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SUBDUCTION ROLL BACK AND THE GENERATION OF WET AND
DECOMPRESSIONMELTING

SUMMARY

Subduction zones are the major element of active tectonics (55.000 km) of planet Eart
(Stern, 2002). Subduction zones are regions of the Earth affected by the sinking of
relatively cold and dense oceanic lithospheres into the mantle. Geophysical and
geological evidences have led to interpretation of oceanic lithosphere subduction
beneath the Sunda and Japan subduction region. Active subduction is taking important
role to creation of serial volcanic province. These volcanic areas show variable
chemical properties such as alkaline and calc-alkaline compositions. Alkaline
composition is related with low pressure conditions and common at ridge regions
however they are observed at some subduction zones such as Sunda arc. Calc-alkaline
magmatism is related with dehydration reactions at subduction slab. Volatiles inside
the top of the subducted oceanic lithosphere are releasing at 80 - 200 km depth
condition. Volatiles decrease the melting temperature and cause partial melt of mantle
wedge (triangular asthenospheric window beneath the volcanic arc). Thickness of the
subducting slab is changing with oceanic lithosphere age. Feature of the subduction is
dominated by thickness of the slab which is changing with age. Numerous 2D
numerical geodynamic experiments (I2ELVIS) in the context of the tectonic evolution
of the region are conducted to test the effects of the oceanic lithosphere age on melt
generation. Within the scope of the models, the age of the oceanic lithosphere has been
tried by increasing the age from 50 million to 120 million years. The plate convergence
rate was defined as 4 cm/ year and 8 cm/yr. The model boundaries are 1400 km vertical
and 4000 km horizontal. as defined. The geology of the layers used in the models is
defined as follows; 10 km atmosphere, 2 km. ocean, 20 km. felsic upper continental
crust (wet quartzite), 15 km. felsic lower crust (wet kurtzite), 3 km. upper oceanic crust
(basalt), 5 km. lower oceanic crust (gabbro) and 2 km. width is used for the zone of
weakness hydrated mantle. Model result for subduction are comparable with
observations related to the geodynamic evolution of the Sunda. The mantle structure
compared by seismic profiles, considering convergent rate of plate motion. Chemical
composition distribution of volcanics are correlating with geochemistry studies.
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YITiM BOLGELERINDE OKYANUSAL LITOSFER YASINI ERIYiK
URETIMINE ETKILERI

OZET

Yitim bolgeleri, aktif tektoniginin temel elemanidir ve yaklasik 55.000 km. lik bir
kismin1 kaplamaktadir (Stern, 2002). Yitim bolgeleri, yeryiiziiniin nispeten soguk ve
yogun okyanusal litosferlerinin mantoya batmasindan meydana gelen alanlaridir.
Okyanusal litosferin dalmasi ile olusam yapinin jeokimyasal heterojenligi deniz dibi
cokeltileri, mantodan ucguculari ve peridotit iceren okyanus bazaltlar1 ile temsil edilir.
Dalan levhanin yapisal 6zelliklerini belirleyen faktorler su sekildedir; dalan levhanin
termal sicaklik gradyeni (yasina bagli olarak desikenlik gosterir, dalan levhanin yast,
yakinsama hizi, manto kamasindaki konveksiyon akimlari, dalan levhanin {ist
yiizeyindeki makaslama kuvvetleri sonucu olusan 1sinma, sicaklik etkisi altindaki
adveksiyon akimlari, erozyon ve deformasyonlardir (Artemieva, 2011). Sunda yayinin
Sumatra-Java boliimiinde farkli yaslarda okyanusal litofosferlerin dalimi, 15 Milyon
yildir devam etmketedir. Aktif dalma batma bolgesinin olusu seri volkanlarin
olusumunda 6nemli rol oynamaktadir. Bu volkanik alanlar, alkalen ve kalk-alkalen
bilesimler gibi degisken kimyasal ozellikler gosterir. Alkali kompozisyon diisiik
basing kosullariyla iliskilidir ve okyanus ortasi sirt bolgelerinde yaygindir, ancak
Sunda ark1 gibi baz1 yitim bolgelerinde gozlenir. Kalk-alkalen magmatizmasi, Dalan
levhadaki dehidrasyon reaksiyonlari ile iliskilidir. Dalan okyanusal litosferin {ist
yiizeyindeki ugucular, 80-200 km derinlik kosulunda serbest kalmaktadir. Ugucu
maddeler erime sicakligini diiglirir ve acilan manto penceresinin kismi erimesine
neden olur (volkanik arkin altindaki iiggen astenosferik pencere). Dalan levhanin
kalinlig1, okyanusal litosferin yas ile birlikte degismektedir. Bolgenin tektonik evrimi
baglaminda ¢ok sayida 2B sayisal jeodinamik model, okyanus litosfer yasinin eriyik
tiretimi tizerindeki etkilerini test etmek igin tiretilmistir. Modellerde sonlu elemanlar
yontemi kullanilarak hazirlan Eulerian ve hiicre isaretleme metodlarinin karigimi bir
hesaplama yapilmistir. Her bir sicaklik, yogunluk, viskozite gibi materyal
parametreleri node ad1 verilen kesisim ¢izgileri iizerine aktarilip yan hiicre ile kiitle ve
1s1 korunumu yasalarina dayanarak etkilesime ge¢mesi sonucu hiicre degerleri
hesaplanmistir. 1361x351 node kullamlmistir. Viskozite, elastisite ve plastik
parametreleri ortak ¢ézen metod Taras Gerya tarafindan gelistirilmistir ve adi
I2ELVIS’tir. Metodun dayandigi temel prensipler sOyle siralanabilir; stres
kuvvetlerinin yliksek viskozite degerlerinde korunumu, ani sicaklik iletim sabitlerinde
isiin ve kimyasal akisin korunumu, giiglii adveksiyon akimlarindaki yogunlugun,
sicakligin ve kimyasal kompozisyonun korunumu (Taras V. Gerya & Yuen, 2003).
Modeller kapsaminda okyanusal litosferin yas1 50 milyon yildan 120 milyon yila 10’ar
artirilarak denemistir. Plaka yakinsama hizi 4 cm./y1l ve 8 cm./y1l olarak tanimlanistir.
Model smirlar1 ise diiseyde 1400 km., yatayda 4000 km. olarak tanimlanmuistir.
Modellerde kullanilan katmanlarin jeolojisi $0yle tanimlanmistir; 10 km atmosfer, 2
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km. okyanus, 20 km. felsik iist kitasal kabuk (1slak kuartzite), 15 km. felsik alt kabuk
(1slak kurtzite), 3 km. iisk okyanusal kabuk (basalt), 5 km. alt okyanusal kabuk
(gabrro) ve 2 km. genisliginde zayiflik zonu igin hidratlasmis manto kullanilmistir.
Dalma batma ile ilgili model sonucu, Sunda Yaymin jeodinamik evrimi ile ilgili
gozlemlerle karsilastirilabilir. Plaka hareketinin yakinsak hizi gbz Oniine alinarak
sismik profillerle karsilastirildiginda manto yapisi ve volkaniklerin kimyasal bilesim
dagilimi jeokimya ¢alismalari ile bagintilidir.
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1. INTRODUCTION

Subduction zones are one of the complex structures of the Earth which are regions
dominated by the sinking of relatively cold and dense oceanic lithosphere into the
mantle. Subduction also includes geochemical heterogeneity with sea floor sediments,
oceanic basalt which contains volatiles and peridotite from depleted mantle.

It is a common assumption that volatiles -especially water and carbon dioxide- play an
important role at triggering of partial melting in subduction zones. Besides volatiles

control the melting temperature of the rocks in mantle.

=] forcarc basin 3] oceanic crust [ lithospheric mantle

[Z] accretionary prism [ arc and back-arc basin crust [_] asthenospheric mantle
Back-arc basin Magmatic arc Forearc Trench
Spreading axis Magmalic Outer

Forearc  Accretionary trench
basin prism high

Lithospheric
mantle

504

Convecting
sLhenosph?

Depth (km)

I Ocecanic crust

— Asthenosphere
motions

<::I Platc motions
Q Partial melt diapir

@ Areas of melt
genceration

100

No vertical
exaggeration
B 88

é Fluid pathways
1504 T T T
400 300 200 100 0
Distance from trench (km)
Figure 1.1: A general illustration (140km) of a subduction zone taken from
Stern (2002). Numerated circles are representing low pressure partial melt field
which generates basaltic magma, asthenospheric wedge which generates felsic
magma beneath the volcanic front. Dashed lines are representing isotherms, for
500°C and 1000°C. Plate motion is assumed left to right. Major surface formations of
subduction zones are shown at the top side of figure as; back arc basin, magmatic
arc, fore arc and trench.
Sinking of oceanic lithosphere creates unique structures on the surface such as fore-

arc, volcanic-arc and back-arc basins. A fore-arc basin forms the region between
“trench” and the associated volcanic arc. . A volcanic arc defines a region, where

volcanism is extremely activated and back-arc basins are known as the zone where



extensional forces are maximized or dominate. Geophysical methods (seismology,
magnetic and gravity etc.) are quite useful and effective to get information about the
internal physical properties of subduction zones. In this thesis, we mainly benefit from
seismological and geochemical studies in order to test our model results against the

observations the seismic method

1.1. Objective and Scope of the Study

There are various geologic/geophysical/geochemical data that examine the existence
of a wet (alkaline) melt at subduction zones. Numerous hypotheses have been put
forward to explain how mantle wedge is occurred and wet melt generated beneath the
subduction arc, back-arc. The objective of this thesis is to try to interpret the
geodynamic mechanism of melt production mechanism with 2D numerical modeling

method.

Especially, scope of this thesis is based on hypothesis testing which aims to clarify

three main tectonic problems of subduction zones:

(1) Examination of the mechanism that controls melt production at subduction zones;
(2) Comparison of types of produced melt pre-, during and post-subduction term; and

(3) investigation of the effect of slab break of on the melt production.

1.2. Subduction Zones of the Earth

Subduction zones occurs where two tectonic plates converge. This process include
sediments, mantle lithosphere and oceanic crust. Subduction zones cover the 55.000
km of the Earth tectonic margins (Stern, 2002). Convergent forces trigger sinking of
dense oceanic lithosphere into asthenosphere; moreover, subduction zones are

dominated by gravitational force.

Convergent margins of the Earth are located at plate boundaries. These margins can

be named as “mantle lithosphere recycling zones” of the Earth.

