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AIRCRAFT DETECTION FROM LARGE SCALE REMOTE SENSING
IMAGES WITH DEEP LEARNING TECHNIQUES

SUMMARY

Computer vision and artificial intelligence are not new fields in people’s lives. In order
to automate the problems in our lives in a way that does not require human resources,
problem-specific morphological methods were investigated and tried over the years.
Recently, these morphological approaches have been replacing by deep learning
methods in many fields thanks to the hardware which came up with high computational
power, a vast amount of data in the digital world and rapid development of machine
learning and deep learning algorithms.

As in every field, these methods are also used in the analysis of remotely sensed images
and their usage is becoming more widespread. The analysis of satellite images plays a
very important role in many areas such as defining forest areas and fires, monitoring
of cultivated areas in agricultural lands, city and road planning, security and military
surveillance, disaster and crisis management. Considering the satellite images, which
can cover many square kilometers of areas, it is very costly and time-consuming to
perform these analyzes by people. In addition, in order to obtain accurate results, it is
also necessary, that the people to be used for these tasks, must be experts in their field.
Regard all, it is expected that the obtained computer vision system should give both
fast results and at least as much accurate as of the people.

In the analysis of satellite images, computer vision solutions are categorized into three
main topics as classification, segmentation and object detection. Classification and
segmentation are examined in the sub-topics as pixel-based classification, scene
classification, semantic segmentation, and instance segmentation. In all these analyses,
convolutional neural network(CNN), a deep learning architecture which utilizes the
spatial and spectral correlations on the image can be used and high performances can
be achieved.

In this study, aircraft detection from satellite imageries with deep architectures and
traditional methods was discussed. Different object detection algorithms based on deep
learning approaches were trained and tested. For the evaluation, the images containing
airport areas were manually labeled. A detection flow algorithm was developed for
large scale satellite images for rapid detection and high accuracy. The effects of using
different architectures and the effects of training methods on the performance were
investigated.
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BUYUK OLCEKLi UZAKTAN ALGILAMA GORUNTULERINDEN DERIN
OGRENME TEKNIKLERI ILE UCAK TESPITi

OZET

Bilgisayarli gorii ve yapay zeka konular1 insan hayatinda yeni bir alan degil. Yillardir
hayatlarimizdaki problemleri insan kaynagi gerektirmeyecek sekilde otomatize
edebilmek adina probleme 6zel morfolojik yontemler aragtirilmakta ve denenmektedir.
Son zamanlarda donanimlardaki yiliksek hesaplama giicli, veri miktart ve
algoritmalarin hizli gelisimiyle birlikte bir¢ok alanda bu morfolojik yaklagimlar yerini
derin 6grenme yontemlerine birakmaya bagladi.

Her alanda oldugu gibi uydu goriintiilerinin analizlerinde de bu yontemler ilgi
gormekte ve kullanimi yayginlagsmaktadir. Uydu goriintiilerinin analizi  orman
alanlarinin ve yanginlarinin belirlenmesi, tarim arazilerindeki ekili alanlarin takibi,
sehir ve yol planlamasi, giivenlik ve askeri gozetlemeler, afet ve kriz yonetimi gibi
bircok konuda ¢ok Onemli roller oynamaktadir. Kilometrelerce karelik alanlari
icerebilen uydu goriintiileri disiinildiiglinde, bu analizlerin insan tarafindan
yapilabilmesi ¢cok maliyetli ve zaman gerektiren islemlerdir. Ayrica dogru sonuglari
elde edebilmek icin analiz gorevinde kullanilacak insanlarin, alaninda uzman kisiler
olmasi1 da gerekmektedir. Tiim bunlar diisliniildiigiinde probleme 6zgii olusturulacak
bilgisayarl1 gorii sisteminin hem hizli sonug verebilmesi, hem de en az insanlar kadar
yiiksek dogruluk oraninda ¢alismasi beklenmektedir.

Uydu goriintiilerinin analizinde bilgisayarli gorii ¢oziimleri siniflandirma, boliitleme
ve nesne tespiti olarak ii¢ baglik altinda toplanir. Siiflandirma ve béliitleme ise kendi
icinde pixel tabanl siniflandirma, alan siniflandirmasi, anlamsal boliitleme ve 6rnek
boliitleme seklinde alt bagliklarda incelenir. Tiim bu analizlerde goriintii tizerindeki
konumsal ve spektral korelasyonlardan faydalanan derin 6grenme mimarisi olan
evrisimli sinir aglari(CNN) kullanilabilmekte ve yiiksek basarimlar elde edilmektedir.

Bu calismada uydu goriintiilerinden ucak tespiti konusu ele alinmis, geleneksel
yontemler ile derin 6grenme teknigine dayali farkli sinir ag1 mimarileri egitilmis ve
test edilmistir. Test i¢in havalimani1 bolgelerini igeren goriintiilerde elle etikeletme
yapilmustir. Biiyiik Olgekli goriintiilerde hizli tespit ve yiiksek basarim igin bir
algoritma gelistirilmis, farkli mimarilerin kullanimi1 ve egitim yontemlerinin basarima
etkileri incelenmistir. Calismada Oncelikle literatiir taranmis ve farkli yaklasimlar
incelenmis, daha sonra makine 6grenmesi temelleri hakkinda bilgi paylasiimistir.
Makine O6grenmesinin alt bashigi olan derin 6grenme konusuna da deginilmistir.
Calismanin bel kemigini olusturan evrisimsel sinir aglart tanitilmistir ve temel
kavramlari lizerinde durulmustur.

Derin 6grenme teknikleriyle ¢alisan nesne tespit modelleri evrigimsel sinir aglarin
Oznitelik ¢ikarict olarak kullanmaktadirlar. Dolayisiyla ¢alismanin  metodoloji
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kisminda CNN ile nesne tespit mimarilerinin kesistigi kisimlara deginilmis, son
teknoloji tespit mimarileri incelenmistir. Biiyiik 6lgekli uydu goriintiilerinde hizli ve
yiiksek basarimla tespit gerceklestirebilmek icin kayan pencere yontemi ve azami
baskilama algoritmalarindan yararlanilmistir. Veri seti olarak “A Large-scale Dataset
for Object Detection in Aerial Images (DOTA)” veriseti ve ayrica test igin hazirlanan
5 biiyiik havalimani goriintiisiinii iceren bir veriseti kullanilmistir. Mimarilerin
egitimleri i¢in farkli parametreler ve optimizasyon yontemleri denenmis ve sonuglar
COCO Metrik API kullanilarak 12 farkli metrik i¢in ¢ikarilmistir. Buna ek olarak
modellerin F1 skorlar1 da incelenmis ¢alismanin tespit sonuglar1 havalimani
bolgelerini igeren biiyiik 6lgekli uydu goriintiilerinden elde edilerek paylagilmistir.

Tespit mimarilerinde siniflandirma islemine ek olarak konumlandirma problemine de
¢Ozlim aranir. Siniflandirma problemlerinde derin 6grenme mimarilerinin bagarilarinin
artmasiyla birlikte nesne tespiti i¢in de "Single Shot Multibox Detector (SSD), Faster
Region-based Convolotional Neural Network (Faster R-CNN), Yolo Look Only Once
(YOLO-v3)" gibi farkli mimariler ortaya ¢ikmistir. Bu mimariler, nesne tespiti
yapilabilmesi i¢in gerekli olan siniflandirma ve konumlandirma problemlerini tek bir
sinir ag1 ve yliksek basarimlar ile ¢ozebilmektedirler. Bu son teknoloji mimariler
giinliik hayattaki nesnelerin video goriintiileri izerinden tespitinin yapildigi "Common
Objects in Context (COCO) ve Pattern Analysis, Statistical Modeling and
Computational Learning (Pascal VOC)" gibi yarismalarda yiiksek basarimlar elde
ettiler ve hizli sonug saglayabildikleri i¢cin de ¢okca kullanilmaktadirlar. Ayn1 sekilde
son yillarda uydu goriintiilerinden nesne tespiti icin de kullanilmaya baslanmis ve
tatmin edici sonuclar elde edilmistir.

Derin 0grenme algoritmalarinin egitiminde mimarilerin yapisinin yaninda, uygun
veriseti hazirlanmasi, parametre secimi, optimizasyon yontemleri ve egitim
sonuglarint  anlamlandirabilmek ¢ok oOnemlidir. Bu amagla ucak tespitini
gerceklestirebilmek icin gayet kapsamli ve cesitliligi bol olan DOTA verisetinde
bulunan ucak 6rnekleri kullanilmistir. Veri sayisinin fazla olmasi egitilen modellerin
her kosula uygun ve daha basarili olmalarini saglamaktadir. Dolayisiyla egitimlerin
her adiminda tiim 6rneklere rastgele olacak sekilde kesme, dondiirme uygulanip, renk
ve doygunluk degerleri degistirilerek, veri c¢oklama islemi uygulanmistir.
Parametreler egitim asamasinda modellerin kayip degerleri incelenerek 6grenme
egilimlerine gore belirlenmistir. Yolo-v3 modelinin egitiminde kullanilmak iizere bazi
parametrelerin belirlenmesinde gozetimsiz bdliitleme algoritmast olan K-means
algoritmasindan yararlanilmistir. Ug farkli nesne tespit mimarisi icin de “Stochastic
Gradient Descent (SGD), Root Mean Square Propagation (Rms-prop) ve Adaptive
Moment Optimization (Adam)” optimizasyon yontemlerinden yararlanilmistir.

Egitilmis modellerle biiyiik olgekli uzaktan algilama goriintiilerinde ucgak tespiti
yapabilmek i¢in kayan pencere yontemi ile biiyiik goriintiiler taranmaktadir. Derin
ogrenme algoritmalar1 maliyetli ¢6ziimler olduklari igin olabildigince hizli olabilmek
adina ve tespit edilemeyen nesne kalmamasi i¢in pencere sayisi optimum olacak
sekilde ve pencerelerin kesisim bolgelerinin alani verisetlerinde bulunan ortalama
ucak boyutlarinda tutulmustur. Tespit islemi bu sekilde gerceklestirildikten sonra
kesisim olan bolgelerde ayni nesne i¢in olusacak birden fazla tespiti eleyebilmek adina
azami baskilama algoritmas1 uygulanmstir.

