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QUANTIFICATION OF THE IMPACT OF UNCERTAINTY IN EMISSIONS 
ON AIR QUALITY MODEL ESTIMATES 

SUMMARY 

The Air Quality Model, especially Chemical Transport Model, prediction represents 

mean concentration over the entire grid volume. Predictions of CTMs may differ from 

observations due to four reasons; 1) inherent or stochastic variability in the 

observations, 2) errors in model physics and chemistry assumptions, 3) errors due to 

uncertainties in model input variables, and 4) numerical errors. Here, variability is a 

description of the range of spread of the values, and it is often expressed by statistical 

metrics such as variance and standard deviation. Therefore, inherent uncertainty can 

be considered as variability. Uncertainty refers to lack of knowledge regarding the true 

value of a quantity. Uncertainty can be reduced or eliminated with more or better data, 

where variability cannot be reduced. Among the four reasons of uncertainty, provided 

above, inputs are regarded to have the largest levels of uncertainty.  

The aim of this study is to evaluate and quantify the contribution of uncertainties in 

input dataset to AQM estimates. For this purpose, it is necessary to define the problem 

that poor performance of the model is caused mostly by unfit data. In literature, models 

perform poor in the Eastern European countries. However, a more detailed study is 

needed to say that this poor performance is mostly due to model inputs. Because, as it 

is known, the poor performance of the models may also have other reasons. In the first 

part of this study, inter-model variability is defined quantitatively by participating in 

an international project. In the second part of the study, contribution of uncertainties 

to this problem is quantified by being part of a national project. In the second part, a 

sample of the solution is presented which  includes development of country specific 

emission factors and compiling a probabilistic emission inventory.   

As a part of an international project (AQMEII-3), 12 modelling groups were 

cooperated from different countries of Europe and conducted 18 model runs on Europe 

domain (covers 34 Europe countries) for 2010 by using 7 different AQMs, 3 

meteorology models and 2 emission inventories. This study, for the first time in 

Turkey, contributed to AQMEII-3 which is organized by the joint leading of U.S. EPA 

and European JRC. One of the most important benefits of this project is that the model 

results of all groups can be reached through a common platform. In this dissertation, 

performance metrics were calculated and mapped for each of 1431 stations of Europe, 

and for each model for evaluation of model performances. Taylor diagrams were also 

used for seasonal evaluation.  

Up to now, there are several air quality modelling studies for Turkey, however they 

are developed for a specific city or region of Turkey for a timescale starting from days 

to a few months, or by using just one type of AQM. Thanks to its wide coverage 

domain (Europe continent) and multi-model contributions from AQMEII-3 project, 

this study looks to the problem from a large perspective in order to define the problem 

and recommends a solution by representing a sample of the solution. Thus, an 

inventory study was conducted to overcome this problem by adopting a deep statistical 
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approach which is not encountered in Turkish inventory studies yet. To this end, 

country specific EFs are calculated for the energy production industry of Turkey, an 

inventory has been created for the energy production industry of the Marmara Region. 

Monte Carlo and Bootstrap approaches are used for uncertainty calculations at these 

stages. 

According to results of modelling part of this dissertation, correlations between models 

and PM10 observations are 8% less in Eastern European countries when compared to 

Western European countries. BIAS of Eastern European countries is 2.5-fold of 

Western European countries, when all countries are considered. RMSE of Eastern 

countries is 90% more than Western countries average, where MAE is 99% and MNE 

is 25% more. From these results it is clear that, model predictions are significantly 

beyond the observations in Eastern European countries.  

Turkey, which is located in the Eastern Europe, has one of the worst results calculated 

by all models. All models predict PM10 concentrations with an average of -40 µg/m3 

BIAS in stations of Turkey, where it is the worst value within 34 countries of Europe 

considered in this study. Moreover, models predict close to each other but quite far 

from the observations in 80% of the stations. MAE is over 20 µg/m3 in 80% of all 

stations in Turkey. Remaining 20% of the stations encounters 18 over 101, mostly in 

Istanbul and some other big cities. In fact, when the results of the models are examined, 

it is seen that models generally make better predictions in big cities compared to the 

small cities. This may be due to the fact that inventory compilers have more 

information on emission sources in large cities. 

In seasonal evaluation, it is seen that emissions in Winter cannot be well predicted, but 

in Summer it is relatively better predicted. This difference can be caused by inadequate 

representation of increased emissions (in the model inputs) in Winter months from 

residential heating and traffic emissions when compared to other months. In this case, 

it would not be unreasonable to suspect that the inputs to the models significantly affect 

predictions. 

Model inputs are considered as a reason for poor model predictions in this study. 

However, problems caused by the model itself or erroneous measurements, or 

combination of all, may also cause this. In this study, problems due to the model itself 

are out of consideration since 6 different AQMs were used by 13 modelling groups 

where same models were also considered by different groups. The fact that all models 

give close CDFs in Western Europe despite they have different modelling 

configurations, where they are not close to observations in Eastern Europe countries 

even in same models, shows that problems in the models are not dominant in prediction 

errors. Since the number of observation stations included in the scope of this study is 

very high, measurement errors are not considered to be predominant in poor model 

estimates. Also, systematic errors are not thought to occur at all stations at the same 

time. 

The quality of an emission inventory that will be used in air quality modelling is 

associated with its low-level uncertainty and adequate coverage of the sources. 

Emission inventories approach to the ultimate result as in-situ measurements and full 

activity data are available. In this study, in-situ measurements were conducted within 

the scope of the national KAMAG project in order to generate country-specific EFs, 

and an emission inventory was prepared in the light of the most consistent information 

possible. Besides, official emission measurement reports (EMRs), whose reliability is 

controversial as they were prepared by the companies under authorization of the 
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emission emitting plants, were also used for comparison with in-situ EFs. Country-

specific dust, CO, SO2, NO, NO2 and NOx EFs are calculated in this part of the study 

for each of coal combusting large wet/dry bottom boilers, coal combusting large size 

fluid bed boilers, coal combusting large wet and dry bottom boilers, natural gas 

combusting medium size boilers and gaseous fuels combusting gas turbines.  

EFs are typically assumed to be representative of an average emission rate from a 

population of pollutant sources in a specific category. However, there may be 

uncertainty in the average emissions from population because of three reasons: random 

sampling error, measurement errors, or when the sample population is not 

representative for EF development. First two factors typically lead to imprecision in 

the estimate of the population average. The third factor may lead to possible biases or 

systematic errors in the estimated average. In order to avoid errors, it is important to 

understand and account for the uncertainty in the inventory. In the relevant part of this 

study, a probabilistic emission inventory is developed by considering statistical 

analysis of variability and uncertainty.  

The development of a consistent procedure for the uncertainty evaluation is still a 

challenge for the scientific community. In this study a deep uncertainty analysis 

technique is applied in EF development, which is including Monte Carlo method and 

Bootstrap simulation. The uncertainty analysis described in this study can be used as 

a basis for developing probabilistic emission inventories. When the probability range 

of emissions to be given as input to air quality is known, it is possible to determine the 

probability of the model result. Thus, for example, the probability of achieving an air 

quality management goal can also be calculated. 

In statistics, sampling error is a type of error caused by investigating a small part of 

the population rather than examining the whole population. It is calculated by the 

difference of a sample statistic used to estimate a population parameter and the actual 

but unknown value of the parameter. Since uncertainty is expressed as lack of 

knowledge regarding to true value of a quantity, random sampling error can be 

represented by a sampling distribution. In order to calculate uncertainty of EFs, a 

distribution is fitted (LM) to the EF dataset (x) where actual underlying distribution (F) 

is unknown. The goodness-of-fit is evaluated by some techniques. Then Monte Carlo 

method is applied in order to generate random datasets from assigned distribution, LM. 
In Bootstrap simulation part of the study, each of the alternative probability models 

generated by Monte Carlo approach (Bootstrap replicates) are simulated to develop a 

reasonably stable characterization of the percentiles of the distribution. Then 

parameters, NM∗, are estimated. In this study, uncertainty in the estimate of θ is reflected 

by dispersion of NM∗, which also gives random sampling error. A confidence interval 

for a statistic is a measure of the lack of knowledge regarding the true value of the 

statistic. The NM∗ data is sorted then, in order to calculate confidence interval for the 

fitted cumulative distribution function. Consequently, the results are compared to the 

original dataset by generating probability bands. Then results are compared to EMEP 

and EPA EFs.  

At the end, dust EFs obtained from in-situ measurements are significantly lower than 

the literature for coal combusting plants. The reason of these large differences between 

in-situ measurements and literature EFs may be due to wide usage of dust abatement 

technologies in Turkish energy production plants. CO and SO2  EFs are significantly 

larger than EMR, EMEP and EPA EFs in large coal combusting plants and in plants 

combusting gaseous fuels with gas turbines. But in all EFs, uncertainty is low when 
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compared to EMEP EFs. Country specific NOx EFs are generally larger than all other 

studies and range of confidence interval is narrow when compared to them. This 

situation indicates low uncertainty in in-situ EFs. Since each stack measurement may 

differentiate from the real value due to variations in operating conditions, the overall 

uncertainty of the emission factors can also be referred as “uncertainty due to 

variability”.  

After calculating country specific EFs, next step is preparing an emission inventory 

for power plants of Marmara region and comparing it with the existing emission 

inventories. The most common emission inventories currently used by CTMs are the 

TNO-MACC and EDGAR-HTAP emission inventories. These two inventories are 

mainly used in AQMEII-3 models. EDGAR-HTAP emission inventory contains much 

more plants (34 plants) than TNO-MACC (19 plants) but is still far from the actual 

number of power plants (57 plants) that considered in this study for Marmara region 

of Turkey. Furthermore EDGAR-HTAP emission inventory has more plants than 

TNO-MACC in all regions of Turkey. From this point of view, it is clear that EDGAR-

HTAP emission inventory is more inclusive than TNO-MACC emission inventory in 

Turkey in terms of number of plants. Also, it is more inclusive in Eastern Anatolian 

regions of Turkey where TNO-MACC emission inventory has almost no plants for 

public electricity and heat production sector. There are missing plants in EDGAR-

HTAP and TNO-MACC emission inventories where there some unidentified plants in 

those emission inventories. 

As a result of emission inventory calculations, NOx emissions calculated in this study 

is 93,000 ton/year with lower CI as 69,000 ton/year  and upper CI as 114,000 ton/year. 

When same emission inventory is calculated with EMEP EFs 60,000 ton/year with 

lower CI as 33,000 and upper CI as 90,000 ton/year. The inventory compiled by this 

study beyond the upper CI of EMEP and it is considerably larger than TNO (24,000 

ton/year) and EDGAR-HTAP (42,000 ton/year).  

SO2 emissions are calculated as 152,379 tonne/year in this study. Same activity data is 

used in calculation of EMEP emission inventory and resulted 170,596 tonne/year, 

because in-situ SO2 EF was smaller than EMEP EF for coal combustion plants. It is 

69,000 ton/year in TNO and 125,00 ton/year in EDGAR-HTAP emission inventory. 4 

large lignite combustion plants, which are not included in the TNO inventory, have 

resulted in 73,500 tons less SO2 emissions in TNO emission inventory when compared 

to this study. 1000 tonnes of SO2 emissions is also not included in the TNO inventory 

due to about 40 missing natural gas incineration plants. 

Uncertainty range of NOx emission inventory of this study is between 26 (lower bound 

of CI) to 23% (upper bound of CI). When same emission inventory is compiled with 

EMEP EFs, overall uncertainty range is 45 (lower) to 48% (upper). As it is clear, 

country specific EFs decrease uncertainty when compared to usage of EFs from 

literature. This situation is dominant in NOx emission inventory than SO2 and CO 

emission inventories, because number of natural gas combusting power plants are large 

(48 over 57 plants in Marmara region). TNO and EDGAR HTAP emission inventories 

are out of the uncertainty range of this study which proves their inadequacy for 

representing emissions of power plants in Marmara region.  

Generally, the data on energy facilities is among the most easily accessed by inventory 

compilers. Such large differences in emissions from power plants reinforce doubts 

about the reliability of the entire TNO-MACC and EDGAR-HTAP emission 

inventories. In this case, it is quantifically proved that poor emission inventories are 
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primarily responsible for the poor air quality predictions in Turkey, and most probably 

in all Eastern European countries.  

No matter how many and high-quality measurements are conducted, no matter how 

good models are used, it is not possible for air quality models to predict accurate results 

without a good emission inventory. Therefore, consistent, low uncertainty and 

comprehensive emission inventories should be compiled for the Eastern European 

countries, including Turkey. Development country specific EFs is the preliminary step 

of emission inventory development. Access to activity data used in these studies 

should be facilitated in order to make room for calculation of the representative EFs 

easily.   
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EMİSYONLARDAKİ BELİRSİZLİĞİN HAVA KALİTESİ MODEL 
TAHMİNLERİNE ETKİSİNİN HESAPLANMASI  

    ÖZET………………………………… 

Hava kalitesi modelleri tarafından yapılan tahminler, özellikle kimyasal taşınım 

modellerinde, tüm grid hacmindeki ortalama kirletici değerini verir. Kimyasal taşınım 

modellerinin tahminleri ölçümlerden farklı olabilir. Bunun dört nedeni vardır; 1) 

ölçümlerdeki doğal veya stokastik değişkenlik, 2) modelin fizik veya kimyasal 

hesaplamaları aşamasında yapılan bazı varsayımlardan kaynaklı hatalar, 3) modele 

girdi olarak verilen değişkenlerdeki belirsizliklerden kaynaklı hatalar, 4) sayısal 

hatalar. Burada bahsi geçen “değişkenlik” terimi, verilerin birbirinden ne kadar 

farklılaştığını ifade etmek için kullanılır ve genellikle varyans ve standart sapma gibi 

istatistiksel metrikler yardımı ile açıklanır. Bu nedenle ilk maddede belirtilen doğal 

veya stokastik nedenlerden kaynaklı hatalar “değişkenlik” başlığı altında 

düşünülebilir. “Belirsizlik” terimi ise bir şeyin gerçek değeri ile ilgili bilgimizin 

eksikliğini ifade eder. Daha iyi veya daha çok veri kullanılması durumunda belirsizlik 

azaltılabilirken, değişkenliğin azaltılması mümkün değildir. Yukarıda bahsi geçen 

belirsizliğin dört nedeni arasında, modele girdi olarak verilen değişkenlerdeki 

belirsizlik, genellikle diğer nedenlere kıyasla en büyük etkiyi gösterendir.  

Bu çalışmanın amacı, verilerdeki hatalardan kaynaklı belirsizliğin hava kalitesi model 

tahminlerine etkisinin değerlendirilmesi ve hesaplanmasıdır. Bu kapsamla modellerin 

kötü performans vermesinin nedeninin yetersiz veriden kaynaklandığının kanıtlanması 

gerekmektedir. Literatürde modellerin özellikle Doğu Avrupa ülkelerinde kötü sonuç 

verdiği bilinmektedir. Bu problemi, geniş kapsamlı bir hava kalitesi modelinin 

sonuçlarını incelediğimizde görebiliriz. Fakat modellerin bu kötü performanslarının 

nedeni olarak, modellere verilen girdilerin büyük oranda sorumlu olduklarını 

söyleyeceksek daha detaylı bir çalışmaya ihtiyacımız olur. Çünkü, bilindiği gibi, 

modellerin kötü tahmin etmesinde verilerin dışında başka nedenler de bulunmaktadır. 

Bu çalışmanın ilk kısmında, modeller arası değişkenliği görmek için uluslararası bir 

proje olan AQMEII projesine katılarak, bir çoklu-model yaklaşımı kullanılmış, 

böylelikle bu problemin nicel olarak tanımlanması sağlanmıştır. Çalışmanın ikinci 

kısmında ise envanterlerin Türkiye’deki belirsizliğinin bu probleme katkısını 

anlayabilmek için ulusal bir proje kapsamında yapılan ölçümler kullanılarak 

Türkiye’ye özgü emisyon faktörleri türetilmiş, olasılıksal bir emisyon envanteri 

geliştirilmiş ve belirsizlik analizleri yapılarak literatürle kıyaslanmıştır.  

AQMEII-3 isminde uluslararası projenin bir parçası olarak, Avrupa’nın farklı 

ülkelerinden 12 modelleme grubu ile iş birliği yapılmış, tüm Avrupa kıtasını kapsayan 

(toplam 34 ülke) 18 ayrı model çalışması yapılmıştır. 2010 yılı baz alınarak yapılan bu 

çalışmada, 7 farklı hava kalitesi modeli, 3 farklı meteoroloji modeli ve 2 ayrı emisyon 

envanteri kullanılmıştır. Amerika Çevre Ajansı (EPA) ve Avrupa Ortak Araştırma 

Merkezi (European JRC) liderliğinde düzenlenen AQMEII-3 projesine bu çalışma 

kapsamında ilk defa Türkiye’den katılım sağlanmıştır. Bu projenin en önemli 

yararlarından biri, tüm grupların model sonuçlarının ortak bir platform yardımıyla 
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ulaşılabilir olmasıdır. Bu tez kapsamında model performanslarının değerlendirilmesi 

aşamasında, Avrupa kıtasında bulunan 1431 tane hava kalitesi ölçüm istasyonu için 

performans metrikleri hesaplanmış, sonra da harita üzerinde gösterilmiştir. Model 

performanslarının mevsimsel değerlendirmeleri için ise Taylor diyagramlarından 

faydalanılmıştır.  

Şu ana kadar, Türkiye için çeşitli hava kalitesi modelleme çalışmaları yapılmıştır. 

Fakat bu çalışmaların genellikle bir şehir veya bir bölge için, birkaç gün ile birkaç ay 

arasında bir zaman ölçeği için veya genellikle tek bir hava kalitesi modeli kullanarak 

yapıldığı görülmüştür. AQMEII-3 projesinin geniş bir alanı kapsaması (Avrupa kıtası) 

ve pek çok farklı modelin katkısı nedeniyle, bu çalışmada sorunu tanımlamak için 

geniş bir bakış açısıyla bakılabilmiş ve bir örnek yardımıyla bir çözüm önerisinde 

bulunulmuştur. Bu çözüm önerisinde, detaylı bir istatistiksel yaklaşım benimsenerek 

Türkiye’de henüz yapılmamış titizlikte bir envanter çalışması yapılmıştır. Bu amaçla 

Türkiye’deki enerji üretim tesisleri için ülkeye özgü emisyon faktörleri hesaplanmış, 

Marmara Bölgesindeki enerji tesisleri için bir envanter oluşturulmuştur. Bu 

aşamalarda belirsizlik hesapları için Monte Carlo ve Bootsrap yaklaşımları 

benimsenmiştir.  

Bu tezin modelleme kısmının sonuçlarına göre, Doğu Avrupa ülkelerinde modellerin 

PM10 ölçümleri ile korelasyonu Batı Avrupa ülkelerine kıyasla %8 daha azdır. Doğu 

Avrupa ülkelerindeki ortalama hata (BIAS), Batı Avrupa ülkelerinin 2.5 katıdır. Doğu 

Avrupa ülkelerinde hataların ortalama kare kökü (RMSE) Batı Avrupa ülkelerinden 

%90 daha fazla iken, mutlak hataların ortalaması (MAE) %99, normalize hataların 

ortalaması (MNE) ise %25 fazladır. Bu sonuçlardan da görüldüğü üzere, Doğu Avrupa 

ülkeleri için modeller tarafından yapılan tahminler, ölçümlerden oldukça farklıdır.  

Bir Doğu Avrupa ülkesi olan Türkiye, tüm modeller tarafından hesaplanan en kötü 

sonuçlardan birine sahiptir. Türkiye’deki istasyonlarda tüm modeller -40 µg/m3 

ortalama hata (BIAS) ile tahmin yapmaktadır ve bu değer bu çalışma kapsamında 

dikkate alınan 34 Avrupa ülkesi içindeki en kötü değerdir. Üstelik, Türkiye’deki 

istasyonların %80’inde modeller ölçümlerden bu kadar farklı tahmin ederken, 

birbirlerine de o derecede yakın tahminler yapmaktadır. İstasyonların %80’inde 

mutlak hataların ortalaması (MAE) 20 µg/m3’ün üzerindedir. Kalan %20’lik kısım, 

Türkiye’deki 101 tane istasyonun 18 tanesine tekabül etmektedir ve bu istasyonların 

çoğunun İstanbul’da, bir kısmının da Türkiye’nin başka büyük şehirlerinde olduğu 

görülmüştür. Zaten model sonuçları incelendiğinde, modellerin küçük şehirlere 

kıyasla büyük şehirlerde daha iyi tahmin yaptığı görülmüştür. Bunun nedeni, envanter 

hazırlanması aşamasında büyük şehirlerdeki emisyon kaynaklarına ait verilere daha 

kolay ulaşılması olabilir.  

Modellerin mevsimlere göre performansları incelendiğinde, emisyonların genellikle 

yaz aylarında kış aylarına göre daha iyi tahmin edildiği görülmüştür. Bu fark, kış 

aylarında artan ısınma ve trafik emisyonlarının model girdilerine yetersiz 

aksettirilmesi nedeniyle olabilir. Bu durumda, modele verilen girdilerin model 

tahminlerini oldukça etkilediğinden şüphelenmek mantıksız olmaz.  

Bu çalışmada, model girdileri zayıf model tahminlerinin bir nedeni olarak kabul 

edilmektedir. Elbette, modelin kendisinden veya ölçümlerdeki hatalardan veya 

hepsinin birleşiminden kaynaklı problemler de buna neden olabilir. Bu çalışmada, 13 

farklı grup tarafından çalıştırılan 6 farklı hava kalitesi modeli kullanıldığı, bazen aynı 

modelin farklı gruplar tarafından da çalıştırıldığı bilindiği için, modelin kendisinden 

kaynaklı hataların kapsam dışında olduğu düşünülmektedir. Birbirlerinden farklı 
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model konfigürasyonlarına sahip olmalarına rağmen tüm modellerin Batı Avrupa’da 

iyi tahmin yaparken, Doğu Avrupa’da ölçümlerden oldukça farklı olmaları, 

modellerden kaynaklı problemlerin kötü tahminlerde baskın olmadığını 

göstermektedir. Bu çalışmanın kapsamına dahil olan ölçüm istasyonu sayısı çok fazla 

olduğu için, ölçümlerden kaynaklı hataların da kötü model tahminlerinde baskın 

olduğu düşünülmemektedir. Ayrıca, ölçüm istasyonlarında olabilecek sistematik 

hataların da, aynı anda pek çok istasyonda olamayacağı düşünülmektedir.  

Hava kalitesi modellemesinde kullanılan bir emisyon envanterinin kalitesi, 

belirsizliğinin düşük olması ve kapsadığı kaynakların yeterliliği ile ilişkilidir. Yerinde 

ölçümler ve tam aktivite verisi oldukça, emisyon envanterleri nihai değere yaklaşır. 

Bu çalışmada, ulusal bir proje olan KAMAG projesi kapsamında, ülkeye özgü 

emisyon faktörlerinin geliştirilmesi ve mümkün olan en tutarlı veri ile emisyon 

envanterinin hazırlanabilmesi amacıyla yerinde ölçümler yapılmıştır. Emisyon yayan 

tesislerin yetkilendirdiği firmalar tarafından hazırlandığı için güvenilirliği tartışmalı 

olan resmi emisyon ölçüm raporları da kıyaslama amacıyla kullanılmıştır. Çalışmanın 

bu kısmında ülkeye özgü CO, SO2, NO, NO2 ve NOx emisyon faktörleri, ıslak/kuru 

tabanlı büyük kömür yakma kazanları, akışkan yataklı büyük kömür yakma kazanları, 

doğalgaz yakan orta ölçekli yakma kazanları ve gaz yakıt yakan gaz türbinlerinin her 

biri için ayrı ayrı hesaplanmıştır.  

Emisyon faktörlerinin, kirletici kaynakları popülasyonundan oluşan emisyonların 

ortalamasını temsil ettiği varsayılır. Fakat rastgele örnekleme hatası, ölçüm hataları 

veya örnek olarak seçilen popülasyonun emisyon faktörü geliştirmek için temsil edici 

olmadığı durumlarda ortalama emisyonlarda belirsizlik artabilir. İlk iki neden, 

genellikle popülasyon ortalamasının tahmininde yanlışlığa yol açarken, üçüncü neden 

ortalama hatanın (BIAS) artmasına veya sistematik hataya neden olabilir. Bu 

hatalardan kaçınmak için, öncelikle envanterdeki belirsizliğin anlaşılması ve 

hesaplanması gerekmektedir. Bu çalışmanın son kısmında, değişkenlik ve belirsizliğin 

detaylı istatistiksel analizi yardımıyla olasılıksal bir emisyon envanteri geliştirilmiştir.  

Belirsizliğin değerlendirilmesi için tutarlı bir prosedür geliştirilmesi, bilim insanları 

arasında hala geliştirilmekte olan bir konudur. Bu çalışmada uygulanan Monte Carlo 

analizi ile Bootstrap metotlarını birleştiren belirsizlik analizi yöntemi, olasılıksal 

emisyon envanterlerinin geliştirilmesinde kullanılabilir. Hava kalitesine girdi olarak 

verilecek emisyon miktarının hangi değerler arasında olacağı bilindiğinde, model 

sonucunun da olasılığı bilinebilir. Böylelikle örneğin hava kalitesi yönetimi 

kapsamında belirlenen bir hedef değere ulaşma olasılığı da bu şekilde hesaplanabilir.  

İstatistikte örnekleme hatası, tüm popülasyonu incelemek yerine, popülasyonun küçük 

bir bölümünü temsil edici kabul ederek incelemenin neden olduğu bir hata türüdür. 

Örnekleme hatası, bir popülasyon parametresini tahmin etmek için kullanılan örnek 

bir istatistik ile bu parametrenin gerçek ancak bilinmeyen değerinin farkı alınarak 

hesaplanır. Belirsizlik, bir sayının gerçek değeri ile ilgili bilgi eksikliği olarak ifade 

edildiği için, rastgele örnekleme hatası bir örnekleme dağılımı ile ifade edilebilir. 

Gerçek dağılımı (F) bilinmeyen emisyon faktörlerinin bulunduğu bir veri setindeki 

belirsizliği hesaplamak için, bu veri setine literatürde özellikleri bilinen bir dağılım 

uydurulur (LM). Uydurulan bu yeni dağılımın elimizdeki veri setine ne kadar uygun 

olduğunu anlamak için bazı uygunluk testleri uygulanır. Daha sonra Monte Carlo 

metodu kullanılarak uydurulan bu dağılım üzerinden rastgele veri setleri (Bootstrap 

kopyası) üretilir, yani veri çoğaltılır. Çalışmanın Bootstrap simülasyonu kısmında ise, 

Monte Carlo yaklaşımı tarafından oluşturulan alternatif olasılık modellerinin her biri 
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(Bootstrap kopyası), dağılımın persentil değerleri istikrarlı bir şekilde stabil oluncaya 

kadar simüle edilir. Sonra parametreler (NM∗) tahmin edilir. Bu çalışmada, θ’nın tahmin 

edilmesindeki belirsizlik, rastgele örnekleme hatası da denilen NM∗’ın dağılımı ile ifade 

edilmiştir. Bir istatistik için güven aralığı, istatistiğin gerçek değeri ile ilgili bilgi 

eksikliğinin bir ölçüsüdür. Sonraki aşamada uydurulan kümülatif dağılım fonksiyonu 

için güven aralığını hesap etmek amacıyla NM∗ verisi sıralanır. Sonuç olarak, elde edilen 

sonuçların orijinal veri seti ile kıyaslanabilmesini kolaylaştırmak için olasılık bandı 

grafikleri oluşturulmuştur. Hesaplanan emisyon faktörleri EMEP ve EPA emisyon 

faktörleri ile kıyaslanmıştır.  

Bu çalışmanın sonuçlarına göre, yakma tesisleri için hesaplanan ülkeye özgü toz 

emisyon faktörleri literatüre göre oldukça düşüktür. Bu çalışma kapsamında 

hesaplanan ülkeye özgü emisyon faktörleri ve literatür arasındaki bu büyük farklılığın 

nedeni, Türkiye'deki enerji üretim tesislerinde toz azaltım teknolojilerinin geniş 

kullanımı nedeniyle olabilir. Her ne kadar son yıllarda, baca gazları ile ilgili istisnai 

düzenlemeler olsa da, bu tezin baz aldığı 2010 ve 2012 yıllarında bu tesislerin 

çalışması için bu azaltım teknolojilerini sıkı bir şekilde uygulamaları beklenmekteydi.  

CO ve SO2 emisyon faktörleri, büyük kömür yakma tesislerinde ve gaz yakıtlı gaz 

türbini kullanan tesislerde emisyon izin raporlarından hesaplanan emisyon 

faktörlerinden, EMEP ve EPA emisyon faktörlerinden önemli ölçüde daha büyüktür. 

Fakat tüm emisyon faktörleri için hesaplanan belirsizlik, EMEP emisyon faktörlerinin 

belirsizliğinden oldukça düşüktür. Ülkeye özgü NOx emisyon faktörü literatürdeki tüm 

çalışmalardan yüksek, belirsizlik aralığı ise hepsinden küçüktür. Sonuçta, ülkeye özgü 

hesaplanan emisyon faktörlerinin belirsizliğinin düşük olduğunu görüyoruz.  Burada 

bahsi geçen belirsizlik için “değişkenlikten kaynaklı belirsizlik” terimini de 

kullanabiliriz. Çünkü her ölçüm aslında aynı çıkması beklenen bir sonucun çeşitli 

nedenlerle değişikliğe uğraması sonucu değişmişti ve bu da nihai emisyon faktörünün 

belirsizliğini artırmıştır.  

Ülkeye özgü emisyon faktörleri hesaplandıktan sonra, bir sonraki adım Marmara 

Bölgesindeki elektrik santralleri için bir emisyon envanteri hazırlamak ve mevcut 

emisyon envanterleri ile karşılaştırmaktır. Halen hava kalitesi modelleri tarafından en 

yaygın kullanılan emisyon envanterleri TNO-MACC ve EDGAR-HTAP emisyon 

envanterleridir. Bu iki emisyon envanteri AQMEII-3 projesinde de kullanılmıştır.  

Bu çalışmada Türkiye'nin Marmara bölgesi için 57 tane enerji üretim tesisi 

belirlenmiştir, fakat EDGAR-HTAP emisyon envanterinde 34 tane, TNO-MACC 

emisyon envanteri de 19 tane enerji üretim tesisi bulunduğu görülmüştür. Zaten 

Türkiye’nin diğer bölgelerinde de aynı Marmara bölgesinde olduğu gibi, EDGAR-

HTAP emisyon envanteri TNO-MACC emisyon envanterinden daha fazla sayıda tesis 

bulundurmaktadır. Sadece bu sayılara bakarak EDGAR-HTAP emisyon envanterinin 

Türkiye’deki tesisleri içermesi bakımından daha kapsayıcı olduğu ama yeterli 

olmadığı söylenebilir. Örneğin, Doğu Anadolu Bölgesi için TNO-MACC 

envanterinde hiç tesis yokken, EDGAR-HTAP envanterinde tesisler olduğunu 

görüyoruz. Sonuçta, bu çalışmadaki tesis sayısına bakıldığında her iki envanterde de 

önemli sayıda tesisin envantere eklenmediği görülüyor. Ayrıca bu envanterlerde bazı 

tanımlanamayan tesisler de mevcuttur.   

Bu çalışma kapsamında hesaplanan emisyon envanteri sonuçlarına göre, Marmara 

Bölgesindeki enerji tesislerinden 93,000 ton/yıl NOx emisyonu açığa çıkmaktadır. 

Güven aralığının alt sınırı 69,000 ton/yıl, üst sınırı da 114,000 ton/yıl olarak 

hesaplanmıştır. Aynı emisyon envanteri bu defa EMEP emisyon faktörleri kullanılarak 
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hesaplandığında NOx emisyonları 60,000 ton/yıl olarak bulunmuştur. Bunun güven 

aralığının alt sınırı 33,000 ton/yıl, üst sınırı da 90,000 ton/yıl olarak hesaplanmıştır. 

Görüldüğü üzere, bu çalışma kapsamında hesaplanan NOx emisyon envanteri, EMEP 

ile hesaplananın üst güven aralığı sınırından bile fazladır. TNO-MACC envanterinde 

aynı tesisler için verilen 24,000 ton/yıl, EDGAR-HTAP tarafından verilen 42,000 

ton/yıl NOx emisyonundan ise belirgin şekilde fazladır. Bu çalışma kapsamında 

hesaplanan NOx emisyon envanteri, TNO-MACC emisyon envanterinden %387 daha 

fazla, EDGAR-HTAP emisyon envanterinden ise %221 daha fazladır.  

Marmara Bölgesindeki enerji tesislerinden 152,379 ton/yıl SO2 emisyonu açığa 

çıkmaktadır. Aynı emisyon envanteri bu defa EMEP emisyon faktörleri kullanılarak 

hesaplandığında SO2 emisyonları 170,596 ton/yıl olarak bulunmuştur. Bunun nedeni, 

kömür yakma tesisleri için bulunan ülkeye özgü SO2 emisyon faktörünün, EMEP 

emisyon faktöründen küçük olmasıdır. TNO-MACC emisyon envanterinde SO2 

emisyonu 69,000 ton/yıl iken, EDGAR-HTAP emisyon envanterinde 125,000 

ton/yıldır. TNO-MACC emisyon envanterinde 4 tane büyük linyit yakan tesisin 

olmadığı ve bu tesislerin TNO envanterinde bu çalışmaya göre yaklaşık 73,500 ton/yıl 

SO2’nin daha az hesaplanmasına neden olduğu görülmüştür. TNO-MACC 

envanterinde eksik olan 1000 ton/yıl SO2 emisyonu ise, TNO-MACC envanterinde 

olmayan 40 tane doğalgaz yakma tesisinden kaynaklanmaktadır. Sonuç olarak, bu 

çalışma kapsamında hesaplanan SO2 emisyon envanteri, TNO-MACC emisyon 

envanterinden %220 daha fazla, EDGAR-HTAP emisyon envanterinden ise %121 

daha fazladır. 

Bu çalışmada hesaplanan NOx emisyon envanterinin belirsizlik aralığı alt sınırı %26 

iken, üst sınırı %23’e ulaşmaktadır. Aynı emisyon envanteri EMEP emisyon faktörleri 

ile hesaplandığında envanterin belirsizlik aralığı alt sınırı %45 iken, üst sınırı %48’e 

ulaşmaktadır. Görüldüğü gibi, ülkeye özgü emisyon faktörlerinin kullanımı, 

literatürdeki emisyon faktörlerinin kullanımına göre belirsizliği yaklaşık olarak yarı 

yarıya düşürmektedir. Bu fark NOx emisyon envanterinde SO2 ve CO emisyon 

envanterlerine göre daha baskındır, çünkü doğal gaz yakan enerji santrallerinin sayısı 

fazladır (Marmara bölgesindeki 57 tesisten 48’i).  

Bu çalışma ile, TNO-MACC ve EDGAR HTAP emisyon envanterlerinin Marmara 

Bölgesindeki enerji tesislerine ait emisyonları yansıtmakta yetersiz kaldığı 

kanıtlanmıştır. Genellikle enerji tesislerine ait bilgiler, envanter derleyicileri 

tarafından en kolay ulaşılan bilgiler arasındadır. Bu tesislere ait emisyonlarda dahi 

böyle büyük farkların olması, TNO-MACC ve EDGAR-HTAP emisyon 

envanterlerinin tamamının güvenilirliği konusunda şüpheleri güçlendirmektedir. 

Zaten bu durumda hava kalitesi model sonuçlarının tüm Avrupa ülkeleri arasında 

neden Türkiye’de ve Doğu Avrupa ülkelerinde, en kötü sonuçları verdiği de 

hesaplamalar yapılarak açıklanmıştır.  

Ne kadar çok hava kalitesi ölçüm noktası olursa olsun, ne kadar hatasız ölçüm yapılırsa 

yapılsın ve ne kadar iyi performanslı modeller kullanılırsa kullanılsın, hava kalitesi 

modellerinin iyi bir emisyon envanteri olmadan doğru sonuçları tahmin etmesinin 

mümkün olmadığı açıktır. Bu nedenle, Türkiye de dahil olmak üzere Doğu Avrupa 

ülkeleri için tutarlı, belirsizliği düşük ve kapsamlı emisyon envanterleri 

oluşturulmalıdır. Ülkeye özgü emisyon faktörlerinin geliştirilmesi, emisyon envanteri 

hesaplarının ön basamağıdır. Bu amaçla, yapılan ölçümlere ek olarak aktivite 

verilerine ulaşmak kolaylaştırılmalıdır.  
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 INTRODUCTION 

Air pollution is defined as the presence of substances including gases, particles, and 

biological molecules in the air in the levels that are detrimental to human health and 

the planet as a whole. SO2, O3, PM, NOx, Pb and CO are called as criteria air pollutants, 

and these are the only air pollutants with national air quality standards (NAAQS) that 

define allowable concentrations of these substances in ambient air [1].   

Air pollution problems started to come into consideration after industrial revolution 

which leaded to industrialization near cities and increasing population in those areas 

due to rural-urban migration. Demand for more energy and natural resources are 

increased with increasing industrialization and population. Thus, more power plants, 

industrial plants are needed to fulfil needs of new strongly urbanized cities. 

Furthermore, residential heating and number of vehicles increased. Entire of those are 

the anthropogenic sources of air pollution. Therefore, air pollution has started to be 

one of the most important problems in industrialized and urban areas.   

Air pollution significantly impacts human health. Short term air pollution is associated 

with sudden increases in air pollution concentrations where it causes to short-term 

changes in health, which have typically been associated changes in mortality, hospital 

or emergency room admissions, incidence, duration or exacerbations of respiratory 

and other symptoms, and changes in lung function indices [2]. Long term air pollution 

is associated with continuous and high air pollution levels which cause long term 

exposure to pollutants. Mortality associated with air pollution is about 15 to 20 percent 

higher in cities with high levels of pollution compared to relatively cleaner cities [3]-

[5]. 

Short term or long-term air pollution depends on many factors including discharging 

amount of the emitting source or local meteorological conditions. Generally short-term 

air pollution is affected from many different factors such as sudden industrial 

production increases, malfunction in stack gas control equipment, industrial accidents, 

and high traffic load in rush hours or meteorological conditions. Short term air 
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pollution can grow to long term air pollution when meteorological conditions (such as 

inversion or calm weather conditions) are feeding short term air pollution and there is 

a continuous high pollutant emitting sources. Furthermore, meteorological conditions 

are capable of making long term pollution for instance when there is continuous long-

range transport of the pollution. 

Ambient particulate matter (PM) pollution is one of the priority air pollution problems 

and causes a wide range of diseases that lead to a significant reduction in human life 

as it can be suspended over long time and travel over long distances in the atmosphere 

[6]. The size of particles has been directly linked to their potential for causing health 

problems. Inhalable coarse particles have 50% passing yield from a permeable matter 

has 10 micrometres (µm) or less aerodynamic diameter (PM10), and it is most 

consistently been associated with short-term health effects in mortality [3]-[4]. In the 

literature there are many epidemiological studies which revealed the associations 

between exposure to PM10 and increasing risk of adverse effects on human health        

[6]-[8]. Inhalation and penetration of PM into the lungs and bloodstream can lead to 

respiratory, cardiovascular, immune, neural systems problems as well as lung cancer 

[5].  

PM10 is emitted into the surrounding air by anthropogenic sources such as industrial 

combustion, power plants, quarrying, heavy traffic, house fire burning, or in natural 

ways as fine dust, volcanoes, salt spray and secondary particles formed in the air due 

to chemical reactions. Beyond emitting from a specific source, it can be transported 

from a more polluted area or can be formed from chemical reactions in the atmosphere 

(secondary pollutants), accumulated in an area with the help of the meteorological 

conditions, and finally causes visible air pollution. According to Karagulian F. et al. 

[9], the principal sources of airborne PM10 in Central and Eastern Europe are domestic 

fuel burning (45%), unspecified source of human origin which is mostly attributed to 

secondary particles formed from unspecified pollution sources of human origin (26%), 

industrial emissions including energy production (18%), traffic emissions (8%) and 

natural sources such as dust and sea salt emissions (3%). According to same study, for 

Turkey, percent contribution of the sources to urban ambient PM10 concentrations are 

summarized as 39% from unspecified source of human origin, 29 % is from industrial 

sources including energy production, 16% is from traffic emissions and remining 16% 

is from natural sources (dust and sea salt emissions). Percent contribution of industrial 
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sources (including energy production) in Turkey to airborne PM10 is highest when 

compared to percent contribution of industry in all other regions of the world [9].  

According to European Environment Agency (EEA) the annual limit value (the 35-

day acceptable limit is 50 μg /m3) for PM10 (applying from 2005) was exceeded most 

often in Poland, Italy, Slovakia, the Balkan region, Turkey and also in several urban 

regions [5]. For instance in 2013, Budapest (Hungary) experienced high levels of air 

pollution 76 days beyond the 35-day acceptable limits (50 μg /m3) of EU, where Rome 

(Italy) had 39 days, Berlin (Germany) had 31 days, Paris (France) had 14.5 days, 

Pernik (Bulgaria) had 180 days beyond that target level [10][11]. According to the data 

obtained from Ministry of Environment and Forestry of Turkey [12], in 2018, the 35-

day acceptable limit value (50 μg /m3) was exceeded 52 days beyond the 35-day limit 

value in Istanbul, 137 days in Bilecik, 234 days in Bursa, 69 days in Canakkale, 98 

days in Edirne, 31 days is Kirklareli, 40 days in Kocaeli, 180 days in Sakarya, 47 days 

in Tekirdag and 11 days in Yalova. As in other some cities in Europe, cities of Turkey 

also experience high number of days with daily average PM10 concentrations beyond 

the limit value. All given cities are located in Marmara region of Turkey, which is the 

region of Turkey considered in the upcoming parts of this study.  

According to the data obtained from World Health Organization (WHO) [13], there 

are 418 cities over 2965 cities in the world with an average annual PM10 concentration 

more than 50 μg/m3, and 211 of them is from China, 47 is from Iran, 44 is from Turkey, 

29 is from India and 22 is from Chile. When regions of the world considered, 66 cities 

are from Eastern Mediterranean region, 57 cities are from Europe, 35 cities are from 

South-East Asia, 221 cities are from Western Pacific countries (China, Philippines, 

Korea, Vietnam, Mongolia), 36 cities are from America region have more than 50 μg 

/m3 annual average PM10 concentration. Annual average PM10 concentration is more 

than 50 μg /m3 in 56 cities of Europe and 44 cities of these are from Turkey, in 2016.  

As it is clear from these statistics derived from several international organizations, 

PM10 is a global problem. At the same time, although Europe cities experience episodic 

PM10 concentrations, Turkey suffers from long term high PM10 concentrations in more 

than half of its cities. For instance, as annual average PM10 concentrations, Igdir ranks 

106th worst among 2965 cities in the world with an annual average PM10 concentration 

as 100 μg/m3 in 2016, where Artvin, which has the best annual average PM10 

concentration in Turkey as 16.8 μg /m3 in 2016 and ranks 894th best city in the world. 
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However, SO2, CO and NOx should also be taken into account when talking about air 

quality. In order to deal with this problem, air quality management plans are developed 

in all Europe, also in Turkey.  

Air quality management  

Air quality management refers to the all activities applied by regulatory authorities for 

protecting human health and the environment from the harmful effects of air pollution 

by a dynamic process [14]. As it is given in Figure 1.1, air quality management process 

starts with establishment of the acceptable level of the goals for the pollutants in the 

air, then followed by determination emission reductions. Emission inventories, air 

monitoring and air quality models are used in the decision-making process of the goals. 

After development of emission reduction programs, they applied via regulations and 

other instruments. Results of the programs are evaluated periodically by means of 

observations and modelling studies for checking if air quality goals are being met. All 

these processes are contributed by scientific studies with essential understanding of 

how pollutants are emitted, transported and transformed in the air and their effects on 

human health and the environment.  

 

Figure 1.1 : Air quality management procedure. 

Air quality monitoring 

A critical component of air quality management is air quality measurements. The 

measurements are compared to emission standards which allow to set-up controlling 
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procedures when measurements are more. However, measurements give an idea of the 

point measured, where air quality management is considered in spatially wide 

locations in terms of cities, countries or regions. Number of measurement stations are 

vital in that point in order to ease spatial evaluation of air quality. However, setting up 

a dense measurement network is expensive; therefore, their spatial resolution is 

generally insufficient to qualify them as the real world. In Turkey there are 310 

measurement station (1 station per 2527 km2), which seems a high enough number, 

however it should be considered that urban environmental pollution can extremely 

change according to space. There are some receptor models which use statistics (such 

as Chemical Mass Balance - CMB - Model and Positive Matrix Factorization - PMF - 

Model) for concentrations in an area by using air quality measurements, however these 

models do not effective in large domains and generally used for source apportionment 

studies [15][16]. Although space measurements supply spatial coverage (not working 

well in cloudy areas), they also have some limitations due to its measurement 

technique which considers the number of particles in a column (Aerosol Optical Depth, 

AOD) which then makes hard distinguishing surface air quality data in the column, 

furthermore, temporal resolution of satellite measurements is limited [17]. Besides, air 

quality measurements have uncertainties due to calibration or measurement device 

problems. Hence, air pollution measurements give quantitative information about 

ambient concentration and deposition of pollutants, but they are limited in spatial and 

temporal coverage, therefore they are limited in identifying the causes of the air 

pollution problem. Air quality management requires spatial-temporally wide data, 

therefore there is a need for representing atmospheric composition and identify 

possible contribution of sources, then there is a need for air quality modelling.  

Air quality modelling 

Air quality modelling is a method which provides information on air quality on the 

basis of what we know of the emissions of chemical species, and of the atmospheric 

processes that lead to pollutant dispersion (meteorology), transport, chemical 

conversion and removal from the atmosphere by deposition [18] by representing 

physical and chemical processes in the atmosphere [19]. Air quality models (AQMs) 

are important because they integrate our understandings of the complex processes that 

affect the concentrations of pollutants in the atmosphere. The other important role of 

air quality model (AQM) is its help to design of emission control strategies that are 
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being developed to improve air quality [1] which has a direct impact on public health. 

Furthermore, by models, it is possible to quantify the contribution of an existing or 

planned emission source to air quality, or investigation the impact of alternative future 

emission scenarios on air quality, which is important for supporting air quality 

management. This makes air pollution models an invaluable tool in regulatory, 

research, and forensic applications [20]. Therefore, AQMs have been widely used in 

air quality management.   

Large number of air quality models are developed in the literature and still research 

projects in this area are undertaken. Although there are several AQM classifications, 

in this part of study, the broad classification of Juda-Rezler K. [21] according to the 

basic model structure will be given here. Air quality models can be classified into two, 

which are nondeterministic and deterministic models. Nondeterministic models can be 

further divided into two groups which are statistical and physical models. The 

statistical model calculates concentration by statistical methods from meteorological 

and other parameters after the statistical relationship has been obtained empirically 

from measured concentrations. The physical model is one in which nature is simulated 

on a smaller scale in the laboratory, e.g., in a wind-tunnel. The statistical are very 

useful for short-term forecast of concentrations, and the physical models are of use if 

specific processes are being considered, e.g., influences of topography on the mean 

airflow. Deterministic models calculate the concentrations from an emission inventory 

and other independent, mostly meteorological, variables according to the solution of 

various equations which represent the relevant physical processes. In most cases, they 

use solutions of the turbulent diffusion equation derived in several ways and under 

different assumptions. The deterministic models are most suitable for long-term 

planning decisions. Deterministic models are divided into two categories which are 

closed form analytical models and numerical models. Closed form analytical models 

solve turbulent diffusion equation under a set of simplifying equations such as 

accepting steady state conditions and homogenous flow. Gaussian plume/puff models 

are closed form analytical models and due to these assumptions, they are simple, and 

can be applied for shorter distances (∿10 km) and shorter travel times (∿2 hours) with 

low computational cost. Numerical models are divided into two by First order-closure 

(K-Theory) models and Second order-closure models. First-order-closure (K-Theory) 

models use the gradient transfer theory (K-theory) [22], in order to solve turbulent 
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diffusion equation and those models are classified according to consideration about 

movement of air parcel and gridding system, which are Eularian grid, Lagrangian 

trajectory, hybrid Lagrangian-Eularian and Random-Walk (Monte-Carlo) trajectory 

systems. Numerical models are time-dependent; their structure allows space and time 

variations in the field of meteorological parameters, as well as the concentration field. 

Therefore, numerical models are capable of handling a much wider variety of air 

pollution problems than the analytical ones. In this study, we will focus on Eularian 

models, since the models included in this study are Eularian models. However, there 

is a need for clarifying Eularian models by comparing it with Lagrangian models.  

