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SEPTEMBER 2019





ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

A NOVEL FRAMEWORK FOR DISASTER RESILIENT SMART CITIES:
USING BIG DATA ANALYTICS

Ph.D. THESIS

Syed Attique SHAH
(706142008)

Department of Applied Informatics

Geographical Information Technologies Programme

Thesis Advisor: Prof. Dr. Dursun Zafer ŞEKER
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A NOVEL FRAMEWORK FOR DISASTER RESILIENT SMART CITIES:
USING BIG DATA ANALYTICS

SUMMARY

Big Data Analytics (BDA) and the Internet of Things (IoT) based disaster management
is an under-investigated research area, which includes many interesting opportunities
and challenges. With IoT’s capability of offering a framework of ubiquitous network
with interlinked sensors and smart devices, IoT technology possesses the potential to
be incorporated in disaster management and can provide a positive impact on every
phase of emergency response. BDA, on the other hand, is known to facilitate the
real-time processing of IoT and other related data streams and is capable of providing
meaningful results for understanding the situations persisting in the disaster-affected
areas, hence based on the analytical results the deployment of resources is optimal
and effective. Moreover, big data generated in the IoT environments can be used
for performing data analytics, monitoring, forecasts and generating alerts for unusual
events. Therefore, this thesis focuses on the joint exploitation of BDA techniques
and IoT technologies that can lead to the development of an innovative, effective and
highly-needed disaster management environment.

Smart city incentives can play a major role in reducing fatalities by providing
information and new insights for resourcefully managing the disaster scenarios. The
concept of a smart city is being widely considered as an ideal solution to attain
high-quality collaborative multimedia services. Cities are becoming equipped with the
latest digital infrastructure of networks, sensors, and smart devices that are generating
an enormous amount of data; which can contain rich streams of contextual, spatial
and temporal information. With the excessive use of smart-phones and other portable
mobile technologies equipped with sensors (i.e., GPS receivers, high-resolution
cameras, microphones, accelerometers) and with the emergence of social media, the
traditional way of data acquisition and management is being challenged. Big sensed
data can provide a number of benefits such as situational awareness enhancement,
improved allocation of resources and provision of a better source for informing disaster
risk reduction strategies and risk assessments.

In this thesis, a novel conceptual framework is proposed for the fusion of BDA and IoT
technologies which promises a new and more effective approach for carrying out the
core operations of disaster management processes. The goal is to identify the benefits
of BDA- and IoT-based disaster management and investigated the state-of-the-art
literature conducted regarding BDA and IoT applications for disaster management.
The aim of the objective is to contribute to the knowledge and future research of the
design and implementation of BDA- and IoT-based disaster-resilient smart cities. The
focus is to find how big data technology, combined with some proposed parameters
can effectively be utilized to harvest, integrate, process and analyze datasets to provide
updated and useful information for disaster managers.
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During disasters, social media and micro-blogging services such as Twitter, Facebook,
and Foursquare have become major sources for retrieving real-time information that
can be used to trigger the alarm or to plan a rescue operation. Social Media datasets
are playing a vital role in providing information that can support decision-making in
nearly all domains. This is due to the fact that social media is a quick and economical
approach to collecting data. It has already been proved that in case of disaster (natural
or man-made) that the information extracted from Social Media sites is very critical to
Disaster Management Systems for response and reconstruction.

The quality concerns of unstructured social media datasets are being widely considered
as a challenging research opportunity. In this thesis, the quality of social media data
is evaluated through a proposed filtration mechanism. Two components of the system
are assessed to check the process of filtration. The first proposes a framework that
provides updated and filtered real-time input data for the disaster management system
through social media, and the second consists of a designed web user API for a
structured and defined real-time data input process. The objective of this attempt is
to propose a framework that can filter and organize data from the unstructured social
media sources through recognized methods and bring this retrieved data to the same
level as that acquired through structured and predefined mechanisms, such as a web
API. Both components are designed such that they can potentially collaborate and
produce updated information for a disaster management system to carry out accurate
and effective decision-making.

The integration and processing of big data sources (i.e. IoT-based sensors, social
media, crowd-sourced online mapping) can lead to a more effective but also a much
challenging environment. This thesis contributes by implementing a novel architecture
that can be used for managing and integrating different type’s big data in light with
available literature around the topic. The thesis concentrates on the implementation
model that outlines the details of all the operational steps performed in the deployed
system. The research proposes and evaluates a novel architecture to detect disaster
events in real-time from a Twitter stream and other IoT-based sensory data to track the
evolution of such events over time and location.

The implementation model reviewed in this thesis outlines the details of all the
operational steps performed in the deployed system within the scope of DRSC. The
proposed implementation model is divided into four layers, i.e., 1) Data Harvesting;
2) Data Aggregation; 3) Data Pre-Processing; 4) Big Data Analytics and Service
Platform. Initially, the data is aggregated from various recognized sources and then
normalized. The Z-score normalization using Mean Absolute Deviation to normalize
the aggregated datasets. Then the normalized data set are classified with the help of
the identifier and the message type. The classification phase distributes the contents
according to their data status and formats for effective processing. The classified data is
then converted to Hadoop and Spark executable format i.e., sequence files. The system
platform equipped with the Spark Engine and Hadoop Ecosystem process the data
according to the prescribed algorithms. The implementation is attained by using the
Hadoop ecosystem with MapReduce mechanism. Parallel formation of MapReduce
is deployed with HDFS. HDFS distributes the data in equal blocks among the data
nodes. Each block is copied on more than one data node allowing each node to
perform processing on its allocated block by using the Map function. A master node
with the authority of distributing data blocks to other nodes then concatenates the
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results from all the nodes by using Reduce function. A standalone Hadoop based
system is only suitable for offline batch processing. Therefore, Apache Spark was
deployed for real-time data processing. Apache Spark is used along with Hadoop for
more powerful operations on real-time streams of data. Spark Streaming that supports
both online and offline data streams is deployed for data aggregation in the system.
The implemented system benefits from parallel data processing through Hadoop and
real-time data processing by using Apache Spark. This combination provides flexible
and effective storage, accurate parameter calculation and fast result generation.

The main layer for data analytics and management contains a set of different tools to
aggregate, store, process, query and analyze data. Hadoop Ecosystem and Spark-based
analytics are carried out to evaluate real-time and offline analysis for IoT and Twitter
datasets. An interoperable and efficient storage mechanism is required for the
streaming structured and unstructured data. Hadoop Distributed File System (HDFS)
is a distributed storage file system designed to operate on commodity hardware with
higher efficiency to handle large volumes of data. HDFS acts as the underlying storage
for any Hadoop based system. Apache Spark, on the other hand, is an open-source
general computation engine for Hadoop, by far can fit the bill for time-critical and
massive data sized systems. Spark is ideal for interactive queries and also supports
the processing of real-time data streams. It is a well-recognized processing framework
with elegant APIs that supports various computer languages (i.e. Python, Scala, Java)
and ensures fast, flexible and easy-to-use computing to execute machine learning or
SQL assignments with streaming datasets. Moreover, it has a vast set of libraries
(i.e. MLlib, GraphX, Spark Streaming, Spark SQL) for different functions with the
possibility of adjusting and tuning according to the requirement.

The proposed scheme mainly targets processing large datasets that require efficient
real-time processing, therefore the implemented system was evaluated with regards to
data processing and throughput considering the increasing data size. Data filtering
and normalization techniques have sufficiently dragged down the processing time
and have increased throughput. The study evaluated various cases of Apache Spark,
single and dual node MapReduce Hadoop cluster with generic and filtered datasets to
compare the performance of various deployed schemes. The evaluation of the system
efficiency is measured in terms of processing time and throughput that demonstrates
the performance superiority of the proposed architecture.
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AFETE DAYANIKLI AKILLI ŞEHIRLER İÇİN ÖZGUN BİR ÇERCEVE:
BÜYÜK VERİ ANALİTĞİ KULLANIMI

ÖZET

Büyük Veri Analitiği (BDA) ve Nesnelerin İnterneti (IoT) tabanlı afet yönetimi, fırsat
ve zorluklarla birlikte henüz üzerinde çok fazla çalışılmamış bir araştırma alanıdır.
IoT’nin birbirine bağlı algılayıcılar ve akıllı cihazlar içeren her yerde bulunan bir
ağ çerçevesi sunma yeteneği yardımıyla, IoT teknolojisi, afet yönetimine dahil olma
potansiyeline sahiptir ve bu durum acil durum müdahalesinin her aşamasında olumlu
bir etki sağlayabilir. Öte yandan, BDA’nın IoT ve diğer ilgili veri akışlarının gerçek
zamanlı olarak işlenmesini kolaylaştırması nedeniyle felaketten etkilenen bölgelerdeki
durumu analitik sonuçlara dayandırarak ortaya koyduğu için anlamlı değerlendirmeler
yapmak mümkün olabilmektedir. Ayrıca, IoT ortamlarında üretilen büyük veriler, veri
analitiğini gerçekleştirmek, izlemek, tahmin etmek ve olağandışı olaylar için tahminler
ve uyarılar üretmek için kullanılabilir. Bu nedenle, bu tez çalışmasında, yenilikçi,
etkili ve ihtiyaç duyulan afet yönetimi ortamının geliştirilmesine katkı vereceğini
değerlendirilen BDA ve IoT tekniklerinin ortak kullanımına odaklanılmıştır.

Akıllı şehirlere yönelik çalışmalar, felaket senaryolarını kaynakça yönetmek için
bilgi ve yeni bilgiler sunarak ölümleri azaltmada önemli bir rol oynayabilir. Akıllı
şehir kavramı, yüksek kaliteli multimedya hizmetlerini elde etmek için ideal bir
çözüm olarak kabul edilmektedir. Şehirler, her geçen gün çok büyük miktarda
bağlamsal, uzamsal ve zamansal bilgi akışları içeren veri üreten ağların, algılayıcıların
ve akıllı cihazların en son dijital altyapısıyla donatılmaktadır. Akıllı telefonların ve
diğer taşınabilir mobil teknolojilerin aşırı kullanımıyla donatılmış algılayıcılar (yani
GPS alıcıları, yüksek çözünürlüklü kameralar, mikrofonlar, ivmeölçerler) ve sosyal
medyanın ortaya çıkmasıyla, geleneksel veri toplama ve yönetme yöntemleri yetersiz
kalmaktadır. Algılanan büyük veriler, durumsal farkındalığın arttırılması, kaynakların
daha iyi tahsis edilmesi ve afet riskini azaltma stratejileri ve risk değerlendirmeleri
hakkında bilgi vermek için daha iyi bir kaynağın sağlanması gibi birçok fayda
sağlayabilir.

Bu tez çalışmasında, afet yönetimi süreçlerinin temel işlemlerini gerçekleştirmek
için yeni ve daha etkili bir yaklaşım sunan BDA ve IoT teknolojilerinin birleşmesi
için yeni bir kavramsal bir çerçeve önerilmiştir. Bu amaç doğrultusunda, BDA ve
IoT tabanlı afet yönetiminin faydalarını tespit etmek ve afet yönetimi için BDA ve
IoT uygulamaları ile ilgili son teknolojiye yönelik çok geniş kapsamlı bir literatür
çalışmasını gerçekleştirilmiştir. Çalışmada, bazı önerilen parametrelerle birleştirilen
büyük veri teknolojisinin, afet yöneticilerine güncel ve yararlı bilgiler sağlamak için
kriz verilerini üretmek, entegre etmek, işlemek ve analiz etmek için etkili bir şekilde
kullanılabileceği üzerinde durulmuştur.

Afetler sırasında, Twitter, Facebook ve Foursquare gibi sosyal medya ve mikro blog
hizmetleri, uyarı alarmı verebilmek veya bir kurtarma operasyonu planlamak için
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kullanılabilecek gerçek zamanlı bilgileri almak için temel veri kaynakları haline
gelmiştir. Sosyal Medya veri setleri, hemen hemen tüm alanlarda karar vermeyi
destekleyebilecek bilgiler sağlamada hayati bir rol oynamaktadır. Bu, sosyal medyanın
veri toplamada hızlı ve ekonomik bir yaklaşım olduğu gerçeğinden kaynaklanmaktadır.
Afet durumunda (doğal veya insan yapımı), Sosyal Medya sitelerinden çıkarılan
bilgilerin, müdahale ve yeniden yapılanma için Afet Yönetim Sistemlerinde çok kritik
veriler olduğu zaten kanıtlanmıştır.

Yapılandırılmamış sosyal medya veri setlerinin kalitesine yönelik kaygılar, zorlu
bir araştırma fırsatı olarak kabul edilmektedir. Bu tez çalışmasında, sosyal medya
verilerinin kalitesi önerilen bir filtreleme mekanizması ile değerlendirilmiştir. Bu
süreci kontrol etmek için sistemin iki bileşeni değerlendirilir. Birincisi, sosyal medya
aracılığıyla afet yönetim sistemi için güncellenmiş ve filtrelenmiş gerçek zamanlı
giriş verilerini sağlayan ve ikincisi yapılandırılmış ve tanımlanmış bir gerçek zamanlı
veri giriş süreci için tasarlanmış bir web kullanıcısı API’sinden oluşan bir çerçeve
önerilmektedir. Bu girişimin amacı, yapılandırılmamış sosyal medya kaynaklarından
gelen verileri tanınmış yöntemlerle filtreleyebilecek ve düzenleyebilecek ve bu alınan
verileri web API gibi yapılandırılmış ve önceden tanımlanmış mekanizmalar yoluyla
elde edilenle aynı düzeye getirebilecek bir çerçeve önermektir. Her iki bileşen de,
doğru ve etkili bir karar alma süreci afet yönetimine yönelik sistem için güncellenmiş
bilgiler oluşturabilecek ve işbirliği yapabilecek şekilde tasarlanmıştır.

Büyük veri kaynaklarının (yani, IoT tabanlı sensörler, sosyal medya, kalabalık
kaynaklı çevrimiçi haritalama) entegrasyonu ve işlenmesi daha etkili ama aynı
zamanda çok zorlu bir ortama yol açabilir. Bu tez, farklı türdeki büyük
verilerin yönetime alınması ve konuyla ilgili literatür ışığında birleştirilmesi için
kullanılabilecek yeni bir mimarinin hayata geçirilmesine katkıda bulunmaktadır.
Tez, konuşlandırılmış sistemde gerçekleştirilen tüm operasyonel adımların detaylarını
gösteren uygulama modeline odaklanmaktadır. Araştırma, felaket olaylarını gerçek
zamanlı olarak bir Twitter akışından ve diğer IoT tabanlı duyusal verilerden tespit
etmek için bu tür olayların zaman ve konumdaki ilerleyişini izlemek için yeni bir
mimari önermekte ve değerlendirmektedir.

Bu tez çalışmasında incelenen uygulama modeli, DRSC kapsamında konuşlandırılmış
sistemde gerçekleştirilen tüm operasyonel adımların detaylarını ortaya koymaktadır.
Önerilen uygulama modeli dört katmana ayrılmaktadır. Bunlar; 1) Veri Toplama;
2) Veri Yığma; 3) Veri Ön İşleme; 4) Büyük Veri Analitiği ve Servis Platformu.
İlk olarak, veriler tanınmış çeşitli kaynaklardan toplanır ve ardından normalleştirilir.
Toplanan veri kümeleri için Ortalama Mutlak Standart Sapma kullanılarak Z-skoru
normalizasyonu gerçekleştirilir. Ardından normalleştirilmiş veri seti, tanımlayıcı ve
mesaj tipi yardımıyla sınıflandırılır. Sınıflandırma aşaması, içeriği veri durumlarına ve
etkili işleme formatlarına göre dağıtır. Sınıflandırılmış veriler daha sonra Hadoop ve
Spark için anlaşılabilir formata, yani sıra dosyalarına dönüştürülür. Spark Engine ve
Hadoop Ecosystem ile donatılmış sistem platformu, verileri öngörülen algoritmalara
göre işler. Uygulama, MapReduce mekanizmasıyla Hadoop ekosistemi kullanılarak
gerçekleştirilir. MapReduce’un paralel oluşumu HDFS ile konuşlandırılmıştır. HDFS,
verileri veri düğümleri arasında eşit bloklar halinde dağıtır. Her bir blok, Harita
fonksiyonunu kullanarak her bir düğümün tahsis edilen bloğunda işlem yapmasına izin
veren birden fazla veri düğümüne kopyalanır. Veri bloklarını diğer düğümlere dağıtma
yetkisine sahip bir ana düğüm daha sonra Reduce işlevini kullanarak tüm düğümlerin
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sonuçlarını birleştirir. Bağımsız bir Hadoop tabanlı sistem yalnızca çevrimdışı toplu
işleme için uygundur. Bu nedenle, Apache Spark gerçek zamanlı veri işleme için
dağıtılmıştır. Apache Spark, gerçek zamanlı veri akışlarında daha güçlü işlemler için
Hadoop ile birlikte kullanılmıştır. Hem çevrimiçi hem de çevrimdışı veri akışlarını
destekleyen Spark Streaming, sistemde veri toplaması için dağıtılır. Uygulanan sistem,
Hadoop üzerinden paralel veri işlemeden ve Apache Spark kullanarak gerçek zamanlı
veri işlemeden faydalanmaktadır. Bu kombinasyon esnek ve etkili depolama, doğru
parametre hesaplama ve hızlı sonuç üretmeyi sağlamıştır.

Veri analizi ve yönetimi için ana katman, verileri toplamak, depolamak, işlemek,
sorgulamak ve analiz etmek için bir dizi farklı araç içerir. Hadoop Ekosistemi ve Spark
tabanlı analitik, IoT ve Twitter veri setleri için gerçek zamanlı ve çevrimdışı analizleri
değerlendirmek üzere gerçekleştirilir. Akış yapılandırılmış ve yapılandırılmamış
veriler için birlikte çalışabilir ve verimli bir depolama mekanizması gerekir. Hadoop
Dağıtılmış Dosya Sistemi (HDFS), büyük hacimli verileri işlemek için yüksek
verimlilikleki donanımında çalışmak üzere tasarlanmış dağıtılmış bir depolama dosya
sistemidir. HDFS, herhangi bir Hadoop tabanlı sistem için temel depolama görevi
görür. Diğer taraftan Apache Spark, Hadoop için açık kaynaklı bir genel hesaplama
motorudur ve zamanla kritik ve büyük veri büyüklüğündeki sistemler için çok
uygundur. Spark etkileşimli sorgular için idealdir ve aynı zamanda gerçek zamanlı
veri akışlarının işlenmesini de destekler. Çeşitli bilgisayar dillerini (yani Python, Scala,
Java) destekleyen ve akışlı veri kümeleriyle makine öğrenmesi veya SQL atamalarını
yürütmek için hızlı, esnek ve kullanımı kolay bir bilgi işlem sağlayan zarif API’lere
sahip iyi bilinen bir işlem çerçevesidir. Ayrıca, ihtiyaca göre ayarlama imkanı olan
farklı işlevler için çok sayıda kütüphaneye (yani, MLlib, GraphX, Spark Streaming,
Spark SQL) sahiptir.

Önerilen çerçeve, gerçek zamanlı işlem gerektiren büyük veri kümelerinin işlenmesine
odaklanmıştır. Bu nedenle uygulanan sistem artan veri büyüklüğü dikkate alınarak
veri işleme ve verim açısından değerlendirilmiştir. Veri filtreleme ve normalleştirme
teknikleri, işlem süresini yeterince düşürmüş ve verimi artırmıştır. Çalışma, çeşitli
şemaların performansını karşılaştırmak için Apache Spark’ın farklı durumlarıyla
birlikte tek ve çift düğümlü MapReduce Hadoop küme örneklerini genel ve filtrelenmiş
veri kümeleriyle değerlendirilmiştir. Sistem verimliliğinin değerlendirilmesi, önerilen
mimarinin performans üstünlüğünü gösteren işlem süresi ve verim açısından
ölçülmüştür.
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1. INTRODUCTION

Disasters (natural or man-made) can cause great damage to human life, infrastructure,

and environment; anywhere at any time. In the last 10 years, a total number of 3,751

natural disasters such as flood, earthquake, landslide, tsunami, etc. are identified by

IFRC, world disaster report 2018 [1]. The financial loss associated with these disasters

estimates about 1,658 billion USD, and with human casualties’ rising around 2 billion

people. Moreover, a total of 118 man-made disasters such as nuclear meltdowns,

structure failures, transportation accidents, terrorist acts, etc., were reported in 2017

only, resulting in more than 3000 deaths [2].

Disaster Management can be considered as a set of organized processes that

incorporates the planning and managing of the activities in any of the disaster phases

i.e., mitigation, rescue, response, and recovery. Disaster management activities are

carried out through the collaboration of various concerned government and private

sector authorities. The main aim of disaster management is the integration of the

interrelated processes that can provide efficient means to analyze, monitor and or

predict disasters. In order to minimize the possibilities of casualties and environmental

destruction, disaster management measures need to be both preventive and reactive.

The key functions of disaster management are to trigger early warnings, collect

the information in real-time, accurately estimate the damage, quickly figure out the

evacuation routes and effectively manage emergency resource [3].

With the emergence of latest data analytics, service and communication technologies

such as BDA, IoT, cloud computing, fog computing etc., disaster management

systems are on the way to get equipped with multiple new supportive data sources

as well as fast and cost-efficient data processing tools that can potentially be utilized

to assist decision-making in all four phases of a disaster (i.e., rescue, response,

mitigation and preparedness). During the course of any disaster, appropriate and

timely decision-making based on accurate and up-to-date information determines

the effectiveness of a disaster management system [3]. Applications demanding
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real-time operations on their high-speed data streams require fast and large-scale

streaming data analytics to achieve desired results [4]. Through indulging diverse

data sources such as physical sensing devices and crowd-sourced information, a larger

environment can be provided for disaster management systems to make heterogeneous

data sources generate multi-dimensional data useful for performing effective analytics

hence generating better results and new insights. The growth of communication

through Web 2.0; the possible integration of potential heterogeneous data sources

(social media, IoT enabled sensors, satellites, smart-phones, authoritative/public data

repositories, etc.); and the emergence of the powerful big data analytics tools (Hadoop,

Spark, Kafka etc.) with interactive visualization applications (Kibana, Tableau, Plotly

etc.) can lead to a paradigm shift in disaster management systems.

