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DEEP LEARNING BASED CRACK DETECTION
WITH APPLICATIONS TO STRUCTURAL HEALTH MONITORING

SUMMARY

Computer vision has been a hot research topic for years with broad applications.
Various detection applications and detection techniques exist in the literature. Crack
detection from images is a popular problem since it applies to different structures
like bridges, dams, pavements, concretes or metals structures and etc. Manual
visual inspection (VI) of structural defects and cracks is very time-consuming, and
sometime unfeasible due to the volume of data and the size of the structure. Manual
inspection of cracks and defects in structures is prone to human error for a range
of reasons like fatigue, irresponsible inspection, weak eye sight and even sabotage.
In addition, some structural defects like the ones with low contrast between cracks
and the surrounding areas, is challenging to the naked eye to detect. Structural and
safety maintenance require a consistent inspection of cracks and other anomalies.
The inspections provide information regarding the life condition of the structures and
yield information for estimating structural health and repair costs. Automation of
such inspections, can reduce the reliance on manual inspections and reduce the error.
Incorporating automatic inspection can increase the frequency of inspections and assist
human inspector in variety of ways.

Hence, incorporating Image processing techniques (IPTs) and computer vision based
algorithms, provides a good opportunity and a viable solution to deal with these
challenges. Various image processing techniques have been used in the past to address
the problem of automated visual crack detection, with varying degrees of success. In
this work a novel crack detection framework is proposed, which utilizes techniques
from both classical image processing and deep learning methodologies. The main
contribution of this work is demonstrating that applying filters to image data in
the pre-processing phase can significantly boost the classification performance of a
convolutional neural network based model. Wide utilization of IPTs, especially for
image pre-processing, helped us in achieving the results that have outperformed the
prior best methods.

The proposed vision-based method, utilizes convolutional neural networks (ConvNets
or CNNs) as its main mechanism for detecting cracks in the structures. The designed
CNN architecture has been trained on 650 images, which was labeled by a custom
annotation tool and a classification accuracy of 96.26 % was achieved on image blocks,
on a dataset of cracked surface images. Through grid searching among a range of CNN
parameters, a CNN network was nominated as the best network for training our model.
The developed custom grid search accepts variety of parameters, including number of
layers, activation functions, number of neurons, number of classes, input dimension,
value of dropout and max pooling layers. Although the parameter search techniques
(grid search in this case) can provide the best possible combination of parameters, there
are other factors contributing to the success of a model. In this work, the accuracy has
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been achieved due to the novel technique proposed, which is the incorporation of IPTs.
IPTs can improve the accuracy and among them, bilateral filtering has been observed
to perform very well as a pre-processing and smoothing technique for detection with
CNNs.

In addition to the CNN structure and pre-processing techniques, there are other factors
contributing to the success of a model. The research findings shows that the quality
of the dataset is one of the most important factors of model generalization success.
Dataset quality means a the balance of classes, quality of images and their properties.
Although the pre-processing techniques are introduced to improve the quality of CNN
input, annotation and data acquisition should be performed with care and precision. In
this work, the custom data annotation tool has been developed for this reason.

In this work, further and complete analysis of CNN architectures, parameters, and
their contribution to failure or success of the model has been discussed in detail.
Additionally, incorporation of IPTs and the impact of such pre-processing techniques
have been studied and the results have been discussed in detail.
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YAPISAL SAĞLIK İZLENMESİNDE DERİN ÖĞRENME
TEMELLİ ÇATLAK TESPİTİ

ÖZET

Bilgisayar görmesi, son yıllarda geniş uygulama alanları ile birlikte popülaritesi artan
bir araştırma konusu olmuştur. Literatürde çeşitli uygulamalarda farklı tespit teknikleri
bulunmaktadır. Bilgisayar görmesi uygulamalarından biri olan, köprüler, barajlar,
kaldırımlar, betonlar veya metal yapılar gibi farklı yapılar üzerinde görüntülerden
çatlak tespiti, oldukça popüler olan bir araştırma alanıdır. veri hacmi ve yapının boyutu
nedeni ile yapılardaki çatlakların ve kusurların manuel olarak incelenmesi zaman alıcı
ve hatta bazen imkansızdır. yorgunluk, sorumsuz muayene, zayıf göz görme ve hatta
sabotaj gibi çeşitli nedenlerden dolayı çatlak ve kusurların yapılarda incelenmesi insan
hatalarına açıktır. Ek olarak, çatlaklar ve çevresindeki alanlar arasında düşük kontrastlı
olanlar gibi bazı yapısal kusurlar, tespit etmek için çıplak göze zordur. Yapısal ve
güvenlik bakımı, çatlakların ve diğer anomalilerin tutarlı bir şekilde incelenmesini
gerektirir. Denetimler, yapıların yaşam durumuna ilişkin bilgi sağlamakta ve yapısal
sağlık ve onarım maliyetlerini tahmin etmek için bilgi vermektedir. Bu denetimlerin
otomasyonu, manuel denetimlere olan güvensizliği ve hatayı azaltabilir. Otomatik
muayenenin yapılması, denetimlerin sıklığını artırabilir ve insan denetçisine çeşitli
şekillerde yardımcı olabilir.

Bu nedenle, Bu zorlukların üstesinden gelmek için görüntü işleme tekniklerini
(IPT’ler) ve bilgisayarlı görü tabanlı algoritmaları kullanmak iyi bir fırsat ve uygun
bir çözüm sunar. Geçmişte, çeşitli başarı derecelerinde otomatik görsel çatlak tespiti
sorununu ele almak için çeşitli görüntü işleme teknikleri kullanılmıştır. Bu çalışmada,
hem klasik görüntü işleme hem de derin öğrenme metodolojilerinden teknikleri
kullanan yeni bir çatlak tespit çerçevesi önerilmiştir. Bu çalışmanın ana katkısı,
işleme öncesi aşamadaki görüntü verilerine filtre uygulanmasının, convolutional bir
sinir ağı temelli modelin sınıflandırma performansını önemli ölçüde artırabileceğini
göstermesidir. Özellikle ön işleme görüntü için IPT’lerin geniş kullanımı, önceki en
iyi yöntemleri geride bırakan sonuçlara ulaşmamıza yardımcı oldu.