According to Seinfeld and Pandis [19], in Lagrangian approach, an air parcel is 

considered and changes in the chemical composition of this air parcel is simulated as 

it is moved with the local wind in the atmosphere continuously. So, the model actually 

simulates concentrations at different locations at different times. In Lagrangian 

models, there is no mass exchange between the air parcel and its surroundings, with 

the exception of species emissions that are allowed to enter the parcel through its base. 

On the contrary of the first approach, Eulerian model simulates concentrations in each 

fixed location which is shown with an array of fixed computational cells in space. 

Species enter and leave each cell through its walls, and the model simulates the species 

concentrations at all locations (cells) as a function of time. The Eulerian description is 

the common way of treating heat and mass transfer phenomena. The two approaches 

yield different types of mathematical relationships for the species concentrations that 

can, ultimately, be related. Each approach has its own advantages and disadvantages. 

The main advantage of Lagrangian model is the simple numerical treatment of the 

transport term in the mass balance equation, however, the main disadvantage is 

neglecting exchange processes between the air parcels and wind shear which makes 

three dimensional Lagrangian models not very reliable [23]. In the Eularian models, 

numerical solution of the transport term becomes more difficult and often requires 

substantial computational resources to be accurate. However, the main advantage of 

the Eularian models is the well-defined three-dimensional formulation that is close to 

real-life and clearly needed for the complex air pollution problems [24]. Most 

commonly used Eularian, three-dimensional grid based, large scale AQMs in Europe 

are Community Multiscale Air Quality Model (CMAQ) [25], Weather Research and 

Forecasting Model coupled with Chemistry (WRF-Chem) [26], Comprehensive Air 
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Quality Model with Extensions (CAMx) [27], Multi-scale chemistry-transport model 

for atmospheric composition analysis and forecast (CHIMERE) [28], LOTOS (LOng 

Term Ozone Simulation)-EUROS (EURopean Operational Smog model),  [29], and 

Danish Eulerian Hemisphere Model (DEHM) [30]. Entire of those models were used 

in this study.  

As it was explained in this part of study, air quality modelling gives a complete picture 

of air quality in a zone in contrast to the limitations in the spatial coverage of air quality 

measurements, temporal coverage of space measurements. However, monitoring data 

are indispensable for inferring theories or parameters and calibrating or validating air 

quality simulations, because there are uncertainties in model estimates due to 

deficiencies in our knowledge of emissions and atmospheric processes. No matter how 

good the science is in an AQM, there will always be uncertainties due to data input 

errors and due to stochastic (turbulence) processes [31]-[34]. Hence, models don’t 

predict exactly the real-values and this situation causes variability and uncertainties in 

model predictions. According to United States (U.S.) Environmental Protection 

Agency (EPA) [35], variability refers to the inherent heterogeneity or diversity of data 

in an assessment. It is a quantitative description of the range or spread of a set of values 

and is often expressed through statistical metrics such as variance, standard deviation, 

and interquartile ranges that reflect the variability of the data. Variability cannot be 

reduced, but it can be better characterized. Uncertainty refers to lack of knowledge 

regarding the true value of a fixed but unknown quantity [36]. Uncertainty can be 

reduced or eliminated with more or better data [35].  

Uncertainties in AQM estimates 

According to Fox D.G. [32] there are two types of uncertainties in AQM estimates, 

inherent uncertainty and reducible uncertainty. Inherent uncertainty results from the 

basic stochastic nature of the turbulent atmospheric motions that are responsible for 

transport and diffusion of released materials. Reducible uncertainty (error) results from 

improper or inadequate meteorological and air quality data inputs, and from 

inadequacies in the models. Therefore, the inherent uncertainty can be considered as 

variability [37]. Total model uncertainty is a sum of data errors, model errors and 

stochastic uncertainty. Data errors and model errors belongs to reducible uncertainty.  
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The AQM, especially Chemical Transport Model (CTM), prediction represents an 

ensemble mean over the entire grid volume. The CTM prediction differs from a point 

observation because of four primary considerations: 1) inherent or stochastic 

variability in the observations, 2) errors in model physics and chemistry assumptions, 

3) errors due to uncertainties in model input variables, and 4) numerical errors [36]. 

Those differences cause uncertainties in model outputs. Among these sources, 

emissions are regarded to have the largest levels of uncertainty [38]-[42].  

Errors due to uncertainties in model input variables is the one, that might influence the 

predictions in Eastern Europe due to uncertain inputs from Eastern Europe countries 

where quality of emission inventories are low, therefore this study focuses on 

quantifying the uncertainty AQM estimates due to emission inventories. A certain 

emission inventory is a path to a more certain air quality prediction. The development 

of a consistent procedure for the uncertainty evaluation is still a challenge for the 

scientific community.   

Several studies were conducted for different aspects of uncertainty issues in AQMs. 

The first set of studies is related to integration of measurement uncertainty to model 

evaluation. Since calculation of measurement uncertainties have strict and complex 

guidelines [43], there were some attributes to calculate uncertainties of measurements 

by using output of the models. Thunis et al. [43] and Pernigotti D. et. al.  [44] proposed 

performance criteria to evaluate AQMs for O3, PM10 and NO2 based on measurement 

uncertainty. Thunis et al. [45] proposal is based on the root mean square error between 

measured and modelled concentrations divided by the measurement uncertainty, the 

measurement uncertainty was assumed to remain constant regardless of the 

concentration level. Then Thunis et al. [43] improved former model by quantifying all 

possible sources of uncertainty for the particular case of O3. Based on these uncertainty 

source quantifications, a simple relationship is proposed to formulate the measurement 

uncertainty which is then used to update the former approach and modes performance 

criteria proposed in Thunis et al. [43] with more accurate values. In the paper of 

Pernigotti D. et. al. [44], the same approach is applied for NO2 and PM10, but using 

different techniques for the uncertainty estimation. 

The second set of studies is related with the evaluation of uncertainties originated from 

emission inventories which is close to the subject of this thesis. Napelenok S. L. et al. 

[46] presented a method and applied for evaluating an AQM’s changes in pollutant 
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concentrations stemming from changes in emissions while explicitly accounting for 

the uncertainties in the base emission inventory. Specifically, the CMAQ model is 

evaluated for its ability to simulate the change in ozone (O3) levels in response to 

significant reductions in NOx emissions. The dynamic model evaluation (i.e., the 

evaluation of a model’s ability to predict changes in pollutant levels given changes in 

emissions) differs from previous approaches by explicitly accounting for known 

uncertainties in the NOx emissions inventories. Uncertainty in three sectors of NOx 

emissions is considered – area sources, mobile sources, and point sources – and is 

propagated using sensitivity coefficients calculated by the decoupled direct method in 

three dimensions (DDM-3D). The change in O3 levels between 2002 and 2005 is 

estimated based on differences in the empirical distributions of the modelled and 

observed data during the two years. Results indicate that the CMAQ model is able to 

reproduce the observed change in daily maximum 8-hr average O3 levels at more than 

two-thirds of air quality monitoring locations when a relatively moderate amount of 

uncertainty (50%) is assumed in area and mobile emissions of NOx together with a 

low amount of uncertainty (3%) in the utility sector (elevated point sources) emissions. 

The impact of other sources of uncertainty in the model is also briefly explored. 

Some other studies assessed uncertainty in local scale air quality modelling application 

by applying the procedures for some case studies. Sax T. and Isakov V. [47] 

established uncertainty analysis techniques to demonstrate a general method for 

assessing variability and uncertainty in Gaussian air pollutant dispersion modelling 

systems. To illustrate this method, they estimated variability and uncertainty in 

predicted hexavalent chromium concentrations generated by welding operations at a 

shipbuilding and repair facility in California. Using Monte Carlo statistical techniques, 

they propagated uncertainty across both ISCST3 and AERMOD, and estimated the 

contribution of variability and uncertainty from four model components: emissions, 

spatial and temporal allocation of emissions, model parameters, and meteorology. 

A framework to estimate the uncertainty of AQMs due to the uncertainties in input 

parameters has been established by previous research work. Most of the research work 

has used Monte Carlo simulations with randomly sampled model inputs according to 

their probability distributions and then quantified the uncertainties of model outputs 

(e.g. pollutant concentrations and sensitivities) by using the ensemble outputs obtained 

from the Monte Carlo simulations [48]-[50]. However there are also analytical 
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methods for quantifying uncertainty as discussed in the studies of Hanna [36], Rao 

S.K. [37].  

The quality of an emission inventory that will be used in air quality modelling is 

associated with its low-level uncertainty and adequate coverage of the sources. Due to 

transboundary structure of air pollution, there is a need for standardized delivery of the 

emissions in order to ease evaluating all countries emission inventories in one pot. In 

the literature there are several wide-coverage emission inventories which are reported 

by many countries and regions in different platforms. Each inventory has different 

uncertainty levels, which shows the quality of the inventories and they are presented 

in various formats. Although uncertainty of an emission inventory affects uncertainty 

of an AQM, it is calculated in a different way than uncertainty of AQM estimates.  

In this part of the study, most commonly used and readily available emission 

inventories for air quality modelling are summarized. Although there are several 

emission inventories in the literature calculated by governments, non-governmental 

organizations, companies or scientists for some countries or for specific cities, only 

worldwide known and commonly used emission inventories are summarized here.  

EMEP Emission inventory 

The first international treaty to deal with air pollution is Convention on Long-range 

Transboundary Air Pollution (CLRTAP) was signed by in 1979 in order to reduce the 

amount of air pollutants destroying forests, causing fish loss in lakes and putting entire 

ecosystems at risks in the Northern Hemisphere, which is identified as ‘acid rain’ 

problem [51], by the organization of the United Nations Economic Commission for 

Europe (UNECE, founded in 1947). Over the years, the number of substances covered 

by the Convention and its protocols has been gradually extended, notably to ground-

level ozone (O3), POPs, heavy metals and PM. Due to the transboundary structure of 

air pollutants, the treaty was signed by 32 countries in 1979, now has 51 Parties [52]. 

The co-operative programme for monitoring and evaluation of the long-range 

transmission of air pollutants in Europe, unofficially European Monitoring and 

Evaluation Programme (EMEP), is a scientifically based and policy driven programme 

under the CLRTAP for international co-operation to solve transboundary air pollution 

problems. Centre on Emission Inventories and Projections (CEIP) is one of the five 

EMEP centres. Emission inventories are prepared annually by the parties (signatory 

countries) of CLRTAP for main pollutants (NOx, NMVOCs, SOx, NH3, CO) and 
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particulate matter (PM2.5, PM10, PMcoarse), heavy metals (Pb, Cd, Hg) and POPS, 

(Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno (1,2,3-cd) 

pyrene, Total polycyclic aromatic hydrocarbons, Dioxin and Furan, 

Hexachlorobenzene, Polychlorinated biphenyls) under the Convention and submitted 

to CEIP (available online from CEIP website [53]). Those emission inventories are 

prepared officially according to the EMEP technical guidelines [54]. Gridded 

emissions are also publicly available for AQM purposes.  

Sectors covered in EMEP emission inventory are energy (combustion in energy, 

manufacturing industries, road and non-road sources), fugitive emissions from fuels, 

industrial processes and product use (mineral products, chemical industry, metal 

production, solvent and product use, other industry production including pulp and 

paper, food and averages industries, wood processing, production and consumption of 

persistent organic pollutants (POPs), and bulk products’ consumption, storage 

transportation and handling processes), agriculture, waste (waste treatment operations, 

waste incineration, open burning etc.), natural and other sources.  

IPCC Emission inventory 

The United Nations Framework Convention on Climate Change (UNFCCC) collects 

emission inventories supplied by the signatory countries of the convention. Gridded 

emission inventories are prepared for specific years and emissions are spatially 

distributed over the region of interest in order to use in AQMs. The regions are divided 

into grids and emissions are distributed into those grids by using a mapping 

background with special algorithms.  

According to Intergovernmental Panel on Climate Change (IPCC) emission inventory 

guidelines [55], the gases have global warming potentials, CO2, CH4, N2O, 

Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Sulphur hexafluoride (SF6) 

and halocarbons covered in Montreal protocol and some other listed halocarbons are 

included in IPCC emission inventory. Furthermore precursors, NOx, NH3, NMVOC 

and SO2 are also reported in IPCC inventories. Greenhouse gas emission and removal 

estimates are divided into main sectors, which are groupings of related processes, 

sources and sinks: energy, industrial processes and product use, agriculture, forestry 

and other land use, waste and other (e.g., indirect emissions from nitrogen deposition 

from non-agriculture sources). Each sector comprises its own individual categories 

(e.g., transport sector comprises cars and motorcycles subsectors). Ultimately, 
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countries construct an inventory from the sub-category level because this is how IPCC 

methodologies are set out, and total emissions calculated by summation. A national 

total is calculated by summing up emissions and removals for each gas. IPCC emission 

inventory doesn’t include all emissions required for air quality modelling purposes 

(such as particulates) however it is a valuable source for global climate change models.  

EDGAR Emission inventory 

Emissions Database for Global Atmospheric Research (EDGAR) emission inventory 

is being calculated since 1996 by contributions of several institutions. The latest 

emission dataset released as EDGAR v.4.3.1 was prepared in January 2016 [56]. 

EDGAR v.4. is a bottom-up emissions database based on European Joint Research 

Centre’s (JRC) evaluation of internationally reported activity data (i.e. fuel use, land-

use, quantity of industrial products, number of animals), and worldwide consistent 

assumptions on emission factors (EFs) associated with these activities for each 

technology and corrected for end-of-pipe abatement measures. The resulting sector-

specific emission trends are publicly available as country totals or on a 0.1°x0.1° grid. 

EDGAR-HTAP emission inventory  

Hemispheric Transport of Air Pollution (HTAP), or The Task Force on Hemispheric 

Transport of Air Pollution (TF HTAP), is an international scientific cooperative was 

organized in 2005 under the auspices of the UNECE Long Range Transboundary Air 

Pollution (LRTAP) Convention (or CLRTAP) and reports to the Convention's EMEP 

Steering Body.  

On request of the European Commission’s (EC) the Directorate-General for 

Environment  (DG ENV, responsible for  EU policy on the environment in EC),  JRC, 

together with a number of international organizations including U.S. EPA, compiled a 

harmonized global, gridded, air pollution emission dataset for 2000 to 2005 (to the 

extent possible) by using officially reported inventories at the national scale and 

complemented with science based inventories where nationally reported data were not 

available [57], for 10 aggregated sectors and on a global 0.1º×0.1 º resolutions [58], 

for CH4, CO, NOx, NMVOC, NH3, SO2, PM2.5, PM10, organic carbon (OC), black 

carbon (BC). The sectors are for all substances defined as follows: international and 

domestic air, international shipping, power industry, manufacturing, mining, metal, 

cement, chemical, solvent industry, ground transport (including road, rail, pipeline, 
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inland waterways), heating/cooling of buildings and equipment/lighting of buildings 

and waste treatment. For NH3 there is in addition sector, which is agriculture, but not 

agricultural waste burning.  

Contributing international organizations are U.S. EPA, the EPA and Environment 

Canada (for Canada), EMEP and Netherlands Organisation for Applied Scientific 

Research (TNO) for Europe, and the Model Intercomparison Study for Asia (MICS-

Asia III) for China, India and other Asian countries.  

JRC’s team in charge of the EDGAR named the resulting inventory, EDGAR-HTAP, 

which is a globally consistent inventory. A separate 0.5º×0.5º gridded dataset is 

available from the U.S. EPA [59], for the years 2002 and 2005, complementary to the 

data in EDGAR-HTAP, providing additional details in sectoral, spatial and temporal 

resolution than EDGAR-HTAP.  

EDGAR-HTAP_V1 was prepared for 2000-2005 time period (but not recommended 

as consistent time series), for all world countries by covering emission sources 

including all human activities except Savannah burning, forest burning and diffusive 

sources such as pave and construction dust. The HTAP_V2 dataset consists of 

0.1ºx0.1º grid maps for the years 2008 and 2010. The grid maps are complemented 

with EDGARv4.3 data for those regions where data are absent. The HTAP_v2.2 [60] 

air pollutant grid maps are considered to combine latest available regional information 

within a complete global data set. The disaggregation by sectors, high spatial and 

temporal resolution and detailed information on the data sources and references used 

will provide the user the required transparency. Because HTAP_v2.2 contains 

primarily official and/or widely used regional emission grid maps, it can be 

recommended as a global baseline emission inventory, which is regionally accepted as 

a reference and from which different scenarios assessing emission reduction policies 

at a global scale could start. 

EDGAR-HTAP emission inventory is available from different platforms including 

EDGAR website [61], Edgar On Line Open Access (EOLO) system [62], Emissions 

of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) Server [63] 

which is also Global Emission InitiAtive database (GEIA) and GEIA web site [64]. 

There was also Community Initiative for Emissions Research and Applications 

(CIERA) platform but now it is fully integrated with GEIA.  
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TNO - MACC emission inventory  

Emission inventories are prepared by bottom-up approach and the use of official 

inventories often required when using regional chemical-transport modelling in policy 

studies. TNO inventory is a complete, consistent and spatially distributed inventory, 

which has used the official reported emissions as basis where possible [65]. 

Monitoring Atmospheric Composition and Climate (MACC) is a project of TNO and 

the standard MACC inventory covers Eastern Europe including Turkey and Russia; 

however, it does not cover North Africa. It is not publicly available, required 

information is available in ECCAD website [66].  

TNO gridded emission inventory is prepared for CO, CH4, NOx, NMVOC, SO2, NH3, 

PM2.5, PM10 and CH4 for the sectors non-industrial combustion, energy industry, 

industries, fossil fuel production and distribution, solvent and other product use, road 

transportation (exhaust gasoline, exhaust diesel, exhaust LPG and natural gas, gasoline 

evaporation, tyre, brake and road wear), non-road transportation, agriculture and 

waste.  

MACC-II is emission inventory of TNO developed in second phase of MACC Project 

(TNO-MACCII), which is the most updated version of this gridded emissions are 

mainly taken from EMEP emission inventories, the gaps are filled with the data from 

GAINS model [67]. The GAINS model combines information on economic and energy 

development, emission control potentials and costs, atmospheric dispersion 

characteristics and environmental sensitivities towards air pollution [68] and by using 

these statistics built up a bottom-up inventory. Missing CO emissions were taken from 

EDGAR-HTAP emission inventory [60] and TREMOVE model [69] for disaggregate 

the energy use to detailed vehicle classes technologies for each country. Since this 

bottom-up inventory was originally only developed for the year 2005, emissions for 

the other years were estimated by scaling this inventory. Scaling factors for the 

different years were calculated from the EDGAR emission inventory v4.2 [70] which 

provides sector-specific annual emission estimates for CO for each country in the 

world. For the countries which did not report emissions such as Armenia, Azerbaijan 

and Georgia, EDGAR [70] data were used at SNAP (Selected Nomenclature for Air 

Pollution) level 1, which is energy industries sector, for all pollutants and all years. 

These were disaggregated to the same subcategories as the other countries by using 
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the relative contribution of each subsector to the SNAP level 1 sector for Turkey (for 

each pollutant and each year) as a blueprint. 

Since both TNO-MACC and EDGAR-HTAP [60] emission inventories have been 

prepared for the European continent, they are approximately same over the common 

part of EU. Some discrepancies, e.g., in the emissions from ships, might exist among 

the two inventories [71]. Furthermore, they differ for regions outside European 

borders, such as North Africa. EDGAR-HTAP [60] emission inventory also covers 

Asia, Africa and Russia. Both inventories include emissions of Turkey. 

Emissions of public electricity and heat production sector of Turkey  

According to National Emission Inventory report (NIR) [72] and Informative 

Inventory Report (IIR) [73] of Turkey, public electricity and heat production sector is 

responsible from 65.1% of SO2, 42.5% of CO2 and 42.7% of NOx emissions of Turkey. 

Given that public electricity and heat production sector makes high proportion of the 

national total. According to Turkish Statistical Institute (TurkStat), electricity is 

generated mainly from coal and natural gas in 2016 as it is given in Figure 1.2, which 

shows that fossil fuels are used as energy source in vast majority of the electricity 

generated in Turkey .  

 

Figure 1.2 : Electricity generation shares by energy sources in Turkey in 2016. 

Producing energy from fossil fuels involves the combustion of fuels like coal, gas, and 

oil, and fossil fuels combustion is one of the important sources of air pollution [19], 

which means that the contribution of public electricity and heat production sector’s 

emissions to the anthropogenic emission inventory of Turkey is large. Therefore, 
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uncertainty in the emission inventory of public electricity and heat production sector 

contributes greatly to the uncertainty of the overall emissions inventory. For this 

reason, it is important to create a low-uncertainty emission inventory for this sector in 

terms of its contribution to the total value. 

 Purpose and Importance of the Thesis 

Uncertainty refers to lack of knowledge regarding the true value of a quantity. It can 

be reduced or eliminated with more or better data, where variability cannot be reduced. 

Among the reasons of uncertainty, inputs are regarded to have the largest levels of 

uncertainty. The aim of this study is to evaluate and quantify the contribution of 

uncertainties in input dataset to AQM estimates, which belongs to data errors part of 

uncertainty. For this purpose, it is necessary to define the problem that poor 

performance of the model is caused mostly by unfit data. 

In literature, models perform poor in the Eastern European countries. However, a more 

detailed study is needed to say that this poor performance is mostly due to model 

inputs, because, the poor performance of the models may also have other reasons. In 

the first part of this study, inter-model variability is defined quantitatively by 

participating in an international AQMEII-3 project. In the second part of the study, 

contribution of uncertainties to this problem is quantified by being part of a national 

project (KAMAG).  

Thanks to the multi-national AQMEII-3 project that this study contributed, European 

continent has been studied by many models. 12 modelling groups were cooperated 

from different countries of Europe and conducted 18 model runs on Europe domain 

(covers 34 Europe countries) for 2010 by using 7 different AQMs, 3 meteorology 

models and 2 emission inventories in AQMEII-3 project. This study, for the first time 

in Turkey, contributed to AQMEII-3 which is organized by the joint leading of U.S. 

EPA and European JRC. In AQMEII-3, mostly, two separate versions of the emission 

inventory used in all models as one of the important inputs. In this case, if all models 

have poor performance in a region, it can be scientifically revealed that this is due to 

bad input data.  

The subject of this thesis, which is uncertainty assessment of AQMs due to emission 

inventories which is an important input of AQMs, is under development in air quality 
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science. Quality of an emission inventory that will be used in air quality modelling is 

associated with its low-level uncertainty and adequate coverage of the sources. In the 

second part of this thesis, a sample inventory is developed in order to reveal 

contribution of data uncertainty to poor performance of the models. By calculating this 

reducible uncertainty in the model results, it is aimed that air quality models will 

perform better especially in Eastern European countries with better quality inputs.  

Up to now, there are several air quality modelling studies for Turkey, however they 

are developed for a specific city or region of Turkey, for a timescale starting from days 

to a few months, by using just one type of AQM. Thanks to its wide coverage domain 

and multi-model contributions, this study looks to the problem from the large 

perspective in order to define the problem and recommends a solution by representing 

a sample of the solution. This will give a unique way for such an analysis which has 

not been conducted yet. This study applies a probabilistic variability and uncertainty 

estimation technique in order to quantify random errors and biases in EFs and emission 

inventories. Especially Monte Carlo and Bootstrap techniques are used first time in 

Turkey for such an analysis. 

 Objectives 

In order achieve the purpose of this study, following steps were applied in order to 

quantify uncertainty due to input of AQMs;  

1. A comparative quantitative assessment of AQM performances throughout 

Europe and Turkey withing the context of AQMEII-3 activity 

- Intra-seasonal and inter-model performance evaluation for countries in 

Europe for 2010,  

- Comparison of Eastern and Western Europe countries in terms of 

model performance metrics,  

- Inter-model comparison of the model predictions over Turkey 

(especially Marmara region) with European countries,  

- Discuss reasons of poor performing models over regions of Turkey by 

comparing other countries of Europe,  

2.  Estimation of country specific EFs  

- Developing country specific EFs from both in-situ measurements and 

emission measurement reports for public electricity and heat 
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production sector of Turkey by considering the plants in Marmara 

region. 

- Quantify variability and uncertainty in those EFs by Monte Carlo and 

Bootstrap approaches.  

- Comparing both EFs with EMEP and EPA EFs.  

3. Development of a probabilistic emission inventory 

- Development of a probabilistic emission inventory by using country 

specific EFs for public electricity and heat production sector of Turkey 

by considering the plants in Marmara region. 

- Development of the same emission inventory with the EFs of EMEP 

and EPA.  

- Comparison of sample emission inventory with EDGAR-HTAP and 

TNO-MACC emission inventories which are most commonly used 

emission inventories by air quality modelers.  

- Quantifying contribution of newly developed emission inventories  

- Discussing contribution emission inventories to uncertatinties to AQM 

predictions.  

It is aimed to contribute to scientific community with the results of this thesis. The 

result can reveal the negative impact of uncertain emission inventories on AQM 

predictions. We hope that this study will encourage the air quality community to 

improve the quality of the emission inventories.  
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 DATA AND METHODOLOGY  

In this study, first of all an inter-model comparison study is conducted within the 

context of an international project. Then, performances of the models were evaluated 

for Europe, Turkey and Marmara region, which required to compile a sample 

probabilistic emission inventory for Marmara region of Turkey for public electricity 

and heat production sector by developing specific EFs and using the data obtained via 

a national project that this study also contributed.  

 Air Quality Modelling  

This study benefits from a collaborative project of European JRC. The name of the 

project is Air Quality Modelling Evaluation International Initiative (AQMEII) which 

has volunteer contributors from the worldwide scientific community. AQMEII aims at 

promoting research on regional AQM evaluation across the European and North 

American atmospheric modelling communities, through the exchange of information 

on practices, the realization of inter-community activities and the identification of 

research priorities, keeping focus in policy needs [75]. This study contributed to Phase 

3 of AQMEII project (from this point it will be called as AQMEII-3). The goals of the 

AQMEII-3 activity are to evaluate and compare global and regional modelling systems 

driven by consistent emissions over North America and Europe against a common set 

of measurements and to perform model evaluation analyses on global models 

coordinated with the analyses of regional models being performed under the AQMEII. 

Although AQMEII-3 was conducted for both North America and Europe domains, our 

group contributed European part of the study. Names and model configurations of the 

AQMEII-3 project contributors are given in Table 2.1 for European part of the study.  

In AQMEII-3, there were 12 modelling groups (from 9 countries in Europe), including 

our group, contributing AQMEII-3 project’s European domain simulations, which 

resulted 18 model runs. This study has a chance to use results of entire of those models 

via web-based ENSEMBLE [76] platform of JRC for evaluating atmospheric 

chemistry transport and dispersion models. Platform is open for AQMEII-3 project 
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contributors and closed for public use. The remining data provided in Figure 2.1 are 

explained in Chapter 2.1.3 .   

 : Main modelling properties of modelling groups in AQMEII-3 project. 

Group 

ID Institute  Country 

Meteorology 

Model  

Air Quality 

Model  

Emission 

Inventory  System ID 

FI1 Finnish 

Meteorological 

Institute 

Finland  Direct 

interpolation 

from ECMWF 

SILAM v5.4  

[78] 

TNO 

MACC [66] 

ECMWF-

SILAM_M 

FI1 Finnish 

Meteorological 

Institute 

Finland  Direct 

interpolation 

from ECMWF 

SILAM 

v5.4 [78] 

EDGAR 

HTAP v2.2 

[60] 

ECMWF-

SILAM_H 

NL1 TNO  Netherlands  Direct 

interpolation 

from ECMWF 

LOTOS-

EUROS  
v1.0.1 [79] 

TNO 

MACC [66] 

LOTOS-

EUROS 

FRES1 INERIS and 

CIEMAT 

France and 

Spain  

Direct 

interpolation 

from ECMWF 

IFS 

CHIMERE  

(v2013) [28] 

EDGAR 

HTAP v2.2 

[60] / TNO 

MACC [66] 

ECMWF-

CHIMERE 

IT2  University of 

L’Aquila  

Italy WRF WRF-Chem 

v3.6 

TNO 

MACC [66] 

WRF–WRF-

Chem1 

ES1 University of 

Murcia  

Spain WRF WRF-Chem  TNO 

MACC [66] 

WRF–WRF-

Chem2 

IT1  Ricerca Sistema 

Energetico  

Italy WRF CAMx 

v6.10 [80] 

TNO 

MACC [66] 

WRF-CAMx 

DK1 Aarhus 

University 

Denmark  WRF DEHM [81] EDGAR 

HTAP v2.2 

[60] 

WRF-DEHM 

TR1 Istanbul 

Technical 

University  

Turkey  WRF CMAQ 

v4.7.1 [25] 

TNO 

MACC [66] 

/ EDGAR 

HTAP v2.2 

[60] 

WRF-

CMAQ1 

UK2 Ricardo Energy 

& Environment 

(Ricardo E&E) 

England  WRF v3.5.1 CMAQ 

v5.0.2  

[25][82] 

TNO 

MACC [66] 

WRF-

CMAQ2 

UK3 University of 

Hertfordshire 

England   WRF v3.4.1  CMAQ 

v5.0.2 

 [25][82] 

TNO 

MACC [66] 

WRF-

CMAQ3 

UK1 Kings 

College 

England  WRF  CMAQ 

v5.0.2 

 [25][82] 

TNO 

MACC [66]/ 

EDGAR 

HTAP v2.2 

[60] 

WRF-

CMAQ4 

DE1 Helmholtz- 

Zentrum 

Geesthacht  

Germany  COSMO- 

CLM (CCLM) 

v4.8 [77] 

CMAQ 

v5.0.1  

[25][82] 

EDGAR 

HTAP v2.2 

[60] 

CCLM-

CMAQ 
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2.1.1 Domain 

The domain that is used in model runs is as follows; North American Common 

Analysis Domain (130°W <-> 59.5°W, 23.5°N <-> 58.5°N) and European Common 

Analysis Domain (30°W <-> 60°E, 25°N <-> 70°N). Our group is running only 

European domain with 30 km resolution. The domain is given in Figure 2.1.  

 

 : Domain of the study. 

The red one shows simulation grid and blue is the output grid of the models with 

Lambert conformal projection. After running models in red domain, the emissions data 

is prepared according to blue grid, and uploaded to the ENSEMBLE system of JRC. 

Although the simulation grid is the red one, contributors asked to prepare their data in 

blue grid, because of a need for a standardized gridding system in model comparisons. 

Parts of the output grid are outside of the simulation grid was filled with NaN values.  

2.1.2 Data  

AQMs require meteorology, emissions and boundary conditions data as an input for 

calculation of the emissions [18]. Furthermore, emission inventory development 

requires a wide range of the data about emission sources. Input data types and sources 

are explained in this part of study.   

2.1.2.1 Meteorological data 

AQM requires meteorological inputs which are produced by meteorology models. 

Also, meteorology models require meteorological data in order to produce 

meteorological outputs (detailed description of the meteorological modelling 
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approaches used in this study is in Section 2.1.3.1). In this part of study, input data of 

meteorological models used in AQMEI-3 project is described.  

Our group used WRF meteorology model as indicated in Table 2.1. Input data of WRF 

model, which is ERA-Interim, was obtained from European Centre for Medium Range 

Weather Forecasts (ECMWF) for 2010 for our domain. ECMWF Re-analysis (ERA-

Interim) is a reanalysis data of the global atmosphere covering the data-rich period 

since 1979 (originally, ERA-Interim ran from 1989, but the 10-year extension for 

1979-1988 was produced in 2011) and continuing in real time [83]. Reanalysis data is 

produced by both of observations and models in order to develop a comprehensive 

record of how weather and climate are changing over time [83].  

The ERA-Interim data assimilation and forecast suite produces four analyses per day, 

at 00, 06, 12 and 18 UTC (coordinated universal time); two 10-day forecasts per day, 

initialized from analyses at 00 and 12 UTC. The data is downloaded monthly in the 

gridded binary data (GRIB) format. GRIB is a format of World Meteorological 

Organization (WMO) for gridded data. GRIB is used by the operational meteorological 

centres for storage and the exchange of gridded fields.  

The data includes, but not limited to temperature and dewpoint temperature at 2 

meters, U and V wind components at 10 meters, albedo, boundary layer height and 

dissipation, radiation and available energy types, precipitation, snowfall, surface 

stresses, evaporation, surface roughness, cloud cover, ice-skin-soil temperatures 

according to layers, moisture flux, sensible heat flux, runoff, sea-ice area fraction, sea 

surface temperature, snowfall, snowmelt, sunshine duration, latent heat flux, solar 

radiation, thermal radiation, surface pressure, total column cloud ice water and liquid 

water, total column ozone, water and water vapor, vertical integrals of fluxes, energy 

and masses, ozone and volumetric soil water layers [84].   

National Centres for Environmental Prediction (NCEP) Final (FNL) analyses data 

[85], on 1-degree by 1-degree grids prepared for every six hours, were used as an input 

to WRF model by our group. The analyses are available on the surface, at 26 

mandatory (and other pressure) levels from 1000 millibars to 10 millibars, in the 

surface boundary layer and at some sigma layers, the tropopause and a few others. 

Parameters include surface pressure, sea level pressure, geopotential height, 

temperature, sea surface temperature, soil values, ice cover, relative humidity, u- and 
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v- winds, vertical motion, vorticity and ozone. The NCEP Global Forecast System 

(GFS) [86] is a global spectral data assimilation and forecast model system giving 6 

hourly atmospheric variables at 26 levels with a resolution of 0.25 degree. NCEP GFS 

data was used by UK1 and UK2. ECMWF data was used by remaining groups.  

According to Table 2.1, FRES1 group run AQM with meteorology provided ECMWF 

Integrated Forecasting System (IFS). In ECMWF IFS, atmospheric composition 

(greenhouse gases, aerosols, and chemical species) is modelled by the horizontal 

resolution of ~40 km and the data available in 3-hour intervals [87]. Other groups 

extracted meteorological inputs of AQM from the ECMWF operational archives as of 

our group.  

2.1.2.2 Chemical boundary conditions  

In AQMEII-3 project all groups used same chemical boundary conditions. CO, CH4, 

SO2, NOx, NMVOC, organic matter, black carbon, sulphate and dust emissions at the 

boundaries of the domain were supplied by the Composition-Integrated Forecast 

System (C-IFS) model of ECMWF as it was explained by Flemming et. al. [88].  

2.1.2.3 Emission inventory of the models  

In this part of study, emission inventories which were used by modelling groups of 

AQMEII-3 project were explained for anthropogenic, biogenic, lightning and volcanic 

emissions. Furthermore, conversion methodology of annual and country-based 

emission inventories to hourly and gridded AQM inputs is summarized. Participating 

groups are expected to calculate emissions from biogenic and natural sources (e.g. sea 

salt, windblown dust) directly in their own model since these emissions are dependent 

on the simulated meteorology. 

Anthropogenic emissions  

There are two wide coverage emission inventories which are commonly used by air 

quality modelling groups, which are TNO-MACC and EDGAR-HTAP emission 

inventories. In AQMEII-3, mainly these two emission inventories were used either 

independently or in combination with the other one.  

According to Table 2.1, EDGAR - HTAPv2.2 emission inventory [60] was used 

primarily by FI1, DK1 and DE1 groups. FRES1 primarily used EDGAR-HTAP 

emission inventory and then used TNO-MACC emission inventory in order to fill 



26 

gaps. On the contrary of this, TR1 (our group) and UK1 used TNO-MACC emission 

inventory primarily, then used EDGAR-HTAP emission inventory in order to fill gaps. 

Other groups used TNO-MACC emission inventory solely as anthropogenic emission 

input of AQMs.  

TNO-MACC and EDGAR-HTAP emission inventories cover common part of EU, 

however EDGAR-HTAP emission inventory also covers regions outside EU borders. 

There are also differences within two inventories, for instance in the ship emissions. 

Detailed information on these two emission inventories were given in Section 1. Also, 

energy part of these two emission inventories are discussed detailly in the emission 

inventory part of this study.  

Anthropogenic emissions used by AQMEII-3 groups are presented quarterly in Figure 

2.2 for all domain by Box and Whisker plots, in order to show overall patterns of 

emissions for each modelling group by visualising the range and other characteristics 

of emissions for such a large group in a simple figure. In Figure 2.2, PM10 emissions 

of AQMEII-3 groups are accumulated per km2 for quarter one (Q1) of 2010. Q1 

comprises January, February and March of year 2010. Only six groups supplied 

emission data, therefore box plots of other groups are not existing in Figure 2.2.  

According to Figure 2.2, the average of grid-based emissions ranges from 15 kg/km2 

(UK3) to 800 kg/km2 (NL1) for all domain. The average of the emissions used in our 

model (TR1) is 120 kg/km2. The average emission of all models is 360 kg/km2. The 

maximum emissions are between 8,000 kg/km2 (UK3) and 50,000 kg/km2 

(FI1_MACC). The average of maximum emissions is 26,000 kg/km2. The emissions 

used by our group (TR1) are maximum 30,000 kg/km2 in a grid. 

FI1 group conducted two model runs, one is with EDGAR-HTAP emission inventory 

which is shown as “FI1_HTAP_bas”, and the other one is with TNO-MACC emission 

inventory which is shown as “FI1_HTAP_bas2” in Figure 2.2. The box plot of 

FI1_HTAP_bas and FI1_HTAP_bas2 have close mean, max values and upper 

percentiles and only lower percentiles differ, which indirectly shows that EDGAR-

HTAP and TNO-MACC emission inventories are almost close to each other in Europe 

domain.  
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 : Quarterly integrated Box and Whisker plots of PM10 emissions used by 

AQMEII groups for Q1. 

In Figure 2.2, our group (TR1_MACC_bas) is shown in the first left box. TNO-MACC 

emission inventory was primarily used by our group and EDGAR-HTAP emission 

inventory was used in order to fill gaps. Since our group’s box plot, median and mean 

is lower than second (FI1_HTAP_bas), third (NL1_MACC_bas) and fifth 

(FI1_MACC_bas2) groups, our emission range is lower than those groups. However, 

our group’s emissions range is higher than fourth (UK3_MACC_bas) group. 

Box plot of third group (NL1_MACC_bas) is comparatively tighter than other groups, 

and its mean and median is generally higher than other groups. Therefore, third group 

generally used high emissions when compared to other groups. Furthermore, mean 

emissions of second (FI1_HTAP_bas) and fifth (FI1_MACC_bas2) groups have 

almost same with third group for each quarter however they don’t have such high range 

of emissions as in third group since their inter-quartile ranges (middle 50% of the 

emissions) are too large comparatively.  

The differences between box plots of groups that use the same emission inventory, (as 

in between FI1_HTAP_bas and DK1_HTAP_bas) is due to different approaches 

adopted by each AQMEII-3 group for spatial and temporal distribution of the 

anthropogenic emissions.  



28 

When other quarters investigated, compared median, mean and maximum values in 

box plots showed that, fourth group (UK3_MACC_bas) often has lowest range of 

emissions when compared to other groups. Other quarters plots are not given in here. 

Distribution of emissions in TR1 model (our group) is given in Figure 2.3. This plot 

was created via ENSEMBLE system [76].  

According to Figure 2.3, PM10 emissions are about 10 to 100 kg/km2 in Central and 

Eastern Europe and also big cities make hotspots in the remaining countries in Q3 

(comprises Summer months which are July, August and September). For instance, 

hotspots are located in Teheran, Isfahan, cities around Basra Bay, and in the marine 

passenger and freight transport route between the ports in Egypt, Tunisia and Spain. 

In Turkey, hotspots are mostly located in big cities of Western part. It is about 0.01 to 

1 kg/km2 in Scandinavian countries and in the Northern parts of Russia (above 

Moscow).  

 

 

 : Quarterly accumulated PM10 emissions in kg/km2 used by TR1 (our 

group) for Q3 of 2010 [76]. 
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Biogenic emissions  

Since several meteorological models were used by modelling groups and biogenic 

emissions are dependent on meteorological conditions, they were specifically 

calculated by each group of AQMEII-3 for the year 2010.  

TR1 (our group), FRES1, IT1, DK1, UK2 and UK3 calculated biogenic emissions 

through the Model of Emissions of Gases and Aerosols from Nature (MEGAN) model 

[89] where UK1, DE1 calculated biogenic emissions using the BEIS (Biogenic 

Emission Inventory System version 3) by implementing in SMOKE v2.6 [90] or by 

implementing directly into CMAQ. FI1 calculated biogenic emissions as in Poupkou 

et al. [91], and NL1 used the approach described in Beltman et al. [92]. 

Lightning and volcanic emissions  

Lightning and volcanic emissions were not included in emission inventories since 

there were no robust methods that can be applied by all groups for calculation of 

lightning and volcanic emissions.  

Wildfire and mineral dust emissions  

Wildfire emissions are calculated with IS4FIRES Model and mineral dust emissions 

are calculated with WRF-Chem (available from the previous phase of AQMEII-3 

project).  

Emission processing 

Typically, AQMs require spatially disaggregated hourly input values, however 

emission inventories are prepared as annual totals for countries (or regions). In order 

to convert annual and regional basis emission inventories as AQM inputs, emission 

processors use proxy variables and surrogate fields. Thus, annual total can be 

disaggregated spatially and allocated temporally. The overall model accuracy heavily 

depends on the degree of similarity between the disaggregation of total emission and 

the true spatial and temporal distribution [93]. Poor temporal representation of 

emissions generally influences diurnal cycle or short-term distribution of the predicted 

emissions [93]. The emissions being compiled on a country-wise basis, are affected by 

gaps and inconsistency across borders, which require further processing and 

manipulation [94]. Since EU emission inventories are prepared on country basis, 

distribution of the emissions spatially and temporally gains importance.  
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TNO-MACC and EDGAR-HTAP emission inventories were spatially distributed by 

two modelling groups (FRES1 and FI1) and made available for the use of other groups 

in case of need. TNO-MACC emission inventory was spatially redistributed by FRES1 

group by considering national inventories (with higher spatial resolution) over France 

and the U.K. For the other countries, it was redistributed by considering point source 

locations, land use, and population. Population was not used as a parameter for 

spatially distributing the EDGAR-HTAP emissions [71].  

In our group, a new code was generated by considering Sparse Matrix Operator Kernel 

Emissions (SMOKE) processing system [95]. Temporal and vertical distributions of 

the emissions were treated with the EURODELTA [96] factors for individual source 

sectors to calculate the hourly data by the modelers (see also Pouliot et al. [97]). Height 

profiles are taken from EURODELTA (EMEP), however they are prescribed as 

emission density profiles so that the emission at each height is the same, also with 

different vertical structures.  

2.1.2.4 Observational data  

In AQMEII-3, surface air quality monitoring network of EU were taken from the two 

databases, which are EMEP [98] and European Air Quality Database (AirBase) [99]. 

In this thesis, entire of those stations were considered for evaluation of the models. 

Map of stations throughout Europe is given in Figure 2.4. According to Figure 2.4, 

frequency of observation stations is high in Germany, Poland, Czech Republic, 

Holland, Belgium and North Italy where it is medium in South Italy, Spain, Portugal, 

Turkey, France, Greece and England, and low in Denmark, Norway, Finland and 

Balkan countries.  

In this study, analyses were conducted on country basis, region basis and station basis. 

Eastern and Western Europe countries grouped in the analysis. The Eastern and 

Western countries lists of United Nations Statistics Division [100] and United States 

Department of Energy [101] were considered for identifying countries as Eastern or 

Western, and current situation of the countries in EU delegation were discarded when 

generating the lists. Additionally, gross domestic product (GDP) per capita  [102] and 

geographical location of the countries were considered. Countries which didn’t supply 

PM10 measurements to EMEP and Airbase [99] databases were not considered in the 

classification; therefore, Eastern and Western countries lists are unique to this study.  
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 : PM10 observation stations in Europe. 

The data taken into account in the classification of the countries as Eastern and 

Western are given in Table 2.2 for Western European countries and in Table 2.3 for 

Eastern European countries. Consequently, Sweden, Luxembourg, Finland, Ireland, 

Italy, England, Switzerland, Germany, Netherlands, Norway, Belgium, Iceland, 

France, Austria, Portugal, Denmark and Spain (totally 17 countries) were accepted as 

Western Europe countries. Latvia, Romania, Serbia, Turkey, Bosnia and Herzegovina, 

Bulgaria, Poland, South Cyprus, Moldova, Malta, Slovakia, Greece, Czech Republic, 

Estonia, Lithuanian, Hungary, Slovenia (totally 17 countries) were accepted as Eastern 

Europe countries.  

Although Portugal does not have as high GDP per capita as the western countries, it 

was included in the Western countries list because of its geographical location. The 

average GDP per capita of Western European countries ($56,793) is almost 3.5 times 

that of Eastern European countries ($16,826). 

Number of PM10 stations, population per station, serving area per station was 

calculated for each country in Table 2.2 for Western Europe countries and in Table 2.3 

for Eastern Europe countries.  In Table 2.2, 17 countries were listed as Western Europe 

countries, which have totally 984 PM10  observation stations, where it is 448 for Eastern 

Europe countries as indicated in Table 2.3. In order to ease comparing number of 

stations per country, population and area of the countries are also indicated in the tables 

and two indices were calculated. First one is number of people per station and second 

one is number of stations per 1000 km2. Calculated indices should be evaluated 
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together. For instance, number of people per station (1 station per 2.663.000 people) 

in England is one of the worst among other countries however station number per 1000 

km2 (5.2 stations per 1000 km2) is one of the good among other countries. This 

inconsistency is due to dense population living in a small area in England.  

 : General information about Western European countries. 
 

Number 

of PM10 

stations 

Area 

(1000 

km2) 

 [102] 

Population 

[102] 

Population 

(*1000) per 

station 

Serving 

area (1000 

km2 ) per 

station 

GDP per 

capita ($) 

(2018) 

[102] 

 Austria 74 83.8  8,793,370  119 1.1 51,513 

 Belgium 38 30.6 11,350,000  299 0.8 46,556 

 Denmark 2 42.9  5,749,000  2,875 21.5 60,596 

 England 25 130.4  66,573,504  2,663 5.2 42,491 

 Finland 8 338.4  5,520,535  690 42.3 49,960 

 France 231 643.8  67,186,638  291 2.8 41,464 

 Germany 199 357.3  80,457,737  404 1.8 48,196 

 Iceland 2 103 357,050  179 51.5 73,191 

 Ireland 9 84.4  4,739,383  527 9.4 77,450 

 Italy 188 301.4  59,963,169  319 1.6 34,318 

 Luxembourg 3 2.5  602,005  201 0.9 114,340 

 Netherlands 28 42.5 17,283,008 617 1.5 52,978 

 Norway 9 385.2 5,353,363  595 42.8 81,807 

 Portugal 26 92.2 10,291,196  396 3.5 23,146 

 Spain  111 506 46,733,038  421 4.6 30,524 

 Sweden 9 450.3  10,041,160  1,116 50.0 54,112 

 Switzerland 22 41.2 8,544,034  388 1.9 82,839 

                           Sum:  
                            984 

Sum:  
3,636 

Sum: 
409,538,190 

Avg.:  
711 

Avg.: 
14 

Avg.: 
$56,793  

Scandinavian countries (Sweden, Norway and Denmark), Finland and Iceland has the 

lowest number of stations based on population and area, which can be due to not 

inclusion of all stations to EMEP [98] and AirBase systems [99]. By ignoring North 

Europe countries due to this reason, Western Europe countries are listed in an order of 

their representative number of stations considered with both per km2 and population 

as follows; Austria, Luxembourg, Belgium, Italy, Germany, Switzerland, France, 

Netherlands, Portugal, Spain, Ireland and England.  

Eastern European countries are listed in order of their representative number of stations 

per km2 and population as follows; Malta, Czech Republic, Estonia, Slovenia, 

Slovakia, Poland, Bulgaria, South Cyprus, Hungary, Turkey, Lithuanian, Latvia, 

Romania, Greece, Moldova, Bosnia and Herzegovina and Serbia, respectively.  
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Turkey is 9th in Eastern countries in terms of number of stations per area and 

population. Distribution of PM10 observation stations in Turkey are given in Figure 

2.5.  

 : General information about Eastern European countries. 
 