The concept of Smart City is getting popularity, where various electronic devices

and network infrastructure are incorporated together to attain high-quality two-way

collaborative multimedia services. Smart city incentives are considered an ideal

solution by experts in both academia and industry to answer the challenges that

occur from population growth, environmental pollution, shortage of energy sources,

etc. [5]. Hence, a smart city equipped with the capability of generating early warnings,

monitoring, and predicting the disaster can be a game changer in minimizing fatalities

by generating the required information and insights for the concerned authorities to

intelligently manage the disaster scenarios.

An important component of any smart city is IoT, an infrastructure that allows devices

to communicate with each other over the internet. IoT is evolving rapidly and immense

value is given to it by various governments, enterprises and academic institutions. In

the modern world, the scope and size of IoT are triumphing drastically, endowing

new opportunities and also demanding challenges in the world of the internet [6].

Due to the intercommunication among various devices in such systems, a substantial

amount of data is generated known as big data. The devices in such systems sense

and transfer a large amount of data (Big Data) to the main station after identifying

the encompassing activities. Billions of devices in correspondence with a huge

population would intercommunicate, leading to the production of overwhelming big

data that requires storage and analytics for information acquisition. Moreover, as
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the interconnected devices in IoT are getting more advanced, a variety of multimedia

content (video, audio, still image, etc.) is also becoming available in IoT [7].

Social media platforms are also offering open opportunities for smart city initiatives

to extract valuable information for improved decision-making. Users of social

media are regarded as “Human as a sensor” since they provide real-time information

that can offer more insights about a particular incident [8]. Social media enables

people to communicate, express views and share contents like text /micro-blog,

photos and videos with or without geo-location through an internet-based application.

Crowdsourcing and especially volunteered geographical information (VGI) [9] are

becoming the major basis of data for disaster management, as citizens are actively

contributing in disaster response with their increasing access to social media and

location-enabled reporting tools. Geospatial data, boosted with crowd generated

geospatial content in the last few years is more in focus as compared to conventional

data sources for disaster/crisis management systems [10]. A large amount of literature

exists that is emphasizing on questions ranging from the overall framework of disaster

social media design [11], to models that help emergency responders understand

how crisis information is produced and shared by the general public through social

media [12], to architectures for data quality assessment and filtration of user-generated

content accessed from social media for disaster management.

“Big data” is normally described as the “next big thing in innovation” and truly so, as

big data have a revolutionary approach regarding data management. In literature, the

term “big data” usually refers to two different concepts, i.e. a) to state the massive size

of the data itself, and b) to state the ever-evolving set of techniques and technologies

that aid in effective processing and more insightful analysis of large volumes of

data. For big data applications, the most important task is to discover hidden values

rapidly from datasets having the enormous size that can possess various types of data

(i.e., structured, semi-structured and unstructured) [13]. Big Data Analytics (BDA)

examines large datasets from multiple sources for extracting valuable information and

insights that can help organizations make informed decisions.

Big data is associated with the ‘5Vs’ characteristics namely; Volume, Variety, Velocity,

Veracity, and Value. Volume refers to the huge collection of data that needs to be

stored and processed. Variety refers to the heterogeneous nature of the data having
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different formats such as text, images, video, and geo-data. Velocity refers to the rate

at which the data is generated. Veracity comes in to play due to data incompleteness

and data inconsistency, so it refers to the trustworthiness of the data. Big data is

normally labeled with lack of veracity in data and due to this concern, big data usage

is questioned for a critical domain like disaster management, where data needs to be

accurate and reliable. The fifth characteristic is Value, which refers to the outcome or

the valuable information conveyed by big data through some analytics for achieving a

specific business goal. Figure 1.1 shows the big data characteristics along with with

their details and the phase at which they could be considered in proposed scheme for

this study.

Figure 1.1 : Big data characteristics in accordance with the proposed scheme.

The huge volumes of unstructured data were considered useless a decade ago, but

with the advancements of BDA tools; these datasets are being analyzed to acquire

valuable information and insights. However, the reliability of captured data, ensuring

the privacy of citizens, and lack of understanding and collaboration between volunteer

groups and governmental organizations for managing big data are some of the key
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issues still faced [14]. Traditional data collection methods are very expensive and

time-consuming, as it involves tedious field surveys and outdated instruments. Thus,

the incorporation of smart technology is needed that can effectively and robustly gather

a huge amount of data, perform analytics and predict the future for improved planning

and development [15]. With the growing interest of companies, governments, and

academia for utilizing the potential benefits of BDA, a great deal of research is going on

regarding designing and deployment of applicable systems to efficiently manage and

analyze big data for extracting new insights for decision making [16]. Excitingly, data

streams from the IoT will test the traditional approaches for data management and will

eventually endorse the concept of big data [17]. Currently, the main sources of big data

are the human interactions on the Web 2.0, sensing information on the IoT, operational

and transactional data in enterprises and data generated from scientific research, etc.

Out of which the big data generated by IoT originate unique characteristics that include

heterogeneity between the datasets, a variety of information, unstructured features,

noisy data, and high redundancy [18].

Through the effective collaboration of Internet of Things technologies and

state-of-the-art big data analytical tools, large volumes of valuable data can be

aggregated from multiple data sources and analyzed to generate required results in real

time for effective decision-making in many applications. One such mission-critical

application is disaster management that demands time-sensitive and high-performance

characteristics in order to minimize the possibilities of casualties and infrastructural

destruction. The rising challenge to productively aggregate and analyze big data

generated from various sources, keeping in view the time constraint and an accuracy

restraint of disaster management processes offers an open research opportunity.

Developing architectural models that implement the IoT and BDA technologies

for disaster management automation and addressing the potential design challenges

associated in the same area is an overlooked aspect in current literature. When dealing

with a massive amount of distributed data from multiple sources (i.e. social media,

sensors, satellites, emergency responders, online news, etc.) the major issues faced

are data aggregation, integration, and processing of the multi-source heterogeneous

data. For solving data management issues in traditional disaster management systems,

there is a need to develop system architectures that support the integration of
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multi-source data, provide effective communication and fast access, deliver updated

and suitable data and assist in the standardization of information [19]. Since traditional

methodologies are not suitable to deal with these huge volumes of data from multiple

sources, BDA frameworks seem to be the effective solution to extract the required

information and new insights from these raw data streams [20]. Big data has the

potential for producing a much-advanced version of emergency response, as it has

access to critical real-time information that can be helpful for disaster management

[21]. Moreover, BDA is capable of processing huge sets of disaster-related data

in real-time during any of the four phases of disaster management (i.e., Mitigation,

Preparedness, Response, and Recovery) [22].

1.1 Purpose of Thesis

BDA frameworks are used to analyze various applications of the smart city, however

the time sensitive and accuracy demanding disaster/crisis/emergency management

applications are still to be evaluated. There are very few research resources in the

area of the smart city and disaster resilience and to the best of our knowledge BDA-

and IoT-based DRSC is rarely been investigated. Moreover, the requirement of an

efficient and scalable compact environment for a BDA- and IoT-based DRSC has not

been fully met yet. Therefore, this research attempts to present an architectural solution

that is deployed and evaluated for a DRSC and able to work with different data sources

supported by state-of-the-art big data analytical tools. The motivation behind our effort

is to provide innovative and effective BDA- and IoT-based DRSC architecture that

considers heterogeneous data sources and real-time processing for more instant and

insightful results. The aim of this research is to integrate different aspects of BDA and

IoT for effective utilization of multi-source big data and to gain from the opportunities

they offer for effective disaster management.

1.2 Motivations

Traditional disaster management systems are getting outdated as they are becoming

inadequate to manage operations with multi-sourced data and to store and analyze huge

volumes of disaster data in real-time [23]. With the constraints of accurate and timely

decision-making, disaster management and resilience processes require a reliable and

6



effective environment that integrates various state-of-the-art technologies to enhance

its performance. Moreover, it is very important to be able to engage any information

source critical to the situation in time for emergency responders, especially during the

initialization of the crisis response [24].

There is an increasing and compelling demand from the disaster management

community and concerned authorities to be provided with updated and accurate

information for disaster management processes using any possible data source.

Moreover, disaster response needs more improved operations and lack of (big) data

availability for supply networks is a major limitation [25]. Zheng L, et al [26] state “the

techniques to efficiently discover, collect, organize, search, and disseminate real-time

disaster information have become national priorities for efficient crisis management

and disaster recovery tasks". It is challenging for the traditional disaster management

systems to collect, integrate and process large volumes of data from multiple sources

in real-time [27]. Moreover, the constraint of generating results in a small amount

of time for emergency rescue and response, growing big data management issues

and limited computational power makes the current traditional disaster management

inadequate for the efficient and successful application. Previous studies have widely

discussed the importance of timely, operational and accurate information for disaster

management processes [28] [29] [30]. During the initial stages of a disaster, the

responsible authorities need to make accurate and fast decisions. These decisions can

only be successfully implemented if they are provided with quality information from

different sources covering multiple dimensions.

Established early warning systems such as IMIS (the early warning system for

radioactivity in the environment by the German federal government) [31] are often

multi-source systems, but they are neither multi-modal nor do they support the disaster

management life-cycle (response, continuity, recovery) [32]. Furthermore, they do

not exploit today’s available state-of-the-art technologies (such as Hadoop and Spark)

and are, therefore, limited with respect to dealing with existing and emerging big data

challenges.

The growth of big data, the advancement of BDA tools and the expansion of the

IoT are boosting the concept of smart cities. Smart cities are getting equipped with

multiple data sources to effectively help the citizens in their daily life activities. To
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deploy any smart city initiative, advance data sensing capabilities with highly efficient

communication network play a major role. However, for a smart city to become

a DRSC it needs to execute effective aggregation and storage of huge volumes of

data, integrate heterogeneous datasets and perform analytics in real-time to extract

the required information. The DRSC concept necessitates more attention due to its

time-sensitivity and high accuracy constraint application owing to the life or death of

human lives. Such problem signifies the leading edge of BDA and IoT advancements,

which collectively are capable of dealing with the urgency of this problem.

Apart from the conventional data sources (i.e., field surveys, satellite imagery, archived

databases) for disaster management a number of new potential data sources needs to

be evaluated. One of the potential data sources for disaster management includes

IoT-based sensors. IoT based sensors provide multi-dimensional data that can help

in collecting the required information (readings of temperature, radiation, toxic gases,

etc.) in case of any disaster. IoT driven platforms can provide disaster management

systems such as early warning system with time critical, scalable and interoperable

services [33]. IoT technologies offer the ability of distributed sensing with the

potential integration of heterogeneous data, which makes it suitable for disaster

management applications [34]. Another emerging and yet underused big data source

for disaster management is social media. A smart city needs to consider social

media to enhance communications with citizens, acquire feedbacks and encourage

empowerment between citizens and authorized organizations. Though dealing with

social media data requires an applied research approach, however, the importance of

basic research for introducing the latest technology aided platforms and addressing the

emerging architectural level issues for fast and effective processing of social media

generated data particularly for disaster applications cannot be neglected.

1.3 Scope and Limitations

The thesis tries to fill the research gap that exists in planning and designing BDA

applications for a time-sensitive and accuracy-demanding application like disaster

management. This thesis can assist researchers and practitioners to understand and

implement the concepts of BDA and IoT for preparing, responding and recovering

from disasters. Concerned authorities for disaster management such as emergency
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responders, police, public health, fire department, and NGOs/CSOs can benefit from

the proposed state-of-the-art BDA- and IoT-based disaster management architectures

to enhance their decision-making for effective rescue and response operations. To the

best of our knowledge, the contributions presented in this thesis are novel and the first

of it’s kind regarding BDA and IoT integration encapsulating any disaster management

process.

The primary limitation of this work is the lack of implementation on large-scale

infrastructure involving direct data collection from heterogeneous data sources over

various data communication mediums. The data collection is an expensive and

challenging process due to the involvement of different data sources producing a huge

amount of data. At this stage, as it is not feasible for this research work to set

up or get direct data access from a smart city incentive, therefore, already available

and recognized data sources were used for evaluation of the system. Smart city

initiatives have various kind of data sources (i.e., social media, IoT enabled sensors,

satellites, smart-phones, authoritative/ public data repositories etc.) but this research

only focuses on IoT generated and Twitter datasets. Limitation regarding the twitter

datasets analysis is that the findings are based on selected hashtags within certain

geographic boundaries. Another limitation is that the implementation of the system

only focuses on analysis for early warning alert generation of disasters. However, the

reference architecture is considering all the aspects of disaster management i.e., early

warning alerts, evacuation planning, monitoring, and prediction.

1.4 Thesis Contributions

The major contributions of this thesis can be divided into three main categories as

follows:

1. Review on the role of Big Data Analytics in Disaster Management

As the first contribution, this thesis primarily review the existing BDA related

literature within the scope of disaster management to explore the unrecognized

opportunities and potential challenges associated for effective, timely and accurate

disaster management related decision-making. The aim is to systematically
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identify future research openings and contribute to the knowledge of design and

implementation of BDA-based disaster management environments.

Contribution 1 can be further summarized into the following sub-contributions:

(a) The main benefits and the key requirements of BDA-based disaster

management environments are identified and discussed.

(b) Systematic literature review is performed to identify the recent research efforts

published with regards to state-of-the-art BDA for disaster management

applications.

(c) A thematic taxonomy is devised to categorize the related concepts and

essential parameters while promoting an efficient yet feasible solution for

BDA-based disaster management.

(d) An innovative and comprehensive conceptual reference model for BDA-based

disaster management environments is proposed with the aim to provide a

roadmap for future realistic applications.

(e) Few credible use cases considering disaster management operations are

presented. The selection of use cases considers the sequence of disaster

management operations to present an overall picture of the disaster

management environments where IoT and BDA play an important role.

(f) A set of open challenges that need to be explored in the future and addressed

for the desired research area are highlighted.

2. Proposing a framework for enhancing real-time big social media data to improve

the disaster management process

The second contribution of this thesis presents a implementation model for the

development of an integrated system consisting of social media crowd-sourced

component and a designed web API component through which organized and reli-

able data can be provided for real-time disaster management. This design-science

research demonstrates that the concept of social media crowd-sourcing can

effectively be used for real-time disaster management and tries to aid the theory

of making crowd-sourced data as trustworthy as other data sources. The basic

theme of this design is to make the unstructured crowd-sourced data processable
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so that it can be compared and merged with a structured data sources such as a

web API. This contribution comprises of two parts: The first proposes a framework

that provides updated and filtered real time input data for the disaster management

system through social media, and the second consists of a designed web user API

for a structured and defined real time data input process. The aim of this study is to

propose a framework that can filter and organize data from the unstructured social

media sources through recognized methods and bring this retrieved data to the same

level as that acquired through structured and predefined mechanisms, such as a

web API. Both components are designed such that they can potentially collaborate

and produce updated information for a disaster management system to carry out

accurate and effective decision-making.

3. BDA based novel framework for Disaster Resilient Smart Cities

The final contribution of this proposes and discusses the novel reference

architecture and philosophy of a Disaster Resilient Smart City (DRSC). The

proposed architecture offers a generic solution for disaster management activities

in smart city incentives. A combination of the Hadoop Ecosystem and Spark are

reviewed to develop an efficient DRSC environment that supports both real-time

and offline analysis. The implementation model of the environment consists of

data harvesting, data aggregation, data pre-processing, and big data analytics and

service platform. A variety of datasets (i.e., smart buildings, city pollution, traffic

simulator and twitter) are utilized for the validation and evaluation of the system

to detect and generate alerts for a fire in a building, pollution level in the city,

emergency evacuation path and the collection of information about natural disasters

(i.e., earthquakes and tsunamis). Contribution 3 can be further summarized into the

following sub-contributions:

(a) An innovative and state-of-the-art concept of BDA based environment for

disaster resiliency in smart city infrastructure is proposed. The proposed

concept of Disaster Resilient Smart City (DRSC) urges for the collaboration of

BDA and IoT, where IoT has the potential to offer a framework of a ubiquitous

network of interlinked sensors and smart devices, and BDA has the potential

to facilitate the real-time processing of IoT along with other related data
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streams to reveal new information, patterns, and insights for effective disaster

management.

(b) A novel reference architecture is presented to demonstrate the general

framework for the proposed concept of DRSC, with the aim to provide

a roadmap for future expeditions. A complete five-layered architecture is

planned for a DRSC environment, which supports large volumes of datasets

from multiple data sources for efficient real-time and offline analysis that aids

in triggering early warning, monitoring, and reporting disaster situations.

(c) A combination of the Hadoop framework and Spark analytical engine is

implemented and tested to support real-time and offline processing on various

datasets generated from IoT and Twitter. The implementation model of the

deployed system is provided with the performed sequential steps to understand

the system efficiently.

(d) Two use cases i.e., 2018 Indonesian earthquake twitter data and twitter data

for identifying earthquake and storms in Turkey are taken into consider for

the implementation model. The main theme for the use cases is to detect and

generate early warning for a disaster and provide useful information for rescue

and response.

(e) The system is evaluated regarding processing time and throughput. The results

demonstrate the performance superiority of the system.

(f) Finally, the open challenges that can be faced during the deployment of such

an environment are identified and discussed briefly.

1.5 Methodology

The methodology to carry out this research includes various steps as depicted in Figure

1.2. The initial step involves identifying and classifying the research problem. Once

the research problem was identified a systematic literature review was conducted to

extract various related work and existing solutions to understand the problem in depth.

Background research was performed on the key topics and their subtopics to gather

as many resources as possible to extract the required knowledge using the systematic

literature review protocols. Various BDA and IoT state-of-the-art works were identified
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Figure 1.2 : Research methodology for the thesis.

to check different possibilities for technologies integration and functionalities. The key

challenges that can be faced in this specific research were identified and opportunities

were discussed for future expeditions. Disaster management was chosen as a use-case

to demonstrate the applications of this research work as disaster management processes

require a time-sensitive and performance demanding application to save human life.

Disaster management also provides various big data challenges in real applications

due to the involvement of various data sources, in particular recently social media

and IoT sensors usage is in high for various disaster management applications. The

data analytics for disaster management requires various data filtration and quality

concerns to be solved to generate applicable decisions in a short amount of time.

These conditions provide an ideal scenario and a perfect use-case to evaluate the

validity of various data quality techniques and big data analytical tools for this

research. Disaster management has various applications such as prediction, alert

generation and monitoring that can be investigated with the integration of IoT and

BDA, but in the context of this research work, only the alert generation for disasters

process was considered. The research work was further divided into three different

13



components each directed towards the overall system implementation using different

data sources. IoT and social media components were implemented separately using

various data sources for alert generation for various kind of disaster i.e., fire, toxic

gases, earthquake, and tsunami. Hadoop and Spark frameworks were evaluated with

single and dual node machines for various results. After evaluation of the implemented

system, an architecture was designed for large-scale application of IoT and BDA for

disaster management for smart city initiatives. Lastly, discussion was made on the

overall implementation of the architecture identifying its benefits and requirements

and potential future directions were highlighted along with the drawn conclusions.

1.6 Thesis Organization

This thesis comprises of six chapters in total. Chapter 1 introduces the problem

statement along with the purpose and motivations of the research. It describes the scope

and key limitations of this work. It also highlights the overall methodology carried

out for this research. Chapter 2 discusses the systematic literature review performed

to identify the unrecognized opportunities and challenges associated with BDA and

IoT for disaster management application. In this chapter, a thematic taxonomy is

classified with several related attributes and inspects the prevalent solutions to propose

a conceptual reference model for the deployment of BDA- and IoT-based disaster

management environments. The aim of this chapter is to systematically identify future

research openings and contribute to the knowledge of design and implementation

of BDA- and IoT-based disaster management environments. Chapter 3 presents a

framework for the filtration and quality insurance of the social media datasets. This

chapter discusses about two components related to social media datasets. The first

part proposes a framework that provides updated and filtered real-time input data for

the disaster management system through social media and the second part consists of

a designed web user API for a structured and defined real-time data input process.

A novel reference architecture and the philosophy of a Disaster Resilient Smart

City (DRSC) through the integration of various data sources including social media

(Twitter) and IoT technologies is proposed and discussed in Chapter 4. In the fourth

chapter, a variety of datasets (i.e., smart buildings, city pollution, traffic simulator

and twitter) are utilized for the validation and evaluation of the system to detect and
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generate alerts for a fire in a building, pollution level in the city, emergency evacuation

path and the collection of information about natural disasters (i.e., earthquakes and

tsunamis). Chapter 5 presents the proposed scheme implementation and performance

evaluation results. Finally, Chapter 6 summarizes the overall research findings and

discusses the recommendations for future research.
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2. THE RISING ROLE OF BIG DATA ANALYTICS AND IOT IN DISASTER
MANAGEMENT1

2.1 Abstract

The recent development of Big Data Analytics (BDA) and the Internet of Things

(IoT) technologies create a huge opportunity for both disaster management systems

and disaster-related authorities (emergency responders, police, public health, and fire

departments) to acquire state-of-the-art assistance and improved insights for accurate

and timely decision-making. The motivation behind this research is to pave the way for

effective utilization of the available opportunities that the BDA and IoT collaboratively

offer to predict, understand and monitor disaster situations. Most of the conventional

disaster management systems lack the support for multiple new data sources and

real-time big data processing tools that can assist decision makers with quick and

accurate results. This chapter highlights the importance of BDA and IoT for disaster

management and investigates recent studies directed towards the same. A thematic

taxonomy is classified with several related attributes and inspect the prevalent solutions

to propose a conceptual reference model for the deployment of BDA- and IoT-based

disaster management environments . The reference model with its proposed integrated

parameters can provide guidelines to harvest, transmit, manage, and analyze disaster

data from various data sources to deliver updated and valuable information for disaster

management. Some important use cases from a disaster management perspective is

also enumerated. Lastly, the main research challenges that need to be addressed in

such an important field of research are highlighted.

In this chapter, the existing BDA and IoT literature is reviewed within the scope

of disaster management to explore the unrecognized opportunities and potential

1This chapter is based on the paper "Shah, S. A., Seker, D. Z., Hameed, S., Draheim,
D. (2019). The Rising Role of Big Data Analytics and IoT in Disaster Management: Recent
Advances, Taxonomy and Prospects. IEEE Access, 7, 54595-54614. [Online]. Available:
https://ieeexplore.ieee.org/document/8698814."
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challenges associated with their collaboration for effective, timely and accurate

disaster management related decision-making. The key forte of this chapter is the

emphasis that the integration of BDA and IoT technologies can provide promising

solutions and new insights for disaster management applications. The aim of this

chapter is to systematically identify future research openings and contribute to the

knowledge of design and implementation of BDA- and IoT-based disaster management

environments. A huge research gap still exists in planning and designing integrated

BDA and IoT applications for a time-sensitive and accuracy-demanding application

like disaster management. To the best of our knowledge, this paper presents the

first survey of its kind regarding BDA and IoT integration encapsulating any disaster

management process.

