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YÜKSEK LİSANS TEZİ
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ADAPTIVE AND HIERARCHICAL CLASSIFIER
FUSION APPROACHES FOR NETWORK

ATTACK DETECTION

SUMMARY

In this thesis we aimed to develop, a machine learning based system that can detect
anomalies and intrusions in computer networks with high performance. For this
purpose, three-step hierarchical methods were developed. An attack type detection
model was created by using different machine learning algorithms, and their outputs
and weights were combined with decision fusion methods. In this way, a IDS with
a high attack detection rate and a low false alarm rate was developed. The proposed
method essentially has three steps. In the first step, we detect whether network traffic
is normal or abnormal/attack. If the network traffic is normal, it does not enter the
second step as normal, but if network traffic is abnormal data will be forward to the
next step. Several machine learning algorithms are used for building anomaly detection
models. In the second step, we built up models for determining attack type. In the first
two steps, twelve different machine learning algorithms were used separately. The
algorithms with the highest scores were used. In addition, in order to achieve better
performance and solve the problem of class imbalance in the data set, attack classes
were grouped in the second stage. In the last step, the best four classifiers with the
highest scores are used for decision fusion, which aims to detect attack type better.
Majority voting, weighted average based majority voting and, online adaptive decision
fusion methods are compared. As experimental result, the proposed method has high
intrusion detection rate and accuracy rate. A system with a 99.98% F1-score with a
99.98% detection rate is developed by regrouping the classes. Also, 99.84% accuracy
score and 99.83% F1-score were obtained in the experiments conducted considering
the original classes in the data set.
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AĞ SALDIRISI TESPİTİ İÇİN UYARLANIR
VE AŞAMALI SINIFLANDIRICI

TÜMLEŞTIRME YAKLAŞIMLARI

ÖZET

Günümüzde bilgi teknolojilerinin gelişmesi ve yaygınlaşmasına paralel olarak bu
sistemlerin güvenliğinin sağlanması sorunu ortaya çıkmıştır. Çok farklı cihaz
ve teknolojinin internete bağlanması sistem ve ağı daha da karmaşıklaştırmıştır.
Daha fazla bilgisayar, kişi ve cihazın internet ve bu ağa bağlanması saldırganların
motivasyonunu artırmış ve daha fazla saldırıda bulunmaya ve güvenlik açığı bulmaya
çalışmaktadırlar.

Saldırganlar sadece şirket ve kişilere saldırmamakta devlet kurumlarına da sızmaya,
veri çalmaya veya sistemi devre dışı bırakarak onarılması zor zararlar vermektedirler.
Bu artan güvenlik zafiyetlerine karşı zamanla çeşitli yazılımsal ve donanımsal güvenlik
çözümleri geliştirilmiştir. Bu güvenlik çözümleri zaman içinde gelişmiş ve tümleşik
güvenlik çözümleri haline gelmiştir. Ayrıca saldırıganların sayısının artması ve yazılım
ve donanımdaki gelişmeler saldırganların elindeki araçların güçlenmesine yol açmıştır.
Bu sürekli değişen ve farklı varyantları çıkan virus, malmware, trojan, ve saldırı
araçlarının tespit edilmesi zorlaşmştır. Ayrıca saldırı araçları çok sık değiştiği için buna
uygun olarak güvenlik sisteminin güncellenmesi belli bir zaman almakta ve bundan
sistem zafiyet yaşamaktadır.

Bu sık değişen ve çeşitlenen saldırılar için mevcut sistem ve ağı öğrenen anomali
tabanlı saldırı tespit sistemleri geliştirilmeye başlanmıştır. Makine öğrenmesi, yapay
zeka ve bunları kullanarak model oluşturup entegre edecek yazılım ve donanımlardaki
gelişmelerle beraber anomali tabanlı sadırı tespit sistemleri yaygınlaşmaya başlan-
mıştır.

Bu çalışmada makine öğrenme algoritmaları kullanılarak yüksek tespit ve düşük
yanlış alarma sahip saldırı tespit sistemi geliştirilmsi hedeflenmiştir.İlgili çalışmaların
gerçekleştirilmesi ve önerilen metodun sınanması için 2017 yılında Kanada Siber
Güvenlik Ensitüsü tarfından oluşturulan veri kümesi kullanılmıştır. Bu veri kümesi
laboratuvar ortamında oluşturulmuş günümüzün modern ağ trafiğini modellemiştir. Bu
veri kümesi günlük normal aktivitelerini ve en yaygın saldırı türlerini içermektedir.
Yaklaşık 2,8 milyon örnekten oluşmakta olup bu ağ trafik akışının 80 tane özelliği
bulunmaktadır. Toplam paket boyutu, maksimum paket boyutu, ACK bayrak sayısı,
geliş paket sayısı, oturum süresi vb. özellikleri içermektedir.

Önerilen sistemde öncellikle veri kümesi bir takım ön veri işleme teknikleri
kullanılarak temizlenip, hatalardan giderilmiştir. Ayrıca bazı kayıtlar silinmiş ve boş
olan özellikler sınıf ortalaması ile doldurulmuştur. Veri ön işleme tekniklerinden sonra
sistem karmaşıklığını azaltmak ve başarımı artırmak için özellik seçimi yapılmıştır.
Özellik seçme yöntemi olarak, Anova F-puanını temel alan ve en yüksek skora sahip
özellikler seçilmiştir. Özellik seçiminden sonra veri kümesi sınama ve eğitim kümesi
olarak ayrılmış (%75 eğitim, %25 sınama) olup bu eğitim kümesi model eğitilmesi,

xxi



doğrulama ve parametre optimizasyonunda kullanılmamıştır. Eğitim kümesi beş
parçaya bölünmüş ve %15 doğrulama, geliştirme kümesi olarak kullanılmıştır.
Sonuçlar kısmında belirtilen sonuçlar, sınama kümesi üzerindeki deney sonuçlarını
göstermektedir.

Önerilen sistem 3.aşamadan oluşmaktadır. 1.aşamada anomali tespiti için tüm saldırı
türleri tek sınıfta toplanmış ve anormal (-1) olarak yeniden etiketlendirilmiştir. Normal
trafik verileri (1) olarak etiketlenmiştir. Daha sonra oluşturulan bu veri kümesi
%25 sınama, %75 eğitim kümesi olarak sınıf ağırlıkları korunarak ayrılmıştır. 1.
aşama için 12 tane sınıflandırıcı (k en yakın komşu, destek vektör makineleri, karar
ağaçları, topluluk yöntemleri vb.) ile eğitilip sınanmıştır. Öncellikle her sınıflandırıcı
için olası hiper parametre listesi oluşturulmuş ve scikit-learn kütüphanesinden
randomizedsearchcv kullanılarak en iyi hiper parametreler belirlenmiştir. Beş katmanlı
çapraz doğrulama yöntemi kullanılarak çapraz doğrulam işlemi uygulanmıştır. Yani
veri kümesinin %15 doğrulama/geliştirme kümesi olarak kullanılmıştır. Sınıf
ağırlıkları farklı olduğu için en iyi başarım F1 puanına göre belirlenmiştir. Veri kümesi
büyük (2,8 milyon örnek, 70 özellik) ve olası parametre kümesi büyük olduğu için
yüksek başarımlı bilgisayarlar (UHEM) kullanılmıştır. Bu adımda saldırı tespiti için
%99,92 doğruluk ve F1-puanına sahip model geliştirilmiştir. Bu aşamda "Extremely
Randomized Trees" algoritması en başarılı sonucu vermiştir.

İkinci adımda saldırı/girişim türünün belirlenmesi hedeflenmektedir. Bunun için
sadece girişim/saldırı olan veri kullanılmıştır. Normal trafik bu adıma girmeden
devam edecektir. Anormal olan trafik bu adımda işleme alınacaktır. Bunun için
veri kümesinden sadece girişim/saldırı olan veriler alınmıştır. Sınıf etiketleri veri
kümesi açıklamasında belirlenen etiketler bulunmaktadır. Bu adımda yine eğitim
ve sınama aşamları için 12 tane sınıflandırıcı (k en yakın komşu, destek vektör
makineleri, karar ağaçları, topluluk yöntemleri vb.) kullanılmıştır. Birinci aşamada
gerçekleştirilen, sınıf ağırlıkları gözetilerek eğitim ve sınama kümelerine bölünmesi,
en iyi hiper parametrelerin belirlenmesi, ve çapraz doğrulama işlemleri bu aşamada
tekrar gerçekleştirilmiştir. Bunun yanında, veri kümesinde bazı saldırı türleri çok
az örnek içermektedir. Bazı saldırı türleri de birbirine benzerlik göstermektedir.
Daha iyi saldırı türü tespti için ikinci adımda ek olarak bu saldırı türleri tekrar
sınıflandırılarak eğitim ve sınama işlemleri gerçekleştirilmiştir. Yapılan bu sınıf
gruplandırılmasından sonra daha yüksek başarım ve tespit oranına sahip model elde
edilmiştir. İkinci adım sonucunda en yüksek başarıma sahip dört tane sınıflandırı
seçilmiştir. Bu sınıflandırıcılar kullanılarak son aşamada karar birleştirme metodları
sınanmıştır. Veri kümesinin orjinal sınıfları kullanılarak yapılan deneylerde, %99,83
F1-puanına ve %99.84 doğruluğa sahip sistem geliştirilmiştir. Saldırı içeren örneklerin
sınıfların yeniden gruplandırılması ile gerçekleştirilen deneylerde %99.98 doğruluk ve
F1-puanına sahip sistem geliştirilmiştir.

Son adımda, ikinci adım sonunda sonunda seçilen en yüksek başarıma sahip dört
sınıflandırıcı ile karar birleştirme metodları sınanmıştır. Bu adımda karşılaştırma için
3 tane farklı metod kullanılmıştır. (1) En çok oyu alan sınıfın seçilmesine dayanan
"majority voting". (2) sınıflandırıcıların çıktılarında sınıf olasılıkların ağırlandırılarak
karar birleştirme işlemini sağlayan metod. (3) Sınıflandırıcı ağırlıklarını her
örnekte sınıflandırıcı hatasına göre güncelleyen "ADF" metodu kullanılmıştır. Bu
üç karar birleştirme metodu ile sistem geliştirilmiştir.Bu farklı üç metodla ile
yapılan deneylerde en yüksek başarıma, olasılık tabanlı ağırlıklandırılmış karar

xxii



birleştirme algoritması sahip olmuştur. %99,84 doğruluk ve F1-puanına sahip sistem
geliştirilmiştir. Ayrıca Makro-F1 olarak adlandırılan her sınıfın ağırlıkları ve örnek
sayısı gözetilmeden yapılan puanlamada %92,61 başarıma ulaşılmıştır.

Geliştirilen bu üç aşamalı hibrit saldırı tespit sistemi benzer çalışmalara göre daha
yüksek doğruluk ve tespit oranına sahiptir. İlgili çalışmalar karşılaştırmalı olarak
gösterilmiştir.
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1. INTRODUCTION

1.1 Motivation

With the rapid developments in information technologies, the number of internet

users has increased rapidly. According to Statista’s April 2019 report, the number

of internet users reached 4.3 billion [3]. Also, nowadays, mobile devices, things, cars,

industrial devices have become connected to the Internet. Today, the number of devices

connected to the Internet is almost 26 billion and is expected and planned to reach 75

billion in 2025. Also, the advancements in cloud technology, mobile devices, and the

Internet of things increase this internet traffic [4].

With the development of the Internet, cybersecurity concern becoming important.

Various solutions have been implemented against increased attacks. One of the most

critical systems for defending and detecting internal and external intrusions/ attacks

is Intrusion detection systems (IDS). IDS could provide detecting the various type of

attacks in real-time.

Intrusion Detection systems could be classified as signature based and anomaly-based

by their detection method. Signature based intrusion detection systems which

contributed firstly, have a record in the database for each attack type. This attack

signature consists of the actions had taken by the attacker. For each type of attack, a

signature must be created, and the database must be updated. These class intrusion

detection systems are vulnerable to unknown attacks (zero-day attacks). Because

different versions of attack types are continually evolving from attackers, computer

networks can be vulnerable to such attacks.