Önerilen vizyon temelli yöntem, yapılardaki çatlakları tespit etmek için ana
mekanizma olarak convolutional sinir ağlarını (ConvNets veya CNN’ler) kullanır.
Tasarlanan CNN mimarisi, 650 görüntü üzerinde eğitildi; ki, özel bir açıklama
aracıyla etiketlenmiştir ve kırık yüzey görüntülerinin bir veri kümesi üzerinde,görüntü
bloklarında, % 96,26 sınıflandırma doğruluğu elde edildi. Bir dizi CNN parametreleri
arasında şebeke arama yoluyla, CNN ağı modelimizi eğitmek için en iyi ağ olarak
belirlenmiştir. Geliştirilmiş özel şebeke araştırması, katman sayısı, etkinleştirme
fonksiyonları, nöron sayısı, sınıf sayısı, giriş boyutu, bırakma değeri ve max
pooling katmanları dahil olmak üzere çeşitli parametreleri kabul eder. Parametre
arama teknikleri (bu çalışmada şebeke arama) parametrelerin mümkün olan en iyi
kombinasyonunu sağlayabilmesine rağmen, modelin başarısına katkıda bulunan başka
faktörler de vardır. Bu çalışmada, önerilen yeni teknik nedeniyle IPT’lerin dahil
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edilmesi ile doğruluk sağlanmıştır. IPT’ler doğruluğu artırabilirler ve aralarında,
bilateral filtering, ön işleme ve kolaylaştırma tekniği olarak CNN’lerle tespit etmek
için çok iyi performans gösterdiği gözlenmiştir.

Modelin başannsında, CNN grapısı ve ön işleme tekniklerine ilave başka faktörlerde.
Katkı sağlamaktadır. Araştrmalara göre,veristınin doğruluğu,modelin genelliştirme
başarısında önemlı faktörlerden birdir. Verisetinim kalitesi ve özellikleri anlamındır.
Ğerçi CNN giriş kalıtesinin artmas için, ön işleme teknikleri önerilmiştir, yineke veri
toplama ve işaretleme işlemlerı dikkatli ve doğru birşekilde yaplımalıdır. Bu çalişmada
özel veri işaretleme aracı, yukarıda anlatılan amaç için geliştirilmiştirç.

Bu çalışmada, CNN mimarileri, parametreleri ve anların modelın başarı ya da
başarısızlıgında olan etkileri daha ayrıntılı ve eksızce anlatılmıştır. Ek olarak, IPT’lerin
dahil edilmesi ve bu tür ön işleme tekniklerinin etkisi araştırılmış ve sonuçlar ayrıntılı
olarak tartışılmıştır.

bir katmanın amacı görüntüdeki özelliklerin varlığını tespit etmek için kullanılan
filtrelemektir. Karmaşık yapıların ve şekillerin özellikleri. Filtre bir görüntü üzerinde
hareket ederken. Filtreyi seçtikten sonra, adım ve dolguyu da seçmek zorundayız.
Hem doldurma hem de adımlama veri boyutunu etkiler. Adım, filtrenin giriş hacminin
etrafında nasıl büküleceğini kontrol eder. Dolgu, daha derin ağlar tasarlamamıza
olanak tanır ve özellik haritamızın büzülmesini önler. Ayrıca, dolgular aslında
bilgileri sınırlarda tutarak performansı artırır. Daha önce belirtildiği gibi Havuzlama
Katmanı, CNN katmanlarında gerçekleşir. Çekirdeği alıp çekirdeği görüntünün
üzerine götürdüğümüz kıvrımlı sesler gibi çalışır. Havuzlamanın işlevi, ağdaki
parametre ve hesaplama sayısını sürekli olarak azaltmaktır.

Maksimum havuzlama, minimum havuzlama ve ortalama havuzlama gibi birkaç
tür havuz vardır. Max havuzu sizi bir sonraki seviyeye götürür. Diğer
havuzlama yöntemleri olsa da, maksimum havuzlama genellikle bu çalışmada
kullandıklarımızdan daha etkilidir.

CNN tabanlı çatlak tespit teknikleri temel olarak iki gruba ayrılır. İlk grup (blok
seviyesi tespiti), çatlak yamalarının tespiti ve üzerlerinde sınırlayıcı kutular temin
edilmesine dayanır. İkinci grup (piksel seviyesi tespiti), piksel seviyesinde çatlak
tespiti sağlayan çatlak segmentasyonuna (delineation) dayanmaktadır.

Daha sonraki çalışmalarda somut görüntülerde çatlakların tespit edilmesine yönelik
derin bir öğrenme yaklaşımı önerilmiştir. Bu çalışmada, sonuçlar, önerilen CNN’nin
doğruluğunu arttırdığını gösteren Canny ve Sobel kenar algılama algoritmaları ile
karşılaştırılmıştır. CNN’lerin kullanılması genellemeyi arttırır ve verideki gürültünün
etkisini azaltır. Yazar, veri setinde %97’den fazla test doğruluğu olduğunu iddia ediyor.

Önerilen CNN mimarisi dört katlamalı katmanı, bir makspooling katmanı ve iki yoğun
katmanı içerir. Destek Vektör Makineleri (SVM) ve Yükseltme yöntemleri gibi klasik
makine öğrenme yöntemleriyle karşılaştırıldığında, önerilen CNN’ler, kaldırım çatlağı
tespit veri setinde çok daha iyi doğruluk ve geri çağırma puanları (0.925) sağlar.