Number 

of PM10 

stations 

Area (km2) 

 [102] 

Population 

[102] 

Population 

(*1000) 

per station 

Serving area 

(1000 km2 ) 

per station  

GDP per 

capita ($) 

(2018) 

[102] 

Bosnia 1 51,197 3,849,891 3,850 51 5,951 

Bulgaria 32 110,994 7,036,848 220 3.5 9,273 

Czech 

Rep. 
95 78,865 10,625,250 112 0.8 

22,973 

Estonia 4 45,227  1,303,798  326 11.3 22,928 

Greece 4 131,957 11,124,603 2,781 33 20,324 

Hungary 14 93,030 9,778,371 698 6.6 15,939 

Latvia 4 64,589 1,934,000 484 16 18,089 

Lithuanian 5 65,300 2,785,000 557 13 19,090 

Malta 2 316 475,701 238 0.2 30,075 

Moldova 1 33,846 3,547,539 3,548 34 3,189 

Poland 136 312,679 37,977,000 279 2.3 15,424 

Romania 13 238,397 19,524,000 1,502 18.3 12,301 

Serbia 1 88,361 7,001,444 7,001 88 7,234 

Slovakia 22 49,035 5,443,120 247 2.2 19,547 

Slovenia 11 20,273 2,066,880 188 1.8 26,234 

Cyprus  2 9,251 864,236 432 4.6 28,159 

Turkey 101 783,562 82,004,000 812 7.8 9,311 

                            Sum:  
                            448 

Sum: 
2,176,879 

Sum: 
207,341,681 

Average: 
1369 

Average: 
17 

Average: 
$16,826 

Generally, there are at least one station in 81 cities of Turkey in 2010, except Bitlis, 

Muş, Şırnak and Van. There is more than one station in big cities, such in Istanbul (11 

stations), Izmir (8 stations), Ankara (6 stations), Kocaeli (3 stations), Canakkale (2 

stations), Konya (2 stations) and Trabzon (2 stations). 
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 : PM10 Observation stations in Turkey (above), Marmara Region (bottom 

left) and Istanbul (bottom right). 

Distribution of stations according to 7 regions of Turkey are given in Table 2.4, and 

regions (with cities inside following parenthesis) are Mediterranean Region (Adana, 

Antalya, Burdur, Hatay, Isparta,  Kahramanmaraş, Mersin, Osmaniye), Eastern 

Anatolia Region (Ağrı, Ardahan, Bingöl, Bitlis, Elazığ, Erzincan, Erzurum, Hakkari, 

Iğdır, Kars, Malatya, Muş, Tunceli, Van), Aegean Region (Afyonkarahisar, Aydın, 

Denizli, İzmir, Kütahya, Manisa, Muğla, Uşak), South Eastern Anatolia Region 

(Adıyaman, Batman, Diyarbakır, Gaziantep, Mardin, Siirt, Şanlıurfa, Şırnak, Kilis), 

Central Anatolia Region (Aksaray, Ankara, Çankırı, Eskişehir, Karaman, Kayseri, 

Kırıkkale, Kırşehir, Konya, Nevşehir, Niğde, Sivas, Yozgat), Marmara Region 

(Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kırklareli, Kocaeli, Sakarya, 

Tekirdağ, Yalova) and Black sea Region (Amasya, Artvin, Bartın, Bayburt, Bolu, 
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Çorum, Düzce, Giresun, Gümüşhane, Karabük, Kastamonu, Ordu, Rize, Samsun, 

Sinop, Tokat, Trabzon, Zonguldak).  

 : General information about regions of Turkey. 

Region 
Number 

of cities 

Number of 

PM10 Stations 

in 2010  

Population  

Mediterranean Region  8 11   10,461,409  

Eastern Anatolia Region  14 14     6,058,499  

Aegean Region 8 17   10,514,200  

South Eastern Anatolia Region 9 9     8,847,980  

Central Anatolia Region  13 23   13,114,013  

Marmara Region 11 22   25,034,570  

Black Sea Region  18 20     7,973,211  

SUM  81 116   82,003,882  

Maximum number of stations are in Black Sea region (20 stations), Central Anatolia 

region (23 stations) and Marmara region (22 stations) where least number of stations 

is in South Eastern Anatolia region (9 stations). Actually, number of stations are more 

than those values, however inactive stations (in 2010) were not considered in this table. 

Some of the stations were eliminated after making quality control procedures which 

were summarized below. Consequently, number of stations used in this study is 101.  

Quality control 

In this study, observational data was subject to quality control procedures for 

identifying potentially erroneous measurements. Adopted methodology is summarized 

as follows;  

• Station based hourly observations considered in air quality checks.  

• PM10 concentrations less than 0 µg/m3 and more than 600 µg/m3 marked as 

erroneous, flagged and further checked. Assigned as ‘NA’, if suspicious.  

• The current hour’s value compared with the previous hour’s value. If one is ten 

times of the other, flagged and further checked. Assigned as ‘NA’, if 

suspicious.  

• Repetitive hourly concentrations (two digits after point) of three consecutive 

times were assigned as suspicious and assigned as ‘NA’.  
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• If 50% of the data is not validated by abovementioned quality control 

procedures, the station was disregarded totally. 

2.1.3 Modelling Methodology  

As a framework for simulating the interactions of multiple complex atmospheric 

processes, an air quality modelling system consists typically of a meteorological 

information, emissions rates from sources of emissions that affect air quality and an 

AQM [103]. Modelling configuration of each AQMEII-3 group is described in general 

in this part of study, and our group’s modelling methodology is summarized in detail 

in Figure 2.6. As indicated in Table 2.1, our group (TR1) used CMAQ v.4.7.1 and 

Weather Research and Forecasting (WRF) Model v.3.5. Abbreviations related with 

other groups and their models are indicated in Table 2.1, and will be used throughout 

the thesis as it is given in the table. 

2.1.3.1 Meteorology model  

The meteorological model calculates the three-dimensional fields of wind, 

temperature, relative humidity, pressure, and in some cases, turbulent eddy diffusivity, 

clouds and precipitation as a function of time [103]. According to Table 2.1, CCLM 

model was used by DE1, and WRF model was used by eight groups (IT1, IT2, ES1, 

DK1, UK1, UK2, UK3 and our group, TR1). FI1, FI2, NL1 and FRES1 used the 

meteorological inputs extracted by the ECMWF operational archive.  

The COnsortium for Small-scale MOdeling (COSMO) and  Climate Limited-Area 

Modelling (CLM), COSMO-CLM, will be called as CCLM from this point, is the 

regional climate model and operational non-hydrostatic mesoscale weather forecast 

model developed initially by the German Weather Service (DWD) [104] and then by 

the European Consortium which is COSMO [77]. COSMO CLM is employed at 

spatial resolution between 1 and 50 km, can able to run long-term simulations, 

therefore called as climate model.  

WRF Model, which is also used in this study in order to prepare meteorological files 

for CMAQ run, is a mesoscale numerical weather prediction model. It is designed for 

simulation of the atmospheric processes by using real data (observations, analyses) or 

idealized conditions. The model is used for a wide range of meteorological 

applications across scales from tens of meters to thousands of kilometres [105]. WRF 
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model is used by 8 groups (including our group, TR1) of 12 in AQMEII-3. Table 2.5 

summarizes the configuration of the WRF runs, detailing difference and 

commonalities. The detailed description of the data which was used as the input for 

each meteorology model was described in Chapter 2.1.2.1. In this part of the study, the 

approaches considered in meteorology model configurations are summarized.  

There are several planetary boundary layer (PBL) schemes in meteorology models 

which can be local, nonlocal or hybrid. Mellor–Yamada Nakanishi–Niino (MYNN) 

PBL scheme [106] and Mellor–Yamada–Janjic (MYJ) PBL scheme [107] are local 

schemes, the Yonsei University (YSU) PBL scheme [108] is a nonlocal scheme, and 

the Asymmetric Convective Model with nonlocal upward mixing and downward 

mixing (ACM2) [109] can be regarded as a hybrid scheme in that it incorporates local 

and nonlocal closures for potential temperature and velocity, resulting in more accurate 

vertical mixing [71]. Without going into the detail on each parameterization, it can be 

said that the differences among the PBL formulations (detailed review provided by 

Cohen et al. [110]) have a profound impact on the discussion of the errors in air quality 

estimations. For instance, local and nonlocal closure of the PBL equations differ when 

indicating the depth over PBL variables which influence the air quality predictions at 

a given point [71][110]. According to Banks and Baldasano [111], generally WRF 

model underpredicts PBL height with YSU, ACM2, MYJ and Bougeault-Lacarrère 

(Boulac) schemes. PBL height and air quality predictions of O3 and NO2 was best 

represented by a non-local scheme, such as ACM2. However, PM10 predictions were 

have lowest correlations between the CMAQ model and observations in all PBL 

schemes, which can be due to poor simulations of the PBL height from the WRF model 

and other sources of uncertainty from emission inventory. As summarized in Table 

2.5, UK1, UK2 and UK3 used ACM2 PBL scheme; ES1, IT1 and TR1 used YSU PBL 

scheme; IT2 used MYNN PBL scheme and DK1 used MYJ PBL scheme.  

Surface layer height (first layer height) is defined as the region at the bottom 10% of 

the boundary layer where turbulent fluxes and stress vary by less than 10% of their 

magnitude [112]. Anthropogenic sources are mainly located on the surface layer of the 

Earth, and human health related air quality management is generally associated with 

the inhalable part of the atmosphere. Therefore, vertical resolution of the meteorology 

model and the starting point of the first layer is important in air quality modelling. First 

layer height and number of vertical layers should be selected when configuring WRF 
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model, which are important in calculation of PBL height which in turn may affect the 

concentration of the pollutants [113]. There are around 10 PBL schemes [113] in WRF. 

Some PBL parameterizations are designed to be strongly coupled with surface layer 

properties. In this context, the externally determined lowest model level height can 

influence the behaviour of a PBL scheme, which in turn affects the performance of 

prediction skill for atmospheric states. MYJ, MYNN and YSU PBL schemes of WRF 

can work with low vertical and horizontal resolutions [113]. According to Shin H. H. 

et al. [114], the YSU scheme is the most sensitive to first layer height, the ACM2 is 

the second, and the MYJ scheme is the least sensitive. Our group, TR1, selected lowest 

surface layer height (10m) among other groups, and used YSU scheme which is the 

most sensitive scheme to the first layer height.  

Selection of land surface model strongly affect the prediction of temperature and 

humidity, since they are used to compute the surface heat and moisture fluxes. Land 

surface models used by AQMEII-3 modellers are NOAH [115], RUC  [116] and 5-

layer thermal diffusion model [126]. The NOAH land surface model [115]-[117], 

which is mostly preferred by AQMEII-3 modellers, predicts soil moisture and 

temperature in 4 layers. The layer thickness is 10, 30, 60 and 100 cm from top to 

bottom [118]. The Rapid Update Cycle (RUC) land surface model includes multilevel 

soil model with 6 default levels and the number of levels can be increased [118]. The 

5-layer thermal diffusion LSM (TD LSM) is based on the 5-layer soil temperature with 

the thicknesses 1, 2, 4, 8 and 16 cm [118]. Several comparative studies show that the 

results of meteorological models are sensitive to the choice of the land surface model. 

In the study of Mooney et al. [119], NOAH surface scheme yields more accurate 

surface temperature results compared to RUC. Our group, TR1, used NOAH land 

surface model as most of the AQMEII-3 groups.  

The surface layer schemes calculate friction velocities and exchange coefficients that 

enable the calculation of surface heat and moisture fluxes by the land-surface models. 

These fluxes provide a lower boundary condition for the vertical transport done in the 

PBL Schemes. MM5 similarity theory [120] was used by IT2; Pleim-Xiu [121] and 

Rapid Update Cycle (RUC) [122] schemes were used by UK1, UK2 and UK3 groups. 

Remining groups, including our group, were used ETA similarity theory.  

The representation of clouds in WRF model includes major uncertainties in predictions 

of short- and long-term weather. Cloud microphysics parameterization is required in 
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meteorological models because a sophisticated, explicit prediction of the evolution of 

cloud microstructure is either impossible or impractical even with the most advanced 

computing resources [123]. Precipitation amount and intensity are calculated, and the 

growth and development of water droplets in warm and cold rain processes are 

simulated by cloud microphysics schemes. Furthermore, energy, momentum, and 

moisture are redistributed among model grid points and interact closely with radiation 

processes and the atmospheric boundary layer [123]. Single-moment 3-class 

microphysics scheme of WRF (WSM3) [124] was used by our group, single-moment 

5-class microphysics scheme of WRF (WSM5) [125] was used by DK1, single-

moment 6-class microphysics scheme of WRF (WSM6) was used by  UK1 and UK2 

[125],  Lin scheme was  used by [126]  ES1, and Morrison scheme [127] was used by  

IT1 and UK3.  

Cumulus convection transfers sensible and latent heat from the Earth’s surface into the 

lower troposphere [128]. Cumulus parameterization schemes strongly influence the 

dynamics and precipitation variability [129]. Several cumulus convection schemes are 

used in WRF model in order to express the interaction between the larger scale flow 

and complicated physics and dynamics of the convective clouds in simple 

parameterized terms. Grell-Freitas [130] cumulus convection scheme was used by IT1 

and IT2, and remaining groups used Kain-Fritsch2 [131] scheme.  

Radiative fluxes are assessed in WRF by using various radiation options. IT1, IT2, 

ES1, UK3 groups used Rapid Radiative Transfer Method for Global for solar and 

infrared radiation (RRTMG) for both shortwave (SW) and longwave (LW) radiation.  

TR1, UK1, UK2 groups used Dudhia’s method [137] as SW radiation option and 

Rapid Radiative Transfer Method for infrared radiation (RRTM) [138] as LW 

radiation option. CAM scheme [136] was used by DK1 for SW and LW radiation.   

Data assimilation (nudging) technique is used for producing high resolution four 

dimensional meteorological datasets (such as horizontal winds, temperature and water 

vapor) between normal analysis times, for air quality models. The second reason of 

using nudging is creating smooth start up forecast time zero by dynamic initialization 

for pre-forecast period. The third reason for using nudging is preparation of boundary 

conditions through forecast by nudging them with an outer domain that covers the 

domain of interest. 
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 : Configuration of the WRF model by participating modelling groups. 

 Operated by 

Meteorology 
Input Data 
Provider 

Number 
of vertical 
layers  

1st layer 
height PBL model 

Surface 
layer  

Land 
Surface 
Model 

Cloud 
Microphysics 

Cumulus 
convection  

SW /LW 
radiation  

Data assimilation 
technique 

IT2 University of 
L’Aquila  

ECMWF 33 10 m MYNN 
[106] 

MM5 
Similarity 
[120] 

NOAH  
[115][117] 

Morrison [127] Grell-Freitas  
[130] 

RRTMG 
[135] 

Grid analysis 
nudging above 
PBL 

ES1 University of 
Murcia  

ECMWF 33 21 m YSU 
[108] 

ETA 
Similarity 
[132][133] 

NOAH 
[115][117] 

Lin [126] Kain-
Fritsch2 
[131] 

RRTMG 
[135] 

Grid analysis 
nudging above 
PBL 

IT1 Ricerca Sistema 
Energetico  

ECMWF 33 25 m  YSU 
[108] 

ETA 
Similarity 
[132][133] 

NOAH 
[115][117] 

Morrison [127] Grell-Freitas 
[130] 

RRTMG 
[135] 

Grid analysis 
nudging also 
within PBL 

DK1 University of 
Aarhus  

ECMWF 29 20 m  MYJ  
[107] 

ETA 
Similarity 
[132][133] 

NOAH 
[115][117] 

WSM5 [125] Kain-
Fritsch2 
[131] 

CAM [136] Grid analysis 
nudging above 
PBL 

TR1 Istanbul 
Technical 
University 

NCEP FNL 30 10 m  YSU  
[108] 

ETA 
Similarity 
[132][133] 

NOAH 
[115][117] 

WSM3 [124] Kain-
Fritsch2 
[131] 

Dudhia 
[137]/ 
RRTM 
[138] 

Grid analysis 
nudging also 
within PBL 

UK1 Kings College NCEP GFS 23 14 m  ACM2 
[109] 

Pleim-Xiu 
[121]  
RUC 
 [122] 

RUC [116] WSM6 [125] Kain-
Fritsch2 
[131] 

Dudhia 
[137]/ 
RRTM 
[138] 

Grid analysis 
nudging also 
within PBL 

UK2 Ricardo E&E  NCEP GFS 23 15 m  ACM2 
[109] 

Pleim-Xiu 
[121]  
RUC  
[122] 

RUC [116] WSM6 [125] Kain-
Fritsch2 
[131] 

Dudhia 
[137]/ 
RRTM 
[138] 

Grid analysis 
nudging above 
PBL 

UK3 University of 
Hertfordshire  

ECMWF 36 25 m  ACM2 
[109] 

Pleim-Xiu 
[121]  
RUC 
[122] 

5-layer 
thermal 
diffusion 
[134]  

Morrison [127] Kain-
Fritsch2 
[131] 

RRTMG 
[135] 

Grid analysis 
nudging above 
PBL 
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Applying nudging to boundary conditions and outer domain makes benefit of 

providing smoother boundary conditions to domain of interest. The popular nudging 

methods used for dynamical downscaling include grid nudging and spectral nudging. 

For grid nudging, each grid-point is nudged towards a value that is time-interpolated 

from analyses. In spectral nudging each grid point is nudged using a weighted average 

of differences from observations within a radius of influence and time window [139]. 

Grid nudging technique was used by all AQMEII-3 groups which used WRF as 

meteorology model. According to  Mai X. et al. [140], nudging above the PBL 

obviously improved the simulation of meteorological elements at the upper layers, but 

was not ideal for simulations near the surface and at lower layers in some areas.  

Therefore, nudging also within PBL gains importance in air quality modelling. In 

AQMEII-3, IT1, TR1 and UK1 applied grid analysis nudging above and within PBL. 

Remaining WRF users applied nudging only above PBL.  

2.1.3.2 Air quality model 

There are various mathematical models that can be used to simulate meteorology and 

air quality at the mesoscale domain. Although mathematical models differ in their 

treatment of meteorology or air quality (e.g. in considering feedback mechanisms), all 

three-dimensional models are based on a similar framework and consist of the same 

major components.  

Seven different AQMs were used by modelling groups of AQMEII-3 project, which 

are SILAM (v5.4), LOTOS-EUROS (v.1.0.1), CHIMERE (v2013), WRF-Chem (v3.6) 

CAMx (v6.10), DEHM and CMAQ (v.4.7.1 and v.5.0.2). According to Table 2.1, five 

groups operated the CMAQ model, which are TR1, UK1, UK2, UK3 and DE1. SILAM 

model was operated by FI1 group, LOTOS-EUROS operated by NL1 group, 

CHIMERE model was operated FRES1 group, WRF-Chem was operated by ES1 and 

IT2 groups, CAMx was operated by IT1 and DEHM model was operated by DK1 

group.  

SILAM (System for Integrated modeLling of Atmospheric coMposition) was 

developed in the leadership of Finnish Meteorological Institute as an open-code model 

which works from global to beta-meso scale (~1km resolution) [141].  

LOTOS-EUROS, was developed for TNO and Dutch National Institute, is an open-

source CTM that calculates the formation and dispersion of O3, NO2, NH3, organic and 
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elemental carbon, mineral dust, sea spray, secondary aerosols and heavy metals across 

Europe. The default model resolution is approximately 25 x 25 km2, but it is possible 

to zoom in on urban and industrial areas [29].  

CHIMERE multi-scale model was designed primarily for air quality estimates in 

Europe [142] to produce daily forecasts of ozone, aerosols and other pollutants and 

make long-term simulations (entire seasons or years) for emission control scenarios. 

CHIMERE runs over a range of spatial scale from the regional scale (several thousand 

kilometres) to the urban scale (100-200 km) with resolutions from 1-2 Km to 100 km 

developed by the cooperation of École Polytechnique Institute Le Laboratoire de 

Météorologie Dynamique, The French National Institute for Industrial Environment 

and Risks (INERIS) of French Ministry of the Environment and mixed universities 

atmospheric research laboratory (LISA) in France [143].  

WRF-Chem is the WRF model coupled with Chemistry. The model simulates the 

emission, transport, mixing, and chemical transformation of trace gases and aerosols 

simultaneously with the meteorology. The model is used for investigation of regional-

scale air quality, field program analysis, and cloud-scale interactions between clouds 

and chemistry and developed in the leadership of National Oceanic & Atmospheric 

Administration / Earth System Research Laboratory (NOAA/ESRL) scientists of U.S. 

Department of Commerce [26].  

CAMx is a multi-scale photochemical grid model for gas and particulate air pollution 

by comprising a "one-atmosphere" treatment of tropospheric air pollution over spatial 

scales ranging from neighbourhoods to continents developed by ENVIRON division 

of RAMBOLL company of Denmark [27].  

DEHM for regional sources is developed by Aarhus University is a three-dimensional, 

offline, large-scale, Eulerian, atmospheric chemistry transport model developed for 

studying long-range transport of air pollution in the Northern Hemisphere [30][81].  

CMAQ model is an active open-source development project of the U.S. EPA that 

consists of a suite of programs for conducting AQM simulations. CMAQ is a three-

dimensional Eulerian atmospheric chemistry and transport modelling system that 

simulates O3, PM, toxic airborne pollutants, visibility, and acidic and nutrient pollutant 

species throughout the troposphere. Designed as a “one-atmosphere” model, CMAQ 

can address the complex couplings among several air quality issues simultaneously 
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across spatial scales ranging from local to hemispheric [144]. The one-atmosphere 

perspective emphasizes that the influence of interactions at different dynamic scales 

and among multi-pollutants cannot be ignored, therefore multi-pollutant interactions 

should be considered simultaneously and there should be consistent algorithmic 

linkage between meteorological and chemical transport models.  

The CMAQ model is based upon the underlying concept of preserving mass through 

a series of contiguous three-dimensional grid cells covering a fixed model grid (i.e., x-

y-z array that is fixed in space and covers a particular domain, i.e., the geographic area 

of interest) [144]. Therefore, CMAQ belongs to the Eulerian class of mathematical 

models which calculates mass balance for each grid cell by solving the transport 

equation for boundaries of each cell and solving chemical transformations within each 

cell during a given time period [144]. The CMAQ modelling system is capable of 

processing diverse information from complicated emission mixtures and complex 

distributions of sources, to modelling the complexities of atmospheric processes that 

transport and transform these mixtures in a dynamic environment that operates over a 

large range of time scales, from minutes to days and weeks [145].  

CMAQ is a deterministic numerical model which uses first order-closure (K-theory or 

the gradient transfer theory) technique in order to solve basic turbulent diffusion 

equation’s unknown term, which is turbulent flux of the pollutants, !⃗#.  

Basically, CMAQ model (and also all numerical models) is based on mass 

conservation principle. The basic turbulent diffusion equation can be derived from the 

mass conservation principle, which has the following form:  

$%

$#
= −())⃗ ∇+ − ∇!⃗# + - + .                           (2.1) 

where C is pollutant concentration average over time interval, t is time, ())⃗  is the wind 

vector (U[u, v, w]) average over time interval in m/sec, !⃗# is turbulent flux of the 

pollutants (!⃗#[01+1222222, 41+1222222, 51+1222222], Q is the source term and R is the removal term with 

the unit of mass/volume.time, and   ∇	89	:⃗ $
$;
+ <⃗

$

$=
+ >)⃗

$

$?
.  

This equation can be solved only by means of numerical methods, as it is done in 

numerical models. However, under a set of simplifying assumptions, the analytical 

solutions of this equation can be obtained, and such a solution is used in Gaussian 
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plume/puff models [7]. This part is not the scope of this study, therefore is not 

explained more. The main problem of Equation 2.1 is the !⃗# term which is unknown. 

The first order-closure (K-Theory) models, which CMAQ model adopts, uses K-

theory of Schmidt W. (1925) [22]. This theory is an approximation for the closure of 

the basic diffusion equation (equation 2.1) via parameterizing !⃗# by the product of an 

eddy diffusivity and the local spatial gradient of the quantity being transported. For 

the pollution concentration this approximation is;  

!⃗# = ())⃗ 1+1222222 = 	−@A. ∇+                  (2.2) 

Where @A is diffusivity tensor and can generally be simplified by employing isotropic 

argument in most first-order-closure models used in planetary boundary layer 

applications. Finally, the off-diagonal components can be represented by a horizontal 

term KH and by a vertical term KZ, (KH and KZ are horizontal and vertical turbulent 

exchange coefficients in the unit of m2/sec), resulting following K-theory diffusion 

equation, called also advection-diffusion equation;  
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For the Eularian grid system, equation 2.3 is allowed for space variations in the fields 

of meteorological parameters, and the governing atmospheric diffusion equation in 

generalized coordinates are given as follows where the turbulent flux terms are 

expressed using the eddy diffusion theory [146];  

$IJK2222	LMN

$#
		+ 	OP∇Q R

JK2222	SA	
T LM

UV W +  
$IJK2222		XYZ2222	LMN

$DYZ
  

                                                                               
                                          (a)                   (b)                  (c) 
 

– OP $

$D[\
]
T̂	LM

UV 	_@
`` abc

$D\
de − OP $

$DV
]
T̂	LM

UV 	_@
PP abc

$DV
de 

 
 (d) 

 

−
f

fgh
]i	jQ 	_@

hh
klm
fgh

de 

 
(e) 

 
 



45 

 

−	OP
f

fgn`
o
i̅	jQ
OP 	_@

`h
klm
fgh

dq−	OP
f

fgP
o
i̅	jQ
OP 	_@

Ph
klm
fgh

dq 

      
                                                                   (f) 
 

−
f

fgh
]i̅	jQ	(@

h`
klm
fg`

+ @hP
klm
fgP

)e 

 
(g) 

 
= jQ.Jm(t2m, … , t2v) + jQ-Jm  

                                                   
                                                              (h)                 (i) 

 
        + 

$(JTc	LM)

$#
w
xyz

+				
$(JTc	LM)

$#
w
{|}~

+				
$(JTc	LM)

$#
w
�mÄÅ

                       (2.4) 

                                               
                                         (j)                       (k)                      (l)      

(a) time rate of change of pollutant concentration; 
(b) horizontal advection;  

(c) vertical advection;  
(d) diagonal term of horizontal eddy diffusion;  

(e) diagonal term vertical eddy diffusion;  
(f) off-diagonal horizontal diffusion;  

(g) off-diagonal vertical diffusion; 
(h) production or loss from chemical reactions; 

(i) emissions;  
(j) cloud mixing and aqueous-phase chemical production or loss; 

(k) aerosol process; 
(l) plume-in-grid process.  

where φi is the trace species concentration in density units (e.g. kg/m3), Jξ is the vertical 

Jacobian of the terrain-influenced coordinate ξ, m is the map scale factor, 4 is the 

vertical velocity (=d	Ç/dt ), V stands for the vertical and horizontal wind components 

in the generalised coordinates, x length for grid, qi (=φi/	i) is the species mass mixing 

ratio, ρ is the density of the air, K values are the diagonal components of the eddy 

diffusivity tensor in the generalised coordinates.  
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The dry deposition process can be included in the vertical diffusion process as a flux 

boundary condition at the bottom of the model layer and this governing equation can 

be rewritten for trace species [146].  

Our group used CMAQ model which uses coupled mathematical representations of 

actual chemical and physical processes to simulate air quality. As indicated on the 

CMAQ modelling system operational procedure, which is given on the centre of 

Figure 2.6, CMAQ model requires emission input, meteorology input and boundary 

conditions. By using entire of those data, the model calculates concentrations of 

pollutants for each grid cell.  

In our modelling procedure, gridded surface and pressure levels data was downloaded 

monthly from ECMWF by using a download code created by Python programming 

language.  

Then this data  was used as an input to WRF pre-processing system (WPS). Then 

outputs of WRF model is given to Meteorology Chemistry Interface Processor (MCIP) 

version 3.6 [147] which combines emissions with meteorology outputs, then converts 

to input of the CMAQ model. The MEGAN v2.1 [148] model was used to calculate 

the biogenic VOC emissions from vegetation, using surface temperature and radiation 

from MCIP output. Furthermore, boundary conditions data is taken from ECMWF and 

converted into the required data format as input to CMAQ v4.7.1 [25] was configured 

with the CB05 chemical mechanism and the AERO5 module [25] for the simulation 

of gas phase chemistry and aerosol and aqueous chemistry, respectively. Finally, 

emissions are produced with CMAQ model.  

Windblown dust emissions 
CMAQ model users (UK1, UK2 and UK3 groups) use inline windblown dust 

calculation of CMAQ model, which was a new feature of CMAQ version 5.0 and upper  

[25][82], and those groups use CMAQ versions 5.0.1 and upper. Our group, TR1, use 

CMAQ 4.7.1, so there was no inline dust module, therefore we used dust calculations 

previously calculated in AQMEII-2. FI1 and FI2, FRES1 groups included windblown 

dust only from the lateral boundary conditions. DE1 group didn’t take into account 

dust emissions since CCLM model doesn’t have dust module. 
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 : CMAQ modelling flowchart applied in this study by our group (TR1).

Gridded 
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Interface Processor Wildfire Emissions 
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calculated with WRF-Chem 
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Emission Processing
Temporal/Vertical distribution
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from MACC + HTAP

Biogenic Emissions 
calculated with MEGAN

Boundary Conditions data from 
ECMWF (generated by MOZART)
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JPROC
Photolysis Rate Processor
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CMAQ Chemistry 
Transport Model 

CMAQ

Combine tool of AQMEII
Extract/Generate New Variables 
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Boundary Conditions 

Processor
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Initial Conditions 
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Sea salt and wildland fire emissions 
FI1 and FI2 groups included sea salt emissions as in Sofiev et.al. [149] (but not from 

the boundaries). FRES1 group calculated sea salt emissions inside the domain 

according to the study of Monahan E.C. [150].  

IT1 group computed sea salt emissions using algorithms of  de Leeuw et al. [151] and 

Gong S.L. [152]. UK1 group computed emissions according to Gantt et al. [153]. DE1 

group calculated in-line sea salt emissions by CMAQ, including sulphate emissions 

based on an average sulphate content of 7.7 %. Background sea salt emissions were 

considered by none of the models. Sea salt at the boundaries, although provided by 

chemical boundary conditions, was not used due to unrealistically high values. 

FI1 and FI2 wildland fire emissions are considered as in Soares et al. [154]. There is 

no data for other groups.  

Gas phase chemistry reaction rates  
An important component of AQMs is the gas-phase chemical mechanism, which 

describes reactions that take place in the atmosphere and interactions among chemicals 

[155]. In AQMEII-3 project, several gas phase mechanisms were used by the 

contributing groups, including Carbon Bond 4 (CB4 or CBM-IV), the 2005 version of 

CBM-IV (CB05), gas-phase chemical mechanism of CB05 with updated toluene and 

chlorine chemistry (CB05-TUCL).  

CBM-IV [171] (revealed in 1989) has 96 reactions and 45 of them are inorganic 

reactions. There are 46 species and 30 of them are organic species in CB4. CB4 has 

several versions and the version in CMAQ has 14 species and 15 reactions more than 

the original CB4 [155]. CB05 is an updated version of CB4 in 2005 therefore called 

as CB05. In CB05, reaction rate constants were updated, additional inorganic reactions 

were included, and 10 organic species were added to better represent stable organic 

species and radicals in the atmosphere [169]. Hence, CB05 has 156 reactions and 63 

of them are inorganic reactions. There are 59 species and 41 of them are organic 

species in CB05. Approximate run time of CB05 relative to CB4 is 1.14 in 12 km 

domain, where it is 1.23 in 36 km domain [155]. 

IT2 group’s WRF-Chem model uses the RACM-ESRL gas-phase chemical 

mechanism [173] which is an updated version of the Regional Atmospheric Chemistry 

Mechanism (RACM) [178].  
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 : Air quality modelling system properties. 

Operated by Horizontal grid 
resolution Vertical grid resolution Deposition scheme 

NOx 
emission 

share of NO 
and NO2 

Gaseous 
Chemistry Model  

Finnish Meteorological 
Institute  

(FI1) 

0.25×0.25◦ 
Lat×Lon 

12 uneven layers up to 13 
km. First layer ∼30m 

Dry: Kouznetsov and Sofiev  [156] 
Wet: Kouznetsov and Sofiev [157] 

90/10  CBM-IV [171] 

Netherlands 
Organization for Applied 

Scientific Research  
(NL1-TNO) 

0.5×0.25◦ 
Lat×Lon 

Surface layer (∼25m 
depth), mixing layer, two 
reservoir layers up to 3.5 

km. 

Dry: Zhang et al. [158] for particles,  
Depac (Van Zanten et al.[159] for gases 

Wet: below-cloud scavenging  
 

97/3  CBM-IV [171] 

INERIS/CIEMAT 
(FRES1) 

0.25×0.25◦ 
Lat×Lon 

9 layers up to 500 hPa. 
First layer ∼20m 

Dry: resistance approach as Emberson 
[160][161] 

Wet: in-cloud and sub-cloud scavenging for 
gases and aerosols (Menut et al.[162])  

95% NO 
4.5% NO2 

0.5% HONO 

MELCHIOR2 
[172] 

University of L’Aquila  
(IT2) 

270×225 cells, 
23km 

33 levels up to 50 hPa. 12 
layers below 1 km. First 

layer ∼12m 

Dry: Wesely [163] 
Wet: Grell and Freitas [130] 

95/5  
RACM-ESRL 

[173] 

Ricerca Sistema 
Energetico  

(IT1) 

265×220 cells, 
23km×23km 

33 levels, from ∼24m to 
50 hPa 

 
Dry: resistance model for gases (Zhang et 
al., 2003 [165] ) and aerosols (Zhang et al. 

[158])  
Wet: scavenging model for gases and 
aerosols (Seinfeld and Pandis [19]) 

95/5  CB05 [169] 
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Table 2.6 (continued) : Air quality modelling system properties. 

Operated by Horizontal grid 
resolution Vertical grid resolution Deposition scheme 

NOx emission 
share of NO 

and NO2 

Gaseous 
Chemistry Model  

Ricerca Sistema 
Energetico 

(IT1) 

265×220 cells, 
23km×23km 

33 levels, from ∼24m to 
50 hPa 

Dry: resistance model for gases (Zhang et 
al., 2003 [165]) and aerosols (Zhang et al. 

[158]) 
Wet: scavenging model for gases and 
aerosols (Seinfeld and Pandis [19]) 

95/5 CB05 [169] 

University of Aarhus 
(DK1) 

16.7 km×16.7 km 29 layers up to 100 hPa Wet and dry as in Simpson et al. [166] 90/10 Brandt et al. [81] 

 
Istanbul Technical 

University 
(TR1) 

 
184×156 cells, 
30km×30km 

 
24 layers up to 10 hPa 

 
Wet and dry as in Foley et al. [25] 

 
95/5 

 
CB05  [169] 

 
Kings College 

(UK1) 

 
15km×15km 

 
23 layers up to 100 hPa, 7 
layers below 1 km. First 

layer ∼14m 

 
Dry: electrical resistance analogy model 

Wet: taken from the RADM (Chang et al., 
[167]) 

 
90/10 

 
CB05  [169] 

 
Ricardo E&E 

(UK2) 

 
30km×30km 

 
23 layers up to 100 hPa, 7 
layers below 1 km. First 

layer ∼15m 

 
Dry: Pleim and Ran [168] 

Wet: Byun and Schere [82] 

 
Road transport: 

86/14; non-
road: 95/5 

 
CB05-TUCL 
[169][170] 

Helmholtz- Zentrum 
Geesthacht 

(DE1) 

24km×24km 30 vertical layers from 
∼40m to 50 hPa 

Dry: Pleim and Ran [168] 
Wet: Byun and Schere [82] 

90/10 CB05-TUCL 
[169][170] 

University of 
Hertfordshire (UK3) 

18km×18km 35 vertical layers from 
∼20m to ∼16km 

Dry: resistance analogy model (Wesely 
[163]). 

Wet: asymmetric convective model 
algorithm in CMAQ cloud module 

90/10 CB05-TUCL 
[169][170] 
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In FI1 and FI2 groups, the gas phase chemistry was simulated with CBM-IV, with 

reaction rates updated according to the recommendations of International Union of 

Pure and Applied Chemistry (IUPAC) [175] and the National Aeronautics and Space 

Administration (NASA) Jet Propulsion Laboratory [176]. NL1 group’s gas-phase 

chemistry is based on CBM-IV (modified reaction rates; see Sauter et al. [79]).  

TR1 configured CMAQ v4.7.1 with the CB05 chemical mechanism and the AERO5 

module [25] for the simulation of gas phase chemistry and aerosol and aqueous 

chemistry, respectively. IT1 using CAMx version 6.10 [177] with CB05 gas-phase 

chemistry [169]. UK3 used the gas-phase chemical mechanism with updated toluene 

and chlorine chemistry (CB05-TUCL) [169][170], and the aerosol chemical reaction 

was treated with AERO6 module. CB05-TUCL was also used by UK2 and DE1.  

DK1 employed the technique of Brandt et al. [81], which includes 58 chemical species, 

9 primary particles, and 122 chemical reactions.  

Photolysis rates  

In FI1, pressure and latitude dependent photolysis rates of the FinROSE model [179] 

are used and reduced proportionally to cloud cover below the clouds down to half the 

original value at full cloud cover. Photolysis rates of NL1 are based on clear-sky 

photolysis rate by Roeth’s flux algorithm (function of solar zenith angle [180]) and 

multiplied by an attenuation factor in case of clouds. IT2 calculated the photolysis 

frequencies with the Fast-J scheme [181]. Dry deposition and photolysis schemes were 

modified to take into account the effects of the soil snow coverage [182].  

Plume rise  

The majority of models employed the prescribed vertical distribution by EMEP [183], 

while UK1 adopted the Briggs plume rise algorithm [184][185]. FI1, FI2, FRES1 and 

DE1 adopted the sector-dependent vertical emission profiles [186]. F1 and FI2 did not 

account for extra plume rise in addition to that prescribed by the emission profiles, 

since SILAM model doesn’t take it into account. NL1 group did not take into account 

extra plume rise in addition to that prescribed by the emission profiles. A specific 

feature of the model that NL1 used (LOTOS) is that it only covers the lower 3.5 km of 

the atmosphere, with a static 25m surface layer, a dynamic mixing layer and two 

dynamic reservoir layers. This makes the model relatively fast in terms of computation 
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time but has implications for the vertical mixing of species for instances where the 

mixing layer rapidly changes in height. 

Secondary aerosols 

FI1 and FI2 computed the secondary inorganic aerosol (SIA) formation with the 

updated DMAT scheme [187] and secondary organic aerosol (SOA) formation with 

the volatility basis set (VBS) [188]. SIA formation on ISORROPIA II [189] was used 

by NL1. Modelled terpene emissions were reduced by 50% to limit their contribution 

to SOA formation, which was found to be too high. Version 3.6 of the WRF-Chem has 

been used by IT2, modified to include the new chemistry option implemented by 

Tuccella et al. [190] that includes a better representation of the secondary organic 

aerosol mass in the simulation of direct and indirect aerosol effects, calculated as in 

Ahmadov et al. [188]. Here only direct effects were included in the simulation, for 

computational expediency. DK1 calculated SOA by following the two-product 

approach assuming that hydrocarbons undergo oxidation through O3, OH, and NO3 

and for only two semi-volatile gas products [191]. However, the module is simple 

because it does not include aging processes and further reactions in the gas and 

particulates.  

2.1.3.3 Performance Evaluation Framework 

In the literature there are a variety of performance metrics which are including but not 

limited to mean bias/error (MB/ME), mean normalized bias/error (MNB/MNE), 

fractional bias/error (FB/FE), root/normalized mean square error (RMSE/NMSE), 

normalized mean bias/error (NMB/NME), unpaired peak accuracy (UPA), index of 

agreement (IoA), Pearson’s correlation coefficient (PCC) and the coefficient of 

determination (r2). Their definitions, ranges and best values are given in Table 2.7.  

Each metric has its own drawbacks and benefits which have been discussed in the 

literature up to day. The operational metrics (magnitude of the error, sign of the bias, 

associativity) provide an overall sense of model strengths and deficiencies, while 

apportioning the error to its constituent parts (bias, variance, and co- variance) can 

help assess the nature and quality of the error [71]. These metrics are used for 

summarizing AQMEII model performances.  
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In the literature Taylor Diagrams are also presented as a valuable tool for performance 

evaluation, which is a 2 dimensional plot showing three statistical quantities; the ratio 

of variances of both model and observed fields, the cantered RMSE and the PCC 

between the two fields for the model variable under consideration in one point [192]. 

It can summarize the agreement between the observations and the model predictions.  

 : Definitions of performance metrics. 

Abbreviation Definition  Formula Range Best  

MB  
(or BIAS) 

Mean Bias 1
"
#(%& − (&) 

-  0 

ME  
(or MAE) 

Mean 
(Absolute) 
Error 

1
"
#|%& − (&| 

³0 0 

MNB Mean 
Normalized 
Bias 

100 ∗
1
"
#-

%& − (&
(&

. -100% 

to +¥ 

 

MNE Mean 
Normalized 
Error 

100 ∗
1
"
#/

%& − (&
(&

/ 0 to +¥ 0 

FB  
(or MFB) 

(Mean) 
Fractional 
Bias 

100 ∗
2
"
#

(%& − (&)
(%& + (&)

 
  

FE  
(or MFE) 

(Mean) 
Fractional 
Error 

100 ∗
2
"
#

|%& − (&|

(%& + (&)
 

0-100% 0 

NMB    
(or NBIAS) 

Normalized 
(Mean) Bias 100 ∗

∑(%& − (&)
∑(&

 ±100% 0 

NME Normalized 
Mean Error 100 ∗

∑|%& − (&|
∑(&

 
0-100% 0 

RMSE Root Mean 
Squared Error 

3
∑(%& − (&)4

"
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Table 2.7 (continued) : Definitions of performance metrics. 

Abbreviation Definition  Formula Range Best  

NMSE Normalized 
Mean Square 
Error 

∑5&4(1 − 6&)4

∑ 5&6&
 

 ( 5& =
8

89
	;<=	6& =

>

8
 ) 

 0 

UPA Unpaired Peak 
Accuracy 100 ∗

(%?@AB − (?@AB)

(?@AB
 ±100% 0 

IoA Index  
of Agreement  1 −

∑(%& − (&)4

∑(|%& − (9| + |(& − (9|)4
 

0-1 1 

PCC  
(or r) 

Pearson 
Correlation 
Coefficient 

∑(%& −%C)((& − (9)
(" − 1)s>s8

 
–1 ≤ r ≤ 1 ±1 

r2 Coefficient of 
Determination  D

∑((%& −%C)((& − (9))

E∑(%& −%C)4 	∑((& − (9)4
F
4

 
     0-1        1 

Nonetheless all performance metrics were calculated for each station in this study. 

Since it is not possible to give all metrics for 1447 air quality stations in Europe, they 

are summarized on maps and given in Appendix 1. Furthermore, Taylor Diagrams will 

be used for comparisons of the AQMEII models.   

In the literature Taylor Diagrams are presented as a valuable tool for performance 

evaluation. It is a 2 dimensional plot showing three statistical quantities; the ratio of 

variances of both model and observed fields, the centered RMSE and the PCC between 

the two fields for the model variable under consideration in one point [192]. Taylor 

diagrams can summarize the agreement between the observations and the model 

predictions.  

The formulas used in the generation of Taylor diagram are given as follows;  

GH = I∑[(>KL>C)L(8KL89)]N

O
	   (2.5) 

PQ = 	I
∑(>KL>C)N

O
                (2.6) 
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PR = 	I
∑(8KL89)N

O
     (2.7) 

S = 	
∑(>KL>C)(8KL89)

(OLT)sUsV
     (2.8) 

where GH is the centred difference (errors) of Root Mean Squares (centred RMSE) and 

best value is 0, P is standard deviation, r is Pearson’s correlation coefficient, M stands 

for model, O stands for observations, N is number of values where overbar indicates 

averaging.  

Observed standard deviation is indicated with a black star on the x axis and follows 

the dashed black arc above. White curves originated from x axis (and meets with the 

same value on the y axis) indicate standard deviations. Standard deviation of the 

models can be read by following the white curve where the model number located. 

Standard deviation of the model should be close to standard deviation of the 

observations. In Taylor diagram, the closer model to the dashed black arc, the closest 

standard deviation to the observations. In the best case, it can be said that the variability 

in the measurements is captured by the model. Model performance is associated with 

its close standard deviation to standard deviation of the observations, but this 

assessment does not give an idea of model performance solely. Other statistical items 

of Taylor Diagram should be considered holistically.  

The second statistical performance metric of Taylor diagram is Pearson’s Correlation 

coefficient (PCC). Correlation is a measure of the relationship between model results 

and measurements. The higher the correlation, the better the model results are matched 

with the measurements. Correlation of the model should be high, best value is 1. In 

Taylor diagram, the model closes to the x axis more correlated with observations than 

the above model.  

The third statistical performance metric in Taylor diagram is cantered RMSE which is 

shown with black arcs around standard deviation of observations which is showed with 

a black star in x axis. Best RMS difference value is 0.  

Consequently, the position of each letter appearing on the plot enables visually assess 

how closely that model's simulated PM10 concentration pattern matches observations 

[192]. Best model should have close standard deviation with observations, strong 

correlation (r close to 1) and low cantered RMSE (best is zero). By combining all three 
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metrics, it is clear that best model will lie nearest the point marked "observed" on the 

x-axis.  

 Country-Specific EF Development  

Currently national emission inventories of Turkey is calculated via EFs from 

guidebooks of global agencies such as EEA [54] and IPCC [55]. Those EFs were 

calculated by considering power plants in selected countries, which appertains for 

specific production practices. Furthermore, abatement technologies depend on current 

regulation of each country, then EFs are representative for those specific conditions. 

Thus, development and usage of country-specific EFs are strongly encouraged by 

global advisory agencies [54][55]and[193]. In this study, local EFs were calculated 

from measurements when possible. If there were no adequate data for calculation of 

the local EFs, most representative EFs were selected for calculation of the emission 

inventory.  

2.2.1 Data used in country-specific EF development  

EF calculation part of this study benefits from Public Research Support Group 

(KAMAG) project (project number is 111G037) of the Scientific and Technological 

Research Council of Turkey (TUBITAK) [194]. Point, line and area sources of 

Marmara region was considered in KAMAG project, but this study focuses on the 

industrial emissions part (point sources) of the project. In industrial part of the project, 

country-specific EFs were developed by in-situ measurements and official emission 

measurement reports (EMRs). 120 stack measurements were conducted in 8 plants (11 

stacks) by KAMAG measurement team for only public electricity and heat production 

plants in Marmara region. Furthermore, official EMRs of 32 energy production plants 

with 113 stacks were considered in the calculation of EFs, which resulted 339 

measurements. The reliability of official EMRs, which are prepared by the facility-

company cooperation, is questioned by the administrative and academic community. 

Therefore, measurements conducted by the KAMAG project team were used in this 

study as much as possible, which includes at least two visits per plant turning with 8 

recurrent measurements from each visit. In the absence or insufficient measurements, 

official EMRs were used. In such cases, the calculated EF has been revised by 

comparing with the international EFs and the final decision has been made 
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accordingly, by expert judgement. The specific data according to plants were hidden 

in the thesis due to confidential reasons required by the project regulations. 

In-situ measurements include following parameters with 8 replicates at a time: facility 

name, city, date of sampling, stack name, measurement number, fuel type, fuel 

calorific value, flue gas flow (Nm3/h), dry flue gas flow (Nm3/h), gas temperature (oC), 

gas velocity (m/s), moisture content (%), reference oxygen (%), dust (mg/m3 and kg/h), 

CO (mg/m3 and kg/h), NO (mg/m3 and kg/h), NO2 (mg/m3 and kg/h), SO2 (mg/m3 and 

kg/h), CO2 (mg/m3 and kg/h), Benzene (mg/m3 and kg/h), Toluene (mg/m3 and kg/h), 

Ethyl Benzene (mg/m3 and kg/h), Xylene (mg/m3 and kg/h), Cd (mg/m3 and kg/h), Cr 

(mg/m3 and kg/h), Cu (mg/m3 and kg/h), Ni (mg/m3 and kg/h), Pb (mg/m3 and kg/h). 

Total number of parameters is 43. In the meantime, a questionnaire form requested 

from the plant operators regarding to the general properties of the plant, firing 

practices, fuel and stack properties. A sample of the questionnaire form is given in 

Appendix A.  

There are many data in the EMRs, but in the scope of this study, the following 

parameters were taken into account for the calculation of EFs and emission inventory; 

facility name, source name, city, date of sampling, measurement number, fuel type, 

thermal power of the plant (MW), fuel amount (m3/h),  fuel calorific value, flue gas 

flow (Nm3/h), moisture content (%), gas velocity (m/s), dry flue gas flow (Nm3/h, 

m3/h), gas temperature (oC), gas velocity (m/s), Oxygen (%), CO (mg/m3 and kg/h), 

NO (ppm or mg/m3 and kg/h), NO2 (mg/m3 and kg/h), NOx (mg/m3 and kg/h), SO2 

(mg/m3 and kg/h), dust (mg/m3 and kg/h) and soot count (on Bacharach scale). 

