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QUANTIFICATION OF THE IMPACT OF UNCERTAINTY IN EMISSIONS
ON AIR QUALITY MODEL ESTIMATES

SUMMARY

The Air Quality Model, especially Chemical Transport Model, prediction represents
mean concentration over the entire grid volume. Predictions of CTMs may differ from
observations due to four reasons; 1) inherent or stochastic variability in the
observations, 2) errors in model physics and chemistry assumptions, 3) errors due to
uncertainties in model input variables, and 4) numerical errors. Here, variability is a
description of the range of spread of the values, and it is often expressed by statistical
metrics such as variance and standard deviation. Therefore, inherent uncertainty can
be considered as variability. Uncertainty refers to lack of knowledge regarding the true
value of a quantity. Uncertainty can be reduced or eliminated with more or better data,
where variability cannot be reduced. Among the four reasons of uncertainty, provided
above, inputs are regarded to have the largest levels of uncertainty.

The aim of this study is to evaluate and quantify the contribution of uncertainties in
input dataset to AQM estimates. For this purpose, it is necessary to define the problem
that poor performance of the model is caused mostly by unfit data. In literature, models
perform poor in the Eastern European countries. However, a more detailed study is
needed to say that this poor performance is mostly due to model inputs. Because, as it
is known, the poor performance of the models may also have other reasons. In the first
part of this study, inter-model variability is defined quantitatively by participating in
an international project. In the second part of the study, contribution of uncertainties
to this problem is quantified by being part of a national project. In the second part, a
sample of the solution is presented which includes development of country specific
emission factors and compiling a probabilistic emission inventory.

As a part of an international project (AQMEII-3), 12 modelling groups were
cooperated from different countries of Europe and conducted 18 model runs on Europe
domain (covers 34 Europe countries) for 2010 by using 7 different AQMs, 3
meteorology models and 2 emission inventories. This study, for the first time in
Turkey, contributed to AQMEII-3 which is organized by the joint leading of U.S. EPA
and European JRC. One of the most important benefits of this project is that the model
results of all groups can be reached through a common platform. In this dissertation,
performance metrics were calculated and mapped for each of 1431 stations of Europe,
and for each model for evaluation of model performances. Taylor diagrams were also
used for seasonal evaluation.

Up to now, there are several air quality modelling studies for Turkey, however they
are developed for a specific city or region of Turkey for a timescale starting from days
to a few months, or by using just one type of AQM. Thanks to its wide coverage
domain (Europe continent) and multi-model contributions from AQMEII-3 project,
this study looks to the problem from a large perspective in order to define the problem
and recommends a solution by representing a sample of the solution. Thus, an
inventory study was conducted to overcome this problem by adopting a deep statistical
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approach which is not encountered in Turkish inventory studies yet. To this end,
country specific EFs are calculated for the energy production industry of Turkey, an
inventory has been created for the energy production industry of the Marmara Region.
Monte Carlo and Bootstrap approaches are used for uncertainty calculations at these
stages.

According to results of modelling part of this dissertation, correlations between models
and PM o observations are 8% less in Eastern European countries when compared to
Western European countries. BIAS of Eastern European countries is 2.5-fold of
Western European countries, when all countries are considered. RMSE of Eastern
countries is 90% more than Western countries average, where MAE is 99% and MNE
is 25% more. From these results it is clear that, model predictions are significantly
beyond the observations in Eastern European countries.

Turkey, which is located in the Eastern Europe, has one of the worst results calculated
by all models. All models predict PMo concentrations with an average of -40 ug/m?
BIAS in stations of Turkey, where it is the worst value within 34 countries of Europe
considered in this study. Moreover, models predict close to each other but quite far
from the observations in 80% of the stations. MAE is over 20 pg/m? in 80% of all
stations in Turkey. Remaining 20% of the stations encounters 18 over 101, mostly in
Istanbul and some other big cities. In fact, when the results of the models are examined,
it is seen that models generally make better predictions in big cities compared to the
small cities. This may be due to the fact that inventory compilers have more
information on emission sources in large cities.

In seasonal evaluation, it is seen that emissions in Winter cannot be well predicted, but
in Summer it is relatively better predicted. This difference can be caused by inadequate
representation of increased emissions (in the model inputs) in Winter months from
residential heating and traffic emissions when compared to other months. In this case,
it would not be unreasonable to suspect that the inputs to the models significantly affect
predictions.

Model inputs are considered as a reason for poor model predictions in this study.
However, problems caused by the model itself or erroneous measurements, or
combination of all, may also cause this. In this study, problems due to the model itself
are out of consideration since 6 different AQMs were used by 13 modelling groups
where same models were also considered by different groups. The fact that all models
give close CDFs in Western Europe despite they have different modelling
configurations, where they are not close to observations in Eastern Europe countries
even in same models, shows that problems in the models are not dominant in prediction
errors. Since the number of observation stations included in the scope of this study is
very high, measurement errors are not considered to be predominant in poor model
estimates. Also, systematic errors are not thought to occur at all stations at the same
time.

The quality of an emission inventory that will be used in air quality modelling is
associated with its low-level uncertainty and adequate coverage of the sources.
Emission inventories approach to the ultimate result as in-situ measurements and full
activity data are available. In this study, in-situ measurements were conducted within
the scope of the national KAMAG project in order to generate country-specific EFs,
and an emission inventory was prepared in the light of the most consistent information
possible. Besides, official emission measurement reports (EMRs), whose reliability is
controversial as they were prepared by the companies under authorization of the
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emission emitting plants, were also used for comparison with in-situ EFs. Country-
specific dust, CO, SO, NO, NO> and NOx EFs are calculated in this part of the study
for each of coal combusting large wet/dry bottom boilers, coal combusting large size
fluid bed boilers, coal combusting large wet and dry bottom boilers, natural gas
combusting medium size boilers and gaseous fuels combusting gas turbines.

EFs are typically assumed to be representative of an average emission rate from a
population of pollutant sources in a specific category. However, there may be
uncertainty in the average emissions from population because of three reasons: random
sampling error, measurement errors, or when the sample population is not
representative for EF development. First two factors typically lead to imprecision in
the estimate of the population average. The third factor may lead to possible biases or
systematic errors in the estimated average. In order to avoid errors, it is important to
understand and account for the uncertainty in the inventory. In the relevant part of this
study, a probabilistic emission inventory is developed by considering statistical
analysis of variability and uncertainty.

The development of a consistent procedure for the uncertainty evaluation is still a
challenge for the scientific community. In this study a deep uncertainty analysis
technique is applied in EF development, which is including Monte Carlo method and
Bootstrap simulation. The uncertainty analysis described in this study can be used as
a basis for developing probabilistic emission inventories. When the probability range
of emissions to be given as input to air quality is known, it is possible to determine the
probability of the model result. Thus, for example, the probability of achieving an air
quality management goal can also be calculated.

In statistics, sampling error is a type of error caused by investigating a small part of
the population rather than examining the whole population. It is calculated by the
difference of a sample statistic used to estimate a population parameter and the actual
but unknown value of the parameter. Since uncertainty is expressed as lack of
knowledge regarding to true value of a quantity, random sampling error can be
represented by a sampling distribution. In order to calculate uncertainty of EFs, a
distribution is fitted (F) to the EF dataset (x) where actual underlying distribution (F)
is unknown. The goodness-of-fit is evaluated by some techniques. Then Monte Carlo
method is applied in order to generate random datasets from assigned distribution, F.
In Bootstrap simulation part of the study, each of the alternative probability models
generated by Monte Carlo approach (Bootstrap replicates) are simulated to develop a
reasonably stable characterization of the percentiles of the distribution. Then
parameters, 0*, are estimated. In this study, uncertainty in the estimate of 0 is reflected
by dispersion of 8*, which also gives random sampling error. A confidence interval
for a statistic is a measure of the lack of knowledge regarding the true value of the
statistic. The 8* data is sorted then, in order to calculate confidence interval for the
fitted cumulative distribution function. Consequently, the results are compared to the
original dataset by generating probability bands. Then results are compared to EMEP
and EPA EFs.

At the end, dust EFs obtained from in-situ measurements are significantly lower than
the literature for coal combusting plants. The reason of these large differences between
in-situ measurements and literature EFs may be due to wide usage of dust abatement
technologies in Turkish energy production plants. CO and SO, EFs are significantly
larger than EMR, EMEP and EPA EFs in large coal combusting plants and in plants
combusting gaseous fuels with gas turbines. But in all EFs, uncertainty is low when
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compared to EMEP EFs. Country specific NOx EFs are generally larger than all other
studies and range of confidence interval is narrow when compared to them. This
situation indicates low uncertainty in in-situ EFs. Since each stack measurement may
differentiate from the real value due to variations in operating conditions, the overall
uncertainty of the emission factors can also be referred as “uncertainty due to
variability”.

After calculating country specific EFs, next step is preparing an emission inventory
for power plants of Marmara region and comparing it with the existing emission
inventories. The most common emission inventories currently used by CTMs are the
TNO-MACC and EDGAR-HTAP emission inventories. These two inventories are
mainly used in AQMEII-3 models. EDGAR-HTAP emission inventory contains much
more plants (34 plants) than TNO-MACC (19 plants) but is still far from the actual
number of power plants (57 plants) that considered in this study for Marmara region
of Turkey. Furthermore EDGAR-HTAP emission inventory has more plants than
TNO-MACC in all regions of Turkey. From this point of view, it is clear that EDGAR-
HTAP emission inventory is more inclusive than TNO-MACC emission inventory in
Turkey in terms of number of plants. Also, it is more inclusive in Eastern Anatolian
regions of Turkey where TNO-MACC emission inventory has almost no plants for
public electricity and heat production sector. There are missing plants in EDGAR-
HTAP and TNO-MACC emission inventories where there some unidentified plants in
those emission inventories.

As a result of emission inventory calculations, NOx emissions calculated in this study
is 93,000 ton/year with lower CI as 69,000 ton/year and upper CI as 114,000 ton/year.
When same emission inventory is calculated with EMEP EFs 60,000 ton/year with
lower CI as 33,000 and upper CI as 90,000 ton/year. The inventory compiled by this
study beyond the upper CI of EMEP and it is considerably larger than TNO (24,000
ton/year) and EDGAR-HTAP (42,000 ton/year).

SO2 emissions are calculated as 152,379 tonne/year in this study. Same activity data is
used in calculation of EMEP emission inventory and resulted 170,596 tonne/year,
because in-situ SOz EF was smaller than EMEP EF for coal combustion plants. It is
69,000 ton/year in TNO and 125,00 ton/year in EDGAR-HTAP emission inventory. 4
large lignite combustion plants, which are not included in the TNO inventory, have
resulted in 73,500 tons less SOz emissions in TNO emission inventory when compared
to this study. 1000 tonnes of SO emissions is also not included in the TNO inventory
due to about 40 missing natural gas incineration plants.

Uncertainty range of NOx emission inventory of this study is between 26 (lower bound
of CI) to 23% (upper bound of CI). When same emission inventory is compiled with
EMEP EFs, overall uncertainty range is 45 (lower) to 48% (upper). As it is clear,
country specific EFs decrease uncertainty when compared to usage of EFs from
literature. This situation is dominant in NOy emission inventory than SO, and CO
emission inventories, because number of natural gas combusting power plants are large
(48 over 57 plants in Marmara region). TNO and EDGAR HTAP emission inventories
are out of the uncertainty range of this study which proves their inadequacy for
representing emissions of power plants in Marmara region.

Generally, the data on energy facilities is among the most easily accessed by inventory
compilers. Such large differences in emissions from power plants reinforce doubts
about the reliability of the entire TNO-MACC and EDGAR-HTAP emission
inventories. In this case, it is quantifically proved that poor emission inventories are
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primarily responsible for the poor air quality predictions in Turkey, and most probably
in all Eastern European countries.

No matter how many and high-quality measurements are conducted, no matter how
good models are used, it is not possible for air quality models to predict accurate results
without a good emission inventory. Therefore, consistent, low uncertainty and
comprehensive emission inventories should be compiled for the Eastern European
countries, including Turkey. Development country specific EFs is the preliminary step
of emission inventory development. Access to activity data used in these studies
should be facilitated in order to make room for calculation of the representative EFs
easily.
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EMISYONLARDAKI BELIRSIZLIiGIN HAVA KALITESI MODEL
TAHMINLERINE ETKIiSINIiN HESAPLANMASI

OZET

Hava kalitesi modelleri tarafindan yapilan tahminler, 6zellikle kimyasal taginim
modellerinde, tiim grid hacmindeki ortalama kirletici degerini verir. Kimyasal taginim
modellerinin tahminleri Ol¢limlerden farkli olabilir. Bunun doért nedeni vardir; 1)
Olciimlerdeki dogal veya stokastik degiskenlik, 2) modelin fizik veya kimyasal
hesaplamalar1 asamasinda yapilan bazi varsayimlardan kaynakli hatalar, 3) modele
girdi olarak verilen degiskenlerdeki belirsizliklerden kaynakli hatalar, 4) sayisal
hatalar. Burada bahsi gecen “degiskenlik” terimi, verilerin birbirinden ne kadar
farklilagtigini ifade etmek i¢in kullanilir ve genellikle varyans ve standart sapma gibi
istatistiksel metrikler yardim ile agiklanir. Bu nedenle ilk maddede belirtilen dogal
veya stokastik nedenlerden kaynakli hatalar “degiskenlik” bashgr altinda
diistintilebilir. “Belirsizlik” terimi ise bir seyin gercek degeri ile ilgili bilgimizin
eksikligini ifade eder. Daha iyi veya daha ¢ok veri kullanilmas1 durumunda belirsizlik
azaltilabilirken, degiskenligin azaltilmasi miimkiin degildir. Yukarida bahsi gegcen
belirsizligin dort nedeni arasinda, modele girdi olarak verilen degiskenlerdeki
belirsizlik, genellikle diger nedenlere kiyasla en biiyiik etkiyi gosterendir.

Bu ¢alismanin amaci, verilerdeki hatalardan kaynakli belirsizligin hava kalitesi model
tahminlerine etkisinin degerlendirilmesi ve hesaplanmasidir. Bu kapsamla modellerin
kotii performans vermesinin nedeninin yetersiz veriden kaynaklandiginin kanitlanmasi
gerekmektedir. Literatiirde modellerin 6zellikle Dogu Avrupa iilkelerinde kotii sonug
verdigi bilinmektedir. Bu problemi, genis kapsamli bir hava kalitesi modelinin
sonuclarini inceledigimizde gorebiliriz. Fakat modellerin bu kétii performanslarinin
nedeni olarak, modellere verilen girdilerin biiyiikk oranda sorumlu olduklarini
sOyleyeceksek daha detayli bir calismaya ihtiyactmiz olur. Ciinkii, bilindigi gibi,
modellerin k&tii tahmin etmesinde verilerin diginda baska nedenler de bulunmaktadir.
Bu ¢alismanin ilk kisminda, modeller aras1 degigkenligi gormek i¢in uluslararasi bir
proje olan AQMEII projesine katilarak, bir ¢oklu-model yaklasimi kullanilmas,
boylelikle bu problemin nicel olarak tanimlanmasi saglanmistir. Calismanin ikinci
kisminda ise envanterlerin Tiirkiye’deki belirsizliginin bu probleme katkisini
anlayabilmek i¢in ulusal bir proje kapsaminda yapilan Olglimler kullanilarak
Tiirkiye’ye 0zgii emisyon faktorleri tiiretilmis, olasiliksal bir emisyon envanteri
gelistirilmis ve belirsizlik analizleri yapilarak literatiirle kiyaslanmistir.

AQMEII-3 isminde uluslararasi projenin bir parcasi olarak, Avrupa’nin farkl
iilkelerinden 12 modelleme grubu ile is birligi yapilmis, tiim Avrupa kitasini kapsayan
(toplam 34 iilke) 18 ayr1 model ¢aligmasi yapilmistir. 2010 y1l1 baz alinarak yapilan bu
caligmada, 7 farkli hava kalitesi modeli, 3 farkli meteoroloji modeli ve 2 ayr1 emisyon
envanteri kullanilmigtir. Amerika Cevre Ajanst (EPA) ve Avrupa Ortak Arastirma
Merkezi (European JRC) liderliginde diizenlenen AQMEII-3 projesine bu ¢alisma
kapsaminda ilk defa Tiirkiye’den katilim saglanmistir. Bu projenin en 6nemli
yararlarindan biri, tiim gruplarin model sonuglarinin ortak bir platform yardimiyla
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ulagilabilir olmasidir. Bu tez kapsaminda model performanslariin degerlendirilmesi
asamasinda, Avrupa kitasinda bulunan 1431 tane hava kalitesi dl¢lim istasyonu igin
performans metrikleri hesaplanmis, sonra da harita lizerinde gdosterilmistir. Model
performanslarinin mevsimsel degerlendirmeleri i¢in ise Taylor diyagramlarindan
faydalanilmustir.

Su ana kadar, Tiirkiye icin ¢esitli hava kalitesi modelleme calismalar1 yapilmstir.
Fakat bu ¢aligmalarin genellikle bir sehir veya bir bolge i¢in, birkag giin ile birkag¢ ay
arasinda bir zaman 6lgegi i¢in veya genellikle tek bir hava kalitesi modeli kullanarak
yapildig1 goriilmustiir. AQMEII-3 projesinin genis bir alan1 kapsamasi (Avrupa kitast)
ve pek ¢ok farkli modelin katkist nedeniyle, bu calismada sorunu tanimlamak igin
genis bir bakis acisiyla bakilabilmis ve bir 6rnek yardimiyla bir ¢6ziim Onerisinde
bulunulmustur. Bu ¢6ziim 6nerisinde, detayli bir istatistiksel yaklagim benimsenerek
Tiirkiye’de heniiz yapilmamus titizlikte bir envanter ¢alismasi yapilmistir. Bu amacla
Tiirkiye’deki enerji liretim tesisleri i¢in lilkeye 6zgii emisyon faktorleri hesaplanmus,
Marmara Bolgesindeki enerji tesisleri i¢in bir envanter olusturulmustur. Bu
asamalarda belirsizlik hesaplar1 i¢cin Monte Carlo ve Bootsrap yaklagimlar
benimsenmistir.

Bu tezin modelleme kisminin sonuglarina gére, Dogu Avrupa iilkelerinde modellerin
PMj 6l¢iimleri ile korelasyonu Bat1 Avrupa lilkelerine kiyasla %8 daha azdir. Dogu
Avrupa iilkelerindeki ortalama hata (BIAS), Bat1 Avrupa iilkelerinin 2.5 katidir. Dogu
Avrupa iilkelerinde hatalarin ortalama kare kokii (RMSE) Bati Avrupa iilkelerinden
%90 daha fazla iken, mutlak hatalarin ortalamasi (MAE) %99, normalize hatalarin
ortalamasi (MNE) ise %25 fazladir. Bu sonuglardan da goriildiigii izere, Dogu Avrupa
iilkeleri i¢in modeller tarafindan yapilan tahminler, 6l¢iimlerden oldukg¢a farklidir.

Bir Dogu Avrupa iilkesi olan Tiirkiye, tiim modeller tarafindan hesaplanan en kotii
sonuglardan birine sahiptir. Tiirkiye’deki istasyonlarda tiim modeller -40 pg/m?
ortalama hata (BIAS) ile tahmin yapmaktadir ve bu deger bu calisma kapsaminda
dikkate alman 34 Avrupa iilkesi i¢indeki en kotii degerdir. Ustelik, Tiirkiye’deki
istasyonlarin  %80’inde modeller Ol¢limlerden bu kadar farkli tahmin ederken,
birbirlerine de o derecede yakin tahminler yapmaktadir. Istasyonlarin %80’inde
mutlak hatalarin ortalamasi (MAE) 20 ug/m*’iin tizerindedir. Kalan %20’lik kisim,
Tiirkiye’deki 101 tane istasyonun 18 tanesine tekabiil etmektedir ve bu istasyonlarin
¢ogunun Istanbul’da, bir kisminin da Tiirkiye’nin baska biiyiik sehirlerinde oldugu
goriilmiistiir. Zaten model sonuglar1 incelendiginde, modellerin kiigiik sehirlere
kiyasla biiytik sehirlerde daha iyi tahmin yaptig1 goriilmiistiir. Bunun nedeni, envanter
hazirlanmas1 asamasinda biiylik sehirlerdeki emisyon kaynaklarina ait verilere daha
kolay ulasilmas1 olabilir.

Modellerin mevsimlere gore performanslart incelendiginde, emisyonlarin genellikle
yaz aylarinda kig aylarina gore daha iyi tahmin edildigi goriilmiistiir. Bu fark, ki
aylarinda artan 1sinma ve trafik emisyonlarinin model girdilerine yetersiz
aksettirilmesi nedeniyle olabilir. Bu durumda, modele verilen girdilerin model
tahminlerini oldukga etkilediginden sliphelenmek mantiksiz olmaz.

Bu calismada, model girdileri zayif model tahminlerinin bir nedeni olarak kabul
edilmektedir. Elbette, modelin kendisinden veya olgiimlerdeki hatalardan veya
hepsinin birlesiminden kaynakli problemler de buna neden olabilir. Bu ¢aligmada, 13
farkli grup tarafindan calistirilan 6 farkli hava kalitesi modeli kullanildig1, bazen aym
modelin farkli gruplar tarafindan da ¢aligtirildig: bilindigi i¢in, modelin kendisinden
kaynakli hatalarin kapsam disinda oldugu diistintilmektedir. Birbirlerinden farkli
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model konfigiirasyonlarina sahip olmalarina ragmen tiim modellerin Bati Avrupa’da
iyi tahmin yaparken, Dogu Avrupa’da Olglimlerden oldukc¢a farklt olmalari,
modellerden kaynakli problemlerin  kotii  tahminlerde baskin  olmadigini
gostermektedir. Bu ¢calismanin kapsamina dahil olan 6l¢lim istasyonu sayisi ¢cok fazla
oldugu i¢in, 6l¢iimlerden kaynakli hatalarin da kotii model tahminlerinde baskin
oldugu diisiiniilmemektedir. Ayrica, Ol¢lim istasyonlarinda olabilecek sistematik
hatalarin da, ayn1 anda pek c¢ok istasyonda olamayacag: diisiiniilmektedir.

Hava kalitesi modellemesinde kullanilan bir emisyon envanterinin kalitesi,
belirsizliginin diisiik olmasi ve kapsadig1 kaynaklarin yeterliligi ile iliskilidir. Yerinde
Olgtimler ve tam aktivite verisi olduk¢a, emisyon envanterleri nihai degere yaklasir.
Bu calismada, ulusal bir proje olan KAMAG projesi kapsaminda, iilkeye 06zgii
emisyon faktorlerinin gelistirilmesi ve miimkiin olan en tutarli veri ile emisyon
envanterinin hazirlanabilmesi amaciyla yerinde 6l¢iimler yapilmistir. Emisyon yayan
tesislerin yetkilendirdigi firmalar tarafindan hazirlandig i¢in giivenilirligi tartigmali
olan resmi emisyon 6l¢iim raporlar1 da kiyaslama amaciyla kullanilmigtir. Caligmanin
bu kisminda iilkeye 6zgii CO, SO2, NO, NO2 ve NOx emisyon faktorleri, 1slak/kuru
tabanl biiylik komiir yakma kazanlari, akigkan yatakl biiylik komiir yakma kazanlari,
dogalgaz yakan orta 6l¢ekli yakma kazanlar1 ve gaz yakit yakan gaz tlirbinlerinin her
biri i¢in ayr1 ayr1 hesaplanmustir.

Emisyon faktorlerinin, kirletici kaynaklari popiilasyonundan olugsan emisyonlarin
ortalamasini temsil ettigi varsayilir. Fakat rastgele ornekleme hatasi, 6l¢lim hatalar
veya Ornek olarak secilen popiilasyonun emisyon faktorii gelistirmek i¢in temsil edici
olmadigi durumlarda ortalama emisyonlarda belirsizlik artabilir. Ilk iki neden,
genellikle popiilasyon ortalamasinin tahmininde yanlighiga yol agarken, ii¢lincii neden
ortalama hatanin (BIAS) artmasimna veya sistematik hataya neden olabilir. Bu
hatalardan kag¢inmak icin, Oncelikle envanterdeki belirsizligin anlasilmasi ve
hesaplanmas1 gerekmektedir. Bu ¢alismanin son kisminda, degiskenlik ve belirsizligin
detayli istatistiksel analizi yardimiyla olasiliksal bir emisyon envanteri gelistirilmistir.

Belirsizligin degerlendirilmesi i¢in tutarli bir prosediir gelistirilmesi, bilim insanlar
arasinda hala gelistirilmekte olan bir konudur. Bu ¢alismada uygulanan Monte Carlo
analizi ile Bootstrap metotlarin1 birlestiren belirsizlik analizi yontemi, olasiliksal
emisyon envanterlerinin gelistirilmesinde kullanilabilir. Hava kalitesine girdi olarak
verilecek emisyon miktarinin hangi degerler arasinda olacagi bilindiginde, model
sonucunun da olasilig1 bilinebilir. Bdylelikle ©6rnegin hava kalitesi yOnetimi
kapsaminda belirlenen bir hedef degere ulagsma olasilig1 da bu sekilde hesaplanabilir.

Istatistikte 6rnekleme hatasu, tiim popiilasyonu incelemek yerine, popiilasyonun kiigiik
bir boliimiinii temsil edici kabul ederek incelemenin neden oldugu bir hata tiirtidiir.
Ornekleme hatasi, bir popiilasyon parametresini tahmin etmek icin kullanilan &rnek
bir istatistik ile bu parametrenin gercek ancak bilinmeyen degerinin farki alinarak
hesaplanir. Belirsizlik, bir sayinin gercek degeri ile ilgili bilgi eksikligi olarak ifade
edildigi icin, rastgele ornekleme hatasi bir 6rnekleme dagilimi ile ifade edilebilir.
Gergek dagilimi (F) bilinmeyen emisyon faktdrlerinin bulundugu bir veri setindeki
belirsizligi hesaplamak i¢in, bu veri setine literatiirde 6zellikleri bilinen bir dagilim
uydurulur (F). Uydurulan bu yeni dagilimin elimizdeki veri setine ne kadar uygun
oldugunu anlamak i¢in baz1 uygunluk testleri uygulanir. Daha sonra Monte Carlo
metodu kullanilarak uydurulan bu dagilim iizerinden rastgele veri setleri (Bootstrap
kopyasi) iiretilir, yani veri ¢ogaltilir. Calismanin Bootstrap simiilasyonu kisminda ise,
Monte Carlo yaklagimi tarafindan olusturulan alternatif olasilik modellerinin her biri
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(Bootstrap kopyasi), dagilimin persentil degerleri istikrarli bir sekilde stabil oluncaya
kadar simiile edilir. Sonra parametreler (*) tahmin edilir. Bu ¢alismada, 6’nin tahmin
edilmesindeki belirsizlik, rastgele 6rnekleme hatas1 da denilen 8*’m dagilim ile ifade
edilmistir. Bir istatistik i¢in gliven aralifi, istatistigin gercek degeri ile ilgili bilgi
eksikliginin bir dl¢iisiidiir. Sonraki asamada uydurulan kiimiilatif dagilim fonksiyonu
icin giiven araligini hesap etmek amaciyla 8* verisi siralanir. Sonug olarak, elde edilen
sonuglarin orijinal veri seti ile kiyaslanabilmesini kolaylastirmak i¢in olasilik bandi
grafikleri olusturulmustur. Hesaplanan emisyon faktorleri EMEP ve EPA emisyon
faktorleri ile kiyaslanmaigtir.

Bu calismanin sonuglarina gore, yakma tesisleri i¢in hesaplanan iilkeye 6zgii toz
emisyon faktorleri literatiire gore olduk¢a disiiktiir. Bu caligma kapsaminda
hesaplanan tilkeye 6zgii emisyon faktorleri ve literatiir arasindaki bu biiyiik farkliligin
nedeni, Tiirkiye'deki enerji liretim tesislerinde toz azaltim teknolojilerinin genis
kullanim1 nedeniyle olabilir. Her ne kadar son yillarda, baca gazlari ile ilgili istisnai
diizenlemeler olsa da, bu tezin baz aldig1 2010 ve 2012 yillarinda bu tesislerin
caligmasi i¢in bu azaltim teknolojilerini siki bir sekilde uygulamalar1 beklenmekteydi.

CO ve SO; emisyon faktorleri, biiyiik komiir yakma tesislerinde ve gaz yakith gaz
tirbini kullanan tesislerde emisyon izin raporlarindan hesaplanan emisyon
faktorlerinden, EMEP ve EPA emisyon faktorlerinden 6nemli 6l¢lide daha biiytiktiir.
Fakat tim emisyon faktorleri icin hesaplanan belirsizlik, EMEP emisyon faktorlerinin
belirsizliginden oldukga diisiiktiir. Ulkeye 6zgii NOx emisyon faktorii literatiirdeki tiim
caligmalardan yiiksek, belirsizlik aralig1 ise hepsinden kiigtiktiir. Sonugta, iilkeye 6zgii
hesaplanan emisyon faktorlerinin belirsizliginin diisiik oldugunu goriiyoruz. Burada
bahsi gecen belirsizlik icin “degigkenlikten kaynakli belirsizlik” terimini de
kullanabiliriz. Ciinkii her 6l¢iim aslinda ayni ¢ikmasi beklenen bir sonucun gesitli
nedenlerle degisiklige ugramasi sonucu degismisti ve bu da nihai emisyon faktoriiniin
belirsizligini artirmigtir.

Ulkeye 6zgii emisyon faktdrleri hesaplandiktan sonra, bir sonraki adim Marmara
Bolgesindeki elektrik santralleri i¢in bir emisyon envanteri hazirlamak ve mevcut
emisyon envanterleri ile karsilastirmaktir. Halen hava kalitesi modelleri tarafindan en
yaygin kullanilan emisyon envanterleri TNO-MACC ve EDGAR-HTAP emisyon

envanterleridir. Bu iki emisyon envanteri AQMEII-3 projesinde de kullanilmistir.

Bu calismada Tiirkiyenin Marmara bolgesi i¢in 57 tane enerji iiretim tesisi
belirlenmistir, fakat EDGAR-HTAP emisyon envanterinde 34 tane, TNO-MACC
emisyon envanteri de 19 tane enerji iiretim tesisi bulundugu goriilmiistiir. Zaten
Tiirkiye’nin diger bolgelerinde de ayn1 Marmara bolgesinde oldugu gibi, EDGAR-
HTAP emisyon envanteri TNO-MACC emisyon envanterinden daha fazla sayida tesis
bulundurmaktadir. Sadece bu sayilara bakarak EDGAR-HTAP emisyon envanterinin
Tiirkiye’deki tesisleri icermesi bakimindan daha kapsayict oldugu ama yeterli
olmadig1 sdylenebilir. Ornegin, Dogu Anadolu Bélgesi igin TNO-MACC
envanterinde hi¢ tesis yokken, EDGAR-HTAP envanterinde tesisler oldugunu
goriiyoruz. Sonugta, bu calismadaki tesis sayisina bakildiginda her iki envanterde de
onemli sayida tesisin envantere eklenmedigi goriiliiyor. Ayrica bu envanterlerde bazi
tanimlanamayan tesisler de mevcuttur.

Bu ¢alisma kapsaminda hesaplanan emisyon envanteri sonuglarina gére, Marmara
Bolgesindeki enerji tesislerinden 93,000 ton/yi1l NOx emisyonu agiga c¢ikmaktadir.
Gliven araliginin alt sinir1 69,000 ton/yil, iist smir1 da 114,000 ton/yil olarak
hesaplanmistir. Ayn1 emisyon envanteri bu defa EMEP emisyon faktorleri kullanilarak
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hesaplandiginda NOx emisyonlar1 60,000 ton/y1l olarak bulunmustur. Bunun giiven
araligmin alt sinir1 33,000 ton/y1l, st siir1 da 90,000 ton/y1l olarak hesaplanmustir.
Gorildugi tizere, bu ¢alisma kapsaminda hesaplanan NOx emisyon envanteri, EMEP
ile hesaplananin {ist giiven aralig1 sinirindan bile fazladir. TNO-MACC envanterinde
ayni tesisler icin verilen 24,000 ton/yi1l, EDGAR-HTAP tarafindan verilen 42,000
ton/y1l NOx emisyonundan ise belirgin sekilde fazladir. Bu calisma kapsaminda
hesaplanan NOx emisyon envanteri, TNO-MACC emisyon envanterinden %387 daha
fazla, EDGAR-HTAP emisyon envanterinden ise %221 daha fazladir.

Marmara Bolgesindeki enerji tesislerinden 152,379 ton/yi1l SO; emisyonu agiga
cikmaktadir. Ayn1 emisyon envanteri bu defa EMEP emisyon faktorleri kullanilarak
hesaplandiginda SO> emisyonlar1 170,596 ton/y1l olarak bulunmustur. Bunun nedeni,
komiir yakma tesisleri i¢in bulunan iilkeye 6zgii SO2 emisyon faktdriiniin, EMEP
emisyon faktoriinden kiigiik olmasidir. TNO-MACC emisyon envanterinde SO»
emisyonu 69,000 ton/yil iken, EDGAR-HTAP emisyon envanterinde 125,000
ton/y1ldir. TNO-MACC emisyon envanterinde 4 tane biiylik linyit yakan tesisin
olmadigi1 ve bu tesislerin TNO envanterinde bu ¢alismaya gore yaklasik 73,500 ton/y1l
SO2’nin daha az hesaplanmasmna neden oldugu gorilmistir. TNO-MACC
envanterinde eksik olan 1000 ton/y1l SO emisyonu ise, TNO-MACC envanterinde
olmayan 40 tane dogalgaz yakma tesisinden kaynaklanmaktadir. Sonug olarak, bu
calisma kapsaminda hesaplanan SO> emisyon envanteri, TNO-MACC emisyon
envanterinden %220 daha fazla, EDGAR-HTAP emisyon envanterinden ise %121
daha fazladir.

Bu ¢alismada hesaplanan NOx emisyon envanterinin belirsizlik araligi alt sinir1 %26
iken, list sinir1 %23 e ulagsmaktadir. Ayni emisyon envanteri EMEP emisyon faktorleri
ile hesaplandiginda envanterin belirsizlik aralig alt sinir1 %45 iken, iist sinir1 %48’e
ulagsmaktadir. Gorildigii gibi, ililkeye 0Ozgii emisyon faktorlerinin kullanima,
literatiirdeki emisyon faktorlerinin kullanimina gore belirsizligi yaklasik olarak yari
yartya diisiirmektedir. Bu fark NOy emisyon envanterinde SO, ve CO emisyon
envanterlerine gore daha baskindir, ¢linkii dogal gaz yakan enerji santrallerinin sayisi
fazladir (Marmara bolgesindeki 57 tesisten 48°1).

Bu caligma ile, TNO-MACC ve EDGAR HTAP emisyon envanterlerinin Marmara
Bolgesindeki enerji tesislerine ait emisyonlar1 yansitmakta yetersiz kaldigi
kanitlanmistir.  Genellikle enerji tesislerine ait bilgiler, envanter derleyicileri
tarafindan en kolay ulagilan bilgiler arasindadir. Bu tesislere ait emisyonlarda dahi
boyle biiylik farklarin olmasi, TNO-MACC ve EDGAR-HTAP emisyon
envanterlerinin tamaminin giivenilirli§i konusunda siipheleri giiclendirmektedir.
Zaten bu durumda hava kalitesi model sonuglarinin tiim Avrupa iilkeleri arasinda
neden Tiirkiye’de ve Dogu Avrupa iilkelerinde, en kotii sonuglart verdigi de
hesaplamalar yapilarak agiklanmigtir.

Ne kadar ¢ok hava kalitesi 6l¢iim noktasi olursa olsun, ne kadar hatasiz 61¢iim yapilirsa
yapilsin ve ne kadar iyi performansli modeller kullanilirsa kullanilsin, hava kalitesi
modellerinin iyi bir emisyon envanteri olmadan dogru sonuglar1 tahmin etmesinin
miimkiin olmadig: aciktir. Bu nedenle, Tiirkiye de dahil olmak {izere Dogu Avrupa
iilkeleri icin tutarl, belirsizligi disik ve kapsamli emisyon envanterleri
olusturulmalidir. Ulkeye 6zgii emisyon faktorlerinin gelistirilmesi, emisyon envanteri
hesaplarinin 6n basamagidir. Bu amagla, yapilan Ol¢limlere ek olarak aktivite
verilerine ulasmak kolaylastirilmalidir.
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1. INTRODUCTION

Air pollution is defined as the presence of substances including gases, particles, and
biological molecules in the air in the levels that are detrimental to human health and
the planet as a whole. SO, O3, PM, NOy, Pb and CO are called as criteria air pollutants,
and these are the only air pollutants with national air quality standards (NAAQS) that

define allowable concentrations of these substances in ambient air [1].

