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STATISTICAL CHALLENGES IN PALEOCLIMATOLOGY:
INDEPENDENT COMPONENT ANALYSIS OF LAKE HAZAR AND
LAKE VAN DATA, AND A BAYESIAN TEST FOR 4.2 KA BP EVENT

SUMMARY

There are numerous statistical and numerical methodological problems of paleoclimate
studies. In this study, I offer solutions for two problems of paleoclimatology in three
different studies.

It is a well known fact that, each geochemical measurement and especially each
micro-X-ray fluorescence (µ-XRF) measurement through a sediment core is a reflection
of different independent processes, i.e. an indirect indicator of paleoenvironments.
That’s why most studies present µ-XRF measurements as elemental ratios, in order to
eliminate a possible dependence upon a single profile. Some studies use second order
statistical methods, such as principal component analysis, to eliminate dependence,
however there are systematic problems of second order statistical methods as is used
in these studies. In order to overcome this issue, we offer an almost well-defined
signal processing technique, independent component analysis of geochemistry data
gathered from paleoclimate archives. Accordingly, we propose data based models of
paleo-precipitation and paleo-temperature for the studied regions.

In the first study (Chapter 2), a 3.5m long piston core (Hz11-P03) has been recovered
from Lake Hazar and it is used for multiproxy measurements. µ-XRF, magnetic
susceptibility (MS) and stable isotope (δ18O and δ13C)measurements have been carried
out for 3mm, 1 cm and 3 cm resolutions, respectively. A Bayesian age-depth model
according to six radiocarbon dates shows that Hz11-P03 represents the last 17.3 ka BP.
We apply independent component analysis on Lake Hazar µ-XRF data (namely, Ca,
Fe, K, Mn, Sr and Ti counts). By the measure of distance correlation of resulting
independent components with the analyzed data and other regional well-defined
paleorecords, we select two independent components as proxies of temperature (Hz-ic5)
and precipitation (Hz-ic4) of the region. According to the results, the region was
wet/cold during 17.3 ka BP and 14.8 ka BP and wet/warm during the Bølling-Allerød
period. According to the age model, there is a hiatus at the Younger Dryas period.
At the start of the Holocene, temperatures rose gradually and reached the Holocene
"normals" around 8 ka BP. During that period, it was wet. Between 8 ka BP and
5 ka BP, it was warm but exceptionally dry. Between 5 ka BP and 3.5 ka BP, it was
warm/wet. After 3.5 ka BP within the oscillations there are abrupt cold/dry phases
around 3.5 ka BP, 2.8 ka BP and 1.8 ka BP.

In the second study (Chapter 3), ICA method is applied to previously published data
fromLakeVan, which span the last 250 ka BP. The data used through ICAwere element
concentrations of Ca, Fe, K, Mn, Si from XRF measurement, TOC and CaCO3 content
and B* (color reflectance) of the Ahlat Ridge sediment record. The analysis is based
on applying the algorithm several times by changing the initial random unit vector and
clustering the possible independent components through average–link agglomeration,
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whichmake it different and innovative than Lake Hazar study. Appropriate components
are selected by mutual information method. Accordingly, we claim that Van-IC8 is a
proxy for temperature variability for the region, by its similarity with Greenland δ18O
data and (Van-IC7) is a proxy for precipitation variability for the region, by its similarity
with B* (Van-IC7) data. The results reveal that, temperature of the region follows the
Northern Hemisphere records, i.e. warm during interglacials, cold during stadials with
abrupt warming episodes. On the other hand, precipitation record shows that, it was
not dry, or at least as much wet as today, during the LGM and at the end of penultimate
glacial as previous studies claim.

It was previously proposed that an abrupt climatic change around 4.2 ka BP was the
cause of the collapse of the Akkadian Empire. Afterwards, many geological studies
arose, which claim to support the climatic deterioration hypothesis. In the third study
(Chapter 4), we apply a Bayesian test on the records from Eastern Mediterranean and
Arabian Peninsula which claim to show an abrupt climatic change around 4.2 ka BP.
To do this, time series are reconstructed using "unaffected" ones in a fully Bayesian
framework by theBayesian structural time seriesmethod and then aBayesian hypothesis
test is applied on the results. Our results show that some studies which have previously
been cited to support the abrupt 4.2 ka BP event hypothesis hold true, we also show that
in a number of other studies, there is no statistically significant abrupt climatic change
effect.
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PALEOİKLİM ÇALIŞMALARINDA İSTATİSTİKSEL UYGULAMALAR:
HAZAR VE VAN GÖLÜ VERİLERİNDE BAĞIMSIZ BİLEŞEN ANALİZİ,

VE GÖ 4.2 KA OLAYINA BAYESÇİ BİR TEST

ÖZET

Kuaterner geçmiş iklim çalışmaları, özellikle istatistiksel ve sayısal yöntemler açısından
birçok probleme sahiptir. Ben bu tez kapsamında varolan iki paleoiklim problemine
üç farklı çalışma ile çözüm önermekteyim.

Kuaterner çalışmalarında, sahadan alınan karot boyunca ölçülen jeokimyasal verilerin,
özellikle XRF ölçümleri sonucunda elde edilen element profillerinin, birçok farklı süreç
tarafından kontrol edildiği bilinmektedir. Bu sebepten ötürü, verilerdeki farklı süreçlere
bağımlılık durumunu bertaraf etmek amacıyla birçok çalışmada bu veriler birbirleriyle
normalize edilerek kullanmaktadır. Bazı çalışmalarda ise ikinci dereceden istatistiksel
yöntemlere dayalı boyut küçültme teknikleri kullanılmaktadır. Bu yöntemlerden en
yaygın kullanılanı temel bileşenler analizidir (PCA). PCA’nın temel amacı varyansı
maksimize eden ekseni bulup, diğer eksenleri de bu eksene ve birbirlerine ortogonal
ve sıralı bir şekilde varyansı en büyükten küçüğe doğru sıralamaktır. Bu yöntem, eğer
maksimal varyansı ifade eden eksene dair bir hipotez varsa veya verideki gürültüden
kurtulmak isteniyorsa kullanışlıdır. Kullanırken de yöntemin dayattığı, verilerin normal
dağılımlı olması gerekliliği ve/veya veriler arasındaki yüksek lineer korelasyonun
sonuçları taraflı vereceği gibi kısıtlamalara dikkat etmek gerekir. İlk iki çalışmada
Hazar Gölü ve Van Gölü jeokimya verilerine uyguladığımız bağımsız bileşen analizi
(ICA) yöntemini boyut küçültme yöntemlerine alternatif olarak önermekteyiz. Üçüncü
çalışmada ise, günümüzden 4.2 ka önce gerçekleştiği iddia edilen ani iklim değişikliğini
destekleyen veriler üzerinde Bayesçi test uygulanmıştır. Bu çalışmanın önemi, 2018
yılı içinde Orta/Üst Holosen için stratigrafik sınır olarak kabul edilmiş iklim değişimine
dair nicel bir test olmasıdır.

Hazar Gölü, güneydoğu Anadolu’da, deniz seviyesinden 1255m yüksekte yer alan
tektonik bir göldür. Bölge karasal Akdeniz iklim özellikleri göstermektedir. Yıllık
yağışın önemli bir bölümü ilkbahar ve kış aylarında gözlemlenmektedir. Hazar
Gölü’nden, 2009 yılında 3.8m uzunluğunda alınan karotta (Hz11-P03) µ-XRF, duraylı
izotop (δ18O ve δ13C) ve manyetik duyarlılık ölçümleri yapılmıştır (Chapter 2). Karotta
belirlenen altı farklı noktadan radyokarbon ölçümleri alınmıştır. Gözle görülen bir
hiatusun da varlığı dikkate alınarak Bayesçi yöntemlerle elde edilen yaş-derinlik
modeline göre karot günümüzden önce son 17.3 ka yılı kapsamaktadır. Bölgenin
geçmiş iklim parametrelerini ortaya çıkarabilmek adına µ-XRF verileri üzerine (Ca,
Fe, K,Mn, Sr ve Ti sayımları) ICA uygulanmıştır (Chapter 2). ICA, PCA sonuçlarından
farklı olarak, sıralı sonuçlar vermemektedir. Bu sebepten ötürü, ICA sonuçlarından
elde edilen altı bağımsız bileşenden yağış ve sıcaklık eğrilerini elde edebilmek için
iyi tanımlı iklim verileri, NGRIP δ18O ve Sofular δ13C, ile bağımsız bileşenler
arasındaki uzaklık korelasyonların ölçüsüne bakılmıştır. Uzaklık korelasyonunun lineer
korelasyon ölçülerine göre farkı, aykırı değerlerle baş edebilmesi ve lineer olmayan
ilişkileri de yakalayabilmesidir. Elde edilen uzaklık korelasyonu sonuçlarına göre,
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iki bağımsız bileşenin bölgenin sıcaklığını (Hz-ic5) ve yağışını (Hz-ic4) temsil ettiği
düşünülmektedir. Buna göre bölge 17.3 ka BP ve 14.8 ka BP arasında yağışlı ve soğuk,
ancak Bølling-Allerød döneminde yağışlı ve sıcaktır. Younger Dryas karotta bir hiatus
ile temsil edilmektedir. Bu dönemde göl seviyesinin düştüğü ve bölgenin kurak olması
gerektiği söylenebilir. Holosen başında sıcaklıklar kademeli olarak artış göstermiş
ve bunun neticesinde yaklaşık 8 ka BP civarında Holosen "normallerine" ulaşmıştır.
Ancak, Erken Holosen’de bölge yağışlıdır. 8 ka BP ve 5 ka BP arasında bölge ılık ancak
kuraktır. 5 ka BP ve 3.5 ka BP arasında bölge ılık ve yağışlı özellikler göstermektedir.
Bundan sonraki dönemde üç tane kısa süreli soğuk ve kurak dönem gözlenmektedir.
Bunlar yaklaşık 3.5 ka BP, 2.8 ka BP ve 1.8 ka BP dönemlerine denk gelmektedir. MS
ve δ13C sonuçları yağış sonuçlarını destekler niteliktedir ancak δ18O sonuçları birden
fazla sürece bağlı olduğundan bu çalışmada yorumlanamamıştır.

Van Gölü, Doğu Anadolu’da deniz seviyesinden 1650m yükseklikte yer alan, dünyanın
en büyük sodalı gölüdür. Bölgenin iklimi Hazar Gölü ve çevresine benzemektedir.
KarasalAkdeniz iklimi ile karasal iklimin sınırında olduğu iddia edilmiştir. Tektonik bir
çöküntü olan havzadan ICDPprojesi kapsamında bölgenin geçmiş ortamdeğişimlerinin
araştırılması amacıyla, sondajla çökel istifi çıkarılmıştır. Bu çökellerden elde edilen
vekil verilerle halihazırda geçmiş iklim rekonstrüksiyonları yapılmıştır. Bunun yanında,
Van Gölü çevresinde gözlemlenen taraçalar ve bunların yaşları gölün seviyesinin Son
Buzul Maksimum’da bugüne göre yaklaşık 80m daha yukarıda olması gerektiğini
göstermiştir. Ancak ICDP projesi kapsamında yapılan bazı rekonstrüksiyonlar, gerek
oluşturdukları veri tabanlı modellere göre, gerekse de kullanılan bazı dinamik iklim
modellerine göre bölgenin bu dönem kurak olması gerektiğini ve su seviyesinin
bugüne göre belki de 200m kadar aşağıda olması gerektiğini öne sürmüşlerdir. Bu
ikileme çözüm önermek adına (Chapter 3) Van Gölü, Ahlat Sırtından sondajla alınmış
çökel istifi verilerine, bu veriler, XRF’ten elde edilmiş Ca, Fe, K, Mn, Si sayımları,
toplam organik karbon ve CaCO3 ölçümleri ve B* (renk yansıması) değerleridir,
ICA uyguladık. Bu veriler günümüzden önce 250 ka temsil etmektedirler. Ancak,
Hazar Gölü çalışmasından farklı olarak bu çalışmada ICA uygulamadan önce, ölçüm
hatasaından kaynaklanabilen, "en aykırı" değerleri veriden temizledik. Bunun ardından,
ICA bileşenleri başlangıçta rastgele seçilen birim vektöre göre küçük farklılıklar
gösterebildiğinden, başlangıç vektörünü 250 kere değiştirerek kısmen farklı sonuçlar
elde ettik. Bu sonuçları birbirlerine olan uzaklıklarına göre kümeleyip olası bağımsız
bileşen sayısını tespit ettik. Buna göre, anlamlı sekiz bağımsız bileşen belirledik,
ve her bir küme içerisinde toplam benzerliği en yüksek olan bileşen kullanılmak
üzere seçildi. Bu sekiz bileşenin karşılıklı bilgi benzerlik ölçüsüyle NGRIP δ18O
ve analize girilen verilerle benzerliklerini kontrol ettikten sonra bu bileşenlerden
bir tanesinin (Van-IC8) bölgenin geçmiş sıcaklık değişkenliğine, bir diğerinin ise
(Van-IC7) bölgenin geçmiş yağış değişkenliğine karşılık geldiğini iddia etmekteyiz.
Elde edilen sonuçlara göre, bölgenin sıcaklığı kuzey yarımküre için sıcaklık eğrisi
denebilecek NGRIP δ18O eğrisine benzemektedir, buzul dönemleri soğuk ve buzularası
dönemler ılık geçmektedir. Buzul dönemler içindeki ani ısınma ve kademeli soğuma
olayları (Dansgaard/Oeschger döngüleri) sıcaklık eğrisinde gözlemlenmektedir. Yağış
eğrisi ise, daha önce ortaya koyulan modellerden farklı nitelikler göstermektedir.
Buzullaşmanınmaksimum olduğu dönemlerde bölge yağışlıdır. Buzularası dönemlerin
başında yağışlı ancak devamlarında ise kurak bir dönem göstermektedir. Yağış eğrisi
bölgedeki Son Buzul Maksimum’da oluşmuş taraçalara da cevap vermektedir.
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Akad İmparatorluğunun (Yukarı Mezopotamya) günümüzden 4.2 ka önce ani bir iklim
değişikliği ile çöktüğü iddia edilmektedir. Bu hipotez ortaya atıldıktan sonra dünyanın
farklı yerlerinde bu hipotezi destekleyen deliller gözlemlenmiştir. Yakın zamanda bu
olay jeolojik zaman çizelgesinde Orta Holosen ve Geç Holosen için bir sınır olarak
kabul edilmiştir. Bu ani iklim değişikliğini temsil ettiğini iddia eden deliller genelde
paleoortam vekili olan zaman serileridir. Ancak bu zaman serilerinin varolduğu
iddia edilen iklim değişikliğine gösterdikleri tepkiler ve bu tepkilerin geometrileri
birbirlerinden oldukça farklıdır. Ani iklim değişikliği hipotezini destekleyen verilerden
başka, bu değişikliği desteklemeyen veriler de mevcuttur. Biz bu çalışma kapsamında
Doğu Akdeniz’de ve Arap Yarımadası etrafında ani değişimi gösterdiğini iddia eden
zaman serilerini, ani iklim değişikliği göstermeyen zaman serileri ile günümüzden
önce 4.4 ka yılına kadar sentetik olarak yeniden oluşturup, sentetik veriyi geleceğe
ekstrapole ettik (Chapter 4). Verileri sentetik olarak oluştururken Bayesyen Yapısal
Zaman Serileri yöntemini kullandık. Günümüzden önce 4.4 ka ve 3.9 ka arasında,
sentetik olarak oluşturulmuş zaman serisi ile gerçek zaman serisi arasındaki farka tek
taraflı Bayesçi hipotez testi uygulayıp zaman serisindeki etkinin anlamlılığını test ettik.
Buna göre, test edilen verilerden hipotezi desteklediğini iddia eden bazı zaman serileri
anlamlı bir etki göstermektedir. Bir kısmı ise iddia edilen etkiyi göstermemektedir.
Üçüncü grup veri kümesinde ise, etki gözlemlenmesine rağmen etkiden sonra zaman
serilerinde seviye kayması gözlemlenmiştir. Bunun sebebi, ya aslında zaman serisi
üzerinde düşünüldüğü gibi bir etki yoktur, ya da iddia edilen etki vekil veri üzerinde
kalıcı bir etki bırakmıştır.
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1. INTRODUCTION

“All models are wrong; some
models are useful.”

