio			1. C		Boutin et al.
France	Vosges	7.24600	48.43700	Feu Champ du	granodiorite	/mus	Ar-Ar	340.0	±1.2	emplacement	1995 Doutin at al
France	Vosges	7.33800	48.38600	Feu	granodiorite	/mus	Ar-Ar	331.0	+12	emplacement	1995
-					<u> </u>	Amp/bio			-12		Boutin et al.
France	Vosges	7.35100	48.42100		leucogranite	/mus	Ar-Ar	342.0	±1.2	emplacement	1995
			40.00000			Amp/bio					Boutin et al.
France	vosges	7.35200	48.22200	Dlochý /Dlöck	leucogranite	/mus	Ar-Ar	306.6	±6.2	emplacement	1995
Germany-	Moldanu			enstein	coarse-grained	Muscovit					Breiter et al.
Czech Rep.	bian Zone	13.87300	48.81300	granite	two-mica granite	e	Rb-Sr	296.0	±4	emplacement	2002
Austria-											
Germany-	Moldanu	12 79100	49 77900	Steinberg	porphyritic two-	Muscovit	0 - 0 -	200.2		o malo com ont	Breiter et al.
сzесп кер.	Dian Zone	13.78100	40.77000	granite	mica granite	e	AI-AI	309.2	±1.8	emplacement	2002
Austria-					porphyritic						
Germany-	Moldanu			Dreisessel	coarse-grained	Muscovit					Breiter et al.
Czech Rep.	bian Zone	13.80300	48.78500	granite	two-mica granite	e	Ar-Ar	313.1	±2.9	emplacement	2002
Austria- Germany-	Moldanu			Plechý/Plöck enstein	coarse-grained	Muscovit					Breiter et al
Czech Rep.	bian Zone	13.87300	48.81300	granite	two-mica granite	e	Ar-Ar	313.9	±2.8	emplacement	2002
	West			Orlica–Sniez		phengite					BRöCKER et al.
Poland	Sudetes	16.74600	50.19900	nik complex	Eclogite	-Wr	Rb-Sr	331.3	±6.5	Variscan anatexis	2009
Deland	West	16 74600	50 10000	Orlica–Sniez	Felezite	nhongito	0 - 0 -	348.0			BRÖCKER et al.
Polanu	Sudeles	10.74000	50.19900	This complex	Eclogite	omnhacit	AI-AI	546.0		vanscan anatexis	2009
	West			Orlica–Sniez		e-					BRöCKER et al.
Poland	Sudetes	16.75222	50.20173	nik complex	Eclogite	phengite	Rb-Sr	346.3	±4.2	Variscan anatexis	2009
						garnet,			1		
Poland	West Sudetes	16 75222	50 20173	Urlica–Sniez	Eclogite	omphacit e	Sm–Nd	352.2	12.2	Variscan anatovic	BROCKER et al. 2009
. olanu	West	10.10222	00.20173	Orlica-Sniez	LeioBite	<u>۲</u>	Sin Nu	332.2	±3.3	- anscan and texts	BRÖCKER et al.
Poland	Sudetes	16.88200	50.37200	nik complex	Eclogite	phengite	Rb-Sr	327.5	±3.4	Variscan anatexis	2009
<u> </u>	West			Orlica–Sniez					1		BRöCKER et al.
Poland	Sudetes	16.90000	50.23800	nik complex	Eclogite	Zr	U-Pb	340.3	±4.1	Variscan anatexis	2009

				Neukirchen-							
				Kdyne							
	Tepla			massif/	finegrained						
	–Barrandi			Smrzovice	hornblende-bioti						
	an unit	13.09600	49.37700	diorite	te diorite	Hbl	K-Ar	547.0	±7	emplacement	Bues et al. 2002
				Neukirchen-							
				Kdyne							
	Tepla			massif/	finegrained						
	-Barrandi			Smrzovice	hornblende-bioti						
	an unit	13.09600	49.37700	diorite	te diorite	Hbl	K-Ar	549.0	+7	emplacement	Bues et al. 2002
				Neukirchen-		-					
				Kdyne							
	Tenla			massif/	finegrained						
	-Barrandi			Smrzovice	hornblende-bioti						
	an unit	13 09600	19 37700	diorite	te diorite	Biotite	K-Ar	105.0	10	emplacement	Bues et al. 2002
	an unic	13.03000	43.37700	Taufalahaun	te dionte	Diotite	K-AI	455.0	±θ	emplacement	bues et al. 2002
				Teureisberg							
	i epia			(Certuv							
	-Barrandi	10.07000	40.07000	kamen)		7.		250.0			Dura et al. 2002
	an unit	12.97900	49.27800	diorite	pyroxene diorite	Zr	U-PD	359.0	±2	emplacement	Bues et al. 2002
				Grand							
	Pennini			Saint-							
Switzerlan	с општи С	7 22/08	46.01040	Bernard	metagranite	7r	I I-Ph	500.0	3/-1	crystallization	Bussy et al.
d	Nannos	7.22430	-0.01040	Nappe	metagianne	21	0-1 0	500.0	5/-4	age	1996
-	Nappes			(Briançonn		-	_				
				aise)							
	External			Aiguilles						crystallization	Bussy et al
France	Massifs	0 70000	45 04 500	Rouges	monzogranite	Zr	U-Pb	331.0	±2	age	2000
	Wia 3013	6.78600	45.91500	Massif			· · · ·			age	2000
	External			Aiguilles		7r+mon				crystallization	Bussy et al
France	Maccife		40.07000	Rouges	granite	azito	U-Pb	306.5	1.5	ago	2000
	101233113	6.96500	46.07800	Massif		azite				aye	2000
Frances	External			Mont							Bussy et al
Itoly	Mogifo			Blanc	granite	Zr	U-Pb	303.0	<u>+2</u>	intrusion age	
пату	111455115	7.01300	45.92800	Massif			· · · · ·				2000
	Extornal		- / - /	Aiguilles	aabbro			~		cnystallization	Bussy of al
France	Mogifo			Rouges	gabbio	Zr	U-Pb	307.0	<u>+2</u>	crystamzation	
	111455115	7.09000	46.13800	Massif	enciave					aye	2000
	Extornal		· · · · ·	Aiguilles						constallization	Bussy of al
France	Macrife			Rouges	leucogranite	Zr	U-Pb	307.0	<u>+2</u>	crystallization	Dussy et al.
	Wid Soll'S	7.09000	46.13800	Massif						aye	2000
	External			Aiguilles	anatastia	monori				crystallization	Ruggy at al
France	Mogrifo			Rouges	analectic	to	U-Pb	307.0	<u>+2</u>	age of the	Dussy et al.
	11/12/2011	7.09000	46.13800	Massif	gianoulonie	le				anatexis	2000
				Valencia							
				del							
	Ossa-			Ventoso							
	Morena			plutonic	quartz-monzo						Cambese et
Spain	Zone	-6.55838	38.22654	complex	diorite	Zr	SHRIMP	333 ± 2		Crystalization	al 2015
				Valencia							
				del							
	Ossa-			Ventoso							
	Morena			plutonic							Cambese et
Spain	Zone	-6.50465	38.21641	complex	granodiorite	Zr	SHRIMP	336 ± 2		Crystalization	al 2015
-				Valencia	-			1		-	
				del							
	Ossa-			Ventoso							
	Morena			plutonic							Cambese et
Spain	Zone	-6.48072	38.22636	complex	quartz-diorite	Zr	SHRIMP	333 ± 2		Crystalization	al 2015
- · · ·				Valencia	,					,	
				del							
	0552-			Ventoso							
	Morena			nlutonic							Cambese et
Snain	Zone	-6 45/34	38 20102	compley	diorite	Zr	SHRIMP	338 + 2		Crystalization	al 2015
opani	20116	-00404	30.23102	Valar	Gionte	<u>-</u> '	OFICINE	330 ± 3		Siyaanzation	ur 2013
				vaiencia							
	Omr			Vento							
	Ussa-			venioso	au arta						Combossist
Canair	vioiena		00 0000-		quartz-monzo	7.		220		On otali ti - t	cambese et
opam	Zone	-0.44184	30.32965	complex	uionie	21	SUKIMP	3∠0 ± 3	I	Crystanzation	ai 2013

	Armorica			Aber- Ildut/North- Ouessant granitoid	porphyritic						
France	n massif Central	-4.77510	48.50630	complex Cabeza	monzogranite	Zr	U-Pb		±0.9	emplacement	Caroff et al. 2015
Spain	Iberian Zone	-6.61833	39.74611	de Araya pluton	Biotite granite	Mnz	CHIME	302 ± 7		crystalization age	Carracedo et al 2005
Spain	Central Iberia	-5.67417	38.75778	Los Pedroches batholith	biotite- amphibole granodiorite	Zr	LA-ICP-MS	301 ± 10		Crystalization	Carracedo et al 2009
Spain	Central Iberia	-4.56361	38.81889	Los Pedroches batholith	porphyritic granite	Zr	ID-TIMS	314.2 ± 1.9		Crystalization	Carracedo et al 2009
Spain	Central Iberia	-4.54222	38.39389	Los Pedroches batholith	leuco granite	Mnz	ID-TIMS	304.3 ± 1.8		Crystalization	Carracedo et al 2009
Spain	Central Iberia	-4.54222	38.39389	Los Pedroches batholith	leuco granite	Zr	LA-ICP-MS	305 ± 5		Crystalization	Carracedo et al 2009
Spain	Central Iberia	-4.54222	38.39389	Los Pedroches batholith	leuco granite	Zr	ID-TIMS	311.4 ± 2.0		Crystalization	Carracedo et al 2009
Spain	Central Iberia	-4.28083	38.31806	Los Pedroches batholith	biotite- amphibole granodiorite	Zr	ID-TIMS	307.8 ± 1.2		Crystalization	Carracedo et al 2009
Spain	Eastern Pyrenee s	2.41192	42.49441	Canigó massif	metadiorite	Zr	SHRIMP	453 ± 4.4		intrusion age	Casas et al 2010
		0.00000	0.00000	Balaig	Microdiorite	Zr	U/Pb	453.0	4.0	Cristallization age	Casas et al., 2010 (37)
Spain	SW Iberia	-6.27639	38.08833	Santa Olalla Plutonic Complex	Gabbro	WR	Rb-Sr	359 ± 18		crystalization age	Casquet et al 1998
Spain	Sierra del Guadarr ama	-3.58611	40.87222	La Cabrera Granite	granite	Zr	evaporatio n	302 ± 3		crystalization age	Casquet et al 2004
Spain	Sierra del Guadarr ama	-3.58611	40.87222	La Cabrera Granite	granite	WR	Rb-Sr	303 ± 24		crystalization age	Casquet et al 2004
Spain	NE Iberia	-2.50784	43.17170	A Silva granodiorit e	granodiorite	Zr	SHRIMP	510.28 +1.57/- 1.44		crystalization age	Castieiras et al 2010
France	N. Brittany	0.00000	0.00000	Belle-Isle-en- Terre basic- ultra basic complex	metagabbros	sphene	U-Pb	602.0	4/-1	emplacement	Chambaudet et al. 1985
Germany	Black Forest	8.05000	48.28300		trondhjemitic orthogneiss	Zr	Pb-Pb	511.0	±4	emplacement	Chen et al. 2000
Germany	Black Forest	8.06700	48.30600		granodioritic orthogneiss	Zr	Pb-Pb	509.0	±3	emplacement	Chen et al. 2000
Germany	Black Forest	8.15800	48.21700		tonalitic gneiss	Zr	U-Pb	497.0	±3	emplacement	Chen et al. 2000
Germany	Black Forest	8.15800	48.21700		tonalitic gneiss	Zr	Pb-Pb	500.0	±2	emplacement	Chen et al. 2000
Germany	Moldanu bian	7.89100	47.90400		eclogite	Zr	Pb-Pb	466.0	±3.3	crystallization of the protolith	Chen et al. 2003
Germany	Moldanu bian	8.12400	48.28000		eclogite	Zr	Pb-Pb	468.1	±2.4	crystallization of the protolith	Chen et al. 2003

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

Germany	Moldanu bian	7.84700	47.89000		eclogite	Zr	Pb-Pb	486.4	+2.0	crystallization of the protolith	Chen et al. 2003
	Moldanu									crystallization of	
Germany	bian	7.83900	47.89500		eclogite	Zr	Pb-Pb	447.0	±6.0	the protolith	Chen et al. 2003
Germany	bian	7.88500	47.90000		eclogite	Zr	Pb-Pb	445.3	±1.8	the protolith	Chen et al. 2003
Germany	Moldanu bian	13.30300	48.76500	Fürstenstein granite massif	diorite	Zr	Pb/Pb	331.5	±2.8	emplacement	Chen&Siebel 2004
Germany	Moldanu bian	13.36300	48.73500	Tittling granite	granite	Zr	Pb/Pb	324.0	±7.4	emplacement	Chen&Siebel 2004
Germany	Moldanu bian	13.35100	48.76600	Saldenburg granite	granite	Zr	Pb/Pb	311.5	±4.5	emplacement	Chen&Siebel 2004
Germany	Moldanu bian	13.36100	48.80600	Eberhardsreu th granite	granite	Zr	Pb/Pb	312.0	±3.7	emplacement	Chen&Siebel 2004
Germany	Moldanu bian	13.36100	48.80600	Eberhardsreu th granite	granite	Zr	Pb/Pb	319.9	±4.4	emplacement	Chen&Siebel 2004
Germany	Moldanu bian	13.36300	48.73500	Tittling granite	granite	Zr	Pb/Pb	322.2	±2.9	emplacement	Chen&Siebel 2004
Spain	Central Iberia	-5.50586	39.32646	Logrosán granite	granite	Zr	ID-TIMS	303.0 ± 2.3		Crystalization	Chicharo et al 2014
	Central			Logrosán		white				Crystalization	Chicharo et
Spain	Iberia	-5.50586	39.32646	granite	granite	mica	Ar-Ar	303 ± 4		(mean value)	al 2016
France	Axial Zone	2.52480	42.39140	Sitges lapillis	interlayered metarhyodacite	Zr	SHRIMP	581.0	±10		COCHERIE et al. 2005
France	Pyrenee s	2.43000	42.44200	Canaveille s Group	Meta- monzogranite	Zr	evaporatio n	451 ± 14		emplacement age	Cocherie 1992
France	Pyrenee s	2.53700	42.42100	Canaveille s Group	Meta- rhyodacite	Zr	SHRIMP	581 ± 10		emplacement age	Cocherie et al 2005
France	Pyrenee s	2.29700	42.42000	Canaveille s Group	Meta- microgranite	Zr	SHRIMP	472 ± 6		emplacement age	Cocherie et al 2005
France	Pyrenee s	2.29800	42.43800	Canaveille s Group	Meta- monzogranite	Zr	ID-TIMS	471 ± 8		emplacement age	Cocherie et al 2005
France	Pyrenee s	2.68800	42.44500	Canaveille s Group	Meta- Ieucogranite	Zr	SHRIMP	477 ± 4		emplacement age	Cocherie et al 2005
France	Corsica	8.80400	42.27200	Evisa	albitic granite	Zr	SHRIMP	287.2 ± 1.7		emplacement age	Cocherie et al 2005
France	Corsica	8.83500	41.83200	Coti Chiavari	leucomonzogr anite	Zr	SHRIMP	291.7 ± 4.5		emplacement age	Cocherie et al 2005
France	Corsica	8.92400	41.93100	Tolla	granite	Zr	Evaporatio n	291.7 ± 10.0		emplacement age	Cocherie et al 2005
France	Corsica	8.92400	41.93100	Tolla	granite	Zr	SHRIMP	288.1 ± 1.5		emplacement age	Cocherie et al 2005
France	Corsica	9.06200	41.86500	Punta di Carbone	leucomonzogr anite	Zr	SHRIMP	291.2 ± 2.6		emplacement age	Cocherie et al 2005
France	Corsica	9.06200	42.66600	Cima a Forca	leucomonzogr anite	Zr	SHRIMP	286.0 ± 2.5		emplacement age	Cocherie et al 2005
France	Corsica	9.06800	41.88600	Tana	leucomonzogr anite	Zr	Evaporatio n	292.0 ± 8.4		emplacement age	Cocherie et al 2005
France	Corsica	9.10700	42.45700	Popolasca	granite	Zr	ID-TIMS	291.9 ± 7.3		emplacement age	Cocherie et al 2005
France	Corsica	9.10700	42.45700	Popolasca	granite	Zr	Evaporatio n	291.1 ±5.9		emplacement age	Cocherie et al 2005
France	Corsica	9.10700	42.45700	Popolasca	granite	Zr	SHRIMP	290.0 ± 2.0		emplacement age	Cocherie et al 2005
France	Corsica	9.21500	42.01900	Verde pass	leucomonzogr anite	Zr	SHRIMP	287.1 ± 1.6		emplacement age	Cocherie et al 2005
France	Corsica	9.22700	41.82400	Bavella	granite	Zr	Evaporatio n	292.5 ± 4.2		emplacement age	Cocherie et al 2005
France	Corsica	9.22700	41.82400	Bavella	granite	Zr	ID-TIMS	289.6 ± 9.5		emplacement age	Cocherie et al 2005
France	Corsica	9.22700	41.82400	Bavella	granite	Zr	SHRIMP	284.0 ± 3.0		emplacement age	Cocherie et al 2005
France	Corsica	9.24000	42.56000	Tenda	gabbro	Zr	SHRIMP	289.6 ± 2.5		emplacement age	Cocherie et al 2005
France	Pyrenee s	2.22700	42.42500	Canaveille s Group	Meta- leucogranite	Zr	ID-TIMS	467 ± 7		emplacement age	Cocherie et al 2005

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

France	Rhine Graben	7.88900	48.92400	Soultz granite	leucocratic fine- grained two- mica granite	Zr	SHRIMP	327.0	+7	emplacement	Cocherie et al. 2004
Finance	Rhine	7 00000	40.02400		Porphyroid	7.	LL DL	224.0	1/		Cocherie et al.
Italy	NE Sardini a	9.26194	48.92400	Gallura High Grade Metamorphic Complex	eclogite	Zr	ID-TIMS	334.0 403±4	3.8/-3.	emplacement High gradde event	Cortesogno et
ltelu	NE Sardini	0.00104	44.04004	Gallura High Grade Metamorphic				457.0		emplacement	Cortesogno et
Portugal	a Central Iberian Zone	-7.58306	40.87444	Aguiar da Beira region	muscovite-bi otite leucogranite	Zr	ID-TIMS	457±2 317.2 ± 1.1		age crystalization age	Costa et al 2014
Portugal	Central Iberian Zone	-7.49167	40.89806	Aguiar da Beira region	biotite granodiorite– granite	Zr	ID-TIMS	321.9 ± 2		crystalization age	Costa et al 2014
UK	Alderney, Channel Islands	-2.21100	49.72100	Fort Tourgis quartz diorite	quartz diorite	Zr	U-Pb	609.7	±1.6	emplacement	D'Lemos et al. 2001
Czech Rep.	Tepla'–B arrandian unit	13.12800	49.46600	Kdynz complex	diorite	ны	Ar/Ar	515.9	±1.3	emplacement	Dallmeyer & Urban 1998
Czech Rep.	Tepla'–B arrandian unit	13.30700	50.08100	Cista-Louny complex	granite	Mus	Ar/Ar	370.7	±0.8	emplacement	Dallmeyer & Urban 1998
Portugal	SW Iberia	-8.14889	38.17222	Beja Gabbro	Gabbro	hornble nde	Ar-Ar	339.5 ± 1.0		cooling(exhum ation) during oblique collision	Dallmeyer et al 1993
Spain	Central Iberian Zone	-6.56700	38.37500	Burguillos del Cerro plutonic complex	Q- monzodiorita	hornble nde	Ar-Ar	335 ± 2		emplacement age	Dallmeyer et al 1995
Spain	Central Iberian Zone	-6.56700	38.37500	Burguillos del Cerro plutonic complex	diorite	hornble nde	Ar-Ar	337 ± 2		emplacement age	Dallmeyer et al 1995
Spain	West Asturian - Leones e Zone	-7.49806	42.81583	Sarria pluton	deformed two- mica granite	muscov ite	Ar-Ar	282 2 ± 0.8		T: 500-700"C, P= 4.5 ± 0.5 kbar	Dallmeyer et al 1997
Spain	West Asturian - Leones e Zone	-7.33667	43.48194	A Tojiza pluton (contact)	granite	muscov ite	Ar-Ar	283.8 ± 0.7		timing of late thermal events	Dallmeyer et al 1997
Spain	Central Iberia	-7.20000	42.15667	Verín Synform	two-mica granite (syn- kinematic)	muscov ite	Ar-Ar	308.5 ± 0.6		T: 695 ± 35°C for P = 2 kbar	Dallmeyer et al 1997
Austria	Moravian Zone	15.52750	48.70690	Bittes gneiss	amphibolite	Hbl	Ar-Ar	332.6	±2.3	post-Variscan metamorphic cooling	Dallmeyer et al. 1992
Austria	Moravian Zone	15.80800	48.78130	Weitersfeld orthogneiss;	granitic augen gneiss- penetrative ductile, lineated fabric	Mus	Ar-Ar	328.3	±0.6	post-Variscan metamorphic cooling	Dallmeyer et al. 1992
France	North Armorica n Massif	-2.83100	48.64700	St Quay quartz diorite	quartz diorite	ны	Ar-Ar	563.1	±1.9	postmagmatic cooling	Dallmeyer et al. 1991

r	1	1			1	1	1	1		nect meanatic	1
	North			Perelle quartz						tectonothermal	Dallmeyer et al.
UK	Armorica	-2.64300	49.46100	diorite	quartz diorite	Hbl	Ar-Ar	595.6	±2.4	event.	1991
	North			Perelle quartz						post-magmatic	Dallmever et al
ик	Armorica	-2.53000	49.42200	diorite	quartz diorite	Biotite	Ar-Ar	570.7	±0.7	event.	1991
	North										
France	Armorica n Massif	-2.34500	48.66100	Fort de la Latte quartz diorite	foliated quartz diorite	Hbl	Ar-Ar	564.7	±1.6	postmagmatic cooling	Dallmeyer et al. 1991
	Guerosev										
	, Channel			the Bon Repos							Dallmeyer et al.
UK	Islands	-2.60000	49.41600	meladiorite	meladiorite	amph	Ar-Ar	605.3	±4.6	emplacement	1992
	Guernsey			Bordeaux diorite	medium-coarse						Dallmover et al
ик	Islands	-2.54900	49.50700	complex	granodiorite	ны	Ar-Ar	563.3	+2.2	emplacement	1992
					-					-	
	Guernsey			Northern Igneous							
шк	, Channel	-2 53300	49 47000	Complex/ St. Peter	hornblende	ны	Ar-Ar	570.2		emplacement	Dallmeyer et al.
UK	North	-2.55500	+3.47000	roitgabbio	gabbio			570.2	±1.1	emplacement	1552
	Armorica										
	n										
France	Massif/	-2 22000	49 72000	Fort Tourgis Quartz	Quartz Diorite	ны	Ar-Ar	558.2	12.4	emplacement	Dallmeyer et al.
Trance	North	-2.22000	43.72000	Dionte	Quartz Dionte			556.2	±2.1	emplacement	1554
	Armorica										
	n										
France	Massif/	-2 22000	49 72000	Fort Tourgis Quartz	Quartz Diorite	Biotite	Ar-Ar	562 5		emplacement	Dallmeyer et al.
Fiance	North	-2.22000	49.72000	Dionte	Quartz Dionte	Biotite	AI-AI	505.5	±1.8	emplacement	1554
	Armorica					Ľ.,					
	Massif/			Moulinet quartz	weakly foliated						Dallmeyer et al.
France	La Hague	-1.89900	49.66700	diorites	tonalite	Hbl	Ar-Ar	560.5	±1.6	emplacement	1994
	North				mederately						
	n				foliated						
	Massif/			Jardeheu quartz	homogeneous						Dallmeyer et al.
France	La Hague	-1.85800	49.72200	diorites	tonalite	ны	Ar-Ar	598.8	±2.4	emplacement	1994
F	External			Belledone				005.0	4.0	emplacement	Debon et al.
France	Massifs	6.07000	45.21200	Massif	monzogranite		U-PD	335.0	±13	age	1998
	Extornal			Balladana						omplacement	Dohon of al
France	Massifs	6 36600	45 44500	Massif	monzogranite		U-Pb	341.0	±13	age	1998
		0.00000	40.44000							-	Delaperrière
	Pyrenee			Canaveilles	Meta-		evaporatio	446 ±		emplacement	& Respaut
France	s	2.41800	42.42800	Group	leucogranite	Zr	n	20		age	[1955
	Pyranaa			Canaveilles	Meta-			475 +		emplacement	Delanerriàre
France	s	2.23100	42.46300	Group	leucogranite	Zr	U-Pb	10		age	& Soliva 1992
	w									crystalization	
Deserves	Pyrenee	4 00404	40.05.470	Aver all ten		7.		266.8 ±		age	Denele et al
ваздие	s	-1.80194	43.23472	Aya piuton	gabbio	ZI	ID-I INIS	0.4		(transtension)	2012
	Pyrenee							269.3 ±		age	Denele et al
Basque	s	-1.78722	43.25611	Aya pluton	monzogranite	Zr	LA-ICP-MS	1.3		(transtension)	2012
	W									crystalization	
Basque	Pyrenee	-1 70833	43 28861	Ava pluton	leucogranite	Zr	LA-ICP-MS	268.3 ±		age (transtension)	2012
Dasque	Central	1.7 0000	40.20001		louoogianno					(indificientiation)	Diasetal
Portugal	Iberia	-8.06300	41.73500	Carris granite	granite	Zr	ID-TIMS	280 ± 5		Emplacement	1998
	Central					L		290 ±			Diasetal
Portugal	Iberia	-8.06300	41.73500	Paufito granite	granite	∠r	ID-TIMS	2.5		Emplacement	1998 Disc et al
Portugal	Iberia	-8.06300	41.73500	Gerés granite	granite	Mnz	ID-TIMS	296 ± 2		Emplacement	1998
	Central					<u> </u>				,	Dias et al
Portugal	Iberia	-8.06300	41.73500	Gerés granite	granite	Zr	ID-TIMS	297 ± 7		Emplacement	1998
Portugal	Central	9 40000	41 60400	Braga macrif	Quartz	7r		310.7 ±		Employer	Dias et al
Fonugar	Central	-0.42800	41.00100	Briteiros two-	two-mica		6IVIII-0I	J. I		Linplacement	Diasetal
Portugal	Iberia	-8.34400	41.51700	mica granite	granite	Mnz	ID-TIMS	300 ± 1		Emplacement	1998
					L						

	Central									main	Diaz
	Iberian				Bt			312.6		crystallization	Alvarado et
Spain	Zone	-5.27800	40.25000	Gredos massif	granodiorites	Zr	SHRIMP	±2.8		stage	al 2013
	Central				Bt-Crd					main	Diaz
	Iberian				monzogranite			303.5 ±		crystallization	Alvarado et
Spain	Zone	-5.25800	40.25700	Gredos massif	s	Zr	SHRIMP	2.8		stage	al 2013
	Central									main	Diaz
	Iberian							305.4 ±		crystallization	Alvarado et
Spain	Zone	-5.24900	40.25000	Gredos massif	Leucogranites	Zr	SHRIMP	1.6		stage	al 2013
	Central									main	Diaz
	Iberian				B†			306.9.+		crystallization	Alvarado et
Snain	Zone	-5 23000	40 27100	Grados massif	aranodiorites	7r	SHRIMP	1 5		crystamzation	al 2013
Opani		-5.25000	40.27100	Oredos massi	gianouronies	21	OFICIAL	1.5		auge	ai 2013
0		7 00111	40.00500	Ordenes	reucocratic	7.		00 50		crystanzation	Diaz Garcia
Spain	Iberia	-7.96111	42.96528	Complex	gabbro	Zr	ID-TIMS	39 ± 52		age	et al 1999
								510.53			
. .	NVV			Ordenes		-		+8.39/ -		crystalization	Diaz Garcia
Spain	Iberia	-8.24778	43.42361	Complex	diabase dyke	∠r	SHRIMP	2.29		age	et al 2010
											Diaz-
	Central			Spanish Central	Bt			302.9 ±			Alvarado et
Spain	Iberia	-5.25500	40.26806	System batholith	granodiorite	Zr	SHRIMP II	2.5		Emplacement	al 2010
								100		1 · · · · · · · · · · · · · · · · · · ·	Diaz-
	Central			Spanish Central	Crd-	×		308.2 ±			Alvarado et
Spain	Iberia	-5.22083	40.27500	System batholith	monzogranite	Zr	SHRIMP II	3.4		Emplacement	al 2010
					two-mica						Diez
	Central			Trancoso-	granite						Fernandez
	Iberian			Pinhel shear	(strongly			323.8 ±		emplacement	and Francisco
Portugal	Zone	-7.13900	40.76800	zone	deformed)	Zr	SHRIMP	7.2		age	Pereira 2016
	-										
					two-mica						Diez
	Central		· · · ·	Trancoso-	granite		S				Fernandez
	Iberian			Pinhel shear	(strongly			330.9±6		emplacement	and Francisco
Portugal	Zone	-7.05200	40,77900	zone	deformed)	Zr	SHRIMP	.6		age	Pereira 2016
					,	-			-		
		·									Diez
	Central			Trancoso-	poorly						Fernandez
	Iberian		· · · ·	Pinhel shear	deformed two-			3167+		emplacement	and Francisco
Portugal	Zone	-7 31300	40 77300		mica granite	7r	SHRIMP	03		ano	Pereira 2016
ronagai	20110	7.01000	40.11000	20110	mioro	21	Of it dawn	0.0		uge	
					porphyntic						Dian
	Control			T	two-mica						Diez
	Central			Dishel sheet	(strans also			204 .			
Destaural	Iberian	7 00000	40 70000	Pinneisnear	(strongly	7.		321 ±		emplacement	and Francisco
Portugai	Zone	-7.30600	40.76200	zone	deformed)	Zr	SHRIMP	13		age	Pereira 2016
											Diez
	Central			Trancoso-	poorly						Fernandez
	Iberian			Pinhel shear	deformed two-			320.7±3		emplacement	and Francisco
Portugal	Zone	-7.27700	40.74900	zone	mica granite	Zr	SHRIMP	.9		age	Pereira 2016
											Diez
	Central			Trancoso-							Fernandez
	Iberian			Pinhel shear	two-mica			310.7 ±		emplacement	and Francisco
Portugal	Zone	-7.05400	40.81500	zone	granite	Zr	SHRIMP	6.6		age	Pereira 2016
											Diez
	NW			Malpica-Tui						crystalization	Fernandez et
Spain	Iberia	-8.97700	43.02000	Complex	granodiorite	Zr	SHRIMP	489 ± 4		age	al 2012
	+	-	-		-		<u> </u>				Diez
	NW			Malpica-Tui	Alkali-granite					crystalization	Fernandez et
Spain	Iberia	-8 96200	42 91600	Complex	orthogneisses	7r	SHRIMP	490 + 3		age	al 2012
opani	ibella	-0.30200	72.31000	Complex	onnogrieisses	-1	STICIVIE	-700 ± 3		490	Dio7
	NIM				Alkali granita					ongalization	Eomondoz ot
Spair	INVV	0 60400	42 22000	Comploy	Alkali-granite	71		474 . 0		crystanzation	remandez et
opain	iberia	-8.68100	43.23600	Complex	ortnogneisses	∠r	SHKIMP	4/4 ± 3		age	ai 2012
											Diez
	NW			Malpica-Tui	tonalitic	L		462.1 ±		crystalization	Fernandez et
Spain	Iberia	-8.95300	43.05700	Complex	orthogneiss	Zr	SHRIMP	2.6		age	al 2012
	Austroalp			1							1
	ine										
	basemen				Eclogitic						Diez Fernandez
Autria	t	0.00000	0.00000	Barrenle-See	Amphibolites	Zr	Pb-Pb	590.0	4.0	emplacement	et al., 2012 (52)
Autila									-		