1.3. Melt Production and Types

Great volcanisms generally are located at subduction zones. For this reason various

studies are focused on melt generation at these regions. It is a commonly accepted that



hydrated fluids are generated by aqueous melting of mantle peridotite in subduction
margins. It is known as flux melting, by decreasing the temperature of the wet solidus
(Kushiro, Syono, & Akimoto, 2008; Poli & Schmidt, 2004; Stolper & Newman, 1994).
There are two major types of melt generation: (1) wet and (2) wet melts, respectively.

Each has different formation mechanism that alter the chemical composition.

1.3.1. Dry melt

Composition of wet melt is alkaline. Convection flows at mantle give rise to the
pressure reduction at mantle wedges. Due to high temperature and low pressure
conditions, dry melt is generated. In (Figure 1.2), low pressure condition is represented

with thin lithosphere, in this; geotherm curve is displaced towards the point where dry
melt is produced.

0 \ ,1“,\,,0
\ A , B
20} Dry gr?gite\ ‘\\ L ‘\‘
solidus |
\ \\ . | ‘\‘ =10
40 ‘\ \ B |
o= o Lithosphere A=
O@o \ ‘\ Pe'f'dOt'te Asthenosphere ‘\
60 %,. \‘sohdus | 20
> \
1 Melti .
elting region
80 \ gregon g
\ [}
\ \ s0
1 lLithosphere i‘ | \‘
Asthenosphere [\ 1 o)
\ \ S
T i ' =
=18 VAT \ 408
2=, B 5
£ Tpot=1,300°C | Tpot =1,300°C g v 2
5 1 \ g
81 MEPETES U ST EPEPITET SSRGS U I T PR BTSN EPRTSTETE BPEEPETI STRPEPET B I AR P o
0 500 1000 1500 0 500 1000 1500

Temperature [°C] Temperature [°C]

Figure 1.2: Decreased pressure effect on solidus curve (Elkins-Tanton, 2007).

1.3.2. Wet melt

Wet melt is in Calc-alkaline chemical composition. Generation of wet melt is based
on volatiles in the mantle lithosphere forming rocks. These volatiles can be comprised
of various chemical compositions; carbon dioxide, nitrogen dioxide, are the major
components of volatiles. Releasing of volatiles decreases the melting temperature of

the rock and which may cause reducing of viscosity and density. (Karato, 2010;
Kushiro et al., 2008; Schmidt & Poli, 1998) (see Figure 1.3).
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Figure 1.3: Illustration of wet melt generation at mantle wedge of subduction
zones. Subducted slab which contains water (A), fluids are released from subducted
sediments, crust, and serpentine (B), fluids rising into the mantle form wet phases in

mantle peridotite (C), maximum depth of stability condition of peridotite breaks
down to wet peridotite (D), The fluid rises vertically, moving away from the
subducted slab (E), This descends until the amphibole breaks down again (F) (Stern,
2002).
At volcanic front of island arcs, dehydration conditions for major minerals for
Serpentine, Amphibole/chlorite and Phlogopite are respectively ~80km, ~110km
depth, ~200km depth (Tatsumi & Eggins, 1995) . Common dehydration reactions are

represented below;

Serpentine > olivine +talc +H>O
Talc + olivine > orthopyroxene + H>0O
Chlorite + orthopyroxene > olivine +garnet + H20
Amphibole > clinopyroxene + garnet + H20



1.3.3. Relation between age, temperature and thickness

Thickening of lithosphere as a result of cooling process of oceanic lithosphere and its
thickening within time (Turcotte, 2014) (see Figure 1.4).

t (Myr)

50

y (km)

100

160 —

Figure 1.4: Depth variation due to time difference (Turcotte, 2014) . Isotherms are
represented with solid lines. Thickness of the lithosphere data of the
Pacific Ocean (Turcotte, 2014)






2. NUMERICAL MODEL DESCRIPTION

2.1. Model design

Model setups are designed considering the physical conditions in nature and material
parameter. These parameters are based on the assumptions in geodynamic science and
geological structures in subduction regions. The parameters and initial boundary

conditions used in the following section will be discussed in more detail.

2.1.1. Initial and boundary conditions

2D petrological-thermomechanical numerical model simulates the processes of forced
subduction of an oceanic—continental plate beneath a continental plate in a 4000
kmx1400 km lithospheric/ upper-mantle section. In initial model, convergence rate it
is used as 4 cm/year. Layers have assigned as air, water, continental-oceanic crust,

mantle lithosphere, and asthenosphere, respectively at (Figure 2.1).

Plates are determined as two continents abstracted by 700 km of oceanic lithosphere
(Figure 2.1). The first layer of the model is atmosphere with 10 km thickness and is
located above 2 km of water covering the oceanic domain. Continents defined as 20
km of upper felsic crust (wet quartzite) and 15 km of lower crust (wet quartzite). The
initial thickness of the sub-continental lithospheric mantle is 105 km. The oceanic plate
is represented by 3 km of upper basaltic crust, and 5 km of lower gabbroic crust (Figure
2.1). The thickness of the lithospheric mantle is a function of chosen initial age
(homogeneous for the entire plate width) and calculated using an oceanic geotherm
(Ueda, Gerya, & Burg, 2012) .

Values of 108 and 10%° Pa.s are the lower and upper limits for the viscosities of all

types of rocks which is used in the models.

For the subduction initiation, a weak zone is used which has placed between the crust
and the lithosphere-asthenosphere boundary (see Table 1). We also tested a wide

range of lithospheric age, which range between 50 Ma to 120Ma (see Table 2.1).



Initial convergence, which is assumed to be dominated by external tectonic plate
motion, has defined at internal nodes within both plates with fixed convergence rates
(4cmlyear).
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Figure 2.1: Model setup for numerical modeling, layers and structures with
color representation.

2.1.2. Hydration process

In the basaltic crust which is changed with hydrothermal source and sediments, water
is stored up to 2 %wt at the surface . (Johnson & Pruis, 2003)

XHZO(M%) = (1 -0.013AY) Xy, 0(p0)

2.1)



At surface Xy, 0(p0) IS assumed to be equal to %2 and at the 75 km depth it is assumed

to be %0 (T. V. Gerya & Meilick, 2011) . posoria and Pomorten are the standard
densities of solid and molten rock, respectively.

2.1.3. Melting and extraction processes

The assumption of calculation is computing that the degree of both wet and wet
melting is a linear function of pressure and temperature. The volumetric degree of
melting M, is calculated using the following equations, where Ts,jiqys and Tjiguiaus
are respectively solidus temperature and liquidus temperature (Taras V. Gerya &
Yuen, 2003) .

My =0 at T < Tsoriqus. (2-2)

— T—Tsolidus 2
MO T T at Tsolidus <T< Tliquidus, ( 3)
liquidus™— ! solidus

My =1atT > Tyiguidus. (2-4)

The effective density, p.sr of molten rock is obtained from

Pomol )
Peff = Psolid a1-M+ MM) (2:5)
Posolid
Psotia = Posotia - [1 —a(T —298)].[1+ B (P—-0.1)], (2.6)

Where, posoria 1S calculated from P (MPa) and T (K) units by a.and g are thermal

expansion and compressibility of rocks, respectively.

In the later stages of the model, the matrix mechanism produced in the subduction zone
is detailed. In the material field of the model, the dark and light gray colors is the
continental crust, the dark blue color is mantle lithosphere, the light blue color is
asthenosphere, the red color is aqueous melts, and the purple color is dry solution and
the lighter blue color represent the hydrated mantle. The figure is detailed with

markings. (See Figure 2.2).

2.1.4. Rheological model

The code which is used for modelling processes is considering three type of behavior.

These are viscous, elastic and plastic behaviors.



2.1.4.1. Viscous behavior

The rheological model calculation uses the viscosity equation for dislocation creep
which is defined at (Ranalli, 1995).

g\/" E
Nereep = (Z) exp (m) ’ (2.7)

Where, E (activation energy), n (creep viscosity), n (exponent), A (pre-exponential

factor) are determined as flow law parameters.

T=1nY
(2.8)

Where the, € (shear stress), n (viscosity) and y (shear rate) are the elements of the
equation.
2.1.4.2. Elastic behavior

Elastic behavior of material is calculated with Hook’s law which is defined at

oc=Ec¢ (2.9)

Where the, o (stress), E (elastic modulus), € (strain) are the component of the equation.
2.1.4.3. Plastic behavior

Oyieta = C + Psin(¢) (2.10)

Where, o is the shear stress [Pa], c is the cohesion [Pa], P is the total pressure [Pa] and
@ is the internal angle of friction. The plastic behavior is implied with the equation
2.10). The configuration is prepared as a description of the crust, mantle lithosphere

and asthenosphere properties. Material parameters are given at Table I.1.

2.1.5. Conservation equations

For the numerical modeling part of this work, a plane strain viscoelastic code I2ELVIS
is used which is authored and explained by (Taras V. Gerya & Yuen, 2003). Major

principles of modeling scheme are given below;
1. Conserving stresses under extreme viscosity conditions,

2. Conserving heat and chemical fluxes in the face of rapidly changing conductivity,

transport coefficient and temperature gradients at the thermal or chemical boundary.
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3. Conserving temperature field, chemical compositions, and density in flows with a

strongly advection character.

The code is based on a mixture of finite-differences with marker-in-cell technique. In
terms, these equations are based on mass conservation theory. Elliptic equations in the
velocity field (v) are Egs. (2-1) and (2-2).

0 9] opP

o o
xx Xz —_— T
5, T2, ~a, PT 0% 2.11)
Oxx = 2NExx (2 12)
Oxz = 2NEx, (2 13)
Oz = 214, (2 14)
Oy,
2z =7~ (2.15)
_1(%, O,
e =32t @2.16)
Oy,
22 =g (2.17)
Oxx = 2NExx (2 18)

These equations are followed by the basic relationship between the stress (o) and
strain-rate (&), where n represents the viscosity, which depends on the temperature (T),

pressure (P), chemical components (C) and strain-rate.

The mass conservation equations is given by the continuity equation which conducts
density in equity of buoyancy forces. Equations regulate temperature and volatile

content in terms:

3. T3, 0 (2.19)

Combination of moving marker technique (marker in cell) is used for solving (2.19)

which is based on finite control volume method.

