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PREDICTING SOFTWARE VULNERABILITIES USING TOPIC 

MODELING WITH ISSUES  

 

SUMMARY 

Developing secure software is one of the most important topics of the 21st century and 

the future. Today, this important topic has become one of the main themes in software 

development life cycle. Omissions in software development life cycle processes can 

cause severe software vulnerabilities. 

 

During software development, developers work with the goal of both writing secure 

software and creating a flawless job under the time pressure. Developing secure 

software is part of the software lifecycle but requires training and experience. 

Developers tend to put secure software development to the second place under 

challenging situations within limited time targets. It is important to be able to 

automatically predict software vulnerabilities under such stressful situations for saving 

time and effort of security analysts and testers. 

 

A number of studies have been carried out both in academia and industry in the context 

of predicting software vulnerabilities. Predictor models are proposed using metrics, 

statistical methods and machine learning algorithms to highlight residual 

vulnerabilities in software systems. The common purpose of all of the studies is to 

prevent the vulnerabilities that may occur by predicting the software vulnerabilities at 

an early stage. 

 

This thesis aims to predict software vulnerabilities by using machine learning 

algorithms, text mining techniques and natural language processing methods. 

 

Open datasets are mostly used in a built software vulnerability prediction model. 

Records of software vulnerabilities are highly confidential records for institutions and 

organizations. For this reason, vulnerability data recorded in open source systems are 

mostly used in the studies. In this thesis, security scansconducted in an information 

technology company is collected and masked in order to build vulnerability prediction 

models. 

 

Many machine learning algorithms have been used to predict software vulnerabilities. 

In the literature, this prediction problem is considered as a classification problem. 

Classification is located under the supervised learning heading from machine learning 

algorithms. It is ideal to use classification algorithms when the purpose is to distinguish 

whether a module is safe or unsafe. In this thesis, the problem is considered as a 

regression problem. Regression is also under the supervised learning heading from 

machine learning algorithms. Our goal is to reveal the formula that predicts the number 
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of vulnerabilities on the basis of priority class and to contribute to the early detection 

of software vulnerabilities. 

 

In the thesis study, decision trees (support and regression), support vector regression 

and artificial neural network algorithms were selected from machine learning 

algorithms for a regression problem. 

 

Many different metrics have been used as input in the models developed to predict 

software vulnerabilities. These entries are mostly software code metrics. Software 

code metrics, as well as error records metrics, developer based statistical 

measurements, are experienced as inputs in models. In this thesis, post-release issue 

records are used as model input. 

 

Software vulnerability records used as model output in the study were obtained from 

CxSAST reports, a static code analysis tool. In the report, software vulnerabilities were 

divided into 3 groups as low, medium and high according to their severity. These three 

significance levels were used separately as outputs, and their totals were also used as 

outputs. 

 

Within the scope of the thesis study, 2 different prediction models were established. 

Models A and model B are given to these models. In this thesis, 10-fold cross-

validation and leave-one-out cross-validation methods were used and the results were 

compared. 

 

When the results are compared, there is a low relationship between issue records and 

software vulnerabilities. The decision tree model has been found to have the most 

accurate estimation results compared to other algorithms. Support vector regression 

and artificial neural network decision trees follow the changing algorithm parameters. 

 

Extending the dataset to improve the results is thought to be a step. The dataset used 

in the thesis study includes a period of 6 months and data of an institution.  
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KONU MODELLEME YÖNTEMİ İLE YAZILIM GÜVENLİK AÇIKLARINI 

TAHMİN ETME 

 

ÖZET 

Güvenli yazılım geliştirmek, 21. yüzyılın ve geleceğin önemli konularından bir 

tanesidir. Günümüzde bu önemli konu yazılım geliştirme yaşam döngüsü süreçlerinin 

ana temalarından biri haline gelmiştir.  Güvenli yazılım geliştirme yaşam döngüsü 

adımlarında yapılan ihmaller yazılım güvenlik açıklarına neden olabilmektedir. 

 

Yazılım geliştirme aşamasında, geliştiriciler hem güvenli yazılım yazmak hem de 

hatasız bir iş çıkarmak hedefi ile çalışmaktadır. Bu hedef yanında zaman baskısı 

unutulmamalıdır. Güvenli yazılım geliştirmek yazılım yaşam döngüsünün bir 

parçasıdır ancak eğitim ve deneyim gerektirmektedir. Geliştiriciler kısıtlı zaman 

hedefleri içerisinde güvenli yazılım geliştirmeyi bazı zorlu durumlarda ikinci plana 

atabilmektedir. Bu zorlu durum karşısında yazılım güvenlik açıklarını ortaya 

çıkmadan tahmin edebilmek önemli hale gelmiştir.  

 

Güvenlik açıklarının tahmin edilmesi üzerine akademi ve endüstri tarafında bir çok 

çalışma gerçekleştirilmektedir. Yazılım güvenlik açıkları ile ilişki kurulabilecek var 

olan metrikler makine öğrenmesi algoritmaları ve istatistiksel yöntemler ile modeller 

kurularak tahminler yapılmaktadır. Var olan metrikler dışında ampirik yaklaşımlar ile 

yeni metrikler ortaya çıkarılmaktadır. Yapılan tüm çalışmalarının ortak amacı 

güvenlik açıklarını erken evrede tahmin ederek oluşabilecek zafiyetlerin önüne 

geçebilmektir. 

 

Bu tez çalışması ile makine öğrenmesi algoritmaları, metin madenciliği teknikleri ve 

doğal dil işleme yöntemleri kullanılarak yazılım güvenlik açıklarını tahmin etmek 

amaçlanmıştır. Makine öğrenmesi algoritmaları sayısal öğrenme ve model tanıma 

çalışmalarından geliştirilmiş bilgisayar biliminin ve yapay zekanın bir alt dalıdır. 

Günümüze kadar gerçekleştirilmiş güvenlik açıkları tahminleme çalışmalarında 

öncelikli tercih edilen yöntemlerdendir. Metin madenciliği metin verisi üzerinden 

yapısallaştırılmış veri elde etmeye olanak sağlar. Doğal dil işleme, doğal dildeki 

metinlerden ve/veya seslerden anlamlı ve istenen bilgilerinin bilgisayarın 

anlayabileceği anlamların çıkarılmasını sağlayan yöntemler bütünüdür, yapay zekanın 

ve dilbimin bir alt dalıdır. 

 

Yazılım güvenlik açıklıkları ile ilgili yapılan çalışmalarda çoğunlukla açık veri setleri 

kullanılmıştır. Güvenlik açıklarına dair kayıtlar kurum ve kuruluşlar için gizliliği 

yüksek seviyeli kayıtlardır. Bu sebeple yapılan çalışmalarda çoğunlukla açık kaynak 

sistemler üzerine gerçekleştirilmektedir. Bu tez çalışmasında iki farklı veri seti 

kullanılmaktadır. Bilgi teknoloji şirketine ait güvenlik tarama verileri ve açık kaynak 

olan WireShark projesinin verileri çıktı olarak kullanılmaktadır. Bilgi teknoloji 

şirketine ait veriler maskelenerek paylaşılmaktadır. Bu çalışma öncesi tez 

çalışmasında yer alan kişiler ile kurum arasında gizlilik anlaşması oluşturulmuştur.  
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Yazılım güvenlik açıklarını tahmin etmede bir çok makine öğrenmesi algoritması 

kullanılmıştır. Literatürde bu tahmin problemi daha çok sınıflandırma problemi olarak 

ele alınmıştır. Sınıflandırma makine öğrenmesi algoritmalarından denetimli öğrenme 

başlığı altında yer alır. Amaç bir modülün güvenli ya da güvensiz olduğunu ayırt etmek 

olduğunda, sınıflandırma algoritmalarının kullanılması idealdir. Bu tez çalışmasında 

elde edilen veri problemin tipine karar vermede etkili olmuştur. Şirkete ait veriler için 

problem regresyon problemi olarak ele alınmıştır. Wireshark projesi verileri ile 

sınıflandırma algoritmaları kullanılmıştır. Regresyon da makine öğrenmesi 

algoritmalarından denetimli öğrenme başlığı altında yer alır. Regresyon probleminde 

amacımız güvenlik açığı sayısını, öncelik sınıfı bazında doğru tahmin eden formülü 

ortaya çıkarmak ve yazılım güvenlik açıklarının erken evrede tespitinin sağlanmasına 

katkıda bulunmaktır. Sınıflandırma probleminde ise açılan hata kayıtlarının yazılım 

güvenlik açığı ile ilişkisinin olup olmayacağı tahmin edilecektir.  

