

Department of Communication Systems

Satellite Communication and Remote Sensing Programme

ISTANBUL TECHNICAL UNIVERSITY INFORMATICS INSTITUTE

M.Sc. THESIS

JUNE 2019

PREDICTING SOFTWARE VULNERABILITIES USING

TOPIC MODELING WITH ISSUES

Thesis Advisor: Dr. Ayşe TOSUN

Fatma Gül BULUT

Department of Communication Systems

Satellite Communication and Remote Sensing Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY INFORMATICS INSTITUTE

PREDICTING SOFTWARE VULNERABILITIES

USING TOPIC MODELING WITH ISSUES

M.Sc. THESIS

Fatma Gül BULUT

 (705151016)

Thesis Advisor: Dr. Ayşe TOSUN

İletişim Sistemleri Anabilim Dalı

Uydu Haberleşmesi ve Uzaktan Algılama Programı

HAZİRAN 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLİŞİM ENSTİTÜSÜ

KONU MODELLEME YÖNTEMİ İLE YAZILIM GÜVENLİK AÇIKLARINI

TAHMİN ETME

YÜKSEK LİSANS TEZİ

Fatma Gül BULUT

(705151016)

Tez Danışmanı: Dr. Ayşe TOSUN

iii

Thesis Advisor : Dr. Ayşe Tosun

 İstanbul Technical University

..............................

Co-advisor : Dr. Haluk Altunel

 Hacettepe University

Jury Members : Dr. Şerif Bahtiyar

İstanbul Technical University

Dr. M. Tahir Sandıkkaya

İstanbul Technical University

Assoc. Prof. Dr. Cemal Yılmaz

Sabancı University

Fatma Gül Bulut, a M.Sc. student of ITU Informatics Institute student ID 705151016,

successfully defended the thesis entitled “PREDICTING SOFTWARE

VULNERABILITIES USING TOPIC MODELING WITH ISSUES”, which she

prepared after fulfilling the requirements specified in the associated legislations,

before the jury whose signatures are below.

Date of Submission : 03 May 2019

Date of Defense : 11 June 2019

iv

v

To my family,

vi

vii

FOREWORD

I would like to thank my thesis supervisor Dr. Ayşe TOSUN for her knowledge and

encouragement during the completion of this thesis. It would have been impossible to

produce without her guidance and patience.

I would like to thank my co-advisor Dr.Haluk ALTUNEL for sharing his valuable

ideas and guidance whenever I needed.

I would like to give my special thanks to my family, especially my lovely husband

Ömer BULUT, for his gentle support and love when my mood was up and down

throughout my research.

May 2019

Fatma Gül BULUT

viii

ix

TABLE OF CONTENTS

FOREWORD .. vii
TABLE OF CONTENTS .. ix
ABBREVIATIONS ... xi
LIST OF TABLES .. xiii

LIST OF FIGURES ... xv
SUMMARY .. xvii
ÖZET .. xix
1. INTRODUCTION .. 1

1.1. Purpose of Thesis ... 2

2. LITERATURE REVIEW .. 5
2.1 Purpose ... 5

2.2 Software Vulnerabilities... 5

2.2.1 Software vulnerability identification methods ... 6
2.2.2 Software vulnerability prediction models .. 8

3. PROBLEM STATEMENT ... 13
4. PROPOSED METHOD ... 15

4.1 Data Used in The Method .. 15
4.2 Algorithms and Techniques Used in The Method 17

5. PROPOSED MODEL .. 23
5.1 Inputs of the Company Model.. 24
5.2 Inputs of the OS Model .. 26

5.3 Outputs of the OS Model ... 27
5.4 Outputs of the Company Model ... 27

5.5 Assessing the Performance of the Model ... 29

6. RESULTS ... 31
7. THREATS TO VALIDITY ... 39
8. CONCLUSIONS AND FUTURE WORK ... 41

REFERENCES ... 43
APPENDICES .. 47

x

xi

ABBREVIATIONS

ANN : Artificial Neural Network

PCI-DSS : Payment Card Industry Data Security Standard

NLP : Natural Language Processing

HIPAA : Health Insurance Portability and Accountability Act

OWASP : Open Web Application Security Project

FISMA : Federal Information Security Management Act

CVE : Common Vulnerabilities and Exposures

NVD : The National Vulnerability Database

TF-IDF : The Term Frequency - Inverse Document Frequency

LDA : Latent Dirichlet Allocation

SVR : Support vector regression

CART : Classification and Regression Trees

SVM : Support Vector Machines

OS : Open Source

NB : Naïve Bayes

FLDA : Fisher's Linear Discriminant Algorithm Act

RT : Random Tree

AE : Absolute Error

RE : Relative Error

MMRE : Mean magnitude of relative error

MdMRE : Median magnitude of relative error

Pred(k) : Prediction Indicator

CC : Correlation Coefficient

AUC : Area Under The Curve

xii

xiii

LIST OF TABLES

Page

Table 4.1 : CxSAST report feature .. 16

Table 4.2 : CxSAST Scan Data .. 16

Table 4.3 : Issue Records Features ... 18

Table 4.4 : Example of Topic Model (Topic 0) ... 20

Table 5.1 : Selected Issue Record Features .. 24

Table 5.2 : Model A Inputs .. 25

Table 5.3 : List of the aggregation schemes ... 25

Table 5.4 : Model B Inputs .. 26

Table 5.5 : Bug Record Features .. 27

Table 5.6 : Model OS Inputs .. 27

Table 5.7 : Outputs (Company Model) .. 28

Table 5.8 : Models (Output : low) .. 28

Table 5.9 : Absolute Error and Relative Error Equations 29

Table 5.10 : Regression Evaluation Metrics .. 29

Table 5.11 : Classification Evaluation Metrics .. 30

Table 6.1 : Regression result for Model A (Output : low) 33

Table 6.2 : Regression result for Model A (Output : medium) 33

Table 6.3 : Regression result for Model A (Output : high) 34

Table 6.4 : Regression result for Model A (Output : total) 34

Table 6.5 : Regression result for Model B (Output : low) 35

Table 6.6 : Regression result for Model B (Output : medium) 35

Table 6.7 : Regression result for Model B (Output : high) 36

Table 6.8 : Regression result for Model B (Output : total) 36

Table 6.9 : Classification result for Model OS .. 37

xiv

xv

LIST OF FIGURES

Page

Figure 2.1: CVE example.. 8

Figure 4.1: Neural Network layer. .. 21

Figure 4.2: Mathematical Representation of Naive Bayes 22

xvi

xvii

PREDICTING SOFTWARE VULNERABILITIES USING TOPIC

MODELING WITH ISSUES

SUMMARY

Developing secure software is one of the most important topics of the 21st century and

the future. Today, this important topic has become one of the main themes in software

development life cycle. Omissions in software development life cycle processes can

cause severe software vulnerabilities.

During software development, developers work with the goal of both writing secure

software and creating a flawless job under the time pressure. Developing secure

software is part of the software lifecycle but requires training and experience.

Developers tend to put secure software development to the second place under

challenging situations within limited time targets. It is important to be able to

automatically predict software vulnerabilities under such stressful situations for saving

time and effort of security analysts and testers.

A number of studies have been carried out both in academia and industry in the context

of predicting software vulnerabilities. Predictor models are proposed using metrics,

statistical methods and machine learning algorithms to highlight residual

vulnerabilities in software systems. The common purpose of all of the studies is to

prevent the vulnerabilities that may occur by predicting the software vulnerabilities at

an early stage.

This thesis aims to predict software vulnerabilities by using machine learning

algorithms, text mining techniques and natural language processing methods.

Open datasets are mostly used in a built software vulnerability prediction model.

Records of software vulnerabilities are highly confidential records for institutions and

organizations. For this reason, vulnerability data recorded in open source systems are

mostly used in the studies. In this thesis, security scansconducted in an information

technology company is collected and masked in order to build vulnerability prediction

models.

Many machine learning algorithms have been used to predict software vulnerabilities.

In the literature, this prediction problem is considered as a classification problem.

Classification is located under the supervised learning heading from machine learning

algorithms. It is ideal to use classification algorithms when the purpose is to distinguish

whether a module is safe or unsafe. In this thesis, the problem is considered as a

regression problem. Regression is also under the supervised learning heading from

machine learning algorithms. Our goal is to reveal the formula that predicts the number

xviii

of vulnerabilities on the basis of priority class and to contribute to the early detection

of software vulnerabilities.

In the thesis study, decision trees (support and regression), support vector regression

and artificial neural network algorithms were selected from machine learning

algorithms for a regression problem.

Many different metrics have been used as input in the models developed to predict

software vulnerabilities. These entries are mostly software code metrics. Software

code metrics, as well as error records metrics, developer based statistical

measurements, are experienced as inputs in models. In this thesis, post-release issue

records are used as model input.

Software vulnerability records used as model output in the study were obtained from

CxSAST reports, a static code analysis tool. In the report, software vulnerabilities were

divided into 3 groups as low, medium and high according to their severity. These three

significance levels were used separately as outputs, and their totals were also used as

outputs.

Within the scope of the thesis study, 2 different prediction models were established.

Models A and model B are given to these models. In this thesis, 10-fold cross-

validation and leave-one-out cross-validation methods were used and the results were

compared.

When the results are compared, there is a low relationship between issue records and

software vulnerabilities. The decision tree model has been found to have the most

accurate estimation results compared to other algorithms. Support vector regression

and artificial neural network decision trees follow the changing algorithm parameters.

Extending the dataset to improve the results is thought to be a step. The dataset used

in the thesis study includes a period of 6 months and data of an institution.

xix

KONU MODELLEME YÖNTEMİ İLE YAZILIM GÜVENLİK AÇIKLARINI

TAHMİN ETME

ÖZET

Güvenli yazılım geliştirmek, 21. yüzyılın ve geleceğin önemli konularından bir

tanesidir. Günümüzde bu önemli konu yazılım geliştirme yaşam döngüsü süreçlerinin

ana temalarından biri haline gelmiştir. Güvenli yazılım geliştirme yaşam döngüsü

adımlarında yapılan ihmaller yazılım güvenlik açıklarına neden olabilmektedir.