Air pollution problems started to come into consideration after industrial revolution
which leaded to industrialization near cities and increasing population in those areas
due to rural-urban migration. Demand for more energy and natural resources are
increased with increasing industrialization and population. Thus, more power plants,
industrial plants are needed to fulfil needs of new strongly urbanized cities.
Furthermore, residential heating and number of vehicles increased. Entire of those are
the anthropogenic sources of air pollution. Therefore, air pollution has started to be

one of the most important problems in industrialized and urban areas.

Air pollution significantly impacts human health. Short term air pollution is associated
with sudden increases in air pollution concentrations where it causes to short-term
changes in health, which have typically been associated changes in mortality, hospital
or emergency room admissions, incidence, duration or exacerbations of respiratory
and other symptoms, and changes in lung function indices [2]. Long term air pollution
is associated with continuous and high air pollution levels which cause long term
exposure to pollutants. Mortality associated with air pollution is about 15 to 20 percent

higher in cities with high levels of pollution compared to relatively cleaner cities [3]-
[5].

Short term or long-term air pollution depends on many factors including discharging
amount of the emitting source or local meteorological conditions. Generally short-term
air pollution is affected from many different factors such as sudden industrial
production increases, malfunction in stack gas control equipment, industrial accidents,

and high traffic load in rush hours or meteorological conditions. Short term air



pollution can grow to long term air pollution when meteorological conditions (such as
inversion or calm weather conditions) are feeding short term air pollution and there is
a continuous high pollutant emitting sources. Furthermore, meteorological conditions
are capable of making long term pollution for instance when there is continuous long-

range transport of the pollution.

Ambient particulate matter (PM) pollution is one of the priority air pollution problems
and causes a wide range of diseases that lead to a significant reduction in human life
as it can be suspended over long time and travel over long distances in the atmosphere
[6]. The size of particles has been directly linked to their potential for causing health
problems. Inhalable coarse particles have 50% passing yield from a permeable matter
has 10 micrometres (um) or less aerodynamic diameter (PMio), and it is most
consistently been associated with short-term health effects in mortality [3]-[4]. In the
literature there are many epidemiological studies which revealed the associations
between exposure to PMio and increasing risk of adverse effects on human health
[6]-[8]. Inhalation and penetration of PM into the lungs and bloodstream can lead to

respiratory, cardiovascular, immune, neural systems problems as well as lung cancer
[5].

PMio is emitted into the surrounding air by anthropogenic sources such as industrial
combustion, power plants, quarrying, heavy traffic, house fire burning, or in natural
ways as fine dust, volcanoes, salt spray and secondary particles formed in the air due
to chemical reactions. Beyond emitting from a specific source, it can be transported
from a more polluted area or can be formed from chemical reactions in the atmosphere
(secondary pollutants), accumulated in an area with the help of the meteorological
conditions, and finally causes visible air pollution. According to Karagulian F. et al.
[9], the principal sources of airborne PMj in Central and Eastern Europe are domestic
fuel burning (45%), unspecified source of human origin which is mostly attributed to
secondary particles formed from unspecified pollution sources of human origin (26%),
industrial emissions including energy production (18%), traffic emissions (8%) and
natural sources such as dust and sea salt emissions (3%). According to same study, for
Turkey, percent contribution of the sources to urban ambient PMi¢ concentrations are
summarized as 39% from unspecified source of human origin, 29 % is from industrial
sources including energy production, 16% is from traffic emissions and remining 16%

is from natural sources (dust and sea salt emissions). Percent contribution of industrial



sources (including energy production) in Turkey to airborne PMjo is highest when

compared to percent contribution of industry in all other regions of the world [9].

According to European Environment Agency (EEA) the annual limit value (the 35-
day acceptable limit is 50 pg /m?) for PMio (applying from 2005) was exceeded most
often in Poland, Italy, Slovakia, the Balkan region, Turkey and also in several urban
regions [5]. For instance in 2013, Budapest (Hungary) experienced high levels of air
pollution 76 days beyond the 35-day acceptable limits (50 ug /m?) of EU, where Rome
(Italy) had 39 days, Berlin (Germany) had 31 days, Paris (France) had 14.5 days,
Pernik (Bulgaria) had 180 days beyond that target level [10][11]. According to the data
obtained from Ministry of Environment and Forestry of Turkey [12], in 2018, the 35-
day acceptable limit value (50 ug /m®) was exceeded 52 days beyond the 35-day limit
value in Istanbul, 137 days in Bilecik, 234 days in Bursa, 69 days in Canakkale, 98
days in Edirne, 31 days is Kirklareli, 40 days in Kocaeli, 180 days in Sakarya, 47 days
in Tekirdag and 11 days in Yalova. As in other some cities in Europe, cities of Turkey
also experience high number of days with daily average PMo concentrations beyond
the limit value. All given cities are located in Marmara region of Turkey, which is the

region of Turkey considered in the upcoming parts of this study.

According to the data obtained from World Health Organization (WHO) [13], there
are 418 cities over 2965 cities in the world with an average annual PM o concentration
more than 50 pg/m?, and 211 of them is from China, 47 is from Iran, 44 is from Turkey,
29 is from India and 22 is from Chile. When regions of the world considered, 66 cities
are from Eastern Mediterranean region, 57 cities are from Europe, 35 cities are from
South-East Asia, 221 cities are from Western Pacific countries (China, Philippines,
Korea, Vietnam, Mongolia), 36 cities are from America region have more than 50 pg
/m? annual average PMjo concentration. Annual average PMio concentration is more

than 50 pg /m? in 56 cities of Europe and 44 cities of these are from Turkey, in 2016.

As it is clear from these statistics derived from several international organizations,
PMjj is a global problem. At the same time, although Europe cities experience episodic
PMi concentrations, Turkey suffers from long term high PMi concentrations in more
than half of its cities. For instance, as annual average PM o concentrations, Igdir ranks
106™ worst among 2965 cities in the world with an annual average PM o concentration
as 100 pg/m® in 2016, where Artvin, which has the best annual average PM
concentration in Turkey as 16.8 pg /m? in 2016 and ranks 894" best city in the world.



However, SO2, CO and NOj should also be taken into account when talking about air
quality. In order to deal with this problem, air quality management plans are developed

in all Europe, also in Turkey.

Air quality management

Air quality management refers to the all activities applied by regulatory authorities for
protecting human health and the environment from the harmful effects of air pollution
by a dynamic process [14]. As it is given in Figure 1.1, air quality management process
starts with establishment of the acceptable level of the goals for the pollutants in the
air, then followed by determination emission reductions. Emission inventories, air
monitoring and air quality models are used in the decision-making process of the goals.
After development of emission reduction programs, they applied via regulations and
other instruments. Results of the programs are evaluated periodically by means of
observations and modelling studies for checking if air quality goals are being met. All
these processes are contributed by scientific studies with essential understanding of
how pollutants are emitted, transported and transformed in the air and their effects on

human health and the environment.

Observations
Establishing goals &- — Emission
\. Inventory
l N Modelling
Determine emission
reductions
Develop emission
reduction programs
Implementing
programs
l _ Observations
Evaluation of the ‘
results Receptor
Modelling

Figure 1.1 : Air quality management procedure.

Air quality monitoring
A critical component of air quality management is air quality measurements. The

measurements are compared to emission standards which allow to set-up controlling



procedures when measurements are more. However, measurements give an idea of the
point measured, where air quality management is considered in spatially wide
locations in terms of cities, countries or regions. Number of measurement stations are
vital in that point in order to ease spatial evaluation of air quality. However, setting up
a dense measurement network is expensive; therefore, their spatial resolution is
generally insufficient to qualify them as the real world. In Turkey there are 310
measurement station (1 station per 2527 km?), which seems a high enough number,
however it should be considered that urban environmental pollution can extremely
change according to space. There are some receptor models which use statistics (such
as Chemical Mass Balance - CMB - Model and Positive Matrix Factorization - PMF -
Model) for concentrations in an area by using air quality measurements, however these
models do not effective in large domains and generally used for source apportionment
studies [15][16]. Although space measurements supply spatial coverage (not working
well in cloudy areas), they also have some limitations due to its measurement
technique which considers the number of particles in a column (Aerosol Optical Depth,
AOD) which then makes hard distinguishing surface air quality data in the column,
furthermore, temporal resolution of satellite measurements is limited [ 17]. Besides, air
quality measurements have uncertainties due to calibration or measurement device
problems. Hence, air pollution measurements give quantitative information about
ambient concentration and deposition of pollutants, but they are limited in spatial and
temporal coverage, therefore they are limited in identifying the causes of the air
pollution problem. Air quality management requires spatial-temporally wide data,
therefore there is a need for representing atmospheric composition and identify

possible contribution of sources, then there is a need for air quality modelling.

Air quality modelling

Air quality modelling is a method which provides information on air quality on the
basis of what we know of the emissions of chemical species, and of the atmospheric
processes that lead to pollutant dispersion (meteorology), transport, chemical
conversion and removal from the atmosphere by deposition [18] by representing
physical and chemical processes in the atmosphere [19]. Air quality models (AQMs)
are important because they integrate our understandings of the complex processes that
affect the concentrations of pollutants in the atmosphere. The other important role of

air quality model (AQM) is its help to design of emission control strategies that are



being developed to improve air quality [1] which has a direct impact on public health.
Furthermore, by models, it is possible to quantify the contribution of an existing or
planned emission source to air quality, or investigation the impact of alternative future
emission scenarios on air quality, which is important for supporting air quality
management. This makes air pollution models an invaluable tool in regulatory,
research, and forensic applications [20]. Therefore, AQMs have been widely used in

air quality management.

Large number of air quality models are developed in the literature and still research
projects in this area are undertaken. Although there are several AQM classifications,
in this part of study, the broad classification of Juda-Rezler K. [21] according to the
basic model structure will be given here. Air quality models can be classified into two,
which are nondeterministic and deterministic models. Nondeterministic models can be
further divided into two groups which are statistical and physical models. The
statistical model calculates concentration by statistical methods from meteorological
and other parameters after the statistical relationship has been obtained empirically
from measured concentrations. The physical model is one in which nature is simulated
on a smaller scale in the laboratory, e.g., in a wind-tunnel. The statistical are very
useful for short-term forecast of concentrations, and the physical models are of use if
specific processes are being considered, e.g., influences of topography on the mean
airflow. Deterministic models calculate the concentrations from an emission inventory
and other independent, mostly meteorological, variables according to the solution of
various equations which represent the relevant physical processes. In most cases, they
use solutions of the turbulent diffusion equation derived in several ways and under
different assumptions. The deterministic models are most suitable for long-term
planning decisions. Deterministic models are divided into two categories which are
closed form analytical models and numerical models. Closed form analytical models
solve turbulent diffusion equation under a set of simplifying equations such as
accepting steady state conditions and homogenous flow. Gaussian plume/puff models
are closed form analytical models and due to these assumptions, they are simple, and
can be applied for shorter distances (~10 km) and shorter travel times (~2 hours) with
low computational cost. Numerical models are divided into two by First order-closure
(K-Theory) models and Second order-closure models. First-order-closure (K-Theory)

models use the gradient transfer theory (K-theory) [22], in order to solve turbulent



diffusion equation and those models are classified according to consideration about
movement of air parcel and gridding system, which are Eularian grid, Lagrangian
trajectory, hybrid Lagrangian-Eularian and Random-Walk (Monte-Carlo) trajectory
systems. Numerical models are time-dependent; their structure allows space and time
variations in the field of meteorological parameters, as well as the concentration field.
Therefore, numerical models are capable of handling a much wider variety of air
pollution problems than the analytical ones. In this study, we will focus on Eularian
models, since the models included in this study are Eularian models. However, there

is a need for clarifying Eularian models by comparing it with Lagrangian models.

According to Seinfeld and Pandis [19], in Lagrangian approach, an air parcel is
considered and changes in the chemical composition of this air parcel is simulated as
it is moved with the local wind in the atmosphere continuously. So, the model actually
simulates concentrations at different locations at different times. In Lagrangian
models, there is no mass exchange between the air parcel and its surroundings, with
the exception of species emissions that are allowed to enter the parcel through its base.
On the contrary of the first approach, Eulerian model simulates concentrations in each
fixed location which is shown with an array of fixed computational cells in space.
Species enter and leave each cell through its walls, and the model simulates the species
concentrations at all locations (cells) as a function of time. The Eulerian description is
the common way of treating heat and mass transfer phenomena. The two approaches
yield different types of mathematical relationships for the species concentrations that
can, ultimately, be related. Each approach has its own advantages and disadvantages.
The main advantage of Lagrangian model is the simple numerical treatment of the
transport term in the mass balance equation, however, the main disadvantage is
neglecting exchange processes between the air parcels and wind shear which makes
three dimensional Lagrangian models not very reliable [23]. In the Eularian models,
numerical solution of the transport term becomes more difficult and often requires
substantial computational resources to be accurate. However, the main advantage of
the Eularian models is the well-defined three-dimensional formulation that is close to
real-life and clearly needed for the complex air pollution problems [24]. Most
commonly used Eularian, three-dimensional grid based, large scale AQMs in Europe
are Community Multiscale Air Quality Model (CMAQ) [25], Weather Research and
Forecasting Model coupled with Chemistry (WRF-Chem) [26], Comprehensive Air



Quality Model with Extensions (CAMXx) [27], Multi-scale chemistry-transport model
for atmospheric composition analysis and forecast (CHIMERE) [28], LOTOS (LOng
Term Ozone Simulation)-EUROS (EURopean Operational Smog model), [29], and
Danish Eulerian Hemisphere Model (DEHM) [30]. Entire of those models were used
in this study.

As it was explained in this part of study, air quality modelling gives a complete picture
of air quality in a zone in contrast to the limitations in the spatial coverage of air quality
measurements, temporal coverage of space measurements. However, monitoring data
are indispensable for inferring theories or parameters and calibrating or validating air
quality simulations, because there are uncertainties in model estimates due to
deficiencies in our knowledge of emissions and atmospheric processes. No matter how
good the science is in an AQM, there will always be uncertainties due to data input
errors and due to stochastic (turbulence) processes [31]-[34]. Hence, models don’t
predict exactly the real-values and this situation causes variability and uncertainties in
model predictions. According to United States (U.S.) Environmental Protection
Agency (EPA) [35], variability refers to the inherent heterogeneity or diversity of data
in an assessment. It is a quantitative description of the range or spread of a set of values
and is often expressed through statistical metrics such as variance, standard deviation,
and interquartile ranges that reflect the variability of the data. Variability cannot be
reduced, but it can be better characterized. Uncertainty refers to lack of knowledge
regarding the true value of a fixed but unknown quantity [36]. Uncertainty can be

reduced or eliminated with more or better data [35].

Uncertainties in AQM estimates

According to Fox D.G. [32] there are two types of uncertainties in AQM estimates,
inherent uncertainty and reducible uncertainty. Inherent uncertainty results from the
basic stochastic nature of the turbulent atmospheric motions that are responsible for
transport and diffusion of released materials. Reducible uncertainty (error) results from
improper or inadequate meteorological and air quality data inputs, and from
inadequacies in the models. Therefore, the inherent uncertainty can be considered as
variability [37]. Total model uncertainty is a sum of data errors, model errors and

stochastic uncertainty. Data errors and model errors belongs to reducible uncertainty.



The AQM, especially Chemical Transport Model (CTM), prediction represents an
ensemble mean over the entire grid volume. The CTM prediction differs from a point
observation because of four primary considerations: 1) inherent or stochastic
variability in the observations, 2) errors in model physics and chemistry assumptions,
3) errors due to uncertainties in model input variables, and 4) numerical errors [36].
Those differences cause uncertainties in model outputs. Among these sources,

emissions are regarded to have the largest levels of uncertainty [38 - 42].

Errors due to uncertainties in model input variables is the one, that might influence the
predictions in Eastern Europe due to uncertain inputs from Eastern Europe countries
where quality of emission inventories are low, therefore this study focuses on
quantifying the uncertainty AQM estimates due to emission inventories. A certain
emission inventory is a path to a more certain air quality prediction. The development
of a consistent procedure for the uncertainty evaluation is still a challenge for the

scientific community.

Several studies were conducted for different aspects of uncertainty issues in AQMs.
The first set of studies is related to integration of measurement uncertainty to model
evaluation. Since calculation of measurement uncertainties have strict and complex
guidelines [43], there were some attributes to calculate uncertainties of measurements
by using output of the models. Thunis et al. [43] and Pernigotti D. et. al. [44] proposed
performance criteria to evaluate AQMs for O3, PMjo and NO; based on measurement
uncertainty. Thunis et al. [45] proposal is based on the root mean square error between
measured and modelled concentrations divided by the measurement uncertainty, the
measurement uncertainty was assumed to remain constant regardless of the
concentration level. Then Thunis et al. [43] improved former model by quantifying all
possible sources of uncertainty for the particular case of O3. Based on these uncertainty
source quantifications, a simple relationship is proposed to formulate the measurement
uncertainty which is then used to update the former approach and modes performance
criteria proposed in Thunis et al. [43] with more accurate values. In the paper of
Pernigotti D. et. al. [44], the same approach is applied for NO2 and PMo, but using

different techniques for the uncertainty estimation.

The second set of studies is related with the evaluation of uncertainties originated from
emission inventories which is close to the subject of this thesis. Napelenok S. L. et al.

[46] presented a method and applied for evaluating an AQM’s changes in pollutant



concentrations stemming from changes in emissions while explicitly accounting for
the uncertainties in the base emission inventory. Specifically, the CMAQ model is
evaluated for its ability to simulate the change in ozone (O3) levels in response to
significant reductions in NOx emissions. The dynamic model evaluation (i.e., the
evaluation of a model’s ability to predict changes in pollutant levels given changes in
emissions) differs from previous approaches by explicitly accounting for known
uncertainties in the NOx emissions inventories. Uncertainty in three sectors of NOx
emissions is considered — area sources, mobile sources, and point sources — and is
propagated using sensitivity coefficients calculated by the decoupled direct method in
three dimensions (DDM-3D). The change in O3 levels between 2002 and 2005 is
estimated based on differences in the empirical distributions of the modelled and
observed data during the two years. Results indicate that the CMAQ model is able to
reproduce the observed change in daily maximum 8-hr average O3 levels at more than
two-thirds of air quality monitoring locations when a relatively moderate amount of
uncertainty (50%) is assumed in area and mobile emissions of NOx together with a
low amount of uncertainty (3%) in the utility sector (elevated point sources) emissions.

The impact of other sources of uncertainty in the model is also briefly explored.

Some other studies assessed uncertainty in local scale air quality modelling application
by applying the procedures for some case studies. Sax T. and Isakov V. [47]
established uncertainty analysis techniques to demonstrate a general method for
assessing variability and uncertainty in Gaussian air pollutant dispersion modelling
systems. To illustrate this method, they estimated variability and uncertainty in
predicted hexavalent chromium concentrations generated by welding operations at a
shipbuilding and repair facility in California. Using Monte Carlo statistical techniques,
they propagated uncertainty across both ISCST3 and AERMOD, and estimated the
contribution of variability and uncertainty from four model components: emissions,

spatial and temporal allocation of emissions, model parameters, and meteorology.

A framework to estimate the uncertainty of AQMs due to the uncertainties in input
parameters has been established by previous research work. Most of the research work
has used Monte Carlo simulations with randomly sampled model inputs according to
their probability distributions and then quantified the uncertainties of model outputs
(e.g. pollutant concentrations and sensitivities) by using the ensemble outputs obtained

from the Monte Carlo simulations [48]-[50]. However there are also analytical
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methods for quantifying uncertainty as discussed in the studies of Hanna [36], Rao

S.K. [37].

The quality of an emission inventory that will be used in air quality modelling is
associated with its low-level uncertainty and adequate coverage of the sources. Due to
transboundary structure of air pollution, there is a need for standardized delivery of the
emissions in order to ease evaluating all countries emission inventories in one pot. In
the literature there are several wide-coverage emission inventories which are reported
by many countries and regions in different platforms. Each inventory has different
uncertainty levels, which shows the quality of the inventories and they are presented
in various formats. Although uncertainty of an emission inventory affects uncertainty

of an AQM, it is calculated in a different way than uncertainty of AQM estimates.

In this part of the study, most commonly used and readily available emission
inventories for air quality modelling are summarized. Although there are several
emission inventories in the literature calculated by governments, non-governmental
organizations, companies or scientists for some countries or for specific cities, only

worldwide known and commonly used emission inventories are summarized here.

EMEP Emission inventory

The first international treaty to deal with air pollution is Convention on Long-range
Transboundary Air Pollution (CLRTAP) was signed by in 1979 in order to reduce the
amount of air pollutants destroying forests, causing fish loss in lakes and putting entire
ecosystems at risks in the Northern Hemisphere, which is identified as ‘acid rain’
problem [51], by the organization of the United Nations Economic Commission for
Europe (UNECE, founded in 1947). Over the years, the number of substances covered
by the Convention and its protocols has been gradually extended, notably to ground-
level ozone (O3), POPs, heavy metals and PM. Due to the transboundary structure of
air pollutants, the treaty was signed by 32 countries in 1979, now has 51 Parties [52].
The co-operative programme for monitoring and evaluation of the long-range
transmission of air pollutants in Europe, unofficially European Monitoring and
Evaluation Programme (EMEP), is a scientifically based and policy driven programme
under the CLRTAP for international co-operation to solve transboundary air pollution
problems. Centre on Emission Inventories and Projections (CEIP) is one of the five
EMEP centres. Emission inventories are prepared annually by the parties (signatory

countries) of CLRTAP for main pollutants (NOyx, NMVOCs, SOx, NH3, CO) and
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particulate matter (PMaz5, PMio, PMcoarse), heavy metals (Pb, Cd, Hg) and POPS,
(Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno (1,2,3-cd)
pyrene, Total polycyclic aromatic hydrocarbons, Dioxin and Furan,
Hexachlorobenzene, Polychlorinated biphenyls) under the Convention and submitted
to CEIP (available online from CEIP website [53]). Those emission inventories are
prepared officially according to the EMEP technical guidelines [54]. Gridded

emissions are also publicly available for AQM purposes.

Sectors covered in EMEP emission inventory are energy (combustion in energy,
manufacturing industries, road and non-road sources), fugitive emissions from fuels,
industrial processes and product use (mineral products, chemical industry, metal
production, solvent and product use, other industry production including pulp and
paper, food and averages industries, wood processing, production and consumption of
persistent organic pollutants (POPs), and bulk products’ consumption, storage
transportation and handling processes), agriculture, waste (waste treatment operations,

waste incineration, open burning etc.), natural and other sources.

IPCC Emission inventory

The United Nations Framework Convention on Climate Change (UNFCCC) collects
emission inventories supplied by the signatory countries of the convention. Gridded
emission inventories are prepared for specific years and emissions are spatially
distributed over the region of interest in order to use in AQMs. The regions are divided
into grids and emissions are distributed into those grids by using a mapping

background with special algorithms.

According to Intergovernmental Panel on Climate Change (IPCC) emission inventory
guidelines [55], the gases have global warming potentials, CO,, CHi, NO,
Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Sulphur hexafluoride (SFs)
and halocarbons covered in Montreal protocol and some other listed halocarbons are
included in IPCC emission inventory. Furthermore precursors, NOx, NH3, NMVOC
and SO; are also reported in [IPCC inventories. Greenhouse gas emission and removal
estimates are divided into main sectors, which are groupings of related processes,
sources and sinks: energy, industrial processes and product use, agriculture, forestry
and other land use, waste and other (e.g., indirect emissions from nitrogen deposition
from non-agriculture sources). Each sector comprises its own individual categories

(e.g., transport sector comprises cars and motorcycles subsectors). Ultimately,
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countries construct an inventory from the sub-category level because this is how IPCC
methodologies are set out, and total emissions calculated by summation. A national
total is calculated by summing up emissions and removals for each gas. IPCC emission
inventory doesn’t include all emissions required for air quality modelling purposes

(such as particulates) however it is a valuable source for global climate change models.

EDGAR Emission inventory

Emissions Database for Global Atmospheric Research (EDGAR) emission inventory
is being calculated since 1996 by contributions of several institutions. The latest
emission dataset released as EDGAR v.4.3.1 was prepared in January 2016 [56].
EDGAR v.4. is a bottom-up emissions database based on European Joint Research
Centre’s (JRC) evaluation of internationally reported activity data (i.e. fuel use, land-
use, quantity of industrial products, number of animals), and worldwide consistent
assumptions on emission factors (EFs) associated with these activities for each
technology and corrected for end-of-pipe abatement measures. The resulting sector-

specific emission trends are publicly available as country totals or on a 0.1°x0.1° grid.

EDGAR-HTAP emission inventory

Hemispheric Transport of Air Pollution (HTAP), or The Task Force on Hemispheric
Transport of Air Pollution (TF HTAP), is an international scientific cooperative was
organized in 2005 under the auspices of the UNECE Long Range Transboundary Air
Pollution (LRTAP) Convention (or CLRTAP) and reports to the Convention's EMEP
Steering Body.

On request of the European Commission’s (EC) the Directorate-General for
Environment (DG ENV, responsible for EU policy on the environment in EC), JRC,
together with a number of international organizations including U.S. EPA, compiled a
harmonized global, gridded, air pollution emission dataset for 2000 to 2005 (to the
extent possible) by using officially reported inventories at the national scale and
complemented with science based inventories where nationally reported data were not
available [57], for 10 aggregated sectors and on a global 0.1°%0.1 ° resolutions [58],
for CH4, CO, NOx, NMVOC, NH3, SO, PM»s, PMig, organic carbon (OC), black
carbon (BC). The sectors are for all substances defined as follows: international and
domestic air, international shipping, power industry, manufacturing, mining, metal,

cement, chemical, solvent industry, ground transport (including road, rail, pipeline,
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inland waterways), heating/cooling of buildings and equipment/lighting of buildings
and waste treatment. For NH3 there is in addition sector, which is agriculture, but not

agricultural waste burning.

Contributing international organizations are U.S. EPA, the EPA and Environment
Canada (for Canada), EMEP and Netherlands Organisation for Applied Scientific
Research (TNO) for Europe, and the Model Intercomparison Study for Asia (MICS-

Asia IIT) for China, India and other Asian countries.

JRC’s team in charge of the EDGAR named the resulting inventory, EDGAR-HTAP,
which is a globally consistent inventory. A separate 0.5°%0.5° gridded dataset is
available from the U.S. EPA [59], for the years 2002 and 2005, complementary to the
data in EDGAR-HTAP, providing additional details in sectoral, spatial and temporal
resolution than EDGAR-HTAP.

EDGAR-HTAP V1 was prepared for 2000-2005 time period (but not recommended
as consistent time series), for all world countries by covering emission sources
including all human activities except Savannah burning, forest burning and diffusive
sources such as pave and construction dust. The HTAP V2 dataset consists of
0.1°x0.1° grid maps for the years 2008 and 2010. The grid maps are complemented
with EDGARvVA4.3 data for those regions where data are absent. The HTAP v2.2 [60]
air pollutant grid maps are considered to combine latest available regional information
within a complete global data set. The disaggregation by sectors, high spatial and
temporal resolution and detailed information on the data sources and references used
will provide the user the required transparency. Because HTAP v2.2 contains
primarily official and/or widely used regional emission grid maps, it can be
recommended as a global baseline emission inventory, which is regionally accepted as
a reference and from which different scenarios assessing emission reduction policies

at a global scale could start.

EDGAR-HTAP emission inventory is available from different platforms including
EDGAR website [61], Edgar On Line Open Access (EOLO) system [62], Emissions
of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) Server [63]
which is also Global Emission InitiAtive database (GEIA) and GEIA web site [64].
There was also Community Initiative for Emissions Research and Applications

(CIERA) platform but now it is fully integrated with GEIA.
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TNO - MACC emission inventory

Emission inventories are prepared by bottom-up approach and the use of official
inventories often required when using regional chemical-transport modelling in policy
studies. TNO inventory is a complete, consistent and spatially distributed inventory,
which has used the official reported emissions as basis where possible [65].
Monitoring Atmospheric Composition and Climate (MACC) is a project of TNO and
the standard MACC inventory covers Eastern Europe including Turkey and Russia;
however, it does not cover North Africa. It is not publicly available, required

information is available in ECCAD website [66].

TNO gridded emission inventory is prepared for CO, CHs, NOx, NMVOC, SO, NH3,
PM,s, PMio and CH4 for the sectors non-industrial combustion, energy industry,
industries, fossil fuel production and distribution, solvent and other product use, road
transportation (exhaust gasoline, exhaust diesel, exhaust LPG and natural gas, gasoline
evaporation, tyre, brake and road wear), non-road transportation, agriculture and

waste.

MACC-II is emission inventory of TNO developed in second phase of MACC Project
(TNO-MACCI), which is the most updated version of this gridded emissions are
mainly taken from EMEP emission inventories, the gaps are filled with the data from
GAINS model [67]. The GAINS model combines information on economic and energy
development, emission control potentials and costs, atmospheric dispersion
characteristics and environmental sensitivities towards air pollution [68] and by using
these statistics built up a bottom-up inventory. Missing CO emissions were taken from
EDGAR-HTAP emission inventory [60] and TREMOVE model [69] for disaggregate
the energy use to detailed vehicle classes technologies for each country. Since this
bottom-up inventory was originally only developed for the year 2005, emissions for
the other years were estimated by scaling this inventory. Scaling factors for the
different years were calculated from the EDGAR emission inventory v4.2 [70] which
provides sector-specific annual emission estimates for CO for each country in the
world. For the countries which did not report emissions such as Armenia, Azerbaijan
and Georgia, EDGAR [70] data were used at SNAP (Selected Nomenclature for Air
Pollution) level 1, which is energy industries sector, for all pollutants and all years.

These were disaggregated to the same subcategories as the other countries by using
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the relative contribution of each subsector to the SNAP level 1 sector for Turkey (for

each pollutant and each year) as a blueprint.

Since both TNO-MACC and EDGAR-HTAP [60] emission inventories have been
prepared for the European continent, they are approximately same over the common
part of EU. Some discrepancies, e.g., in the emissions from ships, might exist among
the two inventories [71]. Furthermore, they differ for regions outside European
borders, such as North Africa. EDGAR-HTAP [60] emission inventory also covers

Asia, Africa and Russia. Both inventories include emissions of Turkey.

Emissions of public electricity and heat production sector of Turkey
According to National Emission Inventory report (NIR) [72] and Informative
Inventory Report (IIR) [73] of Turkey, public electricity and heat production sector is
responsible from 65.1% of SOz, 42.5% of CO2 and 42.7% of NOx emissions of Turkey.
Given that public electricity and heat production sector makes high proportion of the
national total. According to Turkish Statistical Institute (TurkStat), electricity is
generated mainly from coal and natural gas in 2016 as it is given in Figure 1.2, which
shows that fossil fuels are used as energy source in vast majority of the electricity
generated in Turkey .
Renewable
Energy and
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Figure 1.2 : Electricity generation shares by energy sources in Turkey in 2016.

Producing energy from fossil fuels involves the combustion of fuels like coal, gas, and
oil, and fossil fuels combustion is one of the important sources of air pollution [19],
which means that the contribution of public electricity and heat production sector’s

emissions to the anthropogenic emission inventory of Turkey is large. Therefore,



uncertainty in the emission inventory of public electricity and heat production sector
contributes greatly to the uncertainty of the overall emissions inventory. For this
reason, it is important to create a low-uncertainty emission inventory for this sector in

terms of its contribution to the total value.

1.1 Purpose and Importance of the Thesis

Uncertainty refers to lack of knowledge regarding the true value of a quantity. It can
be reduced or eliminated with more or better data, where variability cannot be reduced.
Among the reasons of uncertainty, inputs are regarded to have the largest levels of
uncertainty. The aim of this study is to evaluate and quantify the contribution of
uncertainties in input dataset to AQM estimates, which belongs to data errors part of
uncertainty. For this purpose, it is necessary to define the problem that poor

performance of the model is caused mostly by unfit data.

In literature, models perform poor in the Eastern European countries. However, a more
detailed study is needed to say that this poor performance is mostly due to model
inputs, because, the poor performance of the models may also have other reasons. In
the first part of this study, inter-model variability is defined quantitatively by
participating in an international AQMEII-3 project. In the second part of the study,
contribution of uncertainties to this problem is quantified by being part of a national

project (KAMAG).

Thanks to the multi-national AQMEII-3 project that this study contributed, European
continent has been studied by many models. 12 modelling groups were cooperated
from different countries of Europe and conducted 18 model runs on Europe domain
(covers 34 Europe countries) for 2010 by using 7 different AQMs, 3 meteorology
models and 2 emission inventories in AQMEII-3 project. This study, for the first time
in Turkey, contributed to AQMEII-3 which is organized by the joint leading of U.S.
EPA and European JRC. In AQMEII-3, mostly, two separate versions of the emission
inventory used in all models as one of the important inputs. In this case, if all models
have poor performance in a region, it can be scientifically revealed that this is due to

bad input data.

The subject of this thesis, which is uncertainty assessment of AQMs due to emission

inventories which is an important input of AQMs, is under development in air quality
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science. Quality of an emission inventory that will be used in air quality modelling is
associated with its low-level uncertainty and adequate coverage of the sources. In the
second part of this thesis, a sample inventory is developed in order to reveal
contribution of data uncertainty to poor performance of the models. By calculating this
reducible uncertainty in the model results, it is aimed that air quality models will

perform better especially in Eastern European countries with better quality inputs.

Up to now, there are several air quality modelling studies for Turkey, however they
are developed for a specific city or region of Turkey, for a timescale starting from days
to a few months, by using just one type of AQM. Thanks to its wide coverage domain
and multi-model contributions, this study looks to the problem from the large
perspective in order to define the problem and recommends a solution by representing
a sample of the solution. This will give a unique way for such an analysis which has
not been conducted yet. This study applies a probabilistic variability and uncertainty
estimation technique in order to quantify random errors and biases in EFs and emission
inventories. Especially Monte Carlo and Bootstrap techniques are used first time in

Turkey for such an analysis.

1.2 Objectives

In order achieve the purpose of this study, following steps were applied in order to

quantify uncertainty due to input of AQMs;

1. A comparative quantitative assessment of AQM performances throughout
Europe and Turkey withing the context of AQMEII-3 activity
- Intra-seasonal and inter-model performance evaluation for countries in
Europe for 2010,
- Comparison of Eastern and Western Europe countries in terms of
model performance metrics,
- Inter-model comparison of the model predictions over Turkey
(especially Marmara region) with European countries,
- Discuss reasons of poor performing models over regions of Turkey by
comparing other countries of Europe,
2. Estimation of country specific EFs
- Developing country specific EFs from both in-situ measurements and

emission measurement reports for public electricity and heat
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production sector of Turkey by considering the plants in Marmara
region.

Quantify variability and uncertainty in those EFs by Monte Carlo and
Bootstrap approaches.

Comparing both EFs with EMEP and EPA EFs.

3. Development of a probabilistic emission inventory

Development of a probabilistic emission inventory by using country
specific EFs for public electricity and heat production sector of Turkey
by considering the plants in Marmara region.

Development of the same emission inventory with the EFs of EMEP
and EPA.

Comparison of sample emission inventory with EDGAR-HTAP and
TNO-MACC emission inventories which are most commonly used
emission inventories by air quality modelers.

Quantifying contribution of newly developed emission inventories
Discussing contribution emission inventories to uncertatinties to AQM

predictions.

It is aimed to contribute to scientific community with the results of this thesis. The

result can reveal the negative impact of uncertain emission inventories on AQM

predictions. We hope that this study will encourage the air quality community to

improve the quality of the emission inventories.
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2. DATA AND METHODOLOGY

In this study, first of all an inter-model comparison study is conducted within the
context of an international project. Then, performances of the models were evaluated
for Europe, Turkey and Marmara region, which required to compile a sample
probabilistic emission inventory for Marmara region of Turkey for public electricity
and heat production sector by developing specific EFs and using the data obtained via

a national project that this study also contributed.