 

Tez çalışmasında makine öğrenme algoritmalarından karar ağaçları (classification and 

regression tree), destek vektör regresyonu (support vector regression) ve yapay sinir 

ağları (artificial neural network) algoritmaları regresyon problemi için seçilmiştir. 

Karar ağaçları sınıflandırma ve regresyon problemlerinde kullanılabilirler. Çok sayıda 

kayıt içeren bir veri kümesini, karar kuralları uygulayarak küçük kümelere bölmek için 

kullanılan bir algoritmadır. Destek vektör regresyonu, destek vektör makinalarından 

geliştirilmiştir. Önceki çalışmalarda, verilerin doğrusal olarak ayrılamadığı 

durumlarda destek vektörleri algoritmalarının  problem çözmedeki performansı ve 

yeteneğinin daha iyi olduğu paylaşılmaktadır. Yapay sinir ağları,  biyolojik 

nöronlardan esinlenilen bir hesaplama modelidir. Literatürde pek çok çalışmada 

tahmin algoritması olarak seçilmiştir. Sınıflandırma problemi için ise Naive Bayes, 

RandomTree ve  Fisher's Linear Discriminant algortimaları kullanılmıştır. 

 

Yazılım güvenlik açıklarını tahmin etmede geliştirilen modellerde girdi olarak bir çok 

farklı metrik kullanılmıştır. Bu girdiler çoğunlukla yazılım kod metrikleri olmuştur. 

Yazılım kod metriklerinin yanı sıra hata kayıtları metrikleri, geliştirici bazlı 

istatistiksel ölçümler modellerde girdi olarak deneyimlenmiştir. Bu tez çalışmasında 

regresyon problemi model girdisi olarak sürüm sonrası olay kayıtları kullanılmaktadır. 

Tez çalışmasında kullanılan olay kayıtları aylık olarak raporlanmaktadır, çalışma 6 

aylık veri üzerinde gerçekleştirilmiştir. Elde edilen 6 aylık veriden olay kayıtlarının 

açıklamalarına metin madenciliği ve doğal dil işleme adımları işletilmiştir. Doğal dil 

işleme alt başlıklarından biri olan konu modelleme olay kayıtlarının açıklama verileri 

üzerine uygulanmış, 5 ana konu 3516 adet olay kaydı veri kümesi kullanılarak 

belirlenmiştir. Konu modelleme yöntemi olarak Gizli Dirichlet Tahsisi (Latent 

Dirichlet Allocation) kullanılmıştır. Aynı doğal dil işleme adımları WireShark projesi 

verileri üzerinde de işletilmiştir. Wireshark projesinde veri seti 2017-2018 yıllarına ait 

verilerden oluşmaktadır. Model girdisi için 2017-2018 yıllarında açılan hata kayıtları 

kullanılmıştır.  

 

Literatürde incelenen çalışmalarda yazılım metrikleri üzerinde yapılan toplama ve 

kümeleme işlemlerinin model tahminlerini etkilediği paylaşılmaktadır. Bu sav üzerine 

çıkarılan 5 konu modeline toplama ve matematiksel işlemler geçrekleştirilerek yeni 

toplama metrikler oluşturulmuştur. Bu toplama metrikler minimum değer, maksimum 

değer, hoveer indeksi ve medyandır.  
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Çalışmada model çıktısı olarak kullanılan yazılım güvenlik açığı kayıtları bir statik 

kod analizi aracı olan CxSAST raporlarından elde edilmiştir. Elde edilen raporda 

yazılım güvenlik açıkları önem derecesine göre düşük, orta ve yüksek olmak üzere 3 

gruba ayrılmıştır. Bu üç önem derecesi ayrı ayrı çıktı olarak kullanılmış, toplamları da 

ayrıca çıktı olarak kullanılmıştır. 

 

Literatürde yapılan çalışmalarda çoğunlukla yazılım sınıfı boyutunda tahminleme 

gerçekleştirilmektedir. Bu tez çalışmasında elde edilen veri seti değerlendirildiğinde 

yazılım ürünü boyutunda tahminleme modeli kurulması kararlaştırılmıştır. Kurum 

verisi ile kurulan modeller yazılım ürününün yazılım güvenlik açığı sayısını 

tahminlemektedir. 

 

Tez çalışması kapsamında kurum verileri ile 2 farklı tahmin modeli kurulmuştur. Bu 

modellere model A ve model B isimleri verilmiştir. Model A için yazılım ürünü 

bazında açılan olay kayıtları açıklamaları birleştirilerek tekrar konu modellemesi 

algoritmasından geçirilmiştir. 3516 adet olay kaydı açıklaması kullanılarak oluşturulan 

modelden yazılım ürünü bazlı konu modeli skorları elde edilmiştir. Model A için 

ayrıca yazılım ürünü bazında açılan olay kaydı sayıları da girdi olarak kullanılmıştır. 

Bu olay kaydı sayıları kendi içlerinde 3 gruba ayrılmış olarak raporlanmaktadır, model 

A’da da bu sayırlar ayrı ayrı metrik olarak değerlendirilmiştir. Bu yazılım ürünü 

bazındaki 5 konu modeli skoru model A’nın girdilerini oluşturmaktadır. Model B için 

yazılım metrikleri üzerinde kullanılan toplama ve kümeleme işlemleri olay kaydı 

bazında elde edilen konu modeli skorlarına uygulanmıştır. Olay kayıtları yazılım 

ürünü bazında filtrelenmiş ve bahsi geçen 4 toplama metriği her konu modeli için 

hesaplanmıştır. Hesaplanan toplama metrikler Model B’nin girdilerine eklenmiştir. 

Her iki modelde de yazılım ürünü önem derecesi girdi olarak kullanılmıştır.  

 

Bir makine öğrenmesi modelinin doğruluğunun test edilmesi için veri kümesinin ne 

şekilde ayrılacağına çapraz doğrulama yöntemi ile karar verilmektedir. Bu tez 

çalışmasında 10 katmanlı çapraz doğrulama ve tek çıkışlı çapraz doğrulama 

yöntemleri kullanılmış ve sonuçları karşılaştırılmıştır.  

 

Elde edilen sonuçlar karşılaştırıldığında olay kayıtları ve yazılım güvenlik açıkları 

arasında düşük de olsa bir ilişki bulunmaktadır. Karar ağaçları modelinin diğer 

algoritmalara nazaran en doğru tahminleme sonucunu elde ettiği görülmüştür. Değişen 

algoritma parametlererine göre destek vektör regresyonu ve yapay sinir ağları karar 

ağaçları algoritmasının ardından gelmektedir. 

 

Sonuçların iyileştirilmesi için veri setinin genişletilmesi bir adım olabileceği 

düşünülmektedir. Tez çalışmasında kullanılan veri seti 6 aylık bir dönemi içermekte 

ve bir kuruma ait verilerdir.  
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1.  INTRODUCTION 

Software security is one of the sub-branches of information security. Software security 

is the case that the software is resilience against possible harm caused by others. 

McGraw explains software security as an idea of engineering software[1]. The need to 

address software security as a software requirement at every step of the software life 

cycle was written by McGraw [1]. According to the guide prepared by the Information 

and Information Security Research Center, software architecture and design can 

prevent the attack even if it can continue towards the working process and is able to 

recognize the situations of abuse [2]. 

 

Developing secure software is one of the important topic and this important topics has 

become one of the critical main themes of software development life cycle processes 

[40]. Security concern must inform every phase of software development life cycle, 

from requirements engineering to design, implementation testing and deployment [42]. 

The security omissions in software development life cycle steps can cause software 

vulnerabilities [41]. Time and budget pressures on software developers can cause 

omission in secure software development steps. Software vulnerabilities can occur as 

a result of these omissions.  

 

Quality is an important issue for large-scale companies, small businesses, and all 

developers interested in software. Security is one of the features that affect software 

quality. For this reason, security is an important topic [43]. If a software is described 

as high quality, it is expected that the maintenance costs of the software will be low. 

[44]. At this point, considering the future budget and time costs of the security 

vulnerabilities, the maintenance costs of the secure software are expected to be low. 

This results in a relationship between security and maintenance costs. Different 

methods are used to detect, enhance and monitor software security. In penetration 

testing method [36], test scenarios are applied on source code and vulnerable-prone 

result of the software is revealed. As a result of these tests, findings are revealed. 

