

ISTANBUL TECHNICAL UNIVERSITY « INFORMATICS INSTITUTE

M.Sc. THESIS

JUNE 2019

SEMANTIC LAND COVER AND LAND USE CLASSIFICATION USING DEEP
CONVOLUTIONAL NEURAL NETWORKS

Thesis Advisor: Prof. Dr. Elif SERTEL

Berk GÜNEY

Department of Communication Systems

Satellite Communication and Remote Sensing Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY « INFORMATICS INSTITUTE

SEMANTIC LAND COVER AND LAND USE CLASSIFICATION USING DEEP
CONVOLUTIONAL NEURAL NETWORKS

M.Sc. THESIS

Berk Güney
(705161004)

Department of Communication Systems

Satellite Communication and Remote Sensing Programme

Thesis Advisor: Prof. Dr. Elif Sertel

HAZİRAN 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ « BİLİŞİM ENSTİTÜSÜ

DERİN EVRİŞİMSEL SİNİR AĞLARI İLE ARAZİ KULLANIMI VE ARAZİ
ÖRTÜSÜNÜN ANLAMSAL SINIFLANDIRILMASI

YÜKSEK LİSANS TEZİ

Berk GÜNEY
 (705161004)

İletişim Sistemleri Anabilim Dalı

Uydu Haberleşmesi ve Uzaktan Algılama Programı

Tez Danışmanı: Prof. Dr. Elif SERTEL

v

Thesis Advisor : Prof. Dr. Elif SERTEL
 İstanbul Technical University

Jury Members : Prof. Dr. Şinasi KAYA
 İstanbul Technical University

Prof. Dr. Bülent BAYRAM
Yıldız Technical University

Berk Güney, a M.Sc. student of ITU Informatics Institute student ID 705161004
successfully defended the thesis entitled “Semantic Land Cover and Land Use
Classification using Deep Convolutional Neural Networks” which he prepared after
fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Date of Submission :
Date of Defense : 11 June 2019

vi

vii

To my family,

viii

ix

FOREWORD

I would like to express my gratitude to my supervisor Prof. Dr. Elif SERTEL for her
precious guidence and insistence for this study. She also provided hardware to be used
in this thesis work. I also would like to thank Prof. Dr. Markus GERKE for his
contribution and collabration with my time in Technical University Braunschweig for
the ERASMUS+ programme.

I am also grateful to Mehmet Soydaş for his generous support and help with his
experience and knowledge in deep learning.

Finally, I would like to thank my family for their endless support throughout my study.

May 2019

Berk Güney

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS... xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES .. xvii
SUMMARY ... xix
ÖZET…….. .. xxi
1. INTRODUCTION .. 1

2. LITERATURE REVIEW ON LAND COVER AND LAND USE
CLASSIFICATION .. 5

2.5.1 Supervised learning .. 8
2.5.2 Support vector machines .. 8
2.5.3 Decision tree classifier ... 10
2.5.4 Random forest classifier ... 12
2.5.5 Artificial neural networks ... 12

3. DEEP NEURAL NETWORKS .. 15

3.1.1 Stacked autoencoders ... 16
3.1.2 Sparse autoencoders ... 17

3.4.1 Convolutional layer .. 21
3.4.2 Pooling layer .. 23
3.4.3 Fully connected layer ... 23

3.5.1 LeNet-5 .. 24
3.5.2 AlexNet .. 25
3.5.3 VGGNet ... 27
3.5.4 GoogLeNet... 28
3.5.5 ResNet ... 31
3.5.6 Inception-ResNet.. 33

3.6.1 Hyperparameter selection ... 35

xii

3.6.1.1 Loss function .. 35
3.6.1.2 Learning rate ... 35
3.6.1.3 Mini-batch size.. 36

3.6.2 Optimization algorithms... 36
3.6.2.1 Gradient Descent ... 36
3.6.2.2 Stochastic Gradient Descent(SGD) .. 37
3.6.2.3 AdaGrad ... 38
3.6.2.4 RMSProp .. 39
3.6.2.5 Adam .. 39

3.6.3 Regularization .. 40
3.6.3.1 L2 regularization ... 40
3.6.3.2 L1 regularization ... 41
3.6.3.3 Dropout regularization .. 41
3.6.3.4 Batch normalization .. 42
3.6.3.5 Data augmentation .. 42

4. EXPERIMENTS AND RESULTS ... 45

4.1.1 Proposed classification networks .. 45
4.1.2 Training dataset for the classification network 46
4.1.3 Validation dataset for the classification network 50
4.1.4 Pre-processing ... 54
4.1.5 Training setup .. 54
4.1.6 Results ... 54
4.1.7 Discussion ... 70

5. CONCLUSIONS... 71

REFERENCES ... 75
CURRICULUM VITAE .. 81

xiii

ABBREVIATIONS

AE : Auto-encoder
ANN : Artificial Neural Network
AOI : Area of interest
BN : Batch Normalization
CV : Computer vision
CNN : Convolutional Neural Network
CRF : Conditional Random Field
DT : Decision Tree
DBN : Deep Belief Network
DBM : Deep Boltzmann Machine
LTU : Linear Threshold Unit
MRF : Markov Random Field
MLP : Multi-Layer Perceptron
NN : Neural Network
RBM : Restricted Bolztmann Machine
ReLU : Rectified Linear Unit
RF : Random Forest
SAE : Stacked Auto-Encoder
SGD : Stochastic Gradient
SVM : Support Vector Machine
UAV : Unmanned Aerial Vehicle

xiv

xv

LIST OF TABLES

Page

 The differences between pixel, sub-pixel and object based approaches. .. 6
Table 3.1 : LeNet-5 architecture ... 25
Table 3.2 : AlexNet architecture ... 26
Table 3.3 : VGGNet architecture .. 27
Table 3.4 : Number of parameters in VGGNet in millions 28
Table 3.5 : Shows the top-1 and top-5 error rates of ResNet models based on the

validation set of ILSVRC 2014 ... 33
Table 3.6 : The top-1 and top-5 error rates of Inception models based on the

validation set of ILSVRC 2012 ... 34
Table 4.3 : Results of the trained networks ... 54
Table 4.4 : Error types for classification ... 55
Table 4.5 : Precision recall and f1-scores for the Inception-ResNet-v2 56
Table 4.6 : Precision recall and f1-scores for the Inception-v4 56

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : Difference between classical programming and machine learning 8
Figure 2.2 : Difference between classification and regression 8
Figure 2.3 : Non-linear transform and optimal hyperplane for SVM....................... 10
Figure 2.4 : Sample decision tree ... 11
Figure 2.5 : Linear threshold unit ... 13
Figure 2.6 : Muli-Layer Perceptron .. 14
Figure 3.1 : Autoencoder ... 16
Figure 3.2 : Stacked Autoencoder .. 16
Figure 3.3 : A DBN with two RBM’s .. 18
Figure 3.4 : Backward connection of RNN .. 18
Figure 3.5 : LSTM cell .. 19
Figure 3.6 : LeNet architecture .. 20
Figure 3.7 : Comparison of input layers: Fully connected layer vs

convolutional layer.Size of the local receptive field is 5x5 21
Figure 3.8 : 2-dimensional convolutional example with filter size 3x3 and

stride 1 with zero padding. .. 22
Figure 3.9 : Activation functions .. 22
Figure 3.10 : Max pooling and average pooling operations with a filter size

2x2 and stride 2... 23
Figure 3.11 : Typical CNN architecture ... 24
Figure 3.12 : Inception Module .. 28
Figure 3.13 : Difference between Fully Connected Layer and Global Average

Pooling. .. 28
Figure 3.14 : GoogleNet architecture ... 29
Figure 3.15 : Inception modules used in Inception-v2 .. 30
Figure 3.16 : From left Inception modules A, B, C used in Inception-v4 31
Figure 3.17 : Residual Learning ... 32
Figure 3.18 : Regular deep neural network(left) and deep residual learning(right) .. 32
Figure 3.19 : Residual unit ... 33
Figure 3.20 : Inception modules A,B,C in an Inception-ResNet-v1. Pooling layer

was replaced by the residual connection. ... 34
Figure 3.21 : Inception-ResNet-v2 architecture .. 34
Figure 3.22 : The effect of learning rate on training loss. 36
Figure 3.23 : Weight updates in the opposite direction of the gradient. 37
Figure 3.24 : SGD fluctuates to find a newer and better local minima. 38
Figure 3.25 : Graph showing underfitting and overfitting in the network 40
Figure 3.26 : Dropout Regularization. Standart network(left) network with

dropout(right) ... 41
Figure 3.27 : Transfer learning ... 43
Figure 4.1 : Sample patches for the training dataset .. 47
Figure 4.2 : Code for automated script to convert 16-bit imagery to 8-bit 50

xviii

Figure 4.3 : Sample patches for the validation dataset .. 51
Figure 4.4 : Confusion matrix for the Inception-ResNet-v2 network 57
Figure 4.5 : Confusion matrix for the Inception-v4 network................................. 58
Figure 4.6 : Error instances of the trained networks ... 61
Figure 4.7 : Loss function for Inception-ResNet-v2. .. 62
Figure 4.8 : Loss function for Inception-v4 ... 62
Figure 4.9 : Training accuracy of the networks ... 62
Figure 4.10 : Loss function for Inception-ResNet-v2 with %15 training ratio

and no varying batch size.. 66
Figure 4.11 : Loss function for Inception-v4 with %15 training ratio and no

varying batch size. .. 66
Figure 4.12 : Confusion matrix for the Inception-ResNet-v2 with %15 training

ratio of NWPU-RESISC45 dataset.. 67
Figure 4.13 : Confusion matrix for the Inception-v4 with %15 training ratio of

NWPU-RESISC45 dataset. ... 68

xix

LAND COVER AND LAND USE CLASSIFICATION USING
CONVOLUTIONAL NEURAL NETWORKS

SUMMARY

In recent years, deep learning (DL), the successor of neural networks (NNs), has
become the state-of-the-art approach in areas particularly, computer vision (CV),
speech recognition and natural language processing. (NN) is an established branch of
artificial intelligence that has been brought to life due to factors such as high-
performance computing, algorithmic improvements and big data. In the field of remote
sensing big data has also become the norm. Remote sensing is obtaining information
about an object or phenomenon without making physical contact, especially the Earth.
The definition includes the conventional areas of remote sensing, e.g. satellite and
aerial photography. However, remote sensing also covers areas such as unmanned
aerial vehicles (UAVs) and crowdsourcing (telephone images, tweets, etc.). Several
satellites were launched in the last five years with high spatial resolution such as
Sentinel-1A/B and Sentinel-2A within the European Copernicus program, and
Landsat-8 within the U.S. Geological Survey (USGS) and the National Aeronautics
and Space Administration. All of these data sets are free to access on operational basis.
Land use and land cover classification is a standard remote sensing task where each
image pixel is either associated with a class label indicating the physical material of
the surface(land cover) or each object describing the socio-economic function of the
land(land use). Therefore, land use objects are complex structures consist of many
different land cover elements. Due to its complex nature, both spectral and spatial
features need to be incorporated for a successful land use/land cover mapping.
Experiments to combine both of these features based on the Conditional Random Field
(CRF) model, Markov Random Field model and Composite Kernel (CK) method have
been carried out. Nevertheless, in most cases, the process of extracting extensive
number of features for the intent of supervised classification is time consuming and
requires comprehensive knowledge to extract useful features. In addition to that, hand-
crafted methods that are used for classification mainly relies on low-level features and
produce inadequate classification results. With the increasing amount of accessible
data, application of deep learning for overcoming these challenges has become
prominent. Compared to machine learning approaches such as Support Vector
Machine (SVM) and Random Forest (RF) deep learning shows great promise with the
use of big data. Current deep learning models are Deep Belief Net (DBN), Stacked
Auto-Encoder (SAE), and Convolutional Neural Network’s (CNN). Most well-known
deep learning model (CNN) shows great progress for processing of remote sensing
imagery. (CNN’s) outperform shallow-structured machine learning tools in remote
sensing applications such as object detection, segmentation and classification.

xx

In this thesis, two pre-trained CNN models namely Inception-ResNet-V2 and
Inception-v4 are used to classify scenes from satellite imagery. There are 20 classes
with 700 images each such as airport, chaparral, dense residential, forest, freeway, golf
course, ground track field, industrial area, intersection, meadow, medium residential,
overpass, parking lot, rectangular farmland, river, runway, sparse residential, storage
tank, tennis court and terrace. Scenes acquired from Worldview-3 satellite sensor are
used to evaluate the performance of the network. Suggested networks reached %91.2
and %87.2 accuracy over the 1000 test image.

xxi

DERİN EVRİŞİMSEL SİNİR AĞLARI İLE ARAZİ KULLANIMI VE ARAZİ
ÖRTÜSÜNÜN SINIFLANDIRILMASI

ÖZET

Son yıllarda, sinir ağlarının halefi olan derin öğrenme, özellikle bilgisayar görüşü,
konuşma tanıma ve doğal dil işleme gibi alanlarda son teknoloji bir yaklaşım haline
gelmiştir. Sinir ağları yüksek performanslı bilgi işlem, algoritmik iyileştirmeler ve
büyük veriler gibi faktörler ile hayata geçirilen yerleşik bir yapay zeka dalıdır.
Geçtiğimiz yıllarda büyük veri yapıları uzaktan algılama konusunda da büyük önem
kazanmıştır. Uzaktan algılama, özellikle Dünya olmak üzere fiziksel temas kurmadan
bir nesne veya fenomen hakkında bilgi edinmektir. Bu tanım, geleneksel uzaktan
algılama alanlarını, örn. uydu ve hava fotoğrafçılığını kapsamakla birlikte, insansız
hava araçları (İHA) ve kitle kaynak kullanımı (telefon görüntüleri, tweetler, vb.)
alanlarını da içerir. Son yıllarda yüksek çözünürlüklü gözlem uydularının sayısı
giderek artmıştır. Avrupa Kopernik programında geliştirilen Sentinel uyduları ve ABD
Jeolojik Etütleri (USGS) ile Ulusal Havacılık ve Uzay İdaresi bünyesindeki Landsat
uydularının elde ettiği verilerin hepsine operasyonel olarak erişim serbesttir. Elde
edilen bu büyük verilerin incelenmesi ve analiz edilmesi uzaktan algılama konuları
için önem arz etmektedir. Özellikle şehir planlama, tarım rekoltesi hesaplama, iklim
değişikliğinin incelenmesi, arazi kullanımı ve arazi örtüsünün sınıflandırılması
konularında kullanılır.
Uzaktan algılanmış verilerin yeryüzüne ait bilgiye dönüştürülmesinde kullanılan en
önemli yöntemlerden biri görüntülerin sınıflandırılmasıdır. Sınıflandırma işlemi,
benzer spektral özellikleri taşıyan nesnelerin gruplandırılmasıdır. Sınıflandırma işlemi
için genellikle iki farklı yaklaşım kullanılır. Bu yaklaşımlar kontrollü ve kontrolsüz
sınıflandırma olmak üzere ikiye ayrılır. Kontrollü sınıflandırma metodu eğitim veri
seti kullanılarak sınıflandırmayı içerir. Bu yaklaşım ile daha yüksek doğruluklar elde
edildiğinden en çok tercih edilen yöntemdir. Bunun yanı sıra geleneksel sınıflandırma
yöntemleri olarak en çok benzerlik sınıflandırıcısı ve histogram eşitleme yöntemi
örnek olarak verilebilir. Bu yöntemler el becerisi ile elde edilen özellikler içerdiğinden
üzerinde çalışılmamış görüntüler ile iyi sonuç vermemekle birlikte sonuçların
oluşturulması uzun zaman alabilir. Literatürde bugüne kadar uzaktan algılanmış
görüntülerin sınıflandırılmasına yönelik daha karmaşık çeşitli algoritmalar
geliştirilmiştir. Bu yöntemlerden bazıları destek vektör makineleri, karar ağaçları,
markov rastgele alanı, koşullu rastgele alan ve bulanık mantık sınıflandırıcıdır. Fakat
bu metotların büyük boyutlu eğitim verilerinden faydalanamadığı, kısıtlı eğitim verisi
ile üzerinde çalışılmış görüntüler üzerinde etkili olduğu araştırmalarla ortaya
konmuştur.
Arazi örtüsü ve arazi kullanımı sınıflandırması, her görüntü pikselinin ya yüzeyin
fiziksel malzemesini (arazi örtüsü) veya sınıfın sosyo-ekonomik işlevini tanımlayan
her bir nesneyi (arazi kullanımı) gösteren bir sınıf etiketi ile ilişkilendirildiği standart

