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LAND COVER AND LAND USE CLASSIFICATION USING
CONVOLUTIONAL NEURAL NETWORKS

SUMMARY

In recent years, deep learning (DL), the successor of neural networks (NNs), has
become the state-of-the-art approach in areas particularly, computer vision (CV),
speech recognition and natural language processing. (NN) is an established branch of
artificial intelligence that has been brought to life due to factors such as high-
performance computing, algorithmic improvements and big data. In the field of remote
sensing big data has also become the norm. Remote sensing is obtaining information
about an object or phenomenon without making physical contact, especially the Earth.
The definition includes the conventional areas of remote sensing, e.g. satellite and
aerial photography. However, remote sensing also covers areas such as unmanned
aerial vehicles (UAVs) and crowdsourcing (telephone images, tweets, etc.). Several
satellites were launched in the last five years with high spatial resolution such as
Sentinel-1A/B and Sentinel-2A within the European Copernicus program, and
Landsat-8 within the U.S. Geological Survey (USGS) and the National Aeronautics
and Space Administration. All of these data sets are free to access on operational basis.

Land use and land cover classification is a standard remote sensing task where each
image pixel is either associated with a class label indicating the physical material of
the surface(land cover) or each object describing the socio-economic function of the
land(land use). Therefore, land use objects are complex structures consist of many
different land cover elements. Due to its complex nature, both spectral and spatial
features need to be incorporated for a successful land use/land cover mapping.
Experiments to combine both of these features based on the Conditional Random Field
(CRF) model, Markov Random Field model and Composite Kernel (CK) method have
been carried out. Nevertheless, in most cases, the process of extracting extensive
number of features for the intent of supervised classification is time consuming and
requires comprehensive knowledge to extract useful features. In addition to that, hand-
crafted methods that are used for classification mainly relies on low-level features and
produce inadequate classification results. With the increasing amount of accessible
data, application of deep learning for overcoming these challenges has become
prominent. Compared to machine learning approaches such as Support Vector
Machine (SVM) and Random Forest (RF) deep learning shows great promise with the
use of big data. Current deep learning models are Deep Belief Net (DBN), Stacked
Auto-Encoder (SAE), and Convolutional Neural Network’s (CNN). Most well-known
deep learning model (CNN) shows great progress for processing of remote sensing
imagery. (CNN’s) outperform shallow-structured machine learning tools in remote
sensing applications such as object detection, segmentation and classification.
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In this thesis, two pre-trained CNN models namely Inception-ResNet-V2 and
Inception-v4 are used to classify scenes from satellite imagery. There are 20 classes
with 700 images each such as airport, chaparral, dense residential, forest, freeway, golf
course, ground track field, industrial area, intersection, meadow, medium residential,
overpass, parking lot, rectangular farmland, river, runway, sparse residential, storage
tank, tennis court and terrace. Scenes acquired from Worldview-3 satellite sensor are
used to evaluate the performance of the network. Suggested networks reached %91.2
and %87.2 accuracy over the 1000 test image.
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DERIN EVRISIMSEL SINiR AGLARI iLE ARAZi KULLANIMI VE ARAZi
ORTUSUNUN SINIFLANDIRILMASI

OZET

Son yillarda, sinir aglarinin halefi olan derin 6grenme, 6zellikle bilgisayar goriisii,
konugma tanima ve dogal dil isleme gibi alanlarda son teknoloji bir yaklagim haline
gelmistir. Sinir aglar1 yiiksek performansl bilgi islem, algoritmik iyilestirmeler ve
biiyiik veriler gibi faktorler ile hayata gecirilen yerlesik bir yapay zeka dalidir.
Gegtigimiz yillarda biiylik veri yapilar1 uzaktan algilama konusunda da biiylik 6nem
kazanmistir. Uzaktan algilama, 6zellikle Diinya olmak tizere fiziksel temas kurmadan
bir nesne veya fenomen hakkinda bilgi edinmektir. Bu tanim, geleneksel uzaktan
algilama alanlarini, 6rn. uydu ve hava fotograf¢iligini kapsamakla birlikte, insansiz
hava araclar1 (IHA) ve kitle kaynak kullanimi (telefon goriintiileri, tweetler, vb.)
alanlarmi1 da igerir. Son yillarda yiiksek ¢oziiniirliikli gézlem uydularinin sayisi
giderek artmistir. Avrupa Kopernik programinda gelistirilen Sentinel uydular1 ve ABD
Jeolojik Etiitleri (USGS) ile Ulusal Havacilik ve Uzay Idaresi biinyesindeki Landsat
uydularinin elde ettigi verilerin hepsine operasyonel olarak erisim serbesttir. Elde
edilen bu biiyiik verilerin incelenmesi ve analiz edilmesi uzaktan algilama konular1
icin 6nem arz etmektedir. Ozellikle sehir planlama, tarim rekoltesi hesaplama, iklim
degisikliginin incelenmesi, arazi kullanimi ve arazi Ortiisiiniin siniflandirilmasi
konularinda kullanilir.

Uzaktan algilanmis verilerin yeryiiziine ait bilgiye doniistiiriilmesinde kullanilan en
onemli yontemlerden biri goriintiilerin siniflandirilmasidir. Siiflandirma islemi,
benzer spektral 6zellikleri tasiyan nesnelerin gruplandirilmasidir. Siiflandirma islemi
icin genellikle iki farkli yaklasim kullanilir. Bu yaklagimlar kontrollii ve kontrolsiiz
siiflandirma olmak tizere ikiye ayrilir. Kontrollii siniflandirma metodu egitim veri
seti kullanilarak siniflandirmayi icerir. Bu yaklasim ile daha yiiksek dogruluklar elde
edildiginden en ¢ok tercih edilen yontemdir. Bunun yani sira geleneksel siniflandirma
yontemleri olarak en ¢ok benzerlik smiflandiricisi ve histogram esitleme yontemi
ornek olarak verilebilir. Bu yontemler el becerisi ile elde edilen 6zellikler icerdiginden
iizerinde calisitlmamis goriintiiler ile iyi sonu¢ vermemekle birlikte sonuglarin
olusturulmast uzun zaman alabilir. Literatiirde bugiine kadar uzaktan algilanmig
goriintiilerin ~ siniflandirilmasina  yonelik daha karmasik ¢esitli algoritmalar
gelistirilmistir. Bu yontemlerden bazilar1 destek vektér makineleri, karar agaglari,
markov rastgele alani, kosullu rastgele alan ve bulanik mantik siniflandiricidir. Fakat
bu metotlarin biilylik boyutlu egitim verilerinden faydalanamadigi, kisith egitim verisi
ile lizerinde calisilmis goriintiiler lizerinde etkili oldugu arastirmalarla ortaya
konmustur.

Arazi Ortiisii ve arazi kullanimi siniflandirmasi, her goriintii pikselinin ya ylizeyin
fiziksel malzemesini (arazi Ortiisli) veya smifin sosyo-ekonomik islevini tanimlayan
her bir nesneyi (arazi kullanimi) gésteren bir sinif etiketi ile iliskilendirildigi standart
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bir uzaktan algilama problemidir. Bu nedenle, arazi kullanim nesneleri bir¢ok farkli
arazi Ortlisii elemanindan olusan karmasik yapilardir. Karmagik dogasi nedeniyle,
basarili bir arazi Ortiisii arazi kullanimi haritalamasi i¢in hem spektral hem de mekansal
ozelliklerin dahil edilmesi gerekir. Derin 0grenme algoritmalar1 bu iki 6zelligi de
kullanarak siniflandirma yapabilmesi ag¢isindan arazi Ortiisii arazi kullanimi
haritalamasi i¢in kullanilan en gelismis modellerdir. Artan erisilebilir veri miktariyla
birlikte, derin 6grenme uygulamalar1 6ne ¢ikmistir. Destek vektor makinesi ve karar
agacit gibi makine Ogrenme yaklagimlariyla karsilastirildiginda, derin 6grenme
uygulamalar biiyiik verilerin kullanimut ile biiylik umut vaat etmektedir. Mevcut derin
ogrenme modellerinden Derin Inang Aglar, Yigmlasmis Otomatik Kodlayici ve
Evrisimsel Sinir Aglart uzaktan algilama problemlerinde etkin olarak
kullanilmaktadir. Goriintli siniflandirmada en iyi bilinen derin 6grenme modeli olan
Evrisimsel Sinir Aglar1 uzaktan algilama goriintiilerinin islenmesi i¢in de biiylik
ilerleme gostermektedir. Evrisimsel Sinir Aglar1 nesne algilama, segmentasyon ve
simiflandirma gibi uzaktan algilama uygulamalarinda sig yapili makine 6grenme
aracglarindan daha iyi performans gostermektedir.

Bir derin O6grenme mimarisi olan Evrisimsel Sinir Aglari, Ozellikle goriintii
simiflandirmada kullanilir. Evrigimsel sinir aglari, egitilebilen bir¢cok katmandan
olusmaktadir. Cok katmanli mimarisi sayesinde goriintiilerden Oznitelik ¢ikarma
konusunda oldukga bagarilidir. Her katmanin kendine ait 6znitelik havuzlama katmant,
filtre banka katmami ve dogrusal olmayan katmani bulunmaktadir. Filtre banka
katmani farkli 6znitelikler ¢ikarilmasi i¢in bir¢cok ¢ekirdek bulundurur. Havuzlama
katmaninda elde edilen 6znitelik haritalar1 tek tek ele alinir. Her harita maksimum
degerinin veya komsu degerinin ortalamasinin elde edilmesini saglamaktadir. Goriintii
once pargalara ayrilir ve her pargaya filtre uygulanir. Filtre isleminden sonra goriintiide
kiigiilme meydana gelir. Bu islem sonucunda elde edilen pikseller anlamlandirilarak
siniflandirma problemi ¢oziilmeye calisilir.

Evrisimsel Sinir Aglar1 mimarileri giderek daha karmasik ve derin bir yapiya
evrilmistir. Yann Lecun tarafindan gelistirilen LeNet modern anlamda goriintii
islemede kullanilan ilk derin mimariye sahip evrisimsel sinir agidir. Akabinde 2012
yilindaki ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)
yarismasinda Alex Krizevhsky tarafindan gelistirilen AlexNet goriintii siniflandirma
ve tanima alaninda biiyiik bir basar1 saglamistir. Bu basarinin ardindan Evrisimsel
Sinir Aglar1 goriintii islemede sik¢a kullamlmaya baslamistir. izleyen yillarda
ILSVRC yarigmasinda 6nde gelen mimariler VGGNet, ResNet ve GoogleNet
olmustur.

Olduk¢a derin mimariye sahip modern evrisimsel sinir aglarin1 spesifik bir
siiflandirma problemi i¢in sifirdan egitmek uzun hesaplamalar gerektirir. Fakat cok
katmanli yapisi sayesinde farkli verilerle egitilmis aglar baska bir siniflandirma
problemi i¢in kullanilabilir. Nesnelerin olusturdugu ¢izgiler ve koseler gibi kavramlar
aglarin asagr katmanlarinda Ogrenilir. Yukar1 katmanlar1 ise yeniden egitilerek
istenilen siiflandirma problemine uyarlanir. Boylece etiketli veri bulmanin zahmetli
oldugu alanlarda basarili sonuglar elde edilebilir. Giiniimiizde agik kaynak olarak
kullanilabilen aglar ImageNet veriseti ile egitilmis olup bir ¢ok farkli alanda
kullanilmak {izere ince ayar yapilabilir. Uzaktan algilama problemlerinde literatiire
bakildiginda 6nceden egitilmis aglarin nesne tanima ve siniflandirma gibi konularda
basarili sonuclar verdigi goriilmiistiir.