2.2 Introduction

The financial loss associated with these disasters estimates about 1,658 billion

USD, and with human casualties’ rising around 2 billion people [1]. Moreover,

disastrous events such as terrorist attacks, oil spills, nuclear meltdowns, transportation

accidents, etc., are prominent news channel headlines almost every day. Most of

the large metropolitan cities of developing nations with increasing population are

highly disaster vulnerable regions of the world. This is because their authorities

lack situational information in case of a disaster, as they are largely constrained by

shortage of resources [35]. Both natural and man-made disasters require preventive and

reactive measures that need to be pre-planned for effective applications to reduce the

chances of causalities and environmental/infrastructure damage. Therefore, disaster

management systems need to effectively extract affirmative knowledge, monitor and

analyze the ground situation, facilitate evacuations and predict the occurrence of

disasters. Disaster management related government authorities, researchers and

practitioners have been endeavoring to enhance the disaster management processes

by considering new ideas from various research gatherings, such as information

technology, cartography, health sciences, and environmental sciences. Their ultimate

goal is to enhance the data gathering, managing, processing and visualizing phases of

disaster management systems for timely and accurate decision-making. This precise

and quick decision-making constraints for the disaster management systems require
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the utilization and integration of several state-of-the-art technologies to support its

operations resourcefully.

The concept of smart city is being widely considered as an ideal solution to attain

high-quality collaborative multimedia services [36]. Cities are becoming equipped

with the latest digital infrastructure of networks, sensors and smart devices that

are generating an enormous amount of data; which can contain rich streams of

contextual, spatial and temporal information [37]. Smart city incentives can play

a major role in reducing fatalities by providing information and new insights for

resourcefully managing the disaster scenarios. With the excessive use of smart-phones

and other portable mobile technologies equipped with sensors (i.e., GPS receivers,

high-resolution cameras, microphones, accelerometers) the traditional way of data

acquisition and management is being challenged. Big sensed data can provide a

number of benefits such as, situational awareness enhancement, improved allocation

of resources and provision of a better source for informing disaster risk reduction

strategies and risk assessments [25]. Multiple data sources can generate a large

amount of unstructured data to the remote station on request or after identifying

the encompassing activities. However, it is quite challenging to process these huge

volumes of heterogeneous data in real-time when a disastrous event is triggered [22].

Practices focusing on the discovery, collection, classification, search and distribution

of real-time disaster information have the highest priority for an efficient performance

in disaster management tasks [26].

Currently, BDA- and IoT-based disaster management is an under-investigated research

area, that includes many interesting opportunities and challenges. With IoT’s

capability of offering a framework of ubiquitous network with interlinked sensors

and smart devices [38], IoT technology possess the potential to be incorporated in

disaster management and can provide a positive impact on every phase of emergency

response [39]. BDA on the other hand, is known to facilitate the real-time processing of

IoT and other related data streams [40], and is capable of providing meaningful results

for understanding the situations persisting in the disaster-affected areas, hence based

on the analytical results the deployment of resources is optimal and effective [41].

Moreover, big data generated in the IoT environments can be used for performing

data analytics, monitoring, forecasts and generating alerts for unusual events [42].
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Figure 2.1 : General illustration of BDA- and IoT-based disaster management
environment.

Therefore, we argue that the joint exploitation of BDA techniques and IoT technologies

can lead to the development of an innovative, effective and highly-needed disaster

management environment. A general illustration of BDA- and IoT-based disaster

management environment is demonstrated in Figure 2.1.

2.3 Disaster Management and the need for BDA and IoT

In order to understand the uprising role of BDA and IoT in disaster management, it is

important to have a clear image of disaster management systems and its operations. In

this section, we will first describe the disaster management systems and its applications

and requirements. Then we will discuss the benefits that the collaboration of BDA and

IoT offers for disaster management and also identify some of its requirements.

2.3.1 Disaster Management Systems

Disaster Management can be defined as a systematic approach that involves planning

and managing the disaster mitigation, rescue, response and recovery through the
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collaboration of federal, state, local and private sector entities. The general concept of

disaster management can be viewed as a combination of many interrelated processes

that aims at providing efficient means to understand, analyze, monitor and predict

disaster occurrences. With the rapid advancement in Information and Communication

Technology (ICT) from the last two decades, it is now possible to initiate a quick

response to any disaster situation in reasonable time and budget.

Table 2.1 : Main DMS applications and requirements.

Disaster Status DMS Applications DMS Requirements

Pre-disaster
Disaster Prediction
Early Warning
Simulation Exercises

Reliability
Availability
Maintainability
Accuracy
Usability

Post-disaster
Evacuation
Rescue Assistance
Monitoring / Surveillance
Logistics Management

Disaster Management System (DMS) is a type of information system that assists the

decision makers and responders in acquiring, managing and utilizing the disaster

information for timely and effective disaster management. The main components

of DMS can be divided into data integration, data mining, and multi-criteria

decision-making [43]. DMS can be regarded as highly integrated and complex

systems that require application specific design and maintenance. Currently, due

to the involvement of various interlinked data nodes and with large scale of

data requiring real-time analytics, the designing and implementation of a DMS

becomes a multidimensional and complex problem. Disaster management applications

can be categorized into pre-disaster and post-disaster phases since they deliver

diverse functionalities with different requirements for response time, accuracy and

effectiveness. Pre-disaster applications such as disaster prediction, early warning

system, and simulation exercises etc., focus on measured and inclusive data analysis.

On the other hand, post-disaster applications such as Evacuation, Rescue Operations

and Monitoring etc., require spontaneous and accurate results. However, each

application of DMSs should support heterogeneous and distributed data sources

and allow decision makers to extract useful knowledge in an interactive manner.

DMSs must possess the desirable technical factors such as reliability, availability,
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maintainability, accuracy and usability requirements [44]. As categorized in Table

2.1 each DMS application needs to satisfy the requirements. Through ensuring

these requirements the developers can set benchmark quality attributes to verify the

performance and measure the effectiveness of the DMS.

2.3.2 BDA- and IoT- based disaster management environments

Disaster management systems requires to be shifting to state-of-the-art environments

that are supporting multiple data sources and are equipped with latest technologies

offering broader range of capabilities for enhanced connectivity, storage, real-time

analytics and cost-effective applications. These environments can be successful

deployed by indulging BDA and IoT technologies together for disaster related

operations. Figure 2.2 presents the benefits that can be achieved through the

combination of BDA and IoT for disaster management systems and also identifies

the main requirements for deploying a BDA- and IoT-based disaster management

environment.

2.3.2.1 Benefits

BDA- and IoT-based disaster management environments can provide a number of

benefits within the scope of disaster management. Some of the key benefits are

described in the following subsections.

Connectivity: Connectivity is required to facilitate the aggregation of huge

volumes of data from heterogeneous data sources to high-performance computing

infrastructures and further sharing of information with concerned disaster management

authorities. Due to the availability of various communication technologies, one of

the key benefits of BDA- and IoT-based disaster management environment is to

provide reliable connectivity. Connectivity among the interlinked data nodes and

DMS acts as the backbone for the insurance of successful operations. As a number

of communication technologies are available the overall environment architecture

has to be flexible to deal with different communication protocols including local

and remote communications [45]. Moreover, with the evolution in post-disaster

communication networks, seamless connectivity is provided even with the distraction

of other conventional communication networks in post-disaster situations.
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Figure 2.2 : Benefits and requirements of BDA- and IoT-based disaster management
environments.

Data Storage: Storage of huge volumes of heterogeneous data in real-time can

be challenging in conventional DMSs. With BDA technologies such as Hadoop,

large-sized structured or unstructured datasets can effectively be stored on low-cost

commodity hardware. Real-time environments having streaming storage capability for

IoT devices and other data sources can enhance the entire data processing efficiency

and can provide a number of benefits to the designated applications [46]. Moreover,

BDA technologies can enable efficient processing with low latency for data analytics

while maintaining the storage of massive unstructured datasets.

Real-time Analytics: Due to the dynamic and demanding nature of disaster

management, real-time analytics is one of the key requirement for current disaster

management environments. Connectivity among various data sources results in

massive data generation at high speed that can create hurdles in performing real-time

analytics. A dedicated technological platform with the software solution capability to

perform real-time processing, streaming and in-memory computing is needed to deal

with such enormous and high-velocity data [47]. The ability provided by BDA to
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perform fast analytics with real-time queries is vital to help decision makers obtain

required results for an effective emergency response.

Cost-effectiveness: BDA tools are mostly open-sourced and it offers a huge cost

reduction opportunity as compared to buying proprietary data processing software

solutions for disaster management operations. Cost-effectiveness is an important factor

for disaster-concerned authorities in developing countries, where disaster management

systems are not deployed due to lack of funds. Map-reduce is an ideal solution for

cost-effective data storage and useful for decreasing the computational costs of the

overall system [48]. Moreover, with the declining costs of hardware and software

utilities of IoT deployments, state-of-the-art technologies can be deployed easily with

much lesser budget.

Multiple Data Sources: In the context of integrating IoT environments equipped

with multiple data sources such as cameras, sensors, smartphones etc., with BDA

technologies assisting in data processing, a number of data sources can be incorporated

to gather new and valuable insights and information. Engaging multiple data

sources provide alternative ways to address problems that require multidimensional

representations of the data to extract the common patterns for a solution that are

inaccessible through a single source of data [49]. With the availability of diverse and

rich data sources, BDA- and IoT-based disaster management environments can surpass

conventional DMSs data sources.

2.3.2.2 Requirements

The key requirements for deploying BDA- and IoT-based disaster management

environments are described in the following subsections.

Interoperability: The capability of being able to link, combine and process two or

more datasets is known as interoperability. The collected datasets from heterogeneous

sources might not align with each other, or it can be difficult to determine the

possible relationships among them. During real-time data harvesting and integration,

it is important and challenging at the same time to achieve the maximum level of

interoperability. Interoperability can be ensured at technical, syntactic, semantic
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and pragmatic levels [50]. Hence, good practice can be to apply interoperability

checks at the data structure, storage, and communication levels through abstraction

and virtualization to ensure high reliability.

Data Cleansing: Data cleansing is essential for disaster management, as incomplete,

error-prone and ambiguous data can lead to more problems and wastage of precious

time. Data cleansing parameters determine the accuracy of the analysis carried out on a

particular dataset. However, as data cleansing works on a complex relationship model

and can require extra computation power and processing time, a balance should be

kept between the data cleansing model and the accuracy improvement of the analysis

[51]. Moreover, with the growing usage of social media data for disaster management

processes, a different kind of unstructured data is emerging that needs to be checked

for authenticity, credibility, and accuracy.

2.4 Recent Advances

The research on BDA and IoT in the domain of disaster management is still in its

infancy. This section reviews the recent research contributions with the aim to identify

the key research areas and highlight the latest advancements recognized to enhance the

disaster management related processes.

2.4.1 BDA for Disaster Management

Big data analytics provides a variety of solutions on huge multi-sourced datasets

collected from the disaster area to uncover hidden patterns and understand the

situations on the ground so that rescue activities can be carried out effectively and

logistics can be managed optimally. One of the main advantages of using BDA is

that it enables data scientists to analyze huge volumes of data involving different data

sources that may not be collected using traditional tools [52]. BDA depends on various

technologies and tools for the execution of huge volumes of structured, semi-structured

and unstructured data for analytical processes. Research trends in BDA for disaster

management focus on both the content/text and the spatial points of view of the data

for analysis and result generations [41].
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Despite the limited publications regarding BDA for disaster management, some of the

recent research as compared in Table 2.2 shows that a variety of data sources are being

utilized with various open-source BDA tools within the scope of disaster management.

For instance, for flood risk management an interoperable mechanism was designed

by authors in [53] to integrate heterogeneous sensors that enable access and filtering

of the data in near-real-time using Spark. The approach used in their study offers

a method to enhance near-real-time applications using heterogeneous data streams

i.e., crowdsourced and sensor data. In another study [54], a big data crisis mapping

system was designed that is able to collect and analyze Twitter data utilizing Kafka

and Spark. The system extracts information related to the disaster from the collected

geo-tagged tweets by applying classification technique and semantic annotators. This

information is then visualized on a web-based dashboard for emergency responders to

acquire greater situational awareness in the early stages of the disaster. The authors

in [55] specified that Spark-based computation on huge sets of historical data provides

better performance for the simulation to identify typhoon risk assessment feasibility.

Similarly, in another study [56], the authors used several regression algorithms

using Spark to analyze large catalog of earthquake events. They demonstrated very

promising results regarding the prediction of earthquake magnitudes in the state of

California. In [57], the authors proposed a real-time collection and classification

algorithm of mobile phone position data by stream processing environments such as

Kafka and Spark to produce a high precision heat map of the population affected by

the earthquake. An integrated disaster management system developed through the

combination of Hadoop and Spark was presented in [58]. Their proposed system

addresses large-scale datasets issues of spatial and temporal perspectives and provides

predictive risk analytics for fire response’s resource optimization and evacuation

planning. A study was conducted [59] to demonstrate a framework that synthesizes

multi-sourced data such as social media, remote sensing and Wikipedia to build a

flexible solution that provides historical and future disaster analysis involving Hadoop

for spatial data mining and text mining.
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2.4.2 From WSN to IoT for Disaster Management

Wireless Sensor Networks (WSNs) consists of autonomous low-powered sensors

nodes that are spread across a specific area and capable of measuring and reporting

of environmental conditions (i.e., smoke, temperature, vibration, locations). WSNs

have long been used in disaster monitoring related research, such as event monitoring

in emergency scenarios [60], natural disaster monitoring [61], and multi-agent

system-based disaster management [62]. However, unaided WSNs lack in a multitude

of social, technical and economic perspectives for extensive deployment in disaster

management [63]. WSN is an integral part of IoT and can benefit from the

data management, processing and decision-making characteristics of IoT to provide

meaningful interpretations and supporting decisions based on its generated sensed

data. From the last few years, research interest in many domains including

disaster management is diverted to IoT, as it is predicted that by 2020, IoT

will be interconnecting nearly 50 billion new connections [64]. IoT provides a

resourceful platform, consisting of various tools and technologies that are supported by

communications among various physical and virtual entities to observe, communicate

and process data. IoT provides an ideal solution for data gathering in disaster-struck

areas, as it offers alternative means of communication carried on low battery-powered

and IoT-enabled wireless devices.

Recent research on disaster management is widely considering IoT to provide

multi-dimensional and multi-sourced information for timely decision-making. IoT

can be effective solution for disaster event detection. IoT offers smart aggregation,

integration, and analysis of multi-dimensional and multi-sourced data, which are the

main steps for situational awareness for effective decision-making. In a study [65] the

authors demonstrated how IoT with semantic web technologies can be successfully

deployed for earthquake-related event detection. The proposed system was able

to semantically annotate streams that were retrieved from web services gathering

IoT-based sensors data for effective earthquake event detection. Another system based

on IoT [66] focused on the quick and systematic evacuation of large crowds of people

after disasters. Crowd lives oriented track and help optimization system (CLOTHO)

aims at reducing the loss of lives by deploying an IoT-based solution that uses a mobile
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cloud computing platform. The data collection part of the system includes the mobile

terminal that is backed by IoT while the storage and data analytics part comprises of

a cloud-backed system. Dhafer, et al. [67] proposed an emergency and disaster relief

system which is monitored by a cloud-based IoT platform. The system is known as

Critical and Rescue Operations using Wearable Wireless sensors networks (CROW2)

and integrates heterogeneous wireless devices such as smartphones and sensors with

various communication technologies such as WiFi and Bluetooth to support end-to-end

network connectivity. This system helps emergency rescuers to be connected with any

functioning network or the internet.

2.4.3 Post-Disaster Communication Networks

Most of the conventional communication infrastructures get unresponsive in

post-disaster scenarios, either due to physical damage or overloaded network

congestion. Recent advancements in wireless communication technologies have a

lot to offer for post-disaster communications with rapidly deployable, scalable and

efficient networks that can ensure the flow of data and provide communication

assistance for rescue and response operations.

Device-to-Device (D2D) communication offers an improved Quality of Service

(QoS) and high Quality of Experience (QoE) for User Equipments (UEs) to

manage radio spectrum and most importantly energy consumption of the devices

in the disaster-affected area. A disaster communication architecture based on D2D

communication was proposed in [68]. The study has focused on extending the lifetime

of energy-constrained networks by employing energy harvesting techniques from radio

frequency signals via the base station at the user equipment relay. Similarly, another

study [69] focuses on cooperative D2D protocol to ensure smooth connection and

expand the average battery life of the devices. The protocol was designed to assist

low battery level devices to find neighboring devices having high battery levels so that

they can act as relay. This mechanism is aimed at extending the communications for

covering the disaster area. In [70], a framework named FINDER (Finding Isolated

Nodes using D2D for Emergency Response) was proposed to locate and link the

disconnected mobile devices in the disaster area. The study uses a multi-hop D2D

29



communication derived from Ant Colony optimization to improve the message deliver

probability and to extend the network lifetime and energy efficiency of the devices.

A MANET can be defined as a temporary distributed network that comprises of

a set of mobile nodes with infrastructure less, decentralized and dynamic features.

MANETs can provide a practical solution for post-disaster communications. The

researchers in [71] reviewed the mobility models, routing algorithms and network

simulators for MANETs in disaster scenarios. For post-disaster scenarios, the

authors in [72], introduced new schemes for MANETs routing and gateway load

balancing. This novel scheme aims at improving communications in affected areas

by reducing network congestion. A novel framework named disruption tolerant secure

opportunistic routing (DTSOR) was proposed in [73] that ensures smooth and secure

communication between high mobility devices during emergency situations. Through

performance analysis and simulations, the study claimed that the proposed framework

in terms of the packet delivery ratio, network overhead and throughput overtakes many

modern data transfer approaches. Another study [74] proposed the concept of hybrid

cellular-MANET architecture using available cellular base stations in post-disaster

situations. The proposed architecture is responsive to device mobility and possesses

the self-organizing feature of MANET.

UAVs provide an open opportunity for quick and easy deployment of cellular base

stations as secondary communication infrastructure where required in post-disaster

scenarios. For distributing tactical and sensor data over a specific area or connecting

on ground devices within range, the data link system of UAVs can be programmed

effectively with additional broadcasting jobs. The authors in [75] reviews the

latest advancements in UAVs for network-assisted post-disaster management. They

identified the key issues and suitable network architectures for UAVs assisted network

for disaster management. A study was conducted [76] to investigate the use of UAVs

as Aerial Base Stations (ABSs) for disaster communications in a situation where

conventional communication infrastructures have totally failed. The study analyzed

communication improvements obtained by the ABSs through simulations and found a

noticeable increase in effective communication probability when ABSs were deployed

in optimal locations. A flying ad-hoc network, named the Flying Real-Time Network

(FRTN), was proposed in [77]. The feasibility of this proposed network to provide
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communication in post-disaster scenarios was presented by illustrating the real-time

scheduling of message delivery and simulation-based analysis.

2.4.4 Crowdsourcing

Crowdsourcing is boosting the idea of “people as sensors”, a concept recently

being recognized in the disaster management domain for incorporating new and

big datasets that can be processed for retrieving required information with more

insights. Crowdsourcing can either be active, where people willingly participate

to provide data; or passive, where typically social media platforms are used to

collect the data with or without the contributor’s knowledge. Active crowdsourcing

platforms are deployed by concerned authorities (Government or NGOs/CSOs) to

acquire real-time information from disaster-affected people, for improving emergency

response and resource allocations. There are a number of web-based and mobile

applications for enabling active crowdsourcing in a disaster-affected area. One such

platform that facilitates real-time, multimedia supported and collaborative mapping

is Ushahidi [78]. Ushahidi platform has been extensively utilized in disasters such

as the 2010 Haiti earthquake and the 2011 Japan tsunami. Active crowdsourcing

provides more credible data with less noise as compared to data collected from

passive crowdsourcing that require different data quality filtrations. However, most

of the recent research efforts are focused on passive crowdsourcing for disaster

management; as big volumes of data are generated with people tending to report a

status/tweet/description, image, video/audio and most importantly precise locations

using various social media platforms. This massive data contains critical information

(text, image or video), sentiments, personal opinions, and GPS coordinates. Effectively

analyzing such data can provide a better situational awareness and enhanced assistance

for rescue and response. Moreover, social media offers a suitable solution for

establishing communications with affected people, acquiring feedbacks and enhancing

empowerment between people and concerned authorities.

Recently social media is one of the most emerging big data source for disaster

management research. Particularly, with the increasing use of smartphones in the

last few years, geospatial data generated from social media platforms are more in

demand over conventional data sources for disaster management [10]. The concept
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of Volunteered Geographical Information (VGI) [79] is being widely used for disaster

management, as citizen engagement in disaster response is increasing. Kusumo et

al. [80] examined the benefits of using VGI for spatially planning the evacuation

shelters. They used Jakarta floods as a case study and their analysis showed that

35.6% of the shelter locations desired by residents matched with the locations of

the government evacuation shelters. In another study [81], VGI extracted from

social media was used for real-time rainfall and flooding events detection through

user-generated high-quality eyewitnesses in shape of texts and photos by applying deep

learning approaches. Flood events in various cities such as Paris, London and Berlin

were targeted as case studies and analysis was performed through spatio-temporal

clustering and visualization techniques enabled by a web map application.

As mentioned earlier, the reliability of passive crowdsourced data has been difficult

to evaluate. Limited research is available until now in terms of quality assessment

methods on the data produced by social media platforms. One such study [82] on the

credibility assessment of users reporting about various disasters, compared the user

profiles and their geographic references, with the classification of tweets through Naive

Bayes models. The datasets of this study were extracted from past earthquake events

in Myanmar and Italy. The study found similar geographic granularity and identified

88 to 99% precision of information contained in the collected Tweets. The need to

effectively extract meaningful information from huge sets of data generated by social

media platforms in a lesser amount of time for effective disaster management is an

emerging issue. BDA seems to be the choice in the recent research efforts to deal

with such issues. The authors in [83] used Hadoop platform and machine learning

techniques to perform sentiment analysis on big social data. Support vector machine

algorithm was used for the sentiment classifications and an interactive visualization

mechanism was deployed to provide information for prompt decision-making.