In marker-in-cell method, markers carry information on composition (which is used to

define density, viscosity and shear modulus) and stresses (in viscoelastic case).
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Figure 2.2: The model representation a retreating oceanic-continental subduction with the formation of mantle wedge, magmatic arc and
extensional basin with new creating oceanic floor (see text for details).
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3. RESULTS OF NUMERICAL EXPERIMENTS

To start our investigation we began witha convergence rate of totally 4 cm/yr from
both sides (right and left) of model convergece rate changed to 8 cm/yr. In the models,
the lithosphere has composed of a 35 km thick continental crust, a 8 km thick oceanic
crust and a 113 km thick mantle lithosphere.. The rheologies are determined as wet
quartzite in continental crust, gabbro/basalt in oceanic crust, wetolivine in mantle
lithosphere and wetolivine in asthenosphere (Ranalli, 1995). Reference densities of
continental crust, oceanic crust and mantle lithosphere and asthenosphere are 2700
kg/m?, 3000 kg/m?3, 3300 kg/m? and 3300 kg/m?3, respectively (Table 1.1). Based on
this reference model, we performed numerical experiments by independently varying

oceanic lithosphere ages (Table 3.1).

Table 3.1: Experiment Parameters.

Experiment Number Oceanic MantI(TvI I;i)thosphere Age Conv(irrg;e;rt)Rate
Al 50 4
A2 60 4
A3 70 4
A4 80 4
A5 90 4
A6 100 4
A7 110 4
A8 120 4
B1 50 8
B2 60 8
B3 70 8
B4 80 8
B5 90 8
B6 100 8
B7 110 8
B8 120 8

13



3.1. Results of Experiment A

In Experiment A, convergence rate is determined as 4 cm/yr (slow convergence rate).

Oceanic lithosphere age is changing periodic increment (see Table 2.1).

3.1.1. Experimental set Al

In experimental set Al , it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 50 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.2. Results of Al

After 12.10 m.y., at this stage, wet melt production was higher than wet melt
production and both concentrated back arc. Convection currents in the mantle are
upward and high in intensity (Figure 3.1). After 12.52 m.y wet melt production is more
dominant than wet melt production (Figure 3.2). After then13.64 m.y wet melt
production is regional and high, but wet melt production is spread over a larger area.
The intensity of the convection currents in the mantle is low (Figure 3.3). After 13.96
m.y wet melt production migrated to tranch. Wet and wet melt types are co-produced
in a small area under the accrationary prism (Figure 3.4). After 14.49 m.y wet melt
production is more and spread than wet melt production. Convection currents in mantle
have counterclockwise movement against subduction mechanism and its intensity is
high (Figure 3.5). Then after 14.99 m.y at this stage, the production of wet melt is high
against the observation of wet melt production. The intensity of the convection
currents in the mantle is high. (Figure 3.6).
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Figure 3.1: The results of the Experiment A1, show melt production graph
(top), water content with percentage (middle), and lithology graph (bottom) at 12.10
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Figure 3.2: The results of the Experiment A1, show melt production graph
(top), water content with percentage (middle), and lithology graph (bottom) at 12.52

Myr.
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Melt production rate, model del_27_ @13.64 Ma
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Figure 3.3 The results of the Experiment A1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at

13.64 Myr.
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Figure 3.4: The results of the Experiment A1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at
13.96 Myr.
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Melt production rate, model del 27 @14.49 Ma
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Figure 3.5: The results of the Experiment A1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 14.49 Myr.
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Figure 3.6: The results of the Experiment A1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.99 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
12 million years after the start of the model rapidly changes the dynamics in the mantle
and causes a serious increase in melt production. This increase is supported by changes
in mantle convection movements. Wet melt extraction is represented with red color
and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~500 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®

maximum melt extraction value (Figure 3.7)

Total melt extraction is represented with black color and it takes ~800 km® maximum
melt extraction value. The graph, in which each is represented on top of each other,
shows the direct relationship between each other. In the total melt production graphs
of this model, the first jump value is higher than the secondary jump value and value
is about ~400 km 3

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 12, ~ 14 and ~ 15 million years for the model. In the 12 and 15 million years, only
the wet melt graph showed a sudden change, while in the 14 million years both the wet

and wet melt graph showed a sudden increase (Figure 3.8).

Total melt production rate in model, O.L. Age:50Myr
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Figure 3.7: Result of the Experiment Al with discrete volumetric melt production
rate depending on time.
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Figure 3.8: Result of the Experiment Al with cumulative sum of discrete volumetric
melt extraction rate depending on time.

3.1.3. Experimental set A2

In experimental set A2 , it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 60 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.4. Results of A2

After 11.95 m.y. the mantle wedge was opened and the asthenosphere entered under
the crust up to the back arc. Wet melt production is dominant compared to wet melt
production (Figure 3.9). After 12.26 m.y mantle wedge is developed and significantly
matle lithosphere is removed. The production of the wet melt became binary and is
higher than the wet melt production (Figure 3.10). After 13.05 m.y At this stage, melt
production has decreased. Wet melt production is significantly more than wet melt

production (Figure 3.11). After 13.76 m.y wet melt production is regionally high and
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close to the trench, but wet melt production is spread over the accreationary prism
(Figure 3.12). After 14.22 m.y.,at this stage, melt production decreased, and wet melt
production migrated to the trench side (Figure 3.13).In the final stage of the model is
at 14.48 m.y . At this stage, the wet melt production is small and migrated towards the
trance, but wet melt production is located entirely on the accreationary prism. Mantle
lithosphere and continental crust were separated and the asthenosphere entered this
range.In this model, subduction slab sink into the asthenosphere and bended.Slab

break off is not observed (Figure 3.14).
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Figure 3.9: The results of the Experiment A2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 11.95 Myr.
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Melt production rate, model del_27_ @12.26 Ma
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Figure 3.10: The results of the Experiment A2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 12.26 Myr.
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Figure 3.11: The results of the Experiment A2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.05 Myr.
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Melt production rate, model del 27 ©@13.76 Ma
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Figure 3.12: The results of the Experiment A2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.76 Myr.
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Figure 3.13: The results of the Experiment A2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at 14.22 Myr.
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Melt production rate, model del 27 @14.48 Ma
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Figure 3.14: The results of the Experiment A2, show melt production graph
(top), water content with percentage (middle), and lithology graph (bottom) at 14.48
Myr.

In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
12 million years after the start of the model rapidly changes the dynamics in the mantle
and causes a serious increase in melt production. This increase is supported by changes
in mantle convection movements. Wet melt extraction is represented with red color
and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~500 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®

maximum melt extraction value.

Total melt extraction is represented with black color and it takes ~800 km® maximum
melt extraction value. The graph, in which each is represented on top of each other,
shows the direct relationship between each other in the total melt production graphs of

this model, the first jump value is higher than the secondary jump value (Figure 3.15).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond

to~ 12, ~ 14 and ~ 15 million years for the model. In the 12 and 15 million years, only
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the wet melt graph showed a sudden change, while in the 14 million years both the wet
and wet melt graph showed a sudden increase (Figure 3.16).
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Figure 3.15: Result of experiment A2 with discrete volumetric melt extraction rate
depending on time.
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Figure 3.16: Result of Experiment A2 with cumulative sum of discrete volumetric
melt extraction rate depending on time.
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3.1.5. Experimental set A3

In experimental set A3, it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 70 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.6. Results of A3

After 11.86 m.y., at this stage, wet melt production was higher than wet melt
production and both concentrated back arc. Convection currents in the mantle are
upward and high in intensity (Figure 3.17). After 12.47 m.y wet melt production is
more dominant than wet melt production (Figure 3.18). After then13.69 m.y wet melt
production is regional and high, but wet melt production is spread over a larger area.
The intensity of the convection currents in the mantle is low (Figure 3.19). After 14.00
m.y wet melt production migrated to tranch. Wet and wet melt types are co-produced
in a small area under the accrationary prism (Figure 3.20). After 14.28 m.y wet melt
production is more and spread than wet melt production. Convection currents in mantle
have counterclockwise movement against subduction mechanism and its intensity is
high (Figure 3.21). In the final stage, after 14.31 m.y the slab was broken and the

convection currents in the mantle reached their highest level (Figure 3.22).
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Figure 3.17: The results of the Experiment A3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 11.86 Myr.
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Figure 3.18: The results of the Experiment A3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.64 Myr.
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Figure 3.19: The results of the Experiment A3, show melt production graph (top),
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water content with percentage (middle), and lithology graph (bottom)

at 13.69 Myr.
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Figure 3.20: The results of the Experiment A3, show melt production graph (top),

water content with percentage (middle), and lithology graph (bottom)

at 14.00 Myr.
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Melt production rate, model del 27 ©@14.28 Ma
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Figure 3.21: The results of the Experiment A3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.28 Myr.
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Figure 3.22: The results of the Experiment A3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.30 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~1500 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~1000 km®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1500 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the secondary jump value (Figure 3.25).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to~12,~13.5and ~ 14.5 million years for the model. In the 12 and 14.5 million years,
only the wet melt graph showed a sudden change, while in the 13.5 million years both
the wet and wet melt graph showed a sudden increase (Figure 3.24).
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Figure 3.23: Result of the Experiment A3 with discrete volumetric melt extraction
rate depending on time.
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Figure 3.24: Result of the Experiment A3 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.1.7. Experimental set A4

In experimental set A4 , it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 80 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.8. Results of A4

After 11.86 m.y. At this stage, the wet melt production type is more than the wet melt
production and it is spread. The wet melt type is concentrated in two regions. The
convection currents in the mantle are upward (Figure 3.25).After 12.20 m.y. at this
stage, melt production decreased.Wet melt production is concentrated in three regions
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and is higher than wet melt production (Figure 3.26). After 13.45 m.y Melt production
increased and wet melt production concentrated regionally. Convection currents in the
mantle are stagnant (Figure 3.27). After 13.76 m.y at this stage, melt production has
fallen. Wet melt production has spread and wet plum production is small and regional
(Figure 3.28). After 13.92 m.y wet melt production is more and spread than wet melt
production. Convection currents in mantle have counterclockwise movement against
subduction mechanism and its intensity is high (Figure 3.29). In the latest stage of the
model, after 13.95 m.y no melt production was observed at this stage. Only crustal

deformation was observed (Figure 3.30).
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Figure 3.25: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 11.86 Myr.
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Melt production rate, model del_27_ @12.20 Ma
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Figure 3.26: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 12.20 Myr.
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Figure 3.27: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.45 Myr.
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Melt production rate, model del_27_ @13.76 Ma
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Figure 3.28: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.76 Myr.