Caligmanin sonunda egitilen modellerin ayr1 ayr1 hem DOTA verisetinden ayrilan test
ornekleri, hem de bu tez g¢alismasi i¢in hazirlanmig 5 adet biiyiik 6lgekli uydu
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gorlntiisii lizerinde degerlendirilmesi yapilmistir. Performans 6lgiimii icin COCO
degerlendirme formati esas alinarak nesne boyutlarina ve goriintii basina yapilan tespit
miktarina gore ortalama hassasiyet (AP) ve ortalama duyarlilik (AR) metrikleri
hesaplanmistir. Ayrica yine nesne boyutlarina gore hassasiyet ve duyarlilik egrileri
cizdirilerek grafikler {izerinden konumlandirma hatasi, arka plan karisikligi, kacan
tespit orani, farkli iou (intersection over union) degerleri igin basarimlari
yorumlanmistir. Ayrica DOTA verisetinin egitim ve test kismi ile yine biiyiik olgekli
uydu goriintiileri i¢in toplam hassasiyet, duyarlilik ve ikisinin harmonik ortalamasi
olan F1 metrigi hesaplanarak modellerin egitim verisetine ne kadar yakinsadigi ve
O0grenme isleminin bagaris1 gézlenmistir.
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1. INTRODUCTION

The computer vision has been a subject that has been focused by researchers for years
and they tried problem-specific morphological methods to overcome the issues in this
field. As in other kinds of data, the rapid increase in visual data and the need for
processing and getting information from them, exponentially increase the allocation of
the resources for these studies day by day. The process of extracting information from
visual data requires a large amount of manpower depending on the size of the data and
that brings very high financial burdens with it. Therefore, the algorithms that are faster
than human and at least as accurate as they are being studied. In addition, the desire of
getting done of the daily works or heavy and dangerous works by autonomous systems

is another factor that accelerates computer vision researches.

The computer vision is mainly divided into three main topics as segmentation,
classification and object detection. Segmentation and classification are divided into
sub-topics such as for instance segmentation, semantic segmentation, pixel-based
classification, and scene classification. The semantic segmentation is usually a
representation of the classes with shapeless boundaries according to the correlation of
the neighbor pixels. The instance segmentation method is also able to separate objects
boundaries belonging to the same categories which intersect between each other at an
area. The scene classification technique simply treats the whole image patch and
predicts which category it belongs to. The pixel-based classification progresses by
classifying all pixels in the image one by one. It is usually effective to use this method
in data such as hyperspectral remote sensing images which have much more band
information, but it requires much processing power and long processing time. The
problem of object detection is the process of finding the individual structures in the

image separately and usually showing them with the bounding boxes.

Detecting the objects from satellite images has great importance in military
applications, urbanization, agriculture, natural disaster, and crisis management.
However, in comparison to natural images, this process needs much more expertise

for satellite imageries with very low spatial resolution and also which contain very



large areas. In addition, the results will depend entirely on the decisions of the people
working on these tasks, it is possible to make the wrong conclusions. Generally, the
objects that are tried to be detected from satellite images are man-made structures like
water tanks, buildings, bridges, aircrafts, ships, vehicles and natural objects like
islands, lakes et cetera. However, the complexity of the background and the variety of
objects make this task quite challenging. We can think of object detection as a
combination of two fundamental tasks, namely the classification of the objects and
defining their location on the image. The studies to date, have focused on the

improvement of these two tasks separately or together.

In the early studies, a large part of the target detection studies has been tried to be
performed by unsupervised methods using different feature extraction methods. For
example, synthetic aperture radar (SAR) images used the wavelet transform in ship
detection [1]. Scale-invariant feature transform (SIFT) key points and graph theorem
were used in the detection of buildings from panchromatic images [2]. However, such
unsupervised methods often yield successful results for objects with simple structure

types and very few variations.

Subsequently, they focused on supervised methods to detect objects with different
structures from more complex scenes to achieve higher performance. The main reason
for achieving more successful results in supervised methods is that the learning process
is carried out by obtaining information from the samples that were previously labeled
manually for the training phase. Before the use of convolutional neural network (CNN)
[3] structures became widespread, different handcrafted features such as SIFT [4], the
histogram of oriented gradients (HOG) [5], Gabor [6], etc. were used for classification
step of the object detection task by methods such as support vector machine (SVM)
[7], k-nearest neighbor (k-NN) [8]. The location of the objects on the image was
determined by scanning the whole image by the trained classifier, usually with the
method which is called sliding window. Because of the small number of parameters in
the methods trained with these features, scanning the whole image by sliding window

allows making detection with acceptable speeds.

In 2012, following the remarkable success of AlexNet's [9] at ImageNet Large Scale
Visual Recognition Challenge [10], CNN architectures which are also known as deep
learning methods, began to attract much interest. In the years following this

improvement, which we can adopt it as a milestone for deep learning, visual geometry



group networks(VGG) [11] with deeper architectures, GoogleNet [12] which
consisting of inception modules and residual networks (ResNet) [13] have appeared
and the error rate in the competition has decreased every year. Moreover, deep
architectures have exceeded human performance. With these developments, CNN
structures were used in the classification step of object detection tasks. Although the
success of the CNN for the classification stage of object detection is promising, the
sliding window method, which has a high cost of calculation due to the fact that having
a large number of parameters, started to be abandoned. Instead, these architectures
were used as the base network for feature extraction utilized at the classification
process and the problem of localization was solved by producing object proposals on
the image, resulting in deep architectures such as Region-based Convolutional Neural
Network (R-CNN) [14], Spatial Pyramid Pooling Network (SPP-NET) [15], Fast R-
CNN [16] and Faster R-CNN [17]. With these structures, accurate results and high
speed have been achieved in the detection of objects that can be used in real time
applications such as video. Due to the speed and performance provided, they were also
used in large scale satellite imageries. Although producing the object proposals obtains
successful results, there is a trade-off between the number of proposals with
performance and speed. The number of your object proposals may indirectly affect the

accuracy of your model or reduce the speed.

Afterward, You Look Only Once (YOLO) [18] and Single Shot Multibox Detector
(SSD) [19] architectures were developed which turns the classification and
localization steps of the object detection into a regression problem with utilization of
a single neural network. These new structures overshadowed R-CNN architectures
with achieving more accurate and fast results in major competitions like Pattern
Analysis, Statistical Modeling and Computational Learning Visual Object
Classes(PASCAL VOC) [20] and Common Objects in Context (COCO) [21]
challenges. Generally, a few of the researchers were able to directly experiment these
deep learning techniques in the remote sensing area. The main reason is there are a lot
of labeled natural images but very few with the satellite images. Therefore, these
techniques are being tried and developed more in natural images than in remote

sensing images (RSI).



In this thesis, the state-of-the-art object detection architectures examined and discussed
the effects of the hyperparameters. For the detection tasks on large images, a

framework developed and used a combination of the networks.

1.1 Purpose of Thesis

The main purpose of the thesis is obtaining very accurate and fast aircraft detector for
large scale remote sensing images. For this purpose, the literature was scanned and the
difficulties in this task were determined. After that, some of the state-of-art object
detection architectures were trained and tested with different parameters with taking
into account of the difficulties. A framework has developed for detecting objects more

faster and accurate way.

The thesis is organized as follows : A detailed literature overview on geospatial object
detection analysis with both traditional techniques and deep learning methods is
presented in Chapter 2, theory of the learning and deep learning techniques are
provided in Chapter 3, the methodologies of the thesis and architecture reviews are
examined in Chapter 4 and the experiments and results conducted on airplane detection
is discussed in Chapter 5. At last, the conclusion of this study, future works, and the

opinions are shared in Chapter 6.



2. LITERATURE OVERVIEW ON GEOSPATIAL OBJECT ANALYSIS

Detection of objects from satellite imageries has been studied for decades. With the
development of satellite sensors, spectral and spatial sensing capabilities, the quality
of the analysis from the obtained images increases. Of course, the development of
sensors has made a positive effect on the performance of the analyzes as well as the
improvement of the applied methods. Developments and approaches used in remote

sensing are examined in this section sequentially.

The beginning of earth surface observation and analysis is a research subject since the
end of the 60s. Remote sensing images have been studied in many areas such as Land
Use Land Cover (LULC) classification, vegetation indexing, environmental
surveillance, geospatial object detection. Since the spatial resolutions of the remote

sensing images at that time were too low, the focus was on pixel-level analysis.

In time, with the improvements of the spatial, spectral and radiometric resolutions in
the remote sensing images, the performance of the pixel-level analyzes was not found
sufficient. Instead, they focused on methods at the object level based on the spatial
relations of each pixel. In this direction, researchers came up with the Object-Based
Image Analysis (OBIA) [22] and Geographic Object-Based Image Analysis
(GEOBIA) [23] to examine higher spatial resolution images. Although these methods
catch some success, they were unable to extract semantic meanings. For example, they
could not inform whether the image contained aircraft or vehicles. Or they could not

distinguish the ships in the harbor or the ships on the high seas.

Because of the semantic information need from the images, the researchers conducted
on different machine learning techniques to gain this ability. Before the utilization of
the deep learning techniques in satellite images, handcrafted feature based supervised

and unsupervised methods were widely used.



2.1 Handcrafted Features

Feature extraction is the process of revealing distinctive predominant features of the
image according to the relationships of pixels in the raw image. The ability to describe
the image with dominant characteristics is very useful and important for object
detection performance. For this purpose, various feature extraction methods have been
developed by the researchers which may be suitable for different object detection
problems. In this section, the studies on the problem of object detection from satellite

images which use handcrafted features were presented.

2.1.1 Texture features

Texture features aim to expose local density variances and patterns on the surface. In
satellite imagery, it can give good results in problems where the sudden changes appear

such as ship detection present in the high seas, airport detection, and vehicle detection.

Gabor wavelet can be given as a classic texture features. Gabor attributes are
subtracted by filters calculated based on the determined spatial frequency and rotation.
It provides a feature close to human visual perception. In the study of Polat E. and
Yildiz C. [24], four different rotations and a frequency at which the sample images
were most responsive were determined and according to these specifications, Gabor
filters were applied to the airplane samples. The rate of detection was reached 91%
and the false alarm rate (FAR) was 7.5%.

The local binary pattern (LBP) [25] which is another texture feature that is simply
extracted by dividing the image into cells. Places, where the pixels are neighbors of
the center pixel and greater than its value, are represented as one, and lower pixels are
zero. The histograms of the cells are then calculated according to the frequency of
these values and the LBP attribute is extracted by concatenating the calculated
histograms. Grabner et al. use the LBP attributes, they attempted to detect vehicles

from aerial images [26].

