

ISTANBUL TECHNICAL UNIVERSITY « INFORMATICS INSTITUTE

M.Sc. THESIS

SEPTEMBER 2019

AN OPEN-SOURCE, MACHINE LEARNING BASED
INTRUSION DETECTION SYSTEM

Zemre ARSLAN TÜVER

Department of Computational Science and Engineering

Computational Science and Engineering Programme

Department of Computational Science and Engineering

Computational Science and Engineering Programme

SEPTEMBER 2019

ISTANBUL TECHNICAL UNIVERSITY « INFORMATICS INSTITUTE

AN OPEN-SOURCE, MACHINE LEARNING BASED
INTRUSION DETECTION SYSTEM

M.Sc. THESIS

Zemre ARSLAN TÜVER
(702131021)

Thesis Advisor: Assoc. Prof. Dr. Enver Özdemir

Hesaplamalı Bilim ve Mühendislik Anabilim Dalı

Hesaplamalı Bilim ve Mühendislik Programı

EYLÜL 2019

ISTANBUL TEKNİK ÜNİVERSİTESİ « BİLİŞİM ENSTİTÜSÜ

MAKİNA ÖĞRENMESİ TABANLI
AÇIK KAYNAK KODLU SALDIRI TESPİT SİSTEMİ

YÜKSEK LİSANS TEZİ

Zemre ARSLAN TÜVER
(702131021)

Tez Danışmanı: Doç. Dr. Enver Özdemir

vi

To my family

vii

viii

FOREWORD

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Enver
Özdemir for his guidance and patient understanding. It was not an easy work for both
of us, since we were working from different countries. His continuous motivational
support, positive attitude and his enlightening ideas helped me a lot to finish my work.
I also would like to thank to my spouse Cem, and my mother for their moral support
and love.

September 2019 Zemre ARSLAN TÜVER
(Computer Engineer)

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
SYMBOLS... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ... xxv
1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 1
1.2 Background... 1

1.2.1 DDoS attacks .. 1
1.2.2 Intrusion detection systems (IDS) .. 3

1.3 Literature Review ... 5
2. SYSTEM ARCHITECTURE .. 9

2.1 The Raw Network Data .. 10
2.2 Audit Trail Topic .. 10
2.3 Data Preprocessing Module.. 12
2.4 Processed Data Topic.. 13
2.5 ML Engine.. 14

2.5.1 Feature selection... 14
2.5.2 Label encoding ... 15
2.5.3 Preparing training and testing sets.. 15
2.5.4 Apply machine learning algorithms ... 17

2.5.4.1 Isolation forest ... 17
2.5.4.2 Elliptic envelope .. 18
2.5.4.3 Local outlier factor .. 19

2.6 Intrusion Classifier.. 21
2.7 Malicious Data Topic.. 21
2.8 Elastic Search & Kibana.. 22

3. PROOF OF CONCEPT STUDIES ... 23
3.1 The Anatomy of the Dataset... 23
3.2 Our Approach for Botnet Detection ... 24
3.3 Data Preparation and Transformation... 26

3.3.1 Data manipulation .. 26
3.3.2 Feature selection... 29
3.3.3 Label encoding ... 29

xi

3.4 Preparing Train and Test Data .. 30
4. RESULTS .. 33

4.1 Number of Different Protocol Types .. 34
4.2 Average Interarrival Time... 34
4.3 Average Packet Length ... 35
4.4 Same-length number of packets ratio ... 36

5. OPEN ISSUES & CHALLENGES & FUTURE WORK 37
6. CONCLUSIONS... 39
REFERENCES.. 41
CURRICULUM VITAE... 45

xii

ABBREVIATIONS

ACL : Access Control List
API : Application Programming Interface
C&C : Command and Control Server
CIDS : Common Intrusion Detection Framework
CTU-13 : Czech Technical University’s 13 Different Malware Dataset
DARPA : The Defense Advanced Research Projects Agency
DDoS : Distributed Denial of Service
DNS : Domain Name System
DSLAM : Digital Subscriber Line Access Multiplexer
dTos : Destination Type of Service Byte Value
EE : Elliptic Envelope
ELK Stack : Elastic Stack
FMCD : FAST-Minimum Covariance Determinate
FP : False Positives
HTTP : Hyper-Text Transfer Protocol
HTTPS : Secure Hyper-Text Transfer Protocol
HIDS : Host-based Intrusion Detection System
IC : Intrusion Classifier
ICMP : Internet Control Message Protocol
IDS : Intrusion Detection System
IP : Internet Protocol
ISOF : Isolation Forest
JSON : JavaScript Object Notation
kNN : k-Nearest Neighbors
LOF : Local Outlier Factor
MD5 : Message-Digest Algorithm 5
ML : Machine Learning
NFIDS : Neuro Fizzy Intrusion Detection System
NIDS : Network-based Intrusion Detection System
OSEMN : Obtain, Scrub, Explore, Model, Interpret
POC : Proof of Concept
REST : Representational State Transfer
RIC : Regional Infection Coefficient
RNG : Random Number Generator
SMTP : Simple Mail Transfer Protocol
sTos : Source Type of Service Byte Value
TP : True Positive
UDP : Universal Datagram Protocol

xiii

xiv

SYMBOLS

l : Average inter-arrival time of packets from a specific host
D : Average data rate
dmh : Mahalanobis distance
L : Average packet length
Np : Number of incoming packets which belongs to one specific host IP
r : Recall
Ri : Infected region
Rb : Benign region
Sp : Total size in bits arrived in a time window
Tw : Size of time window in seconds

xv

xvi

xvii

LIST OF TABLES

Page

 List of fields in Audit trails of proposed framework. 12
 Scenario 10 characteristics of CTU-13 dataset. 24
 List of infected hosts with their assigned regions. 27

Table 3.3 : List of CTU-13 Scenario 10 dataset columns. 23
Table 4.1 : Outlier detection results with default features. 33
Table 4.2 : Outlier detection results with protocol type count. 34
Table 4.3 : Outlier detection results with interarival time.. 35
Table 4.4 : Outlier detection results with same-length packet ratio. 35

xviii

xix

LIST OF FIGURES

Page

Figure 1.1 : Layered architecture of a DDoS attack. ...2
Figure 1.2 : Illustration of a Common Intrusion Detection Framework.3
Figure 2.1 : System model of proposed IDS. ..9
Figure 2.2 : Relationship between audit trail topic and consumers. 11
Figure 2.3 : Fields of flow identifier. .. 13
Figure 2.4 : ML ready data fields after preprocessing. .. 13
Figure 2.5 : Ratio of train:test data used in our system model. 16
Figure 2.6 : Split train and test data using Scikit-learn.. .. 16
Figure 2.7 : Graphical representation of isolation forest [1] [2]. Retrieved from

scikit-learn 0.21.3 documentation. ... 18
Figure 2.8 : Application of Isolation Forest algorithm in scikit-learn library. 18
Figure 2.9 : Mahalanobis distances of a dataset after the application of Elliptic

Envelope routine [1] [2]. Retrieved from scikit-learn 0.21.3 documentation. ... 19
Figure 2.10 : Application of Elliptic Envelope algorithm in scikit-learn library. 19
Figure 2.11 : Distance based outlier detection approach. .. 20
Figure 2.12 : Application of Local Outlier Factor algorithm in scikit-learn library. 21
Figure 3.1 : Percentages of missing values in CTU-13 dataset. 28
Figure 3.2 : Filling NaN rows and dropping unused columns with pandas. 28
Figure 3.3 : Transformation and inverse transformation with label encoding. 30
Figure 3.4 : Contamination ratios of testing and training sets. 31
Figure 4.1 : Distribution of benign packet sizes on time domain. 35
Figure 4.2 : Distribution of malicious packet sizes on time domain. 36

xx

AN OPEN-SOURCE, MACHINE LEARNING BASED
INTRUSION DETECTION SYSTEM

SUMMARY

The exponential growth trend [3] in global data demand, leaded the network operators
and system administrators to set up more complex infrastructures to be able to satisfy
ever-changing data requirements. As a consequence, securing a complex network
system or to be able to act promptly during an attack become a very troublesome
business.

While network administrators are becoming more provident against intruders,
intruders are also changing their methodology, and they manage to find new ways
to attack to the target systems. One of the most well-known attack types is
Denial-of-Service (DoS) attacks, which is done by exploiting the vulnerabilities of
the target system by compromising some slave computers or botnets.

Denial-of-Service (DoS) attacks, aim to make the target system resources unavailable
to its legitimate users. The DoS attack is generated by the source which is also
known as Command and Control (C&C) server and C&C servers controls and uses
the slave/zombie computers to consume the resources of the target system. A type
of DoS attack is Distributed Denial of Service Attacks (DDoS), which the attackers
use multiple botnets from various locations to exhaust the system with loaded traffic.
The damage might be irrevocable for most of the companies, which do not have any
DoS attack protection or strategy. The financial consequences of this kind of an attack
might be large scale, since it might lead to data theft and eventually the loss of user’s
trust.

Thinking about the unexpected costs and consequences of an attack, it would be truly
helpful, if a possible future attack is detected/predicted in an earlier phase. However,
it is not easy to detect the true source during an attack, even nearly impossible, since
the IP (Internet Protocol) addresses of the attacker’s devices are perfectly disguised as
legitimate sources, or their IP’s might be spoofed.