Bu tez ¢aligmasinda, Inception-ResNet-V2 ve Inception-v4 adli iki dnceden egitilmis
Evrigimsel Sinir Ag1 modeli, uydu goriintiilerini siniflandirmak i¢in kullanilmistir.
Siniflar havaalani, yogun yerlesim alani, orman, ¢evre yolu, golf sahasi, arazi yolu
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alani, sanayi bolgesi, kavsak, cayir, orta dlgekli yerlesim alani, {ist gegit, otopark,
dikdortgen tarim arazileri, nehir, pist, seyrek yerlesim alani, depolama tanki, tenis
kortu ve teras olmak tizere 20 adettir. Egitim verisi olarak her smif i¢in 700 goriintii
kullanilmigtir. Worldview-3 uydu sensoriinden elde edilen sahneler agin performansini
degerlendirmek igin test seti olarak kullanilmustir. Onerilen aglar, 1000 test
goriintlisiinde %91.2 ve %87.2 dogruluga ulagmistir.
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1. INTRODUCTION

Recent years in remote sensing field can be named as the era of big data. Volume and
the availability of the remote sensing data has increased immensely. Due to large scale
of these data sets new challenges have risen. Land use land cover classification has
always been an important task in remote sensing field, providing crucial information
for applications such as urban planning and precision agriculture. This can be done by

analyzing remote sensing imagery.

The task of classification in the context of remote sensing imagery is utilizing labeled
samples to determine which class does each pixel belong to. There has been wide range
of studies on analyzing each individual pixel of the images and classify them based on
their spectrum. In this framework, mainly used approaches are support vector
machines(SVMs)[1] and decision trees[2]. However, these techniques are not effective
in a large-scale due to the fact that majority of satellite imagery does not use high
spectral resolution sensors. Without understanding the shape of the objects, separating
classes entirely by their spectrum is difficult. On the other hand, more advanced
techniques incorporate information from a several neighboring pixels to boost the
classifiers’ performance, specified as spectral-spatial classification. In this context
studies based on the Conditional Random Field (CRF)[3] model, Markov Random
Field[4] model and Composite Kernel (CK)[5] method have been carried out. However
these methods only show promise with the data being analyzed. Generalization of the
proposed solutions are questionable. Also the process of extracting extensive number
of features for the intent of supervised classification is time consuming and requires
comprehensive knowledge to extract useful features. On the other hand, deep learning
approaches learn from the data itself, thus replacing the expertise of feature
engineering. Deep learning models outperform shallow-structured approaches in
remote sensing applications such as object detection, segmentation and classification.
Convolutional neural networks (CNNs) are accepted deep learning models that extract
contextual image features by utilizing stack of learned convolution filters. Inspired by

the human visual cortex CNNs consist of multiple layers. First part of the CNN is



usually referred as feature extractor and last part is called as multilayer
perceptron(MLP). Final layer assigns class labels and compute probabilities of a given
class. Other layers are mostly convolutional filters. For instance, to analyze grayscale
imagery, CNNs utilize two dimensional (2-D) convolutional filters and as for red-
green-blue RGB imagery (3-D) convolutional filters are used. After training phase,
filters learn to elicit hierarchical features straight from the input data, in contrast to
machine learning models that use “hand-crafted” features. Architecture and the details

of the CNN models will be discussed in the chapters later on.

CNN s prevailed in tasks such as classification and object detection. Beginning in the
1990’s, LeCun et al[6]. designed LeNet for reading zip codes. It created an impact in
the image processing community. Krizhevsky et al.[7] created a deep CNN which won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. Next year
Zeiler and Fergus[8] developed ZFNet, which was based on AlexNet architecture with
tweaked parameters and won (ILSVRC). In 2014, Szegedy et al[9] created GoogLeNet
also known as (Inception-vl) which had only 4 million parameters compared to
AlexNet(60 million) won (ILSVRC). ResNet designed by He et al.[10] introduced
residual connections which improved the training speed remarkably. In 2016, Szegedy
et al introduced residual connections in conjunction of Inception network called as

Inception-ResNet which significantly improved recognition performance[11].

Transfer learning is the practice of reusing a trained algorithm on a comparable dataset.
As humans we don’t learn to recognize new images by analyzing thousands of similar
ones. Concepts of lines and curves comes first. Idea behind transfer learning is quite
similar. Transferring low-level features from a pre-trained model and tune the filter
weights to identify other different patterns. Thus, eliminating the heavy work of

training from the scratch with thousands of images.

In the remote sensing field, Marmanis et al[12] utilized this concept by using a CNN
pre-trained on the ImageNet dataset and extracted features of orthoimagery from the
last layer. Donahue et al.[13] displayed that the crucial information is obtained from
the deeper layers. With a similar approach Salberg[14] detected seal pups in aerial
imagery with high accuracy. Other transfer learning applications of remote sensing are
as follows; Othman et al[15] trained ILSVRC-12 challenge data set and used transfer
learning on UC Merced Land Use[16] dataset. Iftene et al.[17] used ImageNet data set
on CaffeNet and GoogLeNet models then applied results to WHU-RS[18] data set



consist of very high resolution imagery. Ghazi et al.[19] and Lee et al.[20] used a
combination of pre-trained networks such as GoogLeNet, VGGNet and AlexNet on

plant identification.

1.1 Purpose of Thesis

In recent years expansion in the satellite industry led to a vast amount of available
satellite imagery of the earth. These imagery provide critical information for many of
remote sensing tasks including land cover and land use analysis. Traditional methods
for the classification of image scenes are no longer applicable for the analysis of big
data. These methods often rely on handcrafted features and therefore on the feature
engineer. Also it takes significant amount of time to create features that can be

generalized over the unseen data.

One of the subcategories of machine learning discipline, deep learning became a hot
topic for computer vision and remote sensing field. Stacked auto-encoders (SAEs)
deep Boltzmann machines (DBMs), deep belief networks (DBNs), and convolutional
neural networks (CNNs) are the most popular deep neural network architectures used
in remote sensing applications. These networks can extract reliable features directly
from data without any need for feature engineering. Research shows that CNNs are the
most capable feature extractors for classification problems. Although the most popular
networks are designed and trained to recognize daily internet images, these networks
are also capable of recognizing geospatial objects, land cover and land use classes in

the satellite images.

Purpose of this thesis is to investigate state-of-the-art CNN models for land cover and
land use classification and produce accurate results that can be generalized over the

unseen data.

1.2 Scope and the Organization of the Thesis

The thesis is organized as follows: A detailed literature overview on land cover land
use classification with both conventional techniques and machine learning methods is
discussed in Chapter 2. Theory and details of deep learning as well as popular deep
networks are presented in Chapter 3. The experiments conducted on scene

classification are given in Chapter 4 and conclusions are presented in Chapter 5.






2. LITERATURE REVIEW ON LAND COVER AND LAND USE
CLASSIFICATION

Land cover and land use information is a crucial aspect of remote sensing. Information
derived from remote sensing imagery is fundamental to numerous environmental and
socio-economic applications such as urban and regional planning and natural resource
management. Beginning in the 1980’s, various methods have been developed to
generate information from remote sensing imagery. Processes of classification and
image interpretation have been introduced. Between 1980°s and 1990’s, almost all
classification methods used image pixel as a primary unit, labeling each pixel with a
single land cover and land use class. However, pixel based classification methods
brought challenges as the pixel may contain more than one land cover land use type.
Thus, in late 1990’s object based classification methods have been developed. This
method groups several pixels with homogeneous attributes into an object and each
object is then considered as the basic unit rather than pixels. As the number of very
high resolution sensors (i.e. IKONOS, Quick bird ) increased, images started to have
more intra-class spectral variability. This resulted in unsatisfactory results with
classifiers that mainly utilize spectral variables. Therefore, spatial component of the
image also needed to be used. Term “spatio-contextual” image classification is then

addressed to describe the relationship between target pixel and its neighboring pixels.

2.1 Pixel-Based Image Classification

Pixel-based approaches assume that each pixel belongs to single land cover and land
use type [21]. Pixel based classifiers can be grouped as supervised and unsupervised
classifiers. Unsupervised classifiers divide remote sensing imagery into a number of
classes based on their pixel values without using any training data. K-means algorithm
[22] and Iterative Self-Organizing Data Analysis (ISODATA) technique are examples
of widely used unsupervised classifiers. On the other hand, for supervised
classification, image analyst has to select training samples and compare those samples

to the spectral properties of the target image. Then, analyst labels pixels to the



appropriate class type according to decision rules. Maximum Likelihood Classifier
(MLC) [23], Minimum Distance-to-Means Classifier [24], K-Nearest Neighbors

Classifier [25] are commonly used supervised classifiers.

2.2 Sub-Pixel Based Image Classification

Assumption of each pixel belonging to a certain class is often leads to poor
performance in classification accuracy with medium resolution imagery. As a better
alternative, sub-pixel based approach gives each pixel partial memberships to all
classes so that the corresponding areal distribution of each class can be predicted
respectively. Major sub-pixel based models are fuzzy classification [26], regression

modeling [27] and spectral mixture analysis [28].

2.3 Object-Based Image Classification

In comparison to pixel and sub-pixel based approaches object-based models consider
the objects as the basic unit of analysis. Objects are comprised of several individual
pixels that have homogeneous attributes. These image objects are generated with a
process addressed as image segmentation. With image segmentation objects are
formed using spatial, contextual and spectral information. The differences between

pixel, sub-pixel and object based approaches are given in (Table 2.1).

Table 2.1 : The differences between pixel, sub-pixel and object based approaches.

Classification of Techniques Attributes Examples of Classifiers

Unsupervised (e.g. k-
Each pixel is labeled as a single means, ISODATA)
Pixel-based Techniques land use land cover type. Supervised (e.g.

Maximum likelihood)

Each pixel is considered mixed, and Fuzzy classification,
Sub-pixel based Techniques the areal distribution of each class spectral mixture
is predicted. analysis, regression
modeling
Objects, instead of individual E-cognition, ArcGIS
Object-based Techniques pixels, are considered as Feature Analyst

the basic unit.




2.4 Spatio-Contextual Image Classification

Spectral classifiers have advantages in terms of simplicity and computational load.
However not all land cover land use types can be classified using spectral information
[29]. In order to overcome these challenges, spatial and contextual information has to
be utilized as well. Markov Random Field (MRF) model [30] is one of the spatio-
contextual remote sensing image analysis techniques. MRF is a graphical model that
has been applied in a wide range of fields from computer vision to physics. MRF’s can
be used to analyze the local and global properties of a remote sensing imagery, and
evaluate the spatial autocorrelation between pixels through mathematical means.
Increasing number of studies shows that MRF-based classification methods produce
substantial results compared to conventional non-contextual classifiers [31]. Variety
of MRF-based classification techniques have been used in land cover and land use
classifications and showed promising results, however according to many remote
sensing scientists, the concepts of MRF are considered cumbersome and their

implementations include challenging computational difficulties.

Traditional classification methods require high level of expertise and usually work
well with the data being analyzed but produces poor results with the unseen data [32].
Thus, the generalization of the extracted features is questionable. However, with
machine learning approaches, contribution of the image analyst is reduced as the
features are extracted directly from the data itself. The classification problem with

machine learning approaches is discussed in the next section.

