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LAND COVER AND LAND USE CLASSIFICATION USING 
CONVOLUTIONAL NEURAL NETWORKS 

 
 

SUMMARY 

In recent years, deep learning (DL), the successor of neural networks (NNs), has 
become the state-of-the-art approach in areas particularly, computer vision (CV), 
speech recognition and natural language processing. (NN) is an established branch of 
artificial intelligence that has been brought to life due to factors such as high-
performance computing, algorithmic improvements and big data. In the field of remote 
sensing big data has also become the norm. Remote sensing is obtaining information 
about an object or phenomenon without making physical contact, especially the Earth. 
The definition includes the conventional areas of remote sensing, e.g. satellite and 
aerial photography. However, remote sensing also covers areas such as unmanned 
aerial vehicles (UAVs) and crowdsourcing (telephone images, tweets, etc.). Several 
satellites were launched in the last five years with high spatial resolution such as 
Sentinel-1A/B and Sentinel-2A within the European Copernicus program, and 
Landsat-8 within the U.S. Geological Survey (USGS) and the National Aeronautics 
and Space Administration. All of these data sets are free to access on operational basis. 
Land use and land cover classification is a standard remote sensing task where each 
image pixel is either associated with a class label indicating the physical material of 
the surface(land cover) or each object describing the socio-economic function of the 
land(land use). Therefore, land use objects are complex structures consist of many 
different land cover elements. Due to its complex nature, both spectral and spatial 
features need to be incorporated for a successful land use/land cover mapping. 
Experiments to combine both of these features based on the Conditional Random Field 
(CRF) model, Markov Random Field model and Composite Kernel (CK) method have 
been carried out. Nevertheless, in most cases, the process of extracting extensive 
number of features for the intent of supervised classification is time consuming and 
requires comprehensive knowledge to extract useful features. In addition to that, hand-
crafted methods that are used for classification mainly relies on low-level features and 
produce inadequate classification results. With the increasing amount of accessible 
data, application of deep learning for overcoming these challenges has become 
prominent. Compared to machine learning approaches such as Support Vector 
Machine (SVM) and Random Forest (RF) deep learning shows great promise with the 
use of big data. Current deep learning models are Deep Belief Net (DBN), Stacked 
Auto-Encoder (SAE), and Convolutional Neural Network’s (CNN). Most well-known 
deep learning model (CNN) shows great progress for processing of remote sensing 
imagery. (CNN’s) outperform shallow-structured machine learning tools in remote 
sensing applications such as object detection, segmentation and classification. 
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In this thesis, two pre-trained CNN models namely Inception-ResNet-V2 and 
Inception-v4 are used to classify scenes from satellite imagery. There are 20 classes 
with 700 images each such as airport, chaparral, dense residential, forest, freeway, golf 
course, ground track field, industrial area, intersection, meadow, medium residential, 
overpass, parking lot, rectangular farmland, river, runway, sparse residential, storage 
tank, tennis court and terrace. Scenes acquired from Worldview-3 satellite sensor are 
used to evaluate the performance of the network. Suggested networks reached %91.2 
and %87.2 accuracy over the 1000 test image. 
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DERİN EVRİŞİMSEL SİNİR AĞLARI İLE ARAZİ KULLANIMI VE ARAZİ 
ÖRTÜSÜNÜN SINIFLANDIRILMASI 

 

ÖZET 

Son yıllarda, sinir ağlarının halefi olan derin öğrenme, özellikle bilgisayar görüşü, 
konuşma tanıma ve doğal dil işleme gibi alanlarda son teknoloji bir yaklaşım haline 
gelmiştir. Sinir ağları yüksek performanslı bilgi işlem, algoritmik iyileştirmeler ve 
büyük veriler gibi faktörler ile hayata geçirilen yerleşik bir yapay zeka dalıdır. 
Geçtiğimiz yıllarda büyük veri yapıları uzaktan algılama konusunda da büyük önem 
kazanmıştır. Uzaktan algılama, özellikle Dünya olmak üzere fiziksel temas kurmadan 
bir nesne veya fenomen hakkında bilgi edinmektir. Bu tanım, geleneksel uzaktan 
algılama alanlarını, örn. uydu ve hava fotoğrafçılığını kapsamakla birlikte, insansız 
hava araçları (İHA) ve kitle kaynak kullanımı (telefon görüntüleri, tweetler, vb.) 
alanlarını da içerir. Son yıllarda yüksek çözünürlüklü gözlem uydularının sayısı 
giderek artmıştır. Avrupa Kopernik programında geliştirilen Sentinel uyduları ve ABD 
Jeolojik Etütleri (USGS) ile Ulusal Havacılık ve Uzay İdaresi bünyesindeki Landsat 
uydularının elde ettiği verilerin hepsine operasyonel olarak erişim serbesttir. Elde 
edilen bu büyük verilerin incelenmesi ve analiz edilmesi uzaktan algılama konuları 
için önem arz etmektedir. Özellikle şehir planlama, tarım rekoltesi hesaplama, iklim 
değişikliğinin incelenmesi, arazi kullanımı ve arazi örtüsünün sınıflandırılması 
konularında kullanılır. 
Uzaktan algılanmış verilerin yeryüzüne ait bilgiye dönüştürülmesinde kullanılan en 
önemli yöntemlerden biri görüntülerin sınıflandırılmasıdır. Sınıflandırma işlemi, 
benzer spektral özellikleri taşıyan nesnelerin gruplandırılmasıdır. Sınıflandırma işlemi 
için genellikle iki farklı yaklaşım kullanılır. Bu yaklaşımlar kontrollü ve kontrolsüz 
sınıflandırma olmak üzere ikiye ayrılır. Kontrollü sınıflandırma metodu eğitim veri 
seti kullanılarak sınıflandırmayı içerir. Bu yaklaşım ile daha yüksek doğruluklar elde 
edildiğinden en çok tercih edilen yöntemdir. Bunun yanı sıra geleneksel sınıflandırma 
yöntemleri olarak en çok benzerlik sınıflandırıcısı ve histogram eşitleme yöntemi 
örnek olarak verilebilir. Bu yöntemler el becerisi ile elde edilen özellikler içerdiğinden 
üzerinde çalışılmamış görüntüler ile iyi sonuç vermemekle birlikte sonuçların 
oluşturulması uzun zaman alabilir. Literatürde bugüne kadar uzaktan algılanmış 
görüntülerin sınıflandırılmasına yönelik daha karmaşık çeşitli algoritmalar 
geliştirilmiştir. Bu yöntemlerden bazıları destek vektör makineleri, karar ağaçları, 
markov rastgele alanı, koşullu rastgele alan ve bulanık mantık sınıflandırıcıdır. Fakat 
bu metotların büyük boyutlu eğitim verilerinden faydalanamadığı, kısıtlı eğitim verisi 
ile üzerinde çalışılmış görüntüler üzerinde etkili olduğu araştırmalarla ortaya 
konmuştur.  
Arazi örtüsü ve arazi kullanımı sınıflandırması, her görüntü pikselinin ya yüzeyin 
fiziksel malzemesini (arazi örtüsü) veya sınıfın sosyo-ekonomik işlevini tanımlayan 
her bir nesneyi (arazi kullanımı) gösteren bir sınıf etiketi ile ilişkilendirildiği standart 
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bir uzaktan algılama problemidir. Bu nedenle, arazi kullanım nesneleri birçok farklı 
arazi örtüsü elemanından oluşan karmaşık yapılardır. Karmaşık doğası nedeniyle, 
başarılı bir arazi örtüsü arazi kullanımı haritalaması için hem spektral hem de mekansal 
özelliklerin dahil edilmesi gerekir. Derin öğrenme algoritmaları bu iki özelliği de 
kullanarak sınıflandırma yapabilmesi açısından arazi örtüsü arazi kullanımı 
haritalaması için kullanılan en gelişmiş modellerdir. Artan erişilebilir veri miktarıyla 
birlikte,  derin öğrenme uygulamaları öne çıkmıştır. Destek vektör makinesi ve karar 
ağacı gibi makine öğrenme yaklaşımlarıyla karşılaştırıldığında, derin öğrenme 
uygulamaları büyük verilerin kullanımı ile büyük umut vaat etmektedir. Mevcut derin 
öğrenme modellerinden Derin İnanç Ağları, Yığınlaşmış Otomatik Kodlayıcı ve 
Evrişimsel Sinir Ağları uzaktan algılama problemlerinde etkin olarak 
kullanılmaktadır. Görüntü sınıflandırmada en iyi bilinen derin öğrenme modeli olan 
Evrişimsel Sinir Ağları  uzaktan algılama görüntülerinin işlenmesi için de büyük 
ilerleme göstermektedir. Evrişimsel Sinir Ağları nesne algılama, segmentasyon ve 
sınıflandırma gibi uzaktan algılama uygulamalarında sığ yapılı makine öğrenme 
araçlarından daha iyi performans göstermektedir. 
Bir derin öğrenme mimarisi olan Evrişimsel Sinir Ağları, özellikle görüntü 
sınıflandırmada kullanılır. Evrişimsel sinir ağları, eğitilebilen birçok katmandan 
oluşmaktadır. Çok katmanlı mimarisi sayesinde görüntülerden öznitelik çıkarma 
konusunda oldukça başarılıdır. Her katmanın kendine ait öznitelik havuzlama katmanı, 
filtre banka katmanı ve doğrusal olmayan katmanı bulunmaktadır. Filtre banka 
katmanı farklı öznitelikler çıkarılması için birçok çekirdek bulundurur. Havuzlama 
katmanında elde edilen öznitelik haritaları tek tek ele alınır. Her harita maksimum 
değerinin veya komşu değerinin ortalamasının elde edilmesini sağlamaktadır. Görüntü 
önce parçalara ayrılır ve her parçaya filtre uygulanır. Filtre işleminden sonra görüntüde 
küçülme meydana gelir. Bu işlem sonucunda elde edilen pikseller anlamlandırılarak 
sınıflandırma problemi çözülmeye çalışılır. 
Evrişimsel Sinir Ağları mimarileri giderek daha karmaşık ve derin bir yapıya 
evrilmiştir. Yann Lecun tarafından geliştirilen LeNet modern anlamda görüntü 
işlemede kullanılan ilk derin mimariye sahip evrişimsel sinir ağıdır. Akabinde 2012 
yılındaki ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) 
yarışmasında Alex Krizevhsky tarafından geliştirilen AlexNet görüntü sınıflandırma 
ve tanıma alanında büyük bir başarı sağlamıştır. Bu başarının ardından Evrişimsel 
Sinir Ağları görüntü işlemede sıkça kullanılmaya başlamıştır. İzleyen yıllarda 
ILSVRC yarışmasında önde gelen mimariler VGGNet, ResNet ve GoogleNet 
olmuştur.  
Oldukça derin mimariye sahip modern evrişimsel sinir ağlarını spesifik bir 
sınıflandırma problemi için sıfırdan eğitmek uzun hesaplamalar gerektirir. Fakat çok 
katmanlı yapısı sayesinde farklı verilerle eğitilmiş ağlar başka bir sınıflandırma 
problemi için kullanılabilir. Nesnelerin oluşturduğu çizgiler ve köşeler gibi kavramlar 
ağların aşağı katmanlarında öğrenilir. Yukarı katmanları ise yeniden eğitilerek 
istenilen sınıflandırma problemine uyarlanır. Böylece etiketli veri bulmanın zahmetli 
olduğu alanlarda başarılı sonuçlar elde edilebilir. Günümüzde açık kaynak olarak 
kullanılabilen ağlar ImageNet veriseti ile eğitilmiş olup bir çok farklı alanda 
kullanılmak üzere ince ayar yapılabilir. Uzaktan algılama problemlerinde literatüre 
bakıldığında önceden eğitilmiş ağların nesne tanıma ve sınıflandırma gibi konularda 
başarılı sonuçlar verdiği görülmüştür. 