Moreover, today’s internet traffic more than half is encrypted, which using

SSL/TLS protocols, and the rate of encrypted traffic is increasing day by day [5].

Signature-based intrusion detection systems can not work efficiently because the

content of this traffic has not been adequately investigated.
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Due to such disadvantages of signature-based intrusion detection systems, anomaly

based intrusion detection systems have been developing day by day and are being used

more widely. Anomaly-based intrusion detection systems, the attack can detect the

attack even if there is no attack signature in the existing database. It can also detect

data from data properties, even if data traffic is encrypted. For example, It could detect

attack with the amount of data in a specific time interval, idle time, packet size, etc.

properties of the attack. Anomaly-based IDS can learn the normal flow of its existing

network and identify devices and users with different behaviors.

In parallel with the development of machine learning methods, anomaly-based

intrusion detection systems showed a rapid development. First, in 1998, sample data

sets were published, and academic and business researchers began developing various

models. These works continued with KDD Cup 1999 data set published in 1999.

Various data sets have been published, and researches and improvements have been

made. However, the studies focused on the updated version of the KDD99 data set,

NSL-KDD (2007). Research has shown that today’s internet traffic varies from ten

years ago. Encrypted traffic has increased, the types of attacks have changed, and

the characteristics of this internal and external traffic has changed. For this purpose,

current data sets were created and published. UNSW-NB15 and CICIDS2017 data sets

were created by considering the current network environment and attack types.

Today, the increase in Internet and internal network traffic has revealed the need

for IDS systems to work faster and more efficiently. Besides, a very high attack

detection rate is needed since even an attack can cause too much damage to the

network request. In these systems, normal or abnormal detection of traffic is critical,

not to identify the type of attack of the priority. However, it is necessary to determine

the type of attack and to take into account for eliminating the deficits in the network

system. Also, it should have a low false alarm rate under the heavy network traffic in

today’s conditions and should not increase the workload of the network administrator.

Considering all these requirements, we build an intrusion detection system with a high

detection rate (DR), low false alarm rate (FPR), and for the current network traffic.

2



1.2 Literature Review

The studies in the literature can be classified into several categories. First of all,

in these studies, models were created by using different data sets, and experiments

were performed. Table 1.1 provides detailed information about these data sets. As

new data sets are created and used in academic studies; models were created, and

experiments were carried out. KDD Cup 1999 [6] and NSL-KDD [7] data sets were

used extensively in these studies. The NSL-KDD data set, which is an updated version

of KDD Cup 1999 Data, which was created in 2007, is also included as a reference

data set.

We can distinguish the studies in the literature according to the method used (single

and multi-step), the machine learning methods used, and the use of deep learning.

Single-step and multi-step methods were used for attack detection and determination

of attack type. Besides, different feature selection methods and different machine

learning methods are applied to the data sets mentioned above to increase the model

performance. In addition to these classical methods, special methods have been

developed for intrusion detection area. In these methods, different feature selection,

partitioning of data set, classifier selection, etc. techniques were applied. In more

recent studies, deep learning has been used and combined with the different algorithms

mentioned above. There are a lot of academic studies as security is a trend and critical

issue.

Another categorization is to divide the data sets into partitioning methods. First, the

data set can be partitioned for binary classification as normal and abnormal. Or, a

multi-class classifier can be created, assuming each attack type is a class. Another

method is to perform binary classification for each attack type. Although this method

has high performance, it is not possible to apply it for all attack types in real life. Since

there are many types of attacks, it is not feasible to create and train models for each

attack type.
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Table 1.1 : Attacks With IDS Data Sets [1].

Data Set Attacks
Publication
Year

Botnet botnets (Menti, Murlo, Neris, NSIS,
Rbot, Sogou, Strom, Virut, Zeus)

2010, 2014

CIC-DoS Layer7 DoS attacks (ddossim,
Golden-eye, hulk, rudy, Slow-httptest,
Slow-loris)

2012, 2017

CICIDS2017 botnet, cross-site-scripting, DoS (Hulk,
Golden-eye, Slow-loris, Slow-httptest),
DDoS, heartbleed, infiltration,
SSH-brute-force, SQL injection

2017

CIDDS-001 DoS, port-scans (ping-scan, SYN-Scan),
SSH-brute-force

2017

CIDDS-002 port scans (ACK-Scan, FIN-Scan,
ping-Scan, UDP-Scan, SYN-Scan)

2017

CTU-13 botnets (Menti, Murlo, Neris, NSIS,
Rbot, Sogou,Virut)

2013

DARPA DoS, privilege escalation
(remote-to-local and user-to-root),
probing

1998, 1999

DDoS 2016 DDoS (HTTP flood, SIDDOS, ICMP
flood, UDP flood)

2016

ISCX 2012 Four attack scenarios (Infiltrating the net-
work from the inside; HTTP DoS; DDoS
using an IRC botnet; SSH-brute-force)

2012

KDD CUP 99 DoS, U2R, Probe, U2L 1998
Kyoto 2006+ Var. attacks against honeypots

(backscat-ter, DoS, exploits, malware,
port-scans, shellcode)

2006

NSL-KDD DoS, U2R, Probe, U2L 2007
UGR’16 botnet, DoS, port-scans, SSH-brute-force,

spam
2016

UNSW-NB15 back-doors, DoS, exploits, fuzzers,
generic, port-scans, reconnaissance,
shellcode, spam, worms

2015

Many different studies have been carried out for intrusion detection [8–13]. These

studies are mainly host-based and network-based. In parallel with the development

of algorithms, these studies have been conducted primarily in the form of using single

algorithms, hybrid approaches, multi-step approaches, decision fusion, development of

feature selection algorithms. It is aimed to increase the detection rate of interference

and to reduce false alarms. Also, new data sets were created and published in parallel

with the developments in internet technologies. New studies have been carried out with
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these data sets. Examples of these sets are the UNSW-NB15 [14], CICIDS2017 [15],

CICIDS2018 [16] data sets.

With the increasing use of IoT, cloud technology, and mobile technologies internal

and external network traffic created by these devices increased; studies on intrusion

detection systems in these areas have increased in recent years. Nowadays, it is aimed

to make fast transactions with larger data using big data processing tools besides these

emerging areas. Besides, the studies have come to the fore with deep learning. Despite

these developments, similar data sets continue to be used.

Hybrid IDS with two-stage intrusion detection/attack detection approach based on

two-class classification and kNN methods proposed by Li and Yu. [11] In the first

step for every attack category a binary classifiers (normal/attack category) trained by

using C45 decision trees. If attack type could not be determined or is ambiguous kNN

algorithm detect attack type. Experiments have evaluated on NSL-KDD data set. Four

classifiers trained based on DoS, Probe, U2R, R2L attack categories.

Timcenko and Gajin [17] have evaluated ensemble methods and classification.

Bagged trees LogitBoost, RUSboost, AdaBoost, supervised algorithms classification

performance, analyzed and compared. The experiments have evaluated on small set

of UNSW-NB15 data set. On that small set attack category and normal/anomaly data

binarized. As results. Bagged Tree and GentleBoost perform with the highest accuracy

and ROC-AUC score. RUSBoost has the lowest score.

In [9], the CICIDS2017 data set is used for anomaly detection and attack type

classification. Proposed method is composed of three classifiers, the first for evaluating

the data type as being attack or benign, the second classifier is for detecting attack

category (include normal data) and the last classifier for combining two classifiers.

In [9], the whole data set was not used. Data resampled from 2.5 million records

to 40K records. The proposed method increases the detection rate of attack types.

However, the resampling rate is too high and may lead to degrade data set. Detection

rate is 94.47% and accuracy score is 96.66%.

In [18], authors aim to detect and to categorize different attacks on UNSW-NB15

data set. For that, firstly they use best-first feature selection for maximizing overall

accuracy performance and reduce complexity of model. Linear Regression and
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Random Forest supervised techniques used on UNSW-NB15 data set. Single-type

attack categorization and step-wise attack categorization methods used in experiments.

99% anomaly detection accuracy and 93.6% attack- type detection achieved. However,

the framework in [18], unrealistic for real-world implementation. Single-type attack

categorization could not apply if apply system complexity too high to be used in a real

network environment. Moreover, attack type detection is still between 2% to 97%.

In [19], extracting features of flow extracted from raw data. Then apply a deep

hierarchical network method which a hybrid neural network using LeNet-5 and

LTSM neural network structures. The first layer is based on LetNet-5 CNN to

extract spatial features of the flow, and the second layer uses the LTSM network to

extract temporal features of the flow. These two networks trained simultaneously.

Binary classification (normal/abnormal) and attack type detection with normal flow

classification experiments made on CTU and CICIDS2017 data sets. F1-score of

on binary classification is up to %99.88, and multi-class classification is 99.99%.

However, details of detailed classification does not share. The class weight of normal

traffic and dos attacks are too high, and this could lead to show high detection rate.

In [12], a novel classifier model using stacked Nonsymmetric Deep Auto-Encoder

(NDAE) and Random Forest Algorithm are used for detecting network attacks.

NDAE is unsupervised feature learning which provides nonsymmetric data dimension

reduction. The model evaluated on KDD Cup99 and NSL-KDD datasets. Five classes

(normal, UR2, R2L, DoS, Probe) and 13 class classification models (well-known

attacks and normal traffic) trained and evaluated. Experiments show that have higher

f-score and detection rate compared to other deep learning methods. Also have less

training and testing time.
1.3 Proposed Method

A hybrid three-stage system has been designed for the development of an intrusion

detection system capable of providing the requirements specified in the introduction.

The proposed method is shown in Figure 1.1. In the first stage, it will be determined by

using machine learning algorithms whether the current traffic is normal or anomaly. At

this stage, the algorithm with the highest success will be selected with performing data

preprocessing operations and feature selection. If the traffic is normal, it will continue

without entering into the second stage, and if it is an anomaly, the activity is further
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Figure 1.1 : Proposed Method

analyzed in the second step. In the second step, a multi-class multiple classifier is

used, and input data is only anomaly data. Four classifiers with the highest estimation

F1-score will be selected from these classifiers. The type/category of the attack will

be determined by these classifiers. The reason for selecting more than one classifier

in the second stage is the failure to achieve the required detection rate and accuracy

rate with a single classifier. In the third stage, these models/classifiers that are trained

and created in the second stage will be formed with a system with higher success

by using decision fusion methods. In the third stage, three decision-fusion methods

will be compared, namely, majority voting, weighted average based decision fusion,

online adaptive decision fusion. In the majority voting algorithm, decision fusion is

achieved by the selection of the class with the most votes among the four classifiers.

In the second method, the output of classifiers is class probabilities. The type/category

of the attack is determined according to the class probabilities coming from each

classifier. With the third algorithm, online adaptive decision fusion [20], class weights

are dynamically updated according to the amount of error. Class weights are updated

for each instance, and the decision is made by classifiers results and weights. With this

three-stage method, a higher performance system was designed.

CICIDS2017 data set have been studied in order to verify the proposed method.

Besides, data preprocessing operations were performed for each data set. In

addition, statistical, information gain, and select from model (SVM, RF) are used

for feature selection. Test results are presented comparatively. Moreover, the best
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hyperparameters of the classifiers used to make this study a reference study were

determined. Also, data sets are divided into training, validation/development, and

testing. For cross-validation and finding the best hyper-parameters, k-fold verification

was used. In terms of reliability, the test set has not been used in these steps.

1.4 Thesis Layout

In this chapter of the thesis, the aim of the thesis, literature research, and the proposed

method are given. In the second chapter, theoretical information about intrusion

detection systems, machine learning algorithms used in experiments and decision

combining algorithms are given. The third chapter contains a detailed description of

the proposed method, feature selection, data preprocessing, and performance metrics.

