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FOREWORD

20 years ago, when I was working at my father’s woodshop, I was always enjoying
with watching my father’s designs and measurement drawings. Accuracy of
measurements, designs and real room geometries was always hiding difficult
challenges for my father. So, the reality was always a secret enemy of design, but my
father was knew it. That’s why measurements was always taken much more time than
other wood works. He was always obsessed about measurements and had causes to
keep this behaviour, because he was knew that wrong or missing measurements costs
always much more time and resources than other faults.

Now, | am 35 years old and keep working as geomatic engineer in different work
places such as dam construction, mining facility construction, measurement
technologies market and spatial database management. By the way, | always tried to
upskill myself at different areas. In 2006, | tried to create an online sector map, which
visualizes regularly classified commercial and industrial places in Turkey. In 2008, |
started a web project (istanbulkazanben180.com) shows panoramic views at along of
Bhosphorus Anatolian and European sides. In 2012, | developed a web-based GIS tool
called mymapbase.com, which was first tool visualizes geometries stored in MySQL
Spatial Extension. In 2016, | developed a tool to stream real-time cm level accurate
location information to web browsers.

In both of professional and avocation times in my life, I couldn’t escaped from 3
dimensional reality and never couldn’t kept myself at safe area of conventional
mapping methods.

The other side of medallion showed me that there was nothing special about me, it was
just the thing called Zeitgeist. Mapping/geographic information technologies was
rapidly spreading on surveying and mapping. There is only one thing special about
me; I never forgot my father’s rule “Reality is secret enemy of design”.

Thanks to my family for their patience, my wife Esra for compete with me and my
advisors Caner Guney, Rahmi Nurhan Celik for their supports.

June 2019 Murat KENDIR
(Geomatic Engineer)
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SEMANTIC INFORMATION DERIVATION FROM 3D POINT CLOUD

SUMMARY

Laser scanner technologies takes off rapidly during last ten years and responses many
different industrial solutions, such as documenting as-built constructions. In many
situations, real constructions, buildings and heritage areas should be documented with
laser scanner technologies and point cloud data should be stored with their real world
coordinates and measurements. On the other hand, point cloud data is not easily
readable and interpretable by humans. In most scenarios, point cloud data is abstracted
by humans with help of Computer Aided Design (CAD) and/or Geospatial Information
System (GIS) based software tools. In last several years these processes displaced by
semi-automatic object recognition softwares and extensions, such as PointCAB,
LASTools, Dielmo3D and etc.

Building Information Modeling (BIM) is another rapidly developing area, which is
also a multi-disciplinary application area like GIS. Civil engineers, electrical
engineers, surveying engineers, architects and all experts about construction and
building management systems are related with BIM concept. Nowadays, in many
country BIM based building construction is declared as mandatory for public buildings
and/or business centers, because BIM is not only profitable at construction progress,

it is also profitable at building management and maintenance processes.

As-built drawings and documentary is also an essential part of BIM. Many contractors
in developed countries already use laser scanners to control the production during
every implementation phases, such as concrete casting, earth compaction, model-
fitting and etc. In undeveloped countries and old buildings at developed countries are
also in same situation that are not well documented or does not have floor plans or
models. It means there is also a need to document and redraw plans of these buildings.
As-built plans of these buildings are created mostly with laser scanners or handheld

laser distance measurement devices . Naturally most time consuming part of these
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processes is the evaluation process that is usually done manually by human beings

human work, which includes drawing interpreting and reclassifying objects.

In the scope of the study, an automatic methodology to recognize walls, floor and

ceiling surfaces in a point cloud data has been proposed.

This methodology includes also defining ontological meanings of surfaces, registering
to a semantic structure and creating relationships. This progress is only focused on
walls, floor and ceiling geometries in a full room without considering other additional
indoor objects such as lightings, windows, radiators and other furniture elements.
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3B NOKTA BULUTUNDAN SEMANTIK BiLGi TURETME

OZET

Lazer tarayici teknolojileri son 10 yilda hizla popiilerlesti ve ¢cok sayida endiistriyel
soruna ¢oOziim olarak kullanilmaya baslandi. Bunlardan biri de yapilarin
belgelendirmeleri ve plan ¢iziminde kullanilan ve “oldugu gibi” anlamma gelen
“as-built” ¢izimlerdir. Bilindigi gibi pek ¢ok farkli durumda yapilarin, binalarin ve
tarthi kalintilarin lazer tarama teknolojileri kullanilarak belgelenmis olmalar1 gerekir
ve toplanan nokta bulutlarmin gercek koordinatlar1 ve dlgiimleri ile birlikte sayisal
ortamda saklanmasi gerekir. Diger taraftan toplanan nokta bulutu verisi insanlar
tarafindan kolay okunabilir ve yorumlanabilir nitelikte degildir. Cogu durumda nokta
bulutu verileri CAD / CBS (GIS) yazilimlar1 kullanilarak insanlar tarafindan
sadelestirilir, ¢izime donistlriiliir. Son yillarda bu sadelestirme islemleri yari-
otomatik obje tamima yazilimlari ile ylriitiilir hale gelmistir. Bu yazilimlardan

birkagma 6rnek olarak PointCAB, LASTools, Dielmo3D verilebilir.

Ote yandan, tipk1 CBS gibi, Yap1 Bilgi Modellemesi (BIM) de hizla gelisen baska bir
coklu-disiplin uygulama alamidir. BIM kavrami, insaat miihendisleri, elektrik
miihendisleri, geomatik miihendisleri, mimarlar ve insaat siirecleri veya bina yonetimi
ile ilgili olan tiim diger uzmanliklarin ortak ilgi alanina girer. Bugiinlerde pek ¢ok
iilkede BIM tabanli uygulamalar, kamu binalar1 ve is merkezleri gibi ¢ok sayida
insanin i¢inde bulunacagi binalarda zorunluluk haline getirilmistir. Bunun birden fazla
nedeni vardir. Birincisi, BIM uygulamalarinin kullanilmasinin, insaat siireclerinde eski
tarzdaki insaatlara gdre maliyetleri azalttig1 bilinmektedir. Ikinci olarak da bina insa
edildikten sonra, bina yonetimi ve bakim siireclerinde goriinmeyen masraflar1 azalttigi

gorilmiistiir.

Uygulanmus ¢izimler (as-built) ve sayisal belgeler bu perspektiften bakildiginda BIM
kavraminin 6nemli bir pargasidir. Gelismis tilkelerde pek ¢ok miiteahhit firma beton
dokiimii, zemin sikistirma, model uyumunu test etme gibi ingsa asamalarinda lazer

tarayicilarini kullanmaya baglamistir. Bunun yaninda, gelismemis tilkelerde binalarin
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ve diger iilkelerde de eski binalarin belgelendirmeleri yapilmadigi i¢in veya kat
planlar1 olmadig1 i¢in benzer bir durum séz konusudur. Yani, belgelendirmesi
yapilmayan binalarin da lazer tarayicilar kullanilarak uygulanmis ¢izimlerinin
yapilmasi gereklidir. Uygulanmis ¢izimler, buna benzer durumlarda lazer mesafe
6l¢lim cihazlar1 veya mobil lazer tarayicilar ile yapilir. Dogal olarak bu siireclerde en
cok zaman alan kisim, objelerin tekrar ¢izimi, yorumlama ve siiflandirma vb. isleri

kapsayan insanlarin yaptig1 caligmalaridir.

Bu calisma kapsaminda duvarlari, taban ve tavan yiizeylerini nokta bulutu verisi
icerisinden otomatik olarak taniyan bir yontem onerilmektedir. Bu yontem, yiizeylerin
ontolojik anlamlarini tanimlamayi, semantik veri yapisina aktarilmasmi ve objelerin
arasindaki iliskilerin tanimlanmasini igerir. Bu islemler, dolu bir odada sadece duvar,
taban veya tavan geometrilerini dikkate alir; 1siklandirma, pencereler, radyatorler ve

diger mobilyalar1 goz ardi eder.

Calisma, PCL (Point Cloud Library) olarak bilinen C++ nokta bulutu isleme
kiitiiphanesi kullanilarak yiizeylerin olusturulmasi ile baglamaktadir. Bu kiitiiphanenin
kullannominda ¢esitli filtreler kullanilarak nokta yogunlugu azaltilmis, bu yontemle
ylizeyleri ortaya ¢ikaran algoritmanin diisiik performansh bir cihazda dahi kolaylikla
calistirilabilmesi amaglanmistir. Random Sample Consensus (RANSAC) olarak
bilinen algoritmanin yardimiyla nokta bulutu igerisindeki en fazla noktaya sahip
ylizeyler ortaya ¢ikartilmig, ardindan bu yilizeyler 3 boyutlu ¢okgen geometrilerine

dOnistirilmistir.