Obviously, there are some preventive actions that are suggested for malicious attacks,
such as deploying firewalls or increasing the bandwidth capacity that the system can
handle. In addition to these precautions, as stated in [4], having a good understanding
of the trend of the usual traffic might be more helpful to avoid possible attacks. This
could be done by continuously monitoring the incoming and outgoing traffic of the
system and knowing which traffic can be classified as normal and which of them can
be classified as abnormal. It is also proposed in [4] that, if it is possible to deduct a
base trend for the usual traffic behavior in a system, then it would be possible to reject
illegitimate traffic beforehand. Although, it is a robust way to avoid unwanted traffic
in a network at an earlier stage, it should not be forgotten that a system can always be a
victim of DDoS attack, so we can always provide more intelligent preventive solutions
with custom intrusion detection systems.

xxi

As mentioned before, it is nearly impossible to find the true attack sources under the
heavy load during a distributed attack since the information of the slave computers
are spoofed. Therefore, it is not easy to specify the sources and cease the network
between the attacker and the victim system. However, if the locations of the attacker
can be guessed, then the administrators can cease the connection in between, and thus
decrease the load and look for alternative solutions not to exhaust their system in the
meanwhile.

In this work, we propose an intelligent, Machine Learning (ML) based intrusion
detection system, which we believe will give the network administrators particular
clues about where the botnets might actually be located during an attack. We will
model our system as a live monitoring system which collects the traffic data and learns
from this collected traffic data. It will mark and score some hosts from incoming traffic
as abnormal and thus, it will give the administrators a general insight of what is going
on in the present situation and what they might be expecting for the future.

Our intrusion detection system is a novel, open-source, scalable and distributed in order
to handle huge volumes of data. We designed the system as customizable and scalable,
so that it can be easily set up in front of any network system to cope with intrusion
attacks. The system will collect raw network data in Apache Kafka topics in specific
time-windows, consumers will process this raw data in chunks and send the processed
data to Machine Learning Engine. Machine Learning Engine will apply unsupervised
learning algorithms on the incoming data and write the results into related topics in
Kafka again. The Intrusion Classifier, which we also introduce as a Kafka consumer,
will decide if the suspicious data is actually malicious or not. And after the decision
of IC, the results will be written in Elastic Search for the use of system administrators.
Kibana interfaces will be used to serve and visualize the results.

In our scenario, we have N regions which are allowed to send traffic to our system.
Each region has a DSLAM (Digital Subscriber Line Access Multiplexer) device,
and our proposed model is able to monitor and log the incoming traffic with the
information of the region it is coming from. To satisfy this, our proposed system
will be positioned in front of the internal network devices to catch the incoming
requests from DSLAM devices. Our system will collect this region-based information
and learn from it with unsupervised learning algorithms and mark potential infected
regions in real-time. With the help of machine learning algorithms which are defined
in Scikit-learn open-source library, we believe we can provide broad insights about the
intrusion suspects.

To generate a proof of concept of the actual brain of our design, which is the Machine
Learning Engine, we wanted to do some experiments on a real botnet data and we
wanted to see if we can detect real botnets with the help of open source sci-kit learn
library. To be able to detect intrusions, it is better to work on a dataset which contains
real botnet behaviours instead of script-generated synthetic data. Therefore, in our
study, we decided to work with a well-known dataset which is generated in Czech
Technical University laboratories, CTU-13. The dataset provides multiple different
scenarios, each simulating various malware infections. We had taken this dataset as a
baseline, and we have cleaned and customized the data according to our scenario, and
have applied ML algorithms on it to see how well we can detect the intruders.

To test the ML Engine which will be located as the brain of the system, we introduced
some additional features, which will be calculated before the application of ML

xxii

algorithms such as; average inter-arrival time, average packet length, average data
rate, same-length number of packets ratio, number of different protocol types. These
features helped the ML Engine to obtain better accuracy.

xxiii

xxiv

MAKİNA ÖĞRENMESİ TABANLI
AÇIK KAYNAK SALDIRI TESPİT SİSTEMİ

ÖZET

Güncel global ağ talep tahmin grafiklerini incelediğimizde, üstel bir artış trendi olduğu
gerçeği yadsınamaz [3]. Bu yüksek hacimdeki veri talepleri, ağ operatörleri için kendi
sistemlerini değişken taleplere cevap verecek şekilde tasarlama zorunluluğunu ortaya
çıkarmaktadır. Bunun bir sonucu olarak da, söz konusu karmaşık ağ sistemlerinin
güvenliğini sağlamak ya da bir atak sırasında hızla karar vererek davranmak daha zor
bir iş haline gelmektedir.

Günümüzde her ne kadar ağ operatörleri davetsiz misafirlere karşı daha hazırlıklı
olsalar da, saldırganlar da boş durmamakta ve hedef sistemlerin açıklarını bulmak için
yeni yöntemler geliştirmekte ve yeni yollar keşfetmektedirler. En çok bilinen atak
türlerinden bir tanesi de Servis-Dışı-Bırakma (Denial of Service - DoS) ataklarıdır.
DoS atakları, hedef sistemdeki açıklara köle haline getirilmiş, internet bağlantısı olan
cihazlar aracılığıyla saldırılarak yapılır.

Servis-dışı-bırakma atakları, hedef sistem kaynaklarını, meşru kullanıcılara ulaşılamaz
hale getirilmeyi amaçlar. Bir servis-dışı-bırakma atağı, Komut ve Kontrol sunucusu
tarafından köle yapılmış cihazlar tarafından yapılır. Dağıtık Servis Dışı Bırakma
Atakları da bir çeşit Servis Dışı Bırakma atağı olup çeşitli lokasyonlardan çoklu
köle cihazlarla yüklü miktarda trafik yaratarak hedef sistemin kaynaklarını tüketme
yoluyla yapılır. Bu atakların verdiği zararlar, özellikle servis sürekliliği sağlaması
gereken firmalar için geri dönülemez olabilir. Eğer firmalar, DoS ataklarına karşı
korunma stratejisi belirlememişlerse, zararın ekonomik boyutu gerçekten büyük
olabilir. Zira, DoS atakları, veri hırsızlığına, dolayısıyla da kullanıcı güveninin
sarsılmasına sebebiyet verebilir.

Olası bir atağın ōncden belirlenebilmesi ya da tahmin edilebilmesinin yararları
tartışılmaz. Ancak, ne yazık ki, özellikle de atak sırasında gerçek atak kaynağını
tespit etmek neredeyse imkansızdır. Bunun sebebi, atak yapan bilgisayarların Internet
Protokol (IP) adreslerinin gizlenmesidir.

Açıkça görülebilir ki, ateş duvarı (firewall) cihazlarının kurulması ve ağ kapasitesinin
arttırılması gibi çözümler ataklardan koruyucu aksiyonlar olarak önerilmektedir.
Ancak gelen trafik trendlerinin iyi anlaşılması, olası ataklardan korunmak için iyi
bir yöntem olabilir [4]. Bu, gelen ve giden trafiğin sürekli izlenmesi ve hangi
trafik tiplerinin normal ya da anormal olarak sınıflandırılabileceğinin belirlenmesiyle
sağlanabilir. Bunun yanı sıra, [4], eğer genel trafik davranışları için bir baz
çıkarılabilirse, istenmeyen trafiklerin en başında engellenebileceğini iddia etmektedir.
Her ne kadar bu bahsedilen yöntemler, güçlü koruyucular olarak değerlendirilebilir
olsa da, sistemler daima DDoS atak kurbanları olabilirler. Bu durum ise, akıllıca
kurgulanmış, koruyucu ve hedef sisteme özel erken saptama sistemleri sayesinde
aşılabilir.

xxv

Bu çalışmada, biz akıllı Makina Öğrenmesi tabanlı bir potansiyel atak saptama sistemi
öneriyoruz. Bu sistem sayesinde, ağ operatörlerinin atak kaynağının lokasyonu
hakkında bazı ipuçlarına önceden varabileceklerine inanıyoruz. Sistemimizi canlı
bir trafik monitörleme sistemi olarak tasarlamaktayız, öyle ki bu sistem, gelen ve
giden trafiği dinleyerek monitörleyecek ve bu veriden öğrenerek problemli istemcileri
anormal olarak işaretleyecek. Bu şekilde, ağ operatörleri, mevcut ağ sisteminde olan
biten hakkında geniş bir bilgiye sahip olabilirler.

Daha önceden bahsedildiği üzere, dağıtık bir atak sırasında, ağır yük altında olan
bir ağda gerçek atak kaynağını bulmak, kaynakların kendisini gerçek kullanıcılar
olarak gizleyebildiği gerekçesiyle neredeyse imkansızdır. Bu sebeple, atağın geldiği
lokasyonla bağlantının kesilmesi kolay değildir. Ancak, eğer atağın geldiği lokasyon
bilinebilir ya da tahmin edilebilirse, operatörler bağlantının kesilmesini sağlayabilir ve
yükü azaltabilirler. Bu süre zarfında da atağın sistemlerine geri dönülemez zararlar
vermemesi için çözümler arayabilirler.