2.5 Taxonomy of BDA- and IoT-based Disaster Management

In this section, we present the thematic taxonomy of BDA- and IoT-based disaster

management. The taxonomy identifies and categorizes key attributes essential for

the development of BDA- and IoT-based disaster management environment. For the

development of this taxonomy, we followed an iterative approach as suggested by
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Nickerson et al. [84]. Due to the involvement of multi-disciplinary topics i.e., Big

Data Analytics, Internet of Things and Disaster Management, we had to consider

different dimensions and characteristics that are important to identify and valuable

for the development of BDA-and IoT-based disaster management environments. The

development of this taxonomy was a continuous process, involving refinement at

various stages to sufficiently satisfy the qualitative attributes of being, (a) concise (a

limited number of dimensions that are important, because extensive classifications are

difficult to understand), (b) comprehensive (includes all main dimensions of objects of

interest), (c) extendable (open to include new dimensions), (d) explanatory (provides

valuable descriptions of the nature of the objects under study) [84]. This thematic

taxonomy was classified by conducting an extensive and inclusive review of the

related literature, with the aim to unearth the main attributes of BDA- and IoT-based

disaster management environments. In this effort to capture the vastness and variety of

multi-disciplinary topics involved, we identified some of the key attributes on the bases

of their significance, consideration and association with BDA- and IoT-based disaster

management environments. This taxonomy can provide guidance to researchers to

understand the foundations for the development of such environments and future

acquisitions. As illustrated in Figure 2.3, the taxonomy at the top level is categorized

into the following seven attributes.

33



D
a
ta

 S
o

u
rc

e
s

D
a
ta

 S
o

u
rc

e
s

D
a
ta

 A
n

a
ly

ti
cs

D
a
ta

 S
o

u
rc

e
s

Ta
xo

no
m

y 
of

 B
D

A-
 a

nd
 I

oT
- b

as
ed

 D
is

as
te

r 
M

an
ag

em
en

t E
nv

ir
on

m
en

ts

D
a
ta

 S
o

u
rc

e
s

K
e
y

So
cia

l m
ed

ia
 

st
re

am
s

Ge
o-

po
rta

ls

Re
m

ot
e 

se
ns

in
g 

Au
th

or
ita

tiv
e 

 
 d

at
ab

as
es

Io
T 

en
ab

le
d

se
ns

or
 n

et
wo

rk
s

Co
m

m
un

ica
tio

n
 n

et
wo

rk
s

Sy
st

em
 

ar
ch

ite
ct

ur
e

GI
S-

ba
se

d

St
or

ag
e 

ca
pa

cit
y

Pr
og

ra
m

m
in

g 
 

 m
od

el

vi
su

al
iza

tio
n

D
a
ta

 Q
u

a
li

ty
 

P
a
ra

m
e
te

rs
 

Ac
ce

ss
ib

ilit
y

Ti
m

el
in

es
s 

Co
m

pl
et

en
es

s

Cr
ed

ib
ilit

y

Ac
cu

ra
cy

D
a
ta

 S
o

u
rc

e
s

D
a
ta

 A
n

a
ly

ti
cs

So
cia

l m
ed

ia
 d

at
a 

an
al

yt
ics

Se
ns

or
/t

ex
tu

al
 

Im
ag

e/
vi

de
o 

Ge
o-

sp
at

ia
l  

Te
xt

 m
in

in
g

De
ep

 le
ar

ni
ng

 d
at

a 
an

al
yt

ics

 d
at

a 
an

al
yt

ics

 d
at

a 
an

al
yt

ics

Na
tu

ra
l l

an
gu

ag
e

Sw
ar

m
 in

te
llig

en
ce

Co
nv

ol
ut

io
na

l

Vi
de

o 
co

nt
en

t
an

al
ys

is
Sp

at
ia

l t
em

po
ra

l

in
te

llig
en

ce
Lo

ca
tio

n 

ne
ur

al
 n

et
wo

rk

vi
su

al
iza

tio
n

Pr
oc

es
sin

g

O
b

je
ct

iv
e
s

Tr
ig

ge
rin

g 
ea

rly
wa

rn
in

gs

Re
al

-t
im

e 
m

on
ito

rin
g

Pr
ed

ict
in

g 
fu

tu
re

Da
m

ag
e/

lo
gi

st
ics

 

As
sis

tin
g 

tim
el

y 
 e

m
er

ge
nc

y 

es
tim

at
io

n

re
sp

on
se

di
sa

st
ro

us
 e

ve
nt

s

D
a
ta

 S
o

u
rc

e
s

A
cc

e
ss

 
T
e
ch

n
o

lo
g

ie
s

Sa
te

llit
e 

Co
m

m
un

ica
tio

n

Et
he

rn
et

Zi
gB

ee
/B

lu
et

oo
th

 

Lo
Ra

W
AN

4G
/L

TE

A
ss

o
ci

a
te

d
D

is
ci

p
li

n
e
s

On
to

lo
gy

 

Da
ta

 m
in

in
g

m
an

ag
em

en
t  

Di
sa

st
er

Co
m

m
un

ica
tio

n
te

ch
no

lo
gy

in
fo

rm
at

io
n

sy
st

em
s

M
ac

hi
ne

 le
ar

ni
ng

Ge
og

ra
ph

ica
l

C
o

m
p

o
n

e
n

ts

Fi
gu

re
2.

3
:T

ax
on

om
y

of
B

D
A

-a
nd

Io
T

ba
se

d
di

sa
st

er
m

an
ag

em
en

te
nv

ir
on

m
en

ts
.

34



2.5.1 Data Sources

The key characteristic of BDA- and IoT-based disaster management environment is

its diverse and rich data sources. Table 2.3 presents the details of potential data

sources for disaster management. The main potential data sources include social

media streams, the integrated networks of IoT enabled sensors, remote sensing,

authoritative or public historical databases and geo-portals. The data generated from

these sources is of diverse descriptive nature (i.e., location, temperature, humidity,

orientation, event description, image, audio/video etc.) and hence involves different

data formats. Moreover, most of the data captured are unstructured and require

some pre-processing techniques prior to any kind of analytics. It is very important

to understand the significance of disaster-related data, that needs to be accessible,

accurate and complete, and also support real-time processing. The main challenges

associated with disaster-related data are:

• Identifying and aggregating disaster-related heterogeneous data from IoT/big data

infrastructure.

• Extracting useful information from huge volumes of collected heterogeneous and

unstructured data, that requires data pre-processing and event detection techniques.

• Interpreting and visualizing data in near real-time.
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2.5.2 Key Components

The realization of a BDA- and IoT-based disaster management environment depends

on the availability of some critical components. Communication networks are

one of the key components and act as a backbone in developing the environment.

A combination of various communication networks and protocols provide the

overall network infrastructure for data transmission and facilitate connectivity among

numerous data sources. Disaster information networks should be assembled by

combining various wired, wireless and satellite network so that a “never-die-network"

can be ensured for both normal and disaster occurrence cases [85]. System architecture

provides the blueprint that determines the overall structure and behavior of a system.

A well-designed system architecture is a cornerstone to tackle the conceptual and

practical issues that can be faced with a complex system involving big data and IoT. A

pre-planned conceptual model provides well-thought-out solutions for the successful

integration of heterogeneous components for an accurate and effective disaster

management application. Due to data acquisition from heterogeneous sources at a

rapid rate, the need for effective data storage and management of these huge datasets

is obligatory, while ensuring availability and reliability at the same time. The main

challenge is to differentiate and store large-sized data (i.e., images and videos) accessed

in the real-time, from the small-sized data (i.e., log and text files) accessed in batches,

acquired from sensors and static databases. Programming model represents the core

characteristics of any big data framework and plays an important role in determining

the performance of big data processing engines. It is important to select a programming

model that functions in real-time with high performance and reliability. There

are various programming models currently available, i.e. MapReduce, SQL-based,

functional and statistical models having different advantages and applications. In any

disastrous situation, emergency responders and decision makers require quick and

accurate location-based descriptions, suggestions and predictions easy to understand

and interact. GIS-based visualization tools provide a user-friendly and interactive

interface for mapping datasets that can demonstrate the overall picture and offer new

insights to the decision makers.
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2.5.3 Access Technologies

A reliable, robust, energy efficient and disaster resilient data transmission network

acts as the backbone for any disaster management system. Access technologies

from a disaster communication perspective should provide reliable connectivity and

optimized services for effective data transmission between data generating devices

and back-end servers.It is very important to ensure the flow of data and the safety

and connectivity of the network in order to acquire situational awareness in case of

a disaster event [86]. A collection of various communication network topologies

is required to obtain an autonomous BDA- and IoT-based disaster management

environment. Some of the main access technologies that are useful for disaster

communication are 4G/LTE, satellite communication, ZigBee, Bluetooth, LoRaWan

and Ethernet. LTE (Long Term Evolution, also called 4G) provides communications

with wide area mobility, improved interactivity and on the go multimedia services.

4G/LTE technologies are widely used by major telecom operators globally. With

its high speed and low latency features users are able to operate applications such

as social networks, maps navigation, browsing, etc. in addition to traditional

voice calls and SMS services. These cellular mobile communications with its

wide access to the people can be utilized for early warnings and disaster alerts.

Satellite communications are not vulnerable to damage from disasters, which make

them the reliable communication infrastructure in full-fledged disasters. However,

the main concerns are the cost of satellite bandwidth, low throughput and large

latency. Nevertheless, satellite communications can be a cost-effective solution for

sever disaster than establishing a new communications infrastructure in disastrous

areas. Short-range wireless technologies such as ZigBee and Bluetooth can be

effective in establishing communication networks within a small disaster-affected

area. LoRaWAN is emerging as the new communication technology for smart city

applications. LoRaWAN ensures interoperability between various operators and

offers low-power and low-cost mobile communications that can be beneficial for

disaster communications. The importance of wired communication technologies (i.e.,

Ethernet, PSTN) cannot be neglected in disaster communication networks. High-speed

communications can be achieved with dedicated fiber-based connection lines to enable
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transmission of data within the Local Area Networks (LAN) of various disaster

management authorities.

2.5.4 Data Quality Parameters

Incomplete, ambiguous, error-prone and noisy data can cause serious issues in

data analytics and hence in decision making for disaster response. Data quality

parameters determine the accuracy and productivity of the analysis performed on a

particular dataset. Data quality dimensions such accessibility, timeliness, credibility,

accuracy and completeness are vital for disaster management processes. Accessibility

determines the mode in which the data is accessed from the source and whether the data

has any legal constraints on usage. Timeliness describes the movement of data, i.e.,

real-time or static and whether the data needs to be updated. Credibility is to ensure

that the data is verified and its source is identified. Accuracy is to check whether the

data is free of any redundancy and is explicitly related to the scenario. Completeness

determines the clarity and understandability of the data according to the situation.

2.5.5 Data Analytics

The state-of-the-art big data analytical tools are one of the key technologies that

assist the concept and operation of the BDA- and IoT-based disaster management

environments. The heterogeneous data sources, producing huge volumes of

multi-dimensional and multi-modal data requires powerful data analytics for

productive execution. To develop an efficient and real-time data execution enabled

system for disaster management processes various big data analytical tools need to

be employed. A combination of advanced big data analytical tools, i.e., Hadoop

Ecosystem and Spark can be utilized to analyze huge sets of data accurately and

efficiently with suitable algorithms and techniques. Data analytics varies according

to the data types captured from the heterogeneous data sources and the desired results.

Following are some data analytics types and prescribed methods that can provide new

insights and quick results for effective rescue and response based decision-making.

2.5.5.1 Social media data analytics

With the extensive use of social media applications, users in real time generate huge

amounts of unstructured but potentially useful datasets. These datasets need to be
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checked for reliability, credibility, and authenticity prior to any kind of analytics aimed

at extracting actionable information. Sequenced information processing operations i.e.,

filtering, categorizing, extracting and summarizing can be the best approach to deal

with these issues [87]. Natural Language Processing (NLP) techniques can be used to

search, classify, and compile textual descriptions acquired from social media user in

a disaster response scenario [88]. Text mining is another useful analytic technique to

extract valuable structured data from huge volumes of unstructured text. Social media

datasets can be evaluated with a number of standard text mining techniques to collect

the required information about a specific disaster [89]. Text mining basically regulates

semantics, keywords, labels, tags, and themes in the shape of separate files and formats

for extracting key pieces of information.

2.5.5.2 Sensor/textual data analytics

Another data source generating huge volumes of data is IoT-based sensors. These big

sensed datasets play a vital role for making spontaneous and effective decisions for

disaster rescue and response. The function specific and geographically distributed

sensors can provide valuable information and insights through powerful analytics.

Deep learning algorithms operate on hierarchical learning process to extract high-level

and complex abstractions as data representations. Deep learning is an important big

data analytics tool as it effectively analyses huge amounts of unsupervised data even

being unlabeled [90]. IoT-based sensors are complex to manage and aggregating data is

hard usually due to the lack of decentralized control. Swarm intelligence can be useful

to resolve complex issues with IoT-based sensor systems having dynamic properties

and limited computation power [91].

2.5.5.3 Image/video data analytics

The real-time streams of high-quality images and video content, from surveillance

cameras, UAVs and citizens with mobile devices are providing decision-relevant

situational information on causalities and damaged buildings, roads, bridges,

etc. With the advances in machine learning and vision techniques for analyzing

image/video datasets, rescue operations, planning evacuation routes, damaged

infrastructure surveys, and other disaster management activities can be greatly assisted.

Convolutional neural network (CNN) is a class of deep neural networks, commonly
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used to extract topological properties from visual imagery. It is simple and robust to

operate, as it automatically learns visual feature sets from the training data. A study

[92] on investigating the potentials of CNN for aerial imagery demonstrated that CNN

are useful for object detection and correctly locates the areas that match to categories

in which the CNN was trained for. Moreover, [93] used CNN on video analysis for

fire detection and concluded that CNN achieves better classification performance than

some of other conventional methods for fire detection. Video content analysis (VCA)

enables automatic video analyzing to search, identify, classify, and determine temporal

and spatial events. Using video content analysis, [94] proposed a warning system for

flood event detection on feeds from surveillance cameras.

2.5.5.4 Geo-spatial data analytics

Geo-spatial data or data with location component is considered as the most essential

input element in latest technologies. The geo-spatial data-sets needs to be analyzed to

gain information about disaster locations as it occurs, identify the area and people that

require urgent assistance and locate appropriate areas for shelters to name the least.

With the advent of satellite remote sensing, location-based sensors and smartphones

equipped with GPS, a huge volume of geo-spatial data is generated. Spatial temporal

data visualization comprises of powerful tools that supports analysis of geo-spatial

data over time through interactive visualization. Spatial-temporal data visualization

greatly assists decision-making in all the phases of disaster management [58]. Location

intelligence offers unique insights, reveal hidden patterns and information based on

geo-spatial data for better decision-making. Location intelligence is effectively used to

detect the spatial and temporal distribution of flood risks [95] and for waste collection

solution to improve cities management systems [96].

2.5.6 Objectives

The convergence of BDA and IoT technologies can set a new meaning to the overall

objectives of disaster management. One of the main objective of this system is early

warning generation, that can save lives and reduce infrastructure damage. Real-time

disaster monitoring involves the extraction of information from the system to make

informed and timely decisions. It is important for the system to accurately estimate the

damages caused and logistics required. Moreover, it should figure out the evacuation
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routes quickly in emergency response. Effective and timely decision-making needs

a reliable, fast processing and data resourceful system that integrates different

state-of-the-art technologies to improve its operations. Predicting future disastrous

events is becoming a reality with the evolution in the latest technologies, such as

low-powered sensor networks, reliable wireless technology, sophisticated algorithms

and advanced data analytics.

2.5.7 Associated Disciplines

It is important to identify and merge the concepts of all the related disciplines that

are used to design, develop and manage BDA- and IoT-based disaster management

environment. The general perception that BDA and IoT-based environments only

requires technical skill is wrong, as interdisciplinary approaches are required in

their domain-specific applications. Professionals having a specific set of skills and

experience of communication technology, data mining, machine learning, ontology,

disaster management and geographical information systems need to collaborate in

designing an operational architecture that can fulfill the objectives of BDA- and

IoT-based disaster environments.

2.6 Reference Model

As discussed, the integration of BDA and IoT technologies can provide a resourceful

platform for acquiring, storing, processing big disaster-related data and generating

the required results for timely and accurate decision-making. To effectively utilize

the value-added capabilities and opportunities offered by BDA and IoT within the

scope of disaster management, we introduce a novel reference model derived from the

classified taxonomy and related literature. Based on the identification and abstraction

of correlated technical and theoretical knowledge, this novel reference model presents

the overall functionality and configuration for disaster management environments.

The main theme of this reference model is to provide guidelines for developers to

ensure effective decision-making through such disaster management environments.

Multiple IoT based BDA architectures focusing on general applications are found in

the literature [97] [98] [99] [100]. Most of these architectures are focusing on overall

operations in a smart city concept and there is a lack of disaster management specific
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architectural models in the existing literature. Feasibility of defining a standardized

framework that deploys IoT and BDA for time critical and performance demanding

application like disaster management is far from reality. However, it is theoretically

feasible to direct the designing process in this new and dynamic environment towards

the deployment of a realistic architecture.

For designing the proposed reference model, this study has adopted design science

research method [101] to present the high-level model for an environment where

the integration of potential big data sources and operations of various tools and

techniques can ensure effective disaster management. This study followed the seven

design science research guidelines i.e. “Design as an Artifact, Problem Relevance,

Design Evaluation, Research Contribution, Research Rigor, Design as a Search

Process, and Communication of Research” specified by Hevner AR, et al [102].

The proposed reference model is an artifact that utilizes big data analytics and IoT

for effective disaster management (Design as an Artifact). The model supports

processing huge sets of heterogenous data (structured/unstructured) in real time that

is highly demanded by current disaster management systems (Problem Relevance).

The implementation of different components in the proposed model can be justified

by numerous performance measures published during actual deployments (Design

Evaluation). The innovative design that assembles various data sources and the

integration of state-of-the-art artifacts for effectively utilizing the benefits that can be

gained through BDA in real-time for disaster management is the key contribution of

this study. Moreover, this research highlights new challenges and parameters when

deploying IoT and BDA in disaster management (Research Contribution). This study

relies on a systematic literature review on the advanced topics of IoT and BDA for

disaster management. The formation and assessment of the artifacts are established

from the recognized knowledge base from multiple academic fields (Research Rigor).

Critical feedback and continuous literature study were carried out throughout the

design of the framework, which led to many iterations and modifications (Design as

a Search Process). Involving both the linked academic community and related field

professionals to highlight any defects in the final design resulted in more improvements

(Communication of Research).
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Moreover, after thorough analysis of several related architectures, we found out that the

following key points need to be considered during the design process of any disaster

management environment that is involving BDA and IoT technologies.

• The architecture needs to be scalable to indulge new data sources that can provide

valuable information and insights.

• Flawless communication over the network or alternative networks in case of any

transmission failure or destruction.

• Effective storage of structured and unstructured data that are either collected

through real-time streams or historical data batches.

• Flexible to accommodate various computation intelligence techniques, algorithms

and analytical packages.

• Able to share the results to other systems or applications and present the information

in an interactive manner to the decision-makers.

The design of some disaster management environments may vary depending on

its application scope and size (i.e., industrial/building disaster management vs

urban disaster management) and the nature of required results based on urgency,

performance, compatibility and scalability. However, this reference model can

provide a standardized framework for considering and assembling the overall disaster

management system entities involving many BDA and IoT entities. As shown in Figure

2.4 the model supports multi-sourced data that is enabled by the cutting-edge BDA and

IoT technologies and techniques. The model consists of five layers, which are briefly

discussed in the subsequent sections.

2.6.1 Data Generation

The data generation layer consists of all the potential data sources that are useful

for developing situational awareness and providing new insights for the incident.

Apart from traditional disaster management data sources (i.e., field survey, GIS-based

data) a massive amount of valuable data is generated by human and physical sensing

resources that can be utilized for disaster management processes to enhance operations
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and gain new insights. IoT-based devices provide factual data while crowd-sourced

data from social media streams provides real-time information but in an unstructured

format. Remote sensing data are essential in disaster management, particularly in

response and monitoring phases as they provide a large area of coverage and location

observation. Geo-portals contain the open-source spatial data regarding the incident

area, which is useful for mapping and visualization. An important data source is

the authoritative/archived data owned by the government and NGOs, which contains

historical and survey data reports that intend to be embedded for effective analysis.

2.6.2 Data Harvesting

Data harvesting is triggered by the disaster event to engage all the dedicated and

available data sources. It is important to tackle big data close to the source, especially

in emergency response systems, with the intent to decrease irrelevant content,

subsequently assisting real-time processing and improving access time for information

[103]. The resource discovery component identifies the availability and accessibility of

diverse and distributed data sources that are relevant to disaster management. Content

delivery networks allocate specific tasks to a distributed system and improve response

time. Load balancer is responsible to ensure maximized throughput, increased capacity

and reliability of applications. Fault detection mechanism identifies hardware or

software failures and saves time in troubleshooting. Data aggregators need to be

utilized fittingly, as data is collected from some sources (e.g., authoritative/archived

data, geo-portals) in large repositories in the form of batches, while at a rapid rate and

in real time from other sources (e.g., social media streams, IoT-enabled sensors). Data

dispatcher is responsible for dispatching processed information or queries from the

system back to IoT devices or users on social media, for demanding more information

and sending alerts or safety precautions. Furthermore, it is important to impose

a security mechanism at the data harvesting layer before transferring the data by

installing firewalls on the channel.

2.6.3 Data Communication

Data communication is the core layer and is responsible for transmission of data

in all the proposed layers, using available communication technologies. Depending
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on the compatibility with the data source, various communication technologies with

allocated gateways, categorized in different network type (i.e., LAN, WAN, PAN)

can be integrated to enable smooth transmission in an efficient and secure manner.