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

Germany	Erzgebirg e	9.18300	49.96300	Haibach gneiss	fine- to medium- grained equigranular, locally porphyroblastic	Wr	Rb-Sr	407.0	±14	magmatic emplacement	Dobrowski et al. 1995
					fine- to medium- grained equigranular,						
Germany	Erzgebirg e	9.19900	49.98100	Haibach gneiss	locally porphyroblastic	Zr	Pb-Pb	410.0	±18	magmatic emplacement	Dobrowski et al. 1995
Czech Rep.	Moldanu bian Unit	12.65700	49.52900	Mutenin gabbro	gabbro	Zr	Pb-U	341.0	±1	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Moldanu bian Unit	12.69000	49.48500	Drahotin diorite	peraluminous quartz–monzodi orite	Zr	Pb-U	328.0	±1	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Tepla –Barrandi an unit	12.70900	49.62500	Borgranite	coarse grained peraluminous monzogranite	Zr	Pb-U	331.0	±1	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Tepla –Barrandi an unit	12.78500	49.38600	Babylon granite	Peraluminous, su balkaline biotite granite	Zr	Pb-U	342.0	10/-6	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Bohemia n Massif	13.11300	49.31500	Nyrsko granite	peraluminous monzogranite	Zr	Pb-U	339.0	±2.4	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Bohemia n Massif	13.20300	49.35300	Klatovy granodiorite	metaluminous granodiorite	Zr	Pb-U	347.0	4/-3	emplacement	Dörr & Zulauf, 2010
Czech Rep.	Bohemia n Massif	13.27900	49.37400	Kozlovice granodiorite	muscovite and cordierite bearing granodiorite	Zr	Pb-U	345.5	±0.6	emplacement	Dörr & Zulauf, 2010
	Tepla'–B arrandian	10 70000	10 00000								
Czech Rep.	unit Tepla´–B	12.78300	49.89200	Hanov orthogneiss	orthogneiss	Zr	U-Pb	516.0	±10	emplacement	Dorr et al. 1998
Czech Rep.	arrandian unit	12.88600	49.95400	Teplá orthogneiss	orthogneiss	Zr	U–Pb	513.0	7/-6	emplacement	Dörr et al. 1998
Czech Rep.	Tepla'–B arrandian unit	11.54460	50.19090	Steinach rhyolite	rhyolite	Zr	U-Pb	609.0	17/-15	emplacement	Dörr et al. 2002
Czech Rep.	Tepla –В arrandian unit	14.99970	51.15430	Zgorzelec granodiorite	granodiorite	Zr	U-Pb	541.0	7/-8	intrusion	Dörr et al. 2002
Czech Rep.	Tepla´–B arrandian unit	13.09080	49.33070	Orlovice gabbro	gabbro	Zr	UPb	524.0	±0.8	emplacement	Dörr et al. 2002
Czech Rep.	Tepla'–B arrandian unit	13.09810	49.37510	Smrzovice tonalite and gabbro	tonalite	Zr	U-Pb	523.0	±3	intrusion	Dörr et al. 2002
Czech Rep.	Tepla´–B arrandian unit	13.09810	49.37510	Smrzovice tonalite and gabbro	gabbro	Zr	U-Pb	523.0	±1	intrusion	Dörr et al. 2002
Czech Rep.	Tepla´–B arrandian unit	13.11340	49.46070	Vsepadly granodiorite	granodiorite	Zr	U-Pb	524.0	±3	intrusion	Dörr et al. 2002
Poland	Odra Fault Zone	15.70600	51.50100	Leszno Dolne granodiorite	fine- to medium- grained, unfoliated and undeformed hornblende- bearing granodiorite	Zr	Pb-U	344.0	±1	protolith emplacement	Dörr et al. 2006

	Tepla-										
	Barrandia	40 70000	40.00404			_					
Czech Rep.	n	13.72660	49.89194		Rhyolite	Zr	U-Pb	544.0	±14	emplacement	Drost et al. 2004
	Tepla-										
Czech Pen	Barrandia	13 72660	10 80101		Phyolite	7r	LLPh	100.0		emplacement	Drost et al. 2004
ezeennep.		10.72000	40.00104		Taryonce	21	015	455.0	1 4	emplacement	510310101.2004
	Eastern										
	Pyrenee			Roses				290.8 ±		crystalization	Druguet et al
Spain	s	3.18273	42.24539	granodiorite	granodiorite	Zr	SHRIMP	2.9		age	2014
	Eastern			Tudela							
Casia	Pyrenee	2 20004	40.0004	migmatitic		7.		298.8 ±		crystalization	Druguet et al
Spain	s	3.29001	42.32881	complex	Quartz dionte	Zſ	SHRIMP	3.8		age	2014
Snain	S Iberia	-6 5 2 9 / 8	37 60060	iberian pyrite	rhvolite	7r	I I-Ph	353 + 2		extrusion	Dsunning et
opun	Bonnini	0.02040	07.00000	bon	inyonte	2.	010	000 ± 2		CARGON	ui 2002
Austria	C			Tauern Window	amphibolite		SHRIMP	547 0	+27	extrusion age	Eichhorn et
nuoina	Nappes	12.47520	47.21380		ampinoonte		Of in children	041.0		extración ago	al. 1999
	Pennini									minimum age	
Austria	с			Tauern Window	leucocratic		SHRIMP	529.0	±18	of	Elchnom et
	Nappes	12.47520	47.21380		onnognerss					crystallization	ai. 1999
	Pennini									magmatic	Eichhorn et
Austria	C	12.51280	47.20660	Lauern Window	gneiss		SHRIMP	529.0	±17	crystallization	al. 1999
-	Pennini									emplacement	
Austria	с			Tauern Window	dacitic dyke		SHRIMP	340.0	±5	time of the	Eichhorn et
	Nappes	12.47300	47.21200							dike	al. 1999
	Pennini									a seimilation of	Fishham at
Austria	с			Tauern Window	dacitic dyke		SHRIMP	468.0	±6	assimilation of	Elchnom et
	Nappes	12.47520	47.21380							an order rock	ai. 1355
	Pennini				/				-	assimilation of	Eichhorn et
Austria	C	12.47520	47.21380	Lauern Window	dacitic dyke		SHRIMP	452.0	±5	an older rock	al. 1999
	Pennini										
Austria	с			Tauern Window	gneiss		SHRIMP	296.0	±4	intrusion age	Eichhorn et
	Nappes	12.39000	47.16000		ů l					Ŭ	al. 2000
	Pennini			_							Fichborn et
Austria	с	12 54400	47 12900	Tauern Window	gneiss		SHRIMP	271.0	±4	intrusion age	al. 2000
	Nappes	12.34400	47.12000		h a mah la a da						
Δuetria	Pennini			Tauern Window	nombiende-	7r	SHRIMP	551.0	-0	magmatic	Eichhorn et
Austra	Nappes	12.50730	47.18830		aneiss	21	OFICIAL	551.0	10	crystallization	al. 2001
					syntectonic						
	Variscan			Jebilet Bimodal	peraluminous						Essaifi et al.
Morocco	Belt	-7.99990	31.83001	magmatism	granodioritic	Zr	U/Pb	330.0	1.0	emplacement	2003
F == == == =	The Leon	4 75961	40 27250		o potostio granito	Man		227.0		synkinematic	Fours stal 2010
France	Domain	-4.7 300 1	40.37230		anatectic granite	WON	0-11/PD	327.0	±15	piutons	Faure et al. 2010
	The Leon			St-Renan-Kersaint						synkinematic	
France	Domain	-4.64266	48.41916	granite		Mon	U-Th/Pb	321.0	+5	plutons	Faure et al. 2010
	West			-						-	
	Asturian										
	-										Fernandez
	Leones					_				crystalization	Suarez et al
Spain	e Zone	-6.87200	42.86700	Ancares pluton	leucogranite	Zr	ID-TIMS	289 ± 3		age	2000
	West										
	Asturian										Forpandoz
	Leones			Porcia gabbro-						crystalization	Suarez et al
Spain	e Zone	-6.86000	43.56600	diorite	quartz-diorite	Zr	ID-TIMS	295 ± 3		age	2000
	West					<u> </u>	-		<u> </u>	-	
	Asturian										
	-										Fernandez
	Leones									crystalization	Suarez et al
Spain	e Zone	-6.80900	43.42700	Boal pluton	monzogranite	Zr	ID-TIMS	292 ± 3		age	2000
	West										
	Asturian										Fernandez
	Leones			Penedo Gordo				317 ±		crystalization	Suarez et al
Spain	e Zone	-7.66000	43.59800	pluton	leucogranite	Zr	ID-TIMS	9/-5		age	2000
•	1			l.	<u> </u>	1	-	1		~	1

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

	West										
	Asturian										
	-										Fernandez
	Leones							323 ±		crystalization	Suarez et al
Spain	e Zone	-7.55800	43.69600	Vivero intrusion	monzogranite	Zr	ID-TIMS	9/-5		age	2000
	West										
	Asturian										Fornandoz
	Leones									extensional	Suarez et al
Snain	e Zone	-7 49000	42 81400	Sarria pluton	leucogranite	Mnz	ID-TIMS	313 + 2		collanse	2000
opun	0 20110	1.40000	42.01400	Pola de	leuoogiainte	IVITIZ		010 ± 2		conapae	Fernandez-
				Allande	Tonalite-						Suarez et al
Spain	N Iberia	-6.60400	43.26700	granitoids	granodiorite	Zr	LA-ICP-MS	580±15		Emplacement	1998
· ·				Pola de	5						Fernandez-
				Allande	Tonalite-			605 ±			Suarez et al
Spain	N Iberia	-6.59400	43.20500	granitoids	granodiorite	Zr	LA-ICP-MS	10		Emplacement	1998
	Central										
	Iberian									emplacement	Ferreira et al
Portugal	Zone	-8.54194	41.12806	Pedregal granite	granite	Zr	SHRIMP	311±5		age	2014
				Königshain						crystallization of	
	Lausitz			biotite-monzograni	biotite-monzogr	1	Th–U–total			magmatic	Förster et al.
Germany	Block	14.77700	51.18200	te	anite	uraninite	Pb	328.6	±1.9	uraninite	2012
				Königshain					1		
	Lausitz			biotite-monzograni	biotite-monzogr	molybde	·			deposition of	Förster et al.
Germany	Block	14.83700	51.18600	te	anite	nite	Re-Os	327.0	±1.3	molybdenite	2012
				Königshain				· · · ·			
C	Lausitz	44.00700	54 40000	biotite-monzograni	biotite-monzogr	molybde	D. O.	227.0		deposition of	Förster et al.
Germany	вюск	14.83700	51.18600	te	anite	nite	Re-Us	327.6	±1.1	molybdenite	2012
					realized L type						
	Moldanu				granodiorite					emplacement of	
Austria	bian	15.37400	48.36500	Spitz gneiss	gneiss	Zr	SHRIMP	614.0	+10	protolith	Friedl et al. 2004
					Strongly				110		
					deformed,						
					leucocratic I-						
	Moravian			Bittesch gneiss	type granite to					emplacement of	
Austria	Zone	15.53200	48.71100	nappe	granodiorite	Zr	SHRIMP	584.0	±6	protolith	Friedl et al. 2004
	1				Medium-						
					grained,						
				Eggenburg	massive I/A-						
	Moravian			metagranite/	type					emplacement of	
Austria	Zone	15.79100	48.65100	I haya batholith	metagranite	Zr	SHRIMP	567.0	±6	protolith	Friedl et al. 2004
					Medium-						
	Moldanu				type granite					emplacement of	
Austria	bian	15.51900	48,40400	Gföhl gneiss	gneiss	Zr	SHRIMP	488.0	+6	protolith	Friedl et al. 2004
				0	Felsic fine-		-		±0		
	Moldanu				grained S-type					emplacement of	
Austria	bian	15.51900	48.40400	Gföhl gneiss	granite gneiss	Zr	SHRIMP	488.0	±6	protolith	Friedl et al. 2004
	Moldanu				Coarse-grained						
Austria	bian	13.92000	48.54500	Weinsberg granite	Bt-granite	Zr	SHRIMP	322.0	±4	emplacement	Friedl et al. 2004
	1			Brno Batholith						post magmatic	
		16.31800	49.28520	(Svratka window)	pegmatite	Mus	Ar-Ar	565.3	±0.8	cooling	fritz et al. 1996
										post magmatic	
		16.51694	49.13500	Brno Batholith	diorite	Hrbl	Ar-Ar	596.9	±2.1	cooling	fritz et al. 1996
	1									post magmatic	
		16.65020	49.33555	Brno Batholith	diorite	Hrbl	Ar-Ar	586.9	±0.5	cooling	fritz et al. 1996
	Western										
Claurelie	Carpath	00 40444	40.0444		ana sita	7.		240.0		magmatic	Gaab et al.
SIOVANA	lans	20.13111	48.84444	veporic Unit	granite	Zr	энкімр	349.0	±26	intrusion age	2005
	vvestern										
	Carpath										Gaab et al
Slovakia	ians	20.16667	48.70000	Veporic Unit	felsic gneiss	Zr	U-Pb	464.0	+35	intrusion age	2006

	1	1	-	1	1						
	Central Iberian			Campanario-La				307 ±		emplacement	García de Madinabeitia
Spain	Zone	-5.75472	38.84556	Haba pluton	granite	Mnz	EMPA	16		age	et al 2003
Morocco	Reguibat Shield	-15.60186	22.40545	Sebkha Matallah	Granite -gneiss	Zr	U/Pb	589.0	10.0	intrusion age	Gartner et al. 2013
Morocco	Reguibat Shield	-15.89695	22.46923	Sebkha Gazmayet	Deformed granite	Zr	U/Pb	603.0	2.0	intrusion age	Gartner et al. 2013
Morocco	Reguibat Shield	-16.04270	22.75648	Oued Togba	deformed granite	Zr	U/Pb	511.0	11.0	intrusion age	Gartner et al. 2013
Morocco	Reguibat Shield	-16.04270	22.75648	Oued Togba	deformed granite	Zr	U/Pb	407.0	4.0	intrusion age	Gartner et al. 2013
Morocco	Reguibat Shield	-15.45435	22.65120	Sebkha Gazmayet	Deformed granite	Zr	U/Pb	312.0	3.0	intrusion age	Gartner et al. 2013
Morocco	Eastern Ant-Atlas	-5.50000	31.70000	Bou Madine Dome/Ougnat	Rhyolite	Zr	U/Pb	552.0	5.0	emplacement	Gasquet et al. 2005
		-6.25350	31.65350	Tachkakacht dyke / Saghro-Imiter	Rhyolite	Zr	U/Pb	543.0	9.0	emplacement	Gasquet et al. 2005
	Münchbe										Gebauer &
Germany	rg Gneiss Massif	11.69300	50.12800	Münchberg Gneiss Massif	metagabbro, eclogite	Zr	U-Pb	525.0	40/-31	emplacement	Grünenfelder, 1979
	Münchbe										Gebauer&
	rg Gneiss			Münchberg Gneiss	metagabbro,						Grünenfelder,
Germany	South	11.69300	50.12800	Massit	eclogite	Zr	U-Pb	380.0	14/-22	metamorphism	1979
	Bohemia			Freistadt							Gerdes et al
	Batholith	14.52600	48.52700	granodiorite pluton	granodiorite			331.0	±	inherited	2003
	South Bohemia					<u> </u>					Contracted
	Batholith	15.12400	48.81200	Gebharts Diorite	Diorite	Zr	ID-TIMS	327.4	±0.8	emplacement	2003
	South Bohemia										
	n Batholith	16.36400	47.51400	Mühlviertel	Diorite	Zr	ID-TIMS	323.0	±1	emplacement	Gerdes et al. 2003
	South Bohemia										
	n Batholith	12.84300	49.08000	Pfahl	Diorite	Zr	ID-TIMS	318.0	±2	emplacement	Gerdes et al. 2003
	South Bohemia										
	n Batholith	13.65200	48.47900	Sauwald	Diorite	Zr	ID-TIMS	316.0	±1	emplacement	Gerdes et al. 2003
	South Bohemia										
	n Batholith	14.38200	48.38800	Altenberg pluton	Fine-grained two-mica granite	Mon	ID-TIMS	315.0	±1	emplacement	Gerdes et al. 2003
	South Bohemia										
	n Batholith	14.49800	48.26300	Mauthausen	Fine-grained, I type granite	Mon	ID-TIMS	316.0	±1	emplacement	Gerdes et al. 2003
										upper amphibolite	
	NE Sardini			High grade Metamorphic	strongly amphibolitise					facies metamorphism	Giacomini et
Italy	a	9.56600	41.99400	Complex	d eclogite	Zr	LA-ICPMS	352±3		(overprint)	al 2005
										upper amphibolite	
	NE Sardini			High grade Metamorphic	strongly amphibolitise					facies metamorphism	Giacomini et
Italy	a	9.56600	41.99400	Complex	d eclogite	Zr	LA-ICPMS	352±3		(overprint)	al 2005
	NE Sardini			High grade Metamorphic	partially overprinted					age of protolith	Giacomini et
Italy	a NF	9.56600	41.99400	Complex High grade	eclogite	Zr	LA-ICPMS	460±5		(gabbro)	al 2005
Itoly	Sardini	0.50000	41.00400	Metamorphic	overprinted	7.		460.5		protolith	Giacomini et
italy	а	9.56600	41.99400	Complex	eciogite	Zr	LA-ICPMS	460±5		(gabbro)	ai 2005

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

				lligh grade		1					
				High grade							
	Sardini			Metamorphic	Metarhyodacit					emplacement	Giacomini et
Italy	а	9.56700	40.98100	Complex	e	Zr	LA-ICPMS	464 ± 1		age	al 2006
-	NF			High grade						-	
				Maria and Sa	Martin de la str						0
	Sardini			Metamorphic	Metamyodacit					emplacement	Glacomini et
Italy	а	9.56700	40.98100	Complex	e	Zr	LA-ICPMS	464 ± 1		age	al 2006
				Gil Marquez				342.9 ±			Gladnev et al
Spain	Siborio	7 06627	27 01666	nluton	Alkoli granita	7.		2.4		Employment	2014
Spain	Sibella	-7.06627	37.91000	pluton	Alkali gianite	21	LA-ICF-IVIS	3.1		Emplacement	2014
				Gil Marquez				351.8 ±			Gladney et al
Spain	S Iberia	-6.83694	37.85552	pluton	Gabbro	Zr	LA-ICP-MS	2.9		Emplacement	2014
•				Cil Morguoz				255 0 .		•	Cladpay at al
. .				Gir Maiquez		_		300.9±			Glauney et al
Spain	S Iberia	-6.83694	37.85552	pluton	Gabbro	∠r	LA-ICP-MS	15		Emplacement	2014
				Gil Marquez				348.5 ±			Gladnev et al
Spain	Siboria	6 9 3 3 9 0	27 94026	pluton	atz Diorito	7r		4.0		Emplacement	2014
Spain	S ibella	-0.03300	57.04950	pluton	qiz-Diolite	21	LA-ICF-WIS	4.0		Linplacement	2014
				Gil Marquez				338.2 ±			Gladney et al
Spain	S Iberia	-6.83354	37.85038	pluton	Tonalite	Zr	LA-ICP-MS	4.5		Emplacement	2014
				Gil Marquez				3/2 0 +			Gladnev et al
. .				Gir Maiquez		-		342.9 ±			Glauney et al
Spain	Siberia	-6.81267	37.85301	pluton	bt-Granite	Zr	LA-ICP-MS	3.5		Emplacement	2014
				Gil Marquez				339 ±			Gladney et al
Spain	S Iberia	-6.81056	37.85395	pluton	bt-Granite	Zr	LA-ICP-MS	6.6		Emplacement	2014
				O'L Manager				0.40.0			
				Gil Marquez		· · · ·		346.3 ±			Gladney et al
Spain	S Iberia	-6.80518	37.85414	pluton	Gabbro	Zr	LA-ICP-MS	7.7		Emplacement	2014
				Gil Marquez	Porphyritic			3465+	-		Gladnev et al
Casia	Clharia	0.00004	27.05054	alutan	roipityittio	7.		E 4		Employment	
Spain	S ibena	-0.80324	37.85051	pluton	granite	Zľ	LA-ICP-IVIS	5.4		Emplacement	2014
	Pyrenee			Borderes-	monzogranite			/		emplacement	Gleizes et al
France	s	0.38694	42,88028	Louron pluton	-granodiorite	Zr	SIMS	309 ± 4		age	2006
	-				g	-				g- . /	
				Zone of Erbendorf-		IVIUSCOVIT				primary/	Globiny et al.
Germany	Wil	12.05900	49.80100	Vohenstrauss	metapegmatite	e	Rb-Sr	476.0	±5	Magmatic event	1998
				Zone of Erbendorf-							Glodny et al
Cormonu	14/02	12 11000	40 75500	Vahanstrauss	moto no grantito		LL Dh	402.2		an stallisation and	1008
Germany	wen	12.11900	49.75500	vonenstrauss	metapegmatite	mon-zr	0-PD	482.2	±	crystallisation age	1998
				Zone of Erbendorf-		Muscovit				primary/	Glodny et al.
Germany	Len	12.12000	49.77400	Vohenstrauss	metapegmatite	e	Rb-Sr	481.0	+5	Magmatic event	1998
				Zono of Exhandorf		Muconuit				nsimon (Claday at al
				Zone of Erbendon-		IVIUSCOVIL				primary/	Glouny et al.
Germany	Ger	12.12700	49.77400	Vohenstrauss	metapegmatite	e	Rb-Sr	474.5		Magmatic event	1998
				Zone of Erbendorf-		Muscovit				primary/	Glodny et al.
Germany	Irc	12 21400	49 63600	Vohenstrauss	metanegmatite	P	Rh-Sr	477 0	+E	Magmatic event	1998
Germany	inc	12.21400	40.00000	Vonenstrauss	metapegmatic	C I	10.51	477.0	τэ	widgind tie event	1550
				Zone of Erbendorf-		Muscovit				primary/	Glodny et al.
Germany	Oed	12.23400	49.64300	Vohenstrauss	metapegmatite	e	Rb-Sr	479.0	±5	Magmatic event	1998
				Tenlá crystalline		Muscovit				priman/	Glodov et al
		40 70000	40.00000	i epia crystalline		wiuscovic	a . c			prinary/	diouriy et al.
Czech Rep.	Kri	12.78000	49.88000	complex	metapegmatite	e	RD-Sr	482.0	±7	Magmatic event	1998
				Teplá crystalline		Muscovit				primary/	Glodny et al.
Czech Rep.	Cal	12.80300	49.87700	complex	metapegmatite	e	Rb-Sr	484.0	+5	Magmatic event	1998
									1.5	an an an an an an an an an an an an an a	
										crystallisation	
				Domazlice		columbit				age of the	Glodny et al.
Czech Rep.	Cer	12.85400	49.48300	crystalline complex	metapegmatite	e	U-Pb	482.2	÷	columbite	1998
-				Domazlica		Muccouit			-	priman/	Glodov ot al
	_			Domaziice		IVIUSCOVIL				primary/	Glouny et al.
Czech Rep.	Cer	12.85400	49.48300	crystalline complex	metapegmatite	e	RD-Sr	484.0	±5	Magmatic event	1998
				Teplá crystalline		Muscovit				primary/	Glodny et al.
Czech Rep.	Nez	12,90600	49.95100	complex	metapegmatite	e	Rb-Sr	475.0	+E	Magmatic event	1998
· · ···•.	<u> </u>			Para di se					÷.,	and and a second	Charles at 1
				Domaziice		iviuscovit	l			primary/	Goony et al.
Czech Rep.	Ohn	12.84300	49.49800	crystalline complex	metapegmatite	e	Rb-Sr	487.0	±5	Magmatic event	1998
				Domazlice	i	Muscovit	İ			primary/	Glodny et al.
Czech Pan	Mec	12 88700	49 50500	crystalline complex	metanegmatito	A	Rh-Sr	102 0		Magmatic event	1998
seconnep.		12.00700		a ystannie complex	cupeginaute	-		+32.0	το		2000
	7			Teplá crystalline		Muscovit				primary/	Glodny et al.
Czech Rep.	Zho	12.89400	49.91100	complex	metapegmatite	e	Rb-Sr	487.0	±5	Magmatic event	1998
· · · ·				Domazlice		Muscowit				priman/	Gloday et al
	I.,	10.0010-	40 4070-	Jonaziice		wiuscovit				prillary/	Giouny et di.
Czech Rep.	Mra	12.90400	49.49700	crystalline complex	metapegmatite	e	Rb-Sr	491.0	±5	Magmatic event	1998
				Domazlice	l	Muscovit	1			primary/	Glodny et al.
Czech Ren	Bal	12 91100	49 45400	crystalline complex	metanegmatite	e	Rh-Sr	494 N	16	Magmatic event	1998
ezeen nep.	501	12.01100	10.40400	si y stamme complex	mempegnatie	-		454.0	τo	magnadeevent	2000
	NW				Tin-bearing					crystalization	Gomes and
Portugal	Iberia	-7.08889	41.72722	Ervedosa	Granite	WR	Rb-Sr	327 ± 9		age	Neiva 2002
	Betic							-			Gomez
	Dollo			Control Ciama	handad.		1				Dussain
	comple			Central Sierra	panded	L_					Pugnaire et
Spain	х	-2.24772	37.28246	de los Filabres	metagranite	Zr	SHRIMP	295±3		Magmatic age	al 2012
	Betic			Eastern							Gomez
	oomete			Siorrado las							Bugnoire et
	comple			Siellaue IOS		I_					Fugnaire et
Spain	х	-2.08021	37.18703	Filabres	metagranite	Zr	SHRIMP	291±3		Magmatic age	al 2012
	Betic			Eastern	İ	1	1				Gomez
	comple			Sierrade los							Pugnaire et
Casia		0.01050	27 222 45	Filebree		7.		202 4		Magnadia	
opain	^	-2.01250	31.20845	i ilabies	meragranite	21	SUKIINIA	∠03±4		maymatic age	ai 2012

		South Armorica										Guerrot et al.
	France	n domain	-3.84400	47.79400	Tregunc granite	leucogranite	Zr	Pb-Pb	330.0	±13	emplacement	1997
	France	North Armorica n Massif	-2.67800	48.48000	Yffiniac	metagabbro	Zr	Pb-Pb	602.0	±8	protolith emplacement	Guerrot, Peucat, 1990
	France	North Armorica n Massif	-1.32300	49.13900	The Coutances Quartz diorite	quartz diorite	Zr	U-Pb	584.0	±4	emplacement	Guerrot, Peucat, 1990
	France	North Armorica n Massif	0.00000	0.00000	Beg ar Fourm massif	granodiorite	Zr	U-Pb	528.0	4/-6	emplacement	Guerrot, Peucat, 1990
	France	Brittany	-1.13090	47.02360	Mortagne granite pluton	two-mica peraluminous granite of the S- type	Wr	Rb-Sr	313.0	±15	emplacement	GUINEBERTEAU et al. 1987
		Central Hercynia n					Whole					Guiliani et al.,
	Morocco	Granites	0.00000	0.00000	Zaër Pluton	Biotite granites	rocks	Rb/Sr	301.0	8.0	emplacement	1989 (16) Cuti a ma a
	Spain	Iberia	-6.46167	43.33444	Narcea antiform	Rhyolite	Zr	LA-ICP-MS	559 ± 3		eruption	Alonso 2004
	Spain	NW	-6.36417	40.95972	The Juzbado–Tragu ntia–Penalva do Castelo Shear Zone	mylonite in Moronta granite	white	Ar-Ar	309 ± 2.5		left-lateral shearing (orocline bending)	Gutierrez- Alonso 2015
-	Spain	NW Iberia	-6.03444	41.52472	The Villalcampo Shear Zone	quartz- feldspar S–C mylonite in Ricobayo granodiorite	white mica	Ar-Ar	306 ± 3		dextral shearing (orocline bending)	Gutierrez- Alonso 2015
	Spain	Central Iberian Zone	-5.43694	40.56361	El Alamo pluton	granitoid	Zr	LA-ICP-MS	307.6 ± 3.5		Emplacement	Gutiérrez-Alon so et al 2011
1	Germany	MGCR	13.11980	51.64080	Züllsdorf gabbro	gabbro		Sm-Nd	484.0	±30	emplacement	Hammerschmidt et al. 2003
1	Germany	MGCR	13.11980	51.64080	Züllsdorf gabbro	gabbro		Sm-Nd	491.0	±36	emplacement	Hammerschmidt et al. 2003
,	Germany	Schwarz wald	7.96700	48.34100		retrograded eclogites	Zr	Pb-Pb	341.0	±19	granulite facies metamorphism	Hanel et al. 1993
,	Germany	Schwarz wald	7.94950	47.80750	Rand Granite complex	meta-granite	Zr	U-Pb	408.0	3/-2	plutonic level of the magmatic arc	Hann et al. 2003
	Germany	Schwarz wald	7.81360	47.82440	Rand Granite complex	meta-granite	Zr	U-Pb	377.0	±2	plutonic level of the magmatic arc	Hann et al. 2003
	Germany	Schwarz wald	7.91100	47.75200	Wiese-Wehra nappe complex	metagabbro	Zr	Pb-Pb	349.0	±1	crystallisation age	Hegner et al. 2001
;	Spain	NW Iberia	-6.03444	41.52472	The Villalcampo Shear Zone	Ricobayo granodiorite	Zr	LA-ICP-MS	350		Emplacement	Henriques et al 2015
	Portugal	Central Iberian Zone	-8.09194	39.47139	Mouriscac complex	Protomylonite	Zrmz	ID-TIMS	483 ± 1.5		Emplacement	Henriques et al 2015
-	France	N. Vosges	7.30700	48.46500	Kagenfels granite	granite	biotite	Ar-Ar	335.0	+4	emplacement	Hess et al. 1995
ŀ	France	N. Vosges	7.32900	48.44400	Kagenfels granite	granite	biotite	Ar-Ar	331.1	±2,3	emplacement	Hess et al. 1995
	France	N. Vosges	7.33000	48.44800	Kagenfels granite	granite	Zr	Pb-Pb	331.5	±5.3	emplacement	Hess et al. 1995
ŀ	France	N. Vosges	7.34400	48.45400	Kagenfels granite	granite	biotite	Ar-Ar	324.4	±3.4	emplacement	Hess et al. 1995
F	France	N. Vosges	7.34600	48.40000	Kagenfels granite	Lamprophyre	biotite	Ar-Ar	324.0	±2.1	emplacement	Hess et al. 1995
F	France	N. Vosges	7.31700	48.46100	Kagenfels granite	granite	biotite	Ar-Ar	312.8	±2.8	emplacement	Hess et al. 1995
-	France	N. Vosges	7.33000	48.74480	Kagenfels granite	granite	biotite	Ar-Ar	305.4	±6.6	emplacement	Hess et al. 1995