Another method is the use of static code analysis tools [37]. The vulnerable-prone of 
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the software can be revealed with static code analysis tools [37]. In addition to these 

methods, machine learning algorithms are also studied on security. Prediction models 

based on machine learning are built with records of past software vulnerabilities of 

software system with software metrics, developer-based metrics etc. A number of 

studies are carried out on the academy and industry side on the prediction of software 

vulnerabilities [45]. Predictions are built by using software metrics, machine learning 

algorithms and statistical methods and models that can be associated with software 

vulnerabilities. The common purpose of all of the studies is to prevent the 

vulnerabilities that may occur by predicting the software vulnerabilities at an early 

stage.  

 

With this thesis, we have been informed about the software vulnerabilities ecosystem 

and the studies. The importance of early detection of software vulnerabilities was 

observed and prediction models were studied.  

1.1. Purpose of Thesis 

The purpose of this thesis is to built a model and prediction of software vulnerabilities 

using topic models derived from textual descriptions of issue records and machine 

learning techniques. 

 

Today, software security is one of the important facts of the software life cycle from 

the design and development steps and affects the process. However, time and cost 

pressures make it difficult to develop secure software. This is one of the reasons why 

software vulnerabilities have occurred. 

 

Corporate companies are assisted by static code analysis tools for detection software 

vulnerabilities. Apart from these tools, they perform periodic penetration tests. In 

addition to these detection methods, software developers are provided with secure 

software development training. 

 

In this thesis, a 6-month software vulnerability and issue records data belonging to a 

corporate company was used. Software security checks in this company are followed 

by Checkmarx CxSAST tool. Software vulnerabilities findings have been obtained 

from the Checkmarx CxSAST scanning results. The issue records are the bugs opened 
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by the help-desk staff to the software products in the production. The issue records are 

recorded on the JIRA and the data is obtained from the monthly report. Empirical 

studies have been carried out on the correlation between the results of the software 

security scanning and the issue record metrics. The results obtained with the corporate 

dataset were compared with the open source project data. Wireshark dataset was used 

for this comparison. 
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2.  LITERATURE REVIEW 

2.1 Purpose 

Software vulnerabilities are one of the major research topics in the software ecosystem. 

In this section, previous research and studies on these topics will be examined. In this 

sections will demonstrate the fundamental aspects of vulnerabilities prediction such as 

software metrics, text mining and prediction models as well as the algorithms used in 

the literature.  

2.2 Software Vulnerabilities 

Software vulnerabilities are one of the significant subjects in the field of computer 

security [45]. Today, software security is one of the important facts of the software life 

cycle from the design to testing, and it affects the process. However, time and cost 

pressures make it difficult to develop secure software. This is one of the reasons why 

software vulnerabilities have occurred [3]. Ivan Krsul defines software vulnerability 

as “an instance of an error in the specification, development, or configuration of 

software such that its execution can violate the security policy” [46]. Software 

vulnerability is defined as a mistake in the technical specifications, development, or 

configuration of a software that, if it occurs, [implicit or explicit]  violates the security 

policy of the software in the Ozment study [3]. Ozment started from Ivan Kursul's 

definition, but the term mistake was used instead of the term error and cites the  IEEE 

Standard Glossary of Software Engineering Terminology (IEEE Standards 1990) to  

support this usage for definition of software vulnerability.  Based on these definitions, 

a software vulnerability is defined as a software-related security mistake in this thesis. 

 

Software vulnerabilities can be grouped into five categories according to Apple 

documentation [47]. These are buffer overflows, unvalidated input, race conditions, 

access-control problems, and authorization[47]. A buffer overflow occurs when an 

application attempts to write data past the end (or, occasionally, past the beginning) of 
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a buffer [4]. Buffer overflows can cause applications to crash, can compromise data, 

and can contribute an attack vector for further privilege escalation to compromise the 

system on which the application is running. An unvalidated input attack occurs due to 

unsafe data. All data sources must be checked to prevent this attack. When working 

with shared data, files, databases etc. there are a number of simply made mistakes that 

can compromise security. This type of error causes race conditions attacks.  Many 

security vulnerabilities are created by the incorrect use of access controls, or by the 

omission to use them at all. These uses also cause access control problems.  

2.2.1   Software vulnerability identification methods 

There are many techniques like penetration testing[36], software reviews[35], static 

analysis[37] and runtime anomaly detection [38]  for identification of software 

vulnerabilities. However, applying these techniques manually is expensive in terms of 

the time and budget spent on specialized resources. Some of the existing techniques 

are available in the form of automated tools, but techniques like software inspections 

and reviews are intrinsically manual processes that depend on human experts to 

perform the analysis of the code [4]. In the Software Company, developers use 

penetration testing and static code analysis tools for detection software vulnerabilities. 

Penetration testing evaluates the security of a system by simulating attacks by 

malicious users and assessing whether the attacks are successful [5]. According to 

Jovanović and Irena’s study[39], penetration tests are divided into three groups: 

• Black-Box Penetration Testing: The black box penetration test is a type of 

attack without any knowledge of the target system to be attacked. Penetration tester or 

anyone who tries to reach the target system from outside without any knowledge is 

allowed to perceive the extent of the damage. 

• Gray-Box Penetration Testing: The gray box penetration test provides an 

analysis of the damage that an unauthorized user of the internal network can give to 

the target systems. Data-stealing, authorization upgrade, and network weaknesses are 

monitored against network packet loggers. It is the most important penetration test 

type. 

• White-Box Penetration Testing: The white box penetration test is a type of 

penetration test which is made available to all systems in the network. One of the 

employees is the attack simulation that attempts to break into and out of the network 

from outside or inside. 
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The static code analysis tool in OWASP is described as designed to analyze source 

code and/or compiled versions of code to help find software vulnerabilities[6]. Some 

tools are starting to move into the IDE. For the types of problems that can be detected 

during the software development phase itself, this is a powerful phase within the 

development life cycle to employ such tools, as it provides immediate feedback to the 

developer on issues they might be introducing into the code during code development 

itself. This immediate feedback is very useful, especially when compared to finding 

vulnerabilities much later in the development cycle [6]. There are many free or 

commercial type static code analysis tools in use. SonarQube, Flawfinder, Bandit, 

Brakeman, FindSecBugs, Google CodeSearchDiggity are examples of those that are 

free. SonarQube is used to measure, report and improve code quality. It works with 

the continuous inspection philosophy. CxSAST, CodeSonar, Fortify are examples of 

commercial type static code analysis tools. CxSAST scans an uncomplied code and 

does not require a completed build [7]. It even works from the developer’s IDE. This 

allows organizations to use CxSAST earlier in the software development life cycle. 

Regulatory standards as Payment Card Industry Data Security Standard (PCI-DSS), 

Health Insurance Portability and Accountability Act (HIPAA), Federal Information 

Security Management Act (FISMA) require organizations to test for common 

vulnerabilities like those found in the Open Web Application Security Project 

(OWASP) Top 10 and the SANS top 25. CxSAST finds these all vulnerabilities. In 

this study, CxSAST report parameters are used for output in the prediction model. 

 

Until 1999, identified software vulnerabilities were kept in every company's own 

database. In 1999, MITRE established the Common Vulnerabilities and Exposures 

(CVE).  MITRE is a non-profit organization founded in 1958 and collaborating with 

US government agencies on national critical issues [8]. CVE is a free reference 

dictionary for public security vulnerabilities. Confirmation that a software flaw has a 

real security vulnerability that will qualify for a CVE number is subject to a series of 

review and approval processes. Since 1999, CVE has been recognized as an 

internationally recognized international standard in academia, government institutions 

and the business world [9].  
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Figure 2.1 : CVE example. 

 

The National Vulnerability Database (NVD) is a database that has been created since 

1999 under the responsibility of the Cyber Security Unit within The National Institute 

of Standards and Technology (NIST) [10] [11]. The NIST is a state institution that has 

set standards in the field of technology since 1901 and operates under the US 

Department of Commerce. Software vulnerabilities data is automated in NVD 

published in management-appropriate formats. CVE database content is available on 

the NVD web page. 

2.2.2  Software vulnerability prediction models  

The number of software vulnerabilities reported has been growing every year. 