Olusturulan geometrilerin, duvar, taban veya tavan olup olmadigi oda ile olan iliskileri
test edilerek belirlenmistir. Filtrelenmis nokta bulutunun kapsadigi tiim hacim oda
nesnesi olarak kabul edilmis, prizmatik bir kat1 cisim modeline doniistiiriilmiistiir.
Ayni1 kati cisim, yiizeylere pargalanarak ve bu yiizeyler etrafinda bir tampon bolge
belirlenerek, oday1 kisitlayan objelerin, yani taban, tavan ve duvar geometrilerinin bu
tampon bolge ile kesisimi degerlendirilmistir. Bu yolla bu objeler disindaki diger tiim
muhtemel yiizey objeleri (¢calismada kullanilan veri setinde masa, 1siklandirma ve
dolap benzeri nesneler yer almaktadir) filtrelenmistir. FME (Feature Manipulation
Engine) isimli yazilimin yardimiyla, oda orta noktasi ile yiizey orta noktalar1 arasinda
olusan vektoriin sag el kartezyen koordinat sisteminde Z eksenindeki bileseni hangi
yiizeylerin duvar, hangilerinin tavan ve hangilerinin taban oldugunu belirlemede

kullanilmaistir.
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Calismanmn son asamasinda olusturulan duvar, taban ve tavan geometrilerinin
semantik veri olarak ifadeleri ve sorgulamalar1 tamamlanmistir. FME yazilimindan
oda bilesenleri olarak CSV (Comma Seperated Values) formatinda ¢ikis alinms, bu
formattaki veri Protege isimli ontoloji editoriine otomatik olarak aktarilmistir.
Ardindan ontoloji editorii Protege yazilimmma eklenti olarak kurulan “reasoning
engine”ler (sebep-sonu¢ iligkileri kurarak ontolojik smiflandirmalar1 yeniden
degerlendiren ve bagimsiz verileri bu kurallara dayanarak ait olduklar1 siniflara atayan
yazilim araglar1) yardimiyla yiizeylerin ait olduklar1 ontolojik siniflara kaydedilmesi
saglanmistir. Bu yontemle, semantik veri yeniden degerlendirilmistir ve tist siniflar
olarak kurgulanan oda, kat ve bina smiflarina da es zamanli olarak kaydolmalari
saglanmistir. Semantik verinin DL (Descriptive Logic) tabanli sorgulama yontemleri
(calismada SPARQL ve DL Query kullanilmistir) ile sorgulama Ornekleri

hazirlanmistir.

Her ne kadar caliymada lokal dosya formatlar1 kullanilsa da veritabani teknolojisinin
de kullanilabilirligi degerlendirilmis, o6zellikle nokta bulutundan basit geometrik
sekillere evrildigi asama sonrasinda, mekansal veritabani teknolojilerinin de
destekledigi ortak bir standart olan WKT (Well Known Text) formati ile tim

platformlarda kolaylikla islenebildigi ve analiz edilebildigi gosterilmistir.

Siireclerin tamaminda veri girdi ve ¢iktilarinin otomasyona hazir ve herhangi bir veri
seti i¢in uygulanabilir olmas1 gbz oniinde bulundurulmustur. Bunun i¢in 6zellikle
parametrik ifadelerden, 6zellikle oda boyutu ile ilgili olabilecek herhangi bir parametre
kullanilmamasina gayret gosterilmistir. Ornek vermek gerekirse, nokta bulutu
icerisinden disa aktarilan, duvar olma ihtimali olan daha kiiciik nokta bulutlar1
degerlendirilirken, kiyaslandigi diger nesne yine ilk nokta bulutunun kendisidir.
Dolayisti ile yiizeyler herhangi bir biiyiikliik degerinden ziyade, tarama yapilan odanin

icerisindeki konumlarina gore degerlendirilmistir.

Calismanin, son yillarda gittikce sayilar1 artan otomatik semantik veri elde etme
calismalari ile birlikte degerlendirildiginde spesifik bir alana odaklandig1 sdylenebilir,
ancak bununla birlikte siirecin tamaminin asama asama degerlendirilerek ve bir
sonraki asamaya hazir edilerek tasarlanmasi bakimmdan On agict oldugu

diisiiniilmektedir.
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Farkli sektorlerdeki halihazirda bulunan benzer uygulamalarin halen insan yorumu ve
miidahalesine ihtiya¢ duydugu goz oniinde bulundurarak, gelecekte daha kapsamli
caligmalar ile birlikte makine ve insan goriisii arasindaki ac¢inmn kapanacagini

disiiniilmektedir.
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1. INTRODUCTION

Point cloud data is getting more popular by time with current developments on laser
scanner technologies. Laser scanner technologies provides ability to collect billions of
point coordinates just in several seconds and this number is increasing day by day.
Laser scanner technologies improved it’s functionality already in several application
areas, such as archaeology, architecture, Building Information Modeling (BIM) and
industrial documentation. As a parallel development progress, point cloud data and
laser scanner technologies has caused to be created another kind of application area in
Geographical Information Systems (GIS): such as automatic object detection,
classification and creating topology and relationships between objects. These
developments caused to occur of two topics in both of GIS and BIM sector: Scan-to-
BIM and Scan-to-GIS. Both topics are very active regarding to developments and

technologies provided by both of hardware and software companies.

Creating meaningful and useful information in digital world from massive data
collected from reality is a complicated process, just like in regular human life and
human interactions with objects. This process basically consists some steps in human
brain, such as recognizing objects, classifying it or detect semantic meaning of object
and defining relations with other objects. If it is decided to handle all these processes
by human manually, it could be caused to spends lots of working hour for humans.
Therefore many studies in the world has aimed to develop automatic processes to
object detection, object recognition, object classification and creation of relationships

among objects.

Researchers from all over the world are focused on object recognition by artificial
learning in order to create semantic annotations by using rule-based languages and

derive relationships by reasoning engines.

Some studies in the academic literature so far aimed to process point cloud data,
reorganize only preferred objects, create semantic structure with a limited vision in the

focused area and derive topology and relations between recognized objects. The



researchers have accomplished their studies as an end-to-end application. In this study,

similar methodology will be applied from larger perspective.

1.1 Purpose of Thesis: Recognizing Walls, Floor, Ceiling and Creating Rooms

Semantic Labeling is most compatible concept between computer vision and human
mind. Needless to say, objects can be defined and classified with conventional
taxonomy methods, but it is not fitting with reality in every situations. For instance, a
room is defined as a closed geometry with walls, floor and ceiling. How about a room
with three walls and additionally another wall made with full glass? Is it a room or a
terrace? One mono block glass wall can change all ontological meaning and taxonomy
of a geometry. In such situations , objects are described with multiple definitions and

classified at multiple classes.

Walls, ceilings and floors should be analyzed again with room, flat and building
objects after these super classes created. To solve similar problems, it should be
defined additionally semantic rules which created by different perspectives such as
closeness of shape of rooms, difference between edge number of geometries and
consisting walls. On the other hand, uncommon geometries inside buildings can cause
to endless different semantic rules to labeling all of them. That’s why it is decided to
narrow down the focus to a specific angle with taking risk of ignoring to label

uncommon geometries in buildings.

This study concentrates into recognizing walls, floor and ceiling in a room with full of
furniture pieces and register these geometries into a semantic structure. The
methodology of the study is split in 4 sections as follows, and those sections are

defined in detail in the chapter 2:
e Filtering point cloud data
e Extracting surfaces within the filtered point cloud data
e Recognizing walls, floor and ceiling from all extracted surfaces
e Registering them to a semantic structure
e Creating super classes using semantic reasoner

If all these steps can handled by fully automatic processes in computer with minimum

parameters, which means there is a possibility to get absolute human readable



information from point clouds. As a result of that, this method can be utilized in

different application areas that given as below:
e Documentation of old buildings, factories and industrial facilities

e Rapidly modeling with robotic units in dangerous areas or hazardous places

(For example, mines, industrial places with hazardous chemical leaks)

e Standardization of as-built drawings in BIM applications for non-documented

buildings (especially for buildings with large capacities)

e Documentation and change detection in damaged buildings after earthquakes

or other kind of building deformations.