Önerilen yöntem, ilgi alanı üzerinde bir sınırlama kutusu sağlayarak sekiz sınıfı tespit
edebilmektedir. Yöntem çok güçlü yöntemler kullanmasına ve özellik çıkarıcıları
kullanmasına rağmen, bu yöntemler çatlak alanlarının hassas şekilde algılanması için
uygun değildir.
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Sivil altyapıların incelenmesi ile ilgili bir araştırmada, bilgisayarlı görme teknikleri
ve CNN’ler kullanılarak somut tünel çatlakları üzerine bir araştırma yapılmıştır.
Bu çalışmada, CNN’ler için gürültü giderme, düz çizgiler kaldırma, eğri algılama,
Hough dönüşümü boyunca şekil filtreleme ve morfolojik rekonstrüksiyon da dahil
olmak üzere ön işleme adımları olarak birkaç IPT kullanılmıştır. Çalışma, IPT’lerin
CNN’lerin kombinasyonunda kullanılmasının daha yüksek sınıflandırma doğruluğu
sağladığını kanıtlıyor.
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1. INTRODUCTION

Monitoring structural health, such as detection of surface cracks is essential in

identifying the anomalies in very first stages of the defect formation. Different

structures like bridges, dams, pavements and power station components can benefit

from this process, by reducing the risk of possible failures. A precise assessment of

defects, including cracks and other anomalies can help for predicting and preventing

damages which has brought the matter to researchers’ attention, in order to automate

this process. Automating this process will increase the inspection speed and reduce the

inspection costs and possible human errors.

This project focuses on building deep learning based classification and prediction

models for detecting cracks and structural failures in gas turbine components. In

the long term, algorithms are planned to be deployed on a robotic arm that performs

autonomous inspection on the components.

Practitioners used to rely on traditional Image processing techniques (IPTs) for

detecting and extracting infrastructure defects, such as cracks in concrete or steel

surfaces [1] [2] [3]. Although IPTs are powerful tools for feature identification, they

still suffer from distinguishing between samples with similar features, such as cracks

versus lighting spots, shadows, and edges. Hence, relying solely on traditional IPTs,

limits the capability of the feature extractor and the detector. In addition, it takes a

considerable amount of effort to manually extract and model the features in images,

which most likely will be limited to specific features and image types.

Deep learning methods aim to address the restrictions of IPTs in extracting and

learning high quality features. Using deep learning based methods are motivated by

the increasing popularity of neural network based approaches in the machine learning

community, which has largely replaced classical vision processing approaches that rely

on hand-crafted features.
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Deep Learning is a branch of Machine Learning that is based on Deep Neural Networks

(with multiple hidden layers). Convolutonal Neural Networks (CNNs) are also a

family of neural networks that are tailored towards processing spatial information and

are deep and feed-forward (Multi-Layer Perceptrons; MLPs). CNNs are known to

perform much better than traditional computer vision methods and are very useful in

applications such as Image Classification, Object Detection, Segmentation, etc. [4] [5].

With the development of CNNs, detection of surface cracks can be performed without

further image processing [6] [7] [8] due to the fact that they are capable of learning

image features automatically. Deep learning models exploit image features in different

resolutions through stacked convolutional layers, which leads toward an improved

detection and classification performance.

A convolution Layer is a convolution operation, which is performed by sliding a filter

or a kernel over an image and summing through element-wise multiplication of entries.

A CNN consists of several different layers and parts. Pooling or mostly Max-Pooling

layers are also very common in convolutional neural networks. Dropout is an option

to apply regularization which will be described in detail in the following.

CNNs totally have three main parts which are input, hidden layers, and output. Input

is a matrix of values which is fed to the network. Hidden Layers which are set of

operations and contain two components. The first one is feature extraction and the

second one is classification. Feature extraction contains convolutions, pooling and

activation layers and the classification contains fully connected layers; this layers

assign a probability for the object on the image being what the algorithm predicts

it is. Output is a full classified form of input image. The output of the convolution is

usually smaller (in width and height) than the original image.

The goal of a convolutional layer is filtering which are used to detect the presence of

features within an image. Features could be anything from simple edges and curves

to more complex structures and shapes. As the filter move over an image the network

can effectively check for patterns in that section of the image. After we choose the

filter size, we also have to choose the stride and the padding. Both the padding and

stride impacts the data size. Stride controls how the filter convolves around the input

volume then pads the input volume with zeros around the border. Padding allows us

to design deeper networks and prevents our feature map from shrinking.Also padding

2



actually improves performance by keeping information at the borders. Pooling Layer

as mentioned before takes place in between the CNN layers. it works very much like

convoluting, where we take a kernel and move the kernel over the image, the only

difference is the function that is applied to the kernel and the image window which

isn’t linear. The function of pooling is to continuously reduce the dimensionality to

reduce the number of parameters and computation in the network.

There are several types of pooling like max pooling, min pooling, and average pooling.

Max pooling takes the largest value from the window of the image currently covered

by the kernel and it is a cheap way of extracting feature and passing them to next

layers. Although there are other pooling methods, max-pooling is generally more

effective than them in object classification tasks.Min pooling takes the smallest value

and average pooling as it’s name shown takes the average of all values in the window.

After each convolution layer, it is convention to apply an activation layer immediately

afterward. It is possible to use different activation functions for finding the best

result regarding a specific task. There are two types of activation Layer, linear

activation function and non-linear activation function. The most commonly used type

is non-linear one. In the past, nonlinear functions like tanh and sigmoid functions were

used, but researchers found out that Rectified Linear Unit (ReLU) layers work far

better because the network is able to train a lot faster and be efficient in computational

without making a significant difference to the accuracy. Activation function of choice

for forward feeding layers of our proposed CNN is ReLU. ReLU is a function that its

gradient is either 1 or 0. Moreover, Softmax function is the final activation which has

been used for predicting the output. Additionally, neural networks may benefit from

different types of optimizers, including but not limited to stochastic gradient descent

(SGD) or ADAMAX, which has been our choice of optimizer for this research [4], [5].