2.1 Air Quality Modelling

This study benefits from a collaborative project of European JRC. The name of the
project is Air Quality Modelling Evaluation International Initiative (AQMEII) which
has volunteer contributors from the worldwide scientific community. AQMEII aims at
promoting research on regional AQM evaluation across the European and North
American atmospheric modelling communities, through the exchange of information
on practices, the realization of inter-community activities and the identification of
research priorities, keeping focus in policy needs [75]. This study contributed to Phase
3 of AQMEII project (from this point it will be called as AQMEII-3). The goals of the
AQMEII-3 activity are to evaluate and compare global and regional modelling systems
driven by consistent emissions over North America and Europe against a common set
of measurements and to perform model evaluation analyses on global models
coordinated with the analyses of regional models being performed under the AQMEII.
Although AQMEII-3 was conducted for both North America and Europe domains, our
group contributed European part of the study. Names and model configurations of the

AQMEII-3 project contributors are given in Table 2.1 for European part of the study.

In AQMEII-3, there were 12 modelling groups (from 9 countries in Europe), including
our group, contributing AQMEII-3 project’s European domain simulations, which
resulted 18 model runs. This study has a chance to use results of entire of those models
via web-based ENSEMBLE [76] platform of JRC for evaluating atmospheric

chemistry transport and dispersion models. Platform is open for AQMEII-3 project
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contributors and closed for public use. The remining data provided in Figure 2.1 are

explained in Chapter 2.1.3 .

Table 2.1 : Main modelling properties of modelling groups in AQMEII-3 project.

Group Meteorology Air Quality ~ Emission

ID Institute Country Model Model Inventory System ID

FI1 Finnish Finland Direct SILAMv54 TNO ECMWE-
Meteorological interpolation [78] MACC [66] SILAM M
Institute from ECMWF

FI1 Finnish Finland Direct SILAM EDGAR ECMWE-
Meteorological interpolation v5.4 [78] HTAP v2.2 SILAM_H
Institute from ECMWF [60]

NL1 TNO Netherlands Direct LOTOS- TNO LOTOS-
interpolation EUROS MACC [66] EUROS
from ECMWF  v1.0.1[79]

FRES1 INERIS and France and Direct CHIMERE EDGAR ECMWE-

CIEMAT Spain interpolation HTAP v2.2 CHIMERE
from ECMWE (V2013 1281 1601/ TNO
IFS MACC [66]

IT2 University of Italy WRF WRF-Chem TNO WRF-WRF-
L’Aquila v3.6 MACC [66] Cheml

ES1 University of Spain WRF WRF-Chem TNO WRF-WRF-
Murcia MACC [66] Chem2

IT1 Ricerca Sistema  Italy WRF CAMx TNO WRF-CAMx
Energetico v6.10 [80] MACC [66]

DK1 Aarhus Denmark WRF DEHM [81] EDGAR WRF-DEHM
University HTAP v2.2

[60]

TR1 Istanbul Turkey WRF CMAQ TNO WREF-
Technical v4.7.1 [25] MACC[66] CMAQI1
University / EDGAR

HTAP v2.2
[60]

UK2 Ricardo Energy England WRF v3.5.1 CMAQ TNO WREF-

& Environment v5.0.2 MACC [66] CMAQ2
Ri E&E
(Ricardo E&E) 25 82

UK3 University of England WRF v3.4.1 CMAQ TNO WREF-

Hertfordshire v5.0.2 MACC [66] CMAQ3
[25 82]
UK1 Kings England WRF CMAQ TNO WREF-
College v5.0.2 MACC [66]/ CMAQ4
EDGAR
(25 8] prapv22
[60]

DEl Helmbholtz- Germany COSMO- CMAQ EDGAR CCLM-

Zentrum CLM (CCLM) v5.0.1 HTAPv2.2  CMAQ
thacht 4.8 60
Geesthac v4.8 [77] 25 82] [60]
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2.1.1 Domain

The domain that is used in model runs is as follows; North American Common
Analysis Domain (130°W <-> 59.5°W, 23.5°N <-> 58.5°N) and European Common
Analysis Domain (30°W <-> 60°E, 25°N <-> 70°N). Our group is running only

European domain with 30 km resolution. The domain is given in Figure 2.1.

RS e . o g

Figure 2.1 : Domain of the study.

The red one shows simulation grid and blue is the output grid of the models with
Lambert conformal projection. After running models in red domain, the emissions data
is prepared according to blue grid, and uploaded to the ENSEMBLE system of JRC.
Although the simulation grid is the red one, contributors asked to prepare their data in
blue grid, because of a need for a standardized gridding system in model comparisons.

Parts of the output grid are outside of the simulation grid was filled with NaN values.

2.1.2 Data

AQMs require meteorology, emissions and boundary conditions data as an input for
calculation of the emissions [18]. Furthermore, emission inventory development
requires a wide range of the data about emission sources. Input data types and sources

are explained in this part of study.

2.1.2.1 Meteorological data

AQM requires meteorological inputs which are produced by meteorology models.
Also, meteorology models require meteorological data in order to produce

meteorological outputs (detailed description of the meteorological modelling
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approaches used in this study is in Section 2.1.3.1). In this part of study, input data of

meteorological models used in AQMEI-3 project is described.

Our group used WRF meteorology model as indicated in Table 2.1. Input data of WRF
model, which is ERA-Interim, was obtained from European Centre for Medium Range
Weather Forecasts (ECMWF) for 2010 for our domain. ECMWF Re-analysis (ERA-
Interim) is a reanalysis data of the global atmosphere covering the data-rich period
since 1979 (originally, ERA-Interim ran from 1989, but the 10-year extension for
1979-1988 was produced in 2011) and continuing in real time [83]. Reanalysis data is
produced by both of observations and models in order to develop a comprehensive

record of how weather and climate are changing over time [83].

The ERA-Interim data assimilation and forecast suite produces four analyses per day,
at 00, 06, 12 and 18 UTC (coordinated universal time); two 10-day forecasts per day,
initialized from analyses at 00 and 12 UTC. The data is downloaded monthly in the
gridded binary data (GRIB) format. GRIB is a format of World Meteorological
Organization (WMO) for gridded data. GRIB is used by the operational meteorological

centres for storage and the exchange of gridded fields.

The data includes, but not limited to temperature and dewpoint temperature at 2
meters, U and V wind components at 10 meters, albedo, boundary layer height and
dissipation, radiation and available energy types, precipitation, snowfall, surface
stresses, evaporation, surface roughness, cloud cover, ice-skin-soil temperatures
according to layers, moisture flux, sensible heat flux, runoff, sea-ice area fraction, sea
surface temperature, snowfall, snowmelt, sunshine duration, latent heat flux, solar
radiation, thermal radiation, surface pressure, total column cloud ice water and liquid
water, total column ozone, water and water vapor, vertical integrals of fluxes, energy

and masses, ozone and volumetric soil water layers [84].

National Centres for Environmental Prediction (NCEP) Final (FNL) analyses data
[85], on 1-degree by 1-degree grids prepared for every six hours, were used as an input
to WRF model by our group. The analyses are available on the surface, at 26
mandatory (and other pressure) levels from 1000 millibars to 10 millibars, in the
surface boundary layer and at some sigma layers, the tropopause and a few others.
Parameters include surface pressure, sea level pressure, geopotential height,

temperature, sea surface temperature, soil values, ice cover, relative humidity, u- and
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v- winds, vertical motion, vorticity and ozone. The NCEP Global Forecast System
(GFS) [86] is a global spectral data assimilation and forecast model system giving 6
hourly atmospheric variables at 26 levels with a resolution of 0.25 degree. NCEP GFS
data was used by UK1 and UK2. ECMWF data was used by remaining groups.

According to Table 2.1, FRES1 group run AQM with meteorology provided ECMWF
Integrated Forecasting System (IFS). In ECMWF IFS, atmospheric composition
(greenhouse gases, aerosols, and chemical species) is modelled by the horizontal
resolution of ~40 km and the data available in 3-hour intervals [87]. Other groups
extracted meteorological inputs of AQM from the ECMWF operational archives as of

our group.

2.1.2.2 Chemical boundary conditions

In AQMEII-3 project all groups used same chemical boundary conditions. CO, CHa,
SO,, NOy, NMVOC, organic matter, black carbon, sulphate and dust emissions at the
boundaries of the domain were supplied by the Composition-Integrated Forecast

System (C-IFS) model of ECMWEF as it was explained by Flemming et. al. [88].

2.1.2.3 Emission inventory of the models

In this part of study, emission inventories which were used by modelling groups of
AQMEII-3 project were explained for anthropogenic, biogenic, lightning and volcanic
emissions. Furthermore, conversion methodology of annual and country-based
emission inventories to hourly and gridded AQM inputs is summarized. Participating
groups are expected to calculate emissions from biogenic and natural sources (e.g. sea
salt, windblown dust) directly in their own model since these emissions are dependent

on the simulated meteorology.

Anthropogenic emissions

There are two wide coverage emission inventories which are commonly used by air
quality modelling groups, which are TNO-MACC and EDGAR-HTAP emission
inventories. In AQMEII-3, mainly these two emission inventories were used either

independently or in combination with the other one.

According to Table 2.1, EDGAR - HTAPv2.2 emission inventory [60] was used
primarily by FIlI, DK1 and DE1 groups. FRESI primarily used EDGAR-HTAP

emission inventory and then used TNO-MACC emission inventory in order to fill
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gaps. On the contrary of this, TR1 (our group) and UK 1 used TNO-MACC emission
inventory primarily, then used EDGAR-HTAP emission inventory in order to fill gaps.
Other groups used TNO-MACC emission inventory solely as anthropogenic emission

input of AQMs.

TNO-MACC and EDGAR-HTAP emission inventories cover common part of EU,
however EDGAR-HTAP emission inventory also covers regions outside EU borders.
There are also differences within two inventories, for instance in the ship emissions.
Detailed information on these two emission inventories were given in Section 1. Also,
energy part of these two emission inventories are discussed detailly in the emission

inventory part of this study.

Anthropogenic emissions used by AQMEII-3 groups are presented quarterly in Figure
2.2 for all domain by Box and Whisker plots, in order to show overall patterns of
emissions for each modelling group by visualising the range and other characteristics
of emissions for such a large group in a simple figure. In Figure 2.2, PM1¢ emissions
of AQMEII-3 groups are accumulated per km? for quarter one (Q1) of 2010. QI
comprises January, February and March of year 2010. Only six groups supplied

emission data, therefore box plots of other groups are not existing in Figure 2.2.

According to Figure 2.2, the average of grid-based emissions ranges from 15 kg/km?
(UK3) to 800 kg/km? (NL1) for all domain. The average of the emissions used in our
model (TR1) is 120 kg/km?. The average emission of all models is 360 kg/km?. The
maximum emissions are between 8,000 kg/km? (UK3) and 50,000 kg/km?
(FI1_MACC). The average of maximum emissions is 26,000 kg/km?. The emissions
used by our group (TR1) are maximum 30,000 kg/km? in a grid.

FI1 group conducted two model runs, one is with EDGAR-HTAP emission inventory
which is shown as “FI1_HTAP_bas”, and the other one is with TNO-MACC emission
inventory which is shown as “FI1 HTAP bas2” in Figure 2.2. The box plot of
FI1 HTAP bas and FI1 HTAP bas2 have close mean, max values and upper
percentiles and only lower percentiles differ, which indirectly shows that EDGAR-
HTAP and TNO-MACC emission inventories are almost close to each other in Europe

domain.
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Figure 2.2 : Quarterly integrated Box and Whisker plots of PM1¢ emissions used by
AQMEII groups for Q1.

In Figure 2.2, our group (TR1_MACC _bas) is shown in the first left box. TNO-MACC
emission inventory was primarily used by our group and EDGAR-HTAP emission
inventory was used in order to fill gaps. Since our group’s box plot, median and mean
is lower than second (FI1 HTAP bas), third (NLI MACC bas) and fifth
(FI1_MACC bas2) groups, our emission range is lower than those groups. However,

our group’s emissions range is higher than fourth (UK3 MACC bas) group.

Box plot of third group (NL1 MACC bas) is comparatively tighter than other groups,
and its mean and median is generally higher than other groups. Therefore, third group
generally used high emissions when compared to other groups. Furthermore, mean
emissions of second (FI1 _HTAP bas) and fifth (FI1 MACC bas2) groups have
almost same with third group for each quarter however they don’t have such high range
of emissions as in third group since their inter-quartile ranges (middle 50% of the

emissions) are too large comparatively.

The differences between box plots of groups that use the same emission inventory, (as
in between FI1 HTAP bas and DK1 HTAP bas) is due to different approaches
adopted by each AQMEII-3 group for spatial and temporal distribution of the

anthropogenic emissions.
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When other quarters investigated, compared median, mean and maximum values in
box plots showed that, fourth group (UK3 MACC bas) often has lowest range of

emissions when compared to other groups. Other quarters plots are not given in here.

Distribution of emissions in TR1 model (our group) is given in Figure 2.3. This plot

was created via ENSEMBLE system [76].

According to Figure 2.3, PMjo emissions are about 10 to 100 kg/km? in Central and
Eastern Europe and also big cities make hotspots in the remaining countries in Q3
(comprises Summer months which are July, August and September). For instance,
hotspots are located in Teheran, Isfahan, cities around Basra Bay, and in the marine
passenger and freight transport route between the ports in Egypt, Tunisia and Spain.
In Turkey, hotspots are mostly located in big cities of Western part. It is about 0.01 to
1 kg/km? in Scandinavian countries and in the Northern parts of Russia (above

Moscow).
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Figure 2.3 : Quarterly accumulated PM o emissions in kg/km? used by TR1 (our
group) for Q3 of 2010 [76].
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Biogenic emissions
Since several meteorological models were used by modelling groups and biogenic
emissions are dependent on meteorological conditions, they were specifically

calculated by each group of AQMEII-3 for the year 2010.

TRI1 (our group), FRESI1, IT1, DKI1, UK2 and UK3 calculated biogenic emissions
through the Model of Emissions of Gases and Aerosols from Nature (MEGAN) model
[89] where UKI1, DE1 calculated biogenic emissions using the BEIS (Biogenic
Emission Inventory System version 3) by implementing in SMOKE v2.6 [90] or by
implementing directly into CMAQ. FI1 calculated biogenic emissions as in Poupkou

et al. [91], and NL1 used the approach described in Beltman et al. [92].

Lightning and volcanic emissions
Lightning and volcanic emissions were not included in emission inventories since
there were no robust methods that can be applied by all groups for calculation of

lightning and volcanic emissions.

Wildfire and mineral dust emissions

Wildfire emissions are calculated with IS4FIRES Model and mineral dust emissions
are calculated with WRF-Chem (available from the previous phase of AQMEII-3
project).

Emission processing

Typically, AQMs require spatially disaggregated hourly input values, however
emission inventories are prepared as annual totals for countries (or regions). In order
to convert annual and regional basis emission inventories as AQM inputs, emission
processors use proxy variables and surrogate fields. Thus, annual total can be
disaggregated spatially and allocated temporally. The overall model accuracy heavily
depends on the degree of similarity between the disaggregation of total emission and
the true spatial and temporal distribution [93]. Poor temporal representation of
emissions generally influences diurnal cycle or short-term distribution of the predicted
emissions [93]. The emissions being compiled on a country-wise basis, are affected by
gaps and inconsistency across borders, which require further processing and
manipulation [94]. Since EU emission inventories are prepared on country basis,

distribution of the emissions spatially and temporally gains importance.
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TNO-MACC and EDGAR-HTAP emission inventories were spatially distributed by
two modelling groups (FRES1 and FI1) and made available for the use of other groups
in case of need. TNO-MACC emission inventory was spatially redistributed by FRES1
group by considering national inventories (with higher spatial resolution) over France
and the U.K. For the other countries, it was redistributed by considering point source
locations, land use, and population. Population was not used as a parameter for

spatially distributing the EDGAR-HTAP emissions [71].

In our group, a new code was generated by considering Sparse Matrix Operator Kernel
Emissions (SMOKE) processing system [95]. Temporal and vertical distributions of
the emissions were treated with the EURODELTA [96] factors for individual source
sectors to calculate the hourly data by the modelers (see also Pouliot et al. [97]). Height
profiles are taken from EURODELTA (EMEP), however they are prescribed as
emission density profiles so that the emission at each height is the same, also with

different vertical structures.

2.1.2.4 Observational data

In AQMEII-3, surface air quality monitoring network of EU were taken from the two
databases, which are EMEP [98] and European Air Quality Database (AirBase) [99].
In this thesis, entire of those stations were considered for evaluation of the models.
Map of stations throughout Europe is given in Figure 2.4. According to Figure 2.4,
frequency of observation stations is high in Germany, Poland, Czech Republic,
Holland, Belgium and North Italy where it is medium in South Italy, Spain, Portugal,
Turkey, France, Greece and England, and low in Denmark, Norway, Finland and

Balkan countries.

In this study, analyses were conducted on country basis, region basis and station basis.
Eastern and Western Europe countries grouped in the analysis. The Eastern and
Western countries lists of United Nations Statistics Division [100] and United States
Department of Energy [101] were considered for identifying countries as Eastern or
Western, and current situation of the countries in EU delegation were discarded when
generating the lists. Additionally, gross domestic product (GDP) per capita [102] and
geographical location of the countries were considered. Countries which didn’t supply
PM o measurements to EMEP and Airbase [99] databases were not considered in the

classification; therefore, Eastern and Western countries lists are unique to this study.
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Figure 2.4 : PM o observation stations in Europe.

The data taken into account in the classification of the countries as Eastern and
Western are given in Table 2.2 for Western European countries and in Table 2.3 for
Eastern European countries. Consequently, Sweden, Luxembourg, Finland, Ireland,
Italy, England, Switzerland, Germany, Netherlands, Norway, Belgium, Iceland,
France, Austria, Portugal, Denmark and Spain (totally 17 countries) were accepted as
Western Europe countries. Latvia, Romania, Serbia, Turkey, Bosnia and Herzegovina,
Bulgaria, Poland, South Cyprus, Moldova, Malta, Slovakia, Greece, Czech Republic,
Estonia, Lithuanian, Hungary, Slovenia (totally 17 countries) were accepted as Eastern

Europe countries.

Although Portugal does not have as high GDP per capita as the western countries, it
was included in the Western countries list because of its geographical location. The
average GDP per capita of Western European countries ($56,793) is almost 3.5 times

that of Eastern European countries ($16,826).

Number of PMjo stations, population per station, serving area per station was
calculated for each country in Table 2.2 for Western Europe countries and in Table 2.3
for Eastern Europe countries. In Table 2.2, 17 countries were listed as Western Europe
countries, which have totally 984 PMo observation stations, where it is 448 for Eastern
Europe countries as indicated in Table 2.3. In order to ease comparing number of
stations per country, population and area of the countries are also indicated in the tables
and two indices were calculated. First one is number of people per station and second

one is number of stations per 1000 km?. Calculated indices should be evaluated
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together. For instance, number of people per station (1 station per 2.663.000 people)
in England is one of the worst among other countries however station number per 1000
km? (5.2 stations per 1000 km?) is one of the good among other countries. This

inconsistency is due to dense population living in a small area in England.

Table 2.2 : General information about Western European countries.

Number Area . Population Serving GD.P per

of PMio (10(2)0 Population (*1000) per area2(1000 capita ($)
. km?) [102] . km*) per (2018)

stations [102] station station [102]
Austria 74 83.8 8,793,370 119 1.1 51,513
Belgium 38 30.6 11,350,000 299 0.8 46,556
Denmark 2 429 5,749,000 2,875 21.5 60,596
England 25 130.4 66,573,504 2,663 52 42,491
Finland 8 3384 5,520,535 690 423 49,960
France 231 643.8 67,186,638 2901 2.8 41,464
Germany 199 357.3 80,457,737 404 1.8 48,196
Iceland 2 103 357,050 179 51.5 73,191
Ireland 9 84.4 4,739,383 527 9.4 77,450
Italy 188 301.4 59,963,169 319 1.6 34,318
Luxembourg 3 2.5 602,005 201 0.9 114,340
Netherlands 28 42.5 17,283,008 617 1.5 52,978
Norway 9 385.2 5,353,363 595 42.8 81,807
Portugal 26 92.2 10,291,196 396 35 23,146
Spain 111 506 46,733,038 421 4.6 30,524
Sweden 9 450.3 10,041,160 1,116 50.0 54,112
Switzerland 22 41.2 8,544,034 388 1.9 82,839
Sum: Sum: Sum: Avg.: Avg.: Avg.:
984 3,636 409,538,190 711 14 $56,793

Scandinavian countries (Sweden, Norway and Denmark), Finland and Iceland has the
lowest number of stations based on population and area, which can be due to not
inclusion of all stations to EMEP [98] and AirBase systems [99]. By ignoring North
Europe countries due to this reason, Western Europe countries are listed in an order of
their representative number of stations considered with both per km? and population
as follows; Austria, Luxembourg, Belgium, Italy, Germany, Switzerland, France,

Netherlands, Portugal, Spain, Ireland and England.

Eastern European countries are listed in order of their representative number of stations
per km? and population as follows; Malta, Czech Republic, Estonia, Slovenia,
Slovakia, Poland, Bulgaria, South Cyprus, Hungary, Turkey, Lithuanian, Latvia,

Romania, Greece, Moldova, Bosnia and Herzegovina and Serbia, respectively.
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Turkey is 9th in Eastern countries in terms of number of stations per area and
population. Distribution of PMo observation stations in Turkey are given in Figure

2.5.

Table 2.3 : General information about Eastern European countries.

Number Area (km?) Population Population ~ Serving area gljift)argr)

of PMio = o1 T102] (*1000) (1000 km’) (3018)

stations per station per station [102]
Bosnia 1 51,197 3,849,891 3,850 51 5,951
Bulgaria 32 110,994 7,036,848 220 3.5 9,273
Ezgf’h 95 78,865 10,625,250 112 0.8 22,973
Estonia 4 45,227 1,303,798 326 11.3 22,928
Greece 4 131,957 11,124,603 2,781 33 20,324
Hungary 14 93,030 9,778,371 698 6.6 15,939
Latvia 4 64,589 1,934,000 484 16 18,089
Lithuanian 5 65,300 2,785,000 557 13 19,090
Malta 2 316 475,701 238 0.2 30,075
Moldova 1 33,846 3,547,539 3,548 34 3,189
Poland 136 312,679 37,977,000 279 23 15,424
Romania 13 238,397 19,524,000 1,502 18.3 12,301
Serbia 1 88,361 7,001,444 7,001 88 7,234
Slovakia 22 49,035 5,443,120 247 2.2 19,547
Slovenia 11 20,273 2,066,880 188 1.8 26,234
Cyprus 2 9,251 864,236 432 4.6 28,159
Turkey 101 783,562 82,004,000 812 7.8 9311

Sum: Sum: Sum: Average: Average: Average:
448 2,176,879 207,341,681 1369 17 $16,826

Generally, there are at least one station in 81 cities of Turkey in 2010, except Bitlis,
Mus, Sirnak and Van. There is more than one station in big cities, such in Istanbul (11
stations), Izmir (8 stations), Ankara (6 stations), Kocaeli (3 stations), Canakkale (2

stations), Konya (2 stations) and Trabzon (2 stations).
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Figure 2.5 : PM;o Observation stations in Turkey (above), Marmara Region (bottom
left) and Istanbul (bottom right).

Distribution of stations according to 7 regions of Turkey are given in Table 2.4, and
regions (with cities inside following parenthesis) are Mediterranean Region (Adana,
Antalya, Burdur, Hatay, Isparta, Kahramanmaras, Mersin, Osmaniye), Eastern
Anatolia Region (Agr1, Ardahan, Bingol, Bitlis, Elazig, Erzincan, Erzurum, Hakkari,
Igdir, Kars, Malatya, Mus, Tunceli, Van), Aegean Region (Afyonkarahisar, Aydin,
Denizli, izmir, Kiitahya, Manisa, Mugla, Usak), South Eastern Anatolia Region
(Adiyaman, Batman, Diyarbakir, Gaziantep, Mardin, Siirt, Sanlwurfa, Sirnak, Kilis),
Central Anatolia Region (Aksaray, Ankara, Cankiri, Eskisehir, Karaman, Kayseri,
Kirikkale, Kirsehir, Konya, Nevsehir, Nigde, Sivas, Yozgat), Marmara Region
(Balikesir, Bilecik, Bursa, Canakkale, Edirne, istanbul, Kirklareli, Kocaeli, Sakarya,
Tekirdag, Yalova) and Black sea Region (Amasya, Artvin, Bartin, Bayburt, Bolu,
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Corum, Diizce, Giresun, Giimiishane, Karabiik, Kastamonu, Ordu, Rize, Samsun,

Sinop, Tokat, Trabzon, Zonguldak).

Table 2.4 : General information about regions of Turkey.

) Number Number'of .
Region - PM Stations ~ Population
of cities 02010

Mediterranean Region 8 11 10,461,409
Eastern Anatolia Region 14 14 6,058,499
Aegean Region 8 17 10,514,200
South Eastern Anatolia Region 9 9 8,847,980
Central Anatolia Region 13 23 13,114,013
Marmara Region 11 22 25,034,570
Black Sea Region 18 20 7,973,211
SUM 81 116 82,003,882

Maximum number of stations are in Black Sea region (20 stations), Central Anatolia
region (23 stations) and Marmara region (22 stations) where least number of stations
is in South Eastern Anatolia region (9 stations). Actually, number of stations are more
than those values, however inactive stations (in 2010) were not considered in this table.
Some of the stations were eliminated after making quality control procedures which

were summarized below. Consequently, number of stations used in this study is 101.

Quality control
In this study, observational data was subject to quality control procedures for
identifying potentially erroneous measurements. Adopted methodology is summarized

as follows;
e Station based hourly observations considered in air quality checks.

e PMo concentrations less than 0 pg/m* and more than 600 pg/m® marked as

erroneous, flagged and further checked. Assigned as ‘NA’, if suspicious.

e The current hour’s value compared with the previous hour’s value. If one is ten
times of the other, flagged and further checked. Assigned as ‘NA’, if

suspicious.

e Repetitive hourly concentrations (two digits after point) of three consecutive

times were assigned as suspicious and assigned as ‘NA’.
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o If 50% of the data is not validated by abovementioned quality control

procedures, the station was disregarded totally.

2.1.3 Modelling Methodology

As a framework for simulating the interactions of multiple complex atmospheric
processes, an air quality modelling system consists typically of a meteorological
information, emissions rates from sources of emissions that affect air quality and an
AQM [103]. Modelling configuration of each AQMEII-3 group is described in general
in this part of study, and our group’s modelling methodology is summarized in detail
in Figure 2.6. As indicated in Table 2.1, our group (TR1) used CMAQ v.4.7.1 and
Weather Research and Forecasting (WRF) Model v.3.5. Abbreviations related with
other groups and their models are indicated in Table 2.1, and will be used throughout

the thesis as it is given in the table.

2.1.3.1 Meteorology model

The meteorological model calculates the three-dimensional fields of wind,
temperature, relative humidity, pressure, and in some cases, turbulent eddy diffusivity,
clouds and precipitation as a function of time [103]. According to Table 2.1, CCLM
model was used by DE1, and WRF model was used by eight groups (IT1, IT2, ES1,
DK1, UKI1, UK2, UK3 and our group, TR1). FI1, FI2, NL1 and FRESI1 used the

meteorological inputs extracted by the ECMWF operational archive.

The COnsortium for Small-scale MOdeling (COSMO) and Climate Limited-Area
Modelling (CLM), COSMO-CLM, will be called as CCLM from this point, is the
regional climate model and operational non-hydrostatic mesoscale weather forecast
model developed initially by the German Weather Service (DWD) [104] and then by
the European Consortium which is COSMO [77]. COSMO CLM is employed at
spatial resolution between 1 and 50 km, can able to run long-term simulations,

therefore called as climate model.

WRF Model, which is also used in this study in order to prepare meteorological files
for CMAQ run, is a mesoscale numerical weather prediction model. It is designed for
simulation of the atmospheric processes by using real data (observations, analyses) or
idealized conditions. The model is used for a wide range of meteorological

applications across scales from tens of meters to thousands of kilometres [105]. WRF
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model is used by 8 groups (including our group, TR1) of 12 in AQMEII-3. Table 2.5
summarizes the configuration of the WRF runs, detailing difference and
commonalities. The detailed description of the data which was used as the input for
each meteorology model was described in Chapter 2.1.2.1. In this part of the study, the

approaches considered in meteorology model configurations are summarized.

There are several planetary boundary layer (PBL) schemes in meteorology models
which can be local, nonlocal or hybrid. Mellor—Yamada Nakanishi—-Niino (MYNN)
PBL scheme [106] and Mellor—Yamada—Janjic (MYJ) PBL scheme [107] are local
schemes, the Yonsei University (YSU) PBL scheme [108] is a nonlocal scheme, and
the Asymmetric Convective Model with nonlocal upward mixing and downward
mixing (ACM?2) [109] can be regarded as a hybrid scheme in that it incorporates local
and nonlocal closures for potential temperature and velocity, resulting in more accurate
vertical mixing [71]. Without going into the detail on each parameterization, it can be
said that the differences among the PBL formulations (detailed review provided by
Cohen et al. [110]) have a profound impact on the discussion of the errors in air quality
estimations. For instance, local and nonlocal closure of the PBL equations differ when
indicating the depth over PBL variables which influence the air quality predictions at
a given point [71 110]. According to Banks and Baldasano [111], generally WRF
model underpredicts PBL height with YSU, ACM2, MY]J and Bougeault-Lacarrere
(Boulac) schemes. PBL height and air quality predictions of O3 and NO> was best
represented by a non-local scheme, such as ACM2. However, PMi predictions were
have lowest correlations between the CMAQ model and observations in all PBL
schemes, which can be due to poor simulations of the PBL height from the WRF model
and other sources of uncertainty from emission inventory. As summarized in Table
2.5, UK1, UK2 and UK3 used ACM2 PBL scheme; ES1, IT1 and TR1 used YSU PBL
scheme; IT2 used MYNN PBL scheme and DK 1 used MYJ PBL scheme.

Surface layer height (first layer height) is defined as the region at the bottom 10% of
the boundary layer where turbulent fluxes and stress vary by less than 10% of their
magnitude [112]. Anthropogenic sources are mainly located on the surface layer of the
Earth, and human health related air quality management is generally associated with
the inhalable part of the atmosphere. Therefore, vertical resolution of the meteorology
model and the starting point of the first layer is important in air quality modelling. First

layer height and number of vertical layers should be selected when configuring WRF
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model, which are important in calculation of PBL height which in turn may affect the
concentration of the pollutants [113]. There are around 10 PBL schemes [113] in WRF.
Some PBL parameterizations are designed to be strongly coupled with surface layer
properties. In this context, the externally determined lowest model level height can
influence the behaviour of a PBL scheme, which in turn affects the performance of
prediction skill for atmospheric states. MYJ, MYNN and YSU PBL schemes of WRF
can work with low vertical and horizontal resolutions [113]. According to Shin H. H.
et al. [114], the YSU scheme is the most sensitive to first layer height, the ACM?2 is
the second, and the MYJ scheme is the least sensitive. Our group, TR1, selected lowest
surface layer height (10m) among other groups, and used YSU scheme which is the

most sensitive scheme to the first layer height.

Selection of land surface model strongly affect the prediction of temperature and
humidity, since they are used to compute the surface heat and moisture fluxes. Land
surface models used by AQMEII-3 modellers are NOAH [115], RUC [116] and 5-
layer thermal diffusion model [126]. The NOAH land surface model [115]-[117],
which is mostly preferred by AQMEII-3 modellers, predicts soil moisture and
temperature in 4 layers. The layer thickness is 10, 30, 60 and 100 cm from top to
bottom [118]. The Rapid Update Cycle (RUC) land surface model includes multilevel
soil model with 6 default levels and the number of levels can be increased [118]. The
5-layer thermal diffusion LSM (TD LSM) is based on the 5-layer soil temperature with
the thicknesses 1, 2, 4, 8 and 16 cm [118]. Several comparative studies show that the
results of meteorological models are sensitive to the choice of the land surface model.
In the study of Mooney et al. [119], NOAH surface scheme yields more accurate
surface temperature results compared to RUC. Our group, TR1, used NOAH land
surface model as most of the AQMEII-3 groups.

The surface layer schemes calculate friction velocities and exchange coefficients that
enable the calculation of surface heat and moisture fluxes by the land-surface models.
These fluxes provide a lower boundary condition for the vertical transport done in the
PBL Schemes. MMS5 similarity theory [120] was used by IT2; Pleim-Xiu [121] and
Rapid Update Cycle (RUC) [122] schemes were used by UK 1, UK2 and UK3 groups.

Remining groups, including our group, were used ETA similarity theory.

The representation of clouds in WRF model includes major uncertainties in predictions

of short- and long-term weather. Cloud microphysics parameterization is required in
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meteorological models because a sophisticated, explicit prediction of the evolution of
cloud microstructure is either impossible or impractical even with the most advanced
computing resources [123]. Precipitation amount and intensity are calculated, and the
growth and development of water droplets in warm and cold rain processes are
simulated by cloud microphysics schemes. Furthermore, energy, momentum, and
moisture are redistributed among model grid points and interact closely with radiation
processes and the atmospheric boundary layer [123]. Single-moment 3-class
microphysics scheme of WRF (WSM3) [124] was used by our group, single-moment
5-class microphysics scheme of WRF (WSMS5) [125] was used by DKI, single-
moment 6-class microphysics scheme of WRF (WSM6) was used by UK1 and UK2
[125], Lin scheme was used by [126] ES1, and Morrison scheme [127] was used by
IT1 and UK3.

Cumulus convection transfers sensible and latent heat from the Earth’s surface into the
lower troposphere [128]. Cumulus parameterization schemes strongly influence the
dynamics and precipitation variability [129]. Several cumulus convection schemes are
used in WRF model in order to express the interaction between the larger scale flow
and complicated physics and dynamics of the convective clouds in simple
parameterized terms. Grell-Freitas [130] cumulus convection scheme was used by IT1

and IT2, and remaining groups used Kain-Fritsch2 [131] scheme.

Radiative fluxes are assessed in WRF by using various radiation options. IT1, IT2,
ES1, UK3 groups used Rapid Radiative Transfer Method for Global for solar and
infrared radiation (RRTMG) for both shortwave (SW) and longwave (LW) radiation.

TR1, UKI1, UK2 groups used Dudhia’s method [137] as SW radiation option and
Rapid Radiative Transfer Method for infrared radiation (RRTM) [138] as LW
radiation option. CAM scheme [136] was used by DK 1 for SW and LW radiation.

Data assimilation (nudging) technique is used for producing high resolution four
dimensional meteorological datasets (such as horizontal winds, temperature and water
vapor) between normal analysis times, for air quality models. The second reason of
using nudging is creating smooth start up forecast time zero by dynamic initialization
for pre-forecast period. The third reason for using nudging is preparation of boundary
conditions through forecast by nudging them with an outer domain that covers the

domain of interest.
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Table 2.5 : Configuration of the WRF model by participating modelling groups.