1.2 Literature Review

One of the remarkable researches for similar purposes with this study has been
implemented at the Information Management Institute in the Neuchetal University,
which is deriving semantic information from point cloud data (Cotofrei et al., 2011).
In this work, researchers have aimed to create knowledge derived from point cloud
data using Optimal Scene Interpretation method and Minimum Description Length
(MSL) principle (Risannen, 1982). Point cloud data was comprised of 320 million
points, collected from Pantheon temple and this point cloud was also used in “Karman
Center” project. Visual and context information created by following Attributive
Language with Complements ALCF(D) concept step by step (Pangercic et al., 2009).
RACER and SCENIC applications are able to create these description logic models.
One of the distinctive property about this research was the ontology concept, including

three parts (see Figure 1.1):
e Coordinate System Ontology: Cartesian, Spherical or cylindrical systems

e Transformation System Ontology: Different transformation methods with

different parameter numbers

e Geometric Form Ontology
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Figure 1.1 : Ontology model used in “Semantic Interpretation of 3D Point
Clouds of Historical Objects” project, (Risannen, 1982).

Another work has been developed in Spain to create semantic information from point
cloud data in residential place Vallodoid (Finat et al., 2010). Researchers collected
point cloud data with Optech llris 3D laser scanner and they have also used projected
orthophotos to coloring point cloud data. Dominant planes has been detected semi-
automatically using UvaCAD software and related extensions (see Figure 1.2).
Ontological models created using Resource Description Framework (RDF) format and
objects are classified according to Dublin Core standards. Labeling progress has been
completed with GIRAPIM library, which developed by DAV AP research group. This
library supports also CityGML format. CityGML is a GIS based open source standard
which is developed to visualize and manage all spatial objects in urban areas with
preserving Level of Detail (LoD) concept, relationship and hierarchy. CityGML also
facilitates creating semantic information for all kind of city details (Emgard and
Zlatanova, 2007).

Figure 1.2 : Semi-automatic detection of continuously dominant planes, (Finat
et al., 2010).



Another stimulating work aimed to create semantic information for BIM environment
in simple architectural objects has been published in the Bourgogne University (Cruz
et al., 2007). Main purpose of that project was relating point cloud subsets with Coarse
Models (CM) and converting coarse models to IFC standard with help of OWL Plugin
of Protege software (see Figure 1.3). It can be also mentioned about an original

perspective about this work was two different levels:
e Semantic Level — Descriptions of construction elements in OWL format

e Condition Level — Ontological relationships and topology between

construction elements
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Figure 1.3 : Application schema describes recognizing progress of construction
elements using CM, (Cruz et al., 2007).

Recognizing planes and creating relationships with other planes were handled by voxel
grid method. Voxel grid sizes are variables defined by user interaction after several
tests and voxels are 2D rectangles or 3D cubes consisting points with a minimum size
in which algorithms works with an effective speed and main geometry forms are still
not deforming. Figure 1.4 represents some of these algorithms, such as detecting
differentiation of planes, same planes with gaps, filtering parasitic points and finally

creating plane topology according to intersection of voxels.
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Figure 1.4 : Voxel based filters and plane detection algorithms, (Cruz et al.,
2007).

1.3 Hypothesis

Recognizing objects derived from point clouds is popular topic at last decade and
related application, library and tool numbers are increasing day by day. These
researches and developments also indicate the importance of this need in different
areas. On the other hand, semantic technology and in particular ontology driven
applications have proved that relationships, topology and hierarchical conditions are
also important to recognize and interpret spatial objects. If system architects aim to
design a semi-automatic or manual recognition and interpretation progress, the point
cloud libraries and applications will be enough to create semantic information. If not,
system architects should develop iterative methods to totally automatic create semantic
information based on point clouds. This is also similar procedure with human mind
before anything recognized, because in most of situation brain is used to compare the
relations between objects to recognize them. For example, how people recognize
buildings and conclude as semantic meaning of any object is a building? Some
semantic rules in human vision are active before they choose semantic meaning of any
object like “Buildings are rising mostly above a foundation”, “Buildings have empty
spaces”, “Buildings are mostly bigger than average human height”. These rules are
indicating that human brain is creating relationships and some topological rules using

other related objects (foundation, empty space, human).



In this study, human brain has replaced with computer vision and it is tried to use
semantic technology and ontology driven model to recognize preferred objects in the
context of a room of a building. Thus, it is suggested to use following steps by order

(see Figure 1.5):
e Finding primitive geometries which are wall / floor / ceiling candidates.

e Exporting primitive geometries with additional attributes that are essential to

recognizing progress

e Creating semantic classes and super classes by using primitive geometries with

their relationships
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o 'S ' !
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Point cloud Data semantic structure
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| Ceiling and Floor
RANSAC Algorithm candidates using

(Plane Detection) Intersection Creating classes

using semantic reasoners

Figure 1.5 : The schematic view of automatic semantic information derivation
progress.






2. METHODOLOGY

To describe methodology briefly and clearly, the semantic labeling structure explained
before all the other processes, because the final product from point cloud data should
be clearly declared before the other point cloud processes. In the last subsection in
methodology, semantic labeling structure will be tested with real values.

2.1 Semantic Labeling Structure

Semantic Labeling created and managed by Protege 5.5.0 with OWL-DL language and
Pellet reasoner. Pellet is a Description Logic Reasoner, developed to support OWL
language to design a full precision progress automatically for individuals. Pellet is used
also for debug and compare ontological information (Gurau and Nichter, 2013). Web
Ontology Language (OWL) is a language designed for representing knowledge and
also is able to read by both human and computers. OWL files generally includes
classes, hierarchies, object properties, data properties and annotations. OWL has three
sub languages, which can be ordered by simplicity descending as OWL Lite, OWL-
DL (Description Logic), OWL Full (OWL Web Ontology Language Overview, 2004).

Semantic classes and functions

2.1.1 Semantic classes and functions

The text below is a tiny part from OWL file that is generated in the context of the
study and describing several data and object properties (see Figure 2.1). It can be read

as sentences like below:
e Class name is Building.
e Building class has Floor (Storey) class as component.
e Building has polyhedral surface as geometry type.

e Building has height as float value.



# Class: :Building (:Building)

SubClassOf(:Building ObjectSomeValuesFrom(:hasComponent :Floor))
SubClassOf(:Building)

ObjectSomeValuesFrom(:hasGeometryType :PolyhedralSurfaceGeometry))
SubClassOf(:Building DataSomeValuesFrom(:hasHeight xsd:float))

Figure 2.1 : Rules defining buildings.

The main purpose of the study is to label building and sub elements fully automatically
by using several parameters. Hence, this building ontology model starts from most
primitive part: Facet. Facets represents only planar surfaces in any room. Facet class
has two data properties: Area and Surface Normal Angle. Both data properties data
types are float. Area is created to identify and re-classify smaller parts of walls, ceilings
and floors. Surface Normal Angle is used to compare with other angles (like sensor
orientation angle or zenith angle in an individual scene) and also these comparisons

and calculations can be used for re-classifying.

First subdivision created by angle between surface normal vector and zenith/or nadir
axis to split facets into parts: Horizontal, vertical and sloped facet. It is easily predict
to it should be used for classify ceiling, floor and walls. Both of ceiling and floors have
mostly horizontal geometries, but they can be classified by using angle between
surface normal vector and zenith axis, which can be described with following filter

that is given in the figure 2.2:

(hasSurfaceNormalAngle some xsd:float[>140f])
and
(hasSurfaceNormalAngle some xsd:float[< 220f])

Figure 2.2 : Rules defining floors.

Also same filter can be written to ceiling as shown in the figure 2.3.

(hasSurfaceNormal Angle some xsd:float[>-40f])
and
(hasSurfaceNormal Angle some xsd:float[< 40f])

Figure 2.3 : Rules defining ceilings.

10



Ceiling, base and wall classes have been created as disjoint classes. When individuals
registered to these classes, same individuals can not be member of multiple classes at
the same time. In other saying, an individual should be a classified by only one of these
classes (see Figure 2.4).

[A Height -n0ar f————|® _Buiding |
|© Basement Floor | |© Ground Floor | |® Inter Floor | |© Penthouse Floor |
Y

|© Floor (Storey) IO—'A FloorNumber -integer |

|© Room

| T
/ \ [®  interior wall - [ |©  Exteriorwan |
\ /

|© Base (Bottom Surface) |

|© Ceiling (Top surface) |

[©®  wan |
|© Horizontal Facet
|© Sloped Facet | |© Vertical Facet |
|A Parameters | |© Classes |
isInsideOf -transitive ( Reverse of includes) @ Facet (Classified Surfaces)
hasComponent -transitive (Reverse of isComponentor)
isSubClassOf -transitive |A Surface Normal Angle -float | |A Area -float |

Figure 2.4 : Simplified schematic diagram of semantic labeling.