2.5 Machine Learning in Remote Sensing

Machine learning is one of many sub-fields of artificial intelligence (Al) and has
become very well-known in the last decade. Although Al has other sub-fields aside
from machine learning, the two are used interchangeably. Machine learning systems
are created by analyzing lots of examples and devise rules to predict outcomes for
unseen data(Figure 2.1). Machine-learning technology has laid the foundation of
numerous developments of modern society such as tailoring advertisements, relevant
web searches and content filtering on social media. It is getting more and more
available in consumer products such as smart phones and cameras. Machine learning

systems can be classified under three sub-categories; systems that depend on human



supervision or not (supervised, unsupervised), systems that learn incrementally as they
go (online learning) and systems work solely by comparing data points to newer ones

(instance-based learning).
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Figure 2.1 : Difference between classical programming and machine learning.
2.5.1 Supervised learning

Machine learning systems may require supervision to a certain extent. Idea is to feed
labeled samples in order to generate features from the given data. Regression and
classification are two major tasks that require supervision (Figure 2.2). Regression
stands for predicting a target numeric value based on set of features and it is measured
by root mean square error. However, in classification goal is to predict a label.
Therefore classification is measured by accuracy. In the field of remote sensing,
Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF) and
Neural Networks (NN) are well established supervised algorithms that are used for

classification problem.
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Figure 2.2 : Difference between classification and regression.
2.5.2 Support vector machines

For parametric classification, goal is to analyze feature space values and their

distribution of each class. On the contrary, SVM focuses solely on the training samples



and the optimal boundary between classes. However, not all the available training
samples can be used to describe and specify the separating hyperplane. The optimal
hyperplane is determined by a subset of feature vectors that lie on the margin named
as support vectors. Main objective in SVM is to find the optimal boundary, which
increases the margin, or separation between the support vectors(Figure 2.3a. When the
separability is nonlinear (Figure 2.3b), a nonlinear transform can be made to a newer
space with greater dimension in order to achieve linear separability (Figure 2.3 c). This
operation is called as kernel trick. For this operation transform function is not required.
Merely kernel function k is needed. However, choosing the right kernel function
presents challenges in terms of optimal results. Studies show that different kernels such
as polynomial and radial basis function applied on SVM-based classification produced
different results in satellite images [33]. For classes that are not separable, parameter
value C is specified by the user to create a soft margin for the decision boundary.
Higher C values often lead to poor results in terms of algorithms ability generalize.
Also, SVM classifier is naturally binary, therefore it can only identify a single
boundary between two classes. This problem can be tackled by applying classifier to
each possible combination of classes. By doing so, computational time is expected to
increase exponentially as the number of classes increase. Additionally, SVMs are

highly affected by noisy data; which are commonly encountered in remotely sensed

imagery.
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Figure 2.3 : Non-linear transform and optimal hyperplane for SVM.

There are numerous studies regarding the use of SVM’s in the field of remote sensing
especially for the problem of land cover and land use classification. Huang et al. [34]
used Landsat TM and Landsat ETM+ images to detect forest cover change. The
classification is carried out using SVM and produced approximately 90% accuracy. Li
et al. [35] proposed an SVM-based classifier using high resolution imagery from the
QuickBird sensor. A scene segmentation algorithm was incorporated with the SVM
object classifier yielded better results. It is also shown that the SVM classifier is highly
reliant on the segmentation process, a typical disadvantage of object-based classifiers.
Another study carried out by Brenning, [36] used eleven different classifiers to detect
rock glacier using Landsat and SRTM. SVM-based method did not show promising
results compared to other methods. In conclusion, SVM classifiers can show decent
results with limited amount of data due to support vector concept relies on small
number of data points to define a classifier’s hyperplane. However, selection of
parameters and kernel functions present challenges that often lead to “trial and error”

approach.

2.5.3 Decision tree classifier

Conventional classifiers employ neural and statistical approaches to the classification
problem. All available features are used to assign each pixel to an appropriate class.
However, DT uses a sequential approach for label assignment. Chain of simple
decisions is made based on the results of sequential tests instead of one complex

decision. The data can be split depending on the threshold value. Iteration through
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nodes is decided depending on the value of a certain band is above or below of the
threshold value. Thus, the model logic can be described as a set of if—then rules given
in (Figure 2.4). Once the model is constructed, classification is swift due to no further
complex mathematics is needed. Decision tree classification methods have been used
successfully for a wide range of classification problems including the remote sensing
field. Otukei and Blaschke [37] compared support vector machine, maximum
likelihood and decision tree based techniques for the assessment of land cover change
using Landsat TM and ETM+ data and found decision tree based methods produced
the best results. Punia et al. [38] classified IRS-P6 AWiFS data using decision tree
classifier and obtained very high accuracy. Challenges with DT’s include over fitting
and the possibility of generating a non-optimal solution. The former problem can be
tackled by a process called as pruning the tree which means removing one or more
layers of splits (i.e. branches). However, according to Pal and Mather [39] pruning
reduces the accuracy of classifying the training data but often increases the accuracy
of unseen data. Also, they’ve reported that when hyperspectral data are used, the

performance of DT classifiers declines as the number of features increases.

y1<a

y2<b y3<d

y2<cC ys<e

Figure 2.4 : Sample decision tree.
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2.5.4 Random forest classifier

Random forest is comprised of many DT’s in order to achieve better results than a
single DT. A method of “voting” is applied to all trees to obtain the label for each
instance. Due to difference of error correlation for each tree final result is more
accurate. This idea can be extended to each tree having own subset of training data
thus, minimizing correlation and making the ensemble more reliable. This technique
is increasingly being applied in the field of remote sensing especially in land-cover
classification using multispectral and hyperspectral satellite sensor imagery[40] [41]
[42]. However, most studies that have used random forests have few land-cover classes
and focused on small study areas [43][44]. Lawrence and Moran [45] compared the
performance of a variety of machine-learning classification algorithms, using 30
different data sets. They have reported that RF had the highest average classification
accuracy of 73.19%.

2.5.5 Artificial neural networks

Inspired by the human brain, concept of ANN’s were first introduced back in 1940’s
by a neurophysiologist Warren McCulloch and a mathematician Walter Pitts. They
have mathematically modeled biological neurons to perform intricate computations. A
neuron is essentially an input/output device transmitting binary coded information. In
1957, Frank Rosenblatt introduced perceptrons as the foundation of modern ANN
architectures. Instead of binary values, perceptrons use numbers as input and output.
It is based on linear threshold unit (LTU) which computes weighted (w) sum of inputs
(x) and utilizes a step function to that sum and outputs the result, given in equation 2.1,

equation 2.2 and (Figure 2.5);

Z = WX, + WXy, + ... wWpx, =wE x (sum of the inputs), (2.1)

h,,(x) = step (2) = step (Wt.x) (step function of the sum and the output) (2.2)
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Figure 2.5 : Linear threshold unit.

For a simple linear binary classification problem, a single LTU can be utilized.
Combination of inputs is computed and depending on the threshold value output can
be a positive or a negative class similar to a linear-SVM. Appropriate values for
weights wy, w, and w; are calculated by training the algorithm. Perceptrons are trained
simply by reinforcing connection weights that lead to correct output. Each training
instance is fed through the network and a prediction is made. For every output neuron

that contributed to the right prediction weights are updated;

k+1 _

witt = wl + 33— v)x, (2.3)
where;

w; ; is the connection weight between i input neuron and the j™ output neuron,
k is the step number,

9; is the output of the j™ output neuron of the ongoing training instance,

yj is the target output of the j* output neuron for the ongoing training instance,
x; is the value of i input of ongoing training instance,

1 is the learning rate.

Although perceptrons showed great promise, they failed in XOR classification
problem. This occurs when network tries to predict XOR logic gates given two binary
inputs. An XOR function needs to return false if two inputs are equal and true if they

are different. However this problem is tackled by stacking multiple perceptrons.
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Multi-Layer Perceptrons (MLP) are consist of one input layer, multiple LTU’s referred
as hidden layers and one layer of LTU’s addressed as output layer. Input layer and
hidden layers have a fully connected bias neuron (Figure 2.6). MLP is trained with an
algorithm called back propagation. First, algorithm feeds each training instance to the
network and output of each neuron is computed. This process is called as forward pass.
After forward pass, output error of the network is calculated. Then algorithm tracks
error contributions of each neuron until it reaches to the input layer. By propagating
backwards in the network, error gradient of all connection weights are effectively
measured so that tweaks can be made on the weights. This final step of the back
propagation is referred as Gradient Descent. MLP’s used in variety of remote sensing

challenges including land cover and land use classification [46][47].
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Figure 2.6 : Muli-Layer Perceptron.
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3. DEEP NEURAL NETWORKS

In recent years, deep learning is one of the fastest growing areas of research. There are
numerous implementations in fields such as computer vision, speech recognition,
language processing and remote sensing. As the successor of neural networks, deep
learning models share the fundamental concepts with NN’s, however to be called deep,
network has to have more than two hidden layers. As the number of hidden layers
increase, higher-level of features can be extracted. However, to make use of this deep
architecture number of training samples has to increase. Thus, computational cost of
training a deep network from scratch is too high and could take several months.
Although, recent advances in big data and GPU technology has helped deep learning

approaches to be more practical.

Multi-layered architecture of deep networks can extract efficient features from raw
data without the need of significant feature engineering. Thus, deep learning models
became the state-of-the-art when it comes to classification and object detection.
Various studies have been conducted in remote sensing applications using deep
learning based models [48][49][50][51][52][53][54][55]. As of today, there are four
major deep learning architectures. These are the deep belief networks (DBNs), and
recurrent neural networks (RNN) autoencoders (AE) and convolutional neural

networks (CNN). Following sections discuss these architectures in detail.

3.1 Autoencoders

Autoencoder is an unsupervised neural network meaning that it can extract features
from unlabeled data. Autoencoders obtain compact representations of the input data
referred as codings. Codings are reduced in dimension compared to input data, making
autoencoders a dimensionality reduction tool which is needed for many remote sensing
applications. They also can be used as generating new data from the training data. This
is called a generative model. Autoencoders comprised of two parts; an encoder and a
decoder (Figure 3.1). Encoder also referred as the recognition network, transforms

input data to latent representations. Decoder, referred as the generative network
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generates outputs from these representations. Autoencoder architecture is very similar
to MLP’s but the number of inputs is equal to number of neurons in the output layer.
Outputs are also called as reconstructions and when outputs are different from the
inputs, reconstruction loss is employed to tune the model. An encoder with one hidden

layer can be represented as;

h=f)=gWx+p), (3.1)
x =(Wx+8), (3.2)
L=f"If)] (3.3)

where f is the encoder function, h is the latent representation or code, g is the decoder
function that maps the output x’, W' is decoding weight, B is the decoding bias and £

1s the loss function of x and x.

Decoder

Inputs Encoder | Outputs
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X2 § % E—— xiz
X3 > X‘3

Figure 3.1 : Autoencoder.

3.1.1 Stacked autoencoders

Autoencoders that have multiple hidden layers are called stacked autoencoders or deep
autoencoders given in (Figure 3.2). By adding more layers autoencoder can learn
intricate codings. Stacked autoencoders are especially used for image analysis in

remote sensing [56][57].
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Figure 3.2 : Stacked Autoencoder.
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3.1.2 Sparse autoencoders

For more complex structures, sparsity constraint can be added to the hidden units
leading to better feature extraction. This reduces the number of active neurons in the
coding layer and forces autoencoder to represent each input with less activation. Mean
average activity of each neuron in the coding layer is calculated and neurons that are
active above mean average are penalized by adding sparsity loss. General approach is
to use Kullback—Leibler divergence. The following equations show the divergence

between two discrete distributions P and Q ;

D =(P1Q)=3P () log%, (3.4)

Di, (plg) = plog® + (1~ p)log . (3.5)

where p is the target average activation value and q is the mean activation of all

neurons. The equations show the divergence between target sparsity p and the actual

sparsity q.
3.2 Deep Belief Networks and Restricted Boltzmann Machine

Restricted Boltzmann machine (RBM) is an undirected graphical model comprised of
a hidden layer and a visible layer. In contrast to autoencoders or sparse autoencoders,
there are no connections in hidden or visible layers. Energy function of the RBM is

given by
E(v,h) = =Y a;v; — X bjhj — X, jvihjw, j, (3.6)

where w; ; is the weight between visible unit i and hidden unit j, a;, b; are their biases

and v; , hj shows the states of i and j.