Meteorology Number Land
Input Data of vertical 1st layer Surface Surface Cloud Cumulus SW /LW Data assimilation
Operated by Provider layers height PBL model layer Model Microphysics convection radiation technique
IT2 University of ECMWF 33 10 m MYNN MMS5 NOAH Morrison [127]  Grell-Freitas ~RRTMG Grid analysis
L’Aquila [106] Similarity [115][117] [130] [135] nudging above
[120] PBL
ES1 University of ECMWF 33 21m YSU ETA NOAH Lin [126] Kain- RRTMG Grid analysis
Murcia [108] Similarity [115][117] Fritsch2 [135] nudging above
[132][133] [131] PBL
IT1 Ricerca Sistema ECMWF 33 25 m YSU ETA NOAH Morrison [127]  Grell-Freitas RRTMG Grid analysis
Energetico [108] Similarity [115][117] [130] [135] nudging also
[132][133] within PBL
DK1 University of ECMWF 29 20 m MY] ETA NOAH WSMS [125] Kain- CAM [136]  Grid analysis
Aarhus [107] Similarity [115][117] Fritsch2 nudging above
[132][133] [131] PBL
TR1 Istanbul NCEP FNL 30 10 m YSU ETA NOAH WSM3 [124] Kain- Dudhia Grid analysis
Technical [108] Similarity [115][117] Fritsch2 [137)/ nudging also
University [132][133] [131] RRTM within PBL
[138]
UK1 Kings College NCEP GFS 23 14m ACM2 Pleim-Xiu RUC [116] WSM6 [125] Kain- Dudhia Grid analysis
[109] [121] Fritsch2 [137)/ nudging also
RUC [131] RRTM within PBL
[122] [138]
UK2 Ricardo E&E NCEP GFS 23 I5m ACM2 Pleim-Xiu RUC [116] WSM6 [125] Kain- Dudhia Grid analysis
[109] [121] Fritsch2 [137)/ nudging above
RUC [131] RRTM PBL
[122] [138]
UK3 University of ECMWF 36 25m ACM2 Pleim-Xiu 5-layer Morrison [127]  Kain- RRTMG Grid analysis
Hertfordshire [109] [121] thermal Fritsch2 [135] nudging above
RUC diffusion [131] PBL
[122] [134]
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Applying nudging to boundary conditions and outer domain makes benefit of
providing smoother boundary conditions to domain of interest. The popular nudging
methods used for dynamical downscaling include grid nudging and spectral nudging.
For grid nudging, each grid-point is nudged towards a value that is time-interpolated
from analyses. In spectral nudging each grid point is nudged using a weighted average
of differences from observations within a radius of influence and time window [139].
Grid nudging technique was used by all AQMEII-3 groups which used WRF as
meteorology model. According to Mai X. et al. [140], nudging above the PBL
obviously improved the simulation of meteorological elements at the upper layers, but
was not ideal for simulations near the surface and at lower layers in some areas.
Therefore, nudging also within PBL gains importance in air quality modelling. In
AQMEII-3, IT1, TR1 and UK1 applied grid analysis nudging above and within PBL.
Remaining WRF users applied nudging only above PBL.

2.1.3.2 Air quality model

There are various mathematical models that can be used to simulate meteorology and
air quality at the mesoscale domain. Although mathematical models differ in their
treatment of meteorology or air quality (e.g. in considering feedback mechanisms), all
three-dimensional models are based on a similar framework and consist of the same

major components.

Seven different AQMs were used by modelling groups of AQMEII-3 project, which
are SILAM (v5.4), LOTOS-EUROS (v.1.0.1), CHIMERE (v2013), WRF-Chem (v3.6)
CAMx (v6.10), DEHM and CMAQ (v.4.7.1 and v.5.0.2). According to Table 2.1, five
groups operated the CMAQ model, which are TR1, UK1, UK2, UK3 and DE1. SILAM
model was operated by FI1 group, LOTOS-EUROS operated by NL1 group,
CHIMERE model was operated FRES1 group, WRF-Chem was operated by ES1 and
IT2 groups, CAMx was operated by IT1 and DEHM model was operated by DK1

group.
SILAM (System for Integrated modeLling of Atmospheric coMposition) was

developed in the leadership of Finnish Meteorological Institute as an open-code model

which works from global to beta-meso scale (~1km resolution) [141].

LOTOS-EUROS, was developed for TNO and Dutch National Institute, is an open-

source CTM that calculates the formation and dispersion of O3, NO», NH3, organic and
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elemental carbon, mineral dust, sea spray, secondary aerosols and heavy metals across
Europe. The default model resolution is approximately 25 x 25 km? but it is possible

to zoom in on urban and industrial areas [29].

CHIMERE multi-scale model was designed primarily for air quality estimates in
Europe [142] to produce daily forecasts of ozone, aerosols and other pollutants and
make long-term simulations (entire seasons or years) for emission control scenarios.
CHIMERE runs over a range of spatial scale from the regional scale (several thousand
kilometres) to the urban scale (100-200 km) with resolutions from 1-2 Km to 100 km
developed by the cooperation of Ecole Polytechnique Institute Le Laboratoire de
Météorologie Dynamique, The French National Institute for Industrial Environment
and Risks (INERIS) of French Ministry of the Environment and mixed universities

atmospheric research laboratory (LISA) in France [143].

WRF-Chem is the WRF model coupled with Chemistry. The model simulates the
emission, transport, mixing, and chemical transformation of trace gases and aerosols
simultaneously with the meteorology. The model is used for investigation of regional-
scale air quality, field program analysis, and cloud-scale interactions between clouds
and chemistry and developed in the leadership of National Oceanic & Atmospheric
Administration / Earth System Research Laboratory (NOAA/ESRL) scientists of U.S.
Department of Commerce [26].

CAMXx is a multi-scale photochemical grid model for gas and particulate air pollution
by comprising a "one-atmosphere" treatment of tropospheric air pollution over spatial
scales ranging from neighbourhoods to continents developed by ENVIRON division
of RAMBOLL company of Denmark [27].

DEHM for regional sources is developed by Aarhus University is a three-dimensional,
offline, large-scale, Eulerian, atmospheric chemistry transport model developed for

studying long-range transport of air pollution in the Northern Hemisphere [30 81].

CMAQ model is an active open-source development project of the U.S. EPA that
consists of a suite of programs for conducting AQM simulations. CMAQ is a three-
dimensional Eulerian atmospheric chemistry and transport modelling system that
simulates O3, PM, toxic airborne pollutants, visibility, and acidic and nutrient pollutant
species throughout the troposphere. Designed as a “one-atmosphere” model, CMAQ

can address the complex couplings among several air quality issues simultaneously
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across spatial scales ranging from local to hemispheric [144]. The one-atmosphere
perspective emphasizes that the influence of interactions at different dynamic scales
and among multi-pollutants cannot be ignored, therefore multi-pollutant interactions
should be considered simultaneously and there should be consistent algorithmic

linkage between meteorological and chemical transport models.

The CMAQ model is based upon the underlying concept of preserving mass through
a series of contiguous three-dimensional grid cells covering a fixed model grid (i.e., x-
y-z array that is fixed in space and covers a particular domain, i.e., the geographic area
of interest) [144]. Therefore, CMAQ belongs to the Eulerian class of mathematical
models which calculates mass balance for each grid cell by solving the transport
equation for boundaries of each cell and solving chemical transformations within each
cell during a given time period [144]. The CMAQ modelling system is capable of
processing diverse information from complicated emission mixtures and complex
distributions of sources, to modelling the complexities of atmospheric processes that
transport and transform these mixtures in a dynamic environment that operates over a

large range of time scales, from minutes to days and weeks [145].

CMAQ is a deterministic numerical model which uses first order-closure (K-theory or
the gradient transfer theory) technique in order to solve basic turbulent diffusion
equation’s unknown term, which is turbulent flux of the pollutants, F_)t.

Basically, CMAQ model (and also all numerical models) is based on mass

conservation principle. The basic turbulent diffusion equation can be derived from the

mass conservation principle, which has the following form:

S =-UVC-VF,+Q+R 2.1)

where C is pollutant concentration average over time interval, t is time, U is the wind

vector (U[u, v, w]) average over time interval in m/sec, ﬁt is turbulent flux of the

pollutants (ﬁt [u'C', v'C’, w'C'], Q is the source term and R is the removal term with

4kl

. . . - a -
the unit of mass/volume.time, and Visi—+j— .
ax 7oy d,

This equation can be solved only by means of numerical methods, as it is done in
numerical models. However, under a set of simplifying assumptions, the analytical

solutions of this equation can be obtained, and such a solution is used in Gaussian
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plume/puff models [7]. This part is not the scope of this study, therefore is not
explained more. The main problem of Equation 2.1 is the F_)t term which is unknown.
The first order-closure (K-Theory) models, which CMAQ model adopts, uses K-
theory of Schmidt W. (1925) [22]. This theory is an approximation for the closure of
the basic diffusion equation (equation 2.1) via parameterizing ﬁ't by the product of an
eddy diffusivity and the local spatial gradient of the quantity being transported. For

the pollution concentration this approximation is;

F.=Uc = -R.vVC (2.2)

Where K is diffusivity tensor and can generally be simplified by employing isotropic
argument in most first-order-closure models used in planetary boundary layer
applications. Finally, the off-diagonal components can be represented by a horizontal
term Ky and by a vertical term Kz, (Ku and Kz are horizontal and vertical turbulent
exchange coefficients in the unit of m?/sec), resulting following K-theory diffusion
equation, called also advection-diffusion equation;

ac _

ac ac ac a ac a ac a ac
pyei —{ua+v5+w£}+£KHE+5KH£+£KHE+Q +R (2.3)

For the Eularian grid system, equation 2.3 is allowed for space variations in the fields
of meteorological parameters, and the governing atmospheric diffusion equation in
generalized coordinates are given as follows where the turbulent flux terms are

expressed using the eddy diffusion theory [146];
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(a) time rate of change of pollutant concentration;

(2.4)

(b) horizontal advection;

(c) vertical advection;

(d) diagonal term of horizontal eddy diffusion;

(e) diagonal term vertical eddy diffusion;

(f) off-diagonal horizontal diffusion;

(g) off-diagonal vertical diffusion;

(h) production or loss from chemical reactions;

(1) emissions;

(j) cloud mixing and aqueous-phase chemical production or loss;

(k) aerosol process;

(1) plume-in-grid process.

where @ is the trace species concentration in density units (e.g. kg/m?), Je is the vertical
Jacobian of the terrain-influenced coordinate &, m is the map scale factor, v is the
vertical velocity (=d &/dt ), V stands for the vertical and horizontal wind components
in the generalised coordinates, x length for grid, qi (=i/ p) is the species mass mixing
ratio, p is the density of the air, K values are the diagonal components of the eddy

diffusivity tensor in the generalised coordinates.
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The dry deposition process can be included in the vertical diffusion process as a flux
boundary condition at the bottom of the model layer and this governing equation can

be rewritten for trace species [146].

Our group used CMAQ model which uses coupled mathematical representations of
actual chemical and physical processes to simulate air quality. As indicated on the
CMAQ modelling system operational procedure, which is given on the centre of
Figure 2.6, CMAQ model requires emission input, meteorology input and boundary
conditions. By using entire of those data, the model calculates concentrations of

pollutants for each grid cell.

In our modelling procedure, gridded surface and pressure levels data was downloaded
monthly from ECMWF by using a download code created by Python programming

language.

Then this data was used as an input to WRF pre-processing system (WPS). Then
outputs of WRF model is given to Meteorology Chemistry Interface Processor (MCIP)
version 3.6 [147] which combines emissions with meteorology outputs, then converts
to input of the CMAQ model. The MEGAN v2.1 [148] model was used to calculate
the biogenic VOC emissions from vegetation, using surface temperature and radiation
from MCIP output. Furthermore, boundary conditions data is taken from ECMWF and
converted into the required data format as input to CMAQ v4.7.1 [25] was configured
with the CB05 chemical mechanism and the AEROS module [25] for the simulation
of gas phase chemistry and aerosol and aqueous chemistry, respectively. Finally,

emissions are produced with CMAQ model.

Windblown dust emissions

CMAQ model users (UK1, UK2 and UK3 groups) use inline windblown dust
calculation of CMAQ model, which was a new feature of CMAQ version 5.0 and upper
[25 82], and those groups use CMAQ versions 5.0.1 and upper. Our group, TR1, use
CMAQ 4.7.1, so there was no inline dust module, therefore we used dust calculations
previously calculated in AQMEII-2. FI1 and FI12, FRESI groups included windblown
dust only from the lateral boundary conditions. DE1 group didn’t take into account

dust emissions since CCLM model doesn’t have dust module.
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Figure 2.6 : CMAQ modelling flowchart applied in this study by our group (TR1).
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Sea salt and wildland fire emissions
FI1 and FI2 groups included sea salt emissions as in Sofiev et.al. [149] (but not from
the boundaries). FRES1 group calculated sea salt emissions inside the domain

according to the study of Monahan E.C. [150].

IT1 group computed sea salt emissions using algorithms of de Leeuw et al. [151] and
Gong S.L. [152]. UK1 group computed emissions according to Gantt et al. [153]. DE1
group calculated in-line sea salt emissions by CMAQ, including sulphate emissions
based on an average sulphate content of 7.7 %. Background sea salt emissions were
considered by none of the models. Sea salt at the boundaries, although provided by

chemical boundary conditions, was not used due to unrealistically high values.

FI1 and FI2 wildland fire emissions are considered as in Soares et al. [154]. There is

no data for other groups.

Gas phase chemistry reaction rates

An important component of AQMs is the gas-phase chemical mechanism, which
describes reactions that take place in the atmosphere and interactions among chemicals
[155]. In AQMEII-3 project, several gas phase mechanisms were used by the
contributing groups, including Carbon Bond 4 (CB4 or CBM-1V), the 2005 version of
CBM-1V (CBO05), gas-phase chemical mechanism of CB05 with updated toluene and
chlorine chemistry (CB05-TUCL).

CBM-1V [171] (revealed in 1989) has 96 reactions and 45 of them are inorganic
reactions. There are 46 species and 30 of them are organic species in CB4. CB4 has
several versions and the version in CMAQ has 14 species and 15 reactions more than
the original CB4 [155]. CBOS5 is an updated version of CB4 in 2005 therefore called
as CB05. In CBO05, reaction rate constants were updated, additional inorganic reactions
were included, and 10 organic species were added to better represent stable organic
species and radicals in the atmosphere [169]. Hence, CB05 has 156 reactions and 63
of them are inorganic reactions. There are 59 species and 41 of them are organic
species in CB05. Approximate run time of CBO05 relative to CB4 is 1.14 in 12 km
domain, where it is 1.23 in 36 km domain [155].

IT2 group’s WRF-Chem model uses the RACM-ESRL gas-phase chemical
mechanism [173] which is an updated version of the Regional Atmospheric Chemistry

Mechanism (RACM) [178].
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Table 2.6 : Air quality modelling system properties.

Operated by

Horizontal grid
resolution

Vertical grid resolution

Deposition scheme

NOx
emission Gaseous

share of NO Chemistry Model
and NO2

Finnish Meteorological
Institute
(FI1)

Netherlands
Organization for Applied
Scientific Research
(NL1-TNO)

INERIS/CIEMAT
(FRES1)

University of L’ Aquila
(IT2)

Ricerca Sistema
Energetico
aT1)

0.25%0.25¢
LatxLon

0.5x0.25¢°
LatxLon

0.25%0.25¢
LatxLon

270%225 cells,
23km

265%220 cells,
23kmx23km

12 uneven layers up to 13
km. First layer ~30m

Surface layer (~25m
depth), mixing layer, two
reservoir layers up to 3.5

km.

9 layers up to 500 hPa.
First layer ~20m

33 levels up to 50 hPa. 12
layers below 1 km. First
layer ~12m

33 levels, from ~24m to
50 hPa

Dry: Kouznetsov and Sofiev [156]
Wet: Kouznetsov and Sofiev [157]

Dry: Zhang et al. [158] for particles,
Depac (Van Zanten et al.[159] for gases
Wet: below-cloud scavenging

Dry: resistance approach as Emberson
[160 161]
Wet: in-cloud and sub-cloud scavenging for
gases and aerosols (Menut et al.[162])

Dry: Wesely [163]
Wet: Grell and Freitas [130]

Dry: resistance model for gases (Zhang et
al., 2003 [165] ) and aerosols (Zhang et al.
[158])

Wet: scavenging model for gases and
aerosols (Seinfeld and Pandis [19])

90/10 CBM-IV [171]
97/3 CBM-IV [171]
foiNoy  MELCHIOR:
0.5% HONO
95/5 RAC[I;%E]SRL
95/5 CBO5 [169]
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Table 2.6 (continued) : Air quality modelling system properties.

NOx emission

Operated by Horlzonta.l grid Vertical grid resolution Deposition scheme share of NO G.aseous
resolution Chemistry Model
and NO2
Ricerca Sistema 265%220 cells, 33 levels, from ~24m to Dry: resistance model for gases (Zhang et 95/5 CBO05 [169]
Energetico 23kmx*23km 50 hPa al., 2003 [165]) and aerosols (Zhang et al.
T1) [158])
Wet: scavenging model for gases and
aerosols (Seinfeld and Pandis [19])
University of Aarhus 16.7 kmx16.7 km 29 layers up to 100 hPa Wet and dry as in Simpson et al. [166] 90/10 Brandt et al. [81]
(DK1)
Istanbul Technical 184x156 cells, 24 layers up to 10 hPa Wet and dry as in Foley et al. [25] 95/5 CBO05 [169]
University 30kmx30km
(TR1)
Kings College 15kmx*15km 23 layers up to 100 hPa, 7 Dry: electrical resistance analogy model 90/10 CBO05 [169]
(UK1) layers below 1 km. First Wet: taken from the RADM (Chang et al.,
layer ~14m [167])
Ricardo E&E 30kmx30km 23 layers up to 100 hPa, 7 Dry: Pleim and Ran [168] Road transport: CBO05-TUCL
(UK2) layers below 1 km. First Wet: Byun and Schere [82] 86/14; non- [169 170]
layer ~15m road: 95/5
Helmholtz- Zentrum 24kmx24km 30 vertical layers from Dry: Pleim and Ran [168] 90/10 CBO05-TUCL
Geesthacht ~40m to 50 hPa Wet: Byun and Schere [82] [169 170]
(DE1)
University of 18kmx18km 35 vertical layers from Dry: resistance analogy model (Wesely 90/10 CBO05-TUCL
Hertfordshire (UK3) ~20m to ~16km [163]). [169 170]

Wet: asymmetric convective model
algorithm in CMAQ cloud module
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In FI1 and FI2 groups, the gas phase chemistry was simulated with CBM-IV, with
reaction rates updated according to the recommendations of International Union of
Pure and Applied Chemistry (IUPAC) [175] and the National Aeronautics and Space
Administration (NASA) Jet Propulsion Laboratory [176]. NL1 group’s gas-phase
chemistry is based on CBM-IV (modified reaction rates; see Sauter et al. [79]).

TR1 configured CMAQ v4.7.1 with the CBO5 chemical mechanism and the AEROS
module [25] for the simulation of gas phase chemistry and aerosol and aqueous
chemistry, respectively. IT1 using CAMx version 6.10 [177] with CBO5 gas-phase
chemistry [169]. UK3 used the gas-phase chemical mechanism with updated toluene
and chlorine chemistry (CB0O5-TUCL) [169 170], and the aerosol chemical reaction
was treated with AERO6 module. CB05-TUCL was also used by UK2 and DEI.

DK1 employed the technique of Brandt et al. [81], which includes 58 chemical species,

9 primary particles, and 122 chemical reactions.

Photolysis rates

In FI1, pressure and latitude dependent photolysis rates of the FinROSE model [179]
are used and reduced proportionally to cloud cover below the clouds down to half the
original value at full cloud cover. Photolysis rates of NL1 are based on clear-sky
photolysis rate by Roeth’s flux algorithm (function of solar zenith angle [180]) and
multiplied by an attenuation factor in case of clouds. IT2 calculated the photolysis
frequencies with the Fast-J scheme [181]. Dry deposition and photolysis schemes were

modified to take into account the effects of the soil snow coverage [182].

Plume rise

The majority of models employed the prescribed vertical distribution by EMEP [183],
while UK1 adopted the Briggs plume rise algorithm [184][185]. FI1, FI2, FRES1 and
DE1 adopted the sector-dependent vertical emission profiles [186]. F1 and FI2 did not
account for extra plume rise in addition to that prescribed by the emission profiles,
since SILAM model doesn’t take it into account. NL1 group did not take into account
extra plume rise in addition to that prescribed by the emission profiles. A specific
feature of the model that NL1 used (LOTOS) is that it only covers the lower 3.5 km of
the atmosphere, with a static 25m surface layer, a dynamic mixing layer and two

dynamic reservoir layers. This makes the model relatively fast in terms of computation
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time but has implications for the vertical mixing of species for instances where the

mixing layer rapidly changes in height.

Secondary aerosols

FI1 and FI2 computed the secondary inorganic aerosol (SIA) formation with the
updated DMAT scheme [187] and secondary organic aerosol (SOA) formation with
the volatility basis set (VBS) [188]. SIA formation on ISORROPIA II [189] was used
by NL1. Modelled terpene emissions were reduced by 50% to limit their contribution
to SOA formation, which was found to be too high. Version 3.6 of the WRF-Chem has
been used by IT2, modified to include the new chemistry option implemented by
Tuccella et al. [190] that includes a better representation of the secondary organic
aerosol mass in the simulation of direct and indirect aerosol effects, calculated as in
Ahmadov et al. [188]. Here only direct effects were included in the simulation, for
computational expediency. DK1 calculated SOA by following the two-product
approach assuming that hydrocarbons undergo oxidation through O3, OH, and NO3
and for only two semi-volatile gas products [191]. However, the module is simple
because it does not include aging processes and further reactions in the gas and

particulates.

2.1.3.3 Performance Evaluation Framework

In the literature there are a variety of performance metrics which are including but not
limited to mean bias/error (MB/ME), mean normalized bias/error (MNB/MNE),
fractional bias/error (FB/FE), root/normalized mean square error (RMSE/NMSE),
normalized mean bias/error (NMB/NME), unpaired peak accuracy (UPA), index of
agreement (IoA), Pearson’s correlation coefficient (PCC) and the coefficient of

determination (r?). Their definitions, ranges and best values are given in Table 2.7.

Each metric has its own drawbacks and benefits which have been discussed in the
literature up to day. The operational metrics (magnitude of the error, sign of the bias,
associativity) provide an overall sense of model strengths and deficiencies, while
apportioning the error to its constituent parts (bias, variance, and co- variance) can
help assess the nature and quality of the error [71]. These metrics are used for

summarizing AQMEII model performances.
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In the literature Taylor Diagrams are also presented as a valuable tool for performance
evaluation, which is a 2 dimensional plot showing three statistical quantities; the ratio
of variances of both model and observed fields, the cantered RMSE and the PCC
between the two fields for the model variable under consideration in one point [192].

It can summarize the agreement between the observations and the model predictions.

Table 2.7 : Definitions of performance metrics.

Abbreviation Definition Formula Range Best
MB Mean Bias 1 ) 0
(or BIAS) Nz(Mi —-0;)
ME Mean 1 >0 0
(or MAE) (Absolute) NZIMi — 0] -
Error
MNB Mean . 1 Mi _ Oi -100%
Normalized 100 * NZ ( 0
Bias & to +oo
MNE Mean . 1 M; — 0 to o0 0
Normalized 100 * — z |
E N 0;
rror
FB (Mean) 2 (M, — 0,)
(or MFB) Fractional 100 * —
Bias N £a(M; +0;)
FE (Mean) 2 M. — 0. 1000
(or MFE) Fractional 100 * — M — O] 0-100% 0
Error N (Ml + 01)
NMB Normalized
M: — O: + 0
(or NBIAS)  (Mean) Bias 100 = 2( i 5 ) £100% 0
i
NME Normalized YIM; — 0 0-100% 0
Mean Error 100 * i 5 -
i
RMSE Root Mean

Squared Error
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Table 2.7 (continued) : Definitions of performance metrics.

Abbreviation  Definition Formula Range Best
NMSE Normalized 201 182
Mean Square s (1~ k)~ 0
Error 2 sik;
0 M
(s; == and k; =3)
UPA Unpaired Peak
M. -0
Accuracy 100 * ( peak peak) +100% 0
peak
IoA Index S (M; — 0,)? 0-1 1

of Agreement 1

"~ X(IM; - 0| +|0; — O[)?

PCC Pearson _ -
(orr) Correlation X(M; — M)(0; — 0) —1=r=1 1
Coefficient (N —1ouop
r Coefficient of _ _ 5 0-1 {
Determination ( 2((M; —M)(0; — 0)) ) F
VIM; — M)? %(0; — 0)?

Nonetheless all performance metrics were calculated for each station in this study.
Since it is not possible to give all metrics for 1447 air quality stations in Europe, they
are summarized on maps and given in Appendix 1. Furthermore, Taylor Diagrams will

be used for comparisons of the AQMEII models.

In the literature Taylor Diagrams are presented as a valuable tool for performance
evaluation. It is a 2 dimensional plot showing three statistical quantities; the ratio of
variances of both model and observed fields, the centered RMSE and the PCC between
the two fields for the model variable under consideration in one point [192]. Taylor
diagrams can summarize the agreement between the observations and the model

predictions.

The formulas used in the generation of Taylor diagram are given as follows;

B = \/zumi—m—(oi—onz 25)

N

M;—M)2
O = 2 (2.6)
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2(0i-0)?
g, = /% (2.7)

_ Z(Mi—M)(0,-0)
(N-1)opm o0

(2.8)

where E’ is the centred difference (errors) of Root Mean Squares (centred RMSE) and
best value is 0, o is standard deviation, r is Pearson’s correlation coefficient, M stands
for model, O stands for observations, N is number of values where overbar indicates

averaging.

Observed standard deviation is indicated with a black star on the x axis and follows
the dashed black arc above. White curves originated from x axis (and meets with the
same value on the y axis) indicate standard deviations. Standard deviation of the
models can be read by following the white curve where the model number located.
Standard deviation of the model should be close to standard deviation of the
observations. In Taylor diagram, the closer model to the dashed black arc, the closest
standard deviation to the observations. In the best case, it can be said that the variability
in the measurements is captured by the model. Model performance is associated with
its close standard deviation to standard deviation of the observations, but this
assessment does not give an idea of model performance solely. Other statistical items

of Taylor Diagram should be considered holistically.

The second statistical performance metric of Taylor diagram is Pearson’s Correlation
coefficient (PCC). Correlation is a measure of the relationship between model results
and measurements. The higher the correlation, the better the model results are matched
with the measurements. Correlation of the model should be high, best value is 1. In
Taylor diagram, the model closes to the x axis more correlated with observations than

the above model.

The third statistical performance metric in Taylor diagram is cantered RMSE which is
shown with black arcs around standard deviation of observations which is showed with

a black star in x axis. Best RMS difference value is 0.

Consequently, the position of each letter appearing on the plot enables visually assess
how closely that model's simulated PMo concentration pattern matches observations
[192]. Best model should have close standard deviation with observations, strong

correlation (r close to 1) and low cantered RMSE (best is zero). By combining all three
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metrics, it is clear that best model will lie nearest the point marked "observed" on the

X-axis.

2.2 Country-Specific EF Development

Currently national emission inventories of Turkey is calculated via EFs from
guidebooks of global agencies such as EEA [54] and IPCC [55]. Those EFs were
calculated by considering power plants in selected countries, which appertains for
specific production practices. Furthermore, abatement technologies depend on current
regulation of each country, then EFs are representative for those specific conditions.
Thus, development and usage of country-specific EFs are strongly encouraged by
global advisory agencies [54][55]and[193]. In this study, local EFs were calculated
from measurements when possible. If there were no adequate data for calculation of
the local EFs, most representative EFs were selected for calculation of the emission

inventory.

2.2.1 Data used in country-specific EF development

EF calculation part of this study benefits from Public Research Support Group
(KAMAG) project (project number is 111G037) of the Scientific and Technological
Research Council of Turkey (TUBITAK) [194]. Point, line and area sources of
Marmara region was considered in KAMAG project, but this study focuses on the
industrial emissions part (point sources) of the project. In industrial part of the project,
country-specific EFs were developed by in-situ measurements and official emission
measurement reports (EMRs). 120 stack measurements were conducted in 8 plants (11
stacks) by KAMAG measurement team for only public electricity and heat production
plants in Marmara region. Furthermore, official EMRs of 32 energy production plants
with 113 stacks were considered in the calculation of EFs, which resulted 339
measurements. The reliability of official EMRs, which are prepared by the facility-
company cooperation, is questioned by the administrative and academic community.
Therefore, measurements conducted by the KAMAG project team were used in this
study as much as possible, which includes at least two visits per plant turning with 8
recurrent measurements from each visit. In the absence or insufficient measurements,
official EMRs were used. In such cases, the calculated EF has been revised by

comparing with the international EFs and the final decision has been made
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accordingly, by expert judgement. The specific data according to plants were hidden

in the thesis due to confidential reasons required by the project regulations.

In-situ measurements include following parameters with 8 replicates at a time: facility
name, city, date of sampling, stack name, measurement number, fuel type, fuel
calorific value, flue gas flow (Nm?3/h), dry flue gas flow (Nm?3/h), gas temperature (°C),
gas velocity (m/s), moisture content (%), reference oxygen (%), dust (mg/m? and kg/h),
CO (mg/m? and kg/h), NO (mg/m? and kg/h), NO, (mg/m? and kg/h), SO, (mg/m? and
kg/h), CO> (mg/m?® and kg/h), Benzene (mg/m? and kg/h), Toluene (mg/m? and kg/h),
Ethyl Benzene (mg/m? and kg/h), Xylene (mg/m? and kg/h), Cd (mg/m? and kg/h), Cr
(mg/m? and kg/h), Cu (mg/m? and kg/h), Ni (mg/m? and kg/h), Pb (mg/m? and kg/h).
Total number of parameters is 43. In the meantime, a questionnaire form requested
from the plant operators regarding to the general properties of the plant, firing
practices, fuel and stack properties. A sample of the questionnaire form is given in

Appendix A.

There are many data in the EMRs, but in the scope of this study, the following
parameters were taken into account for the calculation of EFs and emission inventory;
facility name, source name, city, date of sampling, measurement number, fuel type,
thermal power of the plant (MW), fuel amount (m*/h), fuel calorific value, flue gas
flow (Nm3/h), moisture content (%), gas velocity (m/s), dry flue gas flow (Nm?/h,
m>/h), gas temperature (°C), gas velocity (m/s), Oxygen (%), CO (mg/m? and kg/h),
NO (ppm or mg/m? and kg/h), NO> (mg/m? and kg/h), NOx (mg/m?® and kg/h), SO
(mg/m?® and kg/h), dust (mg/m* and kg/h) and soot count (on Bacharach scale).
According to local regulations, Fluorine (mg/m? and kg/h) and Chlorine (mg/m?® and
kg/h) emissions are also measured in power plants with a capacity greater than 300

MW.

2.2.2 Methodology adopted in country-specific EF development

Before starting the EF calculations, each stack was examined in detail. Due to the
CLTRAP treaty [51] signed by Turkey, emission inventory of Turkey is compiled
annually according to EMEP guidebook [54] by Turkish Ministry of Environment and
Urbanization [53]. For this reason, the coding system in EMEP was taken into

consideration in order to group the emission sources in this study. Public electricity
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and heat generation category is indicated by “1.A.1.a” as NFR (Nomenclature for
Reporting) code in EMEP guidebook [54].

The tables in the EMEP guidebook [54] are classified as Tier 1 and Tier 2 according
to the detailed status of the data held by the emission inventory developers. The tables
with Tier 1 codes include generalized EFs by fuel types. Since our aim in this study is
not to develop generalized EFs as in Tier 1 category of EMEP guidebook [54] but to
develop country-specific EFs as detailed as possible, we consider Tier 2 codes at this
stage. In Tier 2 tables, the SNAP (Standardized Nomenclature for Air Pollutants) code
appears in addition to the NFR code. The SNAP codes depend on the type of fuel
used, the installation technology and the capacity of the plant. Detailed investigation
of the stack and also the connected production line of this stack is required in order to
assign correct SNAP/NFR code. The subject of the production, the method of the
production and detailed understanding of the manufacturing processes is vital for
correct decision making. SNAP/NFR code assignment, requires not only deep
understanding of the processes but also the understanding of European SNAP/NFR

coding system.

There are 12 different EF tables under the title of Public Electricity and Heat
generation title in EMEP (Tier 2), which are classified by fuel type, combustion
technology and power. Since not all technology and fuel types in EMEP guidebook
[54] are available in the Marmara Region of Turkey (the region considered in this
study), EFs were only calculated for five SNAP/NFR categories of EMEP in this study.
The list of SNAP/NFR codes used in this study is given in Table 2.8. In EMEP
guidebook [54], 1.A.1.A-10101-3.10 and 1.A.1.A-10102-3.10 codes are represented
in a single table with same EFs, however different EFs are calculated for each code in

this study.

After assigning correct SNAP/NFR code for 124 stacks (11 stacks from in-situ
measurements and 113 stacks from EMRs) by a thorough understanding of the
manufacturing process, emissions are transferred into a database. Ultimately, this
database includes 459 stack measurements (120 in-situ measurements and 359

measurements from EMRs) for all parameters listed below.
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Table 2.8 : SNAP/NFR codes of EMEP guidebook [54] considered in this study.

NFR SNAP Table SNAP Definition Fuel Technology
No

1.LA.1.A 10101 310 Public power - Combustion plants Brown Coal/ Wet and Dry
>=300 MW (boilers) Lignite Bottom Boilers

1.LA1.A 10102 310 Public power - Combustion plants Brown Coal/ Wet and Dry
>= 50 and < 300 MW (boilers) Lignite Bottom Boilers

1.LA1.A 10101 316 Public power - Combustion plants Brown Coal  Fluid Bed Boilers
>=300 MW (boilers)

1LA.1LA 10102 3 12 Public power - Combustion plants Natural Gas  Dry Bottom
>= 50 and < 300 MW (boilers) Boilers

1.LA.1.LA 10104 3 17 Public power - Gas turbines Gaseous Gas Turbines

Fuels

In order to handle this large dataset an R code was written which used this dataset as

an input. This code applies a quality control procedure for both in-situ measurements

and the data from official emission reports, initially, which summarized below;

o If'the difference between the eight consecutive in-situ measurements was more

than twice, the data was examined more carefully.

e The second of the in-situ measurements (in-situ measurements were performed

eight times in two separate visits) was flagged and further investigated, if there

were more than twice the difference between measurements of first and second

Visits.

e The above steps were applied for all parameters measured, not just

concentration data.

After applying quality control procedure, EF is calculated for each measurement by

two different methods. The first is based on the mass flow rate (in the unit of kg/h) in

the flue gas and the second is based on the concentration (in the unit of mg/m?) data in

the flue gas. With the help of the R code, one EF was calculated for each measurement

and for each pollutant by both methods. The EFs calculated in the two methods should

be identical. Based on this assumption, the quality control procedure was continued

and in case the EF calculated by both methods were not identical, the data of the related

measurement was examined. If there was an error, the measurement was deleted

accordingly.
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The EF calculation formula from the flue gas concentration is as follows;

o g emission ] mg emission
Emission Factor (—) = Concentration <—)
GJ fuel m3
1g Dry fl £l <m3> 1
* —————* Dry flue gas flow | — | *
1000 mg h Fuel rate (_kg )
year

number of working days number of working hour
* *

year day

1 10%kcal
s kcal *
fuel calorific value( %3 ) 4.1868 GJ

*

(2.9)

where g is gram, mg is milligrams, kg is kilograms, GJ is gigajoules, m?® is cubic
meters, h is hour, and kcal is kilocalories. The amount of fuel was taken in the unit
“kg/year” for solid fuels and in “m’/year” for liquid and gaseous fuels. The calorific

3 for

value of the fuel was taken in the unit of “kcal/kg” for solid fuels and in “kcal/m
liquid and gaseous fuels. The information on annual number of working days, daily
working hours and annual consumption of fuel for the associated stack was obtained
via questionnaire forms (Appendix A) asked from site operators during in-situ
measurements. If there is any missing information, firstly the facilities were called and
asked. If the call is failed or information is unclear or absent, the information was

accessed from emission permit report of the facility. If the information is still not

available, the measurement was not used in the calculations.

The EF calculation formula from the mass flow is as follows;

o g emission kg emission\ 1000g
Emission Factor (—) = mass flow rate ( ) *
GJ fuel h kg
1 1 10%kcal
* * * 2.10
fuel rate (kTg) fuel caloriphic value (k:;l) 4.1868 GJ ( )

The amount of fuel was taken in the unit “kg/h” for solid fuels and in “m?/h” for liquid
and gaseous fuels. For each measurement, EF was calculated separately using both
mass and volumetric concentrations as given in equations 1 and 2. Under normal
circumstances, the calculation of both methods should give the same EF. By

comparing the two results, it is possible to verify the calculations and data. When two
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EFs are not identical, the calculation steps and data are reviewed, the EF calculated for

that measurement is excluded if a satisfactory result is not reached.

In the next step, the stacks having the same SNAP/NFR code were grouped and their
averages were calculated. EFs derived from in-situ measurements and EFs calculated
from the EMRs were treated separately in this step. At the end of this step there were
two EFs for each SNAP/NFR category. In addition to the averages, confidence
intervals and some other statistical parameters were calculated for each EF, which will
be used in the calculation of uncertainties during the development of emission

inventory.