2.1.2 Scale invariant transform features (SIFT)

This approach transforms image data into scale invariant coordinate space in relation
to the local features. The features are also invariant to rotation, clutter, lighting, and
occlusion. Scale-invariant feature transform descriptor was firstly published by D.
Lowe et al. and has become an important tool of computer vision tasks [4]. The



extraction process is made by 4 steps; scale-space extrema detection, keypoint
localization, assignment of the most relevant orientation and generating the keypoint

descriptor from the oriented histograms.

For the remote sensing images, Sirmacek. et al. proposed a method with graph
theoretical tool with SIFT to detect buildings and urban areas [27]. They suffered from
low contrast between rooftops and the background with this method. Even so, the

results were promising for such basic descriptor.

2.1.3 Histogram of oriented gradient features (HOG)

Histogram of oriented gradient feature just counts occurrences of gradient orientation
in sub-regions of an image. It is similar to the scale invariant feature transform (SIFT)
descriptors, although it is computed on dense grid cells and it utilizes the overlapping
local contrast for better accuracy. It was first proposed by Dalal N. and Trigs B. in

2005 and was popular in many computer vision tasks [5].

The main idea behind the HOG descriptor is that the appearance and shape of local
differences in an image can be described by the distribution of the intensity gradients
or the directions of the edges. The image is divided into cells, and for the pixels in each
cell, a histogram of gradient tendencies is compiled. The feature is the combining of
them. To improve accuracy, local histograms can be normalized according to contrast
while calculating the intensity over a larger area of the image, which is called as a
block and then using this value to normalize all cells in the block. This normalization
leads to a better invariance to changes in lighting and shading. In summary, HOG
attributes are extracted at the end of a 4-stage process, such as making gradient
calculations, orientating binning, creating descriptor blocks according to these bins

and normalizing the blocks.

With its popularization, of course, it was also used with satellite images. Chen et al.
did vehicle detection with HOG attributes after segmenting the roads with the line
segment detector (LSD) algorithm [28]. Kembhavi et al. utilized from a multi-scale
based classifier model with HOG features [29]. In this way, he was able to effectively
identify vehicles of different sizes and scales. Zhang et al. introduced rotation invariant
HOG descriptors which were used for object detection from satellite imagery [30].
Apart from these, an elliptical arc detector was used to detect oil tanks with the help
of HOG features [31].



2.1.4 Bag of words features (BoW)

The main advantage of the Bag of Words (BoW) [32] features is its simplicity and
invariance from viewpoints changes and background cluttering which was also
adopted by the remote sensing researchers for good results on the image classification.
For constructing the BoW model researchers generally, detect key points from the
images as the first step with the key point detection methods such as Harris-Laplacian
detector or Difference of Gaussian (DoG) detector [33]. After, there should be a second
stage as local descriptor computation for the detected key points. The most popular
descriptor is SIFT for this task. Then, for the computed descriptors, a visual vocabulary
space should be constructed by a clustering technique like k-means. After that, vector
quantization is applied to each key point into a visual word in the clusters. Lastly, a
pooling steps that pools quantized local descriptors into a global histogram

representation or feeding a classifier with them.

For solving the challenge of detecting geospatial objects with complex shapes from
high-resolution images, sparse coding is used with BoW in Sun et al. study [34]. Cheng
et al. utilized from probabilistic latent semantic analysis and k-nearest neighbor (k-
NN) with Bow representations for the landslide detection problem [35]. Also, a spatial
sparse coding bag of words (SSCBoW) model proposed for detection of objects which
has much complex shape like aircraft [36]. The linear support vector machine (SVM)
used as a classifier in that study and the proposed SSCBoW model overwhelmed the

classical Bow model.

2.2 Unsupervised Learning Techniques

Excessive attention has been given to unsupervised techniques in object detection and
classification studies from satellite imagery in the past decades. The process of
creating labeled data is very costly and time-consuming. Therefore, unsupervised
techniques have become a widely used method to avoid labeling data in remote sensing
images and consequently come up with cost-effective solutions. In addition, in the
early stages, the supervised techniques were not popular. This situation has also an

important impact on preferring unsupervised methods.

The principal component analysis (PCA) method, which is one of the unsupervised

techniques, is used as an aid in dimension reduction or in the selection of the features



for the analysis of the remote sensing images (RSIs). As in the study of Liu et al., it
was also used as a parametric shape extractor to recognize aircraft [37]. Chaitanya M.
examined the k-means clustering method by using the SIFT features to the detection
of car and aircraft objects [38]. Tang et al, along with the popularization of deep
learning methods, tried to detect the ships from SPOT-5 optical satellite imageries by
utilizing from a deep autoencoder structure [39]. Although good results have obtained
compared to other methods, it has a disadvantage of high computational operations

due to the fully connections between the autoencoder nodes.

2.3 Supervised Learning Techniques

The main advantage of supervised learning methods is that they are trained with data
that has been previously labeled. Due to the fact that the data is labeled, the created
model in comparison with the unsupervised methods can better generalize the sample
space and thus, this gives more accurate results in the estimation of the new samples.
In addition, although we can not obtain semantic information about objects in the
unsupervised techniques, this comes up with the opposite for the supervised methods

as another advantage.

In object detection from RSIs, support vector machine is the most popular and effective
one for the supervised learning methods. Cheng et al. composed a mixture model by
utilizing from SVM with the HOG features to detect airports and airplane [40]. Bi et
al. generate the ship candidates from the binary saliency map of the training samples
and the SIFT descriptors were extracted from them to feed the SVM model [41]. They
used SPOT-5 panchromatic images and 3-stage detection process for computational

efficiency.

Adaboost algorithm [42], as another supervised method, has played an important role
in vehicle detection [43]. Aytekin et al. used 137 texture-based features in total to
build a strong classifier with AdaBoost to detect airport runways [44]. Shi et al.
generate a fake hyperspectral image from panchromatic satellite images with
rearranging them into a vector to make it more observable for the relations of the
adjacent pixels [45]. They produced ship candidates from these fake images and used
them to train an AdaBoost classifier. Although they produced too many false
detections near the land, they reached impressive results on the high seas.



K-nearest-neighbor (k-NN) is one of the simplest and conventional supervised
technique that used in various RSI analyzes. Haapanen et al. used k-NN for

determination of the forest, non-forest and water area from Landsat 7 ETM+ data [46].

In the cases that, the labeled data size is low, the researchers generally applied the
weakly supervised methods. In the weakly supervised methods, data is also extracted
from the unlabeled data with the help of labeled part. This is a noisy method of training,
because it can be obtained false labeled data during the extraction. Zhang et al.

proposed a weakly supervised method to detect airplanes, vehicles, and airports [47].

In the last few years, with the drastic improvements of the CNN architectures, they
were utilized by remote sensing researchers for object detection studies [48] [49] [50]
[51]. After the emergence of the architectures like SSD and YOLO which solve the
detection problems with one network more accurate and fast, researchers have tended
to use them. Radovic et al. worked on the detection of aircraft from the unmanned
aerial vehicle(UAV) imageries with YOLO and achieved a 99.6 % precision rate [52].
Nie et al. used SSD to detect in various sizes of ships at inshore and offshore areas
[53]. Wang et al. tried two sizes of the detector (SSD300 and SSD512) with SAR
images for the same purpose [54]

10



3. FUNDAMENTALS OF MACHINE LEARNING

Machine learning is defined as the study area which gives the ability to learn without
being programmed explicitly to computers. It is a computer program which orients
itself to perform a task accurately by using the data. In other words, in order to
accomplish a task in the background instead of the contiguous block of computer code,
it learns information from the previous data and makes a decision automatically for
the new given data by utilizing the power of the linear algebra, probability theory, and

differential equations.

Machine learning is divided into two as supervised and unsupervised methods. We
look at the learning principles of some of the methods before we get into the

methodology section.

3.1 Unsupervised Learning Methods

There is no label information in unsupervised learning. It makes a distinction simply
by grouping the samples in the data according to their similarity to each other. We will
examine k-means clustering, hierarchical clustering, and autoencoders as the most

important ones.

3.1.1 K-means clustering

One of the simplest tasks we can perform on an unlabeled data set is to find groups
that are similar to each other which are called clusters. K-means is one of the most
used clustering algorithms. It basically stores k centroids which are the center point of
each cluster. If a sample is closer to the centroid of that cluster than any other centroid,
it is considered to be in a particular cluster.

K-means algorithm tries to find the best k centroids by multiple iterations over the data

and assign a class to each sample according to the distance between the centroids.

11



(a) (b) (<)

(d) (e) (f)

Figure 3.1 : K-means clustering algorithm. Data samples are represented as dots and
cluster centroids as shown as crosses; (a) Original dataset, (b) Random initialization
of cluster centroids, (c-f) Iterations to find clusters.

The algorithm simply does randomly defining k centroids at first. Then, it assigns each
data samples to the cluster of the closest centroid. After that, the center of the clusters
is recomputed and defined as the new centroids. Again, the closest samples are
assigned to the new cluster centroids. These operations are done in each iteration until

every sample converged and the centroids of the clusters do not change.

When we are given a training set xV, ..., x™  where x® € R™ as usual and they
could be feature vectors of each sample, our goal is to determine k centroids and a
label ¢® for each data if we don’t have label information for the given data. According
to this knowledge, after the initialization of cluster centroids randomly as
Wi, Hy oo, B € ROV the k-means algorithm is as follows and repeats until

convergence:

For every i, set ¢® := argmin||x® — ;]|° (3.1)
J

_ I 1{c®=j}x0

Foreveryj, set p;:= RTECE (3.2)

3.1.2 Hierarchical clustering

Hierarchical clustering is done in two ways as agglomerative and divisive. As the name
suggests, the agglomerative method (bottom-up) progress via merging the smallest

groups until the top. Divisive method (top-down) splits the largest group and reaches
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each sample at the bottom. Therefore, hierarchical clustering is a greedy manner way
to group unlabeled data. But it is useful to utilize from hierarchical clustering method
in Natural Language Processing (NLP) tasks or image recognition tasks which have

datasets with fine-grained classes.
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Figure 3.2 : Hierarchical agglomerative clustering dendrogram for the animal
recognition. Axis y is the similarity metric.

For the agglomerative method, the merging operations are done by looking at the
distance of two samples at the bottom to find the most similar ones. The distance
metrics and merging methods vary for the tasks [53]. By merging them according to
the similarity, a dendrogram of the data is created as shown in (Figure 3.2). As with
the k-means method, it is also possible to determine how many sets of data should be
separated. A similarity threshold is determined for this purpose and the part above this

threshold is cut from the dendrogram.