Wall class has been separated into two classes: Interior Wall and Exterior Wall. The
main idea behind this classification is differentiate walls which are observed from
inside and outside of building. In most cases, some of interior walls in buildings are
also the exterior wall, but in some cases exterior walls are not sharing same volumetric
geometry with interior walls. For example, elevator shafts, air wells or some isolation
applications are not easily sensible by laser scanners, but they are separate objects
which increasing total volume of buildings. The classification between interior wall
and exterior wall should be handled by semi-automatically for now by choosing default

parameter before scanning survey.

Defining rooms is more complicated than other classes, so it can be said that more
complicated rules and definitions preserves more clear definitions of real objects. Here

are the defining rules of room:
e hasComponent some (Base and Ceiling and InteriorWall)

o Room should have at least one base, at least one ceiling and at least one

interior wall at the time.

e hasGeometryType some PolyhedralSurfaceGeometry
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o Room geometry should be formed by at least one polyhedral surface.
e hasVolumeTypeByClosure some ClosedVolume

o Room should be in closed type by volumetric perspective.
e isComponentOf some Floor

o Room should be a component of at least one floor (storey).
e isInsideOf some Floor

o Room should be inside of a floor (storey).

Room defining rules designed to excluding some building objects, which are gazebos
(no ceiling), gardens (no ceiling), corridors (not closed volume type), greenhouses (no

wall), balconies (not in polyhedral surface geometry).

Floor class also shares similar definitions with room class, except several differences:
Floor class need FloorNumber parameter in integer data type and floor class formed
by base, ceiling and exterior walls. Using exterior walls will be kept shape and volume,
so it can be used to create and calculated final shape and volume of building. Floors
has been seperated into 4 subclass by floor number: Basement Floor, Ground Floor,

Inter Floor and Penthouse Floor.

Finally, floor class formed building class and building class separated into three sub
class by total height parameter: Short building, medium building and tall buildings.
Height parameter designed as float data type and use only building class as domain.

2.1.2 Value partitions of buildings and sub elements

A user ontology must define objects used by application more specific and clearly
rather than other classes in upper ontology (Cotofrei et al., 2011). For more detailed
user definitions, user ontologies can be design with more specific classifications and
ontology driven method provides many to many relations by using value partitions. In

this case, there are four value partitions:
e GeometryType
o PointGeometry
o LinestringGeometry

o PolygonGeometry
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o PolyhedralsurfaceGeometry
e TypeByConstruction

o Completed

o UnderConstruction
e TypeByUsage

o Commercial

o Industrial

o Residential

o InconsistentUsageType
e VolumeTypeByClosure

o ClosedVolume

o OpenVolume

o ConvertibleVolume

Ideally, a user ontology which designed for representing spatial objects should consist
three main parts within: Lexicon, Theassauri and Taxonomy. Lexicon is a definition
of primitive geometries includes generally dominant planes and simple quadrics (Finat
et al., 2010). In this case, most important part of lexicon is dominant planes and it is
representing as PolygonGeometry. PointGeometry is used for defining observer or
sensor point. LinestringGeometry is also defined to representing cruise path

considering robotic unit acts as stop and go measurement method.

Buildings and sub elements ontology model consists in total 38 classes visualized in
Figure 2.5, 10 object properties and 4 data properties. Most of sub classes has been
defined as disjoint classes, so model can kept individuals registered to only one class

in fraternal classes at the same time.
Obiject properties and their functional characteristics briefly explained in list below:

e hasComponent (Transitive): If a parent class have some child classes as
component, than components of child classes would be automatically
components of parent classes too. For example, take these axioms as sample:

<Huseyin isParentOf Sabri> and <Sabri isParentOf Murat>. If <isParentOf>
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property is transitive than this axiom would be also calculated as true:
<Huseyin isParentOf Murat>.

e hasGeometryType (Functional): A geometry individual can have only one type

at once.

e hasTypeByConstruction (Functional): This property would be used to differ

buildings as completed and not completed.

e hasTypeByUsage (Functional): Using to separating buildings to four disjoint
subclasses. Only different thing about this value partition is including
InconsistentUsageType designed for hold buildings in it till usage type
obtained.

e hasVolumeTypeByClosure (Functional): Classifying geometries considering
their volume creation ability.

e Includes (Transitive): Checks if an object includes other one spatially. It is
inverse property of isInsideOf.

e isComponentOf (Transitive): It is inverse property of hasComponent.

e isInsideOf (Transitive): It is inverse property of includes.
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Figure 2.5 : Full schematic of semantic labeling (Every different styled connection
lines symbolizing a different object property).



2.2 Point Cloud Processes

Random Sample Consensus (RANSAC) algorithm is a proven iterative method to
detect surfaces on both of 2D and 3D space (Schnabel et al., 2008). On the other hand,
Hough Transform is also another proven and efficient method for detecting surfaces,
but it needs more memory and CPU/GPU consumption on detection progress. Hence,
RANSAC method has been chosen for planar surface detection. RANSAC algorithm
has been developed firstly in 1981 by Fischler and Bolles at SRI International and used
for detecting location of known points with landmarks on an image (Fischler and
Bolles, 1981).

New default point size: 2

Figure 2.6 : First View of point cloud data.

As it can be easily noticed that original point cloud includes unnecessary points, for
instance, reflections, noisy points and measurements observed outside of room
because of room gaps, such as windows, doors or etc (see Figure 2.6). In the scope of
the study, since it is expected to perform an automatic object recognition as much as
possible, the methods used in the study share similar principles with semi-

automatically object recognition and classification methods.

A successful object recognition process can be divided into three sub-process
(Gallardo et al., 2015):

e Preprocess: Aim to reduce point numbers in a cloud, which would be

unnecessary for object recognition
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e Descriptor Extraction: Extracts geometric features with mathematical

descriptions for every objects

e Classification: Converts geometry features into a meaningful, descriptive

information

In the context of the study, Point Cloud Library (PCL) is used to achieve all sub-
process described below. PCL is a C++ based, scalable and open library project. PCL
includes many functions, supports different data types and it is able to be compiled in
most of operating systems. Also, PCL can be implemented with Qt, Eclipse and Visual
Studio development frameworks to create graphic user interfaces (GUI) more easily
(PCL Tutorials, 2019).

2.2.1 First filter: Statistical Outlier Removal

In the point cloud, which used as test data, PCL has been configured to filter
unnecessary points using Statistical Outlier Removal (see Figure 2.7). Statistical
Outlier Removal is one of the filtering function in PCL, which is based on principle of
gaussian standard deviation and uses distances between points as variable (see Figure
2.8 and 2.9). PCL includes also 39 other classes to filtering point clouds (PCL
Documentation, 2018) .

//Filters unnecessary points as outliers in point cloud and assign to a new point
cloud

pcl::StatisticalOutlierRemoval <pcl::Point XY Z> statFilter;

statFilter.setInputCloud(cloud);

statFilter.setMeanK(50);

statFilter.setStddevMulThresh(1);

statFilter.filter(*cloud_filtered);

Figure 2.7 : Filtering point cloud and storing it using pointer.

setMeanK() is a member function of StatisticalOutlierRemoval class and used for
defining number of nearest neighbour points to calculate mean distance between
points. setStddevMulThresh() is another member function, used for assigning a
standard deviation number for point cloud. This function needs
<pcl\filters\statistical outlier_removal.h> included as header in cpp (default file

extension for C++ codes) file.
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Figure 2.8 : Filtered point cloud data using Statistical Outliers Removal class in
PCL.

Figure 2.9 : Comparison of point cloud before and after filtered (Smaller sized
points are outliers).

2.2.2 Second filter: Voxel Grid

Voxels are 3D cubes contain all represented points in a cloud. As precessor works
declare that if voxel size set too large, than multiple shapes could be ignored by
recognition functions, in other case if voxel size set too small, than object recognition

functions would found more shapes than preferred (Cruz et al., 2007) .
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// Create voxel grids (3D cubes) about 10 cm
pel::VoxelGrid<pel::PointX Y Z> sor:
sor.setlnputCloud (cloud filtered);
sor.setleafSize (0.01£, 0.01f, 0.011);

sor filter (*cloud_downsampled):

Figure 2.10 : Setting voxel grid filter and save filtered point cloud with pointer.

setLeafSize() function is a member function of VoxelGrid filter class, assigning voxel
grid sizes as float numbers in metric unit type (see Figure 2.10 and 2.11). This function
needs <pcl\filters\voxel_grid.h> included as header in cpp file.

Figure 2.11 : Green points represent first filtered point cloud and red points
represent downsampled point cloud using Voxel Grid filter.