Yazılım geliştirme aşamasında, geliştiriciler hem güvenli yazılım yazmak hem de

hatasız bir iş çıkarmak hedefi ile çalışmaktadır. Bu hedef yanında zaman baskısı

unutulmamalıdır. Güvenli yazılım geliştirmek yazılım yaşam döngüsünün bir

parçasıdır ancak eğitim ve deneyim gerektirmektedir. Geliştiriciler kısıtlı zaman

hedefleri içerisinde güvenli yazılım geliştirmeyi bazı zorlu durumlarda ikinci plana

atabilmektedir. Bu zorlu durum karşısında yazılım güvenlik açıklarını ortaya

çıkmadan tahmin edebilmek önemli hale gelmiştir.

Güvenlik açıklarının tahmin edilmesi üzerine akademi ve endüstri tarafında bir çok

çalışma gerçekleştirilmektedir. Yazılım güvenlik açıkları ile ilişki kurulabilecek var

olan metrikler makine öğrenmesi algoritmaları ve istatistiksel yöntemler ile modeller

kurularak tahminler yapılmaktadır. Var olan metrikler dışında ampirik yaklaşımlar ile

yeni metrikler ortaya çıkarılmaktadır. Yapılan tüm çalışmalarının ortak amacı

güvenlik açıklarını erken evrede tahmin ederek oluşabilecek zafiyetlerin önüne

geçebilmektir.

Bu tez çalışması ile makine öğrenmesi algoritmaları, metin madenciliği teknikleri ve

doğal dil işleme yöntemleri kullanılarak yazılım güvenlik açıklarını tahmin etmek

amaçlanmıştır. Makine öğrenmesi algoritmaları sayısal öğrenme ve model tanıma

çalışmalarından geliştirilmiş bilgisayar biliminin ve yapay zekanın bir alt dalıdır.

Günümüze kadar gerçekleştirilmiş güvenlik açıkları tahminleme çalışmalarında

öncelikli tercih edilen yöntemlerdendir. Metin madenciliği metin verisi üzerinden

yapısallaştırılmış veri elde etmeye olanak sağlar. Doğal dil işleme, doğal dildeki

metinlerden ve/veya seslerden anlamlı ve istenen bilgilerinin bilgisayarın

anlayabileceği anlamların çıkarılmasını sağlayan yöntemler bütünüdür, yapay zekanın

ve dilbimin bir alt dalıdır.

Yazılım güvenlik açıklıkları ile ilgili yapılan çalışmalarda çoğunlukla açık veri setleri

kullanılmıştır. Güvenlik açıklarına dair kayıtlar kurum ve kuruluşlar için gizliliği

yüksek seviyeli kayıtlardır. Bu sebeple yapılan çalışmalarda çoğunlukla açık kaynak

sistemler üzerine gerçekleştirilmektedir. Bu tez çalışmasında iki farklı veri seti

kullanılmaktadır. Bilgi teknoloji şirketine ait güvenlik tarama verileri ve açık kaynak

olan WireShark projesinin verileri çıktı olarak kullanılmaktadır. Bilgi teknoloji

şirketine ait veriler maskelenerek paylaşılmaktadır. Bu çalışma öncesi tez

çalışmasında yer alan kişiler ile kurum arasında gizlilik anlaşması oluşturulmuştur.

xx

Yazılım güvenlik açıklarını tahmin etmede bir çok makine öğrenmesi algoritması

kullanılmıştır. Literatürde bu tahmin problemi daha çok sınıflandırma problemi olarak

ele alınmıştır. Sınıflandırma makine öğrenmesi algoritmalarından denetimli öğrenme

başlığı altında yer alır. Amaç bir modülün güvenli ya da güvensiz olduğunu ayırt etmek

olduğunda, sınıflandırma algoritmalarının kullanılması idealdir. Bu tez çalışmasında

elde edilen veri problemin tipine karar vermede etkili olmuştur. Şirkete ait veriler için

problem regresyon problemi olarak ele alınmıştır. Wireshark projesi verileri ile

sınıflandırma algoritmaları kullanılmıştır. Regresyon da makine öğrenmesi

algoritmalarından denetimli öğrenme başlığı altında yer alır. Regresyon probleminde

amacımız güvenlik açığı sayısını, öncelik sınıfı bazında doğru tahmin eden formülü

ortaya çıkarmak ve yazılım güvenlik açıklarının erken evrede tespitinin sağlanmasına

katkıda bulunmaktır. Sınıflandırma probleminde ise açılan hata kayıtlarının yazılım

güvenlik açığı ile ilişkisinin olup olmayacağı tahmin edilecektir.

Tez çalışmasında makine öğrenme algoritmalarından karar ağaçları (classification and

regression tree), destek vektör regresyonu (support vector regression) ve yapay sinir

ağları (artificial neural network) algoritmaları regresyon problemi için seçilmiştir.

Karar ağaçları sınıflandırma ve regresyon problemlerinde kullanılabilirler. Çok sayıda

kayıt içeren bir veri kümesini, karar kuralları uygulayarak küçük kümelere bölmek için

kullanılan bir algoritmadır. Destek vektör regresyonu, destek vektör makinalarından

geliştirilmiştir. Önceki çalışmalarda, verilerin doğrusal olarak ayrılamadığı

durumlarda destek vektörleri algoritmalarının problem çözmedeki performansı ve

yeteneğinin daha iyi olduğu paylaşılmaktadır. Yapay sinir ağları, biyolojik

nöronlardan esinlenilen bir hesaplama modelidir. Literatürde pek çok çalışmada

tahmin algoritması olarak seçilmiştir. Sınıflandırma problemi için ise Naive Bayes,

RandomTree ve Fisher's Linear Discriminant algortimaları kullanılmıştır.

Yazılım güvenlik açıklarını tahmin etmede geliştirilen modellerde girdi olarak bir çok

farklı metrik kullanılmıştır. Bu girdiler çoğunlukla yazılım kod metrikleri olmuştur.

Yazılım kod metriklerinin yanı sıra hata kayıtları metrikleri, geliştirici bazlı

istatistiksel ölçümler modellerde girdi olarak deneyimlenmiştir. Bu tez çalışmasında

regresyon problemi model girdisi olarak sürüm sonrası olay kayıtları kullanılmaktadır.

Tez çalışmasında kullanılan olay kayıtları aylık olarak raporlanmaktadır, çalışma 6

aylık veri üzerinde gerçekleştirilmiştir. Elde edilen 6 aylık veriden olay kayıtlarının

açıklamalarına metin madenciliği ve doğal dil işleme adımları işletilmiştir. Doğal dil

işleme alt başlıklarından biri olan konu modelleme olay kayıtlarının açıklama verileri

üzerine uygulanmış, 5 ana konu 3516 adet olay kaydı veri kümesi kullanılarak

belirlenmiştir. Konu modelleme yöntemi olarak Gizli Dirichlet Tahsisi (Latent

Dirichlet Allocation) kullanılmıştır. Aynı doğal dil işleme adımları WireShark projesi

verileri üzerinde de işletilmiştir. Wireshark projesinde veri seti 2017-2018 yıllarına ait

verilerden oluşmaktadır. Model girdisi için 2017-2018 yıllarında açılan hata kayıtları

kullanılmıştır.

Literatürde incelenen çalışmalarda yazılım metrikleri üzerinde yapılan toplama ve

kümeleme işlemlerinin model tahminlerini etkilediği paylaşılmaktadır. Bu sav üzerine

çıkarılan 5 konu modeline toplama ve matematiksel işlemler geçrekleştirilerek yeni

toplama metrikler oluşturulmuştur. Bu toplama metrikler minimum değer, maksimum

değer, hoveer indeksi ve medyandır.

xxi

Çalışmada model çıktısı olarak kullanılan yazılım güvenlik açığı kayıtları bir statik

kod analizi aracı olan CxSAST raporlarından elde edilmiştir. Elde edilen raporda

yazılım güvenlik açıkları önem derecesine göre düşük, orta ve yüksek olmak üzere 3

gruba ayrılmıştır. Bu üç önem derecesi ayrı ayrı çıktı olarak kullanılmış, toplamları da

ayrıca çıktı olarak kullanılmıştır.

Literatürde yapılan çalışmalarda çoğunlukla yazılım sınıfı boyutunda tahminleme

gerçekleştirilmektedir. Bu tez çalışmasında elde edilen veri seti değerlendirildiğinde

yazılım ürünü boyutunda tahminleme modeli kurulması kararlaştırılmıştır. Kurum

verisi ile kurulan modeller yazılım ürününün yazılım güvenlik açığı sayısını

tahminlemektedir.

Tez çalışması kapsamında kurum verileri ile 2 farklı tahmin modeli kurulmuştur. Bu

modellere model A ve model B isimleri verilmiştir. Model A için yazılım ürünü

bazında açılan olay kayıtları açıklamaları birleştirilerek tekrar konu modellemesi

algoritmasından geçirilmiştir. 3516 adet olay kaydı açıklaması kullanılarak oluşturulan

modelden yazılım ürünü bazlı konu modeli skorları elde edilmiştir. Model A için

ayrıca yazılım ürünü bazında açılan olay kaydı sayıları da girdi olarak kullanılmıştır.

Bu olay kaydı sayıları kendi içlerinde 3 gruba ayrılmış olarak raporlanmaktadır, model

A’da da bu sayırlar ayrı ayrı metrik olarak değerlendirilmiştir. Bu yazılım ürünü

bazındaki 5 konu modeli skoru model A’nın girdilerini oluşturmaktadır. Model B için

yazılım metrikleri üzerinde kullanılan toplama ve kümeleme işlemleri olay kaydı

bazında elde edilen konu modeli skorlarına uygulanmıştır. Olay kayıtları yazılım

ürünü bazında filtrelenmiş ve bahsi geçen 4 toplama metriği her konu modeli için

hesaplanmıştır. Hesaplanan toplama metrikler Model B’nin girdilerine eklenmiştir.

Her iki modelde de yazılım ürünü önem derecesi girdi olarak kullanılmıştır.

Bir makine öğrenmesi modelinin doğruluğunun test edilmesi için veri kümesinin ne

şekilde ayrılacağına çapraz doğrulama yöntemi ile karar verilmektedir. Bu tez

çalışmasında 10 katmanlı çapraz doğrulama ve tek çıkışlı çapraz doğrulama

yöntemleri kullanılmış ve sonuçları karşılaştırılmıştır.