Bu tez çalışmasında, Inception-ResNet-V2 ve Inception-v4 adlı iki önceden eğitilmiş 
Evrişimsel Sinir Ağı modeli,  uydu görüntülerini sınıflandırmak için kullanılmıştır. 
Sınıflar havaalanı, yoğun yerleşim alanı, orman, çevre yolu, golf sahası, arazi yolu 
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alanı, sanayi bölgesi, kavşak, çayır, orta ölçekli yerleşim alanı, üst geçit, otopark, 
dikdörtgen tarım arazileri, nehir, pist, seyrek yerleşim alanı, depolama tankı, tenis 
kortu ve teras olmak üzere 20 adettir. Eğitim verisi olarak her sınıf için 700 görüntü 
kullanılmıştır. Worldview-3 uydu sensöründen elde edilen sahneler ağın performansını 
değerlendirmek için test seti olarak kullanılmıştır. Önerilen ağlar, 1000 test 
görüntüsünde %91.2 ve %87.2 doğruluğa ulaşmıştır. 
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1.  INTRODUCTION 

Recent years in remote sensing field can be named as the era of big data. Volume and 

the availability of the remote sensing data has increased immensely. Due to large scale 

of these data sets new challenges have risen.  Land use land cover classification has 

always been an important task in remote sensing field, providing crucial information 

for applications such as urban planning and precision agriculture. This can be done by 

analyzing remote sensing imagery. 

The task of classification in the context of remote sensing imagery is utilizing labeled 

samples to determine which class does each pixel belong to. There has been wide range 

of studies on analyzing each individual pixel of the images and classify them based on 

their spectrum. In this framework, mainly used approaches are support vector 

machines(SVMs)[1] and decision trees[2]. However, these techniques are not effective 

in a large-scale due to the fact that majority of satellite imagery does not use high 

spectral resolution sensors. Without understanding the shape of the objects, separating 

classes entirely by their spectrum is difficult. On the other hand, more advanced 

techniques incorporate information from a several neighboring pixels to boost the 

classifiers’ performance, specified as spectral-spatial classification. In this context 

studies based on the Conditional Random Field (CRF)[3] model, Markov Random 

Field[4] model and Composite Kernel (CK)[5] method have been carried out. However 

these methods only show promise with the data being analyzed. Generalization of the 

proposed solutions are questionable. Also the process of extracting extensive number 

of features for the intent of supervised classification is time consuming and requires 

comprehensive knowledge to extract useful features. On the other hand, deep learning 

approaches learn from the data itself, thus replacing the expertise of feature 

engineering. Deep learning models outperform shallow-structured approaches in 

remote sensing applications such as object detection, segmentation and classification. 

Convolutional neural networks (CNNs) are accepted deep learning models that extract 

contextual image features by utilizing stack of learned convolution filters. Inspired by 

the human visual cortex CNNs consist of multiple layers. First part of the CNN is 
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usually referred as feature extractor and last part is called as multilayer 

perceptron(MLP). Final layer assigns class labels and compute probabilities of a given 

class. Other layers are mostly convolutional filters. For instance, to analyze grayscale 

imagery, CNNs utilize two dimensional (2-D) convolutional filters and as for red-

green-blue RGB imagery (3-D) convolutional filters are used. After training phase, 

filters learn to elicit hierarchical features straight from the input data, in contrast to 

machine learning models that use “hand-crafted” features. Architecture and the details 

of the CNN models will be discussed in the chapters later on. 

CNNs prevailed in tasks such as classification and object detection. Beginning in the 

1990’s, LeCun et al[6]. designed LeNet for reading zip codes. It created an impact in 

the image processing community. Krizhevsky et al.[7] created a deep CNN which won 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. Next year 

Zeiler and Fergus[8] developed ZFNet, which was based on AlexNet architecture with 

tweaked parameters and won (ILSVRC). In 2014, Szegedy et al[9] created GoogLeNet 

also known as (Inception-v1) which had only 4 million parameters compared to 

AlexNet(60 million) won (ILSVRC). ResNet designed by He et al.[10] introduced 

residual connections which improved the training speed remarkably. In 2016, Szegedy 

et al introduced residual connections in conjunction of Inception network called as 

Inception-ResNet which significantly improved recognition performance[11].  

Transfer learning is the practice of reusing a trained algorithm on a comparable dataset. 

As humans we don’t learn to recognize new images by analyzing thousands of similar 

ones. Concepts of lines and curves comes first. Idea behind transfer learning is quite 

similar. Transferring low-level features from a pre-trained model and tune the filter 

weights to identify other different patterns. Thus, eliminating the heavy work of 

training from the scratch with thousands of images. 

In the remote sensing field, Marmanis et al[12] utilized this concept by using a CNN 

pre-trained on the ImageNet dataset and extracted features of orthoimagery from the 

last layer. Donahue et al.[13] displayed that the crucial information is obtained from 

the deeper layers. With a similar approach Salberg[14] detected seal pups in aerial 

imagery with high accuracy. Other transfer learning applications of remote sensing are 

as follows; Othman et al[15] trained ILSVRC-12 challenge data set and used transfer 

learning on UC Merced Land Use[16] dataset. Iftene et al.[17] used ImageNet data set 

on CaffeNet and GoogLeNet models then applied results to WHU-RS[18] data set 
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consist of very high resolution imagery. Ghazi et al.[19] and Lee et al.[20] used a 

combination of pre-trained networks such as GoogLeNet, VGGNet and AlexNet on 

plant identification. 

 Purpose of Thesis 

In recent years expansion in the satellite industry led to a vast amount of available 

satellite imagery of the earth. These imagery provide critical information for many of 

remote sensing tasks including land cover and land use analysis. Traditional methods 

for the classification of image scenes are no longer applicable for the analysis of big 

data. These methods often rely on handcrafted features and therefore on the feature 

engineer. Also it takes significant amount of time to create features that can be 

generalized over the unseen data. 

One of the subcategories of machine learning discipline, deep learning became a hot 

topic for computer vision and remote sensing field. Stacked auto-encoders (SAEs) 

deep Boltzmann machines (DBMs), deep belief networks (DBNs), and convolutional 

neural networks (CNNs) are the most popular deep neural network architectures used 

in remote sensing applications. These networks can extract reliable features directly 

from data without any need for feature engineering. Research shows that CNNs are the 

most capable feature extractors for classification problems. Although the most popular 

networks are designed and trained to recognize daily internet images, these networks 

are also capable of recognizing geospatial objects, land cover and land use classes  in 

the satellite images.  

Purpose of this thesis is to investigate state-of-the-art CNN models for land cover and 

land use classification and produce accurate results that can be generalized over the 

unseen data. 

 Scope and the Organization of the Thesis  

The thesis is organized as follows: A detailed literature overview on land cover land 

use classification with both conventional techniques and machine learning methods is 

discussed in Chapter 2. Theory and details of deep learning as well as popular deep 

networks are presented in Chapter 3. The experiments conducted on scene 

classification are given in Chapter 4 and conclusions are presented in Chapter 5. 
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2.  LITERATURE REVIEW ON LAND COVER AND LAND USE 

CLASSIFICATION 

Land cover and land use information is a crucial aspect of remote sensing. Information 

derived from remote sensing imagery is fundamental to numerous environmental and 

socio-economic applications such as urban and regional planning and natural resource 

management. Beginning in the 1980’s, various methods have been developed to 

generate information from remote sensing imagery. Processes of classification and 

image interpretation have been introduced. Between 1980’s and 1990’s, almost all 

classification methods used image pixel as a primary unit, labeling each pixel with a 

single land cover and land use class. However, pixel based classification methods 

brought challenges as the pixel may contain more than one land cover land use type. 

Thus, in late 1990’s object based classification methods have been developed. This 

method groups several pixels with homogeneous attributes into an object and each 

object is then considered as the basic unit rather than pixels. As the number of very 

high resolution sensors (i.e. IKONOS, Quick bird ) increased, images started to have 

more intra-class spectral variability. This resulted in unsatisfactory results with 

classifiers that mainly utilize spectral variables. Therefore, spatial component of the 

image also needed to be used. Term “spatio-contextual” image classification is then 

addressed to describe the relationship between target pixel and its neighboring pixels. 

 Pixel-Based Image Classification 

Pixel-based approaches assume that each pixel belongs to single land cover and land 

use type [21]. Pixel based classifiers can be grouped as supervised and unsupervised 

classifiers. Unsupervised classifiers divide remote sensing imagery into a number of 

classes based on their pixel values without using any training data. K-means algorithm 

[22] and Iterative Self-Organizing Data Analysis (ISODATA) technique are examples 

of widely used unsupervised classifiers. On the other hand, for supervised 

classification, image analyst has to select training samples and compare those samples 

to the spectral properties of the target image. Then, analyst labels pixels to the 
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appropriate class type according to decision rules. Maximum Likelihood Classifier 

(MLC) [23], Minimum Distance-to-Means Classifier [24], K-Nearest Neighbors 

Classifier [25] are commonly used supervised classifiers. 

 Sub-Pixel Based Image Classification 

Assumption of each pixel belonging to a certain class is often leads to poor 

performance in classification accuracy with medium resolution imagery. As a better 

alternative, sub-pixel based approach gives each pixel partial memberships to all 

classes so that the corresponding areal distribution of each class can be predicted 

respectively. Major sub-pixel based models are fuzzy classification [26], regression 

modeling [27] and spectral mixture analysis [28]. 

 Object-Based Image Classification 

In comparison to pixel and sub-pixel based approaches object-based models consider 

the objects as the basic unit of analysis. Objects are comprised of several individual 

pixels that have homogeneous attributes. These image objects are generated with a 

process addressed as image segmentation. With image segmentation objects are 

formed using spatial, contextual and spectral information. The differences between 

pixel, sub-pixel and object based approaches are given in (Table 2.1). 

 The differences between pixel, sub-pixel and object based approaches. 
Classification of  Techniques Attributes Examples of Classifiers 

 

 

Pixel-based Techniques 

 

Each pixel is labeled as a single 

land use land cover type. 

Unsupervised (e.g. k-

means, ISODATA) 

Supervised (e.g. 

Maximum likelihood) 

 

 

Sub-pixel based Techniques 

Each pixel is considered mixed, and 

the areal distribution of each class 

is predicted. 

 

Fuzzy classification, 

spectral mixture 

analysis, regression 

modeling 

 

 

Object-based Techniques 

 

Objects, instead of individual 

pixels, are considered as 

the basic unit. 

 E-cognition, ArcGIS 

Feature Analyst 
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 Spatio-Contextual Image Classification 

Spectral classifiers have advantages in terms of simplicity and computational load. 

However not all land cover land use types can be classified using spectral information 

[29]. In order to overcome these challenges, spatial and contextual information has to 

be utilized as well. Markov Random Field (MRF) model [30] is one of the spatio-

contextual remote sensing image analysis techniques. MRF is a  graphical model that 

has been applied in a wide range of fields from computer vision to physics. MRF’s can 

be used to analyze the local and global properties of a remote sensing imagery, and 

evaluate the spatial autocorrelation between pixels through mathematical means. 

Increasing number of studies shows that MRF-based classification methods produce 

substantial results compared to conventional non-contextual classifiers [31]. Variety 

of MRF-based classification techniques have been used in land cover and land use 

classifications and showed promising results, however according to many remote 

sensing scientists, the concepts of MRF are considered cumbersome and their 

implementations include challenging computational difficulties. 

Traditional classification methods require high level of expertise and usually work 

well with the data being analyzed but produces poor results with the unseen data [32]. 

Thus, the generalization of the extracted features is questionable. However, with 

machine learning approaches, contribution of the image analyst is reduced as the 

features are extracted directly from the data itself. The classification problem with 

machine learning approaches is discussed in the next section. 

 Machine Learning in Remote Sensing  

Machine learning is one of many sub-fields of artificial intelligence (AI) and has 

become very well-known in the last decade. Although AI has other sub-fields aside 

from machine learning, the two are used interchangeably. Machine learning systems 

are created by analyzing lots of examples and devise rules to predict outcomes for 

unseen data(Figure 2.1). Machine-learning technology has laid the foundation of 

numerous developments of modern society such as tailoring advertisements, relevant 

web searches and content filtering on social media. It is getting more and more 

available in consumer products such as smart phones and cameras. Machine learning 

systems can be classified under three sub-categories; systems that depend on human 
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supervision or not (supervised, unsupervised), systems that learn incrementally as they 

go (online learning) and systems work solely by comparing data points to newer ones 

(instance-based learning). 

 

Figure 2.1 : Difference between classical programming and machine learning. 