The fourth chapter contains information about the data set used, how it is obtained and

created, and the explanations of the classes. The fifth chapter contains the experiments

and the results for each step. It also includes a comparison with other studies in the

literature. In the last chapter, information about the results and future work are given.
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2. THEORETICAL BACKGROUND

2.1 Intrusion Detection Systems

Anderson proposed the concept of the intrusion detection system and the first IDS

concept in 1980 in an article entitled "Monitoring and Surveillance of Computer

Security Threats." James Anderson has suggested that audit trails (log records) could

contain vital information in understanding user/device behavior and monitoring abuse.

To develop this idea, understanding the importance of audit data has led to new

developments in the monitoring of network and system of almost every network and

operation systems [21]. Anderson’s contributions was the basis for the design and

development of future intrusion detection and prevention systems (IDS).

Intrusion Detection Systems (IDS) provide the security of computer or network

systems which are software or hardware security systems. IDS could detect external

and internal attacks or unauthorized access abuse within the organization. The other

definition of IDS is: The Intrusion Detection System (IDS) is a security mechanism

(software/hardware) that collects and analyzes information about events occurring

in the computer system or computer network, detects security policy violations and

detects the traces of the attack. The primary role of the intrusion detection system in

computer systems or networks is to deal with network attacks and to help computer

systems and IT staff.

While a Signature Based IDS can not identify unknown attacks or which have not

signature in the database. Today’s computer networks needs fast reaction to unknown

attacks which calls zero-day attacks. Despite this weakness of signature-based IDS,

it is still a classic security solution used for commercial/industrial products. Rather,

Network Anomaly Based IDS detects serious intrusions but is often faced with

potential development methodology challenges. The following challenges can be

examined from a methodology based on anomalies, naming the creation of a purely

legitimate profile with variations from an anomaly [22]. Figure 2.1 show types

of intrusion detection systems. In this study, we focus on network-based anomaly
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Figure 2.1 : Types of Intrusion Detection Systems.

detection based IDS. False Positive errors occur if a normal behavior detects in the

attack area, and False Negative errors occur if abnormal one detects in the normal area.

While both errors are unsafe for network data, IDS performance is usually measured

by the False Negative, as attack alerts are not available on real network systems. When

creating the architecture of a Network Anomaly Based IDS cognitive and extensible,

attacks from the normal profile are very difficult to differentiate, because complex

malicious activities such as stubborn and spy attacks may fit to almost match normal

patterns. For several reasons, real-time intrusion detection is also challenging. First,

the network traffic features may contain a variety of noisy or irrelevant features.

Secondly, concerning the above problems, the lightweight of detection methods must

be carefully taken.

Today, security solutions consisting of modern, distributed, and different layers

have been developed against the rising security risks and threats. Instead of a

firewall, unified threat management (UTM), including IDS, servers, clients, and

software solutions, are used. These software solutions can include components such

as anti-virus, anti-malware, firewall, threat detection and blocking, content access

security. With improvements in machine learning and artificial intelligence, vendors

have added ML-based prediction systems to classic threat and interference detection

and prevention mechanisms. These include Trend Micro, Symantec, Kaspersky, and

McAfee. Besides, there is a new generation of fully ML and AI-based security
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solutions. Sentinel One [23] and Carbon Black [24] are examples of this generation of

solutions. Threat detection and prevention, abnormal behavior detection process can

do with case-based content and process control. These solutions are more successful

than traditional methods, successful against zero-days and have a higher detection

rate. Also, they can detect anomaly by learning the existing network, system, and

user behavior.

2.2 Machine Learning Algorithms

In this section, the machine learning algorithms used in the experiments and used to

develop the proposed method will be discussed.

2.2.1 k-Nearest neighbors

The k-nearest neighbor classification assigns an example to the class most represented

among its neighbors. It is based on the concept that the closer the instances are, the

more likely they are to be of the same class. We can use the same classification strategy,

provided that we have a reasonable similarity or distance [25]. Most classification

algorithms can be revised as distance-based classification methods [26]. Instead of

a distance measurement per class or cluster, we can have a distinct one for every

neighborhood, that is for every small region in the input space. In other words, we

can identify locally adjustable distance functions, for instance, with kNN [27].

2.2.2 Decision tree

Decision tree learning is a method for approximating discrete-valued functions, in

which a decision tree represents the learned function. Decision tree learning is one

of the most common and practical techniques of inductive learning [28]. A decision

tree is a procedure, which classifies the categorical data based on different features. In

addition to this decision tree, a large quantity of data are also being processed and used

in applications for data mining. No domain knowledge or parameter configuration is

needed for decision-making trees. Decision trees are, therefore, adequate and suitable

for exploratory understanding, and the tree type is intuitive and easily understood to

represent the knowledge acquired.

The main task in those systems is to use inductive methods to determine the attribute

values of an unknown object according to decision tree rules. Decision trees classify
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cases from root node to leaf node throughout. We begin from the root node of the

decision tree, test the attribute, and then move down the tree branch to the given set

attribute value. It is repeated at the level of the sub-tree [29].

Entropy in the information theory sets out the minimum number of bits required to

encode an instance’s class code. Also note that the best split is always between

adjacent points of different classes [26]. We are therefore trying them, and the purity

of the attribute is done best. No such iteration is required in the situation of a discrete

attribute. Therefore we calculate the impurity and choose the minimum entropy for all

attributes, discrete and numeric, and for numeric attributes for all divided positions.

And after that tree building continues recursively and in parallel to all the not purified

branches until they are all pure. This is the basis of the classification and regression

tree (CART) algorithm [30], regression tree ID3 algorithm [31], and its extension

C4.5 [32]. CART algorithm is used in our experiments which is default algorithm

used in scikit-learn [33] for decision tree classifier.

CART stood for Breiman in 1984. This is characterized by the fact that they are

building binary trees, namely that each internal node has outgoing two edges. The

splits are selected according to the criteria of towing, gini, entropy, and the obtained

tree is pruned by cost-complexity trim. In case of misclassification, CART may

consider costs when inducing the tree. It also allows users to supply prior probability

distribution [34]. The ability of CART to produce regression trees is an important

feature. Regression trees are trees whose leaves forecast an actual number rather than

a class. CART seeks for splits to minimize the square error forecast in the event of

regression. The weighted mean for node is the basis of a prediction in each leaf [35].

2.2.3 Support vector machines

There are many feasible linear separators for two-class, separable training data. While

some learning techniques like the perceptron algorithm are based on just any linear

separator, others are looking for the highest linear separator based on certain criteria

like Naive Bayes. The Support Vector Machines (SVM) defines in specific the criterion

for a decision surface as far as possible from any data point. The classifier margin is

determined by this distance from the choice surface to the closest data point. The

decision feature for an SVM is necessarily specified by a (generally small) subset of
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the data, which defines the position of the separator. These points are known as the

supporting vectors (a point may be considered as a vector between the origin and the

point in a vector space). Figure 2.2 illustrates the sample issue margins and support

vectors. Additional data points do not contribute to the determination of the decision

surface [36].

It seems good to maximize the margin because the points close the decision surface

represent very uncertain classification decisions. The classifier will be almost 50%

likely to decide any way. A classifier with a big margin does not make choices on

classification with a small level of certainty. This provides you an overall safety margin

for classification; there is no misclassification due to a minor mistake in measuring.

Figure 2.2 : Support Vector Machines for Classification.

For formalize Support Vector Machines; an intercept term d and a hyperplane decision

normal vector ~w, perpendicular to the hyperplane, can define a decision hyperplane. In

the machine learning literature, this vector is commonly called the vector of weight.

We specify the intercept term d to choose from all the hyperplanes perpendicular to the

normal vector. Since the hyperplane is perpendicular to normal vector, the ~wT~x = −d

is satisfied in all points~x on the hyperplane. Now suppose we have a set of data points

D = {(~xi,yi)} for each member to be paired with a point ~xi and a class yi. For SVM

the two data classes are always called +1 and−1 (instead of 1 and 0); instead of being

folded in to a weight vector, the intercept term is always expressly represented d. The
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Figure 2.3 : The Margin of One Point and a Boundary of Decision.

linear function will:

f (~x) = sign
(
~wT~x+d

)
(2.1)

We are sure that an item is classified if it is far from the limit of decision. The functional

margin of the ith instance ~xi with regards to a hyperplane 〈~w,d〉 is defined as the

amount yi
(
~w1~xi +d

)
for a certain data set and choice hyperplane. With regard to the

decision surface, the functional margin of a data set is double that of one point in the

data series with a minimum functional margin (the factor of 2 is measured across the

entire range, like in Figure 2.3).

2.2.4 Multilayer perceptron

Multilayer perceptrons (MLPs) are neural feed-forward networks with standard

algorithms of backpropagation. They are supervised, so they need to be trained. If

it is known how the data is converted to the desired result, it can be widely used to

classify the pattern. Using one or two hidden layers, any input-output map is almost

predictable. In hard problems, they were shown to estimate the efficiency of ideal

statistical classifiers. Most apps in neural networks include MLPs [37].
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The units each execute a biased weighted total of their outputs and proceed through

a transfer function to generate their output, and the units are structured in a layered

feed-forward structure. Therefore, the network has a straightforward definition as an

input-output model, with the model’s free weights and biases. Such networks can

design almost random complexity features, which determine the amount of layers

and units in each layer. Important problems in Multilayer Perceptrons (MLP) layout

include the number of hidden layers and the number of units in these layers. This

multilayer network has various descriptors: MLP, neural feed-forward networks,

artificial neural networks, back-prop neural networks [38]. Figure 2.4 shows the

general structure of the MLP algorithm. Let us define the input, output, hidden units

mentioned on the figure. First, to generalize neural networks by implementing a

number of fixed nonlinear transforms φ j to input vector~x. Single output network will

be:

y(~x,~w) = g

(
M

∑
j=1

w jφ j(~x)

)
(2.2)

g is nonlinear activation function like sigmoid. If φ j(~x) features are fixed and

non-adaptive, they can sometimes be linked to as basic functions. Using such functions

expands the class of discriminating features available. Our objective is to explore how

to adapt these basic functions: and have their own parameters that can be measured

instantly from a training data set. First layer includes M linear d dimensional inputs

(shows in Figure 2.4):

b j =
D

∑
i=0

w(1)
ji xi, j = 1,2, . . . ,M (2.3)

As before, x0 = 1, with its weights equal to the biases. b j quantities are called

"activations", and w(1)
ji parameters are the weights. The superscript ’(1)’ shows the

network’s first layer. Every activation is then converted by nonlinear activation g,

normally a sigmoid:

z j = h
(
b j
)
=

1
1+ exp

(
−b j

) (2.4)

The z j inputs equal to the base function inputs in Equation (2.2). In the scope of

neural networks, the quantities z j are defined as the output of hidden units so-called

because they have no problem-specified values or target values used during training.

The second layer contains a linear combination of the inputs of the concealed units in
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Figure 2.4 : Multi Layer Perceptron (MLP) Network Diagram with Two Weight
Layers.

order to activate the output K units:

ak =
M

∑
j=0

w(2)
k j z j k = 1,2, . . . ,K (2.5)

z0 = 1 which matches the bias. The second part of the neural network is the conversion

parameterized for weights w(2)
k j . A sigmoid may be used to transform the output units

with an activation function:

yk = g(ak) =
1

1+ exp(−ak)
(2.6)

Or a "softmax activation function" for multiclass problems:

g(ak) =
exp(ak)

∑
K
`=1 exp(a`)

(2.7)

These equations can be combined to describe the general equation describing the

forward propagation via the network and how an output vector, given its weight

matrices, is calculated from an input vector [39] where ykis:

yk = g

(
M

∑
j=0

w(2)
k j h

(
D

∑
i=0

w(1)
ji xi

))
(2.8)
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2.2.5 Linear discriminant analysis

Linear Discriminant Analysis is methods of classification and reduction of

dimensionality that can be understood from two points of view. The first of these

is a probabilistic interpretation, and the second is due to Fisher’s more methodical

approach. The first knowledge of the LDA assumptions is helpful. The second

knowledge of how LDA reduces dimensions enables for stronger comprehension [40].