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

Germany	Lausitz Block	13.79100	51.11500	Lausitz Granitoid Complex	granodiorite	Zr	U-Pb	543.0	+2	crystallisation age	Hofmann et al. 2009
	Lausitz			Lausitz Granitoid						, ,	Hofmann et al.
Germany	Block	13.79100	51.11500	Complex	granodiorite	Zr	U-Pb	570.0	±4	inherited	2009 Hofmann et al
Germany	Elbe Zone	13.99500	50.84400	Granite	granite	Zr	U-Pb	327.0	±4	emplacement	2009
Czech Rep.	bian	13.87300	49.44300	Blatna granodiorite	granodiorite	Zr	Pb/Pb	346.0	±10	emplacement	Holub et al. 1997
Czech Rep.	bian	14.70800	49.84300	Sazava granodiorite	granodiorite	Zr	Pb/Pb	349.0	±12	emplacement	Holub et al. 1997
France	La Hague	-1.85200	49.71700	Jardeheu quartz diorite	quartz diorite	Zr	U–Pb	610.4	0.9/- 0.	emplacement	Inglis et al. 2005
France	La Hague	-1.84900	49.71700	Omonville granodiorite	granodiorite	Zr	U–Pb	608.0	2.8/-1.8	emplacement	Inglis et al. 2005
Morocco	Anti-Atlas	0.00000	0.00000	Bleida	Granodiorite	Zr	U/Pb	579.0	1.0	crisatllization age	Inglis et al., 2004 (43)
	Central Bohemia n Plutonic			Kozarovice	Amph_Rt						langusek et al
Czech Rep.	Complex	14.10800	49.55100	granodiorite	granodiorite	Zr	U-Pb	615.0	±10	inherited	2010
	Central Bohemia										
	Plutonic				Amph–Bt						Janousek et al.
Czech Rep.	Complex	13.51600	49.34100	Blatna granodiorite	granodiorite	Zr	U-Pb	346.7	±1.6	emplacement	2010
	Bohemia n										
Czech Rep.	Plutonic Complex	14.10800	49.55100	Kozarovice granodiorite	Amph–Bt granodiorite	Zr	U-Pb	346.1	+1.6	emplacement	Janousek et al. 2010
									11.0		Janousek,
	Bohemicu				amphibole						Gerdes, 2003/ Janousek et al.
Czech Rep.	m	14.49900	49.84900	Sazava Tonalite	biotite tonalite	Zr	U-Pb	354.1	±3.5	emplacement	2004
Poland	Sudetes	15.59790	50.94820	Karkonosze-Izera Block	granodiorite	Biotite	K-Ar	338.6	±2.8		Jarmolowicz- szulc, et al. 2009
Poland	Sudetes	15.60080	50.95300	Karkonosze-Izera Block	granodiorite	Biotite	K-Ar	327.5	±3		Jarmolowicz- szulc, et al. 2009
										reset values-	In manufacture
Poland	Sudetes	15.48500	50.84430	Karkonosze granite	granite	biotite	K-Ar	320.0	±22	granitoid	szulc, et al. 2009
Delend	Cudataa	15 52210	E0 806E0	Karkonosze-Izera	porphyritic	Distito	K Ar	210.4			Jarmolowicz-
Polanu	sudetes	15.52210	50.89650	DIOCK	granite	ыопте	K-AI	518.4	±3.1	reset values-	S2UIC, et al. 2009
Poland	Sudetes	15.58810	50.95020	Izera granite	granite	biotite	K-Ar	322.0	±22	influence of the granitoid	Jarmolowicz- szulc, et al. 2009
						biotite+a					Jarmolowicz-
Poland	Sudetes	15.61030	50.97090		granodiorite	mphibole	K-Ar	372.0	±26	granite intrusion	szulc, et al. 2009
				Central	enclosed in LP- HT gneisses that lack any relics of						
Germany	Schwarz wald	7,88400	47,92400	Schwarzwald Gneiss Complex	HP metamorphism	grt, cpx, Wr	Sm-Nd	337 0	+6	high-pressure metamorphism	Kaltetal 1994
Germany	waiu	7.00400	47.32400	Central	metamorphism	vvi	511-140	337.0	±θ	metamorphism	Nait et al. 1994
Germany	Schwarz wald	7.89000	47.90500	Schwarzwald Gneiss Complex	eclogite	grt, Wr	Sm-Nd	332.0	±13	high-pressure metamorphism	Kalt et al. 1994
Germany	Saxothuri ngia	10.84100	50.56900	Vesser magmatites	dacite	Zr	U-Pb	513.0	+5	emplacement	Kemnitz et al. 2002
Germany	Saxothuri	10 84100	50 56900	Vesser magmatites	dacite	7r	U-Ph	522.0	45	emplacement	Kemnitz et al. 2002
	Cavathur			Schupzhurz	strongly deformed boudin-like			52210			Kompita et al
Germany	saxothuri ngia	11.09500	50.60100	Anticline	lens	Zr	U-Pb	515.0	±5	emplacement	2002
					strongly deformed boudin-like						
Comany	Saxothuri	11 00500	50 60100	Schwarzburg	metarhyolitic	7r	LL Db	E 20 0		omplacoment	Kemnitz et al.
Germany	ilgia	11.09500	30.00100	Anticilite	10115	<u> </u>	0-FU	320.0	±5	emplacement	2002

Germany	Saxothuri ngia	11.07600	50.53100	Frauenbach Quartzite	rhyolitic dike	Zr	Pb-Pb	479.0	±5	emplacement	Kemnitz et al. 2002
					coarse grained						
Germany	Saxothuri ngia	10.81200	50.57300	Vesser magmatites	pegmatitic gabbro	Zr	U-Pb	501.7	+1.6	emplacement	Kemnitz et al. 2002
,	Saxothuri				weakly				1.0		Kemnitz et al.
Germany	ngia	10.82500	50.58900	Vesser magmatites	deformed dacite	Zr	U-Pb	508.2	±1.5	emplacement	2002
Germany	Saxothuri ngia	10.94800	50.67600	Vesser magmatites	microgranite	Zr	U-Pb	503.0	±8.4	emplacement	Kemnitz et al. 2002
Germany	Saxothuri ngia	11.05400	50.57700	Schwarzburg Anticline	Rhyodacitic dike	Zr	U-Pb	490.0	±4.5	emplacement	Kemnitz et al. 2002
C	Saxothuri	11.07000	50 50000	Schwarzburg	Constitu	7.		404.0	-		Kemnitz et al.
Germany	ngia Saxothuri	11.07900	50.56000	Anticline	Granite	Zr	U-PD	494.0	±	emplacement	Kemnitz et al.
Germany	ngia	11.16800	50.63240	Goldistal Fm.	rhyolite	Zr	Pb-Pb	493.0	±5	emplacement	2002
	Kalak										
	Nappe Complex,										Kirkland et al.,
Norway	Finnmark	0.00000	0.00000	Hellefjord Schiste	Granites	Zr	U/Pb	438.0	2.0	Cristallization age	2005 (39)
Germany	d	8.69700	49.79900	gabbro	gabbro	se	Ar-Ar	359.0	±3	emplacement	Kirsch et al. 1988
Germany	Odenwal d	8 69700	49 79900	Frankenstein	gabbro	7r	Ph-Ph	362.0		emplacement	Kirsch et al. 1988
Germany	u Odenwal	0.03700	43.73300	Frankenstein	gabbio	21	10-10	302.0	±9	emplacement	Kilsellet al. 1986
Germany	d	8.69700	49.79900	gabbro	gabbro	Hbl	Ar-Ar	363.0	±7	emplacement	Kirsch et al. 1988
					coarse-grained biotite-						
C	Moldanu	12 50200	10 71 700	Hauzenberg	muscovite			220.0			Klain at al. 2000
Germany	bian Unit	13.59200	48.71700	granite II	medium- to	IVION	0-PD	329.0	±7	emplacement	Kieln et al. 2008
		·			coarse-grained						
	Moldanu			Hauzenberg	muscovite						
Germany	bian Unit	13.59200	48.71700	granite II	granite	Zr	U-Pb	320.0	±3	emplacement	Klein et al. 2008
					fine- to medium-						
_	Moldanu	10.01700		Hauzenberg	grained	_					
Germany	bian Unit South	13.61700	48.64700	granodiorite	granodiorite	Zr	Pb-Pb	318.6	±4.1	emplacement	Klein et al. 2008
Austria	Bohemia n Massif	15.25580	48.63130	Rastenberg granodiorite	granodiorite	Zr	Pb-Pb	338.0	±2	emplacement	Klötzli, Parrish 1996
Austria	Austroal pine	0.00000	0.00000	Wiesmath gneiss	orthogneiss	Zr	U-Pb	603.0	±23	protolith age	Korikovskyet al. 1998
Creek Den	Erzgebirg	12 26200	50 61500	St Catherine's	coarse-grained	7.		480.0		protolith	Kesler et al. 2004
Czech kep.	e Krusne	13.36300	50.61500	dome	metagranite	Zr	LA-ICP-IVIS	480.0	±10	emplacement	Kosler et al. 2004
	hory/Erzg										
	granite										Kovarikova et
Czech Rep.	batholith	12.82330	50.36460		Redwitzite	Zr	Pb-Pb	322.6	±2.1	emplacement	al. 2007
	hory/Erzg										
	ebirge granite										Kovarikova et
Czech Rep.	batholith	12.82330	50.36460	Claudeau alexa la a	Granite	Zr	Pb-Pb	322.8	±3.5	emplacement	al. 2007
Czech Rep.		12.71100	50.14600	Kaiserwald	quartz monzodiorite	Zr	Pb-Pb	323.4	±4.4	emplacement	al. 2010
Czech Rep.		12.83800	50.09200	Slavkovsky les Kaiserwald	granodiorite	Zr	Pb-Pb	326.1	±5.6	emplacement	Kovarikova et al. 2010
Italy	Souther n Alps	18.46500	45.94440	Ceneri Zone	granite		U-Pb	325.0	60/-30	age of the granite	Köppel 1974
Italy	Souther n Alps	18.46500	45.94440	Ceneri Zone	granite	monazi te	U-Pb	295.0	±5	age of the granite	Köppel 1974
Poland	West	16.68700	50.81000	Góry Sowie Block	unfoliated monzodiorite	Zr	Pb-Pb	334.0	+1 0	intrusion	Kröner & Hegner, 1998
Poland	West	16 70700	50 79200	Cán Souis Diotr	slightly-foliated	 7r	Dh Dh	222.4	±1.9	intrucion	Kröner &
ruidilu	West	10.72700	30.78300	GOLĂ 20MIG RIOCK	granouionte	21	FU-PU	332.1	±1.9	protolith	Kröner &
Poland	Sudetes	16.52600	50.62200	Góry Sowie Block	augen gneiss	Zr	Pb-Pb	482.3	±1.7	emplacement	Hegner, 1998

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

					coarse-grained, two-mica granite gneiss with large K-						
Czech Rep.	Erzgebirg e	13.26300	50.57300	Freiberg Gneiss	feldspar porphyroclasts	Zr	Pb-Pb	551.0	±7	protolith emplacement	Kröner et al. 1995
Germany	Erzgebirg e	13.82700	50.78100	Lauenstein	weakly foliated, medium- grained granodiorite	Zr	Pb-Pb	555.0	±7	protolith emplacement	Kröner et al. 1995
Czech Rep.	Erzgebirg e	14.52500	50.60800	Freiberg Gneiss	medium- to coarse-grained, porphyritic two- mica granite	Zr	Pb-Pb	554.0	±10	protolith emplacement	Kröner et al. 1995
Germany	Lusatian	14.09600	51.14200		muscovite- bearing quartz diorite	Zr	Pb-Pb	585.0	±11	emplacement	Kröner et al. 1994
Germany	Lusatian	14.11500	51.18200		biotite granodiorite	Zr	Pb-Pb	564.0	±14	emplacement	Kröner et al. 1994
Germany	Lusatian	14.14500	51.24900		porphyritic biotite- granodiorite	Zr	Pb-Pb	576.0	±16	emplacement	Kröner et al. 1994
Germany	Lusatian	14.26700	51.12400		greywacke xenolith in granodiorite	Zr	Pb-Pb	553.0	±19	contact metamorphism	Kröner et al. 1994
Germany	Lusatian	14.38800	51.12000		2 mica granodiorite	Zr	Pb-Pb	584.0	±16	emplacement	Kröner et al. 1994
Germany	Lusatian	14.49800	51.16400		muscovite bearing biotite quartz diorite	Zr	Pb-Pb	542.0	±9	emplacement	Kröner et al. 1994
Germany	Lusatian	14.49800	51.16400		monzogranite	Zr	Pb-Pb	560.0	±18	emplacement	Kröner et al. 1994
Germany	Lusatian	14.81300	51.03900		biotite granodiorite	Zr	Pb-Pb	587.0	±17	emplacement	Kröner et al. 1994
Germany	Lusatian	14.89500	51.00500		monzogranite	Zr	Pb-Pb	571.0	±16	emplacement	Kroner et al. 1994
Germany	Lusatian	14.86800	51.24000		Hbl-bearing monzogranite	Zr	Pb-Pb	304.0	±14	emplacement	Kröner et al. 1994
Czech Rep.	Lusatian	15.07600	50.78400	Reichenberger Granit	monzogranite	Zr	Pb-Pb	304.0	±14	emplacement	Kröner et al. 1994
Czech Rep.	Silesian Domain	17.00400	50.10200	Keprnik Nappe	granite gneiss	Zr	Pb-U	584.0	±8	crystallization age	Kröner et al. 2000
Czech Rep.	Silesian Domain	17.02600	50.24700	Velke Vrbno unit	Granite-gneiss	Zr	Pb-Pb	574.3	±1.0	protolith emplacement	Kröner et al. 2000
Czech Rep.	Silesian Domain	16.96800	50.31700	Lugian domain	felsic metadacite	Zr	Pb-Pb	522.5	±1.0	extrusion of the metadacite precursor.	Kröner et al. 2000
Czech Rep.	Silesian Domain	17.33500	50.11300	core of the Desna dome	porphyritic granite cross- cutting the gneiss	Zr	Pb-U	517.0	±12	emplacement	Kröner et al. 2000
Czech Rep.	Silesian Domain	16.84900	50.14000	Stare Mesto belt	tonalitic gneiss	Zr	Pb-Pb	502.5	±1.0	intrusion of the tonalitic gneiss precursor	Kröner et al. 2000
Czech Rep.	Silesian Domain	16.84900	50.14000	Stare Mesto belt	tonalitic gneiss	Zr	Pb-Pb	504.1	±1.0	intrusion of the tonalitic gneiss precursor	Kröner et al. 2000
Czech Rep.	Silesian Domain	16.95700	50.25800	Stare Mesto belt	metarhyodacite	Zr	Pb-U	503.0	±2	emplacement of the original rhyodacite	Kröner et al. 2000
Czech Rep.	Silesian Domain	16.95700	50.25800	Stare Mesto belt	metarhyodacite	Zr	Pb-Pb	503.4	±1.0	emplacement of the original rhyodacite	Kröner et al. 2000
Czech Rep.	Silesian Domain	17.11200	50.12000	Silisian Domain	pegmatitic granite	Zr	Pb-Pb	502.3	±1.0	magmatic emplacement	Kröner et al. 2000
Czech Rep.	Silesian Domain	17.11500	50.12800	eastern margin of Desna dome	strongly foliated granite gneiss	Zr	Pb-Pb	506.7	±1.7	magmatic emplacement	Kröner et al. 2000
Czech Rep.	South Bohemia	14.01580	49.03120	Blansky les Massif	granodioritic gneiss	Zr	Pb-U	367.8	±3	igneous age	Kröner et al. 2000
Czech Rep.	Sudetes	15.23300	50.93400	Jizerske hory	Strongly foliated granite-gneiss	Zr	Pb-Pb	514.5	±1.0	protolith emplacement	Kröner et al. 2001

с	zech Rep.	Sudetes	15.60000	50.73100	Krkonose Mts.	Strongly foliated, almost mylonitic, augengneiss	Zr	Pb-U	505.0	±17	protolith emplacement	Kröner et al. 2001
с	zech Rep.	Sudetes	16.37900	50.29700	Orlice-Sneznik Complex	two-mica granite- gneiss	Zr	Pb-Pb	507.1	±1.3	protolith emplacement	Kröner et al. 2001
с	zech Rep.	Sudetes	16.40400	50.25700	Orlice-Sneznik Complex	coarse grained augengneiss	Zr	Pb-Pb	503.2	±1.0	protolith emplacement	Kröner et al. 2001
c	zech Rep.	Sudetes	16.40500	50.23800	Orlice-Sneznik Complex	undeformed amphibole- biotite microgranite dyke which cuts foliated granitoid orthogneiss	Zr	Pb-Pb	491.7	±1.0	protolith emplacement	Kröner et al. 2001
с	zech Rep.	Sudetes	16.62100	50.01900	Orlice-Sneznik Complex	Strongly foliated, granitoid augengneiss	Zr	Pb-Pb	504.6	±1.0	protolith emplacement	Kröner et al. 2001 Kröner et al.
с	zech Rep.	Sudetes	16.71600	50.00800	Complex	augengneiss	Zr	Pb-Pb	503.2	±1.0	emplacement	2001
Р	oland	West Sudetes	15.49500	50.83000	Karkonosze Granite	Porphyritic granite	Zr	ID-TIMS U- Pb	312.5	±0.3	final crystallization	Kryza et al. 2014
Р	oland	West Sudetes	15.59500	50.82300	Karkonosze Granite	Porphyritic granite	Zr	ID-TIMS U- Pb	312.4	±0.3	final crystallization	Kryza et al. 2014
Р	oland	West Sudetes	15.71000	50.74500	Karkonosze Granite	Equigranular granite	Zr	ID-TIMS U- Pb	312.2	±0.3	final crystallization	Kryza et al. 2014
Р	oland	C. Sudetes	16.71400	50.86300	Sleza Ophiolite	medium- grained gabbro	Zr	SHRIMP	400.0	±10	igneous crystallization	Kryza, Pin, 2010
		6				aplite-like dike, that cuts across fine-grained, dark greenish-					iana aug	
Р	oland	C. Sudetes	16.75600	50.89100	Sleza Ophiolite	metabasalts.	Zr	SHRIMP	403.0	±6	crystallization	Kryza, Pin, 2010
с	zech Rep.	West Sudetes	15.12600	50.80200	Fojtka granodiorite	hybrid granitoid, quartz diorite to granodiorite	Zr	U-Pb	314.3	±4.3	emplacement	Kusiak et al. 2014
с	zech Rep.	West Sudetes	15.14800	50.73200	Liberec granite	porphyritic granite	Zr	U-Pb	313.0	±2.8	emplacement	Kusiak et al. 2014
Р	oland	West Sudetes	15.47300	50.79900	Jizera granite	coarse-grained porphyritic granite	Mon	U-Pb	310.9	±3.0	emplacement	Kusiak et al. 2014
Р	oland	West Sudetes	15.50100	50.79700	Fojtka granodiorite	hybrid granitoid, quartz diorite to granodiorite	Mon	U-Pb	313.7	±2.7	emplacement	Kusiak et al. 2014
с	zech Rep.	West Sudetes West	15.53300	50.73300	Harrachov granite	fine- to medium- grained granite, very homogeneous and without megacrysts porphyritic	Mon	U-Pb	317.6	±5.6	emplacement	Kusiak et al. 2014 Kusiak et al.
Р	oland	Sudetes	15.60800	50.80600	Jizera granite	granite composite	Zr	U-Pb	311.4	±3.6	emplacement	2014
Р	oland	West Sudetes	15.79500	50.85500		dyke:deformed mafic bodies intrude granite	Zr	U-Pb	311.4	±5.0	emplacement	Kusiak et al. 2014
Р	oland	West Sudetes	15.84400	50.83400	Liberec granite	coarse-grained granite	Mon	U-Pb	312.0	±2	emplacement	Kusiak et al. 2014
Ρ	oland	West Sudetes	15.85200	50.83000	Liberec granite	medium- grained, with some hexagonal quartz granite	Mon	U-Pb	307.8	±3.4	emplacement	Kusiak et al. 2014
c	zech Rep.	Bohemia n Massif	17.06920	50.31920	Žulová Composite Pluton	granodiorite and quartz monzodiorite	Zr	LA-ICP-MS U–Pb	292.0	±4	emplacement	Laurent et al. 2014
с	zech Rep.	Bohemia n Massif	17.08553	50.28580	Zulová Composite Pluton	biotite granite	Zr	LA-ICP-MS U–Pb	291.0	±5	emplacement	Laurent et al. 2014
c	zech Rep.	Bohemia n Massif	17.30250	50.30210	Zulová Composite Pluton	Starost granodiorite	Zr	LA-ICP-MS U–Pb	298.0	±5	emplacement	Laurent et al. 2014

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

	North										
	Armorica In shear			offshore gabbro-							Le Gall et al
France	zone	-4.99400	48.34400	diorite complex	gabbro	Zr	U–Th/Pb	317.9	±2	emplacement	2014
	North Armorica										La Callatal
France	zone	-4.63900	48.42400	St-Renan granite	granite	Zr	U–Th/Pb	316.0	±2	emplacement	Le Gall et al. 2014
	North										
	Armorica In shear										Le Gall et al
France	zone	-4.63900	48.42400	St-Renan granite	granite	Mon	U–Th/Pb	316.7	±1.5	emplacement	2014
France	N Corsica	9.02700	42.56500	Belgodere	granite	Zr	SIMS	339±1		crystalization	Li et al 2012
France	N Corsica	9.02700	42.56500	Belgodere	granite	Zr	SIMS	339±1		crystalization	Li et al 2012
				Albera massif	-						
	Eastern				rhyolithic			465.0.4		crystallization	Liono et el
Spain	s	3.13938	42.39844		e	Zr	RG	465.0±4 .3		protolith)	2011
					Aplite-					, ,	
					pegmatite						
	Ossa-				Biotite-						
	Morena				muscovite	·		328.20±		crystalization	Lima et al
Portugal	Zone	-8.30889	38.76944	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.38		age	2012
	Morena				amphibole			328.24±		crystalization	Lima et al
Portugal	Zone	-8.28583	38.77889	Pavia Pluton	tonalite	Zr	ID-TIMS	0.55		age	2012
	Ossa-				Biotite-	/		220.22.		en eta lization	Lime et al
Portugal	Zone	-8.27444	38.76056	Pavia Pluton	granodiorite	Zr	ID-TIMS	328.23± 0.59		age	2012
-	Ossa-										
Destaural	Morena	0.07447	00 77000	Device Division	Biotite	7.	ID TIMO	325.39±		crystalization	Lima et al
Portugai	Zone	-8.27417	38.77806	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.83		age	2012
	Morena				Biotite	Monazi		325.0±4		crystalization	Lima et al
Portugal	Zone	-8.26778	38.80889	Pavia Pluton	granodiorite	te	ID-TIMS	.9		age	2012
					Biotite- amphibole						
					granodiorite						
					enclave						
	Morena				Biotite			327.41±		crystalization	Lima et al
Portugal	Zone	-8.26417	38.80361	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.40		age	2012
					Microgranular						
					enclave hosted in						
	Ossa-				Biotite-						
Portugal	Morena	9 24444	29 76722	Pavia Pluton	amphibole tonalito	Titonito		326.07±		crystalization	Lima et al
Follugai	Zone	-0.24444	30.10122	Favia Fluton	Microgranular	Thanne	ID-TINIS	0.60		aye	2012
					enclave						
	0.000				hosted in						
	Morena				amphibole			328.53±		crystalization	Lima et al
Portugal	Zone	-8.24444	38.76722	Pavia Pluton	tonalite	Zr	ID-TIMS	0.80		age	2012
	Ossa- Morono				Biotite			327 22.		crystalization	lima et al
Portugal	Zone	-8.21972	38.75278	Pavia Pluton	trondhjemite	Titanite	ID-TIMS	0.55		age	2012
	Ossa-									-	
Dortugal	Morena	0.04070	20 75070	Davia Divitar	Biotite	7.		328.42		crystalization	Lima et al
Foliugai	Ossa-	-0.21972	30.13218	Favia Fluton	nonunjemite		6IVI I-UI	±0.47		aye	2012
	Morena				Two-mica			324.63±		crystalization	Lima et al
Portugal	Zone	-8.20167	38.74806	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.60		age	2012

					Microgranite						
					vein cutting				i		
	Ossa-				Biotite-				ĺ		
	Morena				amphibole			323.65	i	crystalization	Lima et al
Portugal	Zone	-8.19639	38.76417	Pavia Pluton	tonalite	Zr	ID-TIMS	±0.51	i	age	2012
					Porphyry vein						
					cutting				i		
	Ossa-				Biotite-				i		
	Morena				amphibole			329.18±		crystalization	Lima et al
Portugal	Zone	-8.19417	38.75972	Pavia Pluton	tonalite	Zr	ID-TIMS	0.84	i	age	2012
0					Aplite-					0	
					neamatite				i		
					vein cutting						
	0000				Biotito				i		
	Morona				amphibolo			229 11+	i	crystalization	Lima ot al
Derturnel	Zene	0 40000	20 75044	Devie Divter	amphibole	7.		320.44±	i	crystanzation	
Ponugai	Zone	-8.18083	38.75944	Pavia Pluton	tonalite	Zſ	ID-TIMS	0.54		age	2012
					Pophyry vein				i		
					cutting						
	Ossa-				Biotite-				i		
	Morena				amphibole			327.4±1		crystalization	Lima et al
Portugal	Zone	-8.17194	38.75750	Pavia Pluton	tonalite	Zr	ID-TIMS	.2		age	2012
					Microgranular						
					enclave						
	Ossa-				hosted Two-				i		
	Morena				mica			331.12±		crystalization	Lima et al
Portugal	Zone	-8.15306	38.74194	Pavia Pluton	granodiorite	Titanite	ID-TIMS	0.93		age	2012
					Microgranular					+ -	1
					enclave						
	0000-				hosted Two-				-		
	Morena				mice			334 55	i	crystalization	lima et al
Portugal	Zono	9 15206	29 7/10/	Pavia Pluton	aranodiorito	7r		0.50	i	ago	2012
Follugai	Zone	-0.15500	30.74194	Favia Fluton	gianoulonie	21	ID-TINIS	0.50		aye	2012
					Aplite-						
					pegmatite						
	Ossa-				vein cutting				i		
	Morena				Two-mica			324.39±		crystalization	Lima et al
Portugal	Zone	-7.98389	38.77833	Pavia Pluton	granite	Zr	ID-TIMS	0.51		age	2012
					Aplite-						
					pegmatite						
	Ossa-				vein cutting						
	Morena				Two-mica	Monazi		326.1±6		crystalization	Lima et al
Portugal	Zone	-7.98389	38.77833	Pavia Pluton	granite	te	ID-TIMS	.7	i	age	2012
	-		_		Aplite-						1
					neamatite						
	0.000-				vein cutting						
	Morona				Two-mico			220 27+		crystalization	Lima at al
Portugal	Zono	7 09290	20 77022	Pavia Pluton	aranito	7r		0.51	i	ago	2012
Folluyai	Zone	-1.90309	30.11033	Favia Fluton	gianne	21	10-111/13	0.51		aye	2012
	Ossa-										
	Morena				Biotite			319.56±		crystalization	Lima et al
Portugal	Zone	-8.27417	38.77806	Pavia Pluton	granodiorite	Titanite	ID-TIMS	0.66	i	age	2012
	Ossa-										
	Morena				Biotite	Monazi		322.9±2		crystalization	Lima et al
Portugal	Zone	-8.27417	38.77806	Pavia Pluton	granodiorite	te	ID-TIMS	.2		age	2012
-					Aplite-					-	
					pegmatite				i		
	0993-				vein cutting						
	Morena				Biotite			317 43+		crystalization	l ima et al
Portugal	Zone	-8 26833	38 78056	Pavia Pluton	aranodiorite	7r		0.76		age	2012
ronugai	Qaaa	-0.20033	30.70030		gianoulonte	21		0.70		age	2012
	Ossa-								i		
	Morena				Biotite	_		323.20±		crystalization	Lima et al
Ponugai	Zone	-8.26778	38.80889	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.49		age	2012
					Aplite-						
					pegmatite						
	Ossa-				vein cutting				i		
	Morena				Biotite			319.53±	i	crystalization	Lima et al
Portugal	Zone	-8.22111	38.77750	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.80	i	age	2012
	Ossa-			1	1			1		1	1
	Morena				Two-mica			313.6±1	1	crystalization	Lima et al
Portugal	Zone	-8.21972	38.77639	Pavia Pluton	granite	Zr	ID-TIMS	.3	i	age	2012
90.	000					F				. 3-	
	Morono				Two-mico	Monazi		316 3-1	i	covetalization	Lima et al
Portugal	Zono	9 21072	20 77620	Pavia Plutan	aranite	to		2 10.3±1	i i	ago	2012
Follugal	ZUIIE	-0.219/2	30.11039	r avia Pluton	gianne	1.E	10-11110	.3	<u> </u>	aye	2012
					Microgranite				i		1
	Ossa-				vein cutting				i		l
	Morena				Biotite	1		317.24±	i i	crystalization	Lima et al
Portugal	Zone	-8.18361	38.78278	Pavia Pluton	granodiorite	Zr	ID-TIMS	0.57	i i	age	2012
					Microgranite	1				1	
	Ossa-				vein cutting				i		1
	Morena				Biotite	Monazi		318.9±3	i	crystalization	Lima et al
Portugal	Zone	-8.18361	38.78278	Pavia Pluton	granodiorite	te	ID-TIMS	.0	i i	age	2012
-									4		

Çizelge K.1 (devam): İzotopik yaşların literatür derlemesi.