For further information regarding CNN parameters, reader is referred to textbooks and

literature on deep learning, such as [9].

Dropout is a regularization technique for reducing over-fitting in neural networks

by preventing complex co-adaptations on training data.The term "dropout" refers to

dropping out units (both hidden and visible) in a neural network. So it drops out

the nodes that their probabilities are less than a specific value in each iteration. This

regularization technique was not used in this research.

3



Data Augmentation is a regularization technique that is used to avoid over-fitting when

training machine Learning models. Adjustments are made to the original images in the

training dataset before being used in training. Data augmentation can be applied to any

form of data to Increasing the number of images in data set by translating, cropping,

scaling, rotating, changing brightness and contrast of the original image.

When the data is trained on a CNN, training and testing error and accuracy values

can be measured and monitored. Training error and accuracy values demonstrates the

success of model on the training data. It shouldn’t been assumed that this error will

be zero just because network have seen the exact data before. Test error and accuracy

values are acquired from the data which have been included in training data. Thus, test

accuracy and error values are more reliable for evaluation of generalization purpose.

However, the third portion of the dataset, also known as validation set, should only

be relied to validate the model, as the test set have been indirectly used for tuning the

CNN and cannot provide us with valid error and accuracy values.

Here are some tips which can help in tuning the CNN model to achieve a better

performance

• If both the training error and test error is high then our model is probably

under-fitting so we should increase model capacity (more neurons and layers in

grid search) or in the other case increase training data.

• If training error is low but test error is high so model is probably over-fitting and

should be regularized and/or decrease model capacity or in the other case increase

training data or maybe the test and training images are similar.

• If both training and test error is low we could achieve a successful network.

Confusion Matrix also is another method for monitoring the errors and accuracy

of networks. It determines the false positive, false negative, true positive and true

negative.

• True Positive (TP) means when the network predicts the positive condition

correctly.

• True Negative (TN) means when the network predicts the negative condition

correctly.
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• False Positive (FP) means when the network predicts the negative condition

incorrectly.

• False Negative (FN) means when the network predicts the positive condition

incorrectly.

1.1 Purpose of Thesis

In this work, we propose a method utilizing CNNs in combination with IPTs for

detecting cracks in gas turbine component surfaces. To the best of our knowledge,

our utilization of IPTs as a pre-processing technique for CNNs is being done for the

first time in the structural health monitoring. This approach provides more robust and

accurate results, regardless of the dataset quality, in reasonable computational time.

utilizing IPTs as pre-processing step of CNNs improves learning speed. Handpicking

some features through IPTs, will enable the CNNs to learn faster by reducing the

amount of features to learn.

1.2 Literature Review

The works on crack detection can be divided into two major groups, methods that rely

on image processing and convolutional neural network models.

1.2.1 Image processing techniques

In a study by Qin Zou et al. [2], shadow removal was exploited in detecting pavement

cracks. In their method, shadow removal has been implemented through balancing

the illumination of shadow region and the other parts. Likelihood of having shadows

similar to pavement shadows is near-zero and there are other geometric and surface

complexities such as having 3D surface areas, shapes and textures in the structures of

interest in our work. Thus, implementation of such technique in this work will distort

crack features instead.

Thresholding, which is considered as one the most widely used methods of

segmentation, was utilized in [1]. Although thresholding is one of the most widely

used IPTs, it has its own drawbacks when dealing with more complex surfaces. The

study also implements median filtering, after conversion of color image to gray-scale,
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in order to reduce the surface complexity. However, the suggested techniques in this

study for elimination of unwanted elements are insufficient to deal with more complex

and large elements.

In another study [10], steel cracks were detected using a vision based detector. Despite

the using crack-like features in the dataset of the study, the authors propose a detector

based on Frangi filter and Hessian matrix edge detection. The proposed detector is

able to successfully detect bolts and cracks in bridge images. In general, utilization of

vision based techniques requires huge amount of feature engineering and are difficult

to re-implement.

1.2.2 CNN based techniques

The CNN based crack detection techniques are mainly divided into two groups. The

first group (block-level detection) is based on detection of crack patches and providing

bounding boxes over them. The second group (pixel-level detection) is based on crack

segmentation (delineation), which provides pixel level crack detection of cracks. There

have been very recent studies in pixel-level detection category, including [11] and [12]

and there also have been prior works like [13].

A deep learning approach for detecting cracks on concrete images was proposed in [6].

In this study, the results are compered to Canny and Sobel edge detection algorithms,

which suggests that the proposed CNN improves the accuracy. Utilization of CNNs

increases the generalization, and reduces the effect of noise in data. The author claims

over 97% test accuracy in their dataset.

Likewise, a CNN model was implemented in [14]. The proposed CNN architecture

has four convolution layers, a maxpooling layer and two dense layers. Compared

to classical machine learning methods such as Support Vector Machines (SVM) and

Boosting methods, the proposed CNNs provide much better accuracy and recall scores

(0.925) on a pavement crack detection dataset.

In a study of road damage inspection [15], smart phones were used for gathering the

data from road surface. The proposed method is able to detect eight classes through

providing a bounding box over the area of interest. Although the method utilizes very
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powerful methods and feature extractors, these methods are not suitable to precise

detection of crack areas.

In a study [16], a different implementation of CNNs is proposed. In this

implementation, extracting and forward feeding of low level features as the first layer

of the CNN is suggested. This implementation, yields 88.6% accuracy.

In an investigation on inspection of civil infrastructures [17], Stentoumis et al.

conducted a research on concrete tunnel cracks, using computer vision techniques and

CNNs. In this study, several IPTs have been used as pre-processing steps for CNNs,

including noise removal, straight lines removal, curve detection, shape filtering through

Hough transform and morphological reconstruction. The study proves that utilization

of IPTs in combination of CNNs yields higher classification accuracy.