According to local regulations, Fluorine (mg/m3 and kg/h) and Chlorine (mg/m3 and 

kg/h) emissions are also measured in power plants with a capacity greater than 300 

MW. 

2.2.2 Methodology adopted in country-specific EF development  

Before starting the EF calculations, each stack was examined in detail. Due to the 

CLTRAP treaty [51] signed by Turkey, emission inventory of Turkey is compiled 

annually according to EMEP guidebook [54] by Turkish Ministry of Environment and 

Urbanization [53]. For this reason, the coding system in EMEP was taken into 

consideration in order to group the emission sources in this study. Public electricity 
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and heat generation category is indicated by “1.A.1.a” as NFR (Nomenclature for 

Reporting) code in EMEP guidebook [54].  

The tables in the EMEP guidebook [54] are classified as Tier 1 and Tier 2 according 

to the detailed status of the data held by the emission inventory developers. The tables 

with Tier 1 codes include generalized EFs by fuel types. Since our aim in this study is 

not to develop generalized EFs as in Tier 1 category of EMEP guidebook [54] but to 

develop country-specific EFs as detailed as possible, we consider Tier 2 codes at this 

stage. In Tier 2 tables, the SNAP (Standardized Nomenclature for Air Pollutants) code 

appears in addition to the NFR code. The SNAP codes  depend on the type of fuel 

used, the installation technology and the capacity of the plant. Detailed investigation 

of the stack and also the connected production line of this stack is required in order to 

assign correct SNAP/NFR code. The subject of the production, the method of the 

production and detailed understanding of the manufacturing processes is vital for 

correct decision making. SNAP/NFR code assignment, requires not only deep 

understanding of the processes but also the understanding of European SNAP/NFR 

coding system.  

There are 12 different EF tables under the title of Public Electricity and Heat 

generation title in EMEP (Tier 2), which are classified by fuel type, combustion 

technology and power. Since not all technology and fuel types in EMEP guidebook 

[54] are available in the Marmara Region of Turkey (the region considered in this 

study), EFs were only calculated for five SNAP/NFR categories of EMEP in this study. 

The list of SNAP/NFR codes used in this study is given in Table 2.8. In EMEP 

guidebook [54], 1.A.1.A-10101-3.10 and 1.A.1.A-10102-3.10 codes are represented 

in a single table with same EFs, however different EFs are calculated for each code in 

this study.  

After assigning correct SNAP/NFR code for 124 stacks (11 stacks from in-situ 

measurements and 113 stacks from EMRs) by a thorough understanding of the 

manufacturing process, emissions are transferred into a database. Ultimately, this 

database includes 459 stack measurements (120 in-situ measurements and 359 

measurements from EMRs) for all parameters listed below.  
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 : SNAP/NFR codes of EMEP guidebook [54] considered in this study. 

NFR SNAP Table 
No 

SNAP Definition Fuel  Technology 

1.A.1.A 10101 3_10 Public power - Combustion plants 
>= 300 MW (boilers) 

Brown Coal/ 
Lignite 

Wet and Dry 
Bottom Boilers 

1.A.1.A 10102 3_10 Public power - Combustion plants 
>= 50 and < 300 MW (boilers) 

Brown Coal/ 
Lignite 

Wet and Dry 
Bottom Boilers 

1.A.1.A 10101 3_16 Public power - Combustion plants 
>= 300 MW (boilers) 

Brown Coal  Fluid Bed Boilers 

1.A.1.A 10102 3_12 Public power - Combustion plants 
>= 50 and < 300 MW (boilers) 

Natural Gas Dry Bottom 
Boilers 

1.A.1.A 10104 3_17 Public power - Gas turbines Gaseous 
Fuels 

Gas Turbines 

In order to handle this large dataset an R code was written which used this dataset as 

an input.  This code applies a quality control procedure for both in-situ measurements 

and the data from official emission reports, initially, which summarized below;  

• If the difference between the eight consecutive in-situ measurements was more 

than twice, the data was examined more carefully.  

• The second of the in-situ measurements (in-situ measurements were performed 

eight times in two separate visits) was flagged and further investigated, if there 

were more than twice the difference between measurements of first and second 

visits.  

• The above steps were applied for all parameters measured, not just 

concentration data. 

After applying quality control procedure, EF is calculated for each measurement by 

two different methods. The first is based on the mass flow rate (in the unit of kg/h) in 

the flue gas and the second is based on the concentration (in the unit of mg/m3) data in 

the flue gas. With the help of the R code, one EF was calculated for each measurement 

and for each pollutant by both methods. The EFs calculated in the two methods should 

be identical. Based on this assumption, the quality control procedure was continued 

and in case the EF calculated by both methods were not identical, the data of the related 

measurement was examined. If there was an error, the measurement was deleted 

accordingly. 
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The EF calculation formula from the flue gas concentration is as follows; 
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where g is gram, mg is milligrams, kg is kilograms, GJ is gigajoules, m3 is cubic 

meters, h is hour, and kcal is kilocalories. The amount of fuel was taken in the unit 

“kg/year” for solid fuels and in “m3/year” for liquid and gaseous fuels. The calorific 

value of the fuel was taken in the unit of “kcal/kg” for solid fuels and in “kcal/m3” for 

liquid and gaseous fuels. The information on annual number of working days, daily 

working hours and annual consumption of fuel for the associated stack was obtained 

via questionnaire forms (Appendix A) asked from site operators during in-situ 

measurements. If there is any missing information, firstly the facilities were called and 

asked. If the call is failed or information is unclear or absent, the information was 

accessed from emission permit report of the facility. If the information is still not 

available, the measurement was not used in the calculations.  

The EF calculation formula from the mass flow is as follows; 
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The amount of fuel was taken in the unit “kg/h” for solid fuels and in “m3/h” for liquid 

and gaseous fuels. For each measurement, EF was calculated separately using both 

mass and volumetric concentrations as given in equations 1 and 2. Under normal 

circumstances, the calculation of both methods should give the same EF. By 

comparing the two results, it is possible to verify the calculations and data. When two 
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EFs are not identical, the calculation steps and data are reviewed, the EF calculated for 

that measurement is excluded if a satisfactory result is not reached.  

In the next step, the stacks having the same SNAP/NFR code were grouped and their 

averages were calculated. EFs derived from in-situ measurements and EFs calculated 

from the EMRs were treated separately in this step. At the end of this step there were 

two EFs for each SNAP/NFR category. In addition to the averages, confidence 

intervals and some other statistical parameters were calculated for each EF, which will 

be used in the calculation of uncertainties during the development of emission 

inventory. 

At this stage, EFs that fall into the same SNAP/NFR category were investigated from 

the literature. Since this study (as a part of KAMAG project [194]) is the first in Turkey 

for the development of country-specific EFs from in-situ measurements in Turkey, two 

international guidebooks were considered for comparing EFs, which are EMEP 

guidebook [54] and AP-42 [193] database of U.S. EPA. After comparing results with 

literature, EFs derived from in-situ measurements have been used primarily because 

of the drawbacks about the reliability of official EMRs as discussed in Section 2.2.1 .  

Although all those SNAP/NFR codes were considered in this study, EFs were 

developed only for 1.A.1.A-10102-3.12 and 1.A.1.A-10104-3.17 since there are no 

plants included in KAMAG database [194] attributed to remaining SNAP/NFR codes 

or the data was not adequate for calculation of specific EFs.  

2.2.3 Variability analysis method  

Variability refers to the heterogeneity of the values in a dataset with respect to time, 

space or a population [195]. Since the measurements used in the EF calculations are 

made at different times and in different stacks or plants, there is often a high inter-

measurement variability. Precision in the estimate of the statistics such as mean, 

standard deviation or parameters of a distribution fit to a data set describing inter-

measurement variability influences uncertainty quantification based upon random 

sampling error [196]. In this part of the study, the method for quantification of 

variability between EFs is summarized. 

The first step of the quantification of variability is visualizing the data in order to 

evaluate central tendency (may be called as the centre or location of the distribution) 

and dispersion of the data, and identifying the outliers in the data [196]. Plotting the 
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dataset as an empirical cumulative distribution function (CDF) is a specific technique 

in order to visualize and evaluate the dataset. In a CDF, cumulative probability of each 

value is calculated and plotted according to values. Since cumulative probability is the 

probability that the random variable has values less than or equal to a specific 

numerical value of the random variable, CDFs can provide a relationship between 

fractiles (percentage basis fraction of the values that are less than or equal to specific 

value of a random variable) and quantiles (the value of a random variable associated 

with a given fractile) [74]. In this step, the shape of the empirical distribution is visually 

inspected in order to fit the probability distribution model in the next step. The shape 

of the distribution is reflected by the quantities such as skewness (shows the 

asymmetry of a distribution) and kurtosis (shows the peakedness of a distribution). 

Dispersion of a distribution reflected by the 95% probability range of values, which is 

often of particular interest in air quality studies, indicates the range of the data values 

enclosed by the 0.025 and 0.975 fractiles (2.5 and 97.5 percentiles). 

In addition to visual assessment of the data, the dispersion of a distribution is measured 

by the standard deviation or variance. Relative standard deviation (also known as the 

coefficient of variation, Cv), which is obtained by the ratio of standard deviation and 

mean, provides a normalized indication of the dispersion of data values. Large Cv 

indicates relatively large variability in the dataset [74].  
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Skewness and kurtosis are used to identify the shape of the distribution, where the 

skewness shows the asymmetry in a distribution and kurtosis shows the peakedness of 

a distribution. These statistics are also used as an aid when fitting a parametric 

probability distribution model to the data [197]. Although there are several different 

formulas for skewness and kurtosis, in this study following formulas are used;  
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where dÜÉ is Fisher-Pearson coefficient of skewness (in r fisher option with unbiased 

moment), where the left term of the upper part is used as an adjustment for sample 

size. For normal distribution and any symmetric data dÜÉ is close to zero, negative 

values for the skewness indicate left skewed data and positive values indicate data that 

are skewed right. By skewed right, we mean that the right tail is long relative to the 

left tail. dBÉ is the coefficient of kurtosis where it is zero for standard normal 

distribution. s (in r excess option) [198]. AuvTool is used for quantification of 

variability and uncertainty [196].  

2.2.4 Uncertainty quantification method  

Analytical and numerical solutions are available for quantifying uncertainty in the 

mean or standard deviation. Analytical solutions can be used under one or more of the 

following conditions; underlying distribution of a dataset is normal, variance is low or 

the sample size is large enough (e.g. >30) [199]. Analytical methods based on 

normality may lead to significant errors in the estimation of confidence intervals when 

following conditions are not valid. Numerical methods are flexible in terms of 

underlying distribution for estimating confidence intervals. Bootstrap simulation is 

one of the widely used numerical methods in quantifying confidence intervals based 

on random sampling error from parametric distributions. In this study, numerical 

solution was considered in quantifying uncertainties in the generation of country 

specific EFs. General methodology adopted in generation of country specific EFs are 

summarized in Figure 2.7. The method is adopted from the study of Cullen and Frey 

(1999) [197].  

The flue gas measurements used to calculate country-specific EFs (x = {x1, x2, ..., xn} 

where n is the number of the calculated EFs in Figure 2.7) in this thesis are discrete 

measurements. Therefore, the temporal variability of the data is uncertain. That is, it 

only contains the flue gas values gathered at the time of the measurement. Installation 

of continuous flue gas measurement systems in Turkey is compulsory for the plants 
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above a certain capacity. Even if there is continuous emission measurement data, then 

uncertainties may occur due to errors in the measuring instrument and changes due to 

operating conditions. Even if we try to converge to the real value as much as possible, 

for these reasons, the EFs we calculate using flue gas measurements do not represent 

absolute values but gives an idea. In such cases where it is not possible to accurately 

sample the entire population, a representative sample must be used [74]-[199]. When 

a sample group is used, it is possible to obtain an idea about the entire population, but 

it can never fully match the entire population. For this reason, there will always be 

some likelihood of random sampling error [74]. In this study, our sampling group is 

the set of EFs calculated from discrete flue gas measurements.  

In statistics, sampling error is a type of error caused by investigating a small part of 

the population rather than examining the whole population. It is calculated by the 

difference of a sample statistic used to estimate a population parameter and the actual 

but unknown value of the parameter. Uncertainty is expressed as lack of knowledge 

regarding to true value of a quantity [196]. Uncertainty in a statistic attributable to 

random sampling error can be represented by a sampling distribution [197]. A 

confidence interval for a statistic is a measure of the lack of knowledge regarding the 

true value of the statistic [199].  

In order to calculate uncertainty, a distribution is fitted (Zë) to the EF dataset (x) where 

actual underlying distribution (F) is unknown, as given in Figure 2.7. Fitting 

distribution methodology is described in Section 2.2.4.1. The goodness-of-fit is 

evaluated by some techniques described in Section 2.2.4.2. The parameter of interest, 

θ, is a characteristic of the distribution of F, θ = f(F), such as the mean, variance, shape 

or scale parameter, or any fractile or quantile of the distribution F. An estimate of θ is 

the statistic θ , which is determined from the data set, θ = f(x).  

Then Monte Carlo method is applied in order to generate random datasets from 

assigned distribution, Zë (described in detail in Section 2.2.4.4). This process is 

repeated up to generate a number of alternative probability distribution models from 

which the original dataset is a plausible random sample.  

In Bootstrap simulation part of the study (described in detail in Section 2.2.4.5), each 

of the alternative probability models generated by Monte Carlo approach (Bootstrap 

replicates) are simulated to develop a reasonably stable characterization of the 
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percentiles of the distribution. In this step, a distribution is fitted to each of the 

bootstrap sample, then parameters, íë∗, are estimated. In this study, uncertainty in the 

estimate of θ is reflected by dispersion of íë∗, which also gives random sampling error.  

The íë∗ data is sorted then in order to calculate confidence interval for the fitted 

cumulative distribution function. Consequently, the results are compared to the 

original dataset by generating probability bands.  

2.2.4.1 Fitting a distribution 

Selection of the probability distribution model for variability by fitting a distribution 

to each of the dataset is required in order to generate random samples that will be used 

in uncertainty analysis. Probability distribution models may be empirical (a discrete 

distribution that gives equal probability to each value in the dataset [200], therefore 

has CDF with a step function of original dataset), parametric (assumed by considering 

the parameters of the distribution of the dataset) or combinations of both.  

One of the main shortcomings of empirical distribution models is that the resampled 

(sampled from the data calculated via empirical distribution function) datasets are 

limited to the minimum and maximum values within the dataset. When only small 

datasets are available, this can lead to biases in the representation of a given model 

output. Air quality measurements include data at a given time, which can be measured 

more or less in subsequent measurements.  

The complex structure of the empirical distribution models is another shortcoming. In 

parametric distribution there are particular type of parametric functions and the 

calculation methodology of its parameters are well defined. Therefore, parametric 

probability distribution models are capable of describing data points (even the larger 

number of data points) in a compact manner based on a particular type of parametric 

distribution function and the values of its parameters, where it is complex in empirical 

probability distribution models [201]. Minimum and maximum values of the 

distribution are limited to minimum and maximum values of the data in conventional 

empirical distributions; however, it is possible to make predictions in the tails of the 

distribution beyond the range of observed data in parametric distribution models [196].  
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 : Uncertainty and variability quantification methodology adopted in country-specific EF development.



67 

Considering all this information, it was decided to take parametric probability 

distribution models into consideration when fitting a parametric distribution model to 

the generated EFs. Selection of the parametric distribution for variability requires 

combination of a deep knowledge about theoretical and empirical considerations.  

All these statistics and visual inspection of the CDFs were combined with goodness-

of-fit statistics and goodness-of-fit criteria for selecting best fitting parametric 

probability distribution model to our data. Furthermore, the processes that generate the 

data should be considered.  

Parametric probability distribution models used in AuvTool include the normal, 

lognormal, Weibull, gamma, beta, uniform, symmetric triangle parametric 

distributions. Normal distribution is not appropriate for representing non-negative 

quantities because it has an infinite negative tail, however it can be used when Cv is 

less than 0.2 [202]. The lognormal, gamma and Weibull distributions are useful for 

representing non-negative and positively skewed data [196]. Although two-parameter 

beta distribution has flexibility to represent data with a variety of central tendency and 

skewness [196], it was not considered in this study since it is bounded by zero and one. 

The uniform and symmetric triangle distributions are most commonly used to 

represent expert judgments made in the absence of data [196]. These two distributions 

were considered when EFs of the same code are clustered around two or more extreme 

values.  

2.2.4.2 Evaluating goodness-of-fit 

CDFs and histograms were used in order to visually evaluate the fit of parametric 

distribution. In addition, goodness-of-fit statistic and goodness-of-fit criteria were used 

in order to select best fitting parametric distribution.  

Goodness-of-fit statistics are not limited but including Kolmogorov-Smirnov statistic, 

Cramer-von Mises statistic, Anderson-Darling statistic. Also, goodness-of-fit criteria 

is not limited but including Akaike's Information Criterion and Bayesian Information 

Criterion. These statistics were calculated with “fitdistrplus” package [203] of R 

software.  
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Kolmogorov-Smirnov Statistic  

Kolmogorov-Smirnov statistic is based on the maximum distance between CDF of the 

fitted parametric distribution and empirical CDF of the data. Then maximum distance 

is compared to a tabulated critical value for a significance level and rejected if the 

distance is larger than the critical value. For best fitting distributions, the maximum 

distance should be less than the critical value [197]. It can be applied to normal, 

lognormal, Weibull, gamma, beta, uniform, symmetric triangle parametric 

distributions with two limitations as being sensitive near the centre of the distribution 

than at the tails, and being valid only in continuous distributions   

Kolmogorov-Smirnov statistic calculation steps are [197][199][204]-[207];  

• Rank the original dataset in an ascending order where Xk<Xk+1 (k=1, 2, …, n) 

where X is the ordered dataset is X, n is the number of the data points in X, Xk 

is the data.  

• Develop a stepwise cumulative density function as follows;   

!"($) = '
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                                    (2.17) 

where Sn(x) is the empirical cumulative distribution function.  

• Calculate the Dn which is the maximum difference (distance) between Sn(x) and 

the CDF of the fitted distribution, F(x), over the entire range of X.  

4" = max	|9($) − !"($)|                                               (2.18) 

• Decide significance level (a) and find critical value from the tables generated 

for Kolmogorov-Smirnov statistic in the literature. Generally, 95% confidence 

interval (a=1-confidence interval = 1-0.95=0.05) is considered in EF 

estimates. Therefore, critical value table of the Kolmogorov-Smirnov statistic 

for a=0.05 significance level is given in Table 2.9. Linear interpolation can be 

used for the not listed n values [205].  
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 : Critical value of maximum distance (Dn) for 95% confidence interval 
[206][207] for Kolmogorov-Smirnov statistic. 

n Critical Value 
5 0.337 
8 0.285 
10 0.258 
12 0.242 
15 0.220 
16 0.213 
18 0.200 
20 0.190 
25 0.180 
30 0.161 

>30 1.886/√+ 

• Kolmogorov-Smirnov statistic (Dn) should be less than critical value (given in 

Table 2.9) in order to pass goodness-of-fit test.  

Akaike's Information Criterion 

Akaike's Information Criterion (AIC) is a technique for evaluating the likelihood of a 

model to predict the future values [208]. In this thesis, AIC is used to evaluate the 

appropriateness of the fitted distribution to the data. Lowest value of the AIC indicates 

best fitted parametric distribution to our data. The AIC formula is as follows;  

<=> = ? @"
"A0A/

B ) − 2 ln[GHIJ]     (2.19) 

where n is the number of data values, k is the number of the parameters to be estimated 

(for instance number of the parameters is two for normal distribution, which are mean 

and standard deviation), Lmax is the maximized value of the log-Likelihood for the 

estimated distribution (for instance it is the natural logarithm of the Likelihood after 

estimating the parameters of the fitted distribution by Method of Matching Moments).  

Bayesian Information Criterion 

Bayesian Information Criterion (BIC) is used for selecting best fitting model to a 

dataset. Lowest value of the BIC indicates best fitting parametric distribution to our 

data. BIC can be defined as;  

L=> = ln(+) ) − 2ln(GM)     (2.20) 
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where n is the number of the data points, k is the number of free parameters to be 

estimated and GM is the maximized value of the likelihood function of the model [209].  

2.2.4.3 Estimating parameters of the distribution 

Once a parametrical distribution has been selected, a key step is to estimating values 

of the parameters of a parametric probability distribution. There are two most typical 

statistical techniques used for estimating parameters of a distribution; the method of 

Maximum Likelihood Estimation (MLE) and the Method of Matching Moments 

(MoMM) [196]. The MLE method does not always yield minimum variance or 

unbiased estimates for small sample sizes, however, for larger sample sizes, the MLE 

method tends to better estimate statistically than other methods [210]. There are 

convenient solutions for MoMM parameter estimates for the normal, lognormal, 

gamma, and beta distributions [211], as well as for the uniform and symmetric triangle 

distributions. However, they are not easy to calculate [196]. In this study, MoMM 

method was used in order to estimate parameters of the fitted distribution. AuvTool 

was used for calculating of the parameters.  

MoMM is based upon matching the moments or central moments of a parametric 

distribution (e.g., mean, variance) to the moments or central moments of the data set. 

The MoMM estimators for each of the parametric distributions are presented in this 

part of the thesis.  

Normal Distribution 

Parameters for the normal distribution are the arithmetic mean, ì, and the arithmetic 

variance, ó@. The MoMM estimator of the mean is the sample mean, PQ where MoMM 

estimator of the variance is the unbiased sample variance, s2 [202][212]and[196].  

R̂ = PQ = /
"
∑ PU
"
UV/      (2.21) 

WX@ = Y@ = /
"A/

∑ (PU − PQ)@
"
UV/      (2.22) 

Probability density function of normal distribution is written in the following form 

where x is between 0 and ∞; 
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Z($) = 	 /

√@[\]
^
_(`_a)]

]b]      (2.23) 

Lognormal Distribution 

There are two types of parameters for the lognormal distribution [202][212]and[196] 

which are,  

• geometric mean (cè) estimated by R̂e, and geometric standard deviation (f́e) 

estimated by WXe or  

• The mean of the logarithm of X (cg̀h	(J)) estimated by R̂gh	(J), and standard 

deviation of the logarithm of X estimated by WX(i"J). In this study, these 

parameters are used since they are included in AuvTool.  

R̂gh	(J) = ln(PQ) − /
@
WX@gh	(J)    (2.24) 

WX@gh	(J) = jk+(PQ@ + Y@) − 2ln	(PQ)    (2.25) 

Probability density function of lognormal distribution is written in the following form 

where x is between 0 and ∞;  

Z($) = 	 /

Jm@[\no	(`)]
^
_(no`_apq`)

]

]b]      (2.26) 

Gamma Distribution 

The parameters of the gamma distribution are the shape parameter rX (estimate of ŕ) 

and st  (estimate of rX), which are estimated through relationships with the sample mean 

($̅) and unbiased sample variance (s2) [202][212]and[196]. 

rX = vQ]

w]
      (2.27) 

st = w]

vQ
     (2.28) 
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Probability density function of gamma distribution is written in the following form 

where x is between 0 and ∞, Γ(y) is the gamma function and tabulated well in the 

literature for positive values of y ( Γ(y) = ∫ ${A/^AJ|
} );  

Z($) = 	 ~
_�JÄ_ÅÇ_`/Ä

É({)
      (2.29) 

Weibull Distribution 

There is no closed form solution for the MoMM estimator of the parameters of the 

Weibull distribution. Therefore, as an alternative, a parameter estimation method 

based upon regression analysis of a probability plot is used in AuvTool as described 

by Cullen and Frey [197]. In the probability plot method, if a data set is reasonably 

described by a Weibull distribution, then the following transformation may be used to 

plot the data;  

k+ Ñk+ Ö /

ÜQ(Já)
àâ = ä ln($U) − ä	ln	())     (2.30) 

9Q($U) = 1 − 9($U)      (2.31) 

where c is the shape parameter and k is the scale parameter. 9Q($U) is the 

complementary CDF of x. An empirical estimate of the CDF can be obtained using 

Hazen equation [213] which is a commonly used equation for finding plotting position 

of a data point by estimating cumulative probability of it;  

9J($U) = Pr(P < $U) =
UA}.é

"
, Zfê	ë = 1, 2, … , +	r+ì	$/ < $@ < ⋯  (2.32) 

Where i is the rank of the data point when the dataset is arranged in an ascending order, 

n is the number of the data points, $/ < $@ < ⋯ are the data points in the rank-ordered 

dataset, Pr(P < $U) is the cumulative probability of obtaining a data point whose value 

is less than $U. In AuvTool, the positions of the data points were estimated by Hazen’s 

equation for all parametric distributions.  

Probability density function of Weibull distribution is written in the following form 

where x is between 0 and ∞,  

Z($) = 	 ï
0
(J
0
)ïA/exp	(− ?J

0
B
ï
)    (2.33) 
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Uniform Distribution 

The parameters of the uniform distribution are the endpoints, a and b, which are 

estimated by rX and òM. The parameter estimation formula using MoMM are as follows 

[202][196];  

rX = 	PQ − √3Y     (2.34) 

òM = 	PQ + √3Y     (2.35) 

Probability density function of uniform distribution is written in the following form 

where x is between a and b,  

Z($) = 	 /
öAI

     (2.36) 

Symmetric Triangle Distribution 

The parameters of the symmetric triangle distribution are a and b, which are estimated 

by rX and òM. The parameter estimation formule using MoMM are as follows [202][196];  

rX = 	PQ      (2.37) 

òM = √6Y     (2.38) 

Probability density function of symmetric triangle distribution is written in the 

following form where x is between a and b,  

Z($) = 	 öA
|JAI|

ö]
      (2.39) 

2.2.4.4 Monte Carlo method  

In this study, Bootstrap samples are generated by using random Monte Carlo 

simulation. The starting point of the Monte Carlo simulation is fitting a probability 

distribution for each model. Then random values are generated from the assigned 

probability distribution model by numerical methods based on the use of pseudo 

random number.  

Pseudo random numbers are uniformly random numbers generated in a completely 

deterministic manner which are statistically uniform and independent, reproducible, 
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efficiently implementable as quickly and economically [214]. The number of the 

random values that are generated from the original dataset is based upon the beginning 

of the same sequence repetition, which is called as “period length” [199][214].  

There are a variety of methods for generating pseudo random numbers. In Auvtool, 

that was used by this study, combined Multiple Recursive Generators (MRGs) is used 

[215], which combines two or more MRGs in order to produce pseudo random 

numbers.  

Zn = (Xn – Yn) mod m1     (2.40)  

where Zn is a combined MRG with two underlying MRGs, Xn and Yn.  

Xn = (a1 Xn-1 + a2 Xn-2 + a3 Xn-3) mod m1     (2.41a) 

Yn = (b1 Xn-1 + b2 Xn-2 + b3 Xn-3) mod m2    (2.41b) 

where m1 = 231-1 = 2147483647, m2  = 2145483479,  a1 = 0 , a2 = 63308 and a3 = -

183326, b1= 86098, b2 = 0 and b3 = -539608. Calculations of those coefficients are 

not discussed here and can be found in the study of L’Ecuyer (1996) [215].  

Generation of pseudo random numbers differs according to fitted distribution type in 

AuvTool [204]. Calculation steps according to distribution types are summarized 

superficially from this point of study.  

Box-Muller method, called as polar method [216], was used in this study with the 

application method of Law and Kelton (1991) [217], for generation of random 

variables form a normal distribution.  

Lognormal samples are generated by using a special property of lognormal 

distribution. Namely, if Y ~ N(cl̀nx, σ2
lnx ), then eY ~ LN(ìlnx, σ2

 lnx, where “~” denotes 

“is distributed as”, N is normal distribution, LN is lognormal distribution, ì is mean 

and σ2 is standard deviation. Therefore, lognormal random samples are generated by 

X = eY algorithm where X is lognormal random sample.  

For generation of Gamma random variables, acceptance-rejection algorithm [217] 

[204]and[199] is used.  

Method of inversion using the inverse CDF [202] was used for generation of random 

samples (X) for Weibull and Uniform distributions.   
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In this method, CDF of the Weibull distribution can be written as;  

9($) = 1 − ^$úA(
`
ù
)û       (2.42) 

where X is random variate, c is the shape parameter and k is the scale parameter of 

the Weibull distribution. Then;  

P = 9A/(ü) = )[−k+(1 − ü)]//ï    (2.43) 

where U is a random sample from the U(0,1) distribution.  

The method of inversion is applied as follows for generating uniform distributions with 

any arbitrary endpoint;  

X = a + (b-a)U     (2.44) 

where U is a random sample from the U(0,1) distribution, a and b are the endpoints 

(parameters in this case) of the uniform distribution .  

The method of inversion is applied as follows for generating symmetric triangle 

distributions as follows;  

X = (a − b) + b(2U)1/2 where 0≤ ü ≤ 0.5    (2.45a) 

X = (a + b) - b(2-2U)1/2 where 0.5≤ ü ≤ 1	   (2.45b) 

U is a random sample from the U(0,1) distribution, a and b are the parameters of the 

symmetric triangle distribution.  

2.2.4.5 Bootstrap simulation  

Bootstrap simulation was originally developed by Efron [200] in 1979, for the purpose 

of estimating confidence intervals for statistics based on random sampling error [199]. 

Confidence interval is a range of values that is likely to contain an unknown population 

parameter. In this study, Bootstrap method is used to estimate confidence intervals for 

the fitted CDF for each country-specific EF. Bootstrap method can use the data 

generated by Monte Carlo method, directly [218].  

Bootstrap simulation is a numerical method which can provide solutions where exact 

analytical solution is unavailable or inadequate. It can be applied even the original 
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dataset is not normally distributed or the sample size is small. These advantages of 

Bootstrap simulation over analytical methods makes it as a more versatile and robust 

method for estimating uncertainty in a statistic due to sampling error, especially for 

non-normal datasets [197].  

The Bootstrap technique illustrated by Frey and Rhodes (1996) [219] is used in this 

study which is also basis for AuvTool. The method is summarized in Figure 2.7, and 

addresses the issue of quantifying the random sampling error that is introduced by 

estimating some statistic of interest from a limited number of randomly sampled data 

points. Basically, Bootstrap method starts after applying following steps;  

• fitting a distribution (9M) to the EF dataset (x) where actual underlying 

distribution (F) is unknown, as described in section 2.2.4.1, 

• determining statistic °M from the data set with °M = Z($), which is an estimate 

of θ (mean, variance, shape or scale parameter, or any fractile or quantile of 

the known distribution F, where θ = f(F)), as described in section 2.2.4.3, 

• evaluating goodness-of-fit as described in section 2.2.4.2.  

• generating random datasets (Bootstrap samples, °M∗), which are Bootstrap 

replicates of °M, by a random simulation method from assigned distribution, 9M. 

In this study Monte Carlo method is used as described in section 2.2.4.4. 

In Bootstrap simulation part of the study following steps are applied;  

• fitting a distribution to each Bootstrap sample.  

• estimation of the distribution parameters for each Bootstrap sample (°M∗=f(x*)). 

In this study, uncertainty in the estimate of θ is reflected by dispersion of °M∗, 

which also gives random sampling error 

• sorting the °M∗ data  

• calculating confidence interval for the fitted cumulative distribution function 

by “Percentile Method” 

• Comparison of the results to the original dataset by generating probability 

bands 

There is no gold standard for selecting the best method for forming confidence 

intervals [199]. In Auvtool, percentile method is used since it is widely used in practice 
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and for its simplicity. The other benefit of using the percentile method to other methods 

is that it can be applied to any type of Bootstrapped distribution [220].  

After ordering B Bootstrap replicates of °M∗ (°M∗/, °M∗@, …	, °M∗£), the upper and lower 

bounds of the expected confidence interval is estimated by using following formula;  

 

Lower bound of the confidence interval = (100.a)th percentile 

= (B.a)th largest value of °M∗      (2.46) 

Upper bound of the confidence interval = [100.(1-a)]th percentile  

= [B.(1-a)]th largest value of °M∗    (2.47) 

a = 1-CI/100      (2.48) 

where a is the significance level (for 95% confidence interval, a is 1-95/100 = 0.05).  

For instance, assume B=1000 and a=0.05 for 95% confidence interval. The lower and 

upper bounds of confidence interval for the values of a Bootstrap statistic in the 

ordered set are calculated as;  

Lower bound of the confidence interval = 0.05 percentile = 50th largest value of the 

ordered °M∗  

Upper bound of the confidence interval = 95 percentile = 950th largest value of the 

ordered °M∗  

Bootstrap simulation can be used to help evaluate the goodness-of-fit of a distribution 

with respect to the original data by graphically comparing confidence intervals for 

CDF of the fitted distribution to the data. In this study probability band, or confidence 

band, is used in order to evaluate results of Bootstrap simulation. A probability band 

is composed of the fitted line plot that depict the upper and lower confidence bounds 

for all points within the range of data. 
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2.2.4.6 Uncertainty propagation 

In this part of study, propagation of uncertainties in terms of addition is described, 

because it is necessary to sum the uncertainties in this study. If there is a need to find 

the uncertainty associated with sum of two individual uncertainties by assuming errors 

as random and uncorrelated, uncertainties can be calculated by taking square root of 

sum of squares (quadrature) [221];  

x (§$i•¶and §$ßUeß)  = y (§®i•¶ and §®ßUeß)  + z (§©i•¶ and §©ßUeß)  (2.49a) 

x= y +z      (2.49b) 

§$i•¶= 
j(™´p¨≠∗´)]2	(™Æp¨≠∗Æ)]

´2Æ
     (2.49c) 

§$ßUeß= 
m(™´Øá∞Ø∗´)]2	±™ÆØá∞Ø∗Æ≤

]

´2Æ
        (2.49d)  

where x is the final sum of the two values which are y and z in this case,  §$i•¶ , 

§®i•¶ and §©i•¶ are 95% lower confidence interval of x, y and z values, respectively.  

§$ßUeß, §®ßUeß and §©ßUeß are 95% upper confidence interval of x, y and z values, 

respectively.  

2.2.4.7 Percentage uncertainty  

Following formula is used in order to express uncertainty as a percent.  

Percentage uncertainty (lower)  = 100*(x-§$i•¶	•≥	ßUeß) / x   (2.50) 

Percentage uncertainty (upper)= 100*(§$i•¶	•≥	ßUeß-x) / x    (2.51) 

where x is the final sum of the two values which are y and z in this case as described 

in equation 2.5.a and 2.5.b,  §$i•¶	•≥	ßUeß can be either §$i•¶ or §$ßUeß , and 

represents either 95% lower (§$i•¶) or upper (§$ßUeß) confidence interval of x.  

 Probabilistic Emission Inventory  

An emission inventory is compiled in this study, for public electricity and heat 

production sector of Marmara region. Emission inventory development and EF 

calculation methodology is summarized below.  
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2.3.1 Inventory data  

Although emission calculation methodology seems a simple multiplication of activity 

data and EF for industrial plants as in equation 2, each item of the formula requires a 

deep data collection and analysis effort at the background. In developing countries, 

especially activity data collection for industrial sources is most time-consuming part 

for emission inventory developers. Due to its unstable nature of the activity data, 

inventory developers should have at least the simple descriptive information on the 

sources before commencement of the works in order to know where to search current 

data for updating and developing in-hand data. 

Activity data sources are including but not limited to the sources we have used in 

KAMAG project [194] (up to the permission of Ministry of Environment and 

Urbanization), also open sources including web pages, annual reports of the 

companies, one to one negotiations with the company representatives, development 

reports of Ministry of Industry, official asking to Ministry by obeying Turkish law of 

information acquisition, data acquisition from Turkish Statistical Institute, personal 

communications with industrial zone representatives, academic studies and opinions 

of experts both from universities and sector. In urgent cases when there is no data 

despite all the efforts, then expert judgement was used as a final way for selection of 

activity data by considering the conditions in Turkey. 

If official activity data is not available, then the data was tried to be collected 

unofficially from the open sources and personal communication. Stack measurements 

conducted in this study were used for two reasons. First reason is for comparing with 

official measurements in order to capture outstanding discrepancies between these two 

measurements conducted with two independent teams; second reason is for using these 

measurements directly in the calculation of EFs. Finally, EFs were selected from 

EMEP [54], IPCC [55] and EPA [193] if there is no adequate data for calculation of 

EFs.  

Data combining, data screening and data evaluating were used during the data handling 

process. Data combining was applied when a data was available from several sources. 

Data screening was applied when a data doesn’t have enough information in the 

calculations. Data evaluating was used in order to select representative EFs for 

comparing country specific EFs, and activity data.  
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2.3.2 Electricity generation plants included in this study  

According to Union of Chambers and Commodity Exchanges of Turkey [222], 30.7% 

of electricity that is produced in Turkey is produced in cities of Marmara region by the 

total number of the electricity producers as 130. This number includes all small- and 

large-scale plants without distinction even though they produce electricity for internal 

use, not for public use. In this study, only public electricity and heat production plants 

considered which corresponds to middle and large-scale plants.  

According to EMEP [54], the size of the plants considered under public electricity and 

heat production (NFR is 1.A.1.a) exceed 50 MWth. Smaller plants were considered as 

“small combustion” plants even if the produced energy is sold for public use. 

According to U.S. EPA [193], this value is accepted as 100 MMBtu/hr heat input, 

which corresponds to 30 MWth in International System of Units (SI), and smaller 

plants were considered under “small boilers” category (Source Classification Code, 

SCC is 1-01-006-01 for natural gas combustion plants). In this study, by taking average 

of two studies, 40 MWth value is accepted as a lower limit for selection of “public 

electricity and heat production plants”. There are 57 public electricity and heat 

production plants in Marmara region. Marmara region of Turkey is shown in Figure 

2.8, and the public electricity and heat generation plants that were considered in this 

study are indicated on the right-hand side figure.  

However, some of the data was not adequate for calculations, and number of plants 

were not representative for Marmara region. Therefore, a detailed research was 

conducted in order to find the plants which are not included in the project database and 

finding missing information that is required for calculations. For this scope, scientific 

articles, technical reports, official state reports, annual reports of the plants, and open 

sources such as plant web sites were investigated, plants were asked directly by 

personal communication. Finally, the number of the public electricity and heat 

production plants reached to 57 in Marmara region.  

Two of the plants produce electricity from domestic lignite with a total of 530 MW 

installed power. One of the plants is equipped with electrostatic precipitator and flue 

gas desulphurization as the abatement technologies. Pulverized and circulating 

fluidized bed boilers are used as combustion technologies. Caloriphic value of the coal 

is between 2160 and 2940 kcal/kg. Three of the 57 plants produce electricity from 
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imported coal with 2442 MW installed power, circulating fluidized bed boilers. The 

calorific value of the coal was accepted around 6000 kcal/kg. As it is clear from 

calorific values, imported coals energy content is about three times of domestic coals. 

47 of 57 plants produce energy based on natural gas. Totally 14.5 Billion m3 natural 

gas is consumed by those plants. Since natural gas is imported, calorific value of the 

natural gas is almost the same in all plants which is 8250 kcal/m3. Mostly gas turbines 

are used as firing practice. Two plants use natural gas and liquid fuels alternately in 

their combustion system, and they have 1106 MW installed power. Calorific value of 

the fuel oil was accepted as 10247 kcal/kg.  

 

 : Map of electricity generation plants in Marmara region of Turkey. 

One of the 57 plants use waste biogas of landfill as the source of energy in their 

cogeneration units with an installed power of 34 MW. Calorific value of waste heat 

was accepted as 4450 kcal/m3. One other plant use waste heat as the source of energy. 

The capacity of the plant is around 50 MW and the calorific value of the waste heat 

was accepted as 8108 kcal/m3.  
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2.3.3 Emission calculation methodology 

EF development is initial step of emission inventory development ahead of air quality 

modelling, setting and follow up air quality standards. EFs that are used in industrial 

emission inventories can either be selected from literature by considering pollutant 

type, abatement technology, production technology, fuel type or can be developed 

directly from in-situ measurements. This step is strongly affected from the data in 

hand. EFs are generally given on production method / pollutant / technology/ 

abatement technology basis in emission inventory guidebooks including EMEP/EEA 

Emission Inventory Guidebook [54]. Less data you have means less representative EF. 

Of course, there are generalized EFs for the plants which has no information other than 

production amount, but these EFs will not accurately represent current emissions of a 

particular facility when used in an inventory. 

After calculation (or selection) of EFs and gathering the representative activity data 

emissions are calculated simply by equation 2.  

E = Sn A1,n  EF’1,n  (1 - C1,n  h1,n )                                     (2.52) 

where E is the total emission of a plant including all stacks; A is activity data that is 

related to each stack; EF’ is uncontrolled EF for the related stack; C is control 

technology application rate in the stack depending on the operation conditions of the 

process; n is the number of stacks per plant; h is removal efficiency of the control 

technology as percentage. 

2.3.4 Propagation of the uncertainty into sources  

Correlation coefficient method was applied in order to quantify uncertainty 

contributions of emission sources [202][197].  

ü¥ =
∑ (JùAJ̅)(´ùA Q́)
µ
ù∂Å

m∑ (JùAJ̅)](´ùA Q́)]
µ
ù∂Å

                                          (2.53) 

where  ü¥ is  importance of uncertainty from emission sources,  $0 is total emission 

inventory of the specific emission source category,  $̅ is the mean of the all sources of 

specific emission category,   ®0 is the subset source category for the emission 

inventory,  ®Q is the mean  of the all subset sources of specific emission category. Large 

values of  ü¥ indicates a stronger linear dependence between the subset source 
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category (®0) and   total emission inventory  ($0), then subset source category is a key 

source of uncertainty in the total emission inventory. 



84 

  



85 

 

 RESULTS 

The results obtained in this study are explained in three parts. The first part covers the 

results of the modelling study conducted within the scope of an international project. 

The second part includes country-specific emission factors and their uncertainty 

calculations calculated within the context of a national project. In third part, the results 

of the new inventory are presented and discussed by comparing other inventories. 

 Multi-Model Evaluation  

PM10 concentrations for Europe domain were calculated by several groups within the 

context of AQMEII-3 activity. Turkey was included in this modelling domain. In this 

chapter, several regional scale air quality modelling systems were compared over the 

European continent, Turkey and Marmara region within the context of AQMEII-3 

project. 

3.1.1 Evaluation of meteorology model outputs 

Some meteorology model outputs of the models are plotted in Figure 3.1 and Figure 

3.2 for selected parameters. Vertical profiles of temperature mean bias for the selected 

stations are given in Figure 3.1 (selected by considering best and worst behaviours of 

models in surface). Figures were adopted from Stefano et. al [71] which is a study that 

was contributed by also this study. According to Figure 3.1, temperature mean bias 

profiles of the models ranges are less than 1K, for the best case as shown for a sample 

station (053) in Figure 3.1.  

In Figure 3.1 and Figure 3.2, model names are given according to group IDs; where 

CMAQ1 is TR1, CMAQ3 is UK3, CCLM-CMAQ is DE1, CMAQ4 is UK1, SILAM 

is FI1 (meteorology is from ECMWF), WRF-Chem1 is IT2, DEHM is DK1. CMAQ1, 

CMAQ3, CMAQ4 and DEHM models use WRF as meteorology model.  

The bias for temperature in all EU domain ranges between −3K (calculated by DE1 

with CCLM model at station 308, Figure 3.1) and +2K (calculated by UK1 with WRF 

model at station 308 and calculated by FI1 with  SILAM model at station 156) at the 
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surface, which shows the worst case for the models. Reasons for fluctuations of mean 

bias around zero might be due to the difference of station altitudes, the complexity of 

the terrains where stations are located, and the model itself.  

  
Figure 3.1 : Mean bias (model–observations) for the vertical profiles of temperature 
measured by ozonesondes launched from indicated locations on the upper right map 

of each panel. 

Vertical mean bias profiles of wind speed (WS) for the selected stations are given in 

Figure 3.2 by considering best and worst behaviours of models in surface.  

  
Figure 3.2 : Mean bias (model–observations) for the vertical profiles of wind speed 
measured by ozonesondes launched from indicated locations on the upper right map 

of each panel. 

Since bias is positive in most of the models in PBL and decreases above ∼1000 m; 

models show a tendency of overestimation of the WS in the PBL and of 

underestimation above ∼1000 m although there are some exceptions for different 

models and/or launching stations. Since ES1 (WRF-Chem1) group adopted the 

nudging of meteorological fields only above the PBL and only during the first 12 hours 

of meteorological spin-up, while for the other WRF instances the nudging is active 
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during the entire run, generally WRF-Chem1 has the largest positive bias at all sites, 

with the bias staying positive well above the PBL at all stations in contrast with all 

other models. Furthermore, WS overestimation by WRF-Chem is a known concern 

(e.g., Jimenez and Dudhia [134]; Tuccella et al., [223], Mass and Ovens [224]) and it 

is likely to have a major impact on the dispersion of pollutants [71]. 

3.1.2 Model performance evaluation on Europe  

Each model’s base case simulations have been evaluated on a daily mean basis using 

available surface observations from Europe domain, including Turkey. Distribution of 

PM10 observation stations used in this study are given in Figure 2.4and detailed 

information according to stations are supplied in Chapter 2.1.2.4. Hourly values are 

first daily averaged then performance metric was calculated for each station for year 

2010. As explained in Chapter 2.1.3.3, not only standard statistical performance 

metrics which are listed in Table 2.7 but also Taylor diagrams were produced for each 

station in Europe.  

Map of showing MAE on station basis for PM10 concentrations were produced for each 

model in order to compare model performances over the entire domain. In Figure 3.3, 

MAE results are given on a map for only our model (TR1). MAE is expected as 0 for 

the best performing models and gives an idea about average absolute difference of the 

model from observations.  

Colouring of the performance metrics at the stations was done by considering the 

values at all stations. Quartile 1 (Q1) and Quartile 3 (Q3) values, which are frequently 

encountered in air quality studies, were taken into consideration. In the Python code 

written for this mapping purpose, the respective performance metrics of all stations are 

sorted from small to large, 25% of the data (Q1) is green, and it is yellow between 25% 

(Q1) and 75% (Q3). If the station's performance metric is included in Q3, it is shown 

with red bubbles. The best value for all performance metrics given in the Figure 3.3 is 

zero. That is, the model results at Q1 stations, whose performance metric is shown in 

green, are close to the measurement results when compared to yellow and red. The size 

of the bubbles represents the size of the performance metric at the respective station.  

Since the UPA metric may be less than zero, Q1, Q2 and Q3 values were calculated 

separately for positive and negative numbers. The downward-facing triangle indicates 

that the UPA value at this station is negative, and vice versa. It is clear from the colour 
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of the triangles how close the UPA is to the best value (how close the model results 

are to the measurements at that station). From the best UPA to the worst, the colours 

are listed as green, yellow, blue and red, respectively.  

When looking at the map of the MAE performance metric in Figure 3.3, the green 

stations (where average absolute difference between model and observation is less than 

or equal to 9 µg/m3) are mostly located in Western Europe (especially in England, 

Ireland, Holland, Belgium, France, Germany and Sweden). Red stations are located 

mainly in Eastern Europe (especially in Turkey, Bulgaria, Greece and Poland) and in 

two Western Europe countries which are Spain and North Italy. The largest red bubbles 

are in Turkey. This means that the model gives worst results in stations of Turkey. So, 

the MAE at these stations is quite high.  

MAE 

 

MNE 

 
RMSE 

 

UPA 

 
Figure 3.3 : Map of some performance metrics calculated by our group (TR1 model) 

for PM10 in observation stations throughout Europe for 2010. 

MNE is the normalized version of MAE by observed values, formula is given in Table 

2.7. MNE best value is 0 and it is expressed as percentage in our study. Normally when 

model or observation is twice the other, MNE is 50%. MNE results are given on a map 

for only our model (TR1) in Figure 3.3. Green dots (showing MNE results less than 

39% which is also Q1) are common in Western Europe (especially in England, 

Holland, Belgium, France and Germany). Red stations are located mainly in Eastern 
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Europe (especially in Turkey, Bulgaria, Greece Romania) and in two Western Europe 

countries which are Spain and North Italy. Since MNE at the station in Switzerland is 

so high, the red bubbles in Turkey seems small despite being the highest in Europe. 

As in MNE, the results of the model seem to be the worst in stations in Turkey.  

RMSE, which is a non-normalized error metric, represents the sample standard 

deviation of the difference between modelled and observed values regardless of 

whether the modelled values are higher or lower than observations. Best value is 0 for 

RMSE. Figure 3.3 shows RMSE values for modelled and observed PM10 in stations 

throughout Europe. As in MAE and MNE maps, the green stations (where RMSE is 

less than or equal to 12 µg/m3) are mostly located in Western Europe (especially in 

England, Ireland, Holland, France, Germany, Sweden and Finland). Red stations are 

located mainly in Eastern Europe (especially in Turkey, Poland, Bulgaria and Greece) 

and in North Italy. The largest red bubbles are in Turkey. 