PortugiSea- ConePossible solution sol						Aplite-						
Osse Morens Jasse Sample of Morens						pegmatite						
Oese- PortugalOese- SourceA.160838.7594Pair PluceBiolitic- armphilosite twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cutting granodorineMonazi twoin cuttingMonazi sub-twoin						vein cutting						
Moren bortug Moren M		Ossa-				Biotite-						
Portugal Zone 4.1888 38.75944 Paya Pluton Totalite totalite ID-TIMS 2 page 2012 Observal Sone - <		Morena				amphibole	Monazi		322.1±2		crystalization	Lima et al
Oss- Portugal Oss- Morena Portugal Dorena Portugal Dorena Portugal Dorena	Portugal	Zone	-8.18083	38.75944	Pavia Pluton	tonalite	te	ID-TIMS	.2		age	2012
Osse- Dentugion Osse- Sono B. S. 7511 Pavia Pluton Wein outling grandicine Non- bit Mode D. 71MS S.2.3 Loss grandicine S. 7511 Lina et al 2000 Lina et al 2000 S. 7511 Lina et al 2000 S. 7511 Lina et al 2000 S. 7511 Lina et al 2000 S. 7511 Lina et al 2000 S. 7511 Lina et al 2000 <thlina al<br="" et="">2000 Lina et al 2000 <thli< td=""><td></td><td></td><td></td><td></td><td></td><td>Pegmatite</td><td></td><td></td><td></td><td></td><td></td><td></td></thli<></thlina>						Pegmatite						
Morea Morea Market Ma		Ossa-				vein cutting						
Portugal Zone Stand B. 2011 Pavia Pluton grandionic Plant Der Mark Stand Jage 2012 Germany Sintration 11.0000 50.59900 Gasbach Grante grande Zr Pb-Pb Stand Lame grandem et al. Germany Andrem 11.07100 50.59400 Laubach Grante grandeonte Zr Pb-Pb Stall Jage grandeonte Jage grandeonte Jage Jage grandeonte Jage Pb-Pb Stall Jage grandeonte Jage Pb-Pb Stall Jage grandeonte Jage Pb-Pb Stall Jage Pape Jage Pape Pb-Pb Stall Jage Pape Pape Pb-Pb Stall Pape <		Morena				Two-mica	Monazi		322.3±1		crystalization	Lima et al
Schwarzb wrg Germany Schwarzb wrg Antiform 11.01500 50.59900 Gusbach Grantle ganite grantle Zr Pb-Pb 541.0 grantle armaliant Lineeman et al. 2000 Germany Antiform 11.07190 50.56410 Lukach Grantle Lukach Grandle grantle Zr Pb-Pb 533.0 grantle grantle Zr Pb-Pb 531.0 grantle Lineeman et al. 2000 Germany Antifier 13.15300 51.36100 Lasa Granodionte grandionte Zr Pb-Pb 531.0 gr emplacement 2000 Germany Antifier 13.75000 51.00300 Dehna Granodionte Granodionte Zr Pb-Pb 533.0 gr emplacement 2000 Germany Antifier 13.0700 50.63240 Bumbach Rivelte Rivolte Zr Pb-Pb 485.0 gr emplacement 2001 Germany Antifier 11.0713 50.86730 Ebalach Grante grante Zr UPb 540.0 gr emplacement 2	Portugal	Zone	-8.13861	38.75111	Pavia Pluton	granodiorite	te	ID-TIMS	.3		age	2012
urg comma urg urg urg variant 11.0190 50.5900 Gusbach Granite grane Z Po-Po 53.0 2.0 enplacement informant est commany German Notifier variant 11.0190 50.5610 Labach Granite granel Z Po-Po 53.0 1.0 enplacement commany est commany Germany Notifier variant 11.0190 50.5610 Labach Granite granolotite Z Po-Po 53.0 1.0 enplacement commany est commany Germany Notifier 11.0190 50.5820 S1.0800 Sondorite Granolotite Z Po-Po 53.0 1.0 enplacement commany est commany Germany Antifier 11.0180 50.6320 Sondorite Granolotite Z Po-Po 48.00 1.6 enplacement commany est commany Germany Antifier 11.0180 50.6320 Busbach Granite Granolotite Z Po-Po 48.00 1.6 enplacement commany est commany Germany Antifier 11.0178 50.6320 Busbach Granite granite Z Po-Po 48.00 1.6 nonplacement compace est commany compace est commany antio <td< td=""><td></td><td>Schwarzb</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Schwarzb										
carman Arman 11.1050 50.5080 Guscards grante 2 PP-Ph 51.10 p mplacement dimenant all concentration Gemman Schwards Andron 13.1050 51.5040 Labach Grantel grantel 2 Pb-Pb 53.0 1.0 emplacement Immenant all concentration Gemman Schwards Schwards 13.1500 51.01000 Data Grandontel Grandontel 2 Pb-Pb 53.0 1.0 emplacement Minemant all concentration Gemman Schwards Wert 13.1500 51.01000 Data Grandontel Grandontel 2 Pb-Pb 53.0 2.0 emplacement Minemant all concentration Gemman Schwards Wert 13.1500 51.0200 Schwards Grandontel Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration Schwards Wert Schwards Minemant all concentration		urg										Linnemann et al.
Schwarzb urg Germany Ardforn11.0719050.56410Laubach Grante grandegrante $ZrPb-Pb533.0zrzuPb-PbImmann et al.2000NortherGermanyArticline11.050051.06100Laubach GrantegrandointegrandointegrandointeZrPb-Pb53.0zremplacement2000GermanyArticline13.750051.06100Laubach GranteGrandointeGrandointeZrPb-Pb537.0zremplacement2000GermanyArticline13.750051.02300boha GrandointeGrandointeZrPb-Pb537.0zremplacement2000GermanyArtiform11.680050.63240Bambach RhyolteRhyolteZrPb-Pb539.0zremplacement2000GermanyArtiform11.0713850.56438Laubach GrantegrantegranteZrPb-Pb539.0zremplacement2000GermanyArtiform11.0713850.56438Laubach GrantegrantegranteZrPb-Pb539.0zremplacement2001GermanyArtiform11.0713850.56438Laubach GrantegrantegranteZrPb-Pb530.0zremplacement2014GermanyArtiform11.0713850.56470Laubach GranteGrantegranteZrPb-Pb530.0zremplacement2014GermanyArtiform11.0719050.56470Laubach GranteGrantegrante$	Germany	Antiform	11.10500	50.59900	Glasbach Granite	granite	Zr	Pb-Pb	541.0	+7	emplacement	2000
area with the second		Schwarzb				-					-	
GermanyAmtorn10.1719050.56410Labach GrantegranteZrPb-Pb100100emplacement200GermanyAntorne Antorne11.050051.05100Las GrandolortegrandolorteZrPb-Pb53.0Zremplacement200GermanyEbe- Antorne13.050051.05100bina-GrandolorteGrandolorteZrPb-Pb53.0Zremplacement200GermanyAntorne Antorne13.070051.02800Binabach RhyoticGrandolorteZrPb-Pb53.0Zremplacement200GermanyAntorne Antorne13.0140050.83240Binabach RhyoticBrownikeZrPb-Pb48.0Zremplacement200GermanyAntorne Antorne13.0140050.83240Binabach RhyoticBrownikeZrPb-Pb48.0Zremplacement200GermanyAntorne Antorne13.0140050.83240Binabach RhyoticBrownikeZrPb-Pb48.0Zremplacement200GermanyAntorne Antorne11.0170350.63438Binabach RhyoticBrownikeZrPb-Pb48.0Zremplacement200GermanyAntorne Antorne11.0170950.63478Binabach RhyoticBrownikeZrPb-Pb48.0Zremplacement200GermanyAntorne Antorne11.0170950.56476Binabach RhyoticBrownikeZrPb-PbAsso <t< td=""><td></td><td>urg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Linnemann et al.</td></t<>		urg										Linnemann et al.
Norther Savaria GermanyNorther Savaria AnticineNorther Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,15300Norther Savaria Savaria AnticineNorther 13,11000Norther Savaria Savaria AnticineNorther 13,11000Norther Savaria Savaria AnticineNorther 13,11000Norther Savaria Savaria MarkingNorther Savaria Savaria MarkingNorther Savaria Savaria MarkingNorther Savaria <br< td=""><td>Germany</td><td>Antiform</td><td>11.07190</td><td>50.56410</td><td>Laubach Granite</td><td>granite</td><td>Zr</td><td>Pb-Pb</td><td>533.0</td><td>+10</td><td>emplacement</td><td>2000</td></br<>	Germany	Antiform	11.07190	50.56410	Laubach Granite	granite	Zr	Pb-Pb	533.0	+10	emplacement	2000
Notice Anticle1.1.530051.36100Las Ganodionte ganodionteZrPb-Pb53.0zremplacementLunemann et al. 2000GermanyAnticle Anticle13.7020051.02800phona GanodionteGanodionteZrPb-Pb53.00zremplacement2000GermanyAnticle Anticle13.7020051.12830GanodionteGanodionteZrPb-Pb53.00zfemplacement2000GermanyAnticle Antiform11.1680050.63240Bambach RhyoliteRhyoliteZrPb-Pb48.00zfemplacement2000GermanyAntiform11.071350.68438Bambach RhyoliteRingenteZrPb-Pb48.00zfemplacement2000GermanyAntiform11.071350.56438Bambach RhyolitegranteZrVPb53.00zfemplacement2000GermanyAntiform11.071850.56438Baubach GrantegranteZrVPb53.00zfemplacement2014GermanyAntiform11.0718950.56438Lubach GrantegranteZrVPb53.00zfemplacement2014GermanyAntiform11.0718950.56438Lubach GrantegranteZrVPb54.00zfemplacement2014GermanyAntiform11.0718950.56438Lubach GrantegranteZrVPb54.00zfemplacement2014Germany<	,	Northorn				8				110		
Germany Anticline Anticline 13.15300 51.36100 Las Granodionte Internant et al. 2001 Zr Pb-b 53.0 Zr enplacement Pb-b Continue Pb-b Status Pb-b		Sayone										Linnemann et al
$ \begin{array}{c} \operatorname{comm} & \operatorname{res} & \operatorname{com} & \operatorname{com} & \operatorname{con} & c$	Germany	Anticline	13 15300	51 36100	Laas Granodiorite	granodiorite	7r	Ph-Ph	521.0	. –	emplacement	2000
Germany Ebe Zone 13.7500 51.0030 Dohna Granodiorite Zr Pi-Pi 537.0 27 emplacement Zo00 Germany Autistic 13.7500 51.12830 Granodiorite Granodiorite Zr Pi-Pi 537.0 27 emplacement Zo00 Germany Autiform 11.1680 50.632-0 Bambach Rityotte Rityotte Zr Pi-Pi 485.0 26 emplacement Zo00 Germany Autiform 11.1680 50.632-0 Bambach Rityotte Rityotte Zr Pi-Pi 485.0 26 emplacement Zo00 Germany Autiform 11.0713 50.5643 Laubach Grante grante Zr Pi-Pi 485.0 25 emplacement Zo14 Germany Autiform 11.1073 50.5643 Laubach Grante grante Zr UP Store grante Zo14 Entermant Ai Zo14 Germany Autiform 11.0713 50.5643 Laubach Grante	Germany	Anucine	13.13300	51.50100	Laas Granodionte	granodionte	21	F 0-F 0	551.0	±/	emplacement	2000
cermany cermany <t< td=""><td>C</td><td>FIII - 7</td><td>40.75000</td><td>F4 00200</td><td>Dahar Carachianta</td><td>Country distribution</td><td>7.</td><td>Dh Dh</td><td>527.0</td><td></td><td></td><td>Linnemann et al.</td></t<>	C	F III - 7	40.75000	F4 00200	Dahar Carachianta	Country distribution	7.	Dh Dh	527.0			Linnemann et al.
Lastic GermanLastic AntiomLastic InformanMethasic Informan <th< td=""><td>Germany</td><td>Elbe Zone</td><td>13.75000</td><td>51.00300</td><td>Donna Granodiorite</td><td>Granodiorite</td><td>Zr</td><td>PD-PD</td><td>537.0</td><td>±7</td><td>emplacement</td><td>2000</td></th<>	Germany	Elbe Zone	13.75000	51.00300	Donna Granodiorite	Granodiorite	Zr	PD-PD	537.0	±7	emplacement	2000
Germany Anticine 13.79290 51.2920 51.2920 51.2920 51.2030 56 emplacement 2000 Germany Antiform 11.16800 50.6320 Bambach Rhyolite Rhyolite Zr Pb-Pb 487.0 ze emplacement 2000 Germany Antiform 11.16800 50.6320 Bambach Rhyolite Rhyolite Zr Pb-Pb 487.0 ze emplacement 2000 Germany Antiform 11.07138 50.56438 Laubach Granite granite Zr Pb-Pb 539.0 ze emplacement 2010 Germany Antiform 11.10710 50.61004 Gasbach Granite granite Zr U-Pb 540.0 ze emplacement 2014 Germany Antiform 11.10710 50.51010 Iuleberg Granite granite Zr U-Pb 540.0 ze emplacement 2014 Germany Antiform 11.10710 50.55071 Milibberg Granite granite Zr		Lausitz			Westlausitz							Linnemann et al.
Schwarzb Action Schwarzb Action <th< td=""><td>Germany</td><td>Anticline</td><td>13.79290</td><td>51.12830</td><td>Granodiorite</td><td>Granodiorite</td><td>Zr</td><td>Pb-Pb</td><td>539.0</td><td>±6</td><td>emplacement</td><td>2000</td></th<>	Germany	Anticline	13.79290	51.12830	Granodiorite	Granodiorite	Zr	Pb-Pb	539.0	±6	emplacement	2000
ung German ung and and and and and set 1.1.680 and and and and and and and and and and		Schwarzb	4				1					1
Germany Antiform 11.16800 50.824/0 Biambach Rhyolite Myolite Zr Pb-Pb 487.0 260 emplacement 2000 Germany Antiform 13.91400 S0.89790 e bialschiefergebing grante Zr Pb-Pb 485.0 z emplacement Linnemann et al. Germany Antiform 11.07138 S0.56438 Laubach Granite grante Zr Pb-Pb 485.0 z emplacement 2014 Germany Antiform 11.07138 S0.56438 Laubach Granite granite Zr Pb-Pb So.50 z emplacement 2014 Germany Antiform 11.11670 So.56438 Laubach Granite granite Zr Pb-Pb So.50 z emplacement 2014 Germany Antiform 11.11670 So.56436 Laubach Granite granite Zr Pb-Pb So.50 z emplacement 2014 Germany Antiform 11.0719 So.56436 Laubach Granite granite Zr Pb-Pb So.50 z empl		urg										Linnemann et al.
Schwarzb urg germanySchwarzb urg wrg13.9140050.89790Ebbalschiefergebig grantenoumaline granteZrPb-Pb485.0 ± 5 emplacement2000Schwarzb wrg germany11.0713850.56438Laubach Granite grantegraniteZrU-Pb 533.0 ± 3 emplacement2014GermanyAntform urg wrg wrg wrg wrg antform11.1167050.61004Glasbach Granite granitegraniteZrU-Pb 530.0 ± 3 emplacement2014GermanyAntform Antform11.0375950.59761Milchberg Granite granitegraniteZrU-Pb 492.0 ± 4 emplacement2014GermanyAntform Antform11.0375950.59761Milchberg GranitegraniteZrU-Pb 492.0 ± 4 emplacement2014GermanyAntiform Anticline11.0719050.56410Laubach GraniteGrandoiriteZrSHRIMP 540.0 \pm intrusional. 2004GermanyAnticline13.1616951.35757Las GrandoiriteGrandoiriteZrSHRIMP 540.0 \pm intrusional. 2004GermanyComplex14.1151151.19701GranodoiriteGrandoiriteZrSHRIMP 540.0 \pm intrusional. 2004GermanyComplex14.1511151.19701GranodoiriteGraniteZrSHRIMP 540.0 \pm intrusional. 2004 <tr< td=""><td>Germany</td><td>Antiform</td><td>11.16800</td><td>50.63240</td><td>Blambach Rhyolite</td><td>Rhyolite</td><td>Zr</td><td>Pb-Pb</td><td>487.0</td><td>±6</td><td>emplacement</td><td>2000</td></tr<>	Germany	Antiform	11.16800	50.63240	Blambach Rhyolite	Rhyolite	Zr	Pb-Pb	487.0	±6	emplacement	2000
Germanurg Anton13.91403.98790Elbaschiefergein gernateuzmanie grantezPb-Pb485.0zmplacementimmennet al complacementGermanSthwarp urg urg urg arman11.07185.05438Laubach GrantegranteZPb-Pb539.0zmplacementimmennet al complacementGermanSthwarp urg urg urg urg arman11.01705.05438Laubach GrantegranteZPb-Pb540.0zmplacementimmennet al complacementGermanSthwarp urg urg urg urg11.01705.05041Michberg GrantegranteZPb-Pb49.0zmplacementimmennet al complacementGermanSthwarp urg urg urg11.01705.05041Michberg GrantegranteZPb-Pb49.0zmplacementimmennet al complacementGermanNorth urg urg urg10.111615.05041Laubach GranteGranteZFRIMPSto.0zmplacementimmennet al complacementGermanNorth urg urg urg10.111615.05041Laubach GranteGrandoriceZSHIMPSto.0zzmplacementimmennet al complacementGermanSthwarp urg urg urg10.11161S.1.3757Laus GrandoriceGrandoriceZSHIMPSto.0zzmplacementintreson al codeGermanSthwarp urg urg12.11161<		Schwarzb										
Germany Antriom 13.91400 50.897.90 e grante Zr Pb-Pb 485.0 z6 emplacement 2000 Germany Antriom 11.07138 50.643.8 Laubach Grante grante Zr LPB Sabe 2.3 emplacement Linneman et al. 2014 Germany Antriom 11.0170 50.640.8 Laubach Grante grante Zr LPB Sabe 2.3 emplacement Linneman et al. 2014 Germany Antriom 11.0170 50.61004 Glasbach Grante grante Zr LPB Age 2.4 emplacement Linneman et al. 2014 Germany 11.03759 50.59761 Micherg Grante Grante Zr LPB Age 2.4 emplacement Linneman et al. 2014 Germany 11.03759 50.59761 Micherg Grante Grante Zr SHRIMP Age 2.4 emplacement Linneman et al. 2014 Germany Not 11.03719 50.56419 Laubach Grante Grandiorite Zr SHRIMP Sub 2.4 Inneman et al. 2014		urg			Elbtalschiefergebirg	tourmaline						Linnemann et al.
Schwarzb ug Germany11.0713850.56438Laubach Granite granitezrU-Pb539.0 ±3emplacementLinemann et al. 2014GermanyAntform Antform11.1167050.61004Glasbach Granite granitegraniteZrU-Pb540.0 ±5emplacementLinemann et al. 2014GermanyAntform Antform11.0375950.59761Milchberg Granite granitegraniteZrU-Pb492.0 ±4±4emplacementLinemann et al. 2014GermanyAntform Antform11.0719050.56410Laubach Granite Laubach GraniteGraniteZrSHRIMP540.0 ±intrusionLinemann, et al.GermanyAntcline Antcline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0 ±intrusionLinemann, et al. 2004Germany14.1151151.19707GranodioriteGranodioriteZrSHRIMP540.0 ±intrusionLinemann, et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP540.0 ±intrusionLinemann, et al. 2004Germany14.151151.19707GranodioriteGraniteZrSHRIMP540.0 ±intrusionLinemann, et al. 2004Germany14.151151.19707GranodioriteGraniteZrSHRIMP540.0 ±intrusionLinemann, et al. 2004Germany14.151151.19707GranodioriteGran	Germany	Antiform	13.91400	50.89790	e	granite	Zr	Pb-Pb	485.0	±6	emplacement	2000
Germanyurg Antiony11.0713850.56438Jubach Granite granitegraniteZrUPB53.992.0emplacementLinemannet al. DifferenceGermanyAntiony11.1167050.61004Gabach GranitegraniteZrU-PbSd.00granitegraniteLinemann et al. U-PbGermanyAntiony11.0375950.59761Milchberg GranitegraniteZrU-PbAgogranitegraniteLinemann et al. U-PbGermanyAntiony11.0375950.59761Milchberg GranitegraniteZrSHRIMPAgogranitegraniteLinemann et al. U-PbgraniteGraniteLinemann et al. U-PbgranitegraniteLinemann et al. U-PbgraniteGrani		Schwarzb					1					
GemanyAntiform11.0713850.56438Luabach GranitegraniteZrU-Pb53.90g.30g.30paplacement2014GemanySr <td< td=""><td></td><td>urg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Linnemann et al.</td></td<>		urg										Linnemann et al.
Schwarzb urg Germany11.1167050.61004Gasbach GranitegraniteZrU-Pb540.0z5emplacementLinemann et al. 2014GermanySchwarzb urg Antiform11.0375950.59761Milchberg GranitegraniteZrU-Pb492.0z4emplacementLinemann et al. 2014GermanyAntiform11.0375950.59761Milchberg GranitegraniteZrU-Pb492.0z4emplacementLinemann et al. 2014GermanyAntiform11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0zintrusionLinemann,et al. 2004Serwarzb urg Germany13.1616951.35757Laus GranodioriteGranodioriteZrSHRIMP535.0zintrusionLinemann,et al. 2004GermanyNorth Saxon Germany14.1151151.19701Westausitz GranodioriteGranodioriteZrSHRIMP540.0zintrusionLinemann,et al. 2004Germany12.3100650.47432Bergen GraniteGranodioriteZrSHRIMP540.0zintrusionLinemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP540.0zintrusionLi2.004Germany14.151151.19701GranodioriteGraniteZrSHRIMP330.0zintrusionLi2.004Germany14.151151.19701GranodioriteGranite <t< td=""><td>Germany</td><td>Antiform</td><td>11.07138</td><td>50.56438</td><td>Laubach Granite</td><td>granite</td><td>Zr</td><td>U-Pb</td><td>539.0</td><td>±3</td><td>emplacement</td><td>2014</td></t<>	Germany	Antiform	11.07138	50.56438	Laubach Granite	granite	Zr	U-Pb	539.0	±3	emplacement	2014
Germanyurg Antiform11.1167050.6100Gasbach GranitegraniteZrU-Pb560.00 $_{\pm50}$ emplacementLinemann et al. 2014GermanyVrg Antiform11.0375950.59761Milchberg GranitegraniteZrU-Pb492.0 $_{\pm40}$ emplacementLinemann et al. 2014GermanySchwarz Miter11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0 $_{\pm40}$ emplacementLinemann, et al. 2014GermanyNorth Anticine11.0719050.56410Laubach GraniteGraniteZrSHRIMP550.0 $_{\pm10}$ Linemann, et al. 2014GermanyNorth Anticine13.1616951.35757Laubach GraniteGranodioriteSHRIMPS50.0 $_{\pm0}$ IntrusionLinemann, et al. 2004GermanyComplex14.1151151.19701GranodioriteGranodioriteSrSHRIMPS50.0 $_{\pm0}$ IntrusionLinemann, et al. 2004GermanyLausitz Complex14.1151151.19701GranodioriteGraniteZrSHRIMP330.0 $_{\pm0}$ IntrusionLinemann, et al. 2004GermanyLausitz Complex14.1151151.19701GranodioriteGraniteZrSHRIMP330.0 $_{\pm0}$ IntrusionLinemann, et al. 2004GermanyLausitz Anticine14.1591150.47432Bergen GraniteGraniteZrSHRIMP340.0 $_{\pm0}$ IntrusionLi		Schwarzb										
GermanyAntiom11.116750.61004Glabach GranitegraniteZrU-Pb50.002.0emplacement2014GermanyAntiom11.0375950.59761Michberg GranitegraniteZrU-Pb492.044.0emplacement2014GermanyAntiom11.0719050.50761Labach GraniteGraniteZrU-Pb492.04.01.01.01.0GermanyNorth Saxon11.0719050.50761Labach GraniteGraniteZrSHRIMPSto.02.0IntrusionLinemann,et al.2004GermanyNorth Saxon13.1616951.3575Labach GraniteGranodioriteSHRIMPSHRIMP50.02.0IntrusionLinemann,et al.2004GermanyAnticline13.1616951.3575Las GranodioriteGranodioriteSHRIMPSHRIMP50.02.0IntrusionLinemann,et al.2004GermanyComplex14.1151151.1970GranodioriteGranodioriteSrSHRIMPSHRIMP50.02.0Linemann,et al.2004Germany12.3106050.47432Bergen GraniteGraniteZrSHRIMP3.002.001.00Linemann,et al.2004GermanyLausitz Anticline14.099950.6766Rumburk GraniteGraniteZrSHRIMP3.002.00Linemann,et al.2004GermanyLausitz Anticline14.6999350.86569Rumburk GraniteGraniteZrSHR		urg										Linnemann et al.
Schwarzb urg AntiformSchwarzb urg AntiformSo.59761Milchberg GranitegraniteZrU-Pb492.024emplacementLinnemann et al. 2014GermanyAntiform11.0375950.59761Milchberg GranitegraniteZrU-Pb492.024emplacement2014GermanyAnticline11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0±intrusionLinnemann,et al. 2004GermanyNorth Saxon Anticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0±intrusionLinnemann,et al. 2004GermanyComplex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0±intrusional. 2004Germany12.3100650.47432Bergen GraniteGranodioriteZrSHRIMP330.0±intrusional. 2004Germany14.693050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusional. 2004GermanyComplex14.693050.86560Rumburk GraniteGraniteZrSHRIMP330.0±intrusional. 2004GermanyComplex14.693050.86560Rumburk GraniteGraniteZrSHRIMP380.0±intrusional. 2004GermanyComplex14.693050.86560Rumburk GraniteGraniteZrSHRIMP380.0±<	Germany	Antiform	11.11670	50.61004	Glasbach Granite	granite	Zr	U-Pb	540.0	+5	emplacement	2014
Germanyurg Anticine11.0375950.59761Milchberg GranitegraniteZru-Pb492.0 <th< td=""><td></td><td>Schwarzb</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Schwarzb										
GermanyAntiform11.0375950.59761Milchberg GranitegraniteZrU-Pb492.0±4emplacement2014GermanyAnticline11.0719050.56410Laubach GraniteGraniteZrSHRIMP55.0.0±InrusionLinnemann, et al. 2004GermanyNorth Saxon Anticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP55.5.0±InrusionLinnemann, et al. 2004GermanyAnticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP55.0.0±InrusionLinnemann, et al. 2004GermanyGranitodi Complex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0±InrusionLinnemann, et al. 2004Germany14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0±InrusionLinnemann, et al. 2004Germany14.1151151.19701GranodioriteGranotioriteZrSHRIMP540.0±InrusionLinnemann, et al. 2004Germany14.1151151.19701GranodioriteGraniteGraniteZrSHRIMP540.0±InrusionLinnemann, et al. 2004GermanyLausiza Lausiza14.6993050.86560Rumburk GraniteGraniteZrSHRIMP330.0±InrusionLinnemann, et al. 2004SpainContral Lorea14.69930<		urg										Linnemann et al.
Schwarzb urg Anticline11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0±IntrusionLinnemann,et al. 2004GermanyNorth Saxon Anticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0±IntrusionI.unemann,et al. 2004GermanyAnticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0±IntrusionI.unemann,et al. 2004GermanyLausitz Granitoid Complex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0±IntrusionI.unemann,et al. 2004GermanyLausitz GranodioriteGranodioriteGranodioriteZrSHRIMP540.0±IntrusionI.unemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0±IntrusionI.inemann,et al. 2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±IntrusionI.copez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6769443.51056IocalityGraniteZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.5256IocalityErconicioZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2	Germany	Antiform	11.03759	50.59761	Milchberg Granite	granite	Zr	U-Pb	492.0	+4	emplacement	2014
GermanyNorth Saxon11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0±IntrusionLinnemann,et al. 2004GermanyNorth Saxon13.1616951.35757Las GranodioriteGranodioriteZrSHRIMP535.0±Intrusion<		Schwarzb		-	-	-						
GermanyAnticline11.0719050.56410Laubach GraniteGraniteZrSHRIMP540.0±intrusional.2004GermanyNorth Saxon Anticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0±intrusional.2004GermanyLausitz Granitod Granitod14.1151151.35757Laas GranodioriteGranodioriteZrSHRIMP535.0±intrusional.2004GermanyComplex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0±intrusional.2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0±intrusionintrusional.2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP330.0±intrusionintrusional.2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionintrusional.2004GermanyCentral Iberian Zone-7.6769443.51056Corral velloGranite (syn- tectonic)ZrSHRIMP480.0±IntrusionintrusionintrusionintrusionSpainCentral Iberian Zone-7.6627843.5256Granitegranite (syn- tectonic)ZrID-TIMS292 ± 2Image Proving Sanchez et al Sanchez et al Sa		urg										Linnemann.et
North Saxon AnticlineNorth Saxon AnticlineNorth 13.16169Saxon 51.35757Laas GranodioriteGranodioriteZrSHRIMP535.0LIntrusionLinnemann,et al. 2004GermanyLausitz GrandioriteGranodioriteGranodioriteZrSHRIMP540.0 \pm intrusionLinnemann,et al. 2004GermanyLausitz GrandioriteGranodioriteGranodioriteZrSHRIMP540.0 \pm intrusionLinnemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0 \pm intrusionLinnemann,et al. 2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0 \pm intrusionLinnemann,et al. 2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0 \pm intrusionLinnemann,et al. 2004GermanyContral Iberian Zone-7.6769443.51056Corralvello IcalityGranite (Syn- tectonic)ZrInD-TIMS292 ± 2 ImplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.5256Requeixo IcalityZrZrID-TIMS292 ± 2 ImplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6427842.79083Sarria massifGranite gives granite (Syn- tectonic)<	Germany	Anticline	11.07190	50.56410	Laubach Granite	Granite	Zr	SHRIMP	540.0	+	intrusion	al. 2004
AnticlineAnticline13.1616951.35757Laas GranodioriteGranodioriteZrSHRIMP535.0LIntrusionLinnemann,et al. 2004GermanyLausitz Granitoid Complex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.0LIntrusionLinnemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0LIntrusionLinnemann,et al. 2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0LIntrusionLinnemann,et al. 2004GermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0LIntrusionLinnemann,et al. 2004GermanyCentral Iberian Zone-7.6769443.51056Corralvello IccalityGranite (syn- tectonic)ZrSHRIMP292 ± 2ImtrusionLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.52056Requeixo IccalityZrID-TIMS292 ± 2ImplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.52056Requeixo IccalityZrID-TIMS292 ± 2ImplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6427842.79083Saria massifGranite dykes granite dykes (syn-tectonic)ID	,	North								÷		
GermanyAnticline13.161651.3575Laas GranodioriteGranodioriteZrSHRIMP535.0±intrusionLintemanuetGermanyLausitz Granitoid Complex14.1151151.19701SintenGranodioriteGranodioriteZrSHRIMP535.0±intrusionLintemanuetGermany14.1151151.19701SintenGranodioriteGranodioriteZrSHRIMP540.0±intrusionLintemanuetGermany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0±intrusionLintemanuetGermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLintemanuetGermanyCentral Iberian Zone-7.6769443.51056Corral vello localityGraniteZrSHRIMP292 ± 2Lopez- Sanchez et alLopez- Sanchez et alSpainCentral Iberian Zone-7.6727843.5256Requeixo localitymylonitic granite (syn- tectonic)ZrID-TIMS292 ± 2Lopez- Sanchez et alLopez- Sanchez et alSpainCentral Iberian Zone-7.6427843.5256Requeixo granite (syn- tectonic)ZrID-TIMS292 ± 2Lope EmplacementLopez- Sanchez et alSpainCentral Iberian Zone-7.6427843.5256Granite granite (syn- icealityZrID-TIMS292 ± 2Emplacemen		Sayon										Linnemann et
GentralingAntonine10.1010/S01.001/S01.001/S10.100/S01.001/S10.100/S10.	Germany	Anticline	13 16160	51 35757	Laas Granodiorite	Granodiorite	7r	SHRIMD	535.0		intrusion	al 2004
GermanyComplex14.1151151.19701GranodioriteGranodioriteZrSHRIMP540.01intrusionLinnemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.01intrusionLinnemann,et al. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.01intrusionLinnemann,et al. 2004GermanyAuticine14.6993050.86600Rumburk GraniteGraniteZrSHRIMP480.01intrusionLinnemann,et al. 2004GermanyAnticine14.6993050.86600Rumburk GraniteGraniteZrSHRIMP480.01intrusionLinnemann,et al. 2004SpainCentral Iberian Zone-7.6769443.51056Corral vello coalityGranite (syn- tectonic)ZrID-TIMS292 ± 2Image: Spain Linnemannee spainLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.5256Requeixo localityZrID-TIMS292 ± 2Image: Spain Linnemannee spainLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6427842.79083Sarria massifGranite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- granite (syn- 	Germany	Lousita	10.10100	01.00707	Laus Granoalonice	Granoulonic	21	5111111	555.0	I		ui. 2004
GermanyComplex14.115151.1970GranodioriteGranodioriteZrSHRIMP540.0±IntrusionLinternani,etGermany12.3100650.47432Bergen GraniteGranotioriteGraniteZrSHRIMP330.0±intrusionLinternani,etGermanyLausitz Anticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinternani,etGermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinternani,etGermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinternani,etJiberianContral Iberian-7.6769443.51056Corralvellogranite (syn- tectonic)ZrID-TIMS292 ± 2Lopez- Sanchez et alLopez- Sanchez et alSpainCentral Iberian-7.6627843.5256Requeixogranite (syn- tectonic)ZrID-TIMS292 ± 2Lopez- EmplacementLopez- Sanchez et alSpainCentral Iberian-7.6627843.5256Icalitytectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et alSpainZone-7.6427842.79083Sarria massifgranite dykes (syn-tectonic)ZrID-TIMS297 ± 6EmplacementSanchez et al Sanchez et alSpainContral Iberian <td></td> <td>Cranitaid</td> <td></td> <td></td> <td>Mostle usite</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Linnomonn of</td>		Cranitaid			Mostle usite							Linnomonn of
GernaryComplex14.1131131.19701GrandounteGrandounte21SHRIMP340.0 \pm Indusional. 2004Germany12.3100650.47432Bergen GraniteGraniteZrSHRIMP330.0 \pm intrusionLinnemann,etGermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0 \pm intrusionLinnemann,etGermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0 \pm intrusionLinnemann,etGermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0 \pm intrusionLinnemann,etSpainZone-7.679443.51056localitytectonic)ZrID-TIMS292 ± 2 EmplacementLopez- Sanchez et alSpainZone-7.6627843.5256localitytectonic)ZrID-TIMS292 ± 2 EmplacementLopez- Sanchez et alSpainZone-7.6627843.5256localitytectonic)ZrID-TIMS292 ± 2 EmplacementLopez- Sanchez et alSpainZone-7.6427842.79083Sarria massifgranite (syn- tectonic)ZrID-TIMS297 ± 6 EmplacementZ014b	Compony	Granicolu	1 4 1 1 5 1 1	E1 10701	Granadiarita	Cronodiarito	7-	CUDINAD	F 40.0		intrucion	Linnemann, et
GermanyLausitz 12.3100So.47432Bergen GraniteGraniteZrSHRIMP330.0±intrusionLinnemann,et al.2004GermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinnemann,et al.2004GermanyAnticline14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinnemann,et al.2004SpainCentral Liberian Zone-7.6769443.51056IocalitySightly deformed granite (syn- tectonic)ID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.5256Requeixo localitymylonitic granite (syn- tectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral Iberian Zone-7.6627843.5256Requeixo localityZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainZone Iberian Zone-7.6427842.79083Sarria massifGranite dykes (syn-tectonic)ZrID-TIMS297 ± 6EmplacementLopez- Sanchez et al 2014b	Germany	complex	14.11311	51.19701	Granodionte	Granodionte	Zľ	SHRIIVIP	540.0	±	Intrusion	al. 2004
Germany 12.31006 50.47432 Bergen Granite Granite Zr SHRIMP 330.0 ± intrusion al. 2004 Germany Anticline 14.69930 50.86560 Rumburk Granite Granite Zr SHRIMP 480.0 ± intrusion al. 2004 Germany Anticline 14.69930 50.86560 Rumburk Granite Granite Zr SHRIMP 480.0 ± intrusion al. 2004 Germany Central Central Sightly deformed granite (syn- Lopez- Sanchez et al 2014b Spain Zone -7.66794 43.51056 locality mylonitic granite (syn- ID-TIMS 292 ± 2 Emplacement 2014b Spain Zone -7.66784 43.5256 locality tectonic) Zr ID-TIMS 292 ± 2 Emplacement 2014b Spain Central Requeixo granite (syn- ID-TIMS 292 ± 2 Emplacement 2014b Germany Germany Germany Granite dykes Sanchez et al Sanchez et al San							_					Linnemann, et
Lasitz GermanyLasitz Antcine14.6993050.86560Rumburk GraniteGraniteZrSHRIMP480.0±intrusionLinnemann,et al.2004GermanyCentral Iberian Zone-7.6769443.51056Corralvello localitysightly deformed granite (syn- tectonic)-7.6769443.51056Corralvello localitySightly deformed granite (syn- tectonic)ID-TIMS292 ± 2Image: Corral second se	Germany		12.31006	50.47432	Bergen Granite	Granite	Zr	SHRIMP	330.0	±	intrusion	al. 2004
Germany Anticline 14.69930 50.86560 Rumburk Granite Granite Zr SHRIMP 480.0 ± intrusion al. 2004 Central Iberian Control A3.51056 Granite Sightly deformed Corralvello Sightly granite (syn- tectonic) Zr ID-TIMS 292 ± 2 Emplacement Lopez- Sanchez et al 2014b Spain Central Iberian Requeixo Zone Requeixo Icality mylonitic tectonic) Zr ID-TIMS 292 ± 2 Emplacement Lopez- Sanchez et al 2014b Spain Central Iberian Requeixo Icality mylonitic tectonic) Zr ID-TIMS 292 ± 2 Emplacement Lopez- Sanchez et al 2014b Spain Central Iberian Requeixo Zone Requeixo Icality granite (syn- tectonic) Zr ID-TIMS 292 ± 2 Emplacement Lopez- Sanchez et al 2014b Spain Zone -7.66278 43.52556 Iocality Egranite (syn- granite (syn- granite dykes Emplacement Lopez- Sanchez et al 2014b Spain Zone -7.64278 42.79083 Sarria massif (syn-tectonic) Zr ID-TIMS 297 ± 6 Emplacement 2014b </td <td></td> <td>Lausitz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Linnemann, et</td>		Lausitz										Linnemann, et
Central IberianCentral IberianSpainCentral (Deper- CorralvelloSightly deformed granite (syn- tectonic)Include CorralvelloSpainSpa	Germany	Anticline	14.69930	50.86560	Rumburk Granite	Granite	Zr	SHRIMP	480.0	±	intrusion	al. 2004
Central IberianCentral IberianCorralvello Corralvellodeformed granite (syn- tectonic)Include CorralvelloLopez- Sanchez et al 2014SpainZone-7.6769443.51056localitytectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral IberianRequeixo 2ronemylonitic granite (syn- tectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral IberianCentral IberianA3.52556localityEctonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014bSpainCentral IberianCentral IberianA3.527842.79083Sarria massifsarria massifCrID-TIMS297 ± 6Emplacement2014b						slightly						
Iberian Spain-7.6769443.51056Iocalitygranite (syn- tectonic)ZrID-TIMS292 ± 2EmplacementSanchez et al 2014bSpainCentral IberianRequeixo Spainmylonitic granite (syn- tectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et alSpainCentral Iberian43.52556localitytectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et alSpainCentral IberianCentral Iberian-7.6427842.79083Sarria massifgranite dykes (syn-tectonic)ZrID-TIMS297 ± 6Emplacement2014b		Central				deformed						Lopez-
SpainZone-7.6769443.51056localitytectonic)ZrID-TIMS292 ± 2Emplacement2014bCentral IberianCentral Zone-7.6627843.52556Requeixo Iocalitymylonitic tectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et alSpainZone-7.6627843.52556Iocalitytectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et alIberian Iberian-7.6427842.79083Sarria massif(syn-tectonic)ZrID-TIMS297 ± 6Emplacement2014b		Iberian			Corralvello	granite (syn-				1		Sanchez et al
Central IberianCentral IberianRequeixo A3.52556mylonitic granite (syn- tectonic)mylonitic granite (syn- tectonic)Lopez- Sanchez et al 2014bSpain-7.6627843.52556localitytectonic)ZrID-TIMS292 ± 2Emplacement2014bCentral Iberian-7.6427842.79083Sarria massifgranite dykes (syn-tectonic)ZrID-TIMS297 ± 6EmplacementLopez- Sanchez et al	Spain	Zone	-7.67694	43.51056	locality	tectonic)	Zr	ID-TIMS	292 ± 2		Emplacement	2014b
Iberian Spain-7.66278A3.5256Requeixo localitygranite (syn- tectonic)ZrID-TIMS292 ± 2EmplacementSanchez et al 2014bSpainCentral Iberian-7.6427842.79083Sarria massifSon- granite dykes (syn-tectonic)ZrID-TIMS292 ± 2EmplacementLopez- Sanchez et al 2014b		Central				mylonitic						Lopez-
Spain Zone -7.66278 43.52556 locality tectonic) Zr ID-TIMS 292 ± 2 Emplacement 2014b Central Iberian Central Iberian -7.64278 42.79083 Sarria massif Sarria massif Jon-tectonic) Zr ID-TIMS 297 ± 6 Emplacement Lopez- Sanchez et al 2014b		Iberian			Requeixo	granite (syn-				1		Sanchez et al
Central Iberian Central Lopez- Sanchez et al Spain Zone -7.64278 42.79083 Sarria massif (syn-tectonic) Zr ID-TIMS 297 ± 6 Emplacement 2014b	Spain	Zone	-7.66278	43.52556	locality	tectonic)	Zr	ID-TIMS	292 ± 2		Emplacement	2014b
Iberian granite dykes granite dykes Emplacement Sanchez et al Spain Zone -7.64278 42.79083 Sarria massif (syn-tectonic) Zr ID-TIMS 297 ± 6 Emplacement 2014b		Central				boudinaged						Lopez-
Spain Zone -7.64278 42.79083 Sarria massif (syn-tectonic) Zr ID-TIMS 297 ± 6 Emplacement 2014b		Iberian				granite dykes				1		Sanchez et al
	Spain	Zone	-7.64278	42.79083	Sarria massif	(syn-tectonic)	Zr	ID-TIMS	297 ± 6		Emplacement	2014b