3.1.3 Autoencoders

With the development of artificial neural network algorithms, autoencoders
architectures are designed to be used in unlabeled data. When we assume we have
unlabeled training examples as x(y, ..., Xgm) » Where x¢;y € R™, an autoencoder
neural network is an unsupervised learning algorithm that applies backpropagation,
setting the target values to be equal to the inputs. It simply compresses the data in the
encoding part of the network to hold the most useful features and tries to produce the
same data as given at the input layer. By this way, it can discover the interesting

structure about the data at the encoding phase and reconstruct it again at the decoding
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phase. But if the input data were completely random, this compression task would not
be useful, because it can not find any correlation between the features. So, it is most

effective with the structured data which have correlated features.
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Figure 3.3 : An example of Autoencoder.

With the autoencoders, we can get the low-dimensional representation of the input data
at the end of the encoding step which shows a similarity with the Principal Component
Analysis (PCA). In a simple autoencoder structure, size of the input and output layers
must be the same. Secondly, hidden layers must be symmetric about the center. The
number of nodes for hidden layers must decrease from left to center and must increase
from center to right as shown in (Figure 3.3).

In the encoding phase, the N-dimensional input vector is transformed to a K-

dimensional feature vector by using non-linear function where zg;, is the K-
dimensional encoded feature of N-dimensional sample x;), b, is the bias vector, W;

is KxN encoder weight matrix and f(.) is an activation function which is mostly

sigmoid function as given in equation 3.3.

1
1+ e

f&x) = (3.3)

Z(i) = f(Wlx(l') + bl) (34)

In the decoding phase, a similar procedure is followed to reconstruct the input. As b,

is the bias vector and W, is the weight matrix of decoding part, reconstructed data in)i

X = f(WS 'z + by) (3.5)
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Weight parameters of the autoencoder are learned by minimizing the calculation of
loss function J(X, X') between input and output data. Symbol A is denoting the

regularization parameter.

JOXXD = (M|l — xoll” = WP (3.6)

3.2 Supervised Learning Methods

In the supervised learning method, training dataset (x) also contains the label (y)
information of each sample. Supervised methods try to learn a decision function so
well, when it encounters a new sample that it can predict its label accurately. These
methods can be used for 2 different problems as classification and regression. We will
examine here more specifically the classification definitions of them which are used

in remote sensing.

3.2.1 Support vector machine (SVM)

It is one of the most effective and simple methods used in supervised classification.
For classification, it is possible to separate two groups by drawing a border between
groups in the sample space. This border is called a hypothesis function or hyperplane
and SVM tries to learn this function to separate samples according to categories which
they belong to. The place where this function will be drawn should be the most distant

from the members of both categories.

Lol

2
7

Figure 3.4 : An example of Linear SVM classifier for two classes in 2D feature
space.
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SVM classifiers are usually used for classes that can be separated linearly. Let's say
that the images that contain two classes (e.g pool and building samples) will be used
for the classification. For this, feature vectors are extracted from each of the sample
images. These features can be designed and extracted with creating custom filters
according to the tasks which are called as handcrafted features (HOG, LBP, Gabor,
etc.). Either, by combining several feature vectors can be used for obtaining more

representative features to use them with the SVM classifier.

In the SVM algorithm, the objective is to define such a hyperplane between the feature
vectors extracted from the samples, so that you completely separate both classes. For
this aim, the hyperplane between two class samples must be determined with a margin
between the feature vectors of samples which is maximum. If y is a label vector, W is
the weight matrix and x is the feature matrix of the samples, the hypothesis function

can be defined as:
f(x)= Wix+b=y (3.7)
Ify >1 - Vxeclassl, ify < -1 - Vxeclass2:

. 2
Marginm = Wi (3.8)

By maximizing this margin the optimum hypothesis function could be determined.
With the SVM, it classifies with one-to-all method when there is more than two class
in the classification task. If the samples are not linearly separable, the polynomial
hypothesis function should be used with the SVM algorithm.

3.2.2 Adaboost algorithm

The adaboost algorithm focuses on classification problems and aims to convert a set
of weak classifiers into a strong one. Suppose we given a N-size training set (X,Y) =
{(x1, V1), o, Gy y) | % € R,y € {=1,1},i = 1,...,N} where x; is a feature
vector of i-th sample and y; is its label. The weights of all examples are initialized as
W; =1/ N and a set of weak classifier f,,,(x) are trained by weighted least-squares
fitting on the labels Y. The weights are updated by W; « W; .exp(—yifin(x:))/ Z,
with the normalization parameter Z which is defined by Z = YN . W, . At each
iteration, a new weak classifier is added and the process continues until a certain

stopping condition obtained. We can specify this condition with M number of a weak
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classifier. Consequently, a strong classifier F(x) is computed as a linear combination

of all weak classifier.

F(x) = Ym=1fm(x) 3.9)

Weak Classifiers

Iteration 1 Iteration 2 Iteration 3

Strong classifier

Figure 3.5 : Illustration of obtaining strong classifier with Adaboost algorithm.
3.2.3 K-nearest neighbor (k-NN)

The k-NN is just making a decision by looking at the new coming sample at the sample
space of the training data and determine which class is most closest to this sample. The
k represents the number of the closest data point, so it can be thought as a parameter

which the new data fit this condition to belong to a class.

Algorithmically, suppose we have a N-size training set as (X,Y) =
{Ce, Y1) ooos Gy ya) |, € RM,y, € {1,2,...,C},i = 1,...,N} where x; is a feature
vector of i-th sample and y; is its label when we have C classes. Given a test sample
x' € R™, utilizing by a distance function f,,, which can be an Euclidian distance as
fr = llx —x'||, a set of training samples X can be ordered to obtain k nearest
neighbors of the test sample as X' = {x1, x, ..., x;.} with their corresponding labels
Y' = {y1,y3, ..., yr} . Afterthat, the kNN classifies the test sample x’ by applying a

majority voting rule to these closest training samples :

argmax %\, 8(v;, ) (3.10)
j=1,..,C
where 6 defined as :
.~ (0ifi #j
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Although, the k-NN algorithm is the simple supervised learning algorithm for
classification by just having one parameter k to tune the system, choosing it large
number, can decrease the performance and can be a time-consuming task. Also, for
classifying new coming sample, you have to keep your whole training data in the

memory or apply some sufficient statistics methods to imitate them.

3.2.4 Artificial neural networks (ANN)

Artificial neural network algorithms have been developed by mimicking biological
neuron cells. When the signal transmission from one cell to the other in a biological
neural network is over a certain threshold level, the impulse passes through the axons
of the previous cell to the dendrites of the other neuron by chemical activation. Thus,
the signal is transmitted from its axons to the next neuron at a certain intensity.
Artificial neural networks have a similar situation. The neurons in the entrance form
the input layer, the neurons in the middle create the hidden layer(s) and the neurons,
in the end, form the output layer. There are links between the previous layer and each
neuron with the next layer. These links represent the weight matrices. The numbers of
hidden layers and the number of cells in layers vary according to the complexity of the

classification process.

v 7 1 4 output layer
=% _Jf )y - input layer
hidden laver
(a) (b)

Figure 3.6 : Illustration of (a) biological and artificial neuron (b) artificial neural
networks.

The input layer usually contains the cells up to the input data size of a sample in the
training dataset. The number of cells in the output layer depends on the number of

classes.

A data set consisting of previously labeled data is required to train the network. During
the training phase, a loss function (in other words objective function) is calculated by
the help of feed forward and back propagation algorithms and by using the weight

matrices in the layers, by comparing the predicted result with the ground truth label of
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the input data. According to this calculated loss, the weight matrices are updated again

in each iteration with the backpropagation algorithm.

3.2.4.1 Convolutional neural network (CNN)

Convolutional neural networks are very similar to ordinary artificial neural networks
They are made up with neurons which form the filters that have learnable weights and
biases. The main difference of CNN is that the architecture is designed to receive

multidimensional data as input instead of 1D data.

For the computer vision tasks, during the training phase with CNN structures, each
feature maps is extracted from the images with a certain numbers of filters. In the last
layers, we use the fully connected layers to classify or score the input data. These
structures basically learn the filters that can extract best features which describe the
image categories well and by this way it can predict which classes they belong to, and

in doing so, utilize feed-forward and back-propagation algorithms.

The CNN architectures are generally comprised of 4 structures as convolutional layers,
pooling, and fully connected layers. Some of the most commonly used terms will also

be examined here.

Convolutional layers

The convolution is a point-wise integral operation between two functions in calculus.
For the CNN architectures convolution layers takes the role of feature map extraction
from the input data by doing point-wise product operations. Parameter of these layers
consists of a set of learnable filters which they also called as kernels. These kernels
can gather structured information from the data by obtaining the feature maps. The
convolutional layers have basically size of ¢ x ¢ x d, c is the size of the kernels and d
is the number of kernels. When we pass an input map X, with a sizeof mxmx k
through the convolution kernels, m is the width and height of the input and k is the

channel number, we obtain Y as a feature map at the end of the 2D convolution
operations with a size of (%”p + 1) X (%”p +1). Here, p is the padding size
of the input and s is the stride size of the filter.

If we consider W is the parameter matrix of convolution layers (suppose parameters

of filters as weight), * is 2D convolution operation, f(.) is the non-linear activation
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function and b is the bias parameter. We can define the feature map of the j-th

convolution layer as in equation 3.12.

Y= f(W X+ b)) (3.12)
3(1/112 ;8 |4
1 )10 (7312 |6 -7 .
i 10 |1
2 (3 |5]11[1 |3
-t 1|0 (-1 =

14|12 (6|5

10 |-1
312|113 |7 |2

Filter 3x3
912 6 |2 |51 Output 4x4

Original image 6x6

Figure 3.7 : 2D convolution opertion with zero padding, one stride and 3x3 filter.

After the convolutional operations, a non-linear activation function is applied to the
feature map to prevent the non-linearity. Rectified linear unit (ReLU) is one of the
most used activation function for this aim. It has a mathematical formula as f(x) =
max (0, x), which simply makes the negative values zero. It can be seen in (Figure

3.7) the first element of the feature map will be zero by applying this function.

ReLU

R(z2) =maz(0, z)

Figure 3.8 : Rectified linear unit function.

Pooling filters
Pooling operation is used for down-sampling between the convolution layers. They

basically do spatial dimension reduction of the feature maps by pooling by keeping the
most of the spatial information although these operations are lossy. There are two types
of pooling filters that are mostly used by deep learning communities. One of them is
average pooling which just simply does the average of the feature map underlying the
mapping frame. The other one is the max pooling which is similarly getting the
maximum value of the feature map underlying the frame. As in convolutional layers,

the pooling layers have a structure similar to that of ¢ x ¢ x d, where c is the size of
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the kernels, d is the depth (number of kernels) and they applied with a stride number

S.