Saldırı tespit sistemimiz, büyük miktarda veriyi işleyebilmek adına açık kaynaklı,
ölçeklenebilir ve dağıtık olarak tasarlanmıştır. Sistemin özelleştirilebilir ve
ölçeklendirilebilir tasarlanmasındaki amaç, önerilen sistemin yoğun veri trafiği olan
ya da seyrek trafik görülen her türlü ağ sisteminin önüne kolayca kurulabilir
olmasını istememizdir. Sistem, belirli zaman aralıklarında, Apache Kafka konularına
işlenmemiş ağ verilerini toplayacak, Kafka tüketicileri ise bu işlenmemiş verileri
işleyecek ve işlenen verileri Makine Öğrenmesi Motoruna gönderecektir. Makine
Öğrenmesi Motoru, gelen verilere denetimsiz öğrenme algoritmaları uygulayacak ve
sonuçları tekrar Kafka’daki ilgili konulara yazacaktır. Ayrıca bir Kafka tüketicisi
olarak tanıttığımız Saldırı Sınıflandırıcısı, şüpheli verilerin gerçekten kötü olup
olmadığına karar verecek. Saldırı Sınıflandırıcısı’nın kararından sonra, sonuçlar sistem
yöneticilerinin kullanımı için Elastic Arama’ya yazılacaktır. Sonuçları sunmak ve
görselleştirmek için Kibana arayüzleri kullanılacaktır.

Bizim senaryomuzda, N tane sistemimizle konuşmak için izinli bölge olduğunu
varsayıyoruz. Her bir bölgenin kendine ait Digital Abone Hattı Erişim Çoklayıcı
(DSLAM - Digital Subscriber Line Access Multiplexer) cihazı vardır. Önerdiğimiz
model, gelen trafiği bölgesi ile birlikte günlüğe kaydedecektir. Sistemimiz, günlüğe
kaydedilen gelen trafik verisinden, makina öğrenmesi algoritmaları sayesinde modeli
öğrenecek ve potansiyel köle cihaz barındıran bölgeleri işaretleyecektir. Makina
öğrenmesi teknikleri sayesinde, şüpheli istemciler konusunda geniş bir kavrayış
sağlayabileceğimize inanmaktayız.

Örnek bir konsept kanıtı için gerçek köle cihaz davranışları içeren bir veri seti ile
çalışmak daha gerçekçi sonuçların alınmasını sağlayacaktır. Köle bilgisayar saptama
için kullanılan data setleri genelde sentetik olarak bilgisayar ortamında yaratılmaktadır.
Bilgisayar ortamında yaratılan veri setini kullanmayı tercih etmedik, zira bu şekilde
sentetik data ile yapılan çalışmaların realist sonuçlar vereceğine inanmamaktayız.
Çalışmamızda Çek Teknik Üniversitesi laboratuvarlarında hazırlanmış, çoklu kötücül
yazılım ve atak çeşidi içeren CTU-13 veri setini kullandık. Bu veri setini
kendi ihtiyaçlarımıza göre özelleştirerek üzerinde makina öğrenmesi algoritmaları
çalıştırdık.

Sistemin beyni olarak konumlandırılacak olan Makina Öğrenmesi Motorunu test
etmek için, makina öğrenmesi algoritmalarının uygulanmasından önce hesaplanacak

xxvi

bazı ek özellikleri sunduk; ortalama varış arası zaman, ortalama paket uzunluğu,
ortalama veri hızı, aynı uzunluktaki paket sayısı oranı, farklı protokol tipleri sayısı. Bu
özellikler, Makina Öğrenmesi Motorunun daha iyi doğruluk elde etmesine yardımcı
oldu.

xxvii

xxviii

1. INTRODUCTION

1.1 Purpose of Thesis

According to Cisco’s 2018 Annual Cybersecurity Report [5], 53% of the security

attacks resulted in cost of $500.000 or more to the organizations. Considering the fact

that the attackers are developing their techniques and skills for intrusions, we might

expect a lot more damage to come. Therefore, organizations and companies, especially

the ones which have large number of active users, such as banks, e-commerce sites etc.

need to have intelligent intrusion detection systems, preferably customized for their

network infrastructure.

In the light of the aforementioned reasons, in this work, we focus on one of the most

difficult attacks to avoid and defend, for the security experts; Distributed Denial of

Service (DDoS) attacks. Distributed attacks make companies inoperable for long

periods of time; and it is crucial to shutdown the connections of attackers as fast as

possible to minimize the service denial.

It is hard to trace back to the origin of the attack in DDoS concept, however, we believe

that, logged network traffic data can give many clues to find the possible attack source

locations. If we analyze the network traffic data and observe the normal traffic behavior

with applying Machine Learning (ML) techniques; we can detect abnormal traffic and

we can have an idea of from where the possible DDoS attacks might be coming.

1.2 Background

1.2.1 DDoS attacks

A DDoS attack is a coordinated attack using a huge number of compromised hosts [6].

A DDoS attack consists of an attacker, multiple controllers, multiple slave computers

and a victim as seen in Fig.1.1.

1

Figure 1.1 : Layered architecture of a DDoS attack.

Attacker: Attacker is the source, who wants to exhaust the resources of the target

machine with simultaneous requests in a very short time. Attacker does this either

by forming or hiring a bot network via installing a bot software on it. A DDoS attack

has four elements; attacker, one or more controllers or handlers, slave computers

and one or more victims.

Controller: Attacker mainly controls the controller machines i.e. handlers to set up

the Bot software (DDoS attack software) to slave computers.

Slave Computers: These are the compromised computers, which has Bot software to

generate stream of packets to deny the services of the victim computer.

Victim(s): The target computer which is under a DDoS attack.

It is very hard to trace the origins of a DDoS attack because of the following reasons:

1. Compromised hosts send packets with their spoofed source IP.

2. The layered architecture of the DDoS attacks, makes it difficult to find the real

source; because the true source is not the slave (daemon) computers or handlers.

3. Since the host computers are replicated and distributed, even one of the slave

computers found and the communication is shutdown, the other slaves can continue

the attack [7].

2

1.2.2 Intrusion detection systems (IDS)

An Intrusion Detection System (IDS) is a software or a physical device which detects

and reports malicious activities by monitoring system or network activities in an

information system. There are several studies conducted and many frameworks

introduced as IDS. A study in this area is conducted by DARPA initiative at 1998.

Staniford-Chen et. al. introduced ’Common Intrusion Detection Framework’ (CIDF)

[8] as an exemplary architectural overview of a common IDS framework. A CIDF is a

four-element framework as illustrated in Fig. 1.2.

Figure 1.2 : Illustration of a Common Intrusion Detection Framework.

CIDF communicates through modules via message passing and it has four modules as

explained below:

• Event generators ("E-boxes"): These generators acquire information for further

analysis of other modules of CIDF.

• Event analyzers ("A-boxes"): These modules analyze events and detect potential

malicious activities and feed D-boxes and R-boxes accordingly.

• Event databases ("D-boxes"): These modules stores elements for persistency where

necessary.

• Response units ("R-boxes"): When an intrusion is detected, these units carry out

some actions such as disconnecting servers, killing processes or changing file

permissions etc.

3

Our proposed IDS has the three of aforementioned modules, which are E box, A box

and D box; however, we do not have an R-box in the traditional sense, since our system

does not provide an alarm module. At the end of our detection process, we write the

results to our D-box, however we do not have a proactive alarm system which directly

alerts administrators and acts accordingly by killing processes, ceasing connections

etc.

An IDS can be classified in two classes according to execution strategy; a general IDS

can be either network-based or host-based. A host-based IDS (colloquially HIDS)

is integrated into a host device, and monitors operating system level misuse, such

as file activities etc. A network-based IDS (NIDS) monitors network activities of

an information or communication system. An NIDS analyzes IP information, packet

headers, network data volume etc. to detect malicious activities. Our proposed model

can be classified as a network-based intrusion detection system.

In addition to execution strategy, we should also mention about the cyberanalytics

techniques which are used for an IDS varies in three types; misuse (signature) based,

anomaly based and hybrid techniques which constitutes from a combination of misuse

and anomaly based techniques [9]. With signature-based techniques, operators can

detect known type of attacks with the help of the information of unique signature

byte sequences or some pre-defined rules. This technique is advantageous because it

is hard to produce false positive results. However, signature-based techniques have

some drawbacks such as they cannot detect zero-day attacks. On the other hand,

anomaly-detection techniques are advantageous in that sense, because they focus on

the effects of an attack rather than its characteristics and known behaviours. But one

main disadvantage of anomaly detection techniques is that it is possible for them to

categorize previously unseen legitimate activities as malicious. Therefore, it can be

said that anomaly detection techniques can have high false alarm rates. A disadvantage

of both techniques is that if an attacker understands the behavior of the installed IDS,

then they can change their attack strategies and signatures, and they can be a zero-day

attack candidate. Our proposed system model uses anomaly detection techniques.

4

1.3 Literature Review

Cybersecurity is a famous paradigm, which uses technology to protect individuals,

organizations and networks from cyber attacks [10]. There are many ways to protect

systems from digital attacks, such as deploying firewalls, adding restrictions to the

certain ports, employing Access Control Lists (ACL), using the advantages of antivirus

tools or utilizing from Intrusion Detection Systems (IDS). Especially, IDS’s are

extensively used, because they provide an early alarm system and can protect the

networks from many attack types such as zero-day-exploits, denial-of-service attacks

etc. When it comes to certain kind of attacks such as DDoS attacks, there are numerous

recommended actions to take as precautions when a network is a victim of the attack.

Distributed Denial of Service attacks, use vulnerabilities of a system by sending loads

of traffic to exhaust the system resources and to make the system unavailable. As it is

known that the consequences of a DoS attack might be very serious, the researches on

the field of early anomaly detection systems picked up the pace recently. Especially,

detecting abnormal behaviors with the help of machine learning approaches is very

appealing topic, as ML based IDS’s can learn from the previous traffic data behaviours

and mark the outliers intelligently.