At this stage, EFs that fall into the same SNAP/NFR category were investigated from
the literature. Since this study (as a part of KAMAG project [ 194]) is the first in Turkey
for the development of country-specific EFs from in-situ measurements in Turkey, two
international guidebooks were considered for comparing EFs, which are EMEP
guidebook [54] and AP-42 [193] database of U.S. EPA. After comparing results with
literature, EFs derived from in-situ measurements have been used primarily because

of the drawbacks about the reliability of official EMRs as discussed in Section 2.2.1 .

Although all those SNAP/NFR codes were considered in this study, EFs were
developed only for 1.A.1.A-10102-3.12 and 1.A.1.A-10104-3.17 since there are no
plants included in KAMAG database [194] attributed to remaining SNAP/NFR codes

or the data was not adequate for calculation of specific EFs.

2.2.3 Variability analysis method

Variability refers to the heterogeneity of the values in a dataset with respect to time,
space or a population [195]. Since the measurements used in the EF calculations are
made at different times and in different stacks or plants, there is often a high inter-
measurement variability. Precision in the estimate of the statistics such as mean,
standard deviation or parameters of a distribution fit to a data set describing inter-
measurement variability influences uncertainty quantification based upon random
sampling error [196]. In this part of the study, the method for quantification of

variability between EFs is summarized.

The first step of the quantification of variability is visualizing the data in order to
evaluate central tendency (may be called as the centre or location of the distribution)

and dispersion of the data, and identifying the outliers in the data [196]. Plotting the
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dataset as an empirical cumulative distribution function (CDF) is a specific technique
in order to visualize and evaluate the dataset. In a CDF, cumulative probability of each
value is calculated and plotted according to values. Since cumulative probability is the
probability that the random variable has values less than or equal to a specific
numerical value of the random variable, CDFs can provide a relationship between
fractiles (percentage basis fraction of the values that are less than or equal to specific
value of a random variable) and quantiles (the value of a random variable associated
with a given fractile) [ 74]. In this step, the shape of the empirical distribution is visually
inspected in order to fit the probability distribution model in the next step. The shape
of the distribution is reflected by the quantities such as skewness (shows the
asymmetry of a distribution) and kurtosis (shows the peakedness of a distribution).
Dispersion of a distribution reflected by the 95% probability range of values, which is
often of particular interest in air quality studies, indicates the range of the data values

enclosed by the 0.025 and 0.975 fractiles (2.5 and 97.5 percentiles).

In addition to visual assessment of the data, the dispersion of a distribution is measured
by the standard deviation or variance. Relative standard deviation (also known as the
coefficient of variation, Cv), which is obtained by the ratio of standard deviation and
mean, provides a normalized indication of the dispersion of data values. Large Cv

indicates relatively large variability in the dataset [74].

X~ mean = 24 Q2.11)
._¥\2
o’=variance = Z(X‘TX) (2.12)
—2
o=standard deviation = ’w (2.13)
Cv(%)= %* 100 (2.14)

Skewness and kurtosis are used to identify the shape of the distribution, where the
skewness shows the asymmetry in a distribution and kurtosis shows the peakedness of
a distribution. These statistics are also used as an aid when fitting a parametric
probability distribution model to the data [197]. Although there are several different

formulas for skewness and kurtosis, in this study following formulas are used;
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N [wN  (x;-%)3]
(N-1)(N-2) N
Cox = = - (2.15)
N [»N  xi-%)%]
(N-1)(N-2) N
Crx = g -—3 (2.16)

where Cgy is Fisher-Pearson coefficient of skewness (in r fisher option with unbiased
moment), where the left term of the upper part is used as an adjustment for sample
size. For normal distribution and any symmetric data Cgx is close to zero, negative
values for the skewness indicate left skewed data and positive values indicate data that
are skewed right. By skewed right, we mean that the right tail is long relative to the
left tail. Cx is the coefficient of kurtosis where it is zero for standard normal
distribution. s (in r excess option) [198]. AuvTool is used for quantification of

variability and uncertainty [196].

2.2.4 Uncertainty quantification method

Analytical and numerical solutions are available for quantifying uncertainty in the
mean or standard deviation. Analytical solutions can be used under one or more of the
following conditions; underlying distribution of a dataset is normal, variance is low or
the sample size is large enough (e.g. >30) [199]. Analytical methods based on
normality may lead to significant errors in the estimation of confidence intervals when
following conditions are not valid. Numerical methods are flexible in terms of
underlying distribution for estimating confidence intervals. Bootstrap simulation is
one of the widely used numerical methods in quantifying confidence intervals based
on random sampling error from parametric distributions. In this study, numerical
solution was considered in quantifying uncertainties in the generation of country
specific EFs. General methodology adopted in generation of country specific EFs are
summarized in Figure 2.7. The method is adopted from the study of Cullen and Frey
(1999) [197].

The flue gas measurements used to calculate country-specific EFs (x = {x1, x2, ..., xn}
where n is the number of the calculated EFs in Figure 2.7) in this thesis are discrete
measurements. Therefore, the temporal variability of the data is uncertain. That is, it
only contains the flue gas values gathered at the time of the measurement. Installation

of continuous flue gas measurement systems in Turkey is compulsory for the plants
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above a certain capacity. Even if there is continuous emission measurement data, then
uncertainties may occur due to errors in the measuring instrument and changes due to
operating conditions. Even if we try to converge to the real value as much as possible,
for these reasons, the EFs we calculate using flue gas measurements do not represent
absolute values but gives an idea. In such cases where it is not possible to accurately
sample the entire population, a representative sample must be used [74]-[199]. When
a sample group is used, it is possible to obtain an idea about the entire population, but
it can never fully match the entire population. For this reason, there will always be
some likelihood of random sampling error [74]. In this study, our sampling group is

the set of EFs calculated from discrete flue gas measurements.

In statistics, sampling error is a type of error caused by investigating a small part of
the population rather than examining the whole population. It is calculated by the
difference of a sample statistic used to estimate a population parameter and the actual
but unknown value of the parameter. Uncertainty is expressed as lack of knowledge
regarding to true value of a quantity [196]. Uncertainty in a statistic attributable to
random sampling error can be represented by a sampling distribution [197]. A
confidence interval for a statistic is a measure of the lack of knowledge regarding the

true value of the statistic [199].

In order to calculate uncertainty, a distribution is fitted (F) to the EF dataset (x) where
actual underlying distribution (F) is unknown, as given in Figure 2.7. Fitting
distribution methodology is described in Section 2.2.4.1. The goodness-of-fit is
evaluated by some techniques described in Section 2.2.4.2. The parameter of interest,
0, is a characteristic of the distribution of F, 0 = f(F), such as the mean, variance, shape
or scale parameter, or any fractile or quantile of the distribution F. An estimate of 0 is

the statistic 0 , which is determined from the data set, 6 = f(x).

Then Monte Carlo method is applied in order to generate random datasets from
assigned distribution, £ (described in detail in Section 2.2.4.4). This process is
repeated up to generate a number of alternative probability distribution models from

which the original dataset is a plausible random sample.

In Bootstrap simulation part of the study (described in detail in Section 2.2.4.5), each
of the alternative probability models generated by Monte Carlo approach (Bootstrap

replicates) are simulated to develop a reasonably stable characterization of the
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percentiles of the distribution. In this step, a distribution is fitted to each of the
bootstrap sample, then parameters, *, are estimated. In this study, uncertainty in the

estimate of 0 is reflected by dispersion of 8*, which also gives random sampling error.

The 6* data is sorted then in order to calculate confidence interval for the fitted
cumulative distribution function. Consequently, the results are compared to the

original dataset by generating probability bands.

2.2.4.1 Fitting a distribution

Selection of the probability distribution model for variability by fitting a distribution
to each of the dataset is required in order to generate random samples that will be used
in uncertainty analysis. Probability distribution models may be empirical (a discrete
distribution that gives equal probability to each value in the dataset [200], therefore
has CDF with a step function of original dataset), parametric (assumed by considering

the parameters of the distribution of the dataset) or combinations of both.

One of the main shortcomings of empirical distribution models is that the resampled
(sampled from the data calculated via empirical distribution function) datasets are
limited to the minimum and maximum values within the dataset. When only small
datasets are available, this can lead to biases in the representation of a given model
output. Air quality measurements include data at a given time, which can be measured

more or less in subsequent measurements.

The complex structure of the empirical distribution models is another shortcoming. In
parametric distribution there are particular type of parametric functions and the
calculation methodology of its parameters are well defined. Therefore, parametric
probability distribution models are capable of describing data points (even the larger
number of data points) in a compact manner based on a particular type of parametric
distribution function and the values of its parameters, where it is complex in empirical
probability distribution models [201]. Minimum and maximum values of the
distribution are limited to minimum and maximum values of the data in conventional
empirical distributions; however, it is possible to make predictions in the tails of the

distribution beyond the range of observed data in parametric distribution models [196].
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MONTE CARLO METHOD

STEP 4 - Generation of Random Variables from Distribution

Original Emission Factor Dataset

X1
Ixnl
n = sample size

F = unknown probability distribution
6 = parameter of the unknown distribution

0 = f(F)

Generated Dataset 1

[x*ll
x*

Generated Dataset 2 Generated Dataset ..

[x*ll
x*"

Generated Dataset B

[x*ll
L

B= Number ofbootstrap samples
(generated datasets by Monte Carlo method)
x*= Independent bootstrap sample

DISTRIBUTION FITTING

STEP 1 - Fitting Distribution to the Original Dataset

Define population distribution
F = The distribution assigned for estimating unknown F

STEP 2 - Estimation of the parameters

@ = A statistic estimated from 6
6 = f(x)

STEP 3 - Evaluation of goodness of fit

Visual comparison by CDFs and Histograms
Goodness of fit tests /criteria

l

BOOTSTRAP METHOD

STEP S - Fitting a distribution for each of the bootstrap sample

STEP 6 - Estimation of the parameters for each bootstrap sample

Mean, Standard Deviation, 1st parameter and 2nd parameter is calculated for each B

6*= Bootstrap replicate of @  (independent estimate of 6)

0" = f(x*)

STEP 7- Sorting bootstrap samples

from small to large for each random variable (q)

STEP 8- Calculation of the Confidence Intervals

Calculation of the selected percentiles of for each random variable (q)

by "Percentile Method"
( Percentiles — Confidence intervals )

STEP 9 - Generating Probability Band

For evaluating adequacy of the fitted model

Figure 2.7 : Uncertainty and variability quantification methodology adopted in country-specific EF development.
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Considering all this information, it was decided to take parametric probability
distribution models into consideration when fitting a parametric distribution model to
the generated EFs. Selection of the parametric distribution for variability requires

combination of a deep knowledge about theoretical and empirical considerations.

All these statistics and visual inspection of the CDFs were combined with goodness-
of-fit statistics and goodness-of-fit criteria for selecting best fitting parametric
probability distribution model to our data. Furthermore, the processes that generate the

data should be considered.

Parametric probability distribution models used in AuvTool include the normal,
lognormal, Weibull, gamma, beta, uniform, symmetric triangle parametric
distributions. Normal distribution is not appropriate for representing non-negative
quantities because it has an infinite negative tail, however it can be used when Cv is
less than 0.2 [202]. The lognormal, gamma and Weibull distributions are useful for
representing non-negative and positively skewed data [196]. Although two-parameter
beta distribution has flexibility to represent data with a variety of central tendency and
skewness [196], it was not considered in this study since it is bounded by zero and one.
The uniform and symmetric triangle distributions are most commonly used to
represent expert judgments made in the absence of data [196]. These two distributions
were considered when EFs of the same code are clustered around two or more extreme

values.

2.2.4.2 Evaluating goodness-of-fit

CDFs and histograms were used in order to visually evaluate the fit of parametric
distribution. In addition, goodness-of-fit statistic and goodness-of-fit criteria were used

in order to select best fitting parametric distribution.

Goodness-of-fit statistics are not limited but including Kolmogorov-Smirnov statistic,
Cramer-von Mises statistic, Anderson-Darling statistic. Also, goodness-of-fit criteria
is not limited but including Akaike's Information Criterion and Bayesian Information
Criterion. These statistics were calculated with “fitdistrplus” package [203] of R

software.
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Kolmogorov-Smirnov Statistic

Kolmogorov-Smirnov statistic is based on the maximum distance between CDF of the
fitted parametric distribution and empirical CDF of the data. Then maximum distance
is compared to a tabulated critical value for a significance level and rejected if the
distance is larger than the critical value. For best fitting distributions, the maximum
distance should be less than the critical value [197]. It can be applied to normal,
lognormal, Weibull, gamma, beta, uniform, symmetric triangle parametric
distributions with two limitations as being sensitive near the centre of the distribution

than at the tails, and being valid only in continuous distributions
Kolmogorov-Smirnov statistic calculation steps are [197][199][204]-[207];

e Rank the original dataset in an ascending order where Xi<Xy+1 (k=1, 2, ..., n)
where X is the ordered dataset is X, n is the number of the data points in X, Xk

1s the data.

e Develop a stepwise cumulative density function as follows;

0 x < Xq
Sp(x) =3k/n X S X < Xy (2.17)
1 X =Xy

where Sn(x) is the empirical cumulative distribution function.

e (Calculate the D, which is the maximum difference (distance) between Sy(x) and

the CDF of the fitted distribution, F(x), over the entire range of X.
D,, = max |F(x) — S,(x)| (2.18)

e Decide significance level (o) and find critical value from the tables generated
for Kolmogorov-Smirnov statistic in the literature. Generally, 95% confidence
interval (a=1-confidence interval = 1-0.95=0.05) is considered in EF
estimates. Therefore, critical value table of the Kolmogorov-Smirnov statistic
for 0=0.05 significance level is given in Table 2.9. Linear interpolation can be

used for the not listed n values [205].
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Table 2.9 : Critical value of maximum distance (Dy) for 95% confidence interval
[206][207] for Kolmogorov-Smirnov statistic.

n Critical Value
5 0.337
8 0.285
10 0.258
12 0.242
15 0.220
16 0.213
18 0.200
20 0.190
25 0.180
30 0.161

>30 1.886/A\/n

e Kolmogorov-Smirnov statistic (Dn) should be less than critical value (given in

Table 2.9) in order to pass goodness-of-fit test.

Akaike's Information Criterion

Akaike's Information Criterion (AIC) is a technique for evaluating the likelihood of a
model to predict the future values [208]. In this thesis, AIC is used to evaluate the
appropriateness of the fitted distribution to the data. Lowest value of the AIC indicates

best fitted parametric distribution to our data. The AIC formula is as follows;

2n
n—-k—-1

AlIC = k — 21In[L,,q.] (2.19)
(=)

where n is the number of data values, k is the number of the parameters to be estimated
(for instance number of the parameters is two for normal distribution, which are mean
and standard deviation), Lmax is the maximized value of the log-Likelihood for the
estimated distribution (for instance it is the natural logarithm of the Likelihood after

estimating the parameters of the fitted distribution by Method of Matching Moments).
Bayesian Information Criterion

Bayesian Information Criterion (BIC) is used for selecting best fitting model to a
dataset. Lowest value of the BIC indicates best fitting parametric distribution to our

data. BIC can be defined as;

BIC = In(n) k — 2In(L) (2.20)
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where n is the number of the data points, k is the number of free parameters to be

estimated and L is the maximized value of the likelihood function of the model [209].

2.2.4.3 Estimating parameters of the distribution

Once a parametrical distribution has been selected, a key step is to estimating values
of the parameters of a parametric probability distribution. There are two most typical
statistical techniques used for estimating parameters of a distribution; the method of
Maximum Likelihood Estimation (MLE) and the Method of Matching Moments
(MoMM) [196]. The MLE method does not always yield minimum variance or
unbiased estimates for small sample sizes, however, for larger sample sizes, the MLE
method tends to better estimate statistically than other methods [210]. There are
convenient solutions for MoMM parameter estimates for the normal, lognormal,
gamma, and beta distributions [211], as well as for the uniform and symmetric triangle
distributions. However, they are not easy to calculate [196]. In this study, MoMM
method was used in order to estimate parameters of the fitted distribution. AuvTool

was used for calculating of the parameters.

MoMM is based upon matching the moments or central moments of a parametric
distribution (e.g., mean, variance) to the moments or central moments of the data set.
The MoMM estimators for each of the parametric distributions are presented in this
part of the thesis.

Normal Distribution

Parameters for the normal distribution are the arithmetic mean, i, and the arithmetic
variance, 2. The MoMM estimator of the mean is the sample mean, X where MoMM

estimator of the variance is the unbiased sample variance, s> [202 212 and 196].
A=X=-¥LX (2.21)
1 —_
6% =s2=—3Y" (X; — X)* (2.22)

Probability density function of normal distribution is written in the following form

where x is between 0 and oo;
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1 a-w?

f) = m==e 2 (2.23)

Lognormal Distribution

There are two types of parameters for the lognormal distribution [202 212 and 196]

which are,

e geometric mean (I,) estimated by fi,, and geometric standard deviation (04)

estimated by 6, or

e The mean of the logarithm of X (ij, (x)) estimated by fh, (x), and standard
deviation of the logarithm of X estimated by Gjnx). In this study, these

parameters are used since they are included in AuvTool.

A oy 1.
A o) = In(X) = 26%1 () (2.24)

6%n ) = VIn(X2 + s2) — 2In (X) (2.25)

Probability density function of lognormal distribution is written in the following form

where x is between 0 and oo;

1 —(lnx—ulnx)2
f(x) = ———=¢ 22 (2.26)
x /Znaln(x)z

Gamma Distribution

The parameters of the gamma distribution are the shape parameter a (estimate of @)

and f§ (estimate of &), which are estimated through relationships with the sample mean

(%) and unbiased sample variance (s?) [202 212 and 196].

~ _ X?
a= =] (2.27)
A 52

=3 (2.28)
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Probability density function of gamma distribution is written in the following form

where x is between 0 and oo, ['(@) is the gamma function and tabulated well in the

literature for positive values of a ( T'(a) = [ 000 x% le™¥);

—axB—le—x/B

_ B
f) = —r (2.29)

Weibull Distribution

There is no closed form solution for the MoMM estimator of the parameters of the
Weibull distribution. Therefore, as an alternative, a parameter estimation method
based upon regression analysis of a probability plot is used in AuvTool as described
by Cullen and Frey [197]. In the probability plot method, if a data set is reasonably
described by a Weibull distribution, then the following transformation may be used to

plot the data;

In {ln [F(;)]} = cIn(x;) — cIn (k) (2.30)
F(x;)) =1—-F(x;) (2.31)

where ¢ is the shape parameter and k is the scale parameter. F(x;) is the
complementary CDF of x. An empirical estimate of the CDF can be obtained using
Hazen equation [213] which is a commonly used equation for finding plotting position

of a data point by estimating cumulative probability of it;
F.(x;)) =Pr(X <x;) = i_TO'S,fori =1,2,..,nand x; < xp, < - (2.32)

Where i is the rank of the data point when the dataset is arranged in an ascending order,
n is the number of the data points, x; < x, < --- are the data points in the rank-ordered
dataset, Pr(X < x;) is the cumulative probability of obtaining a data point whose value
is less than x;. In AuvTool, the positions of the data points were estimated by Hazen’s

equation for all parametric distributions.

Probability density function of Weibull distribution is written in the following form

where x is between 0 and o,

f@) = £&texp (- (2)) (2.33)

72



Uniform Distribution

The parameters of the uniform distribution are the endpoints, a and b, which are

estimated by @ and b. The parameter estimation formula using MoMM are as follows

[202][196];

S
Il
>

—/3s (2.34)

b= X++3s (2.35)

Probability density function of uniform distribution is written in the following form

where x is between a and b,

1
fO) = — (2.36)
Symmetric Triangle Distribution

The parameters of the symmetric triangle distribution are a and b, which are estimated

by @ and b. The parameter estimation formule using MoMM are as follows [202][196];

a=X (2.37)

S

=6s (2.38)

Probability density function of symmetric triangle distribution is written in the

following form where x is between a and b,

flx) = b_llfz_a' (2.39)

2.2.4.4 Monte Carlo method

In this study, Bootstrap samples are generated by using random Monte Carlo
simulation. The starting point of the Monte Carlo simulation is fitting a probability
distribution for each model. Then random values are generated from the assigned
probability distribution model by numerical methods based on the use of pseudo

random number.

Pseudo random numbers are uniformly random numbers generated in a completely

deterministic manner which are statistically uniform and independent, reproducible,
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efficiently implementable as quickly and economically [214]. The number of the
random values that are generated from the original dataset is based upon the beginning

of the same sequence repetition, which is called as “period length” [199][214].

There are a variety of methods for generating pseudo random numbers. In Auvtool,
that was used by this study, combined Multiple Recursive Generators (MRGs) is used
[215], which combines two or more MRGs in order to produce pseudo random

numbers.
Zn = (Xn—Yn) mod my (2.40)
where Z, is a combined MRG with two underlying MRGs, X, and Y.
Xn = (a1 Xn1 + a2 Xn2 + a3 Xn-3) mod my (2.41a)
Yn = (b1 X1 + b2 Xn2 + b3 Xn3) mod m; (2.41b)

where m; = 231-1 = 2147483647, my = 2145483479, a; =0, a> = 63308 and a3 = -
183326, b1= 86098, b2 = 0 and bz = -539608. Calculations of those coefficients are
not discussed here and can be found in the study of L’Ecuyer (1996) [215].

Generation of pseudo random numbers differs according to fitted distribution type in
AuvTool [204]. Calculation steps according to distribution types are summarized

superficially from this point of study.

Box-Muller method, called as polar method [216], was used in this study with the
application method of Law and Kelton (1991) [217], for generation of random

variables form a normal distribution.

Lognormal samples are generated by using a special property of lognormal

(1SS
~

distribution. Namely, if Y ~ N(iinx, 6%inx ), then €Y ~ LN(imx, 67 inx, Wwhere denotes
“is distributed as”, N is normal distribution, LN is lognormal distribution, i is mean
and o? is standard deviation. Therefore, lognormal random samples are generated by

X = eY algorithm where X is lognormal random sample.

For generation of Gamma random variables, acceptance-rejection algorithm [217]

[204]and[199] is used.

Method of inversion using the inverse CDF [202] was used for generation of random

samples (X) for Weibull and Uniform distributions.
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In this method, CDF of the Weibull distribution can be written as;

F(x) = 1 - exp™®" (2.42)

where X is random variate, ¢ is the shape parameter and k is the scale parameter of

the Weibull distribution. Then;
X =F1(U) = k[-In(1 - D)]¥/¢ (2.43)

where U is a random sample from the U(0,1) distribution.
The method of inversion is applied as follows for generating uniform distributions with
any arbitrary endpoint;

X=a+ (b-a)U (2.44)
where U is a random sample from the U(0,1) distribution, a and b are the endpoints
(parameters in this case) of the uniform distribution .

The method of inversion is applied as follows for generating symmetric triangle
distributions as follows;
X =(a—b)+b2U)"> where 0< U < 0.5 (2.45a)

X = (a +b) - b(2-2U)"2 where 0.5< U < 1 (2.45b)

U is a random sample from the U(0,1) distribution, a and b are the parameters of the

symmetric triangle distribution.

2.2.4.5 Bootstrap simulation

Bootstrap simulation was originally developed by Efron [200] in 1979, for the purpose
of estimating confidence intervals for statistics based on random sampling error [199].
Confidence interval is a range of values that is likely to contain an unknown population
parameter. In this study, Bootstrap method is used to estimate confidence intervals for
the fitted CDF for each country-specific EF. Bootstrap method can use the data
generated by Monte Carlo method, directly [218].

Bootstrap simulation is a numerical method which can provide solutions where exact

analytical solution is unavailable or inadequate. It can be applied even the original
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dataset is not normally distributed or the sample size is small. These advantages of

Bootstrap simulation over analytical methods makes it as a more versatile and robust

method for estimating uncertainty in a statistic due to sampling error, especially for

non-normal datasets [197].

The Bootstrap technique illustrated by Frey and Rhodes (1996) [219] is used in this

study which is also basis for AuvTool. The method is summarized in Figure 2.7, and

addresses the issue of quantifying the random sampling error that is introduced by

estimating some statistic of interest from a limited number of randomly sampled data

points. Basically, Bootstrap method starts after applying following steps;

fitting a distribution (F) to the EF dataset (x) where actual underlying

distribution (F) is unknown, as described in section 2.2.4.1,

determining statistic @ from the data set with § = f(x), which is an estimate
of 0 (mean, variance, shape or scale parameter, or any fractile or quantile of

the known distribution F, where 0 = f(F)), as described in section 2.2.4.3,
evaluating goodness-of-fit as described in section 2.2.4.2.

generating random datasets (Bootstrap samples, 8*), which are Bootstrap
replicates of 8, by a random simulation method from assigned distribution, .

In this study Monte Carlo method is used as described in section 2.2.4.4.

In Bootstrap simulation part of the study following steps are applied;

fitting a distribution to each Bootstrap sample.

estimation of the distribution parameters for each Bootstrap sample (8*=f(x")).
In this study, uncertainty in the estimate of 0 is reflected by dispersion of 8%,

which also gives random sampling error
sorting the 6* data

calculating confidence interval for the fitted cumulative distribution function

by “Percentile Method”

Comparison of the results to the original dataset by generating probability

bands

There is no gold standard for selecting the best method for forming confidence

intervals [199]. In Auvtool, percentile method is used since it is widely used in practice
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and for its simplicity. The other benefit of using the percentile method to other methods

is that it can be applied to any type of Bootstrapped distribution [220].

After ordering B Bootstrap replicates of 8* (8*1,8*2, ... ,0*F), the upper and lower

bounds of the expected confidence interval is estimated by using following formula;

Lower bound of the confidence interval = (100.c.)" percentile
= (B.a)™" largest value of 8*  (2.46)

Upper bound of the confidence interval = [100.(1-o.)]" percentile

= [B.(1-a)]™ largest value of 8* (2.47)
o = 1-CI/100 (2.48)

where a is the significance level (for 95% confidence interval, o is 1-95/100 = 0.05).

For instance, assume B=1000 and o=0.05 for 95% confidence interval. The lower and
upper bounds of confidence interval for the values of a Bootstrap statistic in the

ordered set are calculated as;

Lower bound of the confidence interval = 0.05 percentile = 50™ largest value of the

ordered 6*

Upper bound of the confidence interval = 95 percentile = 950™ largest value of the

ordered 6*

Bootstrap simulation can be used to help evaluate the goodness-of-fit of a distribution
with respect to the original data by graphically comparing confidence intervals for
CDF of the fitted distribution to the data. In this study probability band, or confidence
band, is used in order to evaluate results of Bootstrap simulation. A probability band
is composed of the fitted line plot that depict the upper and lower confidence bounds

for all points within the range of data.
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2.2.4.6 Uncertainty propagation

In this part of study, propagation of uncertainties in terms of addition is described,
because it is necessary to sum the uncertainties in this study. If there is a need to find
the uncertainty associated with sum of two individual uncertainties by assuming errors
as random and uncorrelated, uncertainties can be calculated by taking square root of

sum of squares (quadrature) [221];

X ((S‘xlowand 6xhigh) -y (Sylow and 6yhigh) tz (6Zlow and 6Zhigh) (2493)

X=y +tz (2.49b)
\/(SYIOW*Y)Z'F (6z10w*2)?
o) = 2.4
Xiow y+z ( 90)

2
\/(53/high*Y)2+ (62znign*z)
SXpign= == (2.49d)

where x is the final sum of the two values which are y and z in this case, 6x;,,, ,
6Y1ow and 6z, are 95% lower confidence interval of X, y and z values, respectively.
0Xnigh» 6Ynign and 8zp; 4y are 95% upper confidence interval of x, y and z values,
respectively.

2.2.4.7 Percentage uncertainty

Following formula is used in order to express uncertainty as a percent.

Percentage uncertainty (lower) = 100*(X-6X;0w or hign) / X (2.50)
Percentage uncertainty (upper)= 100*(8Xiow or nigh-X) / X (2.51)

where x is the final sum of the two values which are y and z in this case as described

in equation 2.5.a and 2.5.b, X4y or nign €an be either 8x;4,, OF 8xp;4p , and

represents either 95% lower (8x;0y,) Or upper (8xy;4,) confidence interval of x.

2.3 Probabilistic Emission Inventory

An emission inventory is compiled in this study, for public electricity and heat
production sector of Marmara region. Emission inventory development and EF

calculation methodology is summarized below.
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2.3.1 Inventory data

Although emission calculation methodology seems a simple multiplication of activity
data and EF for industrial plants as in equation 2, each item of the formula requires a
deep data collection and analysis effort at the background. In developing countries,
especially activity data collection for industrial sources is most time-consuming part
for emission inventory developers. Due to its unstable nature of the activity data,
inventory developers should have at least the simple descriptive information on the
sources before commencement of the works in order to know where to search current

data for updating and developing in-hand data.

Activity data sources are including but not limited to the sources we have used in
KAMAG project [194] (up to the permission of Ministry of Environment and
Urbanization), also open sources including web pages, annual reports of the
companies, one to one negotiations with the company representatives, development
reports of Ministry of Industry, official asking to Ministry by obeying Turkish law of
information acquisition, data acquisition from Turkish Statistical Institute, personal
communications with industrial zone representatives, academic studies and opinions
of experts both from universities and sector. In urgent cases when there is no data
despite all the efforts, then expert judgement was used as a final way for selection of

activity data by considering the conditions in Turkey.

If official activity data is not available, then the data was tried to be collected
unofficially from the open sources and personal communication. Stack measurements
conducted in this study were used for two reasons. First reason is for comparing with
official measurements in order to capture outstanding discrepancies between these two
measurements conducted with two independent teams; second reason is for using these
measurements directly in the calculation of EFs. Finally, EFs were selected from
EMEP [54], IPCC [55] and EPA [193] if there is no adequate data for calculation of
EFs.

Data combining, data screening and data evaluating were used during the data handling
process. Data combining was applied when a data was available from several sources.
Data screening was applied when a data doesn’t have enough information in the
calculations. Data evaluating was used in order to select representative EFs for

comparing country specific EFs, and activity data.
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2.3.2 Electricity generation plants included in this study

According to Union of Chambers and Commodity Exchanges of Turkey [222], 30.7%
of electricity that is produced in Turkey is produced in cities of Marmara region by the
total number of the electricity producers as 130. This number includes all small- and
large-scale plants without distinction even though they produce electricity for internal
use, not for public use. In this study, only public electricity and heat production plants

considered which corresponds to middle and large-scale plants.

According to EMEP [54], the size of the plants considered under public electricity and
heat production (NFR is 1.A.1.a) exceed 50 MWth. Smaller plants were considered as
“small combustion” plants even if the produced energy is sold for public use.
According to U.S. EPA [193], this value is accepted as 100 MMBtu/hr heat input,
which corresponds to 30 MWth in International System of Units (SI), and smaller
plants were considered under “small boilers” category (Source Classification Code,
SCCis 1-01-006-01 for natural gas combustion plants). In this study, by taking average
of two studies, 40 MWth value is accepted as a lower limit for selection of “public
electricity and heat production plants”. There are 57 public electricity and heat
production plants in Marmara region. Marmara region of Turkey is shown in Figure
2.8, and the public electricity and heat generation plants that were considered in this

study are indicated on the right-hand side figure.

However, some of the data was not adequate for calculations, and number of plants
were not representative for Marmara region. Therefore, a detailed research was
conducted in order to find the plants which are not included in the project database and
finding missing information that is required for calculations. For this scope, scientific
articles, technical reports, official state reports, annual reports of the plants, and open
sources such as plant web sites were investigated, plants were asked directly by
personal communication. Finally, the number of the public electricity and heat

production plants reached to 57 in Marmara region.

Two of the plants produce electricity from domestic lignite with a total of 530 MW
installed power. One of the plants is equipped with electrostatic precipitator and flue
gas desulphurization as the abatement technologies. Pulverized and circulating
fluidized bed boilers are used as combustion technologies. Caloriphic value of the coal

is between 2160 and 2940 kcal/kg. Three of the 57 plants produce electricity from
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imported coal with 2442 MW installed power, circulating fluidized bed boilers. The

calorific value of the coal was accepted around 6000 kcal’kg. As it is clear from

calorific values, imported coals energy content is about three times of domestic coals.

47 of 57 plants produce energy based on natural gas. Totally 14.5 Billion m? natural

gas is consumed by those plants. Since natural gas is imported, calorific value of the

natural gas is almost the same in all plants which is 8250 kcal/m?. Mostly gas turbines

are used as firing practice. Two plants use natural gas and liquid fuels alternately in

their combustion system, and they have 1106 MW installed power. Calorific value of

the fuel oil was accepted as 10247 kcal/kg.
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Figure 2.8 : Map of electricity generation plants in Marmara region of Turkey.

One of the 57 plants use waste biogas of landfill as the source of energy in their

cogeneration units with an installed power of 34 MW. Calorific value of waste heat

was accepted as 4450 kcal/m?. One other plant use waste heat as the source of energy.

The capacity of the plant is around 50 MW and the calorific value of the waste heat

was accepted as 8108 kcal/m?.
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2.3.3 Emission calculation methodology

EF development is initial step of emission inventory development ahead of air quality
modelling, setting and follow up air quality standards. EFs that are used in industrial
emission inventories can either be selected from literature by considering pollutant
type, abatement technology, production technology, fuel type or can be developed
directly from in-situ measurements. This step is strongly affected from the data in
hand. EFs are generally given on production method / pollutant / technology/
abatement technology basis in emission inventory guidebooks including EMEP/EEA
Emission Inventory Guidebook [54]. Less data you have means less representative EF.
Of course, there are generalized EFs for the plants which has no information other than
production amount, but these EFs will not accurately represent current emissions of a

particular facility when used in an inventory.

After calculation (or selection) of EFs and gathering the representative activity data

emissions are calculated simply by equation 2.

E=3"Ain EF’ 10 (1-CinMin) (2.52)

where E is the total emission of a plant including all stacks; A is activity data that is
related to each stack; EF’ is uncontrolled EF for the related stack; C is control
technology application rate in the stack depending on the operation conditions of the
process; n is the number of stacks per plant; 1 is removal efficiency of the control

technology as percentage.

2.3.4 Propagation of the uncertainty into sources

Correlation coefficient method was applied in order to quantify uncertainty

contributions of emission sources [202][197].

Mmoo
Up — Zk:l(xk x)(yk y) (2.53)

T (x—=%X)2(Y—Y)?

[P 0209
where U, is importance of uncertainty from emission sources, X is total emission
inventory of the specific emission source category, X is the mean of the all sources of
specific emission category, V. is the subset source category for the emission
inventory, Y is the mean of the all subset sources of specific emission category. Large

values of U, indicates a stronger linear dependence between the subset source
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category (V) and total emission inventory (xj), then subset source category is a key

source of uncertainty in the total emission inventory.
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3. RESULTS

The results obtained in this study are explained in three parts. The first part covers the
results of the modelling study conducted within the scope of an international project.
The second part includes country-specific emission factors and their uncertainty
calculations calculated within the context of a national project. In third part, the results

of the new inventory are presented and discussed by comparing other inventories.

3.1 Multi-Model Evaluation

PMi concentrations for Europe domain were calculated by several groups within the
context of AQMEII-3 activity. Turkey was included in this modelling domain. In this
chapter, several regional scale air quality modelling systems were compared over the
European continent, Turkey and Marmara region within the context of AQMEII-3

project.

3.1.1 Evaluation of meteorology model outputs

Some meteorology model outputs of the models are plotted in Figure 3.1 and Figure
3.2 for selected parameters. Vertical profiles of temperature mean bias for the selected
stations are given in Figure 3.1 (selected by considering best and worst behaviours of
models in surface). Figures were adopted from Stefano et. al [71] which is a study that
was contributed by also this study. According to Figure 3.1, temperature mean bias
profiles of the models ranges are less than 1K, for the best case as shown for a sample

station (053) in Figure 3.1.

In Figure 3.1 and Figure 3.2, model names are given according to group IDs; where
CMAQI1 is TR1, CMAQ3 is UK3, CCLM-CMAQ is DE1, CMAQ4 is UK1, SILAM
is FI1 (meteorology is from ECMWF), WRF-Cheml is IT2, DEHM is DK1. CMAQI,
CMAQ3, CMAQ4 and DEHM models use WRF as meteorology model.