									-	-	
	Central				deformed						Lopez-
	Iberian			Penedo Gordo	granite (syn-					crystalization	Sanchez et al
Spain	Zone	-7.61056	43.53111	granite	tectonic)	Zr	ID-TIMS	292 ± 2		age	2014b
	Central			-	deformed					-	
	lborion			Son Cinrián	aronito dulo						Copo2-
O a a la		7 5 5 0 0 0	40.00500	San Cipitan	granite uyke	7.		007 0		F	Sanchez et al
Spain	Zone	-7.55833	43.68500	massif	(syn-tectonic)	Zr	ID-TIMS	287 ± 3		Emplacement	2014b
	Central										Lopez-
	Iberian				monzogranite						Sanchez et al
Spain	Zone	-7.58000	43.70722	Viveiro massif	(syn-tectonic)	Zr	ID-TIMS	314 + 2		Emplacement	2014b
	Cantral				(5)						
	Central			a a			0				Lopez-
	Iberian			San Ciprián			SHRIMP-	286.5 ±			Sanchez et al
Spain	Zone	-7.36472	43.67167	massif	leucogranite	Zr	RG	3.1		Emplacement	2015b
	Norther			Wildschönau							
Austria	n			anhialita	m at a a a b b m	7.		477.0		primary	Loth et al.
Austra	Calcare			ophiolite	metagabbio	Zr	SHRIMP	477.0	±9	crystallization	2001
	ous Alps	12 09200	47 44000	complex						,	
		12.00300	47.44900								
	Bohemia										Maluski et al.
Czech Rep.	n Massif	17.11900	50.29800	Zulova Granite	granodiorite	Biotite	Ar-Ar	290.0	±3		1995
	Bohemia					Amphibo					Maluski et al.
Czech Ren	n Massif	17 11900	50 29800	Zulova Granite	granodiorite	le .	Δr-Δr	292.0	1.2		1995
czech nep.	1110103311	17.11500	30.23000	Zulova Granite	granoulonte	ic		252.0	±3		1555
	W.			Rychory Mountains	garnet-phengite					Greenschist	Maluski,
Poland	Sudetes	15.86100	50.69900	complex	blueschist	phengite	Ar-Ar	343.0	±2	metamorphism	Patocka, 1997
						1		-			
										cooling of a major	
	14/			Buchon Mountains	onidata						Malucki
	vv.	45 07000	50 05000	Rychory ivrountains	epidote				· · · ·	HT metamorphic	
Czech Rep.	Sudetes	15.87800	50.65600	complex	blueschist	Biotite	Ar-Ar	332.0	±10	event	Patocka, 1997
	w.			Rychory Mountains	epidote			/		Greenschist	Maluski,
Czech Rep.	Sudetes	15.87800	50.65600	complex	blueschist	phengite	Ar-Ar	340.0	+2	metamorphism	Patocka, 1997
						P.101810			±2		
	W.		· · · · ·	Rychory Mountains	epidote					Greenschist	Maluski,
Czech Rep.	Sudetes	15.87800	50.65600	complex	blueschist	phengite	Ar-Ar	346.0	±1	metamorphism	Patocka, 1997
										minimum age of	
										HP	
	W			Rychony Mountains	enidote					metamorphism-	Maluski
	vv.	45.07000	50.05000	Rychory Wountains	epidote					metamorphism-	
Czech Rep.	Sudetes	15.87800	50.65600	complex	blueschist	phengite	Ar-Ar	359.0	±2	subduction	Patocka, 1997
										minimum age of	
										HP	
	w.			Rychory Mountains	epidote					metamorphism-	Maluski,
Czech Ren	Sudetes	15 87800	50 65600	complex	hlueschist	nhengite	Ar-Ar	363.0	12	subduction	Patocka 1997
	Loor		30.00000	Landivisia	2.005050	Pricingine		303.0	±2		Margaus -t -l
-	Leon	4 0 0 0 0 -	40 4000-	Landivisiau		_					iviarcoux et al.
France	Domain	-4.09083	48.49880	orthogneiss		Zr	TIMS/ U-Pb	529.0	±6.3/-4	emplacement	2009
	Leon			Guimiliau			ICPMS-				Marcoux et al.
France	Domain	-3.98027	48.48416	orthogneiss		Zr	MC/U-Pb	512.0	+11	emplacement	2009
	Loon			Ŭ	n o robu roid						Margoundet al
_	Leon	4 9 4 7 9 9			porpriyroid	_	ICPIVIS-				iviarcoux et al.
France	Domain	-4.24722	48.55880	Kersaint granite	granite	Zr	MC/U-Pb	328.0	±7	emplacement	2009
	Leon				porphyroid						Marcoux et al.
France	Domain	-4.24722	48.55880	Kersaint granite	granite	Mon	U-Th-Pb	331.0	+4	emplacement	2009
				-	- mylonite						
					invionite						
					formed at the						
					expense of the						
	Leon			Kernilis two-micas	two-micas						Marcoux et al.
France	Domain	-4.49972	48.60550	granite	granite	Mus	Ar-Ar	292.5	±2.7	emplacement	2009
	Leon			-	-						Marcoux et al
F	Dem	4 4 0 0 0 0	40.04007	Discustore in the second		7	TIN 45 (and a court et di.
rance	Domain	-4.18639	48.64027	Piounevez-Lochrist	monzodiorite	∠r	TIMS/ U-Pb	296.0	±3	emplacement	2009
	Leon						ICPMS-				Marcoux et al.
France	Domain	-4 11580	48 49910	Brest orthogneiss		Zr	MC/U-Pb	504.0	+15	emplacement	2009
	Domain	4.110000	10.10010						~		
	Leon	4.11000	10110010		Pink norphyroid						Marcouvetal
France	Leon	4.40000	49 60444	A hos lider	Pink porphyroid	7-		204 4			Marcoux et al.

France	Leon Domain	-4.04880	48.62250	Sainte-Catherine	late crosscutting tourmaline-rich granite	Mus	Ar-Ar	301.5	±0.3	emplacement	Marcoux et al. 2009
France	Leon Domain	-4.04880	48.62250	Sainte-Catherine	tourmaline- bearing leucogranite	Mus	Ar-Ar	302.7	+0.3	emplacement	Marcoux et al. 2009
	Hercynia n Belt of Central								10.0		Marcoux et al.
Morocco	Morocco	-7.13555	31.26937	Mine Granite	Granite	?	Ar/Ar	286.0	1.0	emplacement	2015
Czech Rep.	W.Sudet es	15.08600	50.76900	Krkonose-Jizera Granite	biotite- monzogranite	Biotite	Ar-Ar	320.0	±2	shearing	Marheine et al. 2002
	W.Sudet es	15.23800	50.72100	Krkonose-Jizera Granite	two-mica granite	Mus	Ar-Ar	312.0	±2	emplacement	Marheine et al. 2002
	W.Sudet	16 47500	50 70800	Gory Sowie Block	anatectic granite	Mus	Ar-Ar	359.0	د ۲	HT-MP metamorphism	Marheine et al. 2002
	W.Sudet			South Krkonose	sheared	in us		555.0	15	inclaine phone	Marheine et al.
	es NF	15.59500	50.64600	Complex	blueschist Susqueda	phengite	Ar-Ar SHRIMP-	320.0	±3	greenschist facies	2002 Martinez et al
Spain	Iberia	2.52442	41.97948	Guilleries massif	diorite	Zr	RG	2.8		age	2008
Spain	Eastern Pyrenee s	2.52442	41.97948	Guilleries massif	diorite	Zr	SHRIMP- RG	323.6 ± 2.8		crystallization age (igneous protolith)	Martinez et al 2008
Spain	NE Iberia	2.49104	41.96147	Guilleries massif	Susqueda biotite granite	Zr	SHRIMP- RG	305.9 ± 1.5		crystalization age	Martinez et al 2008
Spain	Eastern Pyrenee s	2.49104	41.96147	Guilleries massif	biotite granite	Zr	SHRIMP- RG	305.9 ± 1.5		crystallization age (igneous protolith)	Martinez et al 2008
Spain	Eastern Pyrenee s	2,59393	41.95184	Guilleries massif	leucogranite	Zr	SHRIMP- RG	299.0 ±		crystallization age (igneous protolith)	Martinez et al 2008
Spain	NE Iberia	2.59393	41.95184	Guilleries massif	Osor leucogranite vein	Zr	SHRIMP- RG	301.5 ±		crystalization age	Martinez et al 2008
Spain	Eastern Pyrenee s	2.60437	41.95358	Guilleries massif	leucogranite	Zr	SHRIMP- RG	301.5 ± 1.7		crystallization age (igneous protolith)	Martinez et al 2008
Spain	NE Iberia	2.60437	41.95358	Guilleries massif	Osor Ieucogranite vein	Zr	SHRIMP- RG	305.3 1.9		crystalization age	Martinez et al 2008
Spain	NE Iberia	2.60829	41.95184	Guilleries massif	Osor leucogranite vein	Zr	SHRIMP- RG	299.0 ± 2.3		crystalization age	Martinez et al 2008
Spain	Eastern Pyrenee s	2.60829	41.95184	Guilleries massif	leucogranite	Zr	SHRIMP- RG	305.3 ± 1.9		crystallization age (igneous protolith)	Martinez et al 2008
Portugol	NW	7 65056	41 50104	Vila Pouca de	biotito granito	W/D	Dh Cr	298 ±		intrusion ogo	Martins et al
Follugai	NW	-7.03030	41.50194	Aguas Frias-	biotite gianite	VVIX	110-01	297 ±		initiason age	Martins et al
Portugal	Iberia NW	-7.38694	41.79028	Chaves pluton Vila Pouca de	biotite granite	WR	Rb-Sr	14		intrusion age	2009 Martins et al
Portugal	Iberia	-7.65056	41.50194	Aguiar pluton	biotite granite	Zr	ID-TIMS	299 ± 3		intrusion age	2009
France	Eastern Pyrenee s	2.11600	42.45100	Mont-Louis granite massif	granite	Bt	Ar-Ar	292.6± 2.8		coolin age	Maurel et al 2004
France	Eastern Pyrenee s	1.99000	42.53700	Mont-Louis granite massif	granite	Zr	SIMS	305 ± 6.3		emplacement	Maurel et al 2004

France	Eastern Pyrenee s	2.11600	42.45100	Mont-Louis granite massif	granite	НЫ	Ar-Ar	299.8± 2.9		coolin age	Maurel et al 2004
	Fastern										
France	Pyrenee s	2.11600	42.45100	Mont-Louis granite massif	granite	Zr	SIMS	305.8 ± 8.4		emplacement	Maurel et al 2004
France	Massif	3 01800	11 29200	Pomayrols	metagranodiorit	7r	LLPh	510.0	145	protolith	Maurel et al.
France	Massif	3.01000	44.29200	Pomayrols	e metagranodiorit	21	0-FD	519.0	±15	protolith	Maurel et al.
France	central Armorica	3.01800	44.29200	granodiorite	e	biotite	Ar-Ar	533.1	±11.4	emplacement	2003 Maurel et al
France	n massif	-1.48100	47.37500	La Picherais granite	granite	biotite	Ar-Ar	400.8	±9.3		2003
Czech Rep.	Gföhl Unit	15.10300	49.97800	Dobegovice eclogite	Kyanite eclogite	Grnt-Clpx	Sm-Nd	338.0	±8	rapid exhumation related extension and collapse	Medaris et al. 1995
			40 70000							rapid exhumation related extension	Medaris et al.
Czech Rep.	Gföhl Unit Central	15.48600	49.76000	Uhrov eclogite	eclogite	Grnt-Clpx	Sm-Nd	343.0	±17	and collapse	1995
Spain	Pyrenea	0 60975	12 70122	Bossòst domo	granite	7r		335 + 2		emplacement	Mezger et al
opani	Central	0.00070	72.1 3433		grannie	-1		555 ± 2	-	490	2010
Spain	Pyrenea n	0,71489	42,78819	Bossòst dome	tonalite	Zr	LA-ICP-MS	329 + 4		emplacement age	Mezger et al 2016
	Central	5 1400	.2 0010	- 50000 00110			2.1.61 100	520 24		- 30	
Spain	Pyrenea n	0.80189	42.77619	Bossòst dome	granite sill	Zr	LA-ICP-MS	337 ± 2		emplacement age	Mezger et al 2016
·	Central										
Spain	Pyrenea n	1.44914	42.65700	Aston dome	granite	Zr	LA-ICP-MS	339 ± 3		emplacement age	Mezger et al 2016
Poland		16.65500	50.38300	Kłodzko–Złoty Stok	Quartz monzodiorite	Zr	U-Pb	340.2	+2.5	emplacement	Mikulski et al. 2013
Poland		16 75300	50 39200	Kłodzko-Złoty Stok	Tonalite	7r	I I-Ph	331 5	+2.6	emplacement	Mikulski et al. 2013
rolariu		10.73300	50.55200		Tohante	21	0-10	331.5	±2.6	emplacement	Mikulski et al.
Poland	Kłodzko–	16.84100	50.44600	Kłodzko–Złoty Stok	Granodiorite	Zr	U-Pb	336.7	±2.3	emplacement	2013
Poland	Złoty Stok	16.73369	50.47597	Myszak	syenogabbro	Zr	SHRIMP	341.4	±2.2	emplacement	Mikulski, Williams 2014
Poland	Kłodzko– Złoty Stok	16.73761	50.50036	Graniec–Bardo	biotite- and hornblende-rich tonalite	Zr	SHRIMP	341.6	±2.8	emplacement	Mikulski, Williams 2014
	Jersey, Channel										Miller et al.
UK	Islands	-2.18700	49.17700	SW Jersey granite	coarse Granite	Zr	U-Pb	580.0	2.3/-1.6	emplacement	2001
UK	Channel Islands	-2.02200	49.20900	Anne Port Rhyolite	Rhyolite	Zr	U-Pb	582.8	3/-2.7	emplacement	Miller et al. 2001
	Jersey, Channel										Miller et al.
UK	Islands Sark.	-2.23200	49.23600	NW Jersey granite	coarse Granite	Zr	U-Pb	482.7	±1.6	emplacement	2001
UK	Channel Islands	-2.37300	49.40900	Little Sark quartz diorite	quartz diorite	Titanite	U-Pb	606.2	±0.6	emplacement	Miller et al. 1999
	Sark, Channel			Little Sark quartz							
UK	Islands Sark,	-2.37300	49.40900	diorite	quartz diorite	Zr	U-Pb	611.4	2.1/-1.3	emplacement	Miller et al. 1999
UK	Channel Islands	-2.37000	49.43900	Port du Moulin quartz diorite	quartz diorite	Titanite	U-Pb	606.5	±0.4	emplacement	Miller et al. 1999
	Sark, Channel	0.07000	40 40000	Port du Moulin	anne atta atta atta	7.	LL DL	<u></u>			
UK	Islands Sark,	-2.37000	49.43900	quartz diorite	quartz diorite	∠r	U-YD	613.5	2.3/-1.5	emplacement	Miller et al. 1999
UK	Channel Islands	-2.36800	49.45000	North Sark granodiorite	granodiorite	Titanite	U-Pb	606.4	±0.6	emplacement	Miller et al. 1999
	Sark,			North Sarl							
UK	Islands	-2.36800	49.45000	granodiorite	granodiorite	Zr	U-Pb	608.7	1.1/-1.0	emplacement	Miller et al. 1999
Austria	Austroal pine	47.04940	10.90360	Ötztal basement	melagabbro	PI-Cpx	Sm-Nd	521.0	±10	emplacement	Miller&Thöni 1995

Austria	Austroal pine	47.05562	11.00432	Ötztal basement	olivine-free gabbro	PI-Cpx	Rb-Sr	516.0	±15	emplacement age	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	olivine-free gabbro	WR	Rb-Sr	519.0	±21	emplacement age	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	olivine-free gabbro	PI-Cpx	Sm-Nd	525.0	±8	emplacement age	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	olivine gabbro	PI-Cpx	Sm-Nd	530.0	±3	emplacement age	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	olivine gabbro	PI-WR	Sm-Nd	463.0	±10		Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	Ky-eclogite	Grt red	Sm-Nd	351.0	±3	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	Ky-eclogite	pyroxen e- zoisite- WR- amphib ole	Sm-Nd	353.0	±25	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	Fe-eclogite	WR- Cpx- two Grt fraction s	Sm-Nd	354.0	±8	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05647	10.97096	Ötztal basement	Fe-eclogite	WR-Grt red	Sm-Nd	349.0	±3	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05647	10.97096	Ötztal basement	Fe-eclogite	Cpx- Grt conc	Sm-Nd	354.0	±2	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05647	10.97096	Ötztal basement	Fe-eclogite	Grt red- Cpx and Grt red- Cpx- Grt conc	Sm-Nd	356.0	±3	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05650	10.97096	Ötztal basement	Fe-eclogite	WR-Grt red	Sm-Nd	342.0	±3	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.06470	11.03194	Ötztal basement	Fe-eclogite	WR-Grt red	Sm-Nd	345.0	±11	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	Ky-eclogite	Grt red- Grt pink- Na-Cr- rich pyroxen e- zoisite- WR	Sm-Nd	359.0	±18	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05562	11.00432	Ötztal basement	Ky-eclogite	Grt pink	Sm-Nd	371.0	±4	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.05647	10.97096	Ötztal basement	Fe-eclogite	Grt conc- Grt	Sm-Nd	362.0	±9	eclogite facies	Miller&Thöni 1995
Austria	Austroal pine	47.06722	11.03194	Ötztal basement	Ky-eclogite	Grt pink- WR	Sm-Nd	373.0	±20	eclogite facies	Miller&Thöni 1995
Germany	Erzgebirg e	12.94300	50.46500	Micaschist/Eclogite Unit	granitic augengneiss	Zr	Pb-Pb	485.8	±1	protolith emplacement	Mingram et al. 2004
Germany	Erzgebirg e	12.97700	50.65200	Micaschist/Eclogite Unit	finely layered muscovite- to granitegneiss	Zr	Pb-Pb	485.2	±1.1	protolith emplacement	Mingram et al. 2004
Germany	Erzgebirg e	13.25700	50.71500	Transition (mylonite) zones	migmatitic granite-gneiss (Flammengneiss)	Zr	Pb-Pb	488.6	±1.9	protolith emplacement	Mingram et al. 2004
Germany	Erzgebirg e	13.28600	50.57400	Gneiss/Eclogite Unit	Tine-grained red granite gneiss	Zr	Pb-Pb	489.1	±1	protolith emplacement	ivingram et al. 2004
Portugal	Ossa-M orena Zone	-8.02444	38.23222	Alvito	Amph-Eclogite	Hbl	Ar-Ar	371±11		eclogite facies metamorphism	Moita et al 2005

	Ossa-M										
Portugal	orena Zone	-8.02444	38.23222	Alvito	Amph-Eclogite	Hbl	Ar-Ar	371±17		eclogite facies metamorphism	Moita et al 2005
Portugal	Ossa-M orena Zone	-8.02444	38.23222	Safira	Gt- Eclogite	Garnet- WR	Sm-Nd	371±17		eclogite facies metamorphism	Moita et al 2005
Portugal	SW Iberia	-8.25000	38.66667	Hospitais pluton	qtz–diorite	Zr	ID-TIMS	337.0 ± 2.0		crystalization age	Moita et al 2015
Spain	Ossa Morena Zone	-6.19000	38.06167	Monesterio granodiorite	biotite granodiorite	Zr	evaporatio n	510 ± 4		crystalization age	Montero et al 1999
Spain	Ollo de Sapo Domain	-6.63500	42.05300	Sanabria, Viana do Bolo metagranite	metagranite	Zr	Pb-Pb evaporasy on	488 ± 4		crystalization age	Montero et al 2009
Spain	Ollo de Sapo Domain	-7.11200	42.16700	Sanabria, San Sebastián metagranite	metagranite	Zr	LA-ICP-MS	470 ± 3		crystalization	Montero et al 2009
		-16.22160	22. 5633	Coarse grained gneis	biotite monzogranite	Zr	U/Pb	410.0	2.0	related	Montero et al., 2016 in press (1)
Morocco	Tiwihinat e Groupe	-16.04310	22.45840	Fine grained gneis	biotite leucogranite	Zr	U/PB	420.0	3.0	subduction related	Montero et al., 2016 in press (1)
Poland	West Sudetes	15.86900	50.92500	Żeleźniak intrusion	monzogranite of fine- to medium- grained	Zr	SHRIMP	316.7	±1.2	emplacement	MUSZYŃSKI et al. 2002
France	Armorica n Massif	-2.91600	48.70000	Port Moguer tonalite	tonalite	Zr	Pb-Pb	600.4	±0.9	emplacement	Nagy et al. 2002
France	Armorica n Massif	-2.84400	48.65600	St. Quay quartz diorite	quartz diorite	Zr	U-Pb	574.6	1.8/-1.5	emplacement	Nagy et al. 2002
France	Armorica n Massif	-2.63800	48.52100	Jospinet granodiorite	granodiorite	Zr	U-Pb	625.9	3.6/-1.9	emplacement	Nagy et al. 2002
France	Armorica	-2 34800	48 65700	Fort La Latte quartz	quartz diorite	7r	LLPh	576.2	4.5/4.5	emplacement	Nagy et al. 2002
Germany	Spessart	9.17600	49.95900	Quartz diorite - granodiorite complex	quartz diorite with feldspar blasts	hornblen	K-Ar	328.0	+4	cooling after amphibolite facies metamorphism	Nasir et al. 1991
Germany	Spessart	9.18900	49.94000	Quartz diorite - granodiorite complex	amphibolite raft in quartz diorite	hornblen de	K-Ar	318.0	+4	cooling after amphibolite facies metamorphism	Nasir et al. 1991
Germany	Spessart	9.20800	50.04200	Metabasite belt Aschaffenburg - Feldkahl - Rottenberg	quartz-bearing amphibolite	hornblen de	K-Ar	315.0	±5	cooling after amphibolite facies metamorphism	Nasir et al. 1991
Portugal	NW Iberia	-7.77306	41.36194	Jales granites	coarse- grained porphyritic seriate two- mica granite	WR	Rb-Sr	292 ± 11		emplacement	Neiva et al 1995
Portugal	NW Iberia	-7.77306	41.36194	Jales granites	coarse- grained porphyritic seriate two- mica granite	Ms	Ar-Ar	301.2± 2.9		emplacement	Neiva et al 1995
Portugal	NW Iberia	-7.71694	41.37472	Jales granites	fine-grained muscovite biotite granite	WR	Rb-Sr	320 ± 12		emplacement	Neiva et al 1995
Portugal	W Iberia	-7.54417	40.39556	Gouveia area	granodiorite	Zr Moraz'	SHRIMP RG	481.8±5 .9		crystalization age	Neiva et al 2009
Portugal	W Iberia	-7.70389	40.51778	Gouveia area	granite	ivionazi te	SHRIMP II	288.6±2 .5		crystalization age	Neiva et al 2009
Portugal	W Iberia	-7.70250	40.47139	Gouveia area	two-mica granite	WR	Rb-Sr	294 ± 3		crystalization age	Neiva et al 2009
Portugal	W Iberia	-7.67694	40.54056	Gouveia area	two-mica granite	Monazi te	SHRIMP II	288.7±2 .6		crystalization age	Neiva et al 2009
Portugal	W Iberia	-7.61194	40.48222	Gouveia area	granite	te	SHRIMP II	.6		age	iveiva et al 2009

					two mico	Monazi		203 8+3		envetalization	Noiva ot al
Portugal	W Iberia	-7.51889	40.50556	Gouveia area	granite	te	SHRIMP II	.2		age	2009
Portugal	Central Iberian Zone	-7.71900	40.46900	Gouveia area	Ms-Bt granite	Ms	Ar-Ar	286.4±3 .1		coolin age	Neiva et al 2012
Portugal	Central Iberian Zone	-7.62300	40.52100	Gouveia area	Ms-Bt granite	Zr	SHRIMP- RG	297.3±3 .1		emplacement	Neiva et al 2012
Portugal	Central Iberian Zone	-7.60800	40.42200	Gouveia area	Bt-Ms granite	Ms	Ar-Ar	286.3±2 .7		coolin age	Neiva et al 2012
Portugal	Central Iberian Zone	-7.65500	40.53800	Gouveia area	Bt-Ms granite	Zr	SHRIMP- RG	302.6±6 .7		emplacement	Neiva et al 2012
Portugal	Central Iberian Zone	-7.60800	40.42200	Gouveia area	Bt-Ms granite	Zr	SHRIMP- RG	310.1±4 .3		emplacement	Neiva et al 2012
Spain	Iberian Pyrite Belt	-6.23139	37.52167	Los Frailes deposit	dacitic vitric tuff	Zr	SHRIMP	345.7 ± 4.6		mineralization	Nesbitt et al 1999
Poland	Strzelin Massif	17.08400	50.69400	BOZNOWICE TONALITE	Tonalite	Zr	U-Pb	324.0	±4	emplacement	OBERC- DZIEDZIC et al. 2010
Poland	Strzelin Massif	17.10200	50.67200	KALINKA TONALITE	tonalite	Zr	U-Pb	294.0	±3	emplacement	OBERC- DZIEDZIC et al. 2010
Poland	Strzelin Massif	17.08400	50.69400	BOZNOWICE GRANODIORITE	Granodiorite	Zr	U-Pb	306.0	±3	emplacement	OBERC- DZIEDZIC et al. 2010
	Central Sudetes	17.28333	51.13250	Wrocław granitoid	coarsegrained, grey-pink granodiorite	Zr	SHRIMP	349.0	±2	igneous crystallization	Oberc-Dziedzich et al. 2015
Italy	NW Sardini a	8.18100	40.80200	Pre-Sardic sequence	metarhyolite	Zr	LA-ICPMS	479.9 ± 2.1		formation age	Oggiano et al 2010
Italy	NW Sardini a	8.18100	40.80200	Pre-Sardic sequence	metarhyolite	Zr	LA-ICPMS	479.9 ± 2.1		formation age	Oggiano et al 2010
Italy	SE Sardini a	9.63600	39.44200	sub-intrusive dacite	dacite	Zr	LA-ICPMS	465.4 ± 1.4		formation age	Oggiano et al 2010
Italy	SE Sardini a	9.63600	39.44200	sub-intrusive dacite	dacite	Zr	LA-ICPMS	465.4 ± 1.4		formation age	Oggiano et al 2010
Italy	NW Sardini a	8.21600	40.81900	Pre-Sardic sequence	metadacite	Zr	LA-ICPMS	486 ± 1.2		formation age	Oggiano et al 2010
Italy	NW Sardini a	8.21600	40.81900	Pre-Sardic sequence	metadacite	Zr	LA-ICPMS	486 ± 1.2		formation age	Oggiano et al 2010
Italy	SE Sardini a	9.48700	39.39800	Pre-Sardic sequence	metarhyolite	Zr	LA-ICPMS	491.7 ± 3.5		formation age	Oggiano et al 2010
Italy	SE Sardini a	9.48700	39.39800	Pre-Sardic sequence	metarhyolite	Zr	LA-ICPMS	491.7 ± 3.5		formation age	Oggiano et al 2010
France	Pyrenee s	2.52083	42.74694	Agly Massif	granitic sill	Zr	ID-TIMS	317±3		crystallization age	Olivier et al 2004
France	Pyrenee s	2.52583	42.78250	Saint-Amac pluton (Agly Massif)	granodiorite	Zr	ID-TIMS	303.6 ± 4.7		crystallization age	Olivier et al 2008
France	Pyrenee s	2.59167	42.75833	Saint-Arnac pluton (Agly Massif)	diorite	Zr	ID-TIMS	308.3 ± 1.2		crystallization age	Olivier et al 2008
France	Pyrenees	0.00000	0.00000	St Arnac Pluton, Aggly Massif	Diorite	Zr	U/Pb		1.0	emplacement	Olivier et al., 2008 (60)
Spain	NW Iberia	-7.86900	43.77300	Cabo Ortegal Complex	eclogite	Zr	SHRIMP	495 ± 11		protolith	Ordonez Casado et al 2001
Spain	NW Iberia	-7.86900	43.77300	Cabo Ortegal Complex	eclogite	Zr	SHRIMP	386 ± 41		metamorphism	Ordonez Casado et al 2001