2.5.1 Supervised learning 

Machine learning systems may require supervision to a certain extent. Idea is to feed 

labeled samples in order to generate features from the given data. Regression and 

classification are two major tasks that require supervision (Figure 2.2). Regression 

stands for predicting a target numeric value based on set of features and it is measured 

by root mean square error. However, in classification goal is to predict a label. 

Therefore classification is measured by accuracy. In the field of remote sensing, 

Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF) and 

Neural Networks (NN) are well established supervised algorithms that are used for 

classification problem. 

 

 

Figure 2.2 : Difference between classification and regression. 

2.5.2 Support vector machines  

For parametric classification, goal is to analyze feature space values and their 

distribution of each class. On the contrary, SVM focuses solely on the training samples 
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and the optimal boundary between classes. However, not all the available training 

samples can be used to describe and specify the separating hyperplane. The optimal 

hyperplane is determined by a subset of feature vectors that lie on the margin named 

as support vectors. Main objective in SVM is to find the optimal boundary, which 

increases the margin, or separation between the support vectors(Figure 2.3a. When the 

separability is nonlinear (Figure 2.3b), a nonlinear transform can be made to a newer 

space with greater dimension in order to achieve linear separability (Figure 2.3 c). This 

operation is called as kernel trick. For this operation transform function is not required. 

Merely kernel function k is needed. However, choosing the right kernel function 

presents challenges in terms of optimal results. Studies show that different kernels such 

as polynomial and radial basis function applied on SVM-based classification produced 

different results in satellite images [33]. For classes that are not separable, parameter 

value C is specified by the user to create a soft margin for the decision boundary. 

Higher C values often lead to poor results in terms of algorithms ability generalize. 

Also, SVM classifier is naturally binary, therefore it can only identify a single 

boundary between two classes. This problem can be tackled by applying classifier to 

each possible combination of classes. By doing so, computational time is expected to 

increase exponentially as the number of classes increase. Additionally, SVMs are 

highly affected by noisy data; which are commonly encountered in remotely sensed 

imagery.  

 

 

 
(a)     (b) 
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(c) 

Figure 2.3 : Non-linear transform and optimal hyperplane for SVM. 

 

There are numerous studies regarding the use of SVM’s in the field of remote sensing 

especially for the problem of land cover and land use classification.  Huang et al. [34] 

used Landsat TM and Landsat ETM+ images to detect forest cover change. The 

classification is carried out using SVM and produced approximately 90% accuracy. Li 

et al. [35] proposed an SVM-based classifier using high resolution imagery from the 

QuickBird sensor. A scene segmentation algorithm was incorporated with the SVM 

object classifier yielded better results. It is also shown that the SVM classifier is highly 

reliant on the segmentation process, a typical disadvantage of object-based classifiers. 

Another study carried out by Brenning, [36]  used eleven different classifiers to detect 

rock glacier using Landsat and SRTM. SVM-based method did not show promising 

results compared to other methods. In conclusion, SVM classifiers can show decent 

results with limited amount of data due to support vector concept relies on small 

number of data points to define a classifier’s hyperplane. However, selection of 

parameters and kernel functions present challenges that often lead to “trial and error” 

approach. 

2.5.3 Decision tree classifier 

Conventional classifiers employ neural and statistical approaches to the classification 

problem. All available features are used to assign each pixel to an appropriate class. 

However, DT uses a sequential approach for label assignment. Chain of simple 

decisions is made based on the results of sequential tests instead of one complex 

decision. The data can be split depending on the threshold value. Iteration through 
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nodes is decided depending on the value of a certain band is above or below of the 

threshold value.  Thus, the model logic can be described as a set of if–then rules given 

in (Figure 2.4). Once the model is constructed, classification is swift due to no further 

complex mathematics is needed. Decision tree classification methods have been used 

successfully for a wide range of classification problems including the remote sensing 

field. Otukei and Blaschke [37] compared support vector machine, maximum 

likelihood and decision tree based techniques for the assessment of land cover change 

using Landsat TM and ETM+ data and found decision tree based methods produced 

the best results. Punia et al. [38] classified IRS-P6 AWiFS data using decision tree 

classifier and obtained very high accuracy. Challenges with DT’s include over fitting 

and the possibility of generating a non-optimal solution. The former problem can be 

tackled by a process called as pruning the tree which means removing one or more 

layers of splits (i.e. branches). However, according to Pal and Mather [39] pruning 

reduces the accuracy of classifying the training data but often increases the accuracy 

of unseen data. Also, they’ve reported that when hyperspectral data are used, the 

performance of DT classifiers declines as the number of features increases. 

 

 
Figure 2.4 : Sample decision tree.
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2.5.4 Random forest classifier 

Random forest is comprised of many DT’s in order to achieve better results than a 

single DT. A method of “voting” is applied to all trees to obtain the label for each 

instance. Due to difference of error correlation for each tree final result is more 

accurate. This idea can be extended to each tree having own subset of training data 

thus, minimizing correlation and making the ensemble more reliable. This technique 

is increasingly being applied in the field of remote sensing especially in land-cover 

classification using multispectral and hyperspectral satellite sensor imagery[40] [41] 

[42]. However, most studies that have used random forests have few land-cover classes 

and focused on small study areas [43][44]. Lawrence and Moran [45] compared the 

performance of a variety of machine-learning classification algorithms, using 30 

different data sets. They have reported that RF had the highest average classification 

accuracy of 73.19%. 

 

2.5.5 Artificial neural networks  

Inspired by the human brain, concept of ANN’s were first introduced back in 1940’s 

by a neurophysiologist Warren McCulloch and a mathematician Walter Pitts. They 

have mathematically modeled biological neurons to perform intricate computations. A 

neuron is essentially an input/output device transmitting binary coded information. In 

1957,  Frank Rosenblatt introduced perceptrons as the foundation of modern ANN 

architectures. Instead of binary values, perceptrons use numbers as input and output. 

It is based on linear threshold unit (LTU) which computes weighted (w) sum of inputs 

(x) and utilizes a step function to that sum and outputs the result, given in equation 2.1, 

equation 2.2 and (Figure 2.5); 

 

! = #$%$ + #'%' + …  #(%( = #). % (sum of the inputs),         (2.1) 

ℎ,(%) = /012	(!) = /012	(#). %) (step function of the sum and the output)   (2.2)
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Figure 2.5 : Linear threshold unit.  

 

For a simple linear binary classification  problem, a single LTU can be utilized. 

Combination of inputs is computed and depending on the threshold value output can 

be a positive or a negative class similar to a linear-SVM. Appropriate values for 

weights #$, #' and #5 are calculated by training the algorithm. Perceptrons are trained 

simply by reinforcing connection weights that lead to correct output. Each training 

instance is fed through the network and a prediction is made. For every output neuron 

that contributed to the right prediction weights are updated; 

 

#6,789$ = 	#6,78 + ℷ;<=7 − <7?%6,     (2.3) 

where; 

#6,7 is the connection weight between ith input neuron and the jth output neuron, 

k is the step number, 

<=7 is the output of the jth output neuron of the ongoing training instance, 

yj is the target output of the jth output neuron for the ongoing training instance, 

%6 is the value of ith input of ongoing training instance, 

ℷ is the learning rate. 

 

Although perceptrons showed great promise, they failed in XOR classification 

problem. This occurs when network tries to predict XOR logic gates given two binary 

inputs. An XOR function needs to return false if two inputs are equal and true if they 

are different.  However this problem is tackled by stacking multiple perceptrons. 
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Multi-Layer Perceptrons (MLP) are consist of one input layer, multiple LTU’s referred 

as hidden layers and one layer of LTU’s addressed as output layer. Input layer and 

hidden layers have a fully connected bias neuron (Figure 2.6). MLP is trained with an 

algorithm called back propagation. First, algorithm feeds each training instance to the 

network and output of each neuron is computed. This process is called as forward pass. 

After forward pass, output error of the network is calculated. Then algorithm tracks 

error contributions of each neuron until it reaches to the input layer. By propagating 

backwards in the network, error gradient of all connection weights are effectively 

measured so that tweaks can be made on the weights. This final step of the back 

propagation is referred as Gradient Descent. MLP’s used in variety of remote sensing 

challenges including land cover and land use classification [46][47]. 

 

 

Figure 2.6 : Muli-Layer Perceptron.  
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3.  DEEP NEURAL NETWORKS 

In recent years, deep learning is one of the fastest growing areas of research. There are 

numerous implementations in fields such as computer vision, speech recognition, 

language processing and remote sensing. As the successor of neural networks, deep 

learning models share the fundamental concepts with NN’s, however to be called deep, 

network has to have more than two hidden layers. As the number of hidden layers 

increase, higher-level of features can be extracted. However, to make use of this deep 

architecture number of training samples has to increase. Thus, computational cost of 

training a deep network from scratch is too high and could take several months. 

Although, recent advances in big data and GPU technology has helped deep learning 

approaches to be more practical. 

Multi-layered architecture of deep networks can extract efficient features from raw 

data without the need of significant feature engineering. Thus, deep learning models 

became the state-of-the-art when it comes to classification and object detection. 

Various studies have been conducted in remote sensing applications using deep 

learning based models [48][49][50][51][52][53][54][55]. As of today, there are four 

major deep learning architectures. These are the deep belief networks (DBNs), and 

recurrent neural networks (RNN) autoencoders (AE) and convolutional neural 

networks (CNN). Following sections discuss these architectures in detail. 

 Autoencoders  

Autoencoder is an unsupervised neural network meaning that it can extract features 

from unlabeled data. Autoencoders obtain compact representations of the input data 

referred as codings. Codings are reduced in dimension compared to input data, making 

autoencoders a dimensionality reduction tool which is needed for many remote sensing 

applications. They also can be used as generating new data from the training data. This 

is called a generative model. Autoencoders comprised of two parts; an encoder and a 

decoder (Figure 3.1). Encoder also referred as the recognition network, transforms 

input data to latent representations. Decoder, referred as the generative network 
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generates outputs from these representations. Autoencoder architecture is very similar 

to MLP’s but the number of inputs is equal to number of neurons in the output layer. 

Outputs are also called as reconstructions and when outputs are different from the 

inputs, reconstruction loss is employed to tune the model. An encoder with one hidden 

layer can be represented as; 

ℎ = @(%) = A(B% + C	),                         (3.1) 

x’ = (W’x +C’),                (3.2) 

ℒ	= @E[@(%)],                (3.3) 

where f is the encoder function, h is the latent representation or code, g is the decoder 

function that maps the output x’, W’ is decoding weight,	C’ is the decoding bias and ℒ 

is the loss function of x and x. 

 
Figure 3.1 : Autoencoder.   

3.1.1 Stacked autoencoders 

Autoencoders that have multiple hidden layers are called stacked autoencoders or deep 

autoencoders given in (Figure 3.2). By adding more layers autoencoder can learn 

intricate codings. Stacked autoencoders are especially used for image analysis in 

remote sensing [56][57]. 

 

Figure 3.2 : Stacked Autoencoder.  



17 

3.1.2 Sparse autoencoders 

For more complex structures, sparsity constraint can be added to the hidden units 

leading to better feature extraction. This reduces the number of active neurons in the 

coding layer and forces autoencoder to represent each input with less activation. Mean 

average activity of each neuron in the coding layer is calculated and neurons that are 

active above mean average are penalized by adding sparsity loss. General approach is 

to use Kullback–Leibler divergence. The following equations show the divergence 

between two discrete distributions P and Q ; 

 

HIJ = (	K	|	M	) = ∑K	(O) log S(6)
T(6)

,     (3.4) 

HIJ	(2|U) = 2 log V
W
+ (1 − 2)YZA $[V

$[W
,    (3.5) 

 

where p is the target average activation value and q is the mean activation of all 

neurons. The equations show the divergence between target sparsity p and the actual 

sparsity q. 

 Deep Belief Networks and Restricted Boltzmann Machine 

Restricted Boltzmann machine (RBM) is an undirected graphical model comprised of 

a hidden layer and a visible layer. In contrast to autoencoders or sparse autoencoders, 

there are no connections in hidden or visible layers. Energy function of the RBM is 

given by  

   

\(], ℎ) = 	−∑^6 ]6	 − 	∑ _7 ℎ7 −	∑ ]6ℎ7#6,76,7 ,                (3.6) 

 

where #6,7 is the weight between visible unit  O	and hidden unit `, ^6, _7 are their biases 

and 	]6 , ℎ7 shows the states of O and `. 