George E. P. Box 1

Climate of the earth has never been stable throughout the geological history. Today,

climate system keeps its ordinary dynamic tempo regulated through natural factors.

However, human race is mainly responsible for today’s warming world [1]. While

major aim of past climate studies is not to explain future climates, they are useful in

terms of understanding the responses of climate system, ecosystems and societies in a

dynamically transforming earth.

Unlike abundant direct measurements of meteorology, paleoclimate data are presented

through proxies (for an extensive review of proxies, see [2] and references therein).

However, proxy data have serious drawbacks. Discussing all problems, except

dependence to different climatological/geological processes (see Section 2.2 and

Section 3.2), of proxy data is beyond the scope of this study. On the other hand,

other than proxy dependence, paleoclimate studies face many other difficulties, such as

constructing chronologies, interpretation of proxy data, laboratory measurement errors,

spatial interpolating/extrapolating the results etc. In this study, we claim to offer a new

method to source separation problem of multiproxy data (Section 1.1) through two case

studies.

Through the third study (Section 1.2), I tried to make a contribution to the discussions

on the so-called 4.2 ka BP event. In my opinion, some studies in paleoclimatology,

sometimes pointlessly, aim to confirm previously hypothesized theories. On the other

hand, it is easy to find confirmations [3]. Furthermore, as stated by Karl Popper:

Confirmations should count only if they are the result of risky predictions; that is to

say, if, unenlightened by the theory in question, we should have expected an event

1Statistics for Experimenters, 1978
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which was incompatible with the theory — an event which would have refuted the

theory [3, p.47].

In this study, we didn’t apply a test for the 4.2 ka BP event, on the other hand we applied

a Bayesian test on the confirming evidences from eastern Mediterranean and Arabian

peninsula.

1.1 Independent Component Analysis of Paleoclimate Data, Lake Hazar and

Lake Van Examples

Geochemical measurements are the most extensively used proxies used in Quaternary

paleoclimate reconstructions. However, they are affected by several independent

factors. It is a standard practice to present the ratios of different geochemical proxies

to overcome the dependence of proxy used in a study. On the other hand, there exist

dimension reduction statistical techniques, which are occasionally used. Principal

component analysis and factor analysis are the most widely used techniques (cf. [4,5]).

However, capabilities of these techniques which depend on second order statistics, and

misuse of them may lead to wrong interpretations and consequently to wrong models

which even contrast with geological field observations (see Chapter 2 and Chapter 3).

Through these chapters, we offer a newer dimension reduction method for paleoclimate

studies, independent component analysis (ICA), which is a blind source separation

technique and has been widely used for problems of telecommunications theory,

signal/image processing and geosciences. Through this study, ICA is used to extract

paleo-precipitation and paleo-temperature time series from geochemistry of Lake

Hazar [6] and Lake Van [7] sediments, by assuming these climate variables are at

least quasi-independent through long periods.

1.2 Test for the 4.2 ka BP Event, Using Bayesian Structural Time Series

The so-called 4.2 ka BP event was first hypothesized by [8]. While there are numerous

confirming evidences of the theory, there are also many falsifying ones. In this study,

we apply Bayesian Structural Time Series method [9], in order the reconstruct the

"confirming" time series through not confirming ones and then apply hypothesis test

for the period of interest. Accordingly, we claim that not all the confirming evidences
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support the theory of an abrupt climate change around 4.2 ka BP, i.e. the impact related

to the 4.2 ka BP event is not statisticaly significant [10].
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2. CLIMATE PROXIES FOR THE LAST 17.3 KA FROM LAKE HAZAR
(EASTERN ANATOLIA), EXTRACTED BY INDEPENDENT COMPONENT
ANALYSIS OF µ-XRF DATA1

2.1 Abstract

The elemental composition of lake sediment cores is often the result of several

independent processes. In this study we attempt to extract statistically independent

climate related signals from µ-XRF multi element data of a core drilled from Lake

Hazar in Eastern Anatolia, using the independent component analysis (ICA) method.

In addition, we analysed ostracod shells for oxygen and carbon isotopes. The ICA

method has advantages over traditional dimension reduction methods, such as principal

component analysis or factor analysis, because it is based on maximal statistical

independence rather than uncorrelatedness, where independence is a stronger property.

The Hz11-P03 core, which represents the last 17.3 ka, was recovered from Lake Hazar

which, at times, formed the headwaters of the Tigris. Applying the ICA method, we

selected two out of six independent components by measuring distance correlation

similarity. We propose that one of the selected components can be read as a proxy for

temperature and the other for precipitation in this region.

Our results indicate that the region was relatively cold and wet during the late glacial,

between 17.3 ka BP and 14.8 ka BP, and wet and warm during Bølling-Allerød. The

lake level dropped below today’s level during the Younger Dryas stadial (12.49 ka BP

and 11.76 ka BP), forming a marked hiatus in the core’s stratigraphic record. During

the beginning of the Holocene, while precipitation values were high, the temperature

gradually increased until 8 ka BP. Between 8 ka BP and 5 ka BP, the region was warm

but extremely dry. After 5 ka BP, around 3.5 ka BP temperatures suddenly fell, and

three abrupt dry phases are observed around 3.5 ka BP, 2.8 ka BP and 1.8 ka BP.

1This chapter is based on the paper: Ön, Z.B., Akçer-Ön, S., Özeren, M.S., Eriş, K.K., Greaves, A.M.
and Çağatay, M.N. (2018). Climate proxies for the last 17.3 ka from Lake Hazar (Eastern Anatolia),
extracted by independent component analysis of µ-XRF data, Quaternary International, 486, 17-28.
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2.2 Introduction

Geochemical proxies are the most widely used indicators of Quaternary paleoclimates.

In particular, the geochemical "archives" contained in lacustrine sediments provide

long and high-resolution proxies of terrestrial records. However, such geochemical

proxies, especially those gathered from the lakes, can only be indirect indicators of past

climates [11] andmaybe influenced, to different degrees, by several independent factors.

In order to overcome this indirectness, multi-proxy methods are widely used. However,

it may be complicated and misleading to interpret multi-proxy data qualitatively in

order to form a single composite impression about the past dynamics that govern those

proxies. Part of this shortcoming is due to the fact that, commonly used data reduction

techniques, such as principal component analysis (PCA) and factor analysis (FA), are

not capable of imposing certain probabilistic constraints on the problem exposed by the

multi-proxy data. The orthogonal transformation of PCAandFApoint out the directions

of maximal variance. However, maximal variance may not be the researcher’s main

aim, unless it is aimed to find for the orthogonal directions ordered in maximal changes

through the data. On the other hand, the resultant sediment geochemistry can be

assumed to be a linear combination of statistically independent processes. In this study,

instead of the widely used data reduction methods which depend on uncorelatedness

(here by uncorrelatedness of two random variables, as defined in probability theory, two

random variables are uncorrelated, if their covariance is equal to zero) of the resulting

vectors, we apply the method of independent component analysis (ICA) with the aim of

extracting the statistical independent/quasi-independent processes of the past climate

causing the variability in the proxy data sets.

Micro-X-ray fluorescence (µ-XRF) of elemental profiles can be used as proxies for

different processes in lakes with differing environmental settings (cf. [12]). The

statistical dependence of µ-XRF elemental profiles of a core is widely recognized

by the research community. For example, instead of elemental profiles, it is a standard

practice to use elemental ratio profiles to normalize the effects of some process-related

factors and possible systematic errors (cf. [13]). The elemental profiles of lake cores

are the results of physical/statistical independent or quasi-independent processes and

parameters, such as precipitation, organic production, temperature, water level and

redox conditions in the lake or in its drainage basin.
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In previous studies, PCA and FA are the most widely used statistical transformation

methods applied to extract the underlying components of proxy data. PCA and FA

give useful results if the observed time series are normally distributed and are linear

mixtures of the source series [14]. However, even modern climate variables rarely obey

Gaussian distribution [15,16], and shifts, trends and abrupt events increase the degree of

past climate variables’ non-Gaussianity and non-linearity. It is unreasonable to expect

the data to be in the form of linear mixtures when one considers the highly dynamic

environments from which they are sampled. The FA method does not actually extract

components, rather it explains the governing factors of the system and the constituents

of each factor, in the second order statistical sense. The components extracted by PCA

are uncorrelated and the method tries to find the components that explain the maximal

variance. Since the extracted components with maximum variances are not separated

sources, instead they are mixtures of the true signals [17], the objective of PCA is

questionable in the sense of source separation. This low-order nature is due to the

fact that the backbone of both FA and PCA methodologies are the variance-covariance

matrices.

ICA is a more robust statistical transformation method, developed for signal separation,

and provides an alternative to PCA [18]. ICA’s fundamental assumption is that the

source time series are statistically independent for each point in time [19] and aims

to identify a rotation matrix that in practice maximizes the independence of each

source component. The main difference between the aims of PCA/FA and ICA is that

the former aims to find uncorrelated components, whereas the latter aims to extract

independent ones. Since, independency of random variables implies uncorrelatedness,

the assumption of being independent is more powerful than being uncorrelated.

ICA has proven its explanatory power in different subjects (see reviews of [20] and [21]),

such as feature extraction, signal processing, image processing, telecommunications,

financial time series, etc. There are also, some examples in climate research which

use ICA as an exploratory tool. By using ICA, [14] claim to reveal the geographical

variability of El Niño Southern Oscillation and its links with Atlantic Ocean. [22], [23]

and [24] extracted teleconnection patterns from sea level pressure field via ICA. [25]

and [26] offer ICA as a preprocessing method in order to reduce dimensions through

the downscaling process of general circulation model outputs. However, ICA has never
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been applied to paleoclimate time series. Several different approaches to ICA exist, such

as those based on the infomax or maximum likelihood methods (for an extended review

see [27]). We use the FastICA algorithm [19], because it is a rapid and computationally

straightforward method.

In this study, by applying FastICA, we attempt to extract precipitation and temperature

related components from the µ-XRF data of a 3.5m long piston core (Hz11-P03)

recovered fromLakeHazar [28,29]. Hz11-P03 spans the last 17.3 cal ka, allowing us to

understand past climate variability for the region throughout the last glacial-interglacial

transition and the Holocene. Lake Hazar lies in the Eastern Anatolia region, feeds the

headwaters of the major rivers of the Mesopotamia. Therefore, this study aims to give

not only the climate variability of Lake Hazar and its catchment basin, also aims to

give insight to the water variability in the so-called cradle of civilization.

There are some past climate studies in the region, such as geochemical and

paleoecological data from Lake Nar and Eski Acıgöl [30–35]. There are also longer

terrestrial records from Lake Van, which span the last 600 ka BP (see, [36]). However,

none of the aforementioned studies use statistical decomposition methods, except [37],

which use PCA of Lake Van geochemistry data to reveal hydroclimate variability in

Eastern Mediterranean for the last 360 ka BP.

2.3 Regional Setting

Lake Hazar is located in south-eastern Anatolia at an altitude of 1255m (Figure 2.1).

It is a 25 km long, 7 km wide intra-montane sedimentary basin with a surface area of

78.5 km2 and a volume of 7.5×109 km3. The maximum depth of the lake is 220m.

Lake Hazar is a tectonic lake, located in an active pull-apart basin along the East

Anatolian Fault Zone [38, 39]. Eastern Anatolia is the main water source for the

major Mesopotamian rivers, Tigris and Euphrates. Lake Hazar lies on the upstream

of a tributary of the Tigris river, which was previously an outlet of the lake [40, 41].

Tectonic uplift of the south-eastern part of the lake and excessive use of for agricultural

purposes has broken the connection between the lake and the Tigris. Today, it is a

terminal lake and fed only by numerous small ephemeral streams.
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Figure 2.1 : Location map showing the drainage basin of Lake Hazar. The star
indicates the location of the Hz11-P03 piston core. This map was

prepared using the free mapping tool GMT, version 5.2.2 [42] and the
catchment area and rivers were plotted using the free GIS tool SAGA,

version 2.1.4 [43].

The main water and sediment sources for the lake are the Kürkçayı and Zıkkım rivers

which flow into the south-west and north-east of the lake, respectively. Maximum

discharge occurs during the spring season as a result of snow melt and rainfall. The

lake’s catchment area is mostly covered bymagmatic, metamorphic and ophiolitic rocks

of the Mesozoic and Paleozoic Eras. The main bedrock along the southern cost of the

lake, its most rugged area, also consists of Middle Eocene calcareous rocks and Late

Jurassic magmatic rocks.

Lake Hazar is a monomictic, oligotrophic and alkaline lake (pH=9.1±0.2) with high

carbonate and bicarbonate concentrations. Complete mixing takes place during the

autumn and early winter and incomplete mixing in the spring season. The lake is

stratified between June and September, and the surface water temperature changes

from 5 ◦C to 29 ◦C in the pelagic zone throughout the year [44].

The climate of Eastern Anatolia has long been considered as being a transition between

continental andMediterranean climates and is described as aContinentalMediterranean

climate [45] which is distinguished by excess precipitation in spring, rather than in

winter [46]. Precipitation in the Mediterranean basin in winter is mainly affected
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by the position and power of the subtropical anticyclone settled over the Azores.

Weaker high pressure over the Azores is one of the main causes of wetter winters [47].

However, Eastern Mediterranean precipitation is also fed by moisture from the western

Mediterranean [48] and the Siberian high pressure system has an effect on winter

precipitation and tempereatures [49]. The northward movement of the subtropical high

pressure system in the summer leaves the region almost with no precipitation at all.

Furthermore, the thermal low, a result of the south Asian summer monsoon, that settles

over the Persian Gulf carries dry air in from the Asian interior [50].

The lake area has an annual mean precipitation of 610.1mm for the time period

1974-2004, according to the closest meteorology station to the study area which is

at Sivrice in Elazığ. This precipitation falls mainly between November and May,

accounting for more than 87% of the total precipitation.

2.4 Materials and Methods

2.4.1 Core Hz11-P03

The 3.8m long core, Hz11-P03, was recovered in 2009 from north-west of Lake Hazar,

at a depth of 54m (Figure 2.1). The physical, sedimentological and geochemical

methods applied to understand the properties of this core through various analyses are

described in detail by [29].

2.4.2 µ-XRF core scanner analysis

The split half core was non-destructively analyzed at 1mm resolution, using an

ITRAX XRF core scanner equipped with a Mo X-ray source set to 60 kV, 0.3mA

and an exposure time of 30 seconds at the EMCOL Core Analysis Laboratory at

İstanbul Technical University. Up to 25 elements are semi-quantitatively analysed and

concentrations were recorded as counts per second (cps).
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2.4.3 Magnetic susceptibility measurements

Magnetic susceptibility (MS) measurements were performed in İTÜ-EMCOL

laboratories via Geotek Multi-Sensor Core Logger at 1 cm resolution.

2.4.4 δ 18O and δ 13C analysis

The split half core was sampled at 30mm intervals for stable oxygen and carbon analysis

from ostracod shells. The samples were freeze-dried and sieved through 63 µm mesh

under filtered tap water. Ostracod species were identified under a stereomicroscope and

the most continuous and abundant species, Candona neglecta [51], were selected for

the δ18O and δ13C analysis. For each section 20 adult carapace samples were analysed

at the University of Arizona stable isotope and geochemistry laboratories, in the USA.

δ
18O and δ13C of carbonates were measured using an automated carbonate preparation

device (KIEL-III) coupled to a gas-ratio mass spectrometer (Finnigan MAT 252).