Anomaly detection or outlier detection -as in machine learning paradigm-, is a method

which eliminates the anomalies from normal behaviors. Anomaly detection as part

of DDoS attack protection helps network operators to catch abnormal botnet-like

behaviors which deviate from usual normal behavior. Anomaly detection based IDS’s

are advantageous because they can be customized according to the network so that the

intruders are not able to find out which of their activities can be left undetected [9].

In [11], the authors present a detailed work about anomaly detection techniques and

challenges. The work also gives broad insights about pattern categorization with

machine learning. Since ML techniques are focused on generating a model whose

performance is increased according to the previously learned behaviours, they are

highly desirable because of the ever-changing network traffic behaviours. However,

authors also state that there might be some drawbacks of machine learning approaches,

which some of them might require high amount of computational work.

5

Lippmann and Cunningham [12], proposes an intrusion detection system with specific

keyword selection approach by the help of neural networks. They reduced the false

alarm rates by achieving 80% of true intrusion detection.

In [13], the authors presents NETMINE framework, which identifies the patterns in the

network traffic data with the help of data mining techniques. NETMINE extracts rules

for anomaly detection with generalized association rules such as subnet traffic. Their

work showed that NETMINE framework is very successful at classifying the network

patterns.

In addition to the aforementioned studies, which focuses on the techniques rather

than developing an actual platform, there are also multiple Network Based Intrusion

Detection Systems available both commercially or in the phase of development which

will be served as open source products by many university laboratories.

One IDS for anomaly detection is Siren [14], which is designed by Penta Security.

Siren injects crafted virtual human input to the actual benign user inputs in order

to detect mimicry attacks. They succeeded to find mimicry attacks of ten different

spyware programs.

Another behavior based anomaly detection system is provided by Symantec, which is

an Intrusion Protection System. The system is customizable by letting clients create

their own signatures.

AirDefense IDS is another product which uses context-aware detection by providing

monitoring in real time.

There are also studies conducted by some universities and laboratories. For example,

Autonomous Agents for Intrusion Detection by CERIAS/Purdue University is an

open platform, which satisfies distributed anomaly detection. It is one of the good

examples for decentralized Intrusion Detection Systems, which are very rarely seen.

Unfortunately, the study has been terminated indefinitely.

Another good open platform is NFIDS (Neuro Fizzy Intrusion Detection System), uses

neural network and fuzzy logic for intrusion detection.

6

All of the studies perform very well with their specific cases. However, none of them

solves the limitations of centralized detection systems, e.g. scalability, alongside with

machine learning-based approaches.

In our study, we provide, vendor-specific, completely open-source, scalable,

machine-learning based, anomaly detection system which can be customizable by the

needs of client system. And also, our system can work seamlessly, even when one of

its parts become disfunctional, because the whole system is designed to be seamlessly

degradable.

7

8

2. SYSTEM ARCHITECTURE

In this work, in an effort to detect or predict the locations of slave computers, we

propose a novel, distributed, scalable, machine-learning based Intrusion Detection

System (IDS). Our system can handle and process huge volume of data with

low-latency. The Machine Learning Engine (ML Engine) in our IDS, continuously

learns from real-time data and make predictions accordingly.

Figure 2.1 : System model of proposed IDS.

Figure 2.1 shows the proposed system architecture for our intrusion detection platform.

We use Apache Kafka to scale and process the incoming data in parallel, and we

introduce multiple topics under it.

Data Preprocessing, ML Engine and Intrusion Classifier are the modules, which

directly interact with the Kafka topics. At the edge of our platform, we put an Elastic

Search based logging system. The machine learning results will be an input to Elastic

Search engine and will be released via Kibana interfaces for the use of the system

9

and network administrators to query anomalies. The following sections give detailed

information about the components of our proposed system.

2.1 The Raw Network Data

Our proposed model gathers incoming network requests and logs them to Audit Trail

Topic in Apache Kafka without doing any further data manipulation. The raw network

data is going to be processed in accordance with OSEMN (Obtain, Scrub, Explore,

Model, Interpret) pipeline, with the help of Data Preprocessing and ML Engine

Modules.

Each request entry in the Audit Trail Topic should have some mandatory information

such as request timestamp, protocol, flow duration and information related to source

host, etc. in order to apply our region-based anomaly detection model.

As a proof of concept, we are going to use an experimental dataset for detecting

anomalies with machine learning algorithms. With the demonstration of the ML

algorithms on the exemplary dataset, we also aim to show that our proposed model

has potential as a promising platform to be applied on real-world scenarios. More

detailed information about the dataset will be provided in Section 3.1.

2.2 Audit Trail Topic

In our proposed system, the incoming data will be written to Audit Trail Kafka Topic

without being further processed. Data Preprocessing Module will "Scrub" the data.

Scrub is the second step of the OSEMN framework, which the cleaning and the

necessary calculations are carried out. The incoming network traffic will be examined

in 10-minute time windows. The reason being is that the examination of 10-minute

windows will be sufficient for detection of anomaly characteristics.

To keep 10-minute-window logs, we introduced a set of 6 partitions in Audit Trail

Topic, such as Partition_0-10, Partition_10-20, Partition_20-30,...,Partition_50-60.

The network flow logs will be written to these 6 variants of Kafka partitions according

to their timestamps. For instance, Partition_0-10 holds the flow information which

arrived to the system in the first 10 minutes of each hour. In the same way,

Partition_50-60 will hold the last 10 minute of each hour’s audit logs. When a flow

10

arrives to the system, the corresponding topic will be decided via help of a basic

modulus operation over 10 on the flow timestamp. For example, a flow which arrives

on 68th minute of the daily system start, will be written to Partition_0-10.

After properly logging into the partitions of Audit Trail Topic, the message reading and

data processing parts should be designed. To this end, Apache introduced Consumers

which are used for reading messages from Kafka Topics [15]. In order to read messages

from Kafka Topics and then later work on them, it is required to define a consumer

object and make this object subscribe to the topic. However, in our case, we want

the consumption from our topic to be scalable and made in parallel. For this reason,

we introduced three consumer groups, which consumes different partitions as seen

in Figure 2.2. As it can be seen from the figure, consumers are scattered across

partitions scattered. The reason behind this is that we want our data processing made

in parallel and we want to keep the consumer idle time at a minimum level. For

instance, let us think a scenario where we assign Consumer_1 object to Partition_0-10

and Partition_10-20. In this case, the processing of the messages in Partition_10-20

will start until Consumer_1 reads and validates all messages in Partition_0-10. In that

case, there would be no meaning to define multiple consumers as there would be no

way to process reading messages in parallel. Despite defining one consumer can be

Figure 2.2 : Relationship between audit trail topic and consumers.

advantageous for some cases, in our case, since we expect an extensive amount of

incoming requests, we can fall into a case that producers create messages more than

our consumers can meet and process. For this reason, we are going to use more than

11

one consumer for each partition. These consumer groups can be rebalanced in case

of a need, in other words, it is possible to change ownership of partitions or add other

consumers to avoid single point of failure.

2.3 Data Preprocessing Module

This module is the engine who consumes and validates Audit Trails and performs a

Scrub operation on them. After cleaning and creating the required features for the

network data, Data Preprocessing writes the results to Processed Data Topic to be an

input for ML Engine. In our proposed model, we assume that every individual audit

Table 2.1 : List of fields in Audit trails of proposed framework.

Field Name Data Type
Timestamp DateTime
Flow duration (in seconds) long
Protocol Type string
Source IP Address string
Source Port int
Destination IP Address string
Destination Port int
Total Packets int
Total Bytes long
Region string

trail has all the information defined in Table 2.1, together with the Region information

which shows that where the flow is actually generated from. Some of these fields in

audit trails will be used in the calculation of additional model features, some of them

will also be an input to our models as features and the remaining fields are redundant

and will be dropped. Each distinct flow should have an identifier, so that machine

learning models can discriminate them as legitimate or malicious. Using only source

IP addresses as the identifier, is not enough for understanding the real outliers. For

that reason, we will keep a HashSet of flow identifiers (i.e. Flow Identifier HashSet)

alongside with features which the machine learning algorithms will be applied on.

A flow identifier is composed of the following fields similar to introduced in [16]

excluding the Protocol Type field and with an additional Region field as shown in

Figure 2.3. However, we are not going to hold these identifiers as plain text tuples.

Contrarily, we will calculate MD5 hashes for these identifiers and keep them in our

Processed Data Topic with those hashes to apply machine learning easily. Alongside

12

Figure 2.3 : Fields of flow identifier.

with hashes of identifiers, The Flow Identifier Hashset data structure, will also keep a

timestamp which identifies the current time-window. These timestamps will be used

to age the flow identifier hashes after a certain period of time. This aging time period

shall be decided by the system and network administrators so that the aged hashes

can be moved from the Suspicious and Benign Data Topics, in order to give more

accurate decisions which are reflecting the current system situation more realistically.

In addition to the fields in audit trails, our Data Preprocessing Module will also

calculate the following features which the details are given in Section 3.3.2: Average

inter-arrival time, average packet length, average data rate, same-length number of

packets ratio, distinct number of different protocol types.

2.4 Processed Data Topic

Cleaned and processed data will be written to Processed Data Topic, which is going to

be consumed by the Machine Learning Engine of our platform. An exemplary record

for Processed Data Topic is shown in Figure 2.4 .

Figure 2.4 : ML ready data fields after preprocessing.