The bias for temperature in all EU domain ranges between —3K (calculated by DEI
with CCLM model at station 308, Figure 3.1) and +2K (calculated by UK 1 with WRF
model at station 308 and calculated by FI1 with SILAM model at station 156) at the
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surface, which shows the worst case for the models. Reasons for fluctuations of mean
bias around zero might be due to the difference of station altitudes, the complexity of

the terrains where stations are located, and the model itself.
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Figure 3.1 : Mean bias (model—observations) for the vertical profiles of temperature
measured by ozonesondes launched from indicated locations on the upper right map
of each panel.

Vertical mean bias profiles of wind speed (WS) for the selected stations are given in

Figure 3.2 by considering best and worst behaviours of models in surface.
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Figure 3.2 : Mean bias (model—observations) for the vertical profiles of wind speed
measured by ozonesondes launched from indicated locations on the upper right map
of each panel.

Since bias is positive in most of the models in PBL and decreases above ~1000 m;
models show a tendency of overestimation of the WS in the PBL and of
underestimation above ~1000 m although there are some exceptions for different
models and/or launching stations. Since ES1 (WRF-Cheml) group adopted the
nudging of meteorological fields only above the PBL and only during the first 12 hours

of meteorological spin-up, while for the other WRF instances the nudging is active
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during the entire run, generally WRF-Cheml1 has the largest positive bias at all sites,
with the bias staying positive well above the PBL at all stations in contrast with all
other models. Furthermore, WS overestimation by WRF-Chem is a known concern
(e.g., Jimenez and Dudhia [134]; Tuccella et al., [223], Mass and Ovens [224]) and it

is likely to have a major impact on the dispersion of pollutants [71].

3.1.2 Model performance evaluation on Europe

Each model’s base case simulations have been evaluated on a daily mean basis using
available surface observations from Europe domain, including Turkey. Distribution of
PMio observation stations used in this study are given in Figure 2.4and detailed
information according to stations are supplied in Chapter 2.1.2.4. Hourly values are
first daily averaged then performance metric was calculated for each station for year
2010. As explained in Chapter 2.1.3.3, not only standard statistical performance
metrics which are listed in Table 2.7 but also Taylor diagrams were produced for each

station in Europe.

Map of showing MAE on station basis for PM1o concentrations were produced for each
model in order to compare model performances over the entire domain. In Figure 3.3,
MAE results are given on a map for only our model (TR1). MAE is expected as 0 for
the best performing models and gives an idea about average absolute difference of the

model from observations.

Colouring of the performance metrics at the stations was done by considering the
values at all stations. Quartile 1 (Q1) and Quartile 3 (Q3) values, which are frequently
encountered in air quality studies, were taken into consideration. In the Python code
written for this mapping purpose, the respective performance metrics of all stations are
sorted from small to large, 25% of the data (Q1) is green, and it is yellow between 25%
(Q1) and 75% (Q3). If the station's performance metric is included in Q3, it is shown
with red bubbles. The best value for all performance metrics given in the Figure 3.3 is
zero. That is, the model results at Q1 stations, whose performance metric is shown in
green, are close to the measurement results when compared to yellow and red. The size

of the bubbles represents the size of the performance metric at the respective station.

Since the UPA metric may be less than zero, Q1, Q2 and Q3 values were calculated
separately for positive and negative numbers. The downward-facing triangle indicates

that the UPA value at this station is negative, and vice versa. It is clear from the colour
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of the triangles how close the UPA is to the best value (how close the model results
are to the measurements at that station). From the best UPA to the worst, the colours

are listed as green, yellow, blue and red, respectively.

When looking at the map of the MAE performance metric in Figure 3.3, the green
stations (where average absolute difference between model and observation is less than
or equal to 9 ug/m?) are mostly located in Western Europe (especially in England,
Ireland, Holland, Belgium, France, Germany and Sweden). Red stations are located
mainly in Eastern Europe (especially in Turkey, Bulgaria, Greece and Poland) and in
two Western Europe countries which are Spain and North Italy. The largest red bubbles
are in Turkey. This means that the model gives worst results in stations of Turkey. So,

the MAE at these stations is quite high.

MAE MNE

® MAE =9.0(Q1) N ® MNE = 39.0(Q1)
9.0(Q1) < MAE = 15.0(Q3) 39.0(Q1) < MNE = 57.0(Q3)

® MAE > 15.0(Q3) ® MNE > 57.0(Q3)

RMSE UPA

05UPAS14.0%( 14.0(Q1) SUPA<36.0%(Q2 6.05UPA<89.0% IPAZ89.0%(
® RMSE = 12.0(Q1) SUPAS: (0 (Q1) SUPA<36.0%(02) A 36.0sUPA<89.0%(03) A UPAZB9.0%(03)

12.0(Q1) < RMSE = 22.0(Q3)

A 1)
¥ -33.0(Q1) SUPA<0% -46.0(Q2) SUPA<-33.0%(Q1) ¥ -64.0(Q3) SUPA<-46.0%(Q2) ¥ UPAS-64.0%(Q3)
-

® RMSE > 22.0(Q3)

R > 5 A 4 —
Figure 3.3 : Map of some performance metrics calculated by our group (TR1 model)
for PMjo in observation stations throughout Europe for 2010.

MNE is the normalized version of MAE by observed values, formula is given in Table
2.7. MNE best value is 0 and it is expressed as percentage in our study. Normally when
model or observation is twice the other, MNE is 50%. MNE results are given on a map
for only our model (TR1) in Figure 3.3. Green dots (showing MNE results less than
39% which is also QI) are common in Western Europe (especially in England,

Holland, Belgium, France and Germany). Red stations are located mainly in Eastern
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Europe (especially in Turkey, Bulgaria, Greece Romania) and in two Western Europe
countries which are Spain and North Italy. Since MNE at the station in Switzerland is
so high, the red bubbles in Turkey seems small despite being the highest in Europe.

As in MNE, the results of the model seem to be the worst in stations in Turkey.

RMSE, which is a non-normalized error metric, represents the sample standard
deviation of the difference between modelled and observed values regardless of
whether the modelled values are higher or lower than observations. Best value is 0 for
RMSE. Figure 3.3 shows RMSE values for modelled and observed PMjo in stations
throughout Europe. As in MAE and MNE maps, the green stations (where RMSE is
less than or equal to 12 ug/m?) are mostly located in Western Europe (especially in
England, Ireland, Holland, France, Germany, Sweden and Finland). Red stations are
located mainly in Eastern Europe (especially in Turkey, Poland, Bulgaria and Greece)

and in North Italy. The largest red bubbles are in Turkey.

The UPA metric is intended to measure a model’s ability to capture peak pollutant
concentrations but does not pair the model estimates with observations in time or space
and best value is 0. In Figure 3.3, UPA values were expressed as percentages. Since
UPA is not an absolute metric, the dots were redesigned for inclusion of the negative
values as explained in the legend of the figure. Values between -Q1 and zero were
indicated with green rectangular, downward rectangular indicates model peak values
less than observation peak values, and the upper ward green rectangular tells the
opposite. This metric is valuable when the models capture of peak values were needed
to be considered, because for the best models it is expected to have high values at the
same time in model when observations were also high. If those peak values are close
to each other than UPA value is close to zero. If peak values are not close, then model
cannot be able to catch the correct peak value. In Figure 3.3, UPA values are close to
zero in France, Germany, England, Spain and Portugal. In those countries there are
also yellow rectangular which shows moderate UPA values (between Q1 and Q2). Red
and blue rectangular show worst UPA results which are common in Poland, Czech

Republic, Turkey and Bulgaria. Worst UPA means, model cannot capture peaks well.

From this point of view, when Figure 3.3 is investigated (for further investigation refer
to Appendix A), performance metrics are generally give bad results in Eastern Europe
countries (especially in Turkey), which means TR1 model (our group) cannot capture

observations in Eastern Europe countries where model give pretty good results in
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Western Europe. In this point, behaviour of other models reveals as question. In order
to address this question same maps were generated for other groups, and sample model
results is given in Figure 3.4 for MAE metric (remaining maps were given in Appendix

A for all metrics).

When Figure 3.4 is examined, it is seen that, all models usually give quite different
results from measurements in Eastern Europe, but again the worst results are in
Turkey. Furthermore, all these models give close results to our model (TR1) as

discussed with Figure 3.3.

® MAE = 9.0(Q1)
9.0(Q1) < MAE = 19.0(Q3)
® MAE > 19.0(Q3)

® MAE = 8.0(Q1)
8.0(Q1) < MAE = 17.0(Q3)
® MAE > 17.0(Q3)

Pl L4

M (a) = (b)

® MAE =9.0(Q1) ° ® MAE =10.0(Q1)
9.0(Q1) < MAE = 17.0(Q3)
® MAE > 17.0(Q3)

10.0(Q1) < MAE = 18.0(Q3)

® MAE > 18.0(Q3)

4 (0
Figure 3.4 : Map of MAE results for PM in observation stations throughout
Europe for 2010 calculated by groups from: (a)England (UK1 _MACC bas).

(b)Denmark (DK1 _HTAP bas). (c)Finland (FI1_MACC bas). (d)Italy
(IT2_ MACC bas).
In order to discuss behaviours of the models in each country, CDFs of MAEs in each
station are plotted for each model and for each country, and given in Figure 3.5 for
selected countries. Totally 27 countries were considered in the European part of
AQMEII-3 project. Number of observation stations are less than 10 in some countries
(e.g. Switzerland, Slovakia, Romania), therefore they were considered out of

discussion in this part of the analysis. Number of stations for the considered countries

are indicated at the bottom of each plot in Figure 3.5. Countries with narrow, medium
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and large CDFs were selected for Figure 3.5.
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Figure 3.5 : CDFs for MAE results of PM1o in observation stations for some
countries (countries are indicated on the title of each sub plot).

In the CDFs of stations in Austria, all models are following nearly close CDF paths,

means that models generally found close predictions when compared to observations.

MAE is less than 20 pg/m? in all model predictions, in all stations. The situation is

same in Germany.

Looking at the CDFs of stations in the Czech Republic, all models have similar errors

(MAE plots are close to each other). However, in 40% of the stations, the MAE is

above 20 pg/m?. In Poland, MAE is above 20 ug/m? in 70% of stations.
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In Bulgaria, CDFs were shown as dots, since number of stations were not enough to
create the CDF in a line view. However, it is clear that, MAE is more than 20 pug/m?
in almost all stations in Bulgaria. In Turkey, the range of MAE CDFs are broadened,
which is between 20 pg/m?® and 100 ug/m?. CDFs of all models in Turkey indicates
high variability of the models.

Some of the performance metrics averaged for selected countries and given in Table
3.1. In Table 3.1, there are four Western Europe countries (Germany, France, Spain
and Italy) representing good model performances, and three Eastern Europe countries
representing worst model performances (Turkey, Poland and Bulgaria). Averages of
all performance metrics for other countries are given in Appendix D. According to
Table 3.1, RMSE is less than 20 in the selected West European countries (Germany,
France, Spain and Italy), where it is between 35 and 62 in some of the Eastern Europe
countries (Turkey, Poland and Bulgaria). Average of BIAS of Eastern European
countries is 2.5-fold of Western European countries, when all countries are considered.
Furthermore, MAE is between 10 and 15 ug/m? in Western European countries, where
it is between 24 and 48 pg/m? in Eastern Europe countries. NBIAS is more than 50%

in Eastern Europe countries where it is maximum 32% in Western Europe countries.

Table 3.1 : Country based performance metric averages for selected countrries.

Turkey Germany France Spain Italy Poland Bulgaria

Number of stations 101 199 231 111 188 136 32
Mean (ug/m?) 27 13 15 14 17 15 18
Median (ug/m?) 22 11 13 10 14 13 14
Stand. Dev. 20 8 9 13 12 10 15
Variance 727 70 109 341 213 104 324
RMSE 62 15 16 18 20 35 41
BIAS (ug/m®) -40 -7 -9 -7 -9 -23 -25
MAE (ug/m®) 48 10 12 13 15 24 29
NBIAS (%) -50 -32 -36 -29 -31 -57 -53

Performance metrics are averaged on Eastern and Western Europe countries and
percent difference of Eastern countries from Western countries are given in Table 3.2.

1313

Percent differences are given with “+” or signs in Table 3.2. indicate given with
shows the upper percent value of Eastern countries where downward arrow indicates
opposite. For instance, MAE is 21 ug/m? for the stations of Eastern European countries

where it is 16 pg/m? for the stations in Western European countries. Here, +99% (given
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on the right column) says that MAE of Eastern countries are 99%larger than MAE of

Western countries.

Table 3.2 : Eastern — Western Europe averaged performance metrics.

Difference of

East t .
astern Western Eastern Countries

Countries  Countries

(%)
Number of Stations 444 988 -55
Stand. Dev. (ug/m?) 13 9 +40
Variance (ug/m?) 333 156 +113
RMSE 30 16 +90
BIAS (ug/m?®) 15 5 177
MAE (ug/m?) 21 1 .99
MNE (%) 91 73 +25
NBIAS (%) .40 21 -88
NME (%) 62 59 +5
MEB (%) .54 37 46
MEE (%) 78 63 +23
NMSE 2.1 1.5 +41
PCC 0.38 0.41 -8
10A 0.52 0.54 -3

According to Table 3.2, RMSE of Eastern countries is 90% more than Western
countries average, where MAE is 99% and MNE is 25% more. BIAS average is -5
ug/m* in Western European countries where it is 15 pg/m?® in Eastern European
countries, which means that models predict approximately 15 pg/m*® beyond the
observations. Correlations between models and observations are 8% less in Eastern
European countries when compared to Western European countries. When all metrics
were investigated, it is clear from Table 3.2 that, Western European countries give
better results when compared to Eastern European countries in terms of performance

metrics.
3.1.3 Model performance evaluation for Turkey

As detailly discussed in Chapter 3.1.2 BIAS average of the models for stations in
Western Europe countries is 2.5-fold of stations located in Western European
countries. Turkey, which is located in the Eastern Europe, has one of the worst results
calculated by all models. All models predict PM1o concentrations with an average of -
40 pg/m? BIAS in stations of Turkey, where it is the worst value within 34 countries

of Europe considered in this study. In this part of study, Turkey will be focused deeply
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in order to discuss possible reasons behind those poor results of AQMs. Regarding to
the local regulation of Turkey [225], which is also compatible with EU Regulation
[226], daily PM o concentration cannot exceed 50 pug/m? more than 35 times in a year
and this rule will certainly be applied after 2019. Furthermore, air quality limit is 40
ug/m® PMjo for calendar year average. Over Istanbul annual mean concentration is

more than 50 pg /m? in the recent years.

3.1.3.1 Regional evaluation of performances

In the first step of analysis, CDFs of PMig predictions by models and CDFs of PMig
observations are generated on station basis. As in discussed in Chapter 3.1.2 models
generally give good results in Western Europe countries. Although Turkey is located
in the Eastern part of Europe, where models don’t give predict well as Western Europe,
models continue to predict better in some stations of Turkey. However, number of
those stations are limited. CDFs of some of the stations whose PMi estimates are
consistent with the measurements are given in Figure 3.6 for four biggest cities of

Turkey.
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Figure 3.6 : Comparison of CDFs for selected stations from Turkey which are well
predicted by all models.
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Each CDF line represents an estimate of a different model. The navy-blue CDF line in
Figure 3.6 shows the observations in said station. According to Figure 3.6, CDF lines
of models are around observation line, some of them are very close to observation line.
Although models vary among themselves, they generally predict PM1o concentrations
close to observations in those stations. When CDFs of all stations in Turkey are
examined, such good CDFs are encountered in 18 of 101 stations of Turkey
(approximately 20%), especially in all stations of Istanbul (except Kartal station). 11
of 18 good results are located in Marmara region of Turkey, one is in Canakkale, one
is in Yalova and remaining stations are all located in Istanbul. Four stations of Izmir
(Alsancak, Cigli, Guzelyali and Karsiyaka) in Aegean Region also have good CDFs.
Two stations of Adana (Catalan and Dogankent) from Mediterranean Region and

Ankara Bahcelievler station from Central Anatolia Region have good CDFs.
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Figure 3.7 : Selected stations from Turkey which are predicted poor by all models.

Although PMy is predicted well in some stations, there were no such good predictions
in approximately 80% of the stations. CDFs of some of the selected stations, whose

PM; estimates are not consistent with the measurements, are given in Figure 3.6.
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According to Figure 3.6, models predict close to each other but quite far from the
observations. Generally, models predict better in big cities however model predictions

in smaller cities are not good as big cities.
3.1.3.2 Performance of the models in Marmara Region

In Marmara region number of valid stations, after quality control procedures described
in Chapter 2.1.2.4, is 18. Entire of those stations will be investigated in this part of

study.

In Table 3.3, BIAS and MNE values of models were summarized for each city in
Marmara region. The name of the model that predicts the indicated BIAS or MNE
value above the parentheses is given inside parentheses in Table 3.3. As indicated in
Table 2.7, best value is zero for each BIAS and MNE. In Table 3.3, best values of
BIAS (with best performing models inside parenthesis) are given in a separated
column, where best values of MNE (%) are given in ‘Min’ column of MNE. According
to Table 3.3, in Marmara region, worst BIAS value is in Balikesir (68 pg/m?) and
calculated by DE1_HTAP model (Detailed information according to models were
given in Table 2.1). Furthermore, when all worst BIAS values were investigated,
DE1 HTAP model gives minimum BIAS in all cities. Which means that this model
underestimates in all cities of Marmara region. Furthermore, absolute minimum BIAS
is more than maximum BIAS in all cities, therefore it can be inferred that DE1_HTAP

model is the worst performing model in Marmara region according to BIAS metric.

Maximum BIAS is negative in Balikesir, Edirne, Kocaeli and Sakarya, which means
that predictions are generally more than observations, and all models underpredicted
in those cities. ES1 MACC model predicts best in those 4 cities in terms of BIAS
metric. Furthermore, best prediction of the models is in Istanbul Sariyer which is
calculated by FI1_HTAP model with a BIAS of -0.1 pg/m?. Our group (TR1_MACC)
calculated best BIAS in four of the stations which are all located in Istanbul (Aksaray,
Besiktas, Esenler and Kadikoy). Worst MNE results are calculated in Canakkale
(calculated by ES1_MACC) which is 193%, second worst MNE is in Istanbul Aksaray
which is 109% (calculated by UKI Internal). Nevertheless UK1 MACC model
calculated best MNE results in Marmara region which is 29% for each of Istanbul
Alibeykoy and Uskudar. MNE results are generally lower in Istanbul when compared

to other cities in Marmara region.
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Table 3.3 : BIAS and MNE metric values (and models) for cities of Marmara region.

BIAS MNE (%)
Min Max Best Average Min Max Average

Balikesir -68 -19 -19 51 53 88 66
DE1 HTAP) (ES1_MACC) (ES1_MACC) (FI1_SMOKE-NEW) (DE1 HTAP)

Bilecik -42 11 11 -28 51 91 65
(DE1_HTAP) (ES1_MACC) (ES1_MACC) (IT1_MACC) (ES1_MACC)

Canakkale -25 20 -2 -8 47 193 76
(DE1_HTAP) (ES1_MACC) (FI1-SMOKE-NEW) (DK1 HTAP) (ES1_MACC)

Edirne -58 -25 -25 -46 62 89 70
(DE1_HTAP) (ES1_MACC) (ES1_MACC) (IT1_MACC) (DE1_HTAP)

Istanbul -36 30 0.7 -1 39 109 61
Aksaray (DE1_HTAP) (UK Internal) (TR1_MACC) (UK3_MACC) (UK Internal

)

Istanbul -39 21 -2 -6 29 75 49
Alibeykoy  (DE1 HTAP) (FII-SMOKE-NEW)  (FI1-MACC-NEW) (UK1_MACC) (DE1_HTAP)

Istanbul -35 27 2 -2 34 82 54
Besiktas (DE1_HTAP) (FI1-SMOKE-NEW) (TR1_MACC) (IT2_ MACC) (FI1_SMOKE-

NEW)

Istanbul -40 25 -1 -5 38 88 53

Esenler (DE1_HTAP) (UK Internal) (TR1_MACC) (IT2_ MACC) (UK Internal
)

Istanbul -32 29 3 -1 41 118 65
Kadikoy (DE1_HTAP) (FI1-SMOKE-NEW) (TR1_MACC) (UK1 _MACC) (ES1_MACC)

Istanbul -65 8 8 -36 44 83 58
Kartal (DE1_HTAP) (UK2 HTAP) (UK2 HTAP) (TR1_MACC) (DE1_HTAP)

Istanbul -35 12 -0.1 -6 37 82 50
Sariyer (DE1_HTAP) (UK Internal) (FI1_HTAP) (TR1_MACC) (ES1_MACC)

97



Table 3.3 (continued) : BIAS and MNE metric values (and models) for cities of Marmara region.

BIAS MNE (%)
Min Max Best Average Min Max Average
Istanbul -34 22 1 -5 39 91 53
Umraniye  (DE1 HTAP) (FI1-SMOKE-NEW) (UK2 HTAP) (UK1_MACC) (ES1_MACC)
Istanbul -31 30 -54 1 29 77 50
Uskudar (DE1_HTAP) (FI1-SMOKE-NEW) (UKl MACC) (UK1_MACC) (ES1_MACC)
Istanbul -51 5 0.26 -19 37 80 51
Yenibosna (DE1 HTAP) (FI1-SMOKE-NEW) (FI1_MACC) (TR1_MACC) (DE1 _HTAP)
Kirklareli -37 2 2 -24 48 84 61
(DE1_HTAP) (ES1_MACC) (ES1_MACC) (IT1_MACC) (DE1 _HTAP)
Kocaeli -56 -12 -12 -37 49 85 59
(DE1_HTAP) (ES1_MACC) (ES1_MACC) (FI1_SMOKE-NEW) (DE1 _HTAP)
Sakarya -66 -22 -22 -49 55 89 66
(DE1_HTAP) (ES1_MACC) (ES1_MACC) (FI1_SMOKE-NEW) (DE1 _HTAP)
Yalova -44 32 1 -12 44 98 58
(DE1 HTAP) (UK2 HTAP) (ES1 MACC) (IT1 MACCO) (UK2 HTAP)

In Istanbul, BIAS is between -65 pg/m? (in Kartal) and 30 pg/m? (in both Aksaray and Uskudar). MNE is between 29% (Uskudar and
Alibeykoy) and 109% (Aksaray). In London BIAS is between -10 pg/m? (calculated by DE1_HTAP for London Bloomsbury station) and
18 ug/m? (calculated by ITI_MACC model for London N. Kensington Partisol Station). In Paris BIAS is between -13 ug/m? (calculated
by DE1_HTAP for Paris 18eme station station) and 39 ug/m?* (calculated by TR1_MACC model for Paris 18eme station). In Berlin BIAS
is between -16 ug/m? (calculated by DKI1_Tracer noDep for B.Schoneberg-Belziger StraBe station) and 1.74 pg/m® (calculated by
TR1 _MACC model for B.Schoneberg-Belziger Strafle station). In Istanbul although there are best estimating models, generally BIAS is

larger than other metropoles of Europe.
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In Istanbul, MNE 1is between 29% (for Alibeykoy and Uskudar calculated by
UK1 MACC) and 118% (calculated by ES1 _MACC model for Kadikoy), where MNE
is 35 (UK2_HTAP for B.Schoneberg-Belziger Straf3e station) and 64% (ES1_MACC
for B.Schoneberg-Belziger Strafle station) in Berlin, between 9% (calculated by
DK1 Tracer noDep for PARIS ler Les Halles station) and 40% (calculated by
TR1_MACC model for Paris 18eme station) in Paris, and between 4% (calculated by
UKI1 MACC for London N. Kensington Partisol station) and 18% (calculated by
IT1_MACC model for London N. Kensington Partisol Station) in London.

Although BIAS and MNE upper and lower ranges are large, models predict better in
Istanbul when compared to other cities in Marmara Region of Turkey. However
minimum MNE is 29% in Marmara region (for Uskudar and Alibeykoy) which is even

a high value for PMio concentration estimations.

3.1.3.3 Seasonal evaluation of model estimates

In order to compare model performances according to seasons of 2010, Taylor
diagrams were generated. In Figure 3.8, Taylor diagram of Balikesir station is given
for all seasons of 2010, where December, January and February are Winter months,
March, April and May are Spring months, June, July and August are Summer months
and September, October and November are Autumn months. In Taylor diagrams, a
number was assigned to each modelling group and given in the legend of plot. Taylor
diagram was generated for all stations of Marmara region. Diagrams of other stations

in Marmara region are in Appendix E.

According to Figure 3.8, standard deviation of observations in Balikesir station is
largest in Winter and Autumn (60 ug/m?) and smallest in Summer (16 pg/m?). It is 29
ug/m? in Spring. Although the standard deviation of measurements is high in Autumn
and Winter, we see that standard deviation in Summer falls to almost a quarter of
Winter. Finally, variability of observed emissions is highest in Winter and Autumn

where it is lowest in Summer.

Seasonal change of standard deviations in other cities of Marmara region is given in
Table 3.4. According to Table 3.4, as in Balikesir station, generally standard deviation

is highest in Winter and Autumn in almost all stations, and lowest in Summer, which
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shows that PM1o observations vary widely in Winter and Autumn however close to

each other in Summer.
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Figure 3.8 : Seasonal Taylor diagram displaying a statistical comparison with
observations of eighteen model estimates of the PM o concentration for Balikesir
station.

As described in Section 2.1.3.3, standard deviation of the models is expected to be
close to the standard deviation of the observations. Thus, it is assumed that the
variability in measurements is captured by the model. In Figure 3.8, standard deviation
of the models are less than 25 pg/m? in Winter (except ESI_ MACC model with a
standard deviation more than 80 pg/m?) where standard deviation of the observations
is 60 pg/m?. Furthermore, standard deviation of the models is less than 40 ug/m? in
Autumn (except ESI MACC model with a standard deviation of 68 pg/m?) where
standard deviation of the observations is 60 ug/m?. In Summer many models’ standard
deviation is close to the standard deviation of observations as we don’t see in Winter

and Autumn.
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Table 3.4 : Seasonal change of standard deviations (ug/m?) of observations in the
stations of Marmara Region. (Bold numbers show highest value, underlined values show
minimum value per station and season).

City Winter  Spring Summer  Autumn
Balikesir 60 29 16 60
Bilecik 20 15 19 21
Canakkale 38 19 7 10
Edirne 39 25 13 49
Istanbul Aksaray 18 17 17 25
Istanbul Alibeykoy 33 19 15 29
Istanbul Besiktas 23 15 21 23
Istanbul Esenler 27 23 15 30
Istanbul Kadikoy 24 23 22 42
Istanbul Kartal 54 38 24 40
Istanbul Sariyer 26 19 35 28
Istanbul Umraniye 25 21 14 38
Istanbul Uskudar 21 16 12 27
Istanbul Yenibosna 38 37 19 36
Kirklareli 35 17 11 31
Kocaeli 50 29 17 35
Sakarya 41 23 14 52
Yalova 31 23 14 25
Average 33 23 17 33

In Figure 3.8, correlation of the models (according to the position of the models on the
white line in Figure 3.8) with observations is mostly less than 0.6. Worst correlations

of the models with observations are in Winter.

In Balikesir station, in Winter, correlation of the ESI MACC model is about 0.3,
which is also close to correlation of other models. Furthermore, centred RMSE of
ES1 MACC model is more than 80 where it is less than 60 in other models.
Consequently ES1 MACC model captures variability in the observations (as its
standard deviation is closest to observations when compared to other models) and its
predictions are 30% correlated with observations, however there is much difference

between predicted and modelled PM1o concentrations in Winter.

Taylor diagrams of other stations in Marmara region are given in Appendix E. When
the Taylor diagrams of other stations are examined, we see models cannot capture
observations in Winter but performs well in Summer as in Balikesir station, except

Istanbul stations. This difference can be caused by inadequate representation of
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increased emissions (in the model inputs) from residential heating and traffic
emissions during Winter months when compared to other months. In this case, it would
not be unreasonable to suspect that the inputs to the models do not cover this
difference. For this reason, model results may be able to capture variability in
measurements more easily in Summer. The reason why model estimates do not differ
much in the stations in Istanbul between summer and winter may be due to the fact

that the emissions in Istanbul are given better to the model.

Model inputs to the model are considered as a reason for poor model predictions in
this study. However, problems caused by the model itself or erroneous measurements,
or combination of all, can also cause this. In this study, problems due to the model
itself are out of consideration since 6 different AQMs were used by 13 modelling
groups where same models were also considered by some groups. All models give
close CDFs in Western Europe despite they have different modelling configurations,
where they are not close to each other in Eastern Europe countries even in same
models. (Detailed information for the models is available in Figure 2.1). Problems due
to observations are not subject of this study, since number of stations more. Systematic
errors are not thought to occur at all stations at the same time. Discussion of the models

according to stations are available in Section 3.1.3.2.

3.2 Country-Specific EFs

Thanks to the KAMAG project [194] that this study benefited from, it was possible to
calculate country-specific EFs from two data sources; in-situ measurements conducted
within the context of the project and EMRs (emission measurement reports) prepared

by the companies. In Section 2.2.1 detailed information on both data sources are given.

As discussed in Section 2.2.1 there are questions on trusting the data in EMR.
Therefore, the data in the EMR should not be considered in the calculation of country
specific EFs. However, EFs were calculated in this part of the study from both sources
in order to compare the results and reveal the difference of these two emission data
sources. Since the use of in-situ EFs is given priority in the thesis and in order to save
space in the thesis text, goodness-of-fit statistics/criteria for EFs derived from EMRs

are given in Attachment F.
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Country-specific dust, CO, SO, NO, NO; and NOy EFs are calculated in this part of
the study. Although NO and NO: EFs are calculated within the scope of this thesis,
NOx EFs are also calculated under a separated section since they are commonly given

in the literature.

SNAP/NFR codes of EMEP were considered as the codes of EFs calculated in this
dissertation. Codes of EFs are given with the sequence of “NFR-SNAP-Table No”
throughout the dissertation. For instance, for an EF with “1.A.1.a — 10101 — 3.10”
code, “1.A.1.a” is NFR code, “10101” is SNAP code and “3.10” is the table number
in EMEP guidebook [54]. Definitions of the codes considered in this study are given

in Table 2.8, besides briefly summarized in the subsequent sections.

3.2.1 Coal combusting large wet/dry bottom boilers

Coal combusting large boilers are represented with “1.A.1.a—10101-3.10” code. In
detail, the code represents brown coal or lignite combustion plants with a capacity
greater than 300 MW, and with wet and dry bottom boilers as the combustion

technology for production of public power.

In Marmara region there are no plants falling under this SNAP/NFR category.
Although KAMAG project [194] covers the plants in Marmara region, a few in-situ
measurements were conducted from outside of the region. Country-specific EFs are
generated for this SNAP/NFR category from a plant outside of Marmara region, but
not used in the emission inventory part of this study, since there is no plant falling

under this SNAP/NFR category in Marmara Region.

Consequently, 16 in-situ measurements from one plant is used in the calculation of
country-specific EF for this SNAP/NFR code. Furthermore 12 emission measurements

from EMRs were also used for comparison of the results.

Dust

Summary statistics of dust EFs for “1.A.1.a-—10101-3.10” SNAP/NFR category are
given in Table 3.5 for EFs derived from both in-situ measurements and EMRs.
Although variance and standard deviation of in-situ measurements and EMRs are close

to each other, Cv is 151% for in-situ measurements where it is 45% for EMRs, which
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indicates large variability for in-situ measurements. The large variability is heavily

affected from outliers.

Table 3.5 : Summary statistics of dust EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.10".

In-situ EMR
Measurements

Number of data points 16 12
Minimum 0.19 0.34
Maximum 4.58 4.78
Median 0.29 2.78
Variance ! 1.15 1.59
Standard Deviation > 1.07 1.26
Cv (%)* 151 45
Skewness * 3.32 -0.48
Kurtosis ° 11.8 0.55

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.29, looking at the CDF of EFs derived from EMR, it is seen that
60% of EFs range from 2.5 to 3.3 g/GJ. In the CDF of EFs from in-situ measurements,
90% of EFs are less than 1.8 g/GJ, however, there is one EF which is more than 4 g/GJ,
which can be treated as outlier. Variability contribution of one outlier value in the CDF
of EFs from in-situ measurements, should be considered when evaluating large
variability in the in-situ EFs. Consequently, we see that one outlier data has a large

effect on final variability, although 90% of the data is below 1.8 g/GJ in in-situ EFs.

There is positive skewness in the EFs derived from in-situ measurements where it is
negative in EMR EFs. When the histograms given in Figure 3.9 are compared, it is
seen that the asymmetry in the histogram of EFs derived from in-situ measurements is
higher than those derived from EMR. Therefore, the skewness value for in-situ
measurements in Table 3.6 is higher than EMR’s. Due to a large peak in the EMR
histogram, the kurtosis value is expected to be higher than in-situ measurements, but
lower in the Table 3.6. This is due to the presence of values close to this peak in the
EMR EFs, as it is also clear in the CDF of EMR which is given in Figure 3.9.

Consequently, EMR has less kurtosis and skewness value.
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Comparison of CDFs for
1A1a-10101-3.10 DUST EF

Dust EF (a/GJ)
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Figure 3.9 : Distribution fitting comparisons of dust EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a— 10101 —3.10”.

According to Figure 3.9, looking at the CDF and histogram of EFs derived from in-
situ measurements, lognormal and Weibull distributions are close to CDF and
histogram of the in-situ EFs, visually. In addition to CDF and histograms given in
Figure 3.9, goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived
from in-situ measurements were also calculated and given in Table 3.6, in order to
quantitatively support parametric probability distribution function fitting for our data,

and making a base for expert opinion.
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Table 3.6 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ
measurements of “1.A.1.a— 10101 —3.10”.

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.34 0.58 3.08 52 53
Lognormal 0.25 0.19 1.11 18 20
Uniform 0.36 0.63 - - -
Exponential 0.28 0.32 1.73 23 24
Logistic 0.36 0.58 2.92 47 48
Gamma 0.42 0.49 2.45 31 33
Weibull 0.26 0.29 1.58 25 26

* Bold values indicate lowest values.

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic are more than critical value in all distribution types,
however close to the critical value in lognormal distribution. Other goodness-of-fit
statistics and criteria are also lowest for lognormal distribution. Therefore, best fitting
distribution is selected as the lognormal distribution for dust EFs derived from in-situ

measurements for “1.A.1.a—10101-3.10” SNAP/NFR category.

Goodness-of-fit statistics/criteria table for EFs derived from EMRs is given in
Attachment F since the use of EFs derived from in-situ measurements is given priority
in the thesis, and in order to save space in the thesis text. In EMR, normal and logistic
distribution’s Kolmogorov-Smirnov statistic is close to critical value. Logistic
distribution is best for EMR data, however second-best fitting data, which is normal
distribution, was accepted for EMR dataset since uncertainty calculations of logistic

distribution was not available in AuvTool.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,
average EF and confidence intervals are calculated for both of in-situ EFs and EMR

EFs, and results are given in Table 3.7.

It is seen that, the EFs derived from EMRs are higher than the EFs derived from in-
situ measurements. However, the EFs calculated from both sources are significantly

lower than the EMEP and EPA EFs.
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Table 3.7 : Uncertainty analysis results for dust EF of “1.A.1.a-10101-3.10” and
comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Lognormal Normal
Mean 0.69 g/GJ 2.77 g/G)  11.7 g/GJ Dbetween
95% CI (Lower, Upper) as g/GJ  0.34-1.375  2.07-3.48 1.2-117 637 and
Uncertainty (Lower, Upper) 51-99% 25-26%  90-900% 13752 °
First parameter -0.938 ! 2.78 3 g/GJ
Second parameter 1.09 2 1324

' mean of In(x) for lognormal parametric probability distribution function

2 standard deviation of In(x) for lognormal parametric probability distribution function
% mean for normal parametric probability distribution function

4 standard deviation for normal parametric probability distribution function

5 for filterable PM, controlled with baghouse filter

¢ for filterable PM, for uncontrolled conditions

Although the EF derived from EMR is within the EMEP confidence interval limits, it
is considerably lower than the EPA EF. The EF generated from in-situ measurements
is so low that it is almost half of the lower limit of the EMEP confidence interval.
Country-specific EF, which is 0.69 g/GlJ, is very low compared to EMEP [54] (11.7
g/GJ) and EPA [193] (minimum 63 g/GJ). The reason of this difference can be due to
abatement technologies used in the plant and/or the seasonality effect. In the plant,
electrostatic filter is used as dust abatement technology with more than 95% abatement
efficiency. Also, emission measurements were conducted in May-June for both of in-
situ EFs and EMR EFs. Therefore, it is not expected to be affected by seasonal capacity
changes. Furthermore, in the surveys conducted to facility managers within the scope
of the project, it was stated that there are no seasonal or monthly capacity changes.
Consequently, using abatement technology reduces the dust EF. From this point, it is
important to know in-site usage practices of these abatement technologies. In this

point, the data supplied by continuous measurement systems is important.