	NBA/			Caba Ortagal	Kyanite-						Ordonez
Spain	INVV	-7 92900	13 68500	Cabo Ortegai	bearing	7r	SHRIMD	169 + 9		protolith	Casado et al
Spain	ibella	-1.92900	43.00500	Complex	Kvanite-	21	SURINIE	409 ± 9		piotontii	Ordonez
	NW			Cabo Ortegal	bearing			380 ±			Casado et al
Spain	Iberia	-7.92900	43.68500	Complex	eclogite	Zr	SHRIMP	14		metamorphism	2001
	Central										Ordoñez-
	Iberian			Santa Olalla						emplacement	Casado et al
Spain	Zone	-6.18000	37.85700	pluton	gabbro	Zr	SHRIMP	344 ± 2		age	2008
	Central			Santa Olalla						omploacment	Ordoñez-
Spain	Zone	-6 18000	37 85700	pluton	granodiorite	7r	SHRIMP	347 + 3		ade	2008
opum	20110	0.10000	01.001.00	proton	granouronto		0	0 0		crystallization	2000
?	External									age of zircons	Paquette
	Massifs			Argentera Massif	eclogite		U-Pb	355.0	±5	during	1987
		0.00000	0.00000							metamorphism	
France	External			Aiguilles						initial	Paquette
	Massifs	0.00000	0.00000	Rouges Massif	eclogite		U-Pb	454.0	6/-1	magmatism of	1987
	NW							347.0±1		crystalization	Paquette et
France	Corsica	8.67000	42.51556	Capo Cavallo	granodiorite	Zr	ID-TIMS	.3		age	al 2003
	NW							347.0±1		crystalization	Paquette et
France	Corsica	8.67000	42.51556	Capo Cavallo	granodiorite	Zr	ID-TIMS	.3		age	al 2003
	W							337.7±2		crystalization	Paquette et
France	Corsica	8.70528	42.27028	Porto Agro	syenogranite	Zr	ID-TIMS	.3		age	al 2003
France	NW	9 76167	42 56750	Calvi harbour	aranita	7r		336.7±1		crystalization	Paquette et
	NW/	8.70107	42.30730	Carvi naiboui	gianne	21		.1	· · · ·	aye	Boquetto et
France	Corsica	8,76167	42,56750	Calvi harbour	granite	Zr	ID-TIMS	.1		age	al 2003
	NW	0.10101	12.00100	our mail our	anatectic	-		344.6±1		crystalization	Paquette et
France	Corsica	8.90694	42.61944	Corbara	granodiorite	Zr	ID-TIMS	.2		age	al 2003
	NW				anatectic			344.6±1		crystalization	Paquette et
France	Corsica	8.90694	42.61944	Corbara	granodiorite	Zr	ID-TIMS	.2		age	al 2003
France	Central	/ /						279.2±0		crystalization	Paquette et
	Corsica	8.91000	41.80806	Pila Canale	gabbro-norite	Zr	ID-TIMS	.6		age	al 2003
France	Central	0 1 2 2 9 0	41 70111	Lovio	achbro diorito	7.	DTIME	285.2±0		crystalization	Paquette et
Flatice	Control	9.12309	41.70111	Santa Lucia di	gabbio-diointe	21	ID-TINIS	.0		aye	ai 2003 Paquotto ot
France	Corsica	9.22167	42,32556	Mercurio	meta-diorite	Zr	ID-TIMS	.3		age	al 2003
	South									HP-HT	
	Armorica			Champtoceaux						metamorphic	Paquette et al.
France	n domain	-1.79500	47.42200	Complex,	eclogite	Zr	U-Pb	413.0	±16	event	1985
Czech Rep.	Sudetes	16,99900	50,28500	Star6 M6sto belt	tonalite	Zr	Pb-Pb	339.0	+7	emplacement	Parry et al. 1997
	Internal								±/		,
	Ossa-										
	Morena							479.6±5		crystalization	Pedro et al
Portugal	Zone	-7.87722	38.29250	Oriola region	metagabbros	Zr	SHRIMP-II	.1		age	2010
	Ossa-M										
Portugal	orena Zone	-8 23000	39 54000	Porto-Iomar	aranite	7r	MC-ICP-	333.7±5 0		(migmatite2)	Pereira et al
Follugai		-0.23900	39.34000		gianne	21	NIS	.9		(iniginatite :)	2010a
	Morena				peraluminous			526.4±4		crystalization	Pereira et al
Portugal	zone	-7.41778	39.13111	Barquete granite	granite	Zr	SHRIMP	.4		age	2011
	Ossa-										
	Morena			Estremoz				499.4±3		crystalization	Pereira et al
Portugal	Zone	-7.64083	38.84639	rhyolite	rhyolite	Zr	LA-ICP-MS	.3		age	2012
	Souther										
	II Pyrenee							2763+		crystalization	Pereira et al
Spain	s	0.73056	42.54472	Vielha	granodiorite	Zr	SHRIMP	3.5		age	2014
	Souther										1
	n										
	Pyrenee					L		265.6 ±		crystalization	Pereira et al
Spain	s	0.78694	42.49722	Cardet	dacite dyke	Zr	SHRIMP	3.3		age	2014
	Souther							_			
	Pyrenee							302 9 +		crystalization	Pereira et al
Spain	s	0.83500	42.55556	Boí	granodiorite	Zr	SHRIMP	4.1		age	2014
	Souther				-					-	
	n										
	Pyrenee					_	0.15.15	307.4 ±		crystalization	Pereira et al
Spain	s	1.53139	42.31306	Coll de Vanses	andesite	Zr	SHRIMP	1.4		age	2014
	Souther										
-----------------	---------------------	-------------	----------	--------------------------------------	-------------------------	---------------	-----------	-------------------	------	-----------------------------------	--------------------------
Spain	Pyrenee s	1.69083	42.35917	Montellá	granodiorite	Zr	SHRIMP	301.5 ± 1.9		crystalization age	Pereira et al 2014
Spain	NW Iberia	-8.06100	43.66000	Candelaria Formation	metaplagiogr anite	amphib ole	Ar-Ar	380.1 ± 4.2		coolin age	Peucat et al 1990
Snain	NW Iberia	-7 86800	43 77100	Cabo Ortegal	ecloarte	7r	ID-TIMS	490 + 12/ - 11		Magmatic age	Peucat et al
opani	NW	-7.00000	43.77100	Cabo Onegai		21	1D-111010	322 ±			Peucat et al
Spain	Iberia North	-7.86800	43.77100	Cabo Ortegal	Eciogites	grt-opx	Sm-Nd	61		coolin age	1990
	Armorica n Shear										Peucat et al.
France	zone	-3.52370	48.51170	Massif de Plouaret	granite	Wr	Rb-Sr	329.0	±5		1984
	Armorica										
France	n Shear zone	-3.36790	48.54670	Massif de Kereven	granite	Wr	Rb-Sr	328.0	±15		Peucat et al. 1984
	North Armorica										
-	n Shear	0 0 0 0 7 0	40.40000				21.0				Peucat et al.
France	zone	-3.30270	48.42890	Massif de Quinlin	granite	Wr	Rb-Sr	291.0	±9	HT/LP	1984
France	NE Brittany	-2.13200	48.62000	St Malo Massif.	anatectic granites	Wr	Rb-Sr	542.0	+62	metamorphic event	Peucat. 1986
				,	8				102		
France	NE Brittany	-2.13200	48.62000	St Malo Massif,	anatectic granites	Mon	U-Pb	535.0	±5	cooling or crystallization age	Peucat, 1986
Poland	Sudetes	16 72700	50 62800	Niemcza diorites	monzodioritic en	7r	LI-Pb	341.8	+1.0	emplacement	Pietranik et al. 2013
	Sudetes	10.12100	00.02000	Niemcza diorites	monzodioritic en		010	0 1210	11.9		Pietranik et al.
Poland	Sudetes Souther	16.83200	50.67200	and monzodiorites Beja Igneous	claves	Zr	U-Pb	335.6 352.6±4	±2.3	emplacement crystalization	2013
Portugal	n Iberia	-8.73444	38.09083	Complex Boia Ignoous	granodiorite	Zr	ID-TIMS	.4		age	Pin et al 2008
Portugal	n Iberia	-8.23583	38.29056	Complex	Tonalite	Zr	ID-TIMS	.1		age	Pin et al 2008
Portugal	Souther n Iberia	-7.61750	37.94194	Beja Igneous Complex	leucodiorite	Zr	ID-TIMS	350.4±2 .3		crystalization age	Pin et al 2008
	Central			Mantelluccio	fayalite- bearing					emplacement	Poitrasson et
France	Corsica	9.04194	41.98083	granite	granite	Zr	ID-TIMS	283 ± 1		age	al 1998
France	NW Corsica	8.93389	42.31778	Evisa granite	granite	Zr	ID-TIMS	259 ± 6		emplacement age	Poitrasson et al 1998
Switzerlan d	Austroal pine	10.02870	46.65000	Silvretta Nappe	metagabbro		U-Pb	467.0	±14	crystallization	Poller 1997
	Western									-9-	
	Carpath					_				crystallization	Poller et al.
Slovakia	ians Moldanu	0.00000	0.00000	Granit von der	Medium	∠r	U-Pb	363.0	±11	age	2000 Propach et al.
Germany	bian Moldanu	13.33940	48.52550	Platte	grained granite	Zr	Pb-Pb	331.0	±7		2000 Propach et al
Germany	bian	12.38610	49.08500	Kristallgranit	granite	Zr	U-Pb	315.0	±4	emplacement	2000
Germany	Moldanu bian	12.38610	49.08500	Kristallgranit	Porphyritic granite	Mon	U-Pb	317.0	±3	emplacement	Propach et al. 2000
Germany	Moldanu bian	12.38610	49.08500	Kristallgranit	Porphyritic granite	Mon	U-Pb	318.0	+2	emplacement	Propach et al. 2000
	Moldanu				Fine-grained				1.5		Propach et al.
Germany	bian Moldanu	12.47583	49.14611	Traschinger Granit Granit von der	granite Medium	Mon	U-Pb	321.0	±3		2000 Propach et al.
Germany	bian Western	13.33940	48.52550	Platte	grained granite	Mon	U-Pb	311.0	±2		2000
	Comoth									un ata an a un hi ana	Dutie et al
Slovakia	ians	20.34270	48.78960	Gemeric Unit	metagabbro	Zr	SHRIMP	304.0	11.0	age	2009
	Western										
Slovakia	Carpath	19 75510	48 78290	Venoric Unit	granitic orthogneiss	7r	SHRIMP	516.0	.7	magmatic age	Putis et al.
JIGYANA	Western	10.70010	-0.10290		Shinoginetas		STINUT	510.0	±ι	aginatic aye	
	Carpath										Putis et al.
Slovakia	ians Western	20.83290	48.82890	Gemeric Unit	metadacite	Zr	SHRIMP	476.0	±7	magmatic age	2008
	Comoth										Putic of ol
Slovakia	ians	20.90130	48.81510	Gemeric Unit	metarhyolite	Zr	SHRIMP	482.0	±6	magmatic age	2008
			-	· · · · ·		-					

	Western Carpath			.,	granitic	_					Putis et al.
Slovakia	ians Western	19.34210	48.72010	Veporic Unit	orthogneiss	∠r	SHRIMP	462.0	±6	magmatic age	2008
	modelin										
Slovakia	Carpath	10 91750	19 99300	Vaparia Unit	granitic	7r	SUDIMD	195.0		magmatic ago	Putis et al.
SIUVANA	Western	19.61750	40.00300		onnogneiss	21	SHRIVIF	465.0	±6	magmatic age	2006
o	Carpath				granitic	_					Putis et al.
Slovakia	lans	19.93330	48.52900	Veporic Unit	orthogneiss	Zr	SHRIMP	497.0	±4	magmatic age	2008
	western										
	Carpath				metaleucoton						Putis et al.
Slovakia	ians	19.96010	48.93000	Veporic Unit	alite	Zr	SHRIMP	492.0	±4	magmatic age	2008
	Western										
	Carpath										Putis et al.
Slovakia	ians	19.96010	48.93000	Veporic Unit	metatonalite	Zr	SHRIMP	503.0	±4	magmatic age	2008
	Western										
	Carpath				tonalitic						Putis et al.
Slovakia	ians	20.16210	48.67880	Veporic Unit	orthogneiss	Zr	SHRIMP	507.0	±4	magmatic age	2008
	Western									×	
	Carnath										Putisetal
Slovakia	ians	20.34270	48.78960	Gemeric Unit	metagabbro	Zr	SHRIMP	383.0	±3	magmatic age	2009
-	Western								-		
	On set the							· · · ·			Dutie et al
Slovakia	carpath	17,17670	48.38630	Tatric Unit	olerite	Zr	SHRIMP	371.0	1	magmatic age	Putis et al. 2009
	French					-			24		
_	Pyrenee			Querigut	Hbl Bt	_				crystalization	Roberts et al
France	S	2.12278	42.65833	Complex	tonalite	Zr	ID-TIMS	307 ± 2		age	2000 Decki menerat
Spain	NW Iberian	-8.96500	43,11100	Malpica-Iui complex	undeformed granite	Bt	Ar-Ar	306+6		variscan igneous rocks	Rodriguez et al 2003
	NW			Malpica-Tui	3.2					variscan	Rodriguez et
Spain	Iberian	-8.82900	43.32900	complex	Granite	Ms	Ar-Ar	304±6		igneous rocks	al 2003
Casia	NW	0.00000	42 22000	Malpica-Tui	Creatite	140		200.0		variscan	Rodriguez et
Spain	Iberian	-8.82900	43.32900	complex Malpica-Tui	Granite	IVIS	Ar-Ar	309 1 6		Igneous rocks	al 2003 Rodriguez et
Spain	Iberian	-8.74500	43.29400	complex	Granite	Ms	Ar-Ar	317±1		igneous rocks	al 2003
	NW			Malpica-Tui	Eclogitic					retrogression	Rodriguez et
Spain	Iberian	-8.97444	43.02306	complex	gneiss	Phe	Ar-Ar	357±3		of eclogites	al 2003
Snain	NW Iberian	-8 96639	43 01556	Malpica-Iui	Eclogitic	Phe	Ar-Ar	353+2		of eclogites	Rodriguez et
opum	ibenan	0.00000	40.01000	oomplex	giloitas	1 110	/ /	00012		or corogitos	ui 2000
	NW			Malpica–Tui	Ky-bearing					eclogite facies	Rodriguez et
Spain	Iberian	-8.96639	43.01556	complex	eclogite	Pg	Ar-Ar	363±10		metamorphism	al 2003
	NIM			Malnica_Tui	Ky-absent					eclogite facies	Rodriguez et
Spain	Iberian	-8.96639	43.01556	complex	eclogite	Phe	Ar-Ar	365±1		metamorphism	al 2003
					-						
	Western										
	Iberian Allochth			Braganca						High grade	Roger and
Portugal	on	-6.73000	41.82111	complex	eclogite	Zr	ID-TIMS	390±4		metamorphism	Matte 2005
	Western										
	Allochth			Bragança				382±2		High grade	Roger and
Portugal	on	-6.73000	41.82111	complex	eclogite	Titanite	ID-TIMS	Ma		metamorphism	Matte 2005
				Bodonal–Cala	and the state of the						
	Ossa-M orena			volcano- sedimentary	sub-volcanic					age of	Romeo et al
Spain	Zone	-6.36873	38.01232	complex	intrusion	Zr	ID-TIMS	530 ± 3		intrusion	2006
	Ossa-M										
Spain	orena	6 2 4 9 2 0	27.04024		Cronite	7.		252 . 4		age of	Romeo et al
opain	Zone Ossa_M	-0.34822	31.94924	Cala granite	Gianite	21	IMIS	აാ∠ ± 4		musion	2000
	orena									age of	Romeo et al
Spain	Zone	-6.28138	37.93519	Teuler granite	Granite	Zr	ID-TIMS	338 ± 2		intrusion	2006
	Ossa-M			Sultana						ane of	Romoo et al
Spain	Zone	-6.27996	37.96741	tonalite	tonalite	Zr	ID-TIMS	341 ± 3		intrusion	2006
	1				I	1	L	I	I	I	I

	Ossa-M										
	orena			Santa Olalla				341.5 ±		age of	Romeo et al
Spain	Zone	-6.21539	37.92004	tonalite	tonalite	Zr	ID-TIMS	3		intrusion	2006
	Ossa-M										
	orena					_				age of	Romeo et al
Spain	Zone	-6.19722	37.96718	Garrote granite	Granite	∠r	ID-TIMS	339 ± 3		Intrusion	2006
	Ossa-M			Aquablanca				229.6 +		ago of	Romoo ot al
Spain	Zone	-6 18646	37 96296	stock	dioritic dykes	7r	ID-TIMS	0.8		intrusion	2006
opani	Austraal	0.10010	01.00200		nomburitio	 monori		0.0		amplacement	Bomor et al
Italy	nine	8.51800	46.12700	Sesia Zone	vein	te	U-Pb	448.0	±5	age	1996
	Erzgebirg				voin	10				uge	Romer et al.
Germany	e	12.92900	50.63900	Greifenstein granite	granite	Uraninite	U-Pb	323.9	±3.5	emplacement	2007
	Erzgebirg										Romer et al.
Germany	e	13.73800	50.80200	Sauberg mine	Granite	apatite	U-Pb	323.9	±2.9	emplacement	2007
	Erzgebirg										Romer et al.
Germany	e	13.76200	50.74100	Altenberg	leucogranite	Мо	Re-Os	323.9	±2.5	emplacement	2007
	Erzgebirg	40 70000	50 00000								Romer et al.
Germany	e	13.73800	50.80200	Sauberg mine	Granite	apatite	U-Pb	317.3	±1.6	emplacement	2007
					Melt pocket						
	Frzgehirg				stockscheider						Romer et al
Germany	e	13.73800	50.80200	Sauberg Mine	pegmatite	Uraninite	Pb-Pb	319.7	+3.4	emplacement	2007
		_		0	Melt pocket				_0.1		
					from	· · ·					
	Erzgebirg				stockscheider						Romer et al.
Germany	e	13.73800	50.80200	Sauberg Mine	pegmatite	Uraninite	Pb-Pb	320.6	±1.9	emplacement	2007
	Erzgebirg				/ /						Romer et al.
Germany	e	13.76200	50.74100	Altenberg	leucogranite	Мо	Re-Os	317.9	±2.4	emplacement	2007
	Central										
Origin	Iberian	0.40000	07.05700	Santa Olalla		7.		0.40 0		emplacement	Romero et al
Spain	Zone	-6.18000	37.85700	pluton	tonalite	Zr	ID-TIMS	340 ± 3		age	2006
	Central			Canta Olalla							Domoro et al
Spain	Zone	-6 18000	37 85700	Santa Orana	monzogranite	7r	IDTIMS	3/8 + 3		emplacement	2006
opani	SE	-0.10000	57.05700	platon	monzogramite	21		540 ± 5		age	2000
	Sardini				Peraluminous						Ronca et al
Italy	а	9.36400	39.17700	Sarrabus dykes	rhyolitic dyke	WR-Ms	Rb-Sr	281 ±3		intrusion age	1999
-	SE										
	Sardini				Peraluminous						Ronca et al
Italy	а	9.40400	39.19300	Sarrabus dykes	rhyolitic dyke	WR-Ms	Rb-Sr	293±3		intrusion age	1999
	SE										
	Sardini				Peraluminous		D 1 O				Ronca et al
Italy	a	9.40400	39.19300	Sarrabusdykes	rhyolitic dyke	WR-MS	Rb-Sr	292±3		intrusion age	1999
	SE				Develuesiaeus						Dance et al
Italy	Sardini	9/1100	30 10000	Sarrabus dykes	revolitic dyke	WR-Me	Rh-Sr	203+3		intrusion age	
nary	SE	0.41100	00.10000	Canabas ayies	inyonito dyio	WICHIG		20010		intradicit age	1000
	Sardini				Peraluminous						Ronca et al
Italy	а	9.36400	39.17700	Sarrabus dykes	rhyolitic dyke	WR-Bt	Rb-Sr	270±3		cooling age	1999
	SE										
	Sardini				Metaluminous						Ronca et al
Italy	а	9.45100	39.34100	Sarrabusdykes	rhyolitic dyke	WR-Bt	Rb-Sr	267±3		cooling age	1999
	SE										
11 - 1	Sardini	0.55000	0044400	0	Metaluminous		Dh. O.	004.0			Ronca et al
пату		9.55900	39.14400	Saliabus dykes	туопис ауке	WR-BI	16-01	204±3		cooling age	1999
	SE Sardini				Motaluminous						Ponce of al
Italy	a	9.56500	39.15700	Sarrabus dykes	rhvolitic dvke	WR-Bt	Rb-Sr	270+3		cooling age	1999
	-				,					recrystalization	
	Ossa-									due to post	
	Morena			Pulo do Lobo		amphib		318 ±		orogenic	Rosas et al
Portugal	Zone	-7.97611	38.34083	unit	granodiorite	ole	K-Ar	11		intrusions	2008
	Central			Palaeozoic	peraluminous			458 ±			Rossietal
France	Corsica	9.12500	41.91600	Nappes	metagranite	Zr	U-Pb	32		protolith age	2009
_	NW			Extra caldera						emplacement	Rossi et al
France	Corsica	8.62276	42.32225	series	andesite	Zr	SHRIMP	333 ± 5		age	2015
F	NW	0.0007-	40.0000-	Extra caldera	a a da atr	7.		000 5		emplacement	Rossietal
⊢rance	Corsica	8.62276	42.32225	series	andesite	∠r	SHRIMP	333 ± 5		age	2015
Franco	Corsico	8 62016	12 32404	Extra caldera	andesito	7r	SHRIMD	332 + 7		emplacement	ROSSI et al
i lance	NW	0.02940	+2.32401	Extra caldora	anueate		SHINIVE	332 ± 1		emplacement	
France	Corsica	8 62946	42 32401	series	andesite	Zr	SHRIMP	332 + 7		age	2015
. 141106	Jonarda	0.02040	72.02701	331100	4.100010		31 11 11 11	302 11		~90	

France	NW Corsica	8.80721	42.36449	Basement	granodiorite	Zr	SHRIMP	342.4 ±		emplacement age	Rossietal 2015
	NW	0.001.21	12100110		granouronto			342.4 ±		emplacement	Rossi et al
France	Corsica	8.80721	42.36449	Basement	granodiorite	Zr	SHRIMP	3.5		age	2015
France	NW Corsica	8.62946	42.35262	Extra caldera series	rhyolite	Zr	SHRIMP	284.2 ± 4.1		emplacement age	Rossietal 2015
France	NW Corsica	8.68860	42.38512	Extra caldera series	rhyolite	Zr	SHRIMP	295 ± 9		emplacement age	Rossietal 2015
France	NW Corsica	8.80691	42.36059	Extra caldera series	rhyolite	Zr	SHRIMP	286.1 ± 2.5		emplacement age	Rossietal 2015
France	NW Corsica	8.80785	42.35947	Extra caldera series	rhyolite	Zr	SHRIMP	290.3 ± 2.4		emplacement age	Rossietal 2015
France	NW Corsica	9.01625	42.44553	Intra caldera series	rhvolite	Zr	SHRIMP	278.1 ± 2.3		emplacement	Rossietal 2015
Franco	NW	0.02526	42 44608	Intra caldera	microgranite	7.		282.8 ±		emplacement	Rossi et al
	NW	9.02330	42.44008	Extra caldera		-		2.3 292.5 ±		emplacement	Rossi et al
France	NW	9.14387	42.66690	series	myodacite	Zr	SHRIMP	2.1 292.5 ±		age emplacement	Rossietal
France	Corsica Central	9.24958	42.65655	Basement Zarza la Mavor	monzogranite	Zr	SHRIMP	2.9		age	2015 Rubio-
Spain	Iberian Zone	-6.86000	39.89200	tonalite–granodi orite	Tonalite	Zr+Mnz	ID-TIMS	478.1 ± 0.8		crystalization age	Ordóñez et al 2012
Spain	Central Iberian Zone	-6.03500	38.27200	Zarza de Montánchez	Tonalite	Mnz	ЕМРА	482 ± 10		crystalization age	Ordóñez et al 2012
Spain	Central Iberian Zone	-6.52700	39.43900	Arroyo de la Luz	Tonalite	Mnz	ЕМРА	470 ± 8		crystalization age	Rubio- Ordóñez et al 2012
Spain	N Iberia	-6.63600	43.12400	Allande Group	diorite	Zr	LA-ICP-MS	575.4 ± 4.8		crystalization age	Rubio- Ordóñez et al 2013
Spain	N Iberia	-6.59300	43.26100	Allande Group	dacitic tuff	Zr	LA-ICP-MS	572.2 ± 4.8		crystalization age	Ordóñez et al 2013
Spain	N Iberia	-6.58300	43.20300	Allande Group	Tonalite	Zr	LA-ICP-MS	568.4 ± 4.1		crystalization age	Rubio- Ordóñez et al 2013
Spain	N Iberia	-6.55700	43.30000	Allande Group	granodiorite	Zr	LA-ICP-MS	566.2 ± 9.1		crystalization age	Rubio- Ordóñez et al 2013
Spain	N Iberia	-6.15100	43.56600	Navelgas Group	ignimbiritic rhyolite	Zr	LA-ICP-MS	557 ± 3.0		crystalization age	Rubio- Ordóñez et al 2013
Spain	Ossa-M orena Zone	-6.34400	38.12800	Calera de León granite	Granite	Zr	evaporatio n	524 ± 4		Emplacement	Salman 2004
Spain	Ossa-M orena Zone	-6.25400	38.01200	Castillo granite	Hbl-Bt Granite	Zr	evaporatio n	502 ± 8		Emplacement	Salman 2004
Spain	orena Zone	-6 23200	38 05500	Culebrín tonalite	tonalite	7r	evaporatio n	532 + 4		Emplacement	Salman 2004
opun	Ossa-M	0.20200	00.00000					002 1 4		Emplacement	
Spain	Zone	-6.28400	37.90900	Teuler granite	tonalite	Zr	n	348 ± 4		Emplacement	Salman 2004
Spain	Ossa-M orena Zone	-6.22300	37.91800	Santa Olalla del Cala tonalite	tonalite	Zr	evaporatio n	332 ± 3		Emplacement	Salman 2004
France	Guernsey , Channel	2 64100	40.46000	Perelle quartz	foliated quartz	7-		(11.4			Samson,
France	Ossa-M	-2.64100	49.46000		dionte	21	0-PD	011.4	2/-1.1	emplacement	Sanchez
Spain	orena Zone	-6.63395	38.22882	Remedios Granite	Granite	Zr	ID-TIMS	517 ±2		crystalization age	Garcia et al 2008
Spain	Ossa-M orena Zone	-6.57428	38.50242	Feria	Rhyolite	Zr	ID-TIMS	502 ± 2		crystalization age	Sanchez Garcia et al 2008
Spain	Ossa-M orena Zone	-6.56015	38.49649	Sierra Vieja Granite	Granite	Zr	ID-TIMS	517.6 ± 5		crystalization age	Sanchez Garcia et al 2008
Spain	Ossa-M orena Zone	-6.55825	38.51019	Zafra	Rhyolite	Zr	ID-TIMS	505 ± 1		crystalization age	Sanchez Garcia et al 2008
Spain	Ossa-M orena Zone	-6.46050	38.43648	Zafra	Rhyolite	Zr	ID-TIMS	512 ± 4		crystalization age	Sanchez Garcia et al 2008