Powdered samples were reacted with dehydrated phosphoric acid under vacuum at

70°C. The isotope ratio measurement is calibrated based on repeated measurements of

NBS-19 and NBS-18 and precision within 1σ error is±0.10%� for δ18O and±0.08%�

for δ13C.

2.4.5 Chronology

Accelerator Mass Spectrometry (AMS) radiocarbon dating analyses were carried out at

theWoods Hole NOSAMS. Six radiocarbon dates for Hz11-P03 have been documented

by [29] (Table 2.1). [29] showed the existence of a hiatus by lithological description

and seismic stratigraphy at a depth of 270 cm in the core. The radiocarbon dates

were calibrated using IntCal [52] and the age model was constructed using the Bacon

(Bayesian accumulation) package [53] in the freeware statistical software package,

R [54].

Unlike “traditional” simple linear age-depth interpolation models, Bacon aims to

produce more realistic age models, by applying bivariate monotone Markov process

between predefined increments between dated intervals. According to [53]. The

qualitative difference between theBacon and other sophisticated age-depthmodels, such
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asOxCal [55] or BChron [56], is that, the results fromBacon aremore “environmentally

inspired” models.

Table 2.1 : Radiocarbon dates obtained from Hz11-P03. Error intervals, within 95%
confidence range, and weighted mean ages are the results of Bacon.

Lab ID
Depth
(cm) Material 14C BP

95% confidence
interval
(cal BP)

Weighted
mean age
(cal BP)

OS-106010 59 Mollusc 2240∓45 2012−2345 2209
OS-97568 133 Wood 3560∓45 3717−4327 3939
OS-106006 208 Mollusc 7800∓70 8317−8926 8578
OS-106002 244 Mollusc 9240∓70 10201−10690 10416
OS-96328 285 Mollusc 11400∓50 12931−13437 13212
OS-96329 348 Mollusc 14600∓80 17208−18027 17682

The Bacon package needs two basic pieces of prior information. The first one is the

mean accumulation rate and accumulation shape (a parameter which gives the shape

of the accumulation rate probability density function- a gamma distribution). Mean

accumulation rate value is suggested by Bacon, prior to the calculations. For Hz11-P03,

the package estimated a 50 a /cm mean accumulation rate. The rate is reasonable for

Hz11-P03, since the length of the core is 350 cm and the IntCal13 age result at 348 cm is

17.78∓0.215 cal ka BP. The accumulation shape parameter is left to default of Bacon

(that is 1.5), a figure that was arrived at by analysing 152 Holocene lake deposits [57].

The second piece of prior information required is the section thickness. The code runs

over the predefined sections according to the length, which in our case is 5 cm, and

makes the linear interpolations over sections. Since section thickness parameter should

be changed if a smoother curve is needed, we implemented the default parameter for it.

Beside these two parameters, it is possible to change thememory strength/memorymean

and hiatus depth/hiatus shape. Memory parameters, which construct the character of

the sedimentation in the agemodel, are defined as a beta distribution in Bacon. As stated

by [53], changes in memory parameters do not significantly alter the age model and by

changing the parameters we tried to fit the posterior distribution to prior distribution.

On the other hand, it is important to note that there is a hiatus at a depth of 270 cm in

Hz11-P03. The default hiatus interval length of Bacon is 1000 years, and according to

the model this length may change. Since, according to the ages below and above the

hiatus, it is somewhere between the uncalibrated ages, 14.6 ka and 11.4 ka 14C BP, we

assigned the hiatus to the Younger Dryas (YD) period, formally accepted to be during
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between 12.85 ka BP and 11.65 cal ka BP [58]. We therefore applied the default value,

which is 1000 years, for the duration of the hiatus.
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Figure 2.2 : Age model of Hz11-P03, constructed using the Bacon statistical package.
The dashed line at 270 cm shows the hiatus location.

2.4.6 Statistical analyses

2.4.6.1 Filtering the data

High resolution µ-XRF data may involve analytical and instrumental noise [13] but a

low-pass filter would minimize these errors. Therefore, in order to minimize noise, we

applied a first order Savitzky-Golay filter (SGF) to the Hz11-P03 core µ-XRF data with

age control points [59]. The SGF fits a polynomial to the data with the desired window

length and selects the corresponding point on the polynomial curve and replaces the

data point with the selected one. For evenly spaced data a first order SGF is nothing

more than a simple moving average. However, for irregularly spaced data, which is

more usually encountered in paleoclimate time series, a first order SGF is able to give

suitable weights to each point by linear regression in the desired window. In order to

fit the data to the age model, after applying the SGF to a five point window length, we

resampled the data at one in every five consecutive data points (Figure 2.3). After all

the above processes, we applied FastICA algorithm by using a commercial software
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(MATLAB 8.2, The MathWorks Inc., Natick, MA, 2013), for which the code is freely

available online.
ag

e 
(k

yr
 B

P)

0

2.5

5

7.5

10

12.5

15

Ca (cps)
0 10k 20k

Fe (cps)
0 25k 50k 75k

K (cps)
0 250 500 750 1k

Mn (cps)
0 500 1k 1.5k

Sr (cps)
1k 2k 3k

0

2.5

5

7.5

10

12.5

15

Ti (cps)
0 1k 2k 3k

Figure 2.3 : The µ-XRF data in gray and on top of each profile the filtered data in
black as described in Section 2.4.6.1 are plotted.

2.4.6.2 Independent component analysis

The ICA model

Assume that, X = [x1,x2, ...,xn] is a d × n dimensional observed data matrix and

S = [s1,s2, ...,sn] is the p-dimensional source random variable, with non-Gaussian and

independent entries. If the independent components are mixed by an unknown linear

transformation Ad×p by

X = AS, (2.1)

then the model in equation (2.1) is called the ICA model [19]. To solve the ICA model,

the mixing matrix, A, must be known. After estimating the matrix A, S, the source,

can be found by

S = WX, (2.2)

where W is the inverse of A.

Preprocessing

Before applying ICA, the data should be centred and then whitened. Whitening is

a process of finding standardized principal components, i.e. principal components

with unit variances. This process clears the second-order statistical information of the

data. The whitening process of the mixing matrix allows ICA to rotate the axes of
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the whitened mixed components to the space of independent components, which is

essential to liberate the data from the dependency of the covariances [60].

Table 2.2 : Distance correlation coefficients of Hz11-P03 independent components of
µ-XRF data with NGRIP δ18O, Sofular δ13C and µ-XRF data.

dcorr Hz-ic1 Hz-ic2 Hz-ic3 Hz-ic4 Hz-ic5 Hz-ic6
NGRIP-δ 18O 0.16 0.17 0.17 0.38 0.47 0.43
Sof-δ 13C 0.13 0.15 0.15 0.26 0.43 0.27

Ca 0.21 0.51 0.14 0.38 0.48 0.53
Fe 0.17 0.23 0.20 0.54 0.57 0.54
K 0.16 0.24 0.23 0.58 0.18 0.77
Mn 0.57 0.28 0.22 0.22 0.62 0.44
Sr 0.18 0.45 0.16 0.77 0.29 0.29
Ti 0.12 0.34 0.52 0.76 0.19 0.23

The FastICA algorithm

Independent Component Analysis is a method to separate non-Gaussian signals by

imposing the probabilistic constraint of minimizing mutual information. It achieves the

separation by making use of "Kullback-Leibler divergence", a measure of difference

between two probability distributions of separate signals that become mixed through

a variety of processes. As such, unlike the PCA, ICA’s starting point is statistical

independence which automatically imposes the separability condition on the joint

probability distributions of the mixed signals. There are various ways in which ICA can

be implemented. In order to extract independent components, [19] offer two different

methods. These are a) the deflation method and b) the symmetric method. The former

method estimates independent components one-by-one, whereas the latter estimates

all the components together. [61] recommend the deflation method, if the number of

independent components is limited. Therefore, the deflation method was preferable

for two reasons: firstly to follow the recommendation of [61] and secondly, because

the distance correlation results of the reference data with the selected independent

components (see Section 2.4.6.2) extracted by the deflation method are higher than the

components extracted by the symmetric method.

The algorithm of the deflation method is described as follows. To estimate only one

independent component, [62] offers the following algorithm.

i. A non-quadratic contrast function G should be chosen. The contrast function is used

to estimate the negentropy (for detailed explanations, see [63]), which is a measure
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of the Gaussianity of a random variable. Negentropy J of a random variable y is

given by

J(y) = H(ygauss)−H(y), (2.3)

where ygauss is the Gaussian random variable with the same covariance matrix of y

and H is the measure of Shannon’s entropy, which is:

H(y) = ∑
i

p(yi) log p(yi). (2.4)

Note that, negentropy of a random variable is zero if and only if it is Gaussian.

Maximizing the negentropy of a random variable means to minimize its Gaussian

properties and also, maximizing the negentropy of random variables, which have

zero mean and unit variance, means minimizing the mutual information, which is a

natural measure of independence [19].

The contrast function G should be non-quadratic and for this study we used

G(u) = log(cosh(u)), (2.5)

which is offered by [62] for general purposes.

ii. A random weight vector w should be chosen in order to initialize the procedure.

iii. By applying Kuhn-Tucker conditions to maximize the negentropy, [19] present the

following equation:

w+ = E[xg(wTx)]−E[g′(wTx)]w, (2.6)

where g is the first derivative of the contrast function G, and

w = w+/
∥∥w+

∥∥ . (2.7)

This procedure is then operated iteratively until the convergence to maximal

non-Gaussianity is established. Here, the convergence means that, during the iteration

the resulting vector w should almost point in the same direction as the previous one

through the iteration process. They call this method the fixed-point algorithm.

To estimate the remaining components, running the algorithm by assumed component

number times by different initial random vectors alone is not enough, because these can

converge to the same maxima. To prevent this, decorrelation of the components (which
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means orthogonalization in the whitened space) is sufficient [62]. After estimating

the first p component vectors, i.e. w1...wp, the deflation scheme proposed to find the

remaining components is

wp+1 = wp+1−
p

∑
j=1

(wT
p+1w j)w j (2.8)

and then normalizing wp+1 by dividing to its vector length.

Discussion of the advantages of the FastICA algorithm beyond the other independent

component algorithms is beyond the scope of this article but they are discussed in detail

by [19].

If the number of the variables is more than the sample size, or the variables have strong

time dependencies (i.e. the time series are exactly periodic), then ICA algorithm may

produce components with exaggerated spikes or bumps [64], this situation is known

as "overlearning". In our case, there are 6 variables each with 634 data points and the

elemental profiles are not time dependent, which can be tested by spectral analysis or

just by looking at the data (see Figure 2.4).
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Figure 2.4 : Components after the FastICA, MS and stable isotope data. The vertical
lines at the isotope plots show the average of isotope data. Green colored

plots are the selected independent components.

Selecting the appropriate components

The resulting vectors of ICA, unlike PCA, are neither given in order nor are their

energies known [19]. Therefore, to select the appropriate components, we applied the

distance correlation [65] as the similaritymeasure between the independent components
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and past climate records, which for this study are δ 18O for NGRIP (North Greenland

Ice Sheet Project) [66] and δ 13C for Sofular Cave [67]. Polar ice core δ 18O data

carry information about temperature [68]. Furthermore, NGRIP is the latest drilled

ice core and amongst the other ice cores, NGRIP δ 18O data is the most sensitive to

Holocene climate changes [69]. The Sofular Cave stable isotope sequences provide

high resolution records for the EasternMediterranean region, with amore than adequate

age model. We will therefore use these datasets as the reference data hereafter.

The empirical distance correlation for ordered pair data, (x,y) with n elements, is

defined as follows:

R(x,y) =


√

ν2(x,y)√
ν2(x)ν2(y)

,if ν2(x)ν2(y)> 0;

0 ,if ν2(X)ν2(Y ) = 0,
(2.9)

where

ν
2(x,y) =

1
n2

n

∑
k,l=1

AklBkl, (2.10)

and

ν
2(x) =

1
n2

n

∑
k,l=1

A2
kl. (2.11)

Akl and Bkl are defined as

Akl = akl− āk.− ā.l + ā.. (2.12)

and

Bkl = bkl− b̄k.− b̄.l + b̄.., (2.13)

where akl = ‖Xk−Xl‖, bkl = ‖Yk−Yl‖ and k, l = 1, ...,n. The subscript "." denotes that

the mean is computed for the whole index.

The distance correlation is equal to 0 if and only if the random variables are independent

and 0 ≤ R(x,y) ≤ 1. The distance correlation’s superiority comes from its power to

catch non-linearities, strength on outliers, revealing independencies and computational

simplicity. However, its statistical power over rival methods is an on-going topic of

discussion [70–73].

Distance correlation, as inputs, needs data vectors each having the same number

of elements. Therefore we linearly interpolated the NGRIP δ 18O record, with 20

years of resolution [74], and the Sofular Cave δ 13C record to Hz11-P03 age model
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and computed the distance correlation coefficients to identify any climate-related

components (Table 2.2).

2.5 Results and Discussions

According to the age model, Hz11-P03 covers the last 17.3 cal ka BP with a hiatus of

700 years between 12.49 ka BP and 11.76 cal ka BP (Figure 2.2). The age of the hiatus,

according to the dates calculated by using Bacon, fit almost within the YD cold event.

This estimate of the hiatus fits with the hypothesis proposed by [29] of a 73m drop in

the level of Lake Hazar during the YD period.

The idea of decomposing mixed data by means of statistical independence has some

superiority over orthogonal decomposing with respect to maximal variance [75, 76].

However, there are some drawbacks. The first one is the assumption of non-Gaussianity

of the source signal. The non-Gaussianity of modern climate variables [15, 16] makes

this assumption plausible. Secondly, the order of the resultant independent components

and their signs are unknown. While the assumptions of ICA come from a stronger

assertion than the second order statistical techniques, it is not easy to select and give

meanings to the results. Therefore, in this study, the candidate components are selected

through a similarity measure, which is the distance correlation. Components that

are highly correlated with the well dated, high resolution records are taken as basis

and the correlation results with the µ-XRF data are discussed. However, especially

climatologically well established periods, such as the Bølling-Allerød, make it easy to

select the desired components with the correct sign. Here, the use of reference data is

not to create a circularity, rather it is used to have a basis on selecting the appropriate

components.

The other drawback of the method lies in the nature of the µ-XRF data. It is clear that

ICA cannot find any result which does not exist within the data. The values of local

extremes in the data may not only depend on natural factors, but also on the precision

of the ITRAX core scanner. For example, a period with higher amount of coarse

grained sediment input may distract the µ-XRF results [77]. So, while evaluating the

magnitude of ICA of µ-XRF data results, it should be kept in mind that the results may

be temporally local. It would be better to evaluate a period with events before and after.
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A question may arise about the data analyzed. One may want to apply the method on

elemental ratios which is widely used in geochemical proxy data interpretations. We

also applied FastICA on the Fe, K, Ti, Ca/Ti, Sr/Ca and Mn/Fe dataset, however the

results of both analyses are convincingly similar.

2.5.1 Interpretation of the independent components

The µ-XRF Ca, Fe, K, Mn, Sr and Ti concentrations that are extensively used in

paleolimnology studies [12], constitute around 95% of the total measured content of

the µ-XRF data of the Hz11-P03 core. We therefore applied FastICA to the profiles

of these six elements and the resulting components were compared with the reference

data and the µ-XRF data via distance correlation.