xxii

bir uzaktan algılama problemidir. Bu nedenle, arazi kullanım nesneleri birçok farklı
arazi örtüsü elemanından oluşan karmaşık yapılardır. Karmaşık doğası nedeniyle,
başarılı bir arazi örtüsü arazi kullanımı haritalaması için hem spektral hem de mekansal
özelliklerin dahil edilmesi gerekir. Derin öğrenme algoritmaları bu iki özelliği de
kullanarak sınıflandırma yapabilmesi açısından arazi örtüsü arazi kullanımı
haritalaması için kullanılan en gelişmiş modellerdir. Artan erişilebilir veri miktarıyla
birlikte, derin öğrenme uygulamaları öne çıkmıştır. Destek vektör makinesi ve karar
ağacı gibi makine öğrenme yaklaşımlarıyla karşılaştırıldığında, derin öğrenme
uygulamaları büyük verilerin kullanımı ile büyük umut vaat etmektedir. Mevcut derin
öğrenme modellerinden Derin İnanç Ağları, Yığınlaşmış Otomatik Kodlayıcı ve
Evrişimsel Sinir Ağları uzaktan algılama problemlerinde etkin olarak
kullanılmaktadır. Görüntü sınıflandırmada en iyi bilinen derin öğrenme modeli olan
Evrişimsel Sinir Ağları uzaktan algılama görüntülerinin işlenmesi için de büyük
ilerleme göstermektedir. Evrişimsel Sinir Ağları nesne algılama, segmentasyon ve
sınıflandırma gibi uzaktan algılama uygulamalarında sığ yapılı makine öğrenme
araçlarından daha iyi performans göstermektedir.
Bir derin öğrenme mimarisi olan Evrişimsel Sinir Ağları, özellikle görüntü
sınıflandırmada kullanılır. Evrişimsel sinir ağları, eğitilebilen birçok katmandan
oluşmaktadır. Çok katmanlı mimarisi sayesinde görüntülerden öznitelik çıkarma
konusunda oldukça başarılıdır. Her katmanın kendine ait öznitelik havuzlama katmanı,
filtre banka katmanı ve doğrusal olmayan katmanı bulunmaktadır. Filtre banka
katmanı farklı öznitelikler çıkarılması için birçok çekirdek bulundurur. Havuzlama
katmanında elde edilen öznitelik haritaları tek tek ele alınır. Her harita maksimum
değerinin veya komşu değerinin ortalamasının elde edilmesini sağlamaktadır. Görüntü
önce parçalara ayrılır ve her parçaya filtre uygulanır. Filtre işleminden sonra görüntüde
küçülme meydana gelir. Bu işlem sonucunda elde edilen pikseller anlamlandırılarak
sınıflandırma problemi çözülmeye çalışılır.
Evrişimsel Sinir Ağları mimarileri giderek daha karmaşık ve derin bir yapıya
evrilmiştir. Yann Lecun tarafından geliştirilen LeNet modern anlamda görüntü
işlemede kullanılan ilk derin mimariye sahip evrişimsel sinir ağıdır. Akabinde 2012
yılındaki ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)
yarışmasında Alex Krizevhsky tarafından geliştirilen AlexNet görüntü sınıflandırma
ve tanıma alanında büyük bir başarı sağlamıştır. Bu başarının ardından Evrişimsel
Sinir Ağları görüntü işlemede sıkça kullanılmaya başlamıştır. İzleyen yıllarda
ILSVRC yarışmasında önde gelen mimariler VGGNet, ResNet ve GoogleNet
olmuştur.
Oldukça derin mimariye sahip modern evrişimsel sinir ağlarını spesifik bir
sınıflandırma problemi için sıfırdan eğitmek uzun hesaplamalar gerektirir. Fakat çok
katmanlı yapısı sayesinde farklı verilerle eğitilmiş ağlar başka bir sınıflandırma
problemi için kullanılabilir. Nesnelerin oluşturduğu çizgiler ve köşeler gibi kavramlar
ağların aşağı katmanlarında öğrenilir. Yukarı katmanları ise yeniden eğitilerek
istenilen sınıflandırma problemine uyarlanır. Böylece etiketli veri bulmanın zahmetli
olduğu alanlarda başarılı sonuçlar elde edilebilir. Günümüzde açık kaynak olarak
kullanılabilen ağlar ImageNet veriseti ile eğitilmiş olup bir çok farklı alanda
kullanılmak üzere ince ayar yapılabilir. Uzaktan algılama problemlerinde literatüre
bakıldığında önceden eğitilmiş ağların nesne tanıma ve sınıflandırma gibi konularda
başarılı sonuçlar verdiği görülmüştür.

Bu tez çalışmasında, Inception-ResNet-V2 ve Inception-v4 adlı iki önceden eğitilmiş
Evrişimsel Sinir Ağı modeli, uydu görüntülerini sınıflandırmak için kullanılmıştır.
Sınıflar havaalanı, yoğun yerleşim alanı, orman, çevre yolu, golf sahası, arazi yolu

xxiii

alanı, sanayi bölgesi, kavşak, çayır, orta ölçekli yerleşim alanı, üst geçit, otopark,
dikdörtgen tarım arazileri, nehir, pist, seyrek yerleşim alanı, depolama tankı, tenis
kortu ve teras olmak üzere 20 adettir. Eğitim verisi olarak her sınıf için 700 görüntü
kullanılmıştır. Worldview-3 uydu sensöründen elde edilen sahneler ağın performansını
değerlendirmek için test seti olarak kullanılmıştır. Önerilen ağlar, 1000 test
görüntüsünde %91.2 ve %87.2 doğruluğa ulaşmıştır.

xxiv

1

1. INTRODUCTION

Recent years in remote sensing field can be named as the era of big data. Volume and

the availability of the remote sensing data has increased immensely. Due to large scale

of these data sets new challenges have risen. Land use land cover classification has

always been an important task in remote sensing field, providing crucial information

for applications such as urban planning and precision agriculture. This can be done by

analyzing remote sensing imagery.

The task of classification in the context of remote sensing imagery is utilizing labeled

samples to determine which class does each pixel belong to. There has been wide range

of studies on analyzing each individual pixel of the images and classify them based on

their spectrum. In this framework, mainly used approaches are support vector

machines(SVMs)[1] and decision trees[2]. However, these techniques are not effective

in a large-scale due to the fact that majority of satellite imagery does not use high

spectral resolution sensors. Without understanding the shape of the objects, separating

classes entirely by their spectrum is difficult. On the other hand, more advanced

techniques incorporate information from a several neighboring pixels to boost the

classifiers’ performance, specified as spectral-spatial classification. In this context

studies based on the Conditional Random Field (CRF)[3] model, Markov Random

Field[4] model and Composite Kernel (CK)[5] method have been carried out. However

these methods only show promise with the data being analyzed. Generalization of the

proposed solutions are questionable. Also the process of extracting extensive number

of features for the intent of supervised classification is time consuming and requires

comprehensive knowledge to extract useful features. On the other hand, deep learning

approaches learn from the data itself, thus replacing the expertise of feature

engineering. Deep learning models outperform shallow-structured approaches in

remote sensing applications such as object detection, segmentation and classification.

Convolutional neural networks (CNNs) are accepted deep learning models that extract

contextual image features by utilizing stack of learned convolution filters. Inspired by

the human visual cortex CNNs consist of multiple layers. First part of the CNN is

2

usually referred as feature extractor and last part is called as multilayer

perceptron(MLP). Final layer assigns class labels and compute probabilities of a given

class. Other layers are mostly convolutional filters. For instance, to analyze grayscale

imagery, CNNs utilize two dimensional (2-D) convolutional filters and as for red-

green-blue RGB imagery (3-D) convolutional filters are used. After training phase,

filters learn to elicit hierarchical features straight from the input data, in contrast to

machine learning models that use “hand-crafted” features. Architecture and the details

of the CNN models will be discussed in the chapters later on.

CNNs prevailed in tasks such as classification and object detection. Beginning in the

1990’s, LeCun et al[6]. designed LeNet for reading zip codes. It created an impact in

the image processing community. Krizhevsky et al.[7] created a deep CNN which won

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. Next year

Zeiler and Fergus[8] developed ZFNet, which was based on AlexNet architecture with

tweaked parameters and won (ILSVRC). In 2014, Szegedy et al[9] created GoogLeNet

also known as (Inception-v1) which had only 4 million parameters compared to

AlexNet(60 million) won (ILSVRC). ResNet designed by He et al.[10] introduced

residual connections which improved the training speed remarkably. In 2016, Szegedy

et al introduced residual connections in conjunction of Inception network called as

Inception-ResNet which significantly improved recognition performance[11].

Transfer learning is the practice of reusing a trained algorithm on a comparable dataset.

As humans we don’t learn to recognize new images by analyzing thousands of similar

ones. Concepts of lines and curves comes first. Idea behind transfer learning is quite

similar. Transferring low-level features from a pre-trained model and tune the filter

weights to identify other different patterns. Thus, eliminating the heavy work of

training from the scratch with thousands of images.

In the remote sensing field, Marmanis et al[12] utilized this concept by using a CNN

pre-trained on the ImageNet dataset and extracted features of orthoimagery from the

last layer. Donahue et al.[13] displayed that the crucial information is obtained from

the deeper layers. With a similar approach Salberg[14] detected seal pups in aerial

imagery with high accuracy. Other transfer learning applications of remote sensing are

as follows; Othman et al[15] trained ILSVRC-12 challenge data set and used transfer

learning on UC Merced Land Use[16] dataset. Iftene et al.[17] used ImageNet data set

on CaffeNet and GoogLeNet models then applied results to WHU-RS[18] data set

3

consist of very high resolution imagery. Ghazi et al.[19] and Lee et al.[20] used a

combination of pre-trained networks such as GoogLeNet, VGGNet and AlexNet on

plant identification.

 Purpose of Thesis

In recent years expansion in the satellite industry led to a vast amount of available

satellite imagery of the earth. These imagery provide critical information for many of

remote sensing tasks including land cover and land use analysis. Traditional methods

for the classification of image scenes are no longer applicable for the analysis of big

data. These methods often rely on handcrafted features and therefore on the feature

engineer. Also it takes significant amount of time to create features that can be

generalized over the unseen data.

One of the subcategories of machine learning discipline, deep learning became a hot

topic for computer vision and remote sensing field. Stacked auto-encoders (SAEs)

deep Boltzmann machines (DBMs), deep belief networks (DBNs), and convolutional

neural networks (CNNs) are the most popular deep neural network architectures used

in remote sensing applications. These networks can extract reliable features directly

from data without any need for feature engineering. Research shows that CNNs are the

most capable feature extractors for classification problems. Although the most popular

networks are designed and trained to recognize daily internet images, these networks

are also capable of recognizing geospatial objects, land cover and land use classes in

the satellite images.

Purpose of this thesis is to investigate state-of-the-art CNN models for land cover and

land use classification and produce accurate results that can be generalized over the

unseen data.

 Scope and the Organization of the Thesis

The thesis is organized as follows: A detailed literature overview on land cover land

use classification with both conventional techniques and machine learning methods is

discussed in Chapter 2. Theory and details of deep learning as well as popular deep

networks are presented in Chapter 3. The experiments conducted on scene

classification are given in Chapter 4 and conclusions are presented in Chapter 5.

4

5

2. LITERATURE REVIEW ON LAND COVER AND LAND USE

CLASSIFICATION

Land cover and land use information is a crucial aspect of remote sensing. Information

derived from remote sensing imagery is fundamental to numerous environmental and

socio-economic applications such as urban and regional planning and natural resource

management. Beginning in the 1980’s, various methods have been developed to

generate information from remote sensing imagery. Processes of classification and

image interpretation have been introduced. Between 1980’s and 1990’s, almost all

classification methods used image pixel as a primary unit, labeling each pixel with a

single land cover and land use class. However, pixel based classification methods

brought challenges as the pixel may contain more than one land cover land use type.

Thus, in late 1990’s object based classification methods have been developed. This

method groups several pixels with homogeneous attributes into an object and each

object is then considered as the basic unit rather than pixels. As the number of very

high resolution sensors (i.e. IKONOS, Quick bird) increased, images started to have

more intra-class spectral variability. This resulted in unsatisfactory results with

classifiers that mainly utilize spectral variables. Therefore, spatial component of the

image also needed to be used. Term “spatio-contextual” image classification is then

addressed to describe the relationship between target pixel and its neighboring pixels.

 Pixel-Based Image Classification

Pixel-based approaches assume that each pixel belongs to single land cover and land

use type [21]. Pixel based classifiers can be grouped as supervised and unsupervised

classifiers. Unsupervised classifiers divide remote sensing imagery into a number of

classes based on their pixel values without using any training data. K-means algorithm

[22] and Iterative Self-Organizing Data Analysis (ISODATA) technique are examples

of widely used unsupervised classifiers. On the other hand, for supervised

classification, image analyst has to select training samples and compare those samples

to the spectral properties of the target image. Then, analyst labels pixels to the

6

appropriate class type according to decision rules. Maximum Likelihood Classifier

(MLC) [23], Minimum Distance-to-Means Classifier [24], K-Nearest Neighbors

Classifier [25] are commonly used supervised classifiers.

 Sub-Pixel Based Image Classification

Assumption of each pixel belonging to a certain class is often leads to poor

performance in classification accuracy with medium resolution imagery. As a better

alternative, sub-pixel based approach gives each pixel partial memberships to all

classes so that the corresponding areal distribution of each class can be predicted

respectively. Major sub-pixel based models are fuzzy classification [26], regression

modeling [27] and spectral mixture analysis [28].

 Object-Based Image Classification

In comparison to pixel and sub-pixel based approaches object-based models consider

the objects as the basic unit of analysis. Objects are comprised of several individual

pixels that have homogeneous attributes. These image objects are generated with a

process addressed as image segmentation. With image segmentation objects are

formed using spatial, contextual and spectral information. The differences between

pixel, sub-pixel and object based approaches are given in (Table 2.1).

 The differences between pixel, sub-pixel and object based approaches.
Classification of Techniques Attributes Examples of Classifiers

Pixel-based Techniques

Each pixel is labeled as a single

land use land cover type.

Unsupervised (e.g. k-

means, ISODATA)

Supervised (e.g.

Maximum likelihood)

Sub-pixel based Techniques

Each pixel is considered mixed, and

the areal distribution of each class

is predicted.

Fuzzy classification,

spectral mixture

analysis, regression

modeling

Object-based Techniques

Objects, instead of individual

pixels, are considered as

the basic unit.

 E-cognition, ArcGIS

Feature Analyst

7

 Spatio-Contextual Image Classification

Spectral classifiers have advantages in terms of simplicity and computational load.