Wired local area communication networks (i.e., Ethernet), along with wireless local

area networks (i.e., WiMAX (IEEE 802.16)) are used to provide short distances

connections (e.g., office building, airport, and hospital). Wide area networks, such

as general packet radio service (GPRS), Code-division multiple access (CDMA), long

term evolution (LTE) and even public switched telephone network (PSTN) are suitable

in the transmission of data over large areas. Zigbee (IEEE 802.15.4), Bluetooth

(IEEE 802.15.1) and Wi-Fi (IEEE 802.11p) are effective short-range communication

technologies that are compatible with high-level communication protocols. Notably, in

emergencies, wireless communication especially satellite communication, Wi-Fi and

WiMAX, has been the most effective means of communication [104].

2.6.4 Data Management and Analytics

Data management and analytics is the core layer responsible for performing data

filtration, programming and analytics operations. Initially, the filtration process starts

with the collection of datasets from heterogeneous sources. Data conformation

categorizes only potentially relevant datasets required for the incident to save

processing time. Data quality parameters such as accuracy, consistency and reliability

are checked in data cleansing. Classification of information retrieved from data

(i.e., current status, casualties/injured reported, impact area maps, images or videos

reported, instructions suggested) is performed. About a specific incident the required

content is extracted from classification. The location co-ordinates attached to the data

readings, maps and geo-tagged social media posts are extracted for mapping. This

method of filtering and categorizing data will help in managing data for analysis and

reduce storage space, hence decrease the computational overhead for data analytics.

A set of data programming tasks are proposed to ensure effective analysis according

to the results required for disaster management. The programming tasks are based

on the decision model, which is the template that defines how the essential goals

are perceived, organized and processed to reach a specific decision. Technologies

for multi-source information fusion combine essential information from massive
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heterogeneous multi-source data. Event detection in real time that is backed by social

media and multiple sensor data is critical for disaster management. Semantic engine is

used for effective knowledge management by searching, extracting and categorizing

unstructured information. Pattern recognition provides machine learning ability to

detect the configuration of features and identify the required information from textual

or image/spatial datasets.

Analyses related to disasters are time-critical in nature and with huge volumes of

streaming data at the back-end, demand significant computational power for accurate

and high-speed processing. These constraints demand for processing the resource

data through a combination of cutting-edge powerful big data analytics tools. A

state-of-the-art solution for this environment would be a combination of the Hadoop

Ecosystem and the Spark analytics engine. Hadoop is considered the backbone of any

big data architecture. It is an open-source software platform that supports enormous

data storage and processing. It is a much cheaper and effective solution than running

a dedicated data center. While, Spark, an open-source in-memory data processing

framework is suitable for interactive data queries and enables processing of real-time

data streams with the combination of its application-specific libraries. Spark, can be

used with Hadoop data source as a programming model for processing. Moreover, a

combination of different machine learning algorithms, natural language processing and

data mining techniques can be used for further analysis. The obvious aim of deploying

state-of-the-art data analytic tools is to facilitate the decision-making process with a

continuous flow of reliable and updated information extracted from multiple resources.

2.6.5 Applications

The huge sets of valuable data resources backed by powerful data analytics, enables

the application layer to implement an interface that allows interactive reporting

and visualization of information to non-technical decision makers (i.e., emergency

responders) in real-time. BDA application services can integrate with different disaster

management expert systems designed to alert, report, monitor and detect/predict

disaster situations (i.e., early warning systems and emergency response systems).

The application layer should operate on a web-based access control API to prevent
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unauthorized access. The application interface needs to support different visual tools

for generating reports in an interactive manner.

2.7 Use Cases

This section presents some of the important use cases for IoT and BDA enabled

disaster management with the aim to highlight the capability and importance of the

said technologies. The selection of use cases considers the sequence of disaster

management operations to present an overall picture of the disaster management

environments where IoT and BDA play an important role. As presented in Table

5, most of the use cases are focusing on the collaborative deployment of multiple

sensors (i.e., weather station sensors, cameras, GPS, wearable sensors, smartphones,

etc). These different types of sensors provide huge volumes of heterogeneous data

(i.e., textual, image/video and spatial) through IoT. However, with supportive BDA

applications, it is possible to process the collected datasets that enables much richer

and effective systems. Moreover, the mode of processing is more towards real-time

applications, which makes sense due to the involvement of BDA and IoT based

applications.
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2.7.1 Early Warning

Early warning for disasters (i.e., floods, landslides, tsunami, forest fires, storms etc.)

can prevent loss of lives and minimize the disaster’s impact costs. A warning notified

with sufficient time before the disaster will allow people to evacuate the area and help

the emergency responders to organize and take the necessary precautionary actions.

Structure of the early warning system is determined by the goals it desires to achieve,

considering timely and accurate information processing regarding an upcoming event.

Early warning systems for environmental disaster management are mostly involving

IoT [33]. Early warning systems receive the data from real-time sensors, process

the information and provide an interactive warning service for more information.

However, big data challenges need to be solved during the development and application

of such IoT-based information systems [105]. Moreover, with the evolution and

widespread use of different of IoT devices such as Smartphones, it is possible to

deploy their embedded sensors (GPS, accelerometers, gyroscopes, etc.) to monitor

and provide valuable data for early warning systems [106].

2.7.2 Evacuation

The instantaneous and accurate identification of evacuation paths following a natural

disaster is critical to saving the lives of the occupants. Quickly understanding the

damage situations through appropriate data and processing techniques can lead to

effective evacuation. In the event of a large-scale disaster, ensuring minimum road

congestions are important for evacuation plans. The evacuees need to be guided

towards safe and least congested routes to decrease the evacuation time. For the

transportation network, real-time road situations need to be considered to compute

and identify the maximum flow capacity of the roads [107]. Evacuees can also

contribute for identifying blocked and congested roads using their smartphones and

share the information with each other through short-range wireless communications.

This approach can not only navigate the evacuees to safe places but also help in

aggregating disaster-related information [108] [109].
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2.7.3 Monitoring

Disaster monitoring service aims at providing effective response and recovery

operations in both pre- and post-disaster situations. Due to the increasing usage

of state-of-the-art technologies such as IoT and BDA, disaster monitoring service

is getting faster, reliable, effective and more situational aware. Conventional

disaster monitoring systems are often costly and time-consuming as they appoint

only gauge sensors that could only measure one-dimensional physical parameters.

However, advanced disaster monitoring systems are involving multiple data sources to

geographically detect and visually monitor disaster events at a lower cost. For instance,

through image-based automated monitoring, surveillance cameras are transformed

into visual sensors [110]. This approach of visual sensing provides spatiotemporal

information that can be utilized for a reliable automated remote monitoring of floods.

With the aid of deep learning methods, multiple data sources such as map-based

web services, sensors, and video cameras can be incorporated to perform real-time

monitoring [111]. Moreover, disaster monitoring can benefit from the convergence

of different technologies to analyze huge sets IoT extracted data with data mining

techniques and identify emerging risks and changes in weather for potential disasters

[112].

2.7.4 Prediction

Disaster occurrence is out of human control; however, through the deployment of

various state-of-the-art smart technologies, we can predict, mitigate and even prevent

the loss of human lives and infrastructure. Research in the field of disaster prediction

has shifted from statistical and theoretical submissions to successful real-world

applications. With the advancement in IoT and BDA technologies, disaster prediction

systems are getting great success to minimize the adversity caused by disaster such as

floods, wildfires, hurricanes, tsunamis etc. Promising innovations in technology such

as IoT based IP-based sensor networks and evolving techniques of machine learning

are being deployed for disaster predictions [113]. Within the scope of smart cities,

disaster predictions are becoming a reality through deep learning techniques backed by
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IoT big data [114]. Moreover, the convergence of IoT big data and high-performance

computing (HPC) can provide the capability of real-time disaster predictions [115].

2.8 Open Research Challenges

This section highlights the main open research challenges that need to be explored

in the future to have better understanding and development related knowledge of the

desire research area.

Disaster Data Quality: The quality of the collected data is very critical for disaster

management, as noisy, incomplete and error-prone data can lead to serious problems

and wastage of precious time in a disaster scenario. This factor is an additional

overhead for BDA- and IoT-based disaster management environments, which requires

to be solved prior to any kind of analysis. Data quality parameter plays a major role

in determining the accuracy of the analysis carried out on a particular dataset. Table

2.5 describes five proposed parameters of data quality that are commonly recognized

and are suitable to formulate the disaster data in the filtration process. Each dataset

needs to satisfy the conditions describe against the specified parameter in order to be

eligible for further processing. Many filtration algorithms and data format converters

are being proposed on a regular basis; however, it remains an open research challenge

for disaster management where data quality should have the highest priority.

Where is Disaster Dataset’s Metadata? Metadata extraction from multiple

heterogeneous data sources for a time-sensitive and data quality critical application like

disaster management is an important challenge. The essential metadata information

about the datasets, i.e., data source, content, time stamps, spatial reference are very

important to be identified, in the context of this environment. With effective extraction

of metadata, a lot of data quality concerns and integration issues can also be solved at

the grassroots level, and reliable datasets can be provided for the disaster management

operations.

Multi-sourced Disaster Data Aggregation: Collecting disaster-related data from

heterogeneous sources and integrating that voluminous data in real time is
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Table 2.5 : Disaster data quality parameters.

Parameter Conditions

Accessibility
Is the data access public or proprietary?
Whether the data has any rights or legal concentrates
on usage?
Whether the data needs a special aggregator to collect?

Timeliness
Whether the data is gathered on run-time or through
the historical database
Does the data require to be updated in intervals?

Credibility Is the data source identified?
Can any organization or system verify the source?

Accuracy
Is the data related to the incident/crisis/disaster in
any sense?
Is the data free from data redundancy?

Completeness Is the data clear and understandable?
Can the data be classified to gain the desired results?

a challenging activity. Moreover, data needs to be collected from multiple

geographically distrusted servers which in return make the aggregation process more

difficult. Data aggregator normally handles the collection and integration of similar

data to tackle the data redundancy problem and minimize resource consumption.

However, the data aggregation problems raise with the increasing number of data

sources, demanding more storage and computation power.

But Which Data Analytics Application? Selecting the type of analysis to be

performed on the newly acquired big datasets within the scope of disaster response

or management can be a challenging task. The choice of a particular analysis method

will determine the effectiveness and performance of the overall environment and hence

will eventually affect decision making. Moreover, the desirable analysis and results

may demand a combination of different analytical methods that can increase system

workload and affect performance. Another challenge is to identify and analyze what

data sets can support smooth and effective processing in real-time and hence provide

accurate results.
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Time Constraint for Quick Response: Due to huge data volumes, it is quite

difficult to extract quality information in a limited time for effective decision-making

to emergency responses. The data processing is time-consuming, as it involves

multi-sourced data harvesting, filtering, and categorizing; that can take a lot of time

even with advanced big data analytical tools. It is an important challenge for the

existing techniques and tools to preprocess data and generate the required results in

a specified amount of time to provide quick emergency response and save lives.

Architectural Challenges: Due to the lack of a defined model for BDA- and

IoT-based disaster management environment in the existing literature, detailed

observations of different related reference models is required. The architecture for such

an environment needs to be flexible to accommodate all the data sources, consistent to

configure different network topologies for data communication and supportive to fetch

the required results for effective decision-making. Moreover, the architecture should

be designed to keep the environment resilient so it can handle any type of disruption

caused by disasters. With multi-sourced data, it is challenging to design a generic data

model that integrates heterogeneous data while being flexible, effective and secure.

Fault Tolerance during Disasters: Fault tolerance is the ability of the system to

work effectively even in the case of a hardware or software failure. With heterogeneous

and distributed data source environments there is always a chance for some hardware

devices and sensors to fail because of physical damage or disruption in communication

channels, particularly in a disastrous situation. The BDA- and IoT-based environment

having distributed components, predominantly its data sources can be affected by the

disaster as well. Hence, disaster resilient system architecture needs to be planned,

so that the data can be effectively channelized and processed even in the course

of any destruction. Data sources are critical in the successful deployment of the

environment and should be able to generate data with infrastructure impairment and

power blackouts. Hence backup power consumption mechanism and data management

capabilities; such as a redundant backup system or cloud-based distributed storage

system with distributed computing facilities needs to be established.
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Privacy and Security: Privacy concerns have been a serious issue in both big data

and IoT domains, as open personal information is widely utilized which, if misused

can lead to threats such as profiling, tracking, theft, and discrimination [116]. Big data

usually contains some sort of confidential information related to people or government

and hence high-level security is required as the data moves over different types of

networks. Social media data sources can increase privacy concerns as its data sets

contain personal details and location of the users. These data sets can be very sensitive

in crisis like civil wars and resistance movements. Additionally, open source big data

analytics tools and most of the technologies in the Hadoop Ecosystem lack sufficient

security mechanism [117]. Managing the access control of the big disaster datasets is

vital to safeguard against any malicious use of data, hence proper security mechanism

is required to ensure data protection.

Standardization Challenge: Standardization of IoT in general and big data, in

particular, is still in its infancy. Standards can promote system efficiency, foster

technological changes and provide recognized guidelines for policy, governance and

future research. As disaster management requires various systematic solutions, it can

be difficult to develop standards initially. However, standards such as communication

protocols, security protocols, meta-data and data aggregation standards are the core

activities that need to be formalized to increase the value of disaster management

environments and services.

2.9 Conclusion

This chapter, identified the benefits of BDA- and IoT-based disaster management

and investigated the state-of-the-art literature conducted regarding BDA and IoT

applications for disaster management. The study classified the related literature

by presenting a thematic taxonomy that unearths the main attributes of BDA- and

IoT-based disaster management environments. We also presented a thorough overview

of the overall architectural deployment of BDA- and IoT-based disaster management

environments through a reference model having dedicated layers, such as data

generation, harvesting, communication, management and analytics, and applications.

This chapter discussed and compared some indispensable use cases to show the
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role of BDA and IoT in different disaster management phases. Moreover, the key

requirements for the successful deployment of the environment and the challenges that

need to be resolved are sketched out. It is conclude that this survey can be used as

a guideline to understand the overall functionalities for productive utilization of the

opportunities associated with BDA and IoT towards the construction of an effective

disaster management environment.
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3. A FRAMEWORK FOR SOCIAL MEDIA DATA ANALYTICS FOR
DISASTER MANAGEMENT

3.1 Abstract

Social Media datasets are playing a vital role providing information that can support

decision-making in nearly all domains. This is due to the fact that social media is a

quick and economical approach for collecting data. It has already been proved that in

case of disaster (natural or man-made) the information extracted from Social Media

sites is very critical to Disaster Management Systems for response and reconstruction.

This chapter comprises of two components, the first part proposes a framework that

provides updated and filtered real time input data for the disaster management system

through social media and the second part consists of a designed web user API for

a structured and defined real time data input process. This research contributes to

the discipline of design science for the information systems domain. The aim of

this chapter is to propose a framework that can filter and organize data from the

unstructured social media sources through recognized methods and bring this retrieved

data to the same level as that acquired through structured and predefined mechanisms,

such as a web API. Both components are designed such that they can potentially

collaborate and produce updated information for a disaster management system to

carry out accurate and effective decision-making.

3.2 Introduction

During disasters (e.g., floods, earthquake, storms, large fire, etc.), people tend to report

and share their observations, findings and suggestions on various social media sites.

However, it is still a challenge for researchers as how to automatically filter out useful

information and make that information search-able and accessible for emergency

services.
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Social Media applications are considered very useful to collect information in case

of any disaster because it is the fastest and the cheapest source to provide effective,

updated and relevant information for decision making. The practical use of such

applications is making a vast number of academic studies to research on many aspects

of social media in Disaster Management [118] Social Media provides its user the

opportunity to contribute and disseminate valuable information, be it in the shape of

text, pictures, audio and video; that is necessary for disaster management processes

and communications [119].

Current research states that the communication services such as Short Message

Services (SMS) or social media (Facebook, Twitter) have the ability to improve the

regular and updated transmission of valuable information and provide the effective

resources of information in all of the disaster management life cycle phases and aid

in developing a disaster resilient community [120] [121]. In case of any disaster the

emergency service authorities should be able to access the social media networks and

blogs to identify the source and scale of the disaster and develop the recovery plans

according to the affected communities’ requirements. In addition, authorities should

be able to observe online communities to detect mounting trends and possible hot-spots

that can substantiate as indicators for disaster [120]. When it comes to managing

disasters efficiently, the main thing for government and emergency agencies is to

be provided with accurate, updated and complete information; otherwise it can have

serious consequences if the information is provided incorrect and late [122] [123].

Real-time Geospatial Information Systems use social media as crowd sourcing virtual

network to map social feeds using geotag metadata with longitude latitude coordinates.

GIS systems with all its hardware based sensors can be combined with Social media

as the basic theme is to create a compressive source of information to understand the

disaster situation accurately so that the emergency responders and the general public

can be added to improve overall awareness [124] [125]. However, there are some

challenges also associated with social media data collection methods; such as variable

quality of the data, intelligently managing the big volume of social media feeds,

requirement of manual checking and verification of the data, accurately Geo-parsing

map information and the need to find right balance between time wasting false positives

and responsive alters.
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Some related work already done shows the practicality of this research are the

recognition of frameworks such as Twitcident [126] and SensePalce2 [127]. A

very good example of web API for collecting citizen reactions in case of an

earthquake and then model earthquake activity according to that accessed information

is a website named as “Did You Feel It?” by U.S Geological Survey (USGS)

(http://earthquake.usgs.gov/earthquakes/dyfi/). The concept of crowd souring is a

corresponding research area that is aimed to work as a virtual sensor to collect data

from every potential source possible and to support activities from basic mapping

(e.g., Open Street Map) to be a source for providing data to the disaster manage-ment

systems (e.g., CrisisMappers.org, Ushahidi).

3.3 Social Media in relation with Disaster Management

Social Media are applications that are totally depended on the user generated content

or applications in which the user generated contents and activities play an important

role in increasing the overall value of that application or service [128]. On the other

hand, a Disaster is a sudden event that seriously affects the normal routine conditions

of a community or society. It has not only an economic and environmental impact, but

also an important humanitarian component. Disasters could be natural calamities such

as earthquakes, tornadoes or hurricanes, but also man-made destructive activities such

as terrorist attacks or industrial accidents. Disaster management can be modeled into

four phases, namely mitigation, pre-paredness, response, and reconstruction. Having a

good strategy for each of the phases is essential for an efficient disaster management.

In order to accomplish this, managers need proper information about the different

activities within each of the four disaster management phases [129]. With social

media, information is now accessible in real-time, so those activities can be planned

more accurately. With disaster management models and its phases a lot of research

work needs to be done to map where and how social media information can be used

to improve the decision making. Conducted research has identified that the use of

social media is more increased and even surpassed the use of other conventional

communication methods such as fixed phones after a disastrous incident. Social

Media sites like Facebook, Twitter and YouTube can be very handy when tsunamis,

earthquakes, floods and other natural disasters strike to collect the real time data.
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According to Crystal Washington [130] “Social media is the application that -

• Provides valuable information to those in a disaster area pre and post disaster (via

the Internet, if available, or SMS updates).

• Drives awareness to those outside the affected areas, generating volunteers and/or

donors.

• Connects displaced family and friends.

• Provides information about unclaimed property, and in worst case scenarios, bodies.

• Offers information about aid, centers and other resources available to those

affected.”

Five discrete uses for social media in disaster management are identified by [127] as,

a) “to disseminate information to the public (e.g., for alerts)”.

b) “to gather information from the public (e.g., crowdsourcing)”.

c) “to coordinate with crisis management professionals”.

d) “to monitor activities of crisis management professionals”.

e) “as input to situational assessment for crisis management”.

Instead of categorizing the existing research into disaster management phases directly,

we added the social media application because they represent a more fine-grained

perspective of social media within a disaster. Moreover, in applying the social media

applications to traditional disaster management phases allows us to integrate literature

about potential social media activities into the disaster management model. This will

act as a theoretical lens to classify the existing research into disaster management

phases.
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3.4 Proposed Research Framework

This research work contributes to the discipline of design science for the information

systems domain. Based on reviewed literature and detailed perception of related

technologies, we propose a model that can provide updated and essential input data for

the disaster management system through two different potential crowd-sourced data

platforms; the social media component and a designed web user API component.

The proposed model is divided in two sections considering the method involved for

data input. As seen in Figure 3.1, the first section is the web user API, named as

“Disaster Analytic API” which is a designed web template to take the data according

to some structured parameters already defined and to somewhat en-force the users to

follow the designed format for feeding data. This second section is the “social media

system component” which is taking in the unstructured social media data and applying

selective recognized methods to filter the data and present it for further process to the

disaster management system component. This model emphasis on the quality of real

time data gained through crowd sourcing, which is normally considered noisy and unfit

to use for accurate decision making processes. This model can be a good example to

compare and measure data quality gained through a designed API for structured data

and real time data gained through social media. There is no such comparison currently

found in the literature and this area needs to be focused to make the coward sourcing

data gathering mechanism more effective and open to both structured (web data entry

API) and unstructured (social media) for new actionable insights.
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3.4.1 Designed Web User API Component

This component named as “Disaster Analytic” is a proposed designed web API for

receiving information in case of any disaster in a structured data entry template, which

covers all the sections such as location, time, scale, description, attachments (photo or

video) etc. for data to be actionable. Additionally, Disaster Analytic can also manage

queries from the user requesting reports regarding the disaster situations. A rough

outline for the interface is proposed in Figure 3.2. The potential users of this web API

can be citizens or volunteers, governments’ officers, emergency services and NGOs

who can provide data under defined format and query, search or request for a report

through the disaster management system.

The main aim for the design and implementation of this web user API is making sure

that accurate and machine readable information is received. It also should be user

friendly, and can be operated without much setup or training involved. Every user

need to be identified and authorized login should be created. There are many different

types of format constraints to be followed in order to get the structured and machine

readable information. The notable constraints can be User’s Log in ID (who), Type of

Incident (what), Photo of the identified incident (what), Scale (what), Date and Time

(when), location of the incident (where), Classification and description (how). To make

more user friendly, constraints such as date and time need to be provided automatically

so that user should be able to select the options rather than make manual entry in the

form. The user can request the forms directly from the disaster management system

whenever they want and are able to see the recent verified social media feedbacks and

trends being shared for regarding the disaster.