	Ossa–M										Sanchez
	orena					_		504.5 ±		crystalization	Garcia et al
Spain	Zone	-6.45440	38.43072	Zafra	Rhyolite	∠r	ID-TIMS	1.3		age	2008
										granulite-	
										facies	
	NW				pegmatitic					metamorphism	Santos et al
Spain	Iberia	-8.00361	43.70278	Cabo Ortegal	granite	WR-Ms	Rb-Sr	398 ± 4		(sub-duction)	1996
										high-pressure	
										facies	
	NW				pegmatitic					metamorphism	Santos et al
Spain	Iberia	-8.00361	43.70278	Cabo Ortegal	granite	Zr	ID-TIMS	387 ± 1		(sub-duction)	1996
										high-pressure	
										facies	
	NW				pegmatitic					metamorphism	Santos et al
Spain	Iberia	-8.00361	43.70278	Cabo Ortegal	granite	Mnz	ID-TIMS	388 ± 2		(sub-duction)	1996
											Santos
Spain	NW Iberia	-8 97222	43 02778	Malpica-Tuv	meta- granodiorite	WR- Pla-Bt	Rh-Sr	352 + 3		coolin age	Zaldueguia
opun	ibena	0.07222	40.02110	maipiou i uy	gianoaionte	i ig Di		479.5		coonn age	Santos
	NW				meta-			+ 1.6/-		emplacement	Zaldueguia
Spain	Iberia	-8.97222	43.02778	Malpica-Tuy	granodiorite	Zr	ID-TIMS	1.7		age	et al 1995
					homogeneous						
France	Vocaec	7 25800	48 16600	Kausersberg grapite	granite to	7r	CHDINAD	225.9		emplacement	Schaltegger et
Trance	VOSECS	7.20000	40.10000	Raysersberg granice	shoshonitic-	21	STIMINT	525.0	±4.8	emplacement	ul. 1999
Switzerlan	External			Aar Massif	ultrapotassic		U-Pb	334.0	±2.5	intrusion age	Schaltegger&
d	Massifs	8.95000	46.77400		rocks					3	Corfu 1992
Switzerlan	External										Schaltegger&
d	Massifs	8.31200	46.64500	AarMassif	granite		U-Pb	296.5	±2.5	intrusion age	Corfu 1992
Switzerlan	External			Aar Massif	granodiorite	titanite	U-Pb	299.0	±2	intrusion age	Schaltegger&
u	WI a SSITS	8.34600	46.57300								Colla 1992
Switzerlan	External			A or Mossif	ampodiarito		LL Dh	207.0	.2	intrucion ora	Schaltegger&
d	Massifs	8.58700	46.65100	Aarimassii	gianodionie		0-PD	297.0	±∠	initiason age	Corfu 1992
Switzerlen	External									onvetollization	Sabalta gaar ⁸
d	Massifs	9 50400	46 69200	Aar Massif	granite		U-Pb	309.0	±2	age	Corfu 1992
<u> </u>	madano	8.50400	40.06200							ago	00110 1002
Switzerlan	External			Aar Massif	diorite	titanite	U-Pb	310.0	+3	intrusion age	Schaltegger&
d	Massifs	8.58700	46.65100								Corfu 1992
Switzerlan	External										Schaltegger&
d	Massifs	8.80300	46.77800	Aar Massif	diorite		U-Pb	308.0	±2	intrusion age	Corfu 1992
-	Southern										
	Black			Schlächtenhaus							Schaltegger,
Germany	Forest	7.74600	47.70900	granite	granite	Mon	U-Pb	334.0	±2	emplacement	2000
	Southern				amaita						Cabaltanaaa
Germany	Forest	7.88200	47.78900		porphyry dyke	Zr	Pb-Pb	332.0	2/-4	emplacement	2000
· ·	Southern								-/ .		
	Black										Schaltegger,
Germany	Forest	8.07800	47.81300	Bärhalde granite	granite	Zr	Pb-Pb	332.0	±3	emplacement	2000
	Southern										Schaltegger
Germany	Forest	8.08100	47.75200	St. Blasien granite	granite	Zr	Pb-Pb	333.0	±2	emplacement	2000
· ·	Southern						1				
L	Black					L					Schaltegger,
Germany	Forest	8.08300	47.63900	Albtal granite	granite	Zr	U-Pb	334.0	±3	emplacement	2000
	∟rzgebirg e										
	- Crystallin										
	e				fine-grained					HP	Schmadicke et
Germany	Complex	13.06800	50.60000		eclogite	phengite	Ar-Ar	355.0	±2	metamorphism	al. 1995
	Erzgebirg										
	C Crystallin										
	e					Grt-Cpx-				HP	Schmadicke et
Germany	Complex	13.22900	50.80000		eclogite	Wr	Sm-Nd	360.0	±7	metamorphism	al. 1995
<u></u>	Odenwal	0.07000	40 70400		hornblende-		K A	225.0			Schubert et al.
Germany	u Odomusi	8.67600	49.70100		gappro	ны	к-АГ	335.0	±3	empiacement	2001 Schubort of al
Germanv	d	8.84400	49.77300		gabbro	Hbl	K-Ar	329.0	+2	emplacement	2001
, 					strongly		<u> </u>				
					deformed and						
					recrystallized					protolith	Cobulman
Czech Rep.		16,26720	49,45950	Svratka gneiss	gneiss	Zr	U-Pb	515.0	+9	emplacement	2005
	I				-		· ·		<u></u>	1	

Czech Rep.		15.80610	49.85640		pink granite	Zr	Pb-Pb	332.2	±1.2	emplacement	Schulmann et al. 2005
					amphibole						
Croch Pan		15 96510	49 81720	1	bearing	7,	nh nh	340.1		emplacement	Schulmann et al.
Czech kep.		15.90010	40.01720	l'	granodionie	Zr	PD-PD	340.1	±1.1	emplacement	2005 Schulmann et al
Czech Rep.		16.29400	49.37200		(Durbachite)	Zr	U-Pb	323.0	±7	emplacement	2005
	Waidhau		i – – I								
	s-		1 !	1							
Czech Rep.	Rozvadov	12 40500	49 75400	Kreuzstein granite	granite	zinnwalai te	K-Dr	304.0	13	emplacement	Siebel et al. 1999
CZech Nep.	Waidhau	12.70000	40.70400	Kleuzstelli Brunite	glaince	le	N*A1	504.0	±Ζ	emplacement	1999
	S-		1 1	1							
	Rozvadov		!	1							Siebel et al.
Czech Rep.	pluton	12.47900	49.63800	Kreuzstein granite	granite	Mus	K-Ar	301.0	±2	emplacement	1999
	Waidhau		1 !	1							
	s- Rozvadov		1 !	1							Siebel et al.
Czech Rep.	pluton	12.48400	49.74100	Rozvadov granite	granite	Mus	K-Ar	303.0	±2	emplacement	1999
	Waidhau		i – – – – – – – – – – – – – – – – – – –	[
	S-		1 1	Cardiarita Piotita	Contiorito						Ciebel et al
Czech Rep.	nluton	12,52500	49.71800	granite	Cordiente- Biotite granite	Mus	K-Ar	312.0	+7	emplacement	Siedel et al. 1999
	Waidhau			5.0	Dicting of the			-	12		
	s-		1 !					· · · ·			
	Rozvadov	10 50000	10 71 000	Cordierite-Biotite	Cordierite-			207.0			Siebel et al.
Czech Kep.	pluton	12.53800	49.71900	granite	Biotite granite	Mus	K-Ar	307.0	±2	emplacement	1999
	waidhau s-		\sim 2			1					
	Rozvadov										Siebel et al.
Czech Rep.	pluton	12.53900	49.63700	Rozvadov granite	granite	Mus	K-Ar	309.0	±2	emplacement	1999
C Dom	Bor	10.00000	40.07000		tonalites, quartz	1.1-the		210.0			Siebel et al.
Czech Kep.	Pluton	12.66000	49.87900	Bor I granite	diorites	biotite	K-Ar	316.0	±2	emplacement	1999 Siehel of al
Czech Rep.	Bor Pluton	12.66000	49.87900	Bor I granite	diorites	biotite	K-Ar	319.0	+2	emplacement	Siebei et al. 1999
					(monzo-				12		
	Bor)granites,						Siebel et al.
Czech Rep.	Pluton	12.75500	49.76200	Bor II granite	granodiorites	biotite	K-Ar	320.0	±2	emplacement	1999
Crech Ren	Bor	12 75500	49 76200	Por III granite	leucomonzogran	hiotite	V-Ar	321.0		omplacement	Siebel et al.
CZech nep.	Bor	12.70000	49.70200	Boringianite	leucomonzogran	DIOLILE	K-AI	321.0	±2	emplacement	Siehel et al.
Czech Rep.	Pluton	12.99200	49.70600	Bor III granite	ites	Mus	K-Ar	306.0	±3	emplacement	1999
				l	(monzo-						
	Bor	10.00000		1)granites,						Siebel et al.
Czech Rep.	Pluton	12.99200	49.70600	Bor II granite	granodiorites	biotite	K-Ar	315.0	±2	emplacement	1999
	Moidanu bian-		1 !	1						onestage	
	Saxothuri		1 !	1						magmatic	
Germany	ngia	12.10400	49.96800	Reuth-Erbendorf	redwitzite	Zr	Pb/Pb	323.5	±3.7	crystallisation	Siebel et al. 2003
	Moldanu										
	bian- Sayothuri		1 !	Marktrodwitz							
Germany	ngia	12.12000	50.00500	granite	granite	Zr	Pb/Pb	324.2	+4.2	emplacement	Siebel et al. 2003
·· ·	Moldanu			0	8	-	,		27.2	71 p. 1	
	bian-		1 !	1						onestage	
Comany	Saxothuri	12 21500	40 76300	Wurz Usenhach	rodwitzito	7.	oh/Oh	273.1		magmatic	Ciobol et al. 2003
Germany	ngia Moldanu	12.21500	49.70300	Wurz-iiselibacii	reuwitzite	Zr	P0/P0	323.1	±1.4	Crystallisation	Sleber et al. 2003
	bian-		1 !	1							
	Saxothuri		1 1	Leuchtenberg							
Germany	ngia	12.27200	49.60000	granite	granite	Zr	Pb/Pb	323.9	±2.8	emplacement	Siebel et al. 2003
	Moldanu		['	ſ		Γ			Γ	anctaca	\Box
	Saxothuri		1 !	Tirschenreuth-						magmatic	
Germany	ngia	12.41900	49.85000	Mähring	redwitzite	Zr	Pb/Pb	323.0	±1.6	crystallisation	Siebel et al. 2003
	Moldanu		i – – – – – – – – – – – – – – – – – – –								
	bian-		1 !	1							
Germany	Saxothuri ngia	12.06500	49.90100	Steinwald granite	granite	7r	Ph/Ph	312.1	1-7 A	granite formation	Siehel et al, 2003
Germany	Moldanu	12.00000	40.00100	Steniwald Branne	glaince	Ζι	FUJFU	512.1	±2.4	glanice formation	Sieber et un 2005
	bian-		1 1	1							
	Saxothuri			1							
Germany	ngia	12.09200	49.86400	Friedenfels granite	granite	Zr	Pb/Pb	311.8	±3.8	emplacement	Siebel et al. 2003
	Moldanu bian-		1 1	1							
	Saxothuri		1 !	Zainhammer							
Cormany	ngia	12.10600	49.84100	granite	granite	Zr	Pb/Pb	321.1	±1.2	emplacement	Siebel et al. 2003
Jermany	0.		•								

Çizelge K.1 (d	levam): İzotopi	ik yaşların literatür	derlemesi.
----------------	-----------------	-----------------------	------------

	Moldanu										
	bian-									onestage	
	Saxothuri									magmatic	
Germany	ngia	12.11800	50.01000	Marktredwitz	redwitzite	Zr	Pb/Pb	321.6	±1.7	crystallisation	Siebel et al. 2003
	Moldanu										
	bian-			Laurah tarah aras							
Germany	Saxothuri	12 16600	10 70000	rapite	granite	7r	Ph/Ph	322.6		emplacement	Siebel et al. 2002
Germany	Moldanu	12.10000	43.13000	granite	granite	21	10/10	522.0	±1.4	emplacement	Sieber et al. 2003
	hian-										
	Saxothuri										
Germany	ngia	12.17300	49.82500	Falkenberg granite	granite	Zr	Pb/Pb	314.6	±1.5	emplacement	Siebel et al. 2003
	Moldanu								-		
	bian-				coarse-grained						
	Saxothuri				biotite-mus						
Germany	ngia	12.21900	49.96700	Mitterteich granite	granite	Zr	Pb/Pb	309.5	±6.2	emplacement	Siebel et al. 2003
	Moldanu										
	bian-									onestage	
Cormonu	Saxothuri	12 22600	40 75000	Wurn Heenheeh	ro du vitalito	7-	Dh/Dh	222.7		magmatic	Cichol et al. 2002
Germany	ngid Maldamu	12.22000	49.75000	wurz-nsenbach	redwitzite	Zr	PD/PD	322.7	±3.7	crystallisation	Siebei et al. 2003
	hian-										
	Saxothuri										
Germany	ngia	12.27500	49.86200	Falkenberg granite	granite	Zr	Pb/Pb	315.5	+2 7	emplacement	Siebel et al. 2003
	Moldanu										-
	bian-										
	Saxothuri										
Germany	ngia	12.33900	49.80300	Liebenstein granite	granite	Zr	Pb/Pb	315.0	±1.2	emplacement	Siebel et al. 2003
	Moldanu										
	bian-										
	Saxothuri										
Germany	ngia	12.34400	49.73700	Flossenbürg granite	granite	Zr	Pb/Pb	309.9	±2.9	emplacement	Siebel et al. 2003
C	Bavarian	40 54000	40.04000		granite	7.	ph ph	222.0			Cishelet al 2000
Germany	Forest	12.51800	49.01600		porphyry dyke	Zr	PD-PD	323.0	±2	emplacement	Siebel et al. 2006
Cormonu	Bavarian	12 55000	40.01200		2 mino granito	Monazit	LLDh	222.0		om als com out	Sighal at al. 2000
Germany	Porest	12.55000	49.01200	Stallward	2 mica granite	e	0-PD	323.0	±4	emplacement	Siebei et al. 2006
Germany	Forest	12 61100	49 03700	granodiorite	granodiorite	7r	Ph-Ph	324.0	1.2	emplacement	Siebel et al. 2006
Germany	Bayarian	12.01100	40.00100	granoulonice	granoulonic	21	1010	524.0	IZ	emplacement	Sieber et al. 2000
	Forest	12,98300	49.01100	Patersdorf Granite	granite	7r	Pb-Pb	323.4	+1.6	emplacement	Siebel et al. 2006
	Bavarian				8				1.0		
	Forest	12.98300	49.01100	Patersdorf Granite	granodiorite	Zr	U-Pb	326.0	+3	emplacement	Siebel et al. 2006
	Bavarian				-					-	
	Forest	13.21800	48.93500	Rinchnach Granite	granodiorite	Zr	U-Pb	325.0	±3	emplacement	Siebel et al. 2006
	Bavarian										
	Forest	13.21800	48.93500	Rinchnach Granite	granite	Zr	Pb-Pb	329.2	±2.1	emplacement	Siebel et al. 2006
	Bavarian										
	Forest	12.98300	49.01100	Patersdorf Granite	granite	Zr	Pb-Pb	322.0	±2	emplacement	Siebel et al. 2006
	Bavarian										
	Forest	13.21800	48.93500	Rinchnach Granite	granite	Zr	Pb-Pb	320.4	±6.5	emplacement	Siebel et al. 2006
	Moldanu										
Germany	bian	12.82300	48.91700	Metten Granite	granite	Zr	Pb-Pb	324.2	±5.0	emplacement	Siebel et al. 2008
	Moldanu					_					
Germany	bian	12.96500	49.09000	Arnbruck Granite	granite	Zr	Pb-Pb	325.3	±2.1	emplacement	Siebel et al. 2008
	Moldanu	40.40000	40.05400			_					
Germany	bian	13.48600	48.95400	Lusen Granite	granite	Zr	PD-PD	324.9	±3.5	emplacement	Siebel et al. 2008
Cormany	Moldanu	13 51000	49 92500	Haidal Granita	granito	7r	Dh Dh	222.4		omplacement	Sighal at al. 2008
Germany	Maldanu	13.31000	40.03300	Haldel Granite	granite	21	FU-FU	525.4	±2.6	emplacement	Siebei et al. 2008
Germany	hian	13 57200	48 94300	Finsterau I Granite	granite	7r	Ph-Ph	325 9		emplacement	Siebel et al. 2008
Germany	Moldanu	10.07200	40.04000	i instellaar Granite	giunite	21	1010	525.5	±1.9	emplacement	Sieber et al. 2000
Germany	bian	13.59100	48.92000	Finsterau II Granite	granite	Zr	Pb-Pb	324.1	+1 8	emplacement	Siebel et al. 2008
	Moldanu							521	±1.0		
Germany	bian	13.77800	48.77900	Steinberg Granite	granite	Zr	Pb-Pb	328.1	+1 7	emplacement	Siebel et al. 2008
	Moldanu				•						
Germany	bian	13.79300	48.81500	Dreisessel Granite	granite	Zr	Pb-Pb	327.1	±1.9	emplacement	Siebel et al. 2008
	Moldanu			Plöckenstein	-						
Germany	bian	13.80200	48.78500	Granite	granite	Zr	Pb-Pb	324.8	±3.4	emplacement	Siebel et al. 2008
	Moldanu			Sattelpeilnstein	1						
Germany	hian	12.65200	49.10000	Granite	granite	Zr	Pb-Pb	322.3	±3.4	emplacement	Siebel et al. 2008
	Diali										1
	Moldanu										
Germany	Moldanu bian	12.76300	49.15300	Miltach Granite	granite	Zr	Pb-Pb	321.8	±3.7	emplacement	Siebel et al. 2008
Germany	Moldanu bian Moldanu	12.76300	49.15300	Miltach Granite	granite	Zr	Pb-Pb	321.8	±3.7	emplacement	Siebel et al. 2008
Germany Germany	Moldanu bian Moldanu bian	12.76300	49.15300	Miltach Granite Metten Granite	granite granite	Zr Zr	Pb-Pb Pb-Pb	321.8 321.0	±3.7 ±3.8	emplacement emplacement	Siebel et al. 2008 Siebel et al. 2008
Germany Germany	Moldanu bian Moldanu bian Moldanu	12.76300 12.81800	49.15300 48.88200	Miltach Granite Metten Granite	granite granite	Zr Zr	Pb-Pb Pb-Pb	321.8 321.0	±3.7 ±3.8	emplacement emplacement	Siebel et al. 2008 Siebel et al. 2008

	Moldanu										
Germany	bian	13.70700	48.76400	Haidmühle Granite	granite	Zr	Pb-Pb	320.7	±1.6	emplacement	Siebel et al. 2008
Portugal	Iberian Zone	-7.50389	39.28472	Carrascal Massif	gabbro	Zr	evaporatio n	471 <u>±2</u>		emplacement age	Sola et al 2005
Portugal	Central Iberian Zone	-7.50389	39.28472	Carrascal Massif	biotite granite	Zr	evaporatio n	468±4		emplacement age	Sola et al 2005
Portugal	Ossa- Morena transitio n Zone	-7.43167	39.20944	Urra Formation	rhyolitic volcaniclastic	Zr	SHRIMP	494.6 ± 6.8		magmatic age	Sola et al 2008
Portugal	Ossa- Morena transitio n Zone	-7.36389	39.20167	Urra Formation	rhyolitic volcaniclastic	Zr	SHRIMP	488.3 ± 5.2		magmatic age	Sola et al 2008
Portugal	Ossa-M orena Zone	-7.72194	39.24250	Aldeia da Mata tonalite	tonalite	Zr	SHRIMP	306.2±3 .0		emplacement age	Sola et al 2009
Portugal	Ossa-M orena Zone	-7.66833	39.36444	Nisa monzogranite	monzogranite	Zr	SHRIMP	307.4± 4	_	emplacement age	Sola et al 2009
Spain	NE Iberia	2.32397	41.56130	Catalan Coastal Ranges	leucogranite	K- feldspar	Ar-Ar	191.5±3 .2		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.32802	41.57609	Catalan Coastal Ranges	leucogranite	K- feldspar	Ar-Ar	191.0±1 .5		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.22256	41.48779	Catalan Coastal Ranges	granodiorite	K- feldspar	Ar-Ar	283.2±3 .7		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.32296	41.50914	Catalan Coastal Ranges	tonalite	biotite	Ar-Ar	286.1±2 .8		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.32397	41.56130	Catalan Coastal Ranges	leucogranite	biotite	Ar-Ar	285.3±2 .8		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.40704	41.61859	Catalan Coastal Ranges	quartz gabbro	amphib ole	Ar-Ar	291.1±2 .5		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.41970	41.61145	Catalan Coastal Ranges	tonalite	biotite	Ar-Ar	284.5±3 .0		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.52311	41.58625	Catalan Coastal Ranges	granodiorite	biotite	Ar-Ar	287.8±2 .9		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.62334	41.68030	Catalan Coastal Ranges	homblende gabbro	amphib ole	Ar-Ar	291.2±6 .0		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.42786	41.58537	Catalan Coastal Ranges	leucogranite	K- feldspar	Ar-Ar	269.3±2 .4		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.32296	41.50914	Catalan Coastal Ranges	tonalite	K- feldspar	Ar-Ar	225.2±3 .2		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.34042	41.55923	Catalan Coastal Ranges	leucogranite	K- feldspar	Ar-Ar	205.0±1 .9		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.34891	41.54982	Catalan Coastal Ranges	granodiorite	K- feldspar	K-Ar	251±11		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.47836	41.63110	Catalan Coastal Ranges	leucogranite	K- feldspar	Ar-Ar	249.5±2 .5		coolin age (emplacement)	Sole et al 2002
Spain	NE Iberia	2.52311	41.58625	Catalan Coastal Ranges	granodiorite	K- feldspar	K-Ar	216±9		coolin age (emplacement)	Sole et al 2002

Spain	NE Iberia	2.61514	41.64380	Catalan Coastal Ranges	granite	K- feldspar	Ar-Ar	209.1±2 .5		coolin age (emplacement)	Sole et al 2002
Czech Rep.	NE Bohemia n Massif	16.92400	50.05900		granodiorite	Zr	SHRIMP	344.5	±1.1	syntectonic emplacement	Stipska et al. 2004
Czech Rep.	NE Bohemia n Massif	17.04400	50.30200		granodiorite	Zr	SHRIMP	339.4	±1.1	syntectonic emplacement	Stipska et al. 2004
Czech Rep.	NE Bohemia n Massif	16.98300	50.36800	Rychleby granulite belt	migmatitic orthogneiss	Zr	Pb-Pb	507.1	±1	protolith emplacement	Stipska et al. 2004
Germany		11.69700	50.12800	Münchberg Massif	kyanite free eclogite	Wr	Sm-Nd	480.0	±23	igneous formation of the eclogite protolith	Stosch, Lugmair, 1990
France	Vosges	6.71200	47.90500	Southern Vosges	fine-grained granite	Zr	U-Pb	339.1	±4.9	emplacement	Tabaud et al. 2016
France	Vosges	6.76700	47.93000	Central Vosges	light facies granite	Zr	U-Pb	337.4	±2.1	emplacement	Tabaud et al. 2016
France	Vosges	6.79500	48.02100	Central Vosges Granite	biotite-bearing granite	Zr	U-Pb	324.2	±3.7	emplacement	Tabaud et al. 2016
France	Vosges	6.84000	47.85200	Southern Vosges	porphyritic granite	Zr	U-Pb	336.3	±3.5	emplacement	Tabaud et al. 2016
France	Vosges	6.94200	48.03900	Central Vosges	granite	Zr	U-Pb	336.5	±1.9	emplacement	Tabaud et al. 2016
France	Vosges	6.97400	48.17000	Central Vosges Granite	weakly foliated biotite granite	Zr	U-Pb	321.6	±2.8	emplacement	Tabaud et al. 2016
Spain	NW Iberia	-8.54759	42.59350	Galician gneisses	metagranite	Zr	LA-ICP-MS	497 ± 6		crystalization age	Talevera et al 2013
Spain	NW Iberia	-7.80021	42.02463	Galician gneisses	metagranite	Zr	LA-ICP-MS	486 ± 8	<	crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-6.45761	41.07998	Castilian gneisses	metagranite	Zr	LA-ICP-MS	489 ± 5		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-6.27427	41.24181	Castilian gneisses	metagranite	Zr	LA-ICP-MS	486 ± 6		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-5.57558	40.79349	Castilian gneisses	metagranite	Zr	LA-ICP-MS	492 ± 4		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-5.50848	40.52619	Castilian gneisses	metagranite	Zr	LA-ICP-MS	488 ± 3		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-5.31196	40.64692	Castilian gneisses	metagranite	Zr	LA-ICP-MS	498 ± 4		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-4.44620	40.70368	Castilian gneisses	metagranite	Zr	LA-ICP-MS	489 ± 9		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-4.26527	40.57125	Castilian gneisses	metagranite	Zr	LA-ICP-MS	490 ± 5		crystalization age	Talevera et al 2013
Spain	Central Iberian Zone	-3.88673	39.83472	Castilian gneisses	metagranite	Zr	LA-ICP-MS	489 ± 7		crystalization age	Talevera et al 2013
Spain	NW Iberia	-8.96084	42.78328	Galician gneisses	metagranite	Zr	LA-ICP-MS	481 ± 5		crystalization age	Talevera et al 2013
Spain	NW Iberia	-8.69299	42.45998	Galician gneisses	metagranite	Zr	LA-ICP-MS	475 ± 6		crystalization age	Talevera et al 2013
Spain	NW Iberia	-8.04811	42.10380	Galician gneisses	metagranite	Zr	LA-ICP-MS	482 ± 7		crystalization age	Talevera et al 2013
Spain	NW Iberia	-7.95325	42.16988	Galician gneisses	metagranite	Zr	LA-ICP-MS	476 ± 9		crystalization age	Talevera et al 2013
Spain	NW Iberia	-7.80335	42.03112	Galician gneisses	metagranite	Zr	LA-ICP-MS	480 ± 10		crystalization age	Talevera et al 2013

	Central										
	Iberian			Castilian						crystalization	Talevera et
Spain	Zone	-6.02590	41.10039	gneisses	metagranite	Zr	LA-ICP-MS	471 ± 7		age	al 2013
	Central										
	Iberian			Castilian	metagranite					crystalization	Talevera et
Spain	Zone	-4.29071	40.78525	gneisses	(leucocratic)	Zr	LA-ICP-MS	484 ± 6		age	al 2013
-1	Central			5	(,						
	Iberian			Castilian						crystalization	Talevera et
Spain	Zono	4 26465	40 57411	anaiman	motograpito	7.		472 . 0		crystanzation	al 2012
opain	Zone	-4.20403	40.37411	gneisses	metagianite	21	LA-ICF-IVIS	473±0		aye	ai 2013
	Central										
	Iberian			Castilian		_				crystalization	l alevera et
Spain	Zone	-4.25719	40.57816	gneisses	metagranite	∠r	LA-ICP-MS	478 ± 7		age	al 2013
	Central										
	Iberian			Castilian	metagranite					crystalization	Talevera et
Spain	Zone	-4.25043	40.79362	gneisses	(melanocratic)	Zr	LA-ICP-MS	476 ± 5		age	al 2013
	Central										
	Iberian			Castilian						crystalization	Talevera et
Spain	Zone	-4.15214	39.86080	aneisses	metagranite	Zr	LA-ICP-MS	480 ± 8		age	al 2013
•	Central			°						0	
	Iberian			Castilian						crystalization	Talevera et
Spain	Zono	2 02002	40 92424	anaiman	motograpito	7.		102.0		crystanzation	al 2012
Spain	20116	-3.03002	40.02421	gileisses	metagianite	21	LA-ICF-IVI3	402 ± 0		aye	ai 2013
	Central			o							- 1
o ·	iberian			Castilian		-				crystalization	l alevera et
Spain	Zone	-3.71805	40.93980	gneisses	metagranite	∠r	LA-ICP-MS	481 ± 9		age	al 2013
	NW			Galician						crystalization	Talevera et
Spain	Iberia	-8.86209	43.31949	gneisses	metagranite	Zr	LA-ICP-MS	470 ± 6		age	al 2013
	NW			Galician						crystalization	Talevera et
Spain	Iberia	-8.04199	42.08979	gneisses	metagranite	Zr	LA-ICP-MS	462 ± 8		age	al 2013
-	South										
	Armorica							/			
	n Shear										Tartese et al
France	Zone	-3 19680	47 97480	Pontivy granite	granite	\A/P	Ph-Sr	344.0			2011
Trance	Countle	-0.19000	41.31400	r ontroy granite	granite	VVIX	10-31	344.0	±8		2011
	South										
	Armorica										
_	n Snear		17								l'artese et al.
France	Zone	-2.80320	47.86360	Bignan granite	granite			337.0	±13		2011
	South										
	Armorica										
	n Shear			St-Thurien							Tartese et al.
France	Zone	-3.67305	47.96388	metagranite	metagranite	Zr	U-Pb	316.0	5/-3	emplacement	2011
	South										
	Armorica										
	n Shear			Lizio syn-tectonic							Tartese et al.
France	Zone	-2.66160	47.82860	granite	2 mica granite	Mus	Ar-Ar	308.2	+0.6	emplacement	2011
	South			-	-				20.0	-	
	Armorica										
	n Shear			Lizio syn-tectonic							Tartese et al
France	Zone	-2 65400	17 82000	granite	2 mica granite	Muc	Ar-Ar	211 5		emplacement	2011
Trance	20116	-2.03400	47.02300	granite	2 mica granite	IVIUS		511.5	±0.4	emplacement	2011
	South										
	Armorica										
	n Shear			Lizio syn-tectonic			LA-ICPMS/				Tartese et al.
France	Zone	-2.65400	47.82900	granite	2 mica granite	Zr	U-Pb	319.0	±15	emplacement	2011
	South										
	Armorica										
	n Shear			Lizio syn-tectonic			LA-ICPMS/				Tartese et al.
France	Zone	-2.60030	47.83410	granite	4 mica granite	Zr	U-Pb	316.4	±5.6	emplacement	2011
	South										
	Armorica										
	n Shear			Lizio syn-tectonic							Tartese et al.
France	Zone	-2 57510	47 88400	granite	2 mica granite	Mus	Ar-Ar	310 5	+0.4	emplacement	2011
	South								±0.4		
	Armories										
	ATTIONCa			Linia aug to store							Tartasa -t -l
F	n Snear	0 50 175	47 0000-	Lizio syn-tectonic	2					and a large state of the second state of the s	rartese et al.
France	Zone	-2.50470	47.86990	granite	2 mica granite	IVIUS	Ar-Ar	309.5	±0.4	emplacement	2011
					biotite-						
	Moldanu				plagioclase						Teipel et al.
Germany	bion Zono	13 36362	48,90420	Baverischer Wald	gneiss	Zr	SHRIMP	480.0	±6	magmatism	2004
	Dian Zone	10.00002			°						
	Dian Zone	10.00002			•				-	minimum age for	
	Moldanu	10.00002			eclogitic				-	minimum age for magmatic	Teipel et al.
Germany	Moldanu bian Zone	12.40810	49.49417	Bayerischer Wald	eclogitic amphibolite	Zr	SHRIMP	481.0	±8	minimum age for magmatic crystallization	Teipel et al. 2004