In the study by Futao Ni [12], a fine-tuned GoogLeNet is used with combination of

a crack delineation network (CDN). GoogLeNet, as a successful feature extractor,

provides the feature extraction and detection in this pipeline. The dataset image size

in this research is 4000× 6000 pixels, which is considered a high resolution dataset

as opposed to our dataset which has the maximum resolution of 1200× 2000 pixels.

citeYang2018 and [13] also utilize similar approaches of pixel level crack delineation.

These studies provides segmentation for crack patches, which is not the focus in our

study.

The focus of this study is detection of image patches or grids, which fits into the first

group (block-level detection) of studies. Distinguishing cracks from non-cracks is done

using a CNN based classifier and a sliding window, which marks the detected patches

as demonstrated in the visualization section, in Figure 2.1. The provided framework

focuses on achieving high accuracy by a flexible model which is capable The works

on crack detection can be divided into two major groups, methods that rely on image

processing and convolutional neural network models.

1.2.3 Image processing techniques

In a study by Qin Zou et al. [2], shadow removal was exploited in detecting pavement

cracks. In their method, shadow removal has been implemented through balancing

the illumination of shadow region and the other parts. Likelihood of having shadows
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similar to pavement shadows is near-zero and there are other geometric and surface

complexities such as having 3D surface areas, shapes and textures in the structures of

interest in our work. Thus, implementation of such technique in this work will distort

crack features instead.

Thresholding, which is considered as one the most widely used methods of

segmentation, was utilized in [1]. Although thresholding is one of the most widely

used IPTs, it has its own drawbacks when dealing with more complex surfaces. The

study also implements median filtering, after conversion of color image to gray-scale,

in order to reduce the surface complexity. However, the suggested techniques in this

study for elimination of unwanted elements are insufficient to deal with more complex

and large elements.

In another study [10], steel cracks were detected using a vision based detector. Despite

the using crack-like features in the dataset of the study, the authors propose a detector

based on Frangi filter and Hessian matrix edge detection. The proposed detector is

able to successfully detect bolts and cracks in bridge images. In general, utilization of

vision based techniques requires huge amount of feature engineering and are difficult

to re-implement.

1.2.4 CNN based techniques

The CNN based crack detection techniques are mainly divided into two groups. The

first group (block-level detection) is based on detection of crack patches and providing

bounding boxes over them. The second group (pixel-level detection) is based on crack

segmentation (delineation), which provides pixel level crack detection of cracks. There

have been very recent studies in pixel-level detection category, including [11] and [12]

and there also have been prior works like [13].

A deep learning approach for detecting cracks on concrete images was proposed in [6].

In this study, the results are compered to Canny and Sobel edge detection algorithms,

which suggests that the proposed CNN improves the accuracy. Utilization of CNNs

increases the generalization, and reduces the effect of noise in data. The author claims

over 97% test accuracy in their dataset.
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Likewise, a CNN model was implemented in [14]. The proposed CNN architecture

has four convolution layers, a maxpooling layer and two dense layers. Compared

to classical machine learning methods such as Support Vector Machines (SVM) and

Boosting methods, the proposed CNNs provide much better accuracy and recall scores

(0.925) on a pavement crack detection dataset.

In a study of road damage inspection [15], smart phones were used for gathering the

data from road surface. The proposed method is able to detect eight classes through

providing a bounding box over the area of interest. Although the method utilizes very

powerful methods and feature extractors, these methods are not suitable to precise

detection of crack areas.

In a study [16], a different implementation of CNNs is proposed. In this

implementation, extracting and forward feeding of low level features as the first layer

of the CNN is suggested. This implementation, yields 88.6% accuracy.

In an investigation on inspection of civil infrastructures [17], Stentoumis et al.

conducted a research on concrete tunnel cracks, using computer vision techniques and

CNNs. In this study, several IPTs have been used as pre-processing steps for CNNs,

including noise removal, straight lines removal, curve detection, shape filtering through

Hough transform and morphological reconstruction. The study proves that utilization

of IPTs in combination of CNNs yields higher classification accuracy.

In the study by Futao Ni [12], a fine-tuned GoogLeNet is used with combination of

a crack delineation network (CDN). GoogLeNet, as a successful feature extractor,

provides the feature extraction and detection in this pipeline. The dataset image size

in this research is 4000× 6000 pixels, which is considered a high resolution dataset

as opposed to our dataset which has the maximum resolution of 1200× 2000 pixels.

citeYang2018 and [13] also utilize similar approaches of pixel level crack delineation.

These studies provides segmentation for crack patches, which is not the focus in our

study.

The focus of this study is detection of image patches or grids, which fits into the first

group (block-level detection) of studies. Distinguishing cracks from non-cracks is done

using a CNN based classifier and a sliding window, which marks the detected patches

as demonstrated in the visualization section, in Figure 2.1. The provided framework
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focuses on achieving high accuracy by a flexible model which is capable of performing,

regardless of image size and resolution. In addition, data preparation for block-level

detection is relatively an easy task. In contrast, segmentation needs high quality images

and more complicated annotation process. Therefore, pixel-level detection is not the

focus and priority in this study.

Utilization of CNNs in crack detection brings a great improvement over IPTs.

However, these implementations do not provide necessary precautions to reduce

surface noises and do not sharpen particular features. Our implementation, provides

solutions to overcome the existing shortcomings and improve generalization accuracy

and training speed.
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2. INTEGRATED DATA

2.1 Data Preparation

The research dataset has initially been provided in form of batches of images from

defected parts and structures of gas turbines. Dataset images have varying resolutions

and different crack sizes and types. Hence, a custom software was designed to further

automate the annotation and data preparation. The software is designed in a way to

handle different resolutions and crack sizes. The software takes block samples on

mouse track line as user input, in every 5 to 10 pixels of mouse movement, as illustrated

in Figure 2.1. This ensures that the proportion of a crack size to the bounding block

size are consistent. Additionally, this data annotation method brings the flexibility of

having different block sizes and class balances. The dataset is acquired from about 700

images, resulting in 250k labeled image blocks.