The UPA metric is intended to measure a model’s ability to capture peak pollutant 

concentrations but does not pair the model estimates with observations in time or space 

and best value is 0. In Figure 3.3, UPA values were expressed as percentages. Since 

UPA is not an absolute metric, the dots were redesigned for inclusion of the negative 

values as explained in the legend of the figure. Values between -Q1 and zero were 

indicated with green rectangular, downward rectangular indicates model peak values 

less than observation peak values, and the upper ward green rectangular tells the 

opposite. This metric is valuable when the models capture of peak values were needed 

to be considered, because for the best models it is expected to have high values at the 

same time in model when observations were also high. If those peak values are close 

to each other than UPA value is close to zero. If peak values are not close, then model 

cannot be able to catch the correct peak value. In Figure 3.3, UPA values are close to 

zero in France, Germany, England, Spain and Portugal. In those countries there are 

also yellow rectangular which shows moderate UPA values (between Q1 and Q2). Red 

and blue rectangular show worst UPA results which are common in Poland, Czech 

Republic, Turkey and Bulgaria. Worst UPA means, model cannot capture peaks well.  

From this point of view, when Figure 3.3 is investigated (for further investigation refer 

to Appendix A), performance metrics are generally give bad results in Eastern Europe 

countries (especially in Turkey), which means TR1 model (our group) cannot capture 

observations in Eastern Europe countries where model give pretty good results in 
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Western Europe. In this point, behaviour of other models reveals as question. In order 

to address this question same maps were generated for other groups, and sample model 

results is given in Figure 3.4 for MAE metric (remaining maps were given in Appendix 

A for all metrics).  

When Figure 3.4 is examined, it is seen that, all models usually give quite different 

results from measurements in Eastern Europe, but again the worst results are in 

Turkey. Furthermore, all these models give close results to our model (TR1) as 

discussed with Figure 3.3.  

 (a)  (b) 
 

 (c) 

 

  (d) 

Figure 3.4 : Map of MAE results for PM10 in observation stations throughout 
Europe for 2010 calculated by groups from: (a)England (UK1_MACC_bas).  

(b)Denmark (DK1_HTAP_bas).  (c)Finland (FI1_MACC_bas). (d)Italy 
(IT2_MACC_bas). 

In order to discuss behaviours of the models in each country, CDFs of MAEs in each 

station are plotted for each model and for each country, and given in Figure 3.5 for 

selected countries. Totally 27 countries were considered in the European part of 

AQMEII-3 project. Number of observation stations are less than 10 in some countries 

(e.g. Switzerland, Slovakia, Romania),  therefore they were considered out of 

discussion in this part of the analysis. Number of stations for the considered countries 

are indicated at the bottom of each plot in Figure 3.5. Countries with narrow, medium 
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and large CDFs were selected for Figure 3.5.  

  

 
 

 
 

Figure 3.5 : CDFs for MAE results of PM10 in observation stations for some 
countries (countries are indicated on the title of each sub plot). 

In the CDFs of stations in Austria, all models are following nearly close CDF paths, 

means that models generally found close predictions when compared to observations. 

MAE is less than 20 µg/m3 in all model predictions, in all stations. The situation is 

same in Germany. 

Looking at the CDFs of stations in the Czech Republic, all models have similar errors 

(MAE plots are close to each other). However, in 40% of the stations, the MAE is 

above 20 µg/m3. In Poland, MAE is above 20 µg/m3 in 70% of stations.  
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In Bulgaria, CDFs were shown as dots, since number of stations were not enough to 

create the CDF in a line view. However, it is clear that, MAE is more than 20 µg/m3 

in almost all stations in Bulgaria. In Turkey, the range of MAE CDFs are broadened, 

which is between 20 µg/m3 and 100 µg/m3. CDFs of all models in Turkey indicates 

high variability of the models. 

Some of the performance metrics averaged for selected countries and given in Table 

3.1. In Table 3.1, there are four Western Europe countries (Germany, France, Spain 

and Italy) representing good model performances, and three Eastern Europe countries 

representing worst model performances (Turkey, Poland and Bulgaria). Averages of 

all performance metrics for other countries are given in Appendix D. According to 

Table 3.1, RMSE is less than 20 in the selected West European countries (Germany, 

France, Spain and Italy), where it is between 35 and 62 in some of the Eastern Europe 

countries (Turkey, Poland and Bulgaria). Average of BIAS of Eastern European 

countries is 2.5-fold of Western European countries, when all countries are considered. 

Furthermore, MAE is between 10 and 15 µg/m3 in Western European countries, where 

it is between 24 and 48 µg/m3 in Eastern Europe countries. NBIAS is more than 50% 

in Eastern Europe countries where it is maximum 32% in Western Europe countries.  

Table 3.1 : Country based performance metric averages for selected countrries. 

 Turkey Germany France Spain Italy Poland Bulgaria 
Number of stations 101 199 231 111 188 136 32 

Mean (µg/m3) 27 13 15 14 17 15 18 

Median (µg/m3) 22 11 13 10 14 13 14 
Stand. Dev.  20 8 9 13 12 10 15 
Variance 727 70 109 341 213 104 324 
RMSE 62 15 16 18 20 35 41 

BIAS (µg/m3) -40 -7 -9 -7 -9 -23 -25 
MAE (µg/m3) 48 10 12 13 15 24 29 
NBIAS (%) -50 -32 -36 -29 -31 -57 -53 

Performance metrics are averaged on Eastern and Western Europe countries and 

percent difference of Eastern countries from Western countries are given in Table 3.2. 

Percent differences are given with “+” or “-“ signs in Table 3.2. indicate given with 

shows the upper percent value of Eastern countries where downward arrow indicates 

opposite. For instance, MAE is 21 µg/m3 for the stations of Eastern European countries 

where it is 16 µg/m3 for the stations in Western European countries. Here, +99% (given 
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on the right column) says that MAE of Eastern countries are 99%larger than MAE of 

Western countries.   

Table 3.2 : Eastern – Western Europe averaged performance metrics. 
 

Eastern 
Countries 

Western 
Countries 

Difference of 
Eastern Countries 

(%)  
Number of Stations 444 988 -55 
Stand. Dev. (µg/m3) 13 9 +40 
Variance (µg/m3) 333 156 +113 
RMSE 30 16 +90 
BIAS (µg/m3) -15 -5 -177 
MAE (µg/m3) 21 11 -99 
MNE (%) 91 73 +25 
NBIAS (%) -40 -21 -88 
NME (%) 62 59 +5 
MFB (%) -54 -37 -46 
MFE (%) 78 63 +23 
NMSE 2.1 1.5 +41 
PCC 0.38 0.41 -8 
IOA 0.52 0.54 -3 

According to Table 3.2, RMSE of Eastern countries is 90% more than Western 

countries average, where MAE is 99% and MNE is 25% more. BIAS average is -5 

µg/m3 in Western European countries where it is 15 µg/m3 in Eastern European 

countries, which means that models predict approximately 15 µg/m3 beyond the 

observations. Correlations between models and observations are 8% less in Eastern 

European countries when compared to Western European countries. When all metrics 

were investigated, it is clear from Table 3.2 that, Western European countries give 

better results when compared to Eastern European countries in terms of performance 

metrics. 

3.1.3 Model performance evaluation for Turkey 

As detailly discussed in Chapter 3.1.2 BIAS average of the models for stations in 

Western Europe countries is 2.5-fold of stations located in Western European 

countries. Turkey, which is located in the Eastern Europe, has one of the worst results 

calculated by all models. All models predict PM10 concentrations with an average of -

40 µg/m3 BIAS in stations of Turkey, where it is the worst value within 34 countries 

of Europe considered in this study. In this part of study, Turkey will be focused deeply 
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in order to discuss possible reasons behind those poor results of AQMs. Regarding to 

the local regulation of Turkey [225], which is also compatible with EU Regulation 

[226], daily PM10 concentration cannot exceed 50 μg/m3 more than 35 times in a year 

and this rule will certainly be applied after 2019. Furthermore, air quality limit is 40 

μg/m3 PM10 for calendar year average. Over Istanbul annual mean concentration is 

more than 50 μg /m3 in the recent years.  

3.1.3.1 Regional evaluation of performances  

In the first step of analysis, CDFs of PM10 predictions by models and CDFs of PM10 

observations are generated on station basis. As in discussed in Chapter 3.1.2 models 

generally give good results in Western Europe countries. Although Turkey is located 

in the Eastern part of Europe, where models don’t give predict well as Western Europe, 

models continue to predict better in some stations of Turkey. However, number of 

those stations are limited. CDFs of some of the stations whose PM10 estimates are 

consistent with the measurements are given in Figure 3.6 for four biggest cities of 

Turkey.  

  

 

 

 
Figure 3.6 : Comparison of CDFs for selected stations from Turkey which are well 

predicted by all models. 
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Each CDF line represents an estimate of a different model. The navy-blue CDF line in 

Figure 3.6 shows the observations in said station. According to Figure 3.6, CDF lines 

of models are around observation line, some of them are very close to observation line. 

Although models vary among themselves, they generally predict PM10 concentrations 

close to observations in those stations. When CDFs of all stations in Turkey are 

examined, such good CDFs are encountered in 18 of 101 stations of Turkey 

(approximately 20%), especially in all stations of Istanbul (except Kartal station). 11 

of 18 good results are located in Marmara region of Turkey, one is in Canakkale, one 

is in Yalova and remaining stations are all located in Istanbul. Four stations of Izmir 

(Alsancak, Cigli, Guzelyali and Karsiyaka) in Aegean Region also have good CDFs. 

Two stations of Adana (Catalan and Dogankent) from Mediterranean Region and 

Ankara Bahcelievler station from Central Anatolia Region have good CDFs.  

 
 

 

 

 

 
Figure 3.7 : Selected stations from Turkey which are predicted poor by all models. 

Although PM10 is predicted well in some stations, there were no such good predictions 

in approximately 80% of the stations. CDFs of some of the selected stations, whose 

PM10 estimates are not consistent with the measurements, are given in Figure 3.6.  
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According to Figure 3.6, models predict close to each other but quite far from the 

observations. Generally, models predict better in big cities however model predictions 

in smaller cities are not good as big cities.  

3.1.3.2 Performance of the models in Marmara Region  

In Marmara region number of valid stations, after quality control procedures described 

in Chapter 2.1.2.4, is 18. Entire of those stations will be investigated in this part of 

study.  

In Table 3.3, BIAS and MNE values of models were summarized for each city in 

Marmara region. The name of the model that predicts the indicated BIAS or MNE 

value above the parentheses is given inside parentheses in Table 3.3. As indicated in 

Table 2.7, best value is zero for each BIAS and MNE. In Table 3.3, best values of 

BIAS (with best performing models inside parenthesis) are given in a separated 

column, where best values of MNE (%) are given in ‘Min’ column of MNE. According 

to Table 3.3, in Marmara region, worst BIAS value is in Balikesir (68 µg/m3) and 

calculated by DE1_HTAP model (Detailed information according to models were 

given in Table 2.1). Furthermore, when all worst BIAS values were investigated, 

DE1_HTAP model gives minimum BIAS in all cities. Which means that this model 

underestimates in all cities of Marmara region. Furthermore, absolute minimum BIAS 

is more than maximum BIAS in all cities, therefore it can be inferred that DE1_HTAP 

model is the worst performing model in Marmara region according to BIAS metric.  

Maximum BIAS is negative in Balikesir, Edirne, Kocaeli and Sakarya, which means 

that predictions are generally more than observations, and all models underpredicted 

in those cities. ES1_MACC model predicts best in those 4 cities in terms of BIAS 

metric. Furthermore, best prediction of the models is in Istanbul Sariyer which is 

calculated by FI1_HTAP model with a BIAS of -0.1 µg/m3. Our group (TR1_MACC) 

calculated best BIAS in four of the stations which are all located in Istanbul (Aksaray, 

Besiktas, Esenler and Kadikoy). Worst MNE results are calculated in Canakkale 

(calculated by ES1_MACC) which is 193%, second worst MNE is in Istanbul Aksaray 

which is 109% (calculated by UK1_Internal). Nevertheless UK1_MACC model 

calculated best MNE results in Marmara region which is 29% for each of Istanbul 

Alibeykoy and Uskudar. MNE results are generally lower in Istanbul when compared 

to other cities in Marmara region.  
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Table 3.3 : BIAS and MNE metric values (and models) for cities of Marmara region.  
 BIAS MNE (%) 

Min Max Best Average Min Max Average 
Balikesir 
 
 

-68 
(DE1_HTAP) 

-19 
(ES1_MACC) 

-19  
(ES1_MACC) 

51 53 
(FI1_SMOKE-NEW) 

88 
(DE1_HTAP) 

66 

Bilecik 
 
 

-42 
(DE1_HTAP) 

11 
(ES1_MACC) 

11  
(ES1_MACC) 

-28 51 
(IT1_MACC) 

91 
(ES1_MACC) 

65 

Canakkale 
 
 

-25 
(DE1_HTAP) 

20 
(ES1_MACC) 

-2 
(FI1-SMOKE-NEW) 

-8 47 
(DK1_HTAP) 

193 
(ES1_MACC) 

76 

Edirne 
 
 

-58 
(DE1_HTAP) 

-25 
(ES1_MACC) 

-25 
(ES1_MACC) 

-46 62 
(IT1_MACC) 

89 
(DE1_HTAP) 

70 

Istanbul 
Aksaray 
 

-36 
(DE1_HTAP) 

30 
(UK1_Internal) 

0.7 
(TR1_MACC) 

-1 39 
(UK3_MACC) 

109 
(UK1_Internal

) 

61 

Istanbul 
Alibeykoy 
 

-39 
(DE1_HTAP) 

21 
(FI1-SMOKE-NEW) 

-2 
(FI1-MACC-NEW) 

-6 29 
(UK1_MACC) 

75 
(DE1_HTAP) 

49 

Istanbul 
Besiktas 
 

-35 
(DE1_HTAP) 

27 
(FI1-SMOKE-NEW) 

2 
(TR1_MACC) 

-2 34 
(IT2_MACC) 

82 
(FI1_SMOKE-

NEW) 

54 

Istanbul 
Esenler 
 

-40 
(DE1_HTAP) 

25 
(UK1_Internal) 

-1 
(TR1_MACC) 

-5 38 
(IT2_MACC) 

88 
(UK1_Internal

) 

53 

Istanbul 
Kadikoy 
 

-32 
(DE1_HTAP) 

29 
(FI1-SMOKE-NEW) 

3 
(TR1_MACC) 

-1 41 
(UK1_MACC) 

118 
(ES1_MACC) 

65 

Istanbul  
Kartal 
 

-65 
(DE1_HTAP) 

8  
(UK2_HTAP) 

8 
(UK2_HTAP) 

-36 44 
(TR1_MACC) 

83 
(DE1_HTAP) 

58 

Istanbul  
Sariyer 
 

-35 
(DE1_HTAP) 

12  
(UK1_Internal) 

-0.1 
(FI1_HTAP) 

-6 37 
(TR1_MACC) 

82 
(ES1_MACC) 

50 
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Table 3.3 (continued) : BIAS and MNE metric values (and models) for cities of Marmara region. 

 BIAS MNE (%) 
 Min Max Best Average Min Max Average 
Istanbul 
Umraniye 
 

-34 
(DE1_HTAP) 

22 
(FI1-SMOKE-NEW) 

1 
(UK2_HTAP) 

-5 39 
(UK1_MACC) 

91 
(ES1_MACC) 

53 

Istanbul 
Uskudar 
 

-31 
(DE1_HTAP) 

30 
(FI1-SMOKE-NEW) 

-5.4 
(UK1_MACC) 

1 29 
(UK1_MACC) 

77 
(ES1_MACC) 

50 

Istanbul 
Yenibosna 
 

-51 
(DE1_HTAP) 

5 
(FI1-SMOKE-NEW) 

0.26 
(FI1_MACC) 

-19 37 
(TR1_MACC) 

80 
(DE1_HTAP) 

51 

Kirklareli 
 
 

-37 
(DE1_HTAP) 

2 
(ES1_MACC) 

2 
(ES1_MACC) 

-24 48 
(IT1_MACC) 

84 
(DE1_HTAP) 

61 

Kocaeli 
 
 

-56 
(DE1_HTAP) 

-12 
(ES1_MACC) 

-12 
(ES1_MACC) 

-37 49 
(FI1_SMOKE-NEW) 

85 
(DE1_HTAP) 

59 

Sakarya 
 
 

-66 
(DE1_HTAP) 

-22 
(ES1_MACC) 

-22 
(ES1_MACC) 

-49 55 
(FI1_SMOKE-NEW) 

89 
(DE1_HTAP) 

66 

Yalova -44 
(DE1_HTAP) 

32 
(UK2_HTAP) 

1 
(ES1_MACC) 

-12 44 
(IT1_MACC) 

98 
(UK2_HTAP) 

58 

In Istanbul, BIAS is between -65 µg/m3 (in Kartal) and 30 µg/m3 (in both Aksaray and Uskudar). MNE is between 29% (Uskudar and 

Alibeykoy) and 109% (Aksaray). In London BIAS is between -10 µg/m3 (calculated by DE1_HTAP for London Bloomsbury station) and 

18 µg/m3 (calculated by IT1_MACC model for London N. Kensington Partisol Station). In Paris BIAS is between -13 µg/m3 (calculated 

by DE1_HTAP for Paris 18eme station station) and 39 µg/m3 (calculated by TR1_MACC model for Paris 18eme station). In Berlin BIAS 

is between -16 µg/m3 (calculated by DK1_Tracer_noDep for B.Schöneberg-Belziger Straße station) and 1.74 µg/m3 (calculated by 

TR1_MACC model for B.Schöneberg-Belziger Straße station). In Istanbul although there are best estimating models, generally BIAS is 

larger than other metropoles of Europe. 
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In Istanbul, MNE is between 29% (for Alibeykoy and Uskudar calculated by 

UK1_MACC) and 118% (calculated by ES1_MACC model for Kadikoy), where MNE 

is 35 (UK2_HTAP for B.Schöneberg-Belziger Straße station) and 64% (ES1_MACC 

for B.Schöneberg-Belziger Straße station) in Berlin, between 9% (calculated by 

DK1_Tracer_noDep for PARIS 1er Les Halles station) and 40% (calculated by 

TR1_MACC model for Paris 18eme station) in Paris, and between 4% (calculated by 

UK1_MACC for London N. Kensington Partisol station) and 18% (calculated by 

IT1_MACC model for London N. Kensington Partisol Station) in London.   

Although BIAS and MNE upper and lower ranges are large, models predict better in 

Istanbul when compared to other cities in Marmara Region of Turkey. However 

minimum MNE is 29% in Marmara region (for Uskudar and Alibeykoy) which is even 

a high value for PM10 concentration estimations.  

3.1.3.3 Seasonal evaluation of model estimates  

In order to compare model performances according to seasons of 2010, Taylor 

diagrams were generated. In Figure 3.8, Taylor diagram of Balikesir station is given 

for all seasons of 2010, where December, January and February are Winter months, 

March, April and May are Spring months, June, July and August are Summer months 

and September, October and November are Autumn months. In Taylor diagrams, a 

number was assigned to each modelling group and given in the legend of plot. Taylor 

diagram was generated for all stations of Marmara region. Diagrams of other stations 

in Marmara region are in Appendix E.  

According to Figure 3.8, standard deviation of observations in Balikesir station is 

largest in Winter and Autumn (60 µg/m3) and smallest in Summer (16 µg/m3). It is 29 

µg/m3 in Spring. Although the standard deviation of measurements is high in Autumn 

and Winter, we see that standard deviation in Summer falls to almost a quarter of 

Winter. Finally, variability of observed emissions is highest in Winter and Autumn 

where it is lowest in Summer.  

Seasonal change of standard deviations in other cities of Marmara region is given in 

Table 3.4. According to Table 3.4, as in Balikesir station, generally standard deviation 

is highest in Winter and Autumn in almost all stations, and lowest in Summer, which 
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shows that PM10 observations  vary widely in Winter and Autumn however close to 

each other in Summer. 

 
Figure 3.8 : Seasonal Taylor diagram displaying a statistical comparison with 

observations of eighteen model estimates of the PM10 concentration for Balikesir 
station.  

As described in Section 2.1.3.3, standard deviation of the models is expected to be 

close to the standard deviation of the observations. Thus, it is assumed that the 

variability in measurements is captured by the model. In Figure 3.8, standard deviation 

of the models are less than 25 µg/m3 in Winter (except ES1_MACC model with a 

standard deviation more than 80 µg/m3) where standard deviation of the observations 

is 60 µg/m3. Furthermore, standard deviation of the models is less than 40 µg/m3 in 

Autumn (except ES1_MACC model with a standard deviation of 68 µg/m3) where 

standard deviation of the observations is 60 µg/m3. In Summer many models’ standard 

deviation is close to the standard deviation of observations as we don’t see in Winter 

and Autumn.   
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Table 3.4 : Seasonal change of standard deviations (µg/m3) of observations in the 
stations of Marmara Region. (Bold numbers show highest value, underlined values show 

minimum value per station and season). 

City Winter Spring  Summer  Autumn  

Balikesir 60 29 16 60 
Bilecik 20 15 19 21 
Canakkale  38 19 7 10 
Edirne 39 25 13 49 
Istanbul Aksaray 18 17 17 25 
Istanbul Alibeykoy 33 19 15 29 
Istanbul Besiktas 23 15 21 23 
Istanbul Esenler 27 23 15 30 
Istanbul Kadikoy 24 23 22 42 
Istanbul Kartal 54 38 24 40 
Istanbul Sariyer  26 19 35 28 
Istanbul Umraniye 25 21 14 38 
Istanbul Uskudar 21 16 12 27 
Istanbul Yenibosna 38 37 19 36 
Kirklareli 35 17 11 31 
Kocaeli 50 29 17 35 
Sakarya  41 23 14 52 
Yalova  31 23 14 25 

Average  33 23 17 33 

In Figure 3.8, correlation of the models (according to the position of the models on the 

white line in Figure 3.8) with observations is mostly less than 0.6. Worst correlations 

of the models with observations are in Winter.  

In Balikesir station, in Winter, correlation of the ES1_MACC model is about 0.3, 

which is also close to correlation of other models. Furthermore, centred RMSE of 

ES1_MACC model is more than 80 where it is less than 60 in other models. 

Consequently ES1_MACC model captures variability in the observations (as its 

standard deviation is closest to observations when compared to other models) and its 

predictions are 30% correlated with observations, however there is much difference 

between predicted and modelled PM10 concentrations in Winter.  

Taylor diagrams of other stations in Marmara region are given in Appendix E. When 

the Taylor diagrams of other stations are examined, we see models cannot capture 

observations in Winter but performs well in Summer as in Balikesir station, except 

Istanbul stations. This difference can be caused by inadequate representation of 
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increased emissions (in the model inputs) from residential heating and traffic 

emissions during Winter months when compared to other months. In this case, it would 

not be unreasonable to suspect that the inputs to the models do not cover this 

difference. For this reason, model results may be able to capture variability in 

measurements more easily in Summer. The reason why model estimates do not differ 

much in the stations in Istanbul between summer and winter may be due to the fact 

that the emissions in Istanbul are given better to the model. 

Model inputs to the model are considered as a reason for poor model predictions in 

this study. However, problems caused by the model itself or erroneous measurements, 

or combination of all, can also cause this. In this study, problems due to the model 

itself are out of consideration since 6 different AQMs were used by 13 modelling 

groups where same models were also considered by some groups. All models give 

close CDFs in Western Europe despite they have different modelling configurations, 

where they are not close to each other in Eastern Europe countries even in same 

models. (Detailed information for the models is available in Figure 2.1).  Problems due 

to observations are not subject of this study, since number of stations more. Systematic 

errors are not thought to occur at all stations at the same time. Discussion of the models 

according to stations are available in Section 3.1.3.2.  

 Country-Specific EFs  

Thanks to the KAMAG project [194] that this study benefited from, it was possible to 

calculate country-specific EFs from two data sources; in-situ measurements conducted 

within the context of the project and EMRs (emission measurement reports) prepared 

by the companies. In Section 2.2.1  detailed information on both data sources are given.  

As discussed in Section 2.2.1 there are questions on trusting the data in EMR. 

Therefore, the data in the EMR should not be considered in the calculation of country 

specific EFs. However, EFs were calculated in this part of the study from both sources 

in order to compare the results and reveal the difference of these two emission data 

sources. Since the use of in-situ EFs is given priority in the thesis and in order to save 

space in the thesis text, goodness-of-fit statistics/criteria for EFs derived from EMRs 

are given in Attachment F.   
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Country-specific dust, CO, SO2, NO, NO2 and NOx EFs are calculated in this part of 

the study. Although NO and NO2 EFs are calculated within the scope of this thesis, 

NOx EFs are also calculated under a separated section since they are commonly given 

in the literature.  

SNAP/NFR codes of EMEP were considered as the codes of EFs calculated in this 

dissertation. Codes of EFs are given with the sequence of “NFR-SNAP-Table No” 

throughout the dissertation. For instance, for an EF with “1.A.1.a – 10101 – 3.10” 

code, “1.A.1.a” is NFR code, “10101” is SNAP code and “3.10” is the table number 

in EMEP guidebook [54]. Definitions of the codes considered in this study are given 

in Table 2.8, besides briefly summarized in the subsequent sections.  

3.2.1 Coal combusting large wet/dry bottom boilers  

Coal combusting large boilers are represented with “1.A.1.a–10101–3.10” code. In 

detail, the code represents brown coal or lignite combustion plants with a capacity 

greater than 300 MW, and with wet and dry bottom boilers as the combustion 

technology for production of public power.  

In Marmara region there are no plants falling under this SNAP/NFR category. 

Although KAMAG project [194] covers the plants in Marmara region, a few in-situ 

measurements were conducted from outside of the region. Country-specific EFs are 

generated for this SNAP/NFR category from a plant outside of Marmara region, but 

not used in the emission inventory part of this study, since there is no plant falling 

under this SNAP/NFR category in Marmara Region.  

Consequently, 16 in-situ measurements from one plant is used in the calculation of 

country-specific EF for this SNAP/NFR code. Furthermore 12 emission measurements 

from EMRs were also used for comparison of the results.  

Dust  

Summary statistics of dust EFs for “1.A.1.a–10101–3.10” SNAP/NFR category are 

given in Table 3.5 for EFs derived from both in-situ measurements and EMRs. 

Although variance and standard deviation of in-situ measurements and EMRs are close 

to each other, Cv is 151% for in-situ measurements where it is 45% for EMRs, which 
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indicates large variability for in-situ measurements. The large variability is heavily 

affected from outliers. 

Table 3.5 : Summary statistics of dust EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.10”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 12 
Minimum 0.19 0.34 
Maximum 4.58 4.78 
Median 0.29 2.78 
Variance 1 1.15 1.59 
Standard Deviation 2 1.07 1.26 
Cv (%) 3 151 45 
Skewness 4 3.32 -0.48 
Kurtosis 5 11.8 0.55 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.29, looking at the CDF of EFs derived from EMR, it is seen that 

60% of EFs range from 2.5 to 3.3 g/GJ. In the CDF of EFs from in-situ measurements, 

90% of EFs are less than 1.8 g/GJ, however, there is one EF which is more than 4 g/GJ, 

which can be treated as outlier. Variability contribution of one outlier value in the CDF 

of EFs from in-situ measurements, should be considered when evaluating large 

variability in the in-situ EFs.  Consequently, we see that one outlier data has a large 

effect on final variability, although 90% of the data is below 1.8 g/GJ in in-situ EFs.  

There is positive skewness in the EFs derived from in-situ measurements where it is 

negative in EMR EFs. When the histograms given in Figure 3.9 are compared, it is 

seen that the asymmetry in the histogram of EFs derived from in-situ measurements is 

higher than those derived from EMR. Therefore, the skewness value for in-situ 

measurements in Table 3.6 is higher than EMR’s. Due to a large peak in the EMR 

histogram, the kurtosis value is expected to be higher than in-situ measurements, but 

lower in the Table 3.6. This is due to the presence of values close to this peak in the 

EMR EFs, as it is also clear in the CDF of EMR which is given in Figure 3.9. 

Consequently, EMR has less kurtosis and skewness value.  
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Figure 3.9 : Distribution fitting comparisons of dust EF on CDF and Histogram for 

both in-situ measurements and EMRs of “1.A.1.a – 10101 – 3.10”. 

According to Figure 3.9, looking at the CDF and histogram of EFs derived from in-

situ measurements, lognormal and Weibull distributions are close to CDF and 

histogram of the in-situ EFs, visually. In addition to CDF and histograms given in 

Figure 3.9, goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived 

from in-situ measurements were also calculated and given in Table 3.6, in order to 

quantitatively support parametric probability distribution function fitting for our data, 

and making a base for expert opinion.  
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Table 3.6 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ 
measurements of “1.A.1.a – 10101 – 3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.34 0.58 3.08 52 53 
Lognormal 0.25 0.19 1.11 18 20 
Uniform 0.36 0.63 -   -   -  
Exponential 0.28 0.32 1.73 23 24 
Logistic 0.36 0.58 2.92 47 48 
Gamma 0.42 0.49 2.45 31 33 
Weibull 0.26 0.29 1.58 25 26 

* Bold values indicate lowest values.   

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic are more than critical value in all distribution types, 

however close to the critical value in lognormal distribution. Other goodness-of-fit 

statistics and criteria are also lowest for lognormal distribution. Therefore, best fitting 

distribution is selected as the lognormal distribution for dust EFs derived from in-situ 

measurements for “1.A.1.a–10101-3.10” SNAP/NFR category.  

Goodness-of-fit statistics/criteria table for EFs derived from EMRs is given in 

Attachment F since the use of EFs derived from in-situ measurements is given priority 

in the thesis, and in order to save space in the thesis text. In EMR, normal and logistic 

distribution’s Kolmogorov-Smirnov statistic is close to critical value. Logistic 

distribution is best for EMR data, however second-best fitting data, which is normal 

distribution, was accepted for EMR dataset since uncertainty calculations of logistic 

distribution was not available in AuvTool.  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for both of in-situ EFs and EMR 

EFs, and results are given in Table 3.7.  

It is seen that, the EFs derived from EMRs are higher than the EFs derived from in-

situ measurements. However, the EFs calculated from both sources are significantly 

lower than the EMEP and EPA EFs. 
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Table 3.7 : Uncertainty analysis results for dust EF of “1.A.1.a–10101–3.10” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Lognormal  Normal  
between 
63 5 and 
13752 6 

g/GJ 

Mean 0.69 g/GJ 2.77 g/GJ 11.7 g/GJ 
95% CI (Lower, Upper) as g/GJ 0.34–1.375 2.07–3.48  1.2 -117 
Uncertainty (Lower, Upper)  51-99% 25-26% 90-900% 
First parameter  -0.938 1 2.78 3  
Second parameter 1.09  2 1.32 4  

1 mean of ln(x) for lognormal parametric probability distribution function 
2  standard deviation of ln(x) for lognormal parametric probability distribution function 
3  mean for normal parametric probability distribution function 
4  standard deviation for normal parametric probability distribution function 
5  for filterable PM, controlled with baghouse filter 
6  for filterable PM, for uncontrolled conditions 

Although the EF derived from EMR is within the EMEP confidence interval limits, it 

is considerably lower than the EPA EF. The EF generated from in-situ measurements 

is so low that it is almost half of the lower limit of the EMEP confidence interval. 

Country-specific EF, which is 0.69 g/GJ, is very low compared to EMEP [54] (11.7 

g/GJ) and EPA [193] (minimum 63 g/GJ). The reason of this difference can be due to 

abatement technologies used in the plant and/or the seasonality effect. In the plant, 

electrostatic filter is used as dust abatement technology with more than 95% abatement 

efficiency. Also, emission measurements were conducted in May-June for both of in-

situ EFs and EMR EFs. Therefore, it is not expected to be affected by seasonal capacity 

changes. Furthermore, in the surveys conducted to facility managers within the scope 

of the project, it was stated that there are no seasonal or monthly capacity changes. 

Consequently, using abatement technology reduces the dust EF. From this point, it is 

important to know in-site usage practices of these abatement technologies. In this 

point, the data supplied by continuous measurement systems is important.  

One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. Although EFs derived from in-

situ measurements often remain within the 50% CI limits in Figure 3.10, it is seen that 

EFs derived from EMR are even beyond the 95% CI limits. In this case, it would be 

more appropriate to use EFs derived from in-situ measurements. Consequently, 

country specific dust EF is 0.69 g/GJ for “1.A.1.a–10101-3.10” SNAP/NFR category, 

with 95% lower CI as 0.34 g/GJ and upper CI as 1.375 g/GJ.  
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 (a)  (b) 

Figure 3.10 : Probability band of dust EFs for “1A1a-10101-3.10” as cumulative 
distribution of (a)lognormal distribution fitted to dust EFs derived from in-situ 
measurements (b)normal distribution fitted to dust EFs derived from EMRs. 

CO 

Summary statistics of CO EFs for “1.A.1.a–10101–3.10” SNAP/NFR category are 

given in Table 3.8 for EFs derived from both in-situ measurements and EMRs. When 

min, max and median of the EFs derived from in-situ measurements and those derived 

from EMR are compared in Table 3.8, it is clear that CO EFs obtained from in-situ 

measurements are in a greater range than that reported in the EMRs. So, it can be 

inferred that that there were lower CO concentrations in EMRs for “1.A.1.a–10101–

3.10” SNAP/NFR category for this plant. Therefore, the variance and standard 

deviation of in-situ EFs are greater than those derived from EMRs.  

Table 3.8 : Summary statistics for CO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.10”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 12 
Minimum 5.22 0.29 
Maximum 45.06 4.49 
Median 15.01 3.47 
Variance 1 140.7 3.27 
Standard Deviation 2 11.86 1.81 
Cv (%)   3 64 61 
Skewness 4 0.71 -0.74 
Kurtosis 5 -0.49 -1 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
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In Figure 3.11, EFs are distributed homogeneously in the CDF of EFs derived from in-

situ measurements, while EFs derived from EMR show a clustered distribution. When 

the EMR data was examined, it was seen that each clustered data represents the 

measurements taken from different stacks of the plant. In this case, we can assume that 

the variability in EMR EFs is more than in-situ EFs.  

 

 

Figure 3.11 : Distribution fitting comparisons of CO EF on CDF and Histogram for 
both in-situ measurements and EMRs of “1.A.1.a – 10101 – 3.10”. 

However, variance and standard deviation of EMR EFs are less than in-situ EFs, 

because the range of EMR EFs is less than in-situ EFs. However, Cv value, which 

represents the variability in the EFs within each measurement source as a percentage, 

is quite close to each other in both cases. Although the EFs calculated from both 

sources are quite different from each other, the variability within in-situ EFs and EMR 

EFs is similar. EFs derived from both in-situ measurements and EMRs have low 

Kurtosis and Skewness values. 
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According to Figure 3.11, looking at the CDF and histogram of EFs derived from in-

situ measurements, Weibull distribution is close to CDF and histogram of the in-situ 

EFs. Table 3.9 is created in order to quantitatively support this qualitative 

interpretation and includes goodness-of-fit statistics and goodness-of-fit criteria for 

CO EFs derived from in-situ measurements.  

Table 3.9 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ 
measurements of 1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.19 0.11 0.63 128.55 130.10 
Lognormal 0.18 0.11 0.92 125.09 126.63 
Uniform 0.17 0.08 - - - 
Exponential 0.24 0.16 1.02 127.67 128.44 
Logistic 0.19 0.14 0.79 129.82 131.37 
Gamma 0.15 0.07 0.44 124.09 125.64 
Weibull 0.14 0.06 0.41 124.40 125.95 

* Bold values indicate lowest values.   

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value 

(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is 

in Weibull distribution. Other goodness-of-fit statistics are also lowest for Weibull 

distribution. Goodness of fit criteria are not lowest in Weibull distribution, but they 

are very close to minimum. Since Weibull distribution seems best in in-situ EFs in 

Figure 3.11, and due to lowest goodness-of-fit statistics in Table 2.9, best fitting 

distribution is selected as the Weibull distribution for CO EFs derived from in-situ 

measurements. Since the variability and clustered data in the EMR EFs were high, the 

uniform distribution was considered for EFs derived from EMRs. Goodness-of-fit 

statistics/criteria for CO EF derived from EMRs are given Attachment F. 

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.10. It is seen that the EFs derived from EMR are pretty lower than the EFs 

derived from in-situ measurements. There is no abatement technology for CO 

emissions in the plant.  
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Table 3.10 : Uncertainty analysis results for CO EF of “1.A.1.a – 10101 – 3.10” and 
comparisons with other studies. 

 In-situ 
Measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Uniform  
between 
13 5 and 

32 6 
g/GJ  

Mean (g/GJ) 18.87 2.9 8.7 
95% CI (Lower, Upper) as g/GJ 13.47-25.33 2.01-3.78 6.72-60.5  
% Uncertainty (Lower, Upper)   29-34% 31-30% 23-595% 
First parameter 20.97 1 0.1 3  
Second parameter 1.65 2 5.8 4  

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  minimum value (a) for Uniform parametric probability distribution function 
3  maximum value (b) for Uniform parametric probability distribution function 
5  for uncontrolled external combustion of lignite for electricity generation (SCC is 10100302 and 
10100303)  
6  for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301) 

Consequently, country-specific CO EF is calculated as 18.87 g/GJ which is within the 

95% confidence interval range of EMEP (6.72 and 60.5) [54] and compatible with 

EPA (between 13 and 32 g/GJ) [193]. Lower and upper confidence interval range of 

country-specific CO EF is small when compared to EMEP and EPA confidence 

interval ranges. Probability band of CO EFs are given in Figure 3.12.  

(a) (b) 
Figure 3.12 : Probability band of CO EFs for “1A1a-10101-3.10” as cumulative 

distribution of (a)lognormal distribution fitted to CO EFs derived from in-situ 
measurements. (b)normal distribution fitted to CO EFs derived from EMRs. 

Although EFs derived from in-situ measurements often remain within the 50% CI 

limits, it is seen that EFs derived from EMR are even beyond the 95% CI limits. In 

this case, it would be more appropriate to use EFs derived from in-situ measurements.  
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SO2 

Summary statistics of SO2 EFs for “1.A.1.a–10101–3.10” SNAP/NFR category are 

given in Table 3.11 for EFs derived from both in-situ measurements and EMRs. When 

min, max and median of the EFs derived from in-situ measurements and those derived 

from EMR are compared in Table 3.11, it is clear that SO2 EFs obtained from in-situ 

measurements are three times more EFs calculated from EMRs. Therefore, the 

variance and standard deviation calculated from in-situ EFs are greater than those 

derived from EMRs. When the CDFs and histograms given in Figure 3.13 are 

compared, the EFs are distributed homogeneously in the CDF of in-situ EFs and EMR 

EFs. Cv value, which represents the variability in the EFs within each source as a 

percentage, may be considered low in itself, but more than EMR. Finally, variability 

of in-situ EFs is larger than EMR’s. EFs derived from both in-situ measurements and 

EMRs have close Kurtosis and Skewness values.  

Table 3.11 : Summary statistics for SO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.10”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 12 
Minimum 112.71 42.2 
Maximum 315.12 91 
Median 247 69.7 
Variance 1 4310 2.7 
Standard Deviation 2 63.5 1.57 
Coefficient of variation (%) 3 28 2 
Skewness 4 -0.43 -0.46 
Kurtosis 5 -1.04 1.24 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.13, Weibull and Normal parametric distributions seem best 

fitting distributions for in-situ EFs, where Normal, Weibull and Logistic distributions 

are appropriate for EMR EFs. In addition to CDF and histograms given in Figure 3.13, 

goodness-of-fit statistics and goodness-of-fit criteria were also calculated in order to 

determine best fitting parametric probability distribution function for our data, and 

given in Table 3.12. Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is 

given in Table 2.9. Kolmogorov-Smirnov statistic is less than critical value for the 

distributions other than lognormal and exponential distributions. Minimum 
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Kolmogorov-Smirnov and Cramer-von Mises statistics are in Uniform and Weibull 

distributions. However, Weibull distribution is selected as the best fitting distribution 

for in-situ EFs since it takes minimum values in the remaining goodness-of-fit statistics 

and criteria. 

 

 
Figure 3.13 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for 

both in-situ measurements and EMRs of “”1.A.1.a–10101–3.10”. 
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Weibull distribution is also considered as best fitting distribution for EFs derived from 

EMRs. Goodness-of-fit statistics of EMR EFs are given in Attachment F.   

Table 3.12 : Goodness-of-fit statistics/criteria for SO2 EF derived from in-situ 
measurements of 1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.17 0.07 0.44 182.27 183.82 
Lognormal 0.22 0.13 0.91 185.54 187.09 
Uniform 0.14 0.05 - - - 
Exponential 0.39 0.76 3.77 207.68 208.45 
Logistic 0.18 0.10 0.59 183.87 185.41 
Gamma 0.20 0.11 0.68 183.84 185.38 
Weibull 0.15 0.07 0.43 181.39 182.93 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.13. It is seen that the in-situ EFs are almost three times of EMR EFs.  

Table 3.13 : Uncertainty analysis results for SO2 EF of “1.A.1.a–10101–3.10” and 
comparisons with other studies. 

 In-situ 
Measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Weibull  
between 

190 3 

and 569 
4 g/GJ 

Mean (g/GJ) 229.2 70.1 1680 
95% CI (Lower, Upper) as g/GJ 191.8-265 62.3-76.7  330-5000 
% Uncertainty (Lower, Upper)   16.3-15.6% 11.1-9.4% 80.4-198% 
First parameter 252.77 1 75.08 1  
Second parameter 3.7 2 6.08 2  

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3 for uncontrolled external combustion of lignite with atmospheric fluidized bed technology for 
electricity generation (SCC is 10100316 and 10100317)  
4 for uncontrolled external combustion of lignite with other technologies for electricity generation 
(SCC is 10100311, 10100312, 10100313 or 10100314) 

Country specific SO2 EF is calculated from in-situ measurements as 229.2 g/GJ which 

is even below the 95% lower limit of EMEP (330 g/GJ) [54], and less than EPA EF 

(569 g/GJ) [193]. In the plant, flue gas desulphurization is used as SO2 abatement 

technology with more than 95% abatement efficiency. By considering abatement 

technology, country-specific EF (229.2 g/GJ) is compatible with EPA [193], which is 
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between 190 and 569 g/GJ for uncontrolled conditions (there is no EF for controlled 

conditions).  

Since almost all points fall into the 50% CI range in probability band of in-situ 

measurements given in Figure 3.14a, Weibull distribution is appropriate for EFs 

derived from in-situ EFs. Although EF derived from EMR (70.1 g/GJ) appears to be 

well calculated as all points fall into 50% CI range in Figure 3.14b, it remains low 

compared to the literature. 

 (a)  (b) 

Figure 3.14 : Probability band of SO2 EFs for “1A1a-10101-3.10” as cumulative 
distribution of Weibull distribution fitted to SO2 EFs derived from (a) in-situ 

measurements (b) EMRs. 

NO  

Summary statistics of NO EFs for “1.A.1.a–10101–3.10” SNAP/NFR category are 

given in Table 3.14 for EFs derived from both in-situ measurements and EMRs. When 

min, max and median of the EFs derived from in-situ measurements and those derived 

from EMR are compared in Table 3.14, it is clear that NO EFs obtained from in-situ 

measurements are more than three times than calculated from EMRs. Therefore, the 

variance and standard deviation calculated from in-situ EFs are greater than those 

derived from EMRs. Furthermore, Cv value, which represents the variability in the 

EFs as a percentage, may be considered low in itself. Consequently, variability of EMR 

EFs is larger than in-situ EFs. One outlier value in the EMR EFs, which is 30.3 g/GJ, 

increases variability in the EMR EFs, as it is clear on the CDF of EFs derived from 

EMRs which is given in Figure 3.15. Low skewness in EFs derived from both in-situ 

measurements and EMRs  in Table 3.14 indicate low asymmetry. Large Kurtosis in 

EFs derived from in-situ measurements indicate large peak in the distribution as it is 

also visualized in Figure 3.15.  
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Table 3.14 : Summary statistics of NO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.10”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 12 
Minimum 100.4 30.4 
Maximum 151.9 64 
Median 126.4 45.17 
Variance 1 242 83.5 
Standard Deviation 2 15.5 9.1 
Cv (%) 3 12 19 
Skewness 4 0.13 0.075 
Kurtosis 5 -1.06 -0.4 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.15, looking at the CDF and histogram of EFs derived from in-

situ measurements, none of the distribution is well fitted due to high variability. In this 

case Uniform distribution may be considered. In addition to CDF and histograms given 

in Figure 3.15, goodness-of-fit statistics and goodness-of-fit criteria for in-situ EFs 

were also calculated and given in Table 3.15, in order to determine best fitting 

parametric probability distribution function for our data. Even in this table, the uniform 

distribution appears to be the best fitting distribution since it has the lowest values for 

entire of goodness-of-fit statistics and criteria.  

Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in 

Attachment F. Lognormal distribution is selected as best fitting parametric distribution 

for EMR EFs. 

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.16. EFs derived from in-situ measurements are almost three times of EFs 

derived from EMRs in Table 3.16.  
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Figure 3.15 : Distribution fitting comparisons of NO EF on CDF and Histogram for 
both in-situ measurements and EMRs of 1.A.1.a – 10101 – 3.10. 

Country-specific NO EF is calculated as 125.9 g/GJ, where it is 48 g/GJ for EF derived 

from EMR. There is no abatement technology in the plant.  NO EFs are not supplied 

by EMEP [54], therefore there is no room for comparison. All of the NOx emissions 

in this category are accepted as NO by EPA [193] and given as 385 g/GJ for 

uncontrolled conditions. In this case, the EF calculated from in-situ measurements is 

one third of the EPA EF. 
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Table 3.15 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ 
measurements of “1.A.1.a–10101–3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.16 0.05 0.35 137.22 138.76 
Lognormal 0.15 0.05 0.35 137.09 138.64 
Uniform 0.13 0.04 0.25 131.57 133.11 
Exponential 0.55 1.22 5.66 188.61 189.39 
Logistic 0.18 0.07 0.48 138.77 140.32 
Gamma 0.15 0.05 0.34 137.08 138.62 
Weibull 0.15 0.06 0.39 137.95 139.50 

* Bold values indicate lowest values.   

Since almost all in-situ EFs fall into the 50% CI range, which is considered a criterion 

of goodness-of-fit [219], Uniform distribution is appropriate for EFs derived from in-

situ EFs, as it is shown in the probability band in Figure 3.16. Also, Lognormal 

distribution fitted good in EFs derived from EMR, since they are mostly within the 

50% CI range. 

Table 3.16 : Uncertainty analysis results for NO EF of “1.A.1.a – 10101 – 3.10” and 
comparisons with other studies. 

 In-situ 
Measurements EMR 

EPA 
 [193] 

Fitted distribution type  Uniform Lognormal 

385 5 
g/GJ 

Mean (g/GJ) 125.9 g/GJ 48 g/GJ 
95% CI (Lower, Upper) as g/GJ 118.2-135.2  43.1-54.2 
% Uncertainty (Lower, Upper)   6.1-7.4% 14.2-9.1% 
First parameter 97.6 1 1.349 3 
Second parameter 153.2 2 0.0149 4 

1  minimum value (a) for Uniform parametric probability distribution function 
2  maximum value (b) for Uniform parametric probability distribution function 
3  mean of lnx for Lognormal parametric probability distribution function 
4  standard deviation of lnx for Lognormal parametric probability distribution function 
5 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301) 

Although EF derived from EMR (48 g/GJ) appears to be well calculated and 

appropriate as on the probability band given in Figure 3.16b, it remains low compared 

to the literature.  
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 (a)  (b) 

Figure 3.16 : Probability band of NO EFs for “1A1a-10101-3.10” as cumulative 
distribution of (a)lognormal distribution fitted to NO EFs derived from in-situ 
measurements (b)normal distribution fitted to NO EFs derived from EMRs. 

NO2 

Summary statistics of NO2 EFs for “1.A.1.a–10101–3.10” SNAP/NFR category are 

given in Table 3.17 for EFs derived from both in-situ measurements and EMRs. When 

min, max and median of the EFs derived from in-situ measurements and those derived 

from EMR are compared in Table 3.17, it is clear that NO2 EFs obtained from in-situ 

measurements are approximately three times of EFs calculated from EMRs. Therefore, 

the variance and standard deviation of in-situ EFs are greater than those derived from 

EMRs. Furthermore, Cv of in-situ measurements are low when compared to EMRs. 

This low Cv (12%) shows that there is agreement between in-situ measurements, 

therefore variability is low.  