Melt production rate, model del_27_ @13.92 Ma

Mantle :

wet

30
1400 1600 1800 2000 2200 2400
x [km]

Figure 3.29: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.92 Myr.
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Melt production rate, model del_27_ @13.95 Ma
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Figure 3.30: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.95 Myr.

In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~900 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1100 km"3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.31).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond

to~11.5, ~ 13.5 and ~ 14 million years for the model. In the 11.5 and 14 million years,
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only the wet melt graph showed a sudden change, while in the 13.5 million years both

the wet and wet melt graph showed a sudden increase (Figure 3.32).
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Figure 3.31: Result of the Experiment A4 with discrete volumetric melt extraction
rate depending on time.
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Figure 3.32: Result of Experiment A4 with cumulative sum of discrete volumetric
melt extraction rate depending on time.
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3.1.9. Experimental set A5

In experimental set A5, it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 90 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.10. Results of A5

After 11.80 m.y., at this stage, wet melt production was higher than wet melt
production and both concentrated back arc. Convection currents in the mantle are
upward and high in intensity (Figure 3.33). After then 12.20 m.y wet melt production
is regional and high, but wet melt production is spread over a larger area. The intensity
of the convection currents in the mantle is low (Figure 3.34). After 12.77 m.y wet melt
production migrated to tranch. Wet and wet melt types are co-produced in a small area
under the accrationary prism(Figure 3.35). After 14.07 m.y wet melt production is
more and spread than wet melt production. Convection currents in mantle have
counterclockwise movement against subduction mechanism and its intensity is high
(Figure 3.36). Then after 14.08 m.y at this stage, the production of wet melt is high
against the observation of wet melt production. The intensity of the convection
currents in the mantle is high. The slab itself was thinner at a depth of 150 km (Figure
3.37). In the final stage, after 14.09 m.y the slab was broken and the convection

currents in the mantle reached their highest level (Figure 3.38).
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Melt production rate, model del_27_ @11.80 Ma

©

=

£ 1L w— Mantle :
= dry

™ wet

£ ol

E 2l B IEEEEEEE Crust
E" 10-1 1 I

1400

1600

2000 2400

x [km]

1800 2200

Figure 3.33: The results of the Experiment A5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
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Figure 3.34: The results of the Experiment A5, show melt production graph (top),

water content with percentage (middle), and lithology graph (bottom)

at 12.02 Myr.
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Melt production rate, model del_27_ @12.20 Ma
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Figure 3.35 The results of the Experiment A5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 12.20 Myr.
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Figure 3.36: The results of the Experiment A5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 12.77 Myr.
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Melt production rate, model del_27_ @14.07 Ma
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Figure 3.37: The results of the Experiment A5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 14.07 Myr.
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Figure 3.38: The results of the Experiment A5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.08 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~900 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1100 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.39).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to~11.5, ~ 13.5 and ~ 14 million years for the model. In the 11.5 and 14 million years,
only the wet melt graph showed a sudden change, while in the 13.5 million years both

the wet and wet melt graph showed a sudden increase (Figure 3.40).

Total melt production rate in model, O.L. Age:90Myr
T T T

Total B
Wet mantle
Dry mantle
Crust T

1800 -

1600

1400 - ,

1200 - B

1000 - B

[ km3/Myr]

~ 800 T

M

600 [~ *

400 4

200 - * ; T
0 1 1

11 12 13 14 15 16 17 18
t [Myr]

Figure 3.39: Result of the Experiment A5 with discrete volumetric melt extraction
rate depending on time.
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Figure 3.40: Result of the Experiment A5 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.1.11. Experimental set A6

In experimental set A5 , it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 100 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.12. Results of A6

After 11.89 m.y. At this stage, the wet melt production type is more than the wet melt
production and it is spread. The wet melt type is concentrated in two regions. The
convection currents in the mantle are upward (Figure 3.41). After 13.61 m.y. at this

stage, melt production decreased.Wet melt production is concentrated in three regions
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and is higher than wet melt production (Figure 3.42). After 13.67 m.y Melt production
increased and wet melt production concentrated regionally. Convection currents in the
mantle are stagnant (Figure 3.43). After 13.85 m.y at this stage, melt production has
fallen. Wet melt production has spread and wet plum production is small and regional
(Figure 3.44). After 13.93 m.y wet melt production is more and spread than wet melt
production. Convection currents in mantle have counterclockwise movement against
subduction mechanism and its intensity is high (Figure 3.45). After 13.97 m.y the
intensity of the convection currents increased and the slab was broken.Wet melt
production was concentrated in two regions and no wet melt production was observed
(Figure 3.46).
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Figure 3.41: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 11.89 Myr.
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Melt production rate, model del 27_ @13.61 Ma
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Figure 3.42: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.61 Myr.
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Figure 3.43: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.67 Myr.
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Melt production rate, model del_27_ @13.85 Ma
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Figure 3.44: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.85 Myr.
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Figure 3.45: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.93 Myr.
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Melt production rate, model del 27_ @13.97 Ma
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Figure 3.46: The results of the Experiment A6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.97 Myr.

In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~900 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1100 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.47).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to~11.5, ~13.5 and ~ 14 million years for the model. In the 11.5 and 14 million years,
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only the wet melt graph showed a sudden change, while in the 13.5 million years both

the wet and wet melt graph showed a sudden increase (Figure 3.48).
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Figure 3.47: Result of the Experiment A6 with discrete volumetric melt extraction
rate depending on time.
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Figure 3.48: Result of the Experiment A6 with cumulative sum of discrete
volumetric melt extraction rate depending on time.
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3.1.13. Experimental set A7

In experimental set A5 , it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 110 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.14. Results of A7

After 11.56 m.y., at this stage, wet melt production was higher than wet melt
production and both concentrated back arc. Convection currents in the mantle are
upward and high in intensity (Figure 3.49). After 11.84 m.y wet melt production is
more dominant than wet melt production (Figure 3.50). After then 13.21 m.y wet melt
production is regional and high, but wet melt production is spread over a larger area.
The intensity of the convection currents in the mantle is low (Figure 3.51). After 13.84
m.y wet melt production migrated to tranch. Wet and wet melt types are co-produced
in a small area under the accrationary prism (Figure 3.52). After 13.93 m.y wet melt
production is more and spread than wet melt production. Convection currents in mantle
have counterclockwise movement against subduction mechanism and its intensity is
high (Figure 3.53). In the final stage, after 14.20 m.y the slab was broken and the

convection currents in the mantle reached their highest level (Figure 3.54).
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Melt production rate, model del 27_ @11.56 Ma
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Figure 3.49: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 11.56 Myr.
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Figure 3.50: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 11.84 Myr.
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Melt production rate, model del_27_ @13.21 Ma
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Figure 3.51: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 13.21 Myr.
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Figure 3.52: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.84 Myr.
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Figure 3.53: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

M [ km?3/km Mal]

r

300

Melt production rate, model del_27_ @14.20 Ma

at 13.93 Myr.

Mantle :
dry
wet

1600

step 182

N

2000
X [km]

1800 2200 2400

Figure 3.54: The results of the Experiment A7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 14.20 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~900 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1100 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.55).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to~11.5, ~ 13.5 and ~ 14 million years for the model. In the 11.5 and 14 million years,
only the wet melt graph showed a sudden change, while in the 13.5 million years both

the wet and wet melt graph showed a sudden increase (Figure 3.56).
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Figure 3.55: Result of experiment A7 with discrete volumetric melt extraction rate
depending on time.
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Figure 3.56: Result of the Experiment A7 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.1.15. Experimental set A8

In experimental set A5, it is imposed that a convergence rate of 4 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 120 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.1.16. Results of A8

After 11.72 m.y. At this stage, the wet melt production type is more than the wet melt
production and it is spread. The wet melt type is concentrated in two regions. The
convection currents in the mantle are upward (Figure 3.57). After 11.81 m.y. at this

stage, melt production decreased.Wet melt production is concentrated in three regions
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and is higher than wet melt production (Figure 3.58). After 12.40 m.y Melt production
increased and wet melt production concentrated regionally. Convection currents in the
mantle are stagnant (Figure 3.59). After 13.86 m.y at this stage, melt production has
fallen. Wet melt production has spread and wet plum production is small and regional
(Figure 3.60). After 14.08 m.y wet melt production is more and spread than wet melt
production. Convection currents in mantle have counterclockwise movement against
subduction mechanism and its intensity is high (Figure 3.61). In the latest stage of the
model , after 14.10 m.y no melt production was observed at this stage. Only crustal

deformation was observed (Figure 3.62).
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Figure 3.57: The results of the Experiment A8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 11.72 Myr.
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Melt production rate, model del 27 @11.81 Ma
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Figure 3.58: The results of the Experiment A8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at11.81 Myr.
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Figure 3.59 The results of the Experiment A8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 12.40 Myr.
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Melt production rate, model del_27_ @13.86 Ma
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Figure 3.60 The results of the Experiment A8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 13.86 Myr.
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Figure 3.61: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.08 Myr.
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Melt production rate, model del_27_ @14.10 Ma
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Figure 3.62: The results of the Experiment A8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 14.10 Myr.

In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
11.5 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~900 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~500 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~1100 km"3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.63).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond

to~11.5, ~ 13.5 and ~ 14 million years for the model. In the 11.5 and 14 million years,
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only the wet melt graph showed a sudden change, while in the 13.5 million years both

the wet and wet melt graph showed a sudden increase (Figure 3.64).
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Figure 3.63: Result of experiment A8 with discrete volumetric melt extraction rate
depending on time.
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Figure 3.64: Result of the Experiment A8 with cumulative sum of discrete
volumetric melt extraction rate depending on time.
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3.2. Results of Experiment B

In Experiment B, convergence rate is determined as 8 cm/yr (slow convergence

rate).Oceanic lithosphere age is changing periodic increment (see Table 2.1).

3.2.1. Experimental set B1

In experimental set B1 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 50 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.2. Results of B1

After 6.49 m.y wet melt production was not observed at this stage, but a small amount
of wet melt production was observed (Figure 3.65). After 6.79 m.y wet melt production
increased. Convection currents in mantle increased (Figure 3.66). After 6.99 m.y at
this stage, the asthenosphere entered under the crust and wet melt production increased
and spread along the accreationary prism (Figure 3.67). After 7.18 m. dry and wet melt
production is observed. Dry melt is close to the trance and wet plum production is
concentrated at back arc basin (Figure 3.68). After 7.49 m.y a small amount of wet

melt production was observed, while the dry melt was not observed (Figure 3.69).