2.2 Pre-processing

2.2.1 Data augmentation

Data Augmentation is a regularization technique that is used to avoid over fitting by

producing variations in the training dataset. Data augmentation can be applied to any

form of data and increase the number of images in dataset by translating, cropping,

scaling, rotating, changing brightness and contrast of the original image. This

technique improves generalization of the model. The list of applied transformations

on images have been provided in Table 2.1.

2.2.2 Smoothing method

Image processing operations can help distinguish the features easier and also eliminate

noise from images. Thus, some image processing techniques were implemented in this

work to investigate and potentially improve the results. Due to the nature of inspected
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Figure 2.1 : Work Progr ess Visual Chart; the process is visually shown step by step
starting from raw image and ending with visualization part.

Table 2.1 : Augmentation parameters used in model training.

Transformation Type Range
Rotation 20 degrees

Width Shift 0.2
Height Shift 0.2

Horizontal Flip True
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Figure 2.2 : Application of Median and Bilateral filters.

surfaces, median and bilateral filters are a good fit for this operation. These filters and

their usages are as follows.

Median Filter: Median filter is a smoothing method, mostly used for salt-and-pepper

noise removal [1] [18]. In images, it’s expected to have similar pixel values in

neighbouring pixels, but the values of noise do not follow any order and are not similar

to others in a particular area of pixels. Therefore, using average value of neighboring

pixels in the corrupted or noisy pixel tends to be a good smoothing method. Median

filter does this process by replacing each pixel with the median value of the neighboring

pixels. Thus, it is potentially a good method to smooth out the small bright and dark

points on an image, without having to blur the image any further. Effect of the Median

filter on turbine component images is demonstrated in Figure 2.2.

Bilateral Filter: Bilateral filtering is introduced by Tomasi and Manduchi [19]

to replace anisotropic diffusion [20] in which they average particular regions by

solving partial differential equations. Bilateral filter is a non-iterative, non-linear
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and edge-preserving filter. This filter, can reduce image’s contrast, while preserving

the details. This filter performs smoothing on the images with low pass filters

and applies noise removal via high-pass filters (HPF). HPFs are helpful in edge

detection, which help at preserving the edges. A smoothed image by bilateral filter

is demonstrated in Figure 2.2. Output of the bilateral filter applied for the input image

f (x), is calculated as in equation (2.1), where closeness function c(ε,x) measures the

geometric closeness between the neighborhood center x and a nearby point ε . The

similarity function s( f (ε), f (x)) measures the photometric similarity between the pixel

at the neighborhood center x and a nearby point ε . Additionally, normalization value

can be obtained using equation (2.2).

h(x) = k−1(x)
∫

∞

−∞

∫
∞

−∞

f (ε)c(ε,x)s( f (ε), f (x))dε (2.1)

k(x) =
∫

∞

−∞

∫
∞

−∞

c(ε,x)s( f (ε), f (x))dε (2.2)

Utilization of both filters benefits the overall image quality as illustrated in Figure 2.2,

but Due to the characteristics of this study, Bilateral filter outperforms other smoothing

methods in both edge preserving and blurring grounds.

2.2.3 Application of smoothing methods

The dataset comprises images with various qualities and resolutions. As a result, filters

have to adapt to image size. In the implementation of median filtering, smoothing was

applied after generating block dataset. Thus, it is not necessary to provide a kernel

size estimation. The median filter kernel size is a fixed value for all blocks. However,

bilateral filtering should be applied prior to the block generation step. This is due to

the edge preserving property of this filter. Similar to block size estimation, kernel size

of the smoothing filter is also variable with respect to the resolution of input image. To

overcome this issue, a function with empirical upper and lower bounds was defined to

estimate a kernel size for bilateral filter. Generally, it is expected to have the filter size

as a fraction of image size. However, this method failed to provide proper smoothing

solution. Therefore, another method is being used for defining kernel size, which has

been shown to work better. The equations (2.3) and (2.4) provide a suitable filter size
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for bilateral smoothing. Other values were provided empirically in this study.

Ratio = (resMax− resMin)/(ImageWidth− resMin) (2.3)

KernelSize = ImageWidth/[((sizeMax− sizeMin)/Ratio)+(sizeMin)] (2.4)

Where resMin is 400 pixels and resMax is 1920 pixels. sizeMax and sizeMin are 75

and 30 respectively.
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3. CONVOLUTIONAL NEURAL NETWORKS

3.1 Classification Using CNN

Several different CNN architectures were examined for this work, differing in their

hyper-parameters such as number and parameters of convolutional layers, max pooling

layers, number and dimensions of dense layers, etc.

Table 3.1 : Grid search Parameters; grid search algorithm iterates over the provided
range of the hyper parameters in this table.

Hyper Parameters Range
Number of Convolution Layers 2 - 5

Convolution Layer kernel Range 2 - 12
Range of First Layer Kernel Number 20 , 25 , 30 , 32

Number of Max Pooling Layers 1 - 3
Number of Dense Layers 1 - 4

Range of Dense Layer Neurons (except last layer) 100, 1000, 3125, 3136, 3200
Optimizers SDG , Adamax

Finding optimal hyper-parameters to achieve higher model accuracy, requires CNN

architecture tuning. However, manual tuning is only possible for small and

moderate size networks, with limited configurable hyper-parameters. For this study,

an automated hyper-parameter tuning algorithm was implemented to obtain the

architecture with highest accuracy. Hyper-parameter search was conducted via a grid

search in order to minimize further changes and reduce the time required to find an

optimal CNN architecture. The grid search simply iterates over all combinations of

provided architecture hyper-parameters and returns the architecture with highest test

accuracy.