Elde edilen sonuçlar karşılaştırıldığında olay kayıtları ve yazılım güvenlik açıkları

arasında düşük de olsa bir ilişki bulunmaktadır. Karar ağaçları modelinin diğer

algoritmalara nazaran en doğru tahminleme sonucunu elde ettiği görülmüştür. Değişen

algoritma parametlererine göre destek vektör regresyonu ve yapay sinir ağları karar

ağaçları algoritmasının ardından gelmektedir.

Sonuçların iyileştirilmesi için veri setinin genişletilmesi bir adım olabileceği

düşünülmektedir. Tez çalışmasında kullanılan veri seti 6 aylık bir dönemi içermekte

ve bir kuruma ait verilerdir.

xxii

1

1. INTRODUCTION

Software security is one of the sub-branches of information security. Software security

is the case that the software is resilience against possible harm caused by others.

McGraw explains software security as an idea of engineering software[1]. The need to

address software security as a software requirement at every step of the software life

cycle was written by McGraw [1]. According to the guide prepared by the Information

and Information Security Research Center, software architecture and design can

prevent the attack even if it can continue towards the working process and is able to

recognize the situations of abuse [2].

Developing secure software is one of the important topic and this important topics has

become one of the critical main themes of software development life cycle processes

[40]. Security concern must inform every phase of software development life cycle,

from requirements engineering to design, implementation testing and deployment [42].

The security omissions in software development life cycle steps can cause software

vulnerabilities [41]. Time and budget pressures on software developers can cause

omission in secure software development steps. Software vulnerabilities can occur as

a result of these omissions.

Quality is an important issue for large-scale companies, small businesses, and all

developers interested in software. Security is one of the features that affect software

quality. For this reason, security is an important topic [43]. If a software is described

as high quality, it is expected that the maintenance costs of the software will be low.

[44]. At this point, considering the future budget and time costs of the security

vulnerabilities, the maintenance costs of the secure software are expected to be low.

This results in a relationship between security and maintenance costs. Different

methods are used to detect, enhance and monitor software security. In penetration

testing method [36], test scenarios are applied on source code and vulnerable-prone

result of the software is revealed. As a result of these tests, findings are revealed.

Another method is the use of static code analysis tools [37]. The vulnerable-prone of

2

the software can be revealed with static code analysis tools [37]. In addition to these

methods, machine learning algorithms are also studied on security. Prediction models

based on machine learning are built with records of past software vulnerabilities of

software system with software metrics, developer-based metrics etc. A number of

studies are carried out on the academy and industry side on the prediction of software

vulnerabilities [45]. Predictions are built by using software metrics, machine learning

algorithms and statistical methods and models that can be associated with software

vulnerabilities. The common purpose of all of the studies is to prevent the

vulnerabilities that may occur by predicting the software vulnerabilities at an early

stage.

With this thesis, we have been informed about the software vulnerabilities ecosystem

and the studies. The importance of early detection of software vulnerabilities was

observed and prediction models were studied.

1.1. Purpose of Thesis

The purpose of this thesis is to built a model and prediction of software vulnerabilities

using topic models derived from textual descriptions of issue records and machine

learning techniques.

Today, software security is one of the important facts of the software life cycle from

the design and development steps and affects the process. However, time and cost

pressures make it difficult to develop secure software. This is one of the reasons why

software vulnerabilities have occurred.

Corporate companies are assisted by static code analysis tools for detection software

vulnerabilities. Apart from these tools, they perform periodic penetration tests. In

addition to these detection methods, software developers are provided with secure

software development training.

In this thesis, a 6-month software vulnerability and issue records data belonging to a

corporate company was used. Software security checks in this company are followed

by Checkmarx CxSAST tool. Software vulnerabilities findings have been obtained

from the Checkmarx CxSAST scanning results. The issue records are the bugs opened

3

by the help-desk staff to the software products in the production. The issue records are

recorded on the JIRA and the data is obtained from the monthly report. Empirical

studies have been carried out on the correlation between the results of the software

security scanning and the issue record metrics. The results obtained with the corporate

dataset were compared with the open source project data. Wireshark dataset was used

for this comparison.

https://tureng.com/tr/turkce-ingilizce/empirical

4

5

2. LITERATURE REVIEW

2.1 Purpose

Software vulnerabilities are one of the major research topics in the software ecosystem.

In this section, previous research and studies on these topics will be examined. In this

sections will demonstrate the fundamental aspects of vulnerabilities prediction such as

software metrics, text mining and prediction models as well as the algorithms used in

the literature.

2.2 Software Vulnerabilities

Software vulnerabilities are one of the significant subjects in the field of computer

security [45]. Today, software security is one of the important facts of the software life

cycle from the design to testing, and it affects the process. However, time and cost

pressures make it difficult to develop secure software. This is one of the reasons why

software vulnerabilities have occurred [3]. Ivan Krsul defines software vulnerability

as “an instance of an error in the specification, development, or configuration of

software such that its execution can violate the security policy” [46]. Software

vulnerability is defined as a mistake in the technical specifications, development, or

configuration of a software that, if it occurs, [implicit or explicit] violates the security

policy of the software in the Ozment study [3]. Ozment started from Ivan Kursul's

definition, but the term mistake was used instead of the term error and cites the IEEE

Standard Glossary of Software Engineering Terminology (IEEE Standards 1990) to

support this usage for definition of software vulnerability. Based on these definitions,

a software vulnerability is defined as a software-related security mistake in this thesis.

Software vulnerabilities can be grouped into five categories according to Apple

documentation [47]. These are buffer overflows, unvalidated input, race conditions,

access-control problems, and authorization[47]. A buffer overflow occurs when an

application attempts to write data past the end (or, occasionally, past the beginning) of

6

a buffer [4]. Buffer overflows can cause applications to crash, can compromise data,

and can contribute an attack vector for further privilege escalation to compromise the

system on which the application is running. An unvalidated input attack occurs due to

unsafe data. All data sources must be checked to prevent this attack. When working

with shared data, files, databases etc. there are a number of simply made mistakes that

can compromise security. This type of error causes race conditions attacks. Many

security vulnerabilities are created by the incorrect use of access controls, or by the

omission to use them at all. These uses also cause access control problems.

2.2.1 Software vulnerability identification methods

There are many techniques like penetration testing[36], software reviews[35], static

analysis[37] and runtime anomaly detection [38] for identification of software

vulnerabilities. However, applying these techniques manually is expensive in terms of

the time and budget spent on specialized resources. Some of the existing techniques

are available in the form of automated tools, but techniques like software inspections

and reviews are intrinsically manual processes that depend on human experts to

perform the analysis of the code [4]. In the Software Company, developers use

penetration testing and static code analysis tools for detection software vulnerabilities.

Penetration testing evaluates the security of a system by simulating attacks by

malicious users and assessing whether the attacks are successful [5]. According to

Jovanović and Irena’s study[39], penetration tests are divided into three groups:

• Black-Box Penetration Testing: The black box penetration test is a type of

attack without any knowledge of the target system to be attacked. Penetration tester or

anyone who tries to reach the target system from outside without any knowledge is

allowed to perceive the extent of the damage.

• Gray-Box Penetration Testing: The gray box penetration test provides an

analysis of the damage that an unauthorized user of the internal network can give to

the target systems. Data-stealing, authorization upgrade, and network weaknesses are

monitored against network packet loggers. It is the most important penetration test

type.

• White-Box Penetration Testing: The white box penetration test is a type of

penetration test which is made available to all systems in the network. One of the

employees is the attack simulation that attempts to break into and out of the network

from outside or inside.

7

The static code analysis tool in OWASP is described as designed to analyze source

code and/or compiled versions of code to help find software vulnerabilities[6]. Some

tools are starting to move into the IDE. For the types of problems that can be detected

during the software development phase itself, this is a powerful phase within the

development life cycle to employ such tools, as it provides immediate feedback to the

developer on issues they might be introducing into the code during code development

itself. This immediate feedback is very useful, especially when compared to finding

vulnerabilities much later in the development cycle [6]. There are many free or

commercial type static code analysis tools in use. SonarQube, Flawfinder, Bandit,

Brakeman, FindSecBugs, Google CodeSearchDiggity are examples of those that are

free. SonarQube is used to measure, report and improve code quality. It works with

the continuous inspection philosophy. CxSAST, CodeSonar, Fortify are examples of

commercial type static code analysis tools. CxSAST scans an uncomplied code and

does not require a completed build [7]. It even works from the developer’s IDE. This

allows organizations to use CxSAST earlier in the software development life cycle.

Regulatory standards as Payment Card Industry Data Security Standard (PCI-DSS),

Health Insurance Portability and Accountability Act (HIPAA), Federal Information

Security Management Act (FISMA) require organizations to test for common

vulnerabilities like those found in the Open Web Application Security Project

(OWASP) Top 10 and the SANS top 25. CxSAST finds these all vulnerabilities. In

this study, CxSAST report parameters are used for output in the prediction model.

Until 1999, identified software vulnerabilities were kept in every company's own

database. In 1999, MITRE established the Common Vulnerabilities and Exposures

(CVE). MITRE is a non-profit organization founded in 1958 and collaborating with

US government agencies on national critical issues [8]. CVE is a free reference

dictionary for public security vulnerabilities. Confirmation that a software flaw has a

real security vulnerability that will qualify for a CVE number is subject to a series of

review and approval processes. Since 1999, CVE has been recognized as an

internationally recognized international standard in academia, government institutions

and the business world [9].

8

Figure 2.1 : CVE example.

The National Vulnerability Database (NVD) is a database that has been created since

1999 under the responsibility of the Cyber Security Unit within The National Institute

of Standards and Technology (NIST) [10] [11]. The NIST is a state institution that has

set standards in the field of technology since 1901 and operates under the US

Department of Commerce. Software vulnerabilities data is automated in NVD

published in management-appropriate formats. CVE database content is available on

the NVD web page.

2.2.2 Software vulnerability prediction models

The number of software vulnerabilities reported has been growing every year.

According to the NVD [11] in 2018, 16.515 vulnerabilities have been discovered –

more than twice as many as were reported in 2016. These vulnerabilities, if exploited,

can cause damages to educational institutions, corporations, government systems,

software vendors and customers.