3.4.2 Social Media System Component

We are living in an information age where people tend to report, discuss and share

the ground facts, observations, and their experiences on different Social Media forums

even if it’s regarding a specific disaster. The aim of this Social Media component

is to filter and extract the required data gained through crowd sourcing, and make it

beneficial for disaster management.
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Figure 3.2 : Designed web API (Disaster Analytic).

The data filtering process as shown in figure 3.3 is following the semantic methods as

it supports filtering and extraction of social media feeds to recognize only the suitable

feeds relevant to the incident and provides means to organize information about the

incidents for performing real time analysis. After intensive literature review some

notable filtering methods are selected and their details are presented in sequence in the

following sections.

3.4.2.1 Data capturing

Whenever an incident is reported the system is triggered to get the real time data

through Social Media. Through this framework the data is captured from different

Social Media sources and translated into an incident profile. The main aim of this

incident profiling is to produce a profile that can provide the valid raw data for data

filtering and extraction. “An incident profile is a set of weighted attribute-value pairs

that describe the characteristics of the incident” [126]. These attributes contain data

regarding the incidents and might have specific weights to highlight the importance

of each attribute according to the type of incident occurring. Incident profiles are

kept open to change as it needs to be updated according to the modifications that
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Figure 3.3 : Proposed social media data filtration component.

may occur during the incident. Keeping in view the incident profile designed for

the disaster, social media aggregation is per-formed to capture any type of feed that

fulfills the criteria. These feeds are then reported and processed for extracting the

useful information for the system. Some common attributes for an incident profiling

are mentioned in Table 3.1.

Table 3.1 : Incident profiling attributes.

Incident Profiling Attributes Description
Classification Earthquake, Fire, Flood, Power Failure, Accident
Address State, City, Zip Code, Coordinates (if extractable)
Descriptive location Any location name used
Time of occurrence Time Stamp
Scaling Size or value reported
Image reporting Any Image or Video reported
Observations Comments regarding the incident

3.4.2.2 Verification

In this phase of data filtration the authenticity and reliability of the crowd-sourced

data are checked because of the anonymous source through which it is collected.
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This remains an issue with social media data and a lot of algorithms are designed

to cope with this concern. Privacy concern is also an issue and need to be addressed

with proper procedures. A lot of social media sites have already taken their users in

satisfaction regarding location and feeds in their user agreements. Verification can

also be performed manually by volunteers or stuff, but can be time consuming and

laborious.

3.4.2.3 Language recognition

Regions having multiple languages can get social media feeds in different languages

and hence affect the source data by adding noise. This issue highlights the need for

improved filtering techniques to translate feeds in a common language (i.e., English).

Neuro-Linguistic Programming (NLP) techniques can be used to manage multilingual

situations.

3.4.2.4 Metadata extraction

Metadata Extraction is a vital part of these social feeds as it provides additional

information on each feed. The metadata table can contain information about the

originator of the feed, and furthermore to verify the source it may contain the pro-file

picture, number of followers and feeds, location and time-stamp when sharing the feed.

Such type of Metadata can strengthen the reliability and accuracy of the data provided

for processing and decision making.

3.4.2.5 Geotagging

Through a designed API we can get map source data that provide street and building

level locations using coordinates, but on the other hand social media feeds generally

describe locations on regional levels if satellite navigation system is not activated. As

we know that the precise location of the incident plays an important role in disaster

management therefore to enable spatial exploration of social media feeds a geotagging

model should be used to display the narrative of the feeds at its exact location on the

map. The latitude/longitude coordinates of the us-er profile can be used to get the

desired location.
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3.4.2.6 Text classification

This phase is the core part of feature extraction as it indicates the extracted con-tents

and provides the required information for reporting or to be used in a disaster

management system. It may contain reports regarding casualties, possible threats and

damages about the incident. The classification can further be categorized ac-cording

to the feeds if the publisher was witness, hearing the news, observing or smelling

something. Handcrafted rules are used for the classification that can work in both the

attribute-value pairs and the plain words stated in the social media feeds [126]

Some common attributes, keeping in mind the filtered social media feeds for

classification, are described in Table 3.2.

Table 3.2 : Text classification attributes

Classification Type Description
Impact area Map highlighting the potentially affected areas
Status Current status of the incident
Threats Possible future threats
Related news Ongoing news about the situation
Casualties and Injured Number of casualties and injuries reported
Image or video reporting Any Images of the incident received
Respond time Possible time to respond to rescue
Instructions Any precautions needed

3.5 Structured and Unstructured Data Transformation

It is important to identify the structured and unstructured data types so that data

pre-processing techniques can be developed accordingly. Unstructured data is any

information that is not organized in a specific pattern or does not have any planned

data model while structured data is organized information that can be easily stored

and mapped into specific fields. The main drawback is that around 80 percent of

all potentially useful big data is in unstructured format and needs some filtration

mechanism to extract the required information. Unstructured data has always been

ignored and considered as “dead data”; however with the evolution in big data

technologies, valuable information and useful insights can be generated by processing

unstructured data.
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Figure 3.4 : Big disaster data transforming levels.

Figure 3.4 shows the transformation of unstructured data after filtering through the

proposed pre-processing steps to be used along with structured data. The identified

datasets available after executing categorization and modeling are ready to be retrieved

in three different data formats i.e. textual, Geo-spatial and image/video data. Here

data modeling means abstraction of application logic through a programming model

that enables data analysis applications. Data integration in this phase is vital as it deals

with heterogeneity found in the data structures and semantics for forming a uniformly

interpretable data structure for effective large-scale analysis. A set of parameters are

proposed that needs to be followed during the acquisition and filtration process. Social

media data being unstructured needs to be evaluated through a filtration process so that

it can be executed with structured datasets.

3.6 Conclusion

This chapter presents a design model for the development of an integrated system

consisting of social media crowd-sourced component and a designed web API

70



component through which organized and reliable data can be provided for real-time

disaster management. This design-science research demonstrates that the concept of

social media crowd-sourcing can effectively be used for real-time disaster management

and tries to aid the theory of making crowd-sourced data as trustworthy as other data

sources. The basic theme of this design is to make the unstructured crowd-sourced

data process-able so that it can be compared and merged with a structured data sources

such as a web API. The effectiveness of real-time crowd-sourced disaster management

systems has been proven but there are many gaps and challenges in this research

domain. The design science to model integrating frameworks plays a key role for

providing the basis for interdisciplinary research to be carried out.
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4. TOWARDS DISASTER RESILIENT SMART CITIES: CAN INTERNET
OF THINGS AND BIG DATA ANALYTICS BE THE GAME CHANGERS?1

4.1 Abstract

The recent advancements in the Internet of Things (IoT) and the evolution in Big

Data Analytics (BDA) technologies have provided an open opportunity to develop

highly needed disaster resilient smart city environments. In this chapter, a novel

reference architecture and philosophy of a Disaster Resilient Smart City (DRSC) is

proposed and discussed through the integration of IoT and BDA technologies. The

proposed architecture offers a generic solution for disaster management activities in

smart city incentives. A combination of the Hadoop Ecosystem and Spark are reviewed

to develop an efficient DRSC environment that supports both real-time and offline

analysis. The implementation model of the environment consists of data harvesting,

data aggregation, data pre-processing, and big data analytics and service platform. A

variety of datasets (i.e., smart buildings, city pollution, traffic simulator and twitter)

are utilized for the validation and evaluation of the system to detect and generate alerts

for a fire in a building, pollution level in the city, emergency evacuation path and

the collection of information about natural disasters (i.e., earthquakes and tsunamis).

The evaluation of the system efficiency is measured in terms of processing time and

throughput that demonstrates the performance superiority of the proposed architecture.

Moreover, the key challenges faced are identified and briefly discussed.

4.2 Introduction

In this age of technology, the disaster management process can be provided with

multiple supportive data sources to acquire information that can be utilized effectively

1This chapter is based on the paper "Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S.,
Yahia, S. B., Draheim, D. (2019). Towards Disaster Resilient Smart Cities: Can Internet of Things
and Big Data Analytics Be the Game Changers?. IEEE Access, 7, 91885-91903. [Online]. Available:
https://ieeexplore.ieee.org/document/8759905."
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in rescue, response and as well as in the mitigation and preparedness phases of a

disaster. Modern disaster management systems need to support various types of

data generated from heterogeneous sources, hence requires deploying effective data

integration and multi-modal data analysis methods to extract valuable information.

Relevant information needs to be collected from various potential data sources

(i.e., Sensors, Social Media, Satellites, Smartphones, Authoritative/Historic data

repositories, etc.), to increase the scope of situational awareness and acquire new

insights for effective decision-making. Fortunately, with the emergence of new

technologies such as the Internet of Things (IoT), Big Data Analytics (BDA), Cloud

Computing, Fog Computing, etc., the disaster management process automation is

getting equipped with more advanced services for timely and accurate operations. The

growth of communications through Web 2.0; the latest technological advancements

such as social media, smartphones, location-based systems, satellites, in-situ sensors

data; and the potential ability to integrate them along with traditional data sources

such as authoritative/public data and mass media can lead to new application era

for the disaster management systems. The availability and integration of information

from heterogeneous data sources and its coordination and understanding with decision

makers, emergency responders, governments and also citizens will be the core ideology

of this new and highly needed disaster management application model.

The world’s population living in urban areas and neighboring localities is projected

to rise to around 68% by 2050 [131]. The prompting increase in the population

density in urban cities has given rise to the requirement of proper services and a

better infrastructure for its inhabitants. The concept of Smart City is getting popularity,

where various electronic devices and network infrastructure are incorporated together

to attain high-quality two-way collaborative multimedia services. Smart city incentives

are considered an ideal solution by experts in both academia and industry to answer

the challenges that occur from population growth, environmental pollution, shortage

of energy sources, etc. [5] [132]. Hence, a smart city equipped with the capability

of generating early warnings, monitoring, and predicting the disaster can be a game

changer in minimizing fatalities by generating the required information and insights

for the concerned authorities to intelligently manage the disaster scenarios.
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The growth of big data, the advancement of BDA tools and the expansion of the

IoT are boosting the concept of smart cities. Smart cities are getting equipped with

multiple data sources to effectively help the citizens in their daily life activities. To

deploy any smart city initiative, advance data sensing capabilities with highly efficient

communication network play a major role. However, for a smart city to become

a DRSC it needs to execute effective aggregation and storage of huge volumes of

data, integrate heterogeneous datasets and perform analytics in real-time to extract

the required information. The DRSC concept necessitates more attention due to its

time-sensitivity and high accuracy constraint application owing to the life or death of

human lives. Such problem signifies the leading edge of BDA and IoT advancements,

which collectively are capable of dealing with the urgency of this problem.

BDA frameworks are used to analyze various applications of the smart city, however

the time sensitive and accuracy demanding disaster/crisis/emergency management

applications are still to be evaluated. There are very few research resources in the

area of the smart city and disaster resilience and BDA- and IoT-based DRSC is rarely

been investigated. Moreover, the requirement of an efficient and scalable compact

environment for a BDA- and IoT-based DRSC has not been fully met yet. Therefore,

this study attempts to present an architectural solution that is designed and evaluated

for a DRSC and able to work with different data sources supported by state-of-the-art

big data analytical tools. The motivation behind our effort is to provide innovative and

effective BDA- and IoT-based DRSC architecture that considers heterogeneous data

sources and real-time processing for more instant and insightful results. The aim of

this research is to integrate different aspects of BDA and IoT for effective utilization of

multi-source big data and to gain from the opportunities they offer for effective disaster

management.

4.3 BDA- and IoT-based Disaster Resilient Smart City

In this section, we first propose a novel conceptual reference architecture that aims

at providing an effective platform for storage, mining, and processing of various data

sources including IoT generated and crowdsourced big data. Then we present the
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detailed information regarding the implementation model of our deployed system to

illustrate its overall operations and functions.

4.3.1 Proposed Reference Architecture of BDA- and IoT-based DRSC

Figure 4.1 : Proposed reference architecture for BDA- and IoT-based Disaster
Resilient Smart City(DRSC).

Several BDA and IoT architectures focusing on various operations and attributes in

smart city concepts are found in the literature. For example, real-time data was utilized

for BDA in an IoT-based smart city for the smart transportation system in [133].

In [134], a healthcare architecture is proposed that uses BDA on data from dedicated

IoT devices. Similarly, in [135] the authors proposed architecture for smart urban

planning based on BDA and utilizing IoT datasets. In another study [136] a framework
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was proposed for weather data analysis using BDA and IoT to extract meaningful

information from huge volumes of unstructured data. In [137], BDA and IoT based

classification extension system design were proposed for monitoring water conditions

in real-time. However, to the best of our knowledge, no architecture has entirely

focused on integrating BDA and IoT for any kind of disaster management or resilience

in smart city projects.

There is a great scope to validate and evaluate various BDA and IoT technologies for

a time critical and performance demanding application like disaster management. To

benefit from the state-of-the-art applications and value-added capabilities presented by

BDA and IoT with disaster management in perspective, we propose a novel disaster

resilience smart city reference architecture that can be assisted with the advanced

capabilities collaboratively offered by BDA and IoT. Based on the abstraction and

identification of the various technological domains, the proposed architecture of IoT

and BDA for a DRSC in this study can either be considered as i) a reference model for

data abstraction that defines relationships among IoT and Big Data entities for DRSC

and; ii) a standardized framework for assembling overall DRSC system entities.

The following challenging characteristics are taken into consideration during the

design process.

• The architecture should be open any potential data source that can provide

additional insights to the results.

• The architecture needs to ensure the effective transmission of data over the

communication networks.

• The architecture needs to guarantee the flawless storage of structured and

unstructured data that can be either real-time or historical data.

• The architecture should be scalable to handle different data processing algorithms

and analytical packages.

• The architecture should be able to present the processed results to the decision

makers in an interactive manner and if necessary share the results with other

subsequent applications.
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As shown in Figure 4.1 the proposed architecture is split into five layers, i.e., 1)

Data Resource; 2) Data Transmission; 3) Data Aggregation; 4) Data Analytics

and Management; and 5) Application and Support Services layer. The following

subsections thoroughly describe each layer of this envisioned architecture in detail.

4.3.1.1 Data resource layer

This layer deals with the recognition all the potential data sources and collection of

data generated by them. It contains all the potential IoT based data sources for DRSC

such as in-situ sensors, RFID tags sensing, GPS, surveillance cameras, smartphones,

satellite remote sensing etc. Moreover, DRSC can benefit to a large scale from a

number of data resources, that can be taken aboard, such as social media streams

and authoritative/historical data held by government or other disaster management

organizations. Depending on the type of the source, the data can be about location,

orientation, temperature, humidity, situation description, image or audio/video etc.

Moreover, the collected data can be both structured and unstructured as illustrated

in Table 4.1. These data sources generate different data types and formats. Hence

integrating them for processing is a challenging task. The main data formats that can

efficiently be processed in this proposed framework are (XML, CSV, JSON, ARFF,

JPEG, and MPEG-2). Moreover, different data converters can be used to integrate

various types of data prior to the data processing phase. The data sources are connected

to a local data access middle layer or a remote station where the generated data are

collected and integrated to be communicated via the data transmission layer.

4.3.1.2 Data transmission layer

Data transmission layer acts as the core component in any smart city architecture

as it is providing the communication channels throughout the environment. The

transmission layer is responsible to connect the data sources to the data aggregation

layer and provide communication channels through out the environment in a secure

and efficient manner. It is recommended to establish the disaster information networks

by considering all the available options in the form of wired, wireless, or satellite

networks to ensure a “never-die-network environment” [85]. The transmission can

be on wired or wireless medium categorized by Local Area Network (LAN), Wide

Area Network (WAN) and Personal Area Network (PAN). The transmission layer
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Table 4.1 : Structured and unstructured data in the context of disaster management.

Structured data examples

•Digitally archived incident related data

(Reports on damages, causalities, injuries, etc.)

•Data resources approved by government authorities

(Demographic, Health records, etc.)

•Location-based GPS third-party verified spatial data

•Sensory data with meta-data

(temperature, humidity, wind speed, precipitation etc.)

Unstructured\Semi-structured

data examples

•Crowd-sourced data, including micro-blogs/text descriptions

about the incident

•Multi-media data (Pictures and videos) shared on social media

related to the disaster

•Public surveillance and private CCTV video recordings

•Satellite imagery data of the affected area

•Electronic/Online news data from different channels and

web-sources

is supported by a combination of access transmission communication technologies

such as ZigBee, Bluetooth, Wi-Fi, Ethernet, WiMax, NFC and RFID; and network

transmission communication technologies such as CDMA, GPRS, 3G/LTE, and 5G.

4.3.1.3 Data aggregation layer

With the possible inclusion of many heterogeneous data sources (i.e. IoT sensors,

social media streams, satellites, electronic media, geo-portals, authoritative data), the

system’s reliability and value for effective decision-making increase undoubtedly, but

on the other hand, it can also increase system vulnerability and complexity. The Data

Aggregators are responsible to collect all the data under one multi-source database

through different transmission mediums. Data can be gathered in the form of structured

and unstructured data separately, using Apache Flume and Apache Sqoop respectively.

Moreover, Spark Streaming can be utilized for real-time data collection. Apache

Flume [138] is an open-source tool which provides a distributed and reliable service

for collecting, aggregating and transferring huge volumes of unstructured data. It can

aggregate and channelize unstructured data from various sources to HDFS directly. It

is fault tolerant, robust and simple with many recovery mechanisms that use extensible

data model for online analytic applications. Apache Sqoop [139] on the other hand

is also an open-source tool but designed for extracting bulk data from structured

79



databases (i.e. Relational database, NoSQL database, Data warehouses) to HDFS.

Spark Streaming is ideal for real-time data aggregation from sources like Twitter and

IoT based data streams. A combination of these tools, through a data pipeline can be

utilized to collect the desired data. In this phase, the essential Meta data information

such as data source, content, time stamps, location, etc. can also be identified.

4.3.1.4 Data analytics and management layer

The main layer for data analytics and management contains a set of different tools

to aggregate, store, process, query and analyze data. A combination of different BDA

frameworks (i.e., Hadoop Ecosystem and Spark) can be reviewed to develop a real-time

and efficient system for disaster management processes. An interoperable and efficient

storage mechanism is required for the streaming structured and unstructured data.

Hadoop Distributed File System (HDFS) [140] is a distributed storage file system

designed to operate on commodity hardware with higher efficiency to handle large

volumes of data. HDFS acts as the underlying storage for any Hadoop based system.

Its main advantage is scalability, from a single server to thousands of machines and

each capable of using local storage and computation. It consists of two types of

nodes, i.e. NameNode denoted as “Master” and numerous DataNodes denoted as

“Slaves”. Namenode is responsible for managing the hierarchy of life system and

director namespace that acts as metadata while DataNodes stores the actual data

content. The data content is split into blocks and each block is replicated across

different DataNodes for redundancy. Reports of all the existing blocks are sent to the

NameNode periodically for monitoring and record. Along with HDFS based storage,

a variety of programming models can be used for processing and analyzing big data,

depending on the final results and business requirements. In this big data environment,

it is very important to execute queries rapidly and retrieve results in the shortest time

possible. Apache Spark [141] an open-source general computation engine for Hadoop,

by far can fit the bill for a time critical and massive data sized systems. Spark is

ideal for interactive queries and also supports processing of real-time data streams.

It is a well-recognized processing framework with elegant APIs that supports various

computer languages (i.e. Python, Scala, Java) and ensures fast, flexible and easy-to-use

computing to execute machine learning or SQL assignments with streaming datasets.

Moreover, it has a vast set of libraries (i.e. MLlib, GraphX, Spark Streaming, Spark
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SQL) for different functions with the possibility of adjusting and tuning according to

the requirement.

A set of various supplementary tasks can be performed to accomplish the required

analysis and to provide accurate and timely results to the decision-makers. Event

detection is very critical in disaster management and needs to be operational to

identify any disastrous event that occurs. Event detection backed by IoT sensor data

and social media streams can detect any incident within the first few seconds of its

occurrence [142]. Pattern recognition mechanism offers the machine learning ability

to detect the useful patterns of information from textual or spatial data sets crucial for

disaster management [65]. Semantic engine can be utilized for effective information

management, i.e., categorizing, searching and extracting of unstructured information.

A number of data mining techniques can be utilized to discover new, effective and

otherwise hidden patterns of insights from the available information. Multi-source

information fusion technologies help to integrate the required data from heterogeneous

data sources. Task management helps to identify workloads on different entities in the

system and effectively managing system’s operations.

4.3.1.5 Application and support services

An interactive web-based application interface can provide decision makers

(Emergency responders, Public health, Police, Fire Department) with the required

results. The results can be queried and displayed with different visualization tools

accessed through web-based APIs. Software solutions that provide a web-based

user interface and does not require manually scripted queries can be utilized for

result generation and visualization for decision-makers. Furthermore, the decision

making process can be integrated with various services such as decision models,

soft computing, result interpretation and visualization technologies depending on the

requirements for a specific application. The obvious aim of the big data analytics

platform is to boost the decision-making process with a steady flow of the required

information and new patterns for more insights. The decision-making process can

be supported by defining decision models that contain the steps of how the required

goals are distinguished, structured and processed to carry out a particular decision.

The decision-making process can then be provided with the generated results by
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using defined decision models, result interpretation tools and soft computing methods.

Various visualization tools such as Kibana, Tableau, Plotly, etc., can be used to provide

an interactive and user-friendly interface for decision-makers. Moreover, the proposed

big data analytical services environment should be able to integrate with the traditional

disaster management systems to provide results according to their configurations and

requirements.

Figure 4.2 : Implementation model of the deployed system.

4.3.2 Implementation Model

The implementation model that outlines the details of all the operational steps

performed in our deployed system within the scope of DRSC is presented in Figure

4.2. The proposed implementation model is divided into four layers, i.e., 1) Data

Harvesting; 2) Data Aggregation; 3) Data Pre-Processing; 4) Big Data Analytics and
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Service Platform. The following subsections explain each layer of the implementation

model in detail.