Two or more RBM’s are stacked together forming DBN (Figure 3.3). DBNs have been
used successfully in remote sensing problems such as scene classification[58], object

recognition[59] and change detection[60].
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Figure 3.3 : A DBN with two RBM’s.

3.3 Recurrent Neural Networks

In contrast to feed-forward networks discussed earlier on, RNN’s have connections
pointing backward. RNN’s have a recurrent hidden state that activates at each step
depending on the previous step (Figure 3.4). Each recurrent neuron has one weight for
the inputs x(t) and another for the outputs of the previous time step, y(t-1). If we
represent these weights with Wx and Wy, output of a single recurrent neuron can be

shown as in equation 3.7.
Yy = @ (xfo-We + ¥y W, +b), 3.7)

where @ the activation function and b is is the bias term. Output of a recurrent neuron
is a function of all the inputs from previous time steps. A single recurrent neuron, or a

layer of recurrent neurons can be called as a basic memory cell.

Y(t-2) Y(t-1) Y

Y
Y

X(t-2) X(t-1) X(t)

time

\ 4

Figure 3.4 : Backward connection of RNN.
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As the network propagates, weights are applied on top of itself and causing memory
inputs to gradually fade away. When traversing an RNN, data goes through
transformations and after each step some part of the information is lost. Subsequently,
the RNN’s state does not contain any of the first inputs. To address this issue, Sepp
Hochreiter and Jiirgen Schmidhuber introduced LTSM (Long Short-Term Memory)
cell [61].LSTM is a recurrent cell and its state is described with two vectors ¢ and
hy. Main idea is that the network needs to learn which memories to store and which
memories to throw away. As shown in (Figure 3.5), the long-term state c(.1) traverses
the network and goes through the forget gate, drops some memories, and then it adds
some new memories that were selected by an input gate. Following the addition
operation, the long-term state is fed to the tanh function, and the result is filtered by
the output gate. Remaining layers are gate controllers. Gate controllers use the sigmoid
logistic activation function therefore outputs range from 0 to 1. Their outputs are fed
to element-wise multiplication operations, so if they output 0’s, gate is closed, and if
they output 1’s, gate is opened. Each gate serves different purposes. Forget gate
controlled by f() determines which elements of the long-term state are to be removed.
Input gate controlled by i« determines which elements of g should be added to the
long-term state. Finally, the output gate controlled by o) determines which elements

of the long-term state should be read.

/Forgcl gate \
C(t-1) > @ /l-\ >

N

Input gate

Element wise |
multiplication |

o Output gate : @ Addition

; I tanh

logistic |
FC i function !

N y

Figure 3.5 : LSTM cell.
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Computations of LSTM elements (Figure 3.5) are given below,

iy = o(Wi.xey + Wil he—qy + b;) (3.8)

fiy = (Wi Xty + Wi hie_gy + by) (3.9)
oy = (Wb xy + Wi he_yy + by) (3.10)
g(t) = tanh (W x¢) + Wy, he—1y + by) (3.11)
o) = fy®ce-1) * in®I (3.12)

Y = hay = o@y®tanh (c() (3.13)

RNN’s are best suitable for sequential data like time series. RNN’s are generally used
for stock price prediction and natural language processing. In remote sensing, it is used

for hyperspectral and multi-temporal image classification [61][62].

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are developed from studying brain’s visual
cortex, and they have been implemented in various image recognition applications
such as autonomous cars, image search services, automatic video classification
systems. Furthermore, CNNs are not limited to visual tasks; they also show promise at
natural language processing and voice recognition. Recent advances in computational
power and the amount of available training data, CNNs have become a hot topic in
the deep learning community. LeNet-5 architecture designed by LeCun et al. has laid
the foundation of many different architectures we use today. It has been used to
recognize handwritten numbers.

C1: feat C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 R X

32x32 S2: f. maps
6@14x14

Full conr#ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Figure 3.6 : LeNet architecture.
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Convolution neural networks share the fundamental operations with any other neural
network such as receiving an input, making dot productions and follow that up with a
non-linear activation function in order to learn weights and biases. When it comes to
classifying images fully-connected networks(MLP’s) present challenges. In order to
classify an image with an input size of 64x64x3 fully connected layers need 12288
weights in the first hidden layer. Parameters will increase as the input size gets bigger.
Networks having large number of parameters likely to train slower and chances of
overfitting are increased. CNN’s exploit input images by localizing the reception of
features. These features in image are spatially close to each other and non-dynamic.
This process capitalize on the spatially-local correlated neighboring fields addressed
as receptive fields by implementing a local connectivity pattern between neurons of
adjacent layers shown in (Figure 3.7). Furthermore, except for their receptive fields,
all neurons of a layer are identical to one another. Thus, they share the same weights.
This reduces the number of weights to be learned, leading to reduced number of
parameters, lower computational cost and lesser amount of training data required to
train the neural network. CNN is composed of three different layers referred as

convolutional layer, pooling layer and the fully connected layer.

O
O
o—
O
O
O
O
Fully-connected layer First hidden layer Convolutional layer First hidden layer
(Input layer) (Input layer)

Figure 3.7 : Comparison of input layers: Fully connected layer vs convolutional

layer.Size of the local receptive field is 5x5.

3.4.1 Convolutional layer

Convolutional layer is the most crucial aspect of the CNN. In the first convolutional
layer, each neuron is connected to the pixels in their receptive fields (also referred as
convolutional filter or kernel) of the input image. In the second convolutional layer,

each neuron is connected to neurons located within a small rectangle in the first layer.

21



By using this architecture, network focuses on low-level features in the first hidden
layer, then compiles them into higher-level features in the following hidden layers. In
real world images, this hierarchical structure is prevalent, which is why CNNs are
accurate in image recognition tasks. Convolution of the input image matrix and the
filter matrix gives the feature map (Figure 3.8). When the filter does not perfectly fit
the input image, padding is used. In order to fit the input image, image matrix is padded
with zeros(zero-padding). Input image matrix is often times larger than the filter
matrix. Therefore, filter has to be shifted over the image matrix. Number of pixels
shifts over the input matrix is called the stride. Convolution of an image with different

filters can perform operations such as blur, edge detection and sharpening.
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ol oo 11|10 1.0 | 1 1 |2 a-"3 | 3
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Tee o |
oo 1| 1|1 ]o]fo0 -~ 1.l o | 1 13| 3| 1] 1
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Figure 3.8 : 2-dimensional convolutional example with filter size 3x3 and stride 1

with zero padding.

After each convolution layer, an activation function adds non-linearity to the model
and decides which neuron will be fired. There are various activation functions (Figure

3.9). Most commonly used one is rectified linear unit (ReLU).

S|gmo|d Leaky RelLU ’
_ max(0.1z, x)
o(z) = 1+(’ = ‘
tanh Maxout -
tanh( ) max(w z + by, wlz + by)
ReLU / ELU |
0 T x>0
max( .’17) {a(e'“” -1) z<0 - ’ io

Figure 3.9 : Activation functions.
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3.4.2 Pooling layer

Pooling layer reduces spatial size of the network by sub-sampling the input image.
Sub-sampling reduces the number of parameters, computational load and the
memory usage. This leads to lower risk of over fitting in the network. In a pooling
layer, each neuron located within a filter is connected to the outputs of the neurons in
the previous layer, similar to convolutional layer. However, a pooling neuron has no
weights. It aggregates the inputs using an aggregation function such as the maximum
or average pooling (Figure 3.10). Max-pooling takes out the largest element from a
pool. On the other hand, average pooling takes out the average of the pool. By
sliding the filters through the input; the maximum or the average parameter is taken

out at every stride, and the rest is dropped. This leads to a down-sampled network.

4 PN

9 7 12 | 10
15 | 12 21 | 18
Average Pooling Max Pooling

Figure 3.10 : Max pooling and average pooling operations with a filter size 2x2 and
stride 2.
3.4.3 Fully connected layer

In this layer, feature map matrix will be converted to vectors and combined together
to create a model. Fully connected layers connect every neuron in one layer to every

neuron in another layer. The last fully-connected layer uses an activation function for
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classifying the generated features of the input image into various classes based on the

training dataset.

3.5 CNN Architectures

A typical CNN architectures consist of several stacked convolutional layers with each
one accompanied by a ReLLU layer and then several pooling layers (Figure 3.11). As
the image progresses through the network it gets smaller and smaller but it also
typically gets deeper and deeper due to increase in feature maps. Feedforward neural
network is added at the top of the stack, and the final layer outputs the class predictions
(softmax layer). Throughout the years, derivatives of this fundamental architecture
have been developed, leading to significant advances in the field. Measure of this
progress is the error rate in competitions. ImageNet project is a large visual database
created for deep learning research. The ImageNet project runs an annual software
contest called as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
where the goal is to design the highest performing classifier algorithm. It is the
measure of state-of-the-art deep networks. Various visual recognition tasks such as
semantic labelling, object recognition and scene classification are carried out using
ImageNet dataset as benchmark. In this section, most widely used CNN architectures

are introduced with their novel approaches.

Input Convolution Pooling Convolution Pooling Fully connected

Figure 3.11 : Typical CNN architecture.

3.5.1 LeNet-5

LeNet-5 architecture[6] is the most widely known CNN architecture. LeNet-5 laid the
foundation for the deeper architectures that came after. However, at the time deep
neural networks were not easy to implement due to hardware restrictions and shortage

of vast amount of labeled training samples. LeNet-5 commonly used for recognizing
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hand written digits like MNIST dataset. MNIST dataset consists of 28%28 pixel images
but they are zero-padded to 32x32 pixels. Therefore, rest of the network does not
require any padding. Novelty of the LeNet-5 is in the output layer. Earlier neural
networks compute the dot product of the inputs and the weight vector in the output
layer. However, in LeNet-5 each neuron in the output layer computes the square of the
Euclidian distance between the corresponding input and weight vector. Each output
measures the probability of an image belonging to a particular digit class. Nowadays,
cross entropy cost function is preferred, due to penalization of bad predictions are
much more efficient, leading to larger gradients and faster convergence. LeNet-5

architecture is given below (Table 3.1).

Table 3.1 : LeNet-5 architecture.