However not all land cover land use types can be classified using spectral information

[29]. In order to overcome these challenges, spatial and contextual information has to

be utilized as well. Markov Random Field (MRF) model [30] is one of the spatio-

contextual remote sensing image analysis techniques. MRF is a graphical model that

has been applied in a wide range of fields from computer vision to physics. MRF’s can

be used to analyze the local and global properties of a remote sensing imagery, and

evaluate the spatial autocorrelation between pixels through mathematical means.

Increasing number of studies shows that MRF-based classification methods produce

substantial results compared to conventional non-contextual classifiers [31]. Variety

of MRF-based classification techniques have been used in land cover and land use

classifications and showed promising results, however according to many remote

sensing scientists, the concepts of MRF are considered cumbersome and their

implementations include challenging computational difficulties.

Traditional classification methods require high level of expertise and usually work

well with the data being analyzed but produces poor results with the unseen data [32].

Thus, the generalization of the extracted features is questionable. However, with

machine learning approaches, contribution of the image analyst is reduced as the

features are extracted directly from the data itself. The classification problem with

machine learning approaches is discussed in the next section.

 Machine Learning in Remote Sensing

Machine learning is one of many sub-fields of artificial intelligence (AI) and has

become very well-known in the last decade. Although AI has other sub-fields aside

from machine learning, the two are used interchangeably. Machine learning systems

are created by analyzing lots of examples and devise rules to predict outcomes for

unseen data(Figure 2.1). Machine-learning technology has laid the foundation of

numerous developments of modern society such as tailoring advertisements, relevant

web searches and content filtering on social media. It is getting more and more

available in consumer products such as smart phones and cameras. Machine learning

systems can be classified under three sub-categories; systems that depend on human

8

supervision or not (supervised, unsupervised), systems that learn incrementally as they

go (online learning) and systems work solely by comparing data points to newer ones

(instance-based learning).

Figure 2.1 : Difference between classical programming and machine learning.

2.5.1 Supervised learning

Machine learning systems may require supervision to a certain extent. Idea is to feed

labeled samples in order to generate features from the given data. Regression and

classification are two major tasks that require supervision (Figure 2.2). Regression

stands for predicting a target numeric value based on set of features and it is measured

by root mean square error. However, in classification goal is to predict a label.

Therefore classification is measured by accuracy. In the field of remote sensing,

Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF) and

Neural Networks (NN) are well established supervised algorithms that are used for

classification problem.

Figure 2.2 : Difference between classification and regression.

2.5.2 Support vector machines

For parametric classification, goal is to analyze feature space values and their

distribution of each class. On the contrary, SVM focuses solely on the training samples

9

and the optimal boundary between classes. However, not all the available training

samples can be used to describe and specify the separating hyperplane. The optimal

hyperplane is determined by a subset of feature vectors that lie on the margin named

as support vectors. Main objective in SVM is to find the optimal boundary, which

increases the margin, or separation between the support vectors(Figure 2.3a. When the

separability is nonlinear (Figure 2.3b), a nonlinear transform can be made to a newer

space with greater dimension in order to achieve linear separability (Figure 2.3 c). This

operation is called as kernel trick. For this operation transform function is not required.

Merely kernel function k is needed. However, choosing the right kernel function

presents challenges in terms of optimal results. Studies show that different kernels such

as polynomial and radial basis function applied on SVM-based classification produced

different results in satellite images [33]. For classes that are not separable, parameter

value C is specified by the user to create a soft margin for the decision boundary.

Higher C values often lead to poor results in terms of algorithms ability generalize.

Also, SVM classifier is naturally binary, therefore it can only identify a single

boundary between two classes. This problem can be tackled by applying classifier to

each possible combination of classes. By doing so, computational time is expected to

increase exponentially as the number of classes increase. Additionally, SVMs are

highly affected by noisy data; which are commonly encountered in remotely sensed

imagery.

(a) (b)

10

(c)

Figure 2.3 : Non-linear transform and optimal hyperplane for SVM.

There are numerous studies regarding the use of SVM’s in the field of remote sensing

especially for the problem of land cover and land use classification. Huang et al. [34]

used Landsat TM and Landsat ETM+ images to detect forest cover change. The

classification is carried out using SVM and produced approximately 90% accuracy. Li

et al. [35] proposed an SVM-based classifier using high resolution imagery from the

QuickBird sensor. A scene segmentation algorithm was incorporated with the SVM

object classifier yielded better results. It is also shown that the SVM classifier is highly

reliant on the segmentation process, a typical disadvantage of object-based classifiers.

Another study carried out by Brenning, [36] used eleven different classifiers to detect

rock glacier using Landsat and SRTM. SVM-based method did not show promising

results compared to other methods. In conclusion, SVM classifiers can show decent

results with limited amount of data due to support vector concept relies on small

number of data points to define a classifier’s hyperplane. However, selection of

parameters and kernel functions present challenges that often lead to “trial and error”

approach.

2.5.3 Decision tree classifier

Conventional classifiers employ neural and statistical approaches to the classification

problem. All available features are used to assign each pixel to an appropriate class.

However, DT uses a sequential approach for label assignment. Chain of simple

decisions is made based on the results of sequential tests instead of one complex

decision. The data can be split depending on the threshold value. Iteration through

11

nodes is decided depending on the value of a certain band is above or below of the

threshold value. Thus, the model logic can be described as a set of if–then rules given

in (Figure 2.4). Once the model is constructed, classification is swift due to no further

complex mathematics is needed. Decision tree classification methods have been used

successfully for a wide range of classification problems including the remote sensing

field. Otukei and Blaschke [37] compared support vector machine, maximum

likelihood and decision tree based techniques for the assessment of land cover change

using Landsat TM and ETM+ data and found decision tree based methods produced

the best results. Punia et al. [38] classified IRS-P6 AWiFS data using decision tree

classifier and obtained very high accuracy. Challenges with DT’s include over fitting

and the possibility of generating a non-optimal solution. The former problem can be

tackled by a process called as pruning the tree which means removing one or more

layers of splits (i.e. branches). However, according to Pal and Mather [39] pruning

reduces the accuracy of classifying the training data but often increases the accuracy

of unseen data. Also, they’ve reported that when hyperspectral data are used, the

performance of DT classifiers declines as the number of features increases.

Figure 2.4 : Sample decision tree.

12

2.5.4 Random forest classifier

Random forest is comprised of many DT’s in order to achieve better results than a

single DT. A method of “voting” is applied to all trees to obtain the label for each

instance. Due to difference of error correlation for each tree final result is more

accurate. This idea can be extended to each tree having own subset of training data

thus, minimizing correlation and making the ensemble more reliable. This technique

is increasingly being applied in the field of remote sensing especially in land-cover

classification using multispectral and hyperspectral satellite sensor imagery[40] [41]

[42]. However, most studies that have used random forests have few land-cover classes

and focused on small study areas [43][44]. Lawrence and Moran [45] compared the

performance of a variety of machine-learning classification algorithms, using 30

different data sets. They have reported that RF had the highest average classification

accuracy of 73.19%.

2.5.5 Artificial neural networks

Inspired by the human brain, concept of ANN’s were first introduced back in 1940’s

by a neurophysiologist Warren McCulloch and a mathematician Walter Pitts. They

have mathematically modeled biological neurons to perform intricate computations. A

neuron is essentially an input/output device transmitting binary coded information. In

1957, Frank Rosenblatt introduced perceptrons as the foundation of modern ANN

architectures. Instead of binary values, perceptrons use numbers as input and output.

It is based on linear threshold unit (LTU) which computes weighted (w) sum of inputs

(x) and utilizes a step function to that sum and outputs the result, given in equation 2.1,

equation 2.2 and (Figure 2.5);

! = #$%$ + #'%' + … #(%(= #). % (sum of the inputs), (2.1)

ℎ,(%) = /012	(!) = /012	(#). %) (step function of the sum and the output) (2.2)

13

Figure 2.5 : Linear threshold unit.

For a simple linear binary classification problem, a single LTU can be utilized.

Combination of inputs is computed and depending on the threshold value output can

be a positive or a negative class similar to a linear-SVM. Appropriate values for

weights #$, #' and #5 are calculated by training the algorithm. Perceptrons are trained

simply by reinforcing connection weights that lead to correct output. Each training

instance is fed through the network and a prediction is made. For every output neuron

that contributed to the right prediction weights are updated;

#6,789$ = 	#6,78 + ℷ;<=7 − <7?%6, (2.3)

where;

#6,7 is the connection weight between ith input neuron and the jth output neuron,

k is the step number,

<=7 is the output of the jth output neuron of the ongoing training instance,

yj is the target output of the jth output neuron for the ongoing training instance,

%6 is the value of ith input of ongoing training instance,

ℷ is the learning rate.

Although perceptrons showed great promise, they failed in XOR classification

problem. This occurs when network tries to predict XOR logic gates given two binary

inputs. An XOR function needs to return false if two inputs are equal and true if they

are different. However this problem is tackled by stacking multiple perceptrons.

14

Multi-Layer Perceptrons (MLP) are consist of one input layer, multiple LTU’s referred

as hidden layers and one layer of LTU’s addressed as output layer. Input layer and

hidden layers have a fully connected bias neuron (Figure 2.6). MLP is trained with an

algorithm called back propagation. First, algorithm feeds each training instance to the

network and output of each neuron is computed. This process is called as forward pass.

After forward pass, output error of the network is calculated. Then algorithm tracks

error contributions of each neuron until it reaches to the input layer. By propagating

backwards in the network, error gradient of all connection weights are effectively

measured so that tweaks can be made on the weights. This final step of the back

propagation is referred as Gradient Descent. MLP’s used in variety of remote sensing

challenges including land cover and land use classification [46][47].

Figure 2.6 : Muli-Layer Perceptron.

15

3. DEEP NEURAL NETWORKS

In recent years, deep learning is one of the fastest growing areas of research. There are

numerous implementations in fields such as computer vision, speech recognition,

language processing and remote sensing. As the successor of neural networks, deep

learning models share the fundamental concepts with NN’s, however to be called deep,

network has to have more than two hidden layers. As the number of hidden layers

increase, higher-level of features can be extracted. However, to make use of this deep

architecture number of training samples has to increase. Thus, computational cost of

training a deep network from scratch is too high and could take several months.

Although, recent advances in big data and GPU technology has helped deep learning

approaches to be more practical.

Multi-layered architecture of deep networks can extract efficient features from raw

data without the need of significant feature engineering. Thus, deep learning models

became the state-of-the-art when it comes to classification and object detection.

Various studies have been conducted in remote sensing applications using deep

learning based models [48][49][50][51][52][53][54][55]. As of today, there are four

major deep learning architectures. These are the deep belief networks (DBNs), and

recurrent neural networks (RNN) autoencoders (AE) and convolutional neural

networks (CNN). Following sections discuss these architectures in detail.

 Autoencoders

Autoencoder is an unsupervised neural network meaning that it can extract features

from unlabeled data. Autoencoders obtain compact representations of the input data

referred as codings. Codings are reduced in dimension compared to input data, making

autoencoders a dimensionality reduction tool which is needed for many remote sensing

applications. They also can be used as generating new data from the training data. This

is called a generative model. Autoencoders comprised of two parts; an encoder and a

decoder (Figure 3.1). Encoder also referred as the recognition network, transforms

input data to latent representations. Decoder, referred as the generative network

16

generates outputs from these representations. Autoencoder architecture is very similar

to MLP’s but the number of inputs is equal to number of neurons in the output layer.

Outputs are also called as reconstructions and when outputs are different from the

inputs, reconstruction loss is employed to tune the model. An encoder with one hidden

layer can be represented as;

ℎ = @(%) = A(B% + C), (3.1)

x’ = (W’x +C’), (3.2)

ℒ	= @E[@(%)], (3.3)

where f is the encoder function, h is the latent representation or code, g is the decoder

function that maps the output x’, W’ is decoding weight,	C’ is the decoding bias and ℒ

is the loss function of x and x.

Figure 3.1 : Autoencoder.

3.1.1 Stacked autoencoders

Autoencoders that have multiple hidden layers are called stacked autoencoders or deep

autoencoders given in (Figure 3.2). By adding more layers autoencoder can learn

intricate codings. Stacked autoencoders are especially used for image analysis in

remote sensing [56][57].

Figure 3.2 : Stacked Autoencoder.

17

3.1.2 Sparse autoencoders

For more complex structures, sparsity constraint can be added to the hidden units

leading to better feature extraction. This reduces the number of active neurons in the

coding layer and forces autoencoder to represent each input with less activation. Mean

average activity of each neuron in the coding layer is calculated and neurons that are

active above mean average are penalized by adding sparsity loss. General approach is

to use Kullback–Leibler divergence. The following equations show the divergence

between two discrete distributions P and Q ;

HIJ = (K	|	M) = ∑K	(O) log S(6)
T(6)

, (3.4)

HIJ	(2|U) = 2 log V
W
+ (1 − 2)YZA $[V

$[W
, (3.5)

where p is the target average activation value and q is the mean activation of all

neurons. The equations show the divergence between target sparsity p and the actual

sparsity q.

 Deep Belief Networks and Restricted Boltzmann Machine

Restricted Boltzmann machine (RBM) is an undirected graphical model comprised of

a hidden layer and a visible layer. In contrast to autoencoders or sparse autoencoders,

there are no connections in hidden or visible layers. Energy function of the RBM is

given by

\(], ℎ) = 	−∑^6]6	 − 	∑ _7 ℎ7 −	∑]6ℎ7#6,76,7 , (3.6)

where #6,7 is the weight between visible unit O	and hidden unit `, ^6, _7 are their biases

and]6 , ℎ7 shows the states of O and `.

Two or more RBM’s are stacked together forming DBN (Figure 3.3). DBNs have been

used successfully in remote sensing problems such as scene classification[58], object

recognition[59] and change detection[60].

18

Figure 3.3 : A DBN with two RBM’s.

 Recurrent Neural Networks

In contrast to feed-forward networks discussed earlier on, RNN’s have connections

pointing backward. RNN’s have a recurrent hidden state that activates at each step

depending on the previous step (Figure 3.4). Each recurrent neuron has one weight for

the inputs x(t) and another for the outputs of the previous time step, y(t–1). If we

represent these weights with Wx and Wy, output of a single recurrent neuron can be

shown as in equation 3.7.

<()) = 	Φ	;%())
b .Bc +	<()[$)

b .Bd + _?,	 (3.7)

where Φ	the activation function and b is is the bias term. Output of a recurrent neuron

is a function of all the inputs from previous time steps. A single recurrent neuron, or a

layer of recurrent neurons can be called as a basic memory cell.

Figure 3.4 : Backward connection of RNN.

19

As the network propagates, weights are applied on top of itself and causing memory

inputs to gradually fade away. When traversing an RNN, data goes through

transformations and after each step some part of the information is lost. Subsequently,

the RNN’s state does not contain any of the first inputs. To address this issue, Sepp

Hochreiter and Jürgen Schmidhuber introduced LTSM (Long Short-Term Memory)

cell [61].LSTM is a recurrent cell and its state is described with two vectors c(t) and

h(t). Main idea is that the network needs to learn which memories to store and which

memories to throw away. As shown in (Figure 3.5), the long-term state c(t-1) traverses

the network and goes through the forget gate, drops some memories, and then it adds

some new memories that were selected by an input gate. Following the addition

operation, the long-term state is fed to the tanh function, and the result is filtered by

the output gate. Remaining layers are gate controllers. Gate controllers use the sigmoid

logistic activation function therefore outputs range from 0 to 1. Their outputs are fed

to element-wise multiplication operations, so if they output 0’s, gate is closed, and if

they output 1’s, gate is opened. Each gate serves different purposes. Forget gate

controlled by f(t) determines which elements of the long-term state are to be removed.