	Moldanib icum	12.51500	49.49200	Südlischen Oberpfalzer Wald	metabasite	Zr	SHRIMP	481.0	±8	protolith emplacement	Teipel, 2003
	Mauges Precambr			Cholet-Thouars							
F	ian	0.00700	40.00000	complex/Thouars		-		540.0			THIÉBLEMONT
France	terrane	-0.36760	46.99980	Cholet-Thouars		Zr	U-b	519.0	14/-10	emplacement	et al. 2001
	Mauges Precambr			volcano-plutonic complex/La							
Franco	ian	0 21200	47 07490	Mouclerie			Dh Dh	521.1		omplacement	THIÉBLEMONT
France	Erzgebirg	0.31290	47.07400	granouionte			PD-PD	521.1	±/./	protolith	Tichomirowa et
	e Erzgebirg	13.35900	50.94800	Inner Grey Gneiss	Grey Gneiss	Zr	Pb-Pb	541.0	±2	emplacement protolith	al. 2001 Tichomirowa et
	e	13.60100	50.93900	Inner Grey Gneiss	Grey Gneiss	Zr	U-Pb	528.0	±6	emplacement	al. 2001
	Erzgebirg e	13.57820	50.96090	Freiberg dome	Granite gneiss	Zr	Pb-Pb	547.0	±4	emplacement	Tichomirowa et al. 2012
	Erzgebirg e	12.79270	50.54070	Schwarzenberg dome	Granite gneiss	Zr	Pb-Pb	487.0	±4.1	emplacement	Tichomirowa et al. 2012
	Erzgebirg e	13.23770	50.62520	Reitzenhain- Catherine dome	Granite gneiss	Zr	Pb-Pb	488.9	+17	emplacement	Tichomirowa et al. 2012
<u></u>		40.00000	54 42000		2 mica	7.	ok ok	550.0	14.7		tikhomirova,
Germany	Lusatia	13.99000	51.13800		2 mica	Zr	PD-PD	550.0	±10	emplacement	tikhomirova,
Germany	Lusatia	14.37000	51.11500		granodiorite muscovite	Zr	Pb-Pb	569.0	±25	emplacement	2002
Germany	Lucatia	14 68200	51 13500		bearing biotite	7r	Pb-Pb	542.0		emplacement	tikhomirova,
Germany	Lusaua	14.00200	51.15500		2 mica	21	10-10	543.0	±5	emplacement	tikhomirova,
Germany	Lusatia	14.68200	51.13500		granodiorite Medium-	Zr	Pb-Pb	550.0	±10	emplacement	2002
Czech Ben		12 75100	49 98900	Marianske Lazne	grained, mafic	7r	LLPh	539.0		protolith emplacement	Timmermann et
					retrogressed				-		
					and strongly deformed						
				Marianske Lazne	amphibolite surrounding	· .				protolith	Timmermann et
Czech Rep.		12.81200	50.05200	Complex	eclogite	Zr	U-Pb	540.0	±	emplacement	al. 2004
Czech Rep.	1	12.75100	49.98900	Marianske Lazne Complex	grained, mafic eclogite	Zr	U-Pb	337.0	±	metamorphic/ana tectic event	Timmermann et al. 2004
					retrogressed and strongly					timing of the	
					deformed amphibolite					strong retrogression	
Czech Rep		12 81200	50 05200	Marianske Lazne	surrounding	titanite	LLPh	265.0		within the	Timmermann et
Czech kep.	Tepla	12.01200	30.03200	complex	eciogite	utanite	0-PD	505.0	±/	ampribolites	ai. 2004
Czech Rep.	Crystallin e unit	12.77900	49.93800		Garnet-bearing metabasite	Zr	U-Pb	500.0	±	protolith emplacement	Timmermann et al. 2006
	Tepla				Medium to						
	Crystallin				coronitic					protolith	Timmermann et
Czech Rep.	e unit	12.89700	49.96700	The North Tregor	metagabbro Monzogranite,	Zr	U-Pb	496.0	±	emplacement	al. 2006 TRAUTMANN,
		-3.33000	48.80200	Batholith	granodiorite	Zr	U-Pb	615.0	13/-7	emplacement	et al. 2002
France	Bretagne	-1.05400	48.02500	Pertre massif	type)	Mus	K-Ar	367.5	+7	emplacement	TRAUTMANN, et al. 2002
					peraluminous (S-				-'		
France	Bretagne centrale	-1.05400	48.02500	Pertre massif	type) leucogranite	Zr	Pb-Pb	377.6	±9.2	emplacement	TRAUTMANN, et al. 2002
	Norther				meta-						
Austria	n Calcare			Kellerjochgneiss	pegmatite	Zr	тімз	462.0	±1	magmatism age	Tropper et al. 2016
	ous Alps	11.75700	47.33700		UINE						
	Norther									magnatism	Troppor et al
Austria	Calcare			Kellerjochgneiss	orthogneiss	Zr	TIMS	468.0	±1	age	2016
	ous Alps Central	11.75700	47.33700								
Portugal	Iberian Zone	-7 60200	40 37900	Cota biotite	biotite	Zr+Mo-		306+0		emplacement	Valle Aguado
	Berleng	-1.00200	-10.37 600	monzogramites			סואו ו-שי	300 <u>±</u> 9		490	ot al 2000
	as Archipel			Berlengas	biotitic			305.2 ±		emplacement	Valvarde Vaquero et al
Portugal	ago	-9.51000	39.41333	granite	granite	Zr+Mnz	ID-TIMS	0.5		age	2011

	Berleng										
	as Archipel			Farilhões	anatectic two-			376.0 +		emplacement	Valvarde Vaquero et al
Portugal	ago	-9.39083	39.36139	anatectic granite	mica granite	Mnz	ID-TIMS	3.0		age	2011
											.,
	Central				megacrystic			488 +			Valverde Vaguero and
Spain	Zone	-3.42900	40.67200	Buitrago gneiss	granite	Zr	ID-TIMS	10/-8		protolith age	Dunning 2000
	Central				foliotod			40.2			Valverde
Snain	Iberian Zone	-3 45400	40 65800	Buitrago gneiss	follated	7r		482 +		protolith age	Vaquero and
Opani	20116	-3.43400	40.00000	Duniago grieras	leucogianne	21		37-0		piotontinage	Dunning 2000
	Central										Valverde
	Iberian				foliated			482 +			Vaquero and
Spain	Zone	-3.42900	40.67200	Buitrago gneiss	aplitic vein	Zr+Mnz	ID-TIMS	14/-11		protolith age	Dunning 2000
	Central										Valverde
	Iberian				granitic			468 +			Vaquero and
Spain	Zone	-3.28200	41.13200	Riaza gneiss	orthogneiss	Zr	ID-TIMS	16/-8		protolith age	Dunning 2000
	Galicia-										Mala and a
	I rás-os- Montos									constalization	Valverde-
Spain	Zone	-7.94056	43.51778	Queiroga Series	Rhvolite	Zr	ID-TIMS	475 ± 2		age	2005
-1	Moravo-					-					
	Silesian				andesine,						van Breemen et
Czech Rep.	Zone	16.50600	49.15100	Brno pluton	hornblend diorite	Zr	U-Pb	584.0	±5	emplacement	al. 1982
Croch Bon	Moldanu	12 92700	10 28400	Blatna granodiorite	granodiorite and	Mr	Ph Sr	221.0		omplacement	van Breemen et
czech kep.	Diali	13.83700	49.38400		Muscovite	VVI	NJ-31	331.0	±4	emplacement	dl. 1902
	Moldanu				bearing						van Breemen et
Czech Rep.	bian	14.45200	49.32800	Bechyne gneiss	pegmatite	Wr	Rb-Sr	331.0	±5	thrusting	al. 1982
		10.05000									Venera et al.
Czech Rep.		13.35300	50.08300	l is granite	biotite granite	Zr	PD-PD	504.8	±1.1	emplacement	2000
Czech Rep.		13.47200	50.04200	stock	e granodiorite	Zr	Pb-Pb	373.1	±1.1	emplacement	2000
	Massif										
France	central	1.63970	45.88290	Auriat Granite		Biotite	Rb-Sr	329.0	±13	emplacement	Vialette, 1965
Eranco	Massif	1 74020	45 22500	Comil Granito	Tardimigmatitiq	Piotito	Dh Cr	240.0		omplacement	Vialotto 1065
Fiance	Massif	1.74030	43.23390	Conni Granite	Tardimigmatitin	BIOLILE	NJ-31	349.0	±20	emplacement	Vialette, 1905
France	central	1.74030	45.23590	Cornil Granite	ue granite	Biotite	Rb-Sr	352.0	±19	emplacement	Vialette, 1965
	Massif				-						
France	central	2.37730	45.40360	Ussel Granite		Biotite	Rb-Sr	330.0	±3	emplacement	Vialette, 1965
F	Massif	0.07700	45 40200	Una de Caracita		Di atita	Dh.C.	222.0			Vi-latta 1005
France	central	2.37730	45.40360	Ussel Granite		BIOTITE	KD-Sr	332.0	±8	emplacement	vialette, 1965
France	central	2.75020	45.76120	Gelles Granite		Biotite	Rb-Sr	332.0	+4	emplacement	Vialette, 1965
	Massif										
France	central	3.04250	45.69670	Royat Granite		Biotite	Rb-Sr	334.0	±11	emplacement	Vialette, 1965
_	Massif										
France	central	3.47700	45.75090	Saint-Die Granite	grain fin	Biotite	Rb-Sr	337.0	±9	emplacement	Vialette, 1965
France	Massif	3 52830	45 67110	Saint Die Granite	gain moyen granite	Biotite	Rh-Sr	328.0	+12	emplacement	Vialette 1965
Thanke	Massif	0.02000	40.07110	Gien-Sur-Cure	granice	Diotite	10 51	520.0	±12	emplacement	vialette, 1905
France	central	4.02180	47.10070	Granite		Biotite	Rb-Sr	332.0	±10	emplacement	Vialette, 1965
	Massif			Gien-Sur-Cure							1
France	central	4.02180	47.10070	Granite		Biotite	Rb-Sr	334.0	±7	emplacement	Vialette, 1965
France	Massif	4 0 2 2 2 0	47 15210	Sottone Granita		Piotito	Ph Sr	220.0		omplacement	Vialotta 1005
riance	Massif	4.02320	+1.15510	Settons Granite		DIOULE	10-31	328.0	±4	emplacement	vidiette, 1905
France	central	4.02320	47.15310	Settons Granite		Biotite	Rb-Sr	335.0	±15	emplacement	Vialette, 1965
	Massif										
France	central	4.06450	46.99950	Haut-Folin Granite		Biotite	Rb-Sr	326.0	±12	emplacement	Vialette, 1965
-	Massif	4.0007	45 700 45								
France	central	4.32270	45.78240	Salt Granite	1	BIOTITE	KD-Sr	331.0	±4	emplacement	vialette, 1965

	1					1	1				
France	Massif	4.38260	46.61920	Charolais granite		Biotite	Rb-Sr	348.0	+15	emplacement	Vialette, 1965
	Massif				Pegmatite vein	Lepidolit			115		,
France	central	1.47050	45.99840	Chedeville Massif	in 2 mica granite	e	Rb-Sr	298.0	±13	emplacement	Vialette, 1965
France	Massif	1 75570	46 44500	Crozant Massif	Pegmatite vein	Lepidolit	Rh-Sr	292.0		emplacement	Vialette 1965
Trance	Massif	1.7 007 0	40.44000	Villefranche de	In 2 mice granice	с —	100 51	252.0	1 4	emplacement	vialette, 1905
France	central	2.13100	44.34230	Rourgue Granite	granite	Biotite	Rb-Sr	276.0	±12	emplacement	Vialette, 1965
	Massif				Granite-Facies						
France	central	2.37070	43.62230	Sidobre Granite	sombre Granita facios	Biotite	Rb-Sr	298.0	±6	emplacement	Vialette, 1965
France	central	2.40780	43.66040	Sidobre Granite	clair	WR	Rb-Sr	297.0	+26	emplacement	Vialette, 1965
	Massif				Pegmatite vein	Lepidolit				-	
France	central	2.47450	46.36610	Montebras Massif	in 2 mica granite	e	Rb-Sr	293.0	±6	emplacement	Vialette, 1965
France	Massif	2 97020	47 42920	d'Avallan Cranita	2 mice granite	Diatita	Dh Ca	205.0		omploagment	Vielette 1005
France	Massif	3.07920	47.42030	d Availon Granite	2 mica granite	ыоше	KD-ST	295.0	±12	empiacement	Vialette, 1965
France	central	4.44250	46.35170	Charolais granite	aplitique granite	Biotite	Rb-Sr	296.0	±9	emplacement	Vialette, 1965
					pegmatite in						
F	Massif	4 50050	44.00400) (-) () (Migmatitic		ph.C.	270.0			Welette 4005
France	Central	4.59650	44.98160	velay Massir	granite	ivius	KD-ST	279.0	±4	emplacement	vialette, 1965
France	central	4.60500	46.80530	St-Mard-deVaux	Granite	Mus	Rb-Sr	260.0	+11	emplacement	Vialette, 1965
	Massif					· · · · ·					7
France	central	0.00000	0.00000	Montsaunin	microgranite	biotite	Rb-Sr	308.0	±10	emplacement	Vialette, 1965
France	Massif	0.00000	0.00000	Desubant	minung an aite	histite	Dh.C.	218.0		omploagment	Vielette 1005
France	Massif	0.00000	0.00000	Beaubery	Pegmatite vein	biotite	KD-ST	518.0	±8	empiacement	Vialette, 1965
France	central	1.05600	45.85240	Cognac Massif	in 2 mica granite	Mus	Rb-Sr	300.0	±10	emplacement	Vialette, 1965
	Massif				Pegmatite vein	Lepidolit					
France	central	1.37730	46.06060	Bessines Massif	in 2 mica granite	e	Rb-Sr	301.0	±8	emplacement	Vialette, 1965
France	Massit	1 38300	46 16690	Chanteloube Massif	Pegmatite vein	Lepidolit	Rh-Sr	301.0	10	emplacement	Vialette 1965
Trance	Massif	1.50500	40.10030	Chanteloube Wassi	In 2 mica granice	e	10-51	501.0	±9	emplacement	vialette, 1505
France	central	1.80900	46.20920	Gueret Granite		Biotite	Rb-Sr	315.0	±4	emplacement	Vialette, 1965
_	Massif	4.05700									
France	central	1.85720	45.58010	Millevaches Granite	2 mica granite	Biotite	Rb-Sr	300.0	±5	emplacement	Vialette, 1965
France	central	1.85720	45.58010	Millevaches Granite	2 mica granite	WR	Rb-Sr	309.0	+25	emplacement	Vialette, 1965
	Massif				0						,
France	central	1.85720	45.58010	Millevaches Granite	2 mica granite	Mus	Rb-Sr	310.0	±5	emplacement	Vialette, 1965
	Massif				pegmatite in						
France	central	2.10150	45.51560	d'Egletons Massif	granite	Mus	Rb-Sr	303.0	+9	emplacement	Vialette, 1965
	Massif				<u> </u>						,
France	central	2.25600	45.56410	Meymac Granite		Biotite	Rb-Sr	320.0	±8	emplacement	Vialette, 1965
France	Massif	2.25600	45 56410	Maumaa Granita		Diatita	Dh Ca	220.0		omploagment	Vielette 1005
France	Massif	2.25600	45.56410	weymac Granite		ыоше	KD-ST	320.0	±5	empiacement	Vialette, 1965
France	central	2.25600	45.56410	Meymac Granite		Biotite	Rb-Sr	322.0	±8	emplacement	Vialette, 1965
	Massif				Granite-facies						
France	central	2.40780	43.66040	Sidobre Granite	clair	Biotite	Rb-Sr	304.0	±5	emplacement	Vialette, 1965
France	Massif	2 94510	46 17710	d'Echassieres Massif	Pegmatite vein	Lepidolit	Rh-Sr	305.0		emplacement	Vialette 1965
Trance	Massif	2.04010	40.17710	Mayet-de	IT 2 mice gramice	с —	100 51	505.0	15	emplacement	vialette, 1905
France	central	3.61890	46.08140	Montagne Granite		Biotite	Rb-Sr	314.0	±13	emplacement	Vialette, 1965
	Massif			Montaiguet-en-							
France	central	3.77080	46.31120	Forez Granite		Biotite	Rb-Sr	320.0	±7	emplacement	Vialette, 1965
France	central	3.81020	47.26180	Lormes Granite		Biotite	Rb-Sr	312.0	+8	emplacement	Vialette, 1965
	Massif				Muscovite						,
France	central	3.83920	45.73750	Roc Blanc Granite	Granite	Mus	Rb-Sr	306.0	±3	emplacement	Vialette, 1965
France	Massif	2 96250	45 92000	Saint-Julien-la		Piotito	Ph Cr	212.0		omplacoment	Vialette 1005
FIGILE	Central	3.00350	40.03990	vetre Granite		BIOLITE	ND-21	312.0	±9	emplacement	vidiette, 1965

France	Massif central	3.87920	47.42830	d'Avallon Granite	2 mica granite	Mus	Rb-Sr	306.0	±4	emplacement	Vialette, 1965
	Massif										
France	central	3.91960	46.71450	Luzy Granite		Biotite	Rb-Sr	303.0	±10	emplacement	Vialette, 1965
France	Massif central	3.92670	46.68180	Les Saccards	microgranite	biotite	Rb-Sr	306.0	±20	emplacement	Vialette, 1965
France	Massif central	4.20860	47.28130	Saulieu Granite		Biotite	Rb-Sr	303.0	±9	emplacement	Vialette, 1965
France	Massif central	4.41390	46.50160	Charolais granite	porphyroid granite	Biotite	Rb-Sr	311.0	±6	emplacement	Vialette, 1965
France	Massif central	4.47100	46.73970	St-Julien-sur- Dheunes	2 mica granite	Mus	Rb-Sr	303.0	±8	emplacement	Vialette, 1965
France	Massif central	4.59650	44.98160	Velay Massif	pegmatite in Migmatitic granite	Biotite	Rb-Sr	300.0	±9	emplacement	Vialette, 1965
France	Massif central	4.62930	44.83040	Velay Granite	granite with cordiorite nodules	Biotite	Rb-Sr	312.0	±5	emplacement	Vialette, 1965
France		0.00000	0.00000	St Quay gabbro- diorite	gabbro-diorite	Wr	Rb-Sr	583.0	±40	emplacement	Vidal et al. 1981
Spain	Central Iberian Zone	-4.39100	40.77200	Sierra de Guadarrama	granite	Bt	Rb-Sr	296 ± 14		emplacement age	Villaseca et al 1995
Spain	Central Iberian Zone	-4 06700	40 62300	Sierra de Guadarrama	granite	WR	Rb-Sr	284+13		emplacement	Villaseca et
opun	Central Iberian		10.02000	Sierra de	giainto			275 ±		emplacement	Villaseca et
Spain	Zone Central	-4.04800	40.65900	Guadarrama	granite	Bt	Rb-Sr	12		age	al 1995
Spain	Iberian Zone	-3.62000	40.86000	Sierra de Guadarrama	granite	Bt	Rb-Sr	286 ± 6		emplacement age	Villaseca et al 1995
Spain	Central Iberian Zone	-3.62000	40.86000	Sierra de Guadarrama	granite	Bt	Rb-Sr	291 ± 12		emplacement	Villaseca et al 1995
	Central Iberian			Sierra de	3			261 ±		emplacement	Villaseca et
Spain	Zone	-4.04800	40.65900	Guadarrama	granite	WR	Rb-Sr	33		age	al 1995
	Iberian	1 0 1000	40.05000	Sierra de			16.4	262.1 ±			Villaseca et
Spain	Zone Central	-4.04800	40.65900	Guadarrama	granite	Bt	K-Ar	5.2		cooing age	al 1995
Spain	lberian Zone	-4.39100	40.77200	Sierra de Guadarrama	granite	WR	Rb-Sr	323 ± 47		emplacement age	Villaseca et al 1995
. .	Central Iberian			Sierra de				299 ±		emplacement	Villaseca et
Spain	Zone Central	-4.01500	40.83300	Guadarrama	granite	WR	Rb-Sr	55		age	al 1995
Spain	lberian Zone	-3.62000	40.86000	Sierra de Guadarrama	granite	Bt	K-Ar	255.4 ± 6.5		cooing age	Villaseca et al 1995
0	Central Iberian	4 004 00	40 77000	Sierra de		D.	16.4	249.1 ±			Villaseca et
Spain	Central	-4.39100	40.77200	Sierra de	granite	ы	K-AI	4.0		cooing age	Villaseca et
Spain	Zone	-3.62000	40.86000	Guadarrama	granite	Bt	K-Ar	6.0		cooing age	al 1995
Spain	Iberian Zone	-3.62000	40.86000	Sierra de Guadarrama	granite	Bt	K-Ar	228.6 ± 5.6		cooing age	Villaseca et al 1995
Czech Rep.	Teplá–Ba rrandian Zone	16.05699	49.79290	Miřetín Pluton	porphyritic Amp–Bt granodiorite	Zr	ICP MS	345.9	±5	emplacement	Vondrovic et al. 2011
Czech Rep.	Moldanu bian Zone	14.27800	48.87400	The Blansky Les granulite complex	pyroxene- bearing felsic granulite	Zr	Pb-U	366.0	±5	protolith emplacement	Wendt et al. 1994
Czech Rep.	Moldanu bian Zone	14.34400	48.87900	The Blansky Les granulite complex	pyroxene-free felsic granulite	Zr	Pb-U	365.0	±11	protolith emplacement	Wendt et al. 1994
Germany	N Bohemia n Massif	13.64600	51.05000	Meissen massif	monzonite	Amph	Ar-Ar	329.9	±1.2	emplacement	Wenzel et al. 1997

	Tepla–Ba										
	rrandian			the Stenovice	granodiorite-ton						
Czech Rep.	unit	13.43333	49.65000	pluton	alite	Zr	U–Pb	375.0	+2	emplacement	Zak 2011
	Tepla-Ba										
	rrandian										
Czech Rep.	unit	13.54216	50.03332	the Cista pluton	granodiorite	Zr	Pb/Pb	373.1	+1 1	emplacement	Zak 2011
					0						
	Harz				fine-middle						
Germany	Mountain	10.54061	51.79463	Brocken	grained granite	Zr	U-Pb	283.0	+2 1	intrusion	Zech et al. 2010
					porphyry-				22.1		
	Harz				micronegmatitic						
Germany	Mountain	11.02879	51,73006	Ramberg granite	grained granite	Zr	U-Pb	283.0	+2.8	intrusion	Zech et al. 2010
ocimany	mountain		0	namberg grunte	Branica Branice		0.0	20010	12.0		200101010
	Central				cordierite-						
	Iberian			Colmenar	bearing			306 5+1		emplacement	Zeck et al
Snain	Zone	-5 95278	40 40000	granite	biotite granite	7r	SHRIMP	5		ane	2006
opani	Control	0.00210	40.40000	giunte	biotite giunite	21	OTINI	.0		age	2000
	Iberian							306 8+1		emplacement	Zeck et al
Spain	Zone	-5 71444	40 47000	Ledrada granite	biotite granite	7r	SHRIMP	Q		ano	2006
opani	Control	-3.7 1444	40.47000	Leurada granne	biotite glainte	21	OFICIAL	.5		age	2000
	Uborion			moto	moto			205 6 1		omplocoment	Zook of ol
Spain	Zono	E 20061	10 50000	mela-	meta-	7.	CUDIMD	305.6±1		emplacement	Zecketai
Spain	Zone	-5.39861	40.52083	gabbiononite	gabbiononite	ZI	SHRIMP	.4		age	2006
_	MGCR/			Thuringian		_					
Germany	Ruhla	10.51500	50.84500	Hauptgranite	granite	Zr	Pb-Pb	337.3	±3.9	emplacement	Zeh et al. 2000
				Ruhla Crystalline	graphic granite						
Germany	MGCR	10.45000	50.83800	Complex	dyke	Zr	SHRIMP	347.6	±4.8	emplacement	Zeh et al. 2003
										zr formation	
										during anatexis	
								/		and initial	
						· · · · ·				cooling,	
										accompanied by	
				Ruhla Crystalline	graphic granite					melt	
Germany	MGCR	10.45000	50.83800	Complex	dyke	Zr	SHRIMP	355.2	±5.7	crystallisation	Zeh et al. 2003
				/						crystallisation	
				Ruhla Crystalline						age of the	
Germany	MGCR	10.45600	50.83500	Complex	metadiorite	Zr	U-Pb TIMS	339.5	+0.6	metadiorite	Zeh et al. 2003
				Ruhla Crystalline							
Germany	MGCR	10.45600	50.83500	Complex	granite dyke	Zr	SHRIMP	353.7	+6	emplacement	Zeh et al. 2003
,	MGCH-				0 , .				10		
	Kyffhaus										
	er										
	Crystallin										
	e y stanni			Hornblende gabbro	bomblende						
Germany	Complex	11 05251	51 42642	complex	gabbro	7r	LI-Ph	340.7		emplacement	Zeb et al. 2005
Germany	Complex Maccu	11.00201	01.42042	complex	Bappio	21	015	540.7	±1.1	emplacement	201000
	MGCH-										
	Kytthaus										
	er Coustallin										
	Crystallin			Romtal Intrucivo							
Cormany	Complay	11 09141	51 41550	Complex	grapito (grov)	7r	LL Db	227.1		omplacement	Zob ot al. 2005
Germany	complex	11.00141	51.41550	complex	granite (grey)	21	0-FD	557.1	±1.0	emplacement	Zen et al. 2005
	MGCH-										
	Kytthaus										
	er										
	Crystallin										
	e	44 00470	E4 44000	Borntai Intrusive	diauta (. 1911)	7	LL Dh				7-6-4-2 2005
Germany	Complex	11.08170	51.41990	Complex	diorite (schlieric)	Zr	U-Pb	336.6	±0.5	emplacement	Zeh et al. 2005
	MGCH-										
	Kyffhaus										
	er										
	Crystallin										
	e										
Germany	Complex	11.10500	51.41893	Barenkopf granite	granite	Zr	U-Pb	337.0	±2.7	emplacement	Zeh et al. 2005
	Fore-										
	Sudetic			Wadroze Wielkie	granodioritic						Zelazniewicz et
Poland	Block	16.27900	51.12000	granodioritic gneiss	gneiss	Zr	U-Pb	548.0	±9	emplacement	al. 2004
	Czech			Bitouchov	1						Zelazniewicz et
Czech Rep.	Sudetes	15.35200	50.62200	granodiorite	granodiorite	Zr	U-Pb	540.0	11/-10	emplacement	al. 2004
· ·	Polish		-	Platerowka				-	, 10		Zelazniewicz et
Poland	Sudetes	15.35500	50.98600	granodiorite	granodiorite	Zr	U-Pb	533.0	+9	emplacement	al. 2004
	Tenla'-B										
	arrandian			Mrachice				1			Zulauf et al
Czech Ren	unit	12 91400	49 49600	trondhiemite	trondhiemite	7r	LIPh	523.0	4/ 5	emplacement	1997
ercennep.	Topla' D	12.01400	-55000	aonangennie	aonanjenille	-'	5.5	525.0	4/-5	complacement	
	arrandian							1			Zulauf et al
Czech Pen	unit	13 14400	49 51500	Tesovice granite	hiotite granite	7r	I I–Ph	521 7		emplacement	1997
erconnep.	unit.	10.17400	-0.01000	. coorice graffile	sionic granite	-'	5.0	521.7	±Ζ	emplacement	

EK L : Avrupa Hersinidlerinin dağılımı.

Şekil L.1 : Avrupa Hersinidlerinin dağılımı.

SLOVAKIA Budapest HUNGARY Belgrade BOSNIA AND HERZEGOVINA SERBIA Saraje MONTENEGRO Podgori OFM Tirana ALBANIA Karbonifer yaşlı çökeller Devoniyen yaşlı çökeller Silüriyen yaşlı çökeller Ordovisyen yaşlı çökeller Kambriyen yaşlı çökeller Proterozoyik temel

EK M : Avrupa Hersinidlerinden derlenen yaş verilerinin dağılımı.

Şekil M.1 : Avrupa Hersinidlerinden derlenen yaş verilerinin dağılımı.

EK N : Ediyakaran-üst Karbonifer yaş aralığındaki yay magmatiklerinin manyetik anomali haritası ile deneştirilmesi.

Şekil N.1 : Ediyakaran-üst Karbonifer yaş aralığındaki yay magmatiklerinin manyetik anomali haritası ile deneştirilmesi.

EK O: Yay ile ilişkili magmatik ve metamorfik kayaçların kılavuz hatlar ile deneştirilerek yay cephelerinin çizilmesi.

Şekil O.1 : Yay ile ilişkili magmatik ve metamorfik kayaçların kılavuz hatlar ile deneştirilerek yay cephelerinin çizilmesi. Kırmızı çizgiler yay cephelerini, turuncu çizgiler kılavuz hatları mavi çizgiler ise tekrarlanan yayları ayıran olası faylar.

EK P : Geç Karbonifer-erken Permiyen'e ait palinspastik yeniden yapılandırma.

Şekil P.1 Geç Karbonifer-erken Permiyen'e ait palinspastik yeniden yapılandırma.

ÖZGEÇMİŞ

Ad-Soyad Doğum Tarihi ve Yeri E-posta

: Nalan LOM CEBECİ : 14.08.1985 EMMERICH (ALMANYA) : nalanlom@gmail.com

ÖĞRENİM DURUMU:

•	Lisans	: 2008, İstanbul Teknik Üniversitesi, Maden Fakültesi, Jeofizik
		Mühendisliği Bölümü
•	Vülgaldigang	· 2011 İstanbul Taknik Üniyargitasi Ayrasya Var Pilimlari

• Yükseklisans : 2011, İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, Yer Sistem Bilimleri Programı

MESLEKİ DENEYİM VE ÖDÜLLER:

- 2013-2017 yılları arasında İstanbul Teknik Üniversitesi Avrasya Yer Bilimleri Enstitüsü'nde Araştırma Görevlisi olarak çalıştı.
- TÜBİTAK 113Y081 numaralı projede bursiyer olarak yer aldı.
- TÜBİTAK 109Y128 numaralı projede bursiyer olarak yer aldı.
- 2017 yılında İstanbul Teknik Üniversitesi'nde doktorasını tamamladı.

DOKTORA TEZİNDEN TÜRETİLEN YAYINLAR, SUNUMLAR VE PATENTLER:

- Lom, N., Ülgen, S.C., Sakınç, M., Şengör, A.M.C., 2016. Geology and stratigraphy of Istanbul region. in Sen S. (ed.), Late Miocene mammal locality of Küçükçekmece, European Turkey. Geodiversitas 38 (2): 175-195. http://dx.doi.org/10.5252/g2016n2a3 (published on June 24th)
- Sağdıç, N.G., **Lom, N.,** Ülgen, S.C., Şengör, A.M.C., 2016. Reconstructing the Tethys. 09/2016 SEG 2016 conference: Tethyan Tectonics and Metallogeny, İzmir, Turkey
- Lom, N., Domeier, M., Ülgen, S.C., İşseven, T., Şengör, A.M.C., 2016. Palaeomagnetic results from the Palaeozoic of Istanbul: A hypothesis for Remagnetization, 04/2016, Proceedings of the EGU General Assembly 2016, Vienna, Austria

- Ülgen, S. C., **Lom, N.,** Sunal, G. and Natal'in, B. A., Şengör, A.M.C., 2016, Main Stratigraphic and Structural Features of the Palaeozoic Sequence of the İstanbul, AAPG Petroleum Systems of Alpine-Mediterranean Fold Belts and Basins' conference, 19th-20th May 2016, Bucharest
- Lom, N., Ülgen, S. C. and İşseven, T., Şengör, A.M.C., 2015. Preliminary paleomagnetic results from the İstanbul Zone: eastern extent of the Hercynian orogenic belt? Geological Society of America, Abstracts with Programs, v. 47, no. 7, p. 744. GSA Annual Meeting in Baltimore, Maryland, USA (1-4 November)
- Ülgen, S. C., Lom, N., Sunal, G. and Natal'in, B. A., Şengör, A.M.C., 2015. Structural features and tectonic evolution of Palaeozoic sequence in Istanbul Zone, NW Turkey: Geological Society of America, Abstracts with Programs, v. 47, no. 7, p. 156. GSA Annual Meeting in Baltimore, Maryland, USA (1-4 November)
- Lom, N., Ülgen, S.C., İşseven, T., Natal'in, B.A., Şengör, A.M.C., 2015. The eastern extent of the Hercynian orogenic belt: The history of the Istanbul Zone before and during the assembly of the Pangaea. Variscan 2015, Rennes, France, 9-11 June 2015
- Ülgen, S.C., **Lom, N.,** Özgül, N., Sunal, G., Şengör, A.M.C., 2014. An attempt for understanding the history of the Istanbul Palaeozoic on a structural basis during the assembly of the Pangaea, 04/2014, Proceedings of the EGU General Assembly 2014, Vienna, Austria
- Lom, N., Ülgen, S.C., N., Özgül, Şengör, A.M.C., 2014. Is the Palaeozoic of Istanbul a part of Gondwana-Land or Laurasia, or both?, 04/2014, Proceedings of the EGU General Assembly 2014, Vienna, Austria