The distance correlation coefficients between the independent components and the

referenceNGRIP δ18OandSofular δ 13Cdata show that the fifth independent component

(Hz-ic5) has the highest correlation (Table 2.2). Moreover, the correlation coefficients

of independent components with the µ-XRF data imply that Hz-ic5 is also related

to Ca, Fe and Mn (Table 2.2) Ca may precipitate as calcium carbonate in lakes via

a number of different processes (cf. [78, 79]). Solubility of carbonate minerals is

dependent on temperature and salinity. Their precipitation may be related to the

organic productivity and evaporation processes, which indirectly related to temperature,

evaporation/precipitation and the availability of light. Fe and Mn can be used as a

measure of detrital input but both also contain information about reducing conditions

in lakes (for extensive summaries see [80] and [12]). The redox reactions are mainly

determined by organic matter production and water column stratification, which in turn

is mostly affected by light and temperature [81], and which is commonly coupled with

Ca precipitation.

NGRIP δ18O reflects the temperature changes in Northern Hemisphere high latitudes

[68] and according to [67], the changes in temperature are reflected in the δ 13C record

from Sofular Cave stalagmites. Therefore, the correlation of Hz-ic5 with the reference

data sets and Ca, Fe and Mn could be argued to reflect temperature changes in the lake

and its catchment region (Figure 2.5).

While the sixth component (Hz-ic6) has the second highest correlation with the

reference data, we could not attach any meaning to it. However, the high correlation

20



values of the fourth component (Hz-ic4) with Ti, Sr and also with the reference data

(Table 2.2), give an indication about a relationship between Hz-ic4 and precipitation.

It correlates closely with Ti, Sr, K and Fe (Table 2.2). Ti, K and Fe provide information

about detrital input that is mainly dependent on precipitation. Sr is used as a proxy

for evaporative processes in lakes [80]. Thus, we can interpret Hz-ic4 as a proxy for

precipitation/evaporation (Figure 2.5).

Summarizing our results, we conclude that Hz-ic4 and Hz-ic5 are proxies of

precipitation/evaporation and temperature, respectively. However, it should be noted

that they have no absolute units, only reflecting relative changes through time, and are

referred as "temperature" and "precipitation" for the rest of this paper.
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2.5.2 Temperature and precipitation records

The results from Lake Hazar reveal that before 14.6 cal ka BP the temperatures of

the region were lower than the following warm period. On the other hand, the

precipitation was at almost the same level as the subsequent Bølling-Allerød warm

period. Temperatures in the region rise with the start of the Bølling-Allerød and

the precipitation record shows a slight increase with this warming. At the end of
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Bølling-Allerød, the lake level evidently dropped to 73m below its modern level [29]

producing an 700 yr hiatus during the YD period.

After the start of the Holocene, temperatures evidently rose gradually and achieve the

warm conditions of the Holocene within 2 millennia. After 9.5 cal ka BP, Hz11-P03

temperature record follows the North Atlantic stacked ocean record [83] within the

error range of Hz11-P03 age model. The most striking of all the oscillations is the

one around 3.5 cal ka BP, which corresponds to the second Bond cycle [83]. This cold

period (Table 2.2) lasted until 2.6 cal ka BP.

The precipitation record for the Holocene is somewhat different to the temperature

record. The start of the Holocene was as wet as the Bølling-Allerød interstadial and but

a gradual decrease in precipitation occurred up to 9.5 cal ka BP. From 9.5 cal ka BP,

until 8 cal ka BP, the region experienced a wet period. After 8 cal ka BP, and lasting

for almost 3 ka, a harsh dry period with internal oscillations can be observed. This arid

phase is also evident in MS and δ 13C records of Hz11-P03. After 5 cal ka BP a wet

phase occurred following almost directly on from the oscillations in the temperature

record, with marked dry phases taking place during 3.5 cal ka BP, 2.8 cal ka BP and

1.8 cal ka BP (Figure 2.5).

2.5.3 Comparison with other regional records

2.5.3.1 Pre-Holocene

Pollen [86, 87], lake level [88, 89] and glacier [90, 91] studies from around the Eastern

Mediterranean indicate that the region was cold, but humid after the Last Glacial

Maximum (LGM) until the Bølling-Allerød interstadial. In this context, the Lake Hazar

results, which indicate, relatively cold and humid conditions before the Bølling-Allerød,

correlate well with these other regional records. There exist two main hypotheses

about the cause of these cold but wet conditions in the Eastern Mediterranean between

the LGM and the Bølling-Allerød. The first is that cool and cloudy summers, that

decrease evaporation, are the reason for semi-arid vegetation and high lake levels in

this interval [92]. The second hypothesis is that the cause was the southward migration

of the jet streams, and resultant moisture-rich westerly winds during LGM [86, 93].

Such a migration would cause wetter conditions in the Eastern Mediterranean. The
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precipitation result from Lake Hazar for the 17.3 ka BP and 14.8 cal ka BP interval,

support the migration of the westerlies hypothesis, although we cannot entirely reject

the cool and cloudy summer hypothesis. Probably, both mechanisms were in effect in

the Eastern Mediterranean before the Bølling-Allerød.

There are studies in the Eastern Mediterranean which offer a dry period during the

Heinrich-1 event [94,95]. However, our Hz11-P03 data and ICA results do not offer an

arid phase for ∼ 17 cal ka BP.

Following this, Bølling-Allerød period was warm and wet by comparison, as one

would expect based on current models and data. As previously documented by [29],

the decrease in lake level and resulting hiatus within the core between 12.49 ka BP and

11.76 cal ka BP shows that, for the last 17.3 cal ka, the region experienced its most

extreme dry period during the YD. Also, the low temperature values at the end of the

Bølling-Allerød period and at the start of the Holocene indicate that the YD period is

likely to have been as cold as expected.

2.5.3.2 Holocene

From the end of the YD period until 9.5 cal ka BP, the temperature of the region

shows an increasing trend, as seen in the NGRIP δ 18O record in the same period.

The oscillations in temperature resemble those seen in the North Atlantic stacked HSG

record [83]. However, the precipitation record behaves somewhat differently to that for

temperature. For the early Holocene, the Lake Nar δ18O record [35] and Hz11-P03

precipitation record closely resemble each otherwith awet period up until 9.5 cal ka BP,

and a decreasing precipitation trend to 8.2 cal ka BP. The wet conditions with a drying

trend were also documented in previous Eastern Mediterranean studies [30, 93, 96].

During the early Holocene, summer insolation was at its maximum, whereas winter

insolation was at its minimum (Figure 2.5). This increasing seasonality may have

resulted in the Mediterranean Sea being warmer during cold winters and consequently,

as [97] have proposed, it was wetter at the start of the Holocene.

After 8 cal ka BP, while the temperature oscillations follow the North Atlantic climatic

oscillations [83], precipitation records show a period of great aridity until 5 cal ka BP.

During this period, North Africa was wetter [98] and evidence for a drought in the

Eastern Mediterranean is indicated by charcoal data [34, 85]. During this interval, as
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the Northern Hemisphere was receiving more insolation than today, the Intertropical

Convergence Zone lay in a more northerly position [99, 100]. As a result of this,

the subtropical high pressure belt, which today lies over the southern Mediterranean,

particularly affected the north-east Mediterranean and created arid conditions in the

region.

Between 5.5 ka BP and 5 cal ka BP the precipitation record reveals that the region

gradually became wetter, finally reaching modern conditions. However, the abrupt

decline in both precipitation and temperature around 3.5 ka BP, 2.8 ka BP and

1.8 cal ka BP, which were also documented in the seismic records [29], may have

been the result of a coincidence of the strengthening of the Siberian high pressure

system during winters [79,84], and the gradual decrease in solar irradiance, especially

around 2.8 cal ka BP [101], in accordance with changes in the North Atlantic [83].

For the Holocene, the most striking result is that the spikes in precipitation and

temperature records appear to closely follow the North Atlantic Bond events, whereas

the trends do not. If the cause of the Bond events is indeed solar forcing, as claimed

by [83], then we can also state that the climate oscillations in the region were also

greatly influenced by solar forcing. On the other hand, if the cause were related to

circulation changes in the North Atlantic [102], then it is noteworthy to add that there

appears to be a direct relationship between the temperature of the region and North

Atlantic. Additionally, we can state that precipitation oscillations are related to the

North Atlantic, but that precipitation appears to be a function of a much more complex

system.

The regional context of Lake Hazar is such that not only do the results of the current

study have implications for understanding the Holocene climate and environment of

eastern Anatolia but also for that of Mesopotamia. This is because, when at its

maximum, the waters that flow out from Lake Hazar empty into one of the two

great Mesopotamian rivers, the Tigris. Together with the Euphrates, it is rainfall

and meltwater from the high mountains of northern Mesopotamia and eastern Anatolia

that feed the Tigris and formed the economic basis of that region’s ancient civilizations,

which relied on river-fed irrigation systems from these two rivers as they flowed through

an otherwise dry landscape.
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A number of scholars have hypothesized that several incidents of societal collapse in

Mesopotamia that are observable in the archaeological record may have been caused

by the type of abrupt environmental change that we see in the data from Lake Hazar.

Although much more research on the question of the temporal coincidence between

climate and changes in human settlement is required, it is interesting to make some

preliminary observations on how our scientifically observed climate data may relate to

these archaeological phenomena.

For example, an observed archaeological phenomenon for which a climatic cause has

been posited is the so-called 4.2 ka BP event [8, 103]. However, here the ICA of the

Hz11-P03 core indicates that there is no evidence for any abrupt climatic change at this

point in time. We therefore suggest that further studies should be conducted to confirm

or deny the existence of abrupt climate change in the Anatolia/Mesopotamia region at

this time, but based on our evidence we suggest that an archaeological explanation is

more likely to account for this observed cultural phenomenon than a climatic one.

2.6 Conclusions

In this paper, we present a new method to extract paleoclimate signals from µ-XRF

data using independent component analysis (ICA) and the stable isotope data from Lake

Hazar.

ICA proves to be more suited to the extraction of paleo-climate signals than the

traditional second order statistical methods (such as PCA and FA), if it is known that

the underlying signals are the results of statistically independent/quasi-independent

processes. ICA’s aim is to find directions in space that satisfy maximum independence

rather than to find directions with maximal variance. In this study, the aim is to offer

a method for geochemical time series, which are thought to be representatives of past

climates. However, it should be noted that, particularly, the process of component

selection from the results of ICA (see section 2.4.6.2) needs to be improved for future

studies.

The µ-XRF data from the Hz11-P03 sediment core fromLake Hazar shows six different

elemental profiles, which constitute around 95%of the total count, whichwere subjected

to ICA, and accordingly six independent components were gathered. We selected two
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of the six independent components from the Lake Hazar µ-XRF data, based on their

distance correlations against NGRIP and Sofular Cave isotope data. Our paleoclimatic

and paleoenvironmental interpretations of these two components suggest that they are

related to precipitation/evaporation and temperature. Based mainly on the profiles of

these two independent components, we conclude the following:

1. The interval between 17.3 ka BP and 14.8 cal ka BP was cold but as wet as the

following the Bølling-Allerød period, a conclusion which is also supported by

previous studies around the Eastern Mediterranean. This was, most probably, the

result of the southward migration of the Northern Hemisphere jet streams which

were restrained from moving northwards by the anti-cyclonic atmospheric system

settled over the high latitude LGM ice sheets.

2. The Bølling-Allerød warm interval, which is dated to between 14.8 ka BP and

12.85 cal ka BP, was warm and wet.

3. During the Younger Dryas cold event, the level of Lake Hazar fell by 73m, causing

a hiatus in Hz11-P03 during 12.49 ka BP and 11.76 cal ka BP.

4. At the start of the Holocene temperatures rose gradually, and reached "Holocene

normals" at around 8 cal ka BP. This period after the YD was unexpectedly wet

because of seasonality due to orbital parameters.

5. Between 8 ka BP and 5 cal ka BP, the region’s temperature record follows the North

Atlantic oscillations. However, its precipitation record shows that it experienced

its most arid period during the Holocene. This was the result of the settling of

the Subtropical High Pressure system over the north-eastern Mediterranean which

blocked humid air streams from the Atlantic. In accordance with the changes in

insolation, this dry period gradually came to an end around 5 cal ka BP.

6. After 5 cal ka BP, and up until 3.5 cal ka BP the climate again fluctuated around the

"Holocene normal". However, around 3.5 cal ka BP, temperatures fell abruptly and

sudden cold arid phases occurred around 3.5 ka BP, 2.8 ka BP and 1.8 cal ka BP.

The cause of this abrupt cooling and drying phase can be the strengthening of the

Siberian high and in accordance with the changes in insolation and North Atlantic

system.
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7. There is no evidence for the putative 4.2 ka climate event in Lake Hazar which has

been postulated on the basis of archaeological evidence.
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3. TEMPERATURE AND PRECIPITATION VARIABILITY IN EASTERN
ANATOLIA: RESULTS FROM INDEPENDENT COMPONENT ANALYSIS
OF LAKE VAN SEDIMENT DATA SPANNING THE LAST 250 KYR BP1

3.1 Abstract

In this study, we present the results of independent component analysis (ICA) of

previously published Lake Van data covering the last 250 kyr BP, to shed light on the

precipitation and temperature regime in eastern Anatolia. The data processed were

the element intensities of Ca, Fe, K, Mn, and Si analyzed by XRF core scanner;

concentrations of TOC and CaCO3 content; and B* (color reflectance) from the

Ahlat Ridge sediment record. Our analysis is based on application of ICA on

the data by changing the initial random unit vector several times and clustering

possible independent components through average-link agglomeration. As components

extracted by ICA do not have a hierarchy, mutual information, which is a measure of

information content between two random variables, is used as a measure of similarity

by which to select candidate components. As a result, we argue, the independent

component (Van-IC8), which shows the highest similarity to the Greenland δ18O record

and visually similar to other regional temperature indicating data can be read as a proxy

for temperature variability. We also assert that, the independent component (Van-IC7)

which has the highest similarity to B* and visually similar to other regional precipitation

proxies, and with the lake level reconstruction from another sediment profile from Lake

Van is a proxy of precipitation variability across the region. Our results show that

the region’s temperature approximately maps onto global records, i.e. warm during

interglacials and cold during stadials. However, the precipitation proxy reveals that the

region was not dry, or at least as wet as it is today, during the end of the MIS 6 and the

1This chapter is based on the paper: Ön, Z.B. and Özeren, M.S. Temperature and precipitation
variability in eastern Anatolia: Results from independent component analysis of Lake Van sediment data
spanning the last 250 kyr BP, submitted to Quaternary International.
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LGM. The MIS 5e/c and Holocene were characterized by a wet period followed by dry

intervals and Dansgaard/Oeschger events are characterized as being warm and wet.

3.2 Introduction

Proxy measurements are indirect indicators of past environments and many studies use

multi-proxy approaches to overcome the shortcomings of single proxy data. One reason

for studying proxy data is to produce a simplified model of past environments. In this

study, we use Independent Component Analysis (ICA) as a parameter extraction tool

by which to analyze published sediment data from Lake Van [37,104,105]. The results

of our analyses can be argued to reflect temperature and precipitation variability across

eastern Anatolia. While previous models based on almost the same data were not able

to capture lake level changes, where it was claimed as these changes were shaped by

precipitation/evaporation balance [106]. We claim that the models presented in this

study have the ability to explain these geomorphological features seen around the lake.

In 2010, the PALEOVAN (hereafter PV) drilling campaign in Lake Van was conducted

as an ICDP project. In order to study past climatic and environmental changes, a

220m long composite profile was taken (see Figure 4.1 for the location). Subsequeent

laboratory analyses constitute the longest and most complete paleolimnic archive in

Anatolia. This dataset has been used in several studies with the aim to understand

various aspects of the paleolimnic state (see the special issue: [36]). The PV results

show the presence of several glacial/interglacial cycles within the Lake Van sediment

data (see for example [104, 107, 108]) and reveal that Lake Van is a unique natural

laboratory for paleoclimate studies.