Software vulnerability prediction models evaluate security risks and predict future

software vulnerabilities [48]. There are many studies on software vulnerability

prediction in the literature. In this thesis we present a machine learning based approach

to predict vulnerabilities. In the literature, these machine learning based approaches

use software code metrics[12], text mining methods [13], data on error records[14],

and developer-based metrics [14]. This section summarizes the studies according to

these input features.

Meneely et al. [12] have signed one of the first studies to predict software

vulnerabilities with software metrics. Meneely et al. [12] proposed a software metrics

based prediction model, using the metrics related to code complexity, code churn, and

developer’s activity. They form a hypothesis based on code complexity, code

9

complexity and developer base measurements. They did experiments on Mozilla

Firefox and the Red Hat Enterprise Linux kernel. They collected 28 metrics related to

these three software metrics groups. They used logistic regression machine learning

algorithm. With this experiment, they achieved a 75% recall score.

Meneely et al. continued their studies with empirical approaches. Meneely et al. [14]

evaluated the correlation between pre-release bugs, reviewer experience and post-

release vulnerabilities on the Chromium project. They got the result that, while an

empirical connection between bugs and vulnerabilities exist, the connection is

considerably weak. This empirical work is one of the inspiration for the selection of

the thesis topic. The results of this study were replicated in the scope of the thesis

studies and the results were obtained according to the comments of the authors.

Scandariato and Walden [13] recommend a prediction model using text mining on the

source code. Software vulnerability prediction model using text mining, use machine

learning algorithm on these tokens and its frequency. They conducted an experiment

with Android applications, Java source code is transformed into tokens. They reached

80%–85% precision for several android application.

Zhang et al. [15] provide a method to predict vulnerabilities by combining both

software metrics and text mining methods. It is a two stage method. First stage six

basic classifiers produce outputs, and through the second stage consolidate certain

outputs via a composer. In this work, they use three classifiers for each method, and a

composer is used to consolidate the outputs of these classifiers. Random forest is used

as the composer. The composer is trained with confidence values produced by

classifiers and the corresponding status of each component such as vulnerable or not.

The input of the composer is the confidence value generated by each classifier. They

got an F1 score of 0.75 experimented with web applications Moodle, Phpmyadmin,

Drupal.

Li et al. [16] present a new method for predicting vulnerabilities. They have created a

framework using deep learning. They called this framework SySeVR. With this

framework, they detected 15 vulnerabilities that were not reported to NVD.

10

Chowdhury and Zulkernine [17] evaluated code complexity, coupling, and

compliance measures to predict software vulnerabilities. The researchers examined the

mozilla firefox project for 4 years. they used the empirical approach proposed in this

project in their research. The researchers examined the 52 release of the mozilla firefox

project. Their approach is based on decision trees and achieves a mean accuracy of

72.85%, mean recall of 74.22%, mean fall-out of 28.51%, and mean F1 score of

73.00%.

Hovsepyan et al. [18] recommend a prediction model using text mining on the source

code. They conducted experiments on three web applications by transforming the Java

source code into tokens and their frequencies of occurences. They reached 80%–85%

precision using support vector machine (SVM) algorithm.

Zimmermann et al. [19] found a weak correlation between vulnerabilities and different

metrics, including code churn, code complexity, dependencies, and organizational

measures. In the context of Windows Vista, they built two different predictors. The

first was based on conventional metrics (i.e., code churn measures, code complexity

metrics, dependency measures, code coverage measures, and organizational measures)

and resulted in a median precision of 66.7% and median recall of 20%. The second

prediction model was based on dependencies between binaries and has resulted in

slightly lower precision (60%), but higher recall (40%).

Aversano et al. [20] investigated the source code of the changes as text in order to

build a predictor to determine whether the introduced changes are buggy. The authors

determined that the use of the K nearest neighbors technique results in a significant

trade-off in terms of precision and recall. The approach was confirmed using two open

source Java applications, yielding precision and recall values of 59%-69% and 59%-

23% respectively.

Gegick et al. [21] designed an approach that uses text-mining techniques to train a

model to identify which bug reports are security related. The approach was applied to

a large Cisco software system and identified 78% of the security-related bug fixes.

Models in literature review have studied the relationship between software metrics,

11

text mining methods(code-base) and vulnerabilities and also bugs and vulnerabilities.

This thesis take a different approach to those predictions with corporate organization

dataset.

12

13

3. PROBLEM STATEMENT

There have been several studies in the area of software vulnerabilities prediction for

open-source systems and databases. In those works, vulnerabilities collected from the

public database were used. This thesis study include corporate data. Unfortunately,

security-related records are kept confidential in organizations. A non-disclosure

agreement prior to this thesis work was signed .

At the software development stage, developers work with the pressure to write both

secure software and perform flawless work and also time pressure should be noted.

Developing secure software is part of the software life cycle but requires training and

experience. With this thesis, we want to set a criterion where software developers and

companies can follow vulnerabilities. We aim to facilitate the work of developers and

to contribute to the measurement of software quality.

In this thesis, it is aimed to predict future software vulnerabilities from textual

descriptions of issue/bug records. For this purpose, two different dataset were

examined. The first dataset belongs to a corporate company. The company data

includes the scan data of the static code analysis tool instead of the software

vulnerability. We set out to predict these screening data at an earlier stage by taking

the empirical approach of Camilo et al. [14] and using issue records. The issue records

are the bugs opened by the help-desk or tester staff to the software products in the

production. The other dataset belongs to the Wireshark project. In this dataset,

software vulnerabilities and bug reports are published periodically. With this dataset

will be used to model the predictions that bug records may cause software

vulnerabilities in the future.

In summary, we have combined a list of research questions for vulnerabilitiy

prediction studies with specific problems of organizations.

14

i. Can we propose a vulnerability prediction model using issue records?

ii. How succesfully do topic models extracted from the descriptions of issue

records explain vulnerabilities?

15

4. PROPOSED METHOD

4.1 Data Used in The Method

In the thesis study, two different datasets were used. One of the dataset belongs to an

information technology company the other dataset belongs to the Wireshark project.

As security-related data are critical data for companies, company information is kept

confidential.

Wireshark is a free and open-source packet analyzer. It is used for network

troubleshooting, analysis, software and communications protocol development, and

education. Originally named Ethereal, the project was renamed Wireshark in May

2006 due to trademark issues [22].

For Wireshark dataset; collect the data to be used based on the bug records. Software

vulnerabilities in the project are published by security advisory. In these reports, the

bug record and the CVE id to which the vulnerabilities depend are shared. Bug records

are recorded on the Bugzilla. Bugzilla is a bug and version tracking system developed

by the Mozilla team and distributed with free software licenses [23]. The first release

was released by Netscape in 1998 and was used by many companies to track bugs in

open source and proprietary software. For the model to be created from Wireshark

dataset, the bug and vulnerability records opened and closed in 2017 and 2018 were

used. 106 software vulnerabilities were identified for the Wireshark project. Of the

106 software vulnerabilities, 105 were mapped to a bug record. Including these 105

vulnerability records, a total of 1112 bug records resolved in 2017 and 2018 were taken

over Bugzilla.

For company dataset; firstly, processes were examined and data records were

analyzed. As a result of the dataset analysis, it was decided to collect the data to be

used based on the software product. All software products could not be included in

the study because the infrastructure was not ready for all products. The sample

16

software product group was used with the company dataset. In the 6-month dataset, an

average of 26 software product data were obtained each month : table 4.1.2.

The company performs software security checks with CxSAST tool. For the thesiss

study, 6-month screening data for the last half of 2018 were used. The data obtained

from the survey includes software product based monthly security data. The report

presents the findings for a software product grouped by severity. Severity levels are

high, medium and low respectively. The report also shares the number of lines of code

scanned on a software product basis. The properties that come with the report are

shared in the table 4.1.1.

 Table 4.1 : CxSAST report feature.

Feature No Features

1 ID

2 ProjectId

3 LOC

4 HighSeverity

5 MediumSeverity

6 LowSeverity

7 RiskLevelScore

8 FailedLOC

9 StatisticsCalculationDate

Table 4.2 : CxSAST Scan Data.

Date Product

Count

LOC Low Medium High

2018.07 25 16.110.186 31062 10681 1132

2018.08 27 13.047.525 31497 9248 945

2018.09 24 15.343.368 31152 9697 3519

2018.10 24 22.336.829 41814 17218 4628

2018.11 29 27.025.372 50999 17655 5608

2018.12 26 26.786.588 63659 17540 5674

Another dataset used next to the vulnerabilities data is the issue records data. The issue

records are the bugs opened by the help-desk or tester staff to the software products in

the production. There are several systems for monitoring issue records. In the

Chromium project uses Google Code as bug tracking system. Chromium is an open-

17

source browser project that aims to build a safer, faster, and more stable way for all

users to experience the web [14].

In company dataset JIRA is used for the management of the issue records and a

monthly report is generated on the tool. The life cycle of the issue record is followed

by JIRA, consists of four status. These status are Pending, In progress, Pre-release,

Done respectively. Each record does not go through pre-release status because no

software changes are required in each record. The 6-month issue records report was

analyzed for this study. 39.015 different issue records were examined and 39 features

were discovered for each issue records. Table 4.1.3 shows the record-based features

that came with the issue record report. When the issue records report was examined, it

appeared that there were records opened for reasons that did not affect the software.

Issue record data were analyzed and features that could be associated with software

changes were chosen. Issue records that caused the software change were filtered

according to the root cause feature in the report. As a result of filtering and selecting

product group records, we have 3516 records out of 39100 records.

4.2 Algorithms and Techniques Used in The Method

In the studies conducted to predict software vulnerabilities, machine learning

algorithms, text mining techniques, natural language processing algorithms were used

in the literature research. In this thesis, these algorithms and techniques are included.

In the data processing steps, text mining and natural language processing algorithms

were used.

The most common methods used in vulnerabilities prediction studies are machine

learning algorithms. Prediction models usually combine software metrics, textual

metrics and vulnerabilities information to learn which modules seem to be more

vulnerable-prone. In this thesis, the problem is discussed in two different ways for two

different dataset. The classification problem for the Wireshark project and the

regression problem for the company data are considered. Three different machine

learning algorithms have been applied for this regression problem and in the data

processing steps, text mining and natural language processing algorithms were used.