13

2.5 ML Engine

Machine Learning Engine is the brain of our proposed framework. It consumes

the messages which are kept in processed data topic, and applies unsupervised ML

algorithms on them. The ML results are written in two different topics according to

their characteristics; Benign Data Topic and Suspicious Data Topic. These two topics

should be synchronized with each other, in other words, if a flow is marked as benign

and written in Benign Data Topic, then its corresponding flow identifier should not be

in Suspicious Data Topic. If our algorithm marks a flow as outlier, this is not directly

treated like it is a malicious flow. These flows are written into Suspicious Data Topic

for further evaluation.

2.5.1 Feature selection

Feature selection is one of the most significant process, which specifies the success

of ML-based anomaly detection. To have better anomaly detection accuracy, the set

of features which ML algorithms are going to be applied upon, should be chosen

wisely. Nevertheless, choosing the best set of features never means that using all of the

features that could be extracted is beneficial. If extensive number of features are used,

overfitting and decreased accuracy are a few of many problems that researchers might

face.

• Average inter-arrival time (l) [17]: The interval of benign connections is usually

longer than the connections opened by botnets [18]. Therefore, the frequency of the

incoming packets in a time window, is an important metric for us to discriminate

the legitimate and infected hosts. The inter-arrival time is calculated as l = Tw/Np,

where Tw is the size of time window in seconds, and Np is the number of incoming

packets which belongs to one specific host IP.

• Average packet length (L) [17, 18]: This value shows us the size of packets the

system receives from a specific host in a time window. This value is typically larger

for legitimate traffic, since the number of packets for legitimate hosts are at an

ordinary level. Average payload packet length is described as the total packet size

in bits over the number of packets in a time window. L = Sp/Np, where Sp is the

14

total size in bits arrived in a time window, and Np is the number of incoming packets

which belongs to one specific host IP respectively.

• Average data rate (D) [19–22]: Average data rate is the received number of bits

per second in a time window. D = Sp/sec, where Sp is the total size in bits arrived

in a time window. This metric is also used for distinguishing IRC traffic.

• Same-length number of packets ratio [17]: This is a ratio which defines the ratio

of the total packets which are of the same length over the total packets in a time

window. In legitimate windows, this parameter is expected to be small per each

flow.

• Number of different protocol types: Distinct number of protocol types is an

indicator that gives information about the characteristics of legitimate/malicious

hosts. Typically, 1 or 2 different protocol types is used per host. [17]

2.5.2 Label encoding

In this module, Protocol Type and Region fields are label-encoded for further

processing. Label encoding is a transformation technique which normalizes labels. In

machine learning, there is no way to use string values to run models on. This technique

can only be applied when there is a finite number of classes on the corresponding

label. Otherwise, models will throw "y contains previously unseen labels" error on

transformation process. In our IDS, we need to transform some string values to their

numerical representations. For this purpose, we used LabelEncoder utility class of

sklearn library under preprocessing namespace.

2.5.3 Preparing training and testing sets

In machine learning applications, it is very important choosing the right training,

testing and validation data sets. Training data is high-coverage, partial data set of

the whole data, which the model learns from it. After the learning phase, the test data

is used to make predictions. Validation data is used for hyperparameter tuning and it is

optional, however, in our model, we do not use a validation dataset.

15

Both training and testing data sets must have adequate amount of relevant samples of

the properties which are planned to be studied and predicted. Therefore, the operation

of splitting the whole data set into two data sets is quite critical.

Splitting the data set as a ratio of 8:2 training:testing is very common. There is a

general opinion about having more training data means getting better models [23],

and there are some studies and propositions against this opinion [24]. By taking into

consideration both of the opinions, we think that it is more suitable for our model to

use 8:2 ratio as shown in 2.5, for training:testing data sets.

Figure 2.5 : Ratio of train:test data used in our system model.

In this phase, we utilize from Scikit-learn, which is also an open-source, powerful

Python based machine learning library. We will use train_test_split method

of model_selection class. An example call with required parameters is shown in

Figure 2.6.

Figure 2.6 : Split train and test data using Scikit-learn.

The below listing describes the parameters which needs some explanation, the other

parameters used in train_test_split are self explanatory.

• random_state: This is the seed which is going to be used as a seed for the

random number generator (RNG). It is an optional parameter, when it is None, RNG

16

uses the default seed of np.random which will try to read from /dev/urandom if

it is defined, or it will use the seed from the clock. [25]

• shuffle: This parameter is used to shuffle the given dataset before splitting it

into training and testing. We used True to achieve cross validation.

• stratify: This parameter ensures that the data split is done in a stratified way.

None is the default value.

2.5.4 Apply machine learning algorithms

After the end of the preparation phase of testing and training sets, we are going to

apply machine learning algorithms which are part of Scikit-learn library. Since we

are going to have a real-time data, and we assume that we do not have the knowledge

of previously-seen abnormal values, we will apply unsupervised learning algorithms

for outlier detection. We will not use novelty detection algorithms, because at any

timestamp, we cannot make sure of we have a clean dataset which is not contaminated

with abnormal values.

Our Machine Learning engine will apply three different outlier detection algorithms

and it will send suspicious data to Suspicious Data Topic and normal data to Benign

Data Topic to be further processed by Intrusion Classifier.

2.5.4.1 Isolation forest

Isolation Forest algorithm uses Random Forests to classify the data and detect outliers.

First, it selects a random feature from feature set and then selects a random splitting

value which is in between minimum and maximum seen values of the candidate

feature, and then isolates those observations around this selected number as illustrated

in 2.7. One of the advantages of using random forests is that they use multiple trees to

decide, this behavior reduces the risk of overfitting.

Another advantage is that training times in random forests are less than the other

algorithms. Also they can work really good with large sets of data. The basic idea

behind the random forest algorithm is that during the training phase, it constructs

multiple decision trees and at the end, the majority of the decision trees is chosen

17

Figure 2.7 : Graphical representation of isolation forest [1] [2]. Retrieved from
scikit-learn 0.21.3 documentation.

Figure 2.8 : Application of Isolation Forest algorithm in scikit-learn library.

as the final decision. At the end of Isolation Forest phase, the decisions will directly

be sent to Intrusion Classifier for further processing.

2.5.4.2 Elliptic envelope

Elliptic Envelope (EE) routine assumes that the training data comes from a Gaussian

distribution. The algorithm, models the data with covariances between the features.

It tries to estimate an ellipsis which contains majority of the data by using

FAST-Minimum Covariance Determinate (FMCD) [26]. The data outside of this

ellipsis is decided as outliers as illustrated in 2.9.

One hyper-parameter that EE requires is contamination value, which cannot be known

with high-accuracy before the algorithm is run at least once [27]. This hyper-parameter

basically defines the expected the rate of outliers, in other words, it defines how

much of the data can be outside of the highest dimensional ellipse which contains

the majority of the input data.

18

Figure 2.9 : Mahalanobis distances of a dataset after the application of Elliptic
Envelope routine [1] [2]. Retrieved from scikit-learn 0.21.3

documentation.

To be more specific, FMCD gets some small samples from the input data and computes

the mean value �!µ and builds a covariance matrix C, for each feature dimension. After

that Mahalanobis distance (dmh) is computed for every single data row (data vector �!x)

in each sample as given in the following formula:

dmh =
q
(�!x ��!µ)TC-1(�!x ��!µ) (2.1)

dmh of the every vector in subsamples are iteratively computed, until detC converges.

An ellipse is created from the C which has the smallest determinate from all of the

samples, and as aforementioned before the outliers are determined according to this

ellipse.

Figure 2.10 : Application of Elliptic Envelope algorithm in scikit-learn library.

2.5.4.3 Local outlier factor

When the subject comes to outlier detection methods, classification algorithms come to

the rescue. Some classification algorithms operate over the idea of having one centroid.

But however, most of the time it is not enough to find all of the outliers, For example

in Fig 2.11, a centroid based approach will detect A and B as outliers, and C as inlier.

However, in reality, B and C are outliers but A is not.

The methods like Elliptic Envelope can be more precise to find extreme outliers,

however, it also might not satisfy full coverage for finding abnormalities. For all

19

Figure 2.11 : Distance based outlier detection approach.

of the aforementioned drawbacks could be overcame by the help of Local Outlier

Factor (LOF) algorithm. This algorithm is a density-based routine, which computes

a Local Outlier Factor and it indicates a score of the anomaly. The basic idea behind

this algorithm is that the abnormal observations have lower density than the normal

observations.

LOF score of a point is deducted from k-nearest neighbors (kNN). For an observation,

it is equal to the average local density of kNN over local density It is expected that an

outlier data point has much smaller local density, compared to the normal points. If

the LOF score of an observation is less than 1, this point is not an outlier otherwise it

indicates that the observation is an outlier.

20

Figure 2.12 : Application of Local Outlier Factor algorithm in scikit-learn library.

2.6 Intrusion Classifier

Intrusion Classifier will consume the messages in Suspicious Data Topic. The Intrusion

Classifier will give the final decision for a region to host an infected client or not.

The decision will be given by comparing the accuracy results or scores of the applied

Machine Learning algorithms. We introduce a novel Regional Infection Coefficient

(RIC) parameter, which can be customized by the system and network administrators.

This coefficient is a pre-defined sensitivity number, which depends on each region’s

usual traffic characteristics. High numbers of RIC will catch more extreme infections,

thus making the region less sensitive to changes. If a region always generates huge

amount of traffic, then this threshold should be set to a low value, in order to mark

malicious traffic easily. RIC can be set high for a region, for example, if the following

characteristics are observed for that region:

• The hosts from this region always generate small-sized packets (e.g. between

50-300 bytes)

• There are typically 1 or 2 distinct protocol types seen from this region

2.7 Malicious Data Topic

After IC finishes its job, if it decides any host as infected, the flows belonging to

that host alongside with its region informations are written to Malicious Data Topic.