Previous studies, which are not related to PV, only provided continuous proxy data for

the last 20 kyr BP at most [110–112]. Field studies conducted by [113], [110], [111]

and [106] revealed the presence of several terraces at different topographic heights

around Lake Van with terraces that stand between 20m and 80m higher than the

present-day lake level and which have been dated to between 26 and 20 kyr BP - the

Last Glacial Maximum (LGM) - and which have been interpreted as evidences of a

wet LGM in the region [106, 110]. However, results from previous studies and new

data from the PV suggest different interpretations. Some recent analyses using PV data

show that the period was drier than the present and that lake level was 200m below
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Figure 3.1 : Location map of Lake Van (modified from [109]). Red dots indicate the
location of the Ahlat Ridge (AR) and Northern Basin (NB) composite
profiles retrieved by the PV project. Major mountains and the locations

of meteorological stations mentioned in the text are indicated.

its current level during the LGM [37, 114]. The claim by [37], that the region was dry

during the LGM, is mainly based on principal component analysis (PCA) of AR data,

but through this study, we discuss the reasons why PCA was inappropriately applied

by [37] and offer a new proxy-based model for climate variables of eastern Anatolia

using ICA.

ICA is a state of the art signal extraction tool with its roots in information theory [19].

ICA’s main algebraic difference from data reduction techniques based on second order

statistics, such as principal component analysis (PCA), is that, rather than maximal

decorrelation, ICA rotates the axes in directions that maximize statistical independence.

More specifically, PCA aims to find orthogonal components, ordered according to the

variance that they explain and removes linear correlations between data. ICA is,

by definition, a signal separation method and has the ability to remove higher order

dependence. In the field of paleoclimate multiproxy studies, it is reasonable to pursue
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a principal component analysis approach if one is almost confident that data variability

is governed by a known agent, or to eliminate noise in the data and then conduct

aimed analyses. It is also possible to combine the two former ideas to remove the

shared variance based on solid assumptions via genuinely designed tests (see [115]).

When using PCA as a signal separation method one should avoid applying it to highly

correlated vectors, otherwise the leading principal components would resemble only

those correlated vectors. Furthermore, Gaussianity of the stochastic variables is a strict

constraint of PCA and since it depends on variance-covariance matrix and outliers

should be removed through statistical means before analysis. An ICA approach

might be considered superior to PCA for the problem under consideration because

individual independent components, in theory at least, correspond directly to observable

quantities, such as precipitation or temperature. It is designed to extract independent

processes from mixed signals. For this reason, ICA has recently been applied in a

paleoclimate study of Lake Hazar [6] in which paleoenvironmental chemistry proxies

were assumed to be mixtures of different independent processes and were accordingly

used as a basis bywhich to extract paleo-precipitation and paleo-temperature variability.

ICA has also been applied as a signal separation tool on other subjects such as

chemistry-based “multiproxy” datasets, similar to paleoclimate data, from different

disciplines such as medicine [116] or applied geochemistry [117, 118]. It has also

been applied in geographical sciences such as hydrology [76,119] and climate science

[14, 24]. ICA works on two major assumptions that are constraints on the results.

These are non-Gaussianity and statistical independence of aimed components. For the

purpose of this study, it is assumed that precipitation and temperature are non-Gaussian

random variables (for an extensive discussion, see [15]) that are assumed to be

quasi-independent, at least for the studied long term interval, with the characteristics

of climate variables changing dynamically through non-linear interactions.

In this study, ICA is applied on element intensities (Ca, Fe, Mn, K, Si) from

XRF-core-scanning analysis [104], total organic carbon (TOC) and carbonate content

(CaCO3) [105] and sediment reflectance color data in blue-yellow chromaticity (B*)

[37]. Two of the extracted components are interpreted as proxies of temperature and

precipitation variability in the region based on their statistical similarity to Greenland

δ
18O data, operating through the assumed dynamic atmospheric relation between the
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North Atlantic and the eastern Mediterranean [120]. Results are also supported by

other regional and global paleo-data. The temperature record roughly follows the

variability observed in Greenland NGRIP δ18O data, such as the fact that glacials

are relatively cold, interglacials are relatively warm, and abrupt warming events of

MIS 3 are observable. The precipitation record also reflects abrupt warming events

observed in Greenland records, i.e. the region is shown to be relatively wet during

Dansgaard/Oeschger events. However, the end of the MIS 6 and LGM appear to be

wet, unlike in the PCA results of [37], which used Si, Ca, Ti, TOC and B* data. Our

results for precipitation closely follow lake level reconstruction of [79] and support the

high-stand lake level during the LGM, as the observed terraces also appear to confirm.

3.3 Regional Setting

Lake Van fills a tectonically active depression at eastern Anatolia and is surrounded by

a number of semi-active volcanoes to the north and east [121]. The Bitlis Mountains,

which are a part of the southeastern Taurides, separate the basin from the lowlands

of the Arabian plate and mark the transition between Mediterranean and continental

climate zones [122, 123]. This manifests itself in the region’s flora, with the region

being on the boundary between forest and steppe-type biomes [124]. According to

available meteorological data, average precipitation around the lake is variable with

annual average precipitation amounts (data collected and organized by [125]) as follows:

i) 380 mm/yr at the east of the lake (Van meteorological station), ii) 580 mm/yr at the

southeast (Gevaş station), iii) 800 mm/yr at the southwest (Tatvan station), iv) 560

mm/yr at the west (Ahlat station), v) 440 mm/yr at the north (Erciş station).

The current eastern Mediterranean winter precipitation regime is mainly under the

influence of the Atlantic Ocean, with cyclones that originate over the Mediterranean

Sea and Asiatic dry high pressure systems. Which one of those factors is the most

important in shaping the precipitation regime of the eastern Mediterranean, and of

Anatolia in particular, is still a subject of debate. However, the general consensus

favors [126] the so-called North Atlantic Oscillation, which is a pressure gradient

regime, for the winter months. On the other hand, dry and cold air systems originating

in Asia may be fed by temperate Black Sea surface waters to cause precipitation over

Black Sea coasts in winter [127, 128]. During summer, the factors dominating the
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region’s climate are the subtropical high pressure system and the low pressure trough

settling over Persian Gulf due to the Indian monsoon. Even though the mean summer

surface pressure is lower than the mean winter surface pressure over the Aegean and

Mediterranean coasts and the winds that flow over the sea are moisture laden, summers

are almost dry in western Anatolia [50]. However, the Black Sea coasts of Anatolia are,

again, an exception, receiving precipitation by the monsoonal low circulation saturated

with warm Black Sea waters. Therefore, the precipitation regime of the Anatolian

peninsula as a whole is far from straightforward to describe, lacking a single pressure

system as it does.

In the present day, the lake stands approximately 1650m above sea level and has a

surface area of 3570 km2. Water salinity is ∼ 21.4%� and water pH is ∼ 9.8 [129].

During the winter, Mediterranean humid air loses moisture as precipitation over the

colder orographic southern boundaries of Anatolia and therefore cannot feed the region.

Furthermore, the geographical proximity of eastern Anatolia to cold/dry anti-cyclones

from the Asian interior results in a relatively drier regional climate during the winter.

Therefore, unlike the dominant winter precipitation in Mediterranean coastal zones,

precipitation in eastern Anatolia is mainly recorded in spring and at the end of fall

(Figure B.1). Winter precipitation is mainly snow and summer in the region is almost

completely dry. Seasonality indices ofmonthly precipitation data show that the region is

on the border of ContinentalMediterranean and Continental Eastern Anatolian climates

types [122]. The seasonality of climate parameters controls the sedimentation process

and varve formation in the lake. Increased runoff during spring and fall provides

dissolved calcium ions, detritus, and organic material which manifest as light layers

in sediment profiles. Stratification of the lake waters in summer increase organic

productivity in the lake, and it also contributes to the formation of light layers. In

winter surface waters cool and runoff decreases; consequently stratification ceases and

suspended organic matter precipitates, forming the dark layers of sediment profile as a

result [130, 131].
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3.4 Materials and Methods

3.4.1 Lake Van Ahlat Ridge sediment record and the chronology

The 220m long Ahlat Ridge (AR) composite profile was drilled at a depth of 360m

below the present lake levelwith the primary aimof understanding the climatic evolution

of the region [36].

The AR record has been subjected to XRF elemental scanning using an Avaatech core

scanner by [104] for every 2 cm over a 1 cm2 area with a slit size of 12mm. The results

are collated by 10 s sampling time and with 10 kV and 0.2mA generator settings. Also,

the color profile of the sediment in L*A*B* color space was photographed at 0.03mm

resolution [37]. CaCO3 and TOC measurements were established for every 2.5 cm

through the record [105].

While the age model of the uppermost part of the AR record was constructed by
14C datings and correlation to previously gathered robust varve chronology [132], the

chronology of the remainder of the record was established by tuning the proxy data to:

i) NGRIP δ18OGICC05 andGICC05modeltext timescale [66,133–135] for the interval

between 0 and 116 kyr BP and,

ii) speleothem based and EDC3 based synthetic Greenland record [136] for the interval

between 116 and 400 kyr BP and 400 and 650 kyr BP, respectively.

This age model was then cross-referenced with several other dating methods, including
40Ar/39Ar datings, tephrostratigraphy, magnetostratigraphy and 10Be measurements.

The model was then improved by using the AICC2012 timescale [137] for the interval

between 90 and 125 kyr BP and by adding more tie points [37]. Whereas the difference

between the old and improved age models is negligible for the period younger than

100 kyr BP, before 100 kyr BP there exist intervals with significant age differences,

reaching almost 10 kyr (for all the details and construction process of the chronology,

see [138], [105] and [37]). The complete record represents the last 600 kyr. In this

study, we use only the last 250 kyr section of the data due to the discontinuities below

this point.
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The resolution of the published XRF data by [104] and [37] and B*, TOC, CaCO3

data are different and therefore we linearly interpolated the data to the one with fewer

data points, which corresponds to the data presented in [104]. Before interpolation, we

applied a first order Savitzky-Golay filter [59] with a 5 window length to CaCO3, TOC,

Ca, K, Si and with a 53 window length to B*. After the smoothing process, every 1 in 5

elements in the former dataset and every 1 in 53 elements in B* were selected to bring

the data to approximately the same number of rows as Fe and Mn. Afterwards, filtered

and resampled data were linearly interpolated to the age model’s (developed by [37])

of Fe and Mn from [104] (Figure 3.2).
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Figure 3.2 : Data processed in this study after interpolated to the age model of Fe and
Mn, as described in Section 3.4.1. All the data in this study have been

standardized by making each data zero mean and unit variance.
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3.4.2 FastICA

FastICA is a numerical implementation of ICA that has been widely used during the

last decade for problems as diverse as telecommunications theory, face recognition,

image processing (see Part 4 in [61]), hydrology [76], climatology [24], and, recently,

in paleoclimatology [6].

FastICA is one of the major blind signal separation methods with some critical

assumptions. It has distinct advantages when compared to methods based on

variance-covariance matrix, such as PCA or factor analysis. Its most important

advantage is that it is not restricted to the second-order statistical constraints brought

in by the quadratic nature of covariance. Secondly, extracted independent components

have no hierarchy among themselves, unlike principal components which are based on

the eigenvalue spectrum. However, not being subject to any hierarchy may be seen as a

disadvantage because interpretation of the resulting components, at least for this study,

depends on similarity methods, as set out below.

The FastICA model assumes that the matrix of observed variables X (in our case,

the Lake Van AR record) is a linear transformation of the source matrix S (matrix of

independent components) by the mixing matrix A, which is;

X = AS. (3.1)

Here, neither the mixing matrix A, nor the source matrix S is known. Since, the sole

object is to find the source matrix, the method tries to estimate W, which is the inverse

of A, and finds S by;

S = WX. (3.2)

In order to establish that this is mathematically possible, ICA approach assumes the

following:

1. the source components that are being looked for should be statistically independent,

2. source components should have non-Gaussian distributions, and

3. mixing matrix A should be invertible.
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The non-Gaussianity assumption here, through the central limit theorem, is the key to

estimating the independent components [19].

FastICA searches for independent components through the well-defined, information

theoretical concept of negentropy. The definition of negentropy of a random vector y

is,

J(y) = H(ygauss)−H(y), (3.3)

where H is the Shannon’s entropy and defined over the probability mass function P of

y as:

H(y) =−∑
y∈y

P(y) logP(y). (3.4)

Intuitively speaking, negentropy defines a distance between the real distribution of a

random variable and the normally distributed random variable with the same mean and

variance.

Negentropy of a random vector defined by equation (3.3) is theoretically calculated by

probability mass functions of random variables as given by equation (3.4). However, to

describe the probability mass function of a random variable is a non-trivial problem. In

order to estimate negentropy, FastICA uses a method based on maximum entropy

principle with a selected contrast function [19, 63]. The contrast function is the

nonlinear component of the analysis and for this study, we used:

G(u) = log(cosh(u)), (3.5)

which [62] stated is suitable for general purposes such as this.

The FastICA scheme for estimating the first independent component is based on a

selection of a random unit vector and execution of a fixed point iterative process until

convergence is established, as described in [19]. The same algortihm used in estimating

the first component is then used to estimate the rest of the components, by the deflation

method. However, to prevent the convergence of components into the same directions

outputs are decorrelated after every iteration through each estimation, as explained

in [19].

Documented examples in [139] show that the worst outliers in the data may affect

the results of FastICA. Here the term “worst outliers” (used by [139]) is taken to

mean outliers that are not defined through classical spherical boundaries, whereas they
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are defined by the term medcouple for skewed data and preserve the non-Gaussian

nature and skewness of the data. We applied the adjusted outlyingness method [140]

to eliminate the outliers for multivariate data by using the LIBRA library [141] in

MATLAB, which is a generalization of the method described in [139]. The results

from our case show that marking approximately 1.8% of all observations as outliers and

deleting them before the FastICA operation is sufficient. Having deleted 89 data-rows,

4905 remain.

Before starting the FastICA algorithm, a random unit vector is selected. However, this

selected random vector may slightly affect the results of FastICA, so [142] suggest to

changing the initial vector several times using the Icasso package, which was originally

developed for neuroimaging applications. After running the algorithm several times,

themethod projects the results onto a 2-D plane by curvilinear component analysis [143]

and clusters the components gathered in each run via group average-link agglomeration,

to check for the reliability of each component, prior to computing the distances of each

candidate component from other candidates in the cluster and offering the component

with the highest summed similarity value in each cluster. In order to validate the results

of FastICA, we ran the algorithm 250 times by changing the randomly selected initial

point with the contrast function described at equation (3.5), through the Icasso package.

Unlike PCA, there is no need to standardize the data to apply FastICA (however, they

need to be centered and whitened by transforming to orthogonal unit vectors, which is

an essential preliminary step to remove the second-order dependency on the data). In

each way the results will be the same, however, we chose to standardize the data before

the analysis.

One peculiarity of ICA in our context is that, unlike other well-known dimension

reduction methods (such as PCA or FA), neither the variances nor the order of the

components are known [19]. Therefore, a strategy should be chosen by which to select

appropriate components. For example, in a similar study, [6] decided the contextually

appropriate components by looking at distance correlation coefficients [65] between

the extracted components and well-known climate proxies. This distance correlation

approach may fail to satisfy equitability [70, 144] meaning that, among different type

of relationships with same amount of noise, the statistic should give a similar score.

Alternatively, we can use another quantity called mutual information for this purpose,
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since the data have enough elements to almost define probabilitymass functions by using

histograms. Mutual information is a measure which finds the amount of information

shared between two systems by using the Shannon’s entropy idea in information theory

[145] and it is theoretically equitable [144]. Mutual information between x and y is

defined as:

I(x,y) = ∑
x∈x

∑
y∈y

p(x,y) log
p(x,y)

p(x)p(y)
(3.6)

where p(x), p(y) are the marginal probability mass functions and p(x,y) is the joint

probability mass function of the random variables x and y. Notice that I(x,y) = 0 if

and only if x and y are statistically independent. Without loss of generality, we used e

as the base of the logarithm through computations of mutual information.