211818 |12
12119]19 | 7
811014 |3
1811219 |10
151 9 21|12
12 1810
Average Pooling Max Pooling

Figure 3.9 : 2x2x1 average and maximum pooling filters with 2 stride number.

Fully connected layers

The output of the convolutional layers produces high-level features of the data. After
the feature extraction, we need to classify the data into various categories. This can be
done by fully connected (FC) layers. As the name suggests, all of the neurons in the
previous layer are completely linked to neurons of the fully connected layer. Fully
connected layers could make the output of the last convolutional layer flattened and
connected to the output layer of the network architecture. This is the easiest way of

learning a non-linear combination of the features.

W\

Ly v

v
PN

r

T v
S e
-

Y
3¢
)

Figure 3.10 : lllustration of fully connected layers, last layer as the classifier layer.

It can be seen the illustration of the FC layers in (Figure 3.10), the last layer as a
classifier and the links represents the weights. Some of the weights are shown thicker

that can be imagined as the relation between those neurons are much strong. At the
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last fully connected layer, the input data will be classified by firing most related neuron
with considering the weights.
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4. METHODOLOGY AND ARCHITECTURE REVIEW

In this thesis, we worked with the state-of-the-art object detection models to increase
the speed and accuracy for the detection of aircraft objects by taking into account
differences of satellite images from natural images. Unlike natural scenes, some of the
airplanes, that we detected in satellite images can be very small compared to the field
of view. In addition, even if they have fewer perspective differences as being just
collected from above, a dataset has to be created taking into account of nadir-angle of
the satellite. Also, atmospheric conditions and sun angles are considered. In our
detection framework, we used Faster R-CNN, SSD and YOLO object detection
networks. Although the accuracy is very important, it must be taken into account that
the framework needs to process very large scale satellite images quickly. For this aim,
a solution proposed in this chapter and the architectures are examined. The training
process and the results of the processes of each object detection model are presented
in the next chapter.

4.1 Region Proposal Network : Faster R-CNN

Faster R-CNN is one of the most used object detection networks which achieved
accurate and quick results with CNN structures. It is started to use for nearly real-time
applications such as video indexing tasks because of these capabilities.

Faster R-CNN is progressively developed over time. The first version of it, the R-
CNN, basically uses a selective search algorithm, that utilizes a hierarchical grouping
method to produce object proposals. It produces 2000 proposed object as the
rectangular boxes and they are passed to a pre-trained CNN model. Then, the feature
maps of them are extracted from the CNN model to pass them to an SVM for

classification.
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Convert
regions to
boxes

Figure 4.1 : Selective search algorithm, bottom-up segmentation, merging regions at
multiple scales.

In 2015, Girshick R. et al. came up again with the Fast R-CNN which moves the
solution one step forward. The main difference of the Fast R-CNN is just producing
the object proposals from the feature map of the CNN, instead of getting them from
the whole input image. By this way, there is no need to apply CNN process for 2000
times to extract feature maps. Then, the region of interest (ROI) pooling is applied to
ensure to get standard and pre-defined output size. Finally, they are classified with a

softmax classifier and made bounding box localizations with linear regression.

. classifier

p

Region Proposal Network

teature maps

Figure 4.2 : Processes of the Faster R-CNN.
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In the Faster R-CNN, selective search method is replaced by a region proposal network
(RPN), which is aiming to learn to propose an object from the feature maps. The RPN
is the first stage of this object detection method. As shown in (Figure 4.2), feature
maps extracted from a CNN is passed to the RPN for proposing the regions. For each
location of the feature maps k anchor boxes used for generating region proposals. The
anchor box number k is defined as 9 considering the 3 different scales and 3 aspect
ratios in the original paper [19]. With asize of W x H feature map, thereare W x H x k
anchor boxes in total that comprised of the negative (not object) and positive (object)
samples. This means there are many negative anchor boxes for an image and to prevent
the bias occurrences because of this imbalance, the negative and positive samples are
chosen randomly by 1:1 ratio (128 negative and 128 positives) as a mini batch. The
RPN learns to generate the region proposals at the training phase by utilizing these
anchor boxes by comparing the ground truth boxes of the objects. A bounding box
classification layer (cls) of the RPN, outputs 2 x k scores whether there is an object or
not object for k boxes. A regression layer is used to predict 4 x k coordinates (center
coordinates of box, width, and height) of k boxes. After generation of the region
proposals, the ROI pooling operation is done as in the Faster R-CNN at the second
stage of the network. Again as in Fast R-CNN, an ROI feature vector is obtained by
fully connected layers and this vector classified by softmax to determine which

category it belongs and a box regressor is applied on it to adapt the bounding box of

that object.
- = - S bbox
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Figure 4.3 : Faster R-CNN detection network.

In our study, the Faster R-CNN is used with a residual neural network (ResNet) that

comprised of 101 residual layers. Because they won the COCO 2015 challenge by

25



utilizing the ResNet-101, instead of VGG-16 in Faster R-CNN. Also, we add one more
additional scale parameter for generating the anchor boxes to detect smaller airplanes

(4 scales, 3 aspect ratios, k = 12).

4.1.1 Loss function

The loss function of the RPN network for an image is defined as :
Llpid () = 5= Ti Las o p)) + A~ i Lreg (t0, 1)) (4.1)

Here, i is the index of an anchor, p; is the prediction probability of anchor i being an
object, p; is the ground truth label and it is 1 if the anchor is an object, is O if the
opposite. L. and L, represent respectively the classification loss which is a log loss
over two classes (object or not object) and the regression loss is smooth L; function
used for t; and t; parameters. t; is a vector representation of predicted bounding box,
t; is ground truth bounding box associated with a positive anchor. Lastly, the
parameter A is used for balancing of the loss function terms, N.s and N, are the
normalization parameter of the classification and regression losses according to the

mini batch size and anchor locations.
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Figure 4.4 : Smooth L1 loss curve.
4.1.2 Residual blocks

When the CNN networks are getting a deeper structure degradation problems can
occur. As the architecture deepens, the layers of the higher level can just act as an
identity function. The output of them which are the feature maps are more similar to

the input data. This causes the accuracy gets saturated and then degrades rapidly. For
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solving this problem the residual blocks come to help. The idea is, instead of learning
from a direct mapping of x — y with a function H(x), the residual blocks just
changed itas H(x) = F(x) + x,where F(x) and x represent the stacked non-linear

layers and identity function respectively.

X
weight layer
F(x) lrelu <
weight layer identity
Flx)+x

Figure 4.5 : Residual blocks.

The ResNet-101 is built by these residual blocks to achieve more accurate results.

4.2 Single Shot Multibox Detector (SSD)

We used SSD, which is a form of a single convolutional neural network. It is working
with the corporation of extracted feature maps and generated bounding boxes which
are called as default bounding boxes. The network simply does the loss calculation, by
comparison, the offsets of the default bounding boxes and predicted classes between
the ground truth values of the training samples at every iteration with trying different
filters. After that, it updates all the weight parameters according to that calculated loss
value with a back propagation algorithm. By this way, it tries to learn best filter
structures to be able to catch the features of the objects well and generalize all the
training samples for reducing the loss value and attaining high accuracy at the

evaluation phase.

In the SSD method, a state-of-the-art CNN architecture used as a base network for
feature extraction with the additional convolution layers which produce a various scale
of feature maps to not miss detection of objects with different scales. Also, SSD allows
different aspect ratios for generating default bounding boxes. By this way, the

predicted boxes can wrap around the objects in a tighter and more accurate fashion.
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Figure 4.6 : InceptionV2 architecture.

At the original SSD paper, they used VGG-16 as a base network, but we ran the
Inception-v2 model to have higher precision and faster detection speed. This is because
the Inception-v2 has a deeper structure than VGG models but also has fewer
parameters with thanks to the inception modules which comprised concatenating of
multiple convolution layers. For example, GoogleNet, which is the first network that
we encountered with the inception modules, employed only 5 million parameters
which represented a 12x reduction with respect to AlexNet and it gives slightly more
accurate results than VGG. Furthermore, VGGNet has 3x more parameters than
AlexNet [6].

The structure of the inception modules in the middle of the network provides real
success. As it can be seen in (Figure 4.7), instead of applying sequential convolutional
layers as in the traditional CNN architectures, first of all, the features are extracted
from the previous layer by combining a 1x1 convolution which is aiming to make
dimension reduction and two different convolution operations as the size of 5x5 and
3x3 are derived from it. All of them are put together and the next inception module is

passed with this concatenated form.

5x5
Previous

v/3

} Concatenate

3x3 i

1x1

3x3 Avg
Pooling

Figure 4.7 : lllustration of the inception modules.
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As shown in (Figure 4.8), last inception modules of Inception V2 network, used as the
feature generator with six different scales for our detection network. Each extracted
feature maps can produce a fixed set of detection predictions as it is indicated at the
end of the architecture. It is followed by a non-maximum suppression (NMS)
algorithm to yield final detections. For the feature map of size m x n with p channels
and k pieces of default bounding boxes, there would be m x n x k numbers of prediction
calculated for class scores and predicted bounding box offsets. At the training step,

this number also multiplied with batch size, denoted by BS in (Figure 4.8) for every

Predictions BS x mx n x ( k x {classes + box offsets} )
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Figure 4.8 : SSD architecture uses Inception V2 as a base network with 16 of batch
size for training.

4.2.1 Default bounding boxes and negative sample generation

During the training, there should be determined the default bounding boxes correspond
to which ground truth sample. The network is trained according to this simple rule.
For each ground truth box, it is selected from default boxes that vary over the location,
aspect ratio, and scale. The main purpose is to match each ground truth box to default
bounding box with the best jaccard overlapping through higher than 0.5 thresholds.
This simplifies the learning problem, allowing the network to predict high scores for
multiple overlapping default boxes rather than requiring it to pick only the one with

maximum overlap.

To handle different object scales, SSD utilizes feature maps extracted from several
different layers in a single network. For this aim, a fixed number of default bounding
boxes must be produced at different scales and aspect ratios in each region at each
extracted feature maps. We set six levels of aspect ratios with supposing a,- € {1, 2, 3,

1/2, 1/3} and sy, is the scale of the k-th square feature map for generating default boxes.
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The sixth one is generated for the aspect ratio of 1 with a scale of s';=/s;s) + 1. So,
the width (w/=s+/ a,.) and height (h=s,+/ a,) can be computed for each default box.
As illustrated in (Figure 4.9), we can see how generated default bounding boxes on 5
x 5 feature map can be represented on the input image and overlap with the possible

objects.