Input gate controlled by i(t) determines which elements of g(t) should be added to the

long-term state. Finally, the output gate controlled by o(t) determines which elements

of the long-term state should be read.

Figure 3.5 : LSTM cell.

20

Computations of LSTM elements (Figure 3.5) are given below,

O()) = e;Bc6
b . %()) + 	Bf6

b . ℎ()[$) + _6?		 (3.8)

@()) = e(Bcg
b . %()) +Bfg

b . ℎ()[$) +	_g) (3.9)

Z()) = 	e(Bchb . %()) + 	Bfh
b . ℎ()[$) + _h) (3.10)

A(0) = tanh	(Bcmb . %()) + 	Bfm
b . ℎ()[$) +	_m) (3.11)

n()) = 	 @())⨂n()[$) + O())⨂A()) (3.12)

<()) = 	ℎ()) = Z())⨂tanh	(n())) (3.13)

RNN’s are best suitable for sequential data like time series. RNN’s are generally used

for stock price prediction and natural language processing. In remote sensing, it is used

for hyperspectral and multi-temporal image classification [61][62].

 Convolutional Neural Networks

Convolutional neural networks (CNNs) are developed from studying brain’s visual

cortex, and they have been implemented in various image recognition applications

such as autonomous cars, image search services, automatic video classification

systems. Furthermore, CNNs are not limited to visual tasks; they also show promise at

natural language processing and voice recognition. Recent advances in computational

power and the amount of available training data, CNNs have become a hot topic in

the deep learning community. LeNet-5 architecture designed by LeCun et al. has laid

the foundation of many different architectures we use today. It has been used to

recognize handwritten numbers.

Figure 3.6 : LeNet architecture.

21

Convolution neural networks share the fundamental operations with any other neural

network such as receiving an input, making dot productions and follow that up with a

non-linear activation function in order to learn weights and biases. When it comes to

classifying images fully-connected networks(MLP’s) present challenges. In order to

classify an image with an input size of 64x64x3 fully connected layers need 12288

weights in the first hidden layer. Parameters will increase as the input size gets bigger.

Networks having large number of parameters likely to train slower and chances of

overfitting are increased. CNN’s exploit input images by localizing the reception of

features. These features in image are spatially close to each other and non-dynamic.

This process capitalize on the spatially-local correlated neighboring fields addressed

as receptive fields by implementing a local connectivity pattern between neurons of

adjacent layers shown in (Figure 3.7). Furthermore, except for their receptive fields,

all neurons of a layer are identical to one another. Thus, they share the same weights.

This reduces the number of weights to be learned, leading to reduced number of

parameters, lower computational cost and lesser amount of training data required to

train the neural network. CNN is composed of three different layers referred as

convolutional layer, pooling layer and the fully connected layer.

Figure 3.7 : Comparison of input layers: Fully connected layer vs convolutional

layer.Size of the local receptive field is 5x5.

3.4.1 Convolutional layer

Convolutional layer is the most crucial aspect of the CNN. In the first convolutional

layer, each neuron is connected to the pixels in their receptive fields (also referred as

convolutional filter or kernel) of the input image. In the second convolutional layer,

each neuron is connected to neurons located within a small rectangle in the first layer.

22

By using this architecture, network focuses on low-level features in the first hidden

layer, then compiles them into higher-level features in the following hidden layers. In

real world images, this hierarchical structure is prevalent, which is why CNNs are

accurate in image recognition tasks. Convolution of the input image matrix and the

filter matrix gives the feature map (Figure 3.8). When the filter does not perfectly fit

the input image, padding is used. In order to fit the input image, image matrix is padded

with zeros(zero-padding). Input image matrix is often times larger than the filter

matrix. Therefore, filter has to be shifted over the image matrix. Number of pixels

shifts over the input matrix is called the stride. Convolution of an image with different

filters can perform operations such as blur, edge detection and sharpening.

Figure 3.8 : 2-dimensional convolutional example with filter size 3x3 and stride 1

with zero padding.

After each convolution layer, an activation function adds non-linearity to the model

and decides which neuron will be fired. There are various activation functions (Figure

3.9). Most commonly used one is rectified linear unit (ReLU).

Figure 3.9 : Activation functions.

23

3.4.2 Pooling layer

Pooling layer reduces spatial size of the network by sub-sampling the input image.

Sub-sampling reduces the number of parameters, computational load and the

memory usage. This leads to lower risk of over fitting in the network. In a pooling

layer, each neuron located within a filter is connected to the outputs of the neurons in

the previous layer, similar to convolutional layer. However, a pooling neuron has no

weights. It aggregates the inputs using an aggregation function such as the maximum

or average pooling (Figure 3.10). Max-pooling takes out the largest element from a

pool. On the other hand, average pooling takes out the average of the pool. By

sliding the filters through the input; the maximum or the average parameter is taken

out at every stride, and the rest is dropped. This leads to a down-sampled network.

Figure 3.10 : Max pooling and average pooling operations with a filter size 2x2 and

stride 2.

3.4.3 Fully connected layer

In this layer, feature map matrix will be converted to vectors and combined together

to create a model. Fully connected layers connect every neuron in one layer to every

neuron in another layer. The last fully-connected layer uses an activation function for

24

classifying the generated features of the input image into various classes based on the

training dataset.

 CNN Architectures

A typical CNN architectures consist of several stacked convolutional layers with each

one accompanied by a ReLU layer and then several pooling layers (Figure 3.11). As

the image progresses through the network it gets smaller and smaller but it also

typically gets deeper and deeper due to increase in feature maps. Feedforward neural

network is added at the top of the stack, and the final layer outputs the class predictions

(softmax layer). Throughout the years, derivatives of this fundamental architecture

have been developed, leading to significant advances in the field. Measure of this

progress is the error rate in competitions. ImageNet project is a large visual database

created for deep learning research. The ImageNet project runs an annual software

contest called as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

where the goal is to design the highest performing classifier algorithm. It is the

measure of state-of-the-art deep networks. Various visual recognition tasks such as

semantic labelling, object recognition and scene classification are carried out using

ImageNet dataset as benchmark. In this section, most widely used CNN architectures

are introduced with their novel approaches.

Figure 3.11 : Typical CNN architecture.

3.5.1 LeNet-5

LeNet-5 architecture[6] is the most widely known CNN architecture. LeNet-5 laid the

foundation for the deeper architectures that came after. However, at the time deep

neural networks were not easy to implement due to hardware restrictions and shortage

of vast amount of labeled training samples. LeNet-5 commonly used for recognizing

25

hand written digits like MNIST dataset. MNIST dataset consists of 28×28 pixel images

but they are zero-padded to 32×32 pixels. Therefore, rest of the network does not

require any padding. Novelty of the LeNet-5 is in the output layer. Earlier neural

networks compute the dot product of the inputs and the weight vector in the output

layer. However, in LeNet-5 each neuron in the output layer computes the square of the

Euclidian distance between the corresponding input and weight vector. Each output

measures the probability of an image belonging to a particular digit class. Nowadays,

cross entropy cost function is preferred, due to penalization of bad predictions are

much more efficient, leading to larger gradients and faster convergence. LeNet-5

architecture is given below (Table 3.1).

Table 3.1 : LeNet-5 architecture.

Layer Type Maps Size
Kernel

Size
Stride Activation

Out
Fully

Connected
- 10 - -

Radial

Basis

F6
Fully

Connected
- 84 - - tanh

C5 Convolution 120 1x1 5x5 1 tanh

S4
Average

Pooling
16 5x5 2x2 2 tanh

C3 Convolution 16 10x10 5x5 1 tanh

S2
Average

Pooling
6 14x14 2x2 2 tanh

C1 Convolution 6 28x28 5x5 1 tanh

In Input 1 32x32 - - -

3.5.2 AlexNet

AlexNet introduced by Alex Krizhevsky et al [7] and won the ImageNet ILSVRC

challenge at 2012. While having a similar structure with LeNet-5, AlexNet is much

more deeper and larger. Also, instead of having pooling layer on top of every

convolutional layer, AlexNet has stacked convolutional layers and it is the first

network to employ ReLU as activation function. Main contribution of AlexNet is using

26

a normalization step immediately after the ReLU step of layers C1 and C3, referred as

local response normalization. This form of normalization forces significantly active

neurons to suppress neurons in the adjacent feature maps. This reinforces feature maps

to specialize, leading to wider range of features and higher rate of generalization. LRN

can be shown as,

_6	 = 	 ^6	(p + ^	∑ 7̂
'	7qrsq

7t	7uvw
)[x					#O0ℎ	 y

`f6mf	 = min(O +	 |
'
, @(− 1)

}̀h, = max(0, O −	|
'
)

, (3.14)

where ai is the activation of the neuron after the ReLU step and bi is the normalized

output of the neuron belongs to feature map i. k, α, β, and r are called as

hyperparameters. k is the bias and r represents the depth radius. Finally, fn shows the

number of feature maps. AlexNet architecture is given in (Table 3.2).

Table 3.2 : AlexNet architecture.

Layer Type Maps Size
Kernel

Size
Stride Padding Activation

Out
Fully

Connected
- 1000 - - - Softmax

F9
Fully

Connected
- 4096 - - - ReLU

F8
Fully

Connected
- 4096 - - - ReLU

C7 Convolution 256 13x13 3x3 1 SAME ReLU

C6 Convolution 384 13x13 3x3 1 SAME ReLU

C5 Convolution 384 13x13 3x3 1 SAME ReLU

S4 Max Pooling 256 13x13 3x3 2 VALID -

C3 Convolution 256 27x27 5x5 1 SAME ReLU

S2 Max Pooling 96 27x27 3x3 2 VALID -

C1 Convolution 96 55x55 11x11 4 SAME ReLU

In Input
3

(RGB)
224x224 - - - -

27

3.5.3 VGGNet

VGGNet introduced by Zisserman et al. [63]. VGG stands for Visual Geometry Group

from University of Oxford. VGGNet uses small filters and deeper architecture

compared to AlexNet. VGGNet achieved a second place in classification and first in

localization in ILSVRC challenge at 2014. VGGNet has two different versions referred

as VGG16 and VGG19 respectively. VGGNet has huge number of parameters which

increased learning power but training this network was demanding so it is divided into

smaller networks with layers added one at a time. VGGNet architecture given in (Table

3.3, Table 3.4)

Table 3.3 : VGGNet architecture.

ConvNet Configuration
A A-LRN B C D E

11 weight
layers

11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

Input (224x224 RGB image)
conv3-64 conv3-64

LRN
conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool
conv3-128 conv3-128 conv3-128

conv3-128
conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool
conv3-256
conv3-256

conv3-256
conv3-256

conv3-256,
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool
conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
softmax

28

Table 3.4 : Number of parameters in VGGNet in millions.

Network A,A-LRN B C D E

Number of parameters 133 133 134 138 144

3.5.4 GoogLeNet

Developed by Szegedy et al. [9] from Google Research, GoogLeNet won the ILSVRC

2014 challenge by top-5 error rate below 7%. They introduced a novel sub-network

referred as Inception module (Figure 3.12). This module copies the input signal and

feeds it to three convolutional layers that use the ReLU activation function and also to

a pooling layer. By employing convolutional layers with different kernel sizes such as

1×1, 3×3, and 5×5, patterns with different dimensions can be captured. Additionally,

all layers use SAME padding and a stride of 1. This makes the outputs of every layer

have the same height and width as their inputs. Thus, it is possible to concatenate all

the outputs in the final layer by stacking the feature maps from each convolutional

layer. Convolutional layers with kernel size 1x1 serves as the bottleneck layer by

reducing dimensionality. This leads to significant improvement in computing speed.

Compared to AlexNet, GoogLeNet has only 6 million parameters where AlexNet has

60 million.

Figure 3.12 : Inception Module.

29

Another novelty brought by GoogleNet is the global average pooling. Previous

networks used fully connected layers where all inputs are connected to each output.

However, in GoogleNet global average pooling is employed nearly at the end of

network by averaging each feature map from 7×7 to 1×1 (Figure 3.13).

Figure 3.13 : Difference between Fully Connected Layer and Global Average

Pooling.

GoogLeNet (Figure 3.14) has global average pooling layers at the end of 9 inception

modules that are stacked linearly with total of 27 layers including the pooling layers.

Figure 3.14 : GoogleNet architecture.

GoogLeNet is often referred as Inception-v1 and there are three more versions with

upgrades which increased the accuracy of the model while reducing complexity.

Inception-v2 swaps 5 x5 convolutional layer with two 3x3 convolutional operations.

A 5x5 convolution is computationally 2.78 times more expensive than a 3x3

30

convolution. Thus, factorizing 5x5 convolutions brings significant boost in

performance (Figure 3.15a). Furthermore, they found out that convolutions with filter

size nxn can be factorized to a combination of 1xn and nx1 convolutions in order to

reduce computational complexity (Figure 3.15b). For example, instead of computing

3x3 convolution, a 1x3 convolution followed by a 3x1 convolution is performed. They

have reported that this method is 33% more efficient than the single 3x3 convolution.

Inception-v3 incorporated these upgrades and also added factorization of 7x7

convolutions and RMSProp Optimizer.

a) b)

Figure 3.15 : Inception modules used in Inception-v2.

Inception-v4 introduced three different inception modules named A, B and C (Figure

3.16). Their concept is similar to Inception-v2 and Inception-v3 although modules are

more uniform, leading to increase in performance.

31

A) B) C)

Figure 3.16 : From left Inception modules A, B, C used in Inception-v4.

3.5.5 ResNet

Residual Network (or ResNet), developed by He et al. [10] won the ILSVRC 2015

challenge with an exceptional top-5 error rate of 3.6% which set new records in

detection localization and classification. They have proposed an extremely deep

network with 152 layers. In theory, networks should perform better as the architecture

gets deeper. However, stacking many convolutional layers create problems in terms of

optimization. ResNet solves this problem by introducing residual connections which

gives the network its name. Also called as the shortcut or skip connections, idea behind

residual connections is to feed the input signal to the output of the layer as well. If we

represent target function to model as h(x), adding residual connections will force

network to model h(x) = f(x)–x where x is the signal added to the input and the output

of the layer (Figure 3.17). When the neural network is initialized, values of its weights

are near zero, therefore output values of the network are near zero. If a residual

connection is added, network outputs a copy of its inputs; namely, modeling the

identity function. Often times the identity function is moderately close to the target

function which improves training speed significantly. Furthermore, if several residual

connections are added, the network will be able to start making progress even though

some layers have not begun learning yet (Figure 3.18). Because of residual

connections, the signal can travel along the whole network. ResNet consists of stacked

residual units, where every residual unit is a minor neural network with a residual

connection. Each residual unit consists of two convolutional layers, with ReLU

activation and Batch Normalization (BN) using 3×3 kernels with stride 1 and SAME

32

padding (Figure 3.19). Model has four different versions with 18, 34, 50, 101, 152

convolutional layers (Table 3.6).

Figure 3.17 : Residual Learning.

Figure 3.18 : Regular deep neural network(left) and deep residual learning(right).

33

Figure 3.19 : Residual unit

Error rates of single-model results on the ILSVRC’14 validation set shows significant

improvement over the VGG and GoogLeNet models (Table 3.6).

Table 3.5 : Shows the top-1 and top-5 error rates of ResNet models based on the
validation set of ILSVRC 2014 [10].

Model Top-1 Error (%) Top-5 Error (%)

VGG-16 24.4 8.43

GoogLeNet - 7.89

ResNet-50 20.74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

3.5.6 Inception-ResNet

Inspired by the performance of the ResNet, a hybrid inception module was proposed

[11]. There are two sub-versions of Inception ResNet, namely v1 and v2. Both versions

have the same structure for the inception modules A, B, C (Figure 3.20). However,

differences are the hyper-parameter settings and the computational cost. Inception-

ResNet-v1 has a computational cost that is comparable to Inception-v3 whereas

Inception-ResNet-v2 has a computational cost that is comparable to Inception v4.