Two or more RBM’s are stacked together forming DBN (Figure 3.3). DBNs have been 

used successfully in remote sensing problems such as scene classification[58], object 

recognition[59] and change detection[60]. 
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Figure 3.3 : A DBN with two RBM’s. 

 Recurrent Neural Networks  

In contrast to feed-forward networks discussed earlier on, RNN’s have connections 

pointing backward. RNN’s have a recurrent hidden state that activates at each step 

depending on the previous step (Figure 3.4). Each recurrent neuron has one weight for 

the inputs x(t) and another for the outputs of the previous time step, y(t–1).  If we 

represent these weights with Wx and Wy, output of a single recurrent neuron can be 

shown as in equation 3.7. 

<()) = 	Φ	;%())
b .Bc +	<()[$)

b .Bd + _?,	        (3.7) 

where Φ	the activation function and b is is the bias term. Output of a recurrent neuron 

is a function of all the inputs from previous time steps. A single recurrent neuron, or a 

layer of recurrent neurons can be called as a basic memory cell. 

 

Figure 3.4 : Backward connection of RNN.   
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As the network propagates, weights are applied on top of itself and causing memory 

inputs to gradually fade away. When traversing an RNN, data goes through 

transformations and after each step some part of the information is lost. Subsequently, 

the RNN’s state does not contain any of the first inputs. To address this issue, Sepp 

Hochreiter and Jürgen Schmidhuber introduced LTSM (Long Short-Term Memory) 

cell [61].LSTM is a recurrent cell and its state is described with two vectors c(t) and 

h(t). Main idea is that the network needs to learn which memories to store and which 

memories to throw away. As shown in (Figure 3.5), the long-term state c(t-1)  traverses 

the network and goes through the forget gate, drops some memories, and then it adds 

some new memories that were selected by an input gate. Following the addition 

operation, the long-term state is fed to the tanh function, and  the result is filtered by 

the output gate. Remaining layers are gate controllers. Gate controllers use the sigmoid 

logistic activation function therefore outputs range from 0 to 1. Their outputs are fed 

to element-wise multiplication operations, so if they output 0’s, gate is closed, and if 

they output 1’s, gate is opened. Each gate serves different purposes. Forget gate 

controlled by f(t) determines which elements of the long-term state are to be removed. 

Input gate controlled by i(t) determines which elements of g(t) should be added to the 

long-term state. Finally, the output gate controlled by o(t) determines which elements 

of the long-term state should be read. 

 

Figure 3.5 : LSTM cell.  
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Computations of LSTM elements (Figure 3.5) are given below, 

 

O()) = e;Bc6
b . %()) + 	Bf6

b . ℎ()[$) + _6?		         (3.8) 

@()) = e(Bcg
b . %()) +Bfg

b . ℎ()[$) +	_g)           (3.9) 

Z()) = 	e(Bchb . %()) + 	Bfh
b . ℎ()[$) + _h)          (3.10) 

A(0) = tanh	(Bcmb . %()) + 	Bfm
b . ℎ()[$) +	_m)              (3.11) 

n()) = 	 @())⨂n()[$) + O())⨂A())      (3.12) 

<()) = 	ℎ()) = Z())⨂tanh	(n()))      (3.13) 

 

RNN’s are best suitable for sequential data like time series. RNN’s are generally used 

for stock price prediction and natural language processing. In remote sensing, it is used 

for hyperspectral and multi-temporal image classification [61][62]. 

 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are developed from studying brain’s visual 

cortex, and they have been implemented in various image recognition applications 

such as autonomous cars, image search services, automatic video classification 

systems. Furthermore, CNNs are not limited to visual tasks; they also show promise at 

natural language processing and voice recognition. Recent advances in computational 

power and the amount of available training data, CNNs have become a  hot topic in 

the deep learning community. LeNet-5 architecture designed  by LeCun et al.   has laid 

the foundation of many different architectures we use today. It has been used to 

recognize handwritten numbers. 

 

Figure 3.6 : LeNet architecture.  
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Convolution neural networks share the fundamental operations with any other neural 

network such as receiving an input, making dot productions and follow that up with a 

non-linear activation function in order to learn weights and biases. When it comes to 

classifying images fully-connected networks(MLP’s) present challenges. In order to 

classify an image with an input size of 64x64x3 fully connected layers need 12288 

weights in the first hidden layer. Parameters will increase as the input size gets bigger. 

Networks having large number of parameters likely to train slower and chances of 

overfitting are increased.  CNN’s exploit  input images by localizing the reception of 

features. These features in image are spatially close to each other and non-dynamic. 

This process capitalize on the spatially-local correlated neighboring fields addressed 

as receptive fields by implementing a local connectivity pattern between neurons of 

adjacent layers shown in (Figure 3.7). Furthermore, except for their receptive fields, 

all neurons of a layer are identical to one another. Thus, they share the same weights. 

This reduces the number of weights to be learned, leading to reduced number of 

parameters, lower computational cost and lesser amount of training data required to 

train the neural network. CNN is composed of three different layers referred as 

convolutional layer, pooling layer and the fully connected layer. 

 

 

Figure 3.7 : Comparison of input layers: Fully connected layer vs  convolutional 

layer.Size of the local receptive field is 5x5. 

3.4.1 Convolutional layer 

Convolutional layer is the most crucial aspect of the CNN. In the first convolutional 

layer, each neuron is connected to the pixels in their receptive fields (also referred as 

convolutional filter or kernel) of the input image.  In the second convolutional layer, 

each neuron is connected to neurons located within a small rectangle in the first layer. 
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By using this architecture, network focuses on low-level features in the first hidden 

layer, then compiles them into higher-level features in the following hidden layers. In 

real world images, this hierarchical structure is prevalent, which is why CNNs are 

accurate in image recognition  tasks. Convolution of the input image matrix and the 

filter matrix gives the feature map (Figure 3.8). When the filter does not perfectly fit 

the input image, padding is used. In order to fit the input image, image matrix is padded 

with zeros(zero-padding). Input image matrix is often times larger than the filter 

matrix. Therefore,  filter has to be shifted over the image matrix. Number of pixels 

shifts over the input matrix is called the stride. Convolution of an image with different 

filters can perform operations such as blur, edge detection and sharpening. 

 

Figure 3.8 : 2-dimensional convolutional example with filter size 3x3 and stride 1 

with zero padding. 

After each convolution layer, an activation function adds non-linearity to the model 

and decides which neuron will be fired. There are various activation functions (Figure 

3.9). Most commonly used one is rectified linear unit (ReLU). 

 

Figure 3.9 : Activation functions. 
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3.4.2 Pooling layer 

Pooling layer reduces spatial size of the network by sub-sampling the input image. 

Sub-sampling reduces the number of parameters, computational load and the 

memory usage. This leads to lower risk of over fitting in the network. In a pooling 

layer, each neuron located within a filter is connected to the outputs of the neurons in 

the previous layer, similar to convolutional layer. However, a pooling neuron has no 

weights. It aggregates the inputs using an aggregation function such as the maximum 

or average pooling (Figure 3.10). Max-pooling takes out the largest element from a 

pool. On the other hand, average pooling takes out the average of the pool. By 

sliding the filters through the input; the maximum or the average parameter is taken 

out at every stride, and the rest is dropped. This leads to a down-sampled network. 

 

 

Figure 3.10 : Max pooling and average pooling operations with a filter size 2x2 and 

stride 2. 

3.4.3 Fully connected layer 

In this layer, feature map matrix will be converted to vectors and combined together 

to create a model. Fully connected layers connect every neuron in one layer to every 

neuron in another layer. The last fully-connected layer uses an activation function for 
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classifying the generated features of the input image into various classes based on the 

training dataset. 

 CNN Architectures 

A typical CNN architectures consist of several stacked convolutional layers with each 

one accompanied by a ReLU layer and then several pooling layers (Figure 3.11). As 

the image progresses through the network it gets smaller and smaller but it also 

typically gets deeper and deeper due to increase in feature maps. Feedforward neural 

network is added at the top of the stack, and the final layer outputs the class predictions 

(softmax layer). Throughout the years, derivatives of this fundamental architecture 

have been developed, leading to significant advances in the field. Measure of this 

progress is the error rate in competitions. ImageNet project is a large visual database 

created for deep learning research. The ImageNet project runs an annual software 

contest called as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

where the goal is to design the highest performing classifier algorithm. It is the 

measure of state-of-the-art deep networks. Various visual recognition tasks such as 

semantic labelling, object recognition and scene classification are carried out using 

ImageNet dataset as benchmark. In this section, most widely used CNN architectures 

are introduced with their novel approaches. 

 

 

Figure 3.11 : Typical CNN architecture. 

3.5.1  LeNet-5 

LeNet-5 architecture[6] is the most widely known CNN architecture. LeNet-5 laid the 

foundation for the deeper architectures that came after. However, at the time deep 

neural networks were not easy to implement due to hardware restrictions and shortage 

of vast amount of labeled training samples. LeNet-5 commonly used for recognizing 
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hand written digits like MNIST dataset. MNIST dataset consists of 28×28 pixel images 

but they are zero-padded to 32×32 pixels. Therefore, rest of the network does not 

require any padding. Novelty of the LeNet-5 is in the output layer. Earlier neural 

networks compute the dot product of the inputs and the weight vector in the output 

layer. However, in LeNet-5 each neuron in the output layer computes the square of the 

Euclidian distance between the corresponding input and weight vector. Each output 

measures the probability of an image belonging to a particular digit class. Nowadays, 

cross entropy cost function is preferred, due to penalization of bad predictions are 

much more efficient, leading to larger gradients and faster convergence. LeNet-5 

architecture is given below (Table 3.1). 

Table 3.1 : LeNet-5 architecture. 

Layer Type Maps Size 
Kernel 

Size 
Stride Activation 

Out 
Fully 

Connected 
- 10 - - 

Radial 

Basis 

F6 
Fully 

Connected 
- 84 - - tanh 

C5 Convolution 120 1x1 5x5 1 tanh 

S4 
Average 

Pooling 
16 5x5 2x2 2 tanh 

C3 Convolution 16 10x10 5x5 1 tanh 

S2 
Average 

Pooling 
6 14x14 2x2 2 tanh 

C1 Convolution 6 28x28 5x5 1 tanh 

In Input 1 32x32 - - - 

3.5.2 AlexNet 

AlexNet introduced by Alex Krizhevsky et al [7] and won the ImageNet ILSVRC 

challenge at 2012. While having a similar structure with LeNet-5, AlexNet is much 

more deeper and larger. Also, instead of having pooling layer on top of every 

convolutional layer, AlexNet has stacked convolutional layers and it is the first 

network to employ ReLU as activation function. Main contribution of AlexNet is using 
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a normalization step immediately after the ReLU step of layers C1 and C3, referred as 

local response normalization. This form of normalization forces significantly active 

neurons to suppress neurons in the adjacent feature maps. This reinforces feature maps 

to specialize, leading to wider range of features and higher rate of generalization. LRN 

can be shown as,  

_6	 = 	 ^6	(p + ^	∑ 7̂
'	7qrsq

7t	7uvw
)[x					#O0ℎ	 y

`f6mf	 = min(O +	 |
'
, @( − 1)

}̀h, = max(	0, O −	|
'
	)

,          (3.14) 

where ai is the activation of the neuron after the ReLU step and bi is the normalized 

output of the neuron belongs to feature map i. k, α, β, and r are called as 

hyperparameters. k is the bias and r represents the depth radius. Finally, fn shows the 

number of feature maps. AlexNet architecture is given in (Table 3.2). 

Table 3.2 : AlexNet architecture.  