The data in this topic, alongside with Benign Data Topic will be written to indexes in

Elasticsearch for further analysis for network and system administrators.

21

2.8 Elastic Search & Kibana

Elasticsearch is a widely-used, scalable search engine. The data is stored in

Elasticsearch in JSON (Javascript Object Notation) documents. We will also introduce

Kibana interfaces, which is a data visualization plugin for Elasticsearch. With Kibana,

one can analyze, search and visualize the data. Using Elastic Stack (a.k.a ELK Stack),

will be very beneficial for network and system administrators, allowing them to see the

system health from a broader point of view.

In order to move data from Apache Kafka to Elasticsearch, we need Elasticsearch

connectors. There are two types of connectors: sink connectors and source connectors.

Source connectors collect data from external systems into Kafka topics, while sink

connectors delivers data from Kafka to external systems [28]. So for our purpose,

we need a sink connector. Kafka Sink Connector will take data from our Kafka

topics which are Malicious Data and Benign Data topics, and writes this data to

an index [29] in ElasticSearch. An important property of the connector framework

is that it also provides a REST (Representational State Transfer) API for managing

configuration and makes it really easy to use and set up. One available open source

connector that we can use for this purpose is Kafka Connect ElasticSearch product,

which was developed by Apache Kafka creators. It uses HTTP (Hyper-Text Transfer

Protocol) based Elasticsearch client library [30], which makes the API compatible with

older/newer versions of Elasticsearch.

22

3. PROOF OF CONCEPT STUDIES

In order to test the applicability of our proposed ML Engine, we made a couple of Proof

of Concept (POC) experiments. In this part of our work, we tried to demonstrate that an

open-source ML library can be a good candidate for a low-cost, scalable and applicable

IDS system. Our experiments showed that ML algorithms in Scikit-learn library can

be used for outlier detection, and it is possible to build a completely open-source,

scalable, device/vendor-independent botnet-warning system for system and network

administrators. For the sake of prototyping, we wanted to use a contaminated dataset

which has botnet traces alongside with benign data. In the following section, we give

detailed information about our choice of dataset.

3.1 The Anatomy of the Dataset

The key to develop a successful machine learning application is to work on a qualified,

clean and representative data. Experiments should be done on subsequent amount of

samples. If experiments are going to be done on synthetically generated data, then this

dataset should be very similar to the real life case which is planned to be simulated.

Also, the dataset should be unbiased and clean, such that the applied algorithms on this

data should result in very small ratio of false positives (FP).

There are many datasets available for botnet detection experiments. Many universities

and laboratories provide synthetically generated datasets, and some educational

institutions also share some attack-data which are generated in their internal

laboratories. It is important to use a dataset which contains real-world botnet data,

rather than network traces which are generated synthetically [31]. The selected dataset

should provide an adequate level of heterogeneity to successfully simulate a live

network [18].

Because of the aforementioned reasons, we have chosen well-known CTU-13 dataset,

which was generated by Czech Technical University (CTU). The dataset is fairly a new

dataset, and it contains real botnet traffic flows, alongside with background and normal

23

traffic. CTU-13 has thirteen different captures as known as scenarios, which each of

them consists of different malwares using different protocols.

For our experiments, we have used Scenario 10, because it has the most infected hosts

i.e botnet flows, and it simulates UDP DDoS attacks. Table 3.1 gives the detailed

information about Scenario 10 data.

Table 3.1 : Scenario 10 characteristics of CTU-13 dataset.

Botnet Name Duration (h) Infected Hosts Protocol Attack Type
Rbot 4.75 10 IRC UDP DDoS

3.2 Our Approach for Botnet Detection

We propose a machine learning based approach to detect anomalies in a live network.

Our ultimate aim is to provide an early intrusion detection system by predicting

the possible botnet locations before a DDoS attack occurs. During an attack, it is

quite troublesome to locate the actual locations of the botnets and cease the existing

connection in between. In order to be able to take action promptly, it is important

that we have sufficient audit trails and we have the knowledge of expected average

system load at a specific time or from a specific region. We believe that if the system

administrators have the knowledge of the type and quantity of the traffic which their

system receives ordinarily, they can be alerted and respond accordingly in the event of

an abnormality.

At the preparation phase of an attack, the attacker infects the slave computers and

uses these compromised hosts to gather security related information from the target

system [6]. This phase is generally called as Command and Control. We assume

that the attackers scan the target systems for vulnerabilities before the actual attack

occurs. Our system will also log these scanning events and abnormal behaviors.

Thus, we will have the information of suspiciously infected regions and the malicious

requests which are generated from those regions. With the help of the actual normal

behavior knowledge base, we will analyze and log the abnormalities by region and

time-stamps. So, in the case of an attack, we can cease the connection between the

target system and the regions which are marked as suspicious in the recent log history.

Command and Control (C&C) Server, uses their bots to scan the target system, and

24

they generally attempt to mimic normal traffic to avoid to be detected [32]. There are

many different C&C techniques to establish communication and gather information

from target system. We have listed some of these techniques which can be detected by

our proposed system:

• Application Layer Protocol Attacks: Commands which will be sent to the

target system is usually disguised in common application layer protocols such as

HTTP(S), DNS or SMTP.

• Non-Application Layer Protocol Attacks: Internet Control Message Protocol

(ICMP), User Datagram Protocol (UDP) are a few of many examples of these

protocols.

• Attacks to Common Port(s) : Attackers can communicate via commonly used

ports such as HTTP:80, DNS:53, SMTP:25, to blend with benign traffic to stay

undetected by firewalls or IDS infrastructures.

• Attacks to Uncommon Port(s): Attackers might also use non-standard ports to

bypass misconfigured firewalls.

• Custom C&C Protocol Attacks: This is a non-traditional but a robust way to

bypass intrusion detection systems. Attackers might introduce a custom protocol

on top of known application layer protocols by imitating well-known protocols.

To be able to test our prototype for the aforementioned attack techniques, we are going

to analyze the network traffic data of an exemplary client system, and with the help

of our proposed machine learning based model, our intention is to alert the system

administrators for abnormal traffic observations beforehand, or help them to be able to

cease the connection to the infected regions rather than the legitimate ones during an

attack.

As aforementioned before, our proposed IDS, will learn from the previously seen

traffic data and it will give alarms if any abnormal behaviour is observed. To automate

this functionality, our system will utilize from machine learning techniques. In

machine learning, there are three types of learning strategies; unsupervised learning,

supervised learning and semi-supervised learning.

25

In supervised learning, the training data is labelled with normal and abnormal

behaviours; so the algorithm which is applied on the data, learns with the help of

those labels and stops when the required precision is acquired. On the contrary, in

unsupervised learning, the data is not labelled and there is no prior knowledge about

which part of the data might be abnormal. The aim in unsupervised learning is to

generate a distribution for normal behaviour and discovering the abnormal behaviours.

Unsupervised learning can be used for outlier (novelty) detection, pattern recognition

and data analysis. In semi-supervised learning, the data is partially labelled and the

output for every input is not properly defined.

In this study, even though we have a labelled cybersecurity dataset, we are not going

to use supervised learning, because we want our system to be able to change strategies

according to the incoming real-time traffic data. Because in reality, we are not able to

precisely know which flow is benign or botnet-generated. Therefore, we will treat our

data as unlabeled and apply unsupervised learning algorithms.

3.3 Data Preparation and Transformation

In machine learning, data preparation is a very important process, since it has a huge

impact on the performance of the models. We are going to slightly manipulate our data,

since there are some unnecessary fields which we do not want our model to consider

in training and also we will calculate some more additional features which we have

aforementioned in Section 2.5.1.

3.3.1 Data manipulation

First of all, in order to prepare the training and testing data to match up with our

scenario, we needed to add regions to each individual flow, according to the source

hosts’ IP addresses. To satisfy this requirement, we have determined a 6-region set

which are numbered 1 to 6 as R1, R2...R6. The regions are divided into two classes

specified as Infected (Ri) and Benign (Rb).

Ri,b = {i,b | 1  i,b  6 and 3  i  5,b 6= i} (3.1)

Since our dataset is labelled with Background, Normal and Botnet labels, we have the

information which of the host IP’s should be placed in the Infected regions in advance.

26

Even though we will not use those labels in the training phase, we are going to benefit

from those labels in the data preparation phase. We statically assigned infected hosts to

one of the infected regions. Table 3.2 gives the assigned regions to the infected hosts.

Table 3.2 : List of infected hosts with their assigned regions.

Infected Host IP Assigned Region
147.32.84.165 R3
147.32.84.191 R3
147.32.84.192 R3
147.32.84.193 R4
147.32.84.204 R4
147.32.84.205 R4
147.32.84.206 R5
147.32.84.207 R5
147.32.84.208 R5
147.32.84.209 R5

The remainder of the flows are assigned in one of the Benign regions randomly. While

assigning those regions, a dictionary of previously assigned regions are hold in the

memory; in order to prevent assigning same hosts to different regions.

After assigning the hosts to their regions, we need to clean our data in order to have

the best performance from our training phase. When we analyze the dataset, we

observe some alphanumeric values for source/destination ports and source/destination

TOS bytes, which are not understood as an acceptable machine-readable value for our

models. So we need to label encode these fields. As it is generally the case in real life,

our data has some missing values which makes it incomplete. Handling missing values

is an important task before we train our models. Figure 3.1 shows the missing value

percentages of our dataset. As it can be seen from the figure, the biggest percentage of

missing value is dTOS field with 0.14 of the overall data. We observed that these data

is mainly Background benign data, however it might affect the training phase to lose

that much benign data if we drop the rows with missing fields.