One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. Although EFs derived from in-
situ measurements often remain within the 50% CI limits in Figure 3.10, it is seen that
EFs derived from EMR are even beyond the 95% CI limits. In this case, it would be
more appropriate to use EFs derived from in-situ measurements. Consequently,
country specific dust EF is 0.69 g/GJ for “1.A.1.a—10101-3.10” SNAP/NFR category,
with 95% lower CI as 0.34 g/GJ and upper CI as 1.375 g/GlJ.
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Figure 3.10 : Probability band of dust EFs for “1A1a-10101-3.10” as cumulative
distribution of (a)lognormal distribution fitted to dust EFs derived from in-situ
measurements (b)normal distribution fitted to dust EFs derived from EMRs.

(60

Summary statistics of CO EFs for “1.A.1.a-—10101-3.10” SNAP/NFR category are
given in Table 3.8 for EFs derived from both in-situ measurements and EMRs. When
min, max and median of the EFs derived from in-situ measurements and those derived
from EMR are compared in Table 3.8, it is clear that CO EFs obtained from in-situ
measurements are in a greater range than that reported in the EMRs. So, it can be
inferred that that there were lower CO concentrations in EMRs for “1.A.1.a-10101—
3.10” SNAP/NFR category for this plant. Therefore, the variance and standard

deviation of in-situ EFs are greater than those derived from EMRs.

Table 3.8 : Summary statistics for CO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.10".

In-situ EMR
Measurements

Number of data points 16 12
Minimum 5.22 0.29
Maximum 45.06 4.49
Median 15.01 347
Variance ! 140.7 3.27
Standard Deviation 2 11.86 1.81
Cv (%) 3 64 61
Skewness * 0.71 -0.74
Kurtosis * -0.49 -1

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
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In Figure 3.11, EFs are distributed homogeneously in the CDF of EFs derived from in-
situ measurements, while EFs derived from EMR show a clustered distribution. When
the EMR data was examined, it was seen that each clustered data represents the
measurements taken from different stacks of the plant. In this case, we can assume that

the variability in EMR EFs is more than in-situ EFs.
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Figure 3.11 : Distribution fitting comparisons of CO EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a— 10101 —3.10”.

However, variance and standard deviation of EMR EFs are less than in-situ EFs,
because the range of EMR EFs is less than in-situ EFs. However, Cv value, which
represents the variability in the EFs within each measurement source as a percentage,
is quite close to each other in both cases. Although the EFs calculated from both
sources are quite different from each other, the variability within in-situ EFs and EMR
EFs is similar. EFs derived from both in-situ measurements and EMRs have low

Kurtosis and Skewness values.
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According to Figure 3.11, looking at the CDF and histogram of EFs derived from in-
situ measurements, Weibull distribution is close to CDF and histogram of the in-situ
EFs. Table 3.9 is created in order to quantitatively support this qualitative
interpretation and includes goodness-of-fit statistics and goodness-of-fit criteria for

CO EFs derived from in-situ measurements.

Table 3.9 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ
measurements of 1.A.1.a— 10101 —3.10.

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.19 0.11 0.63 128.55 130.10
Lognormal 0.18 0.11 0.92 125.09 126.63
Uniform 0.17 0.08 - - -
Exponential 0.24 0.16 1.02 127.67 128.44
Logistic 0.19 0.14 0.79 129.82 131.37
Gamma 0.15 0.07 0.44 124.09 125.64
Weibull 0.14 0.06 0.41 124.40 125.95

* Bold values indicate lowest values.

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value
(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is
in Weibull distribution. Other goodness-of-fit statistics are also lowest for Weibull
distribution. Goodness of fit criteria are not lowest in Weibull distribution, but they
are very close to minimum. Since Weibull distribution seems best in in-situ EFs in
Figure 3.11, and due to lowest goodness-of-fit statistics in Table 2.9, best fitting
distribution is selected as the Weibull distribution for CO EFs derived from in-situ
measurements. Since the variability and clustered data in the EMR EFs were high, the
uniform distribution was considered for EFs derived from EMRs. Goodness-of-fit

statistics/criteria for CO EF derived from EMRs are given Attachment F.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given
in Table 3.10. It is seen that the EFs derived from EMR are pretty lower than the EFs
derived from in-situ measurements. There is no abatement technology for CO

emissions in the plant.
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Table 3.10 : Uncertainty analysis results for CO EF of “1.A.1.a— 10101 —3.10” and
comparisons with other studies.

In-situ EMEP EPA

Measurements EMR [54] [193]
Fitted distribution type Weibull Uniform
Mean (g/GJ) 18.87 2.9 8.7 between
95% CI (Lower, Upper) as g/GJ  13.47-25.33  2.01-3.78 6.72-60.5 13 °and
% Uncertainty (Lower, Upper) 29-34% 31-30%  23-595% 326
First parameter 20.97! 0.13 g/GJ
Second parameter 1.652 584

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function
* minimum value (a) for Uniform parametric probability distribution function
* maximum value (b) for Uniform parametric probability distribution function

5 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100302 and
10100303)

¢ for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301)

Consequently, country-specific CO EF is calculated as 18.87 g/GJ which is within the
95% confidence interval range of EMEP (6.72 and 60.5) [54] and compatible with
EPA (between 13 and 32 g/GJ) [193]. Lower and upper confidence interval range of
country-specific CO EF is small when compared to EMEP and EPA confidence
interval ranges. Probability band of CO EFs are given in Figure 3.12.
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Figure 3.12 : Probability band of CO EFs for “1A1a-10101-3.10” as cumulative
distribution of (a)lognormal distribution fitted to CO EFs derived from in-situ
measurements. (b)normal distribution fitted to CO EFs derived from EMRs.

Although EFs derived from in-situ measurements often remain within the 50% CI
limits, it is seen that EFs derived from EMR are even beyond the 95% CI limits. In

this case, it would be more appropriate to use EFs derived from in-situ measurements.
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SO:

Summary statistics of SO> EFs for “1.A.1.a—10101-3.10” SNAP/NFR category are
given in Table 3.11 for EFs derived from both in-situ measurements and EMRs. When
min, max and median of the EFs derived from in-situ measurements and those derived
from EMR are compared in Table 3.11, it is clear that SO, EFs obtained from in-situ
measurements are three times more EFs calculated from EMRs. Therefore, the
variance and standard deviation calculated from in-situ EFs are greater than those
derived from EMRs. When the CDFs and histograms given in Figure 3.13 are
compared, the EFs are distributed homogeneously in the CDF of in-situ EFs and EMR
EFs. Cv value, which represents the variability in the EFs within each source as a
percentage, may be considered low in itself, but more than EMR. Finally, variability
of in-situ EFs is larger than EMR’s. EFs derived from both in-situ measurements and

EMRs have close Kurtosis and Skewness values.

Table 3.11 : Summary statistics for SOz EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.10".

In-situ EMR
Measurements

Number of data points 16 12
Minimum 112.71 42.2
Maximum 315.12 91
Median 247 69.7
Variance ! 4310 2.7
Standard Deviation > 63.5 1.57
Coefficient of variation (%) 28 2
Skewness * -0.43 -0.46
Kurtosis * -1.04 1.24

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.13, Weibull and Normal parametric distributions seem best
fitting distributions for in-situ EFs, where Normal, Weibull and Logistic distributions
are appropriate for EMR EFs. In addition to CDF and histograms given in Figure 3.13,
goodness-of-fit statistics and goodness-of-fit criteria were also calculated in order to
determine best fitting parametric probability distribution function for our data, and
given in Table 3.12. Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is
given in Table 2.9. Kolmogorov-Smirnov statistic is less than critical value for the

distributions other than lognormal and exponential distributions. Minimum
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Kolmogorov-Smirnov and Cramer-von Mises statistics are in Uniform and Weibull

distributions. However, Weibull distribution is selected as the best fitting distribution

for in-situ EFs since it takes minimum values in the remaining goodness-of-fit statistics

and criteria.
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Figure 3.13 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for
both in-situ measurements and EMRs of “’1.A.1.a-10101-3.10".
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Weibull distribution is also considered as best fitting distribution for EFs derived from

EMRs. Goodness-of-fit statistics of EMR EFs are given in Attachment F.

Table 3.12 : Goodness-of-fit statistics/criteria for SO, EF derived from in-situ
measurements of 1.A.1.a— 10101 —3.10.

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.17 0.07 0.44 182.27 183.82
Lognormal 0.22 0.13 0.91 185.54 187.09
Uniform 0.14 0.05 - - -
Exponential 0.39 0.76 3.77 207.68 208.45
Logistic 0.18 0.10 0.59 183.87 185.41
Gamma 0.20 0.11 0.68 183.84 185.38
Weibull 0.15 0.07 0.43 181.39 182.93

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given

in Table 3.13. It is seen that the in-situ EFs are almost three times of EMR EFs.

Table 3.13 : Uncertainty analysis results for SO, EF of “1.A.1.a-10101-3.10” and
comparisons with other studies.

In-situ EMEP EPA
Measurements EMR [54] [193]
Fitted distribution type Weibull Weibull
Mean (g/GJ) 229.2 70.1 1680 between

95% CI (Lower, Upper) as g/GJ 191.8-265 62.3-76.7  330-5000 190 3
% Uncertainty (Lower, Upper) 16.3-15.6% 11.1-9.4% 80.4-198% and 569
First parameter 252,771 75.08 ! 4o/GJ
Second parameter 3.72 6.08 2

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

3 for uncontrolled external combustion of lignite with atmospheric fluidized bed technology for
electricity generation (SCC is 10100316 and 10100317)

4 for uncontrolled external combustion of lignite with other technologies for electricity generation
(SCCis 10100311, 10100312, 10100313 or 10100314)

Country specific SO; EF is calculated from in-situ measurements as 229.2 g/GJ which
is even below the 95% lower limit of EMEP (330 g/GJ) [54], and less than EPA EF
(569 g/GJ) [193]. In the plant, flue gas desulphurization is used as SO, abatement
technology with more than 95% abatement efficiency. By considering abatement

technology, country-specific EF (229.2 g/GJ) is compatible with EPA [193], which is
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between 190 and 569 g/GJ for uncontrolled conditions (there is no EF for controlled

conditions).

Since almost all points fall into the 50% CI range in probability band of in-situ
measurements given in Figure 3.14a, Weibull distribution is appropriate for EFs
derived from in-situ EFs. Although EF derived from EMR (70.1 g/GJ) appears to be
well calculated as all points fall into 50% CI range in Figure 3.14b, it remains low

compared to the literature.
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Figure 3.14 : Probability band of SO, EFs for “1A1a-10101-3.10” as cumulative
distribution of Weibull distribution fitted to SO> EFs derived from (a) in-situ
measurements (b) EMRs.

NO

Summary statistics of NO EFs for “1.A.1.a-—10101-3.10” SNAP/NFR category are
given in Table 3.14 for EFs derived from both in-situ measurements and EMRs. When
min, max and median of the EFs derived from in-situ measurements and those derived
from EMR are compared in Table 3.14, it is clear that NO EFs obtained from in-situ
measurements are more than three times than calculated from EMRs. Therefore, the
variance and standard deviation calculated from in-situ EFs are greater than those
derived from EMRs. Furthermore, Cv value, which represents the variability in the
EFs as a percentage, may be considered low in itself. Consequently, variability of EMR
EFs is larger than in-situ EFs. One outlier value in the EMR EFs, which is 30.3 g/GJ,
increases variability in the EMR EFs, as it is clear on the CDF of EFs derived from
EMRs which is given in Figure 3.15. Low skewness in EFs derived from both in-situ
measurements and EMRs in Table 3.14 indicate low asymmetry. Large Kurtosis in
EFs derived from in-situ measurements indicate large peak in the distribution as it is

also visualized in Figure 3.15.
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Table 3.14 : Summary statistics of NO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.10".

In-situ EMR
Measurements

Number of data points 16 12
Minimum 100.4 30.4
Maximum 151.9 64
Median 126.4 45.17
Variance ! 242 83.5
Standard Deviation > 15.5 9.1
Cv(%)* 12 19
Skewness * 0.13 0.075
Kurtosis ° -1.06 -0.4

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.15, looking at the CDF and histogram of EFs derived from in-
situ measurements, none of the distribution is well fitted due to high variability. In this
case Uniform distribution may be considered. In addition to CDF and histograms given
in Figure 3.15, goodness-of-fit statistics and goodness-of-fit criteria for in-situ EFs
were also calculated and given in Table 3.15, in order to determine best fitting
parametric probability distribution function for our data. Even in this table, the uniform
distribution appears to be the best fitting distribution since it has the lowest values for

entire of goodness-of-fit statistics and criteria.

Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in
Attachment F. Lognormal distribution is selected as best fitting parametric distribution

for EMR EFs.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given
in Table 3.16. EFs derived from in-situ measurements are almost three times of EFs

derived from EMRs in Table 3.16.
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Figure 3.15 : Distribution fitting comparisons of NO EF on CDF and Histogram for
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both in-situ measurements and EMRs of 1.A.1.a— 10101 —3.10.

Country-specific NO EF is calculated as 125.9 g/GJ, where it is 48 g/GJ for EF derived
from EMR. There is no abatement technology in the plant. NO EFs are not supplied
by EMEP [54], therefore there is no room for comparison. All of the NOx emissions
in this category are accepted as NO by EPA [193] and given as 385 g/GJ for

uncontrolled conditions. In this case, the EF calculated from in-situ measurements is

one third of the EPA EF.
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Table 3.15 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ
measurements of “1.A.1.a—-10101-3.10"".

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.16 0.05 0.35 137.22 138.76
Lognormal 0.15 0.05 0.35 137.09 138.64
Uniform 0.13 0.04 0.25 131.57 133.11
Exponential 0.55 1.22 5.66 188.61 189.39
Logistic 0.18 0.07 0.48 138.77 140.32
Gamma 0.15 0.05 0.34 137.08 138.62
Weibull 0.15 0.06 0.39 137.95 139.50

* Bold values indicate lowest values.

Since almost all in-situ EFs fall into the 50% CI range, which is considered a criterion
of goodness-of-fit [219], Uniform distribution is appropriate for EFs derived from in-
situ EFs, as it is shown in the probability band in Figure 3.16. Also, Lognormal
distribution fitted good in EFs derived from EMR, since they are mostly within the
50% CI range.

Table 3.16 : Uncertainty analysis results for NO EF of “1.A.1.a— 10101 — 3.10” and
comparisons with other studies.

In-situ EPA
Measurements EMR [193]
Fitted distribution type Uniform Lognormal
Mean (g/GJ) 125.9 g/GJ 48 g/GJ
95% CI (Lower, Upper) as g/GJ  118.2-135.2 43.1-54.2 3857
% Uncertainty (Lower, Upper) 6.1-7.4% 14.2-9.1% g/GJ
First parameter 97.6! 1.349 3
Second parameter 15322 0.0149 *

! minimum value (a) for Uniform parametric probability distribution function

2 maximum value (b) for Uniform parametric probability distribution function

* mean of Inx for Lognormal parametric probability distribution function

4 standard deviation of Inx for Lognormal parametric probability distribution function

5 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301)

Although EF derived from EMR (48 g/GJ) appears to be well calculated and
appropriate as on the probability band given in Figure 3.16b, it remains low compared

to the literature.
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Figure 3.16 : Probability band of NO EFs for “1A1a-10101-3.10” as cumulative
distribution of (a)lognormal distribution fitted to NO EFs derived from in-situ
measurements (b)normal distribution fitted to NO EFs derived from EMRs.

NO;

Summary statistics of NO; EFs for “1.A.1.a-10101-3.10” SNAP/NFR category are
given in Table 3.17 for EFs derived from both in-situ measurements and EMRs. When
min, max and median of the EFs derived from in-situ measurements and those derived
from EMR are compared in Table 3.17, it is clear that NO; EFs obtained from in-situ
measurements are approximately three times of EFs calculated from EMRs. Therefore,
the variance and standard deviation of in-situ EFs are greater than those derived from
EMRs. Furthermore, Cv of in-situ measurements are low when compared to EMRs.
This low Cv (12%) shows that there is agreement between in-situ measurements,

therefore variability is low.

Table 3.17 : Summary statistics of NO2 EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.10".

In-situ EMR
Measurements

Number of data points 16 12
Minimum 161.84 49.1
Maximum 244.8 103.3
Median 204.4 45.17
Variance ! 630.6 215.78
Standard Deviation > 25.93 14.7
Cv (%)3 12 19
Skewness * 0.11 0.075
Kurtosis ° -1.07 -0.4

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
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The large variability is heavily affected from outliers. Comparison of CDFs and

histograms with possible parametric distribution fitting options are given in Figure
3.17. According to Figure 3.17, looking at the CDF of EFs derived from EMR, there
is one outlier value which is the lowest EF (49.2 g/GJ). This outlier value in the EMR

EFs increases variability in the EMR EFs.
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Figure 3.17 : Distribution fitting comparisons of NO2 EF on CDF and Histogram
for both in-situ measurements and EMRs of 1.A.1.a— 10101 —3.10.

Low skewness in both in-situ and EMR EFs in Table 3.17 indicate low asymmetry.

Large Kurtosis in EFs derived from in-situ measurements indicate large peak in the

distribution as it is also visualized in Figure 3.17.
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According to Figure 3.17, looking at the CDF and histogram of EFs derived from in-
situ measurements, Normal and Gamma distribution seems close to CDF and
histogram of the in-situ EFs. Table 3.18 is created in order to quantitatively support
this qualitative interpretation and this table includes goodness-of-fit statistics and

goodness-of-fit criteria for in-situ NO> EFs.

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value
(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is
in Uniform distribution. Other goodness-of-fit statistics are also lowest for Uniform
distribution. Although Normal or Gamma distributions are found to be appropriate
fitting distribution in visual examination, goodness-of-fit statistics/criteria indicate
uniform distribution for in-situ EFs. Gamma distribution is selected as best fitting
parametric distribution for EMR EFs, and goodness-of-fit statistics and criteria are

given in Attachment F.

Table 3.18 : Goodness-of-fit statistics/criteria for NO; EF derived from in-situ
measurements of 1.A.1.a— 10101 — 3.10.

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.155 0.054 0.349 152.55 154.10
Lognormal 0.149 0.054 0.347 152.46 154.01
Uniform 0.125 0.036 0.234 146.91 148.45
Exponential 0.550 1.218 5.659 203.93 204.71
Logistic 0.177 0.074 0.483 154.11 155.66
Gamma 0.150 0.053 0.339 152.44 153.98
Weibull 0.153 0.061 0.390 153.24 154.78

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given

in Table 3.19. EFs derived from EMR are pretty lower than in-situ EFs.

Since almost all EFs of in-situ measurements fall into the 50% CI range, which is
considered a criterion of goodness-of-fit [219], Uniform distribution is appropriate for

EFs derived from in-situ EFs, as it is shown in the probability band in Figure 3.18.
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Table 3.19 : Uncertainty analysis results for NO2 EF of 1.A.1.a— 10101 —3.10 and
comparisons with other studies.

In-situ

EMR
Measurements

Fitted distribution type Uniform Gamma
Mean (g/GJ) 202.64 76.7
95% CI (Lower, Upper) as g/GJ  191.16-216.47  69.7-87.3
% Uncertainty (Lower, Upper) 5.7-6.8% 9.1-13.8%
First parameter 155511 25.173
Second parameter 247.36 2 3.05 ¢

! minimum value (a) for Uniform parametric probability distribution function
2 maximum value (b) for Uniform parametric probability distribution function
3 scale parameter (o) for Gamma parametric probability distribution function
* shape parameter () for Gamma parametric probability distribution function

Also, it is seen in Figure 3.18 that the Gamma distribution fitted good to EFs derived
from EMR, since they are mostly within the 50% CI range. Consequently, country
specific NOz EF is 202.64 g/GJ for “1.A.1.a-1010-3.10” SNAP/NFR category, with
95% lower Cl as 191.16 g/GJ and upper CI as 216.47 g/GJ.
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Figure 3.18 : Probability band of NO2 EFs for “1A1a-10101-3.10” as cumulative
distribution of (a)Uniform distribution fitted to NO; EFs derived from in-situ
measurements (b)Gamma distribution fitted to NO; EFs derived from EMRs.

NOx

NOx EF is calculated as the sum of NO and NO; emissions. However, since the
uncertainty levels of NO and NO» EFs are different, the formulas given in equation
2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF
of“1.A.1.a-10101-3.10” SNAP/NFR category and comparisons with other studies are
given in Table 3.20.
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Table 3.20 : NOx EF of “1.A.1.a-10101-3.10” and comparisons with other studies.

In-situ EMEP EPA
Measurements EMR [54] [193]
NOx EF (NO+NO») as g/GJ 328.54 124.7 247 between

95% CI (Lower, Upper) as g/GJ  314.72-345.21  116.2-137 143-571 70 ' and
% Uncertainty (Lower, Upper) 5.1-4.2% 6.9-9.8%  42-131% 3852
NO/NO; share 0.62 0.63 g/GJ

!'for uncontrolled external combustion of lignite for electricity generation (SCC is 10100301)
2 for uncontrolled external combustion of lignite for electricity generation (SCC is 10100302)

Country specific NOy EF is calculated as 328.54 g/GJ which is almost three times of
in-situ EF. NOx EF is more than EMEP EF [54], which is 247 g/GJ, however it is
within 95% CI of EMEP. Although NOx EF is close to upper value (385 g/GJ) of EPA
EFs [193], it is also compatible with EPA EF. There is no NOy abatement technology
in the plant.

The ratio of NO and NO; is 0.6 for both in-situ and EMR EFs for “1.A.1.a-10101—
3.10” SNAP/NFR category.

3.2.2 Coal combusting large size fluid bed boilers

Coal combusting medium size boilers are represented with “1.A.1.a-10101-3.16”
code. In detail, the code represents brown coal combustion plants with a capacity
greater than 300 MW and with fluid bed boilers as the combustion technology for
production of public power [54].

There are 2 plants falling under this SNAP/NFR category in Marmara region. In-situ
measurements were conducted in one plant within the context of KAMAG project
[194], and measurements from EMRs were available for both of two plants.
Consequently, 16 in-situ measurements from one plant is used in the calculation of
country-specific EF for this SNAP/NFR code. Furthermore 7 to 10 emission

measurements from EMRs were also used for comparison.

Dust

Summary statistics of dust EFs for “1.A.1.a-10101-3.16” SNAP/NFR category are
given in Table 3.21 for both of in-situ and EMR EFs. When min, max and median of
the EFs derived from in-situ measurements and those derived from EMRs are
compared in Table 3.21, it is clear that dust EFs obtained from EMRs are in a greater

range than in-situ measurements.
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Table 3.21 : Summary statistics of dust EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.16".

In-situ EMR
Measurements

Number of data points 16 7
Minimum 0.02 0.31
Maximum 1.01 3.27
Median 0.14 2.76
Variance ! 0.08 0.98
Standard Deviation > 0.29 0.99
Cv (%)* 108 45
Skewness * 1.75 -1
Kurtosis ? 2.58 0.12

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Also, variance and standard deviation of in-situ EFs is lower than that of EMR EFs.
In-situ EFs are generally less than 1 g/GJ, causing variance and standard deviation to
be low while Cv of in-situ EFs was calculated quite much than EMR EFs. The small
number of EFs from EMRs should also be considered when evaluating variability.
Consequently, there is large variability in in-situ EFs, where variability is relatively
low in EMR EFs. In Figure 3.19, comparison of CDFs and histograms with possible

parametric distribution fitting options are given.

The large variability is heavily affected from outliers. According to Figure 3.19,
looking at the CDF of EFs from in-situ measurements, more than 80% of EFs are less
than 0.4 g/GJ, however, there are two EFs which are more than 0.9 g/GJ, which can
be treated as outlier. Variability contribution of these outliers in the CDF of in-situ EFs
should be considered when evaluating large variability. There is positive skewness in

the EFs derived from in-situ measurements where it is negative in EF’s of EMRs.

According to Figure 3.19, looking at the CDF and histogram of EFs derived from in-
situ measurements, Gamma and Weibull distributions are close to CDF and histogram
of the in-situ EFs. In addition to CDF and histograms given in Figure 3.19, goodness-
of-fit statistics and goodness-of-fit criteria for dust EFs derived from in-situ

measurements are also calculated and given in Table 3.22.
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Comparison of CDFs for
1A1a-10101-3.16 Dust EF
for In-situ Measurements
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Figure 3.19 : Distribution fitting comparisons of dust EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a—10101-3.16".

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Lowest Kolmogorov-Smirnov statistic is in Gamma Distribution which is also lowest
in Cramer-von Mises and Anderson-Darling statistics. Finally, best fitting distribution
is selected as Gamma distribution for in-situ dust EFs for “1.A.1.a-1010-3.16”
SNAP/NFR category.
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Table 3.22 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ
measurements of 1.A.1.a— 10101 —3.16.

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.223 0.226 1.440 9314 10.859
Lognormal 0.192 0.141 1.646 -2.950 -1.405
Uniform 0.262 0.281 - - -
Exponential 0.139 0.060 0.438 -8.667 -7.895
Logistic 0.242 0.221 1.333 7.963 9.509
Gamma 0.116 0.046 0.351 -6.563 -5.018
Weibull 0.120 0.048 0.364 -6.760 -5.215

* Bold values indicate lowest values.

Since the number of data points is not sufficient, goodness-of-fit statistics/criteria are
not calculated for EMR dust EFs of “1.A.1.a-10101-3.16". After assigning best fitting
parametric distribution, Monte Carlo simulation is applied as in Section 2.2.4.4 and
Bootstrap method is applied as in Section 2.2.4.5. Then, average EF and confidence

intervals are calculated for in-situ EFs, and results are given in Table 3.23.

Table 3.23 : Uncertainty analysis results for dust EF of “1.A.1.a-10101-3.16” and
comparisons with other studies.

In-situ EMEP EPA

measurements [54] [193]
Fitted distribution type Gamma between
Mean 0.26 g/GJ 10.2 1733
95% CI (Lower, Upper) as g/GJ 0.14-0.41 3.4-30.6 ar'ld
% Uncertainty (Lower, Upper) 46-58 67-200 41 74
First parameter 0.798 ! /GJ
Second parameter 0.33 2 &

! mean of In(x) for lognormal parametric probability distribution function

2 standard deviation of In(x) for lognormal parametric probability distribution function

* for condensable PM, controlled with electrostatic precipitator in combustion of lignite with
atmospheric fluidized bed combustion technology (circulating bed, SCC : 10100317) or
bubbling bed (SCC : 10100318)

4 for filterable PM, controlled with electrostatic precipitator in combustion of lignite with
atmospheric fluidized bed combustion technology (circulating bed, SCC : 10100317) or
bubbling bed (SCC : 10100318)

In the plant, electrostatic filter is used as dust abatement technology with more than
95% abatement efficiency. Therefore, country-specific EF, which is 0.26 g/GJ, is very
low compared to EMEP [54] (10.2 g/GJ) and EPA [193] (minimum 17.3 g/GJ).
Furthermore, the EF generated from in-situ measurements is quite lower than the lower

limit of the EMEP CI. Since most of the points fall into the 50% CI range in probability
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band of in-situ measurements given in Figure 3.20, Gamma distribution is appropriate

for EFs derived from in-situ EFs.

1.0
[e)
0.8
P
E
©
e
s 06 O Data
> Uncertainty Ranges
g [ 95 Percent
E 0.4 Il 90 Percent
3 [ 50 Percent
02
0.0 I % I i .
0.00 1.01 2.02 3.03 4.04 5.05

Figure 3.20 : Probability band of dust EFs for “1A1a-10101-3.16” as cumulative
distribution of Gamma distribution fitted to dust EFs derived from in-situ
measurements.

Consequently, country specific dust EF is 0.26 g/GJ for “1.A.1.a-10101-3.16”
SNAP/NFR category, with 95% lower CI as 0.14 g/GJ and upper CI as 0.41 g/GJ.

(60

Summary statistics of CO EFs for “1.A.1.a-10101-3.16” SNAP/NFR category are
given in Table 3.24 for EFs derived from both in-situ and EMR EFs. CO emissions
were measured as zero in all 16 in-situ measurements. When min, max and median of
the EFs derived from EMR are considered in Table 3.24, it is clear that variability is

large. The large Cv, as 81%, also proves large variability.

In Figure 3.21, EFs are not distributed homogeneously in the CDF of EMR EFs, they
show a clustered distribution. 35% of EFs are less than 5 g/GJ, where 30% of EFs are
larger than 42 g/GJ. When the EFs from EMRs are examined, it is seen that each
clustered data represents the measurements taken from different stacks of the plant,
which also contributes to large variability in EMR EFs. There is positive but low
skewness which indicates low asymmetry in the EFs derived from EMRs, where there
is negative and relatively large kurtosis which indicates the peakedness of the

distribution.
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Table 3.24 : Summary statistics of CO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.16".

In-situ EMR
Measurements

Number of data points 16 10
Minimum 0 0.14
Maximum 0 44.7
Median 0 24.5
Variance ! 0 297.6
Standard Deviation > 0 17.25
Cv (%)* 0 81
Skewness * 0 0.08
Kurtosis ? 0 -1.8

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.21, looking at the CDF and histogram of EFs derived from
EMRs, lognormal and gamma distributions are close to CDF and histogram of the EFs
derived from EMRs. However, they are not totally fit to the points (EFs) because there
are diffuse clustered data points. In addition to CDF and histograms given in Figure
3.21, goodness-of-fit statistics and goodness-of-fit criteria for CO EFs derived EMRs

were also calculated and given in Table 3.25.

Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.21 : Distribution fitting comparisons of CO EFs on CDF and Histogram for
EFs derived from EMRs of “1.A.1.a— 10101 —3.16".
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Table 3.25 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of
“l1.A.1.a—10101 -3.16".

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.26 0.10 0.71 89.34 89.94
Lognormal 0.39 0.34 7.38 130.53 131.14
Uniform 0.21 0.07 0.50 85.81 86.41
Exponential 0.28 0.17 1.13 83.20 83.50
Logistic 0.28 0.12 0.85 90.76 91.37
Gamma 0.34 0.23 2.20 89.45 90.06
Weibull 0.29 0.15 0.85 84.75 85.35

* Bold values indicate lowest values.

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 3.25.
Kolmogorov-Smirnov statistic of entire of the distributions are more than critical value
(0.213), except Uniform distribution. Other goodness-of-fit statistics are also lowest
for Uniform distribution. Goodness-of-fit criteria are not lowest in Uniform
distribution; however, they are close to minimum. Finally, most appropriate parametric
probability distribution is selected as Uniform distribution. After assigning best fitting
parametric distribution, Monte Carlo simulation is applied as in Section 2.2.4.4 and
Bootstrap method is applied as in Section 2.2.4.5. Then, average EF and confidence

intervals are calculated for EMR EFs and results are given in Table 3.26.

Table 3.26 : Uncertainty analysis results for CO EF of 1.A.1.a— 10101 —3.16 and
comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Uniform Uniform
Mean 0 21.2¢g/G] 13 g/GJ
95% CI (Lower, Upper) as g/GJ 0-0 10.5-32.8 0.1-26 8.12°3
% Uncertainty (Lower, Upper) - 50-55 99-100 g/GJ
First parameter - -10.1!
Second parameter - 52.82

! minimum value (a) for Uniform parametric probability distribution function

2 maximum value (b) for Uniform parametric probability distribution function

3 for uncontrolled combustion of lignite with atmospheric fluidized bed combustion technology (SCC
is 10100316)
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It is seen that, the EF calculated from EMRs is significantly larger than EMEP and
EPA EFs. However, the EF derived from EMR is within the EMEP confidence interval
limits. In-situ EF is 0 g/GJ, which is not compatible with other studies.

One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. It is seen that EFs derived from
EMR are beyond the 50% CI limits. When the low reliability of emission
measurements in EMRs (as discussed in Section 2.2.1 ) are also considered, it is
recommended to use those EFs cautiously. Consequently, CO EF is 21.2 g/GJ for
“l1.A.1.a-10101-3.16” SNAP/NFR category, with 95% lower CI as 10.5 g/GJ and
upper CI as 32.8 g/Gl.
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Figure 3.22 : Probability band of CO EFs for “1A1a-10101-3.16” as cumulative
distribution of uniform distribution fitted to CO EFs derived EMRs.

SO:

Summary statistics of SO> EFs for “1.A.1.a—10101-3.16” SNAP/NFR category are
given in Table 3.27 for EFs derived from EMRs. For this SNAP/NFR category, SO
emissions were not detected in in-situ measurements, therefore they are zero.

However, seven SO, emissions are available in EMRs.

When min, max and median of the EFs derived from EMR are considered in Table
3.27, it is clear that variability is large. The high coefficient of variation, as 1403%,
also proves large variability. The low number of data points is also effective in high
Cv.
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Table 3.27 : Summary statistics of SO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.16".

In-situ EMR
Measurements

Number of data points 16 7
Minimum (g/GJ) 0 0.61
Maximum (g/GJ) 0 2.44
Median (g/GJ) 0 1.2
Variance ! 0 330.6
Standard Deviation 2 0 17.25
Coefficient of variation (%) 0 1403
Skewness * 0 0.08
Kurtosis 3 0 -1.8

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

In Figure 3.23, EFs are distributed heterogeneously in the CDF of EFs derived from
EMRs. When the EMR data was examined, it is seen that each clustered data

represents the measurements taken from different stacks of the plant.
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Figure 3.23 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a— 10101 —3.16”.

Generally none of the distributions provide a perfect fit on the CDF of EMR EFs.
However, the histogram in Figure 3.23 shows that the lognormal distribution is most
favourable compared to the others. Table 3.28 is created in order to quantitatively
support this qualitative interpretation and includes goodness-of-fit criteria for SO, EFs

derived from EMRs. Since number of data points is not sufficient, goodness-of-fit
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statistics cannot be calculated. In Table 3.28, lognormal distribution is found to be the

lowest value in terms of goodness-of-fit criteria.

Table 3.28 : Goodness-of-fit statistics/criteria for SO, EF derived from EMRs of
“l1.A.1.a—10101 -3.16".

Goodness-of-fit criteria
Type of Akaike's Bayesian
distribution Information  Information

Criterion Criterion
Normal 15.85 15.74
Lognormal 13.93 13.82
Uniform - -
Exponential 18.89 18.83
Logistic 15.58 15.47
Gamma 14.24 14.13
Weibull 14.97 14.86

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for EMR EFs and given in Table 3.29.

Table 3.29 : Uncertainty analysis results for SO, EF of “1.A.1.a— 10101 — 3.10” and
comparisons with other studies.

EMEP EPA

EMR [54] [193]

Fitted distribution type Lognormal
Mean (g/GJ) 1.21 1680
95% CI (Lower, Upper) as g/GJ  0.85-1.63  330-5000 896 °
% Uncertainty (Lower, Upper) 30-35 80-198 g/GJ
First parameter 0.11!
Second parameter 0.432
! mean of Inx for Lognormal parametric probability distribution function
2 standard deviation of Inx for Lognormal parametric probability distribution function

% as SOx, for uncontrolled external combustion of lignite for electricity generation (SCC is
10100301, 10100302, 10100303, 10100304, 10100306, 10100316 and 10100317)

It is seen that the EFs derived from EMRs are pretty lower than the EMEP and EPA
EFs. Adding limestone (for combusting jointly with the coal) is used as the abatement

technology for SO> and NOx emissions. Therefore, SO EF is expected to be low.