34

Figure 3.20 : Inception modules A,B,C in an Inception-ResNet-v1. Pooling layer

was replaced by the residual connection.

Szegedy et al. report that the Inception-ResNet-v2 architecture produces more

accurate results than previous state of the art models.(Table 3.7) shows the Top-1 and

Top-5 validation errors on the ILSVRC 2012 image classification benchmark based

on a single crop of the image. Inception-ResNet-v2 given in Figure 3.21

Table 3.6 : The top-1 and top-5 error rates of Inception models based on the
validation set of ILSVRC 2012.

Model Top-1 Error (%) Top-5 Error (%)

BN-Inception 25.2 7.8

Inception-v3 21.2 5.6

Inception-ResNet-v1 21.3 5.5

Inception-v4 20.0 5.0

Inception-ResNet-v2 19.9 4.9

Figure 3.21 : Inception-ResNet-v2 architecture.

35

 Training Convolutional Neural Networks

CNN’s are powerful feature extractors that can produce superior performance

compared to their predecessors. However, they are complex mathematical models and

training a CNN model for optimum results have intricacies. This section provides the

details of training a successful CNN model.

3.6.1 Hyperparameter selection

Deep learning algorithms involve “hyperparameters” which are variables set before

starting the training process. CNN’s can have many hyperparameters which identifies

the structure of the network and governs how the network is trained. Certain critical

parameters are listed and discussed below.

3.6.1.1 Loss function

Loss function is defined to compare the output of the training instance against the

desired ground truth output. Ideally, loss function is minimized with respect to the

connection of the weights. It is calculated after each time network makes a pass

through the entire training dataset. This is also referred as an epoch. A typical loss

function is the squared Euclidian distance given as,

Ä = 	 $
'
∑ (<6 −	!6)'6 , (3.15)

where <6 is the ith network output and !6 is the ith value of the target output. Output of

the CNN’s usually treated as a probability distribution where the final layer consists

of the softmax function. Therefore it is more common to use cross-entropy loss defined

as,

Ä = 	−∑ <6 log !66 (3.16)

3.6.1.2 Learning rate

The learning rate determines step size of the gradient updates. If the learning rate is set

too small, the model will go through many iterations to converge. If the learning rate

is set too large, the model will diverge (Figure 3.22).

36

Figure 3.22 : The effect of learning rate on training loss.

The learning rate is typically decreased over time. The general approach is to find a

proper parameter and it should be fine-tuned later on. It is also common to set an

adaptive learning rate which regulates depending on the loss function.

3.6.1.3 Mini-batch size

Due to hardware considerations, it is not practical to train the whole training dataset at

once. Usually deep networks consist of vast number of weights. Therefore, training

such Big Data requires substantial amount of memory. Mini-batch training includes

feeding small part of the training data to the network and computes the local gradient.

However, selecting a small batch size could lead to a noisy loss function due to high

variance in the gradient estimation. Mini-batch size should be selected by considering

memory capacity and the training data.

3.6.2 Optimization algorithms

Optimization algorithms are used to minimize the loss function of the network by

updating weights and biases. Finding optimum values for these internal parameters

have a key role in training an effective model that produces accurate results. Most

widely used optimization algorithms are given below.

3.6.2.1 Gradient Descent

Gradient Descent algorithm is one of the common optimization algorithms used in

neural networks. Gradient Descent algorithm calculates the gradient of error function

(E),

37

Å = $
'
(< − @(∑#6%6)',			 (3.17)

and updates parameters in the opposite direction of the gradient vector of error as

shown in (Figure 3.23). Error rate increases if the value of the weights is too small or

too large. Thus, weights need to be updated and optimized until reaching a local

minima.

Figure 3.23 : Weight updates in the opposite direction of the gradient.

Standard Batch Gradient Descent algorithm updates parameters after calculating the

gradient of the whole data set. This will cause model to converge slower and it is not

applicable for large datasets. These issues are rectified in the following variants of the

gradient descent algorithm.

3.6.2.2 Stochastic Gradient Descent(SGD)

Unlike standard gradient descent algorithm SGD updates parameters with each

training instance. It is defined as,

Ç = 	Ç − É. ÑÖ(Ç; %	(O); <(O)																																								 (3.18)

where Ç shows the models parameters, −É is the learning rate, ∇Ö(Ç) is the gradient of

loss function J and %	(O), <(O) are the training instances.

38

As a result of frequent parameter updates, loss function oscillates to different amounts

(Figure 3.24). This could lead to a newer and lower local minima, however it can also

cause model to keep overshooting.

Figure 3.24 : SGD fluctuates to find a newer and better local minima.

In order to tackle problems such as fluctuations in loss function and slower

convergence, a method called Momentum is employed which speeds up SGD by

steering towards to suitable direction and reduce oscillations in unrelated directions.

The momentum term γ controls parameter updates only for the relevant instances

which lead to accelerated convergence and lessen oscillations. Momentum and the

parameter updates are,

à	(0) = 	â	à(0 − 1) + 	É∇Ö(Ç), (3.19)

Ç = 	Ç − à(0). (3.20)

3.6.2.3 AdaGrad

Adaptive Gradients (AdaGrad) is an optimization algorithm that adapts learning rate -

η to the parameters [64]. Larger updates are carried out for infrequent parameters and

smaller updates for frequent parameters. Therefore, it is suitable when using sparse

39

data. AdaGrad adapts the learning rate η for every parameter Ç6 at each time step t

based on the past gradients. AdaGrad’s per-parameter update is shown as,

Ç)9$,6 = 	 Ç),6 − 	
ä	

ãåç,rr9∈
	 . A),6, (3.21)

where A),6 is the gradient of the loss function to the parameter Ç6 at time step t.

Main disadvantage of AdaGrad algorithm is learning rate is constantly decaying due

to accumulation of the gradients. This causes learning ability of the model decrease

leading to longer training time.

3.6.2.4 RMSProp

Problem of constant decaying learning rate in AdaGrad is rectified in Root Mean

Square Propagation (RMSProp) algorithm[65] by changing the gradient accumulation

into an exponentially weighted moving average. Exponential average weights the

recent gradient updates more than the previous ones shown as,

à) = èà)[$ + (1 − 2). A)', (3.22)

∆B) = − ë

ãíç9	ì
. A), (3.23)

B)9$ = B) +	∆B), (3.24)

where à) is the exponential average of the squares of gradients and è is the weight of

the recent gradient update.

3.6.2.5 Adam

Adaptive Moment Estimation (Adam) is another adaptive optimization algorithm [66].

Adam keeps an exponential average of past squared gradients like RMSprop and also

stores an exponentially decaying average of past gradients î(0), similar to

momentum. Parameter update for Adam is given as,

40

Ç)9$ = 	Ç) −
ë

ãíç9	ì
	 . î(0). (3.25)

Adam outperforms other adaptive optimization algorithms as it converges faster.

Furthermore, it rectifies problems that are present in other optimization methods such

as vanishing learning rate , slow convergence and fluctuating loss function.

3.6.3 Regularization

Regularization methods are employed to reduce the generalization error of the model.

Deep learning models may produce high rate of validation error even after training

error drops, resulting in overfitting (Figure 3.25). However, a successfully trained

model needs to produce accurate results with validation or test data. Regularization

strategies carried out to reduce overfitting at the expanse of increasing training error.

These strategies include putting extra constraints on the parameter values or adding

extra terms on objective functions such as loss function. Typically used regularization

methods are listed and discussed below.

Figure 3.25 : Graph showing underfitting and overfitting in the network.

3.6.3.1 L2 regularization

L2 regularization technique involves adding a new term to the loss function in order

to penalize large weights. Sum of the squared norms of the weight matrices multiplied

by a constant 	ï
'ñ

 is added to the loss function shown as,

41

YZ// +	ó∑ ò#[7]ò'	(
7t$ ô	. 	ï

'ñ
 , (3.26)

where ö denotes the number of layers, m is the number of inputs, #[7] is the weight

matrix of jth layer and õ	is the regularization parameter.

3.6.3.2 L1 regularization

L1 regularization adds sum of the absolute values of the weights multiplied by the

regularization parameter õ to the loss function shown as,

YZ// +	;∑ ò#[7]ò	(
7t$?	. õ, (3.27)

L1 Regularization reduces weights by a fixed amount in every iteration, regardless of

the value of the weight. Thus, weight of most of the connections inclines to zero and

fewer connections left with larger weights. This increases sparsity of the weights in

the model.

3.6.3.3 Dropout regularization

Dropout is an efficient regularization technique that includes randomly erasing

neurons in the dropout layers. Thus, whole network can be represented as a sub-

network with fewer connections required to update throughout back propagation.

Dropout encourages the network to learn a sparse representation. Consequently, over

fitting is reduced. (Figure 3.26) illustrates the dropout regularization.

Figure 3.26 : Dropout Regularization. Standart network(left) network with

dropout(right).

42

3.6.3.4 Batch normalization

Batch normalization is the regularization method of normalizing network’s parameters

in order to adjust and scale the activations [67]. For instance, certain values of neurons

in the input layer can be set between 0 and 1 and other neurons could take values

between 1 and 1000. Same approach can be applied for the hidden layers as well.

Consequently, higher learning rates can be applied to the model since activation value

of neurons can’t exceed or fall beyond the given range. This leads to an increase in

speed of training and stability of the network. Batch normalization works by

normalizing the output of previous activation layer. In order to do so, batch mean is

subtracted from the output and the resultant is divided by the batch standard deviation

as given in following equations,

$
ñ
∑ %6ñ
6t$ = 	úx , (3.28)

$
ñ
∑ ;%6 −	úx?

'ñ
6t$ = 	Çx', (3.29)

cr[ùû

ü†û
°9	ì

= 	 %¢£ , (3.30)

where C denotes the values of x over a mini-batch {%$ …¶},	 úx is the mini-batch

mean, Çx' is the mini-batch variance and %¢£ is the normalized value.

3.6.3.5 Data augmentation

Insufficient amount of training data leads to over fitting of the network. Data

augmentation or in other words regularization with data provides new data from

existing data by performing different operations such as translation, rotation,

reflection, skewing, scaling, or changing contrast or brightness of the input image data.

Also, there are other augmentation techniques that can’t be experienced with human

eye such as adding random noise to the training data. In the field of remote sensing,

43

acquiring labeled data is not very easy due to the commercial restrictions and

economical costs. Therefore, it is crucial to make the most with the data available.

 Transfer Learning

State-of-the-art deep networks namely Inception, ResNet and VGGNet are really large

networks such that training one from scratch takes several weeks and requires

advanced computing resources (i.e. GPU’s). However, each of these networks is

already trained with ImageNet dataset that consists of millions of labeled images. So

the weights in the different layers of the model already learned to identify useful low-

level features such as shapes, edges and different intensities of light and dark pixels.

By using transfer learning method, parameters learnt from a training model can be

used for a different classification problem (Figure 3.27). Only, final layers of the

network need to be fined tuned for the classification task. For remote sensing

applications such as land cover land use classification, obtaining a huge training data

similar to ImageNet data set is not very realistic. In these cases, using pre-trained

networks are highly beneficial for reducing computing time and accurate classification

results.

Figure 3.27 : Transfer learning.

44

45

4. EXPERIMENTS AND RESULTS

Accessibility of the remote sensing imagery have become increasingly available with

the launch of new commercial satellite sensors, such as IKONOS, WorldView and

GeoEye. Remote sensing applications for these imagery provides crucial analysis for

various subjects such as urban planning, climate change observations, resource

management, and land use monitoring. These satellites can deliver panchromatic or

multispectral images. Panchromatic images have higher resolution compared to

multispectral images however, they include only a single band. Contrarily,

multispectral images can contain several bands such as Red, Green, Blue and Near-

Infrared.

Land cover and land use classification using satellite imagery is a challenging task.

Traditional methods require extensive expertise on extracting features for land cover

and land use classes. However, deep learning models eliminate the need of feature

engineering by learning from the data itself. Moreover, increase in the available remote

sensing imagery, calls for an automatization for the process of land use analysis. In

this regard, CNN-based deep learning experiments are carried out for the purpose of

image scene classification are discussed in this chapter.

 Image Scene Classification for Land Cover and Land Use Analysis

In this section, CNN-based deep learning classifiers are proposed in the context of

land cover and land use classification. Details of training these networks are discussed

below.

4.1.1 Proposed classification networks

For the classification of remote sensing imagery deep learning models provide far

better performance compared to traditional methods. Variety of deep learning models

especially CNN’s, produce results that can be generalized over the unseen data. In this

experiment, two state-of-the-art CNN models namely Inception-ResNet-v2 and

Inception-v4 are trained using pretrained weights from the ImageNet dataset. These

46

architectures are proven to outperform existing CNN models in terms of classification

accuracy and faster convergence according to ILSVRC challenge.

4.1.2 Training dataset for the classification network

Training dataset is extracted from the NWPU-RESISC45 dataset[68] which is publicly

available benchmark for Remote Sensing Image Scene Classification (RESISC).

Images are size of 256×256 pixels in the red green blue (RGB) color space. The spatial

resolution varies from about 30 m to 0.2 m per pixel. Dataset is extracted from Google

Earth by various experts in remote sensing. Compared to previous benchmark datasets

NWPU-RESISC45 is large-scale and have rich image variations with different

weathers, seasons, illumination conditions, imaging conditions, and scales. For each

scene category, dataset possesses much rich variations in translation, viewpoint, object

pose and appearance, spatial resolution, illumination, background, and occlusion. Also

it provides high class diversity and between class similarity to truly test deep learning

model’s classification capability. NWPU-RESISC45 dataset consists of 31,500

remote sensing images divided into 45 scene classes. One of the crucial aspect of the

experiment carried out in this thesis is to use independent dataset for the validation

part. In order to do so, patches have to be extracted manualy and the process can be

cumbersome for generating test images for 45 classes. So the classes to be used in the

training are narrowed down to 20 scene classes each containing 700 training images.

These 20 scene classes include airport, chaparral, dense residential, forest, freeway,

golf course, ground track field, industrial area, intersection, meadow, medium

residential, overpass, parking lot, rectangular farmland, river, runway, sparse

residential, storage tank, tennis court and terrace. These classes are selected because

they are easy to obtain in any given AOI and have complex structure as well as

similarities to each other that can be used to assess model’s classification capability.

Sample patches from the training dataset are given in (Figure 4.1).

47

Airport

Chaparral

Dense

Residential

Forest

Freeway

Golf

Course

Ground

Track Field

Figure 4.1 : Sample patches for the training dataset.

48

Industrial

Area

Intersection

Meadow

Medium

Residential

Overpass

Parking Lot

Rectangular

Farmland

Figure 4.1 (continued) : Sample patches for the training dataset.

49

River

Runway

Sparse

Residential

Storage

Tank

Tennis

Court

Terrace

Figure 4.1 (continued) : Sample patches for the training dataset.

50

4.1.3 Validation dataset for the classification network

Images for validation dataset is extracted from Worldview-3 satellite imagery that is

made publicly available for SpaceNet challenge. Images are 3-band RGB with 16-bit

and 30 cm resolution. Before extracting the patches pixel values of the images had to

be normalized to 8-bit due to the fact that models used in the experiment only accept

JPEG images. Pixel values of the images are normalized to 8-bit using an automated

script with parallel programming and “GDAL” library. Code snippet about the script

is given in (Figure 4.2).