Polar ice core δ18O data provide reliable and almost continuous sources for past climate

change and they are good reflectors of paleo-temperature change in particular [68]. In

order to select the appropriate components, as a preliminary approach we computed

the mutual information between each resulting independent component and each proxy

record used through FastICA and also NGRIP δ18O data [66]. Note that the NGRIP

δ
18O data is padded with synthetic Greenland data [136], and have been linearly

interpolated to the AR age model. While computing the mutual information, we

described the marginal and joint probability functions by constructing histograms with

50 fixed width bins between the minimum and maximum value of the data. Mutual

information does not give comparable results like the results of Pearson’s correlation

coefficient between [−1,1]. However, [146] proposes a transformation method of

mutual information results as

I∗(x,y) =
√

1− exp(−2I(x,y)). (3.7)

By doing so, mutual information results are transformed between 0 and 1 (Table 3.1).

3.5 Results and Discussion

Using the methodology described by [142] (see Figures B.2 to B.5 for plots of

different methods used to select the appropriate number of independent components),

there are eight statistically valid clusters, i.e. it is proper to say that there are eight

independent processes governing the eight dimensional data-set and correspondingly

eight independent components (see Figure B.6). Since the aim is to select
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Table 3.1 : Transformed mutual information results between the independent
components of the AR record and NGRIP δ18O combined with synthetic
Greenland record and the AR data. Mutual information is measured in

nats.

I∗ Van-IC1 Van-IC2 Van-IC3 Van-IC4 Van-IC5 Van-IC6 Van-IC7 Van-IC8
NGRIP-δ18O 0.33 0.39 0.36 0.41 0.37 0.48 0.51 0.54

B* 0.45 0.44 0.44 0.42 0.35 0.56 0.72 0.49
Ca 0.26 0.45 0.29 0.34 0.38 0.42 0.50 0.74

CaCO3 0.32 0.76 0.37 0.36 0.30 0.29 0.42 0.48
Fe 0.30 0.45 0.32 0.35 0.48 0.42 0.51 0.73
K 0.26 0.44 0.29 0.34 0.34 0.43 0.57 0.80

Mn 0.33 0.37 0.37 0.62 0.35 0.35 0.44 0.46
Si 0.34 0.48 0.30 0.40 0.35 0.38 0.48 0.78

TOC 0.60 0.54 0.42 0.36 0.03 0.50 0.36 0.39

climate-related components, we followed a preliminary strategy of selecting candidates

by calculating a statistical similarity measure (mutual information in our case) of the

independent componentswith theGreenland (NGRIP) stable oxygen isotope record [66]

combined with the synthetic Greenland isotope record [136].

Transformed mutual information results indicate that (Table 3.1), Van-IC8 give the

highest similarity with the Greenland data. Furthermore, Van-IC8 shows visual

similarity with the Greenland record (Figure 3.3) and with PC1 constructed by [37]

(principal component which has the highest variance, see Fig.5 therein), where PC1was

interpreted as hydroclimatic variability through the sole assumption of B*, Si, K, TOC

andCa being sensitive to hydroclimate variations. The interpretation of [37] associating

the hydroclimatic variability to the first principal component may seem reasonable,

since maximal variance in sediment records of a lake should be mainly driven by

precipitation, evaporation and surface/groundwater runoff components. However, in

the AR record, linear correlation between Ca, K and Si are exceptionally high (see

Figure B.7) and this can be seen in Fig.S1 in [37]. Therefore, PC1 of [37] is mainly

governed by the variances in K, Ca and Si (represented by the loadings of PCA, see

Fig.S3 in [37]) constituting a significant bias in their analysis. The bias stems from

the fact that their principal components are constructed using only five different time

series and three of them are highly correlated. Similar results can be obtained if PCA is

applied to the extended data used in this study (see Figure B.9), since four of the eight

profiles are highly correlated (see Figure B.7). We therefore reject the interpretation

of PC1 in [138] and elaborate on this below. On the other hand, [108] constructed a
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curve based on alkenone Uk37 index (Figure 3.3) and claim that it reflects changes in

temperature and haptophyte species composition. Visual similarity between Van-IC8

and low resolution Uk37 index is high, and the reader should note that the age model

used by [108] is based on an older chronology that is different from the most recent

one up to 10 kyr during some intervals of MIS 6 (cf. [138] and [37]). Van-IC8 also

resembles changes in sea surface temperature of the western Mediterranean [147] and

Black Sea [120]. The similarity of Van-IC8 to Greenland isotope data, Uk37 index

of Lake Van, and sea surface temperature data (Figure 3.3 and Figure 3.4) allows

us to state that it reflects the paleo-temperature variability for the region. Using the

Greenland δ18O record as a paleothermometer is a subject of debate (see [148], [149]

and references therein). However, it remains the only commonly used high resolution

hemispheric paleo-temperature proxy. At this point, the relation between Van-IC8 and

the data used in ICA can be queried but the high linear correlation between Ca, Fe, K

and Si (Figures B.7 and B.8) make it difficult to compare and discuss Van-IC8 with

the proxy data. Therefore, our interpretation of the Van-IC8 as a temperature proxy

stands only on its overall similarity to the NGRIP δ18O, Uk37 index and sea surface

temperatures from the wider region. According to this temperature variability, the

region’s temperature approximately followed the hemispheric temperature curve, i.e.

cold during glacials/stadials and warm during interglacials/interstadials.

The second highest similarity with the Greenland isotope data is established by

Van-IC7 (Table 3.1). The Van-IC7 curve very closely resembles the Greenland curve

(Figure 3.3), especially for abrupt events. However, trends and/or levels are not the

same as in the case for the claimed temperature proxy, Van-IC8. The most striking

differences are seen during times of maximal glaciation (the end of Late Pleistocene

and MIS 6) and during interglacials, especially through MIS 1, MIS 5e and MIS 5c.

Lake Van sediments are laminated and these laminations are described as varves

by [154]. Annual lamina couplets consist of dark and light alternations [131, 132].

According to [131], light layers represent the effects of spring runoff, summer

organic productivity and mixing and runoff in fall. While autochthonous biological

productivity partly depends on the temperature, its quantity is largely determined

by runoff through the transfer of organic matter, dissolved nutrients and mineral

particles [155]. Unstratified water column in Lake Van results in dark colored layers

42



MIS	7

MIS	6

MIS	5e

MIS	4

MIS	3

MIS	2

MIS	1

b.Summer	insol.
65oN	(W/m2)

475 525

																							GLTsyn
	

A
ge
	(k
yr
	B
P)

0

50

100

150

200

250

a.NGRIP&												
δ18O	(‰)

−45 −40 −35

cool														warm
c.Van-IC8

(temperature)

d.Lake	Van
Uk37

−0.5 0

e.SST(	oC)
Alboran	Sea

10 15 20

f.Van-IC7
(precipitation)
dry														wet

g.Lake	Van-AR
δ18O	(‰)

−202

h.Lake	Van-NB
δ18O	(‰)

−4−202

50

100

150

200

250
dry																wet

i.Dead	Sea
facies

Figure 3.3 : Comparison of selected independent components with global and
regional records. a. NGRIP δ18O data [66] combined with synthetic
Greenland record [136]. b. Summer insolation for 65°N [82]. c.

Temperature proxy of Lake Van Van-IC8, proposed in this study. d. Lake
Van Uk37 index, as a proxy for temperature [108]. e. Alboran Sea,

surface temperature [147] f. Precipitation proxy of Lake Van Van-IC7,
proposed in this study. g. Lake Van AR δ18O data [104]. h. Lake Van NB
δ
18O data [79]. i. Reconstruction of the hydroclimate of Levant by
aragonite-detritus laminae [150]. Black curves over Van-IC7 and
Van-IC8 are Butterworth lowpass filter designed with 1.5 kyr cutoff

period applied to IC’s interpolated to 50 years evenly spaced data. The
horizontal lines are the MIS boundaries defined in [151].

during winter. However, it must be noted that changes in precipitation variability

may also affect the thickness of dark layers [131]. Therefore, it can be seen that

annual meteorological conditions, but mainly precipitation, are reflected in laminated

sediments which in turn mainly define the changes in color profile of the sediment data.

In a region where seasonality of precipitation is high (see Section 3.3 and Figure B.1),

the color of sediments mainly reflects precipitation variability [156]. According to

mutual information results, Van-IC7 has the highest similarity with normalized B* data

(Table 3.1), which shows the highest information transferred to Van-IC7 through the
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analyzed data. In light of the above discussions, we claim that Van-IC7 is a precipitation

variability proxy for the region. Although the precipitation model presented here does

not agree with the hydroclimate variability and lake level reconstruction presented

in [37], Van-IC7 does show good correlation with lake level curve of the last 90 kyr BP

(Figure 3.5) constructed by [79].

Further supporting evidence for our interpretation of Van-IC7 comes from the δ18Obulk

data (Figure 3.3) retrieved from two different Lake Van composite profiles - AR [104]

and NB [79]. The isotopic composition of carbonates in Mediterranean lakes is

dependent on a number of different factors [11]. However, [130] and [11] explicitly
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record (NB) drilled from Lake Van.

state that the primary controlling factor of isotope fractionation in Lake Van is

evaporation/precipitation balance. [104] (similarly [79]), after an extensive discussion

reach a tentative interpretation (the original authors’ term) about the δ18O variability

of Lake Van carbonates. They claim that δ18O is a proxy of temperature and isotopic

condition of the epilimnion subject to the precipitation type/season in the region. This

conclusion was reached by rejecting the proposition that relative humidity was the

main controlling factor of δ18O and by assuming that glacial periods should be drier

than interglacials. By assuming that relative humidity is the main controlling agent for

δ
18O fractionation, the isotope profiles follow the trend of Van-IC7 during each marine

isotope stage (readers should also note that the age model of δ18O profiles depend on

the chronology constructed by [138]). Correlation between the isotope profiles and

Van-IC7 is not perfect, which is probably a result of dependence of δ18O on other

factors as stated by [11]. There are also differences between the NB and AR isotope

profiles but general trends in each marine isotope stage do resemble one another and

the difference between them may be a result of site difference, different age models

and/or different laboratory measurements.

As already stated in Section 3.2, earlier continuous records from Lake Van are not long

enough to test the results presented in this study. However, these studies suggest that the
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LGM should be conisdered to have been wet, judging by the terraces around the lake,

where the highest ones are 80m above today’s level [106]. On the other hand, neither

the hydroclimate model (namely, PC1) nor the lake level reconstruction based on a low

resolution climate model [157] presented by [37] capture a wet period during the LGM.

According to the lake level reconstruction (where it has been expressed as an idealized

low resolution experiment by the authors), [37] suggest it should have been somewhere

around 200m below today’s level during the LGM. This means that existing proposed

models fail to demonstrate an almost 280m lake level rise. However, while most high

resolution paleoproxies of Lake Van published by [104] and [37] correctly recover

abrupt changes in the North Atlantic, such as Dansgaard–Oeschger events, PC1 fails to

show a geologically established lake level rise of nearly 280m. Furthermore, there is

also a higher resolution hindcast climate simulation with a more realistic precipitation

pattern [153] for the period between 50 kyr and 11 kyr BP which is presented in [37]

but not used in lake level modeling, also it does not show low rates of precipitation

during the LGM (Figure 3.4). Hence, the arguments of [37] about the lake level, clearly

contradict the results of terrace studies.

Other than Lake Van, there are lakes with high-stand water levels throughout the LGM

not only in Anatolia [95, 158] but also in the Middle East [159], southern Europe,

and north Africa [93, 160, 161]. There are two schools of thought about the reasons

for these high lake levels in the eastern Mediterranean during the LGM [162]. The

first maintains that, during the LGM, very cold winters and cool cloudy summers

caused a decrease in evaporation [92]. However, according to the water-balance model

of past lake level changes and paleovegation cover in Lake Ioannina, this hypothesis

does not hold up, yet it should be a wet period [160]. Moreover, sequences of thick

aragonite-detritus deposits around the Dead Sea appear to imply that evaporation rates

were in fact higher than they are today, at least in the Dead Sea basin [159]. Despite

higher evaporation, the Dead Sea lake level was significantly higher than the present

day [159]. Furthermore, [150] claim that the end of MIS 6 should have been wet

and the end of MIS 5e should have been dry according to the Dead Sea facies record

(see [150] due to the particular way in which they define the term facies). Within the

age uncertainties in both records, Van-IC7 appears to follow the pattern of the Dead Sea

facies curve (Figure 3.3), supporting a climate-induced high-stand for Lake Van during

46



the LGM.On the other hand, while pollen data fromLakeVan do not reflect any increase

in precipitation during LGM [163], there are other pollen records from across the

Anatolian peninsula that so show evidence for high precipitation rates. Low percentage

rate of arboreal pollen in the Lake Van profile during the LGMmay be a result of severe

colds and/or day-night diurnal difference across the region which is typical of high

altitude geographies. Pollen profiles from the Marmara Sea [87] and Black Sea ( [152],

Figure 3.4), regions that are not affected by the continentality that LakeVan experiences,

reveal low temperatures associated with moderate precipitation. Furthermore, glacier

advances in south/southwest Anatolia during the LGM have been explained by high

precipitation rates by one-dimensional ice flow models in two studies [90, 91], both of

which claim that for the observed glacial advances to have formed in south Anatolia

during the LGM, precipitation should be almost twice its current rate.

High precipitation around the end of MIS 6 and the LGM is likely to be the result of the

expansion of the Northern Hemisphere ice sheet [159, 161]. The strengthening of the

polar anticyclone may have forced the extratropical low pressure and subtropical high

pressure systems to migrate southward and cause the Van region to be wet at this time,

although a climatic link between the North Atlantic and eastern Anatolia is more direct

during Greenland interstadials, which have been shown to be relatively warm and wet

at the region (Figure 3.4).

3.6 Conclusions

How to obtaining pure climate signals from paleo-proxies remains a matter of open

debate. In this study, we offer the results of independent component analysis of the

Lake Van AR data as possible reflection of temperature and precipitation variability of

eastern Anatolia during the last 250 kyr.

Our methodology was to first removing outliers in the data using an adjusted

outlyingness method and then applying FastICA by changing the initial random

vector several times and clustering the results. Preliminary selection of the climate

related variables depend on common information between the resulting components

and NGRIP δ18O data. Consequently, we suggest that two of the independent

components can be understood to reflect temperature (Van-IC8) and precipitation

(Van-IC7) variability of the region. Our suggestions about these selected components
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are supported by data from Lake Van and other regional records that also claimed to

reflect temperature/precipitation variability.

According to our results, the Lake Van temperature record maps onto the NGRIP δ18O

record, whereby interglacials and interstadials are relatively warm and stadials are

relatively cold. However, precipitation follows a different pattern, visually resembling

the Dead Sea records and Lake Van level changes. During times when glaciation is at its

maximum (the end of MIS 6 and LGM), precipitation increased. During interstadials

(MIS 5e/c and Holocene) a wet early stage was followed by a dry period.
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4. BAYESIAN TEST FOR THE 4.2 KA BP ABRUPT CLIMATIC CHANGE
EVENT FOR THE EASTERN MEDITERRANEAN AND ARABIAN
PENINSULA PALEOCLIMATE DATA USING STRUCTURAL TIME
SERIES1

4.1 Abstract

It has been proposed that an abrupt climatic change around 4.2 ka BP contributed to

the collapse of the Akkadian Empire. Since then, many published geological studies

reached conclusions that supported this hypothesis. Even though numerous other

studies contradict the idea of this abrupt climate change, the 4.2 ka BP time point has

nevertheless been accepted as the stratigraphic boundary ofMiddle andUpperHolocene

transition. However, time series plots of paleoclimate studies that claim to support the

abrupt climate change theory show different temporal and geometric patterns. In this

study, we use the Bayesian structural time series (BSTS) approach through Causal

Impact package, which is designed by Google Inc. analysts, to test the data that are

claimed to have a climatic anomaly around 4.2 ka BP in the eastern Mediterranean

and Arabian peninsula. To do this, each "affected" time series is reconstructed using

"unaffected" ones in a fully Bayesian framework by the BSTS method and then a

Bayesian hypothesis test is applied on each result. While our results confirm that some

studies that have previously been cited in support of the 4.2 ka BP event hypothesis

hold true, we also demonstrate that in a number of other studies there is no statistically

significant abrupt effect.