Although the network parameters are optimized using grid search, an initial

architecture and parameter range should be specified based on the problem definition.

As discussed earlier, the problem being tackled is detecting cracks in gas turbine

components. In contrary to similar studies, finding cracks in gas turbine components
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bears different type of challenges. These components may carry many structural

shapes and have features very similar to cracks that are undesired.

Detecting cracks from digital images, requires the classifier to classify image segments

as cracks and non-cracks. The input size of the network is the first parameter we

consider. There are more than one limiting factor for selecting a proper input size.

Typically, input size might be constrained for performance of a network and also

training/inference speed factor. In addition to the effect of input size on the CNN,

this study also has a maximum constraint for the sliding window size, which is use

for ensuring acceptable visualization results and precision in detection of cracks.

However, very small inputs may also fail to fulfill the performance metrics by dropping

too much valuable data and introducing noise. 40× 40 input size was selected for

acceptable classification performance and visualization results. In order to determine

the number and dimension of convolutional and max pooling layers, a range of possible

parameters was generated with regards to the input size, which later were fed into the

grid search algorithm for selecting the best configuration.

Table 3.1 provides range of the hyper-parameters used in the grid search algorithm. It

is worth mentioning that the convolutional layers are all implemented in pyramid shape

and the grid search algorithm was designed to only follow this design. In this pyramid

design, number of filters for following layers of the first layer were multiplications of

20, 25, 30 or 32. Additionally, dense layers were given between 100 to 3200 neurons.

The final architecture selected by grid search is illustrated in Fig. 3.1. In the final

network architecture, all convolutional layers have stride of 1×1 and all max pooling

layer have stride of 2× 2. The numbers under the blocks indicate number of filters /

neurons of each layer. The network has 2 convolutional layers, 2 max pooling layers

and 2 dense layers. First dense layers are followed by ReLU and the last one with a

softmax layers.

3.2 Grid Search

An automated parameter tuning algorithm was implemented to obtain the architecture

with highest accuracy. Parameter search was conducted via a grid search in order

to minimize further changes and reduce the time required to find an optimal CNN
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Figure 3.1 : Final CNN architecture; containing 2 convolution, 2 maxpooling and 3
dense layers.

architecture. The grid search simply iterates over all possible combinations of

architecture parameters and returns the architecture with highest test accuracy.

3.3 Visualization

Detection of cracks is applied via a sliding window, which moves over images

and classifies each window separately. In particular, this method has also been

implemented in other works like [21], [22], where each component image is broken

into blocks and classified as a crack/non-crack using a sliding window technique.

Hence, higher detection and visualization accuracy will require a window with smaller

size, which results in generation of more windows to process and more classifications.

Consequently, this will have an unpleasant effect on detection speed of images with

higher resolution.

The final detector is expected to examine images with varying resolutions and qualities.

These images may include any type of cracks, including large or small cracks, which

makes it difficult to have a single window size for any given image. Thus, the

window size was designed to adapt to the resolution. However, this will only solve

the resolution problem, yet the crack size (camera distance from the crack) problem

might still persist. In order to improve the detection performance, a pre-processing

step has been embedded into the detector. Figure 3.2 provides few detection samples,

with and without pre-processing (smoothing).

A good visualization, heavily relies on low amount of false positives and false

negatives. Aside from the CNN configuration, classification confidence can also have
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Figure 3.3 : Results on different dataset: Predictions have been marked with a red
shade on both smoothed and non smoothed input images.

an important impact on visualization. Higher confidence threshold value for the model

output, might result in higher number of false negatives. On the other hand, a high

threshold value might reduce the number of false positives. Based on the experiments,

0.9 has been selected as the best confidence threshold value for detection among our

models and visualization techniques.
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4. RESULT

4.1 Results

Results of the grid search experiments are indexed in Table 1. The columns of this

table are variables of the experiments, which are pre-processing, augmentation and

the architecture of the network. The column "Filter", refers to the pre-processing

method used in the experiment. Some experiments have benefited from Bilateral or

Median smoothing, which have been recorded in this column. "Augmentation" column

tells whether the model has been trained with augmentation applied or not. "CNN

Architecture / Dense Architecture" briefly illustrates the architecture of the networks.

All convolution layers in the networks have stride of 1× 1 and pooling layers are

maxpoolings with stride of 2×2.

In order to make the comparison valid, all experiments were conducted in similar

environments, using the same dataset, and having the same network input size of

40× 40 pixels. The results can be analyzed from different perspectives: Quality of

dataset, parameters of layers, data augmentation, smoothing and finally, effect of data

inversion.

• It could be observed that the balance of data had tremendous impact on the model

accuracy. The test accuracy results improved to over 90% after changing the

number of samples in different classes. Different dataset scales were tested and

finally it was concluded that a dataset size with bias toward non-crack image dataset

size provides much better results and lower number of false positives. There

are multiple reasons behind this result. Initially, having more non-crack samples

generates higher probability of non-crack detection, which represents the real world

conditions. Additionally, non-crack objects are more complex and have higher

variations in contrast to crack objects. Thus, collecting more non-crack samples

yield better classification performance.
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• Regarding the number of layers and other hyper-parameters, models with larger

kernel size were observed to be less sensitive to size of the sliding window, which

deteriorates the classification performance. For instance, comparing rows 1, 2 and

3, to the models represented in rows 4, 5 and 6 at Table 1 are less sensitive to the

size of the sliding window and they provide even better results after smoothing.

The reason behind this behaviour is having cracks that are wider than the kernel

size, which results in learning shades instead of cracks. This is believed to result

in extracting wrong features in smaller kernel sizes, especially at the initial CNN

layer.

• The original dataset does not cover all types of cracks including different shapes

and angels. Data augmentation, in addition to increasing the amount of samples

in the dataset, increases the variance in dataset by randomly generating some of

the lacking crack shapes and angles. This regularization technique boosts accuracy

as demonstrated in Table 1. Data augmentation can result in over 1.1% of test

accuracy improvement, based on our results. Therefore, data augmentation can

also be considered as an important factor to consider in similar tasks.