4.3.2.1 Data harvesting

Initially, a number of potential data sources (i.e., weather sensors, smart

home-generated data, vehicular traffic, social media streams) that provide valuable

information within the scope of disaster management are identified. Data is primarily

collected through local data aggregators of each respective data source. Local

data aggregators convert the analog data into machine-readable digital form. Data

harvesting process transfers the data from local aggregators that are collecting data

from sensors environments measuring the real-world situations. The data harvesting is

a challenging process due to the involvement of heterogeneous data sources producing

huge amount of data. Therefore, we assume that potential sensors already deployed by

various centers for different applications provide the data for our system. These data

resource centers collect real-time data from heterogeneous sensors already deployed in

smart cities. Hence, we are skipping the data harvesting mechanism in our proposed

model and considering the recognized data sources as mentioned in Table 4.2, which

consists of the information about all the utilized datasets, including dataset description,

size, number of parameters, application and the reference of the data sources.
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4.3.2.2 Data aggregation

Data aggregation process is performed to categorize the collected data for the effective

extraction of the required values. Data aggregation process ensures the accessibility

of the required data values from the available data sets and assembles it for further

analysis. Our proposed model is open to various data sources (i.e., weather sensors,

smart home-generated data, vehicular traffic, social media streams, digitally archived

data). The collection of different data sources is considered as a Data Resource (DR)

that provides the required data to the system. The DR contains Datasets sets (DS)

(i.e., temperature, smoke, gas, etc.) comprising of Values (V) with their respective

recorded Time (t). Table.3 shows the categorized illustration of the datasets that can

be mathematically presented as in Equation 4.1. This categorization of DR helps in

evaluating the required DS with respect to specific timings for a given scenario.

DSm =
n

∑
t=1

Vm,t

DR =
m

∑
i=1

DSi

Hence,

DR =
m

∑
i=1

n

∑
t=1

Vi,t (4.1)

Table 4.3 : Data Resource categorized illustration.

DR =

t1 t2 t3 ... tn
DS1= V 1,1 V 1,2 V 1,3 ... V 1,n
DS2= V 2,1 V 2,2 V 2,3 ... V 2,n
DS3= V3,1 V3,2 V3,3 ... V3,n

.

.
.
.

.

.
.
.

.

.
DSm= Vm,1 Vm,2 Vm,3 . Vm,n

4.3.2.3 Data pre-Processing

The datasets are initially pre-processed to remove incomplete, ambiguous, and

redundant data. The raw datasets usually contain outlying, unfeasible or missing

values that can lead to ambiguous results. Hence initially, the datasets need to be

inspected for such issues to ensure that the atomicity of the data is retained. This
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layer cleanses the data by dealing with incomplete and noisy data. Data filtration steps

define the data quality parameters for huge volumes of unstructured and structured

data. This layer ensures the verification and credibility of the data source through

its meta-data. The collected data contains a significant amount of redundant data;

therefore, redundancy checks, that could be either syntactic and or semantic, remove

unnecessary data to minimize the storage and processing load. Data pre-processing

techniques need to be applied prior to any kind of data analytics. Data pre-processing

also referred to as normalization, applies various data transformation techniques to

compile the data values so that they fall within a prescribed range i.e. [0 ∼ 1].

When integrating different data sources, normalization plays a key role in scaling the

wide and short-ranging values to a common range for better data analysis. In our

proposed algorithms, we required a common threshold value for some diverse datasets.

Therefore, a normalization technique that can preserve the significance of each value

including outliers was required.

We used the Z-score normalization using Mean Absolute Deviation to normalize

the aggregated datasets. Z-score normalization [147] also referred to as zero-mean

normalization technique is widely used to normalizes the dataset input values using

Mean and either Standard Deviation (σ ) or Mean Absolute Deviation (MAD). We

opted for Z-score normalization with Mean Absolute Deviation (MAD) instead of

Standard Deviation (σ ) as it has been shown to be more robust to outlier values and

hence reduce outliers effect on the results. Mathematically it can be shown as,

SA =
1
n
(|V1− Ā|+ |V2− Ā|+ |V3− Ā|+ ...+ |Vn− Ā|)

Vi
′
=

Vi− Ā
SA

Ni =
1
5
(Vi
′
)

NDS = Ni +0.5 (4.2)

Where (Ā) is the mean of the attribute dataset and Vn represents the values in the

dataset. SA shows the final MAD value of that particular attribute data set. The

normalization of values through Z-score normalization using MAD can be derived

mathematically as shown in Equation 4.2. Where Vi represents the old values and
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V
′
i is the new normalized value of an attribute dataset. The values after the z-score

normalization lies between [-2 ∼ 2]. To convert the values to an interval scale of [0

∼ 1], we first divided all values by 5 to get the 1-point range. As the mean is still

0 at this stage therefore we added 0.5 to all values producing the final normalized

values ranging from [0 ∼ 1]. Normalized Data set (NDS) against each respective DS

is then considered for further analysis. The pseudocode for the normalization process

is proposed in Algorithm 1.

Algorithm 1 Data Normalization
BEGIN
Input: Datasets of each data values (DS)
Output: Dataset of normalized values (NDS)
Steps:

1: FOR EACH (i) = 1 to (n) LOOP //(i) is ID of dataset
2: Calculate the Mean (Ā) for each dataset
3: Calculate the Mean Absolute Deviation (SA) for each dataset
4: Find the Z-score normalization (Vi

′
) for each dataset value // Vi

′
= Vi−Ā

SA
5: Divide all values by 5 //to get 1-point range
6: Add 0.5 to all values //to get values at scale of [0 ∼ 1]
7: Return the normalized values in new datasets (NDS)
8: CONTINUE ((n)+1);
9: END LOOP

END

We also focused on normalizing the Twitter dataset (TDS) considering alert generation

process that can be achieved with the number of tweets in a specific location about a

specific disaster event. Based on number of the geo-located tweets and textual content

analysis, an alert generation process can be initiated. Moreover, with the twitter dataset

input also compressed to [0 ∼ 1] scale regarding the number of location tweets and

hashtag tweets, a wider set of possible solutions can be achieved with the integration

of the threshold settings for various other applications. We retrieved Tweets from

a specific disaster-affected location containing useful hashtags that are referring to

the respective disaster and then sort the tweets according to their time-stamps. The

algorithm that generates alerts is based on the number of disaster-related hashtags

within the number of geo-located tweets gathered from the targeted location in a

specified amount of time. Initially, the total numbers of tweets gathered from the target

location are identified denoted as (TL). Then, the total number of tweets with the related

hashtags within (TL) are filtered and denoted as (TH). For example, for an earthquake
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scenario in Istanbul, Turkey, (TL) will be the total number of tweets collected within

the geo-coordinates of Istanbul. Then the number of earthquake-related hashtags or

keywords (i.e., Earthquake, Deprem (Turkish for Earthquake)) are filtered out as (TH)

from (TL) in fixed time intervals (t) (i.e., 5 mins). To normalize the Twitter dataset

(T DS) in hand to a scale of [0 ∼ 1], we used the Equation 4.3.

T DSt =
TH

TL
(4.3)

4.3.2.4 Big data analytics and service platform

Large volumes of data require combination of state-of-the-art big data analytical

tools that can efficiently process the datasets for both real-time and offline analysis.

As shown in the proposed architecture, a combination of the Hadoop ecosystem

and Spark engine is utilized to meet these requirements. Initially, the data is

classified with the help of the identifier and the message type. The classification

phase distributes the contents according to their data status and formats for effective

processing. The classified data is then converted to Hadoop and Spark understandable

format i.e., sequence files. The system platform equipped with the Spark Engine

and Hadoop Ecosystem process the data according to the prescribed algorithms.

The implementation is attained by using the Hadoop ecosystem with MapReduce

mechanism. Parallel formation of MapReduce is deployed with HDFS. HDFS

distributes the data in equal blocks among the data nodes. Each block is copied on more

than one data node allowing each node to perform processing on its allocated block by

using Map function. A master node with the authority of distributing data blocks to

other nodes then concatenates the results from all the nodes by using Reduce function.

A standalone Hadoop based system is only suitable for offline batch processing.

Therefore, we deployed Apache Spark for real-time data processing. Apache Spark

is used along with Hadoop for more powerful operations on real-time streams of data.

Spark Streaming that supports both online and offline data streams is deployed for data

aggregation in the system. Spark Engine works with Resilient Distributed Datasets

(RDDs) which is an efficient in-memory (RAM) cluster computing abstraction. Spark

provides fast, flexible, fault tolerant and advanced data analytics operations. By

default Hadoop implementation in programmed in Java, so we used Java language

for programming and also opted for the use of Java version of Spark. In our system,

we are benefiting from the parallel data processing through Hadoop and real-time data
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processing by using Apache Spark. This combination provides flexible and effective

storage, accurate parameter calculation and fast result generation.SparkSQL [148] is

a SQL based declarative languages that perform big data analysis tasks. It is Spark’s

module to query data inside Spark core programs. For data query we used SparkSQL

as it gives fast response to queries even if scaling to thousands of nodes with spark

engine. It enables extension with advanced analytics algorithms such as machine

learning and graph processing. One of the key advantages of using Spark is the

advance libraries it offers for analytics. Spark MLlib [149] is a machine learning

framework that works with the Spark core engine. It is quite famous with data

scientist due to its simplicity, language compatibility, scalability, Spark based speed

performance and easy integration with other tools. It allows data scientist to forget

about the infrastructure and configuration complexities and to only focus on their

data related issues and models. Spark MLlib is a general-purpose library, which

offers several optimized machine learning algorithms (e.g., classification, clustering,

filtering, collaborative) and provides the flexibility to amend and extend the algorithms

for specialized use cases. Spark GraphX [150] constitutes an interactive graph

computation engine that manipulates graphs and executes graph and data parallel

systems. It provides a library of graph-based algorithms (i.e. triangle counting,

counted components, PageRank) for different graphs manipulation operations. Once

we get the results from the big data analytics and service platform, the generated results

are then visualized for better understanding.

4.4 Data Analytics: Results and Discussion

This section presents the defined critical threshold, analysis results, system

implementation and efficiency evaluation details to perform and understand the

feasibility of the study. The system developed with a combination of the Hadoop

ecosystem and Spark engine is considered as the main station. The link is established

from smart systems and twitter streams to the main station for aggregation of the

real-time and offline data. As discussed before, due to the limited data access, at this

level it is not possible to directly aggregate data from various potential data sources,

therefore, existing smart systems’ and twitter datasets are utilized for analysis. The

aim of the analysis is to demonstrate how multiple heterogeneous data sources can
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be used in a DRSC concept to achieve the desired results. In the remainder of this

section, we first explain the critical threshold used for the various applications. Then

the analysis results and discussion against each IoT generated datasets and geocoded

Twitter datasets are presented. Lastly, the system implementation and efficiency

evaluation details are presented that illustrates the proposed system is efficient and

scalable for applications.

4.4.1 Defining the Critical Threshold

The critical threshold (CT) can be defined as a particular value or boundary limit which

if exceeded alters the results or generate an alert. Various CTs are set for different

datasets according to the application requirements in this study. CTs are defined

manually for each dataset accordingly, such as temperature CT for fire detection and

alert generation, toxic gases level CT for pollution monitoring, etc. CT values can

be defined in binary, float or percentage format, such as 55 degree Celsius for fire

detection and 200 gram/meter3 gas level for toxic gases alert generation. The CT

values are set based on the atmospheric conditions of the application environment.

CTs needs to be carefully defined as the effectiveness of results depends on it. Table

4.4 contains the CT values established for different applications used in this study.

Table 4.4 : Defined Critical Threshold (CT) for different IoT applications.

Application Critical Threshold (CT)
Temperature 55°C
Smoke 200 g/m3

Gases 200 g/m3

Traffic 125 Vehicles

Table 4.5 : Defined twitter Critical Threshold for various alert message level.

TCT

Alert Message Status Range
Negative [0 – 0]
Informational [0 – 0.09]
Warning [0.1 – 0.39]
Critical/Emergency [0.4 – 1]

Since we also have normalized Twitter dataset (TDS) considering tweet counts, we

established the Twitter Critical Threshold (TCT ) as shown in Table 4.5. The alert
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message status depends on the TDS value derived from the Equation 4.3 according

to a respective scenario in a given time-frame.

4.4.2 Analysis Results for IoT datasets

In order to exploit the proposed architecture for IoT generated datasets, we considered

three main incidents that normally happen in our daily life and are suitable within

the context of disaster management. The application of these incidents are 1)

Detecting fire in a building; 2) Monitoring overwhelming nature of pollution in

the city; 3) Identifying road blockage due to any natural disaster or accident for

assisting emergency evacuation. We elaborated how the system detects these events

and generate alerts.

Algorithm 2 Fire Alert
BEGIN
Input: Temperature (T) and Smoke (S) Readings
Output: Fire Alert/No-Fire
Steps:

1: FOREACH (n) Reading of Temperature (T) and Smoke (S) LOOP
2: (T_Avg)= ∑

n
t=n−3 Tt

3

3: (S_Avg)= ∑
n
t=n−3 St

3
4: IF ((T_Avg)>CT)
5: (T_Report:) = TRUE
6: ELSE
7: GoTo(Tn+1)
8: ENDIF
9: IF ((S_Avg)>CT)

10: (S_Report:) = TRUE
11: ELSE
12: GoTo(Sn+1)
13: ENDIF
14: END LOOP
15: IF ((T_Report) && (S_Report) = TRUE)
16: GENERATE (Fire_Alert);
17: ELSE
18: CONTINUE((n)+1);
19: ENDIF
END

The building (factory, office, house, etc.) temperature data is monitored for every

room in order to identify the fire accident in the building. The fire simulator developed

by NIST, called Fire Dynamic Simulator (FDS) [143], is used to generate various
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Figure 4.3 : Fire monitoring through temperature analysis in a building.

Figure 4.4 : Smoke monitoring through smoke density in a building.
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fire events in the building. We analyzed the temperature and smoke readings with

their rising rates to identify a fire event or no event. Then, we set critical threshold

for temperature and smoke readings for the fire event as proposed in Algorithm 2.

The rising rate is calculated as the rising temperature and smoke values per minute.

The algorithm calculates the average of the last 3 values with each new temperature

and smoke value respectively. If the average of the temperature and smoke readings

exceeds their allocated CT values respectively, then the event is reported positive.

If both temperature and smoke values result in positive reports, then the algorithm

generates a fire alert. This method is proposed to confirm the occurrence of the fire

event with different sensors data and to reduce the chances of false alarm in case of

malfunction of one sensor.

Figure 4.3 shows the temperature scenario (in degrees Celsius) while considering

no-fire event and then abruptly the fire occurs. Till time T10, there is no event, thus, the

temperature is lower and its changing behavior is quite predictable, which is also lower.

Afterward, the temperature level upsurges gradually from the normal range. Hence, the

system started analysis using temperature rising rate and noticed that the rising level

is quite higher than before. So, the system presumed that it is fire. However, when its

level increased from the critical threshold for temperature, the fire event is confirmed

to report a true status. Similarly, Figure 4.4, shows the smoke scenario measured in

gram/meter3. When both scenario returns true status the fire alert is generated and

notified to take further necessary actions.

Correspondingly, we have also taken the pollution data [144] of Arhus city of Denmark

to generate alert for the invincible nature of pollution and toxic gasses in the city. The

data is collected through 499 gas sensors placed within the city to measure toxic gases

including carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone

(O3), and other Particulate matter. Once any of these gases level exceeds from the

normal range, it can be dangerous for citizens, especially children, elderly people, and

allergy or asthma patients. Thus, the system generates alerts to the citizens if it exceeds

the established CT indicating higher toxic gases level in the air. Algorithm 3 shows the

pseudocode for the pollution level alert generation process. Figure 4.5 shows various

time slots when the toxic gases i.e., carbon monoxide (CO), sulfur dioxide (SO2),

and nitrogen dioxide (NO2) exceed from the serious threshold. Whereas, Figure 4.6
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Figure 4.5 : Pollution monitoring in a city through various gases.

elaborates the changing behavior of ozone and particulate matters. At time T1 to T50,

most of the time the ozone level is more than 200 in the air, which is dangerous for

citizens. Accordingly, the system generates alerts to the people to take precautionary

measures or avoid going outside.

Algorithm 3 Pollution Level Alert
BEGIN
Input: Air Quality Metrics (M)
Output: Pollution Alert/not-polluted
Steps:

1: FOREACH Gas_Readings (R) (R_CO, R_SO2, R_NO2, R_O3) in (M) LOOP
2: IF (R_CO, R_SO2, R_NO2, R_O3) >CT)
3: Rep =1
4: Pollution_Alert();
5: ELSE
6: Rep =0
7: GoTo (Next_R)
8: ENDIF
9: END LOOP

END
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Figure 4.6 : Pollution monitoring in a city through Ozone and particulate matter’s
level.

Figure 4.7 : Traffic blockage analysis on a road.
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Algorithm 4 Route Blockage Alert
BEGIN
Input: Traffic Data with (Num_vehicles) and Time interval (T)
Output: Route Status (Blocked and New Route)
Steps:

1: Identify Time interval (T) // (T) is time to reach
2: Identify (R) // (R) is Route towards destination
3: FOREACH Reading (Num_vehicles) at (T) on (R) LOOP
4: IF (Num_vehicles) >CT)
5: GoTo(Next_Reading)
6: ELSE
7: Blockage_Alert();
8: Alternative_Route (Assign New_Route (R));
9: ENDIF

10: END LOOP
END

Furthermore, for emergency evacuation path planning and real-time traffic analysis,

to identify road blockage and accidents, we used the manually modified version of

Volkhin road traffic simulator [145]. We took pairs of locations and the traffic data

among them, including a number of vehicles moving in between each of the pairs and

their speed. Road blockage is identified when the number of vehicles exceeds from

the threshold and the ‘time to reach’ is exponentially increased. Algorithm 4 depicts

the pseudocode for the route blockage alert process. The analysis result of the road

blockage is depicted in Figure 4.7. Till time T40, the number of vehicles between

two the specified points is minimum. Consequently, the ‘time to reach’ is least and

fluctuates based on the average speed of vehicles. However, whenever the vehicle

count rises from the normal range, the ‘time to reach’ starts increasing accordingly as

both are proportional to each other. Once the number of vehicles crosses the serious

threshold limit (i.e., the maximum capacity of vehicles on the road), the value ‘time

to reach’ parameter boosted exponentially. This boosting time value and the number

of vehicles are two indicators of road blockage to assist emergency evacuation path

planning.
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4.4.3 Analysis Results for Twitter datasets

4.4.3.1 Case study 1: Indonesia

In order to analyze the proposed architecture for Twitter datasets we focused on

2018 earthquake followed by tsunami occurred at Palu, Sulawesi, Indonesia. On 28

September 2018 at 18:02:44 local time, a large earthquake of 7.5 magnitude struck the

island of Sulawesi, Indonesia. Following the earthquake, a tsunami struck Palu city,

sweeping houses, and buildings on its way. The death toll is estimated to be more than

3,000 people [151].

Figure 4.8 : Overall Geocoded Tweet map of Palu, Indonesia from 28th to 29th
September 2018.

For the Twitter-based analysis, we acquired data from the Twitter stream grab [146],

a Twitter data archive containing data from 2012 to 2018. The data sets are collected

on a monthly basis, each having size of more than 40 GB and are provided in JSON

format. Originally, we collected 41 GB of Twitter data for the month of September
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2018. Initially, we found a total number of 117,894,272 geocoded tweets without any

geo-coordinate filtration. Since we only wanted to focus on the Palu city; therefore,

we filtered out the tweets within the geo-coordinates of Palu city.

Figure 4.9 : Major languages used for all geocoded tweets within Palu, Indonesia.

Figure 4.10 : Geocoded Tweets found with #Earthquake and #Gempabumi in Palu,
Indonesia.

A total of 981 geocoded tweets were collected within the specified range from 28th to

29th September 2018 as shown in Figure 4.8. Most of the twitter users do not enable

the geo-location option while tweeting due to privacy concerns [152] and less than 5
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percent of tweets have geo-coordinates attached with them [153]. Hence, the lesser

number of tweets can be justified. The tweets were mostly tweeted in the Indonesian

language (about 82%) as shown in Figure 4.9. The final results were mapped using

MAPD [154] for temporally visualizing data. The cross filtering capability of Twitter

to analyze any activity with a given hashtag provides a great opportunity to acquire

the desired results in a compact manner. We analyze all the geocoded tweets through

hashtags, considering the main natural disasters i.e. (Earthquake and Tsunami).

Figure 4.11 : Total number of Tweets on 28th September with 30 minutes intervals.

A total number of 104 tweets were identified with hashtags of Earthquake and

Gempabumi (Indonesian for earthquake). Figure 4.10 shows the geocoded tweet

map filtered with #Earthquake and #Gempabumi within Palu city. Interestingly, these

tweets were reported within a few minutes of the earthquake occurrence. As can be

seen in Figure 4.11 the most number of tweets for the day were reported between 18:00

to 18:30 and surely the earthquake struck on 18:02:44 has triggered this increase.

Moreover, we tried to filter tweets with hashtags #Earthquake and #Gempabumi

reported from time 17:50 to 18:30 and found out that within the first 10 minutes of the

earthquake around 30 percent of the tweets contained the hashtags #Earthquake and

#Gempabumi. Figure 4.12 compares the tweets with the defined hashtags and tweets

without the defined hashtags around the earthquake timings. We also tried to form a

word cluster of the words from the English language tweets being reported during the

first 6 hours of the earthquake. As can be seen in Figure 4.13 the word magnitude is
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the most used word in the reported tweets to mention the magnitude of the earthquake

i.e., 7.5 magnitude.

Figure 4.12 : Number of Tweets with and without defined (#Earthquake and
#Gempabumi) hashtags.

Figure 4.13 : Word cluster with the main words in the filtered tweets.

After the earthquake, in approximately 30 minutes a six metre-high tsunami arrived to

Palu city causing damage that was more devastating [155]. This scenario presents a

very good case study to identify the role of twitter using alert generation thresholds and

collecting information. The overall work-flow of Twitter data analysis is illustrated in
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Figure. 4.14. As it is mentioned a range of 30 km was considered surrounding the

center of Palu city to consider geocoded tweets within the specified coordinates. The

tweets were the filtered with respect to the defined hashtags and the time-stamps they

were reported on. With each 5 minutes span the number of tweets within and without

hashtags were calculated using the proposed Equation 4.3 and the Twitter-based critical

threshold range as shown in Table 4.5, so that crowdsourced early warning alerts are

generated for such a situation. Moreover, once the alert is triggered we can also extract

useful textual information and multimedia content i.e., images and videos from the

filtered datasets in real-time.

Figure 4.14 : The workflow of Twitter data analysis.

4.4.3.2 Case study 2: Turkey

In this section, we provide the application of geo-social data analysis component

under the proposed architecture, aimed at detecting various disaster events in Turkey.