Layer Type Maps Size 
Kernel 

Size 
Stride Padding Activation 

Out 
Fully 

Connected 
- 1000 - - - Softmax 

F9 
Fully 

Connected 
- 4096 - - - ReLU 

F8 
Fully 

Connected 
- 4096 - - - ReLU 

C7 Convolution 256 13x13 3x3 1 SAME ReLU 

C6 Convolution 384 13x13 3x3 1 SAME ReLU 

C5 Convolution 384 13x13 3x3 1 SAME ReLU 

S4 Max Pooling 256 13x13 3x3 2 VALID - 

C3 Convolution 256 27x27 5x5 1 SAME ReLU 

S2 Max Pooling 96 27x27 3x3 2 VALID - 

C1 Convolution 96 55x55 11x11 4 SAME ReLU 

In Input 
3 

(RGB) 
224x224 - - - - 
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3.5.3 VGGNet 

VGGNet introduced by Zisserman et al. [63]. VGG stands for Visual Geometry Group 

from University of Oxford. VGGNet uses small filters and deeper architecture 

compared to AlexNet. VGGNet achieved a second place in classification and first in 

localization in ILSVRC challenge at 2014. VGGNet has two different versions referred 

as VGG16 and VGG19 respectively. VGGNet has huge number of parameters which 

increased learning power but training this network was demanding so it is divided into 

smaller networks with layers added one at a time. VGGNet architecture given in (Table 

3.3, Table 3.4) 

Table 3.3 : VGGNet architecture. 

ConvNet Configuration 
A A-LRN B C D E 

11 weight 
layers 

11 weight 
layers 

13 weight 
layers 

16 weight 
layers 

16 weight 
layers 

19 weight 
layers 

Input (224x224 RGB image) 
conv3-64 conv3-64 

LRN 
conv3-64 
conv3-64 

conv3-64 
conv3-64 

conv3-64 
conv3-64 

conv3-64 
conv3-64 

maxpool 
conv3-128 conv3-128 conv3-128 

conv3-128 
conv3-128 
conv3-128 

conv3-128 
conv3-128 

conv3-128 
conv3-128 

maxpool 
conv3-256 
conv3-256 

conv3-256 
conv3-256 

conv3-256, 
conv3-256 

conv3-256 
conv3-256 
conv1-256 

conv3-256 
conv3-256 
conv3-256 

conv3-256 
conv3-256 
conv3-256 
conv3-256 

maxpool 
conv3-512 
conv3-512 

conv3-512 
conv3-512 

conv3-512 
conv3-512 

conv3-512 
conv3-512 
conv1-512 

conv3-512 
conv3-512 
conv3-512 

conv3-512 
conv3-512 
conv3-512 
conv3-512 

maxpool 
conv3-512 
conv3-512 

conv3-512 
conv3-512 

conv3-512 
conv3-512 

 

conv3-512 
conv3-512 
conv1-512 

conv3-512 
conv3-512 
conv3-512 

conv3-512 
conv3-512 
conv3-512 
conv3-512 

maxpool 
FC-4096 
FC-4096 
FC-1000 
softmax 
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Table 3.4 : Number of parameters in VGGNet in millions. 

Network A,A-LRN B C D E 

Number of parameters 133 133 134 138 144 

3.5.4 GoogLeNet 

Developed by Szegedy et al. [9] from Google Research, GoogLeNet won the ILSVRC 

2014 challenge by top-5 error rate below 7%. They introduced a novel sub-network 

referred as Inception module (Figure 3.12). This module copies the input signal and 

feeds it to three convolutional layers that use the ReLU activation function and also to 

a pooling layer. By employing convolutional layers with different kernel sizes such as  

1×1,  3×3, and 5×5,  patterns with different dimensions can be captured. Additionally, 

all layers use SAME padding and a stride of 1. This makes the outputs of every layer 

have the same height and width as their inputs. Thus, it is possible to concatenate all 

the outputs in the final layer by stacking the feature maps from each convolutional 

layer. Convolutional layers with kernel size 1x1 serves as the bottleneck layer by 

reducing dimensionality. This leads to significant improvement in computing speed. 

Compared to AlexNet, GoogLeNet has only 6 million parameters where AlexNet has 

60 million.  

 

Figure 3.12 : Inception Module. 



29 

Another novelty brought by GoogleNet is the global average pooling. Previous 

networks used fully connected layers where all inputs are connected to each output. 

However, in GoogleNet global average pooling is employed nearly at the end of 

network by averaging each feature map from 7×7 to 1×1 (Figure 3.13). 

 

 
Figure 3.13 : Difference between Fully Connected Layer and Global Average 

Pooling. 

GoogLeNet  (Figure 3.14) has global average pooling layers at the end of  9 inception 

modules that are stacked linearly with total of 27 layers including the pooling layers. 

 

Figure 3.14 : GoogleNet architecture. 

 

GoogLeNet is often referred as Inception-v1 and there are three more versions with 

upgrades which increased the accuracy of the model while reducing complexity. 

Inception-v2 swaps 5 x5 convolutional layer with two 3x3 convolutional operations. 

A 5x5 convolution is computationally 2.78 times more expensive than a 3x3 
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convolution. Thus, factorizing 5x5 convolutions brings significant boost in 

performance (Figure 3.15a). Furthermore, they found out that convolutions with filter 

size nxn can be factorized to a combination of 1xn and nx1 convolutions in order to 

reduce computational complexity (Figure  3.15b). For example, instead of computing 

3x3 convolution,  a 1x3 convolution followed by a 3x1 convolution is performed. They 

have reported that this method is 33% more efficient than the single 3x3 convolution. 

Inception-v3 incorporated these upgrades and also added factorization of 7x7 

convolutions and RMSProp Optimizer. 

 

 
a)                                                        b) 

Figure 3.15 : Inception modules used in Inception-v2. 

Inception-v4 introduced three different inception modules named A, B and C (Figure 

3.16). Their concept is similar to Inception-v2 and Inception-v3 although modules are 

more uniform, leading to increase in performance. 
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A)                                           B)                                           C) 

Figure 3.16 : From left Inception modules A, B, C used in Inception-v4. 

3.5.5 ResNet 

Residual Network (or ResNet), developed by  He et al. [10] won the ILSVRC 2015 

challenge with an exceptional top-5 error rate of 3.6% which set new records in 

detection  localization and classification. They have proposed an extremely deep 

network with 152 layers. In theory, networks should perform better as the architecture 

gets deeper. However, stacking many convolutional layers create problems in terms of 

optimization. ResNet solves this problem by introducing residual connections which 

gives the network its name. Also called as the shortcut or skip connections, idea behind 

residual connections is to feed the input signal to the output of the layer as well. If we 

represent target function to model as h(x), adding residual connections will force 

network to model h(x) = f(x)–x where x is the signal added to the input and the output 

of the layer (Figure 3.17). When the neural network is initialized, values of its weights 

are near zero, therefore output values of the network are near zero. If a residual 

connection is added, network outputs a copy of its inputs; namely, modeling the 

identity function. Often times the identity function is moderately close to the target 

function which improves training speed significantly.  Furthermore, if several residual 

connections are added, the network will be able to start making progress even though 

some layers have not begun learning yet (Figure 3.18). Because of residual 

connections, the signal can travel along the whole network. ResNet consists of  stacked 

residual units, where every residual unit is a minor neural network with a residual 

connection. Each residual unit consists of two convolutional layers, with ReLU 

activation and Batch Normalization (BN) using 3×3 kernels with stride 1 and SAME 
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padding (Figure 3.19). Model has four different versions with 18, 34, 50, 101, 152 

convolutional layers (Table 3.6). 

 

Figure 3.17 : Residual Learning. 

 
Figure 3.18 : Regular deep neural network(left) and deep residual learning(right). 
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Figure 3.19 : Residual unit 

Error rates of single-model results on the ILSVRC’14 validation set shows significant 

improvement over the VGG and GoogLeNet models (Table 3.6). 

Table 3.5 : Shows the top-1 and top-5 error rates of ResNet models based on the 
validation set of ILSVRC 2014 [10]. 

Model Top-1 Error (%) Top-5 Error (%) 

VGG-16 24.4 8.43 

GoogLeNet - 7.89 

ResNet-50 20.74 5.25 

ResNet-101 19.87 4.60 

ResNet-152 19.38 4.49 

 

3.5.6 Inception-ResNet 

Inspired by the performance of the ResNet, a hybrid inception module was proposed 

[11]. There are two sub-versions of Inception ResNet, namely v1 and v2. Both versions 

have the same structure for the inception modules A, B, C (Figure 3.20). However, 

differences are the hyper-parameter settings and the computational cost. Inception-

ResNet-v1 has a computational cost that is comparable to Inception-v3 whereas 

Inception-ResNet-v2 has a computational cost that is comparable to Inception v4. 
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Figure 3.20 : Inception modules A,B,C in an Inception-ResNet-v1. Pooling layer 

was replaced by the residual connection. 

Szegedy et al.  report that the Inception-ResNet-v2 architecture produces more 

accurate results than previous state of the art models.(Table 3.7) shows the Top-1 and 

Top-5 validation errors on the ILSVRC 2012 image classification benchmark based 

on a single crop of the image. Inception-ResNet-v2 given in Figure 3.21 

Table 3.6 : The top-1 and top-5 error rates of Inception models based on the 
validation set of ILSVRC 2012.  

Model Top-1 Error (%) Top-5 Error (%) 

BN-Inception 25.2 7.8 

Inception-v3 21.2 5.6 

Inception-ResNet-v1 21.3 5.5 

Inception-v4 20.0 5.0 

Inception-ResNet-v2 19.9 4.9 

 

 
Figure 3.21 : Inception-ResNet-v2 architecture.  
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 Training Convolutional Neural Networks 

CNN’s are powerful feature extractors that can produce superior performance 

compared to their predecessors. However, they are complex mathematical models and 

training a CNN model for optimum results have intricacies. This section provides the 

details of training a successful CNN model.  

3.6.1 Hyperparameter selection 

Deep learning algorithms involve “hyperparameters” which are variables set before 

starting the training process. CNN’s can have many hyperparameters which identifies 

the structure of the network and governs how the network is trained. Certain critical 

parameters are listed and discussed below. 

3.6.1.1 Loss function  

Loss function is defined to compare the output of the training instance against the 

desired ground truth output. Ideally, loss function is minimized with respect to the 

connection of the weights. It is calculated after each time network makes a pass 

through the entire training dataset. This is  also referred as an epoch. A typical loss 

function is the squared Euclidian distance given as, 

Ä = 	 $
'
∑ (<6 −	!6)'6 ,     (3.15) 

 

where <6 is the ith  network output and  !6 is the ith value of the target output. Output of 

the CNN’s usually treated as a probability distribution where the final layer consists 

of the softmax function. Therefore it is more common to use cross-entropy loss defined 

as, 

      

Ä = 	−∑ <6 log !66     (3.16) 

3.6.1.2 Learning rate 

The learning rate determines step size of the gradient updates. If the learning rate is set 

too small, the model will go through many iterations to converge. If the learning rate 

is set too large, the model will diverge (Figure 3.22). 
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Figure 3.22 : The effect of learning rate on training loss. 

The learning rate is typically decreased over time. The general approach is to find a 

proper parameter and it should be fine-tuned later on. It is also common to set an 

adaptive learning rate which regulates depending on the loss function.  

3.6.1.3 Mini-batch size 

Due to hardware considerations, it is not practical to train the whole training dataset at 

once. Usually deep networks consist of  vast number of weights. Therefore, training 

such Big Data requires substantial amount of memory. Mini-batch training includes 

feeding small part of the training data to the network and computes the local gradient. 

However, selecting a small batch size could lead to a noisy loss function due to high 

variance in the gradient estimation. Mini-batch size should be selected by considering 

memory capacity and the training data. 

3.6.2 Optimization algorithms 

Optimization algorithms are used to minimize the loss function of the network by 

updating weights and biases. Finding optimum values for these internal parameters 

have a key role in training an effective model that produces accurate results. Most 

widely used optimization algorithms are given below. 

3.6.2.1 Gradient Descent 

Gradient Descent algorithm is one of the common optimization algorithms used in 

neural networks. Gradient Descent algorithm calculates the gradient of error function 

(E),  



37 

 

Å = $
'
(< − @(∑#6%6)',			                      (3.17) 

 

and updates parameters in the opposite direction of the gradient vector of error as 

shown in (Figure 3.23). Error rate increases if the value of the weights is too small or 

too large. Thus, weights need to be updated and optimized until reaching a local 

minima. 

 

Figure 3.23 : Weight updates in the opposite direction of the gradient.  