LDA provides the following properties:

• LDA considers the data to be Gaussian. In particular, it presumes that all classes

have the same matrix of covariance. In the dimensional subspace of K − 1

LDA discovers linear decision boundaries. It is not appropriate, therefore, if the

independent variables are interacted in a higher order.

• LDA is suitable for multiclass issues, and should be used with attention when the

distribution of classes has been unbalanced, as priors from the observed numbers

are calculated. Observations are therefore rarely classified into rarities.

• LDA can also be used as a technique for reduction of dimensionality as with PCA.

Note that LDA’s transformation is fundamentally distinct from PCA, as LDA is a

supervised method considering the results.

2.2.6 Quadratic discriminant analysis

Quadratic Discriminant Analysis is an LDA version in which each class of findings

estimates a single covariance matrix. QDA is especially helpful when it is known

beforehand (prior) that each class has separate covariances. QDA is disadvantageous

because it can not be used as a method for dimensional reduction [40].

2.2.7 Logistic regression classifier

The aim of binary logistic regression is to develop a model,which can decide binarily

on the class of a future experiment. Consider a single input event~x, which represented

by a vector of features [x1,x2, . . . ,xn] The output of the classifier y can be 1 (i.e., the

observation is a class member) or 0 (the observation is not a class member). We’d like

to know the probability that P(y = 1|~x) is a class member [41].
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Figure 2.5 : Sigmoid Function [2].

Logistic regression resolves the classification problem by learning a vector of weight

and a bias term from a training set. Each wi is a real number and linked with one

of the input features xi. The weight wi shows how significant the input feature is to

the classification decision, and can be either positive (the feature is correlated with

the class) or negative the feature is not correlated with the class). To decide on a test

instance - after learning the weights in training the classifier first multiplies each xi

by its weight wi, sums up the weighted features, and adds the preference term b. The

subsequent single digit z represents the class weighted sum of proof.

z =

(
n

∑
i=1

wixi

)
+b (2.9)

But note that nothing at Equation (2.9) forces z, i.e., to lie between 0 and 1. Since

weights are real value the output could be even negative ; z ranges from −∞ to ∞. In

fact, the output is negative. We transfer z through sigmoid, σ(z), to create a probability.

The sigmoid function, also known as the logistic function, gives the logistic regression

its name because it looks like an s. The sigmoid has that equation and function shown

in Figure 2.5.

y = σ(z) =
1

1+ e−z (2.10)

If the sigmoid is applied to the weighted function amount, we receive a value between

0 and 1. We want to know parameters (meaning ~w and b) that create ŷ as close as

appropriate to the real y. This needs two parts. The first is to measure the present
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label’s proximity to the actual label y. The difference between system output and

actual output, and the loss function or cost function is known as this distance loss. The

loss function (cross-entropy loss) frequently used for logistic regression and neural

networks. Secondly, we need an optimization algorithm to upgrade weights iteratively

so that this loss function is minimized. The default algorithm is gradient descent.

2.3 Ensemble Methods

In the last few decades, the computer intelligence and the machine learning community

has paid more attention to multiple classifiers systems, also called ensemble systems.

This attention has been well-deserved since ensemble systems in a broad range of

problem fields, and real-world applications have proved themselves to be very useful

and extremely versatile. Initially developed to reduce the variance thereby enhancing

the accuracy of auto -made decision-making system, ensemble systems have since

succeeded in tackling a range of machine learning issues such as selection of features,

reliability estimation, missing features, incremental learning, error correction, class

imbalance of data [42].

Data scientists have found the ensemble-based systems rather late and the benefits

of these systems for decision-making. Although the results of several decades of

extensive studies are now an essential component of our understanding and literature

on ensemble systems, ensemble-based decision making has actually taken place and

maybe part of our daily life as long as civilized populations exist. We, as humans,

use such systems so many times in our everyday life that perhaps it is secondary for

us. There are many examples. Indeed, the essence of democracy in which a group of

individuals vote to decide whether to elect an elected officer or to decide a new law is

based on the decision-making processes of an ensemble. In many nations, the judicial

system is also founded on ensemble-based decision making, whether based on a jury of

pairs or a jury of judges. Maybe more in practice, when we face an important choice,

we often check for the views of different "specialists" to assist us make this choice.

Before agreeing on a significant medical procedure, consult with several physicians,

read customer reviews before buying a product, call references before employing a

potential candidate are all examples of ensemble-based decision making.
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Since the primary objective of using ensemble systems is in reality like that of

our everyday life with such mechanisms, this is, by weighting different views and

combining them through a particular thought process to make a final choice, we

can build the trust that we make the right choice. Machine learning applications of

ensemble systems are numerous. These include estimating confidence, addressing

missing features, incremental sequence data learning, selecting the features, teaching

in non-stationary settings, and addressing imbalanced data problems.

2.3.1 Random forest classifier

Random forests [43] constitute a significant change in bagging, which builds up and

then averages an extensive collection of de-correlated forests. The performance of

random forests is very identical in many cases to boost, and it is easier for training and

tuning. Random forests are thus common and deployed in many packages.

The fundamental concept for bagging is to decrease the variance by averaging a

number of noisy but nearly unbiased models. Trees are perfect bagging candidates

because they are able to track complicated interaction constructions in the data and

have comparatively low bias when adequately large. Because the trees are notable

for their noise, the average is handy. Furthermore, since every tree produced in the

bagging process is distributed identical, the average B expectations of these trees are

identical to those of each. This implies that the distance between bagged trees is the

same as that of individual trees, and the only chance of enhancement is by reducing

variance. In comparison to boosting, trees are grown dramatically to prevent bias, so

they are not identically distributed [44].

On average, B identically distributed random values, with σ2 variance respectively,

have 1
Bσ2 variance. Whether the variables are identically distributed with positive

pairwise correlation, the variation of the average is (identically distributed):

ρσ
2 +

1−ρ

B
σ

2 (2.11)

As B rises, the second term fades, but the first stays, and thereby the magnitude of

bagged trees pair correlation limits the advantages of averaging. The concept is to

enhance variance reductions in bagging in random forests by decreasing correlations
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between trees without too much-increased variance. This is done by randomly

selecting the input variables in the tree growing method.

2.3.2 Bagging

Bagging [45] is the bootstrap [46] method for the ensemble which, by training every

classifier in a random distribution of the set, creates individuals for the ensemble.

Every training set for a classifier is produced by random drawings with substitute N

examples where N is the size of the original training set; many of the original examples

can be replicated while others can be abandoned in the resulting training set. With a

distinct random selection of the training set, each independent classifier in the selection

is created [47].

In statistics, the bootstrap is an essential re-sampling instrument. The fundamental con-

cept behind the bootstrap is that, given the training data D= {(~x1,y1) , . . . ,(~xn,yn)} , i=

1, . . .n, we can assess actual F of so-called empirical distribution F̂ . The feature

empirically is just [48]:

PḞ{(X ,Y ) = (~x,y)}=
{ 1

n if (~x,y) = (~xi,yi) for some i
0 otherwise

(2.12)

This is a discrete distribution of probabilities, which gives equivalent importance (1/n)

to every learning point observed. A test bootstrap m from the data is (~xi
∗,y∗i ) , i =

1, . . .m, in which each (~xi
∗,y∗i ) is evenly taken from (~x1,y1) , . . .(~xn,yn) with substitute.

Data from a training (~xi,yi) , i = 1, . . .n , bagging compares the predictions of a

bootstrap sample of classification trees. In the case of b = 1, . . .B we take n samples of

boostraps
(
~xi
∗b,y∗bi

)
, i = 1, . . .n specimens.And on this sampled training data set we

fit a f̂ tree ,b ranking tree. Lastly we simply bring the most predicted class to rank the

entry~x ∈ Rp:

f̂ bag(x) = argmax
k=1,...K

B

∑
b=1

1
{

f̂ tree ,b(x) = k
}

(2.13)

Breiman [45] demonstrated the effectiveness of the bagging of "unstable" learning

algorithms where tiny modifications of the training set lead in significant predictive

modifications. Breiman stated to be cases of unstable learning algorithms in neural

nets and decision trees.
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2.3.3 Extremely randomized trees

In such an Extremely Randomized Trees ensemble, every tree is built by considering

a random number of split applicants at each node. More specifically, a random group

of features is chosen, and a random splitting point is selected for each feature. The

applicant with the highest value for the criterion split is selected from these applicants.

ERT has shown that the more populous Random Forests have a stronger predictive

performance.

Any hierarchical clustering technique could produce a similar encoding at this stage.

But, the use of ERTs proves useful. Firstly, ERT is a technique of tree ensemble and is

thus resistant to tiny data disturbances. Due to the automatic choice system, it is also

resistant to non-informative or noisy features. The produced illustration of the feature

is thus regarded as less noise version [49].

Furthermore, a further benefit is that, without preprocessing, the tree assemblies

can handle numerical and nonnumerical numbers, making the technique more

straightforward and stable. Furthermore, it provides a natural manner to address

missing values, as opposed to several other approaches, by spreading cases with a

missing split value across all branches or by choosing a branch to follow by randomly.

Another benefit of the approach proposed is that this is parameters-free and inductive.

The model can withstand new data without the need for a training set after training.

This makes it possible to use concurrent online systems and systems that process

large-scale data.

The ERT algorithm constructs an array of unpruned decision trees or regression trees

by the standard top-down operation. His two primary distinctions with other tree-based

ensemble techniques is that he splits nodes by selecting a random cut-point, and utilizes

the entire training sample (rather than a copy of a bootstrap) to develop the trees.

Algorithm lists the operation for splitting ERT for numeric attributes. It has two

parameters: a minimum sample size for splits, K, the number of features chosen at

random at each node; and a minimum nmin. It is used multiple times to produce

an ensemble (we indicate by B the amount of forests of this ensemble) through the

(complete) initial training sample. The trees’ predictions are summed up to produce

the final forecast by majority vote in problems of ranking and arithmetical average in
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problems of regression. From the standard of the bias variant point of perspective, the

rationale behind the Extremely Randomized Trees technique is to decrease variance

more highly than the weaker randomization systems used for the other techniques by

specific randomization of the point and the attribute together with average set. To

decreasing biases, the use of the entire initial training sample is supported instead of

bootstrap replicas [50].

K, nmin and B parameters have various impacts: K determines the power of the choice

of the features, nmin the power of the average noise yield and nmin the force of the

bias reduction of the aggregation of the ensemble model. These parameters may

be adjusted manually or automatically (e.g., through cross-validation) for particular

problems. However, we tend to use default configurations to maximize the computing

benefits and method independence.

2.3.4 AdaBoost

Boosting originates from Kearns and Valiant’s established theoretical framework for

the study of machine learning called "PAC" ("Probably Approximately Correct") [51].

They were the first to question whether a "weak" learning algorithm, mildly stronger

than random guessing, could be a building block for a generally precise "strong"

learning algorithm.

AdaBoost is a machine learning algorithm first developed by Freund and Schapire

[52]. It is adaptive in the way that classifiers coming in next for execution are

adjusted according to those cases that were incorrectly classified by prior classifiers.

It is susceptible to non-required set noisy data and information. However, in

some circumstances, this algorithm may be less sensitive to fixed memory input

compared to many other algorithms. AdaBoost constantly calls the weak classifiers,

performing a sequence of k = 1, . . . ,K classifiers. In each execution, "weight"

calculated by incorrectly classified instances increases (or, alternately, weights of each

implementation). In each execution, "weight" computed by incorrectly categorized

instances rises (or weights decreases from each properly classified example). New

classifiers will only focus on the instances incorrectly classified by prior classifiers.

This meta-algorithm can be used together to enhance efficiency by using a variety of

other algorithms [53].
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Figure 2.6 : AdaBoost Algorithm.