According to the NVD [11] in 2018,  16.515 vulnerabilities have been discovered – 

more than twice as many as were reported in 2016.  These vulnerabilities, if exploited, 

can cause damages to educational institutions, corporations, government systems, 

software vendors and customers.  

 

Software vulnerability prediction models evaluate security risks and predict future 

software vulnerabilities [48]. There are many studies on software vulnerability 

prediction in the literature. In this thesis we present a machine learning based approach 

to predict vulnerabilities. In the literature, these machine learning based approaches  

use software code metrics[12], text mining methods [13], data on error records[14], 

and developer-based metrics [14]. This section summarizes the studies according to 

these input features. 

 

Meneely et al. [12] have signed one of the first studies to predict software 

vulnerabilities with software metrics. Meneely et al. [12] proposed a software metrics 

based prediction model, using the metrics related to code complexity, code churn, and 

developer’s activity. They form a hypothesis based on code complexity, code 
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complexity and developer base measurements. They did experiments on Mozilla 

Firefox and the Red Hat Enterprise Linux kernel. They collected 28 metrics related to 

these three software metrics groups. They used logistic regression machine learning 

algorithm. With this experiment, they achieved a 75% recall score. 

 

Meneely et al. continued their studies with empirical approaches. Meneely et al. [14] 

evaluated the correlation between pre-release bugs, reviewer experience and post-

release vulnerabilities on the Chromium project. They got the result that, while an 

empirical connection between bugs and vulnerabilities exist, the connection is 

considerably weak. This empirical work is one of the inspiration for the selection of 

the thesis topic. The results of this study were replicated in the scope of the thesis 

studies and the results were obtained according to the comments of the authors. 

 

Scandariato and Walden [13] recommend a prediction model using text mining on the 

source code. Software vulnerability prediction model using text mining, use machine 

learning algorithm on these tokens and its frequency.  They conducted an experiment 

with Android applications, Java source code is transformed into tokens. They reached 

80%–85% precision for several android application. 

 

Zhang et al. [15] provide a method to predict vulnerabilities by combining both 

software metrics and text mining methods. It is a two stage method. First stage six 

basic classifiers produce outputs, and through the second stage consolidate certain 

outputs via a composer. In this work, they use three classifiers for each method, and a 

composer is used to consolidate the outputs of these classifiers. Random forest is used 

as the composer. The composer is trained with confidence values produced by 

classifiers and the corresponding status of each component such as vulnerable or not. 

The input of the composer is the confidence value generated by each classifier. They 

got an F1 score of 0.75 experimented with web applications Moodle, Phpmyadmin, 

Drupal. 

 

Li et al. [16] present a new method for predicting vulnerabilities. They have created a 

framework using deep learning. They called this framework SySeVR. With this 

framework, they detected 15 vulnerabilities that were not reported to NVD.  
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Chowdhury and Zulkernine [17] evaluated code complexity, coupling,  and 

compliance measures to predict software vulnerabilities. The researchers examined the 

mozilla firefox project for 4 years. they used the empirical approach proposed in this 

project in their research. The researchers examined the 52 release of the mozilla firefox 

project. Their approach is based on decision trees and achieves a mean accuracy of 

72.85%, mean recall of 74.22%, mean fall-out of 28.51%, and mean F1 score of  

73.00%.  

 

Hovsepyan et al. [18] recommend a prediction model using text mining on the source 

code. They conducted  experiments on three web applications by transforming the Java 

source code into tokens and their frequencies of occurences. They reached 80%–85% 

precision using support vector machine (SVM) algorithm. 

 

Zimmermann et al. [19] found a weak correlation between vulnerabilities and different 

metrics, including code churn, code complexity, dependencies, and organizational 

measures. In the context of Windows Vista, they built two different predictors. The 

first was based on conventional metrics (i.e., code churn measures, code complexity 

metrics, dependency measures, code coverage measures, and organizational measures) 

and resulted in a median precision of 66.7% and median recall of 20%. The second 

prediction model was based on dependencies between binaries and has resulted in 

slightly lower precision (60%), but higher recall (40%). 

 

Aversano et al. [20] investigated the source code of the changes as text in order to 

build a predictor to determine whether the introduced changes are buggy. The authors 

determined that the use of the K nearest neighbors technique results in a significant 

trade-off in terms of precision and recall. The approach was confirmed using two open 

source Java applications, yielding precision and recall values of 59%-69% and 59%-

23% respectively. 

 

Gegick et al. [21] designed an approach that uses text-mining techniques to train a 

model to identify which bug reports are security related. The approach was applied to 

a large Cisco software system and identified 78% of the security-related bug fixes.  

 

Models in literature review have studied the relationship between software metrics, 



11 

text mining methods(code-base) and vulnerabilities and also bugs and vulnerabilities. 

This thesis take a different approach to those predictions with corporate organization 

dataset. 
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3.  PROBLEM STATEMENT 

There have been several studies in the area of software vulnerabilities prediction for 

open-source systems and databases. In those works, vulnerabilities collected from the 

public database were used. This thesis study include corporate data. Unfortunately, 

security-related records are kept confidential in organizations. A non-disclosure 

agreement prior to this thesis work was signed . 

 

At the software development stage, developers work with the pressure to write both 

secure software and perform flawless work and also time pressure should be noted. 

Developing secure software is part of the software life cycle but requires training and 

experience. With this thesis, we want to set a criterion where software developers and 

companies can follow vulnerabilities. We aim to facilitate the work of developers and 

to contribute to the measurement of software quality. 

 

In this thesis, it is aimed to predict future software vulnerabilities from textual 

descriptions of issue/bug records. For this purpose, two different dataset were 

examined. The first dataset belongs to a corporate company. The company data 

includes the scan data of the static code analysis tool instead of the software 

vulnerability. We set out to predict these screening data at an earlier stage by taking 

the empirical approach of Camilo et al. [14] and using issue records.  The issue records 

are the bugs opened by the help-desk or tester staff to the software products in the 

production. The other dataset belongs to the Wireshark project. In this dataset, 

software vulnerabilities and bug reports are published periodically. With this dataset 

will be used to model the predictions that bug records may cause software 

vulnerabilities in the future. 

 

In summary, we have combined a list of research questions for vulnerabilitiy 

prediction studies with specific problems of organizations.  
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i. Can we propose a vulnerability prediction model using issue records? 

ii. How succesfully do topic models extracted from the descriptions of issue 

records explain vulnerabilities? 
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4.  PROPOSED METHOD 

4.1 Data Used in The Method 

In the thesis study, two different datasets were used. One of the dataset belongs to an 

information technology company the other dataset belongs to the Wireshark project. 

As security-related data are critical data for companies, company information is kept 

confidential.  

 

Wireshark is a free and open-source packet analyzer. It is used for network 

troubleshooting, analysis, software and communications protocol development, and 

education. Originally named Ethereal, the project was renamed Wireshark in May 

2006 due to trademark issues [22]. 

 

For Wireshark dataset; collect the data to be used based on the bug records. Software 

vulnerabilities in the project are published by security advisory. In these reports, the 

bug record and the CVE id to which the vulnerabilities depend are shared. Bug records 

are recorded on the Bugzilla. Bugzilla is a bug and version tracking system developed 

by the Mozilla team and distributed with free software licenses [23]. The first release 

was released by Netscape in 1998 and was used by many companies to track bugs in 

open source and proprietary software. For the model to be created from Wireshark 

dataset, the bug and vulnerability records opened and closed in 2017 and 2018 were 

used. 106 software vulnerabilities were identified for the Wireshark project. Of the 

106 software vulnerabilities, 105 were mapped to a bug record. Including these 105 

vulnerability records, a total of 1112 bug records resolved in 2017 and 2018 were taken 

over Bugzilla. 

 

For company dataset; firstly, processes were examined and data records were 

analyzed. As a result of the dataset analysis, it was decided to collect the data to be 

used based on the software product.  All software products could not be included in 

the study because the infrastructure was not ready for all products. The sample 
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software product group was used with the company dataset. In the 6-month dataset, an 

average of 26 software product data were obtained each month : table 4.1.2. 

 

The company performs software security checks with CxSAST tool. For the thesiss 

study, 6-month screening data for the last half of 2018 were used.  The data obtained 

from the survey includes software product based monthly security data. The report 

presents the findings for a software product grouped by severity. Severity levels are 

high, medium and low respectively. The report also shares the number of lines of code 

scanned on a software product basis. The properties that come with the report are 

shared in the table 4.1.1. 