 

Standard  Batch Gradient Descent algorithm updates parameters after calculating the 

gradient of the whole data set. This will cause model to converge slower and it is not 

applicable for large datasets. These issues are rectified in the following variants of the 

gradient descent algorithm. 

3.6.2.2 Stochastic Gradient Descent(SGD) 

Unlike standard gradient descent algorithm SGD updates parameters with each 

training instance. It is defined as, 

Ç = 	Ç − É. ÑÖ(Ç; %	(O); <(O)																																								 (3.18) 

where Ç shows the models parameters, −É is the learning rate, ∇Ö(Ç) is the gradient of 

loss function J and %	(O), <(O) are the training instances. 
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As a result of frequent parameter updates, loss function oscillates to different amounts 

(Figure 3.24). This could lead to a newer and lower local minima, however it can also 

cause model to keep overshooting. 

 

 

Figure 3.24 : SGD fluctuates to find a newer and better local minima. 

In order to tackle problems such as fluctuations in loss function and slower 

convergence, a method called Momentum is employed which speeds up SGD by 

steering towards to suitable direction and reduce oscillations in unrelated directions. 

The momentum term γ controls parameter updates only for the relevant instances 

which lead to accelerated convergence and lessen oscillations. Momentum and the 

parameter updates are, 

 

à	(0) = 	â	à(0 − 1) + 	É∇Ö(Ç),            (3.19) 

Ç = 	Ç − à(0).     (3.20) 

3.6.2.3 AdaGrad 

Adaptive Gradients (AdaGrad) is an optimization algorithm that adapts learning rate -

η to the parameters [64]. Larger updates are carried out for infrequent parameters and 

smaller updates for frequent parameters. Therefore, it is suitable when using sparse 
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data. AdaGrad adapts the learning rate η for every parameter Ç6 at each time step t 

based on the past gradients. AdaGrad’s per-parameter update is shown as, 

   

Ç)9$,6 = 	 Ç),6 − 	
ä	

ãåç,rr9∈
	 . A),6,    (3.21) 

 

where A),6 is the gradient of the loss function to the parameter Ç6 at time step t. 

Main disadvantage of AdaGrad algorithm is learning rate is constantly decaying due 

to accumulation of the gradients. This causes learning ability of the model decrease 

leading to longer training time. 

3.6.2.4 RMSProp 

Problem of constant decaying learning rate in AdaGrad is rectified in Root Mean 

Square Propagation (RMSProp) algorithm[65] by changing the gradient accumulation 

into an exponentially weighted moving average. Exponential average weights the 

recent gradient updates more than the previous ones shown as, 

 

à) = èà)[$ + (1 − 2). A)',       (3.22) 

∆B) = − ë

ãíç9	ì
. A),       (3.23) 

B)9$ = B) +	∆B),       (3.24) 

 

where à) is the exponential average of the squares of gradients and è is the weight of 

the recent gradient update.  

3.6.2.5 Adam 

Adaptive Moment Estimation (Adam) is another adaptive optimization algorithm [66]. 

Adam  keeps an exponential  average of past squared gradients like RMSprop and also 

stores an exponentially decaying average of past gradients î(0), similar to 

momentum. Parameter update for Adam is given as, 
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ë

ãíç9	ì
	 . î(0).                  (3.25) 

 

Adam outperforms other adaptive optimization algorithms as it converges faster. 

Furthermore, it rectifies problems that are present in other optimization methods such 

as vanishing learning rate , slow convergence and fluctuating loss function. 

3.6.3 Regularization  

Regularization methods are employed to reduce the generalization error of the model. 

Deep learning models may produce high rate of validation error even after training 

error drops, resulting in overfitting (Figure 3.25). However, a successfully trained 

model needs to produce accurate results with validation or test data. Regularization 

strategies carried out to reduce overfitting at the expanse of increasing training error. 

These strategies include  putting extra constraints on the parameter values or adding 

extra terms on objective functions such as loss function. Typically used regularization 

methods are listed and discussed below. 

 

 

Figure 3.25 : Graph showing underfitting and overfitting in the network. 

3.6.3.1 L2 regularization 

L2 regularization technique involves adding a new term to the loss function in order 

to penalize large weights. Sum of the squared norms of the weight matrices multiplied 

by a constant  	ï
'ñ

  is added to the loss function shown as, 
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YZ// +	ó∑ ò#[7]ò'	(
7t$ ô	. 	ï

'ñ
 ,    (3.26) 

 

where ö denotes the number of layers, m is the number of inputs, #[7] is the weight 

matrix of jth layer and õ	is the regularization parameter. 

3.6.3.2 L1 regularization 

L1  regularization adds sum of the absolute values of the weights multiplied by the 

regularization parameter õ  to the loss function shown as, 

YZ// +	;∑ ò#[7]ò	(
7t$ ?	. õ,     (3.27) 

L1 Regularization reduces weights by a fixed amount in every iteration, regardless of 

the value of the weight. Thus, weight of most of the connections inclines to zero and 

fewer connections left with larger weights. This increases sparsity of the weights in 

the model. 

3.6.3.3 Dropout regularization 

Dropout is an efficient regularization technique that includes randomly erasing 

neurons in the dropout layers. Thus, whole network can be represented as a sub-

network with fewer connections required to update throughout back propagation. 

Dropout encourages the network to learn a sparse representation. Consequently, over 

fitting is reduced. (Figure 3.26)  illustrates the dropout regularization. 

  

 
Figure 3.26 : Dropout Regularization. Standart network(left) network with          

dropout(right). 
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3.6.3.4 Batch normalization 

Batch normalization is the regularization method of normalizing network’s parameters 

in order to adjust and scale the activations [67]. For instance, certain values of neurons 

in the input layer can be set between 0 and 1 and other neurons could take values 

between 1 and 1000. Same approach can be applied for the hidden layers as well. 

Consequently, higher learning rates can be applied to the model since activation value 

of neurons can’t exceed or fall beyond the given range. This leads to an increase in 

speed of training and stability of the network. Batch normalization works by 

normalizing the output of previous activation layer. In order to do so, batch mean is 

subtracted from the output and the resultant is divided by the batch standard deviation 

as given in following equations, 

 

$
ñ
∑ %6ñ
6t$ = 	úx ,     (3.28) 

 

$
ñ
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6t$ = 	Çx',    (3.29) 

 

cr[	ùû

ü†û
°9	ì

= 	 %¢£ ,      (3.30) 

 

where C denotes the values of x over a mini-batch {%$ …¶},	 úx  is the mini-batch 

mean, Çx' is the mini-batch variance and %¢£  is the normalized value. 

3.6.3.5 Data augmentation 

Insufficient amount of training data leads to over fitting of the network. Data 

augmentation or in other words regularization with data provides new data from 

existing data by performing different operations such as translation, rotation, 

reflection, skewing, scaling, or changing contrast or brightness of the input image data. 

Also, there are other augmentation techniques that can’t be experienced with human 

eye such as adding random noise to the training data. In the field of remote sensing, 
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acquiring labeled data is not very easy due to the commercial restrictions and 

economical costs. Therefore, it is crucial to make the most with the data available. 

 Transfer Learning 

State-of-the-art deep networks namely Inception, ResNet and VGGNet are really large 

networks such that training one from scratch takes several weeks and requires 

advanced computing resources (i.e. GPU’s). However, each of these networks is 

already trained with ImageNet dataset that consists of millions of labeled images. So 

the weights in the different layers of the model already learned to identify useful low-

level features such as shapes, edges and different intensities of light and dark pixels. 

By using transfer learning method, parameters learnt from a training model can be 

used for a different classification problem (Figure 3.27). Only, final layers of the 

network need to be fined tuned for the classification task. For remote sensing 

applications such as land cover land use classification, obtaining a huge training data 

similar to ImageNet data set is not very realistic. In these cases, using pre-trained 

networks are highly beneficial for reducing computing time and accurate classification 

results. 

 

 

Figure 3.27 : Transfer learning. 
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4.  EXPERIMENTS AND RESULTS 

Accessibility of  the remote sensing imagery have become increasingly available with 

the launch of new commercial satellite sensors, such as IKONOS, WorldView and 

GeoEye. Remote sensing applications for these imagery provides crucial analysis for 

various subjects such as urban planning, climate change observations, resource 

management, and land use monitoring. These satellites can deliver panchromatic or 

multispectral images. Panchromatic images have higher resolution compared to 

multispectral images however, they include only a single band. Contrarily, 

multispectral images can contain several bands such as Red, Green, Blue and Near-

Infrared. 

Land cover and land use classification using satellite imagery is a challenging task. 

Traditional methods require extensive expertise on extracting features for land cover 

and land use classes. However, deep learning models eliminate the need of feature 

engineering by learning from the data itself. Moreover, increase in the available remote 

sensing imagery, calls for an automatization for the process of land use analysis. In 

this regard, CNN-based deep learning experiments are carried out for the purpose of 

image scene classification are discussed in this chapter. 

 Image Scene Classification for Land Cover and Land Use Analysis 

In this section,  CNN-based deep learning classifiers are proposed in the context of 

land cover and land use classification. Details of training these networks are discussed 

below. 

4.1.1 Proposed classification networks 

For the classification of remote sensing imagery deep learning models provide far 

better performance compared to traditional methods. Variety of deep learning models 

especially CNN’s, produce results that can be generalized over the unseen data. In this 

experiment, two state-of-the-art CNN models namely Inception-ResNet-v2 and 

Inception-v4 are trained using pretrained weights from the ImageNet dataset. These 
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architectures are proven to outperform existing CNN models in terms of classification 

accuracy and faster convergence according to ILSVRC challenge. 

4.1.2 Training dataset for the classification network 

Training dataset is extracted from the NWPU-RESISC45 dataset[68] which is publicly  

available  benchmark  for  Remote  Sensing  Image  Scene Classification (RESISC). 

Images are size of 256×256 pixels in the red green blue (RGB) color space. The spatial 

resolution varies from about 30 m to 0.2 m per pixel. Dataset is extracted from Google 

Earth by various experts in remote sensing. Compared to previous benchmark datasets 

NWPU-RESISC45 is large-scale and have rich image variations with different 

weathers, seasons, illumination conditions, imaging conditions, and scales. For each 

scene category, dataset possesses much rich variations in translation, viewpoint, object 

pose and appearance, spatial resolution, illumination, background, and occlusion. Also 

it provides high class diversity and between class similarity to truly test deep learning 

model’s classification capability. NWPU-RESISC45 dataset consists of  31,500 

remote sensing images divided into 45 scene classes. One of the crucial aspect of the 

experiment carried out in this thesis is to use independent dataset for the validation 

part. In order to do so, patches have to be extracted manualy and the process can be 

cumbersome for generating test images for 45 classes. So the classes to be used in the 

training are narrowed down to 20 scene classes each containing 700 training images. 

These 20 scene classes include airport, chaparral, dense residential, forest, freeway, 

golf course, ground track field, industrial area, intersection, meadow, medium 

residential, overpass, parking lot, rectangular farmland, river, runway, sparse 

residential, storage tank, tennis court and terrace. These classes are selected because 

they are easy to obtain in any given AOI and have complex structure as well as 

similarities to each other that can be used to assess model’s classification capability. 

Sample patches from the training dataset are given in (Figure 4.1). 
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Figure 4.1 : Sample patches for the training dataset. 
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Figure 4.1 (continued) : Sample patches for the training dataset. 
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Figure 4.1 (continued) : Sample patches for the training dataset. 
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4.1.3 Validation dataset for the classification network 

Images for validation dataset is extracted from Worldview-3 satellite imagery that is 

made publicly available for SpaceNet challenge. Images are 3-band RGB with 16-bit  

and 30 cm resolution. Before extracting the patches pixel values of the images had to 

be normalized to 8-bit due to the fact that models used in the experiment only accept 

JPEG images. Pixel values of the images are normalized to 8-bit using an automated 

script with parallel programming and “GDAL” library. Code snippet about the script 

is given in (Figure 4.2). 

Patches are extracted and labeled manually from three different AOI’s including 

Vegas, Paris and Shanghai. Area of raster belonging to the AOI’s are 216, 1030 and 

1000 square kilometers. 50 patches are extracted for each class with a total of 1000 

patches. Selected scenes usually have intra-class variability in order to truly test the 

networks capability with minimum bias. Patches have different ground sampling 

distances illumination and occlusion. Sample patches for the validation dataset are 

given in (Figure 4.3). 