Table 3.17 : Summary statistics of NO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.10”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 12 
Minimum 161.84 49.1 
Maximum 244.8 103.3 
Median 204.4 45.17 
Variance 1 630.6 215.78 
Standard Deviation 2 25.93 14.7 
Cv (%) 3 12 19 
Skewness 4 0.11 0.075 
Kurtosis 5 -1.07 -0.4 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
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The large variability is heavily affected from outliers. Comparison of CDFs and 

histograms with possible parametric distribution fitting options are given in Figure 

3.17. According to Figure 3.17, looking at the CDF of EFs derived from EMR, there 

is one outlier value which is the lowest EF (49.2 g/GJ). This outlier value in the EMR 

EFs increases variability in the EMR EFs. 

 

 

Figure 3.17 : Distribution fitting comparisons of NO2  EF on CDF and Histogram 
for both in-situ measurements and EMRs of 1.A.1.a – 10101 – 3.10. 

Low skewness in both in-situ and EMR EFs in Table 3.17 indicate low asymmetry. 

Large Kurtosis in EFs derived from in-situ measurements indicate large peak in the 

distribution as it is also visualized in Figure 3.17. 
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According to Figure 3.17, looking at the CDF and histogram of EFs derived from in-

situ measurements, Normal and Gamma distribution seems close to CDF and 

histogram of the in-situ EFs. Table 3.18 is created in order to quantitatively support 

this qualitative interpretation and this table includes goodness-of-fit statistics and 

goodness-of-fit criteria for in-situ NO2 EFs.  

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value 

(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is 

in Uniform distribution. Other goodness-of-fit statistics are also lowest for Uniform 

distribution. Although Normal or Gamma distributions are found to be appropriate 

fitting distribution in visual examination, goodness-of-fit statistics/criteria indicate 

uniform distribution for in-situ EFs. Gamma distribution is selected as best fitting 

parametric distribution for EMR EFs, and goodness-of-fit statistics and criteria are 

given in Attachment F. 

Table 3.18 : Goodness-of-fit statistics/criteria for NO2 EF derived from in-situ 
measurements of 1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.155 0.054 0.349 152.55 154.10 
Lognormal 0.149 0.054 0.347 152.46 154.01 
Uniform 0.125 0.036 0.234 146.91 148.45 
Exponential 0.550 1.218 5.659 203.93 204.71 
Logistic 0.177 0.074 0.483 154.11 155.66 
Gamma 0.150 0.053 0.339 152.44 153.98 
Weibull 0.153 0.061 0.390 153.24 154.78 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.19. EFs derived from EMR are pretty lower than in-situ EFs.  

Since almost all EFs of in-situ measurements fall into the 50% CI range, which is 

considered a criterion of goodness-of-fit [219], Uniform distribution is appropriate for 

EFs derived from in-situ EFs, as it is shown in the probability band in Figure 3.18. 
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Table 3.19 : Uncertainty analysis results for NO2 EF of 1.A.1.a – 10101 – 3.10 and 
comparisons with other studies. 

 In-situ 
Measurements 

EMR 

Fitted distribution type  Uniform Gamma 
Mean (g/GJ) 202.64 76.7 
95% CI (Lower, Upper) as g/GJ 191.16-216.47  69.7-87.3 
% Uncertainty (Lower, Upper)    5.7-6.8%  9.1-13.8% 
First parameter 155.51 1 25.17 3 
Second parameter 247.36 2   3.05  4 

1 minimum value (a) for Uniform parametric probability distribution function  

2  maximum value (b) for Uniform parametric probability distribution function 
3 scale parameter (a) for Gamma parametric probability distribution function 
4  shape parameter (b)  for Gamma parametric probability distribution function 

Also, it is seen in Figure 3.18 that the Gamma distribution fitted good to EFs derived 

from EMR, since they are mostly within the 50% CI range. Consequently, country 

specific NO2 EF is 202.64 g/GJ for “1.A.1.a–1010-3.10” SNAP/NFR category, with 

95% lower CI as 191.16 g/GJ and upper CI as 216.47 g/GJ.  

  (a)   (b) 

Figure 3.18 : Probability band of NO2 EFs for “1A1a-10101-3.10” as cumulative 
distribution of (a)Uniform distribution fitted to NO2 EFs derived from in-situ 
measurements (b)Gamma distribution fitted to NO2 EFs derived from EMRs.  

NOx 

NOx EF is calculated as the sum of NO and NO2 emissions. However, since the 

uncertainty levels of NO and NO2 EFs are different, the formulas given in equation 

2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF 

of “1.A.1.a–10101–3.10” SNAP/NFR category and comparisons with other studies are 

given in Table 3.20.  
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Table 3.20 : NOx EF of “1.A.1.a–10101–3.10” and comparisons with other studies. 

 In-situ 
Measurements 

EMR EMEP  
[54] 

EPA 
 [193] 

NOx EF (NO+NO2) as g/GJ 328.54 124.7 247 between 
70 1 and 

385 2 
g/GJ 

95% CI (Lower, Upper) as g/GJ 314.72-345.21  116.2-137 143-571 
% Uncertainty (Lower, Upper)   5.1-4.2% 6.9-9.8% 42-131% 
NO/NO2 share  0.62 0.63  
1 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301) 
2 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100302) 

Country specific NOx EF is calculated as 328.54 g/GJ which is almost three times of 

in-situ EF. NOx EF is more than EMEP EF [54], which is 247 g/GJ, however it is 

within 95% CI of EMEP. Although NOx EF is close to upper value (385 g/GJ) of EPA 

EFs [193], it is also compatible with EPA EF. There is no NOx abatement technology 

in the plant.  

The ratio of NO and NO2 is 0.6 for both in-situ and EMR EFs for “1.A.1.a–10101–

3.10” SNAP/NFR category.  

3.2.2 Coal combusting large size fluid bed boilers  

Coal combusting medium size boilers are represented with “1.A.1.a–10101–3.16” 

code. In detail, the code represents brown coal combustion plants with a capacity 

greater than 300 MW and with fluid bed boilers as the combustion technology for 

production of public power [54].  

There are 2 plants falling under this SNAP/NFR category in Marmara region. In-situ 

measurements were conducted in one plant within the context of KAMAG project 

[194], and measurements from EMRs were available for both of two plants. 

Consequently, 16 in-situ measurements from one plant is used in the calculation of 

country-specific EF for this SNAP/NFR code. Furthermore 7 to 10 emission 

measurements from EMRs were also used for comparison. 

Dust  

Summary statistics of dust EFs for “1.A.1.a–10101–3.16” SNAP/NFR category are 

given in Table 3.21 for both of in-situ and EMR EFs. When min, max and median of 

the EFs derived from in-situ measurements and those derived from EMRs are 

compared in Table 3.21, it is clear that dust EFs obtained from EMRs are in a greater 

range than in-situ measurements.  
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Table 3.21 : Summary statistics of dust EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.16”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 7 
Minimum 0.02 0.31 
Maximum 1.01 3.27 
Median 0.14 2.76 
Variance 1 0.08 0.98 
Standard Deviation 2 0.29 0.99 
Cv (%) 3 108 45 
Skewness 4 1.75 -1 
Kurtosis 5 2.58 0.12 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Also, variance and standard deviation of in-situ EFs is lower than that of EMR EFs. 

In-situ EFs are generally less than 1 g/GJ, causing variance and standard deviation to 

be low while Cv of in-situ EFs was calculated quite much than EMR EFs. The small 

number of EFs from EMRs should also be considered when evaluating variability. 

Consequently, there is large variability in in-situ EFs, where variability is relatively 

low in EMR EFs. In Figure 3.19, comparison of CDFs and histograms with possible 

parametric distribution fitting options are given.  

The large variability is heavily affected from outliers. According to Figure 3.19, 

looking at the CDF of EFs from in-situ measurements, more than 80% of EFs are less 

than 0.4 g/GJ, however, there are two EFs which are more than 0.9 g/GJ, which can 

be treated as outlier. Variability contribution of these outliers in the CDF of in-situ EFs 

should be considered when evaluating large variability. There is positive skewness in 

the EFs derived from in-situ measurements where it is negative in EF’s of EMRs. 

According to Figure 3.19, looking at the CDF and histogram of EFs derived from in-

situ measurements, Gamma and Weibull distributions are close to CDF and histogram 

of the in-situ EFs. In addition to CDF and histograms given in Figure 3.19, goodness-

of-fit statistics and goodness-of-fit criteria for dust EFs derived from in-situ 

measurements are also calculated and given in Table 3.22.   
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Figure 3.19 : Distribution fitting comparisons of dust EF on CDF and Histogram for 
both in-situ measurements and EMRs of  “1.A.1.a– 10101–3.16”. 

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Lowest Kolmogorov-Smirnov statistic is in Gamma Distribution which is also lowest 

in Cramer-von Mises and Anderson-Darling statistics. Finally, best fitting distribution 

is selected as Gamma distribution for in-situ dust EFs for “1.A.1.a–1010-3.16” 

SNAP/NFR category.  
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Table 3.22 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ 
measurements of 1.A.1.a – 10101 – 3.16. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.223 0.226 1.440 9.314 10.859 
Lognormal 0.192 0.141 1.646 -2.950 -1.405 
Uniform 0.262 0.281  -   -  - 
Exponential 0.139 0.060 0.438 -8.667 -7.895 
Logistic 0.242 0.221 1.333 7.963 9.509 
Gamma 0.116 0.046 0.351 -6.563 -5.018 
Weibull 0.120 0.048 0.364 -6.760 -5.215 

* Bold values indicate lowest values.   

Since the number of data points is not sufficient, goodness-of-fit statistics/criteria are 

not calculated for EMR dust EFs of “1.A.1.a–10101–3.16”. After assigning best fitting 

parametric distribution, Monte Carlo simulation is applied as in Section 2.2.4.4 and 

Bootstrap method is applied as in Section 2.2.4.5. Then, average EF and confidence 

intervals are calculated for in-situ EFs, and results are given in Table 3.23.  

Table 3.23 : Uncertainty analysis results for dust EF of “1.A.1.a–10101–3.16” and 
comparisons with other studies. 

 In-situ 
measurements 

EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Gamma  
between 
17.3 3 
and 

41.74 
g/GJ 

Mean 0.26 g/GJ 10.2 
95% CI (Lower, Upper) as g/GJ 0.14-0.41 3.4-30.6 
% Uncertainty (Lower, Upper)  46-58 67-200 
First parameter  0.798 1  
Second parameter 0.33  2  
1 mean of ln(x) for lognormal parametric probability distribution function 
2  standard deviation of ln(x) for lognormal parametric probability distribution function 
3  for condensable PM, controlled with electrostatic precipitator in combustion of lignite with 
atmospheric fluidized bed combustion technology (circulating bed, SCC : 10100317) or 
bubbling bed (SCC : 10100318) 
4  for filterable PM, controlled with electrostatic precipitator in combustion of lignite with 
atmospheric fluidized bed combustion technology (circulating bed, SCC : 10100317) or 
bubbling bed (SCC : 10100318) 

In the plant, electrostatic filter is used as dust abatement technology with more than 

95% abatement efficiency. Therefore, country-specific EF, which is 0.26 g/GJ, is very 

low compared to EMEP [54] (10.2 g/GJ) and EPA [193] (minimum 17.3 g/GJ). 

Furthermore, the EF generated from in-situ measurements is quite lower than the lower 

limit of the EMEP CI. Since most of the points fall into the 50% CI range in probability 
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band of in-situ measurements given in Figure 3.20, Gamma distribution is appropriate 

for EFs derived from in-situ EFs.   

 

Figure 3.20 : Probability band of dust EFs for “1A1a-10101-3.16” as cumulative 
distribution of Gamma distribution fitted to dust EFs derived from in-situ 

measurements. 

Consequently, country specific dust EF is 0.26 g/GJ for “1.A.1.a–10101-3.16” 

SNAP/NFR category, with 95% lower CI as 0.14 g/GJ and upper CI as 0.41 g/GJ.  

CO 

Summary statistics of CO EFs for “1.A.1.a–10101–3.16” SNAP/NFR category are 

given in Table 3.24 for EFs derived from both in-situ and EMR EFs. CO emissions 

were measured as zero in all 16 in-situ measurements. When min, max and median of 

the EFs derived from EMR are considered in Table 3.24, it is clear that variability is 

large. The large Cv, as 81%, also proves large variability.  

In Figure 3.21, EFs are not distributed homogeneously in the CDF of EMR EFs, they 

show a clustered distribution. 35% of EFs are less than 5 g/GJ, where 30% of EFs are 

larger than 42 g/GJ. When the EFs from EMRs are examined, it is seen that each 

clustered data represents the measurements taken from different stacks of the plant, 

which also contributes to large variability in EMR EFs. There is positive but low 

skewness which indicates low asymmetry in the EFs derived from EMRs, where there 

is negative and relatively large kurtosis which indicates the peakedness of the 

distribution.  
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Table 3.24 : Summary statistics of CO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.16”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 10 
Minimum 0 0.14 
Maximum 0 44.7 
Median 0 24.5 
Variance 1 0 297.6 
Standard Deviation 2 0 17.25 
Cv (%) 3 0 81 
Skewness 4 0 0.08 
Kurtosis 5 0 -1.8 
1 According to equation 2.12 
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.21, looking at the CDF and histogram of EFs derived from 

EMRs, lognormal and gamma distributions are close to CDF and histogram of the EFs 

derived from EMRs. However, they are not totally fit to the points (EFs) because there 

are diffuse clustered data points. In addition to CDF and histograms given in Figure 

3.21, goodness-of-fit statistics and goodness-of-fit criteria for CO EFs derived EMRs 

were also calculated and given in Table 3.25.  

 

Figure 3.21 : Distribution fitting comparisons of CO EFs on CDF and Histogram for 
EFs derived from EMRs of “1.A.1.a – 10101 – 3.16”. 
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Table 3.25 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of 
“1.A.1.a – 10101 – 3.16”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.26  0.10  0.71  89.34  89.94  
Lognormal 0.39  0.34  7.38  130.53  131.14  
Uniform 0.21  0.07  0.50  85.81  86.41  
Exponential 0.28  0.17  1.13  83.20  83.50  
Logistic 0.28  0.12  0.85  90.76  91.37  
Gamma 0.34  0.23  2.20  89.45  90.06  
Weibull 0.29  0.15  0.85  84.75  85.35  

* Bold values indicate lowest values.   

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 3.25. 

Kolmogorov-Smirnov statistic of entire of the distributions are more than critical value 

(0.213), except Uniform distribution. Other goodness-of-fit statistics are also lowest 

for Uniform distribution. Goodness-of-fit criteria are not lowest in Uniform 

distribution; however, they are close to minimum. Finally, most appropriate parametric 

probability distribution is selected as Uniform distribution. After assigning best fitting 

parametric distribution, Monte Carlo simulation is applied as in Section 2.2.4.4 and 

Bootstrap method is applied as in Section 2.2.4.5. Then, average EF and confidence 

intervals are calculated for EMR EFs and results are given in Table 3.26.  

Table 3.26 : Uncertainty analysis results for CO EF of 1.A.1.a – 10101 – 3.16 and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Uniform Uniform  

8.12 3 
g/GJ 

Mean 0 21.2 g/GJ 13 g/GJ 
95% CI (Lower, Upper) as g/GJ 0-0 10.5–32.8  0.1-26 
% Uncertainty (Lower, Upper)  - 50-55 99-100 
First parameter   -  -10.1 1  
Second parameter  -  52.8 2  
1 minimum value (a) for Uniform parametric probability distribution function  

2  maximum value (b) for Uniform parametric probability distribution function 
3  for uncontrolled combustion of lignite with atmospheric fluidized bed combustion technology (SCC 
is 10100316) 
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It is seen that, the EF calculated from EMRs is significantly larger than EMEP and 

EPA EFs. However, the EF derived from EMR is within the EMEP confidence interval 

limits. In-situ EF is 0 g/GJ, which is not compatible with other studies.   

One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. It is seen that EFs derived from 

EMR are beyond the 50% CI limits. When the low reliability of emission 

measurements in EMRs (as discussed in Section 2.2.1 ) are also considered, it is 

recommended to use those EFs cautiously. Consequently, CO EF is 21.2 g/GJ for 

“1.A.1.a–10101-3.16” SNAP/NFR category, with 95% lower CI as 10.5 g/GJ and 

upper CI as 32.8 g/GJ.  

 

Figure 3.22 : Probability band of CO EFs for “1A1a-10101-3.16” as cumulative 
distribution of uniform distribution fitted to CO EFs derived EMRs. 

SO2 

Summary statistics of SO2 EFs for “1.A.1.a–10101–3.16” SNAP/NFR category are 

given in Table 3.27 for EFs derived from EMRs. For this SNAP/NFR category, SO2 

emissions were not detected in in-situ measurements, therefore they are zero. 

However, seven SO2 emissions are available in EMRs.   

When min, max and median of the EFs derived from EMR are considered in Table 

3.27, it is clear that variability is large. The high coefficient of variation, as 1403%, 

also proves large variability. The low number of data points is also effective in high 

Cv. 
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Table 3.27 : Summary statistics of SO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.16”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 7 
Minimum (g/GJ) 0 0.61 
Maximum (g/GJ) 0 2.44 
Median (g/GJ) 0 1.2 
Variance 1 0 330.6 
Standard Deviation 2 0 17.25 
Coefficient of variation (%) 3 0 1403 
Skewness 4 0 0.08 
Kurtosis 5 0 -1.8 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

In Figure 3.23, EFs are distributed heterogeneously in the CDF of EFs derived from 

EMRs.  When the EMR data was examined, it is seen that each clustered data 

represents the measurements taken from different stacks of the plant.  

 

Figure 3.23 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for 
both in-situ measurements and EMRs of “1.A.1.a – 10101 – 3.16”. 

Generally none of the distributions provide a perfect fit on the CDF of EMR EFs. 

However, the histogram in Figure 3.23 shows that the lognormal distribution is most 

favourable compared to the others. Table 3.28 is created in order to quantitatively 

support this qualitative interpretation and includes goodness-of-fit criteria for SO2 EFs 

derived from EMRs. Since number of data points is not sufficient, goodness-of-fit 
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statistics cannot be calculated. In Table 3.28, lognormal distribution is found to be the 

lowest value in terms of goodness-of-fit criteria.  

Table 3.28 : Goodness-of-fit statistics/criteria for SO2 EF derived from EMRs of 
“1.A.1.a – 10101 – 3.16”. 

 Goodness-of-fit criteria 
Type of 
distribution 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 15.85 15.74 
Lognormal 13.93 13.82 
Uniform -  -  
Exponential 18.89 18.83 
Logistic 15.58 15.47 
Gamma 14.24 14.13 
Weibull 14.97 14.86 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for EMR EFs and given in Table 3.29.  

Table 3.29 : Uncertainty analysis results for SO2 EF of “1.A.1.a – 10101 – 3.10” and 
comparisons with other studies. 

 
EMR 

EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Lognormal  

896 3 
g/GJ  

Mean (g/GJ) 1.21 1680 
95% CI (Lower, Upper) as g/GJ 0.85-1.63 330-5000  
% Uncertainty (Lower, Upper)   30-35 80-198 
First parameter 0.11 1  
Second parameter  0.43 2  

1  mean of lnx for Lognormal parametric probability distribution function 
2 standard deviation of lnx for Lognormal parametric probability distribution function 
3  as SOx, for uncontrolled external combustion of lignite for electricity generation (SCC is 
10100301, 10100302,  10100303, 10100304, 10100306, 10100316 and 10100317)  

It is seen that the EFs derived from EMRs are pretty lower than the EMEP and EPA 

EFs. Adding limestone (for combusting jointly with the coal) is used as the abatement 

technology for SO2 and NOx emissions. Therefore, SO2 EF is expected to be low.  

Lower and upper CI range of SO2 EF is given on a probability band in  Figure 3.24. It 

is seen that EFs derived from EMR are even beyond the 95% CI limits. When the low 

reliability of emission measurements in EMRs (as discussed in Section 2.2.1 ) and low 

number of data points used in the calculation of this EF are considered, it is 
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recommended to use those EFs cautiously. Consequently, SO2 EF is 1.21 g/GJ for 

“1.A.1.a–10101-3.16” SNAP/NFR category, with 95% lower CI as 0.85 g/GJ and 

upper CI as 1.63 g/GJ.  

 

Figure 3.24 : Probability band of SO2 EFs for “1A1a-10101-3.16” as cumulative 
distribution of lognormal distribution fitted to SO2 EFs derived EMRs. 

NO  

Summary statistics of NO EFs for “1.A.1.a–10101–3.16” SNAP/NFR category are 

given in Table 3.30 for EFs derived from both in-situ measurements and EMRs.  

Table 3.30 : Summary statistics for NO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10101–3.16”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 10 
Minimum 28.8 0.3 
Maximum 35 28.3 
Median 33 14.6 
Variance 1 2.6 109 
Standard Deviation 2 1.61 9.9 
Cv (%) 3 4.9 70.2 
Skewness 4 -0.88 0.21 
Kurtosis 5 0.72 -1.53 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Variance and standard deviation calculated from EMR EFs are greater than those 

derived from in-situ measurements. Furthermore, Cv value, which represents the 
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variability in the EFs as a percentage, is pretty large (70.2%) in EMR EFs where it is 

pretty low (4.9%) in EFs derived from in-situ measurements.  

Consequently, variability of EMR are larger than in-situ EFs. However, one outlier 

value in the EMR EFs, which is 0.3 g/GJ, increases variability in the EMR EFs, as it 

is clear on the CDF of EFs derived from EMRs which is given in Figure 3.25. 

Additionally, the fact that EFs from EMRs are generally clustered, as seen in CDF of 

EMR EFs in Figure 3.25, variability of EMRs is also large. 

 

 

Figure 3.25 : Distribution fitting comparisons of NO EF on CDF and Histogram for 
both in-situ measurements and EMRs of “1.A.1.a–10101–3.16”. 

CDFs and histograms are given in the Figure 3.25 with possible fitting options. 

According to Figure 3.25, looking at the CDF and histogram of EFs derived from in-

situ measurements, none of the distribution is best due to high variability. Weibull can 

be considered as the closest distribution to in-situ EFs.   

In addition to CDF and histograms given in Figure 3.25, goodness-of-fit statistics and 

goodness-of-fit criteria for NO EFs derived from in-situ measurements were also 
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calculated and given in Table 3.31, in order to determine best fitting parametric 

probability distribution function for our data.  

Table 3.31 : Goodness-of-fit statistics/criteria for NO EFs derived from in-situ 
measurements of “1.A.1.a–10101–3.16”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.198  0.078  0.546  64.715  66.260  
Lognormal 0.202  0.082  0.589  65.416  66.961  
Uniform 0.160  0.078   -   -   -  
Exponential 0.583  1.457  6.675  145.796  146.569  
Logistic 0.221  0.098  0.618  65.157  66.703  
Gamma 0.200  0.080  0.573  65.166  66.711  
Weibull 0.190  0.089  0.517  62.126  63.671  

* Bold values indicate lowest values.   

In  Table 3.31, Weibull distribution appears to be one of the good fitting distributions. 

Consequently, Weibull distribution is fitted to EFs derived from in-situ measurements 

since it has acceptable values for most of the goodness-of-fit statistics and criteria. 

Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in 

Attachment F. Uniform distribution is selected as best fitting parametric distribution 

for EMR EFs. Average EF and confidence intervals are calculated for each of in-situ 

EFs and EMR EFs, and given in Table 3.32.  

Table 3.32 : Uncertainty analysis results for NO EF of “1.A.1.a–10101–3.16” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Uniform  

195 6 
g/GJ 

Mean 32.8 g/GJ 14 g/GJ 60 5 g/GJ 
95% CI (Lower, Upper) as g/GJ 31.9-33.7 7.5-20.6  35-85.2 
Uncertainty (Lower, Upper)  2-3 46-47 42-42 
First parameter  33.6 1 -3.9 3  
Second parameter 23.3  2 32.1 4  

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3 minimum value (a) for Uniform parametric probability distribution function  

4  maximum value (b) for Uniform parametric probability distribution function 
5 as NOx 
6 as NOx, for uncontrolled external combustion of lignite with atmospheric fluidized bed technology 
(SCC: 10100316 and 10100317) 

It is seen that in-situ EF is more than two times of EF derived from EMRs. Country-

specific NO EF is calculated as 32.8 g/GJ, where it is 14 g/GJ for EF derived from 
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EMR. NO EFs are not supplied by EMEP [54] and EPA [193] therefore, NOx EFs are 

given for comparison.   

Since almost all EFs of in-situ measurements fall into the 50% CI range in Figure 3.26, 

which is considered a criterion of goodness-of-fit [219], Weibull distribution is 

appropriate for EFs derived from in-situ EFs. Also, it is seen that, Uniform distribution 

not fitted good in EFs derived from EMR, since they are mostly beyond the 50% CI 

range. Furthermore, CI range is pretty large in EFs derived from EMR (lower bound 

is 46% and upper bound is 47%) when compared to in-situ EF CI range (lower bound 

is 2% and upper bound is 3%). 

 (a)  (b) 

Figure 3.26 : Probability band of NO EFs for “1A1a-10101-3.16” as cumulative 
distribution of (a)Weibull distribution fitted to NO EFs derived from in-situ 

measurements (b)Uniform distribution fitted to NO EFs derived from EMRs. 

NO2 

Summary statistics of NO2 EFs for “1.A.1.a–10101–3.16” SNAP/NFR category are 

given in Table 3.33 for EFs derived from both in-situ measurements and EMRs. When 

min, max and median of the EFs derived from in-situ measurements and those derived 

from EMR are compared in Table 3.33, it is clear that NO2 EFs obtained from in-situ 

measurements are more than two times than calculated from EMRs. Variance and 

standard deviation calculated from EFs derived from EMRs are greater than those 

derived from in-situ measurements. Furthermore, Cv value, which represents the 

variability in the EFs as a percentage, is pretty large (68%) in EMR EFs where it is 

pretty low (5%) in EFs derived from in-situ measurements.  
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Table 3.33 : Summary statistics for NO2 EFs derived from both in-situ 
measurements and EMRs for “1.A.1.a–10101–3.16”. 

 In-situ 
Measurements 

EMR 

Number of data points 16 10 
Minimum 46.3 0.11 
Maximum 56.6 43.6 
Median 53.1 23.3 
Variance 1 7.5 253 
Standard Deviation 2 2.65 15.1 
Cv (%) 3 5 68 
Skewness 4 -0.85 0.15 
Kurtosis 5 0.76 -1.5 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Consequently, variability of EMR EFs are larger than in-situ EFs. However, one 

outlier value in the EMR EFs, which is 0.11 g/GJ, increases variability in the EMR 

EFs, as it is clear on the CDF of EFs derived from EMRs which is given in Figure 

3.27. Additionally, the fact that EFs from EMRs are generally clustered, as visualized 

in CDF of EMR EFs in Figure 3.27, variability increases.   

CDFs and histograms are given in the Figure 3.27 with possible fitting options. 

According to Figure 3.27, looking at the CDF and histogram of EFs derived from in-

situ measurements, Weibull is the best fitting distribution to in-situ EFs. In addition to 

CDF and histograms given in Figure 3.27, goodness-of-fit statistics and goodness-of-

fit criteria for NO2 EFs derived from in-situ measurements were also calculated and 

given in Table 3.34, in order to determine best fitting parametric probability 

distribution function for our data. Even in this table, the Weibull distribution appears 

to be the best fitting distribution since it has the lowest values for most of goodness-

of-fit statistics and criteria.  

Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in 

Attachment F. Uniform distribution is selected as best fitting parametric distribution 

for EMR EFs. 

 

 

 



138 

 

 

Figure 3.27 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for 
both in-situ measurements and EMRs of “1.A.1.a–10101–3.16”. 

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.35.  

Table 3.34 : Goodness-of-fit statistics/criteria for NO2 EF derived from in-situ 
measurements of “1.A.1.a–10101–3.16” 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.180  0.055  0.407  80.638  82.183  
Lognormal 0.185  0.059  0.453  81.336  82.881  
Uniform 0.138  0.060     
Exponential 0.582  1.452  6.656  161.051  161.824  
Logistic 0.203  0.071  0.459  80.993  82.538  
Gamma 0.183  0.057  0.437  81.086  82.631  
Weibull 0.164  0.058  0.339  78.307  79.852  

* Bold values indicate lowest values.   
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It is seen that the EF derived from in-situ measurements is more than two times of EF 

derived from EMRs. Country-specific NO2 EF is calculated as 52.9 g/GJ, where it is 

22 g/GJ for EF derived from EMR. NO2 EFs are not supplied by EMEP [54] or EPA 

[193], therefore there is no room for comparison. In the plant that in-situ measurements 

are conducted, limestone is combusted jointly with the coal as an abatement procedure 

of SO2 and NOx emissions. Therefore, NO2 EF is expected to be low. 

Table 3.35 : Uncertainty analysis results for NO2 EF of “1.A.1.a–10101–3.16” and 
comparisons with other studies. 

 In-situ 
Measurements 

EMR 

Fitted distribution type  Weibull Uniform 
Mean (g/GJ) 52.9 22 
95% CI (Lower, Upper) as g/GJ 51.4-54.3 12.7-32.3 
% Uncertainty (Lower, Upper)   3-3 42-47 
First parameter 54.2 1 -5.3 3 
Second parameter 23 2 49.7 4 

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  minimum value (a) for Uniform parametric probability distribution function 
4  maximum value (b) for Uniform parametric probability distribution function 

Since almost all in-situ EFs fall into the 50% CI range in probability band given in 

Figure 3.28, which is considered a criterion of goodness-of-fit [219], Weibull 

distribution is appropriate for EFs derived from in-situ EFs.  

(a) (b) 

Figure 3.28 : Probability band of NO2 EFs for “1A1a-10101-3.10” as cumulative 
distribution of (a)Weibull distribution fitted to NO2 EFs derived from in-situ 

measurements. (b)Uniform distribution fitted to NO2 EFs derived from EMRs. 

Also, it is seen that, Uniform distribution is not fitted good in EMR EFs, since they are 

mostly beyond the 50% CI range. Furthermore, CI range is pretty large in EFs derived 

from EMR (lower bound is 42% and upper bound is 47%) when compared to in-situ 

EFs where both of lower and upper bounds are 3%. Consequently, country specific 



140 

NO2 EF is accepted as 52.9 g/GJ for “1.A.1.a–1010-3.16” SNAP/NFR category, with 

95% lower CI as 51.4 g/GJ and upper CI as 54.3 g/GJ.  

NOx 

NOx EF is calculated as the sum of NO and NO2 emissions. However, since the 

uncertainty levels of NO and NO2 EFs are different, the formulas given in equation 

2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF 

of “1.A.1.a–10101–3.16” SNAP/NFR category and comparisons with other studies are 

given in Table 3.36.  

Table 3.36 : NOx EF of “1.A.1.a–10101–3.16” and comparisons with other studies. 

 In-situ 
Measurements 

EMR EMEP  
[54] 

EPA 
 [193] 

NOx EF (NO+NO2) as g/GJ 85.7 36 60 
195 1 
g/GJ 

95% CI (Lower, Upper) as g/GJ 83.95-88.48 24.7-48.2 35-85.2 
% Uncertainty (Lower, Upper)   2-3.2% 31.5-34% 42-131% 
NO/NO2 share  0.62 0.64  
1 as NOx, for uncontrolled external combustion of lignite with atmospheric fluidized bed technology 
(SCC is 10100316 and 10100317) 

It is seen that the EFs derived from in-situ measurements (85.7 g/GJ) and from EMRs 

(36 g/GJ) are compatible with EMEP EF CI range, which is 24.7 g/GJ lower and 48.2 

upper g/GJ range, however they are less than half the EPA EF (195 g/GJ). EPA EF is 

valid for uncontrolled conditions, however, limestone is added to the system for 

combusting jointly with the coal, as an abatement technology for SO2 and NOx 

emissions in the plant that we conducted in-situ measurements. Therefore, NOx EF is 

expected to be low. Consequently, country specific NOx EF is calculated as 85.7 g/GJ 

which is almost two times of EF calculated from EMRs.  

3.2.3 Coal combusting large wet and dry bottom boilers 

Brown coal or lignite combustion plants with a capacity range between 50 and 300 

MW (SNAP/NFR code is 1.A.1.a–10102–3.10), and with wet and dry bottom boilers 

as the combustion technology for production of public power is investigated in this 

part of study.  

In Marmara region there is one plant falling under this SNAP/NFR category. Therefore 

in-situ measurements were conducted in only this plant within the context of KAMAG 

project [194]. Consequently, 16 in-situ measurements from one plant is used in the 
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calculation of country-specific EF for this SNAP/NFR code. There were no EMR 

available for this plant.  

Dust  

Summary statistics of dust EFs for “1.A.1.a–10102–3.10” SNAP/NFR category are 

given in Table 3.37 for EFs derived from only in-situ measurements, because EMR 

was not available for this plant. Standard deviation, variance and Cv are calculated 

large in in-situ measurements, which indicate large variability between EFs. 

Furthermore, Cv is 116% which is pretty large and indicates large variability between 

measurements. There is positive skewness and kurtosis in the in-situ EFs.   

Table 3.37 : Summary statistics of dust EFs derived from in-situ measurements for 
“1.A.1.a–10102–3.10”. 

 In-situ 
Measurements 

Number of data points 16 
Minimum 0.13 
Maximum 6 
Median 0.6 
Variance 1 2.38 
Standard Deviation 2 1.54 
Cv (%) 3 116 
Skewness 4 2 
Kurtosis 5 4.3 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Large variability is heavily affected from outliers. In Figure 3.29, comparison of CDFs 

and histograms with possible parametric distribution fitting options are given. 

According to Figure 3.29, looking at the CDF, it is seen that 90% of EFs are less than 

3 g/GJ, however, there is one EF which is more than 6 g/GJ, which can be treated as 

outlier. Variability contribution of one outlier value in the CDF should be considered 

when evaluating large variability.  

There is asymmetry in the histogram given in Figure 3.29, therefore, the skewness 

value for in-situ measurements in Table 3.37 is large. Due to a large peak in the 

histogram given in Figure 3.29, the kurtosis value is high in Table 3.37.  

According to Figure 3.29, looking at the CDF and histogram of EFs derived from in-

situ measurements, Gamma and lognormal distributions are close to CDF and 
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histogram of the in-situ EFs. In addition to CDF and histograms given in Figure 3.29, 

goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived from in-situ 

measurements were also calculated in Table 3.38, in order to determine best fitting 

parametric probability distribution function for our data.  

 

Figure 3.29 : Distribution fitting comparisons of dust EF on CDF and Histogram for 
in-situ measurements of “1.A.1.a–10102–3.10”. 

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

The lowest Kolmogorov-Smirnov statistic is in Logistic distribution. However, logistic 

distribution is not a good fitting distribution in the histogram of Figure 3.29 although 

it has lowest Kolmogorov-Smirnov statistic. Uniform distribution has lowest 

goodness-of-fit criteria, but it doesn’t give good results when the number of values 

within the 0 and 1 g/GJ is large, as in our dataset. However, as it is clear in CDF Figure 

3.29, the number of EFs between 0 and 1 g/GJ is large and cannot be disregarded. 

Gamma distribution doesn’t have best values in Table 3.38. Nevertheless, best fitting 

distribution is selected as Gamma distribution for dust EFs derived from in-situ 

measurements for “1.A.1.a–10102-3.10” SNAP/NFR category.  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for in-situ EFs, and results are 

given in Table 3.39.  
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Table 3.38 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ 
measurements of “1.A.1.a–10102–3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.202  0.178  0.936  43.319  44.864  
Lognormal 0.279  0.308     
Uniform 0.219  0.130  0.669  43.241  44.013  
Exponential 0.328  0.315  1.632  61.594  63.140  
Logistic 0.175  0.096  0.595  46.079  47.624  
Gamma 0.202  0.108  0.587  45.162  46.707  
Weibull 0.202  0.178  0.936  43.319  44.864  

* Bold values indicate lowest values.   

The EF calculated from in-situ measurements (1.32 g/GJ) is significantly lower than 

the EMEP (11.7 g/GJ) and EPA EFs (minimum 17 g/GJ). Besides, it is pretty lower 

than EPA EFs even though EPA EFs are for controlled conditions. In the plant, 

electrostatic filter is used as the dust abatement technology with more than 95% 

abatement efficiency, however country-specific EF, which is 1.32 g/GJ, is very low 

compared to EMEP [54] (11.7 g/GJ) and EPA [193] (minimum 17 g/GJ). 

Table 3.39 : Uncertainty analysis results for dust EF of “1.A.1.a–10102–3.10” and 
comparisons with other studies. 

 In-situ 
measurements 

EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Gamma   
between 
17 3 and 

100 4 
g/GJ 

Mean 1.32 g/GJ 11.7 g/GJ 
95% CI (Lower, Upper) as g/GJ 0.68–2.27 1.2-117 
Uncertainty (Lower, Upper)  48-110 90-900 
First parameter  0.7 1  
Second parameter 1.9  2  
1 scale parameter (a) for Gamma parametric probability distribution function 
2  shape parameter (b)  for Gamma parametric probability distribution function 
3  for condensable PM, fluidized bed combustion technology controlled with electrostatic 
precipitator or dry limestone injection (SCC 10100316, 10100317 and 10100318)  
4  for filterable PM, fluidized bed combustion technology controlled with electrostatic 
precipitator or dry limestone injection (SCC 10100316, 10100317 and 10100318)  

One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. EFs derived from in-situ 

measurements often remain within the 50% CI limits in Figure 3.30. However, EF is 

lower than literature (EMEP and EPA).  
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Figure 3.30 : Probability band of dust EFs for “1A1a-10102-3.10” as cumulative 
distribution of Gamma distribution fitted to dust EFs derived from in-situ 

measurements. 

CO 

Summary statistics of CO EFs for “1.A.1.a–10102–3.10” SNAP/NFR category are 

given in Table 3.40 for EFs derived from in-situ measurements. When min, max and 

median of the EFs derived from in-situ measurements are investigated in Table 3.40, 

it is clear that CO EFs are properly distributed between zero and five, with 38% Cv, 

low variance and standard deviation. Homogeneous distribution of the EFs is also clear 

on the CDF in Figure 3.31.  

Table 3.40 : Summary statistics for CO EFs derived from in-situ measurements for 
“1.A.1.a–10102–3.10”. 

 In-situ 
Measurements 

Number of data points 16 
Minimum 0.89 
Maximum 5.54 
Median 3.09 
Variance 1 1.54 
Standard Deviation 2 1.24 
Cv (%) 3 38 
Skewness 4 0.21 
Kurtosis 5 -0.22 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
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According to Figure 3.31, looking at the CDF and histogram of EFs derived from in-

situ measurements, Normal, Weibull and Gamma distributions are close to CDF and 

histogram of the in-situ EFs. Table 3.41 is created in order to quantitatively support 

this qualitative interpretation and includes goodness-of-fit statistics and goodness-of-

fit criteria for CO EFs derived from in-situ measurements.  

 

Figure 3.31 : Distribution fitting comparisons of CO EF on CDF and Histogram for 
in-situ measurements of “1.A.1.a–10102–3.10”. 

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value 

(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is 

in Weibull distribution.  

Table 3.41 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ 
measurements of “1.A.1.a–10102–3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.1104 0.038 0.25 56.34 57.89 
Lognormal 0.1107 0.031 0.44 60.22 61.77 
Uniform 0.1437 0.067  -   -   -  
Exponential 0.3499 0.569 2.84 72.06 72.83 
Logistic 0.1245 0.041 0.27 56.98 58.53 
Gamma 0.1102 0.026 0.26 57.20 58.74 
Weibull 0.1018 0.033 0.23 56.00 57.55 

* Bold values indicate lowest values.   
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Other goodness-of-fit statistics and criteria are also lowest for Weibull distribution, 

except Cramer-von Mises statistic. Due to the close CDF and histogram of Weibull 

distribution to the in-situ EFs in Figure 3.31, and due to lowest goodness-of-fit 

statistics in Table 3.41, best fitting distribution is selected as the Weibull distribution 

for CO EFs derived from in-situ measurements.  

Table 3.42 : Uncertainty analysis results for CO EF of “1.A.1.a–10102–3.10” and 
comparisons with other studies. 

 In-situ 
measurements 

EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull  

8.12 3 
g/GJ 

Mean 3.3 g/GJ 8.7 g/GJ 
95% CI (Lower, Upper) as g/GJ 2.65-3.99 6.72 -60.5 
Uncertainty (Lower, Upper)  20-21 23-595 
First parameter  3.721  1  
Second parameter 2.657  2  

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  for uncontrolled fluidized bed combustion technology (SCC 10100316 and 1010 0318)  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for in-situ EFs and given in Table 3.42. It is 

seen that the EFs derived from in-situ measurements are pretty lower than EMEP and 

EPA EFs. Furthermore, EMEP and EPA EFs are close to each other. There is no 

abatement technology for CO emissions in the plant.  

 

Figure 3.32 : Probability band of CO EFs for “1A1a-10102-3.10” as cumulative 
distribution of Weibull distribution fitted to CO EFs derived from in-situ 

measurements. 

Consequently, country-specific CO EF is calculated as 3.3 g/GJ. Lower and upper 

confidence interval range of country-specific CO EF is small when compared to EMEP 
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and EPA confidence interval ranges. In probability band in Figure 3.32, almost all 

points on the probability band are within 50% CI. Thus, this EF can be considered as 

country-specific EF.  

SO2 

Summary statistics of SO2 EFs for “1.A.1.a–10102–3.10” SNAP/NFR category are 

given in Table 3.43 for EFs derived from in-situ measurements. When min, max and 

median of the EFs derived from in-situ measurements are investigated in Table 3.43, 

it is clear that SO2 EFs are properly distributed between 70 g/GJ and 250 g/GJ, with 

33% Cv, low variance and standard deviation. Homogeneously distribution of the EFs 

is also clear on the CDF in Figure 3.33.  

Table 3.43 : Summary statistics for SO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10102–3.10”. 

 In-situ 
Measurements 

Number of data points 16 
Minimum 69.5 
Maximum 250.7 
Median 125.7 
Variance 1 2407 
Standard Deviation 2 47.5 
Cv (%) 3 33 
Skewness 4 0.57 
Kurtosis 5 -0.17 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Low skewness and kurtosis in EFs derived from in-situ measurements in Table 3.43 

indicate strong asymmetry and a small peak in the distribution as it is also visualized 

in histogram of Figure 3.33.  

According to Figure 3.33, looking at the CDF and histogram of EFs derived from in-

situ measurements, Gamma distribution seems best fitting distribution to CDF and 

histogram of the in-situ EFs. Table 3.44 is created in order to quantitatively support 

this qualitative interpretation and includes goodness-of-fit statistics and goodness-of-

fit criteria for SO2 EFs derived from in-situ measurements.  
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Figure 3.33 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for 
in-situ measurements of “1.A.1.a–10102–3.10”. 

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value 

(0.213), except exponential and logistic distributions. Minimum  Kolmogorov-

Smirnov statistic is in lognormal distribution. However other goodness-of-fit statistics 

and criteria are lowest for Gamma distribution. Due to the close CDF and histogram 

of Gamma distribution to the in-situ EFs in Figure 3.33, and due to lowest goodness-

of-fit statistics in Table 3.44, best fitting distribution is selected as the Gamma 

distribution for CO EFs derived from in-situ measurements.  

Table 3.44 : Goodness-of-fit statistics/criteria for SO2 EF derived from in-situ 
measurements of “1.A.1.a–10102–3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.197 0.080 0.43 172.96 174.50 
Lognormal 0.164 0.070 0.37 171.57 173.12 
Uniform 0.149 0.060  -   -   -  
Exponential 0.387 0.684 3.38 192.68 193.45 
Logistic 0.218 0.109 0.56 173.94 175.48 
Gamma 0.168 0.065 0.34 171.57 173.11 
Weibull 0.184 0.068 0.38 172.64 174.19 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for in-situ EFs and given in Table 3.45. It is 
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seen that the EFs derived from in-situ measurements are pretty lower than EMEP and 

EPA EFs. Furthermore, EMEP and EPA EFs are close to each other. EPA EF is given 

for uncontrolled conditions. Since EMEP EF is close to EPA EF, it may also be for 

uncontrolled conditions. However, there is SO2 abatement technology, which is flue 

gas desulphurization in the plant that in-situ measurements were conducted. That is 

why SO2 EF of in-situ measurements is pretty lower than EPA and EMEP EFs.  

Table 3.45 : Uncertainty analysis results for SO2 EF of “1.A.1.a–10102–3.10” and 
comparisons with other studies. 

 In-situ 
measurements 

EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Gamma  

1625 3 
g/GJ 

Mean 142 g/GJ 1680 g/GJ 
95% CI (Lower, Upper) as g/GJ 120.1–167.4 330 -5000 
Uncertainty (Lower, Upper)  15-18 80-198 
First parameter  8.43 1  
Second parameter 16.9  2  

1 scale parameter (a) for Gamma parametric probability distribution function 
2  shape parameter (b)  for Gamma parametric probability distribution function 
3  for uncontrolled fluidized bed combustion technology (SCC 10100316 and 10100318)  

Consequently, country specific SO2 EF is calculated as 142 g/GJ. Lower and upper 

confidence interval range of country-specific CO EF is small when compared to EMEP 

and EPA confidence interval ranges. In probability band in Figure 3.34, almost all 

points on the probability band are within 50% CI range.  

 

Figure 3.34 : Probability band of SO2 EFs for “1A1a-10102-3.10” as cumulative 
distribution of Gamma distribution fitted to SO2 EFs derived from in-situ 

measurements. 
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NO  

Summary statistics of NO EFs for “1.A.1.a–10102–3.10” SNAP/NFR category are 

given in Table 3.46 for EFs derived from in-situ measurements. When min, max and 

median of the EFs derived from in-situ measurements are investigated in Table 3.46, 

it is clear that NO EFs are distributed between 150 g/GJ and 306 g/GJ, with 29% Cv, 

large variance and standard deviation.   

Table 3.46 : Summary statistics for NO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10102–3.10”. 

 In-situ Measurements 
Number of data points 16 
Minimum 150.5 
Maximum 306.5 
Median 210 
Variance 1 4194 
Standard Deviation 2 64.7 
Cv (%) 3 29 
Skewness 4 0.17 
Kurtosis 5 -2 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

EFs are distributed heterogeneously on the CDF in Figure 3.35. Large negative 

kurtosis, which is -2, indicates a peak in lower EFs. 

 

Figure 3.35 : Distribution fitting comparisons of NO EF on CDF and Histogram for 
in-situ measurements of “1.A.1.a–10102–3.10”. 
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According to Figure 3.35, looking at the CDF and histogram of EFs derived from in-

situ measurements, although lognormal distributions seems as one of the closest 

distributions none of the distributions perfectly fit to the data due to a large peak in 

low EFs. Table 3.47 includes goodness-of-fit statistics and goodness-of-fit criteria for 

NO EFs derived from in-situ measurements.  

Table 3.47 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ 
measurements of “1.A.1.a–10102–3.10” 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.255 0.236 1.474 182.9 184.4 
Lognormal 0.244 0.256 1.572 181.9 183.5 
Uniform 0.199 0.149 0.983 177.2 178.8 
Exponential 0.490 0.804 3.927 207.1 207.8 
Logistic 0.278 0.286 1.816 185.7 187.2 
Gamma 0.240 0.238 1.465 182.0 183.6 
Weibull 0.258 0.230 1.442 182.4 183.9 

* Bold values indicate lowest values.   

In Table 3.47, it is seen that all distribution types exceed the critical value of 

Kolmogorov-Smirnov statistic, which is 0.213 according to Table 2.9, except Uniform 

distribution. Uniform distribution is also minimum in all goodness-of-fit tests and 

criteria. Consequently, best fitting distribution is selected as the Uniform distribution 

for NO EFs derived from in-situ measurements.  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for in-situ EFs and given in Table 3.48.  

Table 3.48 : Uncertainty analysis results for NO EF of “1.A.1.a–10102–3.10“ and 
comparisons with other studies. 

 In-situ measurements 
Fitted distribution type  Uniform 
Mean 223 g/GJ 
95% CI (Lower, Upper) as g/GJ 190.8–256.2 
% Uncertainty (Lower, Upper)  14.4-14.9 
First parameter  107.3 1 
Second parameter 339  2 

1  minimum value (a) for Uniform parametric probability distribution function 
2  maximum value (b) for Uniform parametric probability distribution function 



152 

Country-specific EF of NO is calculated as 223 g/GJ. There is no abatement 

technology in the plant. NO EFs are not supplied by EMEP [54] and EPA [193], 

therefore there is no room for comparison. In probability band in Figure 3.36, almost 

all points beyond the 50% probability CI range, which means that Uniform distribution 

is not a perfect matching distribution. However, it was the best distribution between 

all distributions discussed above. In such cases it is better to apply empirical 

distribution. However, in this thesis only parametric distributions are considered.  