2.2.3 RANSAC (RANdom Sample Consensus) segmentation

Random Sample Consensus (RANSAC) algorithm has been introduced firstly at 1981
by SPI International to solve Location Determination Problem (LDP) by determining
known points on obtained images (Fischler and Bolles, 1981). This development
helped professionals by changing way of detecting objects to an automatic progress
and reducing work time on cartography softwares. RANSAC algorithm can be

explained by 4 sub-process:
e Select sample data (For exp. Three points in 2D or 3D point cloud)
e Figure an analytic model (For exp. A line, arc or parabolic formula)

e Overlap model with data and count inliers
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e Repeat previous function until a confident count number (Confident means

sufficient threshold on standard deviation, like %95)

In the same way, RANSAC algorithm can be used for obtain planar surfaces in 3D
point clouds (see Figure 2.12, 2.14 and 2.15). In PCL, following classes should be

included in main functional code:
e <pcl\sample_consensus\ransac.h>
e <pcl\sample_consensus\sac_model_plane.h>

e <pcl\ModelCoefficients.h>

Figure 2.12 : Three sample point cloud subsets after RANSAC Segmentation.

RANSAC is used to only obtain planar surfaces in 3D point cloud with the following
code in the figure 2.13 and the code has been explained line by line to avoiding being

confused. It can be briefly summarized as following steps:
e Creating necessary structures (ModelCoefficients, Pointindices etc.)
e Defining essential or optional parameters (ModelType, MethodType etc.)
e Creating a loop, which is
o Setting inliers
o Saving them

o Exporting outliers for the next run in loop
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At the end of loop function, the point cloud segmented into several parts including
only planar surfaces by using %90 of points in the cloud. Different approach and

environmental conditions will cause to change this ratio.

//Coefficients of wanted model should be created with structure:
ModelCoefficient

pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());

//Point index numbers in array should be created for inlier points as structure:
PointIndices

pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());

//A new point cloud using for SACSegmentation created to only represents X,Y,Z
coordinates.

//Tn this step, <pcl::PointXYZRGB> or <pcl::PointXYZI> (w intensity) can be
used

pcl::SACSegmentation<pcl::PointXYZ> seg;

//Following setting is optional and increase computation time while outliers are in
majority.

seg.setOptimizeCoefficients (true);
seg.setModel Type (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);

//seg.setEpsAngle( pcl::deg2rad(90.0f) );
seg.setDistanceThreshold (0.1);
pcl::ExtractIndices<pcl::PointXYZ> extract;

inti= 0, nr_points = (int) cloud_downsampled->points.size ();

Figure 2.13 : Code block of RANSAC plane detection.
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while (cloud_downsampled->points.size () > 0.1 * nr_points)

{

// Segment the largest planar component from the remaining cloud
seg.setinputCloud (cloud_downsampled);

seg.segment (*inliers, *coefficients);

if (inliers->indices.size () == 0)

{

std::cerr << "Could not estimate a planar model for the given dataset." <<
std::endl;

Break;
}

// Extract the inliers

extract.setInputCloud (cloud_downsampled);
extract.setIndices (inliers);
extract.setNegative (false);

extract.filter (*cloud_p);

std::cerr << "PointCloud representing the planar component: " << cloud_p-
>width * cloud_p->height << " data points." << std::endl;

std::stringstream ss;

int j=i;

//std::string filename = "test_pcd_05_ransacsphere_" + std::to_string(j) + ".pcd";
ss << "mew_pcl_" << i << ".pcd";

cout << ss.str () <<" " <<i<<"" << endl;

Figure 2.13 : (continue) Code block of RANSAC plane detection.
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/Iwriter.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);
pcl::copyPointCloud<pcl::PointXYZ>(*cloud_downsampled, *inliers, *cloud_p);
pcl::io::savePCDFileASCII(ss.str () , *cloud_p);

// Create the filtering object

extract.setNegative (true);

extract.filter (*cloud_f);

cloud_downsampled.swap (cloud_f);

Titeins

}

Figure 2.13 : (continue) Code block of RANSAC plane detection.

Figure 2.14 : Point clouds extracted at first five iterations from loop function.

2.2.4 Spatial extents of point cloud subsets

PCL Input-Output (PCL 10) library created point cloud subsets by using %91 of all
points which filtered by outlier-removal and voxel grid functions (see Figure 2.16). In
order to compare point cloud sizes after every progress, firstly source file converted
from binary compressed file type to ascii (see Figure 2.17). To achieve this job, there
are useful classes in pcd_io library such as, writeASCII, writeBinary,

writeBinaryCompressed (PCL Documentation, 2019) . PCDWriter class needs
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orientation, origin parameters which are able to read from existing point cloud file
using Eigen::Point4f point type, and Eigen::Quaternionf data types. Eigen is a template
library, which supports linear algebra functions and data types such as vectors,
matrices, scalar / vector multiplications and transpositions. So, it is defined with this
template class an origin point (Eigen::Point4f - f stands for float and 4 means array

size) and a transformation matrice (Eigen::Quaternionf) which is basically represents

coefficients of “w + xi + yj + zk” polynomial equation (Eigen Documentation, 2019).

Figure 2.15 : Point clouds extracted from other iterations from loop function.

0¢ murat5@murat5-4PCL: ~/bitirme_tezi_2019/build
muratS@murat5-4PCL:~fbitirme_tezi_2019/build$ ./random_sample_consensus
Nokta bulutu dosyasi (test pcd 81.pcd) okundu.

test pcd_02_filtered.pcd dosyasi yazildi.
test_pcd_03_downsampled.pcd dosyasi yazildi.

PointCloud representing the planar component: 16049 data points.
new_pcl_0.pcd @

PointCloud representing the planar component: 6049 data points.
new_pcl 1.pcd 1

PointCloud representing the planar component: 4853 data points.
new _pcl 2.pcd 2

PointCloud representing the planar component: 3324 data points.
new_pcl_3.pcd 3

PointCloud representing the planar component: data points.
new_pcl 4.pcd 4

PointCloud representing the planar component: data points.
new_pcl 5.pcd 5

PointCloud representing the planar component: data points.
new_pcl_6.pcd 6

PointCloud representing the planar component: 1018 data points.
new pcl 7.pcd 7

PointCloud representing the planar component: 787 data points.
new_pcl_8.pcd 8

murat5@murat5-4PCL:~/bitirme_tezi_2019/builds [J

Figure 2.16 : Command prompt displays exported point cloud subsets.
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Following table 2.1 explains point numbers, volume of bounding box volume in

default measurement unit and the file size of pcd files after every steps.

Table 2.1 : PCD file sizes and point numbers after filtering and RANSAC
Segmentation.

Volume
Point of File Size
File Name Application Number BoE?dmg (KiloBytes)
0X
(m°)
(original file -
test_pcd 01 binary 112586 1295.55 604
compressed)
. (original file -
test pcd_01_ascii ASCII) 112586 1295.55 3432
Statistical
test_pcd_02_filtered Outlier 104196  144.16 3344
Removal
test pcd_03_downsampled VoxelGrid 40981 144.16 1284

RANSAC Plane Segmentation - Point Cloud Subsets

Manual Interpretation

new_pcl 0
new_pcl_1
new_pcl_2

new_pcl_3

new_pcl 4

new_pcl 5
new_pcl_6

new_pcl 7

new_pcl 8

Total

(Ceiling)
(Floor)
(Wall)

(Furnite related
planes)
(Furnite related
planes)
(Wall)
(Wall)
(Furnite related
planes)

(Lighting

related planes)

16049
6049
4853

3324

1943

1804
1634

1010

787
37453

7.24 492
6.86 186
4.98 154
27 111
68 67
3.96 55
2.95 51
25.09 33
13.76 24
1173

2.3 Determining Point Clouds Implicit in Walls, Floor and Ceiling Geometries

In previous section, the point clouds, which are strongly belongs to a planar primitive

geometry inroom, are calculated. In this section, it is needed to determine which planar

primitive geometries implicit in walls, ceiling and floor. Testing the angle between

normal vector of XY plane and planar primitives is an often used method to handle
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this problem. As Sanchez tested in his study (Sanchez & Zakhor, 2012), separating
point clouds into subsets presents floor and ceiling with 15 degree interval and walls
with 45 degree interval is a tested method to determine these objects. Unfortunately,
this test data is not a simple empty room, quite the contrary this point cloud data
including casual stuffs, blocks some time walls, floor and ceiling. For example, some
perpendicular planar surfaces captured from chairs, some parallel to ceiling surfaces
captured from lightnings or parallel to floor surfaces captured from tables or other

furniture elements.

In this scenario, another method is selected to determine which planar primitives
belong to walls, floor and ceiling. It has been decided to calculate a 3D boundary box
that presents limits of room after PCL downsample and filtering progress and calculate
a buffered volumes created by using 3D faces of boundary box (see Figure 2.18). These
buffered volumes are most possible bodies in which walls, floor and ceiling should be
contained. After some simple tests, only walls, floor and ceiling geometries can be
filtered and saved as 3D polygons or facets, with preferred attributes.