Patches are extracted and labeled manually from three different AOI’s including

Vegas, Paris and Shanghai. Area of raster belonging to the AOI’s are 216, 1030 and

1000 square kilometers. 50 patches are extracted for each class with a total of 1000

patches. Selected scenes usually have intra-class variability in order to truly test the

networks capability with minimum bias. Patches have different ground sampling

distances illumination and occlusion. Sample patches for the validation dataset are

given in (Figure 4.3).

Figure 4.2 : Code for automated script to convert 16-bit imagery to 8-bit.

51

Airport

Chaparral

Dense

Residential

Forest

Freeway

Golf

Course

Ground

Track Field

Figure 4.3 : Sample patches for the validation dataset.

52

Industrial

Area

Intersection

Meadow

Medium

Residential

Overpass

Parking Lot

Rectangular

Farmland

Figure 4.3 (continued) : Sample patches for the validation dataset.

53

River

Runway

Sparse

Residential

Storage

Tank

Tennis

Court

Terrace

Figure 4.3 (continued) : Sample patches for the validation dataset.

54

4.1.4 Pre-processing

Before feeding data to the network, datasets are converted to a file format referred as

.tfrecords. Raw image data can be slower to read from the disk and take up significant

space in the RAM. TFrecords are a binary file format storage that works as a buffer

for loading data to the network. Also it is possible to sequence and shuffle the data to

provide diversity in each batch. Data augmentation is also integrated to further make

use of the data. All classes are coded with one-hot label and images are resized to 299

x 299 pixels as it’s the default Inception size.

4.1.5 Training setup

Proposed CNN’s were trained using tensorflow[68] framework and TF-Slim library.

Training were conducted on a nVidia GTX 1060 6 GB GPU using cross-entropy loss

function, decaying learning rate and ADAM optimizer. Learning rate has been set to

2.000e-4. Research has shown that increasing batch size throughout training leads to

faster convergence with more accurate results[70]. Both networks trained for 100

epochs with increasing batch size from 12 to 16 at epoch 50 and 16 to 20 at epoch 75.

Total training time for Inception-ResNet-v2 and Inception-v4 are around 10 hours and

12 hours respectively.

4.1.6 Results

Training loss, accuracy and validation accuracy are the crucial metrics for evaluation

of the networks. These metrics are given in (Table 4.1).

Table 4.1 : Results of the trained networks

Proposed CNN

Model
Training Loss

Training

Accuracy

Validation

Accuracy

Inception-ResNet-

v2

0,471 0,967 0,828

Inception-v4 0,543 0,942 0,778

Benefits of having residual connections can be seen as the first network provides more

accurate results with faster convergence. In order to further discuss the comparison

between two networks, classification outcomes of each network needs to be

55

represented with certain metrics. Predictions for the classes can be divided into two

groups whether the label matches the ground truth of the actual class or not. Positive

classification outcome denotes the model predicted the desired label regardless of the

ground truth of the class. If it matches the ground truth it is referred as the True Positive

if not it is False Positive. Negative classification outcome means the model couldn’t

predict the desired label. However, if the ground truth for the negatively classified

image is also negative, it means that the model is successful. This is referred as the

True Negative. On the contrary, False Negative stands for the situation where the

model did not predict the desired label for the specified ground truth. Explained in

(Table 4.2).

Table 4.2 : Error types for classification.
 Actual Class

Positive Negative

Classification

Outcome

Classification

Outcome Positive
True Positive(TP) False Positive(FP)

Classification

Outcome Negative
False Negative(FN) True Negative(TN)

Precision and recall are two very important model evaluation metrics. Precision refers

to the percentage of the relevant results whereas recall refers to the percentage of total

relevant results accurately classified by the model. For simplicity, there is another

metric available, called F-1 score, which is a harmonic mean of precision and recall.

Metrics are given in equation (4.1)

																			K®1nO/OZö = bS
bS9©S

, ™1n^YY = bS
bS9©´

,									¨1 = 2 S.Æ
S9Æ

 (4.1)

Precision recall and F-1 Score of the trained networks are given in the following

(Table 4.3) and (Table 4.4). Confusion matrix for the networks are given in (Figure

4.4) and (Figure 4.5). Examples of the false negatives and false positives of the

networks are given with their prediction and ground truth respectively in (Figure 4.6)

56

Table 4.3 : Precision recall and f1-scores for the Inception-ResNet-v2.
Class Airport Chaparral Dense

Residential

Forest Freeway Golf

Course

Ground

Track

Field

Industrial

Area

Intersection

Precision 0,877 0,803 0,816 0,918 0,807 0,846 0,955 0,750 0,836

Recall 0,860 0,788 0,816 0,882 0,875 0,862 0,877 0,823 0,820

F1-Score 0,868 0,795 0,816 0,900 0,840 0,854 0,914 0,785 0,828

Class Meadow Medium

Residential

Overpass Parking

Lot

Rectangular

Farmland

River Runway Sparse

Residential

Storage

Tank

Precision 0,769 0,759 0,833 0,860 0,705 0,888 0,931 0,863 0,934

Recall 0,784 0,803 0,800 0,877 0,734 0,934 0,872 0,863 0,914

F1-Score 0,776 0,780 0,816 0,868 0,719 0,910 0,901 0,863 0,924

Class Tennis

Court

Terrace Average

Precision 0,933 0,763 0,842

Recall 0,893 0,707 0,839

F1-Score 0,913 0,734 0,840

Table 4.4 : Precision recall and f1-scores for the Inception-v4.
Class Airport Chaparral Dense

Residential

Forest Freeway Golf

Course

Ground

Track

Field

Industrial

Area

Intersection

Precision 0,836 0,775 0,760 0,918 0,666 0,836 0,909 0,689 0,775

Recall 0,803 0,788 0,760 0,823 0,800 0,788 0,833 0,769 0,745

F1-Score 0,819 0,781 0,760 0,867 0,727 0,811 0,869 0,727 0,760

Class Meadow Medium

Residential

Overpass Parking

Lot

Rectangular

Farmland

River Runway Sparse

Residential

Storage

Tank

Precision 0,627 0,703 0,800 0,800 0,653 0,888 0,833 0,808 0,918

Recall 0,711 0,760 0,750 0,833 0,708 0,829 0,754 0,760 0,918

F1-Score 0,666 0,730 0,774 0,816 0,679 0,857 0,792 0,783 0,918

Class Tennis

Court

Terrace Average

Precision 0,877 0,612 0,784

Recall 0,895 0,612 0,785

F1-Score 0,886 0,612 0,783

57

 Reference Data
C

la
ss

ifi
ed

 Im
ag

e

A
irp

or
t

C
ha

pa
rr

al

D
en

se

R
es

id
en

tia
l

Fo
re

st

Fr
ee

w
ay

G
ol

f C
ou

rs
e

G
ro

un
d

Tr
ac

k
Fi

el
d

In
du

st
ria

l
A

re
a

In
te

rs
ec

tio
n

M
ea

do
w

M
ed

iu
m

R

es
id

en
tia

l

O
ve

rp
as

s

Pa
rk

in
g

Lo
t

R
ec

ta
ng

ul
ar

Fa

rm
la

nd

R
iv

er

R
un

w
ay

Sp
ar

se

R
es

id
en

tia
l

St
or

ag
e

Ta
nk

Te
nn

is

C
ou

rt

Te
rr

ac
e

C
la

ss
ifi

ed

T
ot

al
s

U
se

rs
’

A

cc
ur

ac
y

Airport 43 2 4 49 %87
Chaparral 41 4 2 4 51 %80

Dense
Residential 40 2 4 2 1 49 %81

Forest 45 2 2 49 %91
Freeway 42 3 3 2 2 52 %84

Golf Course 3 44 3 2 52 %84
Ground Track

Field 43 2 45 %95

Industrial Area 3 3 42 2 2 2 2 56 %75
Intersection 1 1 41 1 3 2 49 %83

Meadow 2 3 3 2 40 2 52 %76
Medium

Residential 5 1 41 1 6 54 %75

Overpass 3 1 1 40 2 48 %83
Parking Lot 2 1 2 1 2 43 50 %86
R. Farmland 2 36 13 51 %70

River 2 2 1 40 45 %88
Runway 4 2 40 46 %86
Sparse

Residential 2 2 5 40 49 %81

Storage Tank 1 1 2 47 51 %92
Tennis Court 1 4 2 45 52 %86

Terrace 2 13 35 50 %70
Reference

Totals 50 52 49 51 48 51 49 51 50 51 51 50 49 49 48 51 50 49 48 52 1000

Producers’
Accuracy %86 %78 %81 %88 %87 %86 %87 %82 %82 %78 %80 %80 %87 %73 %83 %78 %80 %95 %93 %67

Overall Accuracy : 828/1000 = %82.8

Figure 4.4 : Confusion matrix for the Inception-ResNet-v2 network.

58

 Reference Data
C

la
ss

ifi
ed

 Im
ag

e

A
irp

or
t

C
ha

pa
rr

al

D
en

se

R
es

id
en

tia
l

Fo
re

st

Fr
ee

w
ay

G
ol

f C
ou

rs
e

G
ro

un
d

Tr
ac

k
Fi

el
d

In
du

st
ria

l
A

re
a

In
te

rs
ec

tio
n

M
ea

do
w

M
ed

iu
m

R

es
id

en
tia

l

O
ve

rp
as

s

Pa
rk

in
g

Lo
t

R
ec

ta
ng

ul
ar

Fa

rm
la

nd

R
iv

er

R
un

w
ay

Sp
ar

se

R
es

id
en

tia
l

St
or

ag
e

Ta
nk

Te
nn

is

C
ou

rt

Te
rr

ac
e

C
la

ss
ifi

ed

T
ot

al
s

U
se

rs
’

A

cc
ur

ac
y

Airport 41 3 5 49 %83
Chaparral 38 5 2 4 49 %77

Dense
Residential 38 4 5 2 1 50 %76

Forest 42 4 46 %91
Freeway 40 5 5 4 3 3 60 %66

Golf Course 3 41 3 2 49 %83
Ground Track

Field 40 4 44 %90

Industrial Area 5 5 40 2 2 4 58 %68
Intersection 1 1 38 3 1 3 2 49 %77

Meadow 4 6 5 4 1 37 2 59 %62
Medium

Residential 6 1 38 2 7 54 %70

Overpass 5 1 1 36 2 45 %80
Parking Lot 4 3 1 2 40 50 %80
R. Farmland 2 1 34 15 52 %65

River 2 2 1 39 44 %88
Runway 5 3 40 48 %83
Sparse

Residential 2 2 5 38 47 %80

Storage Tank 1 1 2 45 49 %91
Tennis Court 4 2 43 49 %87

Terrace 4 1 14 30 49 %61
Reference

Totals 51 53 50 51 50 52 48 52 51 52 50 48 48 48 47 53 50 49 48 49 1000

Producers’
Accuracy %80 %71 %76 %82 %80 %78 %83 %76 %74 %71 %76 %75 %83 %70 %82 %75 %76 %91 %89 %61

Overall Accuracy : 778/1000 = %77.8

Figure 4.5 : Confusion matrix for the Inception-v4 network.

59

Inception-ResNet-v2 Inception-v4

False Negative False Positive False Negative False Positive

Airport

Industrial Area Runway Industrial Area Runway

Chaparral

Meadow Sparse Residential Terrace Sparse Residential

Dense

Residential

Tennis Court Medium Residential Medium Residential Industrial Area

Forest

Chaparral Meadow Golf Course Meadow

Freeway

Overpass Overpass Overpass Parking Lot

Golf

Course

Meadow Forest Meadow River

Figure 4.6 : Error instances of the trained networks.

60

Ground

Track Field

Tennis Court Tennis Court Tennis Court Tennis Court

Industrial

Area

Dense Residential Airport Parking Lot Airport

Intersection

Tennis Court Runway Chaparral Freeway

Meadow

Forest Forest Forest Golf Course

Medium

Residential

Sparse Residential Dense Residential Parking Lot Dense Residential

Overpass

 MediumResidential Freeway Industrial Area Freeway

Parking

Lot

Freeway Freeway Industrial Area Overpass

Figure 4.6 (continued) : Error instances of the trained networks.

61

R.

Farmland

Terrace Terrace Terrace Terrace

River

Dense Residential Chaparral Industrial Area Chaparral

Runway

Airport Airport Intersection Airport

Sparse

Residential

Meadow Medium Residential Chaparral Terrace

Storage

Tank

Industrial Area Overpass Industrial Area Runway

Tennis

Court

Medium Residential Intersection Sparse Residential Ground Track Field

Terrace

Farmland Chaparral River Farmland

Figure 4.6 (continued) : Error instances of the trained networks.

62

Loss function, test accuracy and the learning rate of the networks are given in (Figure

4.7), (Figure 4.8) and (Figure 4.9). X-axis shows the step size for all figures and Y-

axis is the loss rate.

Figure 4.7 : Loss function for Inception-ResNet-v2.

Figure 4.8 : Loss function for Inception-v4.

Figure 4.9 : Training accuracy of the networks.

Loss function of the networks are visualized with TensorBoard app built inside the

Tensorflow library. X-axis shows the step size and Y-axis shows the value of the loss

function. Loss functions show considerable amount of oscillations and many sub-

optimal local minimas. However this fluctuation is expected because of the varying

63

batch sizes. During experimentation with different size of batches, any value

exceeding 20 led to memory error and interruption in training process. Hardware

limitations such as memory capacity of the GPU is most likely the reason behind the

system crash. Experiments show that 6 GB of GPU ram is the bare minimum standard

for using deep learning applications. Below 4 GB of GPU memory Inception-ResNet-

v2 architecture can not be trained.

Comparable experiment regarding to using %15 of the training data as validation is

carried out and mentioned later in this section. Varying batch sizes are not included

and fluctuations are minor. Positive effects of using varying batch sizes in training

accuracy are observed with %2 differential in both networks in different experiments,

however this increase could be from using additional training data in the first

experiment.

Training accuracy of the networks are quite similar however difference can be seen in

the validation accuracy. Inception-ResNet-v2 network yields %5 greater overall

accuracy compared to Inception-v4. This differential can be attributed to residual

layers of the prior network since the rest of the architecture is quite similar. Class by

class analysis also shows that Inception-ResNet-v2 has better performance in terms of

accuracy.

Due to their spatial and spectral complexity following land use classes yielded lower

accuracy compared to other classes in both models. Industrial area and medium

residential classes achieved %75 user’s accuracy with Inception-ResNet-v2 model. On

the other hand, Inception-v4 model achieved %68 and %70 user’s accuracy for the

classes respectively. In depth analysis for the false negative and false positive instances

show intra-class mixture was present. Airport areas contained hangars and depots that

often can be identified as industrial areas. Ground sampling distance of the training

images were high and these discrepancies were not present, making it harder for the

model for recognizing the actual class. As for the “medium residential” class, error

instances often labeled as dense or sparse residential. Empirical evidence suggests

tiling material and the inconsistent spaces between buildings also contributed to error

rate. On the other hand, benchmark datasets should include distinctive attributes for

determining dense, medium and sparse residential areas. As for the types and the total

number of buildings for each class.

64

Land cover classes such as chaparral and meadow indicate lower accuracy than

expected since the spectral complexity of these classes are much lower compared to

land use classes. Inception-ResNet-v2 model display %80 and %76 user’s accuracy

for chaparral and meadow classes respectively. For Inception-v4 model, user’s

accuracy for the classes mentioned above were %77 and %62 respectively. Certain

classes contain intra-class mixtures with these land cover areas such as sparse

residential and golf course, resulting in false positive instances.