                       Table 4.1 : CxSAST report feature. 

Feature No Features 

1 ID 

2 ProjectId 

3 LOC 

4 HighSeverity 

5 MediumSeverity 

6 LowSeverity 

7 RiskLevelScore 

8 FailedLOC 

9 StatisticsCalculationDate 

 

Table 4.2 : CxSAST Scan Data. 

Date Product 

Count 

LOC Low Medium High 

2018.07 25 16.110.186 31062 10681 1132 

2018.08 27 13.047.525 31497 9248 945 

2018.09 24 15.343.368 31152 9697 3519 

2018.10 24 22.336.829 41814 17218 4628 

2018.11 29 27.025.372 50999 17655 5608 

2018.12 26 26.786.588 63659 17540 5674 

      

 

Another dataset used next to the vulnerabilities data is the issue records data. The issue 

records are the bugs opened by the help-desk or tester staff to the software products in 

the production. There are several systems for monitoring issue records. In the 

Chromium project uses Google Code as bug tracking system. Chromium is an open-
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source browser project that aims to build a safer, faster, and more stable way for all 

users to experience the web [14].  

 

In company dataset JIRA is used for the management of the issue records and a 

monthly report is generated on the tool. The life cycle of the issue record is followed 

by JIRA, consists of four status. These status are Pending, In progress, Pre-release, 

Done respectively. Each record does not go through pre-release status because no 

software changes are required in each record. The 6-month issue records report was 

analyzed for this study. 39.015 different issue records were examined and 39 features 

were discovered for each issue records. Table 4.1.3 shows the record-based features 

that came with the issue record report. When the issue records report was examined, it 

appeared that there were records opened for reasons that did not affect the software. 

Issue record data were analyzed and features that could be associated with software 

changes were chosen. Issue records that caused the software change were filtered 

according to the root cause feature in the report. As a result of filtering and selecting 

product group records, we have 3516 records out of 39100 records. 

4.2 Algorithms and Techniques Used in The Method 

In the studies conducted to predict software vulnerabilities, machine learning 

algorithms, text mining techniques, natural language processing algorithms were used 

in the literature research. In this thesis, these algorithms and techniques are included. 

In the data processing steps, text mining and natural language processing algorithms 

were used. 

 

The most common methods used in vulnerabilities prediction studies are machine 

learning algorithms. Prediction models usually combine software metrics, textual 

metrics and vulnerabilities information to learn which modules seem to be more 

vulnerable-prone. In this thesis, the problem is discussed in two different ways for two 

different dataset. The classification problem for the Wireshark project and the 

regression problem for the company data are considered. Three different machine 

learning algorithms have been applied for this regression problem and in the data 

processing steps, text mining and natural language processing algorithms were used. 

Also three different machine learning algorithms have been applied for this 

classification problem and in the data processing steps, text mining and natural  
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Table 4.3: Issue Records Features. 

Features Uniq Missing 

Value 

Code Base 

ID + - - 

RecordNo + - - 

Solution - - - 

Summary + - - 

Assignee - - - 

UnitName - - + 

RecordType - - - 

Headship - - + 

Status - - - 

ReportDate - - - 

Product - - + 

Platform - - + 

CreatedDate - - - 

RecordUpdate - - - 

IssueCategory - - + 

SolutionDate - - - 

SolutionMonth - - - 

SolutionYear - - - 

CompetionPeriod - - - 

CreatedMonth - - - 

CreatedYear - - - 

GeneratedSeverity - - - 

Outsourcer - + - 

Deadline - - - 

ProductCode - - + 

PlatformCode - - + 

NumberofReturn - - - 

Description + - + 

SolutionDescription - + + 

ReturnDescription - + - 

RootCauseCategory - + + 

SolutionCategory - + + 

AuthorizedGroup - - + 

    

 

language processing algorithms were used. In this section, these algorithms and 

techniques will be explained briefly. 

 

First of all, we processed the data with text mining. The data we apply to text mining 

techniques are the descriptions of the issue records and bug records. Text mining, is 

the process of deriving high-quality information from text [24].  Mining and analyzing 

text helps organizations find potentially valuable business insights in corporate 
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documents and other sources of text-based data. In this thesis, firstly basic text mining 

steps were operated step by step in the issue record and bug records descriptions. 

 

Issue records from corporate dataset and bug records from OS dataset descriptions are 

parsed with text mining operations. Descriptions from the issue records of six -months 

and two years of bug records are passed through the following text mining stages [49]; 

• Split the description into sentences and into words.  

• Lowercase the words and remove punctuation. 

• Words that have fewer than 2 characters are removed. 

• Stopwords are determined and removed. 

• Words are stemmed and reduced to their root form. 

The two datasets contain data in different languages. The issue records contain textual 

descriptions in Turkish, and bug records contain textual descriptions in English. 

Therefore, different stop words libraries were used.  

As a result of these steps, each issue and bug record description text is ready for the 

feature selection step. In order to measure the repeat frequency of the words in the text, 

the TF-IDF (The Term Frequency - Inverse Document Frequency) statistical method 

is applied to the issue record description text passing through the text mining steps 

[25]. As a result of this operation, the weight factor of each word is calculated with the 

formula; 

TF(x)= How many times have passed in x / Total number of terms in the record 

IDF(x) = loge(Total number of terms / Number of records in which x is the term) 

                                     TF-IDF(x) = TF(x) * IDF(x)                                        (4.1) 

Topic modeling is a machine learning and natural language processing research area 

for determining the basic semantic structure of the text document [26], [27], [28], [29]. 

A large amount of non-structural text documents can be automatically organized, 

searched, and summarized using topic modeling methods. Latent Dirichlet Allocation 
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(LDA ) is implemented as topic modeling method [50]. Within the scope of this study, 

the effectiveness of the data representation of the LDA is evaluated on the issue record 

description texts so that the text documents can be represented effectively. 

                   Table 4.4: Example of Topic Model (Topic 0). 

Topic No Words 

0  0.021*"word1" + 0.018*"word2" + 0.017*"word3" + 0.016*"word4" 

+ 0.016*"word5" + 0.014*"word6" + 0.012*"word7" + 0.011*"word8" 

+ 0.011*"word9" + 0.010*"word10" 

 

Example topic model for issue records, topic 0, created in Table 4.2.1 were shared. 

Words have been masked because of the confidentiality agreement. Five main topics 

were determined using 3516 issue record datasets. With this step, topic-based scores 

were obtained for each issue record.  

 

Topic models and text mining studies were developed by using python language in 

pycharm community IDE. Gensim, sklearn and pandas et al. libraries were used when 

creating topic models. DB browser for SQlite is used to store the dataset.  

 

It has been observed that these algorithms are used in prediction models examined in 

the literature and successful results are obtained [13], [14], [15]. Within the scope of 

the thesis, models with different algorithms have been established. The three most 

successful algorithms are explained in the thesis. 

 

Machine learning and statistical methods were investigated for regression problem; 

Support vector regression (SVR), Artificial Neural Network (ANN) and Classification 

and Regression Trees (CART) were decided to be used. 

 

Machine learning and statistical methods were investigated for regression problem; 

Naïve Baye s(NB), Fisher's Linear Discriminant Algorithm (FLDA) and Random Tree 

(RT) were decided to be used. 

 

First, the support vector regression was investigated. SVR was developed for 

regression problems from support vector machines (SVM) algorithm. SVR is an 

application of SVM to time-series forecasting [30]. 
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Given a training dataset, (x1, y1),...,(xN , yN ) where xi ∈ X, yi ∈ R, N is the size of 

training data, and X denotes the space of the input samples–for instance, Rn. The aim 

is to find a function which can estimate all these data well. SVR is one of the methods 

to perform the regression task [30]. In general, the estimation function in SVR takes 

the following form,  

                                         f(x)=(w · φ(x)) + b                                            (4.2) 

 

In this thesis, SVR will be applied with WEKA tool. SMOreg function implements the 

support vector machine for regression on WEKA [31]. 

 

 

ANN is a computational model based on the structure and functions of biological 

neural networks. Neural Network is a structure built in layers. The first layer input is 

called the last layer output. The middle layers are called Hidden Layers. Each layer 

contains a certain number of Neurons. These neurons are connected to each other by 

Synapses. Synapses contains a factor. These coefficients tell us how important the 

knowledge in the neurons they are connected to. 

 

 

Figure 4.1 : Neural Network layer. 