Also three different machine learning algorithms have been applied for this

classification problem and in the data processing steps, text mining and natural

18

Table 4.3: Issue Records Features.

Features Uniq Missing

Value

Code Base

ID + - -

RecordNo + - -

Solution - - -

Summary + - -

Assignee - - -

UnitName - - +

RecordType - - -

Headship - - +

Status - - -

ReportDate - - -

Product - - +

Platform - - +

CreatedDate - - -

RecordUpdate - - -

IssueCategory - - +

SolutionDate - - -

SolutionMonth - - -

SolutionYear - - -

CompetionPeriod - - -

CreatedMonth - - -

CreatedYear - - -

GeneratedSeverity - - -

Outsourcer - + -

Deadline - - -

ProductCode - - +

PlatformCode - - +

NumberofReturn - - -

Description + - +

SolutionDescription - + +

ReturnDescription - + -

RootCauseCategory - + +

SolutionCategory - + +

AuthorizedGroup - - +

language processing algorithms were used. In this section, these algorithms and

techniques will be explained briefly.

First of all, we processed the data with text mining. The data we apply to text mining

techniques are the descriptions of the issue records and bug records. Text mining, is

the process of deriving high-quality information from text [24]. Mining and analyzing

text helps organizations find potentially valuable business insights in corporate

19

documents and other sources of text-based data. In this thesis, firstly basic text mining

steps were operated step by step in the issue record and bug records descriptions.

Issue records from corporate dataset and bug records from OS dataset descriptions are

parsed with text mining operations. Descriptions from the issue records of six -months

and two years of bug records are passed through the following text mining stages [49];

• Split the description into sentences and into words.

• Lowercase the words and remove punctuation.

• Words that have fewer than 2 characters are removed.

• Stopwords are determined and removed.

• Words are stemmed and reduced to their root form.

The two datasets contain data in different languages. The issue records contain textual

descriptions in Turkish, and bug records contain textual descriptions in English.

Therefore, different stop words libraries were used.

As a result of these steps, each issue and bug record description text is ready for the

feature selection step. In order to measure the repeat frequency of the words in the text,

the TF-IDF (The Term Frequency - Inverse Document Frequency) statistical method

is applied to the issue record description text passing through the text mining steps

[25]. As a result of this operation, the weight factor of each word is calculated with the

formula;

TF(x)= How many times have passed in x / Total number of terms in the record

IDF(x) = loge(Total number of terms / Number of records in which x is the term)

 TF-IDF(x) = TF(x) * IDF(x) (4.1)

Topic modeling is a machine learning and natural language processing research area

for determining the basic semantic structure of the text document [26], [27], [28], [29].

A large amount of non-structural text documents can be automatically organized,

searched, and summarized using topic modeling methods. Latent Dirichlet Allocation

20

(LDA) is implemented as topic modeling method [50]. Within the scope of this study,

the effectiveness of the data representation of the LDA is evaluated on the issue record

description texts so that the text documents can be represented effectively.

 Table 4.4: Example of Topic Model (Topic 0).

Topic No Words

0 0.021*"word1" + 0.018*"word2" + 0.017*"word3" + 0.016*"word4"

+ 0.016*"word5" + 0.014*"word6" + 0.012*"word7" + 0.011*"word8"

+ 0.011*"word9" + 0.010*"word10"

Example topic model for issue records, topic 0, created in Table 4.2.1 were shared.

Words have been masked because of the confidentiality agreement. Five main topics

were determined using 3516 issue record datasets. With this step, topic-based scores

were obtained for each issue record.

Topic models and text mining studies were developed by using python language in

pycharm community IDE. Gensim, sklearn and pandas et al. libraries were used when

creating topic models. DB browser for SQlite is used to store the dataset.

It has been observed that these algorithms are used in prediction models examined in

the literature and successful results are obtained [13], [14], [15]. Within the scope of

the thesis, models with different algorithms have been established. The three most

successful algorithms are explained in the thesis.

Machine learning and statistical methods were investigated for regression problem;

Support vector regression (SVR), Artificial Neural Network (ANN) and Classification

and Regression Trees (CART) were decided to be used.

Machine learning and statistical methods were investigated for regression problem;

Naïve Baye s(NB), Fisher's Linear Discriminant Algorithm (FLDA) and Random Tree

(RT) were decided to be used.

First, the support vector regression was investigated. SVR was developed for

regression problems from support vector machines (SVM) algorithm. SVR is an

application of SVM to time-series forecasting [30].

21

Given a training dataset, (x1, y1),...,(xN , yN) where xi ∈ X, yi ∈ R, N is the size of

training data, and X denotes the space of the input samples–for instance, Rn. The aim

is to find a function which can estimate all these data well. SVR is one of the methods

to perform the regression task [30]. In general, the estimation function in SVR takes

the following form,

 f(x)=(w · φ(x)) + b (4.2)

In this thesis, SVR will be applied with WEKA tool. SMOreg function implements the

support vector machine for regression on WEKA [31].

ANN is a computational model based on the structure and functions of biological

neural networks. Neural Network is a structure built in layers. The first layer input is

called the last layer output. The middle layers are called Hidden Layers. Each layer

contains a certain number of Neurons. These neurons are connected to each other by

Synapses. Synapses contains a factor. These coefficients tell us how important the

knowledge in the neurons they are connected to.

Figure 4.1 : Neural Network layer.

In this thesis, ANN will be applied with WEKA tool. MultilayerPerceptron function

implements on WEKA [31].

Decision Trees are an important type of algorithm for predictive modeling machine

learning. In the decision tree learning, a tree structure is formed and the class labels on

the leaf level of the tree and the handles that go to these leaves and with the arms

coming from the beginning are expressed. Requires fast data preprocessing. According

to most alternative techniques, data can be used with very little processing. The

pretreatment stage is shorter and simpler than the other alternatives. It can be used for

22

processing both numeric and class data. Most machine learning algorithms are either

useful in numerical applications or useful for classification problems. Decision tree

learning can be used in both areas [32].

Decision Trees uses the white box model. In the white box model, which is an approach

to software engineering, each step is viewable and interpretable. Again, black box

approach, which is a software engineering application, is mostly covered by artificial

neural network in machine learning. While the input and output can be interpreted in

this method, it is not possible to observe and interpret the internal dynamics of the

system at every step.

Naive Bayes is an algorithm that performs operations according to the probability

calculation. It handles the train data according to its formula and produces a percentage

ratio for each case and performs the classification according to the probabilities [32].

Figure 4.2 : Mathematical Representation of Naive Bayes.

Fisher's linear discriminant, a method used in statistics, pattern recognition and

machine learning to find a linear combination of features that characterizes or

separates two or more [33].

23

5. PROPOSED MODEL

We aim to try a new association for our vulnerability prediction model. This study

investigates the prediction of software vulnerabilities using topic models derived from

textual descriptions of issue records and machine learning techniques. Within the

scope of the thesis study, we use two different datasets. The first dataset belongs to the

information technology company and the second dataset is the open source dataset of

the wireshark project. The models to be created from the first datas will be called

company models and the models created with the wireshark project dataset will be

called open source (OS) models.

The proposed company model is based on the software product. The target is to predict

how vulnerable the software product is. Our research questions will be answered with

the proposed model. Therefore, we aim to propose solutions for them in the later

sections throughout the experiments.

We consider our problem as a regression problem for company dataset. Artifical neural

networks, support vector regression and classification and regression trees methods

were used in the creation of the model. We consider our second problem as a

classification problem for Wireshark dataset. Artifical neural networks, support vector

regression and classification and regression trees methods were used in the creation of

the model.

In the development of the system, we were used: issue records and CxSAST scan

reports. Two datasets are matched and modeled on the basis of software products.

The proposed OS model is based on the bug records. This problem is to correctly

predict whether the intended bug record has caused the vulnerability. Our research

questions will be answered with the proposed model. Therefore, we aim to propose

solutions for them in the later sections throughout the experiments.

24

We consider our problem as a classification problem for OS dataset. Artifical neural

networks, support vector regression and classification and regression trees methods

were used in the creation of the model. We consider our second problem as a

classification problem for Wireshark dataset. Naïve Bayes, Fisher's Linear

Discriminant and Random Tree methods were used in the creation of the model.

The built models were trained with two different cross-validation techniques. One of

them is 10-fold cross validation and the other one is leave-one-out technique. The

reason for using the leave-one-out technique is the lack of data.

Vulnerabilities prediction models basically take a set of independent attributes and

retrieve a class label. It consists of four steps, which will be explained in this section:

• “What are the inputs to the vulnerability prediction model?”

• “What are the outputs of the vulnerability prediction model?”

• “How does the model operate between the inputs and output?”

• “How can we assess the performance of the model?”

5.1 Inputs of the Company Model

As inputs of this study, we need list of software products. From these software

products, we collect issue records which are product-based records. Issue records

features can be easily collected from JIRA. Moreover, they provide useful information

about the characteristics of software product in terms of maintenance costs. Selected

issue record features shared in table 5.1.1.

Table 5.1: Selected Issue Record Features.

Feature No Features

1 ID

2 RecordNo

3 Solution

27 ProductCode

28 PlatformCode

30 Description

35 SolutionCategory

25

The LDA topic modeling method was run with the corpus generated from the 3516

issue record descripton. As a result of this stage, five topics were obtained.

Topic model scores were obtained on the basis of the issue record. In this thesis, two

different models were created by using topic model scores of the issue records as input.

These models will then be referred to as model A and model B for company model.

For model A, to obtain these issue record topic scores on the basis of the software

product, the descriptions of the issue records that were opened to the software product

were combined and tested in the model and the scores were obtained based on the

product. Model A inputs shared in table 5.1.2.

 Table 5.2 : Model A Inputs.

Feature No Features

1 ProductClass

2 ProductID

3 TOPIC_0

4 TOPIC_1

5 TOPIC_2

6 TOPIC_3

7 TOPIC_4

8 IssueRecord_Level_1

9 IssueRecord_Level_2

10 IssueRecord_Level_3

11 LineofCodes

For model B, we moved topic model scores from issue record level to software product

level through the aggregation schemes [34]. The aggregation schemes which we use

in model B are shown in table 5.1.3. Model B inputs shared in table 5.1.4.