Intra-class variability often creates problems for accurate labelling. For instance an

“intersection” scene containing a “tennis court” is labeled as a “tennis court” or a

“parking lot” scene with a “freeway” nearby is labeled as “freeway”. This occurs for

the instances that a certain class contain features that represent another class, not

because of the poor generalization of the features.

“Storage tank” class is the most accurate class for both networks along with “forest”

class. Results indicate that the error instaces belonging to those classes are not because

of intra-class variability but rather spatial and spectral similarities to other classes. For

example meadow class is often mislabeled as forest due to similar pixel values. For

rare instances images belong to the “overpass” class labeled as “storage tank” due to

similar round shape that is present in both of the classes. Another example of similar

type of error instances are the mislabeled “river” and “chaparral” classes. Evidence

suggests that factors contributing to these errors are stream or creek like shapes that

can be found in both classes.

Results show that “terrace” and “farmland” have the worst accuracy rate compared

to other classes. Reason being that the “terrace” and “farmland” classes share common

spatial and spectral features that is almost indistinguishable for the human eye as well.

Therefore, false negatives and false positives for these classes point each other.

On the other hand, experiments on the two networks display the importance of having

residual connections for the CNN model. Results indicate residual connections

improve training speed, achieving higher rate of accuracy with a lesser training time.

As the model reaches close to a convergence, smaller learning rate is employed each

time to further improve training accuracy.

There have been numerous studies regarding scene classification using NWPU-

RESISC45 dataset. Experimental results carried out by Cheng et al[68] and Zhang et

65

al[71] with different networks on the same training dataset that is used in this thesis

are given in (Table 4.5) and (Table 4.6). They have separated %10 and %20 of the

training dataset to be used in validation respectively. Note that original NWPU-

RESISC45 dataset consist of 45 classes.

Table 4.5 : Comparison of results with different networks.

CNN Models %10 Training ratio %20 Training ratio

Fine-tuned AlexNet %81.22 %85.16

Fine-tuned VGGNet-16 %87.15 %90.36

Fine-tuned GoogLeNet %82.57 %86.02

Table 4.6 : Comparison of the results with different networks.

CNN Models %10 Training ratio %20 Training ratio

AlexNet %76.47 %79.79

VGGNet-16 %76.69 %79.85

GoogLeNet %76.19 %78.48

VGG-16-CapsNet %85.08 %89.18

Inception-v3-CapsNet %89.03 %92.6

To further analyse the capability of the models used in this experiment in comparative

manner and minimal bias, both of the networks are used in this thesis are trained with

%15 training ratio of the NWPU-RESISC45 dataset. Which means using 11900

images for training and 2100 images for validation. Loss functions for the networks

are given in (Figure 4.10) and (Figure 4.11).

66

Figure 4.10 : Loss function for Inception-ResNet-v2 with %15 training ratio and no
varying batch size.

Figure 4.11: Loss function for Inception-v4 with %15 training ratio and no varying
batch size.

Loss functions exhibit lesser oscillations due to the fact that varying batch size is not

included in this training. However, final loss rate is higher for both networks. Training

accuracy is %94 and %92 for Inception-ResNet-v2 and Inception-v4 respectively.

Confusion matrices are given in (Figure 4.12) and (Figure 4.13). Results suggest that

validation accuracy is much higher for both of the networks. Overall accuracy has

increased %7 for both networks and up to %20 of increase can be seen for individual

classes such as “terrace” and “farmland”. One would anticipate that using test images

with similar characteristics as the training images increase overall accuracy of the

network. It is observed that the data supports this hypothesis. Despite increasing the

size of the validation dataset results show that networks perform better overall.

Analysis regarding to the accuracy and the error instances of each class are as follows.

67

 Reference Data
C

la
ss

ifi
ed

 Im
ag

e

A
irp

or
t

C
ha

pa
rr

al

D
en

se

R
es

id
en

tia
l

Fo
re

st

Fr
ee

w
ay

G
ol

f C
ou

rs
e

G
ro

un
d

Tr
ac

k
Fi

el
d

In
du

st
ria

l
A

re
a

In
te

rs
ec

tio
n

M
ea

do
w

M
ed

iu
m

R

es
id

en
tia

l

O
ve

rp
as

s

Pa
rk

in
g

Lo
t

R
ec

ta
ng

ul
ar

Fa

rm
la

nd

R
iv

er

R
un

w
ay

Sp
ar

se

R
es

id
en

tia
l

St
or

ag
e

Ta
nk

Te
nn

is

C
ou

rt

Te
rr

ac
e

C
la

ss
ifi

ed

T
ot

al
s

U
se

rs
’

A

cc
ur

ac
y

Airport 94 2 1 1 2 1 4 105 %89
Chaparral 97 3 1 1 3 105 %92

Dense
Residential 93 1 2 1 7 1 105 %88

Forest 98 1 2 3 2 106 %92
Freeway 1 90 1 2 3 3 2 3 105 %85

Golf Course 97 3 2 2 104 %93
Ground Track

Field 2 95 2 2 3 1 105 %90

Industrial Area 2 2 2 1 90 2 2 1 2 104 %86
Intersection 1 1 95 2 3 1 1 1 105 %90

Meadow 3 3 2 92 1 2 2 105 %87
Medium

Residential 6 2 2 90 1 2 2 105 %85

Overpass 2 4 4 95 105 %90
Parking Lot 2 2 2 99 105 %94
R. Farmland 2 2 3 91 2 6 106 %85

River 2 1 2 2 94 3 104 %90
Runway 5 2 1 94 2 1 105 %89
Sparse

Residential 3 1 1 3 95 1 1 105 %90

Storage Tank 1 1 2 3 98 105 %94
Tennis Court 2 3 1 1 1 98 106 %92

Terrace 2 4 7 92 105 %87
Reference

Totals 108 104 105 111 106 108 105 102 108 107 105 103 104 107 97 101 103 103 106 107 2100

Producers’
Accuracy %87 %93 %88 %88 %84 %89 %90 %88 %87 %85 %85 %92 %95 %85 %96 %93 %92 %95 %92 %85

Overall Accuracy : 1887/2100 = %89.85

Figure 4.12 : Confusion matrix for the Inception-ResNet-v2 with %15 training ratio of NWPU-RESISC45 dataset.

68

 Reference Data
C

la
ss

ifi
ed

 Im
ag

e

A
irp

or
t

C
ha

pa
rr

al

D
en

se

R
es

id
en

tia
l

Fo
re

st

Fr
ee

w
ay

G
ol

f C
ou

rs
e

G
ro

un
d

Tr
ac

k
Fi

el
d

In
du

st
ria

l
A

re
a

In
te

rs
ec

tio
n

M
ea

do
w

M
ed

iu
m

R

es
id

en
tia

l

O
ve

rp
as

s

Pa
rk

in
g

Lo
t

R
ec

ta
ng

ul
ar

Fa

rm
la

nd

R
iv

er

R
un

w
ay

Sp
ar

se

R
es

id
en

tia
l

St
or

ag
e

Ta
nk

Te
nn

is

C
ou

rt

Te
rr

ac
e

C
la

ss
ifi

ed

T
ot

al
s

U
se

rs
’

A

cc
ur

ac
y

Airport 90 3 2 3 2 2 4 1 107 %84
Chaparral 91 4 3 2 5 105 %86

Dense
Residential 86 2 5 1 9 1 104 %82

Forest 94 2 3 5 2 106 %86
Freeway 2 84 2 3 4 3 3 3 104 %80

Golf Course 95 3 3 4 105 %90
Ground Track

Field 3 91 3 4 3 2 106 %85

Industrial Area 4 3 3 1 84 2 4 2 2 105 %80
Intersection 2 2 90 3 5 1 1 1 105 %85

Meadow 3 4 4 87 1 2 3 104 %83
Medium

Residential 7 3 4 86 1 3 2 106 %81

Overpass 3 4 6 90 103 %87
Parking Lot 2 4 4 95 105 %90
R. Farmland 3 4 4 84 3 8 106 %79

River 2 2 3 3 90 4 104 %86
Runway 6 4 1 91 2 2 106 %85
Sparse

Residential 4 2 2 5 90 1 2 106 %84

Storage Tank 1 1 3 4 94 103 %90
Tennis Court 3 4 1 2 1 95 106 %89

Terrace 3 3 12 86 104 %83
Reference

Totals 111 98 102 112 7 112 105 107 106 112 108 102 101 108 95 98 104 99 103 110 2100

Producers’
Accuracy %81 %92 %84 %83 %78 %84 %86 %78 %84 %77 %79 %88 %94 %77 %94 %92 %86 %94 %92 %78

Overall Accuracy : 1793/2100 = % 85.38

Figure 4.13 : Confusion matrix for the Inception-v4 with %15 training ratio of NWPU-RESISC45 dataset.

69

Least improved class over the previous experiment is the “airport” class. Only %2

increase in accuracy can be seen. High ground sampling distance for these images

cause problems in terms of intra-class variability and the spaces between runways

resemble farmlands which contributes to false negative instances. Also other error

instances point out that classes “freeway” and “river” are labeled as “airport” for

several occasions which is not present in the previous experiment. This is likely due

to high ground sampling distances of the “airport” images.

“Chaparral” class shows significant improvement over the previous experiment for

both networks. Increase up to %12 in accuracy can be seen. Intra-class variability for

the test images of this class were lower and the error instances belong to classes

“meadow”, “sparse residential” and “terrace” which is the same as the previous

experiment.

One of the lowest class accuracy is obtained for the “dense residential” class. Yet there

is still improvement over to the first training. It is observed that the roof material and

the spaces between buildings have a significant impact on the performance of this

class. Hence, the majority of the error instances belong to classes “medium residential”

and “industrial area”. Same issue is persistent in “medium residential” class. Although

there is %10 increase in accuracy in both of the networks compared to the previous

experiment.

“Parking lot” class exhibit the highest accuracy reaching up to %94 for Inception-

ResNet-v2 network. This result can be attributed to low ground sampling distance of

the “parking lot” images in NWPU dataset, making it easier for the model to recognize

car patterns. Error instances are for the scenes that have intra-class variability such as

parking lots near overpass and freeways.

For classes “farmland” and “terrace” same problem as the previous experiment is

recurrent. Although there is progress, due to high ground sampling distance as well as

parallel spectral and spatial characteristics make it harder for the models to distinguish

these classes. Same issue can be addressed for classes “tennis court” and “ground track

field” as the error instances for these classes point each other.

Land cover classes such as “forest” and “meadow” does not show significant

improvement. Spatial and spectral properties aren’t that complex to take advantage of

the similar test images as the training dataset.

70

4.1.7 Discussion

The proposed approach in this thesis has shown that it can be applied to remote sensing

applications for automated land cover and land use classification from VHR images.

The approach demonstrated that networks trained on an unrelated image recognition

task can actually be used to solve the land cover and land use classification problem.

One would anticipate that a large amount of VHR spatial imagery that already exists

and that continues to be collected at higher rates will have a significant impact on a

variety of remote sensing applications. Both of the experiments carried out in this

thesis show accuracies that are at par with the state-of-the-art accuracies on the land

use land cover classification problem. Adapting a deep pre-trained network and fine-

tuning the network on a new dataset that has a limited number of labeled images to

train quickly, learn and adjust the weights and biases of the network on the new dataset

in effect delivers promising results.

Main goal of the experiments in this thesis is to assess the performance of the given

neural networks by providing validation data which has distinct characteristics

compared to trained data. Second experiment is carried out to display the performance

of the networks by feeding validation data that is similar to trained data yet completely

unseen. Results indicate that even with moderate size training data, generalizability of

the features extracted from the networks are reliable over the unseen data with different

characteristics. However, important caveat of this analysis is that intra-class variability

needs to be addressed when creating a validation dataset. Experiments show that

networks are more sensitive to the intra-class mixtures with validation data that has

different characteristics as the training data. Also ground sampling distances for each

class need to be defined for both validation and training datasets to further improve

the results.

Fine-tuning is a major aspect of training a succesfull deep learning model. There

various parameters to be controlled to achieve the maximum results out of the

networks. Although most of it are based on trial and error method, varying batch-size

during training proven to be an effective method to increase training accuracy while

the network converges to a fixed number of training accuracy. First experiment shows

that this method improves training accuracy. However, causing loss function to

oscillate to various local minimas.

71

5. CONCLUSIONS

 Summary

Accessibility of the remote sensing imagery have become increasingly available in

the recent years. For various environmental and urban planning problems analysis of

these remote sensing imagery have crucial importance. Increase in the available remote

sensing imagery, calls for an automatization for the process of land cover and land use

classification.

For remote sensing image analysis, CNN’s provide reliable results that can be

generalized over the unseen data. Furthermore, feature engineering and expertise

needed for traditional feature extraction methods are eliminated. Training a successful

CNN model requires sufficient amount of training data and fitting selection of

hyperparameters. Training deep network architectures from scratch requires

significant amount of data and training time in order to learn low-level features.

Therefore, using pretrained networks for any given classification task is a good idea.

One of the main advantages of CNN’s is final layers of the network can be fine-tuned

for a specific goal including remote sensing image analysis.

In this study, two state-of-the-art pre-trained networks namely Inception-ResNet-v2

and Inception-v4 are trained for the purpose of land cover and land use classification.

In both experiments, training dataset is created from NWPU-RESISC45 dataset which

consist of 20 classes with 700 image. Images converted to the binary format of

.tfrecords to minimize memory usage and loading time. In order to test the

generalizability of features that are created by the networks, separate validation dataset

is used for the first experiment. A validation dataset is created from Worldview-3

satellite images as to feed networks with images of different characteristics. Training

accuracy of the networks Inception-ResNet-v2 and Inception-v4 for the first

experiment are %97.7 and %94.2 respectively. Total training time for the networks are

13 and 11 hours respectively. Each network is trained for 100 epochs using decaying

learning rate and various batch sizes to increase training accuracy.Validation dataset

72

consists of patches extracted from 30 cm 3-band RGB satellite imagery. These

imagery are acquired from Worldview-3 satellite sensor with 3 distinct AOI’s

including Las Vegas, Shanghai and Paris. Validation accuracy for the networks are

%82.8 and %77.8 respectively. Various metrics for evaluation and comparision of

these networks are calculated such as precision recall and f1-scores. Results indicate

that Inception-ResNet-v2 model outperforms Inception-v4 in terms of accuracy and

generalization over the unseen data.

Second experiment is carried out to compare the performance of the networks by

feeding validation data with similar characteristics as the training data. Both networks

are trained with %15 training ratio of the NWPU dataset. Results indicate %89.95 and

%85.38 validation accuracy for the Inception-ResNet-v2 and Inception-v4 networks

respectively.

 Conclusions

Results of the experiments in this thesis show that CNN’s are powerful classification

tools that can be effectively used in remote sensing problems such as land cover and

land use classification. CNN models eliminate feature engineering expertise required

by the traditional techniques and automatize the process. However, training deep

networks can be a challenging task. Proper selection of hyperparameters and sufficient

amount of training data are key factors of successfully training a CNN model.

Transfer learning approach demonstrated in this experiment shows that networks

trained on an unrelated image recognition task can be used to solve the land cover and

land use classification problem. Fine-tuning CNN’s with pre-trained weights provide

accurate results with unseen data.

Classes that are selected for the experiments have mutual properties and intra-class

variability in order to further investigate the models ability to classify distinct scenes

and assess the results with minimal bias. Results indicate that intra-class variability is

the main reason for false classification, rather than the similar properties of the selected

classes. However, “terrace” and “farmland” classes exhibit poor results compared to

other classes. It is observed that the spatial attributes of these classes are identical and

may require additional training data to further generalize on the unseen data.