 

In this thesis, ANN will be applied with WEKA tool. MultilayerPerceptron function 

implements on WEKA [31]. 

 

Decision Trees are an important type of algorithm for predictive modeling machine 

learning. In the decision tree learning, a tree structure is formed and the class labels on 

the leaf level of the tree and the handles that go to these leaves and with the arms 

coming from the beginning are expressed. Requires fast data preprocessing. According 

to most alternative techniques, data can be used with very little processing. The 

pretreatment stage is shorter and simpler than the other alternatives. It can be used for 
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processing both numeric and class data. Most machine learning algorithms are either 

useful in numerical applications or useful for classification problems. Decision tree 

learning can be used in both areas [32]. 

 

Decision Trees uses the white box model. In the white box model, which is an approach 

to software engineering, each step is viewable and interpretable. Again, black box 

approach, which is a software engineering application, is mostly covered by artificial 

neural network in machine learning. While the input and output can be interpreted in 

this method, it is not possible to observe and interpret the internal dynamics of the 

system at every step. 

 

Naive Bayes is an algorithm that performs operations according to the probability 

calculation. It handles the train data according to its formula and produces a percentage 

ratio for each case and performs the classification according to the probabilities [32]. 

 
Figure 4.2 : Mathematical Representation of Naive Bayes. 

 

Fisher's linear discriminant, a method used in statistics, pattern recognition and 

machine learning to find a linear combination of features that characterizes or 

separates two or more [33]. 
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5.  PROPOSED MODEL 

We aim to try a new association for our vulnerability prediction model. This study 

investigates the prediction of software vulnerabilities using topic models derived from 

textual descriptions of issue records and machine learning techniques. Within the 

scope of the thesis study, we use two different datasets. The first dataset belongs to the 

information technology company and the second dataset is the open source dataset of 

the wireshark project. The models to be created from the first datas will be called 

company models and the models created with the wireshark project dataset will be 

called open source (OS) models. 

 

The proposed company model is based on the software product. The target is to predict 

how vulnerable the software product is. Our  research questions will be answered with 

the proposed model. Therefore, we aim to propose solutions for them in the later 

sections throughout the experiments. 

 

We consider our problem as a regression problem for company dataset. Artifical neural 

networks, support vector regression and classification and regression trees methods 

were used in the creation of the model. We consider our second problem as a 

classification problem for Wireshark dataset. Artifical neural networks, support vector 

regression and classification and regression trees methods were used in the creation of 

the model. 

 

In the development of the system, we were used: issue records and CxSAST scan 

reports. Two datasets are matched and modeled on the basis of software products. 

 

The proposed OS model is based on the bug records. This problem is to correctly 

predict whether the intended bug record has caused the vulnerability. Our  research 

questions will be answered with the proposed model. Therefore, we aim to propose 

solutions for them in the later sections throughout the experiments. 
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We consider our problem as a classification problem for OS dataset. Artifical neural 

networks, support vector regression and classification and regression trees methods 

were used in the creation of the model. We consider our second problem as a 

classification problem for Wireshark dataset. Naïve Bayes, Fisher's Linear 

Discriminant and Random Tree methods were used in the creation of the model. 

 

The built models were trained with two different cross-validation techniques. One of 

them is 10-fold cross validation and the other one is leave-one-out technique. The 

reason for using the leave-one-out technique is the lack of data. 

 

Vulnerabilities prediction models basically take a set of independent attributes and 

retrieve a class label. It consists of four steps, which will be explained in this section: 

 

• “What are the inputs to the vulnerability prediction model?” 

• “What are the outputs of the vulnerability prediction model?” 

• “How does the model operate between the inputs and output?” 

• “How can we assess the performance of the model?” 

5.1 Inputs of the Company Model  

As inputs of this study, we need list of software products. From these software 

products, we collect issue records which are product-based records. Issue records 

features  can be easily collected from JIRA. Moreover, they provide useful information 

about the characteristics of software product in terms of maintenance costs. Selected 

issue record features shared in table 5.1.1. 

Table 5.1: Selected Issue Record Features. 

Feature No Features 

1 ID 

2 RecordNo 

3 Solution 

27 ProductCode 

28 PlatformCode 

30 Description 

35 SolutionCategory 
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The LDA topic modeling method was run with the corpus generated from the 3516 

issue record descripton. As a result of this stage, five topics were obtained. 

Topic model scores were obtained on the basis of the issue record. In this thesis, two 

different models were created by using topic model scores of the issue records as input. 

These models will then be referred to as model A and model B for company model.  

For model A, to obtain these issue record  topic scores on the basis of the software 

product, the descriptions of the issue records that were opened to the software product 

were combined and tested in the model and the scores were obtained based on the 

product. Model A inputs shared in table 5.1.2. 

                                  Table 5.2 : Model A Inputs. 

Feature No Features 

1 ProductClass 

2 ProductID 

3 TOPIC_0 

4 TOPIC_1 

5 TOPIC_2 

6 TOPIC_3 

7 TOPIC_4 

8 IssueRecord_Level_1 

9 IssueRecord_Level_2 

10 IssueRecord_Level_3 

11 LineofCodes 

For model B, we moved topic model scores from issue record level to software product 

level through the aggregation schemes [34]. The aggregation schemes which we use 

in model B are shown in table 5.1.3. Model B inputs shared in table 5.1.4. 

                                    Table 5.3: List of the aggregation schemes. 

Category Aggregation schemes Formula 

Central Tendency Minimum Min(mi) 

Central Tendency Maximum Max(mi) 

 

Central Tendency Median 

 

Inequality Index Hoover Index Hm =  
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To evaluate the prediction performance of our vulnerability prediction models, we use 

topic model scores, issue records count and software product severity. 

                          Table 5.4: Model B Inputs. 

Feature No Features 

1 ProductClass 

2 ProductID 

3 TOPIC_0_min 

4 TOPIC_0_max 

5 TOPIC_0_hoover 

6 TOPIC_0_median 

7 TOPIC_1_min 

8 TOPIC_1_max 

9 TOPIC_1_hoover 

10 TOPIC_1_median 

11 TOPIC_2_min 

12 TOPIC_2_max 

13 TOPIC_2_hoover 

14 TOPIC_2_median 

15 TOPIC_3_min 

16 TOPIC_3_max 

17 TOPIC_3_hoover 

18 TOPIC_3_median 

19 TOPIC_4_min 

20 TOPIC_4_max 

21 TOPIC_4_hoover 

22 TOPIC_4_median 

 

5.2 Inputs of the OS Model 

As inputs of wireshark project model, we need description of bug records. Bug records 

features can be easily collected from Bugzilla. Moreover, they provide useful 

information about the characteristics of software product in terms of maintenance 

costs. The features found in the bug report taken from Bugzilla are shown in the table 

5.2.1. 

The LDA topic modeling method was run with the corpus generated from the 1122 

bug record summary. As a result of this stage, five topics were obtained and used for 

inputs. Model OS inputs shared in table 5.2.2. 
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                         Table 5.5: Bug record features. 

Feature No Features 

1 Bug ID 

2 Product 

3 Component 

4 Assignee 

5 Status 

6 Resolution 

7 Summary 

8 Year 

9 Month 

Table 5.6: Model OS Inputs. 

No Inputs 

1 Topic 0 

2 Topic 1 

3 Topic 2 

4 Topic 3 

5 Topic 4 

 

5.3 Outputs of the OS Model 

Software vulnerability prediction can be described as a classification algorithm for 

model OS. It will be more accurate to specify the classification data in the property 

that will generate the class data instead of the output. In order to process the class data, 

advisory reports published in the wireshark project were used. Each of the 

vulnerabilities published in these reports was mapped to a bug. Vulnerable class of 

bugs that are paired with a vulnerability is marked yes. 

 

5.4 Outputs of the Company Model 

Software vulnerability prediction can be described as a regression algorithm for 

company model. We make predictions about the vulnerability count of the software 

product with our model. Therefore, the expected outputs are from the CxSAST report. 

The number of software vulnerabilities in the report is divided into three severity levels 

which are low, medium, high. Each severity level was evaluated singularly. Company 

outputs shared in table 5.4.1. For example, low severity measurement was used as a 

single output in models. The sum of the measurements of all severity levels is also 
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used as an output in the models which name is total. In the table 5.4.2 shared the model 

details where model output is low. 

                   Table 5.7: Outputs (Company Model). 

Feature No Features 

1 Low  

2 Medium 

3 High 

4 Total 

Table 5.8: Models (output: low). 