 Table 5.3: List of the aggregation schemes.

Category Aggregation schemes Formula

Central Tendency Minimum Min(mi)

Central Tendency Maximum Max(mi)

Central Tendency Median

Inequality Index Hoover Index Hm =

26

To evaluate the prediction performance of our vulnerability prediction models, we use

topic model scores, issue records count and software product severity.

 Table 5.4: Model B Inputs.

Feature No Features

1 ProductClass

2 ProductID

3 TOPIC_0_min

4 TOPIC_0_max

5 TOPIC_0_hoover

6 TOPIC_0_median

7 TOPIC_1_min

8 TOPIC_1_max

9 TOPIC_1_hoover

10 TOPIC_1_median

11 TOPIC_2_min

12 TOPIC_2_max

13 TOPIC_2_hoover

14 TOPIC_2_median

15 TOPIC_3_min

16 TOPIC_3_max

17 TOPIC_3_hoover

18 TOPIC_3_median

19 TOPIC_4_min

20 TOPIC_4_max

21 TOPIC_4_hoover

22 TOPIC_4_median

5.2 Inputs of the OS Model

As inputs of wireshark project model, we need description of bug records. Bug records

features can be easily collected from Bugzilla. Moreover, they provide useful

information about the characteristics of software product in terms of maintenance

costs. The features found in the bug report taken from Bugzilla are shown in the table

5.2.1.

The LDA topic modeling method was run with the corpus generated from the 1122

bug record summary. As a result of this stage, five topics were obtained and used for

inputs. Model OS inputs shared in table 5.2.2.

27

 Table 5.5: Bug record features.

Feature No Features

1 Bug ID

2 Product

3 Component

4 Assignee

5 Status

6 Resolution

7 Summary

8 Year

9 Month

Table 5.6: Model OS Inputs.

No Inputs

1 Topic 0

2 Topic 1

3 Topic 2

4 Topic 3

5 Topic 4

5.3 Outputs of the OS Model

Software vulnerability prediction can be described as a classification algorithm for

model OS. It will be more accurate to specify the classification data in the property

that will generate the class data instead of the output. In order to process the class data,

advisory reports published in the wireshark project were used. Each of the

vulnerabilities published in these reports was mapped to a bug. Vulnerable class of

bugs that are paired with a vulnerability is marked yes.

5.4 Outputs of the Company Model

Software vulnerability prediction can be described as a regression algorithm for

company model. We make predictions about the vulnerability count of the software

product with our model. Therefore, the expected outputs are from the CxSAST report.

The number of software vulnerabilities in the report is divided into three severity levels

which are low, medium, high. Each severity level was evaluated singularly. Company

outputs shared in table 5.4.1. For example, low severity measurement was used as a

single output in models. The sum of the measurements of all severity levels is also

28

used as an output in the models which name is total. In the table 5.4.2 shared the model

details where model output is low.

 Table 5.7: Outputs (Company Model).

Feature No Features

1 Low

2 Medium

3 High

4 Total

Table 5.8: Models (output: low).

Output Model Technique Concept Cross-validation

Low
Model A SVR

Kernel: Poly

C:1

10-folds

Low
Model A SVR

Kernel: Poly

C:1

Leave-one-out

Low
Model B SVR

Kernel: Poly

C:1

10-folds

Low
Model B SVR

Kernel: Poly

C:1

Leave-one-out

Low
Model A SVR

Kernel: Puk

C:1

10-folds

Low
Model A SVR

Kernel: Puk

C:1

Leave-one-out

Low
Model B SVR

Kernel: Puk

C:1

10-folds

Low
Model B SVR

Kernel: Puk

C:1

Leave-one-out

Low
Model A SVR

Kernel: RBF

C:1

10-folds

Low
Model A SVR

Kernel: RBF

C:1

Leave-one-out

Low
Model B SVR

Kernel: RBF

C:1

10-folds

Low
Model B SVR

Kernel: RBF

C:1

Leave-one-out

Low
Model A CART

NoPuring : True

MaxDepht : -1

10-folds

Low
Model A CART

NoPuring : True

MaxDepht : -1

Leave-one-out

Low
Model B CART

NoPuring : True

MaxDepht : -1

10-folds

Low
Model B CART

NoPuring : True

MaxDepht : -1

Leave-one-out

Low Model A ANN - 10-folds

Low Model A ANN - Leave-one-out

Low Model B ANN - 10-folds

Low Model B ANN - Leave-one-out

29

5.5 Assessing the Performance of the Model

The prediction results obtained by testing the models were compared with the results

of real software vulnerabilities. Absolute Error (AE), Relative Error (RE), Mean

magnitude of relative error (MMRE), Median magnitude of relative error (MdMRE),

Prediction Indicator (Pred(k)) and Correlation Coefficient (CC) used for evaluating

regression tasks. Precision, Recall, F-measure and Area Under The Curve (AUC) used

for evaluating classification tasks.

The formulas used to obtain the results are shown in the tables 5.5.1, 5.5.2, 5.5.3.

 Table 5.9 : Absolute Error and Relative Error Equations.

Equation Formula

AE |actual − predicted|

RE

Table 5.10 : Regression Evaluation Metrics.

Metric Definition

MRE

MMRE

MdMRE

Pred(k) percentage of estimates that are within n%
of the actual value

CC relationship is between two variables

30

Table 5.11: Classification Evaluation Metrics.

Metric Definition

Precision

Recall

F-Measure

AUC Chosen positive example
is actually positive than
that a randomly chosen
negative example is
positive

31

6. RESULTS

There are four different output classes used in this thesis for regression problem. For

each output, two models were tested separately and a total of 80 tests were performed.

The results of the test were compared with the actual values. Predictive errors of

estimation values are calculated. For error calculation, MRE, MMRE, PRED (25),

MdMRE values which are commonly used in regression problems are used. The error

values obtained are shared in the tables.

When the values were examined, it was observed that the best result was obtained in

the models with the total value of the output. Box plot graphics of the models are

available in the annex. Model A performs slightly better than Model B in terms of

MMRE, MdMRE, and Pred(25). The aggregation processes used had a negative effect

on the results obtained in Model B. Observations were also in this direction in the

literature research. In order to be able to select a model, MMRE and MdMRE values

should be close to zero. When we evaluate the models via the MdMRE error metric,

the CART model created under Model A gives the best results. However, the results

were not successful enough to make a recommendation. The obtained results are aimed

to be improved in the future studies by expanding the dataset and evaluating the

outiers.

The model established for the classification problem has been tested with selected

machine learning algorithms. The model results were analyzed with the classifications

evaluation metrics. The results are more successful compared to the results obtained

with the company dataset. In this model study, bug record based classification did not

narrow down the dataset and the results were more successful than company dataset.

Although Model OS is more successful than Company Model, two problems are

considered in different types. Datasets are not suitable for installing the same model.

32

The data of corparate companies are not suitable for establishing every model

recommend in the literature. In tables with start 6, shared the result details.

33

Table 6.1: Regression result for Model A (Output : low).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Low Model A 1 SVR Kernel: Poly, C:1 10-folds 1,62 0,62 0,25 0.42

Low Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,79 0,60 0,25 0.44

Low Model A 3 SVR Kernel: Puk, C:1 10-folds 10,04 0,86 0,14 0.33

Low Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 9,60 0,96 0,14 0.36

Low Model A 5 SVR Kernel: RBF, C:1 10-folds 3,12 0,75 0,23 0.40

Low Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 2,66 0,75 0,21 0.40

Low Model A 7 CART NoPuring : True 10-folds 2,86 0,44 0,35 0.69

Low Model A 8 CART NoPuring : True Leave-one-out 1,47 0,32 0,45 0.80

Low Model A 9 ANN - 10-folds 24,47 2,13 0,06 0.14

Low Model A 10 ANN - Leave-one-out 19,48 2,39 0,10 0.47

Table 6.2: Regression result for Model A (Output : medium).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Medium Model A 1 SVR Kernel: Poly, C:1 10-folds 1,83 0,79 0,17 0.30

Medium Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,52 0,75 0,17 0.31

Medium Model A 3 SVR Kernel: Puk, C:1 10-folds 18,07 1,53 0,14 0.16

Medium Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 17,15 1,75 0,14 0.23

Medium Model A 5 SVR Kernel: RBF, C:1 10-folds 2,29 0,75 0,23 0.32

Medium Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 2,42 0,72 0,18 0.32

Medium Model A 7 CART NoPuring : True 10-folds 21,79 0,88 0,22 0.63

Medium Model A 8 CART NoPuring : True Leave-one-out 13,76 0,71 0,23 0.45

Medium Model A 9 ANN - 10-folds 147,07 4,90 0,07 0.11

Medium Model A 10 ANN - Leave-one-out 91,65 6,33 0,08 0.14

34

Table 6.3: Regression result for Model A (Output : High).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

High Model A 1 SVR Kernel: Poly, C:1 10-folds 9,41 1,00 0,07 0.15

High Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 9,58 1,16 0,04 0.25

High Model A 3 SVR Kernel: Puk, C:1 10-folds 28,81 3,13 0,07 0.68

High Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 27,84 2,94 0,06 0.82

High Model A 5 SVR Kernel: RBF, C:1 10-folds 7,62 0,98 0,05 0.17

High Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 7,70 0,99 0,06 0.25

High Model A 7 CART NoPuring : True 10-folds 25,26 0,96 0,12 0.44

High Model A 8 CART NoPuring : True Leave-one-out 21,60 0,90 0,15 0.61

High Model A 9 ANN - 10-folds 121,48 8,00 0,05 0.20

High Model A 10 ANN - Leave-one-out 96,98 6,90 0,04 0.38

Table 6.4: Regression result for Model A (Output : Total).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Total Model A 1 SVR Kernel: Poly, C:1 10-folds 1,17 0,65 0,22 0.42