Display Control ®
v V| [[J view 5(10)

v vl B inspector [FFS] (

v! HH Inspector (10

View1 & @ View2 % View3 ¥ | View4 X | View5 X |

Table View

linspector [FFS] - Inspector

fme_basename _color A _interpretation _volume
6 new pcl 1 0.447059,0... Floor 6.8591300...
7 |new_pcl 0 0.937255,0... Ceiling 7.2482754...
8 _new_pcl_z 0.988235,0... Wall 4.9846550...
9 “new_pcl_s 0.988235,0... Wall 3.9571925...
10 new pcl 6 0.988235,0... Wall 2.9488931...

Figure 2.17 : Point cloud (PCD) files and individual boundary boxes of walls, floor
and ceiling geometries filtered manually and visualized by FME Data Inspector.
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Part III

Figure 2.18 : FME based progress determines which PCD files belongs to walls,
floor and ceiling object.

(P Untouched 1
(b <Rejected>

Figure 2.19 : Visualizes all used transformers (functions) to calculate and recreate
buffer volumes for walls, floor and ceiling.
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2.3.1 Buffering bounding box of whole point cloud

First progress has been used to calculate volumes in which walls, floor and ceiling
should be contained. The resampled point cloud has replaced by 3D bounding box,
than all faces of boundary box extracted as 3D faces. All 3D faces used as a base
surface to calculate a buffered volume within 0.6 meters thickness (see Figure 2.19
and Table 2.2).

Table 2.2 : Description of used transformers to calculate and recreate buffer
volumes.

Test_pcd_03_downsampled.pcd file is read by FME
library.

“3D bounding cube” option selected. Output ports
divided into two different progress, one of them
used to calculate buffered volumes and other one

used to calculate center points and vectors.

PCD (File Reader)

BoundingBoxReplacer

While FME supports different geometry types,
GeometryCoercer IFMEBox (3D Box) type geometry converted to
IFMEBREPSolid (3D Solid) geometry.

This function counted IFMEFace geometries
belongs to solid geometry.

Face geometries extracted as features by this
function.

Every 3D face converted to a volume created by 0.6
meter buffer parameter.

GeometryPropertySetter
GeometryPartExtractor

Bufferer

2.3.2 Calculating properties of point clouds created by RANSAC segmentation

Second progress has read all point cloud files created by RANSAC algorithm and
calculate point numbers in every cloud. Point number was used to calculate point

density in every bounding boxes (see Figure 2.20 and Table 2.3).

2.3.3 Testing intersections of buffered volumes and point cloud bounding boxes

FME has some functionalities to make boolean operations like intersect, difference
and union, just like in 2D geometries. Clipper is one of these functions and is capable
to reproduce intersections and difference volumes with considering clipper or clipee
priority. After this operation, intersected volumes has been calculated and first given
solids filtered using intersected / not intersected volumes with “tester” function (see

Figure 2.21, 2.22 and Table 2.4).
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fm::basename
new_pcl 6
new_pcl 5
new_pcl_3
new_pcl 0
new_pcl 2

7/ new_pcl_8
8/new_pcl 7

fme_basename _num_points _parcalar _volume1 _nokta_yogunlugu
1 new_pcl 6 1631 1 2.94889310... 553.088884640457

2 new pcl 5 1801 2 3.95719250... 455.120644110350
3inew _pcl 3 3324 3 26.9985875... 123.117551791465
$ new_pcl 0 16049 a 7.24827545... 2214.18185541708
5 new pcl 2 4853 5 4.98465509... 973.587922221683
Jnew pd 1 l6049 |6 [6.85913002... |881.890266046724
7 new_pcl 8 787 7 13.7605773... 57.1923677000958
3 new pcl 7 1010 8 25.0914478... 40.2527588582943

Figure 2.20 : Visualizes transformers to derive point cloud properties and point

cloud bounding boxes.

Table 2.3 : Description of used transformers to derive point cloud properties and

point cloud bounding boxes

PCD (File Reader)

PointCloudPropertyExtractor .,

BoundingBoxReplacer_2

GeometryCoercer_2

Counter

VolumeCalculator_2

AttributeManager

All PCD files are read, which are exported with
PCL RANSAC algorithm.

Point number calculated and stored as
" num_points” attribute.
3D bounding boxes are created.
All box features converted to BREP solid
features.
Features are counted and stored as “parcalar”
attribute.
Volumes of solids are calculated.
Point Densities are calculated by dividing point

number to volume and stored as
“ nokta yogunlugu” attribute.
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Figure 2.21 : Intersected volumes between point clouds extracted by RANSAC and
buffer volume of whole point cloud.

P
>
b
—e

fme_basena _num_poi_parcali_volume1 _nokta_yo _volume2
1new pcl 6 1631 1 12.9488931... 553.088... 2.9488931...
12 new_pcl 5 11801 2 13.9571925... 455.120... 3.9571925...

3new pcl 0 16049 4 7.2482754... 2214.18... 7.2482754...
4new pcl 2 4853 5 4.9846550... 973.587... 4.9846550...
Inew pcl 1 |6049 |6 16.8591300... |881.890... |6.8591300...

Figure 2.22 : Visualizes intersection, calculation volume of intersected parts and test

progress.
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Table 2.4 : Description of transformers to intersection and testing volumes

“Treat as Inside” option selected. Buffered solids
used as “Clipper” input and point cloud boundary
boxes used as “Clipee” input. Only “Inside”
output used to send to next transformer.

VolumeCalculator_2 Volumes of intersections calculated.
Point Cloud data coming from (Part I1) is merged

Clipper

FeatureMerger with only attributes of calculated intersection
volumes.
This function tests following conditions:
Tester 1. Point Density > 400 point/m3

2. Intersected VVolume / First Volume > %90

2.3.4 Creating vectors from surface center points to the gravity point of room

Extracting normal vectors of planar primitives is a simple progress in PCL, on the
other hand a different method has been chosen, reproducing bounding boxes for whole
room and also for every planar primitive objects and selecting walls, floor and ceiling
objects according to relation with room. Hence, in this section vectors were created
between surface center point and gravity center point of room. Such an approach
provides to filter objects according to angles of vector components (see Figure 2.23,
2.24 and Table 2.5).

) .-«.:‘ ., .

fm;;i)asename _vz
B 1 test_pcd 03 _dow...
% 2 new pcl 6 94.516819...
%% 3 new_pcl_5 89.875406...
* 4 new_pcl_0 147.03285...
: s+ 5 new_pcl_2 90.941996...
AL, T T 6inew pel 1 33.376032...

Figure 2.23 : Visualizes vector lines and their angular component according to Z
axis.
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(FeatureMerger_2 {5}

o oy
. - AttributeManager_4 @J
—#{VertexCreator i} (‘Wp
S Dows b |fme basename
CmeTizsenanc R

CoordinateExtractor 5}
[ Output

—
1 = 5
AttributeManager_2 <5 ! CoordinateExtractor 2 {25
Gowmt ) e 8 / LineBuilder ) b output
- [ Point -
[~® [ Line == AttributeManager_s %
TR 8 T
A L b <Rejected> @ 5
fme | 5 {'
um_points "= AttributeManager_3 3} AttributeManager_6 <5+
_parcalar poupu
_volume1 [ Fme_basename | 5
_nokta_yogunlugu C;r"—'—J—‘ Alr_ribnmgmr_?{é}

_clipped ¥ Qutput
B fme_basename

[ <Rejected> =
Part Il
5\
Figure 2.24 : Transformers used to calculate and redraw vector lines

2.3.5 Determining walls, floor and ceiling and store with preferred format

As mentioned before, it is always needed to have values of geometries in order to
automatically classify surfaces as walls, floors and ceiling. In this situation, “ vz”
which represents angle between vector and Z axis is most important value to prepare
an algorithm (see Figure 2.25, 2.26 and Table 2.6). Other attributes, like area, total

volume and point density could also be used to check this classification.

fme_basena _num_poi_parcal _volume1 _nokta_yogun _volume2 _area vz
1new pcl 6 1631 1 2.9488... 553.088884... 2.94889310... B.7934778... 94.516819...
2 new pcl 5 1801 2 3.9571... 455.120644... 3.95719250... 14.378865... 89.875406...
3 new pcl 0 16049 4 7.2482... |2214.18185... T7.24B27545... 31.405001... |147.03285...
4 new_pcl 2 4853 5 4.9846... 973.587922... 4.98465509... |16.907222... 90.941996...
5 new pcl 1 6049 6 6.8591... 881.890266... 685913002, 28.092884,.. /33376032,

Figure 2.25 : Shows polygons which are created based on bounding boxes
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Table 2.5 : Transfomers used to calculate vector lines and its angular component

according to Z axis

CenterPointReplacer

CoordinateExtractor
AttributeManager_2
CenterPointReplacer_2

AttributeManager_3

FeatureMerger_2

VertexCreator

LineBuilder
AttributeManager_4

CoordinateExtractor_2

AttributeManager_5

AttributeManager_6

AttributeManager_7

Bounding box of room replaced with gravity center point (type:
3D point).
Coordinates of 3D point extracted and stored in ““_indices”
array.
Just to remove fme_basename attribute
Bounding boxes of wall, floor or ceiling candidates replaced
with center point.
Just used to remove unnecessary attributes.