Output Model Technique Concept Cross-validation 

Low 
Model A  SVR 

Kernel: Poly 

C:1 

10-folds 

Low 
Model A SVR 

Kernel: Poly 

C:1 

Leave-one-out 

Low 
Model B SVR 

Kernel: Poly 

C:1 

10-folds 

Low 
Model B SVR 

Kernel: Poly 

C:1 

Leave-one-out 

Low 
Model A SVR 

Kernel: Puk 

C:1 

10-folds 

Low 
Model A SVR 

Kernel: Puk 

C:1 

Leave-one-out 

Low 
Model B SVR 

Kernel: Puk 

C:1 

10-folds 

Low 
Model B SVR 

Kernel: Puk 

C:1 

Leave-one-out 

Low 
Model A SVR 

Kernel: RBF 

C:1 

10-folds 

Low 
Model A SVR 

Kernel: RBF 

C:1 

Leave-one-out 

Low 
Model B SVR 

Kernel: RBF 

C:1 

10-folds 

Low 
Model B SVR 

Kernel: RBF 

C:1 

Leave-one-out 

Low 
Model A CART 

NoPuring : True 

MaxDepht : -1 

10-folds 

Low 
Model A CART 

NoPuring : True 

MaxDepht : -1 

Leave-one-out 

Low 
Model B CART 

NoPuring : True 

MaxDepht : -1 

10-folds 

Low 
Model B CART 

NoPuring : True 

MaxDepht : -1 

Leave-one-out 

Low Model A ANN - 10-folds 

Low Model A ANN - Leave-one-out 

Low Model B ANN - 10-folds 

Low Model B ANN - Leave-one-out 
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5.5 Assessing the Performance of the Model 

The prediction results obtained by testing the models were compared with the results 

of real software vulnerabilities. Absolute Error (AE), Relative Error (RE), Mean 

magnitude of relative error (MMRE), Median magnitude of relative error (MdMRE), 

Prediction Indicator (Pred(k)) and Correlation Coefficient (CC) used for evaluating 

regression tasks. Precision, Recall, F-measure and Area Under The Curve (AUC) used 

for evaluating classification tasks. 

 

The formulas used to obtain the results are shown in the tables 5.5.1, 5.5.2, 5.5.3. 

                 Table 5.9 : Absolute Error and Relative Error Equations. 

Equation Formula 

AE |actual − predicted| 

RE 

 

Table 5.10 : Regression Evaluation Metrics. 

Metric Definition 

MRE 
 

MMRE 

 

MdMRE 
 

Pred(k) percentage of estimates that are within n% 
of the actual value 

CC  relationship is between two variables 
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Table 5.11: Classification Evaluation Metrics.  

 

Metric Definition 

Precision 

 

Recall 

 

F-Measure 

 

AUC Chosen positive example 
is actually positive than 
that a randomly chosen 
negative example is 
positive 
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6.  RESULTS 

There are four different output classes used in this thesis for regression problem. For 

each output, two models were tested separately and a total of 80 tests were performed. 

The results of the test were compared with the actual values. Predictive errors of 

estimation values are calculated. For error calculation, MRE, MMRE, PRED (25), 

MdMRE values which are commonly used in regression problems are used. The error 

values obtained are shared in the tables. 

 

When the values were examined, it was observed that the best result was obtained in 

the models with the total value of the output. Box plot graphics of the models are 

available in the annex. Model A performs slightly better than Model B in terms of 

MMRE, MdMRE, and Pred(25). The aggregation processes used had a negative effect 

on the results obtained in Model B. Observations were also in this direction in the 

literature research. In order to be able to select a model, MMRE and MdMRE values 

should be close to zero. When we evaluate the models via the MdMRE error metric, 

the CART model created under Model A gives the best results. However, the results 

were not successful enough to make a recommendation. The obtained results are aimed 

to be improved in the future studies by expanding the dataset and evaluating the 

outiers. 

 

The model established for the classification problem has been tested with selected 

machine learning algorithms. The model results were analyzed with the classifications 

evaluation metrics. The results are more successful compared to the results obtained 

with the company dataset.  In this model study, bug record based classification did not 

narrow down the dataset and the results were more successful than company dataset. 

 

Although Model OS is more successful than Company Model, two problems are 

considered in different types. Datasets are not suitable for installing the same model. 
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The data of corparate companies are not suitable for establishing every model 

recommend in the literature. In tables with start 6,  shared the result details. 

 



33 

Table 6.1: Regression result for Model A (Output : low). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Low Model A  1 SVR Kernel: Poly, C:1 10-folds 1,62 0,62 0,25 0.42 

Low Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,79 0,60 0,25 0.44 

Low Model A 3 SVR Kernel: Puk, C:1 10-folds 10,04 0,86 0,14 0.33 

Low Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 9,60 0,96 0,14 0.36 

Low Model A 5 SVR Kernel: RBF, C:1 10-folds 3,12 0,75 0,23 0.40 

Low Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 2,66 0,75 0,21 0.40 

Low Model A 7 CART NoPuring : True 10-folds 2,86 0,44 0,35 0.69 

Low Model A 8 CART NoPuring : True Leave-one-out 1,47 0,32 0,45 0.80 

Low Model A 9 ANN - 10-folds 24,47 2,13 0,06 0.14 

Low Model A 10 ANN - Leave-one-out 19,48 2,39 0,10 0.47 

 

Table 6.2: Regression result for Model A (Output : medium). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Medium Model A  1 SVR Kernel: Poly, C:1 10-folds 1,83 0,79 0,17 0.30 

Medium Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,52 0,75 0,17 0.31 

Medium Model A 3 SVR Kernel: Puk, C:1 10-folds 18,07 1,53 0,14 0.16 

Medium Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 17,15 1,75 0,14 0.23 

Medium Model A 5 SVR Kernel: RBF, C:1 10-folds 2,29 0,75 0,23 0.32 

Medium Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 2,42 0,72 0,18 0.32 

Medium Model A 7 CART NoPuring : True 10-folds 21,79 0,88 0,22  0.63 

Medium Model A 8 CART NoPuring : True Leave-one-out 13,76 0,71 0,23 0.45 

Medium Model A 9 ANN - 10-folds 147,07 4,90 0,07 0.11 

Medium Model A 10 ANN - Leave-one-out 91,65 6,33 0,08 0.14 
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Table 6.3: Regression result for Model A (Output : High). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

High Model A  1 SVR Kernel: Poly, C:1 10-folds 9,41 1,00 0,07 0.15 

High Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 9,58 1,16 0,04 0.25 

High Model A 3 SVR Kernel: Puk, C:1 10-folds 28,81 3,13 0,07 0.68 

High Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 27,84 2,94 0,06 0.82 

High Model A 5 SVR Kernel: RBF, C:1 10-folds 7,62 0,98 0,05 0.17 

High Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 7,70 0,99 0,06 0.25 

High Model A 7 CART NoPuring : True 10-folds 25,26 0,96 0,12 0.44 

High Model A 8 CART NoPuring : True Leave-one-out 21,60 0,90 0,15 0.61 

High Model A 9 ANN - 10-folds 121,48 8,00 0,05 0.20 

High Model A 10 ANN - Leave-one-out 96,98 6,90 0,04 0.38 

 

Table 6.4: Regression result for Model A (Output : Total). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Total Model A  1 SVR Kernel: Poly, C:1 10-folds 1,17 0,65 0,22 0.42 

Total Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,17 0,64 0,21 0.48 

Total Model A 3 SVR Kernel: Puk, C:1 10-folds 11,65 1,14 0,12 0.44 

Total Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 11,14 1,10 0,14 0.49 

Total Model A 5 SVR Kernel: RBF, C:1 10-folds 2,03 0,68 0,29 0.48 

Total Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 1,81 0,68 0,32 0.47 

Total Model A 7 CART NoPuring : True 10-folds 10,31 0,30 0,44 0.62 

Total Model A 8 CART NoPuring : True Leave-one-out 1,06 0,23 0,52 0.74 

Total Model A 9 ANN - 10-folds 21,87 1,84 0,07 0.45 

Total Model A 10 ANN - Leave-one-out 22,72 1,93 0,12 0.44 
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Table 6.5 : Regression result for Model B (Output : Low). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Low Model B  1 SVR Kernel: Poly, C:1 10-folds 6,63 0,83 0,17 0.02 