Total Model A 2 SVR Kernel: Poly, C:1 Leave-one-out 1,17 0,64 0,21 0.48

Total Model A 3 SVR Kernel: Puk, C:1 10-folds 11,65 1,14 0,12 0.44

Total Model A 4 SVR Kernel: Puk, C:1 Leave-one-out 11,14 1,10 0,14 0.49

Total Model A 5 SVR Kernel: RBF, C:1 10-folds 2,03 0,68 0,29 0.48

Total Model A 6 SVR Kernel: RBF, C:1 Leave-one-out 1,81 0,68 0,32 0.47

Total Model A 7 CART NoPuring : True 10-folds 10,31 0,30 0,44 0.62

Total Model A 8 CART NoPuring : True Leave-one-out 1,06 0,23 0,52 0.74

Total Model A 9 ANN - 10-folds 21,87 1,84 0,07 0.45

Total Model A 10 ANN - Leave-one-out 22,72 1,93 0,12 0.44

35

Table 6.5 : Regression result for Model B (Output : Low).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Low Model B 1 SVR Kernel: Poly, C:1 10-folds 6,63 0,83 0,17 0.02

Low Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 4,73 0,88 0,17 0.05

Low Model B 3 SVR Kernel: Puk, C:1 10-folds 17,94 1,83 0,10 0.23

Low Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 17,14 1,74 0,11 0.26

Low Model B 5 SVR Kernel: RBF, C:1 10-folds 5,43 0,87 0,19 0.04

Low Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 4,77 0,84 0,20 0.04

Low Model B 7 CART NoPuring : True 10-folds 23,75 0,67 0,21 0.44

Low Model B 8 CART NoPuring : True Leave-one-out 20,12 0,78 0,19 0.33

Low Model B 9 ANN - 10-folds 47,46 2,66 0,10 0.25

Low Model B 10 ANN - Leave-one-out 23,47 2,80 0,07 0.17

Table 6.6: Regression result for Model B (Output : Medium).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Medium Model B 1 SVR Kernel: Poly, C:1 10-folds 5,84 0,79 0,16 0.09

Medium Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 5,69 0,87 0,14 0.04

Medium Model B 3 SVR Kernel: Puk, C:1 10-folds 25,63 2,56 0,10 0.17

Medium Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 25,13 2,80 0,10 0.23

Medium Model B 5 SVR Kernel: RBF, C:1 10-folds 4,79 0,77 0,14 0.00

Medium Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 4,52 0,80 0,16 0.01

Medium Model B 7 CART NoPuring : True 10-folds 17,59 0,83 0,14 0.15

Medium Model B 8 CART NoPuring : True Leave-one-out 13,24 0,67 0,23 0.20

Medium Model B 9 ANN - 10-folds 75,29 6,21 0,08 0.00

Medium Model B 10 ANN - Leave-one-out 83,92 4,82 0,07 0.15

36

Table 6.7: Regression result for Model B (Output : High).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

High Model B 1 SVR Kernel: Poly, C:1 10-folds 10,91 0,98 0,09 0.19

High Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 9,58 0,99 0,07 0.21

High Model B 3 SVR Kernel: Puk, C:1 10-folds 37,60 4,52 0,05 0.41

High Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 36,19 3,35 0,04 0.71

High Model B 5 SVR Kernel: RBF, C:1 10-folds 8,716 1,50 0,02 0.09

High Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 8,92 1,00 0,01 0.13

High Model B 7 CART NoPuring : True 10-folds 25,02 0,96 0,14 0.38

High Model B 8 CART NoPuring : True Leave-one-out 19,83 0,72 0,25 0.49

High Model B 9 ANN - 10-folds 82,81 10,84 0,06 0.24

High Model B 10 ANN - Leave-one-out 70,94 13,00 0,07 0.46

Table 6.8 : Regression result for Model B (Output : Total).

Output Model No Technique Concept Cross-validation MMRE MdMRE Pred(0,25) CC

Total Model B 1 SVR Kernel: Poly, C:1 10-folds 8,36 0,93 0,13 0.08

Total Model B 2 SVR Kernel: Poly, C:1 Leave-one-out 6,37 0,93 0,08 0.02

Total Model B 3 SVR Kernel: Puk, C:1 10-folds 19,35 1,22 0,14 0.37

Total Model B 4 SVR Kernel: Puk, C:1 Leave-one-out 18,62 1,199 0,14 0.39

Total Model B 5 SVR Kernel: RBF, C:1 10-folds 4,17 0,84 0,22 0.08

Total Model B 6 SVR Kernel: RBF, C:1 Leave-one-out 3,79 0,79 0,22 0.08

Total Model B 7 CART NoPuring : True 10-folds 12,67 0,73 0,27 0.45

Total Model B 8 CART NoPuring : True Leave-one-out 14,41 0,44 0,32 0.50

Total Model B 9 ANN - 10-folds 30,55 1,63 0,10 0.08

Total Model B 10 ANN - Leave-one-out 34,22 1,91 0,13 0.37

37

 Table 6.9: Classification result for Model OS.

Metric Technique Cross-validation Yes No Weighted

Precison

NB

NB

FLDA

FLDA

RT

RT

10-folds

One-leave-out

10-folds

One-leave-out

10-folds

One-leave-out

0,26

0,28

0,19

0,19

0,37

0,35

0,95

0,96

0,97

0,97

0,95

0,94

0,89

0,90

0,90

0,90

0,89

0,89

Recall

NB

NB

FLDA

FLDA

RT

RT

10-folds

One-leave-out

10-folds

One-leave-out

10-folds

One-leave-out

0,59

0,65

0,74

0,74

0,42

0,36

0,84

0,86

0,68

0,68

0,93

0,93

0,82

0,82

0,69

0,60

0,88

0,88

F-

Measure

NB

NB

FLDA

FLDA

RT

RT

10-folds

One-leave-out

10-folds

One-leave-out

10-folds

One-leave-out

0,37

0,39

0,30

0,30

0,40

0,35

0,89

0,89

0,80

0,80

0,94

0,94

0,85

0,85

0,75

0,75

0,89

0,88

AUC

NB

NB

FLDA

FLDA

RT

RT

10-folds

One-leave-out

10-folds

One-leave-out

10-folds

One-leave-out

0,75

0,74

0,72

0,71

0,65

0,63

0,75

0,74

0,72

0,71

0,65

0,63

0,75

0,74

0,72

0,71

0,65

0,63

38

39

7. THREATS TO VALIDITY

Possible threats to the validity of our findings are the dataset used. The company

dataset has been studied for a period of 6-months, causing this dataset to shrink. It is

planned to expand this dataset in the future studies and to repeat the study.

New features can be added by re-evaluating the feature selection step for the Model

OS. In this study, only the topic scores of the bug records were classified. Only the

2017 and 2018 years from the Wireshark dataset have been used to build the model,

while the training dataset range can be expanded to observe its effect on the prediction

success.

The textual descriptions used from the company dataset and the Wireshark dataset

were written in different languages. The text data entered is not written according to

any standard. Pollution of text data might have led to separate time spent in text mining

steps.

40

41

8. CONCLUSIONS AND FUTURE WORK

In this thesis, we have investigated whether topic models obtained from textual

descriptions of bugs and issue records may be a helpful criterion in predicting software

vulnerabilities.

This empirical analysis of predicting software vulnerabilities could be considered as a

new prediction approach. In this thesis, we identify two research questions. The first

research question is about the prediction of software vulnerabilities using issue

records. The results show that there is a considerable relationship between bug/issue

reports and vulnerabilities. In the second question, the success rates of the predictions

made by using textual description and topic models obtained from textual descriptions

were traced. The results show that software vulnerabilities can be avoided by tracking

the scores of the topic models before software vulnerabilities occur. Especially when

the Wireshark model results are examined, it is seen that the textual description of the

bug records provide successful results in predicting software vulnerabilities. The recall

score of the Wireshark model established by Fisher's Linear Discriminant algorithm is

74%. In the evaluation of the models for the classification problem, recall values have

been prioritized as success criteria. Because the number of error records matched with

the vulnerability in the dataset is about 10%. High recall score at this rate indicates

that false positive values are high, which makes the model successful.

The aggregation procedures on topic model scores for the corporate data contributed

negatively to the predictors' ability to learn. The same observation was obtained in the

literature [34]. Standardizing the textual description of the bug and issue records would

increase the success rate of the model.

The starting point of the thesis was to built the models developed in the literature with

corporate firm data. However, the dataset used in the literature and the different

42

datasets of corporate firms prevented replica studies. The investigation of corporate

company processes and the data mining phase took longer than anticipated. The dataset

obtained has a limited time interval. The thesis study will be developed in future

studies with a larger dataset.

Wireshark project dataset was found to be appropriate for this study, which is intended

to be compared with open source project data. Software vulnerabilities opened under

the Wireshark project were paired with one-to-one bug records, which led to the

problem of classification. As a result of this study, it is determined by the test results

that the textual descriptions of the bug records contribute to the successful results in

predicting the software vulnerabilities.

Outlier elements were observed in the company dataset. The dataset is under

investigation. In future studies, it is planned to evaluate the outlier and categorize the

dataset.

Naive Bayes and Fisher's Linear Discriminant algorithms achieve successful results

for the classification problem. In future studies, it is planned to test and compare these

machine learning algorithms with different datasets.

The sample software product group was used with the company dataset. In the future

studies, it is planned to make prediction by being consistent with all products

belonging to the company dataset. The reason for selecting the sample software

product group is the lack of readiness of the measurement infrastructure.

43

REFERENCES

[1] McGraw, G. (2004). Software Security, IEEE Security & Privacy

[2] TÜBİTAK BİLGEM, (2018). Secure Software Development Guide

[3] Ozment, A. (2007). Vulnerability Discovery & Software Security, University of

Cambridge, PhD Thesis

[4] Antunes, N., and Vieira, M,. (2015). On the Metrics for Benchmarking

Vulnerability Detection Tools, 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, Rio de Janeiro,

Brazil doi: 10.1109/DSN.2015.30

[5] Halfond, W. G. J., Choudhary, S., and Orso, A., (2009): Penetration Testing

with Improved Input Vector Identification. International Conference on

Software Testing Verification and Validation, EEE Computer Society

Washington, DC, USA

[6] OWASP, The Open Web Application Security Project, “About”, date retrieved

02.05.2019

https://www.owasp.org/index.php/Source_Code_Analysis_Tools,

[7] CxSAST, Static Application Security Testing, , “About”, date retrieved

02.05.2019 https://www.checkmarx.com/products/static-application-

security-testing/

[8] MITRE, “Corporate Overwiev”, date retrieved 18.04.2019, www.mitre.org.