 

 

 

 

Figure 4.2 : Code for automated script to convert 16-bit imagery to 8-bit. 
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Figure 4.3 : Sample patches for the validation dataset. 
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Figure 4.3 (continued) : Sample patches for the validation dataset. 
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Figure 4.3 (continued) : Sample patches for the validation dataset. 
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4.1.4 Pre-processing 

Before feeding data to the network, datasets are converted to a file format referred as 

.tfrecords. Raw image data can be slower to read from the disk and take up significant 

space in the RAM. TFrecords are a binary file format storage that works as a buffer 

for loading data to the network. Also it is possible to sequence and shuffle the data to 

provide diversity in each batch. Data augmentation is also integrated to further make 

use of the data. All classes are coded with one-hot label and images are resized to 299 

x 299 pixels as it’s the default Inception size. 

4.1.5 Training setup 

Proposed CNN’s were trained using tensorflow[68] framework and TF-Slim library. 

Training were conducted on a nVidia GTX 1060 6 GB GPU using cross-entropy loss 

function, decaying learning rate and ADAM optimizer. Learning rate has been set to 

2.000e-4. Research has shown that increasing batch size throughout training leads to 

faster convergence with more accurate results[70]. Both networks trained for 100 

epochs with increasing batch size from 12 to 16 at epoch 50 and 16 to 20 at epoch 75.  

Total training time for Inception-ResNet-v2 and Inception-v4 are around 10 hours and 

12 hours respectively. 

4.1.6 Results 

Training loss, accuracy and validation accuracy are the crucial metrics for evaluation 

of the networks. These metrics are given in (Table 4.1). 

Table 4.1 : Results of the trained networks 

Proposed CNN 

Model 
Training Loss 

Training 

Accuracy 

Validation 

Accuracy 

Inception-ResNet-

v2  

0,471 0,967 0,828 

Inception-v4  0,543 0,942 0,778 

 

 

Benefits of having residual connections can be seen as the first network provides more 

accurate results with faster convergence. In order to further discuss the comparison 

between two networks, classification outcomes of each network needs to be 
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represented with certain metrics. Predictions for the classes can be divided into two 

groups whether the label matches the ground truth of the actual class or not. Positive 

classification outcome denotes the model predicted the desired label regardless of the 

ground truth of the class. If it matches the ground truth it is referred as the True Positive 

if not it is False Positive. Negative classification outcome means the model couldn’t 

predict the desired label. However, if the ground truth for the negatively classified 

image is also negative, it means that the model is successful. This is referred as the 

True Negative. On the contrary, False Negative stands for the situation where the 

model did not predict the desired label for the specified ground truth. Explained in 

(Table 4.2). 

Table 4.2 : Error types for classification. 
 Actual Class 

Positive Negative 

Classification 

Outcome 

Classification 

Outcome Positive 
True Positive(TP) False Positive(FP) 

Classification 

Outcome Negative 
False Negative(FN) True Negative(TN) 

 

Precision and recall are two very important model evaluation metrics. Precision refers 

to the percentage of the relevant results whereas recall refers to the percentage of total 

relevant results accurately classified by the model. For simplicity, there is another 

metric available, called F-1 score, which is a harmonic mean of precision and recall. 

Metrics are given in equation (4.1) 

 

																			K®1nO/OZö = bS
bS9©S

, ™1n^YY = bS
bS9©´

,									¨1 = 2 S.Æ
S9Æ

                       (4.1) 

 

Precision recall and F-1 Score of the trained networks are given in the following 

(Table 4.3) and  (Table 4.4). Confusion matrix for the networks are given in (Figure 

4.4)  and  (Figure 4.5). Examples of the false negatives and false positives of the 

networks are given with their prediction and ground truth respectively in (Figure 4.6) 
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Table 4.3 : Precision recall and f1-scores for the Inception-ResNet-v2. 
Class Airport Chaparral Dense 

Residential 

Forest Freeway Golf 

Course 

Ground 

Track 

Field 

Industrial 

Area 

Intersection 

Precision 0,877 0,803 0,816 0,918 0,807 0,846 0,955 0,750 0,836 

Recall 0,860 0,788 0,816 0,882 0,875 0,862 0,877 0,823 0,820 

F1-Score 0,868 0,795 0,816 0,900 0,840 0,854 0,914 0,785 0,828 

 
Class Meadow Medium 

Residential 

Overpass Parking 

Lot 

Rectangular 

Farmland 

River Runway Sparse 

Residential 

Storage 

Tank 

Precision 0,769 0,759 0,833 0,860 0,705 0,888 0,931 0,863 0,934 

Recall 0,784 0,803 0,800 0,877 0,734 0,934 0,872 0,863 0,914 

F1-Score 0,776 0,780 0,816 0,868 0,719 0,910 0,901 0,863 0,924 

   
Class Tennis 

Court 

Terrace Average 

Precision 0,933 0,763 0,842 

Recall 0,893 0,707 0,839 

F1-Score 0,913 0,734 0,840 

Table 4.4 : Precision recall and f1-scores for the Inception-v4. 
Class Airport Chaparral Dense 

Residential 

Forest Freeway Golf 

Course 

Ground 

Track 

Field 

Industrial 

Area 

Intersection 

Precision 0,836 0,775 0,760 0,918 0,666 0,836 0,909 0,689 0,775 

Recall 0,803 0,788 0,760 0,823 0,800 0,788 0,833 0,769 0,745 

F1-Score 0,819 0,781 0,760 0,867 0,727 0,811 0,869 0,727 0,760 

 
Class Meadow Medium 

Residential 

Overpass Parking 

Lot 

Rectangular 

Farmland 

River Runway Sparse 

Residential 

Storage 

Tank 

Precision 0,627 0,703 0,800 0,800 0,653 0,888 0,833 0,808 0,918 

Recall 0,711 0,760 0,750 0,833 0,708 0,829 0,754 0,760 0,918 

F1-Score 0,666 0,730 0,774 0,816 0,679 0,857 0,792 0,783 0,918 

 
Class Tennis 

Court 

Terrace Average 

Precision 0,877 0,612 0,784 

Recall 0,895 0,612 0,785 

F1-Score 0,886 0,612 0,783 
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A
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Airport 43       2        4     49 %87 
Chaparral  41        4       2   4 51 %80 

Dense 
Residential   40     2   4    2    1  49 %81 

Forest    45  2    2           49 %91 
Freeway     42    3   3 2   2     52 %84 

Golf Course    3  44    3     2      52 %84 
Ground Track 

Field       43            2  45 %95 

Industrial Area 3  3     42    2 2  2   2   56 %75 
Intersection  1   1    41      1 3 2    49 %83 

Meadow  2  3  3 2   40  2         52 %76 
Medium 

Residential   5     1   41 1     6    54 %75 

Overpass     3   1   1 40 2        48 %83 
Parking Lot     2   1 2  1 2 43        50 %86 
R. Farmland  2            36      13 51 %70 

River  2    2  1       40      45 %88 
Runway 4        2       40     46 %86 
Sparse 

Residential  2        2 5      40    49 %81 

Storage Tank        1       1 2  47   51 %92 
Tennis Court   1    4  2          45  52 %86 

Terrace  2            13      35 50 %70 
Reference 

Totals 50 52 49 51 48 51 49 51 50 51 51 50 49 49 48 51 50 49 48 52 1000  

Producers’ 
Accuracy %86 %78 %81 %88 %87 %86 %87 %82 %82 %78 %80 %80 %87 %73 %83 %78 %80 %95 %93 %67   

Overall Accuracy : 828/1000 = %82.8 

Figure 4.4 : Confusion matrix for the Inception-ResNet-v2 network. 
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Airport 41       3        5     49 %83 
Chaparral  38        5       2   4 49 %77 

Dense 
Residential   38     4   5    2    1  50 %76 

Forest    42  4               46 %91 
Freeway     40    5 5  4 3   3     60 %66 

Golf Course    3  41    3     2      49 %83 
Ground Track 

Field       40            4  44 %90 

Industrial Area 5  5     40    2   2   4   58 %68 
Intersection  1   1    38    3  1 3 2    49 %77 

Meadow  4  6  5 4 1  37  2         59 %62 
Medium 

Residential   6     1   38 2     7    54 %70 

Overpass     5   1   1 36 2        45 %80 
Parking Lot     4    3  1 2 40        50 %80 
R. Farmland  2      1      34      15 52 %65 

River  2    2  1       39      44 %88 
Runway 5        3       40     48 %83 
Sparse 

Residential  2        2 5      38    47 %80 

Storage Tank        1       1 2  45   49 %91 
Tennis Court       4  2          43  49 %87 

Terrace  4 1           14      30 49 %61 
Reference 

Totals 51 53 50 51 50 52 48 52 51 52 50 48 48 48 47 53 50 49 48 49 1000  

Producers’ 
Accuracy %80 %71 %76 %82 %80 %78 %83 %76 %74 %71 %76 %75 %83 %70 %82 %75 %76 %91 %89 %61   

Overall Accuracy : 778/1000 = %77.8 

Figure 4.5 : Confusion matrix for the Inception-v4 network.  
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Figure 4.6 : Error instances of the trained networks. 
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Figure 4.6 (continued) : Error instances of the trained networks. 
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Figure 4.6 (continued) : Error instances of the trained networks. 
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Loss function, test accuracy and the learning rate of the networks are given in (Figure 

4.7), (Figure 4.8) and (Figure 4.9). X-axis shows the step size for all figures and Y-

axis is the loss rate. 

 

Figure 4.7 : Loss function for Inception-ResNet-v2. 

  

Figure 4.8 : Loss function for Inception-v4. 

 

Figure 4.9 : Training accuracy of the networks. 

 

Loss function of the networks are visualized with TensorBoard app built inside the 

Tensorflow library. X-axis shows the step size and Y-axis shows the value of the loss 

function. Loss functions show considerable amount of oscillations and many sub-

optimal local minimas. However this fluctuation is expected because of the varying 
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batch sizes. During experimentation with different size of batches, any value 

exceeding 20 led to memory error and interruption in training process. Hardware 

limitations such as memory capacity of the GPU is most likely the reason behind the 

system crash. Experiments show that 6 GB of GPU ram is the bare minimum standard 

for using deep learning applications. Below 4 GB of GPU memory Inception-ResNet-

v2 architecture can not be trained. 

Comparable experiment regarding to using %15 of the training data as validation is 

carried out and mentioned later in this section. Varying batch sizes are not included 

and fluctuations are minor. Positive effects of using varying batch sizes in training 

accuracy are observed with %2 differential in both networks in different experiments, 

however this increase could be from using additional training data in the first 

experiment.  

Training accuracy of the networks are quite similar however difference can be seen in 

the validation accuracy. Inception-ResNet-v2 network yields  %5 greater overall 

accuracy compared to Inception-v4. This differential can be attributed to residual 

layers of the prior network since the rest of the architecture is quite similar. Class by 

class analysis also shows that Inception-ResNet-v2 has better performance in terms of 

accuracy. 

Due to their spatial and spectral complexity following land use classes yielded lower 

accuracy compared to other classes in both models. Industrial area and medium 

residential classes achieved %75 user’s accuracy with Inception-ResNet-v2 model. On 

the other hand, Inception-v4 model achieved %68 and %70 user’s accuracy for the 

classes respectively. In depth analysis for the false negative and false positive instances 

show intra-class mixture was present. Airport areas contained hangars and depots that 

often can be identified as industrial areas. Ground sampling distance of the training 

images were high and these discrepancies were not present, making it harder for the 

model for recognizing the actual class. As for the “medium residential” class, error 

instances often labeled as dense or sparse residential. Empirical evidence suggests 

tiling material and the inconsistent spaces between buildings also contributed to error 

rate. On the other hand, benchmark datasets should include distinctive attributes for 

determining dense, medium and sparse residential areas. As for the types and the total 

number of buildings for each class.  
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Land cover classes such as chaparral and meadow indicate lower accuracy than 

expected since the spectral complexity of these classes are much lower compared to 

land use classes. Inception-ResNet-v2 model display %80 and %76 user’s accuracy 

for chaparral and meadow classes respectively. For Inception-v4 model, user’s 

accuracy for the classes mentioned above were %77 and %62 respectively. Certain 

classes contain intra-class mixtures with these land cover areas such as sparse 

residential and golf course, resulting in false positive instances.  