We might take multiple approaches to handle with missing data. For example, if the

missing values do not constitute a big percentage of the whole dataset, then we might

think to drop them [33]. However, this is not a preferable way, since we might be

loosing some of important inputs. Instead of that we want to keep them in our dataset

by replacing fields with some constant values as shown in listing 3.2, which we are

27

Figure 3.1 : Percentages of missing values in CTU-13 dataset.

sure they are not significant for the corresponding fields or they are the default values.

These values are listed below:

• State | EMPTY

• Sport | -99

• Dport | -99

• sTos | 0

• dTos | 0

Numpy understands those values as NaN (not a number). So we have to drop these

individual rows for the sake of our model.

Figure 3.2 : Filling NaN rows and dropping unused columns with pandas.

We also dropped some of the columns, which we do not utilize from and which we

are not able to encode. The dropped columns are StartTime, hold as a long datetime

28

Table 3.3 : List of CTU-13 Scenario 10 dataset columns.

Column Name Description
StartTime Start time of the flow.
Dur Flow duration.
Proto Protocol type.
SrcAddr Source IP address.
Sport Source port.
Dir Direction of the flow.
DstAddr Destination IP Address.
Dport Destination Port.
State State.
sTos Source TOS byte value.
dTos Destination TOS byte value.
TotPkts Total packets.
TotBytes Total bytes.
SrcBytes Source bytes.
Label Label (Background, Normal or Botnet).

format, and Label column, which indicates if the flow is benign or not. Label columns

is not necessary since we are going to try unsupervised learning algorithms and instead

of StartTime we are going to calculate some new features related to interarrival times

as we defined in 2.5.1.

3.3.2 Feature selection

Feature selection is the key step of the data preparation process, because if the features

are not selected wisely, overfitting or decreased accuracy might be a few of many

problems that we might face.

Table 3.3 gives the list of the columns in Scenario 10 data. For effective anomaly

detection, we will calculate a few additional features and use these features to train our

model.

For each host in the dataset, the additional features which are defined in Section 2.5.1.

3.3.3 Label encoding

Label encoding is a transformation technique which normalizes and turns them into

machine-readable numeric labels. In machine learning, there is no way to use string

values to run models on. This technique can only be applied when there is a finite

number of classes on the corresponding label. Otherwise, models will throw "y

29

contains previously unseen labels" error on transformation process. In our case, we

need to transform some string values to their numerical representations. For this

purpose, we used LabelEncoder utility class of sklearn library under preprocessing

namespace. We encoded SrcAddr, Proto, DstAddr, Sport, Dport, Dir and State fields.

An example encode-decode transformation in sklearn can be seen in Figure 3.3.

Figure 3.3 : Transformation and inverse transformation with label encoding.

3.4 Preparing Train and Test Data

In Scenario 10 dataset, there are 1.309.791 total flows and 106.365 of the total flows

interfered with infected hosts. Namely, 92% of the whole data set contains benign

flows and 8% of the flows consists botnets. When splitting our data to train and test

sets, we might take the same approach as stated in [16], which they made sure to satisfy

1:10 ratio for botnet:benign data. However, even this approach will lead us to have a

correct reflection of the real-data set, it might also lead us to overfitting. We will use

train_test_split method in Scikit-learn library.

30

(a) Training set (b) Testing set

Figure 3.4 : Contamination ratios of testing and training sets.

For the sake of consistency, we created one training and one testing dataset and we

used these sets for all of our experiments. We used 8:2 ratio for training and testing

sets. And we used random number generators to select random rows to put into each

set, since we want random contamination in each set. Coincidentally, random number

generator, generated our data with 2:8 malicious:benign data. Figure 3.4 shows the

numbers of benign and infected flows for test and train sets. Training dataset has total

1047832 flows, which 0.20014 of it is infected flows; whereas testing dataset has total

261959 flows, which 0.20062 of it is infected flows.

31

32

4. RESULTS

We have tried three different unsupervised learning algorithms for our dataset. At

first, we tried to train the model with the default features. The accuracy values of the

three classifiers ranged from 0.73 to 0.76 as shown in Table 4.1. The results are not

surprising, since there is only a limited malicious attack traffic. A naive prediction

algorithm could only detect 10% of the real contamination. As seen in Table 4.1, there

are two metrics that are calculated for each classifier. Recall can be described as the

sensitivity value of the classifier, which is calculated as in Formula (4.1).

r =
T P

T P+FN
(4.1)

TP indicates the true positives and FN indicates the false negatives. The more the recall

value is closer to 1, the better our classifier is able to find all true positives. Accuracy is

calculated by comparing the predicted values to the correct labels. Both of the values

are calculated with Scikit-learn and validated by manual calculations.

Table 4.1 : Outlier detection results with default features.

ISOF LOF EE
Accuracy 0.7307 0.7566 0.7620
Recall 0.8571 0.9105 0.9140

The three algorithms do not have so sharp differences in terms of accuracy. However,

if we want to interpret those values, by looking at the accuracy scores, the Isolation

Forest classifier performed the worst, which might be an indicator of that our data

cannot handle more feature dimensions. We see that the best performing classifier is

Elliptic Envelope, which indicates that our inliers might have a Gaussian distribution.

If the inliers were less unimodal, EE is expected to degrade in the overall classification

performance.

33

In the upcoming sections, we will share the classifier performance results when we

add additional features, and see whether our classifiers performs better with detecting

outliers with newly introduced features or not.

4.1 Number of Different Protocol Types

The number of different protocols that one source IP is using is an interesting metric

to understand the behaviors of intruders. Because, usually 1 or 2 types of protocols

are used by one source. If there are multiple various transmission protocols are used,

then this might be a sign to an intruder is trying to intrude to the system. The results

of classifiers when we add distinct number of protocol types for each flow is shown in

Table 4.2.

Table 4.2 : Outlier detection results with protocol type count.

ISOF LOF EE
Accuracy 0.7114 0.7430 0.7675
Recall 0.8450 0.9019 0.9174

When we analyze the results of the three algorithms, there is not much change is

seen in accuracies. However, in average, we can say that slightly decrease is seen in

accuracies. This is because, in the dataset we use for outlier detection, distinct protocol

type count is not a definitive parameter, since the malicious and benign flows usually

have the similar number of protocol types. For our dataset average distinct protocol

count for malicious traffic is 3.0, and average distinct protocol count for benign traffic

is 2.83. Eventually, this metric does not make a huge difference in detecting outliers,

even instead, it results a decrease in the accuracies. However, it does not mean that in

a generic outlier detection system, this metric should not be used. On the contrary, we

still believe that, it might be a good indication of malicious traffic is flowing through

the target system.

4.2 Average Interarrival Time

Another important metric to catch malicious traffic is the average interarrival time of a

request which is coming from the same host in a specific time window. The calculated

results are promising, adding slightly more accuracy to each of the three classifier

results which can be seen in Table 4.3.

34

Table 4.3 : Outlier detection results with interarival time.

ISOF LOF EE
Accuracy 0.73694 0.7537 0.7458
Recall 0.8594 0.9123 0.9041

This value is the first time-related feature used in our training phase since at the

beginning we had opt out the StartTime field. From the results, it can be seen that

the accuracy values for ISOF and LOF algorithms are slightly increased, however with

the new feature, EE did not perform well and we observe a decreased accuracy results

with EE classifier. This might be interpreted as that EE classifier might not perform

well with time-based features.

4.3 Average Packet Length

This parameter is the average packet size of individual host sends. In legitimate traffic,

this value is typically larger, and for malicious trafic, the packet sizes are relatively

small. When we analyze the distribution of packet sizes on time domain, we can easily

see this trend. In benign traffic 4.1 trends, the packet sizes varies in length. However,

in malicious traffic trend 4.2, if we disregard the exceptional peeks, the sizes of packets

are at an ordinary, persistent level.

Figure 4.1 : Distribution of benign packet sizes on time domain.

35

Figure 4.2 : Distribution of malicious packet sizes on time domain.

After calculation of average packet length values in one time window for each specific

host, we trained our model again. However, we did not reach a good accuracy since this

value is not so different than individual packet sizes which are already in the default

feature set. So, we did not share the results here.

4.4 Same-length number of packets ratio

This is another interesting parameter to consider while training our model, because

for legitimate flows, this value is expected to be small. As it can be seen from 4.2,

malicious traffic has a trend to have the similar-length packets over time domain.

Therefore, when you proportion same-length packet count over total packet count in a

time window, especially for legitimate flows this value is expected to close to zero.

Additional to interarrival-time, this metric helps us to increase the accuracy for our

selected classifiers as seen in Table 4.4.

Table 4.4 : Outlier detection results with same-length packet ratio.

ISOF LOF EE
Accuracy 0.76694 0.7837 0.7558
Recall 0.8794 0.9223 0.9141

36

5. OPEN ISSUES & CHALLENGES & FUTURE WORK

Machine learning-based systems have the advantages of being responsive to changes

and being able to adapt their strategy according to incoming new data. In that sense,

our system is capable of detecting unprecedented botnet attacks with the help of its

continuously-learning nature. Nevertheless, machine learning-based systems have

some drawbacks. One major flaw in those systems is that they are not efficient in

terms of resource consumption. In that sense, our model is also resource-expensive.