73

 Future Works

Deep learning algorithms such as CNNs show impressive results in both computer

vision and remote sensing tasks. The attractive parts of such algorithms is that the

pretrained networks such as ImageNet1000 trained AlexNet, VGGNet, GoogLeNet

etc. are capable of generalizing for other domains such as remote sensing. As for land

cover and land use classification, experiments in this thesis indicate multi-label

approach should be investigated. Due to intra-class variability of the scenes models

can label features that belong to another class that are located in a small part of the

image. This problem also brings up the question of whether to treat land cover land

use classes as individual objects. Automatization of land cover and land use

classification from a larger image that contains multiple classes remains as a challenge

that needs to be re-visited in the future.

74

75

REFERENCES

[1] Mountrakis, G., Im, J. and Ogole, C. (2011). “Support vector machines in
remote sensing” A review. ISPRS Journal of Photogrammetry and
Remote Sensing, 66(3), pp.247-259.

[2] Watanachaturaporn, P., Arora, M.K., Varshney, P.K., (2008). “Multisource
classification using support vector machines: an empirical comparison
with decision tree and neural network classifiers.” Photogrammetric
Engineering & Remote Sensing 74 (2), 239–246.

[3] Albert, L., Rottensteiner, F., Heipke, C., (2017). “A higher order conditional
random field model for simultaneous classification of land cover and
land use.” ISPRS Journal of Photogrammetry and Remote Sensing 130:
63-80.

[4] Hermosilla, T., Ruiz, L. A., Recio, J. A., Cambra-López, M., (2012). “Assessing
contextual descriptive features for plot-based classification of urban
areas.” Landscape and Urban Planning, 106(1): 124-137.

[5] Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-
Maravilla, J., (2006). “Composite kernels for hyperspectral image
classification.” IEEE Geoscience and Remote Sensing Letters 3 (1), 93–
97.

[6] LeCun Y., Bottou L., Bengio, Y. and Haffner, P., (1998) “Gradient-based
learning applied to document recognition” Proceedings of the IEEE, vol.
86, no. 11, pp. 2278–2324.

[7] Krizhevsky, A., Sutskever I., Hinton, G. E., (2012). “ImageNet classification
with deep convolutional neural networks”. In: International Conference
on Neural Information Processing Systems (NIPS'12) 25 Vol. 1, pp.
1097-1105.

[8] Zeiler, M. D., Fergus, R.., (2014). “Visualizing and understanding convolutional
networks,”	 in European	 Conf.	 on	 Computer	 Vision, pp. 818–833,
Springer.

[9] Szegedy, C. et al., (2015). “Going deeper with convolutions,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, pp. 1–9.

[10] He, K., Zhang, X., Ren, S., Sun, J., (2016). “Deep residual learning for image
recognition”. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770-778.

[11] Szegedy, C. et al., (2017). “Inception-v4, Inception-ResNet and the impact of
residual connections on learning”. In AAAI, pp. 4278–4284.

[12] Marmanis, D., Datcu M., Esch T., et al., (2016). “Deep learning earth
observation classification using ImageNet pretrained networks”, IEEE
Geoscience and Remote Sensing Letters 13(1), 105–109.

76

[13] Donahue, J., Jia Y., Vinyals O. et al., (2014). “DeCAF: A Deep Convolutional
Activation Feature for Generic Visual Recognition,” Icml 32, 647–655.

[14] Salberg, A.B.., 2015. “Detection of seals in remote sensing images using features
extracted from deep convolutional neural networks,” in Proc. IEEE Int.
Geoscience and Remote Sensing Symp. (IGARSS), , pp. 1893–1986.

[15] Othman, E., Bazi,Y. Alajlan N. et al., (2016).“Using convolutional features and
a sparse autoen- coder for land-use scene classification,” International
Journal of Remote Sensing 37(10), 1977–1995.

[16]Url-1 <http://vision.ucmerced.edu/datasets/landuse.html>, date retrieved
16/04/2019

[17] Iftene, M., Liu, Q., Wang, Y. (2016). “Very high resolution images classification
by fine tuning deep convolutional neural networks,” in Eighth
International Conference on Digital Image Processing (ICDIP 2016)

[18] Sheng, G., Yang, W., Xu, T., & Sun, H. (2012). “High-resolution satellite scene
classification using a sparse coding based multiple feature
combination.” International	 Journal	 of	 Remote	 Sensing, 33(8),
2395–2412.

[19] Ghazi, M. M., Yanikoglu B., Aptoula E. (2017). “Plant Identification Using
Deep Neural Net- works via Optimization of Transfer Learning
Parameters”, Neurocomputing.

[20] Lee, H., Kwon H. (2016). “Contextual Deep CNN Based Hyperspectral
Classification”, in 2016 IEEE Geoscience and Remote Sensing
Symposium (IGARSS), 1604.03519, 2–4.

[21] Fisher, P. (1997). “The Pixel: A Snare and a Delusion”, International Journal of
Remote Sensing, 18: 679-685.

[22] Rollet, R., Benie G.B., Li, W., Wang, S., Boucher, J.M. (1998). “Image
Classification Algorithm based on the RBF Neural Network and K-
means”, International Journal of Remote Sensing, 19: 3003-3009.

[23] Shalaby, A., Tateishi R. (2007). “Remote Sensing and GIS for Mapping and
Monitoring Land Cover and Land-use Changes in the Northwestern
Coastal Zone of Egypt”, Applied Geography, 27: 28-41.

[24] Atkinson, P.M. (2004). “Spatially weighted supervised classification for remote
sensing”, International Journal of Applied Earth Observation and
Geoinformation, 5: 277–291.

[25] Zhu, H.W., Basir, O. (2005). “An Adaptive Fuzzy Evidential Nearest Neighbor
Formulation for Classifying Remote Sensing Images”, IEEE
Transactions on Geoscience and Remote Sensing, 43: 1874-1889.

[26] Kulkarni, A.D., Kamlesh, L. (1999). “Fuzzy Neural Network Models for
Supervised Classification: Multispectral Image Analysis”, Geocarto
International, 4: 42-51.

[27] Yuan, F., Sawaya, K.E., Loeffelholz, B.C., Bauer, M.E. (2005). “Land Cover
Classification and Change Analysis of the Twin Cities (Minnesota)
Metropolitan Area by Multitemporal Landsat Remote Sensing”,
Remote Sensing of Environment, 98: 317-328.

77

[28] Tang J., Wang L., Myint S.W. (2007) “Improving Urban Classification through
Fuzzy Supervised Classification and Spectral Mixture Analysis”,
International Journal of Remote Sensing, 28; 4047-4063.

[29] Myint, S.W., Gober P., Brazel, A., Grossman-Clarke, S., Weng, Q. (2011)
“Per-pixel vs. Object-based Classification of Urban Land Cover
Extraction using High Spatial Resolution Imagery”, Remote Sensing of
Environment, 115: 1145-1161.

[30] Jackson, Q., Landgrebe D.A. (2002). “Adaptive Bayesian Contextual
Classification Based on Markov Random Fields”, IEEE Transactions
on Geoscience and Remote Sensing, 40: 2454-2463.

[31] Lu D., Weng Q. (2007). – “Survey of Image Classification Methods and
Techniques for Improving Classification Performance”, International
Journal of Remote Sensing, 28: 823-870.

[32] Zhang, L., Zhang L., Kumar V. (2016). “Deep learning for remote sensing data,”	
IEEE Geosci. Remote Sens. Mag.	4, 22–40.

[33] Elmannai, H., Loghmari, M.A., Naceur, M. S. (2013) “Support Vector Machine
for Remote Sensing image classification” International Conference on
Control, Engineering & Information Technology (CEIT'13)
Proceedings Engineering & Technology - Vol.2, pp.68-72.

[34] Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J.G.,
Goward, S.N., (2008). “Use of a dark object concept and support vector
machines to automate forest cover change analysis”, Remote Sensing of
Environment 112 (3), 970–985.

[35] Li, H., Gu, H., Han, Y., Yang, J., (2010). “Object-oriented classification of high-
resolution remote sensing imagery based on an improved colour
structure code and a support vector machine”, International Journal of
Remote Sensing 31 (6), 1453–1470.

[36] Brenning, A., (2009). “Benchmarking classifiers to optimally integrate terrain
analysis and multispectral remote sensing in automatic rock glacier
detection”, Remote Sensing of Environment 113 (1), 239–247.

[37] Otukei, J R., Blaschke, T., (2010). “Land cover change assessment using
decision trees, support vector machines and maximum likelihood
classification algorithms”, Int.	J.	Appl.	Earth	Obs.	Geoinf.	12	S27–S31.

[38] Punia, M, Joshi, P K and Porwal, M C., (2011) “Decision tree classification of
land use land cover for Delhi, India using IRS-P6 AWiFS data”, Expert	
Syst.	Appl.	38(5)	5577–5583. 	

[39] Pal, M., Mather P M. (2003). “An assessment of the effectiveness of decision
tree methods for land cover classification”, Remote Sens. Environ. 86
554–565.

[40] Chan, J.C.-W., Paelinckx, D., (2008). “Evaluation of Random Forest and
Adaboost tree-based ensemble classification and spectral band
selection for ecotope mapping using airborne hyperspectral imagery”,
Remote Sensing of Environment 112 (6), 2999–3011.

78

[41] Ghimire, B., Rogan, J., Miller, J., (2010). “Contextual land-cover classification:
incorporating spatial dependence in land-cover classification models
using random forests and the Getis statistic”, Remote Sensing Letters 1,
45–54.

[42] Sesnie, S., Gessler, P., Finegan, B., Thessler, S., (2008). “Integrating Landsat
TM and SRTM-DEM derived variables with decision trees for habitat
classification and change detection in complex neotropical
environments”, Remote Sensing of Environment 112 (5), 2145–2159.

[43] Waske, B., Braun, M., (2009). “Classifier ensembles for land cover mapping
using multitemporal SAR imagery”, ISPRS Journal of Photogrammetry
and Remote Sensing 64 (5), 450–457.	

[44] Prasad, A.M., Iverson, L.R., Liaw, A., (2006). “Newer classification and
regression tree techniques: bagging and random forests for ecological
prediction”. Ecosystems 9 (2), 191–199.

[45] Lawrence, R., Wood, S., Sheley, R., (2006). “Mapping invasive plants using
hyperspectral imagery and Breiman Cutler classifications
(RandomForest)”, Remote Sensing of Environment 100 (3), 356–362.

[46] Verbeke, L.P.C.; Vancoillie, F.M.B.; De Wulf, R.R., (2004). “Reusing back-
propagation artificial neural networks for land cover classification in
tropical savannahs”. Int. J. Remote Sens. 2004, 25, 2747–2771.

[47] Yuan, H., Van Der Wiele, C.F., Khorram, S. (2006). “An Automated Artificial
Neural Network System for Land Use/Land Cover Classification from
Landsat TM Imagery”, Remote Sens. 2009, 1, 243-265.

[48] Cao, J., Chen, Z., Wang, B. (2016). “Deep convolutional networks with
superpixel segmentation for hyperspectral image classification,” in
IEEE Geoscience and Remote Sensing Symp. (IGARSS ’16), pp.
3310–3313.

[49] Fang, Z., Li, W., Du, Q. (2016). “Using CNN-based high-level features for
remote sensing scene classification,” in IEEE Geoscience and Remote
Sensing Symp. (IGARSS ’16), pp. 2610–2613

[50] Gong, M., Zhou Z., and Ma J. (2016). “Change detection in synthetic aperture
radar images based on deep neural networks,” IEEE Trans. Neural
Networks Learn. Syst. 27(1), 125–138.

[51] Yang, J. et al., (2016). “Hyperspectral image classification using two-channel
deep convolutional neural network,” in IEEE Geoscience and Remote
Sensing Symp. (IGARSS ’16), pp. 5079–5082.

[52] Kussul, N. et al., (2016). “Deep learning approach for large scale land cover
mapping based on remote sensing data fusion,” in IEEE Geoscience and
Remote Sensing Symp. (IGARSS ’16), pp. 198–201, IEEE.

[53] Guanetal, H. (2015). “Deep learning based tree classification using mobile
LiDAR data, ”Remote Sens. Lett. 6(11), 864–873.

79

[54] Li, P. et al., (2016). “Road network extraction via deep learning and line integral
convolution,” in IEEE Int. Geoscience and Remote Sensing Symp.
(IGARSS ’16), pp. 1599–1602, IEEE.

[55] Tang, J. et al., (2015). “Compressed-domain ship detection on spaceborne
optical image using deep neural network and extreme learning
machine,” IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185.

[56] Li, W. et al., (2016). “Stacked autoencoder-based deep learning for remote-
sensing image classification: a case study of African land-cover
mapping,” Int. J. Remote Sens. 37(23), 5632–5646.

[57] Li, J., (2016). “Active learning for hyperspectral image classification with a
stacked autoencoders based neural network,” in IEEE Int. Conf. on
Image Processing (ICIP ’16), pp. 1062–1065.

[58] Li, T., Zhang J., Zhang Y. (2014). “Classification of hyperspectral image based
on deep belief networks,” in IEEE Int. Conf. on Image Processing (ICIP
’14), pp. 5132–5136.

[59] Diao, W. et al., (2015). “Object recognition in remote sensing images using
sparse deep belief networks,” Remote Sens. Lett. 6(10), 745–754.

[60] Zhao, Q. et al., (2015). “Three-class change detection in synthetic aperture radar
images based on deep belief network,” in Bio-Inspired Computing-
Theories and Applications, pp. 696–705, Springer

[61] Hochreiter, S., Schmidhuber, J. (1997). “Long Short-Term Memory” Neural
Computation 9:8, 1735-1780.

[62] Sharma A., Liu X., Yang X. (2018)., “Land cover classification from multi-
temporal, multi-spectral remotely sensed imagery using patch-based
recurrent neural networks”, Neural Networks, Volume 105, 346-355.

[63] Simonyan,K.Zisserman., (2014). “A Very deep convolutional networks for
large-scale image recognition”. In Proc. International Conference on
Learning Representations.

[64] Duchi, J., Hazan, E., and Singer, Y. (2011). “Adaptive subgradient methods for
online learning and stochastic optimization,” J. Mach. Learn. Res. 12,
2121–2159.

[65] Tielemanand, T., Hinton, G. (2012). “Lecture6.5 rmsprop:divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks Mach. Learn. 4(2), 26–31.

[66] Kingma, D., Ba J. (2014). “Adam: a method for stochastic optimization,”
arXiv:1412.6980.

[67] Ioffe, S., Szegedy C. (2015). “Batch normalization: accelerating deep network
training by reducing internal covariate shift,” arXiv:1502.03167.

[68] Cheng, G., Han, J., Lu, X. (2017). “Remote Sensing Image Scene
Classification: Benchmark and State of the Art”. Proceedings of the
IEEE, 105(10): 1865-1883.

80

[69] Abadi, M., Agarwal A., Barham P.,.. Yu Y, Zheng X. (2015). “TensorFlow:
Large-scale machine learning on heteroge- neous systems,” Software
available from tensorflow.org.

[70] Smith, S. L., Kindermans, P.J., Ying, C., Le, Q. V.., (2018). “Don’t decay the
learning rate, increase the batch size”, ICLR.

[71] Zhang, W., Tang, P., & Zhao, L. (2019). Remote Sensing Image Scene
Classification Using CNN-CapsNet. Remote Sensing, 11(5), 494.

81

CURRICULUM VITAE

Name Surname : Berk GÜNEY

Place and Date of Birth : Fatih 23/04/1994

E-Mail : berk__guney@hotmail.com

EDUCATION :

• B.Sc. : 2016, Kadir Has University, Faculty of Engineering

and Natural Sciences, Computer Engineering.

• M.Sc. : 2019, Istanbul Technical University,Informatics

Institute, Satellite Communication and Remote Sensing.