In the final stage of the model is after 7.90 m.y . a small amount of wet melt was

observed on the accreationary prism (Figure 3.70) .

58



Melt production rate, model del_27_ @6.49 Ma
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Figure 3.65: The results of the Experiment B1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 6.49 Myr.
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Figure 3.66: The results of the Experiment A4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.79 Myr.
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Melt production rate, model del_27_ @6.99 Ma
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Figure 3.67: The results of the Experiment B1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 6.99 Myr.
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Figure 3.68: The results of the Experiment B1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.18 Myr.
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Figure 3.69: The results of the Experiment B1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.49 Myr.
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Figure 3.70: The results of the Experiment B1, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at
7.90 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.5 million years after the start of the model rapidly changes the dynamics in the mantle
and causes a serious increase in melt production. This increase is supported by changes
in mantle convection movements. Wet melt extraction is represented with red color
and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~150 km® maximum melt extraction value.
Dry melt have one peak value at 7.25 million year. Crustal deformation extraction is
represented with green color and it takes ~50 km® maximum melt extraction value.
Total melt extraction is represented with black color and it takes ~300 km”3 maximum
melt extraction value. The graph, in which each is represented on top of each other,

shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the secondary jump value (Figure 3.71).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond

to ~ 7.5 and ~ 9.75 million years for the model (Figure 3.72).
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Figure 3.71: Result of the Experiment B1 with discrete volumetric melt
production rate depending on time.

62



1400 Cumulative melt produced in model O.L. Age:50Myr

Total
Wet mantle

———— Dry mantle
1200 ——— Crust

1000

800

M, [ km?]

600

400 -

200

6 6.5 7 7.5 8 8.5 9 9.5 10
t [Myr]

Figure 3.72: Result of the Experiment B1 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.3. Experimental set B2

In experimental set B2 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 60 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.4. Results of B2

After 7.00 m.y large amounts of wet and dry melt were observed. The asthenosphere
came under the crust and the mantle wedge was opened (Figure 3.73).After 7.53 m.y
Wet and dry production decreased and concentrated in a small area (Figure 3.74). After
7.84 m.y at this stage, the asthenosphere entered under the crust and wet melt

production increased and spread along the accreationary prism (Figure 3.75).

In the final stage of the model is after 8.54 m.y small amount of wet melt production

was observed. At this stage, dry melt production was not observed (Figure 3.76).
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Melt production rate, model del_27_ @7.00 Ma
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Figure 3.73: The results of the Experiment B2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.00 Myr.
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Figure 3.74: The results of the Experiment B2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.53 Myr.
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Melt production rate, model del_ 27 @7.84 Ma
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Figure 3.75: The results of the Experiment B2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.84 Myr.
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Figure 3.76: The results of the Experiment B2, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 8.54 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.75 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~250 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~250 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~450 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~550 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the second jump value is higher than

the first jump value (Figure 3.77).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond

to ~ 7 and ~ 8 million years for the model (Figure 3.78).
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Figure 3.77: Result of the Experiment B2 with discrete volumetric melt
production rate depending on time.
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Figure 3.78: Result of the Experiment B2 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.5. Experimental set B3

In experimental set B3 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 70 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.6. Results of B3

After 6.24 m.y. astenosphere began to enter the mantle wedge. Only wet melt
production was observed (Figure 3.79). After 6.55 m.y , only wet melt production is
observed. The asthenosphere partially came under the crust (Figure 3.80). After 6.78
m.y. dry melt production increased regionally and wet melt production expanded. The

convection currents in the mantle are upward (Figure 3.81).

In the final stage of the model is after 7.44 m.y small amount of wet melt production
observed. The convection currents in the mantle are stable (Figure 3.82).
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Figure 3.79: The results of the Experiment B3, show melt production graph
(top), water content with percentage (middle), and lithology graph (bottom) at 6.24
Myr.
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Figure 3.80: The results of the Experiment B3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.55 Myr.
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Melt production rate, model del_27_ @6.78 Ma
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Figure 3.81: The results of the Experiment B3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 6.78 Myr.
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Figure 3.82: The results of the Experiment B3, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.44 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.75 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~300 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~550 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~200 km®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~700 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the second jump value (Figure 3.83).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.75 and ~ 9.25 million years for the model (Figure 3.84).
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Figure 3.83: Result of the Experiment B3 with discrete volumetric melt
production rate depending on time.
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Figure 3.84: Result of the Experiment B3 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.7. Experimental set B4

In experimental set B4 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 80 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.8. Results of B4

After 6.47 m.y. only wet melt production is observed. The asthenosphere partially
came under the crust (Figure 3.85). After 6.69 dry melt production increased regionally
and wet melt production expanded (Figure 3.86). After 7.00 m.y dry melt production
has migrated to the trench side. Wet and dry melt production is regional and high
(Figure 3.87).

In the final stage of the model is after 7.35 m.y a small amount of wet melt production

was observed. Convection currents in the mantle are stable (Figure 3.88).
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Melt production rate, model del_27_ @6.47 Ma
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Figure 3.85: The results of the Experiment B4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.47 Myr.
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Figure 3.86 The results of the Experiment B4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.69 Myr.
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Melt production rate, model del_27_ @7.00 Ma
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Figure 3.87 The results of the Experiment B4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.00 Myr.
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Figure 3.88: The results of the Experiment B4, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 7.35Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.75 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~350 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~700 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~150 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~900 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the second jump value (Figure 3.89).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.75 and ~ 9.25 million years for the model (Figure 3.90).
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Figure 3.89: Result of the Experiment B4 with discrete volumetric melt
production rate depending on time.
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Figure 3.90: Result of the Experiment B4 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.9. Experimental set B5

In experimental set B5 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 90 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.10. Results of B5

After 6.46 m.y. a significant amount of wet melt production has been observed and the
intensity of the convection currents in the mantle is high (Figure 3.91). After 6.64 m.y
Wet and dry melt production was observed in significant quantities. Both types of melt
production were concentrated in two regions. The intensity of the convection currents
in the mantle is high and upward (Figure 3.92). After 6.78 m.y the production of dry
melt is high and spread along the accretionary prism. Wet melt production is low and
divided into two regions (Figure 3.93). After 6.99 m.y wet and dry melt types are

produced in small amounts and are regional.
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In the final stage of the model is after 9.43 m.y significant wet melt production was

observed at this stage and concentrated in one region (Figure 3.94).
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Figure 3.91: The results of the Experiment B5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 6.46 Myr.
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Figure 3.92: The results of the Experiment B5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.64 Myr.
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Melt production rate, model del_27_ @6.78 Ma
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Figure 3.93: The results of the Experiment B5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.78 Myr.
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Figure 3.94: The results of the Experiment B5, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.99 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.75 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~300 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~550 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~150 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~750 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the second jump value (Figure 3.95).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.75 and ~ 8.75 million years for the model (Figure 3.96).
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Figure 3.95: Result of the Experiment B5 with discrete volumetric melt
production rate depending on time.
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Figure 3.96: Result of the Experiment B5 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.11. Experimental set B6

In experimental set B6 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 100 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.12. Results of B6

After 6.46 m.y dry melt production is high and concentrated in a region. Wet melt
production is widespread (Figure 3.97). After 6.85 m.y Wet and dry production is high
and spread. The intensity of the convection currents in the mantle is high and upward
(Figure 3.98). After 7.03 m.y dry melt production is made and shows dual properties.

Wet melt production is concentrated in two regions (Figure 3.99).

In the final stage of the model is after 7.75 m.y melt production was not observed. Wet

melt production was concentrated in a region (Figure 3.100).
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Figure 3.97: The results of the Experiment B6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.63 Myr.
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Figure 3.98: The results of the Experiment B6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.85 Myr.
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Melt production rate, model del_27_ @7.03 Ma
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Figure 3.99: The results of the Experiment B6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 7.03 Myr.
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Figure 3.100: The results of the Experiment B6, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 8.75 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.75 million years after the start of the model rapidly changes the dynamics in the
mantle and causes a serious increase in melt production. This increase is supported by
changes in mantle convection movements. Wet melt extraction is represented with red
color and it takes ~150 km?® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~500 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~150 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~700 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the second jump value (Figure 3.101).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.75 and ~ 8.75 million years for the model (Figure 3.102).
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Figure 3.101: Result of the Experiment B6 with discrete volumetric melt
production rate depending on time.
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Figure 3.102: Result of the Experiment B6 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.13. Experimental set B7

In experimental set B7 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 110 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.14. Results of B7

After 6.55 m.y. dry melt production is high and concentrated in a region. Wet melt
production is small and spread. The intensity of the convection currents in the mantle
is high (Figure 3.103). After 6.87 m.y. dry melt production has a triple structure. Wet
melt production is significantly less and has been observed in four different regions
(Figure 3.104). After 7.18 m.y. Wet melt production is more and spread than dry melt
production. Dry melt production has migrated to trench side (Figure 3.105).
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In the final stage of the model is after 8.93 wet melt production is concentrated in two

different regions. Dry melt production is not observed (Figure 3.106).
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Figure 3.103: The results of the Experiment B7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 6.55 Myr.
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Figure 3.104: The results of the Experiment B7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 6.87 Myr.
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Figure 3.105: The results of the Experiment B7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)

at 7.18 Myr.
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Figure 3.106: The results of the Experiment B7, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom)
at 8.93 Myr.
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In the melt extraction graphs, the models show a two-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.5 million years after the start of the model rapidly changes the dynamics in the mantle
and causes a serious increase in melt production. This increase is supported by changes
in mantle convection movements. Wet melt extraction is represented with red color
and it takes ~200 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~550 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~100 km®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~700 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other

In the total melt production graphs of this model, the first jump value is higher than

the second jump value (Figure 3.107).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.5 and ~ 8.75 million years for the model (Figure 3.108).
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Figure 3.107: Result of the Experiment B7 with discrete volumetric melt
production rate depending on time.
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Figure 3.108: Result of the Experiment B7 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.2.15. Experimental set B8

In experimental set B8 , it is imposed that a convergence rate of 8 cm/yr from both
side(right and left) of model Oceanic lithosphere age is determined as 120 Ma.Oceanic
lithosphere thickness incresed due to modelling process. In models 35 km in thick
continental crust , 8 km ocenaic cruscrust and 80 km in thick mantle lithosphere as
determined. The rheologies determined as wet quartzite in contienetal crust (Ranalli,
1995), gabbro/basalt in oceanic crust (Ranalli, 1995) ,wetolivine in mantle lithosphere
(Ranalli, 1995) and wetolivine in asthenosphere. Reference densities of continental
crust, oceanic crust and mantle lithosphere and asthenosphere is 2700 kg/m3, 3000
kg/m3, 3300 kg/m3 and 3300 kg/m3, respectively.