Low Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 4,73 0,88 0,17 0.05 

Low Model B 3 SVR Kernel: Puk, C:1 10-folds 17,94 1,83 0,10 0.23 

Low Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 17,14 1,74 0,11 0.26 

Low Model B 5 SVR Kernel: RBF, C:1 10-folds 5,43 0,87 0,19 0.04 

Low Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 4,77 0,84 0,20 0.04 

Low Model B 7 CART NoPuring : True 10-folds 23,75 0,67 0,21 0.44 

Low Model B 8 CART NoPuring : True Leave-one-out 20,12 0,78 0,19 0.33 

Low Model B 9 ANN - 10-folds 47,46 2,66 0,10 0.25 

Low Model B 10 ANN - Leave-one-out 23,47 2,80 0,07 0.17 

 

Table 6.6: Regression result for Model B (Output : Medium). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Medium Model B  1 SVR Kernel: Poly, C:1 10-folds 5,84 0,79 0,16 0.09 

Medium Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 5,69 0,87 0,14 0.04 

Medium Model B 3 SVR Kernel: Puk, C:1 10-folds 25,63 2,56 0,10 0.17 

Medium Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 25,13 2,80 0,10 0.23 

Medium Model B 5 SVR Kernel: RBF, C:1 10-folds 4,79 0,77 0,14 0.00 

Medium Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 4,52 0,80 0,16 0.01 

Medium Model B 7 CART NoPuring : True 10-folds 17,59 0,83 0,14 0.15 

Medium Model B 8 CART NoPuring : True Leave-one-out 13,24 0,67 0,23 0.20 

Medium Model B 9 ANN - 10-folds 75,29 6,21 0,08 0.00 

Medium Model B 10 ANN - Leave-one-out 83,92 4,82 0,07 0.15 
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Table 6.7: Regression result for Model B (Output : High). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

High Model B  1 SVR Kernel: Poly, C:1 10-folds 10,91 0,98 0,09 0.19 

High Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 9,58 0,99 0,07 0.21 

High Model B 3 SVR Kernel: Puk, C:1 10-folds 37,60 4,52 0,05 0.41 

High Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 36,19 3,35 0,04 0.71 

High Model B 5 SVR Kernel: RBF, C:1 10-folds 8,716 1,50 0,02 0.09 

High Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 8,92 1,00 0,01 0.13 

High Model B 7 CART NoPuring : True 10-folds 25,02 0,96 0,14 0.38 

High Model B 8 CART NoPuring : True Leave-one-out 19,83 0,72 0,25 0.49 

High Model B 9 ANN - 10-folds 82,81 10,84 0,06 0.24 

High Model B 10 ANN - Leave-one-out 70,94 13,00 0,07 0.46 

 

Table 6.8 : Regression result for Model B (Output : Total). 

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC 

Total Model B  1 SVR Kernel: Poly, C:1 10-folds 8,36 0,93 0,13 0.08 

Total Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 6,37 0,93 0,08 0.02 

Total Model B 3 SVR Kernel: Puk, C:1 10-folds 19,35 1,22 0,14 0.37 

Total Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 18,62 1,199 0,14 0.39 

Total Model B 5 SVR Kernel: RBF, C:1 10-folds 4,17 0,84 0,22 0.08 

Total Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 3,79 0,79 0,22   0.08 

Total Model B 7 CART NoPuring : True 10-folds 12,67 0,73 0,27   0.45 

Total Model B 8 CART NoPuring : True Leave-one-out 14,41 0,44 0,32 0.50 

Total Model B 9 ANN - 10-folds 30,55 1,63 0,10 0.08 

Total Model B 10 ANN - Leave-one-out 34,22 1,91 0,13 0.37 
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                                                           Table 6.9: Classification result for Model OS. 

Metric Technique Cross-validation Yes No Weighted 

 

 

Precison 

 

 

 

NB 

NB 

FLDA 

FLDA 

RT 

RT 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

0,26 

0,28 

0,19 

0,19 

0,37 

0,35 

0,95 

0,96 

0,97 

0,97 

0,95 

0,94 

0,89 

0,90 

0,90 

0,90 

0,89 

0,89 

 

 

 

Recall 

 

 

NB 

NB 

FLDA 

FLDA 

RT 

RT 

 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

 

0,59 

0,65 

0,74 

0,74 

0,42 

0,36 

 

0,84 

0,86 

0,68 

0,68 

0,93 

0,93 

 

 

0,82 

0,82 

0,69 

0,60 

0,88 

0,88 

 

 

F-

Measure 

 

 

NB 

NB 

FLDA 

FLDA 

RT 

RT 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

0,37 

0,39 

0,30 

0,30 

0,40 

0,35 

0,89 

0,89 

0,80 

0,80 

0,94 

0,94 

0,85 

0,85 

0,75 

0,75 

0,89 

0,88 

 

 

 

AUC 

 

 

NB 

NB 

FLDA 

FLDA 

RT 

RT 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

10-folds 

One-leave-out 

0,75 

0,74 

0,72 

0,71 

0,65 

0,63 

0,75 

0,74 

0,72 

0,71 

0,65 

0,63 

0,75 

0,74 

0,72 

0,71 

0,65 

0,63 
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7.  THREATS TO VALIDITY  

Possible threats to the validity of our findings are the dataset used. The company 

dataset has been studied for a period of 6-months, causing this dataset to shrink. It is 

planned to expand this dataset in the future studies and to repeat the study. 

 

New features can be added by re-evaluating the feature selection step for the Model 

OS. In this study, only the topic scores of the bug records were classified. Only the 

2017 and 2018 years from the Wireshark dataset have been used to build the model, 

while the training dataset range can be expanded to observe its effect on the prediction 

success. 

 

The textual descriptions used from the company dataset and the Wireshark dataset 

were written in different languages. The text data entered is not written according to 

any standard. Pollution of text data might have led to separate time spent in text mining 

steps. 
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8.  CONCLUSIONS AND FUTURE WORK 

In this thesis, we have investigated whether topic models obtained from textual 

descriptions of bugs and issue records may be a helpful criterion in predicting software 

vulnerabilities.  

 

This empirical analysis of predicting software vulnerabilities could be considered as a 

new prediction approach. In this thesis, we identify two research questions. The first 

research question is about the prediction of software vulnerabilities using issue 

records. The results show that there is a considerable relationship between bug/issue 

reports and vulnerabilities. In the second question, the success rates of the predictions 

made by using textual description and topic models obtained from textual descriptions 

were traced. The results show that software vulnerabilities can be avoided by tracking 

the scores of the topic models before software vulnerabilities occur. Especially when 

the Wireshark model results are examined, it is seen that the textual description of the 

bug records provide successful results in predicting software vulnerabilities. The recall 

score of the Wireshark model established by Fisher's Linear Discriminant algorithm is 

74%. In the evaluation of the models for the classification problem, recall values have 

been prioritized as success criteria. Because the number of error records matched with 

the vulnerability in the dataset is about 10%. High recall score at this rate indicates 

that false positive values are high, which makes the model successful. 

 

The aggregation procedures on topic model scores for the corporate data contributed 

negatively to the predictors' ability to learn. The same observation was obtained in the 

literature [34]. Standardizing the textual description of the bug and issue records would 

increase the success rate of the model. 

 

The starting point of the thesis was to built the models developed in the literature with 

corporate firm data. However, the dataset used in the literature and the different 
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datasets of corporate firms prevented replica studies. The investigation of corporate 

company processes and the data mining phase took longer than anticipated. The dataset 

obtained has a limited time interval. The thesis study will be developed in future 

studies with a larger dataset. 

 

Wireshark project dataset was found to be appropriate for this study, which is intended 

to be compared with open source project data. Software vulnerabilities opened under 

the Wireshark project were paired with one-to-one bug records, which led to the 

problem of classification. As a result of this study, it is determined by the test results 

that the textual descriptions of the bug records contribute to the successful results in 

predicting the software vulnerabilities. 

Outlier elements were observed in the company dataset. The dataset is under 

investigation. In future studies, it is planned to evaluate the outlier and categorize the 

dataset. 

 

Naive Bayes and Fisher's Linear Discriminant algorithms achieve successful results 

for the classification problem. In future studies, it is planned to test and compare these 

machine learning algorithms with different datasets. 

 

The sample software product group was used with the company dataset. In the future 

studies, it is planned to make prediction by being consistent with all products 

belonging to the company dataset. The reason for selecting the sample software 

product group is the lack of readiness of the measurement infrastructure. 
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