‘ Kernel ‘ o
Layer Type Maps Size ) Stride  Activation
Size
Fully Radial
Out - 10 . - ‘
Connected Basis
Fully
Fé6 - 84 - - tanh
Connected
C5 Convolution 120 Ix1 5x5 1 tanh
Average
S4 16 5x5 2x2 2 tanh
Pooling
C3 Convolution 16 10x10 5x5 1 tanh
Average
S2 6 14x14 2x2 2 tanh
Pooling
Cl Convolution 6 28x28 5x5 1 tanh
In Input 1 32x32 - - -

3.5.2 AlexNet

AlexNet introduced by Alex Krizhevsky et al [7] and won the ImageNet ILSVRC
challenge at 2012. While having a similar structure with LeNet-5, AlexNet is much
more deeper and larger. Also, instead of having pooling layer on top of every
convolutional layer, AlexNet has stacked convolutional layers and it is the first

network to employ ReLU as activation function. Main contribution of AlexNet is using
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a normalization step immediately after the ReLU step of layers C1 and C3, referred as
local response normalization. This form of normalization forces significantly active
neurons to suppress neurons in the adjacent feature maps. This reinforces feature maps
to specialize, leading to wider range of features and higher rate of generalization. LRN

can be shown as,

Jhign = min(i + g:fn - 1)

b= a;(k+aX" a2)F with{ * 21
Jiow = maX( 0,i— E)

Jj=Jiow

: (3.14)

where a; is the activation of the neuron after the ReLU step and b; is the normalized
output of the neuron belongs to feature mapi. k, o, B, and r are called as
hyperparameters. k is the bias and r represents the depth radius. Finally, f, shows the

number of feature maps. AlexNet architecture is given in (Table 3.2).

Table 3.2 : AlexNet architecture.

. Kernel .
Layer Type Maps Size o Stride Padding Activation
ize
Fully
Out - 1000 - - - Softmax
Connected
Fully
F9 - 4096 - - - RelLU
Connected
Fully
F8 - 4096 - - - RelLU
Connected
C7 Convolution 256 13x13 3x3 1 SAME RelLU
Cé6 Convolution 384 13x13 3x3 1 SAME RelLU
C5 Convolution 384 13x13 3x3 1 SAME RelLU
S4 Max Pooling 256 13x13 3x3 2 VALID -
C3 Convolution 256 27x27 5x5 1 SAME RelLU
S2 Max Pooling 96 27x27 3x3 2 VALID -
Cl Convolution 96 55x55 11x11 4 SAME RelLU
3
In Input 224x224 - - - -

(RGB)
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3.5.3 VGGNet

VGGNet introduced by Zisserman et al. [63]. VGG stands for Visual Geometry Group
from University of Oxford. VGGNet uses small filters and deeper architecture
compared to AlexNet. VGGNet achieved a second place in classification and first in
localization in ILSVRC challenge at 2014. VGGNet has two different versions referred
as VGG16 and VGG19 respectively. VGGNet has huge number of parameters which
increased learning power but training this network was demanding so it is divided into
smaller networks with layers added one at a time. VGGNet architecture given in (Table

3.3, Table 3.4)

Table 3.3 : VGGNet architecture.

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
Input (224x224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128  conv3-128 conv3-128 conv3-128 conv3-128  conv3-128
conv3-128  conv3-128 conv3-128 conv3-128
maxpool
conv3-256  conv3-256 conv3-256, conv3-256 conv3-256 conv3-256
conv3-256  conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
convl-256  conv3-256 conv3-256
conv3-256
maxpool
conv3-512  conv3-512  conv3-512 conv3-512 conv3-512  conv3-512
conv3-512  conv3-512  conv3-512 conv3-512 conv3-512  conv3-512
convl-512  conv3-512  conv3-512
conv3-512
maxpool
conv3-512  conv3-512  conv3-512  conv3-512 conv3-512  conv3-512
conv3-512  conv3-512  conv3-512  conv3-512 conv3-512  conv3-512
convl-512 conv3-512  conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
softmax

27



Table 3.4 : Number of parameters in VGGNet in millions.
Network AA-LRN B C D E
Number of parameters 133 133 134 138 144

3.5.4 GoogLeNet

Developed by Szegedy et al. [9] from Google Research, Googl.eNet won the ILSVRC
2014 challenge by top-5 error rate below 7%. They introduced a novel sub-network
referred as Inception module (Figure 3.12). This module copies the input signal and
feeds it to three convolutional layers that use the ReLU activation function and also to
a pooling layer. By employing convolutional layers with different kernel sizes such as
Ix1, 3x3, and 5x5, patterns with different dimensions can be captured. Additionally,
all layers use SAME padding and a stride of 1. This makes the outputs of every layer
have the same height and width as their inputs. Thus, it is possible to concatenate all
the outputs in the final layer by stacking the feature maps from each convolutional
layer. Convolutional layers with kernel size 1x1 serves as the bottleneck layer by
reducing dimensionality. This leads to significant improvement in computing speed.
Compared to AlexNet, GoogLeNet has only 6 million parameters where AlexNet has

60 million.

T

Filter Concatenation

Inception Module

3x3 Convolutions 5x5 Convolutions 1x1 Convolutions
1x1 Convolutions T T T
1x1 Convolutions 1x1 Convolutions 3x3 Max Pooling

Previous Layer

Figure 3.12 : Inception Module.
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Another novelty brought by GoogleNet is the global average pooling. Previous
networks used fully connected layers where all inputs are connected to each output.
However, in GoogleNet global average pooling is employed nearly at the end of

network by averaging each feature map from 7x7 to 1x1 (Figure 3.13).

Fully Connected Global Average Pooling

7 1024

W -
[—

1024 1024

Figure 3.13 : Difference between Fully Connected Layer and Global Average

Pooling.

GoogLeNet (Figure 3.14) has global average pooling layers at the end of 9 inception

modules that are stacked linearly with total of 27 layers including the pooling layers.

i i

"

Convolution
AvgPoo!
MaxPool

Dropout

® Fully connected
de" /

Figure 3.14 : GoogleNet architecture.

GoogleNet is often referred as Inception-vl and there are three more versions with
upgrades which increased the accuracy of the model while reducing complexity.
Inception-v2 swaps 5 x5 convolutional layer with two 3x3 convolutional operations.

A 5x5 convolution is computationally 2.78 times more expensive than a 3x3

29



convolution. Thus, factorizing 5x5 convolutions brings significant boost in
performance (Figure 3.15a). Furthermore, they found out that convolutions with filter
size nxn can be factorized to a combination of 1xn and nx1 convolutions in order to
reduce computational complexity (Figure 3.15b). For example, instead of computing
3x3 convolution, a 1x3 convolution followed by a 3x1 convolution is performed. They
have reported that this method is 33% more efficient than the single 3x3 convolution.
Inception-v3 incorporated these upgrades and also added factorization of 7x7

convolutions and RMSProp Optimizer.

Filter Concatenation

nx1
Convolutions

f

1xn
Convolutions

Filter Concatenation

3x3

Convolutions

T

nx1
Convolutions

1

nx1
Convolutions

1xn 1xn
d C ion:

f f

1x1 1x1 . 1x1
Convolutions Convolutions RooRy Convolutions

W

Base Base

1x1 1x1 Poolin 1x1
Convolutions Convolutions 9 Convolutions

a) b)

Figure 3.15 : Inception modules used in Inception-v2.

Inception-v4 introduced three different inception modules named A, B and C (Figure
3.16). Their concept is similar to Inception-v2 and Inception-v3 although modules are

more uniform, leading to increase in performance.
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Figure 3.16 : From left Inception modules A, B, C used in Inception-v4.

3.5.5 ResNet

Residual Network (or ResNet), developed by He et al. [10] won the ILSVRC 2015
challenge with an exceptional top-5 error rate of 3.6% which set new records in
detection localization and classification. They have proposed an extremely deep
network with 152 layers. In theory, networks should perform better as the architecture
gets deeper. However, stacking many convolutional layers create problems in terms of
optimization. ResNet solves this problem by introducing residual connections which
gives the network its name. Also called as the shortcut or skip connections, idea behind
residual connections is to feed the input signal to the output of the layer as well. If we
represent target function to model as h(x), adding residual connections will force
network to model h(x) = f(x)—x where x is the signal added to the input and the output
of the layer (Figure 3.17). When the neural network is initialized, values of its weights
are near zero, therefore output values of the network are near zero. If a residual
connection is added, network outputs a copy of its inputs; namely, modeling the
identity function. Often times the identity function is moderately close to the target
function which improves training speed significantly. Furthermore, if several residual
connections are added, the network will be able to start making progress even though
some layers have not begun learning yet (Figure 3.18). Because of residual
connections, the signal can travel along the whole network. ResNet consists of stacked
residual units, where every residual unit is a minor neural network with a residual
connection. Each residual unit consists of two convolutional layers, with ReLU

activation and Batch Normalization (BN) using 3x3 kernels with stride 1 and SAME
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padding (Figure 3.19). Model has four different versions with 18, 34, 50, 101, 152

convolutional layers (Table 3.6).

h(x)
+
h(x) / K
I i
Layer 2 .§ Layer 2
A § A
=
8
+ h(x) - F f(x)=h(x) - x
-
Layer 1 & Layer 1
4 ) A
Input Input
Figure 3.17 : Residual Learning.
+ ~__ }
t g
T
0 L— %
X +
f I .
X — Layers close to initial state R m— x § Residual Units
f f
X 3
j S
A
X = layers that output zero and block backpropagation T

Figure 3.18 : Regular deep neural network(left) and deep residual learning(right).
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Figure 3.19 : Residual unit

Error rates of single-model results on the ILSVRC’14 validation set shows significant

improvement over the VGG and GoogLeNet models (Table 3.6).

Table 3.5 : Shows the top-1 and top-5 error rates of ResNet models based on the
validation set of ILSVRC 2014 [10].

Model Top-1 Error (%) Top-5 Error (%)
VGG-16 24.4 8.43
GoogleNet - 7.89
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

3.5.6 Inception-ResNet

Inspired by the performance of the ResNet, a hybrid inception module was proposed
[11]. There are two sub-versions of Inception ResNet, namely v1 and v2. Both versions
have the same structure for the inception modules A, B, C (Figure 3.20). However,
differences are the hyper-parameter settings and the computational cost. Inception-
ResNet-vl has a computational cost that is comparable to Inception-v3 whereas

Inception-ResNet-v2 has a computational cost that is comparable to Inception v4.
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Figure 3.20 : Inception modules A,B,C in an Inception-ResNet-v1. Pooling layer

was replaced by the residual connection.

Szegedy et al. report that the Inception-ResNet-v2 architecture produces more
accurate results than previous state of the art models.(Table 3.7) shows the Top-1 and
Top-5 validation errors on the ILSVRC 2012 image classification benchmark based

on a single crop of the image. Inception-ResNet-v2 given in Figure 3.21

Table 3.6 : The top-1 and top-5 error rates of Inception models based on the
validation set of ILSVRC 2012.

Model Top-1 Error (%) Top-5 Error (%)
BN-Inception 25.2 7.8
Inception-v3 21.2 5.6
Inception-ResNet-v1 21.3 5.5
Inception-v4 20.0 5.0
Inception-ResNet-v2 19.9 4.9

Inception Resnet V2 Network

Compressed View
10x 20x 10x

Figure 3.21 : Inception-ResNet-v2 architecture.
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3.6 Training Convolutional Neural Networks

CNN’s are powerful feature extractors that can produce superior performance
compared to their predecessors. However, they are complex mathematical models and
training a CNN model for optimum results have intricacies. This section provides the

details of training a successful CNN model.

3.6.1 Hyperparameter selection

Deep learning algorithms involve “hyperparameters” which are variables set before
starting the training process. CNN’s can have many hyperparameters which identifies
the structure of the network and governs how the network is trained. Certain critical

parameters are listed and discussed below.

3.6.1.1 Loss function

Loss function is defined to compare the output of the training instance against the
desired ground truth output. Ideally, loss function is minimized with respect to the
connection of the weights. It is calculated after each time network makes a pass
through the entire training dataset. This is also referred as an epoch. A typical loss

function is the squared Euclidian distance given as,

L= ;%= 2)" (3.15)

where y; is the i network output and z; is the i value of the target output. Output of
the CNN’s usually treated as a probability distribution where the final layer consists
of the softmax function. Therefore it is more common to use cross-entropy loss defined

as,

L= —-%;ylogz (3.16)

3.6.1.2 Learning rate

The learning rate determines step size of the gradient updates. If the learning rate is set
too small, the model will go through many iterations to converge. If the learning rate

is set too large, the model will diverge (Figure 3.22).
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Figure 3.22 : The effect of learning rate on training loss.