Figure 4.9 : lllustration of 5x5 feature map and generated default bounding box with
6 aspect ratio.

After the matching step, which is done at the beginning of the training, most default
boxes are determined as negatives, especially when the number of possible default
boxes is large. Instead of using all the negative examples, for protecting the balance
with the positive examples, they sorted using the highest confidence loss for each
default box and picked the top ones so that the ratio between the negatives and
positives is at most 3:1. This ratio was found as it provides faster optimization and

more accurate training [13].

4.2.2 Loss function

The loss (objective) value calculated as combining the confidence of the predicted
class scores with the accuracy of the location. The total loss value (localization loss +
confidence loss) is calculated as follows, which is an indication of the pairing of the

i-th default box with j-th ground truth box of class p such that xfj = {1,0}:

L(x,cl g) = % (Leong(x,¢) + aLioe(x,1, 9)) (4.2)
When we suppose N is as the number of matching default boxes, if there is no match
(N = 0), the total loss is determined as zero directly. The a value is the balance of two

types of losses and it is equal to 1 during the cross-validation phase. The localization
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loss is calculated as Smooth L1 loss between the offsets of the predicted box (I) and
the ground truth box (g). If the center location of the boxes denoted as cx, cy, the

default boxes d, width w and height as h:

Lloc(x: l: g) = IiVE Posme(cx, cy, w, h}zxzkjsmOOthLl(l{n - g;n) (4-3)
8% = (g5 — ) /d? 8 = (97 — d)/dl (@.4)

w h

A g 9]
gy = logj g? = logﬁ (4.5)

And the confidence loss (c) is calculated as softmax loss of the predicted class relative

to other classes:

Lconf (x,¢c) = — Z{Ve Pos XZ log 65) - Z{Ve Neg log(é?) (4.6)
b __exp(e])
T Tpenn) (4.7)

4.3 You Look Only Once v3 (YOLO)

Yolo-v3 is grounded upon the custom CNN architecture which is called as DarkNet-
53 [55]. In the first version of it, the Yolo-v1 architecture is shown in (Figure 4.10)
which is inspired by the GoogleNet, does basically downsampling the image and at
the end, it produces final predictions from a tensor. This tensor is obtained in a similar

way as in the ROI pooling layer of the Faster R-CNN network.
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Figure 4.10 : Yolo-v1, architecture has 24 convolutional layers followed by 2 fully
connected layers.

Yolo-v2 used a 30 layer architecture which is made up from Darknet-19 and additional
11 layers for object detection adaptation. This new structure made it more accurate and

faster but it often struggles with the small objects in the field of view. Also, it does not
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utilize from the advantages of the residual blocks or up-sampling operations while
Yolo-v3 does.

Yolo-v3 has a fully convolutional architecture which uses a variant of Darknet that it
has 53 layers trained on the ImageNet classification dataset. For the detection tasks,
they add 53 more layers onto it and train it with Pascal VOC dataset. With this way,
they beat most of the detection algorithm while it is still fast for real-time applications.
By the help of the residual connections and upsampling, it can do detections at 3
different scales from the specific layers of the structure. This makes it much better at

the detection of smaller objects but slower than the previous versions because of the

complexity.
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Figure 4.11 : Yolo v3 architecture.

The shape of the detection kernel is 1 x 1 x (B x (5 + C)). In v3 network, 9 pieces
of the anchor are used for detection, 3 for each scale. Here B is the number of the
anchors on the feature map, 5 is for the 4 bounding box offsets and one for object
confidence. C is the number of categories. In our study, we use the Yolo-v3 network
and the class is the only airplane, so the detection kernel shape will be
1x1x (3x (5 + 1)) foreach scale. The first detection process is made from the 82"
layer after the first 81 layer down-sampled the input image by size of 32 strides. If we
have an input image of 608 x 608, that will be output as a feature map of 18 x 18 at

that layer. This means we have 18 x 18 x 18 detection features from this layer. After
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the first detection operation, the feature map is up-sampled by 2. This up-sampled
feature map is concatenated with the feature map coming from the 61°% layer. Then, a
few 1 x 1 convolution opeartions are performed to fuse features and reduct the depth
dimension. After that, the second detection is made from the 94" layer which returns
the detection feature map of 36 x 36 x 18. The same procedure is done for the third
scale at the 106" layer which yields a feature map of size 72 x 72 x 18. This means,
it produces 20,412 predicted boxes for each image. As in the SSD network the final
predictions are proposed after NMS algorithm applied.

4.4 Detection Flow

While the usual sliding window technique slides the whole image at a fixed sliding

step, it cannot ensure that the windows cover the objects exactly. Also, small sliding

steps cause huge computation cost and making it too large, decreases the accuracy.

Slide & Detect H

Figure 4.12 : lllustration of sliding detection flow.

As shown in (Figure 4.12), we create a detection flow with a sliding window approach
with optimized sliding step for better accuracy and faster detection. When we just slide
with input size of the detection networks, the objects at the edges of the window can
not be detected or the bounding box offsets of them will be not correct. To tackle this
problem, we determine an overlapping area between two windows according to the
average size of the bounding boxes of the aircrafts in the prepared dataset as 144 pixels
which fits well for good detection accuracy and speed. In the sliding process for an
image with a certain overlap, k x | windows obtained to detect by SSD for horizontal

and vertical directions respectively.

k =[ height—overlap ] (48)

ssd height—overlap

_ width—overlap ] (49)

ssd width—overlap
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L: procedure NMS
2:  input:
3 d={by = [l,.1,, 1, 1}]. c4}: bounding box offsets
4: and confidence scores of detection list,
5 t: iou threshold,
6 t: score threshold.
7:  output:
8: fa=1{by = [Ls, L, Ly, 1], ¢5}: final detection list.
9: if (size of d < 2)
10: return
11: d + sort(cy) : sort detections in descending order according to c4
12: fa =4d[0]
13: for all by, c, in d do
14: iou = 1ou (by, by) : calculate iou between by, by
15: idxs « where (fou <1f)ind
16: if (size of idws == 0)
17: if (cg > ty)
18: fd=stack(jﬁi, {bda Cd})
19:  end for

20: end procedure

Figure 4.13 : Non maximum suppression algorithm (NMS).

After the sliding and detection step, we used the NMS algorithm to eliminate multiple
detection occurrence over an object in the overlapping regions and we also applied
score thresholding to decrease the number of the false detections.

(b)

Figure 4.14 : Detection results of occluded objects (a) without NMS algorithm, (b)
with NMS algorithm.
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5. EXPERIMENTS AND RESULTS

The experiments and results are demonstrated in this section. After the training
processes were done, we did the evaluation for training and test set which were
prepared from DOTA dataset and for 5 large scale airport images with all trained
networks. We prepared the ground truth annotations and evaluation results as COCO
format to use COCO performance metric API to get more insights about the networks.

The results section provides information about the API.

5.1 Dataset

We used DOTA (A Large-scale Dataset for Object Detection in Aerial Images) dataset
for training and testing purpose. It is an open source object detection dataset for remote
sensing and collected by Google Earth and China Centre for Resources Satellite Data
and Application by satellite JL-1 and satellite GF-2. It contains 15 object categories as
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground
track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer
ball field and swimming pool. The image sizes are in the range of 800 x 800 to 4000
X 4000. In this study, airplane detection is aimed, therefore we just select the 1631
images which contain mostly commercial airplane objects and the number of them is
5209. We divided the images as the size of 1024 x 1024 patches to train Faster R-CNN
and 608 x 608 for training SSD and YOLO-v3 detectors. The spatial resolution of the
images varies in range 0.11 to 2 meter and they contain various orientation, aspect
ratios and pixel size of the objects. Also, the images vary according to the altitude,
nadir-angles of the satellites and the illumination conditions. The selected images also

split as 90 percent of object samples to use at training and the rest of them for testing.

As can be seen in (Figure 5.1), DOTA training and test sets also include different
samples in terms of airplane dimensions, background complexity, and illuminance
conditions. Some image patches have some cropped objects, and some examples are

black and white panchromatic images. Thanks to all these variations in the Dota
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dataset, the trained object detection architectures will be able to achieve similar

performance in different image conditions.

Figure 5.1 : Patches from DOTA test set; (a) cropped, (b) very big, (c) very small,
(d) complex background, (e) illuminance effect, (f) panchromatic samples.

We used also 5 large scale images for testing our proposed detection flow. They are
collected from Pleiades 1A and Pléiades 1B satellites which are the pan-sharpened
images that have 0.5 meter spatial resolution. The images contain Istanbul Ataturk,
Istanbul Sabiha Gokcen, Izmir Adnan Menderes, Ankara Esenboga and Antalya
airport districts. They cover about 53 km? areas and contain 280 commercial airplanes.
They also differ by the environmental conditions, altitude, and nadir-angles of the

satellites.
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& =

Number of samples
=

Number of samples

=
o

T u t T T ]
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 0 2500 5000 7500 10000 12500 15000 17500 20000
Pixel Size Pixel Size Pixel Size

Figure 5.2 : Number of the pixel size of airplane bounding boxes in the dataset.

As shown in (Figure 5.2), the bounding box area distributions of aircraft samples are
between 0 and 15000 pixels for the DOTA train set. Although this shows almost the
same distribution as the Dota test set, it differs slightly from the examples in the large
scale data set that we created. There is no object sample over 20000 pixels in the large
scale test set and the areas of the samples are mostly in between 3000 and 6000 pixels.

5.2 Training of the Object Detection Networks

In this study, all the training process and experiments are done with Tensorflow and
Keras open source deep learning libraries, which were developed by the Google

research team [57]. The hardware used for these purposes is the Nvidia Geforce GTX
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1080 graphic card. For each architecture, we used different training configurations
according to the network and our hardware specifications. We also used the transfer

learning technique by their pre-trained parameters learned from COCO dataset.

With the transfer learning approach, we start the training with the pre-trained
parameters to utilize useful information gathered from the previously trained network
with different data used for another problem. Although COCO dataset does contain
natural images, the pre-trained model of the networks, which utilized from COCO, can
be used in our problem as well, because we can learn some basic features directly from
them such as edge, corner, shape, and color which form the basis of all of the vision
tasks. After starting our network with the parameters of the pre-trained model, we fed

it with our training examples of DOTA which we prepared before.