Intra-class variability often creates problems for accurate labelling. For instance an 

“intersection” scene containing a “tennis court” is labeled as a “tennis court” or a 

“parking lot” scene with a “freeway” nearby is labeled as “freeway”. This occurs for 

the instances that a certain class contain features that represent another class, not 

because of the poor generalization of the features.  

“Storage tank” class is the most accurate class for both networks along with “forest” 

class. Results indicate that the error instaces belonging to those classes are not because 

of intra-class variability but rather spatial  and spectral similarities to other classes. For 

example meadow class is often mislabeled as forest due to similar pixel values. For 

rare instances images belong to the “overpass” class labeled as “storage tank” due to 

similar round shape that is present in both of the classes. Another example of similar 

type of error instances are the mislabeled “river” and “chaparral” classes. Evidence 

suggests that factors contributing to these errors are stream or creek like shapes that 

can be found in both classes.   

Results show that  “terrace” and “farmland”  have the worst accuracy rate compared 

to other classes. Reason being that the “terrace” and “farmland” classes share common 

spatial and spectral features that is almost indistinguishable for the human eye as well. 

Therefore, false negatives and false positives for these classes point each other.  

On the other hand, experiments on the two networks display the importance of having 

residual connections for the CNN model. Results indicate residual connections 

improve training speed, achieving higher rate of accuracy with a lesser training time. 

As the model reaches close to a convergence, smaller learning rate is employed each 

time to further improve training accuracy.  

There have been numerous studies regarding scene classification using NWPU-

RESISC45 dataset. Experimental results carried out by Cheng et al[68] and Zhang et 
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al[71] with different networks on the same training dataset that is used in this thesis 

are given in (Table 4.5) and (Table 4.6). They have separated %10 and %20 of the 

training dataset to be used in validation respectively. Note that original NWPU-

RESISC45 dataset consist of 45 classes. 

 

Table 4.5 : Comparison of results with different networks. 

CNN Models %10 Training ratio %20 Training ratio 

Fine-tuned AlexNet %81.22 %85.16 

Fine-tuned VGGNet-16 %87.15 %90.36 

Fine-tuned GoogLeNet %82.57 %86.02 

 

Table 4.6 : Comparison of the results with different networks. 

CNN Models %10 Training ratio %20 Training ratio 

AlexNet %76.47 %79.79 

VGGNet-16 %76.69 %79.85 

GoogLeNet %76.19 %78.48 

VGG-16-CapsNet %85.08 %89.18 

Inception-v3-CapsNet %89.03 %92.6 

 

To further analyse the capability of the models used in this experiment in comparative 

manner and minimal bias, both of the networks are used in this thesis are trained with 

%15 training ratio of the NWPU-RESISC45 dataset. Which means using 11900 

images for training and 2100 images for validation. Loss functions for the networks 

are given in (Figure 4.10) and (Figure 4.11). 
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Figure 4.10 : Loss function for Inception-ResNet-v2 with %15 training ratio and no 
varying batch size. 

 

 

Figure 4.11: Loss function for Inception-v4 with %15 training ratio and no varying 
batch size. 

 

Loss functions exhibit lesser oscillations due to the fact that varying batch size is not 

included in this training. However, final loss rate is higher for both networks. Training 

accuracy is %94 and %92 for Inception-ResNet-v2 and Inception-v4 respectively. 

Confusion matrices are given in (Figure 4.12) and (Figure 4.13). Results suggest that 

validation accuracy is much higher for both of the networks. Overall accuracy has 

increased %7 for both networks and up to %20 of increase can be seen for individual 

classes such as “terrace” and “farmland”. One would anticipate that using test images 

with similar characteristics as the training images increase overall accuracy of the 

network. It is observed that the data  supports this hypothesis. Despite increasing the 

size of the validation dataset results show that networks perform better overall. 

Analysis regarding to the accuracy and the error instances of each class are as follows. 
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Overall Accuracy : 1887/2100 = %89.85 

Figure 4.12 : Confusion matrix for the Inception-ResNet-v2 with %15 training ratio of NWPU-RESISC45 dataset. 
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Figure 4.13 : Confusion matrix for the Inception-v4 with %15 training ratio of NWPU-RESISC45 dataset. 
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Least improved class over the previous experiment is the “airport” class. Only %2 

increase in accuracy can be seen. High ground sampling distance for these images 

cause problems in terms of intra-class variability and the spaces between runways 

resemble farmlands which contributes to false negative instances. Also other error 

instances point out that classes “freeway” and “river” are labeled as “airport” for 

several occasions which is not present in the previous experiment. This is likely due 

to high ground sampling distances of the “airport” images.  

“Chaparral” class shows significant improvement over the previous experiment for 

both networks. Increase up to %12 in accuracy can be seen. Intra-class variability for 

the test images of this class were lower and the error instances belong to classes 

“meadow”, “sparse residential” and “terrace” which is the same as the previous 

experiment. 

One of the lowest class accuracy is obtained for the “dense residential” class. Yet there 

is still improvement over to the first training. It is observed that the roof material and 

the spaces between buildings have a significant impact on the performance of this 

class. Hence, the majority of the error instances belong to classes “medium residential” 

and “industrial area”. Same issue is persistent in “medium residential” class. Although 

there is %10 increase in accuracy in both of the networks compared to the previous 

experiment.   

“Parking lot” class exhibit the highest accuracy reaching up to %94  for Inception-

ResNet-v2 network. This result can be attributed to low ground sampling distance of 

the “parking lot” images in NWPU dataset, making it easier for the model to recognize 

car patterns. Error instances are for the scenes that have intra-class variability such as 

parking lots near overpass and freeways.  

For classes “farmland” and “terrace” same problem as the previous experiment is 

recurrent. Although there is progress, due to high ground sampling distance as well as 

parallel spectral and spatial characteristics make it harder for the models to distinguish 

these classes. Same issue can be addressed for classes “tennis court” and “ground track 

field” as the error instances for these classes point each other. 

Land cover classes such as “forest” and “meadow” does not show significant 

improvement. Spatial and spectral properties aren’t that complex to take advantage of 

the similar test images as the training dataset. 
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4.1.7 Discussion 

The proposed approach in this thesis has shown that it can be applied to remote sensing 

applications for automated land cover and land use classification from VHR images. 

The approach demonstrated that networks trained on an unrelated image recognition 

task can actually be used to solve the land cover and land use classification problem. 

One would anticipate that a large amount of VHR spatial imagery that already exists 

and that continues to be collected at higher rates will have a significant impact on a 

variety of remote sensing applications. Both of the experiments carried out in this 

thesis show accuracies that are at par with the state-of-the-art accuracies on the land 

use land cover classification problem. Adapting a deep pre-trained network and fine-

tuning the network on a new dataset that has a limited number of labeled images to 

train quickly, learn and adjust the weights and biases of the network on the new dataset 

in effect delivers promising results.  

Main goal of the experiments in this thesis is to assess the performance of the given 

neural networks by providing validation data which has distinct characteristics 

compared to trained data. Second experiment is carried out to display the performance 

of the networks by feeding validation data that is similar to trained data yet completely 

unseen. Results indicate that even with moderate size training data, generalizability of 

the features extracted from the networks are reliable over the unseen data with different 

characteristics. However, important caveat of this analysis is that intra-class variability 

needs to be addressed when creating a validation dataset. Experiments show that 

networks are more sensitive to the intra-class mixtures with validation data that has 

different characteristics as the training data. Also ground sampling distances for each 

class need to be defined for both validation and training datasets to further improve 

the results.  

Fine-tuning is a major aspect of training a succesfull deep learning model. There 

various parameters to be controlled to achieve the maximum results out of the 

networks. Although most of it are based on trial and error method, varying batch-size 

during training proven to be an effective method to increase training accuracy while 

the network converges to a fixed number of training accuracy. First experiment shows 

that this method improves training accuracy. However, causing loss function to 

oscillate to various local minimas.   
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5.  CONCLUSIONS 

 Summary 

Accessibility of  the remote sensing imagery have become increasingly available in 

the recent years. For various environmental and urban planning problems analysis of 

these remote sensing imagery have crucial importance. Increase in the available remote 

sensing imagery, calls for an automatization for the process of land cover and land use 

classification. 

For remote sensing image analysis, CNN’s provide reliable results that can be 

generalized over the unseen data. Furthermore, feature engineering and expertise 

needed for traditional feature extraction methods are eliminated. Training a successful  

CNN model requires sufficient amount of training data and fitting selection of 

hyperparameters. Training deep network architectures from scratch requires 

significant amount of data and training time in order to learn low-level features. 

Therefore, using pretrained networks for any given classification task is a good idea. 

One of the main advantages of CNN’s is final layers of the network can be fine-tuned 

for a specific goal including remote sensing image analysis.   

In this study, two state-of-the-art  pre-trained networks namely Inception-ResNet-v2 

and Inception-v4 are trained for the purpose of land cover and land use classification. 

In both experiments, training dataset is created from NWPU-RESISC45 dataset which 

consist of 20 classes with 700 image. Images converted to the binary format of 

.tfrecords to minimize memory usage and loading time. In order to test the 

generalizability of features that are created by the networks, separate validation dataset 

is used for the first experiment. A validation dataset is created from Worldview-3 

satellite images as to feed networks with images of different characteristics.  Training 

accuracy of the networks Inception-ResNet-v2 and Inception-v4 for the first 

experiment are %97.7 and %94.2 respectively. Total training time for the networks are 

13 and 11 hours respectively. Each network is trained for 100 epochs using decaying 

learning rate and various batch sizes to increase training accuracy.Validation dataset 
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consists of patches extracted from 30 cm 3-band RGB  satellite imagery. These 

imagery are acquired from Worldview-3 satellite sensor with 3 distinct AOI’s 

including Las Vegas, Shanghai and Paris. Validation accuracy for the networks are 

%82.8 and %77.8 respectively. Various metrics for evaluation and comparision of 

these networks are calculated such as precision recall and f1-scores. Results indicate 

that Inception-ResNet-v2 model outperforms Inception-v4 in terms of accuracy and 

generalization over the unseen data. 

Second experiment is carried out to compare the performance of the networks by 

feeding validation data with similar characteristics as the training data. Both networks 

are trained with %15 training ratio of the NWPU dataset. Results indicate %89.95 and 

%85.38 validation accuracy for the Inception-ResNet-v2 and Inception-v4 networks 

respectively.  

 Conclusions 

Results of the experiments in this thesis show that CNN’s are powerful classification 

tools that can be effectively used in remote sensing problems such as land cover and 

land use classification. CNN models eliminate feature engineering expertise required 

by the traditional techniques and automatize the process. However, training deep 

networks can be a challenging task. Proper selection of hyperparameters and sufficient 

amount of training data are key factors of successfully training a CNN model.  

Transfer learning approach demonstrated in this experiment shows that networks 

trained on an unrelated image recognition task can be used to solve the land cover and 

land use classification problem. Fine-tuning CNN’s with pre-trained weights provide 

accurate results with unseen data.   

Classes that are selected for the experiments have mutual properties and intra-class 

variability in order to further investigate the models ability to classify distinct scenes 

and assess the results with minimal bias. Results indicate that intra-class variability is 

the main reason for false classification, rather than the similar properties of the selected 

classes. However, “terrace” and “farmland” classes exhibit poor results compared to 

other classes. It is observed that the spatial attributes of these classes are identical and 

may require additional training data to further generalize on the unseen data. 
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 Future Works 

Deep learning algorithms such as CNNs show impressive results in both computer 

vision and remote sensing tasks. The attractive parts of such algorithms is that the 

pretrained networks such as ImageNet1000 trained AlexNet, VGGNet, GoogLeNet 

etc. are capable of generalizing for other domains such as remote sensing. As for land 

cover and land use classification, experiments in this thesis indicate multi-label 

approach should be investigated. Due to intra-class variability of the scenes models 

can label features that belong to another class that are located in a small part of the 

image. This problem also brings up the question of whether to treat land cover land 

use classes as individual objects. Automatization of land cover and land use 

classification from a larger image that contains multiple classes remains as a challenge 

that needs to be re-visited in the future. 
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