3.2.16. Results of B8

After 12.10 m.y the intensity of the convection currents in the mantle is high and
upward. Dry melt production migrated to the trench side and concentrated in a high
area. Wet melt production is less than that of dry melt production and has spread
(Figure 3.109). After 6.81 m.y. melt production is concentrated in two different
regions. One of them is in the trench side and the other is in the back arc side (Figure
3.110). After 7.34 m.y. wet and prunes production is concentrated in the same region.

The intensity of convection currents in the mantle is lowv(Figure 3.111).
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In the final stage of the model is after 9.09 m.y. subduction slab is break off at ~200
km depth. The intensity of the convection currents in the mantle is high and downward.

No melt production is observed (Figure 3.112).
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Figure 3.109 The results of the Experiment B8, show melt production graph (top),

water content with percentage (middle), and lithology graph (bottom) at
6.53 Myr.
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Melt production rate, model del_27_ @6.81 Ma
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Figure 3.110: The results of the Experiment B8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at
6.81 Myr.
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Figure 3.111: The results of the Experiment B8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at
7.34 Myr.
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Melt production rate, model del_27_ @9.09 Ma
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Figure 3.112: The results of the Experiment B8, show melt production graph (top),
water content with percentage (middle), and lithology graph (bottom) at
9.09 Myr.

In the melt extraction graphs, the models show a three-peak attitude. This behavior has
a direct relationship to the movement of subduction slab. The withdrawal of the slab
6.5 million years after the start of the model rapidly changes the dynamics in the mantle
and causes a serious increase in melt production. This increase is supported by changes
in mantle convection movements. Wet melt extraction is represented with red color
and it takes ~250 km® maximum melt extraction value. Dry melt extraction is
represented with purple color and it takes ~700 km® maximum melt extraction value.
Crustal deformation extraction is represented with green color and it takes ~100 km?®
maximum melt extraction value. Total melt extraction is represented with black color
and it takes ~900 km”3 maximum melt extraction value. The graph, in which each is

represented on top of each other, shows the direct relationship between each other
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In the total melt production graphs of this model, the first jump value is higher than

the second and the third jump value (Figure 3.113).

The sudden jumps in the graph showing the cumulative sum based on time represent
the sudden dynamic changes made by the subduction slab. These changes correspond
to ~ 6.5 and ~ 7.25 million years for the model. Subduction slab is break off at 9.09
m.y (Figure 3.114).
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Figure 3.113: Result of the Experiment B8 with discrete volumetric melt
production rate depending on time.
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Figure 3.114: Result of the Experiment B8 with cumulative sum of discrete
volumetric melt extraction rate depending on time.

3.3. Comparison of Experiments

In Experiment A3, Experiment A4, Experiment A5, Experiment A6, Experiment A7
and Experiment A8, subduction slab break off phenomena is observed. Melt extraction
rates of these experiments have major peak before the break off and melting ends after
the break off in ~1Ma time period. Results of Experiment A1 and Experiment A2 are

correlating with subduction flat structure at ~660 km (see Table 3.2).

It is clear that there is a similarity between slab angles and melt generation graph. In
all experiments, it is observed that when the slab angle increases at 11-12 Ma model
time, it triggers melt generation. Before the Fourth phase, break off triggers melt
generations and melt generation significantly decreases with break off. Melt

generation of first time at Experiments are defined at Table 3.3.
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Table 3.2: Slab Break off table.

Experiment  Oceanic Mantle Convergent  Slab Break  Slab Break
Number Lithosphere Age Rate (cm/yr) off/ Slab Peel off/Slab Peel

(Ma) off off time
(Ma)
Al 50 4 Slab Peel off -
A2 60 4 Slab Peel off -
A3 70 4 Slab Break off 14.31
Ad 80 4 Slab Break off ~ 13.95
A5 90 4 Slab Break off  14.09
A6 100 4 Slab Break off ~ 13.94
A7 110 4 Slab Break off 14.21
A8 120 4 Slab Break off  14.09
Bl 50 8 Slab Peel off -
B2 60 8 Slab Peel off -
B3 70 8 Slab Peel off -
B4 80 8 Slab Peel off -
B5 90 8 Slab Peel off -
B6 100 8 Slab Peel off -
B7 110 8 Slab Peel off -
B8 120 8 Slab Break off 9.09
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Table 3.3: First melt production time table

_ Oceanic Mantle Lithosphere Fist Wet Melt Fist Wet melt Fist Crustal
Experiment Number Age (Ma) Production Time; Production deformation
Volume Time;Volume Production Time;
[Ma]; [km’] [Ma]; [ km?] Volume
[Ma]; [ km’]
Al 50 11,125; 2.786 11.779; 236.92 10.818; 0.487
A2 60 11.103; 0.528 11.697; 126.08 11.193; 0.699
A3 70 11.128; 4.789 11.644; 88.894 10.904; 0.472
Ad 80 11.199; 20.802 11.612;122.680 10.792; 0.459
A5 90 11.010; 0.531 11.627; 211.320 10.852; 0.624
A6 100 11.466; 24.326 11.859; 85.716 11.068; 1.021
A7 110 11.122; 20.41 11.642; 316.77 10.65; 0.641
A8 120 11.343; 16.135 11.689; 80.823 10.928;1.303
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4. OBSERVATIONS AGAINST THE MODEL RESULTS

Subduction mechanism is examined with various Earth science branches. In that case,
models are comparable with global scale analysis, including geophysical and
geological disciplines. Global distribution of oceanic lithosphere age is shown at
(Figure 4.1).

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Figure 4.1: Oceanic lithosphere age distribution. Rectangular region
representing rapid changing of oceanic lithosphere age at one subduction system.
Region (A) is Sunda arc. Region (B) is Japan subduction (simply modified after
Miiller, Sdrolias, Gaina, & Roest, 2008) .

Subduction initiates by sinking of denser oceanic lithosphere along where two tectonic
plates meet, which is called “tectonic boundary”. Due to plate motion curved trench
axis and ridge (Kyushu basin ridge at Sunda arc and Wharton ridge at South of Japan
arc) occurrence vertically placed at subduction axis. Spreading of the oceanic

lithosphere differentiates the subducted lithosphere age.
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4.1. Comparisons and Correlations for Sunda Arc

Sunda publication, one of the most active and complex subduction zones in the world,
is compared with the models. In making these comparisons, the volcanic structure of
the Sunda region and the solutions produced in the models were taken into

consideration.

4.1.1. Tectonic setting of Sumatra and Java subduction system

The Sunda Arc is stretched by NW directed forces. This region includes Sumatra and
Java, where Indo-Australian Plate has subducted beneath Eurasia plate (Pacey,
Macpherson, & McCaffrey, 2013) . It has been suggested that the collision of Indian
plate and Eurasia has been changed its direction around 55 Ma and then Sunda arc has
become into a curvy shape as today (Aitchison, Ali, & Davis, 2008).

Convergent rate of Subduction zone is changed between -20cm/yr to 45 cml/yr,
Oceanic lithosphere age is changed 10Ma -130 Ma until 80 Ma to recent time
(Whittaker, Miiller, Sdrolias, & Heine, 2007) .

Differences in oceanic lithosphere age and convergent rate are related with Wharton
ridge. In terms of subducting, plate of Sumatra and Java part of Sunda system show
difference at oceanic lithosphere age. Wharton Ridge has been subducting underneath
Sumatra over the period 15 —0 Ma (Whittaker et al., 2007) . During this period various

aged oceanic lithosphere subducted under Sumatra and Java part of the Sunda system.

Eocene (56 — 34 Ma) initiation of the present day back arc basins took place along N-

S trending rifts (Wharton ridge), strongly oblique to the NW-SE part of the margin.

These heterogenic tectonic setting effects on chemical distribution of magmatism and

feature of subduction are represented at (Table 4.1).

Modern Sunda Arc volcanoes developed during the Quaternary (2.58 — 0.012 Ma).
Volcanos of Indonesia are part of the Sunda arc, a 3,000-km-long line of volcanoes
extending from northern Sumatra to the Banda Sea. Quaternary volcanism in Java has
mainly generated basaltic andesite to andesite effusive and explosive products.
(Whitford, 1975) .
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4.1.2. Comparison with Sunda Arc

At N-W part of the Java Island, two volcanos are located. They are namely Salak (Calc-
alkaline) and Guntur (tholeiitic) volcanic province (Whitford, 1975). Location of the
provinces are represented (see Figure 4.2). Relation between oceanic lithosphere and

subduction break off is considerably linked.
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Figure 4.2: Map of Sumatra- Java subduction system. Dash line is trench profile.
Arrows representing convergent rate of subducting trench (Artemieva,
Thybo, & Shulgin, 2016). Yellow, green and blue area is representing

oceanic lithosphere age distribution (modified after Miiller et al., 2008)

.Yellow line is representing right lateral strike slip fault with 3.6-4.9
cm/yr plate motion(Genrich & Stevens, 2000). Volcanic provinces are
representing by stars; 1: Salak volcanic province (Calc-alkaline) ad 2:

Guntur volcanic province (Tholeiitic).




Table 4.1: Table of geochemistry of Sunda arc modified after Whitford, 1975.

Islan arc Calc-alkaline  Hig—-K Rhyolitic

Volcano name Thoeliites Alkaline _Ignimbrite

Krakatau + +
Tjikurai +
Dalunggung +
Guntur +
Papandajan
Salak
Danau complex
Merapi
Agung
Seraja
Rindjani
Tangkuban Prahu
Semeru
Sangeang Api
Kelud
Kawah Idjen
Tjerimai
Slamet
Merapi
Lamongan
Sumbing
Merbabu
Lawu
Bramo
Sundoro
Dieng Complex

+ + + 4+ + + 4+ + + 4+ + + 4+ + + 4+ + + 4+ + + 4+ o+

Ungaran
Muriah +
Lake Toba +

Salak province is located at 6.8S, 107.0E and 2, 958m elevation. Salak province have
Calc-alkaline chemical composition (Whitford, 1975). Salak Province is located

around 250 km far from trench. Last time was erupted at 1948.
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Guntur is located on the same line and far away from around 1280 km from Salak

province and 260 km far away from trench. Last time was erupted at 1840.