The learning rate is typically decreased over time. The general approach is to find a
proper parameter and it should be fine-tuned later on. It is also common to set an

adaptive learning rate which regulates depending on the loss function.

3.6.1.3 Mini-batch size

Due to hardware considerations, it is not practical to train the whole training dataset at
once. Usually deep networks consist of vast number of weights. Therefore, training
such Big Data requires substantial amount of memory. Mini-batch training includes
feeding small part of the training data to the network and computes the local gradient.
However, selecting a small batch size could lead to a noisy loss function due to high
variance in the gradient estimation. Mini-batch size should be selected by considering

memory capacity and the training data.

3.6.2 Optimization algorithms

Optimization algorithms are used to minimize the loss function of the network by
updating weights and biases. Finding optimum values for these internal parameters
have a key role in training an effective model that produces accurate results. Most

widely used optimization algorithms are given below.

3.6.2.1 Gradient Descent

Gradient Descent algorithm is one of the common optimization algorithms used in

neural networks. Gradient Descent algorithm calculates the gradient of error function

(E),
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E=0—fEwx)? (3.17)

and updates parameters in the opposite direction of the gradient vector of error as
shown in (Figure 3.23). Error rate increases if the value of the weights is too small or
too large. Thus, weights need to be updated and optimized until reaching a local

minima.

initial weight

[/ gradient

AW = —gradients

» local minima

\4

W

Figure 3.23 : Weight updates in the opposite direction of the gradient.

Standard Batch Gradient Descent algorithm updates parameters after calculating the
gradient of the whole data set. This will cause model to converge slower and it is not
applicable for large datasets. These issues are rectified in the following variants of the

gradient descent algorithm.

3.6.2.2 Stochastic Gradient Descent(SGD)

Unlike standard gradient descent algorithm SGD updates parameters with each

training instance. It is defined as,

0= 6-n.V/0;x )y (3.18)
where 0 shows the models parameters, —7 is the learning rate, VJ/(0) is the gradient of

loss function J and x (i), y (i) are the training instances.
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As aresult of frequent parameter updates, loss function oscillates to different amounts
(Figure 3.24). This could lead to a newer and lower local minima, however it can also

cause model to keep overshooting.
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Figure 3.24 : SGD fluctuates to find a newer and better local minima.

In order to tackle problems such as fluctuations in loss function and slower
convergence, a method called Momentum is employed which speeds up SGD by
steering towards to suitable direction and reduce oscillations in unrelated directions.
The momentum term 7y controls parameter updates only for the relevant instances
which lead to accelerated convergence and lessen oscillations. Momentum and the

parameter updates are,

V()= yV(t—1)+ nvj(®), (3.19)

0=0-V(). (3.20)

3.6.2.3 AdaGrad

Adaptive Gradients (AdaGrad) is an optimization algorithm that adapts learning rate -
n to the parameters [64]. Larger updates are carried out for infrequent parameters and

smaller updates for frequent parameters. Therefore, it is suitable when using sparse
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data. AdaGrad adapts the learning rate n for every parameter 8; at each time step t

based on the past gradients. AdaGrad’s per-parameter update is shown as,

Ouvri = Oui = Tz -Gty (3.21)

where g, ; is the gradient of the loss function to the parameter 8; at time step t.

Main disadvantage of AdaGrad algorithm is learning rate is constantly decaying due
to accumulation of the gradients. This causes learning ability of the model decrease

leading to longer training time.

3.6.2.4 RMSProp

Problem of constant decaying learning rate in AdaGrad is rectified in Root Mean
Square Propagation (RMSProp) algorithm[65] by changing the gradient accumulation
into an exponentially weighted moving average. Exponential average weights the

recent gradient updates more than the previous ones shown as,

Ve = pVeoq + (1 - p). g¢, (3.22)
AW, = —\/%.gt, (3.23)
Wipr = W, + AW, (3.24)

where V; is the exponential average of the squares of gradients and p is the weight of

the recent gradient update.

3.6.2.5 Adam

Adaptive Moment Estimation (Adam) is another adaptive optimization algorithm [66].
Adam keeps an exponential average of past squared gradients like RMSprop and also
stores an exponentially decaying average of past gradients M(t), similar to

momentum. Parameter update for Adam is given as,
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0,01 = 6, — \/V?T .M(2). (3.25)

Adam outperforms other adaptive optimization algorithms as it converges faster.
Furthermore, it rectifies problems that are present in other optimization methods such

as vanishing learning rate , slow convergence and fluctuating loss function.

3.6.3 Regularization

Regularization methods are employed to reduce the generalization error of the model.
Deep learning models may produce high rate of validation error even after training
error drops, resulting in overfitting (Figure 3.25). However, a successfully trained
model needs to produce accurate results with validation or test data. Regularization
strategies carried out to reduce overfitting at the expanse of increasing training error.
These strategies include putting extra constraints on the parameter values or adding
extra terms on objective functions such as loss function. Typically used regularization

methods are listed and discussed below.

Error

Overfitting zone

generalization

.. error . .
training neralization:gap
error .. '
ok R Y.,
optimal Capacity
capacity

Figure 3.25 : Graph showing underfitting and overfitting in the network.

3.6.3.1 L2 regularization

L2 regularization technique involves adding a new term to the loss function in order

to penalize large weights. Sum of the squared norms of the weight matrices multiplied

A . :
by a constant ol S added to the loss function shown as,
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loss + ( }1=1||W[j]||2) 2 (3.26)

2m

where n denotes the number of layers, m is the number of inputs, wU1 is the weight

matrix of jth layer and 4 is the regularization parameter.

3.6.3.2 L1 regularization

L1 regularization adds sum of the absolute values of the weights multiplied by the

regularization parameter A to the loss function shown as,
loss + (X7 |wVl]) .4, (3.27)

L1 Regularization reduces weights by a fixed amount in every iteration, regardless of
the value of the weight. Thus, weight of most of the connections inclines to zero and
fewer connections left with larger weights. This increases sparsity of the weights in

the model.

3.6.3.3 Dropout regularization

Dropout is an efficient regularization technique that includes randomly erasing
neurons in the dropout layers. Thus, whole network can be represented as a sub-
network with fewer connections required to update throughout back propagation.
Dropout encourages the network to learn a sparse representation. Consequently, over

fitting is reduced. (Figure 3.26) illustrates the dropout regularization.

Figure 3.26 : Dropout Regularization. Standart network(left) network with

dropout(right).
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3.6.3.4 Batch normalization

Batch normalization is the regularization method of normalizing network’s parameters
in order to adjust and scale the activations [67]. For instance, certain values of neurons
in the input layer can be set between 0 and 1 and other neurons could take values
between 1 and 1000. Same approach can be applied for the hidden layers as well.
Consequently, higher learning rates can be applied to the model since activation value
of neurons can’t exceed or fall beyond the given range. This leads to an increase in
speed of training and stability of the network. Batch normalization works by
normalizing the output of previous activation layer. In order to do so, batch mean is
subtracted from the output and the resultant is divided by the batch standard deviation

as given in following equations,

1

— X1 Xi = Ug, (3.28)
1 2

— Y (xi— ug)” = 63, (3.29)
== g, (3.30)
9123+e

where f denotes the values of x over a mini-batch {x; ...m}, ug is the mini-batch

mean, 95 is the mini-batch variance and X; is the normalized value.

3.6.3.5 Data augmentation

Insufficient amount of training data leads to over fitting of the network. Data
augmentation or in other words regularization with data provides new data from
existing data by performing different operations such as translation, rotation,
reflection, skewing, scaling, or changing contrast or brightness of the input image data.
Also, there are other augmentation techniques that can’t be experienced with human

eye such as adding random noise to the training data. In the field of remote sensing,
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acquiring labeled data is not very easy due to the commercial restrictions and

economical costs. Therefore, it is crucial to make the most with the data available.

3.7 Transfer Learning

State-of-the-art deep networks namely Inception, ResNet and VGGNet are really large
networks such that training one from scratch takes several weeks and requires
advanced computing resources (i.e. GPU’s). However, each of these networks is
already trained with ImageNet dataset that consists of millions of labeled images. So
the weights in the different layers of the model already learned to identify useful low-
level features such as shapes, edges and different intensities of light and dark pixels.
By using transfer learning method, parameters learnt from a training model can be
used for a different classification problem (Figure 3.27). Only, final layers of the
network need to be fined tuned for the classification task. For remote sensing
applications such as land cover land use classification, obtaining a huge training data
similar to ImageNet data set is not very realistic. In these cases, using pre-trained
networks are highly beneficial for reducing computing time and accurate classification

results.

Input A Classification Problem A

Ti fer L =
ransfer Learning Backpropagation

Input B Classification Problem B

Frozen Layers

Figure 3.27 : Transfer learning.
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4. EXPERIMENTS AND RESULTS

Accessibility of the remote sensing imagery have become increasingly available with
the launch of new commercial satellite sensors, such as IKONOS, WorldView and
GeoEye. Remote sensing applications for these imagery provides crucial analysis for
various subjects such as urban planning, climate change observations, resource
management, and land use monitoring. These satellites can deliver panchromatic or
multispectral images. Panchromatic images have higher resolution compared to
multispectral images however, they include only a single band. Contrarily,
multispectral images can contain several bands such as Red, Green, Blue and Near-

Infrared.

Land cover and land use classification using satellite imagery is a challenging task.
Traditional methods require extensive expertise on extracting features for land cover
and land use classes. However, deep learning models eliminate the need of feature
engineering by learning from the data itself. Moreover, increase in the available remote
sensing imagery, calls for an automatization for the process of land use analysis. In
this regard, CNN-based deep learning experiments are carried out for the purpose of

image scene classification are discussed in this chapter.

4.1 Image Scene Classification for Land Cover and Land Use Analysis

In this section, CNN-based deep learning classifiers are proposed in the context of
land cover and land use classification. Details of training these networks are discussed

below.

4.1.1 Proposed classification networks

For the classification of remote sensing imagery deep learning models provide far
better performance compared to traditional methods. Variety of deep learning models
especially CNN’s, produce results that can be generalized over the unseen data. In this
experiment, two state-of-the-art CNN models namely Inception-ResNet-v2 and

Inception-v4 are trained using pretrained weights from the ImageNet dataset. These
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architectures are proven to outperform existing CNN models in terms of classification

accuracy and faster convergence according to ILSVRC challenge.

4.1.2 Training dataset for the classification network

Training dataset is extracted from the NWPU-RESISC45 dataset[68] which is publicly
available benchmark for Remote Sensing Image Scene Classification (RESISC).
Images are size of 256x256 pixels in the red green blue (RGB) color space. The spatial
resolution varies from about 30 m to 0.2 m per pixel. Dataset is extracted from Google
Earth by various experts in remote sensing. Compared to previous benchmark datasets
NWPU-RESISC45 is large-scale and have rich image variations with different
weathers, seasons, illumination conditions, imaging conditions, and scales. For each
scene category, dataset possesses much rich variations in translation, viewpoint, object
pose and appearance, spatial resolution, illumination, background, and occlusion. Also
it provides high class diversity and between class similarity to truly test deep learning
model’s classification capability. NWPU-RESISC45 dataset consists of 31,500
remote sensing images divided into 45 scene classes. One of the crucial aspect of the
experiment carried out in this thesis is to use independent dataset for the validation
part. In order to do so, patches have to be extracted manualy and the process can be
cumbersome for generating test images for 45 classes. So the classes to be used in the
training are narrowed down to 20 scene classes each containing 700 training images.
These 20 scene classes include airport, chaparral, dense residential, forest, freeway,
golf course, ground track field, industrial area, intersection, meadow, medium
residential, overpass, parking lot, rectangular farmland, river, runway, sparse
residential, storage tank, tennis court and terrace. These classes are selected because
they are easy to obtain in any given AOI and have complex structure as well as
similarities to each other that can be used to assess model’s classification capability.