We used 1024 x 1024 image patches to train Faster R-CNN. For the RPN stage of it,
the bounding box scales are defined as 0.25, 0.5, 1.0 and 2.0 with 0.5, 1.0 and 2.0
aspect ratios which means that the network generates 12 anchor boxes for each lacation
of the feature maps. Batch size was defined as 2 to prevent the memory allocation
errors. For the first attempt, the training process is continued 400Kk iterations and it
tooks 3 days. The learning rate was started as 0.003 and was continued by reducing to
half of it for each further 75k steps. The training loss did not decrease anymore and
we start new training with the learning rate tenth of the old one and perform the process
for 900k iterations by reducing quarter of the learning rate for each 50k steps after
150k-th iterations.

For the SSD network, with the size of 608 x 608 image patches used for training. The
sizes and aspect ratios of the default bounding boxes of each feature map layers
remained as same as in the original SSD article [19]. We used RMSProp optimization
method for gradient calculations with 0.001 learning rate, 0.9 decay factor for each
25k iterations. The batch size was defined as 16 and the training process is done for
200k step that tooks 2 and half day. With the first attempt of the SSD, we could not
get good results, too. Therefore we started a new training process with 0.0004 learning
rate value and the same decay factor for each 50k-th iterations along with 450k

iterations.
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Figure 5.3 : Yolo v3 training and validation loss graphic.

The Yolo-v3 architecture was trained with Adam optimizer by learning rate 5 x 1075
with decay factor 0.1 for every 3 epochs which the validation loss does not decrease.
We used 9 anchor boxes with different size, 3 for each stage of the network as in the
original paper. Before the training, we clustered the bounding boxes of our whole data
according to their sizes with the k-means clustering algorithm to find 9 optimum
anchor box sizes. Then we sorted them from small to large and we produced each
three of them from the first stage to third. For the validation purpose, 10 percent of the
training data was splitted for monitoring the validation loss during the training process.
The batch size was defined as 8 and the whole training was continued for 80 epochs.
One epoch means the feed forward and back propagation processes are done for the
whole training dataset for one time. Training of the Yolo-v3 tooks about one and a half
day.

For the training of all networks, we applied horizontal and vertical flip and cropping
as augmentation techniques randomly. Besides, we scaled the image patches in HSV
(hue-saturation-value) to imitate atmospheric and lightning conditions as shown in
(Figure 5.4).
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Figure 5.4 : Illustration of data augmentations; (a) Original image patch, (b) Rotated
and scaled in HSV, (c) Rotated, cropped and scaled in HSV.

We observed that the Faster R-CNN and SSD can not converge well the training
dataset in a short time period. At the first attempts, the training losses of them have
tendencies to decrease and the results could be better with the smaller learning rates.
Additionally, more variety in the aircraft samples could affect the generalization of
them in a short time period. Therefore, we also softened the data augmentation process

(e.g squeeze the HSV scale in a low range).

5.3 Evaluation Metrics

5.3.1 Intersection over union (I0U)

The ground-truth labels for the object detection tasks mean the bounding boxes which
were drawn by people or a machine learning system that specify the exact and true
location and categories of objects in an image. Intersection over union metric is
calculated by finding the ratio of the overlapping area between the union area of the

ground truth bounding boxes and predicted boxes.

Area of Overlap
loU =

Area of Union

Figure 5.5 : Intersection over Union.
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5.3.2 Performance metrics

In the object detection tasks, there is two widely used performance metric as mean
average precision (mAP) and F1 score. At the training process, a detector compares
the predicted bounding boxes with ground truth bounding boxes according to 10U at
each iteration to update its parameters. Generally, it is aimed to have 0.5 iou ratio for
each prediction of an object at the training stage. This means if the network predicts
an object with a bounding box which its %50 area is overlapping with ground truth
box, it is considered as a true prediction. But when the localization is a matter for a
computer vision task, this ratio could be set higher. In our training process, we left it
as 0.5, and we expected to detect the objects at least with this ratio at the evaluation

phase. Therefore, this ratio is used for calculating the performance metrics.

Mean average precision is computed by the overall precision value of all predictions
for recall value over 0 to 1. It is the calculation of the average precision value over all
predictions. The precision means the fraction of the actual matches of all objects we
detected as matches and the recall is the ratio of a number of objects that we can detect
correctly to a number of all ground truth samples. So, the only recall rate or precision
rate is not enough to measure the performance of our framework and the harmonic
mean of them, which is F1 score, helps us in this way. Suppose true positive (TP) as
truly detected objects, false negative (FN) as non-detected objects and false positive

(FP) as falsely detected objects:

TP

Precision = (5.1)
TP+FP
Recall = —~ (5.2)
TP+FN

Precision * Recall

F1 score = 2 (5.3)

Precision +Recall

5.4 Results

With the COCO metric API, 12 different metrics are calculated to measure the
characteristics and performance of object detection algorithms. Unless otherwise
defined, average precision and average recall are calculated by averaging over 10
different intersection over union values (from 0.5 to 0.95 at 0.05 intervals). In addition,
the values where iou is 0.5 and 0.75 are calculated for AP. AP is the average precision

calculation according to all categories and iou values (In our problem, there is 1
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category as aircraft). AR is the maximum number of detections per image, averaged
over categories and loUs. These calculations are also examined by looking at the
bounding box areas. According to COCO, objects with a size of fewer than 322 pixels
are defined as small, between 322 and 962 as medium and larger than 962 pixels. When
performing performance metrics, calculations are made according to all three
dimensions and for all dimensions separately. When calculating the metrics, we
defined the aircraft scales as in the COCO [56].

Average Precision (AP):

AP % AP at IoU=.58:.85:.95 (primary challenge metric)
pplol=.58 % AP at IoU=.58 (PASCAL VOC metric)
pplol=.75 % AP at IoU=.75 (strict metric)
AP Across Scales:
ppsmall % AP for small objects: area < 322
ppmedive % AP for medium objects: 222 < area < 982
pplarge % AP for large objects: area > 962
Average Recall (AR):
ppma=1 % AR given 1 detection per image
ppmax=1e % AR given 18 detections per image
fRmEx=128 % AR given 18@ detections per image
AR Across Scales:
pRsmall % AR for small objects: area < 322
ppmedium % AR for medium objects: 322 ¢ area < 982
pRlaree % AR for large objects: area > 06°

Figure 5.6 : 12 performance metrics of COCO challenge.

We named these metrics as in the (Table 5.1).

Table 5.1 : Performance metrics with calculation rules.

Calculated For Metric Name
AP for [ 1o0U=0.50:0.95 | area=all | maxDets=100 ] 1. Metric
AP for [ loU=0.50 | area=all | maxDets=100 ] 2. Metric
AP for [ loU=0.75 | area=all | maxDets=100 ] 3. Metric
AP for [ 1oU=0.50:0.95 | area=small | maxDets=100 ] 4. Metric
AP for [ 10U=0.50:0.95 | area=medium | maxDets=100 ] 5. Metric
AP for [ 1oU=0.50:0.95 | area=large | maxDets=100 ] 6. Metric
AR for [ 1oU=0.50:0.95 | area=all | maxDets= 1] 7. Metric
AR for [ 1oU=0.50:0.95 | area=all | maxDets= 10 ] 8. Metric
AR for [ 1oU=0.50:0.95 | area=all | maxDets=100 ] 9. Metric
AR for [ 1oU=0.50:0.95 | area=small | maxDets=100 ] 10. Metric
AR for [ 1oU=0.50:0.95 | area=medium | maxDets=100 ] 11. Metric
AR for [ 1oU=0.50:0.95 | area=large | maxDets=100 ] 12. Metric
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The Dota dataset was randomly divided into two as test and training. However, there
is a difference in the distribution according to medium and large object scales. As we
can see in (Table 5.2), for the large scale test dataset that we created, most of the

objects are in the medium range.

Table 5.2 : The ratios(%) of data sets according to object scale.

Small Medium Large
Dota Training Set 0.06 0.52 0.42
Dota Test Set 0.03 0.28 0.69
Large Scale Image Set 0.1 0.76 0.14

In order to see how well the models converge the training data, we also calculated the
performance metrics for the DOTA training set in addition to the test data. As it is
understood from the metrics, Faster R-CNN gave the best results when looking at the
mean of precision for different iou values. Yolo-v3 is good for 0.5 iou and above, while
Faster R-CNN is better if 0.75 iou and above is desired. When we look at Metric 4,5
and 6, Faster R-CNN gives the best AP result for different iou in small, medium and
large objects for the DOTA test set. However, in the large scale image set, we can see
that Yolo-v3 are better for small and medium objects. The reason for this is that the
architectures have different structures to learn different attributes from training data.
The 7,8 and 9 metrics give us information about the recall rates for all object sizes
according to the detection number per image. Here again, the Faster R-CNN looks
better. When we look at the AR results according to metrics 10, 11 and 12, we can see
that the recall rates of Yolo-v3 is worse than the SSD for large scale image set. In
addition to this, the SSD is also ahead of the Faster R-CNN for small and medium

aircrafts.

The performances of all trained models were examined with COCO metric API, except
for the first training attempts of SSD and Faster R-CNN. Because they gave bad
results. The fact that DOTA training and test performances are close to each for the
three architectures shows that the models can actually learn the object examples in
DOTA well. However, when compared to the large scale image set that we prepared,
there is a big performance gap. The main reasons for this may be that the dimensions
of the aircraft are distributed different than DOTA and they contain different types of

aircraft.
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Table 5.3 : Performance of DOTA training, validation and large scale image set
according to COCO metrics.

Dota Training Set Dota Test Set Large Scale Image Set

Yolo- 2. 2. Faster Yolo- 2. 2. Faster Yolo- 2. 2. Faster

v3 SSD R-CNN v3 SSD R-CNN v3 SSD R-CNN
Metric1 042 041 048 039 037 045 014 015 0,17
Metric2 080 0,71 0,75 0,76 061 0,71 043 043 0,36
Metric3 039 044 057 034 041 051 0,07 007 0,13
Metric4 0,04 0,02 011 0,07 004 008 005 002 0,04
Metricb 041 039 046 035 029 039 0,17 018 0,16
Metric6 049 047 054 041 042 048 0,06 014 0,3
Metric7 0,18 0,18 021 025 0,27 0,30 0 0,00 0
Metric8 048 045 051 045 043 050 0,06 005 0,07
Metric9 05 047 053 045 043 050 024 027 0,26
Metric 10 0,06 0,06 0,16 0,07 008 013 0,05 0,07 0,07
Metric11 048 046 052 040 035 042 027 029 0,26
Metric12 056 053 059 048 047 053 0,19 030 0,40

With the COCO metric API, precision-recall curves can be plotted according to the

object size and differences between the curves can give some insights about the models
in terms of the capabilities for aircraft detection problem.