This transformer creates point bundles, so every center point of
wall, floor or ceiling surfaces pairs with gravity center point of
room.

(13

indices” array converted to vertexes, so the feature data type
converted automatically to MultiPoint.

Multipoint features converted to lines.
Unnecessary attributes removed.

Now all coordinates of lines are stored in one two dimensional
array.

Vector length calculated using following formula and stored as
“ birlesik vektor”:

sqrt(@pow((@Value(_indices{1}.x)-
@Value(_indices{0}.x)),2)+@pow((@Value(_indices{1}.y)-
@Value(_indices{0}.y)),2)+@pow((@Value(_indices{1}.z)-
@Value(_indices{0}.2)),2))

Represents 3D vector length formula:

\/{Xz—-’f]}2+{}’g_}’]}2+{zz — £ ]}2

Angle between Z axis and vectors calculated with following

9,

formula and stored as ““ vz”:

@radToDeg(@acos((@Value(_indices{1}.z)-
@Value(_indices{0}.2))/@Value(_birlesik_vektor)))

Represents inverse cosine formula:

& _._.E i }
vector length

cos

Unnecessary attributes removed.
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Part IV

[FeatureMerger 3 {2}
— Requestor

Part Ill , NV
Gmtrypmpertysm { GeometryPrapertySetter 2 7| —#{SufaceBuilder 1o} "“‘r‘js:“’:z‘mbﬂ' &, ¥ merged -
g Timebasename | (2 e s} - -
:. MERCRC \D UnusedSupplier >

I> Set
b Re,ected b <Rejected> T | P "
o _velumel
—h-cemuywartsmadm 2 {i}j / C—HESMIFaceDissulvEr & _nokta_unlugu
T —— _ ctped
 Remaining /q, e n _volume? 5
b }y Untouched i 10 _area /

_is_hole
e AreaCalculator {51

_issues{}eount
_issue. .. Found
_issue.. mplesx

_issue_ mple.y I(

7
I Repaired
:P I;:::M‘mms 8 | _issue...mple.z
it d _normal_z % Inspector {8
(b <Rejected> @

| <Rejecteds
- 30
o
i Tester 2 =
[ Passed
[ Failed

I+ InvalidParts

b <Rejected-

Figure 2.26 : Transformers used to create polygons based on filtered bounding
boxes

Table 2.6 : Transformers and descriptions used to create polygons and their

attributes
This transformer count faces of boundary
Geometr YRgRESITy Seua boxes of filtered point clouds.
GeometryPartExtractor 2 All faces of boundary boxes extracted as
features.

Area of extracted faces calculated and

AreaCalculator stored as ““ area” attribute.
This filter eliminates narrow surfaces of
Tester_2 - .
- boundary boxes testing volume to area ratio.
SurfaceBuilder 3D polygon features converted to surface
features.

Surfaces with same attributes, which also
created from same point clouds dissolved as
one. It can be said that boundary box of

SurfaceDissolver .
point clouds converted to an averaged
surface.
GeometryValidator Checks if vertex normals missing.
MeasureExtractor Checks normal_z value.

This transformer merged features with
FeatureMerger “ vz” attribute represents z angular
component of vector.

2.3.6 Importing polygonal geometries into Protege using OWL-DL

FME calculated all essential attributes and simplified geometries using WKT format

WKT format is a very common method to save geometries and transfer them to any
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kind of spatial data environment. On the other hand, there is not any spatial
representation tool/extension in Protege software for geometries. It is decided to store
them only for interpretation. Final products are saved in CSV format and every rows
in CSV based table has been imported to Protege software. There are several methods
to import table rows into Protege as individuals. One of them is manually creating
individuals with using data properties and object properties one by one. Other method
IS connecting to databases using Data Master plugin, which is compatible with
Protege-OWL 3.4 version and supports relational database and excel documents. It is
obvious thing, that database connection with semantic reasoning is a powerful tool
which creates limitless possibilities to create axioms, but nowadays Data Master
Plugin and Protege-OWL 3.4 version is out-of-date and have another successor called:
Cellfie.

Annotation properties Datatypes Individuals = HorizontalFacet — http semanticweb.org/mkendirjontologies/2018/1/building#HorizontalFacet
Classes Object properties Data properties Annotations | Usage

Asserted ¥ one

v owl:Thing

Exteriorwall
Base
Building
- MediumBuilding
- ShortBuilding
TallBuilding Equivalent To
Ceiling Facet
FlatCeiling and ((hassurfaceNormalAngle only xsd:float[> 140.0f]) or (hassurfaceNormalAngle only xsd:float[< 40.0f]))
SlopedCeiling
Facet -
Subclass of
- & SlopedFacet Facet
- & VerticalFacet
Floor
- BasementFloor General class axioms
GroundFloor
InterFloor SubClass Of (Anonymous Ancestor)
PenthouseFloor
Room hasArea some xsd:float
ValuePartition hasGeometryType some PolygonalGeometry
- GeometryType hasSurfaceNormalAngle some xsd:float
»-- @ TypeByConstruction
¥} TypeByUsage
¥ VolumeTypeByClosure Instance
wall @ new_pcl 0

Interiorwall
@®new pcl 1

Target for Key

Disjoint With
VerticalFacet, SlopedFacet

Figure 2.27 : Imported individuals populated ontology classes automatically with
OWL-DL rules.

Cellfie is a tool to create any kind of axiom multiply and embedded directly with the
Protege software. It is accessible under Tool menu by clicking “Create axioms from
Excel workbook”. In this tool, table structured data can be converted to axioms
automatically by rules (see Figure 2.27). Default file format for table structured data
is XSLX (Microsoft Office 2013-2019 format), but CSV (Comma Seperated Values,
an open format for data storage) files can be also used. Using multiple rules at once

for one table is easily adaptable or it is possible to use multiple expressions to create
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multiple axioms in one rule. In this study, Class and other axioms which refers to data
properties are created by one rule (See Figure 2.28).

Target Ontology: building (http:ffwww.semanticweb org/mkendirjontologiesf2018/1/building)

Workbook (/fhome/murat/bitirme_tezi_2019/oda_Murat_kendir/room_1_edited.xlsx)

A B c D E F G H |
PCD File Name Point N... FME ID Calculated vol... Calculated P... Calculated ... Angular Z C... Floor Number Room Number [Tl CEECR
new_pcl_& 1631 1 2.9489 553.08 8.79 94,52 1 1 0
new_pcl_5 1801 2 3.9572 455.12 14,38 89.88 1 1
new_pcl_0 16049 4 7.2483 221418 31.41 147.03 1 1
new_pcl_2 4853 5 4.9847 973.58 16.91 90.94 1 1
new_pcl_1 6049 5 6.8591 £81.89 28.09 33.38 1 1

Transformation Rule Editor x

Sheet name: room_1
| Start column: A I
End column: L
Start row: 2
[

Transformation Rule
End row:

Add Edit ~ Comment: I Save As..
Rule:
v  Sheet Name Stat Individual: @A* Comment
room_1 A Types: @K*
Facts: hasFloorNumber @H¥* (xsd:integer),
hasArea @F* (xsd:float),
hasSurfaceNormalAngle @G* (xsd:float),
hasRoomNumber @I* (xsd:integer)

oK Cancel

Figure 2.28 : Automatically importing individuals with their data and object
properties to Protege using Cellfie tool.

2.3.7 Query the semantic data by DL Query and SPARQL

Querying the data in Protege is possible in two ways with embedded tools: DL Query
and SPARQL Query. DL Query is easier to handle simple queries because of some

functions in user interface(see Figure 2.29).