Our system encounters all of the disadvantages which a distributed IDS faces. For

example, it is hard to maintain a distributed system, because it has much more

components which should be kept running, compared to the centralized systems.

Recovery and fault tolerance is harder in our systems, because it is not easy to hold the

current state in a consistent structure because of scattered behavior of whole system.

Intrusion detection systems are set up as precautions to misuse. They are more of a

detect-and-report systems, rather than being preventive systems [34] against attacks.

In our design, we are currently writing the results to ELK Stack, however, as a future

work, it is possible to add some preventive modules to our open-source architecture,

which will detect attacks and cease connection where necessary.

Another aspect which can counted as a drawback is that we only made predictions with

a specific dataset. As we know that, botnets evolve with time, our system should be

aware of different type of attacks.

We are aware of that our POC does not necessarily mean that in every data set we

will get the similar precisions, since the attacks evolve and botnet behaviors change in

time.

37

38

6. CONCLUSIONS

In this work, in an effort to detect or predict the locations of slave computers, we

proposed a novel, distributed, scalable, machine-learning based Intrusion Detection

System (IDS). Our system can handle and process huge volume of data with

low-latency. The Machine Learning Engine (ML Engine) in our IDS, continuously

learns from real-time data and make predictions accordingly. We would like our work

to be seen as a practical examplary ML based IDS. Nevertheless, we are aware of that

our POC does not mean that in every data set we will get the similar precisions, since

the attacks evolve and botnet behaviors change in time.

39

40

REFERENCES

[1] Url-1, Documentation of scikit-learn 0.21.3, https://scikit-learn.org/
stable/documentation.html, date retrieved : 28.04.2019.

[2] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay,
E. (2011). Scikit-learn: Machine Learning in Python, Journal of Machine

Learning Research, 12, 2825–2830.

[3] Womersley, R. (2017). When will exponential mobile growth stop?, LS Telcom

AG.

[4] Url-2, Protection and mitigation techniques using managed Distributed Denial
of Service (DDoS) protection service, https://aws.amazon.com/
shield/ddos-attack-protection/, date retrieved : 20.03.2019.

[5] Cisco Annual Cybersecurity Report, (2018), Cisco Systems.

[6] Bhattacharyya, D.K. and Kalita, J.K. (2016). DDoS Attacks Evolution,

Detection, Prevention, Reaction, and Tolerance, CRC Press, 6000 Broken
Sound Parkway NW, Suite 300, 1 edition.

[7] Poongothai, M. and Sathyakala, M. (2012). Simulation and analysis of DDoS
attacks, 2012 International Conference on Emerging Trends in Science,

Engineering and Technology (INCOSET), pp.78–85.

[8] Kahn, C.E., Porras, P.A., Staniford-Chen, S. and Tung, B. (2000). A common
intrusion detection framework.

[9] Buczak, A.L. and Guven, E. (2016). A Survey of Data Mining and
Machine Learning Methods for Cyber Security Intrusion Detection, IEEE

Communications Surveys Tutorials, 18(2), 1153–1176.

[10] Url-3, What Is Cybersecurity?, https://www.cisco.com/c/en/us/
products/security/what-is-cybersecurity.html, date
retrieved : 28.04.2019.

[11] García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G. and Vázquez, E.
(2009). Anomaly-based network intrusion detection: Techniques, systems
and challenges, Computers Security, 28(1), 18 – 28.

[12] Lippmann, R.P. and Cunningham, R.K. (2000). Improving intrusion detection
performance using keyword selection and neural networks, Computer

Networks, 34(4), 597 – 603, recent Advances in Intrusion Detection
Systems.

41

[13] Apiletti, D., Baralis, E., Cerquitelli, T. and D’Elia, V. (2009). Characterizing
network traffic by means of the NetMine framework, Computer Networks,
53(6), 774 – 789, traffic Classification and Its Applications to Modern
Networks.

[14] Borders, K., Xin Zhao and Prakash, A. (2006). Siren: catching evasive malware,
2006 IEEE Symposium on Security and Privacy (S P’06), pp.6 pp.–85.

[15] Narkhede, N., Shapira, G. and Palino, T. (2017). Kafka: The Definitive Guide

Real-Time Data and Stream Processing at Scale, O’Reilly Media, Inc., 1st
edition.

[16] Ding, S. (2018). Machine Learning for Cybersecurity: Network-based Botnet
Detection Using Time-Limited Flows, Caltech Undergraduate Research

Journal.

[17] Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix,
J. and Hakimian, P. (2011). Detecting P2P botnets through network
behavior analysis and machine learning, 2011 Ninth Annual International

Conference on Privacy, Security and Trust, pp.174–180.

[18] Biglar Beigi, E., Hadian Jazi, H., Stakhanova, N. and Ghorbani, A.A. (2014).
Towards effective feature selection in machine learning-based botnet
detection approaches, 2014 IEEE Conference on Communications and

Network Security, pp.247–255.

[19] Yu, X., Dong, X., Yu, G., Qin, Y. and Yue, D. (2010). Data-Adaptive Clustering
Analysis for Online Botnet Detection, 2010 Third International Joint

Conference on Computational Science and Optimization, volume 1,
pp.456–460.

[20] Livadas, C., Walsh, R., Lapsley, D. and Strayer, W.T. (2006). Usilng Machine
Learning Technliques to Identify Botnet Traffic, Proceedings. 2006 31st

IEEE Conference on Local Computer Networks, pp.967–974.

[21] Strayer, W.T., Lapsely, D., Walsh, R. and Livadas, C., (2008). Botnet Detection
Based on Network Behavior, Springer US, Boston, MA, pp.1–24.

[22] Strayer, W.T., Walsh, R., Livadas, C. and Lapsley, D. (2006). Detecting
Botnets with Tight Command and Control, Proceedings. 2006 31st IEEE

Conference on Local Computer Networks, pp.195–202.

[23] Url-4, Machine Learning: An In-Depth Guide Data Selection, Prepara-
tion, and Modeling, https://medium.com/@innoarchitech/
machine-learning-an-in-depth, date retrieved : 12.02.2019.

[24] Halevy, A., Norvig, P. and Pereira, F. (2009). The Unreasonable Effectiveness of
Data, IEEE Intelligent Systems, 24, 8–12.

[25] Url-5, numpy.random.RandomState, https://docs.scipy.org/doc/
numpy-1.16.1/reference/generated/numpy.random.
RandomState.html, date retrieved: 06.08.2019.

42

[26] Rousseeuw, P.J. and Driessen, K.V. (1999). A Fast Algorithm for the Minimum
Covariance Determinant Estimator, Technometrics, 41(3), 212–223.

[27] Hoyle, B., Michael Rau, M., Paech, K., Bonnett, C., Seitz, S. and Weller, J.
(2015). Anomaly detection for machine learning redshifts applied to SDSS
galaxies, Monthly Notices of the Royal Astronomical Society, 452.

[28] Url-6, (2018), Introduction to Kafka Connectors, https://www.baeldung.
com/kafka-connectors-guide, date retrieved : 12.08.2019.

[29] Url-7, Kafka Connect Elasticsearch Sink Connector, https://docs.
confluent.io/current/connect/.

[30] Url-8, (2017), Kafka Connect Elasticsearch: Consuming and Indexing
with Kafka Connect, https://sematext.com/blog/
kafka-connect-elasticsearch-how-to/, date retrieved:
06.08.2019.

[31] Tariq, F. and Baig, S. (2017). Machine Learning Based Botnet Detection in
Software Defined Networks, International Journal of Security and Its

Applications, 11, 1–12.

[32] Url-9, Command and Control, https://attack.mitre.org/tactics/
TA0011/, date retrieved: 06.08.2019.

[33] Url-10, Handling Missing Values in Machine Learning: Part 1, https:
//towardsdatascience.com/dda69d4f88ca, date retrieved:
06.08.2019.

[34] Spafford, E.H. and Zamboni, D. (2000). Intrusion Detection Using Autonomous
Agents, Comput. Netw., 34(4), 547–570.

43

44

CURRICULUM VITAE

Name Surname : Zemre ARSLAN TÜVER

Place and Date of Birth : İstanbul, 08.08.1990

E-Mail : zemre.arslan@itu.edu.tr

EDUCATION :

• B.Sc. : 2013, Istanbul Technical University, Computer and

Informatics Faculty, Computer Engineering

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• M. Erel, Z. Arslan, Y. Ozcevik, B. Canberk, 2014. Software-Defined Wireless
Networking: A New Paradigm for Next Generation Network Management
Framework, Modelling and Simulation of Computer Networks and Systems:

Methodologies and Applications, Edited by M.S. Obaidat, F. Zarai and P.
Nicopolitidis, Elsevier Publications.

• M. Erel, Z. Arslan, Y. Ozcevik, and B. Canberk, 2014. Grade of Service (GoS)
based Adaptive Flow Management for Software Defined Heterogeneous Networks
(SDHetN), Computer Networks (Elsevier), DOI: 10.1016/j.comnet.2014.11.012.

• Z. Arslan, M. Erel, Y. Ozcevik and B. Canberk, 2014. Sdoff: A Software-
Defined Offloading Controller for Heterogeneous Networks, IEEE Wireless

Communications and Networking Conference, IEEE WCNC,Istanbul-Turkey, April
2014.

• Z. Arslan, A. Alemdaroglu and B. Canberk, 2013. A Traffic-Aware Controller
Design for Next-Generation Software Defined Networks, IEEE International Black

Sea Conference on Communications and Networking, IEEE BLACKSEACOM,

Batumi-Georgia, June 2013.

45