In our setting, we get N training points (~xi,yi) where~xi ∈ ~X and yi ∈ {−1,+1}. On

round m, where m = 1,2 . . . ,M, we fit a weak classifier Hm(~x) to a data set variant

reweighted by some vector Wm. We then calculate our selected learner’s weighted

misclassification rate and update our next round weighting metric wm+1. In reality,

one sometimes limits the number of boosting round as a form of regularization. The

last classifier is the weighted linear combination of classifiers generated at each stage

of the algorithm [54].

AdaBoost has many benefits in practice. It is quick, simple, and programmable.

AdaBoost has no parameters to be individually adapted (except steps number K). In

contrast, real boosting performance in a specific issue depends mainly on data and a

weak learning algorithm. Boosting can lead in accordance with the theory to incorrect

outcomes if the data for training are insufficient, the weak hypothesis is very costly, or

the weak hypothesis is too weak.

2.3.5 Gradient boosting

A gradient-based formula of boosting techniques was derived from linking up the

statistical structure [52, 55, 56]. The gradient boosters were referred to in this

formulation of boosting techniques and the matching model. The fundamental

justification of the model hyperparameters was given by this framework as well as

the methodological foundation for further improvement of the model.
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The training process adapts consecutively to new models for the accurate estimation

of the response variable in gradient boosting systems or simply in GBMs. The main

concept behind this algorithm is for the new base learners to be linked as closely as

the whole ensemble to the adverse gradient of the loss function. The loss features

may be random, but the training method will lead to successive error-fitting if an error

function is the standard squared-error loss. In particular, researchers are responsible

for choosing the loss function, with so far a wide range of loss functions and the ability

to implement a custom-made loss [57].

This strong flexibility makes the GBMs extremely adaptable to every task driven by

data. It gives a ton of liberty to model design and makes it a problem of test and

error to choose the most suitable loss function. Although it is comparatively easy to

introduce boosting algorithms that enable you to experiment with distinct model design

in the practical apps, GBMs were successful in numerous problems related to machine

learning and data mining [58, 59].

2.4 Decision Fusion Algorithms

The aim of ensemble methods/decision fusion is to combine different classifiers into

one meta-classifier, which performs better than every single classifier. For example, if

we have collected predictions from 5 oracles, ensemble/fusion approaches will permit

us to combine the five oracles strategically with a prediction that is more accurate and

robust than each oracle’s predictions [60].

The strategy of combining classification systems is one of the key components of an

ensemble system. In our study, we call that classifier combination as decision fusion.

Combination rules are often divided into two groups: (1) trainable vs. non-trainable

(2) rules apply to class labels to class-specific continuous outputs [42]. The following

is discussed, the weighted majority voting, as the parameters are instantly accessible

when classifying, is an example of such untrained rules. However, ADF algorithm

classifiers weights change in training and test phase.

2.4.1 Majority voting

There are three versions of majority voting, where the ensemble choose the class:

• Class on which all classifiers agree (unanimous voting).
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• Class predicted by at least one more than half the number of classifiers (simple

majority).

• Class that receives the highest number of votes, whether or not the sum of those

votes exceeds 50% (plurality voting or just majority voting).

We are assuming that from classifier outputs, only class labels are available. Let’s

define decision of the mth classifier as Cm,k ∈{0,1}, m= 1,2, . . . ,M and k = 1,2, . . . ,K,

where M is the number of classifier and K is the number of classes. If mth classifier

choose class ωk, then Cm,k = 1, and 0, otherwise. The decision of the ensemble for

plurality voting could be defined as follows; choose class ωk, if

M

∑
m=1

Cm,K =
K

max
k=1

M

∑
m=1

Cm,k (2.14)

It is easy to show that majority voting is an ideal combination rule according to minor

assumptions:

• We have an odd number of classifications for a two-class issue.

• For every example~x, p is the probability for every classifier selecting the right class.

• The classifiers’ classes are independent.

Then plurality and majority vote are identical, and an ensemble makes the right

decision when the right label is chosen at least by M/2+ 1, and the floor function

returns the largest integer less or equal to its argument [42].

2.4.2 Weighted average based decision fusion

If we have proof that some specialists are more skilled than others, it may enhance the

general efficiency by weighing up the choices of those skilled professionals more than

plurality votes can achieve it. Let’ denote the decision of hypothesis hm on class ωk as

Cm,k, such that Cm,k is 1, if ht selects ωk and 0, otherwise. Also, suppose that we have a

way to estimate each classifier’s future performance, and assign weight wm to classifier

hm in proportion to its estimated performance. According to this note, classes whose

decisions are combined by weighted majority vote will be selected K, if:

M

∑
m=1

wmCm,K =
K

max
k=1

M

∑
m=1

wmCm,k (2.15)
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This means, when the total weighted vote that ωk receives is greater than any other

class’s total vote. In order to simplify interpretation, the weights can be standardized

so that the total 1; however, the result of weighted majority voting does not change

standardization.

The predicted class probabilities could be advantageous if the classifiers in our fusion

are good-adjusted instead of the class labels for majority voting [60]. The modified

weighted majority voting for class labels can be written as follows:

M

∑
m=1

wmCm,K =
K

max
k=1

M

∑
m=1

wm pm,kCm,k (2.16)

Here the pm,k is the mth classifier for class k is a predicted probability. Note that, the

classifier’s output must give the class probabilities.

2.4.3 Adaptive decision fusion algorithm

The online Adaptive Decision Fusion algorithm [20] was developed based on the

POCS [61] algorithm. This algorithm is an online adaptive way to update each sample

according to the amount of error that aims to purify the performance of the decision.

Toreyin and et. al. developed the POCS algorithm to reveal the EADF and ADF

algorithms. The EADF algorithm is an entropy-based online adaptive decision fusion

algorithm. These algorithms were used to increase the performance of smoke detection

in forest fires and achieved higher performance than similar algorithms. He used it for

anomaly in his study. We will develop this algorithm for multi-class multi-classifier

[20].

Assume that the combined algorithm consists of M multiple classifiers: C1,C2 . . . ,CM

Ci(~x,n) is the decision value for ~x input in any n step. Ci(~x,n) shows which class has

been selected for ith classifier. For intrusion detection case, that is the type of attack.

The~x input varies according to the algorithm and the field to be used. For our field that

input will be a traffic flow that occurs as a result of an action on the network. Four sub

classifiers (M = 4) used to determine the attack interference in Section 4. The type of

attack determined by each classifier is expressed in Ci(~x,n) of one of the classifiers.

The decision vector is ~C(x,n) = [C1(~x,n),C2(~x,n) . . . ,CM(~x,n)]T , and the elements

represent class selection in step n for the ~x input. Classifier weights ~w(x,n) =

[w1(~x,n),w2(~x,n), . . . ,wM(~x,n)]T shows weights at n step. For clarity, we remove x
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from ~w(x,n). With this decision fusion, the result of class will be:

ŷ(~x,n) = ~CT(~x,n)~w(n) = ∑
i

wi(n)Ci(~x,n) (2.17)

We can state that y(~x,n) as true or correct result. Error for ~x input in n step can be

expressed as e(~x,n) = y(~x,n)− ŷ(~x,n). The advantage of this method compared to

other methods is that weights can be updated with feedback based error. The weights

of the sub-algorithms that make the wrong decisions are reduced in every step. Another

advantage of this method is that it does not make any assumptions about how data is

distributed. The distribution of data does not affect the result [20].

For finding weights based on projections we will first review the weight update

scheme based on orthogonal projection. In ideal case, weighted sub-algorithm decision

values/classes should be equal to the decision value of the oracle/real value:

y(~x,n) = ~CT (~x,n)~w (2.18)

That represents a M-dimensional space hyper-plane, RM. Hyper-planes in RM are

closed and convex. ~CT (~x,n)~w(n) may not be equal to y(~x,n) at instant n. In Toreyin

approach, projection of the current weight vector ~w(n) onto the hyperplane represented

by Equation 2.18 determines the next set of weights. The orthogonal weight vector

~w(n+ 1) projection onto the y(~x,n) = ~CT (~x,n)~w hyperplane is the closest vector to

the ~w(n) vector on the hyperplane. Let’s formulate the problem as a problem of

minimization:

min
~w∗
‖~w∗−~w(n)‖2 subject to y(~x,n) = ~CT (~x,n)~w∗ (2.19)

Using Lagrange multipliers, the solution can be obtained. The solution is called

the mapping solution for metric projection. However, we use the term orthogonal

projection because it is orthogonal to the hyperplane that the line passes through ~W ∗

and ~w(n). If the next set of weights is identified as ~w(n + 1) = w∗, the following

iteration can be acquired:

~w(n+1) = ~w(n)+
e(~x,n)

‖~C(~x,n)‖2
2

~C(~x,n) (2.20)

Therefore the vector of the projection is calculated by Equation 2.20. Note the

Equation 2.20 is the same as the normalized least mean square (NLMS) algorithm
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with µ = 1 update parameter. Convergence should be satisfied in the NLMS algorithm

0 < µ < 2 [62]. According to the theory of projection on convex sets (POCS), when

there is a finite number of convex sets, repeated cyclic projections converge on these

sets to a vector in the intersection set [20] there are an innumerable number of convex

modules. They propose the use of an online adaptive algorithm convex combination

of projections in the latest q sets. The next section provides the algorithm’s block

projection version that covers the case when an infinite number of convex sets exist.

Another hyperplane based on the new decision values ~C (~x,n) of sub-algorithms is

defined in RM when a new data entry comes.

y(~x,n+1) = ~CT (~x,n+1)~w∗ (2.21)

This hyperplane is not typically the same as the hyperplane y(~x,n) = ~CT (~x,n)~w.

The following set of weights, w(n + 2), is determined with the w(n + 1) projected

onto Equation 2.21. Where a limited number of hyperplanes exist, iterate weights

that converge on the hyperplanes by cyclic projections. Figure 2.7 summarizes the

pseudo-code of the orthogonal projections into the algorithm based on the hyperplane

[20].

Figure 2.7 : Online Adaptive Decision Fusion Algorithm Diagram.
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In our problem we will need to develop the algorithm specified in proposed method,

since multi-class classifier will be used. Figure 2.7 shows the flow diagram of the ADF

algorithm. The current algorithm is a two-class algorithm, and the output is calculated

by giving if ŷ(~x,n) ≥ 0 1 if not -1. In our approach, the algorithm output must be

the closest class to ŷ(~x,n). Assuming that the classifier Ci(~x,n) have K classes and it

must be a value of y(~x,n) = {ω1,ω2, . . . ,ωK} and every Ci(~x,n) have ω1,ω2, . . . ,ωK

classes to find the minimum distance and predicted class for Ci(~x,n) is ωi. For finding

predicted class by decision fusion:

y(~x,n) = argmin(|C1(~x,n)−ωi |, |C2(~x,n)−ωi | . . . , |CM(~x,n)−ωi |) (2.22)
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3. PROPOSED METHOD

3.1 Proposed Method

Firstly CICIDS2017 data set was made available for model training with data

preprocessing techniques which referred in section 3.3. At this step, deleting the

wrong and missing data, removing unnecessary columns, correcting the wrong data,

grouping categorical data, and filling missing values operations were performed. The

detailed procedures are specified in the relevant section.The general flow diagrams of

the proposed method are shown in Figures 3.1 and 1.1.

Figure 3.1 : Flow Chart of the Proposed Method.

3.1.1 Step 1: anomaly detection

For the first step anomaly detection, all attack types were classified in a single class

and re-labeled as abnormal (-1). Normal/benign data is labeled as (1). Table 3.1 shows

regrouped data set. This data set was divided into 25 % test and 75% training sets while

maintaining class weights. The test set was in no way used for training, validation, and

finding the best hyperparameter. The results indicated are the studies on the test set.

Step 1 is divided into two sub-steps. In the first step, various feature selection methods
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Table 3.1 : CICIDS2017 Data Set Reclassified for Normal/Attack Classes.

Labels Number of Instances % of in Total Instances.
Normal 2271320 80.319
Attack 556556 19.681
Sum 2827876 100.000

performed on the data set. Moreover, the best features were selected on F1-score as

the performance metrics. In the second sub-step, experiments were performed out with

different machine learning algorithms for detecting anomaly/attacks.