To analysis the Geo-social media data component on the proposed architecture, we

acquired data from the Twitter stream grab [146], a Twitter data archive containing

data from 2012 to 2018. The data sets are collected on a monthly basis, each having

size of more than 40 GB and are provided in JSON format. Initially, we collected 128
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GB twitter data over 3 months (February, March, and April 2018) out of which we

found more than 330 million geocoded tweets overall. We only focused on geocoded

tweets from Turkey and hence filtered out tweets by country. A total of 17,531,215

geocoded tweets were discovered within Turkey from 1st February to 30th April

2018. The tweets were mostly tweeted in the Turkish language (about 81%) as shown

in Figure. 4.15. The final results were mapped using MAPD [154] for temporally

visualizing data.

Figure 4.15 : Major languages used for all geocoded tweets within Turkey

Figure. 4.16 shows the overall geocoded tweet map obtained after mapping the datasets

for Turkey. Analyses are conducted on geocoded twitter data obtained from 1st

February to 30th April 2018. As nearly 81% of tweets are in the Turkish language,

we, therefore, analyzed only Turkish keywords instead of other languages. Moreover,

it can be acknowledged through this map that most of the tweets are shared from urban

areas and populous cities like Istanbul, Izmir, and Ankara.

The cross filtering capability of Twitter to analyze any activity with a given hashtag

provides a great opportunity to acquire the desired results in a compact manner.

We analyze all the geocoded tweets through hashtags, considering the main natural

disasters that frequently occur in Turkey, such as earthquakes (Deprem) and storms

(Firtina).

Figure. 4.17 shows the geocoded tweet map filtered with #Deprem (earthquake) in

Turkey. A total of 1,663 geocoded tweets are extracted with #Deprem (earthquake).

We found the most the tweets are tweeted from western coastal areas near the Aegean

Sea and eastern Anatolian Faults of Turkey. These regions are parallel to tectonic

active areas and all major earthquakes from the last 112 years in Turkey tend to occur

in this region [156] [157]. Moreover, we found that majority of earthquakes during the
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Figure 4.16 : Overall geocoded Tweet map of Turkey from 1st February to 30th April
2018.

Figure 4.17 : Geocoded Tweets found with #Deprem (earthquake) in Turkey.

studied 3 months that could be felt (>3 magnitudes), were reported in tweets within

few minutes of its occurrence. Similarly, Figure. 4.18 shows the geocoded tweet map

filtered with #Firtina which translates to both Storm and Hurricane in Turkish. A total

of 68 geocoded tweets are extracted with #Firtina. Understandably, most of the tweets

are tweeted from the western coastal area near the Aegean Sea while some are shared

from the northeastern coastal area near the Black Sea.
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Figure 4.18 : Geocoded Tweets found with #Firtina (Storm) in Turkey.

4.5 Research Challenges

In this section, the main research challenges that can be associated with the DRSC

environment are discussed. The study has highlighted a variety of challenges that

may be encountered during the designing and implementation phases and can reduce

the efficacy of the environment. These research challenges can also identify some

promising future research directions for further exploration and development of the

DRSC environments.

4.5.1 Fault Tolerance

In a disastrous situation, with multiple data sources, the probability for various

hardware components to fail is high due to physical damage, exhausted batteries

or failure of communication channels. In a DRSC environment data sources

should be able to provide data even with blackouts and infrastructure impairment to

maintain system availability. Backup power consumption mechanism and alternative

communication channel establishment need to be guaranteed. Moreover, the

environment needs to be equipped with capabilities such as regular backups and

cloud-based storage mechanism with distributed computing support that can be used

in case the primary system goes down.
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4.5.2 Interoperability

Data is acquired from various real-time and static data sources having different data

formats. It is challenging to integrate large volumes of heterogeneous data that possibly

can be of low quality due to high data redundancy. The required information is hard

to filter from this massive quantity of noise and ambiguous data as a whole. It is

more challenging to integrate these heterogeneous datasets according to the system’s

requirements. To deal with data heterogeneity issues, sampling and filtering techniques

need to be trained to acquire the highest level of semantic interoperability and data

quality. Due to the diversity of data sources, interoperability issues is an open challenge

that can be tackled if interoperability is assured on the data generation, structure,

storage, coding, and software/hardware operations level.

4.5.3 Meta Data

For a time-sensitive and data quality critical application like disaster management,

metadata plays a vital role in identifying and managing the data sets. The collection

and management of metadata for heterogeneous big data sources especially in disaster

situations is an important challenge. Generating and maintaining metadata in big

data paradigm is very difficult due to multiple data sources and data formats. While

some of the data sets already possess some kind of metadata attached to them,

most lack it. Additionally, it becomes more complex as many data sources i.e.

numerous in-situ sensors are operated for different purposes by the government and

private organizations. The key metadata features that need to be identified for the

disaster-related data sets in the context of DRSC environment are data source, content,

time stamps, spatial reference, data identification numbers. Through metadata, a

number of data quality concerns and integration related issues can be removed and

authentic datasets can be presented for analysis.

4.5.4 Privacy and Security

Privacy concern has been a serious issue in big data analytics, as it mostly utilizes

personal information (i.e. financial, health records, location) to produce the required

results. Personal information is exposed to scrutiny, which is increasing concerns about
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profiling, segregation, theft, and tracking [116]. For example, social media datasets

contain personal information and location of the users, which can be used by malicious

agents for harmful purposes, especially in a crisis like civil wars. The end users

of IoT are faced with various security and privacy issues that limit IoT’s usage and

productivity [158]. Additionally, there is lack of adequate security tools for a number

of technologies in the Hadoop Ecosystem [117]. Even with the availability of huge

and richly detailed data, the threat of security either perceived or imminent can cause

serious damage to the trust on data aggregation and sharing [159]. Applying suitable

security mechanisms and access control checks on disaster-related data is important

to ensure protection against malicious use and sustain data integrity, availability, and

confidentiality.

4.5.5 Time Constraint

Time is critical in disaster management as a quick response can save lives. Engaging

huge volumes of heterogeneous data to extract desirable results in a limited time for

emergency response is quite difficult. The data quality process itself involves complex

processes like data aggregation, filtration, and normalization that can take plenty of

time even with advanced tools. Moreover, unstructured data can add to the problem,

demanding different filtration methods depending on the particular format. It is a big

challenge for the existing techniques and tools to generate quality data from huge

volumes of heterogeneous data according to the decision maker’s requirement in a

specified amount of time.

4.5.6 Standardization

Standards are useful to endorse system efficiency, adopt technological and

administrative changes, and provide legitimate guidelines for usage, policy, and future

research. With the growing usage of BDA and IoT technologies, there is a big need and

scope for communication standards, data integration standards and security standards

to be re-examined. It is very challenging to define and follow standards for different

evolving technologies keeping in mind the prerequisite of disaster management to be

provided with accurate solutions in near real-time.
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4.5.7 GIS-Based Visualization

Mapping and visualization is the most important part of the DRSC environment,

as decision-makers and emergency responders need quick and accurate predictions,

insights and ground facts that are easy to interact with and understand. Big data

analytics and visualization tools should work flawlessly to acquire effective results

in real-time. Generally, the big data analytics interface is designed for technical users,

so an additional tool is used for a user-friendly look and visualization. A Geographical

information system (GIS) provides an interactive interface for mapping and analyzing

spatial data. With the emergence of 3D and touch screen interactive technologies,

visualization increases the processing time and hence demands additional system

resources. Designing GIS-based visualization supported by big data analytics is an

interesting research area which needs to be further investigated for user-friendliness

and performance.

4.6 Conclusion

The aim of this chapter is to contribute to the knowledge and guide the future research

regarding the design and implementation of BDA- and IoT-based disaster resilient

smart cities. This study proposed a conceptual architecture for a novel Disaster

Resilient Smart City concept by integrating BDA and IoT. It provides a thorough

outline of how BDA and IoT combined with some proposed parameters can effectively

be implemented to aggregate, pre-process, and analyze data to provide updated and

useful information for disaster managers. Hadoop ecosystem with Spark is utilized

to implement the complete system. Variety of datasets including IoT-based smarty

city and twitter datasets are analyzed for showing the validity and evaluation of the

proposed DRSC concept.
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5. PROPOSED SCHEME IMPLEMENTATION AND PERFORMANCE
EVALUATION

5.1 Abstract

A Disaster Resilient Smart City (DRSC) environment is a complete architecture and

can be implemented according to the needs and system capability for any smart

city initiative. For research purpose, this study tries to evaluate the performance

of a small-scale implementation with the already mentioned data filtration and

normalization techniques. The chapter displays the overall processing and throughput

results with different data sizes. Processing time and throughput of the proposed

scheme are compared with different perspectives to evaluate the system efficiency and

performance. Single node MapReduce with filtered datasets is compared with dual

node MapReduce Hadoop cluster to verify the implemented techniques. Moreover

Apache Spark implementation with Hadoop is also tested. At last, a comparison

is made with other published works to demonstrate the contribution of the proposed

schemes.

5.2 System Application

Hadoop ecosystem and Spark engines can be deployed on any commodity hardware.

The main system is implemented on Hadoop single node environment assisted by

different Spark libraries operated on Ubuntu 14.04 LTS with machine specifications as

coreTM i5 supported by 3.2 GHz x 4 processors and 8 GB of RAM. The main hardware

and software configurations used to implement the proposed system are shown in Table

5.1.

5.3 System Evaluation

Since, this study focused on processing large datasets that requires efficient real-time

processing, therefore the system was evaluated with regards to data processing and
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Table 5.1 : The hard and software configurations of the system.

Item Version
Processor Core(TM) i5-3470 3.2GHz
Hard Disk SATA 7200RPM HDD
RAM 8GB
OS Ubuntu 14.04 LTS
Apache Spark Spark 2.3.1
Apache Hadoop Hadoop 2.6.5

throughput considering the increasing data size. Figure 5.1 shows the processing

time efficiency result corresponding to the increasing dataset size on various data

integration points. It is expectable that with the increasing data, the processing time

also rises. However, with the proposed scheme, the rise in the processing time is

quite lower corresponding to the huge rise in the data size. Figure 5.2 shows the

throughput analysis result of the system. The throughput result shows the number

of MBs processed by the system in a given timeframe. The system shows promising

throughput tendency with increasing data size. In addition, with the study in hand

Hadoop implementation, the throughput of the system is increasing the function of

data size. This increasing throughput with the data size is the major achievement due

to parallel processing implementation using MapReduce programing paradigm and

number of simultaneous nodes of Hadoop. As the study also processed a huge set

of tweets for alert generation process, therefore processing time for Twitter dataset

is shown in Figure 5.3. Here, the system processed the tweets in accordance to

the time sequence they were reported (i.e., milliseconds). The number of tweets

are the 117,894,272 geocoded tweets that were identified without any geo-coordinate

filtration.
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Figure 5.1 : System’s processing time efficiency with increasing dataset size.

Figure 5.2 : System’s throughput efficiency with increasing dataset size.
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Figure 5.3 : Efficiency of the system with respect to processing time for increasing
number of tweets.

Data filtering and normalization techniques have sufficiently dragged down the

processing time and have increased throughput. This is due to the removal of noisy

data according to the defined scheme of the filtration and normalization processes.

With the established Apache Spark and dual node Hadoop cluster, the study opted to

evaluate the processing and throughput of filtered and generic (non-filtered) datasets.

Figure 5.4 shows the comparison between Apache Spark and dual node Hadoop cluster

with filtered and generic datasets respectively. As depicted with the filtered datasets

the processing time for both Apache Spark and dual node Hadoop have significantly

reduced. On the other hand, Figure 5.5 reveal that the throughput has increased for

both Apache Spark and dual node Hadoop cluster with the filtered datasets. As a single

processor follows a constant throughput as it cannot divide its tasks for parallel data

processing. However, Hadoop adheres a multicore application and applies the parallel

execution of tasks to ensure maximum benefit from the available cores. Due to this

ability, the throughput is directly proportional to the data size and increases with it.
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So, with smaller datasets, the throughput is also lesser that makes Hadoop not feasible

for smaller datasets requiring higher throughput.

Figure 5.4 : Processing time comparison between Apache Spark and dual node
Hadoop cluster with filtered and generic datasets.

Figure 5.5 : Throughput comparison between Apache Spark and dual node Hadoop
cluster with filtered and generic datasets.

113



In this research, MapReduce algorithm is also utilized for testing purpose to process the

datasets. As MapReduce operates by dividing the processing into two stages i.e., Map

and Reduce. Each stage contains Key and Value as their input and output respectively.

The users depending on the type of data can assign keys and values accordingly.

These Key and Value pairs are actually the record entity that MapReduce job obtains

for processing. Figure 5.6 [160] shows the general funcationality of a MapReduce

program. By default, Map input gets line offset as the key and the content of the line is

considered the value with TextInputFormat. As an example of a MapReduce operation

for temperature dataset Algorithm 1 shows the Mapper function while Algorithm 2

depicts the Reducer function for temperature dataset.

Figure 5.6 : MapReduce function illustration.

Algorithm 5 Mapper for Temperature Dataset
BEGIN
Input
Key: Line-offset
Value: Row
Output
Key:= TimeStamp
Value:= TempReading
Steps:

1: TimeStamp, TempReading:= line.split(‘\t’)
2: Key:=TimeStamp
3: Value:=TempReading

Yield (Key, Value)
END

114



Algorithm 6 Reducer for Temperature Dataset
BEGIN
Input
Key: TimeStamp
Value: TempReading
Output
Key:= NotifiedTimeStamp
Value:= NotifiedTempReading
Steps:

1: Initialize CT (Critical Threshold)
2: FOREACH (TempReading ) at (TimeStamp) LOOP
3: IF (TempReading ) >CT)
4: List.append (TempReading)
5: Key:= TimeStamp
6: Value:= ListReading
7: Yield (Key, Value)
8: ELSE
9: Next_Reading();

10: ENDLOOP
END

The study also tested the filtered datasets with implemented MapReduce on a single

and dual node Hadoop cluster. Figure 5.7 shows the processing time for single

node MapReduce Hadoop and dual node MapReduce Hadoop for filtered and generic

datasets. Similarly, Figure 5.8 shows the throughput for the same scenario. The

throughput gradually increases with the data size. As single core executions tend

to have an unchanged throughput level as it does not support parallel computation

and since cannot distribute its tasks. On the other hand, multicore executions such as

Hadoop uses available multiple cores at the same time and since attain the maximum

usage of the available processing power. Due to this phenomenon, the throughput

increases with the dataset along with the usage of computing core. However,

throughput tends to be less with smaller datasets as the cores are not fully utilized.

Similarly if the computing capacity has reached its maximum tenancy the throughput

level will be on a constant level as well.

As shown the results reveal that for both Spark and MapReduce the throughput has

increased with the increase in data size. It can be noted that with the filtered datasets

the processing time and throughput of a single node are much better than the same

generic datasets on dual node MapReduce Hadoop cluster. The proposed scheme

115



reduced the processing time by 19.8 percent and increased the throughput by 14.9

percent of filtered single node MapReduce Hadoop comparative to generic dual node

MapReduce Hadoop cluster. Thus, implementing the proposed scheme can save time

and expenditure for multiple nodes.

In short, with proper filtration and normalization techniques, larger datasets can have

enhanced processing time and throughput for analysis. We evaluated the processing

time and throughput with a large dataset (5345 MB) and examined quite good

enhancements in the proposed system.

Figure 5.7 : Processing time for single node MapReduce Hadoop and dual node
MapReduce Hadoop for filtered and generic datasets.
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Figure 5.8 : Throughput for single node MapReduce Hadoop and dual node
MapReduce Hadoop for filtered and generic datasets.

These results show a clear advantage even if the proposed scheme is compared

with other published related work, both in terms of processing time and throughput.

For example, Silva et.al [132] proposed a big data analytics embedded smart city

architecture to analysis major types of datasets on Hadoop ecosystem. They have

used Kalman filter to achieve data filtration in their proposed framework. Kalman

filter works as an optimal estimator that is useful in remving noise from the datasets.

Similarly, in [40] a smart city architecture was implemented using Hadoop with Spark,

Storm and voltDB for real-time processing of IoT datasets to produce analytical results.

They performed the data filtration through data classification techniques. The proposed

scheme in this study is compared with these two studies as their implementation model

is based on single and dual node Hadoop with Spark application and the datasets are

similar, although the data filtration techniques varies.
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Figure 5.9 : Processing time comparison with other studies.

Figure 5.10 : Throughput comparison with other studies.

The proposed scheme has attained the optimal processing rate with respective to the

datasize as compared to the published works [132] [40]. As can be seen in Figure

5.9 the processing time of the processing is much lesser with both smaller and large
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datasets. Similarly, as depicted in Figure 5.10, the proposed scheme is leading from

the other published schemes all the way through but the lead has increased with 4000

MB datasize in terms of data throughput.

5.4 Summary

The performance evaluation of the proposed scheme reveals some interesting results.

Apache Spark and dual node Hadoop cluster clearly deserves to be implemented even

on small scale environments for better results. The data filtration and normalization

techniques needs to be carefully selected as it is noted that with the filtered datasets

the processing time and throughput of a single node are much better than with the

same generic datasets on dual node MapReduce Hadoop cluster. With the removal

of noisy and ambiguous data from the analysis dataset through proper filtration

and normalization phases, the overall performance of the proposed architecture

has improved. The comparison with other existing schemes shows performance

superiority, which is the major achievement of the proposed system.
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6. CONCLUSIONS AND RECOMMENDATIONS

The fusion of BDA technologies and IoT promises a new and more effective

approach for carrying out the core operations of disaster management processes. With

state-of-the-art big data analytical tools and well-managed IoT, we can not only harvest

large volumes of valuable data from multiple data sources but can also generate

required results in real-time for effective decision-making.

The evolution in Internet of Things (IoT) technologies, offering integration of

heterogeneous sensors and smart devices using advanced network services; and with

the expansion of social big data, offering the potential to extract useful insights from

a huge set of unstructured data, a disaster-resilient smart city framework can be

developed to predict, extract affirmative knowledge, monitor and analysis the disasters

occurrence. The proposed concept of Disaster Resilient Smart City (DRSC) urges for

the collaboration of IoT and BDA, where IoT has the potential to offer a framework of a

ubiquitous network of interlinked sensors and smart devices, and BDA has the potential

to facilitate the real-time processing of IoT along with other related data streams to

reveal new information, patterns, and insights for effective disaster management.

In the context of integrating IoT environments equipped with multiple data sources

such as cameras, sensors, smartphones, etc., and BDA technologies assisting in data

processing, a number of data sources can be incorporated to gather new and valuable

insights and information. Engaging multiple data sources provide alternative ways to

address problems that require multidimensional representations of the data to extract

the common patterns for a solution that is inaccessible through a single source of data.

With the availability of diverse and rich data sources, BDA- and IoT-based disaster

management environments can surpass conventional DMSs data sources.

One such data source is social media platforms, as they are considered very useful to

collect information in case of any disaster because it is the fastest and the cheapest

source to provide effective, updated and relevant information for decision making.

The practical use of such applications is making a vast number of academic studies
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to research on many aspects of social media in disaster management. Social media

provides its user the opportunity to contribute and disseminate valuable information,

be it in the shape of text, pictures, audio, and video; that is necessary for disaster

management processes and communications.

In section 3.4 of this thesis, a design model is presented for the development of an

integrated system consisting of social media crowd-sourced component and a designed

web API component through which organized and reliable data can be provided for

real-time disaster management. This design-science research demonstrates that the

concept of social media crowd-sourcing can effectively be used for real-time disaster

management and tries to aid the theory of making crowd-sourced data as trustworthy

as other data sources. The basic theme of this design is to make the unstructured

crowd-sourced data process-able so that it can be compared and merged with structured

data sources such as a web API. The effectiveness of real-time crowd-sourced disaster

management systems has been proven but there are many gaps and challenges in this

research domain. The design science to model integrating frameworks plays a key role

in providing the basis for interdisciplinary research to be carried out.

The collaboration of the latest BDA and IoT technologies provides a more proficient

environment for heterogeneous data sources to generate multi-dimensional data that

is useful to perform effective analytics for extracting the required information used in

disaster management applications. This approach can result in quick and effective

situational awareness and hence help in reducing the impact of the disaster. A

huge research gap still exists in BDA and IoT system planning and designing for

a time-sensitive and performance demanding application like disaster management.

Moreover, a lot of research is still required to productively model and implement

BDA and IoT paradigms, keeping in view the time constraint and accuracy demands

of disaster management processes. The aim of this thesis is to contribute to the

knowledge and future research of the design and implementation of BDA- and

IoT-based disaster-resilient smart cities. This research can provide references for other

researchers and industries for future acquisitions in the domain of smart cities and

disaster management.

This thesis provides a thorough outline of how BDA combined with some proposed

parameters can effectively be implemented to aggregate, pre-process, and analyze data
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to provide updated and useful information for disaster managers. In section 4.3.2,

the Hadoop ecosystem with Spark is utilized to implement the complete system for a

variety of datasets including IoT-based smarty city and twitter datasets. These separate

datasets are analyzed for showing the validity and evaluation of the proposed DRSC

concept. The goal is to acquire full benefits that BDA and IoT collaboratively offer

so that an improved disaster-resilient smart city concept equipped with the strengths

of both the technologies can be designed and implemented. The proposed scheme

mainly targets processing large datasets that require efficient real-time processing,

therefore the implemented system was evaluated with regards to data processing and

throughput considering the increasing data size. Data filtering and normalization

techniques have sufficiently dragged down the processing time and have increased

throughput. The study evaluated various cases of Apache Spark, single and dual

node MapReduce Hadoop cluster with generic and filtered datasets to compare the

performance of various deployed schemes. The evaluation of the system efficiency

is measured in terms of processing time and throughput and is compared with other

studies that demonstrates the performance superiority of the proposed architecture.

For future work, the study anticipates the addition of various other data sources such

as remote sensing, UAV imaginary, online news media and surveillance cameras

for more in-depth analysis and better situational awareness. A Disaster Resilient

Smart City (DRSC) environment would allow rapid and effective analysis backed

with multi-sourced data for generating an early warning to citizens and assisting in

the prevention, monitoring, and recovery from catastrophic situations. This study can

provide references for researchers and industries for future acquisitions in the domain

of smart cities and disaster management.
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