Sample patches from the training dataset are given in (Figure 4.1).
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Figure 4.1 : Sample patches for the training dataset.
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Figure 4.1 (continued) : Sample patches for the training dataset.
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Figure 4.1 (continued) : Sample patches for the training dataset.
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4.1.3 Validation dataset for the classification network

Images for validation dataset is extracted from Worldview-3 satellite imagery that is
made publicly available for SpaceNet challenge. Images are 3-band RGB with 16-bit
and 30 cm resolution. Before extracting the patches pixel values of the images had to
be normalized to 8-bit due to the fact that models used in the experiment only accept
JPEG images. Pixel values of the images are normalized to 8-bit using an automated
script with parallel programming and “GDAL” library. Code snippet about the script
is given in (Figure 4.2).

Patches are extracted and labeled manually from three different AOI’s including
Vegas, Paris and Shanghai. Area of raster belonging to the AOI’s are 216, 1030 and
1000 square kilometers. 50 patches are extracted for each class with a total of 1000
patches. Selected scenes usually have intra-class variability in order to truly test the
networks capability with minimum bias. Patches have different ground sampling
distances illumination and occlusion. Sample patches for the validation dataset are

given in (Figure 4.3).

#!/bin/bash

tiftotalcount=$(find ~/vegas -type f -name "x.TIF" -printf "x" | wc -c)
tiftotalsize=$(find ~/vegas -type f -name "x.TIF" -exec du -b {} \; | awk '{total+=$1} END
{totalGB=total/ (1024x1024x1024); printf "%06.2f", totalGB}')

datestamp=$(date +"%Y%m%d_%H%M%S")

logfile=$(printf "CONVERT-16BIT28BIT-%s-%02dfiles-%sGB.log" $datestamp $pixtotalcount
$pixtotalsize)

tifdonefile=$(printf "CONVERTDONE-%s.log" S$datestamp)

echo "CHE LOGFILE $logfile

date + M:%S ' >> $logfile

find ~/vegas -type f -name TIF" | parallel --no-notice "gd ns: E
2 g: itparallel $logfile 2>&1 J ] 5] F ESSEL
$logfile $tifdonefile

date + M:%S] END">> $logfile

Figure 4.2 : Code for automated script to convert 16-bit imagery to 8-bit.
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Figure 4.3 : Sample patches for the validation dataset.
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Figure 4.3 (continued) : Sample patches for the validation dataset.

52



River

Runway

Sparse

Residential

Storage
Tank

Tennis

Court

Terrace

Figure 4.3 (continued) : Sample patches for the validation dataset.
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4.1.4 Pre-processing

Before feeding data to the network, datasets are converted to a file format referred as
tfrecords. Raw image data can be slower to read from the disk and take up significant
space in the RAM. TFrecords are a binary file format storage that works as a buffer
for loading data to the network. Also it is possible to sequence and shuffle the data to
provide diversity in each batch. Data augmentation is also integrated to further make
use of the data. All classes are coded with one-hot label and images are resized to 299

x 299 pixels as it’s the default Inception size.

4.1.5 Training setup

Proposed CNN’s were trained using tensorflow[68] framework and TF-Slim library.
Training were conducted on a nVidia GTX 1060 6 GB GPU using cross-entropy loss
function, decaying learning rate and ADAM optimizer. Learning rate has been set to
2.000e*. Research has shown that increasing batch size throughout training leads to
faster convergence with more accurate results[70]. Both networks trained for 100
epochs with increasing batch size from 12 to 16 at epoch 50 and 16 to 20 at epoch 75.
Total training time for Inception-ResNet-v2 and Inception-v4 are around 10 hours and

12 hours respectively.

4.1.6 Results

Training loss, accuracy and validation accuracy are the crucial metrics for evaluation

of the networks. These metrics are given in (Table 4.1).

Table 4.1 : Results of the trained networks

Proposed CNN o Training Validation
Training Loss

Model Accuracy Accuracy

Inception-ResNet- 0,471 0,967 0,828

v2

Inception-v4 0,543 0,942 0,778

Benefits of having residual connections can be seen as the first network provides more
accurate results with faster convergence. In order to further discuss the comparison

between two networks, classification outcomes of each network needs to be
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represented with certain metrics. Predictions for the classes can be divided into two
groups whether the label matches the ground truth of the actual class or not. Positive
classification outcome denotes the model predicted the desired label regardless of the
ground truth of the class. If it matches the ground truth it is referred as the True Positive
if not it is False Positive. Negative classification outcome means the model couldn’t
predict the desired label. However, if the ground truth for the negatively classified
image is also negative, it means that the model is successful. This is referred as the
True Negative. On the contrary, False Negative stands for the situation where the
model did not predict the desired label for the specified ground truth. Explained in
(Table 4.2).

Table 4.2 : Error types for classification.

Actual Class
Positive Negative
Classification i .
o True Positive(TP) False Positive(FP)
Classification Outcome Positive
Outcome Classification

. False Negative(FN) True Negative(TN)
Outcome Negative

Precision and recall are two very important model evaluation metrics. Precision refers
to the percentage of the relevant results whereas recall refers to the percentage of total
relevant results accurately classified by the model. For simplicity, there is another
metric available, called F-1 score, which is a harmonic mean of precision and recall.

Metrics are given in equation (4.1)

™ Recall = —= F1=22% 4.1)

pP+FpP’ TP+FN’ P+R

Precision =

Precision recall and F-1 Score of the trained networks are given in the following
(Table 4.3) and (Table 4.4). Confusion matrix for the networks are given in (Figure
4.4) and (Figure 4.5). Examples of the false negatives and false positives of the

networks are given with their prediction and ground truth respectively in (Figure 4.6)
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Table 4.3 : Precision recall and f1-scores for the Inception-ResNet-v2.

Class Airport Chaparral Dense Forest  Freeway Golf  Ground Industrial Intersection
Residential Course  Track Area
Field
Precision 0,877 0,803 0,816 0,918 0,807 0,846 0,955 0,750 0,836
Recall 0,860 0,788 0,816 0,882 0,875 0,862 0,877 0,823 0,820
F1-Score 0,868 0,795 0,816 0,900 0,840 0,854 0,914 0,785 0,828
Class Meadow  Medium  Overpass Parking Rectangular River Runway Sparse Storage
Residential Lot Farmland Residential ~ Tank
Precision 0,769 0,759 0,833 0,860 0,705 0,888 0,931 0,863 0,934
Recall 0,784 0,803 0,800 0,877 0,734 0,934 0,872 0,863 0,914
Fl-Score 0,776 0,780 0,816 0,868 0,719 0,910 0,901 0,863 0,924
Class Tennis Terrace Average
Court
Precision 0,933 0,763 0,842
Recall 0,893 0,707 0,839
F1-Score 0,913 0,734 0,840

Table 4.4 : Precision recall and f1-scores for the Inception-v4.

Class Airport  Chaparral Dense Forest Freeway Golf  Ground Industrial Intersection
Residential Course  Track Area
Field
Precision 0,836 0,775 0,760 0,918 0,666 0,836 0,909 0,689 0,775
Recall 0,803 0,788 0,760 0,823 0,800 0,788 0,833 0,769 0,745
F1-Score 0,819 0,781 0,760 0,867 0,727 0,811 0,869 0,727 0,760
Class Meadow  Medium  Overpass Parking Rectangular River Runway Sparse Storage
Residential Lot Farmland Residential ~ Tank
Precision 0,627 0,703 0,800 0,800 0,653 0,888 0,833 0,808 0,918
Recall 0,711 0,760 0,750 0,833 0,708 0,829 0,754 0,760 0,918
Fl-Score 4 666 0,730 0,774 0,816 0,679 0857 0,792 0,783 0,918
Class Tennis Terrace Average
Court
Precision 0,877 0,612 0,784
Recall 0,895 0,612 0,785
F1-Score 0,886 0,612 0,783
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Figure 4.4 : Confusion matrix for the Inception-ResNet-v2 network.
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Figure 4.5 : Confusion matrix for the Inception-v4 network.
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Figure 4.6 : Error instances of the trained networks.
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Figure 4.6 (continued) : Error instances of the trained networks.
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Figure 4.6 (continued) : Error instances of the trained networks.
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Loss function, test accuracy and the learning rate of the networks are given in (Figure
4.7), (Figure 4.8) and (Figure 4.9). X-axis shows the step size for all figures and Y-

axis 1s the loss rate.

b

Figure 4.7 : Loss function for Inception-ResNet-v2.

Figure 4.8 : Loss function for Inception-v4.
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Figure 4.9 : Training accuracy of the networks.

Loss function of the networks are visualized with TensorBoard app built inside the
Tensorflow library. X-axis shows the step size and Y-axis shows the value of the loss
function. Loss functions show considerable amount of oscillations and many sub-

optimal local minimas. However this fluctuation is expected because of the varying
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batch sizes. During experimentation with different size of batches, any value
exceeding 20 led to memory error and interruption in training process. Hardware
limitations such as memory capacity of the GPU is most likely the reason behind the
system crash. Experiments show that 6 GB of GPU ram is the bare minimum standard
for using deep learning applications. Below 4 GB of GPU memory Inception-ResNet-

v2 architecture can not be trained.

Comparable experiment regarding to using %15 of the training data as validation is
carried out and mentioned later in this section. Varying batch sizes are not included
and fluctuations are minor. Positive effects of using varying batch sizes in training
accuracy are observed with %2 differential in both networks in different experiments,
however this increase could be from using additional training data in the first

experiment.

Training accuracy of the networks are quite similar however difference can be seen in
the validation accuracy. Inception-ResNet-v2 network yields %35 greater overall
accuracy compared to Inception-v4. This differential can be attributed to residual
layers of the prior network since the rest of the architecture is quite similar. Class by
class analysis also shows that Inception-ResNet-v2 has better performance in terms of

accuracy.

Due to their spatial and spectral complexity following land use classes yielded lower
accuracy compared to other classes in both models. Industrial area and medium
residential classes achieved %75 user’s accuracy with Inception-ResNet-v2 model. On
the other hand, Inception-v4 model achieved %68 and %70 user’s accuracy for the
classes respectively. In depth analysis for the false negative and false positive instances
show intra-class mixture was present. Airport areas contained hangars and depots that
often can be identified as industrial areas. Ground sampling distance of the training
images were high and these discrepancies were not present, making it harder for the
model for recognizing the actual class. As for the “medium residential” class, error
instances often labeled as dense or sparse residential. Empirical evidence suggests
tiling material and the inconsistent spaces between buildings also contributed to error
rate. On the other hand, benchmark datasets should include distinctive attributes for
determining dense, medium and sparse residential areas. As for the types and the total

number of buildings for each class.
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Land cover classes such as chaparral and meadow indicate lower accuracy than
expected since the spectral complexity of these classes are much lower compared to
land use classes. Inception-ResNet-v2 model display %80 and %76 user’s accuracy
for chaparral and meadow classes respectively. For Inception-v4 model, user’s
accuracy for the classes mentioned above were %77 and %62 respectively. Certain
classes contain intra-class mixtures with these land cover areas such as sparse

residential and golf course, resulting in false positive instances.