 

Figure 3.36 : Probability band of NO EFs for “1A1a-10102-3.10” as cumulative 
distribution of Uniform distribution fitted to NO EFs derived from in-situ 

measurements. 

NO2 

Summary statistics of NO2 EFs for “1.A.1.a–10102–3.10” SNAP/NFR category are 

given in Table 3.49 for EFs derived from in-situ measurements.  

Table 3.49 : Summary statistics for NO2 EFs derived from both in-situ 
measurements and EMRs for “1.A.1.a–10102–3.10”. 

 In-situ Measurements 
Number of data points 16 
Minimum 242.8 
Maximum 494.6 
Median 338.5 
Variance 1 10887 
Standard Deviation 2 104.3 
Cv (%) 3 28.9 
Skewness 4 0.17 
Kurtosis 5 -2 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
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When min, max and median of the EFs derived from in-situ measurements are 

investigated in Table 3.49, it is clear that NO2 EFs are distributed between 242 g/GJ 

and 495 g/GJ, with 29% Cv, large variance and large standard deviation. EFs are 

distributed heterogeneously on the CDF in Figure 3.37. Large negative kurtosis, which 

is -2, indicates a peak in lower EFs.   

According to Figure 3.37, looking at the CDF and histogram of EFs derived from in-

situ measurements, none of the distributions perfectly fit to the data due to large peaks 

although lognormal and Gamma distributions seems as one of the closest distributions. 

Table 3.50 includes goodness-of-fit statistics and goodness-of-fit criteria for NO2 EFs 

derived from in-situ measurements.  

 

Figure 3.37 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for 
in-situ measurements of “1.A.1.a–10102–3.10”. 

In Table 3.50, it is seen that all distribution types exceed the critical value of 

Kolmogorov-Smirnov statistic, which is 0.213 according to Table 2.9, except Uniform 

distribution. Uniform distribution is also minimum in all goodness-of-fit tests and 

criteria. Consequently, best fitting distribution is selected as the Uniform distribution 

for NO2 EFs derived from in-situ measurements. 
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Table 3.50 : Goodness-of-fit statistics/criteria for NO2 EF derived from in-situ 
measurements of “1.A.1.a–10102–3.10”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.256 0.236 1.47 198.1 199.7 
Lognormal 0.244 0.255 1.57 197.2 198.8 
Uniform 0.200 0.149 0.98 192.5 194.0 
Exponential 0.491 0.804 3.93 222.4 223.1 
Logistic 0.278 0.286 1.81 200.9 202.5 
Gamma 0.241 0.237 1.46 197.3 198.9 
Weibull 0.258 0.230 1.44 197.7 199.2 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for in-situ EFs and given in Table 3.51.  

Table 3.51 : Uncertainty analysis results for NO2 EF of “1.A.1.a–10102–3.10” and 
comparisons with other studies. 

 In-situ measurements 
Fitted distribution type  Uniform 
Mean 360 g/GJ 
95% CI (Lower, Upper) as g/GJ 307.8–413.2 
% Uncertainty (Lower, Upper)  14.5-14.8 
First parameter  173.4 1 
Second parameter 546.7 2 

1  minimum value (a) for Uniform parametric probability distribution function 
2  maximum value (b) for Uniform parametric probability distribution function 

Country-specific EF of NO2 is calculated as 360 g/GJ. There is no abatement 

technology in the plant. NO2 EFs are not supplied by EMEP [54] and EPA [193], 

therefore there is no room for comparison. In probability band in Figure 3.38, almost 

all points beyond the 50% probability CI range, which means that Uniform distribution 

is not perfect matching distribution. However, it was the best distribution between all 

distributions discussed above. In such cases it is better to apply empirical distribution. 

However, in this thesis only parametric distributions are considered.  
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Figure 3.38 : Probability band of NO2 EFs for “1A1a-10102-3.10” as cumulative 
distribution of Uniform distribution fitted to NO2 EFs derived from in-situ 

measurements. 

NOx 

NOx EF is calculated as the sum of NO and NO2 emissions. However, since the 

uncertainty levels of NO and NO2 EFs are different, the formulas given in equation 

2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF 

of “1.A.1.a–10102–3.10” SNAP/NFR category and comparisons with other studies are 

given in Table 3.20.  

Table 3.52 : NOx EF of “1.A.1.a–10102–3.10“ and comparisons with other studies. 

 In-situ 
Measurements 

EMEP  
[54] 

EPA 
 [193] 

NOx EF (NO+NO2) as g/GJ 583 247 between 
249.1 1 

and 704 2 
g/GJ 

95% CI (Lower, Upper) as g/GJ 521.67-645.7  143-571 
% Uncertainty (Lower, Upper)   10.5-10.8% 42-131% 
NO/NO2 share  0.62  

1 for external combustion of lignite with dry bottom / wall fired boilers for electricity generation with 
an abatement technology as overfire air and low NOx burners (SCC is 10100301) 
2 for uncontrolled external combustion of lignite with dry bottom / wall fired boilers for electricity 
generation (SCC is 10100301) 

Country specific NOx EF is calculated as 583 g/GJ which is more than twice of EMEP 

EF [54], which is 247 g/GJ, however it is within 95% CI of EMEP. There is no NOx 

abatement technology in the plant. The ratio of NO and NO2 is 0.6 for EFs derived 

from in-situ measurements for “1.A.1.a–10102–3.10” SNAP/NFR category.  
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3.2.4 Natural gas combusting medium size dry bottom boilers 

“1.A.1.a–10102–3.12” code represents natural gas combustion plants with a capacity 

between 50 and 300 MW, and with dry bottom boilers as the combustion technology 

for production of public power.  

In Marmara region there are seven plants falling under this SNAP/NFR category. 

There were no in-situ measurements for this SNAP/NFR category in KAMAG project 

[194]. However, EMRs were available for two of the plants. Since the data in EMRs 

are questionable as discussed in Section 2.2.1 , EFs from “1.A.1.a–10102–3.12” 

SNAP/NFR category should be used cautiously.  Country-specific EFs are generated 

for this SNAP/NFR category, but not used in the emission inventory part of this study.  

Dust  

Summary statistics of dust EFs for “1.A.1.a–10102–3.12” SNAP/NFR category are 

given in Table 3.53. Standard deviation, variance and Cv are calculated large in EFs 

derived from EMRs which indicate large variability between EFs.  

Table 3.53 : Summary statistics of dust EFs derived from EMRs for “1.A.1.a–
10102-3.12”. 

 EMR 
Number of data points 21 
Minimum 0.37 
Maximum 2.34 
Median 0.8 
Variance 1 0.3 
Standard Deviation 2 0.55 
Cv (%) 3 58 
Skewness 4 1.78 
Kurtosis 5 2.53 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

The large variability is heavily affected from outliers. In Figure 3.39, comparison of 

CDFs and histograms with possible parametric distribution fitting options are given. 

According to Figure 3.39, looking at the CDF of EFs derived from EMR, it is seen that 

80% of EFs are between 0.5 g/GJ and 1 g/GJ. However, 15% of the EFs (three EFs) 
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are more than 2 g/GJ, which can be treated as outlier. Those outliers contribute to 

variability in the EFs.  

 

Figure 3.39 : Distribution fitting comparisons of dust EF on CDF and Histogram for 
EMRs of “1.A.1.a–10102–3.12”. 

There is positive skewness and kurtosis in the EFs derived from EMRs. Large 

skewness and kurtosis of in-situ measurements in Table 3.53 indicate strong 

asymmetry and large peak in the distribution, respectively, as it is also visualized in 

Figure 3.39.  

According to Figure 3.39, looking at the CDF and histogram of EFs derived from 

EMRs,  lognormal distribution is close to CDF and histogram of the in-situ EFs. In 

addition to CDF and histograms given in Figure 3.39, goodness-of-fit statistics and 

goodness-of-fit criteria for dust EFs derived from in-situ measurements are also 

calculated and given in Table 3.54.  

Critical value of Kolmogorov-Smirnov statistic (0.188 as it is given in Table 2.9) is 

exceeded by entire of the distributions, however, lognormal distribution is the closest 

distribution to the critical value. Other goodness-of-fit statistics and criteria are also 

lowest for lognormal distribution. Therefore, best fitting distribution is selected as 

lognormal distribution for dust EFs derived from EMRs for “1.A.1.a–10102-3.12” 

SNAP/NFR category. After assigning best fitting parametric distribution, Monte Carlo 

simulation is applied as in Section 2.2.4.4 and Bootstrap method is applied as in 
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Section 2.2.4.5. Then, average EF and confidence intervals are calculated for EMR 

EFs, and results are given in Table 3.55.  

Table 3.54 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of 
“1.A.1.a–10102 –3.12”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.331 0.413 2.29 38.15 40.24 
Lognormal 0.224 0.168 0.94 25.86 27.95 
Uniform 0.338 0.471  -   -   -  
Exponential 0.329 0.633 3.16 41.18 42.23 
Logistic 0.327 0.409 2.14 35.88 37.97 
Gamma 0.254 0.229 1.26 29.10 31.19 
Weibull 0.286 0.287 1.58 31.73 33.82 

* Bold values indicate lowest values.   

It is seen that, the EF derived from EMRs (0.93 g/GJ) is higher than EMEP EF (0.281 

g/GJ) [54]. However it is within the EPA EF range which is between 0.9 g/GJ and 3.59 

g/GJ but close to lower CI of EPA [193]. Probability band of EFs derived from EMRs 

is given in Figure 3.40.  

Table 3.55 : Uncertainty analysis results for dust EF of “1.A.1.a–10102–3.12” and 
comparisons with other studies. 

 
EMR EMEP [54] 

EPA 
 [193] 

Fitted distribution type  Lognormal  
between 

0.9 3 
and 

3.59 4 
g/GJ 

Mean 0.93 g/GJ 0.281 g/GJ 
95% CI (Lower, Upper) as g/GJ 0.73–1.2  0.169-0.393 
Uncertainty (Lower, Upper)  22-29 40-40 
First parameter  -0.21 1  
Second parameter 0.54  2  
1 mean of ln(x) for lognormal parametric probability distribution function 
2  standard deviation of ln(x) for lognormal parametric probability distribution function 
3  for filterable PM, uncontrolled conditions, all size boilers except tangential 
(SCC:10100602) 
4  for filterable PM, uncontrolled conditions, all size and tangential boilers (SCC:10100601, 
10100601 and 10100604) 

One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. However, half of the points are 

beyond 50% CI range. This situation is mainly caused by outliers. Anyway, dust EF 
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for “1.A.1.a–10102-3.12” SNAP/NFR category is 0.93 g/GJ with 95% lower CI as 

0.73 g/GJ and upper CI as 1.2 g/GJ as it is given in Table 3.55. 

 

Figure 3.40 : Probability band of dust EFs for “1A1a-10102-3.12” as cumulative 
distribution of lognormal distribution fitted to dust EFs derived from EMRs. 

CO 

Summary statistics of CO EFs for “1.A.1.a–10102–3.12” SNAP/NFR category are 

given in Table 3.56. Standard deviation, variance and Cv are calculated large in EFs 

derived from EMRs which indicate large variability between EFs.  

Table 3.56 : Summary statistics for CO EFs derived from EMRs for “1.A.1.a–
10102–3.12”. 

 EMR 
Number of data points 24 
Minimum 0 
Maximum 105.05 
Median 67.9 
Variance 1 686 
Standard Deviation 2 26.2 
Cv (%) 3 43 
Skewness 4 -1.41 
Kurtosis 5 1.82 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Large variability is heavily affected from outliers. In Figure 3.41, comparison of CDFs 

and histograms with possible parametric distribution fitting options are given. 

According to Figure 3.41, looking at the CDF of EFs derived from EMR, it is seen that 
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85% of EFs are more than 45 g/GJ. However, 10% of the EFs (three EFs) are 0 g/GJ, 

which can be treated as outlier. Those outliers contribute to variability in the EFs.  

 

Figure 3.41 : Distribution fitting comparisons of CO EF on CDF and Histogram for 
EMRs of “1.A.1.a–10102–3.12”. 

There is negative skewness and positive kurtosis in the EFs derived from EMRs. Large 

skewness and kurtosis of EFs in Table 3.53 indicate strong asymmetry and large peak 

in the distribution, respectively, as it is also visualized in Figure 3.41.  

According to Figure 3.41, looking at the CDF and histogram of EFs derived from 

EMRs,  none of the distributions perfectly fit to data points. This situation is mainly 

caused by “zero value” outliers. However, lognormal distribution is not fitting good 

but closest to CDF and histogram of the EFs. In addition to CDF and histograms given 

in Figure 3.41, goodness-of-fit statistics and goodness-of-fit criteria for CO EFs 

derived from EMRs are also calculated and given in Table 3.57.  

Critical value of Kolmogorov-Smirnov statistic (0.188 as it is given in Table 2.9) is 

exceeded by entire of the distributions, however, Uniform, Normal and Logistic 

distributions are close distributions to the critical value. Normal and logistic 

distributions have lowest values in Cramer Von Mises, Anderson-Darling statistics 

and Akaike’s  Information Criterion. Logistic and Weibull are lowest in Bayesian 

Information criteria. If logistic distribution was included in AuvTool, it would be 

selected since it has lowest values in most of the statistics and criteria in Table 3.57. 

As seen, decision on the good-fitting distribution is not possible with this table. 

Besides, most of the statistics are not available for lognormal distribution since it takes 

infinite value due to zero values in the dataset. Lognormal, Gamma and Normal 

distributions are close to the peak value in histogram given in Figure 3.41. 
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Consequently, Lognormal distribution is selected as the fitting distribution by obeying 

expert opinion, because it has the highest histogram on Figure 3.41, even if this peak 

is not as high as the peak in the data itself.  

Table 3.57 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ 
measurements of “1.A.1.a–10102–3.12”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.24 0.30 1.86 229 231 
Lognormal 0.32 0.58  -   -   -  
Uniform 0.23 0.39  -   -   -  
Exponential 0.40 1.04 13.52 248 249 
Logistic 0.25 0.29 1.64 227 229 
Gamma 0.29 0.48 55.61 920 922 
Weibull 0.51 1.46 8.14 192 195 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for EMR EFs, and results are given 

in Table 3.58.  

Table 3.58 : Uncertainty analysis results for CO EF of “1.A.1.a–10102–3.12” and 
comparisons with other studies. 

 
EMR EMEP 

[54] 
EPA 

 [193] 
Fitted distribution type  Lognormal  

between 
13 3 and 

32 4 
g/GJ  

Mean (g/GJ) 61.5 39 
95% CI (Lower, Upper) as g/GJ 51.38-73.02 20-60  
% Uncertainty (Lower, Upper)   16-19 49-54 
First parameter 4.03 1  
Second parameter 0.4 2  

1 mean of ln(x) for lognormal parametric probability distribution function 
2  standard deviation of ln(x) for lognormal parametric probability distribution function 
3  for uncontrolled external combustion of natural gas with any size boilers (except tangential 
fired) for electricity generation (SCC is 10100601 and 10100602)  
4  for uncontrolled external combustion of natural gas with tangentially fired units for 
electricity generation (SCC is 10100604) 

It is seen that, the EF derived from EMRs (61.5 g/GJ) is higher than EMEP EF (39 

g/GJ) [54] and EPA EF  [193]. At the same time, it is also larger than the upper bound 

of the CI in both EMEP and EPA EFs. Probability band of EFs derived from EMRs is 

given in Figure 3.42.  
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Figure 3.42 : Probability band of CO EFs for “1A1a-10102-3.12” as cumulative 
distribution of lognormal distribution fitted to dust EFs derived from EMRs. 

Most of the EFs are beyond 50% CI range, which was a properly fitting criterion [219]. 

Anyway, CO EF for “1.A.1.a–10102-3.12” SNAP/NFR category is 61.5 g/GJ with 

95% lower CI as 51.38 g/GJ and upper CI as 73.02 g/GJ as it is given in Table 3.58.   

SO2 

Summary statistics of SO2 EFs for “1.A.1.a–10102–3.12” SNAP/NFR category are 

given in Table 3.59. Standard deviation, variance and Cv are calculated large in EFs 

derived from EMRs which indicate large variability between EFs.  

Large variability is heavily affected from outliers. In Figure 3.43, comparison of CDFs 

and histograms with possible parametric distribution fitting options are given. 

According to Figure 3.43, looking at the CDF of EFs derived from EMR, it is seen that 

85% of EFs are 0 g/GJ. However, 15% of the EFs (three EFs) are more than 2 g/GJ, 

which can be treated as outlier. Those outliers contribute to large variability in the EFs. 

Large skewness and kurtosis are also related with the distribution of those outliers.  
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Table 3.59 : Summary statistics for SO2 EFs derived from EMRs for “1.A.1.a–
10102–3.12”. 

 EMR 
Number of data points 24 
Minimum 0 
Maximum 3.39 
Median 0 
Variance 1 0.67 
Standard Deviation 2 0.8 
Cv (%) 3 283 
Skewness 4 3.06 
Kurtosis 5 9.45 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.43, looking at the CDF and histogram of EFs derived from 

EMRs,  Weibull distribution is close to CDF of the in-situ EFs.  

 

Figure 3.43 : Distribution fitting comparisons on CDF and Histogram for SO2 EFs 
derived from EMRs for “1.A.1.a–10102–3.12”. 

In addition to CDF and histograms given in Figure 3.43, goodness-of-fit statistics and 

goodness-of-fit criteria for SO2 EFs derived from in-situ measurements were also 

calculated and given in Table 3.60. Weibull distribution gets lowest values in 

goodness-of-fit criteria, and Logistic distribution gets lowest values in goodness-of-fit 

statistics except Kolmogorov-Smirnov statistic. Since logistic distribution is not 

included in Auvtool and Weibull distribution doesn’t give good results in distribution 

fitting, Lognormal distribution is selected as best fitting distribution for SO2 EFs of 

“1.A.1.a-10102-3.12” SNAP/NFR category. Most of the statistics are not available for 
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Lognormal distribution, since Lognormal distribution logarithm gives infinite values 

in goodness-of-fit statistics/criteria with zero values.  

Table 3.60 : Goodness-of-fit statistics/criteria for SO2 EF derived from EMRs of 
“1.A.1.a–10102–3.12”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.24 0.30 1.86 229 231 
Lognormal 0.32 0.58  -   -   -  
Uniform 0.23 0.39  -   -   -  
Exponential 0.40 1.04 13.52 248 249 
Logistic 0.25 0.29 1.64 227 229 
Gamma 0.29 0.48 55.61 920 922 
Weibull 0.51 1.46 8.14 192 195 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for EMR EFs, and results are given 

in Table 3.61.  

Table 3.61 : Uncertainty analysis results for SO2 EF of “1.A.1.a–10102–3.12” and 
comparisons with other studies. 

 
EMR EMEP 

 [54] 
EPA 

 [193] 
Fitted distribution type  Lognormal  

0.26 3 g/GJ 

Mean (g/GJ) 0.28 0.281 
95% CI (Lower, Upper) as g/GJ 0-0.66  0.169-0.393 
% Uncertainty (Lower, Upper)   100-136 40-40 
First parameter -2.36 1  
Second parameter 1.48 2  

1 mean of ln(x) for lognormal parametric probability distribution function 
2  standard deviation of ln(x) for lognormal parametric probability distribution function 
3  for uncontrolled external combustion of natural gas with any type of boilers for electricity 
generation (SCC is 10100601, 10100602 and 10100604)  

It is seen that, the EF derived from EMRs (0.28 g/GJ) is compatible with EMEP EF 

(0.281 g/GJ) [54] and EPA EF (0.26 g/GJ) [193]. However, almost all points are 

beyond 50% CI range in Figure 3.44.  
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Figure 3.44 : Probability band of SO2 EFs for “1A1a-10102-3.12” as cumulative 
distribution of lognormal distribution fitted to dust EFs derived from EMRs. 

NO  

Summary statistics of NO EFs for “1.A.1.a–10102–3.12” SNAP/NFR category are 

given in Table 3.62. Standard deviation, variance and Cv are calculated large in EFs 

derived from EMRs which indicate large variability between EFs.  

Table 3.62 : Summary statistics of NO EFs derived from EMRs for “1.A.1.a–10102–
3.12”. 

 EMR 
Number of data points 24 
Minimum 15.05 
Maximum 172.6 
Median 33.1 
Variance 1 1904 
Standard Deviation 2 43.6 
Cv (%) 3 95 
Skewness 4 2.14 
Kurtosis 5 3.5 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Large variability is heavily affected from outliers. In Figure 3.45, comparison of CDFs 

and histograms with possible parametric distribution fitting options are given. 

According to Figure 3.45, looking at the CDF of EFs derived from EMR, it is seen that 

85% of EFs are less than 55 g/GJ. However, 15% of the EFs (three EFs) are more than 
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150 g/GJ, which can be treated as outlier. Those outliers contribute to variability in the 

EFs.  

 

Figure 3.45 : Distribution fitting comparisons on CDF and Histogram  for NO EFs 
derived from EMRs for “1.A.1.a–10102–3.12”. 

There is positive skewness and kurtosis in the EFs derived from EMRs. Large 

skewness and kurtosis of in-situ measurements in Table 3.62 indicate strong 

asymmetry and large peak in the distribution, respectively, as it is also visualized in 

Figure 3.45.  

Table 3.63 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of 
“1.A.1.a–10102–3.12”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.324 0.614 3.45 253.35 255.71 
Lognormal 0.168 0.123 0.91 225.43 227.78 
Uniform 0.338 0.686  -   -   -  
Exponential 0.280 0.316 1.90 233.57 234.75 
Logistic 0.318 0.607 3.24 249.60 251.95 
Gamma 0.259 0.279 1.74 234.35 236.71 
Weibull 0.229 0.268 1.71 233.45 235.80 

* Bold values indicate lowest values.   

According to Figure 3.45, looking at the CDF and histogram of EFs derived from 

EMRs,  lognormal distribution is close to CDF and histogram of EFs. In addition to 

CDF and histograms given in Figure 3.45, goodness-of-fit statistics and goodness-of-

fit criteria for NO EFs derived from EMRs were also calculated and given in Table 
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3.63. Lognormal distribution gets lowest values in each of goodness-of-fit statistic and 

criteria, therefore fitted as distribution of NO EFs for “1.A.1.a–10102–3.12”. 

Table 3.64 : Uncertainty analysis results for NOx EF (as NO) of “1.A.1.a–10102–
3.12” and comparisons with other studies. 

 
EMR 

EMEP  
[54] 

EPA 
 [193] 

Fitted distribution type  Lognormal  
between 
42.96  4 

and  
120.2  5 

g/GJ 

Mean (g/GJ) 45.68 g/GJ 89 3  
95% CI (Lower, Upper) as g/GJ 31.3-66.5 15-185 
% Uncertainty (Lower, Upper)   % % 
First parameter 3.5 1  
Second parameter 0.8 2  

1  mean of lnx for Lognormal parametric probability distribution function 
2  standard deviation of lnx for Lognormal parametric probability distribution function 
3 NOx EF  
4  NOx for uncontrolled external combustion of natural gas with boilers (except tangential) 
with a capacity less than 100 Million Btu for electricity generation (SCC is 10100602 )  
5 NOx for uncontrolled external combustion of natural gas with boilers (except tangential) 
with a capacity more than 100 Million Btu for electricity generation (SCC is 10100601)  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for EMR EFs, and results are given 

in Table 3.64.  

 

Figure 3.46 : Probability band of NO EFs for “1A1a-10102-3.12” as cumulative 
distribution of lognormal distribution fitted to dust EFs derived from EMRs.  

It is seen that, the EF derived from EMRs (45.68 g/GJ) [54] is close to lower bound of 

EPA EF (42.96 g/GJ) [193] range. Furthermore, it is less than EMEP EF (89 g/GJ), 

meanwhile it is in the range of EMEP EF. However, it should be considered that EMEP 

and EPA EFs are NOx EF where it is NO EF in this study. Probability band of EFs 

derived from EMRs is given in Figure 3.46.  
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One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. However, half of the points are 

beyond 50% CI range. This situation is mainly caused by outliers. Anyway, NO EF 

for “1.A.1.a–10102-3.12” SNAP/NFR category is 45.68 g/GJ with 95% lower CI as 

31.3 g/GJ and upper CI as 66.5 g/GJ as it is given in Table 3.64. 

NO2 

Summary statistics of NO2 EFs for “1.A.1.a–10102–3.12” SNAP/NFR category are 

given in Table 3.65. Standard deviation, variance and Cv are calculated large in EFs 

derived from EMRs due to one outlier value in 24 EFs. The large variability is heavily 

affected from outliers. In Figure 3.47, comparison of CDFs and histograms with 

possible parametric distribution fitting options are given. According to Figure 3.47, 

looking at the CDF of EFs derived from EMR, it is seen that all EFs are 0 g/GJ, except 

one EF which is 8.78 g/GJ. This outlier causes large variability in the EFs.  

Table 3.65 : Summary statistics of NO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10102–3.12”. 

 EMR 
Number of data points 24 
Minimum 0 
Maximum 8.78 
Median 0 
Variance 1 3.09 
Standard Deviation 2 1.76 
Cv (%) 3 480 
Skewness 4 4.9 
Kurtosis 5 24 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

According to Figure 3.47, looking at the CDF and histogram of EFs derived from 

EMRs,  none of the distributions fit well. By considering outlier value as a 

measurement error, NO2  EF is accepted 0 g/GJ.   
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Figure 3.47 : Distribution fitting comparisons on CDF and Histogram for “1.A.1.a–
10102–3.12” code NO2 EFs derived from EMRs. 

NOx 

As explained in Section 0, NO2 EF is 0 g/GJ. Hence, there is no need for summing NO 

and NO2 EFs in order to obtain NOx EF. In this case, for this SNAP/NFR category all 

NO emissions are accepted as NOx emissions. Consequently, NOx EF for “1.A.1.a–

10102-3.12” SNAP/NFR category is 45.68 g/GJ with 95% lower CI as 31.3 g/GJ and 

upper CI as 66.5 g/GJ as it is given in Table 3.64. Comparisons with other studies are 

also available in Table 3.64. 

3.2.5 Gaseous fuels combusting gas turbines  

“1.A.1.a–10104–3.17” code represents gaseous fuel combustion plants with gas 

turbines as the combustion technology for production of public power.  

In Marmara region there are 44 plants under this SNAP/NFR category. In-situ 

measurements were conducted in five plants in Marmara region within the context of 

KAMAG project [194]. Furthermore, EMRs were available for 18 plants. 

Consequently, 72 in-situ measurements from five plants are used in the calculation of 

country-specific EF for this SNAP/NFR code. 26 to 79 emission measurements 

(according to the type of the air pollutant) from EMRs were also used for comparison.  

Dust  

Summary statistics of dust EFs for “1.A.1.a–10104–3.17” SNAP/NFR category are 

given in Table 3.66 for EFs derived from both in-situ measurements and EMRs. 

Standard deviation, variance and Cv are calculated large in both EMR and in-situ 
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measurements. Cv of in-situ measurements is more than three times of EMR’s. This 

situation indicates large variability between in-situ EFs.   

Table 3.66 : Summary statistics of dust EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10104–3.17”. 

 In-situ 
Measurements 

EMR 

Number of data points 72 26 
Minimum 0.01 0.14 
Maximum 4.81 4.23 
Median 0.039 1.44 
Variance 1 0.56 1.42 
Standard Deviation 2 0.75 1.19 
Cv (%) 3 255 76 
Skewness 4 4.04 0.54 
Kurtosis 5 19.2 -0.8 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

Outliers cause large variability in datasets. In Figure 3.48, comparison of CDFs and 

histograms with possible parametric distribution fitting options are given. According 

to Figure 3.48, looking at the CDF of EFs derived from in-situ measurements, it is seen 

that 85% of EFs are less than 0.5 g/GJ. However, there are two values more than 3 

g/GJ, which contribute to large variability (Cv is 255%) in-situ EFs. In the CDF of EFs 

derived from EMRs, EFs are distributed between 0.14 and 4.23 g/GJ, homogenously. 

This is almost same range with EFs derived from in-situ measurements. However, Cv 

of EMRs (76%) is almost one third of  in-situ measurements (255%) because EFs are 

distributed within this range homogenously, and there are no outliers.  

When the histograms given in Figure 3.48 are compared, it is seen that the asymmetry 

in the histogram of EFs derived from in-situ measurements is higher than those derived 

from EMR. Therefore, the skewness value for in-situ measurements in Table 3.66 is 

higher than EMR’s. Due to a large peak in the in-situ measurements’ histogram, the 

kurtosis value is large when compared to EFs derived from EMRs.  
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Figure 3.48 : Distribution fitting comparisons of dust EF on CDF and Histogram for 
both in-situ measurements (above) and EMRs (below) of  “1.A.1.a–10104-3.17”. 

According to Figure 3.48, looking at the CDF and histogram of EFs derived from in-

situ measurements, Weibull, Gamma and Lognormal distributions are close to CDF 

and histogram of the in-situ EFs. In addition to CDF and histograms given in Figure 

3.48, goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived from 

in-situ measurements were also calculated and given in Table 3.67, in order to 

determine best fitting parametric probability distribution function for our in-situ EFs.  
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Table 3.67 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ 
measurements of  “1.A.1.a–10104-3.17”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.40 3.58 16.9 167 171 
Lognormal 0.32 2.61 12.2 -123 -118 
Uniform 0.39 3.58  -   -   -  
Exponential 0.51 6.44 35.7 -29 -27 
Logistic 0.41 3.64 16.9 137 142 
Gamma 0.48 3.59 16.4 -36 -31 
Weibull 0.24 1.20 6.5 -99 -95 

* Bold values indicate lowest values.   

Critical value of Kolmogorov-Smirnov statistic is 0.222, as it is given in Table 2.9. It 

is exceeded by entire of the distributions, however Kolmogorov-Smirnov statistic of 

the Weibull distribution is closest one to the critical value. Other goodness-of-fit 

statistics and criteria are also lowest for Weibull distribution. Therefore, best fitting 

distribution is selected as Weibull distribution for dust EFs derived from in-situ 

measurements for “1.A.1.a–10104-3.17” SNAP/NFR category. The table of EFs 

derived from EMRs is given in Attachment F since the use of EFs derived from in-situ 

measurements is given priority in the thesis, and in order to save space in the thesis 

text. Weibull distribution is also selected as the fitted distribution for EFs derived from 

EMRs.  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then, 

average EF and confidence intervals are calculated for each of in-situ EFs and EMR 

EFs and results are given in Table 3.68.  
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Table 3.68 : Uncertainty analysis results for dust EF of “1.A.1.a–10104–3.17” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull  Weibull  
between 
0.81 3 
and  

2.44 4 
g/GJ 

Mean 0.179 1.59 0.2 g/GJ 
95% CI (Lower, Upper) as g/GJ 0.128-0.24 1.1-2.18 0.05 -0.8 
Uncertainty (Lower, Upper) as 
% 

28-34 31-37 75-300 

First parameter  0.144  1 1.68  1  
Second parameter 0.7  2 1.17  2  

1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  for uncontrolled filterable PM, for production of electricity with natural gas (SCC is 10100601, 
10100602 or 10100604)   
4  for uncontrolled condensable PM, for production of electricity with natural gas (SCC is 10100601, 
10100602 or 10100604)   

It is seen that, average EF of EMRs is higher than average EF of in-situ measurements. 

The EF generated from in-situ measurements (0.179 g/GJ) is so low that it is almost 

one fourth of the lower limit of the EPA EF [193] (0.81 g/GJ), however it is within 

95% confidence interval range of EMEP EF [54]. Average EF derived from EMRs 

(1.59 g/GJ) is larger than upper 95% CI of EMEP [54] (0.8 g/GJ), however compatible 

with EPA [193]. Probability band of dust EFs for each of average in-situ EF and EMR 

EF is given in Figure 3.49.  

(a)  (b) 

Figure 3.49 : Probability band of dust EFs for “1A1a-10104-3.17” as cumulative 
distribution of Weibull distribution fitted to dust EFs derived from (a)in-situ 

measurements (b)EMRs. 

One important indication that a distribution is properly fitted is that almost all points 

on the probability band are within 50% CI range [219]. Although EFs derived from 

EMR’s often remain within the 95% CI limits, it is seen that EFs derived from in-situ 

measurements are even beyond the 95% CI limits.  

Probability Band for Toz EF ALKA

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 1.9 2.9 3.8 4.8

Probability Band for Toz EF EMR

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 5.3 10.6 16.0 21.3 26.6



174 

CO 

Summary statistics of CO EFs for “1.A.1.a–10104–3.17” SNAP/NFR category are 

given in Table 3.69 for EFs derived from both in-situ measurements and EMRs. 

Standard deviation, variance and Cv are calculated large in both EMR and in-situ 

measurements, however Cv of in-situ measurements is almost three times of EMR’s. 

This situation indicates large variability between EFs derived from in-situ 

measurements. Skewness and Kurtosis is positive in both in-situ EFs and EMR EFs.  

Table 3.69 : Summary statistics of CO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10104–3.17”. 

 In-situ 
Measurements 

EMR 

Number of data points 72 40 
Minimum 0 0.24 
Maximum 105.87 21 
Median 0 2.27 
Variance 1 737 28 
Standard Deviation 2 27.15 5.3 
Cv (%) 3 274 98 
Skewness 4 2.59 0.97 
Kurtosis 5 5.07 0.21 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

In Figure 3.50, EFs are distributed homogeneously in the CDF of EFs derived from 

EMRs, while EFs derived from in-situ measurements show a clustered distribution. 

One of the two clustered EFs are around zero, and the other one is clustered above 80 

g/GJ. Clustered data represents the measurements taken from different stacks or the 

plants. Consequently, this clustered distribution of in-situ EFs causes large variability.  

According to Figure 3.50, looking at the CDF and histogram of EFs derived from in-

situ measurements, Weibull distribution is close to CDF and histogram of the in-situ 

EFs. Table 3.70 is created in order to quantitatively support this qualitative 

interpretation and includes goodness-of-fit statistics and goodness-of-fit criteria for 

CO EFs derived from in-situ measurements.  
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Figure 3.50 : Distribution fitting comparisons of CO EF on CDF and Histogram for 
both in-situ measurements (above) and EMRs (below) of 1“1.A.1.a–10104-3.17”. 

Critical value of Kolmogorov-Smirnov statistic is 0.222, as it is given in Table 2.9. 

Kolmogorov-Smirnov statistic of entire of the distributions are more than critical value 

(0.222). However, Weibull distribution is lowest and closest to critical value. Other 

goodness-of-fit statistics are also lowest for Weibull distribution. Due to the close CDF 

and histogram of Weibull distribution to the in-situ EFs in Figure 3.50, and due to 

lowest goodness-of-fit statistics in Table 3.70, best fitting distribution is selected as 

the Weibull distribution for CO EFs derived from in-situ measurements. Goodness-of-

fit statistics/criteria for CO EF derived from EMRs are given Attachment F. Weibull 

distribution is also fitted to CO EFs derived from EMRs.  
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Table 3.70 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ 
measurements of “1.A.1.a–10104-3.17”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.49 4.4 21 684 688 
Lognormal 0.65 11.6 1563 3824 3828 
Uniform 0.46 4.2  -   -   -  
Exponential 0.71 13.7 460 476 478 
Logistic 0.50 4.6 22 666 670 
Gamma 0.53 4.1 27 -636 -632 
Weibull 0.38 1.81 9.6 -668 -664 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.71. It is seen that, the EF derived from EMRs is lower than the EF derived 

from in-situ measurements. There is no abatement technology for CO emissions in the 

plant, however both of them are compatible with EMEP, where they are low when 

compared to EPA. 

Table 3.71 : Uncertainty analysis results for CO EF of “1.A.1.a–10104-3.17” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Weibull  
between 
11 3 and 

39  4 
g/GJ 

Mean 6.26 5.27 4.8 
95% CI (Lower, Upper) as g/GJ 2.79-12.5 3.69-7.12 1-70 
Uncertainty (Lower, Upper) as % 55-100 30-35 79-1358 
First parameter  1.61  1 5.177 1  
Second parameter 0.37  2 0.94  2  
1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  for uncontrolled combustion of natural gas with tangentially fired units for production of electricity 
(SCC is 10100604)   
4  for uncontrolled combustion of natural gas with any size of boilers for production of electricity 
(SCC is 10100601 and 10100602)   

Since the variability is large in EFs derived from in-situ measurements, assigned 

Weibull distribution cannot be able to include all points. Furthermore, almost all points 

are beyond 50% CI range in probability band of EFs derived from in-situ 

measurements in Figure 3.51. However, most of the points are within 50% CI limit in 

the probability band of EFs derived from EMRs.  
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  (a)   (b) 

Figure 3.51 : Probability band of CO EFs for “1A1a-10104-3.17” as cumulative 
distribution of Weibull distribution fitted to CO EFs derived from (a)in-situ 

measurements (b) EMRs. 

SO2 

Summary statistics of SO2 EFs for “1.A.1.a–10104–3.17” SNAP/NFR category are 

given in Table 3.72 for EFs derived from both in-situ measurements and EMRs. 

Standard deviation, variance and Cv are calculated pretty large in EFs derived from 

in-situ measurements, which indicate large variability between EFs. They are also high 

in EFs derived from EMRs but not as high as in-situ EFs.  

Table 3.72 : Summary statistics of SO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10104–3.17”. 

 In-situ 
Measurements 

EMR 

Number of data points 72 27 
Minimum 0 0 
Maximum 2.13 28.2 6 
Median 0 0.98 
Variance 1 0.13 71 
Standard Deviation 2 0.36 8.3 
Cv (%) 3 407 215 
Skewness 4 5.23 2.61 
Kurtosis 5 27.8 5.33 
1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
6 In one plant which uses refinery gas as fuel  

Since the power plants considered in calculations are generally use natural gas as fuel 

and sulphur content of natural gas is low, SO2 EFs are generally around 0. This is 

clearly seen in the CDFs given in Figure 3.52. Since the majority of the EFs is around 

zero, small number of EFs greater than zero contribute significantly to the variability. 
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Hence, Cv is so large in in-situ EFs and EMR EFs. EFs derived from both in-situ 

measurements and EMRs have close Kurtosis and Skewness values.  

According to Figure 3.52, Lognormal and Weibull parametric distributions seem best 

fitting distributions for in-situ EFs, where Weibull and Gamma distributions are 

appropriate for EMR EFs. In addition to CDF and histograms given in Figure 3.52, 

goodness-of-fit criteria are also calculated in order to determine best fitting parametric 

probability distribution function for our data, and given in Table 3.73 for EFs derived 

from in-situ measurements.  

 

 
Figure 3.52 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for 

both in-situ measurements (above) and EMRs (below) of “1.A.1.a–10104-3.17”. 

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ 

measurements, as it is given in Table 2.9. All of the distribution’s passed critical value 

of Kolmogorov-Smirnov statistic (0.222). However, Weibull distribution is minimum 

in almost all goodness-of-fit statistics and criteria for in-situ EFs. Finally, best fitting 
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distribution is selected as the Weibull distribution for SO2 EFs derived from in-situ 

measurements. Weibull distribution is also considered as best fitting distribution for 

EFs derived from EMRs. Goodness-of-fit statistics of EMR EFs are given in 

Attachment F.   

Table 3.73 : Goodness-of-fit statistics/criteria for SO2 EF derived from in-situ 
measurements of “1.A.1.a–10104-3.17”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.50 4.84 22.9 59.11 63.66 
Lognormal 0.91 18.48 1074 557 562 
Uniform 0.48 4.77  -   -   -  
Exponential 0.91 18.49 616.39 -213.7 -211.4 
Logistic 0.52 4.91 22.7 15.9 20.45 
Gamma 0.47 4.65 21.15 -1297 -1292 
Weibull 0.49 4.72 22.22 -1371 -1366 

* Bold values indicate lowest values.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.74. It is seen that in-situ EF is one seventeenth of in EMR-EF, however it 

is compatible with EMEP and EPA EFs.  

Table 3.74 : Uncertainty analysis results for SO2 EF of “1.A.1.a–10104-3.17” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP [54] EPA 
 [193] 

Fitted distribution type  Weibull Weibull  

0.25 3 
g/GJ  

Mean 0.176 3.11 0.281 
95% CI (Lower, Upper) as g/GJ 0.118-0.257 1.75-5.02 0.169-0.393 
% Uncertainty (Lower, Upper)  33-46 44-61 40-40 
First parameter  -2.5  1 2.69   1  
Second parameter 1.24  2 0.77  2  
1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
5  for uncontrolled combustion of natural gas by reciprocating engines for production of electricity 
(SCC is 20100202) 

Although EF derived from in-situ measurements (0.176 g/GJ) appears to be well 

calculated and appropriate when compared to literature, almost all points are beyond 

50% CI limits. This is due to the large number of zero values. Consequently, country 
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specific SO2 EF is accepted as 0.176 g/GJ for “1.A.1.a–10104-3.17” SNAP/NFR 

category.  

 (a)  (b) 

Figure 3.53 : Probability band of SO2 EFs for “1A1a-10104-3.17” as cumulative 
distribution of Weibull distribution fitted to SO2 EFs derived from (a) in-situ 

measurements (b) EMRs. 

NO  

Summary statistics of NO EFs for “1.A.1.a–10104–3.17” SNAP/NFR category are 

given in Table 3.75 for EFs derived from both in-situ measurements and EMRs. 

Standard deviation, variance and Cv are calculated large in both EMR and in-situ 

measurements, which indicate large variability between EFs. As it is clear on the Cv, 

maximum, minimum and median in Table 3.75, variability between emission factors 

are large. There is positive skewness in the EFs derived from both in-situ 

measurements and EMRs, where both sources have negative Kurtosis.  

Table 3.75 : Summary statistics of NO EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10104–3.17”. 

 In-situ Measurements EMR 
Number of data points 72 71 
Minimum 1.99 0.99 
Maximum 115.35 163 
Median 14.61 17.98 
Variance 1 1445 1935 
Standard Deviation 2 38 44 
Cv (%) 3 100 114 
Skewness 4 0.73 1.56 
Kurtosis 5 -1.3 1.41 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 
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CDFs and histograms are given in the Figure 3.54 with possible fitting options. 

According to Figure 3.54, looking at the CDF and histogram of EFs derived from in-

situ measurements, EFs are distributed around two peak values. One of it is between 0 

and 20, and the other one is more than 85 g/GJ. In the CDF and histogram of EFs 

derived from EMRs, EFs are homogenously distributed between 0.99 and 163, 

however variability is high since they are distributed in a wide range of values.  

 

Figure 3.54 : Distribution fitting comparisons of NO EF on CDF and Histogram for 
both in-situ measurements (above) and EMRs (below) of “1.A.1.a–10101–3.10”. 

According to Figure 3.54, looking at the CDF and histogram of EFs derived from in-

situ measurements, none of the distribution is best for in-situ EFs due to high 

variability. In this case, Uniform distribution may be considered. In addition to CDF 

and histograms given in Figure 3.54, goodness-of-fit statistics and goodness-of-fit 

criteria for NO EFs derived from in-situ measurements were also calculated and given 
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in Table 3.76, in order to determine best fitting parametric probability distribution 

function for our data.  

Table 3.76 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ 
measurements of “1.A.1.a–10104–3.17”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.32 1.77 9.49 732.22 736.77 
Lognormal 0.30 2.15 13.70 692.76 697.31 
Uniform 0.28 1.37  -  -  -  
Exponential 0.24 1.06 5.77 669.80 672.07 
Logistic 0.34 2.03 11.03 741.62 746.17 
Gamma 0.24 1.06 5.76 671.79 676.34 
Weibull 0.22 0.92 5.11 671.46 676.01 

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ 

measurements, as it is given in Table 2.9. All of the distribution’s passed critical value 

of Kolmogorov-Smirnov statistic (0.222), except Weibull. Besides, Weibull 

distribution appears to be the best fitting distribution since it has the lowest values for 

entire of goodness-of-fit statistics and criteria. Weibull distribution is also considered 

as best fitting distribution for EFs derived from EMRs. Goodness-of-fit statistics of 

EMR EFs are given in Attachment F.   

Table 3.77 : Uncertainty analysis results for NO EF of “1.A.1.a–10104–3.17” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Weibull  
between 
42.5 4 

and 137 
5 g/GJ 

Mean 36.7 35.8 48  3 
95% CI (Lower, Upper) as g/GJ 29.1-45.8 27.8-44.8 28-68 
Uncertainty (Lower, Upper) as % 21-25 22-25 42-42 
First parameter  36.8  1 35.77  1  
Second parameter 0.99  2 0.97  2  
1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  as NOx 
4  as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is 
20100201)  
5  as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)  

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 
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in Table 3.77. It is seen that the EFs derived from both in-situ measurements and EMRs 

are close to each other.  Probability bands are created and given in Figure 3.55. Due to 

the high variability between in-situ EFs and because the data is clustered around two 

ends of in-situ EFs, almost all EFs of in-situ measurements fall above the 50% CI 

range, which is an indicator of a bad fit [219]. It is not possible to determine a better 

representing distribution from the available distribution types for in-situ EFs. 

Nevertheless, it can be used as country specific EF since it is compatible with other 

studies as indicated in Table 3.77.  

 (a)  (b) 

Figure 3.55 : Probability band of NO EFs for “1A1a-10104-3.17” as cumulative 
distribution of Weibull distribution fitted to NO EFs derived from (a) in-situ 

measurements (b) EMRs. 

Consequently, country-specific EF of NO is calculated as 36.7 g/GJ, where it is 35.8 

g/GJ for EF derived from EMR.  

NO2 

Summary statistics of NO2 EFs for “1.A.1.a–10104–3.17” SNAP/NFR category are 

given in Table 3.78 for EFs derived from both in-situ measurements and EMRs. 

Standard deviation, variance and Cv are calculated large in both EMR and in-situ 

measurements, which indicate large variability between EFs. As it is clear on the 

maximum, minimum and median, variability between emission factors are large. There 

is positive skewness in the EFs derived from both in-situ measurements and EMRs, 

where both of them have negative Kurtosis.  
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Table 3.78 : Summary statistics of NO2 EFs derived from both in-situ measurements 
and EMRs for “1.A.1.a–10104–3.17”. 

 In-situ Measurements EMR 
Number of data points 72 61 
Minimum 3.06 0.28 
Maximum 186.03 264.3 
Median 23.72 25.6 
Variance 1 3770 5820 
Standard Deviation 2 61.4 76.3 
Cv (%) 3 100 138 
Skewness 4 0.73 1.7 
Kurtosis 5 -1.36 1.48 

1 According to equation 2.12  
2 According to equation 2.13 
3 According to equation 2.14 
4 According to equation 2.15 
5 According to equation 2.16 

CDFs and histograms are given in the Figure 3.56 with possible fitting options.  

 
Figure 3.56 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for 

both in-situ measurements (above) and EMRs (below) of “1.A.1.a–10104–3.17”. 

According to Figure 3.56, looking at the CDF and histogram of EFs derived from in-

situ measurements, EFs are distributed around two peak values. One of it is between 0 

and 35, and the other one is more than 140 g/GJ. In the CDF and histogram of EFs 
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derived from EMRs, EFs are distributed more homogenous than in-situ EFs (between 

0.28 and 263.4), however variability is high since they are distributed within a wide 

range of values.  

According to Figure 3.56, looking at the CDF and histogram of EFs derived from in-

situ measurements, none of the distribution is best due to high variability. In this case 

Uniform distribution may be considered. In addition to CDF and histograms given in 

Figure 3.56, goodness-of-fit statistics and goodness-of-fit criteria for NO2 EFs derived 

from in-situ measurements are also calculated and given in Table 3.79, in order to 

determine best fitting parametric probability distribution function for our data.  

Table 3.79 : Goodness-of-fit statistics/criteria for NO2 EF derived from in-situ 
measurements of “1.A.1.a–10104–3.17”. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.32 1.76 9.45 801.25 805.80 
Lognormal 0.30 2.13 13.75 763.71 768.27 
Uniform 0.28 1.37    
Exponential 0.24 1.05 5.72 738.78 741.06 
Logistic 0.35 2.02 10.98 810.64 815.19 
Gamma 0.24 1.05 5.70 740.77 745.33 
Weibull 0.22 0.90 5.01 740.40 744.96 

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ 

measurements, as it is given in Table 2.9. All of the distribution’s passed critical value 

of Kolmogorov-Smirnov statistic (0.222), except Weibull. Besides, Weibull 

distribution appears to be the best fitting distribution since it has low values for most 

of goodness-of-fit statistics and criteria. Weibull distribution is also considered as best 

fitting distribution for EFs derived from EMRs. Goodness-of-fit statistics of EMR EFs 

are given in Attachment F.   

After assigning best fitting parametric distribution, Monte Carlo simulation is applied 

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF 

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given 

in Table 3.80. It is seen that the EFs derived from both in-situ measurements and EMRs 

are close to each other.   
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Table 3.80 : Uncertainty analysis results for NO2 EF of “1.A.1.a–10104–3.17” and 
comparisons with other studies. 