Calc-alkaline and tholeiitic magmatism in the same province and the same distance

from trench is correlating with our models

Seismic profile at (Figure 4.3) is observed at middle part of the Sumatra trench which
has 50 Ma year old oceanic lithosphere subduction slab. Output of Experiment Al
(Figure 4.4) is correlating with seismic profile. They are correlating with accretionary
prism width (200km) and melt production time (12.37 Ma). At the melt production
graph, it is correlating with the order of melt production; wet melt (alkaline) near the
trench, mix melt (alkaline, Calc-alkaline) at middle of volcanic arc and wet (alkaline)
melt at back arc. It is also consistent with surface features S1 from Figure 4.2 by
parallel with convergence axis such as; trench axis, volcanics islands, coast side and

major volcanic front.
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Figure 4.3: Marine seismic profile from middle part of Sumatra trench (Shulgin
etal., 2013) .

99



Melt production rate, model del_27_ @12.37 Ma
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Figure 4.4: The results of the Experiment 1, show the geodynamic evolution of
subduction and its melt production graph (top), water content with
percentage (middle) scaled with colorbar, yellow arrows represents

convection current flow and solid white lines illustrates thermal
gradients from 700 to 1500 °C with 200 °C increment, and lithology
graph (bottom) in 12.37 Myr.

4.2. Comparisons and Correlations for Japan Arc

Japan's Ryuku region and North West region, which have complex volcanic evolution,

are compared with models. This comparison is based on tectonic evolution.

4.2.1. Tectonic setting of Japan subduction system

Tectonic evolution of Japan is dominated by subducting the Pacific Ocean beneath the
Eurasian plate. Southern part of the Japan subduction has more complex structure with
retreating slab. Retreating slab initiates a second order subduction system at back-arc

basin region such as in Ruyuku subduction zone (Figure 4.5).
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Figure 4.5: Tectonic evaluation around the Japan islands between Early to Middle
Miocene (~23 — ~5.3 Ma) (Yamamoto & Hoang, 2009).

At NE part of the Japan, by analyzing the data about paleo-trench locations, it has been
proposed that the location of the trench changes within the time. (Figure 4.6).
According to Tatsumi, Otofuji, Matsuda, & Nohda (1989), alkaline volcanism has
related with back arc opening and asthenospheric injection. High magnesium-alkaline
magmas with a subduction related trace element signature are producing in low
volatiles and low pressure condition at mantle wedge which is triggered unusual

mantle flow from possible slab tear beneath the Japan trench (Kohut et al., 2006).

Western part of the pacific plate is subducting with 8 cm/yr convergent rate (Acocella,
2007). NE Japan has been occurred by arc magmatism, with a trench-parallel chemical
chain volcanos, in the last 13 My (Yoshida et al., 2013) . Magmatic evolution is
divided into 3 main phases; oceanic island chain with submarine basaltic to rhyolitic
volcanism (13-8 Ma), Late Miocene to Pliocene caldera-forming phase from ~8 to
~1.7 Ma with a decrease in activity between 5 and 4 Ma, and andesite stratovolcano
arc (1.7-0 Ma) (Sato & Amano, 1991) . The onset of Calc-alkaline andesite volcanism
in NE Japan occurred between ~1.7 Ma and 1 Ma (Acocella, Yoshida, Yamada, &
Funiciello, 2008). Major tectonic evolution and magmatism relations are defined in
(Figure 4.7 and Figure 4.8).
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Figure 4.6: Trench velocity and oceanic lithosphere age distribution of the western

Pacific, showing the subducting slab Map of Japan subduction system.
Dash line is trench profile. Arrows representing convergent rate of

subducting trench (Artemieva, Thybo, & Shulgin, 2016). Yellow, green
and blue area is representing oceanic lithosphere age distribution (

Miiller et al., 2008) , (modified after Faccenna, Holt, Becker,

Lallemand, & Royden, 2018).Red dashed line represents Neogene

volcanic front and yellow dached line represents Quaternary volcanic

front.
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Figure 4.7: Tectonic evolution and magmatism differences at North East Japan.
Broken lines are representing indicated 100C isotherm (solidus temperature of wet
peridotite) HMA and VF represents normal volcanic front and uncommon near
trench volcanic of high magnesian andesites, respectively. The back arc basin
occurred during 20-14 Ma with hot asthenospheric injection into mantle wedge
during the 30-23 Ma. (Tatsumi et al., 1989) .

The volcanism test set, B6-B7-B8, has developed gradually over the last 25 million
years, as mentioned in the drawings, which briefly summarize the tectonic evolution
of northwest Japan and describe the dry melts produced in the mantle wedge (see
Figure 4.7). The development of dry melts triggered by the upward movement of the
hot asthenosphere by convection currents in the mantle following the development of
wet melt-induced volcanism at the beginning of the subduction is the development
process based on tectonic evolution in Japan (Figure 4.8).
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4.2.2. Comparison with northeast part of the Japan Arc

The models are similar in nature to the tectonic evolution of Japan. It is mentioned
mechanisms (Figure 4.8), the models contribute to the interpretation of the source of

melts in the mantle wedge.

Back arc spreading time and subducted slab age correlating with our model (Figure
4.9) which is represented below. Corner of the mantle wedge generated High Mg
andesites and normal volcanic front and wet melt at back arc with thin lithosphere is

correlating with 23 Ma phase of suggested models at (Figure 4.7) (Tatsumi et al., 1989)

Melt production rate, model del 27_ @11.81 Ma
T T 1 1 T T T

£ Mantle :
=< dry
m
£ wet
~
<
0 Lithology for model del_27_ step 138
L = a E —-—--MAHA,,W P—
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£
s
> 200
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Figure 4.9: The results of the Experiment 8, show the geodynamic evolution of
subduction and its melt production graph (top), water content with percentage
(middle) scaled with colorbar, yellow arrows represents convection current flow and
solid white lines illustrates thermal gradients from 700 to 1500 °C with 200 °C
increment, and lithology graph (bottom) in 13.64 Myr.
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5. CONCLUSION

To sum up, it is tried to clarify the complex structures (Japan and Sunda subduction
regions) which are formed by the oceanic lithosphere ages and approach velocities that

change at short distance on the same subduction zone as the experimental set A and B.

Young oceanic age lithosphere models such as shown in Experiment A3, Experiment
A4, Experiment A5, Experiment A6, Experiment A7 and Experiment A8, subduction
slab break off phenomena is observed. Melt extraction rates of these experiments, has
major peak before the break off and melting is end after the break off in ~1Ma time
period. Experiment Al and Experiment A2 result are correlating with subduction flat

structure at ~660 km.

If we take the results of experimental set B, which is compatible with the approach
velocity of Japan, the experiment presents an approach to the tectonic evolution of
northwestern Japan, which has a complex structure in terms of oceanic lithosphere
ages of B7 and B8 and the time elapsed from the beginning of the model, and melt
production behavior. An approach has been made with the developed models of dry-

melts close to trench, whose production mechanism is still controversial.

It is clear that there is a similarity between slab angles and melt generation graph. In
all Experiment, it is observed that when the Slab angle increase at 11-12 Ma model
time, it triggers melt generation. Before the Fourth phase break off triggers melt

generations and melt generation significantly decrease with subduction break off.

In the models, the continental lithosphere at the back of the oceanic lithosphere can be
adapted to understand the possible mechanism of the Tamu massif (located at around
1300 km away from trench) in Japan. Possible collision time of massif is 10Myr,

considering 9 cm/yr recent convergent rate.
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APPENDICES

Appendix A: Results of Experiment Al; second strain
material field, density field, temperature
respectively.

Appendix B: Results of Experiment A2; second strain
material field, density field, temperature
respectively.

Appendix C: Results of Experiment A3; second strain
material field, density field, temperature
respectively.

Appendix D: Results of Experiment A4; second strain
material field, density field, temperature
respectively.

Appendix E: Results of Experiment A5; second strain
material field, density field, temperature
respectively.

Appendix F: Results of Experiment A6; second strain
material field, density field, temperature
respectively.

Appendix G: Results of Experiment A7; second strain
material field, density field, temperature
respectively.

Appendix H: Results of Experiment A8; second strain
material field, density field, temperature
respectively.

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

rate invariant, full domain
field and viscosity field,

Appendix I: Rheological and thermal properties of modeled rock materials.

113






Appendix A

Segond strain rate invariant [log10(1/s)] for model del_27_ step 100 @9.3 Ma Sec(?nd strain rate invariant [log10(1/s)] for model del_27_ step 120 @11.1 Ma
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Figure A.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.32 Ma

Lithology for model del_27_ step 120 @11.11 Ma
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Figure A.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure A.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure A.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.3 Ma
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Figure A.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix B

Segond strain rate i i log10(1/s)] for model del_27_ step 100 @9.3 Ma Sec(?nd strain rate invariant [log10(1/s)] for model del_27_ step 120 @11.1 Ma
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Figure B.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.31 Ma

Lithology for model del_27_ step 120 @11.13 Ma
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Figure B.2: Results of full domain material field with x axis (km), y axis time (km).