[9] CVE, Common Vulnerabilities and Exposures, “About”, date retrieved

18.04.2019, https://cve.mitre.org/about/

[10] NIST, The National Institute of Standards and Technology, date retrieved

18.04.2019, https://www.nist.gov/

[11] NVD, National Vulnerability Database, date retrieved 08.11.2016,

https://nvd.nist.gov/

[12] Shin, Y., Meneely, A., Williams, L., and Osborne, J. A., (2010). Evaluating

Complexity, Code Churn, and Developer Activity Metrics as Indicators

of Software Vulnerabilities, IEEE Transactions on Software

Engineering., 772 – 787

[13] Scandariato, R., and Walden, J. S., (2014). Predicting vulnerable components:

software metrics vs text mining, IEEE 25th International Symposium

on Software Reliability Engineering., Naples, Italy DOI:

10.1109/ISSRE.2014.32

[14] Camilo, F., Meneely, M., and Nagappan, M., (2015). Do Bugs Foreshadow

Vulnerabilities? A Study of the Chromium Project, IEEE/ACM 12th

Working Conference on Mining Software Repositories, Florence, Italy

 DOI: 10.1109/MSR.2015.32

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
http://www.mitre.org/
https://cve.mitre.org/about/
https://www.nist.gov/
https://nvd.nist.gov/

44

[15] Zhang, Y., Lo, D., Xia, X., Xu, B., Sun, J., and Li, S., (2015). Combining

software metrics and text features for vulnerable file prediction, 20th

International Conference on Engineering of Complex Computer

Systems (ICECCS), Gold Coast, QLD, Australia DOI:

10.1109/ICECCS.2015.15

[16] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., Wang, S., and Wang, J.,

(2018). SySeVR: A Framework for Using Deep Learning to Detect

Software Vulnerabilities, IEEE https://arxiv.org/pdf/1807.06756

[17] Chowdhury, I., and Zulkernine, M., (2010). Using complexity, coupling, and

cohesion metrics as early indicators of vulnerabilities, ACM Symposium

on Applied Computing Sierre, Switzerland

[18] Hovsepyan, A., Scandariato, R., Joosen, W., and Walden, J., (2014).

Software Vulnerability Prediction using Text Analysis Techniques”,

IEEE 25th International Symposium on Software Reliability

Engineering., Naples, Italy

[19] Zimmermann, T., Nagappan, N., and Williams, L., (2015). Searching for a

needle in a haystack: Predicting security vulnerabilities for windows

vista, International Conference on Software Testing, Verification and

Validation (ICST), Paris, France DOI: 10.1109/ICST.2010.32

[20] Aversano, L., Cerulo, L., and Grosso, C. D., (2007). Learning from bug

introducing changes to prevent fault prone code, International

Workshop on Principles of software Evolution (IWPSE) Pages 19-26

[21] Gegick, M., Rotella,P., and Xie,T., (2010). Identifying security bug reports via

text mining: An industrial case study, 7th IEEE Working Conference on

Mining Software Repositories (MSR 2010) Cape Town, South Africa

DOI: 10.1109/MSR.2010.5463340

[22] Wireshark Vulnerabilities, Vulnerability Advisory, date retrieved 01.04.2019,

https://www.wireshark.org/security/

[23] Bugzilla, date retrieved 01.04.2019, https://www.bugzilla.org/

[24] Text Mining https://en.wikipedia.org/wiki/Text_mining, date retrieved

19.04.2019

[25] Qu, S., Wang, S., and Zou,Y., (2008). Improvement of Text Feature Selection

Method Based on TFIDF, in Future Information Technology and

Management Engineering, FITME '08. International Seminar on,

pp.79-81

[26] Chen, T.H., Thomas, S. W. and Hassan, A. E. (2016). “A Survey on the Use

of Topic Models When Mining Software Repositories,” Empirical

Software Engineering, vol. 21, no. 5, pp. 1843–1919

[27] Debortoli, S., Müller, O., Junglas, I., and Brocke,J. (2016). Text Mining for

Information Systems Researchers: An Annotated Topic Modeling

Tutorial, Communications of the Association for Information Systems,

vol. 39, p. Article 7

https://arxiv.org/pdf/1807.06756
https://www.wireshark.org/security/
https://www.bugzilla.org/

45

[28] Blei, D. M. (2012). “Probabilistic Topic Models,” Communications of the ACM,

vol. 55, no. 4, pp. 77–84

[29] Neuhaus S. and Zimmermann, T. (2010). “Security Trend Analysis with CVE

Topic Models,” in Proceedings of the IEEE 21st International

Symposium on Software Reliability Engineering (ISSRE 2010). San

Jose: IEEE, 2010, pp. 111–120.

[30] Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression,

Statistics and Computing, Kluwer Academic Publishers

https://doi.org/10.1023/B:STCO.0000035301.49549.88

[31] WEKA, 2019 Waikato Environment for Knowledge Analysis, date retrieved

19.04.2019 http://weka.sourceforge.net/doc.stable-

38/weka/classifiers/functions/SMOreg.html

[32] Wang, T. and Li,W. (2010). Naive Bayes Software Defect Prediction Model,

International Conference on Computational Intelligence and Software

Engineering DOI: 10.1109/CISE.2010.5677057

[33] Kalsoom, A., Maqsood,M., Ghazanfar, M.A., Aadil, F., and Rho,S. (2018).

A dimensionality reduction-based efficient software fault prediction

using Fisher linear discriminant analysis (FLDA), Springer US, 74:

4568. https://doi.org/10.1007/s11227-018-2326-5

[34] Zhang,F., Hassan, A.E., McIntosh,S., and Zou,Y. (2016). The Use of

Summation to Aggregate Software Metrics Hinders the Performance of

Defect Prediction Models, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING https://doi.org/10.1109/TSE.2016.2599161

[35] Perl, H. (2015). “VCCFinder: Finding Potential Vulnerabilities in Open-Source

Projects to Assist Code Audits”, CCS ’15, October 12-16, Denver,

Colorado, USA

[36] Arkin , B., Stender, S. and McGraw, G. (2005). Software penetration testing,

IEEE Security & Privacy, 84-87. DOI: 10.1109/MSP.2005.23

[37] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A. and

Gall, H. C. (2018). "Context is king: The developer perspective on the

usage of static analysis tools." IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER).

Campobasso, Italy.

[38] Shahmehri, N. (2012). “An advanced approach for modeling and detecting

software vulnerabilities”, Information and Software Technology 54,

pgs 997-1013, Elsevier,

[39] Jovanović and Irena, (2008). “Software Testing Methods and Techniques”, May

26,

[40] Yoshioka, N., Washizaki, H., and Maruyma, K. (2008). “A survey on security

patterns,” Progress in Informatics, vol. 5, pp. 35–47, 2.

[41] Rehman, S., and Mustafa, K. (2009). "Research on Software Design

LevelSecurity Vulnerabilities", ACM.

https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1109/TSE.2016.2599161
https://ieeexplore.ieee.org/author/37447699300
https://ieeexplore.ieee.org/author/37937787300
https://ieeexplore.ieee.org/author/37268575700

46

[42] Devanbu, P. T. and Stubblebine,S. (2000). "Software engineering for security:

a roadmap", ICSE '00 Proceedings of the Conference on The Future of

Software Engineering, Pages 227-239

[43] Offutt, J. (2002). "Quality Attributes of Web Software Applications", IEEE

Software, Pages 25 – 32, DOI: 10.1109/52.991329

[44] Zhi,J., Garousi,V., Sun,B., and Garousi, G. (2014). "Cost, Benefits and

Quality of Software Development Documentation: A Systematic

Mapping", Journal of Systems and Software, DOI:

10.1016/j.jss.2014.09.042

 [45] Ghaffarian S.M., and Shahriari, H.R. (2017). Software Vulnerability Analysis

and Discovery Using Machine-Learning and Data-Mining Techniques:

A Survey. ACM Comput. Surv. 50, 4, Article 56 (August 2017), 36

pages. https://doi.org/10.1145/3092566

[46] Krsul, I. V. “Software vulnerability analysis,” (1998). Ph.D. dissertation, Purdue

University

[47] Apple, (2019). “Types of Security Vulnerabilities”, date retrieved 19.04.2019

https://developer.apple.com/library/archive/documentation/Security/C

onceptual/SecureCodingGuide/Articles/TypesSecVuln.html

[48] Alhazmi, O.H., Malaiya, Y.K. and Ray, I., (2007). Measuring, analyzing and

predicting security vulnerabilities in software systems. Computers &

Security 26, 219–228. https://doi.org/10.1016/j.cose.2006.10.002

[49] Solk, J.S. (2008). “Text Data Mining: Theory and Methods” Vol. 2 (2008) 94–

112, ISSN: 1935-7516, DOI: 10.1214/07-SS016

[50] Blei, D.M., Ng, A.Y., and Jordan, M.I (2003). “Latent Dirichlet Allocation” ,

Journal of Machine Learning Research 3 (2003) 993-1022

https://doi.org/10.1145/3092566
https://doi.org/10.1016/j.cose.2006.10.002

47

APPENDICES

 APPENDIX A.1 : Graphical Represantation of Model A Results.

48

APPENDIX A.2 : Graphical Represantation of Model B Results.

49

CIRRICULUM VITAE

Name Surname : Fatma Gül BULUT

Place and Date of Birth : Bursa, 1991

E-Mail : fgulyavuz@gmail.com

EDUCATION:

 B.Sc.: Uludağ University, Electronic Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

 May 2017 - Present - Software Engineer / Softtech

 November 2015 – May 2017 - Quality Management Engineer / Softtech

 March 2014 – October 2015 - Industrial Product Specialist / Tekno Tasarım

PUBLICATIONS/PRESENTATIONS ON THE THESIS

Bulut, F.G., Altunel, H., and Tosun, A. 2019: Predicting Software Vulnearabilities

Using Topic Modeiling. International Conference on Computer Science and

Engineering - IEEE, September 11-15, 2019 Samsun, Turkey – Summitted

mailto:fgulyavuz@gmail.com