4.2 Introduction

There were numerous rapid climate change (RCC) events in the high latitudes of the

Northern Hemisphere during the Late Pleistocene [164]. There have also been attempts

to define RCC events similar to those seen in the Pleistocene for the Holocene, using

1This chapter is based on the paper: Ön, Z.B., Özeren, M.S., Greaves, A.M. and Akçer-Ön, S.
Bayesian test for the 4.2 ka BP abrupt climatic change event for the eastern Mediterranean and Arabian
peninsula paleoclimate data using structural time series, submitted to Progress in Physical Geography.
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available proxy data [165, 166]. The possibility of RCC events in the Holocene is

especially interesting because they would have taken place during a period of human

history typified by complex cultures and civilizations and can serve as models for

understanding the interaction between the natural environment and human society

within the context of a constantly changing climate. One of the most controversial of

the proposed RCC events is the so-called 4.2 ka BP event, first proposed by [8]. In their

study [8] claim that, a major short-term climatic change between 4.2 and 3.9 ka BP

contributed to the collapse of the Akkadian Empire.

Following [8], further studies were published that appeared to confirm their hypothesis

(see [167] and [168] and references therein). In their initial article [8] used eolian

deposits from archaeological contexts as well as excavated evidence and archaeological

survey data to propose that increased regional aridity in the Habur Plains of Syria led

to a decline in human settlement activity. Having begun as a drought phenomenon

for the Upper Mesopotamia, mounting evidence from subsequent studies in other

regions gradually led to controversial acceptance of 4.2 ka BP event as the geological

stratigraphic boundary betweenMiddle andUpper Holocene [169]. There are, however,

still problems with some of the evidence that are most widely cited in support of the

4.2 ka BP event through discussions of the theory [167,170,171]. For example, different

proxy data measurements are taken from the same sample, as in [130] where there is

a disagreement between the time series from quartz (which is claimed as a proxy for

eolian activity and is one of the most widely used form of evidence for the 4.2 ka BP

event, by researchers other than the original authors) and any other time series in

the same article (notably, relative humidity reconstruction). Furthermore, different

laboratory measurements were taken from the same sample by [110] and [130] but

their articles disagree on the time series of quartz which is one of the most widely

used forms of evidence in the 4.2 ka BP event debate. The data published by [110]

do not show any abrupt change at or around 4.2 ka BP but that published by [130]

using the same core are claimed to show. Asynchrony is also present for the same

proxies in samples taken from adjacent sites. For example, precipitation reconstruction

of [172] at Tel Akko shows a dry period around 4.2 ka BP, whereas precipitation

reconstruction during the same period from Dead Sea sediments reveals almost the

wettest period of the last 10 ka [173], while it should also be noted that, being an
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archaeological site, the pollen data from Tel Akko is subject to anthropomorphic

factors that do not affect any of the other series in our study (cf. [174]). Furthermore,

while the timing of the event was originally hypothesized by [8] as between 4.2 and

3.9 ka BP, some proxy data show a climatic event with different start and end dates.

For example, precipitation reconstruction from Tel Akko [172] reveals a dry period

starting at∼4.4 ka BP and the Soreq Cave geochemistry data [175] show a drying trend

starting at∼4.7 ka BP [176]. It has therefore subsequently been claimed that this event

may be a result of superimposed events starting around 4.7 ka BP [177]. Yet, on the

other hand, there are also numerous examples of proxy data that do not show any abrupt

change around 4.2 ka BP [6, 128, 176, 178].

Testing the presence of this abrupt event through individual datasets probabilistically

is impractical and poses a number of problems. If one considers each time series

individually conducting a frequentist approach, estimation or assumption of the

probability distribution of the data is a must, while Bayesian approach would be a

better alternative for the case which it is unknown. A Bayesian approach, if done

on an individual basis, is not especially useful either, because it would prevent us

from exploiting certain common stochastic trends shared across the whole or subsets

of the whole ensemble of time series. This is because the climate is a non-linear

dynamical system that is capable of producing certain self-organized criticalities at wide

spatial and temporal scales, such as the millennial climate change events through the

Late Pleistocene. Combining multiple time series and applying a Bayesian stochastic

reconstruction within a large spatial scale and over spatially sparse datasets with age

uncertainties is a challenging process. Although new paleoclimate studies with high

resolution data and robust age models will always be welcome, there are already enough

spatial/temporal data on which to begin building probabilistic models.

Our strategy in this study has been to reconstruct each paleo-proxy time series from the

easternMediterranean and southwest Asia (Figure 4.1)which claimed to show an abrupt

change around 4.2 ka BP, through time series that do not show any abrupt change during

the period of interest (Table 4.1). Reconstruction during the period prior to the supposed

RCC event is handled by the Bayesian structural time series (BSTS) method [179] and

reconstructed time series are extrapolated over time accordingly. During the temporal

interval of interest Bayesian hypothesis testing is applied to the difference between the
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original and reconstructed data to ascertain the statistical significance of the impact

on the proxy data using the causal impact method [9]. Within the scope of this study,

the term impact signifies only a change in the nature of the time series. The physical

cause of that impact may be external or an extreme climate state created as a result of

nonlinear interactions within the dynamical climate system itself without any external

triggering. In order not to bias the stochastic forecast by assuming a particular temporal

impact shape (impulsive, exponential dissipation etc.), the prior distribution model was

not informed by such processes.
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Figure 4.1 : Map of the wider region discussed in this study. Locations with numbers
show the control set, and the locations shown with letters show the
response variables. Black letters indicate the data confirming the

hypothesis, whereas red letters indicate the locations which do not or
partly confirm the hypothesis (for details, see Section 4.4). For the

references of the whole data and differences between the letter characters
of response variables, see Table 4.1. In this map, the locations of Grotte
de Piste and NGRIP data are not shown for visual reasons. This map is
prepared using GMT, version 5.2.1 [42] and ETOPO1 relief model [180].

The underlying idea of the causal impact method [9] depends on a fully Bayesian

synthetic reconstruction of a time series (response variable, in this study each of the

red and blue letters in Figure 4.1) which has been affected by an impact at a "known"

point in time. The control set, (in this study the set of numbers in Figure 4.1, and they
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Figure 4.2 : Plots of the control set given in Table 4.1. Black lines show the original
time series, interpolated to 50 years resolution and gray plots at the

background show the raw data (see Section 4.3.1). Dashed vertical lines
mark the interval between 4.4 and 3.9 ka BP. All the graphs are plotted
to represent a drought/cooling effect in the negative direction. For the

references of each data see Table 4.1.

are plotted in Figure 4.2) consists of other time series that are assumed to describe

the same dynamic process but must themselves not be affected by the impact, neither

in a positive nor a negative way. Furthermore, it is also assumed that the underlying

relation between the control set and the response variable, except for the impact itself,

also exists after the impact. Therefore, synthetically reconstructed response variable

should not show any significant sign of impact, and consequently the comparison of the

real variable with the reconstructed one at the period of impact gives a statistical result

about the significance of that impact on the studied time series. Within this framework,

the aim of this study is to generate synthetic time series of regional paleoclimate proxy

data, which are claimed to include an abrupt climate change around 4.2 ka BP and test

the statistical significance of that presumed abrupt change upon each of them.
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4.3 Methods

4.3.1 Data

Reconstruction of targeted time series (response variable) through BSTS will be more

robust if a longer data sequence is used and its application is only possible if the control

set does not contain any missing values. It should therefore be noted that there is

another controversial climate event similar to the 4.2 ka BP event at around 8.2 ka BP.

We therefore selected elements for the control set from the wider region according to

two criteria: that they have to span the period between 8 and 2.7 ka BP and that they

should have a resolution of at least 50 years, approximately. The end member of our

chosen interval, i.e. 2.7 ka BP, was selected because it marks the end of the almost

continuous Qunf Cave record. It would also have been possible to select 3.9 ka BP

as the end member but defining a longer period allows us to show the forecasting

capability of the method. We therefore used the interval from 4.4 ka BP to 2.7 ka BP,

a total forecasting period of 1700 years. The selection of 4.4 ka BP as the start of the

impact is to avoid the possible creation of bias from the age models and to be able

to show the the clear impact in the data coming from [177] (see Section 4.4 for the

discussion).

While the BSTS method (Section 4.3.2.1) does not require evenly spaced data time

points of control set and response variable must be contemporaneous. Since almost

none of the time series data used in this study (Table 4.1) are synchronous, all of them

are linearly interpolated to 50 years resolution to the NGRIP δ18O 50 year resolution

timescale converted from b2k to BP. Where some data sets had a higher temporal

resolution, this was handled by filtering the data using a first order Savitzky-Golay

filter [59] with a window spanning approximately 50 years of data. Filtering the

Sofular Cave δ18O and δ13C data resulted in a window of 19 data points;five data points

for the Jeita Cave δ18O data; nine data points for the Qunf Cave δ18O data; three data

points for the Grotte de Piste δ18O data; 23 data points for the Kocain Cave δ13C data;

and 17 data points for the Neor Lake XRF-Ti data.
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Table 4.1 : Data used in this study. The data given in the upper panel are the response
variables that it is claimed show an abrupt change during the period of
interest, in the context of causal impact method. The letters are given
according to the results gathered in this study: upper case Latin letters

confirm the abrupt change hypothesis; lower case Greek letters indicate a
change at the period of interest with a level shift; lower case Latin letters
give no statistically valid change (for details, see Section 4.4). The letter k
is the multiplier used through defining the gamma distribution of the prior
distributions of the standard deviations of local linear trend term errors
defined at Equation (4.1). The lower panel shows the control set in the

context of causal impact method, which do not show a change during the
period of interest. Site type abbreviations are as follows: M=Marine, AS=

Archaeological Site, S= Speleothem, L= Lake, I= Ice Core.

Location Site type Proxy Proxy Interpretation Reference k

A. Gulf of Oman (M5-422) M CaCO3 Eolian deposition [181] 0.1
B. Red Sea (GeoB 5836-2) M δ

18O Sea surface salinity [182] 0.05
C. Tel Akko (Akko core) AS pollen Precipitation [172] 0.02
D. Buca della Renella (RL4) S δ

18O Precipitation [177] 0.1
α. Soreq Cave (2-N) S δ

18O Precipitation [175] 0.05
β. Aegean Sea (GeoTü SL148) M δ

13CUm Productivity [183] 0.1
γ. Lake Dojran (Co1260) L CaCO3 Productivity [184] 0.01
δ. Lake Ohrid (Lz1120) L CaCO3 Productivity [185] 0.1
a. Neor Lake L XRF-Ti Eolian deposition [186] 0.025
b. Jeita Cave (J-1) S δ

18O Precipitation [187] 0.01
c. Lake Van (Van 90-10) L Quartz Eolian deposition [130] 0.02
d. Kocain Cave (Ko-1) S δ

13C Winter temperature [188] 0.01
e. Aegean Sea (GeoTü SL148) M Smectite/Illite Drought [189] 0.05

111. Arabian Sea (RC27-23) M δ
15N Denitrification [190]

222. Qunf Cave (Q5) S δ
18O Precipitation [191]

333. Lake Hazar (Hz11-P03) L Hz-ic4 Precipitation [6]
444. Lake Hazar (Hz11-P03) L Hz-ic5 Temperature [6]
555. Aegean Sea (LC21) M warm species (%) SST [84]
666. Black Sea (GeoB 7622-2) M clay layer freq. Precipitation [192]
777. Black Sea (GeoB 7625-2) M clay layer freq. Precipitation [192]
888. Sofular Cave (So-1) S δ

13C Effective moisture [128]
999. Sofular Cave (So-1) S δ

18O Moisture source [128]
111000. Grotte de Piste S δ

18O Precipitation [193]
111111. NGRIP I δ

18O Temperature [66]

4.3.2 Statistical methodology

4.3.2.1 Causal impact

Reconstruction of each response variable via control set depends on BSTS [179].

Structural time series models are powerful representations of time series in which

regression, trend, seasonality and other desired components can be explicitly and
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modularly defined. Basic structural time series model, which includes regression, local

linear trend and seasonality, is defined through the following set of equations

yt+1 = µt+1 + γt+1 +β
T xt+1 + εt+1,

µt+1 = µt +δt +ξt ,

δt+1 = δt +ζt ,

γt+1 =−
S−2

∑
s=0

γt−s +ωt .

(4.1)

In Equation (2.1), yt is the observed data (in this study, any of the time series at the

upper panel of Table 4.1, at time t), which in our case is claimed to show an abrupt

change around 4.2 ka BP. Here yt is defined with local linear trend µt , with dynamic

slope δt defined as a random walk, and seasonal component γt , such that it sums up to

zero in expectation over a full season. xt is the vector of contemporaneous covariates

(in this study, vector of data points at time t for the control set shown at the lower

panel of Table 4.1), data which are not affected by the impact, and β is the regression

coefficients vector associated with the control set. In the equations εt , ξt , ζt and ωt

are normally distributed Gaussian random noise error terms with zero mean and they

are independent of each other. The parameters of the model, which priors should be

defined for, are the variances of the error terms and β , the regression coefficients. As

there is no seasonality component to the data used in this study, for simplicity we omit

the seasonality term from now on.

Basic structural time series can easily be described as a state-space model

yt = Ztαt + εt ,

αt+1 = Ttαt +Rtηt ,
(4.2)

where εt ∼ N(0,σ2
t ), ηt ∼ N(0,Qt) and

α
T
t =

[
µt δt

]
, Zt =

[
1 0

]
,

Tt =

[
1 1
0 1

]
, Rt =

[
1 0
0 1

]
,

η
T
t =

[
ξt ζt

]
, Qt =

[
σ2

ξ
0

0 σ2
ζ

]
.

(4.3)

State-space model representation has the advantage of estimating parameters via

Kalman filter and simulation smoothers [194]. Kalman filters are effective tools

when variables of interest can be measured indirectly and give the model the
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capacity of parameter selection through Bayesian inference. Kalman filter recursively

computes p(αt+1 | y1:t) by combining the predictive distribution of the previous

step, p(αt | y1:t−1), with the emerged observation, yt . At each step, simulation

smoother [195] updates the mean and variance according to the previous predictive

distributions [9, 179].

The inclusion of control set elements to the regression as Bayesian model averages is

decided upon by placing spike and slab prior [196] to the regression coefficients and

σε , with conjugate normal-inverse gamma distribution priors [179]. Spike and slab

variable selection technique is useful when the number of predictors is inconveniently

large, or contains a mix of helpful and irrelevant variables. In the latter case one of its

main advantages is that it correctly accounts for model selection uncertainty.

Inference of the parameters is established through repeating the following three step

algorithm many times [179].

1. Latent state, ααα , is simulated through p(ααα | y,θ ,β ,σ2
ε ), where θ = {σ2

ξ
,σ2

ζ
} and y

is the observed data vector, i.e. response variable until the start of the impact,

2. θ is simulated through p(θ | y,ααα,β ,σ2
ε ),

3. β and σ2
ε are simulated through a Markov chain stationary distribution p(β ,σ2

ε |

y,ααα,θ).

The posterior predictive distribution of the model is defined through 100,000 Markov

Chain Monte Carlo iterations using Gibbs sampler via

p(ỹn+1:m | y1:n,x1:m) (4.4)

where, ỹn+1, . . . , ỹm is the set of the counterfactual values to forecast and x1:m is the

control set. The first 10% of the iterations are used as burn-in steps. The results are

given as the mean of the posterior state and %95 credible interval for the post-impact

period.