• The results revealed that effective smoothing on visualization has positive effect

on detecting standard cracks as shown in Figure 3.2. In addition, performing

smoothing on the dataset prior to training increases the validation accuracy

significantly. Such smoothing operations can improve test accuracy as much as

5.97%, like experiments 1 and 2 in Table 1. However, smoothing might also reduce

the chances of detecting minor cracks.

• Because the cracks appear as dark parts within bright regions, it might seem helpful

to invert the color of samples in the data, so the maxpooling layers can pick the

cracks features. However, applying inversion to the samples resulted in less than

±1% of variation in accuracy. In some cases, the results were affected negatively.

Thus, it can be concluded that the inversion of data has no clear advantage for our

experiments.

Figure 3.2 illustrates different visualizations outputs in the experiments. Details

regarding the referred experiments at the bottom of the Figure 3.2, can be found in

Table 1. As demonstrated in the Figure 3.2, experiment 4 is the experiment with the
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best result. In this experiment, not only false positive parts are reduced in comparison

to the previous models, detecting cracks can be performed with higher success rate.

For instance, in row ’c’ of the experiment 9, some false positive errors can be detected

on the holes, which is eliminated in the final result. Our proposed method successfully

achieved an average test accuracy of 96.26%. The performance of the final model is

represented by accuracy, precision, recall and F1 score metrics in Table 4.2.

Figure 4.1 : Sample Results: Comparison of double thresholding method [1]
(Thresholding column) and the proposed method (CNN column) in this

work.

For validation, method was tested on another dataset (CrackForest dataset) consisting

of 155 images of pavement cracks which is available in [23]. It is shown that the

proposed method can generalize to this datasets as well, and can detect cracks with a

similar accuracy of 96.01%. The visualization result is shown in Figure 3.3.

Method developed by Cha et al. in [6] reports an overall accuracy of 97.4%. However,

the CNN model in the aforementioned paper yield an accuracy of 82.15% on our

dataset. We suspect that this difference is due to having a large network input size

and a dataset consisting only of high resolution images in the original paper. In order

to remedy the resolution problem, we modified the CNN in Cha’s work in a way to get

input sizes of 128, instead of 256 pixels. As a result, an overall accuracy of 88.26%
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Table 4.1 : Comparison of the proposed method and state of the art method; in the
second and third rows comparison is made on methods, and the forth row

is about comparing datasets.

Method Dataset Input Size Network Architecture Accuracy

Proposed method GE 40
conv(32,5,1)+ pooling(2,2)
+conv(64,5,1)+ pooling(2,2)

| dense:3136|1000|2
96.26%

[6] GE 256
conv(24,20,2)+ pooling(7,2)

+conv(48,15,2)+ pooling(4,2)+
conv(96,10,2) | dense: 96|2

82.15%

Modified [6] GE 128
conv(24,10,2)+ pooling(3,2)
+conv(48,7,2)+ pooling(2,2)
+conv(96,5,2) | dense:96|2

88.26%

Proposed method [23] 40
conv(32,5,1)+ pooling(2,2)
+conv(64,5,1)+ pooling(2,2)

| dense: 3136|1000|2
96.01%

was achieved. Table 4.1 illustrates the differences in architectures and input sizes of

two networks.

Comparing the proposed method to classic IPTs, also shows the advantage of

implementing deep learning methods for detecting cracks. In order to validate this

claim, the method suggested in [1] was implemented on gas turbine components

images. Implementing a method based on thresholding can generate the exact shape

and mask of the crack. However, the examined surfaces in this work are relatively

more complex and they carry features very similar to cracks in terms of shape and

color, like holes, bents and dents of the components. Figure 4.1 is an example of

inefficiency of thresholding method in this case. Figure shows that it is not possible

to detect a feature, if shade of the feature is the same as crack shade. Therefore,

it can be concluded that simple image processing methods does not suffice and a

deep learning usually yields better results. Although the proposed method by Ni and

Zhang in [12] is a segmentation method, it utilizes a GoogLeNet CNN feature extractor

and detector prior to segmentation. To make a fair comparison, this feature extractor

was implemented in a very similar manner on our previously annotated dataset. The

GoogLeNet was trained in a transfer learning setup as described in the paper, with

ImageNet weights. As expected, the network input size made the model very resource

intensive and the training was comparably slow in contrast to our proposed method.
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Table 4.2 : Performance evaluation of the proposed framework.

Evaluation Metrics
Accuracy 96.26%
Precision 92.18%

Recall 87.13%
F1 score 0.8958

Similar to the work by Cha et al., the large CNN input size (224× 224), slows the

converging down dramatically to the point of stopping. Therefore, the final result is

not shared and compared in this section.

4.2 Conclusions

In this paper, a framework for detecting cracks in different structures is proposed.

The proposed framework can be summarized in a 3 stage pipeline, which takes a raw

image as input and marks the cracks on the output image. The pipeline stages are

pre-processing, sliding window and detection of crack in window patches. Detection

stage utilizes a CNN which has been trained with 700 annotated and pre-processed gas

turbine images. The trained model achieves an accuracy of 96.26% on test set.

In this study, the impact of pre-processing on a detection pipeline has been investigated.

The results show that bilateral filtering improves generalization of the detector on

surfaces with complex textures. The proposed detection framework in this study can

be implemented in different surfaces, with minimal changes.

These result warrant further investigation into IPTs as pre-processing methods, in

order to achieve robust and computationally cheaper techniques. In the future work,

it is planned to implement advanced hyper-parameter optimization methods such as

randomized search methods to enable architecture search over larger parameters spaces

(which is currently not feasible by grid search). Additionally, replacing the sliding

window with a more advanced detector will provide faster and more accurate detection

in the visualization stage.
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