Intra-class variability often creates problems for accurate labelling. For instance an
“Intersection” scene containing a “tennis court” is labeled as a “tennis court” or a
“parking lot” scene with a “freeway” nearby is labeled as “freeway”. This occurs for
the instances that a certain class contain features that represent another class, not

because of the poor generalization of the features.

“Storage tank” class is the most accurate class for both networks along with “forest”
class. Results indicate that the error instaces belonging to those classes are not because
of intra-class variability but rather spatial and spectral similarities to other classes. For
example meadow class is often mislabeled as forest due to similar pixel values. For
rare instances images belong to the “overpass” class labeled as “storage tank™ due to
similar round shape that is present in both of the classes. Another example of similar
type of error instances are the mislabeled “river” and “chaparral” classes. Evidence
suggests that factors contributing to these errors are stream or creek like shapes that

can be found in both classes.

Results show that “terrace” and “farmland” have the worst accuracy rate compared
to other classes. Reason being that the “terrace” and “farmland” classes share common
spatial and spectral features that is almost indistinguishable for the human eye as well.

Therefore, false negatives and false positives for these classes point each other.

On the other hand, experiments on the two networks display the importance of having
residual connections for the CNN model. Results indicate residual connections
improve training speed, achieving higher rate of accuracy with a lesser training time.
As the model reaches close to a convergence, smaller learning rate is employed each

time to further improve training accuracy.

There have been numerous studies regarding scene classification using NWPU-

RESISC45 dataset. Experimental results carried out by Cheng et al[68] and Zhang et
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al[71] with different networks on the same training dataset that is used in this thesis
are given in (Table 4.5) and (Table 4.6). They have separated %10 and %20 of the
training dataset to be used in validation respectively. Note that original NWPU-

RESISC45 dataset consist of 45 classes.

Table 4.5 : Comparison of results with different networks.

CNN Models %10 Training ratio %20 Training ratio
Fine-tuned AlexNet %81.22 %85.16
Fine-tuned VGGNet-16 %87.15 %90.36
Fine-tuned GoogLeNet %82.57 %86.02

Table 4.6 : Comparison of the results with different networks.

CNN Models %10 Training ratio %20 Training ratio
AlexNet %76.47 %79.79
VGGNet-16 %76.69 %79.85
GoogLeNet %76.19 %78.48
VGG-16-CapsNet %385.08 %89.18
Inception-v3-CapsNet %89.03 %92.6

To further analyse the capability of the models used in this experiment in comparative
manner and minimal bias, both of the networks are used in this thesis are trained with
%15 training ratio of the NWPU-RESISC45 dataset. Which means using 11900
images for training and 2100 images for validation. Loss functions for the networks

are given in (Figure 4.10) and (Figure 4.11).
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Total Loss
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Figure 4.10 : Loss function for Inception-ResNet-v2 with %15 training ratio and no
varying batch size.
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Figure 4.11: Loss function for Inception-v4 with %15 training ratio and no varying
batch size.

Loss functions exhibit lesser oscillations due to the fact that varying batch size is not
included in this training. However, final loss rate is higher for both networks. Training
accuracy is %94 and %92 for Inception-ResNet-v2 and Inception-v4 respectively.
Confusion matrices are given in (Figure 4.12) and (Figure 4.13). Results suggest that
validation accuracy is much higher for both of the networks. Overall accuracy has
increased %7 for both networks and up to %20 of increase can be seen for individual
classes such as “terrace” and “farmland”. One would anticipate that using test images
with similar characteristics as the training images increase overall accuracy of the
network. It is observed that the data supports this hypothesis. Despite increasing the
size of the validation dataset results show that networks perform better overall.

Analysis regarding to the accuracy and the error instances of each class are as follows.
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Figure 4.12 : Confusion matrix for the Inception-ResNet-v2 with %15 training ratio of NWPU-RESISC45 dataset.
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Least improved class over the previous experiment is the “airport” class. Only %2
increase in accuracy can be seen. High ground sampling distance for these images
cause problems in terms of intra-class variability and the spaces between runways
resemble farmlands which contributes to false negative instances. Also other error
instances point out that classes “freeway” and “river” are labeled as “airport” for
several occasions which is not present in the previous experiment. This is likely due

to high ground sampling distances of the “airport” images.

“Chaparral” class shows significant improvement over the previous experiment for
both networks. Increase up to %12 in accuracy can be seen. Intra-class variability for
the test images of this class were lower and the error instances belong to classes
“meadow”, “sparse residential” and “terrace” which is the same as the previous

experiment.

One of the lowest class accuracy is obtained for the “dense residential” class. Yet there
is still improvement over to the first training. It is observed that the roof material and
the spaces between buildings have a significant impact on the performance of this
class. Hence, the majority of the error instances belong to classes “medium residential”
and “industrial area”. Same issue is persistent in “medium residential” class. Although
there is %10 increase in accuracy in both of the networks compared to the previous

experiment.

“Parking lot” class exhibit the highest accuracy reaching up to %94 for Inception-
ResNet-v2 network. This result can be attributed to low ground sampling distance of
the “parking lot” images in NWPU dataset, making it easier for the model to recognize
car patterns. Error instances are for the scenes that have intra-class variability such as

parking lots near overpass and freeways.

For classes “farmland” and “terrace” same problem as the previous experiment is
recurrent. Although there is progress, due to high ground sampling distance as well as
parallel spectral and spatial characteristics make it harder for the models to distinguish
these classes. Same issue can be addressed for classes “tennis court” and “ground track

field” as the error instances for these classes point each other.

Land cover classes such as “forest” and “meadow” does not show significant
improvement. Spatial and spectral properties aren’t that complex to take advantage of

the similar test images as the training dataset.
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4.1.7 Discussion

The proposed approach in this thesis has shown that it can be applied to remote sensing
applications for automated land cover and land use classification from VHR images.
The approach demonstrated that networks trained on an unrelated image recognition
task can actually be used to solve the land cover and land use classification problem.
One would anticipate that a large amount of VHR spatial imagery that already exists
and that continues to be collected at higher rates will have a significant impact on a
variety of remote sensing applications. Both of the experiments carried out in this
thesis show accuracies that are at par with the state-of-the-art accuracies on the land
use land cover classification problem. Adapting a deep pre-trained network and fine-
tuning the network on a new dataset that has a limited number of labeled images to
train quickly, learn and adjust the weights and biases of the network on the new dataset

in effect delivers promising results.

Main goal of the experiments in this thesis is to assess the performance of the given
neural networks by providing validation data which has distinct characteristics
compared to trained data. Second experiment is carried out to display the performance
of the networks by feeding validation data that is similar to trained data yet completely
unseen. Results indicate that even with moderate size training data, generalizability of
the features extracted from the networks are reliable over the unseen data with different
characteristics. However, important caveat of this analysis is that intra-class variability
needs to be addressed when creating a validation dataset. Experiments show that
networks are more sensitive to the intra-class mixtures with validation data that has
different characteristics as the training data. Also ground sampling distances for each
class need to be defined for both validation and training datasets to further improve

the results.

Fine-tuning is a major aspect of training a succesfull deep learning model. There
various parameters to be controlled to achieve the maximum results out of the
networks. Although most of it are based on trial and error method, varying batch-size
during training proven to be an effective method to increase training accuracy while
the network converges to a fixed number of training accuracy. First experiment shows
that this method improves training accuracy. However, causing loss function to

oscillate to various local minimas.
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5. CONCLUSIONS

5.1 Summary

Accessibility of the remote sensing imagery have become increasingly available in
the recent years. For various environmental and urban planning problems analysis of
these remote sensing imagery have crucial importance. Increase in the available remote
sensing imagery, calls for an automatization for the process of land cover and land use

classification.

For remote sensing image analysis, CNN’s provide reliable results that can be
generalized over the unseen data. Furthermore, feature engineering and expertise
needed for traditional feature extraction methods are eliminated. Training a successful
CNN model requires sufficient amount of training data and fitting selection of
hyperparameters. Training deep network architectures from scratch requires
significant amount of data and training time in order to learn low-level features.
Therefore, using pretrained networks for any given classification task is a good idea.
One of the main advantages of CNN’s is final layers of the network can be fine-tuned

for a specific goal including remote sensing image analysis.

In this study, two state-of-the-art pre-trained networks namely Inception-ResNet-v2
and Inception-v4 are trained for the purpose of land cover and land use classification.
In both experiments, training dataset is created from NWPU-RESISC45 dataset which
consist of 20 classes with 700 image. Images converted to the binary format of
tfrecords to minimize memory usage and loading time. In order to test the
generalizability of features that are created by the networks, separate validation dataset
is used for the first experiment. A validation dataset is created from Worldview-3
satellite images as to feed networks with images of different characteristics. Training
accuracy of the networks Inception-ResNet-v2 and Inception-v4 for the first
experiment are %97.7 and %94.2 respectively. Total training time for the networks are
13 and 11 hours respectively. Each network is trained for 100 epochs using decaying

learning rate and various batch sizes to increase training accuracy.Validation dataset
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consists of patches extracted from 30 cm 3-band RGB satellite imagery. These
imagery are acquired from Worldview-3 satellite sensor with 3 distinct AOI’s
including Las Vegas, Shanghai and Paris. Validation accuracy for the networks are
%82.8 and %77.8 respectively. Various metrics for evaluation and comparision of
these networks are calculated such as precision recall and fl-scores. Results indicate
that Inception-ResNet-v2 model outperforms Inception-v4 in terms of accuracy and

generalization over the unseen data.

Second experiment is carried out to compare the performance of the networks by
feeding validation data with similar characteristics as the training data. Both networks
are trained with %15 training ratio of the NWPU dataset. Results indicate %89.95 and
%85.38 validation accuracy for the Inception-ResNet-v2 and Inception-v4 networks

respectively.

5.2 Conclusions

Results of the experiments in this thesis show that CNN’s are powerful classification
tools that can be effectively used in remote sensing problems such as land cover and
land use classification. CNN models eliminate feature engineering expertise required
by the traditional techniques and automatize the process. However, training deep
networks can be a challenging task. Proper selection of hyperparameters and sufficient

amount of training data are key factors of successfully training a CNN model.

Transfer learning approach demonstrated in this experiment shows that networks
trained on an unrelated image recognition task can be used to solve the land cover and
land use classification problem. Fine-tuning CNN’s with pre-trained weights provide

accurate results with unseen data.

Classes that are selected for the experiments have mutual properties and intra-class
variability in order to further investigate the models ability to classify distinct scenes
and assess the results with minimal bias. Results indicate that intra-class variability is
the main reason for false classification, rather than the similar properties of the selected
classes. However, “terrace” and “farmland” classes exhibit poor results compared to
other classes. It is observed that the spatial attributes of these classes are identical and

may require additional training data to further generalize on the unseen data.
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5.3 Future Works

Deep learning algorithms such as CNNs show impressive results in both computer
vision and remote sensing tasks. The attractive parts of such algorithms is that the
pretrained networks such as ImageNet1000 trained AlexNet, VGGNet, GooglLeNet
etc. are capable of generalizing for other domains such as remote sensing. As for land
cover and land use classification, experiments in this thesis indicate multi-label
approach should be investigated. Due to intra-class variability of the scenes models
can label features that belong to another class that are located in a small part of the
image. This problem also brings up the question of whether to treat land cover land
use classes as individual objects. Automatization of land cover and land use
classification from a larger image that contains multiple classes remains as a challenge

that needs to be re-visited in the future.
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