For the first step, 12 supervised learning classifiers were tested. Firstly, a list

of possible hyperparameters was created for each classifier, and the best hyperpa-

rameters were determined from the scikit-learn library using randomizedsearchcv.

Cross-validation was performed using cv = 5. That is, 15% of the data set was used

as validation/development set. Since class weights were different (imbalanced), the

best performance was determined according to F1-score. HPC (High-Performance

Computing) was used because the data set is large (2.8 million rows, up to 70 features)

and the parameter set is large. "dask" and "ipyparallel" "joblib" libraries were used for

parallel programming. After finding the best hyperparameters for each classifier, the

models were trained and performed on the test data set. The above operations were

performed for each classifier at step 1 and step 2. As a result of step 1, the classifier

that provides the best performance was selected and used for anomaly detection. This

classifier was determined whether there is intrusion/attack on the network. The reason

for using only one classifier in this step is to achieve high performance with a single

classifier already and to prevent possible delays in using multiple classifiers in heavy

network traffic.

3.1.2 Step 2: attack type detection

In the second step, we aim to determine the type of attack/intrusion. For this purpose,

only the intrusion/attack data was used. Normal/benign traffic is continued without

entering this step. Abnormal traffic was getting into this step. For this purpose, only

the intrusion/attack data was taken from the data set. The class labels are the labels

specified in the data set description. Table 3.2 shows the classes, number of instances,

and class weights. In this step, 12 classifiers were used for the test process. Data sets

were distributed in 25% test and 75% training considering class weights — the best
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Table 3.2 : CICIDS2017 Data Set Classes for Step-2.

Labels Number of Instances % of in Total Rec.
DoS Hulk 230124 41.348
PortScan 158804 28.533
DDoS 128025 23.003
DoS GoldenEye 10293 1.849
FTP-Patator 7935 1.426
SSH-Patator 5897 1.060
DoS slowloris 5796 1.041
DoS Slowhttptest 5499 0.988
Bot 1956 0.351
Web Attack - Brute Force 1507 0.271
Web Attack - XSS 652 0.117
Infiltration 36 0.006
Web Attack - Sql Injection 21 0.004
Heartbleed 11 0.002
Sum 556556 100.000

Table 3.3 : CICIDS2017 Data Set Attack Classes Reclassified for Step-2.

New Labels Old Labels
Number of
Instances

% of in To-
tal Rec.

Normal Benign 2271320 80.319
Botnet Bot 1956 0.069
BruteForce FTP-Patator, SSH-Patator 13832 0.489

DosDDos
DDoS, DoSGoldenEye, DoS
Hulk, DoS Slow- httptest,
DoS slowloris, Heartbleed

379748 13.429

Infiltration Infiltration 36 0.001
PortScan PortScan 158804 5.616

Web Attack
Web Attack – Brute Force,
Web Attack – Sql Injection,
Web Attack – XSS

2180 0.077

hyperparameter determination, cross-validation operations also performed in this step.

The output of this step is to determine the type of attack for each classifier. Besides,

this data set is imbalanced and contains very few examples of some classes/attacks.

Also, some types of attack have similar characteristics. Therefore, as shown in Table

3.3, some classes/attacks are reclassified. The purpose of this operation, achieving a

higher attack detection rate. In this step, four classifiers giving the best F1-score is

selected for step 3 to be used in decision fusion.
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3.1.3 Step 3: decision fusion

In this step, the decision fusion process was applied at the output of step-2 selected

classifiers. In this step, three different methods were used for comparison. In the

first method, the result decided by the majority voting that the class with the most

votes from four classifiers. In the second method, the class with the highest weighted

average probabilities is selected. The Adaptive Decision Fusion method, which update

classifiers weights dynamically, was used as the last method.

3.2 Performance Metrics

Our model performance evaluation is based on the following measurements.

Confusion Matrix is shown in Figure 3.2 and definition of them:

• TP: True Positive (Correct Detection) The attack/anomaly data classified as

attack/anomaly

• FP: False Positive (Type-1 Error) The benign/normal data classified as

attack/anomaly.

• FN: False Negative (Type-2 Error) The attack/anomaly data classified as

benign/normal.

• TN: True Negative (Correct Rejection) The benign/normal data classified as

benign/normal.

Accuracy is a metric that measures the overall detection and false alerts percentage of

IDS model that represents and is calculated according to the overall success rate of any

IDS.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.1)

The detection rate (DR) is the proportion of properly classified malicious instances,

which are also called the true positive rate (TPR) or sensitivity.

DetectionRate(DR) =
T P

T P+FN
(3.2)

The True Negative Rate (TNR), also called the specificity, is the ratio of normal

instances to the total number of normal instances properly classified and shall be
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Figure 3.2 : Confusion Matrix.

calculated as:

T NR =
T N

T N +FP
(3.3)

The False Positive Rate (FPR) is the proportion of normal instances that are classified

as attacks in the total number of normal instances and is calculated in the following:

FPR =
FP

FP+T N
(3.4)

The False Negative Rate (FNR) is a ratio of the total number of attack instances

classified as:

FNR =
FN

FN +T P
(3.5)

In order to estimate to what extent they are acert in the detection of malicious activities,

IDS approaches are assessed using TPR-FPR or specificity-sensitivity measure. A

perfect IDS approach could have 100% DR, while 0% FPR reflects the absence of any

error on all attack instances. This is however very difficult and shows how best to

achieve performance in a real environment [10].

Ultimately a preferred measure for assessing IDS approaches is the F-measure

criterion. It is a harmonic reminder and accurate mean, i.e., a statistical role for the

accuracy assessment of a system through its accuracy and recall given as:

F1−Score = 2× Precision×Recall
Precision+Recall

(3.6)

where precise are a fraction of the actual positive values which, as given in the

equations 3.7 and 3.8 respectively, recall the actual number of positive values that
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are detected correctly.

Precision =
T P

T P+FP
(3.7)

Recall =
T P

T P+FN
(3.8)

Similar to the True Positive Rate- False Positive Rate measure, when the precision and

recall of an IDS approach to 100%, as the F-measure is the maximum, a 0% FAR and

100% DR are produced.

3.3 Data Preprocessing

The CICIDS2017 data set is a new generation data set that is well prepared and

presented. However, this data set contains missing or incorrect values. There are

also some problems was occurred when converting pcap files to csv files. Various data

preprocessing has been carried out for training and testing operations.

1. Remove socket information: The IP and Port numbers of the source and target hosts

are included in the network as an original data set. In order to provide unbiased

identification, it is essential to delete such data if such data can result in exaggerated

practice for this socket data. However, it is essential that the classifier learns about

the features of the packet itself so that a host with comparable packet data is filtered

out regardless of its socket details.

2. Remove White spaces: The data set contains some class labels which contain

white space. Such white spaces result in different classes, since the actual value

is different from other labels in the same class of tuples.

3. Remove bad characters: The character "–" (Unicode Code 8211) used to identify

subtypes of web attacks should be replaced by the "- " (Unicode Code 45) since

utf-8, the default codec in the pandas library, doesn’t recognize this by the label

feature.

4. Fill "Flow Bytes/s" feature n.a values with class mean: Flow Byte/s feature have n.a

(not available ) values. NA values of this feature are filled with the average value of

each class.
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5. NaN and infinity values: There are 2,867 infinite, NaN value records in the data

set. The label of all of these records is BENIGN, which is normal. Therefore, these

records have been deleted.

6. Data Normalization: Numerical values in the data set exist in very different value

ranges. Too much of these intervals may cause machine learning algorithms not to

work correctly and do not work well. Data normalization has been performed to

make machine learning algorithms work better, and even some of them can work.

Standard scaler is used for this. This data ensures that the average of each feature

(each column) is 0, and the standard deviation is 1. Note that same scaler was used

for training and testing data set.

3.4 Feature Selection

Feature Selection is a crucial component in the evaluation of workflow data and

machine-based learning models. When elevated dimensionality of the data is

presented, models generally shock because with the amount of features the training

duration rises exponentially. The risk of overfitting with more features is higher

than less features. Feature selection techniques help with these issues by decreasing

the size of information without much loss. It helps to understand the features and

their significance. In this research, we use ANOVA F-score based univariate feature

selection. F-test is a statistical test for comparing models and for examining whether

the difference between models is noticeable. F-test is helpful when choosing features

as we become aware of the importance of each element in model improvement. How

ANOVA F-score is calculated is shown in equations 3.10 and 3.11.

F =
between-group variability
within-group variability

(3.9)

between−group− variability =
K

∑
i=1

ni
(
Y i.−Y

)2
/(K−1) (3.10)

within−group− variability =
K

∑
i=1

ni

∑
j=1

(
Yi j−Y i

)2
/(N−K) (3.11)

Apart from this, the best features can be selected after the model is created with

"coef" and "featureimportances" of liner models that are penalized with L1 error or

classifiers using decision trees. For decision tree-based features importance random

forest classifier is used when importance weights of features are calculated. This
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algorithm creates a decision-forest. In this decision forest, each feature is given a

weight of importance as to how useful they are in the construction of the decision-tree.

When the process is finished, these importance weights of features are compared and

sorted [63]. The sum of the importance weights of all the properties gives the total

importance weight of the decision tree. The comparison of the score of any feature to

the score of the whole tree gives information about the importance of that feature in

the decision tree.
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4. DATA SET

4.1 CICIDS2017 Data Set

In late 2017 the CICIDS2017 data set [64] was released by the Canadian Institute for

Cybersecurity (CIC), containing benign and commonly occurring up-to-date attacks.

The B-Profiled system, which is used for the abstract behavior and generation of

benign natural background traffic in human interactions and CICFlowmeter used [65],

for extracting features from the created data set. The most common attack on the

2016 McAfee report (Dos, DDoS, Web Attacks (BruteForce, SQL, XSS), Heart Bleed,

Infiltration and PortScan) contains more than 80 characteristics derived from the

network traffic generated.

The data set is used to create the complete network topology that includes various

operating systems (Windows Server, Ubuntu, Windows 8.1/10, MAC OSX) and

network devices (Modem, Switch, Firewall, Router). The distribution and number

of record per attack in the CICIDS2017 data set shows in Table 4.1. It includes

normal traffic (BENIGN) which representing 80% of the size of the data set (2,273,097

records), and 14 types of attacks (557,646 records) representing 20% of data set. The

data set offers a range of recent and common attacks which are helpful for making an

efficient and realistic evaluation [66]. CICIDS2017 data set contains 2,830,743 rows

separated on 8 files. Each record has 79 features. Each record of CICIDS2017 is

labeled as Benign or attack types (14 attack types). Table 4.1 shows the percentage of

different attack type and Benign [9]. The CICIDS2017 data set includes benign/normal

activity data, and the most-recent recent attacks commonly encountered data that

resemble a real network environment. Table 4.2 shows the date of creation of this

traffic and what type of attacks were carried out. This data set also includes network

analysis results by using the CICFlowMeter tool, with labeled traffic flows based

on timestamps, source IP’s, target IP’s, source/target ports, protocols and attacks

(CSV files). Also, Sharafaldin [64] aims to build realistic background traffic. In

order to profile the simulated behavior of human interacting and generate naturalistic
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Table 4.1 : CICIDS2017 Data Set Classes and Number of Records.

No Category Number of Records % of in Total Rec.
1 BENIGN 2273097 80,3004
2 DoS Hulk 231073 8,1630
3 DoS GoldenEye 10293 0,3636
4 DoS slowloris 5796 0,2048
5 DoS Slowhttptest 5499 0,1943
6 DDoS 128027 4,5227
7 PortScan 158930 5,6144
8 FTP-Patator 7938 0,2804
9 SSH-Patator 5897 0,2083
10 Botnet 1966 0,0695
11 Infiltration 36 0,0013
12 Heartbleed 11 0,0004
13 Web Attack Brute Force 1507 0,0532
14 Web Attack XSS 652 0,0230
15 Web Attack Sql Injection 21 0,0007

good background traffic, proposed B-profile system [5] has been used. For data set

generation, 25 users abstract behaviors based on HTTP, HTTPS, POP3, SSH was built.