5.4.1 SSD evaluation results
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Figure 5.7 : SSD precision-recall curve of DOTA test set for all objects size.
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Figure 5.8 : SSD precision-recall curve of DOTA test set for large objects size.
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Figure 5.9 : SSD precision-recall curve of DOTA test set for medium objects size.
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Figure 5.10 : SSD precision-recall curve of DOTA test set for small objects size.
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Figure 5.11 : SSD precision-recall curve of large scale test set for all objects size.
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Figure 5.12 : SSD precision-recall curve of large scale test set for large objects size.
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Figure 5.13 : SSD precision-recall curve of large scale test set for medium objects
size.
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Figure 5.14 : SSD precision-recall curve of large scale test set for small objects size.

5.4.2 Faster R-CNN evaluation results
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Figure 5.15 : Faster R-CNN precision-recall curve of DOTA test set for all objects
size.
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Figure 5.16 : Faster R-CNN precision-recall curve of DOTA test set for large
objects size.
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Figure 5.17 : Faster R-CNN precision-recall curve of DOTA test set for medium
objects size.
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Figure 5.18 : Faster R-CNN precision-recall curve of DOTA test set for small
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Figure 5.19 : Faster R-CNN precision-recall curve of large scale test set for all

objects size.
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Figure 5.20 : Faster R-CNN precision-recall curve of large scale test set for large
objects size.
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Figure 5.21 : Faster R-CNN precision-recall curve of large scale test set for medium
objects size.
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Figure 5.22 : Faster R-CNN precision-recall curve of large scale test set for small
objects size.

5.4.3 Yolo-v3 evaluation results
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Figure 5.23 : Yolo-v3 precision-recall curve of DOTA test set for all objects size.
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Figure 5.24 : Yolo-v3 precision-recall curve of DOTA test set for large objects size.
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Figure 5.25 : Yolo-v3 precision-recall curve of DOTA test set for medium objects
size.
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Figure 5.26 : Yolo-v3 precision-recall curve of DOTA test set for small objects size.
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Figure 5.27 : Yolo-v3 precision-recall curve of large scale test set for all objects
size.
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Figure 5.28 : Yolo-v3 precision-recall curve of large scale test set for large objects
size.
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Figure 5.29 : Yolo-v3 precision-recall curve of large scale test set for medium
objects size.
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Figure 5.30 : Yolo-v3 precision-recall curve of large scale test set for small objects
size.

As seen in the (Figure 5.7) to (Figure 5.30) we get the precision-recall curves according
to small, medium, large scale of objects and all of them. The evaluations were done
for the DOTA test set and large scale image set separately. The orange area out of the
curves represents the false negative portion of the evaluated data set. In other words,
it is the PR after all errors are removed. The purple area means the falsely detected
objects which are the backgrounds in our work. The blue area shows the localization
errors of the predicted boxes. It is indicated that the PR curve at 0.1 iou value. The
white area shows the area under the precision-recall curve which comprised by the
prediction with iou above 0.75. Lastly, the grey area is for the detections with the iou

ratio above 0.5.

Brown area (Sim) is the PR curve after the supercategory false positives are removed.
Green area (Oth) is PR after all class confusions are removed. Because of we do not
have any supercategory (e.g cat and dog are two categories and animal is super

category of them) or any other category, we do not have these curves in our plots.
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Table 5.4 : mAP metrics of all test sets for all networks according to COCO Metric
API.

Dota Test Set Large Scale Image Set
mAP C75 ['C50 FEGCTINBEN C75 | C50 IEGENNBGN

Yolo-v3 All 034 076 078 0.79 0.08 043 0.79 0.79
Yolo-v3 Large 036 080 0.82 0.83 0.02 022 0.69 0.69

Yolo-v3 033 067 070 0.71 0.10 051 085 0.85
Medium

Yolo-v3 Small 0 025 025 025 0.04 011 048 0.48
2.SSD All 041 061 064 0.67 0.07 043 0.74 0.78
2.5SD Large 048 0.68 0.70 0.70 0.06 041 0.76 0.77

2.SSD 0.29 052 059 0.63 011 051 0.77 0.80
Medium

2. SSD Small 0 0.13 0.13 0.25 0 0.15 041 0.62

2. Faster R- 0.51 071 072 0.73 0.13 036 081 0.81
CNN All

2. Faster R- 056 077 078 079 022 052 082 0.82
CNN Large

2. Faster R-CNN  0.42 0.60 0.61 0.61 0.13 0.37 0.83 0.83
Medium

2. Faster R-CNN  0.06 0.17 0.17 0.25 0.04 0.14 0.55 0.59
Small

We can see easily the large aircrafts detected better for the dota test and large scale
image set from the figures. Also, it can bee seen that the networks detect well with the
iou above of 0.5 when we compare the margin area between iou with 0.75. Although,
the localization error for the DOTA test set is less, it appears to be much greater in
large scale images. For the Yolo-v3 network, we chosed 9 optimum anchor sizes by
clustering the whole DOTA training samples according to the object sizes of them, but
we can see in the large scale image set, the pixel sizes of objects are much smaller.
Besides, the object number of DOTA samples in the training set is much more than
the large scale image set that we prepared. This could occur the imbalance between
the object sizes of two dataset. Namely, the sizes of the anchor boxes we choose with
the k-means algorithm could not that optimum size for the large scale image dataset.
This condition could be the explanation of the bigger localization errors of the large

scale image set.

Although, SSD network obtains worse performance for the test sets, it is much

sensitive to localize the objects well by comparing with the other networks. We can
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also see the Yolo-v3 network is better at the detection of the small objects with 0.5
iou. Additionally, Faster R-CNN can detect the small objects of DOTA test set with
%6 mAP while the other networks can not and for the small objects of the large scale

image set, it has similar performance with the Yolo-v3.

We also did the calculation for the best precision, recall and F1 score with the iou
thresholds 0.5 for all networks and all dataset. In order to observe how the models can
generalize the training data, we have calculated these scores for the training data as

well.

Table 5.5 : Precision, Recall and F1 score of all datasets.

Dota Training Set Dota Test Set ~ Large Scale Image Set
Prec.c Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Yolo-v3 099 095 097 09 089 092 0.97 087 091

1. SSD 099 044 061 09 043 059 0.65 036  0.46

2.SSD 089 073 080 08 068 0.76 0.87 065 0.74

1. Faster 099 051 067 099 047 063 0.74 041 052
R-CNN

2.Faster 097 092 095 098 089 093 098 092 094
R-CNN

The detection processes took about 37s by SSD, 97s by Yolo v3, 102s by the Faster
R-CNN with our proposed detection flow approach for all of the large scale image set

which cover 53 km? area in total.
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c)

Figure 5.31 : Detection results of some of the DOTA test set patches (a) Yolo-v3,
(b) SSD, (c) Faster R-CNN.

(Figure 5.31) shows the detections made on some challenging sample images in the
DOTA test set. As we can see in these examples, Yolo-v3 is more successful than the
others. Although, the selected samples have different aircraft sizes, illuminance
effects, background complexities and different band information, the Yolo-v3 has a
small amount of missing objects, while SSD shows the worst results. But with the
overall test samples we can see from the tables, Faster R-CNN is best model and SSD
is worst. We did the evaluation process with Yolo-v3, second trained SSD and Faster
R-CNN. The precision recall curves, mAP result tables and the resulting images are
extracted by them. Additionally, we included in the (Table 5.5), the first trained model
of SSD and Faster R-CNN evaluation results according to precision, recall and F1

scores to see the improvements.
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Figure 5.32 : Yolo-v3 evaluation for the Antalya Airport.
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Figure 5.33 : Yolo-v3 evaluation for the Istanbul Ataturk Airport.
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Figure 5.34 : Yolo-v3 evaluation for the Istanbul Sabiha Gokgen Airport.
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Figure 5.35 : Yolo-v3 evaluation for the Esenboga Airport.
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Figure 5.36 : Yolo-v3 evaluation for the Izmir Adnan Menderes Airport.
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Figure 5.37 : SSD evaluation for the Antalya Airport.
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Figure 5.38 : SSD evaluation for the Istanbul Ataturk Airport.
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Figure 5.39 : SSD evaluation for the Istanbul Sabiha Gokgen Airport.
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Figure 5.40 : SSD evaluation for the Esenboga Airport.
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Figure 5.41 : SSD evaluation for the Izmir Adnan Menderes Airport.
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Figure 5.42 : Faster R-CNN evaluation for the Antalya Airport.
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Figure 5.43 : SSD evaluation for the Istanbul Ataturk Airport.
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Figure 5.44 : SSD evaluation for the Istanbul Sabiha Gokgen Airport.

71



Figure 5.45 : SSD evaluation for the Esenboga Airport.
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Figure 5.46 : SSD evaluation for the Izmir Adnan Menderes Airport.
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6. CONCLUSIONS

With this study, we see the different object detection architectures with the training
and evaluation phase after the literature and machine learning techniques review. We
obtain the best results with Faster R-CNN network. Yolo-v3 architecture also gave
promising results, but SSD could not converge the training data well with low
iterations. All the networks have a tendency to learn more with different parameters
and more iterations. We can see that Yolo-v3 has faster convergence capability
according to the others but the optimization methods also play an important role for
this purpose. Although, the worst performance of SSD, it is better to localize objects

well.

The imbalance between the object sizes and the diversities also effected the results. In
the training of deep learning architectures, imbalances should be avoided or the
categories should be divided into finer grains (e.g : airplane, glider, small plane, jet
plane, war plane etc).

For the future works we can define the anchor box sizes by weighted clustering
according to the sample size of the datasets. Also, for preventing false positives and
increasing the recall ratio, we can use all of the networks together and define the offsets
of the bounding boxes by averaging predicted bounding boxes. By this way, we think
the localization errors could decrease as well. Besides, the different object detection
networks can be trained more and used together to obtain better performance. Finding
a way to use the ensemble learning methods for object detection architectures could
be other improvements. In addition, the object detection networks often use R, G and
B bands, because they are mostly developed for natural images. However, satellite
imageries can contain much more spectral information. Therefore, in the next studies,
object detection networks can be modified and trained to use other band information
of multi-band satellite images, and performance can be increased by this extra

information.
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