With the SPARQL whole created OWL and additional semantic domains can be
queried at once. Following code has been run directly in the building ontology after

individuals imported (see Figure 2.30).
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I DL Query x ‘ Individual Hierarchy Tab x | Debugger x | SPARQL Query x ‘
Query (class expression)
wall and (hasArea only xsd:float[=5.0f])

Exacute  Add to ontclogy

Query results
Equivalent classes (0 of 0) Query for

Direct superclasses
Superclasses 4 of 4)

v |Superclasses
.Face.t v Equivalent classes
& VerticalFacet
o wall Direct subclasses
© owl:Thing Subclasses

v Instances

Instances (3 of 3)

@®new_pd_2
@ new_pd 5 Result filters
@new pcl 6 Name contains

+ Display owl:Thing

(i superclass results)

Display owl:Nothing

(in subclass results)

Figure 2.29 : DL Query Syntax is same with other expressions in Protege.

building (http://www.semanticweb.org/mkendirfontologies/2018/1/building) : [fhome/murat/b

File Edit View Reasoner Tools Refactor Window Help

@ building (http:/jwww semanticweb.org/mkendirjontelogies/2018/1/building) ~ Search...

Active ontology x | Entities x | Class matrix x \ Individuals by class x | Individual Hierarchy Tab x ‘ DL Query x | Debugger x | SPARQL Query x L

ndividual |

individual type class superclass
new_pcl 0 PolygonalGeametry GeametryType ValuePartition
new_pcl_1 PolygonalGeametry GeametryType ValuePartition
new_pcl_S PolygonalGeametry GeaometryType WaluePartition
new_pcl_2 PolygonalGeametry GeametryType ValuePartition
new_pcl 8 PolygonalGeametry GeametryType ValuePartition
Execute
Git: master To use the reasoner click Reasoner = Start reasoner v Show Inferences

Figure 2.30 : SPARQL query sample selects individuals with classes and super
classes.
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3. CONCLUSIONS AND RECOMMENDATIONS

All processes in this paper was focused on deriving meaningful and useful information
about inside structure of a building in a part. As final product, the list of all walls,
ceiling and floor has been extracted. This final product can be extracted in any kind of
file formats, which FME software supports, such as Shapefile (SHP) , common CAD
formats like DXF/DWG, XLS, Comma Seperated Values (CSV), GML / CityGML.
Also list of structural individuals can be also directly imported into any database with
spatial data types, such MariaDB, PostgreSQL, Oracle and etc. In this work, it is
decided to use CSV file to save attributes of individuals and their geometries, because
it has been looked for a way to register structural individuals automatically into
Protege software. Also the CSV file format includes a way to store geometries with
common GIS standard called Well Known Text (WKT). This human readable standard
geometry definition is able to read by most of GIS based software tools and database
technologies that supports spatial data. Database technologies are also supporting
directly export these spatial data as CSV file format with WKT or Well Known Binary

(WKB) formation for geometries.

Imported structural individuals into Protege software are able to represent objects as
facet. All of those facets have polygon type geometries and has angular components,

which stored as attribute in CSV file format.

With help of reasoners, semantic data can create super classes by evaluating all
attributes of facet objects. These super classes are walls, ceiling, floor, room and
finally building. Building object has been designed basically as collection of room
objects and there is no any suggested automatic tool or algorithm to detect building in
the context of the study. Actually, at this point it has been projected that users should
add a separate attribute or file name before or after collecting point cloud data. On the
other hand, creating a building geometry as union of rooms is also possible, however,

it would be not accurate due to some extra spaces and exterior wall thickness.
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As a comparison, this study is similar with automatic / semi-automatic CityGML
production studies. Also there is another opportunity to adapting this study with
CityGML and create rooms as buildingpart class. 3DCityDB, developed by Munich
Technical University (TUM), is also able to create buildingparts based on surfaces and
store their semantic information to PostgreSQL database (3D City Database for
CityGML, 2019) . Semi-automatic methods to derive building information as
CityGML format using point cloud and GIS data is already a popular topic and
commercial and open source tools like 3dfier supports preferred point cloud processes
(Jayaraj and Ramiya, 2018). Although CityGML has a solid ontological structure, it is

not possible to use semantic reasoner engines directly in CityGML format.

All of the processes described in this paper was handled in opensource libraries and
tools, except FME software. As a suggestion to redesign all progress in open source
environment, it is necessary to find an alternative to FME tool. Most probably,
pgpointcloud PostgreSQL extension to store point clouds, SFCGAL to create
polyhedral surfaces or triangulated surfaces and PostGIS to simplify geometries as
planar surfaces with GIS standards will be an ideal toolset and will be compatible with
PCL library.

To go a step further in future studies, GeoSPARQL would be ideal query language,
which are also able to use simple spatial queries with linked data. Also, Apache
Marmotta v3.4 seems as an essential tool to serve linked data by supporting
PostgreSQL database and PostGIS functionalities. Apache Marmotta also supports
GeoSPARQL after installing kiwi-geospargl module (Apache Marmotta -
GeoSPARQL, 2019).

This study has proven that deriving automatic semantic information from point cloud
data is possible. In the future, the study will be more developed by introducing
relational propositions, topological rules, creating more attributes, such as point
intensity, dominant color on surfaces, and using less parameters in decision making
algorithms. As a final product, it is created information about building elements. There
is the opportunity to store the point cloud data and its relation with automatically
created information. This progress is caused to born another idea; point cloud data can
be also accepted as most detailed level of LoD concept and semantic information
production can be repeated with an iterative method to derive more accurate

information.

38



REFERENCES

3D City Database for CityGML (2019). Retrieved April 2019, from
https://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityD
B_Documentation_v4.2.pdf

Apache Marmotta - GeoSPARQL (2019). Retrieved June 2019, from
http://marmotta.apache.org/kiwi/geospargl.html

Cotofrei P., Kiinzi C., Stoffel K. (2011). Semantic Interpretation of 3D Point Clouds
of Historical Objects

Eigen C++ Template Library for Linear Algebra Documentation (2019).
Retrieved March 2019, from
https://eigen.tuxfamily.org/dox/classEigen_1_1Quaternion.html

Fischler M.A., Bolles R.C. (1981). Random Sample Consensus : A Paradigm for
Model Fitting with Applications to Image Analysis and Automated
Cartography

Finat J., Delgado F.J. , Martinez R., Hurtado A., Fernandez J.J., San Jose J.1.,
Martinez J. (2010). Constructors of Geometric Primitives in Domain
Ontologies for Urban Environments

Emgard L., Zlatanova S. (2006). Design of an integrated 3D information model.

Cruz C., Marzani F., Boochs F. (2007). Ontology-Driven 3d Reconstruction Of
Architectural Objects.

Gallardo Y.P., Crespo A.G., Cuadrado J.L.L., Carrasco I.G. (2015). MESSR: A
model-based 3D system for of recognition, semantic annotation and
calculating the spatial relationships of a factory’s digital facilities

Gurau C., Nuchter A. (2013). Challenges in Using Semantic Knowledge for 3D
Obiject Classification

Jayaraj P., Ramiya A.M. (2018). 3D CityGML Building Modeling from LIDAR
Point Cloud Data. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Volume XLII-5

OWL Web Ontology Language Overview (2004). Retrieved June 2019, from

https://www.w3.0rg/TR/2004/REC-owl-features-
20040210/

Pangercic, D., Tavcar, R., Tenorth, M., Beetz, M. (2009). Visual scene detection
and interpretation using encyclopedic knowledge and formal
description logic.

Point Cloud Library Tutorials (2019). Retrieved June 2019, from
http://pointclouds.org/documentation/tutorials/

Point Cloud Library 1.8.1 dev documentation (2018). Retrieved April 2018, from
http://docs.pointclouds.org/trunk/group__filters.html

Point Cloud Library 1.9.1 dev documentation (2019) Retrieved March 2019, from

ce9e829e3830be2bel6c12b46ae8a28

39



Rissanen, J. (1982). A universal prior for integer and estimation by minimum
description length. Annals of Statistics, vol. 11, SN. 416—431.

Sanchez V., Zakhor A. (2012) Planar 3D Modeling of Building Interiors from Point
Cloud Data

Schnabel R., Wahl R., Klein R. (2008). Efficient RANSAC for Point-Cloud Shape
Detection

40



CURRICULUM VITAE

Name Surname : Murat Kendir

Place and Date of Birth : Luebbecke, West Germany / 26.04.1984

E-Mail : muratkendir@gmail.com
EDUCATION
e B.Sc. : 2012, Istanbul Technical University, Faculty of Civil

Engineering, Geomatic Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

2012-2013 Erg Construction, Deriner Dam, Artvin, Turkey

2013 Alarko Contracting Group, Aktogai Copper Mine Project, Kazakhstan
2013 — 2017 Sistem Corp. Leica Geosystems Dist., Istanbul, Turkey

2017 NetCAD Software Corp., Istanbul, Turkey

2018 Ege Real Estate Development Corp., Istanbul, Turkey

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

e Kendir, M. 2012. “WEB TABANLI MEKANSAL VERI YONETIM ARACI:
MYMAPBASE*

41