In [67] shows the list of features of the data set.

This data set consists of a 5 day (3rd July - 7th July 2017) data stream on a network

created by computers using conventional operating systems such as Windows Vista / 7

/ 8.1 / 10, Mac, Ubuntu 12/16 and Kali. CICIDS2017 claims that it has to satisfy the

required data set for valid IDS data set.

• Anonymity,

• Attack Diversity,

• Complete Capture,

• Complete Interaction,

• Complete Network Environment (Network must include Firewall, Router, Servers,

Different O.S Clients, Modem, Switch etc.)

• Available Protocols (HTTP, HTTPS, POP3, SSL etc.)

• Complete Traffic,

• Feature Set,
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Table 4.2 : CICIDS2017 Data Set Capture Schedule and Attack Types.

Flow
Rec.Day
(WH)

Duration
CSV
Size

Attack Name
Flow
Count

Monday All Day 257 MB No Attack 529918

Tuesday All Day 166 MB
FTP-Patator,
SSH-Patator

445909

Wednesday All Day 272 MB

DoS-Hulk,
DoS-GoldenEye,
DoS-slowloris,
DoS-Slowhttptest,
Heartbleed

692703

Thursday Morning 87.7 MB
Web-Attacks
(BruteForce, XSS,
Sql-Injection)

170366

Thursday Afternoon 103 MB Infiltration 288602
Friday Morning 71.8 MB Bot 192033
Friday Afternoon 92.7 MB DDoS 225745
Friday Afternoon 97.1 MB PortScan 286467

• Metadata,

• Heterogeneity,

• Labelling

Description of classes:

• BENIGN: Normal Activity

• DoS Hulk: Generate high volume network traffic to a web server. By bypassing

caching engines usage of server resources hit the max and server could not serve.

• DoS GoldenEye: This is Layer 7 attack type. Known as HTTP Flood. It consumes

all available socket with put/get requests, and try to keep them an alive connection.

• DoS Slowloris: Works by sending several incomplete requests that connect to the

server and keep these connections open as long as possible, resulting in maximum

communication being utilized and thus normal communications being denied.

• DoS Slowhhtptest: This attack is designed to run out the server’s memory and CPU

by sending incomplete requests on the HTTP server to maintain such requests until

they are completed and later denied the server.
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• DDoS: Distributed Denial of Service(DDoS) attacks tries, by flooding the target

with traffic flows that operate in a group of hacked/zombie computers as a source

of attack traffic, to disrupt the normal traffic of the target server or network.

• PortScan: This attack is carried out using malicious techniques to scan port and

exploit detected vulnerabilities in network and server access.

• FTP-Patator: It is a kind of brute force attack which attempts to crack

FTP passwords (login information) with two methods, a dictionary attack or

generated passwords.

• SSH-Patator: It is a kind of brute force attack which attempts to crack

ssh passwords (login information) with two methods, a dictionary attack or

generated passwords.

• Botnet: The word Botnet is derived from the combination of the words "robot"

and "network." Cybercriminals use Malicious proprietary software to infect a large

number of users’ computer security, take control of each computer, and organize all

infected machines into a "bot" network that the criminal can manage remotely for

later attacks.

• Infiltration: The first step is to exploit security vulnerabilities in applications or to

send malicious files into network resources when attempting to attack.

• Heartbleed: The attack is directed at a software vulnerability in the popular

OpenSSL encryption software library that allows an attacker to directly obtain a

server memory block from the vulnerable server via a malicious heartbeat.

• Web Attack Brute Force: It uses several automated, consecutive programs to

create a wide range of passwords or PINs for getting access to the system.

• Web Attack XSS: Scripting Cross-site Attacks Refer to a website or web

application to inject malicious code into an attacker for access to a victim’s device

and therefore to direct the victim to malicious sites or to access his/her private

details.

• Web Attack Sql Injection: Refer to malicious SQL code for the web

site/application form manipulation of injection for access to secret information.
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5. EXPERIMENTAL RESULTS

The experiments are done in several computer environments. For developing the

models and proof-of-concept Windows 10 i5 64 bit 2.5 GHz, 16 GB RAM, SSD disk

is used. For model training, finding the best hyper-parameters and cross-validation,

UHEM (National Centre of High Computing) is used. Each node has 28 or 40 cores

Xeon CPU (Intel Xeon Gold 6148 v5, Intel Xeon E5-2680 v4) with 128 GB RAM

or 512 GB RAM and up to 10 nodes are used (280 cores, 1.2 TB RAM). In our

experiment, python (3.6), scikit-learn (20.03), numpy, pandas are used for building

the models.

5.1 Step 1 - Anomaly Detection Results

In this step, feature selection is made first. After the feature selection, 12 different

machine learning methods used for building models. These models tested separately.

For training, these models segmented data set used, which referred in the proposed

method. As shown in Table 5.1, accuracy and F1-scores increase when the number of

features increases. However, after 70 features, performance no longer increases, and

performance decrease. When we look at the confusion matrix in Table 5.3 for feature

selection, it is seen that FN (False Negative) samples are very high even if the results

are satisfactory. In IDS, FN (False Negative) means that traffic is an attack, but the

system accepts as normal traffic.The choice is made by taking the value of k = 70.

All other experiments similarly are used the same properties. The same feature was

not selected for each attack in the other steps. Even if practically done, it will not be

suitable for daily life. We can only use it to understand the characteristics of the attack.

Data set tested with two classifiers with select from model for feature selection. Tests

results for random forest and SVM are shown in Table 5.2. SVM results better, but note

that the number of features is higher than Random Forest Classifier. Also confusion

matrices of these tests are shown in Table 5.3 and 5.4.
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Table 5.1 : Anova F-Score Based Feature Selection.

Num.of
Features Accuracy Precision Recall F1-score Train(s) Test(s)
10 93.5606 90.8034 90.8034 91.3772 705.56 9.40
20 98.3367 98.2530 98.2530 98.2727 918.21 11.61
30 99.7332 99.7324 99.7324 99.7326 932.57 12.41
40 99.7512 99.7505 99.7505 99.7505 1045.88 12.26
50 99.7511 99.7503 99.7503 99.7506 1191.48 13.06
60 99.8838 99.8837 99.8837 99.8837 1258.42 14.11
70 99.8948 99.8948 99.8948 99.8948 1258.42 14.11
77(All features) 99.8925 99.8925 99.8925 99.8925 1205.41 14.17

Table 5.2 : Select from Model Based Feature Selection.

Num.of
Features Algorithm Accuracy Precision Recall F1-Score
23 Random Forest 99.6953 99.6993 99.6953 99.6961
34 SVM 99.7107 99.7145 99.7107 99.7114

Table 5.3 : Confusion Matrix of 23 features with Random Forest Classifier.

Actual Class
Predicted Class

Attack Normal
Attack 139035 104
Normal 2050 565780

Table 5.4 : Confusion Matrix of 70 features with Random Forest Classifier.

Actual Class
Predicted Class

Attack Normal
Attack 138820 319
Normal 425 567405

As in results of anomaly detection in Table 5.5 shows that Extremely Randomized

Tress gives the best result on F1-score. For Accuracy score again, ERT gives the best

scores. However, ERT training and testing times are significantly higher than other

Decision Tree-based models. For training time, QDA far better than other models, but

the accuracy score is too low. As Table 5.5 shows that ensemble methods and decision

tree-based models give better performance to SVM, KNN, and LR. kNN algorithm

scores are good, but training and testing time is too high for real-world application. As

a result, ERT, DT, RF, Bagging, GB give reasonable performance for IDS.
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Table 5.5 : Step 1 Anomaly Detection 12 Classifiers Scores and Times.

Algorithm Accuracy Precision Recall F1-Score Train(s) Test(s)
LR 89.885 92.3596 89.885 90.4708 680.65 0.06
DT 99.9098 99.9099 99.9098 99.9098 54.71 0.21
RF 99.9062 99.9064 99.9062 99.9063 198.93 11.21
MLP 99.508 99.5112 99.508 99.509 772.82 1.88
ERT 99.9215 99.9216 99.9215 99.9215 236.57 13.16
Bagging 99.9042 99.9043 99.9042 99.9043 1000.56 6.44
AdaBoost 99.4881 99.4878 99.4881 99.4879 1526.35 34.52
K-NN 99.6467 99.6482 99.6467 99.6471 1106.44 1564.13
SVM 97.2184 97.4793 97.2184 97.2753 79675.18 8773.27
LDA 89.8766 89.5742 89.8766 89.1028 18.05 0.06
QDA 68.0743 87.5688 68.0743 71.2726 3.88 0.68
GB 99.7965 99.7964 99.7965 99.7964 472.19 5.47

5.2 Step 2 - Attack Category Detection Results

In this step, the data sets are primarily prepared as specified in the proposed method.

Then, models were created and tested with 12 different machine learning algorithms.

The objective at this stage is to determine the category or class of the incoming attack.

First, the model was created and tested with the classes in the original data set. Then,

similar attacks were grouped, and the results were obtained on the data set.

Experiments and results performed as the first option are shown with averaged results

in Table 5.6. It would be healthier to look at the F1-score because the data set is

imbalanced. Besides, because the class weights are different, weighted and macro

results are shown (Table 5.7). If the weighted score is high, and the macro F1-score is

low, it indicates that it is good for detecting high weighted classes, but is not successful

in detecting individual classes. Table 5.8 shows these results comparatively. Table

5.6 shows that Bagging classifier have highest Accuracy (99.8440%) and F1-score

(99.8374%). In Table 5.9 detailed class classification report for Bagging Classifier is

given. According to these results DT, RF, ERT and Bagging Classifiers selected for

decision fusion.
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Table 5.6 : Attack Class Detection Weighted Average Scores.

Algorithm Accuracy Precision Recall F1-Score Train(s) Test(s)
LR 94.7319 98.2852 94.7319 96.2347 182.21 0.02
DT 99.8095 99.8269 99.8095 99.8156 14.48 0.09
RF 99.8311 99.8198 99.8311 99.8231 73.09 12.28
MLP 99.8088 99.8381 99.8088 99.761 182.82 0.27
ERT 99.8246 99.821 99.8246 99.8221 51.078 12.09
Bagging 99.8440 99.8365 99.8440 99.8374 75.26 1.73
AdaBoost 72.1322 55.2646 72.1322 61.7464 406.54 9.58
K-NN 99.8103 99.7962 99.8103 99.8014 32.66 154.48
SVM 99.7226 99.7577 99.7226 99.7269 1266.73 146.56
LDA 97.9474 98.2864 97.9474 97.8497 4.52 0.08
QDA 99.5997 99.7466 99.5997 99.5793 0.49 0.82
GB 99.1907 99.1785 99.1907 99.0325 6011.51 17.14

Table 5.7 : Attack Class Detection Macro Scores.

Algorithm / Macro Score Precision Recall F1-Score
LR 61.2363 60.5521 54.2758
DT 91.6053 91.6309 91.4197
RF 91.8608 90.585 91.0553
MLP 90.3598 82.7806 82.7395
ERT 92.2983 90.7008 91.3736
Bagging 92.6829 89.6916 90.9009
AdaBoost 47.2312 41.5055 41.5103
K-NN 86.1794 82.8597 84.0011
SVM 79.9088 81.1365 79.7488
LDA 77.8189 70.5913 67.4186
QDA 94.3058 90.9648 89.1765
GB 79.9713 66.2431 67.1962

Table 5.8 : Attack Class Detection Comparing Weighted Average and Macro
F1-Scores.

Algorithm Average Weight F1-Score Macro F1 Score
LR 94.7319 54.2758
DT 99.8095 91.4197
RF 99.8311 91.0553
MLP 99.8088 82.7395
ERT 99.8246 91.3736
Bagging 99.8440 90.9009
AdaBoost 72.1322 41.5103
K-NN 99.8103 84.0011
SVM 99.7226 79.7488
LDA 97.9474 67.4186
QDA 99.5997 89.1765
GB 99.1907 67.1962
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Table 5.9 : Bagging Classifier Classification Report.