 In-situ 
measurements 

EMR EMEP 
[54] 

EPA 
 [193] 

Fitted distribution type  Weibull Weibull  
betwee
n 42.5 4 
and 137 

5 g/GJ 

Mean 59.4 48.7 48  3 
95% CI (Lower, Upper) as g/GJ 45.9-74 34.4-65.6 28-68 
Uncertainty (Lower, Upper) as % 23-25 29-35 42-42 
First parameter  59.3  1 0.761  1  
Second parameter 0.99  2 50.75  2  
1 scale parameter (k) for Weibull parametric probability distribution function 
2  shape parameter (c)  for Weibull parametric probability distribution function 
3  as NOx 
4  as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is 
20100201)  
5  as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)  

Probability bands are created and given in Figure 3.57. Due to the high variability 

between in-situ EFs and because the data is clustered around two ends of in-situ EFs, 

almost all EFs of in-situ measurements fall above the 50% CI range, which indicates 

bad fitting of the distribution [219].  

 (a)  (b) 

Figure 3.57 : Probability band of NO2 EFs for “1A1a-10104-3.17” as cumulative 
distribution of Weibull distribution fitted to NO2 EFs derived from (a) in-situ 

measurements (b) EMRs. 

It is not possible to determine a better representing distribution from the available 

distribution types for in-situ EFs. Nevertheless, it can be used for country specific EF 

since it is compatible with other studies as indicated in 0. Consequently, country-

specific EF of NO2 is calculated as 59.4 g/GJ, where it is 48.7 g/GJ for EF derived 

from EMR.  
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NOx 

NOx EF is calculated as the sum of NO and NO2 emissions. However, since the 

uncertainty levels of NO and NO2 EFs are different, the formulas given in equation 

2.1a-2.1d were applied in order to calculate total uncertainty of NOx EF. NOx EF of 

“1.A.1.a–10104–3.17” SNAP/NFR category and comparisons with other studies are 

given in Table 3.81.  

Table 3.81 : NOx EF of “1.A.1.a–10104–3.17” and comparisons with other studies. 

 In-situ 
Measurements EMR EMEP  

[54] 
EPA 

 [193] 
NOx EF (NO+NO2) as g/GJ 96.1 95.2 48 between 

42.5 1 
and 137 2 

g/GJ 

95% CI (Lower, Upper) as g/GJ 80.61-113.3  68.9-106.1 28-68 
% Uncertainty (Lower, Upper)   16-18% 28-11.5% 42-42% 
NO/NO2 share  0.62 0.60  

1  as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is 
20100201)  
2  as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)  

Country specific NOx EF is calculated as 96.1 g/GJ which is compatible with EMRs. 

NOx EF is almost three times of EMEP EF [54], which is 48 g/GJ. NOx EF is within 

EF range of EPA EFs [193]. There is no NOx abatement technology in the plants 

considered in this study.  

The ratio of NO and NO2 is 0.6 for both of in-situ EFs and EMR EFs for “1.A.1.a–

10104–3.17” SNAP/NFR category.  

3.2.6 Comparison of EFs  

Comparison of dust EFs according to SNAP/NFR codes are given in Figure 3.58. In 

general, in-situ dust EFs are quite low compared to EMEP [54] and EPA [193] EFs. 

In addition, the EFs obtained from EMRs are significantly lower than the literature 

although they are more than in-situ measurements, as it is clear on Figure 3.58.  
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Figure 3.58 : Comparison of dust EFs according to SNAP/NFR codes. 

The reason of these large differences between in-situ measurements and literature EFs 

may be due to wide usage of abatement technologies in Turkish energy production 

plants. The highest in-situ dust EF (1.32 g/GJ) is calculated for the plants with a 

capacity range between 50 and 300 MW and  producing energy by combusting brown 

coal and lignite (SNAP/NFR codes are 1A1a-10102-3.10). This EF is also compatible 

with EMEP EF [54]. The lowest in-situ dust EF (0.179 g/GJ) is calculated for the plants 

combusting gaseous fuels with gas turbines (SNAP/NFR codes are 1A1a-10104-3.17). 

However, this EF is so low when compared to EMR and EPA EFs, but compatible 

with EMEP EF [54].  

Comparison of CO EFs according to SNAP/NFR codes are given in Figure 3.59. 

Largest in-situ CO EFs is in power plants with a capacity larger than 300 MW 

(SNAP/NFR code is 1A1a-10101-3.10). Furthermore in-situ CO EF is also larger than 

EMR, EMEP [54] and EPA [193] EFs in 1A1a-10101-3.10 and 1A1a-10104-3.17 

(plants combusting gaseous fuels with gas turbines).  
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Figure 3.59 : Comparison of CO EFs according to SNAP/NFR codes. 

In Figure 3.59, EMR EFs are larger than in-situ EFs in 1A1a-10101-3.16. Furthermore, 

EMR EFs are also larger than EMEP [54] and EPA [193] EFs in 1A1a-10101-3.16 and 

1A1a-10102-3.12. 

Comparison of SO2 EFs according to SNAP/NFR codes are given in Figure 3.60. 

Upper bound of EMEP EFs stretches up to 5000 g/GJ in 1A1a-10101-3.10, 1A1a-

10101-3.16 and 1A1a-10102-3.10. Largest in-situ SO2 EF (229.2 g/GJ) is in power 

plants with a capacity larger than 300 MW (SNAP/NFR code is 1A1a-10101-3.10). It 

is also less than EMEP EF range, however compatible with EPA EF. In-situ EF of 

1A1a-10102-3.10 is also less than EMEP EF. Lowest SO2 EF is in 1A1a-10104-3.17. 

In-situ SO2 EF is lowest in 1A1a-10104-3.17, but compatible with EMEP EF range.  

 

Figure 3.60 : Comparison of SO2 EFs according to SNAP/NFR codes. 

Comparison of NO, NO2 and NOx EFs according to SNAP/NFR codes are given in 

Figure 3.61. Average of in-situ NO (Figure 3.61a) and NO2 (Figure 3.61b) EFs (shown 

as square dots on the figure) are larger than all other EFs. As a result of that, in-situ 
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NOx-EFs are larger than all other EFs. As explained in Section 3.2, NOx EFs are 

calculated as sum of NO and NO2 EFs, however uncertainty levels are calculated in a 

different way as explained in section 2.2.4.6.  

Although country specific (in-situ) NOx EF is larger than all other studies, range of 

confidence interval is narrow when compared to them. This situation indicates low 

uncertainty in in-situ EFs. The largest NOx EF (583 g/GJ) is in 1A1a-10102-3.10 

which is compatible with both EMEP and EPA EF ranges.  

(a) (b) 

(c) 

Figure 3.61 : Comparison of (a)NO (b)NO2 (c)NOx EFs according to SNAP/NFR 
codes. 

As it is clear in above figures, uncertainty range of in-situ EFs is rather narrow 

compared to EMR, EPA and EMEP [54] EFs. This is a desired condition in emission 

inventory calculations.  

 Probabilistic Emission Inventory  

As discussed in section 3.1.3 , different AQMs (as summarized in Figure 2.1) give 

poor results in Eastern European countries when compared to Western countries of 
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Europe, regardless of usage of different AQMs, meteorology models and emission 

inventories. In this case, the inputs of AQMs came into consideration. As explained in 

Section 1, most commonly used emission inventories, as an input to the AQMs, by air 

quality modellers are TNO-MACC [66] and EDGAR-HTAP [60] emission 

inventories. Detailed information is available in Chapter 1 for those emission 

inventories. 

In this part of study, a sample emission inventory is prepared for public energy 

production sector of Marmara Region in order to compare with TNO-MACC [66] and 

EDGAR-HTAP  [60] emission inventories. The inventory in this study was prepared 

for the energy production plants in Marmara Region of Turkey for SO2, NOx, CO and 

dust emissions. Total number of plants considered in this study is 57 where it is 19 in 

TNO-MACC [66] emission inventory and 34 in EDGAR-HTAP [60] emission 

inventory.  

The comparison charts in this section will show 5 titles: “This study”, “EMEP”, 

“EPA”, “TNO” and  “EDGAR-HTAP”. The contents of these titles are as follows. 

The emission inventory given under the title of  “This study” in the following figures 

is compiled by using country specific EFs calculated in this study for our country 

(Chapter 3.2). In the absence of country specific EFs, EMEP [54] EFs were used. 

Consequently, country specific EFs calculated within the context of this study were 

used for 47 plants of 57. The emission inventory given under the title of  “EMEP” in 

the following figures is compiled for the same plants using the same activity data but 

with only EMEP [54] EFs. “EPA” titled emission inventory is compiled for the same 

plants using the same activity data but with only EPA [193] EFs. Here, attention should 

be paid to the confidence interval of “EPA” inventory on the figure. When determining 

the upper and lower limits of the EPA, no statistics were made for EFs. This was not 

possible since the catalogue system is applied in the calculation of uncertainty in EFs 

of EPA. In order to decide correct EPA EF, more detailed information is needed than 

in EMEP and other EF sources. Generally, abatement technology should be considered 

in EF selection. In plants without abatement technology, controlled emissions were 

accepted as uncontrolled emissions, because the controlled emission left blank would 

be counted as zero in the inventory total. Hence, the lower bound of the EPA was 

calculated by using the same activity data with controlled EPA EFs as much as 

possible, and the upper bound is calculated by using the same activity data with 
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uncontrolled EPA EFs. Consequently, it is best practice to compare the results of “This 

study” with the lower bound of “EPA”. Middle point is average of these two emission 

inventories. There are two reasons for adopting this approach in calculation of same 

emission inventory with EPA EFs. First, it is difficult to achieve the data about 

emission abatement technologies that are used by the plants in Turkey. Second, the 

usage practices of the existing abatement technologies are questionable.  

In order to facilitate the comparison of the TNO-MACC [66] and EDGAR-HTAP [66] 

inventories with emission inventory of “This study”, the same plants were identified 

from TNO-MACC [66] and EDGAR-HTAP [66] inventories by using the coordinate 

information. With the help of a Python code, the coordinate information in these 

inventories was converted to address information, energy production plants in the 

Marmara region were extracted and matched with the plants in the emission inventory 

prepared in the scope of “This study”. Then, the sum of the emissions from the 

facilities in the TNO-MACC [66] inventory was added to the following figures under 

the title "TNO". Likewise, “EDGAR-HTAP” title in the following figures represents 

the sum of emissions in EDGAR-HTAP [66] emission inventory for the same power 

plants as in “This study”.  Uncertainty calculations include uncertainties arises from 

EFs only. Uncertainties arising from activity data were excluded and left for future 

study.   

One of the most challenging parts when preparing an emission inventory is the 

industrial emission inventory part. This is because detailed sectoral information is kept 

confidential unless it is requested by official means, thus it is difficult to obtain 

information from Turkish industries. This situation makes a major contribution to the 

overall uncertainty of the emissions inventory. In the worst case, the facility is not 

included in the inventory due to data inadequacy. As a matter of fact, this situation is 

easily seen when TNO-MACC [66] and EDGAR-HTAP [60] emission inventories are 

examined. Those emission inventories have missing plants especially in industrial part. 

The number of plants considered in each emission inventory according to regions of 

Turkey are given in Table 3.82.  

In TNO emission inventory which was prepared for 2011 base year, the number of 

sources under energy production category with SNAP 1 (in SNAP/NFR coding system 

it matches with 1.A.1 public electricity and heat production) was 19 for Marmara 



193 

region of Turkey, where it was 34 in EDGAR-HTAP (version 4.2 prepared for year 

2008 [60]) emission inventory (in SNAP/NFR coding system it matches with 1.A.1.a). 

In this study a deep research was conducted in order to include almost all power plants 

located in Marmara region of Turkey, and finally it was counted as 57. As it is clear, 

the EDGAR-HTAP [60] emission inventory contains much more plants than TNO-

MACC [66] but is still far from the actual number of plants (57 plants) for Marmara 

region of Turkey. 

Table 3.82 : Number of public electricity and heat production plants considered by 
TNO-MACC [66] and EDGAR-HTAP [60] emission inventories. 

base year: 
TNO-MACC 

2011 
EDGAR-HTAP 

2008 
Marmara Region 19 34 
Aegean Region 9 20 
Black Sea Region 4 9 
Eastern Anatolia Region 0 7 
South Eastern Anatolia Region 1 4 
Central Anatolia Region 10 17 
Mediterranean Region 7 9 
Total 50 100 

When Turkey's other regions are examined, it is seen that TNO-MACC [66] emission 

inventory has almost no facilities in Eastern and South-Eastern Anatolia regions while 

EDGAR-HTAP [60] emission inventory has more plants. Furthermore EDGAR-

HTAP [60] emission inventory has more plants than TNO-MACC [66] in all regions 

of Turkey. From this point of view, it is clear that EDGAR-HTAP [60] emission 

inventory is more inclusive than TNO-MACC [66] emission inventory in Turkey in 

terms of number of plants, and it is more inclusive in Eastern Anatolian regions of 

Turkey where TNO-MACC [66] emission inventory has almost no plants for public 

electricity and heat production sector.   

In Figure 3.62, SO2 emission inventory calculated in the scope of “This study” and 

their comparisons with other inventories are given. 57 plants were taken into account 

in the calculation of SO2 emission. Lignite is used as an energy source in 6 of these 57 

power plants, where gaseous fuels are used by 50 plants and motorin is used by 2 

plants. Some of the power plants use more than one fuel as the energy source.  

3 of the 6 power plants are coal combusting plants with fluid bed boilers (SNAP/NFR 

code is 1A1a-10101-3.16 for large plants and 1A1a-10102-3.16 for medium size 
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plants). In this study, in-situ measurements were conducted in one of those three plants. 

However, as shown in Table 3.27, SO2 EF was found to be zero in all measurements. 

This plant is a new plant that was commissioned in 2012, however other plants are old 

plants. In EMEP, SO2 EF is given as 1680 g/GJ for uncontrolled conditions. When an 

average of 95% abatement efficiency of the fluid bed boilers are considered, SO2 EF 

as zero is impossible. In such large energy production plants which are burning lignite, 

since SO2 EF could not be zero, EMEP EF (1680 g/GJ) was used for these 3 plants.  

 

Figure 3.62 : SO2 emission inventory with uncertainties and comparison with other 
studies. 

2 of the 6 power plants use pulverized coal combustion technology (SNAP/NFR code 

is 1A1a-10102-3.10). In-situ measurements were conducted within the context of 

KAMAG project for this category (Table 3.45), and SO2 EF was calculated as 142 

g/GJ which is quite lower than EMEP EF (1680 g/GJ). Since this EF, which is smaller 

than the EMEP EF, is used for two plants, the final emissions of “This study” appear 

to be lower than the “EMEP” in Figure 3.62.  

It is apparent from Figure 3.62 that, SO2 emissions are calculated as 152,379 

tonne/year in this study. Same activity data is used in calculation of EMEP emission 

inventory and resulted 170,596 tonne/year. Approximately 19,000 tonne/year 

difference is mainly due to one plant. Uncontrolled conditions are considered for this 

one plant in TNO-MACC and EDGAR-HTAP emission inventories.  

Of the 57 power plants, 48 generate energy by burning gaseous fuels (mostly natural 

gas). 47 of these power plants use gas turbines as combustion technology (SNAP/NFR 
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code is “1A1a-10104-3.17”). Here it is worth explaining that, it is generally assumed 

that power plant owns a gas turbine when there is no consistent information about the 

combustion technology of a natural gas burning plant since gas turbines are highly 

preferred in the combustion of gas fuels. The deepening of the information in this 

section is left to the future part of this study. In 5 of these 47 facilities, in-situ 

measurements were carried out within the scope of KAMAG project. As shown in 

Table 3.74, the EF calculated from these measurements is 0.176 g/GJ and it is 

consistent with EMEP EF (0.281 g/GJ). This country specific EF was used in all 47 

power plants.  

As a result, country specific SO2 EF derived from this study were used in the emission 

calculation of 48 of the 57 plants. 47 of these 48 facilities are gas-fuelled. The 

formation of SO2 emissions from gas fuels is quite low compared to solid and liquid 

fuels. This means that SO2 emissions in these 47 plants are expected to be low.  

In Figure 3.60, SO2 emissions are shown on the Marmara region map. The large 

bubbles show intensive SO2 emitting power plants which are mainly lignite 

combusting power plants. Other plants emit very little SO2 in quantity (because they 

use gaseous fuels), therefore the size of the representative bubbles was not large 

enough to be observed visually on the map.  

The main reason that the “EDGAR-HTAP” emission inventory is 27,000 tons/year 

lower than “This study" is due to absence of two lignite-fired incineration plants in the 

EDGAR-HTAP inventory. 

Of the 57 facilities considered in this study, only 17 are in the TNO inventory. As a 

matter of fact, there are many big and small plants which are not taken into 

consideration in TNO emission inventory. 4 large lignite combustion plants, which are 

not included in the TNO inventory, have resulted in 73,500 tons less SO2 emissions in 

TNO emission inventory when compared to this study. 1000 tonnes of SO2 emissions 

is also not included in the TNO inventory due to about 40 missing natural gas 

incineration plants. 
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Figure 3.63 : Map of SO2 emissions calculated according to this study. 

The contribution of these missing natural gas plants to SO2 emissions in TNO 

inventory is not as much as that of lignite, but their absence will be effective in the 

calculation of NOx emissions. In Figure 3.64, NOx emission inventory which is 

calculated in the scope of this study and its comparison with other inventories are 

given.  

 

Figure 3.64 : NOx emission inventory with uncertainties and comparison with other 
studies. 

It should be noted that, “EMEP” emissions are calculated for the same plants and same 

activity data of “This study” but with EMEP EFs [54]. In this case, NOx emissions 
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(93,000 ton/year) calculated within the scope of “This study” is even higher than the 

upper bound (90,000 ton/year) of the “EMEP” emissions. The reason for this is that 

NOx EFs calculated in “This study” are generally larger than EMEP EFs, as it is clear 

on Figure 3.61c.  

Although the NOx emissions calculated in this study (93,000 ton/year) appear to be 

lower than those calculated with EPA EFs (101,000 ton/year), the difference is 

acceptable. As it is clear on Figure 3.62, NOx emissions calculated in this study is 

considerably higher than TNO (24,000 ton/year) and EDGAR-HTAP (42,000 

ton/year). When compared to “This study”, TNO inventory has 39 missing plants 

(yields 45,000 ton/year NOx emissions less) and EDGAR-HTAP emission inventory 

has 35 missing plants which yields 33,000 ton/year missing NOx emissions. NOx 

emissions are also calculated lower for plants already exist in TNO and EDGAR-

HTAP inventories when compared to “This study”. This may be due to usage of EMEP 

EFs in TNO and EDGAR-HTAP inventories.  

In Figure 3.65, NOx emissions are shown on the Marmara region map. Unlike the SO2 

map (Figure 3.63), we see more plants on the NOx map as there are more plants using 

natural gas when compared to lignite (natural gas combustion is an effective source of 

NOx emissions). It is also known that plants with high NOx emissions use natural gas 

as well as fuel oil and diesel when required. These fuels also cause intensive NOx 

emissions. 

In Figure 3.66, CO emissions are compared. The country-specific CO EFs calculated 

in this study were generally higher than the EMEP EFs and lower than the EPA EFs, 

as it is given in Figure 3.59. The effect of these difference is clearly seen on Figure 

3.66. The CO inventory (9000 tons/year) calculated using EFs derived from this study 

was close to, but more than, the inventory calculated using EMEP EFs (6000 

tons/year). It is quite low compared to CO emissions calculated with EPA EFs (22,000 

ton/year). 
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Figure 3.65 : Map of NOx emissions calculated according to this study. 

Unlike on the SO2 map (Figure 3.63), we see more plants on the NOx map as there are 

more plants using natural gas when compared to lignite (natural gas combustion is an 

effective source of NOx emissions). It is also known that plants with high NOx 

emissions use natural gas as well as fuel oil and diesel when required. These fuels also 

cause intensive NOx emissions. 

It is seen that the uncertainty range of the inventory prepared with country specific 

EFs, given under the title of “This study”,  is quite low compared to EMEP. The same 

situation is observed in SO2 (Figure 3.62) and NOx (Figure 3.64) inventories. Based 

on these results, it can be said that country-specific calculations reduce uncertainty. 

 

Figure 3.66 : CO emission inventory with uncertainties and comparison with other 
studies. 
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A total of 4800 tons/year of CO emissions was ignored with 36 missing plants in the 

EDGAR-HTAP inventory. Despite this incomplete number of CO emission sources in 

the EDGAR-HTAP inventory, the total amount of CO emissions calculated in 

EDGAR-HTAP inventory is almost same with “This study”. This is due to calculation 

of approximately 1000 tons/year emissions in the EDGAR-HTAP inventory for only 

one fuel oil burning plant located in Istanbul. In inventories calculated with neither 

EPA nor EMEP EFs, such high CO emissions have not been calculated for this plant. 

Just as in this example, in EDGAR-HTAP inventory, CO emissions from the same 

plants are generally calculated more than twice of “This study”. In other words, 

although EDGAR_HTAP inventory seems to have the same results with “This study” 

in terms of total CO emissions, the EDGAR-HTAP inventory is less than that 

calculated by “This study” in the background. 

In Figure 3.67, CO emissions are shown on the Marmara region map. On the map, the 

CO emissions are mostly emitted by coal firing plants or by the plants using dual fuel. 

The largest source of CO emissions (1572 g/GJ) is a production facility in Kocaeli 

using both fuel oil and refinery gas for production of power. 

 

Figure 3.67 : Map of CO emissions calculated according to this study. 

In Figure 3.68, dust emissions are compared. Dust emissions calculated in this study 

are lower than all other studies. Although there is no big difference between EMEP 

and “This study”, EPA's emissions are high, because dust EFs are also high. The 

difference in the EPA emission inventory, which is significantly higher than this study 
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and EMEP caused by these 5 lignite burning power plants, because EPA considers that 

dust emissions of lignite-fired plants are quite high even in controlled conditions. For 

example, for a plant with the SNAP/NFR code "1A1a-10102-3.16", the EF included 

in this study was 0.26 g/GJ (generated by in-situ measurements), while it was 10.2 

g/GJ in EMEP and 143 g/GJ in EPA for controlled conditions. The reason for this is 

that the official standards applied for these plants are kept low because of the high 

amount of dust emission emitted from the coal fired power plants. This means that 

these plants are equipped with flue gas technologies with high dust reduction 

efficiency in order to meet regulation and obtain official emission permits. Therefore, 

dust emission from the stacks is low, so the dust EF is also low in this study.  

Moreover, EPA emissions are given as PM10, not dust. TNO and EDGAR-HTAP 

emissions are also given as PM10. The emissions calculated by TNO and EDGAR for 

these five plants are close to those calculated with EPA EF. Therefore, TNO and 

EDGAR emissions are close to each other and close to EPA. Validation of in-situ 

measurements which were conducted in this study is considered as future study. 

 

Figure 3.68 : Dust emission inventory with uncertainties and comparison with other 
studies. 

In Figure 3.69, dust emissions are shown on the Marmara region map. As can be seen, 

dust emissions of all plants are below 300 ton/year. The largest dust emission (292 

ton/year) is emitted from a facility in Kocaeli that generates energy by burning fuel 

oil. 
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The SO2 emission inventory calculated in this study is more than twice that calculated 

by TNO. When number of plants considered in TNO (19) and our study (57), it is 

inferred that, 19 plants were not adequate for representing emission inventory of 

Marmara Region. Although SO2 emission inventory calculated in this study is 20% 

higher than the inventory calculated by EDGAR-HTAP, there are unidentified sources 

of excessive emissions in the EDGAR inventory. Therefore, it is not logical to compare 

the final values in the EDGAR inventory with the results of this study.  Country 

specific SO2 EFs calculated for coal combustion plants in this study are less than 

EMEP and more than EPA EFs. Since the impact of coal burning plants is dominant 

in the SO2 emission calculation, high emissions may be calculated in the inventory if 

the emissions of these plants are calculated with EMEP EFs.  

 

Figure 3.69 : Map of dust emissions calculated according to this study.  

The NOx emission inventory calculated in this study is approximately four times that 

calculated by TNO and more than twice that of EDGAR-HTAP. If the same inventory 

was calculated by using EMEP EFs rather than the EFs calculated within the scope of 

this study, it would be 35% less. The inventory calculated with EPA EFs is close to 

the inventory calculated in this study. When calculating the NOx inventory, the results 

differ more than the SO2 inventory, because the number of natural gas combustion 

plants in this region is numerous. 

The CO emission inventory calculated in this study is more than twice that calculated 

by TNO; however, it is same with EDGAR-HTAP inventory. Although CO emission 
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inventory calculated in this study is almost equal to the inventory calculated by 

EDGAR-HTAP, there are unidentified sources of excessive emissions in the EDGAR 

inventory. Therefore, it is not logical to compare the final values in the EDGAR 

inventory with the results of this study.  If the same inventory was calculated by using 

EMEP EFs rather than the EFs calculated within the scope of this study, it would be 

30% less. The country-specific CO EFs calculated in this study were generally higher 

than the EMEP EFs and lower than the EPA EFs. Therefore, large emissions are 

calculated in the inventory when the same emission inventory is calculated with EPA 

EFs.  
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 CONCLUSIONS  

Correlations between models and PM10 observations are 8% less in Eastern European 

countries when compared to Western European countries where BIAS is 2.5-fold of 

Western European countries. Furthermore, In Eastern European countries, RMSE is 

90%, MAE is 99% and MNE is 25% more than Western European countries. From 

these results it is clear that, average of model predictions is significantly beyond the 

observations in East when compared to West Europe.  

Turkey, which is located in the Eastern Europe, has one of the worst results calculated 

by all models. All models predict PM10 concentrations with an average of -40 µg/m3 

BIAS in stations of Turkey, where it is the worst value within 34 countries of Europe 

considered in this study. Models predict close to each other but quite far from the 

observations in 80% of the stations in Turkey. Remaining 20% of the stations 

encounters 18 over 101 stations, and those stations are mostly in Istanbul and in some 

other big cities. Generally, models predict better in big cities, however they are not 

good as big cities in small towns. 

In Istanbul, MNE is between 29 to 118% where it is between 35 to 64% in Berlin, 9 to 

40% in Paris, and 4 to 18% in London. Although models predict well in Istanbul 

stations when compared to other cities of Turkey, it is clear that those predictions are 

not good as other metropoles in Europe.  

In seasonal evaluation of model predictions in Turkey on station basis, it is seen that 

emissions cannot be predicted well in Winter, but in Summer it is predicted relatively 

better. This difference can be caused by inadequate representation of increased 

emissions (in the model inputs) in Winter months from residential heating and traffic 

emissions when compared to other months. In this case, it would not be unreasonable 

to suspect that the inputs to the models do not cover this difference.  

Model inputs to the model are considered as a reason for poor model predictions in 

this study. However, problems caused by the model itself or erroneous measurements, 

or combination of all, can also cause this. In this study, problems due to the model 
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itself are out of consideration since 6 different AQMs were used by 13 modelling 

groups. In stations where model estimates are poor, the CDFs of these 6 AQMs are 

close to each other, but quite different from the measurements. All models give close 

CDFs in Western Europe despite they have different modelling configurations, where 

they are not close to observations in Eastern Europe countries even in same models. In 

this situation, it would not be wrong to ignore “the problems caused by models” among 

the primary causes of this poor prediction problem. Problems due to observations are 

not subject of this study, since number of stations more. Systematic errors are not 

thought to occur at all stations at the same time.  

Emission inventories, which are important inputs of AQMs, do not represent the 

ultimate result, but the approximate result, unless in-situ measurements and full 

activity data are available for all sources. Quality of an emission inventory is directly 

proportional to how close it is to the real value and how low its uncertainty is. Using 

most representative EFs, or measurements when possible, increases the quality of an 

emission inventory. In this study, in-situ measurements were conducted within the 

scope of the KAMAG project in order to generate country-specific EFs and an 

emission inventory was prepared in the light of the most consistent information 

possible.  

Dust EFs obtained from in-situ measurements are significantly lower than the literature 

for coal combusting plants. The reason of this large difference between in-situ 

measurements and literature EFs may be due to wide usage of dust abatement 

technologies in Turkish energy production plants. CO and SO2  EFs are significantly 

larger than EMR, EMEP [54] and EPA [193] EFs in large coal combusting plants and 

in plants combusting gaseous fuels with gas turbines. But in all EFs, uncertainty is low 

when compared to EMEP EFs. Country specific NOx EFs are generally larger than all 

other studies and range of confidence interval is narrow when compared to them. This 

situation indicates low uncertainty in in-situ EFs. 

In emission inventory part of the study, a deep research was conducted in order to 

include almost all power plants located in Marmara region of Turkey, and finally it 

was counted as 57. Lignite is used as an energy source in 6 of these 57 power plants, 

where gaseous fuels are used by 50 plants and motorin is used by 2 plants. Some of 

the power plants use more than one fuel as the energy source. 
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EDGAR-HTAP [60] emission inventory contains much more plants (34 plants) than 

TNO-MACC [66] (19 plants) but is still far from the actual number of plants (57 

plants) for Marmara region of Turkey. Furthermore EDGAR-HTAP [60] emission 

inventory has more plants than TNO-MACC [66] in all regions of Turkey. From this 

point of view, it is clear that EDGAR-HTAP [60] emission inventory is more inclusive 

than TNO-MACC [66] emission inventory in Turkey in terms of number of plants, and 

it is more inclusive in Eastern Anatolian regions of Turkey where TNO-MACC [66] 

emission inventory has almost no plants for public electricity and heat production 

sector. There are missing plants in both EDGAR-HTAP and TNO emission 

inventories. Furthermore, there some unidentified plants in those emission inventories.  

NOx emissions calculated in this study is 93,000 ton/year with lower CI is 69,000 

ton/year  and upper CI as 114,000 ton/year. When same emission inventory is 

calculated with EMEP EFs 60,000 ton/year with lower CI as 33,000 and upper CI as 

90,000 ton/year. The inventory compiled by this study beyond the upper CI of EMEP 

and it is considerably larger than TNO (24,000 ton/year) and EDGAR-HTAP (42,000 

ton/year). When compared to “This study”, TNO inventory has 39 missing plants 

(yields 45,000 ton/year NOx emissions less) and EDGAR-HTAP emission inventory 

has 35 missing plants which yields 33,000 ton/year missing NOx emissions. 

SO2 emissions are calculated as 152,379 tonne/year in this study. Same activity data is 

used in calculation of EMEP emission inventory and resulted 170,596 tonne/year. This 

is mainly due to lower country specific SO2 EF calculated by this study for lignite 

firing power plants when compared to EMEP. It is 69,000 ton/year in TNO and 125,00 

ton/year in EDGAR-HTAP emission inventory. 4 large lignite combustion plants, 

which are not included in the TNO inventory, have resulted in 73,500 tons less SO2 

emissions in TNO emission inventory when compared to this study. 1000 tonnes of 

SO2 emissions is also not included in the TNO inventory due to about 40 missing 

natural gas incineration plants. SO2 uncertainty of this study is between 80 and 209%.  

Although SO2 and CO emission inventories of TNO is within the uncertainty range of 

this study, they are close to lower bound of confidence intervals. Furthermore SO2 and 

CO emission inventories are approximately half of this study. In EDGAR-HTAP 

emission inventory CO emissions are close to each other however emissions are not 

equal on plant basis. This means that, emissions are not representative for the plants in 
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EDGAR-HTAP emission inventory although overall emissions are same with this 

study. This situation causes large uncertainty other than counted by this study.  

Uncertainty range of NOx emission inventory of this study is between 26 (lower) to 

23% (upper). When same emission inventory is compiled with EMEP EFs, overall 

uncertainty range is 45 (lower) to 48% (upper). As it is clear, country specific EFs 

decrease uncertainty when compared to usage of EFs from literature. This situation is 

dominant in NOx emission inventory than SO2 and CO emission inventories, because 

number of natural gas combusting power plants are large (48 over 57 plants in 

Marmara region). TNO and EDGAR HTAP emission inventories are out of the 

uncertainty range of this study.  

In this study a deep uncertainty analysis technique is applied which is including Monte 

Carlo and Bootstrap simulations. The uncertainty analysis described in this study can 

be used as a basis for developing probabilistic emission inventories, which in turn can 

be used to determine the likelihood that an emission budget will be met and an as input 

to air quality models. At the end, probabilistic emission inventories may be used to 

etermine the likelihood that air quality management goals will be achieved.  

No matter how many and high-quality measurements are conducted, no matter how 

good models are used, it is not possible for air quality models to predict accurate results 

without a good emission inventory. Therefore, consistent, low uncertainty and 

comprehensive emission inventories should be compiled for the Eastern European 

countries, including Turkey. Development country specific EFs is the preliminary step 

of emission inventory development. Access to activity data used in these studies 

should be facilitated in order to make room for calculation of the representative EFs 

easily.     
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APPENDIX A : Questionnaire Form Answered by Plant Operators During In-Situ  
Measurements 
 

Table A.1 : Questionnaire form answered by plant operators during in-situ 
measurements. 

APPENDIX A  

Date   
Name, Surname and duty of the person 
completing this form 

 

Contact information   
Facility name   
Facility activity area  
Product type  
Annual production amount with unit   
Does the production quantity change 
during the day? (Yes/No) 
If yes, write down the hours of the 
production. 

 

Does the production quantity change 
intra-week and weekend? (Yes/No) 
If yes, briefly explain.  

 

Does the facility run 365 days? (Yes/No) 
If no, briefly explain. 

 

Are there seasonal changes in 
production quantities? (Yes/No) 
If yes, briefly explain. 

 

Fuel type   
Annual fuel amount (tonne/year)  
Heat power of the plant  
Facility combustion technology  
(i.e. Gas turbine, internal combustion 
engine) 

 

Briefly describe the process that the 
measured stack connected.  

 

Height of the stack that measured by our 
team 

 

Inner diameter of the stack that 
measured by our team 

 

Are there any flue gas control device in 
the stack that measured by our team, 
write their names.   

 

What is the frequency of the use of the 
flue gas control devices? 

 

Yield of the power plant (%)   
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APPENDIX B : Maps of Performance Metrics (BIAS, IoA, MAE, MFE, MNE, 
NBIAS, NMSE, PCC, r2, RMSE, UPA) according to Models 
 
 
 

 
 

 

 

 

 

  
 

 

 

 

Figure B.1 : BIAS maps. 
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Figure B.1 (continued) : BIAS maps. 
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Figure B.2 : IoA maps. 
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Figure B.2 (continued) : IoA maps. 

  



233 

  

  
 

 

 

 
 

 

 

 
 

 

 

 

Figure B.3 : MAE maps. 
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Figure B.3 (continued) : MAE maps. 
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Figure B.4 : MFE maps. 
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Figure B.4 (continued) : MFE maps. 
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Figure B.5 : MNE maps. 
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Figure B.5 (continued) : MNE maps. 
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Figure B.6 : NBIAS maps. 



240 

  
 

 

 

 
 

 

 

 
 

 

 

 

Figure B.6 (continued) : NBIAS maps. 
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Figure B.7 : NMSE maps. 
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Figure B.7 (continued) : NMSE maps. 
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Figure B.8  : PCC maps.  
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Figure B.8 (continued) : PCC maps 
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Figure B.9 : r2 (coefficient of determination) maps. 
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Figure B.9 (continued) : r2 (coefficient of determination) maps. 

 



247 

  
 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

Figure B.10: RMSE maps. 
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Figure B.10 (continued) : RMSE maps. 
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Figure B.11 : UPA maps. 
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Figure B.11 (continued) : UPA maps. 
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APPENDIX C : MAE CDFs of stations (PM10) for the countries with more than 10 
stations. 
 
 

 
 

  

  

Figure C.1 : MAE CDFs of stations for PM10, for the countries with more 
than 10 stations  
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Figure C.1 (continued) : MAE CDFs of stations for PM10, for the countries 
with more than 10 stations.
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APPENDIX D : Country Averages of Performance Metrics for All Models 

Table D.1 : Country averages of performance metrics for all models. 

Country 
Station 
Number Mean Median stDev Var Cv Skewness RMSE BIAS MAE NBIAS NME MFB MFE NMSE PCC r2   UPA IOA 

Austria 74 12 10 8 74 70  0.82  19 -12 14 -49 59 -66 79 1.5 0.4 0.2 -37 0.5 
Belgium 38 17 15 9 95 56 0.87  16 -9 12 -33 47 -40 56 0.7 0.5 0.3 -34 0.6 
Bosnia. 1 11 9 9 135 77 0.82  55 -38 39 -78 81 -121 125 6.6 0.1 0.0 -80 0.4 
Bulgaria 32 18 14 15 324 75 0.80  41 -25 29 -53 67 -77 89 2.7 0.3 0.1 -47 0.5 
Czech R.  95 14 12 9 88 64 0.85  27 -15 17 -48 58 -60 72 2.0 0.5 0.3 -60 0.5 
Denmark 2 15 14 8 83 56 0.88  24 -5 13 -8 63 -12 61 2.3 0.3 0.1 -20 0.4 
England 25 13 11 8 81 58 0.85  12 -5 9 -25 49 -39 57 0.7 0.5 0.3 -10 0.6 
Estonia 4 11 9 8 78 77 0.80  11 -2 8 -12 61 -26 65 1.0 0.4 0.2 36 0.6 
Finland 8 10 8 8 71 86 0.77  11 -3 7 -24 57 -39 67 1.2 0.4 0.2 1 0.6 
France  231 15 13 9 109 61 0.85  16 -9 12 -36 51 -52 65 0.9 0.5 0.3 -11 0.6 
Germany 199 13 11 8 70 61 0.86  15 -7 10 -32 50 -41 58 0.9 0.5 0.3 -42 0.6 
Greece 4 28 22 20 691 65 0.84  26 -7 17 -19 50 -34 54 1.1 0.5 0.3 -30 0.6 
Hungary 14 15 13 10 114 66 0.84  21 -13 15 -46 53 -62 69 1.2 0.6 0.4 -38 0.6 
Iceland 2 13 9 12 547 77 0.77  28 2 12 16 92 0 60 6.8 0.0 0.0 -75 0.2 
Ireland 9 11 9 7 58 62 0.83  12 -4 9 -25 58 -33 64 1.1 0.4 0.2 -33 0.5 
Italy 188 17 14 12 213 69 0.83  20 -9 15 -31 57 -46 67 1.2 0.4 0.2 -6 0.6 
Latvia 4 12 9 8 79 72 0.82  15 -7 11 -38 58 -49 71 1.3 0.3 0.1 -24 0.5 
Lithuania 5 11 9 8 78 75 0.79  22 -15 16 -56 62 -79 86 1.8 0.4 0.2 -51 0.5 
Luxemb. 3 15 13 9 79 57 0.87  10 -2 7 -12 41 -22 45 0.4 0.5 0.2 16 0.6 
Malta 2 33 24 30 1484 79 0.77  36 1 19 2 58 -13 49 1.7 0.5 0.3 -42 0.6 
Moldova 1 14 11 9 96 67 0.82  24 -8 19 -37 86 -2 111 2.1 0.0 0.0 -2 0.4 
Netherl.  28 17 15 9 90 54 0.88  16 -8 11 -31 45 -39 52 0.7 0.5 0.3 -46 0.6 
Norway 9 9 7 7 89 73 0.80  16 -8 11 -46 65 -69 83 2.0 0.2 0.1 -24 0.4 
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Table D.1 (continued) : Country averages of performance metrics for all models. 

Country 
Station 
Number Mean Median stDev Var Cv Skewness RMSE BIAS MAE NBIAS NME MFB MFE NMSE PCC r2   UPA IOA 

Poland 136 15 13 10 104 65 0.84  35 -23 24 -57 62 -76 83 2.6 0.5 0.3 -65 0.5 
Portugal 26 22 17 20 605 90  0.77  22 0 13 0 61 -20 58 1.4 0.5 0.2 78 0.6 
Romania 13 17 14 12 208 71 0.81  18 -6 12 -25 54 -33 61 1.1 0.4 0.2 -1 0.6 
Serbia 1 21 18 13 200 62 0.86  21 -2 14 -11 62 0 64 1.1 0.3 0.2 -28 0.5 
Slovakia 22 14 11 9 94 67 0.84  24 -18 19 -54 60 -79 84 1.6 0.5 0.3 -46 0.5 
Slovenia 11 14 12 9 103 67 0.85  21 -13 15 -48 56 -65 73 1.3 0.5 0.3 -38 0.6 
Cyprus 2 28 23 21 800 66 0.84  36 -11 24 -24 57 -43 63 1.9 0.3 0.1 -52 0.5 
Spain  111 14 10 13 341 89 0.77  18 -7 13 -29 62 -56 75 1.6 0.5 0.3 27 0.6 
Sweden 9 10 8 6 50 70 0.83  8 -2 6 -20 51 -34 59 0.7 0.5 0.3 -15 0.6 
Switzerl. 22 12 9 8 76 71 0.81  14 -6 10 12 96 -37 68 1.8 0.5 0.2 161 0.6 
Turkey 101 27 22 20 727 70 0.83  62 -40 48 -50 65 -80 91 3.6 0.3 0.1 -45 0.5 
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APPENDIX E : Taylor Diagrams for all stations in Marmara Region 
 
 

 
 

 
Figure E.1 : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region. 
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APPENDIX F : Goodness-of-fit Statistics/Criteria for EFs Derived from EMRs 
 
 

Table F.1 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of 
1.A.1.a – 10101– 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.24 0.12 0.67 43.61 44.58 
Lognormal 0.32 0.22 2.88 63.95 64.92 
Uniform 0.27 0.16  -   -   -  
Exponential 0.42 0.40 1.85 50.55 51.04 
Logistic 0.23 0.10 0.62 43.47 44.44 
Gamma 0.30 0.18 1.62 50.36 51.33 
Weibull 0.29 0.16 1.01 44.95 45.92 

 

Table F.2 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of 
1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.28     0.15           0.98               49            50     
Lognormal 0.32     0.30           4.97               77            78     
Uniform 0.22     0.14           1.16               45            46     
Exponential 0.34 0.29           1.43               52            52     
Logistic 0.30     0.17           1.10               50            51     
Gamma 0.30     0.25           2.49               57            58     
Weibull 0.28     0.22           1.44               51            52     

 

Table F.3 : Goodness-of-fit statistics/criteria for SO2 EF derived from EMRs of 
1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.13     0.03     0.23        97.89        98.86     
Lognormal 0.14     0.04     0.38        99.69     100.66     
Uniform 0.18     0.07      -   -   -  
Exponential 0.49     0.82     3.84     127.86     128.35     
Logistic 0.10     0.02     0.17        97.63        98.60     
Gamma 0.14     0.03     0.31        98.86        99.83     
Weibull 0.14     0.03     0.23        97.62        98.59     
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Table F.4 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of 
1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.16 0.06 0.33 91.15 92.12 
Lognormal 0.15 0.05 0.35 91.48 92.45 
Uniform 0.20 0.06  -   -   -  
Exponential 0.49 0.78 3.66 118.76 119.24 
Logistic 0.18 0.07 0.41 91.94 92.91 
Gamma 0.15 0.05 0.33 91.22 92.19 
Weibull 0.17 0.06 0.35 91.39 92.36 

 

Table F.5 : Goodness-of-fit statistics/criteria for NO2 EF derived from EMRs of 
1.A.1.a – 10101 – 3.10. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.15 0.05 0.35 152.55 154.10 
Lognormal 0.15 0.05 0.35 152.46 154.01 
Uniform 0.13 0.04 0.23 146.91 148.45 
Exponential 0.55 1.22 5.66 203.93 204.71 
Logistic 0.18 0.07 0.48 154.11 155.66 
Gamma 0.15 0.05 0.34 152.44 153.98 
Weibull 0.15 0.06 0.39 153.24 154.78 

 

Table F.6 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of 
1.A.1.a – 10101 – 3.16. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.27 0.07 0.47 23.60 23.59 
Lognormal 0.33 0.12 1.83 36.37 36.26 
Uniform 0.22 0.07  -   -   -  
Exponential 0.33 0.21 1.04 27.15 27.10 
Logistic 0.30 0.09 0.53 24.20 24.09 
Gamma 0.31 0.10 1.04 28.15 28.04 
Weibull 0.29 0.09 0.66 24.59 24.48 
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Table F.7 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of 
1.A.1.a – 10101 – 3.16. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.26 0.10 0.71 89.34 89.94 
Lognormal 0.39 0.34 7.38 130.53 131.14 
Uniform 0.21 0.07 0.50 85.81 86.41 
Exponential 0.28 0.17 1.13 83.20 83.50 
Logistic 0.28 0.12 0.85 90.76 91.37 
Gamma 0.34 0.23 2.20 89.45 90.06 
Weibull 0.29 0.15 0.85 84.75 85.35 

 

Table F.8 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of 
1.A.1.a – 10101 – 3.16. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.20 0.08 0.55 64.71 66.26 
Lognormal 0.20 0.08 0.59 65.42 66.96 
Uniform 0.16 0.08  -   -   -  
Exponential 0.58 1.46 6.67 145.80 146.57 
Logistic 0.22 0.10 0.62 65.16 66.70 
Gamma 0.20 0.08 0.57 65.17 66.71 
Weibull 0.19 0.09 0.52 62.13 63.67 

 

Table F.9 : Goodness-of-fit statistics/criteria for NO2 EF derived from EMRs of 
1.A.1.a – 10101 – 3.16. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.22  0.07  0.50  86.66  87.27  
Lognormal 0.30  0.18  4.51  141.28  141.89  
Uniform 0.16  0.05  0.33  83.13  83.74  
Exponential 0.24  0.10  0.69  83.98  84.28  
Logistic 0.24  0.09  0.61  87.89  88.50  
Gamma 0.24  0.11  1.31  91.74  92.34  
Weibull 0.23  0.09  0.67  85.88  86.48  
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Table F.10 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of 
1.A.1.a – 10104 – 3.17. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.177 0.129 0.846 86.854 89.371 
Lognormal 0.291 0.379 4.302 92.984 95.501 
Uniform 0.156 0.092  -   -   -  
Exponential 0.133 0.105 0.680 77.226 78.484 
Logistic 0.196 0.172 1.097 89.219 91.735 
Gamma 0.218 0.177 1.232 78.801 81.317 
Weibull 0.180 0.114 0.720 77.565 80.081 

 

Table F.11 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of 
1.A.1.a – 10104 – 3.17. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.24 0.41 2.39 250.75 254.13 
Lognormal 0.28 1.00 8.92 244.10 247.48 
Uniform 0.22 0.36  -   -   -  
Exponential 0.18 0.32 1.72 216.97 218.66 
Logistic 0.26 0.50 2.79 252.69 256.07 
Gamma 0.18 0.36 1.92 219.27 222.65 
Weibull 0.15 0.25 1.34 218.62 222.00 

 

Table F.12 : Goodness-of-fit statistics/criteria for SO2 EF derived from EMRs of 
1.A.1.a – 10104 – 3.17. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.451 1.40 7.06 195 197 
Lognormal 0.278 0.66 3.52 105 107 
Uniform 0.434 1.37  -   -   -  
Exponential 0.433 1.73 9.46 129 131 
Logistic 0.459 1.44 6.96 188 191 
Gamma 0.430 0.92 4.59 130 133 
Weibull 0.240 0.37 2.34 114 116 
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Table F.13 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of 
1.A.1.a – 10104 – 3.17. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.22 1.09 6.30 742.80 747.33 
Lognormal 0.21 0.66 6.39 684.28 688.81 
Uniform 0.25 1.24  -   -   -  
Exponential 0.14 0.30 1.80 663.02 665.28 
Logistic 0.24 1.12 6.16 738.46 742.99 
Gamma 0.09 0.12 0.94 664.64 669.17 
Weibull 0.10 0.13 0.92 663.26 667.78 

 

Table F.14 : Goodness-of-fit statistics/criteria for NO2 EF derived from EMRs of 
1.A.1.a – 10104 – 3.17. 

 Goodness-of-fit statistics Goodness-of-fit criteria 
Type of 
distribution 

Kolmogorov-
Smirnov 
statistic 

Cramer-
von 

Mises 

Anderson-
Darling 
statistic 

Akaike's 
Information 

Criterion 

Bayesian 
Information 

Criterion 
Normal 0.32 1.55 8.32 705.93 710.15 
Lognormal 0.23 0.98 8.92 640.84 645.06 
Uniform 0.29 1.61  -   -   -  
Exponential 0.24 1.03 6.05 613.63 615.74 
Logistic 0.33 1.61 8.34 701.48 705.71 
Gamma 0.15 0.21 1.40 605.45 609.67 
Weibull 0.14 0.17 1.08 601.81 606.03 
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