In order to control the incremental errors, prior distributions of σ2
ξ
and σ2

ζ
are assumed

to be gamma distributions, where 1/σ∗ ∼ Γ(10−2,ks2
y). Here s2

y is the sample variance

of the response variable and k is the multiplier, i.e. the prior standard deviation of

the Gaussian random walk is expressed in terms of data standard deviation. In each
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model, k as a hyperparameter describes the attribution of the random walk over the

noise fluctuations. The larger its value, the fit before the impact may be more accurate.

On the other hand, the forecast can be unrealistic and prediction bands would be wide.

It is suggested by [9] to select k as being a number between 0.01 and 0.1. The value

of k is selected through trials of numbers between 0.01 and 0.1 and visual control, by

which a good fit with reasonable prediction intervals can be obtained. The selected

value of k for each response variable is given in Table 4.1.

The significance of the impact is decided by finding the running average of the

differences between the response variable and synthetic time series for the defined

period and then Bayesian one-sided hypothesis testing is applied.

All the computations explained in this section are made through the open source

CausalImpact package [9] in the freeware statistical software package, R [54].

4.3.2.2 Structural change

Whenever a regression model is constructed on time series, it is assumed that the

regression coefficients remain temporally constant. However, if there is an abrupt shift

in the time series, then a level shift that would cause regression coefficients to change,

would be expected. Structural changemethod [197–199] finds the time points on a given

series to minimize the residual sum of squares for different number of breaks. Here,

by breaks, we mean oversimplifying the time series using a discontinuous function

composed of a number of staircase-like steps. Our search focused on regression

segments for at least 300 years and the optimal number of breaks were decided upon

through the Bayesian Information Criterion.

All the computations explained in this section are made through the open source

strucchange package [199] in the freeware statistical software package, R [54].

4.4 Results and Discussion

We performed BSTS stochastic fit to each of the data for which it had been claimed that

they show an abrupt event around 4.2 ka BP. Our control set (Table 4.1) is composed

of time series from the same wider region, but they do not show any abrupt change

(in neither a positive nor negative manner) during the 4.2 ka BP period. All these data

come from different studies, which may include certain biases both in terms of their
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own age models, laboratory measurements and in terms of the nature of different proxy

data. However, the use of multiple time series with Bayesian stochastic averaging,

depending on the state of information, is believed to be one of the most robust, holistic

and state-of-the-art approaches in the presence of such uncertainties [200, 201].

Selection of the control set elements mainly depends on the assumption of dynamic

atmospheric connection through the extended region and therefore it is assumed that

a relation between the proxy variables should exist. This connection can somehow

be verified through the Late Pleistocene millennial scale catastrophic events in the

region [67, 79, 159]. In some of the studies, even chronologies are constructed via this

assumption [37, 202]. Also today, it is assumed that most of the variance in climate

parameters of the region is mainly affected by the pressure gradient over North Atlantic

with a phase contrast between east and west Mediterranean [203–205]. The direct

connection of the North Atlantic to the region allows us to use NGRIP δ18O dataset in

the control set, since it is almost well defined with robust chronology. While Greenland

ice core isotope data have problems for the Holocene [149], all the Greenland ice core

data reveal, for example, the 8.2 ka BP abrupt event. We therefore selected NGRIP

data for the sake of oscillations contained in. Furthermore, in order to implement

the east-west connection of the Mediterranean region and increase the number of time

series in the control set we add the Grotte de Piste speleothem δ18O record from

Morocco [193]. On the other hand, spike and slab prior variable selection technique is

assumed to select the data from the control set which are statistically interrelated to the

response variable.

According to the hypothesis proposed by [8], there was an abrupt climate change

between 4.2 and 3.9 ka BP. Other studies enlarged the length of this interval, such

as [177] who suggested that it took place between 4.4 and 3.8 ka BP. Since causal

impact method applies a test on the differences between the response variable and the

synthetically reconstructed time series during the period of interest, it may have given

misleading results if we had restricted the onset of the event as 4.2 ka BP. Therefore,

for all the time series in this study, we assumed that the onset of the climatic impact

was 4.4 ka BP and it ends at 3.9 ka BP.

The hypothesis tests, based on our Bayesian stochastic fits to the time series, show

that the putative abrupt change is not statistically significant in all thirteen of the time
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series that we took into consideration. However, hypothesis test results of causal impact

analysis presented here only take into account the period of interest and this may give

misleading results in the scope of this study. Since the hypothesis testing procedure

only takes into account the moving averages of the differences between the response

variable and the synthetically constructed time series in the period of interest, if there is

a level shift at the time of impact but it persists beyond the specified impact period, then

causal impact will not give us any discriminatory measure after the specified impact

interval. However, the approach still gives us a confident measure about the presence

of the onset of that impact. In order to give a rough mathematical analysis for this

condition, we used the results of structural change methodology (see, Section 4.3.2.2).
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Figure 4.3 : Causal impact analyses for the response variables given in Table 4.1.
Black lines show the original time series, interpolated to 50 years

resolution, as explained in Section 4.3.1. Red dashed lines show the
reconstructed times series, and the blue clouds in each plot indicate the
95% credible intervals. Dashed vertical lines mark the interval between
4.4 and 3.9 ka BP, where the hypothesis tests are applied. The intervals
after 4.4 ka BP are the forecast periods. All the graphs are plotted to

represent the effect in the negative direction.

For some of the time series analyzed the onset of the impact is clearly visible, however

the shapes of the impact during the proposed drought period differ from case to

case (Figure 4.3). The presumed impact has different influences on different time
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series. In some of them, the general trend of the time series returns to its pre-impact

levels after the cessation of the impact interval [172, 177, 181, 182], while in the other

cases [175, 183–185] we don’t observe any such resilience and the signals experience

an enduring level shift (often negative) that lasts longer than the hypothesized impact

interval. This is true even for records where the same proxy data is used and/or the

sampling sites are close to one another (i.e. CaCO3 proxy in [185] and [184]). This may

be due to a permanent effect on the environment from which the proxies are sampled

caused by the impact. For example, an extended droughtmay have imposed a significant

change in the oceanic convective overturning regime that, in turn, permanently change

the residence time of δ 13C [183] leading to a level shift in the time series after the

cessation of the impact period. This may be a good example of a shift from one stable

system to another stable state which can be described by multiple equilibria in the

dynamical climate system (for example, see [206]).

The results suggest three different types of behavior in the time series following

the presumed onset of the impact. The first group [172, 177, 181, 182] confirms

the hypothesis of [8], namely, they not only confirm the onset date but also give

approximately the same duration of the impact as proposed by [8]. The second proxy

group [175, 183–185] shows that there is an impact in the time series but with an

enduring level shift after cessation of the presumed impact period (Figure 4.4). The

elements of the third group [130, 186–189], according to our methodology, do not

indicate any abrupt change in the period of interest, i.e. the time series continue

oscillating within the stochastic credible intervals.

A general consideration of the results show that the places where the proposed impact

was detected do not form any coherent geographical/regional cluster. In fact, they are

spatially diffuse across the study region. For example, we detected the impact in Buca

della Renella in Italy [177] and the Gulf of Oman [181], but these are at diametrically

opposed locations within the study region. Hence, if the impact did indeed exist,

it was not necessarily localized to a specific region. According to our results, the

hypothesis of a climatic change around 4.2 ka BP may not be completely false, but that

the interpretations of the proxy data may not be appropriate due to the location from

where the proxy is retrieved or the proxy’s ability to represent hydroclimatic changes

at the time scales we are interested in. Furthermore, we think that, without proper
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Figure 4.4 : Results of structural break method for the data who claim to show an
abrupt change during the period of interest. Black lines show the original

time series, interpolated to 50 years resolution and gray plots at the
background show the raw data (see Section 4.3.1). Purple plots on each
graph show the results of structural change method obtained by selecting

minimal segment size as 300 years. Dashed vertical lines mark the
interval between 4.4 and 3.9 ka BP. All the graphs are plotted to

represent the effect in the negative direction.

discussion of a level shift in a proxy data after the climatic deterioration period, it

should not be counted as a confirmation of the hypothesis. As stated by [3], "It is

easy to obtain confirmations, or verifications, for nearly every theory-if we look for

confirmations" (p. 47).

On the other hand, most impressive examples (spiky time series) of the 4.2 ka BP event,

can be found around the Indian Ocean. These data are from the Red Sea [182], Gulf of

Oman [181], northeast India [207], the Tibetan Plateau [208] and Mount Kilimanjaro

[209]. Therefore, the drought which has been observed in upper Mesopotamia may be

a reflection of an event in or around the Indian Ocean, which should be investigated at

future studies.
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4.5 Conclusions

Our study reconstructs paleoclimate proxy time series for which it has been claimed

that they show the 4.2 ka BP abrupt climatic event through other ones around the same

eastern Mediterranean and Arabian peninsula region using the BSTS method and then

test the event’s significance in the proxy record through the CausalImpact package.

Three structural groups can be identified through the results of our analysis:

1. Data that show the claimed impact from the Gulf of Oman [181], the Red Sea [182],

Buca della Renella [177] and Tel Akko [172] .

2. Data that show an impact at the period of interest but with an enduring level shift in

the time series. This level shift may be due to the dynamical character of the proxy

data which should be discussed in future studies. This is observed in data from the

Soreq Cave [175], the Aegean Sea [183], Lake Ohrid [185] and Lake Dojran [184]

3. Finally, some proxy data do not show a sufficient change to describe it as an abrupt

effect, including those from Lake Van [130], the Aegean Sea [189], Kocain Cave

[188], Lake Neor [186] and Jeita Cave [187]. The oscillations of time series around

the period of interest are acceptable within stochastic credible intervals.
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5. CONCLUSIONS AND RECOMMENDATIONS

Our conclusions from the three studies can be summarized in three parts.

In Chapter 2, we present µ-XRF, δ18O and δ13C data of Lake Hazar. A Bayesian

age model is fitted to the core and ICA is applied on µ-XRF data. Consequently,

precipitation and a temperature models for the last 17.3 ka BP are offered for the region.

According to the results, following outcomes can be summarized as conclusions:

i. The period before Bølling-Allerød was cold and wet, and Bølling-Allerød was warm

and wet.

ii. According to the constructed age model, there is a hiatus during the Younger Dryas

event, and this is an indicator of a dry period.

iii. Holocene temperatures were cooler at the start, however rise gradually to the

"Holocene normals". Temperatures oscillate around Holocene normals, except

the cold period between 3.5 ka BP and 2.8 ka BP

iv. Precipitation was high during the Holocene, except between 8 ka BP and 5 ka BP

and 3.5 ka BP and 2.8 ka BP.

In Chapter 3, we apply ICA on Ca, Fe, K, Mn, Si intensities analysed by XRF core

scanner, TOC and CaCO3 content and B* (color reflectance) of the Ahlat Ridge

sediment record spanning the last 250 ka BP and consequently a precipitation and

a temperature model are constructed. Our results show that:

i. Temperature of the region almost mimics the NGRIP δ18O record, i.e. warm during

interglacials and interstadials but cold during glacials and stadials.

ii. On the other hand, precipitation model reveals somehow a different pattern than

the recently proposed models. It is drier through cold periods, with an exception.

The region seems relatively wet during the times of maximum glaciations, which

at least is supported for the LGM by the terraces around the lake. The model also
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shows that, during interstadials, the region is wetter than the stadials and during

interglacials wet period is followed by a dry period.

In Chapter 4, we apply a test on the paleo-records from eastern Mediterranean and

Arabian peninsula, which claim to support the abrupt climate change around 4.2 ka BP.

This test is based on reconstruction of each record through other records of the region,

which do not show any change at the time of interest, by the method of BSTS and

consequently application of one sided Bayesian hypothesis testing. Our results indicate

that, among the paleodata which have been tested, not all the records show a statistical

significant change during the period of interest. The impacts claimed by the original

authors of the studies seem to be stochastic oscillationswithin the boundaries of credible

intervals.
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APPENDICES

APPENDIX A : Supplementary figures for “Climate proxies for the last 17.3 ka from
Lake Hazar (Eastern Anatolia), extracted by independent component analysis of µ-XRF
data”

APPENDIX B : Supplementary figures for “Temperature and precipitation variability
in Eastern Anatolia: Results from independent component analysis of Lake Van
sediment data spanning the last 250 kyr BP”

APPENDIX C : Supplementary figures for “Bayesian test for the 4.2 ka BP abrupt
climatic change event for the easternMediterranean andArabian peninsula paleoclimate
data using structural time series”
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APPENDIX A

This supporting information provides supplementary figures for Chapter 2.
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Figure A.1 : Scatter plots of the data used in this study.
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Figure A.2 : Scatter plots of independent components versus the data used in this
study.
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Figure A.3 : Scatter plots of principal components versus the data used in this study.
PCA is applied on the same data used through FastICA in this study.
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APPENDIX B

This supporting information provides the figures mentioned in Chapter 3, but not
available in text.

Va
n

(m
m
)

10

30

50

G
ev
aş

(m
m
)

20

50

80

Ta
tv
an

(m
m
)

40

80

120

A
hl
at

(m
m
)

25

50

75

E
rc
iş

(m
m
)

20

40

60

Ja
n

Fe
b

M
ar Ap

r
M
ay Ju

n Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

Figure B.1 : Monthly average precipitation through 1948-2004 for different stations
around the lake. Years with missing monthly data are not taken into
account. Meteorology station data has been collected and organized

by [125].
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Figure B.2 : Dendrogram of the average-link agglomeration, x-axis represents the
dissimilarity scale, which is equal to similarity values subtracted from
one. Similarity measure is calculated by absolute value of the mutual

correlation coefficient described in [142]. Dissimilarity oven 0.1 gives 8
different possible clusters.
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Figure B.3 : Possible clusters and R-index of the selected clusters via group
average-link agglomeration (Eq.4 in [142]). According to this

exploratory method, possible number of independent components is
equal to the data dimension.
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Figure B.4 : Cluster quality (stability) index, as given by Eq.3 in [142], which is
another exploratory method for the number of independent components.

Quality indices of all the components are satisfactory.
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Figure B.5 : 2-dimensional projection of the clusters generated via curvilinear
component analysis [143]. Black dots indicate different results of
different runs of FastICA with different random inital points. Red

convex hulls represent the each intra-cluster similarity (Eq.2 in [142])
above 0.90. Blue circles indicate the centrotypes of each cluster, which
has the maximum sum of similarity to other points within the cluster.
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Figure B.6 : Independent components gathered via FastICA algorithm after running
the procedure 250 times. Each independent component is the centrotype

of each cluster, as explained under B.5. Van-IC7 and Van-IC8 are
selected, as explained in the Section 2 of main text, and they represent
proxies of precipitation and temperature of the region, respectively.
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Figure B.7 : Scatter plots of the data used in this study.
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Figure B.8 : Scatter plots of independent components versus the data used in this
study.
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Figure B.9 : Scatter plots of principal components versus the data used in this study.
PCA is applied on the same data used through FastICA in this study.
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Figure B.10 : Moving 15 point Pearson r-coefficient of Van-IC7 and AR δ18O data
for the last 130 kyr BP. Savitzky-Golay filter with an 11 window length

has been applied on Van-IC7 and then linearly interpolated to age
model δ18O data.
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Figure B.11 : Moving 75 point Pearson r-coefficient of Van-IC8 and NGRIP δ18O
data for the last 130 kyr BP.
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APPENDIX C

This supporting information provides the supplementary figure for Chapter 4.
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Figure C.1 : An example of causal impact used on randomly selected data from the
control set and response variable from the main text. Data used for
control set are: 444,,,666,,,999,,,AAA,,,aaa,,,bbb,,,eee,,,α,,,δ,,,γ as indicated in the maintext.

Response variable is selected as 555 [84] and according to this
contradictory trial data, while 555 is not showing a specific event at the
period of interest, the analysis shows a statistically significant impact.

This is a good example of the wrong usage of the methodology
described in Chapter 4.
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