Attack Type F1-score Precision Recall Support
Bot 99.7951 100.0000 99.5910 489
DDoS 99.9969 99.9969 99.9969 32006
DoS GoldenEye 99.6503 99.6117 99.6891 2573
DoS Hulk 99.9722 99.9635 99.9809 57531
DoS Slowhttptest 99.3802 99.6345 99.1273 1375
DoS slowloris 99.5169 99.5169 99.5169 1449
FTP-Patator 100.0000 100.0000 100.0000 1984
Heartbleed 100.0000 100.0000 100.0000 3
Infiltration 87.5000 100.0000 77.7778 9
PortScan 99.9710 99.9798 99.9622 39701
SSH-Patator 100.0000 100.0000 100.0000 1474
Web Attack-Brute Force 78.8030 74.3529 83.8196 377
Web Attack-Sql Injection 66.6667 75.0000 60.0000 5
Web Attack XSS 40.0000 46.7213 34.9693 163
Macro avg 90.8037 92.4841 89.6022 139139
Weighted avg 99.8314 99.8298 99.8369 139139
Accuracy 99.83685

Table 5.10 : ERT Classifier Classification Report.

Attack Type F1-score Precision Recall Support
Bot 99.7951 100.0000 99.5910 489
DDoS 99.9953 99.9906 100.0000 32006
DoS GoldenEye 99.6509 99.4580 99.8445 2573
DoS Hulk 99.9739 99.9774 99.9705 57531
DoS Slowhttptest 99.3445 99.4894 99.2000 1375
DoS slowloris 99.5166 99.5853 99.4479 1449
FTP-Patator 100.0000 100.0000 100.0000 1984
Heartbleed 100.0000 100.0000 100.0000 3
Infiltration 87.5000 100.0000 77.7778 9
PortScan 99.9748 99.9849 99.9647 39701
SSH-Patator 100.0000 100.0000 100.0000 1474
Web Attack - Brute Force 75.8003 73.2673 78.5146 377
Web Attack - Sql Injection 80.0000 80.0000 80.0000 5
Web Attack - XSS 39.6104 42.0690 37.4233 163
Macro avg 91.5116 92.4159 90.8382 139139
Weighted avg 99.8244 99.8238 99.8261 139139
Accuracy 99.826
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Table 5.11 : ERT Classifier with Regrouped Classes Classification Report.

Attack Type F1-score Precision Recall Support
Botnet 99.7950 100 99.5910 489
BruteForce 100 100 100 3458
DosDDos 99.9910 99.9852 99.9968 94937
Infiltration 100 100 100 9
PortScan 99.9760 99.9974 99.9546 39701
WebAttack 99.0892 98.3725 99.8165 545
macro avg 99.8085 99.7258 99.8931 139139
weighted avg 99.9827 99.9828 99.9827 139139
Accuracy 99.9827

The second step is to create new classes by grouping similar attacks. After the data

set was prepared, the models were trained and tested, as indicated in the proposed

method. Table 5.11 shows ERT classification report which most successful classifier

in this stage. When we compare this result to Table 5.10, it is seen that the rate of

detecting web attacks with a detection rate of 37-80% in normal classification reached

99.72% with reclassification. Moreover for comparing, as indicated step-1, weighted

means (Table 5.12) and macro scores (Table 5.13) are shown.

Table 5.12 : Attack Class Detection with Regrouped Classes Weighted Average
Scores.

Algorithms Accuracy Precision Recall F1-Score Train(s) Test(s)
LR 98.6927 98.8566 98.6927 98.7459 164.22 0.02
DT 99.9626 99.963 99.9626 99.9627 8.93 0.08
RF 99.9792 99.9792 99.9792 99.9792 61.06 6.33
MLP 99.9483 99.9481 99.9483 99.9479 123.29 0.27
ERT 99.9828 99.9828 99.9828 99.9828 48.00 6.07
Bagging 99.9705 99.9707 99.9705 99.9706 68.03 1.29
AdaBoost 93.4864 95.5736 93.4864 93.7991 161.47 3.83
K-NN 99.9633 99.9633 99.9633 99.9631 35.53 197.08
SVM 99.7945 99.8057 99.7945 99.7981 1491.78 86.65
LDA 98.7135 98.8018 98.7135 98.713 4.49 0.08
QDA 96.2728 99.5131 96.2728 97.7061 1.42 0.42
GB 99.9281 99.9235 99.9281 99.9256 2756.98 5.85
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Table 5.13 : Attack Class Detection with Regrouped Classes Macro Scores.

Algorithms Precision Recall F1-Score
LR 68.3322 76.7877 70.7905
DT 99.3559 99.7002 99.5258
RF 99.8120 99.7398 99.7758
MLP 97.5332 95.1791 96.2986
ERT 99.7259 99.8932 99.8086
Bagging 96.3245 97.6989 96.9726
AdaBoost 73.1629 68.6165 61.567
K-NN 99.6215 95.5542 97.3536
SVM 86.2123 91.48 88.3593
LDA 86.6893 74.3048 74.9026
QDA 68.1343 81.8537 68.947
GB 82.2209 81.5446 81.8723

The comparative table of weighted and macro scores is shown in Table 5.14. The goal

here is that both values are highest. ERT, DT, RF classifiers meet these requirements.

Both F1-scores are above 99.50%. Bagging was chosen as the classifier for the next

stage. kNN has the highest test and training time. As a result, ERT, Bagging, DT, RF

classifiers will be used for decision fusion.

Table 5.14 : Attack Class Detection with Regrouped Classes Comparing Weighted
Average and Macro F1-Scores.

Algorithm Average Weighted F1 Score Macro F1 Score
LR 98.7459 70.7905
DT 99.9627 99.5258
RF 99.9792 99.7758
MLP 99.9479 96.2986
ERT 99.9828 99.8086
Bagging 99.9706 96.9726
AdaBoost 93.7991 61.567
K-NN 99.9631 97.3536
SVM 99.7981 88.3593
LDA 98.713 74.9026
QDA 97.7061 68.947
GB 99.9256 81.8723

5.3 Step 3 - Decision Fusion Results

At the end of the second step, the best four classifiers (ERT, Bagging, Decision Tree,

Random Forest) used for the decision fusion process. In this step, three different

methods were used for comparison. Majority Voting, the class with the most votes is
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selected. Note that the same class weights were used in the second method prediction

based on class prediction probabilities. The last method is the ADF method which

performs online adaptive class weight update.

Table 5.15 : Attack Class Detection Using Decision Fusion Methods.

Algorithm Accuracy Precision Recall F1-Score Macro-F1 Train(s) Test(s)
MV 99.8412 99.8313 99.8412 99.832 91.0535 126.91 28.42
MV Prob. 99.8404 99.8416 99.8404 99.841 92.6199 195.57 43.96
ADF 99.8361 99.8291 99.8361 99.8302 90.7886 169.69 43
S2-Baging 99.844 99.8365 99.844 99.8374 90.9009 75.26 1.73

In Table 5.15, the best results of the experiments performed with normal class labels

are given by Majority Voting-probability based decision-fusion with 99.84% F1 score

and 99.84% accuracy rate and 99.83% detection rate. Bagging classifier, which was

developed in the second stage, gives very close results. However, there is a 2%

difference in the F1-macro result. This result shows that the method can better detect

different attacks. Among the decision-fusion methods, the lowest F1-score, albeit

with a slight difference, has the ADF algorithm. Since the classifiers have very high

performance, the ADF algorithm has not been able to achieve enough performance

enhancements.

Table 5.16 : Attack Class Detection with Grouped Classes Using Decision Fusion
Methods.

Algorithm Accuracy Precision Recall F1-Score Macro-F1 Train(s) Test(s)
MV 99.9792 99.9794 99.99792 99.9792 98.0943 113.54 17.05
MV Prob. 99.9806 99.9807 99.9806 99.9806 99.7774 214.94 22.9
ADF 99.9777 99.9779 99.9777 99.9778 97.1141 204.85 27.72
S2-ERT 99.9828 99.9828 99.9828 99.9828 99.8086 48 6.07

The results for class regrouping are shown in Table 5.16. Here, the decision fusion

methods failed, and the second step ERT classifier was more successful than decision

fusion methods. With very little performance difference, probability-based majority

voting ranks second and the most successful of decision-making methods. The highest

performance in regrouping classes is the ERT classifier with a 99.98% F1-score.
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5.4 Comparison to Other Studies

In the literature studies, the results of the experiments on the same data set are shown.

In these experiments, sometimes recall, and F1-score were used as accuracy metrics.

Different machine learning algorithms are combined with different feature selection

methods in these studies. Besides, deep learning methods have been widely used. In

these studies, the class weights usually found in the data set were changed, and training

and test sets were reduced. Normal traffic weight has been reduced to eliminate

imbalance between classes. There is no standard in data segmentation. In some studies,

only certain classes of the data set were taken into two categories for detecting specific

attack type. Models were created with binary classification, and test operations were

performed.

These problems occur because the CICIDS2017 data set is not distributed separately

as a test and training set. Also, since the sample set of some classes in the data set is

very small, the probability of detection is reduced. In the second step, we tried to solve

this problem by regrouping the classes. However, experiments were performed while

maintaining the class weights in the original data set. Table 5.17 shows both results.

According to the studies examined, the proposed method has the highest success. For

such imbalanced data sets, the F1-score is a better metric as a success metric. An ideal

intrusion detection system should have as few undetected intrusions as possible.
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6. CONCLUSION

One of the most critical emerging issues today is cybersecurity. In parallel with the

development and spread of information technologies, cyber attacks are increasing. One

of the essential parts of cybersecurity is intrusion detection systems. In parallel with

machine learning, AI, and increasing the computing power of computers, intrusion

detection systems have developed, and anomaly-based intrusion detection systems

have started to become widespread instead of signature-based. In order to develop

these systems and to create suitable models, data sets were created from synthetic

and real network environment. In this study, the most recent CICIDS2017 data set

was used. This data set contains up-to-date attacks that are synthetically created and

suitable for today’s network environment.

In order to establish a successful intrusion detection system, a multi-stage hybrid

method was developed in this study. It was determined whether there was an

anomaly/attack in the first stage. In the following stages, the type/category of the

attack was tried to be predicted. Machine learning methods were used for this purpose.

In this study, 12 different machine learning methods were used for the first two stages.

While training and testing these models, it is aimed to increase performance by using

preliminary data processing and feature selection methods. Besides, experiments on

regrouping classes/attacks were conducted. In the third stage, decision fusion methods

were used for more accurate attack type detection.

The system developed by the proposed method has high intrusion detection rate and

accuracy rate. A system with a 99.98% F1-score with a 99.98% detection rate was

developed by regrouping the classes. 99.84% accuracy score and 99.83% F1-score

were obtained in the experiments conducted considering the original classes in the

data set. According to the literature review, the highest achievement system has been

developed. These performance scores are on a previously unseen test set. In the

proposed method, the data were first separated into training, and test clusters, and

then the test set was used only for the final experiment. The best hyperparameters

were found for this performance, and cross-validation was performed.
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6.1 Future Work

The developed system is planned to be tested on different data sets. It is planned to use

UNSW-NB15, CICIDS2018 data sets, which are also up-to-date. Also, it is planned

to use NSL-KDD data set, which is old but used as a reference. It is also planned

to use Deep Learning methods to make comparisons and develop better models. The

data sets are too large because it consists of too many records and properties. For

that, it is aimed to use Hadoop and Spark extensive data processing methods for faster

data processing in these data sets. Besides, it is aimed to use the EADF algorithm

mentioned in Toreyin’s [20] article in multiple classification and to use it in decision

fusion. Finally, it is planned to develop a component that classifies and learns unknown

attacks. Thus, it was aimed to be used as a commercial product.
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