121



y [km]

y [km]

y [km]

Density [kg,‘m3] for model del_27_ step 100 @9.3 Ma

0 =
200
400

600

800
1000 3000
1200

1400
0

2500

500 1000 1500 2000

x [km]

2500 3000 3500 4000

0 Density [kglm3] for model del_27_ step 140 @12.1 Ma
=

200
400
600

800
1000 3000
1200

1400

2500

0 500 1000 1500 2000

x [km]

2500 3000 3500 4000

Density [kglm3] for model del_27_ step 180 @14.4 Ma
0 —)
200

400
600

800
1000 3000
1200

1400

2500
0 500

1000

1500 2000

x [km]

2500 3000 3500 4000

y [km]

y [km]

y [km]

Density [kglm3] for model del_27_ step 120 @11.1 Ma

0 —
200
400

4000

3500

600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Density [kglm3] for model del_27_ step 160 @13.3 Ma
0 .y 4000
200
4
00 3500
600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Density [kglm3] for model del_27_ step 200 @15.6 Ma
0 ——= 4000
200
400 3500
600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]

Figure B.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure B.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.3 Ma
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Figure B.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix C

Se(c)ond strain rate invariant [log10(1/s)] for model del_27_

step 100 @9.3 Ma

200
400
600

y [km]

800
1000
1200

1400

1000 1500 2000

x [km]

2500 3000 3500 4000

y [km]

500 1000 1500 2000

x [km]
Sec(())nd strain rate invariant [logl0(1/s)] for model del_27_ step 180 @14.2 Ma

2500 3000 3500 4000

-12

200

400 13
T 600 T
2 u 2
> 800 =

1000 15

1200

1400 16

0 500 1000 1500 2000 2500 3000 3500 4000
x [km]

Figure C.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.31 Ma

0 o Lithology for model del_27_ step 120 @11.13 Ma
200 200
400 400
'E 600 E 600
= =3
> 800 > 800
1000 1000
1200 1200
1400 1400
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
x [km] x [km]
0 Lithology for model del_27_ step 140 @11.96 Ma o Lithology for model del_27_ step 160 @13.00 Ma
200 200
400 400
T 600 E 600
= =
> 800 > 800
1000 1000
1200 1200
1400 1400
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
x [km] x [km]
0 Lithology for model del_27_ step 180 @14.20 Ma o Lithology for model del_27_ step 200 @14.78 Ma
200 200
400 400
'E 600 E 600
= =3
> 800 > 800
1000 1000
1200 1200
1400 1400
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

x [km] x [km]

Figure C.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure C.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure C.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.3 Ma
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Figure C.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.




Appendix D

Sec(:)ond strain rate i i I

for model del_27_ step 100 @9.3 Ma

200
400
600
800
1000

y [km]

1200

1400
0

500 1000 1500 2000

x [km]
Secoond strain rate invariant [log10(1/s)] for model del_27_ step 140 @11.9 Ma
s e

2500 3000 3500 4000

200
400
600
800
1000

y [km]

1200

1400
0

500 1000 1500 2000

x [km]
Seca:nd strain rate invariant [log10(1/s)] for model del_27_ step 180 @13.8 Ma
s ™ R

2500 3000 3500 4000

200
400
600
800
1000

y [km]

1200
1400

-16

0 500

1000 1500 2000

x [km]

2500 3000 3500 4000

-12

Sec(?nd strain rate invariant [log10(1/s)] for model del_27_ step 120 @11.0 Ma

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500 4000
x [km]

Sec(?nd strain rate invariant [IogO(lls)] for model del_27_ step 160 @12.7 Ma

200
400
600
800
1000

y [km]

1200

1400
0

500 1000 1500 2000

x [km]
Sec(?nd strain rate invariant [log10(1/s)] for model del_27_ step 200 @14.3 Ma

2500 3000 3500 4000

200
400
600
800
1000

y [km]

1200

1400
0 500

1000

1500 2000

x [km]

2500 3000 3500 4000

Figure D.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.29 Ma

0 o Lithology for model del_27_ step 120 @11.00 Ma
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Figure D.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure D.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure D.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.3 Ma
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Figure D.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.




Appendix E

Sec(:)ond strain rate i i I for model del_27_ step 100 @9.3 Ma Sec(?nd strain rate invariant [log10(1/s)] for model del_27_ step 120 @11.0 Ma
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Figure E.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.29 Ma

0 o Lithology for model del_27_ step 120 @11.03 Ma
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Figure E.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure E.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.

137



y [km]

y [km]

y [km]

500

1000

500

1000

500

1000

Temperature [K] for model del_27_ step 100 @9.3 Ma

O ‘
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Temperature [K] for model del_27_ step 140 @12.0 Ma
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Temperature [K] for model del_27_ step 180 @14.0 Ma
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]

Figure E.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Figure E.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix F

Second strain rate i i I for model del_27_ step 100 @9.3 Ma Second strain rate invariant [log10(1/s)] for model del_27_ step 120 @11.2 Ma
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Figure F.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.28 Ma

0 o Lithology for model del_27_ step 120 @11.22 Ma
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Figure F.2: Results of full domain material field with x axis (km), y axis time (km).

141



y [km]

y [km]

y [km]

Density [kg,‘m3] for model del_27_ step 100 @9.3 Ma
0 —
200

400
600

800
1000 3000
1200

1400

2500

0 500 1000 1500 2000

x [km]

2500 3000 3500 4000

0 Density [kglm3] for model del_27_ step 140 @12.0 Ma
=

200
400
600

800
1000 3000
1200

1400

2500

0 500 1000 1500 2000

x [km]

2500 3000 3500 4000

Density [kglm3] for model del_27_ step 180 @13.9 Ma
0 q =
200
400

600

800
1000 3000
1200

1400

2500
0 500

1000

1500 2000

x [km]

2500 3000 3500 4000

y [km]

y [km]

y [km]

Density [kglm3] for model del_27_ step 120 @11.2 Ma

4000

0 —

200

4
00 3500

600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Density [kglm3] for model del_27_ step 160 @12.9 Ma
0 = 4000
200
4
00 3500
600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]
Density [kglm3] for model del_27_ step 200 @14.4 Ma
0 * = 4000
200
400 3500
600
800
1000 3000
1200
1400 2500
0 500 1000 1500 2000 2500 3000 3500 4000
x [km]

Figure F.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure F.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.3 Ma
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Figure F.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix G
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Figure G.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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0 Lithology for model del_27_ step 100 @9.26 Ma Lithology for model del_27_ step 120 @10.92 Ma
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Figure G.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure G.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure G.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Figure G.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix H
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Figure H.1: Results of second strain rate invariants with x axis (km), y axis time (km) and second strain rate invariant (color bar.)
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Lithology for model del_27_ step 100 @9.25 Ma
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Figure H.2: Results of full domain material field with x axis (km), y axis time (km).
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Figure H.3: Results of density field with x axis (km), y axis time (km) and density values are defined at color bar.
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Figure H.4: Results of temperature field with x axis (km), y axis time (km) and temperature values are defined at color bar.
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Viscosity [log10(Pa*s)] for model del_27_ step 100 @9.2 Ma
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Figure H.5: Results of viscosity field with x axis (km), y axis time (km) and viscosity values are defined at color bar.
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Appendix |

Table 1.1: Rheological and thermal properties of modeled rock materials (after T. V. Gerya & Meilick, 2011).

Pre-

Activation

Activation

Sine of

Latent

Mechanical Densit exponential | ener volume Stress coefficient of Heat Radioactive Heat C Density
and Thermal 3y ' | Flow law | &P 9y expone | . - production Tsolidus [K] Thiquidus [K] Heating Hr, P k [W*m1*K-1] P,
Parameters (kg/m3) factor AD, Ea, Va, nt (n) internal friction rate [J/kg] [WW/m?] He, | [J/kg] [kg/m?]
[Pa" s] [kJ/mol] | [J/bar/mol] (sin(@)) K [kJ/kg]
- Wet ) ) P <1200 MPa: 889 + 17900/(P+54) + 20200/((P+54)?) - *0(0.00004+P)
Sediments 2.60E+03 Quartzite 1.97E+17 | 1.54E+05 | 3.00E-01 2.3 0.15 7.50E-04 P > 1200 MPa: 831 + 0.06*P 1262 + 0.009*P 15 300 1000 | 0.64 + 807/(T+77)*e 2600
Colrft‘i)ﬁs:ltal 270403 |  Wel | 1o7E+17 | 1.54E+05 | 3.00E-01 | 23 0.15 750E-04 | P <1200 MPa: 889 + 17900/(P+54) + 20200/((P+54)°) 1262 + 0.009*P 1 300 | 1000 | 0.64 + 807/(T+77)*e0%00+) | 2700
Crust : Quartzite | : ; ’ ' : P > 1200 MPa: 831 + 0.06*P : ’
Lower Wet
Continental 2.70E+03 Quartzite 1.97E+17 | 1.54E+05 | 3.00E-01 2.3 0.15 7.50E-04 - 1423 + 0.105*P 0.25 380 1000 | 1.18 + 474/(T+77)*g(0.00004*P) 2800
Crust
Upper " ) P < 1600 MPa: 973 - 70400/(P+354) + (7.78E+07)/((P+54)?) - 4(0.00004*P)
Oceanic Crust 3.00E+03 | Gabbro | 4.80E+22 | 2.38E+05 | 8.00E-01 | 3.22 0 7.50E-04 P > 1600 MPa- 935 + 0 0035*P + 6 2E-06*P2 1423 + 0.105*P 0.25 380 | 1000 |0.64 + 807/(T+77)*e 3000
Ocela;r?ivge(;rust 3.00E+03 Basalt | 4.80E+22 | 2.38E+05 | 8.00E-01 | 3.22 0.6 7.50E-04 - 1423 + 0.105*P 0.25 380 | 1000 | 1.18 + 474/(T+77)*g(0-00004*F) 3000
Mantle WetOlivi - D 2 - %(0.00004+P)
Lithosphere 3.30E+03 ne 3.98E+16 | 5.32E+05 | 8.00E-01 35 0.6 7.50E-04 | 1394 + 0.133*Pmpa - 5.1E-06*Pwmpa 2073 +0.114*p 0.22 - 1000 | 0.73 + 1293/(T+77)*e 3300
WetOlivi ) ) P < 1600 MPa: 973 - 70400/(P+354) + (7.78E+07)/((P+54)?) - *0(0.00004+P)
Asthenosphere [ 3.30E+03 ne 3.98E+16 | 5.32E+05 | 8.50E-01 35 0.6 7.50E-04 P > 1600 MPa: 935 + 0 0035*P + 6.2E-06*P2 2073 + 0.114*P 0.22 300 1000 | 0.73 + 1293/(T+77)*e 3200
Reference 1,2 10 10 10 1,10 1 4,8 4 1 1,2 3,9 1,2

1) Sine of coefficient of internal friction values when c=10MPa.

2) References; 1 = Turcotte & Schubert (2002); 2 = Bittner & Schmeling (1995); 3 = Clauser & Huenges (1995); 4 = Schmidt & Poli (1998); 5 = Hess (1989); 6 = Hirschmann (2000); 7 = Johannes (1985); 8 =

Poli & Schmidt (2002); 9 = Hofmeister (1999), 10 = Ranalli (1995).
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