Lower and upper CI range of SO; EF is given on a probability band in Figure 3.24. It
is seen that EFs derived from EMR are even beyond the 95% CI limits. When the low
reliability of emission measurements in EMRs (as discussed in Section 2.2.1 ) and low

number of data points used in the calculation of this EF are considered, it is
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recommended to use those EFs cautiously. Consequently, SO> EF is 1.21 g/GJ for
“l1.A.1.a-10101-3.16” SNAP/NFR category, with 95% lower CI as 0.85 g/GJ and
upper CI as 1.63 g/Gl.
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Figure 3.24 : Probability band of SO, EFs for “1A1a-10101-3.16 as cumulative
distribution of lognormal distribution fitted to SO, EFs derived EMRs.

NO
Summary statistics of NO EFs for “1.A.1.a-10101-3.16” SNAP/NFR category are

given in Table 3.30 for EFs derived from both in-situ measurements and EMRs.

Table 3.30 : Summary statistics for NO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10101-3.16".

In-situ EMR
Measurements

Number of data points 16 10
Minimum 28.8 0.3
Maximum 35 28.3
Median 33 14.6
Variance ! 2.6 109
Standard Deviation > 1.61 9.9
Cv (%)* 4.9 70.2
Skewness * -0.88 0.21
Kurtosis * 0.72 -1.53

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Variance and standard deviation calculated from EMR EFs are greater than those

derived from in-situ measurements. Furthermore, Cv value, which represents the
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variability in the EFs as a percentage, is pretty large (70.2%) in EMR EFs where it is

pretty low (4.9%) in EFs derived from in-situ measurements.

Consequently, variability of EMR are larger than in-situ EFs. However, one outlier
value in the EMR EFs, which is 0.3 g/GJ, increases variability in the EMR EFs, as it
is clear on the CDF of EFs derived from EMRs which is given in Figure 3.25.
Additionally, the fact that EFs from EMRs are generally clustered, as seen in CDF of
EMR EFs in Figure 3.25, variability of EMRs is also large.
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Figure 3.25 : Distribution fitting comparisons of NO EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a-10101-3.16”.

CDFs and histograms are given in the Figure 3.25 with possible fitting options.
According to Figure 3.25, looking at the CDF and histogram of EFs derived from in-
situ measurements, none of the distribution is best due to high variability. Weibull can

be considered as the closest distribution to in-situ EFs.

In addition to CDF and histograms given in Figure 3.25, goodness-of-fit statistics and

goodness-of-fit criteria for NO EFs derived from in-situ measurements were also
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calculated and given in Table 3.31, in order to determine best fitting parametric

probability distribution function for our data.

Table 3.31 : Goodness-of-fit statistics/criteria for NO EFs derived from in-situ
measurements of “1.A.1.a—-10101-3.16".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.198 0.078 0.546 64.715 66.260
Lognormal 0.202 0.082 0.589 65.416 66.961
Uniform 0.160 0.078 - - -
Exponential 0.583 1.457 6.675 145.796 146.569
Logistic 0.221 0.098 0.618 65.157 66.703
Gamma 0.200 0.080 0.573 65.166 66.711
Weibull 0.190 0.089 0.517 62.126 63.671

* Bold values indicate lowest values.

In Table 3.31, Weibull distribution appears to be one of the good fitting distributions.
Consequently, Weibull distribution is fitted to EFs derived from in-situ measurements
since it has acceptable values for most of the goodness-of-fit statistics and criteria.
Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in
Attachment F. Uniform distribution is selected as best fitting parametric distribution
for EMR EFs. Average EF and confidence intervals are calculated for each of in-situ

EFs and EMR EFs, and given in Table 3.32.

Table 3.32 : Uncertainty analysis results for NO EF of “1.A.1.a—10101-3.16" and
comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Weibull Uniform
Mean 32.8 g/GJ 14 g/GJ 60 ° g/GJ
95% CI (Lower, Upper) as g/GJ 31.9-33.7 7.5-20.6  35-85.2 1956
Uncertainty (Lower, Upper) 2-3 46-47 42-42 g/GJ
First parameter 33.6! -3.93
Second parameter 23.3 2 32.14

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

* minimum value (a) for Uniform parametric probability distribution function

* maximum value (b) for Uniform parametric probability distribution function

5 as NOx

6 as NOx, for uncontrolled external combustion of lignite with atmospheric fluidized bed technology
(SCC: 10100316 and 10100317)

It is seen that in-situ EF is more than two times of EF derived from EMRs. Country-

specific NO EF is calculated as 32.8 g/GJ, where it is 14 g/GJ for EF derived from
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EMR. NO EFs are not supplied by EMEP [54] and EPA [193] therefore, NOx EFs are

given for comparison.

Since almost all EFs of in-situ measurements fall into the 50% CI range in Figure 3.26,
which is considered a criterion of goodness-of-fit [219], Weibull distribution is
appropriate for EFs derived from in-situ EFs. Also, it is seen that, Uniform distribution
not fitted good in EFs derived from EMR, since they are mostly beyond the 50% CI
range. Furthermore, CI range is pretty large in EFs derived from EMR (lower bound
is 46% and upper bound is 47%) when compared to in-situ EF CI range (lower bound

is 2% and upper bound is 3%).
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Figure 3.26 : Probability band of NO EFs for “1A1a-10101-3.16” as cumulative
distribution of (a)Weibull distribution fitted to NO EFs derived from in-situ
measurements (b)Uniform distribution fitted to NO EFs derived from EMRs.

NO;

Summary statistics of NO, EFs for “1.A.1.a-10101-3.16” SNAP/NFR category are
given in Table 3.33 for EFs derived from both in-situ measurements and EMRs. When
min, max and median of the EFs derived from in-situ measurements and those derived
from EMR are compared in Table 3.33, it is clear that NO2 EFs obtained from in-situ
measurements are more than two times than calculated from EMRs. Variance and
standard deviation calculated from EFs derived from EMRs are greater than those
derived from in-situ measurements. Furthermore, Cv value, which represents the
variability in the EFs as a percentage, is pretty large (68%) in EMR EFs where it is

pretty low (5%) in EFs derived from in-situ measurements.
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Table 3.33 : Summary statistics for NO2 EFs derived from both in-situ
measurements and EMRs for “1.A.1.a-10101-3.16".

In-situ EMR
Measurements

Number of data points 16 10

Minimum 46.3 0.11
Maximum 56.6 43.6
Median 53.1 233
Variance ! 7.5 253
Standard Deviation 2 2.65 15.1
Cv (%)* 5 68

Skewness * -0.85 0.15
Kurtosis ° 0.76 -1.5

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Consequently, variability of EMR EFs are larger than in-situ EFs. However, one
outlier value in the EMR EFs, which is 0.11 g/GJ, increases variability in the EMR
EFs, as it is clear on the CDF of EFs derived from EMRs which is given in Figure
3.27. Additionally, the fact that EFs from EMRs are generally clustered, as visualized
in CDF of EMR EFs in Figure 3.27, variability increases.

CDFs and histograms are given in the Figure 3.27 with possible fitting options.
According to Figure 3.27, looking at the CDF and histogram of EFs derived from in-
situ measurements, Weibull is the best fitting distribution to in-situ EFs. In addition to
CDF and histograms given in Figure 3.27, goodness-of-fit statistics and goodness-of-
fit criteria for NO; EFs derived from in-situ measurements were also calculated and
given in Table 3.34, in order to determine best fitting parametric probability
distribution function for our data. Even in this table, the Weibull distribution appears
to be the best fitting distribution since it has the lowest values for most of goodness-

of-fit statistics and criteria.

Goodness-of-fit statistics and criteria of EFs derived from EMRs are given in
Attachment F. Uniform distribution is selected as best fitting parametric distribution

for EMR EFs.
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Figure 3.27 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for
both in-situ measurements and EMRs of “1.A.1.a-10101-3.16”.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given

in Table 3.35.

Table 3.34 : Goodness-of-fit statistics/criteria for NO, EF derived from in-situ
measurements of “1.A.1.a-10101-3.16”

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- | Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.180 0.055 0.407 80.638 82.183
Lognormal 0.185 0.059 0.453 81.336 82.881
Uniform 0.138 0.060
Exponential 0.582 1.452 6.656 161.051 161.824
Logistic 0.203 0.071 0.459 80.993 82.538
Gamma 0.183 0.057 0.437 81.086 82.631
Weibull 0.164 0.058 0.339 78.307 79.852

* Bold values indicate lowest values.
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It is seen that the EF derived from in-situ measurements is more than two times of EF

derived from EMRs. Country-specific NO> EF is calculated as 52.9 g/GJ, where it is
22 g/G]J for EF derived from EMR. NO; EFs are not supplied by EMEP [54] or EPA

[193], therefore there is no room for comparison. In the plant that in-situ measurements

are conducted, limestone is combusted jointly with the coal as an abatement procedure

of SO, and NOx emissions. Therefore, NO2 EF is expected to be low.

Table 3.35 : Uncertainty analysis results for NO; EF of “1.A.1.a-10101-3.16” and

comparisons with other studies.

In-situ

Measurements EMR
Fitted distribution type Weibull Uniform
Mean (g/GJ) 52.9 22
95% CI (Lower, Upper) as g/GJ 51.4-54.3 12.7-32.3
% Uncertainty (Lower, Upper) 3-3 42-47
First parameter 5421 -5.33
Second parameter 232 49.74

! scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function
* minimum value (a) for Uniform parametric probability distribution function
4 maximum value (b) for Uniform parametric probability distribution function

Since almost all in-situ EFs fall into the 50% CI range in probability band given in

Figure

3.28, which is considered a criterion of goodness-of-fit [219], Weibull

distribution is appropriate for EFs derived from in-situ EFs.
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Figure 3.28 : Probability band of NO2 EFs for “1A1a-10101-3.10” as cumulative
distribution of (a)Weibull distribution fitted to NO2 EFs derived from in-situ
measurements. (b)Uniform distribution fitted to NO; EFs derived from EMRs.

Also, it is seen that, Uniform distribution is not fitted good in EMR EFs, since they are

mostly beyond the 50% CI range. Furthermore, CI range is pretty large in EFs derived

from EMR (lower bound is 42% and upper bound is 47%) when compared to in-situ

EFs where both of lower and upper bounds are 3%. Consequently, country specific
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NO: EF is accepted as 52.9 g/GJ for “1.A.1.a-1010-3.16” SNAP/NFR category, with
95% lower CI as 51.4 g/GJ and upper CI as 54.3 g/GJ.

NO«

NOx EF is calculated as the sum of NO and NO; emissions. However, since the
uncertainty levels of NO and NO» EFs are different, the formulas given in equation
2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF
of “1.A.1.a-10101-3.16” SNAP/NFR category and comparisons with other studies are
given in Table 3.36.

Table 3.36 : NOx EF of “1.A.1.a-10101-3.16 and comparisons with other studies.

In-situ EMEP EPA
Measurements A [54] [193]
NOx EF (NO+NO:>) as g/GJ 85.7 36 60
95% CI (Lower, Upper) as g/GJ] ~ 83.95-88.48 24.7-48.2  35-85.2 1951
% Uncertainty (Lower, Upper) 2-3.2% 31.5-34% 42-131% g/GJ
NO/NO; share 0.62 0.64

as NOj, for uncontrolled external combustion of lignite with atmospheric fluidized bed technology
(SCCis 10100316 and 10100317)

It is seen that the EFs derived from in-situ measurements (85.7 g/GJ) and from EMRs
(36 g/GJ) are compatible with EMEP EF CI range, which is 24.7 g/GJ lower and 48.2
upper g/GJ range, however they are less than half the EPA EF (195 g/GJ). EPA EF is
valid for uncontrolled conditions, however, limestone is added to the system for
combusting jointly with the coal, as an abatement technology for SO» and NOx
emissions in the plant that we conducted in-situ measurements. Therefore, NOx EF is
expected to be low. Consequently, country specific NOy EF is calculated as 85.7 g/GJ

which is almost two times of EF calculated from EMRs.

3.2.3 Coal combusting large wet and dry bottom boilers

Brown coal or lignite combustion plants with a capacity range between 50 and 300
MW (SNAP/NFR code is 1.A.1.a—10102-3.10), and with wet and dry bottom boilers
as the combustion technology for production of public power is investigated in this

part of study.

In Marmara region there is one plant falling under this SNAP/NFR category. Therefore
in-situ measurements were conducted in only this plant within the context of KAMAG

project [194]. Consequently, 16 in-situ measurements from one plant is used in the
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calculation of country-specific EF for this SNAP/NFR code. There were no EMR

available for this plant.

Dust

Summary statistics of dust EFs for “1.A.1.a-10102-3.10” SNAP/NFR category are
given in Table 3.37 for EFs derived from only in-situ measurements, because EMR
was not available for this plant. Standard deviation, variance and Cv are calculated
large in in-situ measurements, which indicate large variability between EFs.
Furthermore, Cv is 116% which is pretty large and indicates large variability between

measurements. There is positive skewness and kurtosis in the in-situ EFs.

Table 3.37 : Summary statistics of dust EFs derived from in-situ measurements for
“1.A.1.a-10102-3.10".

In-situ
Measurements

Number of data points 16
Minimum 0.13
Maximum 6
Median 0.6
Variance ! 2.38
Standard Deviation 2 1.54
Cv(%)* 116
Skewness * 2
Kurtosis ° 4.3

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Large variability is heavily affected from outliers. In Figure 3.29, comparison of CDFs
and histograms with possible parametric distribution fitting options are given.
According to Figure 3.29, looking at the CDF, it is seen that 90% of EFs are less than
3 g/GJ, however, there is one EF which is more than 6 g/GJ, which can be treated as
outlier. Variability contribution of one outlier value in the CDF should be considered

when evaluating large variability.

There is asymmetry in the histogram given in Figure 3.29, therefore, the skewness
value for in-situ measurements in Table 3.37 is large. Due to a large peak in the

histogram given in Figure 3.29, the kurtosis value is high in Table 3.37.

According to Figure 3.29, looking at the CDF and histogram of EFs derived from in-

situ measurements, Gamma and lognormal distributions are close to CDF and
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histogram of the in-situ EFs. In addition to CDF and histograms given in Figure 3.29,
goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived from in-situ
measurements were also calculated in Table 3.38, in order to determine best fitting

parametric probability distribution function for our data.

Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.29 : Distribution fitting comparisons of dust EF on CDF and Histogram for
in-situ measurements of “1.A.1.a—10102-3.10".

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
The lowest Kolmogorov-Smirnov statistic is in Logistic distribution. However, logistic
distribution is not a good fitting distribution in the histogram of Figure 3.29 although
it has lowest Kolmogorov-Smirnov statistic. Uniform distribution has lowest
goodness-of-fit criteria, but it doesn’t give good results when the number of values
within the 0 and 1 g/GJ is large, as in our dataset. However, as it is clear in CDF Figure
3.29, the number of EFs between 0 and 1 g/GJ is large and cannot be disregarded.
Gamma distribution doesn’t have best values in Table 3.38. Nevertheless, best fitting
distribution is selected as Gamma distribution for dust EFs derived from in-situ

measurements for “1.A.1.a—10102-3.10” SNAP/NFR category.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,
average EF and confidence intervals are calculated for in-situ EFs, and results are

given in Table 3.39.
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Table 3.38 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ
measurements of “1.A.1.a—-10102-3.10".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.202 0.178 0.936 43.319 44.864
Lognormal 0.279 0.308
Uniform 0.219 0.130 0.669 43.241 44.013
Exponential 0.328 0.315 1.632 61.594 63.140
Logistic 0.175 0.096 0.595 46.079 47.624
Gamma 0.202 0.108 0.587 45.162 46.707
Weibull 0.202 0.178 0.936 43.319 44.864

* Bold values indicate lowest values.

The EF calculated from in-situ measurements (1.32 g/GJ) is significantly lower than
the EMEP (11.7 g/GJ) and EPA EFs (minimum 17 g/GJ). Besides, it is pretty lower
than EPA EFs even though EPA EFs are for controlled conditions. In the plant,
electrostatic filter is used as the dust abatement technology with more than 95%
abatement efficiency, however country-specific EF, which is 1.32 g/GJ, is very low

compared to EMEP [54] (11.7 g/GJ) and EPA [193] (minimum 17 g/GJ).

Table 3.39 : Uncertainty analysis results for dust EF of “1.A.1.a-10102-3.10” and
comparisons with other studies.

In-situ EMEP EPA

measurements [54] [193]
Fitted distribution type Gamma
Mean 1.32 g/GJ 11.7 g/GJ between
95% CI (Lower, Upper) as g/GJ 0.68-2.27 1.2-117 17°and
Uncertainty (Lower, Upper) 48-110 90-900 100 #
First parameter 0.71! g/GJ
Second parameter 1.9 2

!'scale parameter (o) for Gamma parametric probability distribution function

2 shape parameter (B) for Gamma parametric probability distribution function

* for condensable PM, fluidized bed combustion technology controlled with electrostatic
precipitator or dry limestone injection (SCC 10100316, 10100317 and 10100318)

4 for filterable PM, fluidized bed combustion technology controlled with electrostatic
precipitator or dry limestone injection (SCC 10100316, 10100317 and 10100318)

One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. EFs derived from in-situ
measurements often remain within the 50% CI limits in Figure 3.30. However, EF is

lower than literature (EMEP and EPA).
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Figure 3.30 : Probability band of dust EFs for “1Ala-10102-3.10” as cumulative
distribution of Gamma distribution fitted to dust EFs derived from in-situ

measurements.

CO

Summary statistics of CO EFs for “1.A.1.a-10102-3.10” SNAP/NFR category are

given in Table 3.40 for EFs derived from in-situ measurements. When min, max and

median of the EFs derived from in-situ measurements are investigated in Table 3.40,

it is clear that CO EFs are properly distributed between zero and five, with 38% Cyv,

low variance and standard deviation. Homogeneous distribution of the EFs is also clear

on the CDF in Figure 3.31.

Table 3.40 : Summary statistics for CO EFs derived from in-situ measurements for
“1.A.1.a-10102-3.10".

In-situ
Measurements

Number of data points
Minimum

Maximum

Median

Variance !

Standard Deviation 2
Cv (%)*

Skewness *

Kurtosis °

16
0.89
5.54
3.09
1.54
1.24

38
0.21

-0.22

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
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According to Figure 3.31, looking at the CDF and histogram of EFs derived from in-
situ measurements, Normal, Weibull and Gamma distributions are close to CDF and
histogram of the in-situ EFs. Table 3.41 is created in order to quantitatively support
this qualitative interpretation and includes goodness-of-fit statistics and goodness-of-

fit criteria for CO EFs derived from in-situ measurements.

Comparison of CDFs for Histogram and Theroetical Densities for
1A1a-10102-3.10 CO EF 1A1a-10102-3.10 CO EF
for EMRs for EMRs
2 Y —— normal
T lognormal
- uniform
P — exponential
w 7 - / N logistic
S - = ’ \ gamma
-~ / weibull
o
S o e
s < o/
e < : 2z o«
: 7 £ 21
2 7 8
% < ] o/
E ©
3 7
e normal -
~ s lognormal <
s uniform
4,»" exponential
o logistic
- . gamma
=R s weibull =
T T T T T I T T T 1
1 2 3 4 5 1 2 3 4 5
CO EF (g/GJ) CO EF (g/GJ)

Figure 3.31 : Distribution fitting comparisons of CO EF on CDF and Histogram for
in-situ measurements of “1.A.1.a—10102-3.10".

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value
(0.213), except exponential distribution. Minimum Kolmogorov-Smirnov statistic is

in Weibull distribution.

Table 3.41 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ
measurements of “1.A.1.a—-10102-3.10".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.1104 0.038 0.25 56.34 57.89
Lognormal 0.1107 0.031 0.44 60.22 61.77
Uniform 0.1437 0.067 - - -
Exponential 0.3499 0.569 2.84 72.06 72.83
Logistic 0.1245 0.041 0.27 56.98 58.53
Gamma 0.1102 0.026 0.26 57.20 58.74
Weibull 0.1018 0.033 0.23 56.00 57.55

* Bold values indicate lowest values.
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Other goodness-of-fit statistics and criteria are also lowest for Weibull distribution,
except Cramer-von Mises statistic. Due to the close CDF and histogram of Weibull
distribution to the in-situ EFs in Figure 3.31, and due to lowest goodness-of-fit
statistics in Table 3.41, best fitting distribution is selected as the Weibull distribution

for CO EFs derived from in-situ measurements.

Table 3.42 : Uncertainty analysis results for CO EF of “1.A.1.a-10102-3.10” and
comparisons with other studies.

In-situ EMEP EPA
measurements [54] [193]
Fitted distribution type Weibull
Mean 3.3 g/GJ 8.7 g/GJ
95% CI (Lower, Upper) as g/GJ 2.65-3.99 6.72-60.5 8.12°3
Uncertainty (Lower, Upper) 20-21 23-595 g/GJ
First parameter 3.721 1
Second parameter 2.657 2

! scale parameter (k) for Weibull parametric probability distribution function
2 shape parameter (c) for Weibull parametric probability distribution function
3 for uncontrolled fluidized bed combustion technology (SCC 10100316 and 1010 0318)

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for in-situ EFs and given in Table 3.42. It is
seen that the EFs derived from in-situ measurements are pretty lower than EMEP and
EPA EFs. Furthermore, EMEP and EPA EFs are close to each other. There is no
abatement technology for CO emissions in the plant.
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Figure 3.32 : Probability band of CO EFs for “1A1a-10102-3.10” as cumulative
distribution of Weibull distribution fitted to CO EFs derived from in-situ
measurements.

Consequently, country-specific CO EF is calculated as 3.3 g/GJ. Lower and upper

confidence interval range of country-specific CO EF is small when compared to EMEP
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and EPA confidence interval ranges. In probability band in Figure 3.32, almost all
points on the probability band are within 50% CI. Thus, this EF can be considered as
country-specific EF.

SO:

Summary statistics of SO> EFs for “1.A.1.a—10102-3.10” SNAP/NFR category are
given in Table 3.43 for EFs derived from in-situ measurements. When min, max and
median of the EFs derived from in-situ measurements are investigated in Table 3.43,
it is clear that SO, EFs are properly distributed between 70 g/GJ and 250 g/GJ, with
33% Cv, low variance and standard deviation. Homogeneously distribution of the EFs

is also clear on the CDF in Figure 3.33.

Table 3.43 : Summary statistics for SO» EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10102-3.10".

In-situ
Measurements

Number of data points 16
Minimum 69.5
Maximum 250.7
Median 125.7
Variance ! 2407
Standard Deviation 2 47.5
Cv (%)* 33
Skewness * 0.57
Kurtosis ° -0.17

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Low skewness and kurtosis in EFs derived from in-situ measurements in Table 3.43
indicate strong asymmetry and a small peak in the distribution as it is also visualized

in histogram of Figure 3.33.

According to Figure 3.33, looking at the CDF and histogram of EFs derived from in-
situ measurements, Gamma distribution seems best fitting distribution to CDF and
histogram of the in-situ EFs. Table 3.44 is created in order to quantitatively support
this qualitative interpretation and includes goodness-of-fit statistics and goodness-of-

fit criteria for SO, EFs derived from in-situ measurements.
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Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.33 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for
in-situ measurements of “1.A.1.a—10102-3.10".

Critical value of Kolmogorov-Smirnov statistic is 0.213, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic of entire of the distributions are less than critical value
(0.213), except exponential and logistic distributions. Minimum Kolmogorov-
Smirnov statistic is in lognormal distribution. However other goodness-of-fit statistics
and criteria are lowest for Gamma distribution. Due to the close CDF and histogram
of Gamma distribution to the in-situ EFs in Figure 3.33, and due to lowest goodness-
of-fit statistics in Table 3.44, best fitting distribution is selected as the Gamma

distribution for CO EFs derived from in-situ measurements.

Table 3.44 : Goodness-of-fit statistics/criteria for SO, EF derived from in-situ
measurements of “1.A.1.a—-10102-3.10".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.197 0.080 0.43 172.96 174.50
Lognormal 0.164 0.070 0.37 171.57 173.12
Uniform 0.149 0.060 - - -
Exponential 0.387 0.684 3.38 192.68 193.45
Logistic 0.218 0.109 0.56 173.94 175.48
Gamma 0.168 0.065 0.34 171.57 173.11
Weibull 0.184 0.068 0.38 172.64 174.19

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for in-situ EFs and given in Table 3.45. It is
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seen that the EFs derived from in-situ measurements are pretty lower than EMEP and
EPA EFs. Furthermore, EMEP and EPA EFs are close to each other. EPA EF is given
for uncontrolled conditions. Since EMEP EF is close to EPA EF, it may also be for
uncontrolled conditions. However, there is SO abatement technology, which is flue
gas desulphurization in the plant that in-situ measurements were conducted. That is

why SOz EF of in-situ measurements is pretty lower than EPA and EMEP EFs.

Table 3.45 : Uncertainty analysis results for SOz EF of “1.A.1.a-10102-3.10” and
comparisons with other studies.

In-situ EMEP EPA

measurements [54] [193]
Fitted distribution type Gamma
Mean 142 g/GJ 1680 g/GJ
95% CI (Lower, Upper) as g/GJ ~ 120.1-167.4  330-5000 1625°
Uncertainty (Lower, Upper) 15-18 80-198 g/GJ
First parameter 8.43 !
Second parameter 169 2

!'scale parameter (o) for Gamma parametric probability distribution function
2 shape parameter (B) for Gamma parametric probability distribution function
3 for uncontrolled fluidized bed combustion technology (SCC 10100316 and 10100318)

Consequently, country specific SO> EF is calculated as 142 g/GJ. Lower and upper
confidence interval range of country-specific CO EF is small when compared to EMEP
and EPA confidence interval ranges. In probability band in Figure 3.34, almost all

points on the probability band are within 50% CI range.
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Figure 3.34 : Probability band of SO, EFs for “1A1a-10102-3.10” as cumulative
distribution of Gamma distribution fitted to SO, EFs derived from in-situ
measurements.
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NO

Summary statistics of NO EFs for “1.A.1.a-10102-3.10” SNAP/NFR category are
given in Table 3.46 for EFs derived from in-situ measurements. When min, max and
median of the EFs derived from in-situ measurements are investigated in Table 3.46,
it is clear that NO EFs are distributed between 150 g/GJ and 306 g/GJ, with 29% Cv,

large variance and standard deviation.

Table 3.46 : Summary statistics for NO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10102-3.10".

In-situ Measurements

Number of data points 16
Minimum 150.5
Maximum 306.5
Median 210
Variance ! 4194
Standard Deviation 2 64.7
Cv (%)? 29
Skewness * 0.17
Kurtosis ? ¥

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

EFs are distributed heterogeneously on the CDF in Figure 3.35. Large negative
kurtosis, which is -2, indicates a peak in lower EFs.
Comparison of CDFs for
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Figure 3.35 : Distribution fitting comparisons of NO EF on CDF and Histogram for
in-situ measurements of “1.A.1.a—10102-3.10".
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According to Figure 3.35, looking at the CDF and histogram of EFs derived from in-
situ measurements, although lognormal distributions seems as one of the closest
distributions none of the distributions perfectly fit to the data due to a large peak in
low EFs. Table 3.47 includes goodness-of-fit statistics and goodness-of-fit criteria for

NO EFs derived from in-situ measurements.

Table 3.47 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ
measurements of “1.A.1.a-10102-3.10”

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.255 0.236 1.474 182.9 184.4
Lognormal 0.244 0.256 1.572 181.9 183.5
Uniform 0.199 0.149 0.983 177.2 178.8
Exponential 0.490 0.804 3.927 207.1 207.8
Logistic 0.278 0.286 1.816 185.7 187.2
Gamma 0.240 0.238 1.465 182.0 183.6
Weibull 0.258 0.230 1.442 182.4 183.9

* Bold values indicate lowest values.

In Table 3.47, it is seen that all distribution types exceed the critical value of
Kolmogorov-Smirnov statistic, which is 0.213 according to Table 2.9, except Uniform
distribution. Uniform distribution is also minimum in all goodness-of-fit tests and
criteria. Consequently, best fitting distribution is selected as the Uniform distribution

for NO EFs derived from in-situ measurements.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for in-situ EFs and given in Table 3.48.

Table 3.48 : Uncertainty analysis results for NO EF of “1.A.1.a—10102-3.10* and
comparisons with other studies.

In-situ measurements

Fitted distribution type Uniform
Mean 223 g/GJ
95% CI (Lower, Upper) as g/GJ 190.8-256.2
% Uncertainty (Lower, Upper) 14.4-14.9
First parameter 107.31
Second parameter 339 2

! minimum value (a) for Uniform parametric probability distribution function
2 maximum value (b) for Uniform parametric probability distribution function
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Country-specific EF of NO is calculated as 223 g/GJ. There is no abatement
technology in the plant. NO EFs are not supplied by EMEP [54] and EPA [193],
therefore there is no room for comparison. In probability band in Figure 3.36, almost
all points beyond the 50% probability CI range, which means that Uniform distribution
is not a perfect matching distribution. However, it was the best distribution between
all distributions discussed above. In such cases it is better to apply empirical
distribution. However, in this thesis only parametric distributions are considered.
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Figure 3.36 : Probability band of NO EFs for “1A1a-10102-3.10” as cumulative
distribution of Uniform distribution fitted to NO EFs derived from in-situ
measurements.

NO:
Summary statistics of NO, EFs for “1.A.1.a—10102-3.10” SNAP/NFR category are

given in Table 3.49 for EFs derived from in-situ measurements.

Table 3.49 : Summary statistics for NO2 EFs derived from both in-situ
measurements and EMRs for “1.A.1.a-10102-3.10".

In-situ Measurements

Number of data points 16
Minimum 242.8
Maximum 494.6
Median 338.5
Variance ! 10887
Standard Deviation > 104.3
Cv (%)? 28.9
Skewness * 0.17
Kurtosis ° -2

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
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When min, max and median of the EFs derived from in-situ measurements are
investigated in Table 3.49, it is clear that NO; EFs are distributed between 242 g/GJ
and 495 g/GJ, with 29% Cv, large variance and large standard deviation. EFs are
distributed heterogeneously on the CDF in Figure 3.37. Large negative kurtosis, which

is -2, indicates a peak in lower EFs.

According to Figure 3.37, looking at the CDF and histogram of EFs derived from in-
situ measurements, none of the distributions perfectly fit to the data due to large peaks
although lognormal and Gamma distributions seems as one of the closest distributions.
Table 3.50 includes goodness-of-fit statistics and goodness-of-fit criteria for NO2 EFs

derived from in-situ measurements.
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Figure 3.37 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for
in-situ measurements of “1.A.1.a—10102-3.10".

In Table 3.50, it is seen that all distribution types exceed the critical value of
Kolmogorov-Smirnov statistic, which is 0.213 according to Table 2.9, except Uniform
distribution. Uniform distribution is also minimum in all goodness-of-fit tests and
criteria. Consequently, best fitting distribution is selected as the Uniform distribution

for NO; EFs derived from in-situ measurements.
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Table 3.50 : Goodness-of-fit statistics/criteria for NO; EF derived from in-situ
measurements of “1.A.1.a—-10102-3.10".

Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.256 0.236 1.47 198.1 199.7
Lognormal 0.244 0.255 1.57 197.2 198.8
Uniform 0.200 0.149 0.98 192.5 194.0
Exponential 0.491 0.804 3.93 222.4 223.1
Logistic 0.278 0.286 1.81 200.9 202.5
Gamma 0.241 0.237 1.46 197.3 198.9
Weibull 0.258 0.230 1.44 197.7 199.2

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for in-situ EFs and given in Table 3.51.

Table 3.51 : Uncertainty analysis results for NO; EF of “1.A.1.a-10102-3.10” and
comparisons with other studies.

In-situ measurements

Fitted distribution type Uniform
Mean 360 g/GJ
95% CI (Lower, Upper) as g/GJ 307.8-413.2
% Uncertainty (Lower, Upper) 14.5-14.8
First parameter 173.41
Second parameter 546.7 2

! minimum value (a) for Uniform parametric probability distribution function
2 maximum value (b) for Uniform parametric probability distribution function

Country-specific EF of NO; is calculated as 360 g/GJ. There is no abatement
technology in the plant. NO> EFs are not supplied by EMEP [54] and EPA [193],
therefore there is no room for comparison. In probability band in Figure 3.38, almost
all points beyond the 50% probability CI range, which means that Uniform distribution
is not perfect matching distribution. However, it was the best distribution between all
distributions discussed above. In such cases it is better to apply empirical distribution.

However, in this thesis only parametric distributions are considered.
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Figure 3.38 : Probability band of NO2 EFs for “1A1a-10102-3.10” as cumulative
distribution of Uniform distribution fitted to NO, EFs derived from in-situ
measurements.

NOx

NOx EF is calculated as the sum of NO and NO; emissions. However, since the
uncertainty levels of NO and NO» EFs are different, the formulas given in equation
2.1a-2.1d were applied in order to calculate the total uncertainty of NOx EF. NOx EF
of “1.A.1.a-10102-3.10” SNAP/NFR category and comparisons with other studies are
given in Table 3.20.

Table 3.52 : NOx EF of “1.A.1.a-10102-3.10* and comparisons with other studies.

In-situ EMEP EPA
Measurements [54] [193]
NOx EF (NO+NO») as g/GJ 583 247 between

95% CI (Lower, Upper) as g/GJ ~ 521.67-645.7  143-571  249.1!
% Uncertainty (Lower, Upper) 10.5-10.8% 42-131% and 704 2
NO/NO; share 0.62 g/GJ

! for external combustion of lignite with dry bottom / wall fired boilers for electricity generation with
an abatement technology as overfire air and low NOx burners (SCC is 10100301)

2 for uncontrolled external combustion of lignite with dry bottom / wall fired boilers for electricity
generation (SCC is 10100301)

Country specific NOx EF is calculated as 583 g/GJ which is more than twice of EMEP
EF [54], which is 247 g/GJ, however it is within 95% CI of EMEP. There is no NOx
abatement technology in the plant. The ratio of NO and NO> is 0.6 for EFs derived
from in-situ measurements for “1.A.1.a—10102—-3.10” SNAP/NFR category.
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3.2.4 Natural gas combusting medium size dry bottom boilers

“1.A.1.a-10102-3.12” code represents natural gas combustion plants with a capacity
between 50 and 300 MW, and with dry bottom boilers as the combustion technology

for production of public power.

In Marmara region there are seven plants falling under this SNAP/NFR category.
There were no in-situ measurements for this SNAP/NFR category in KAMAG project
[194]. However, EMRs were available for two of the plants. Since the data in EMRs
are questionable as discussed in Section 2.2.1 , EFs from “l1.A.1.a-10102-3.12”
SNAP/NFR category should be used cautiously. Country-specific EFs are generated
for this SNAP/NFR category, but not used in the emission inventory part of this study.

Dust
Summary statistics of dust EFs for “1.A.1.a-10102-3.12” SNAP/NFR category are
given in Table 3.53. Standard deviation, variance and Cv are calculated large in EFs

derived from EMRs which indicate large variability between EFs.

Table 3.53 : Summary statistics of dust EFs derived from EMRs for “1.A.1.a—

10102-3.12".

EMR
Number of data points 21
Minimum 0.37
Maximum 2.34
Median 0.8
Variance ! 0.3
Standard Deviation > 0.55
Cv (%)? 58
Skewness * 1.78
Kurtosis ° 2.53

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

The large variability is heavily affected from outliers. In Figure 3.39, comparison of
CDFs and histograms with possible parametric distribution fitting options are given.
According to Figure 3.39, looking at the CDF of EFs derived from EMR, it is seen that
80% of EFs are between 0.5 g/GJ and 1 g/GJ. However, 15% of the EFs (three EFs)

156



are more than 2 g/GJ, which can be treated as outlier. Those outliers contribute to

variability in the EFs.
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Figure 3.39 : Distribution fitting comparisons of dust EF on CDF and Histogram for
EMRs of “1.A.1.a-10102-3.12".

There is positive skewness and kurtosis in the EFs derived from EMRs. Large
skewness and kurtosis of in-situ measurements in Table 3.53 indicate strong
asymmetry and large peak in the distribution, respectively, as it is also visualized in

Figure 3.39.

According to Figure 3.39, looking at the CDF and histogram of EFs derived from
EMRs, lognormal distribution is close to CDF and histogram of the in-situ EFs. In
addition to CDF and histograms given in Figure 3.39, goodness-of-fit statistics and
goodness-of-fit criteria for dust EFs derived from in-situ measurements are also

calculated and given in Table 3.54.

Critical value of Kolmogorov-Smirnov statistic (0.188 as it is given in Table 2.9) is
exceeded by entire of the distributions, however, lognormal distribution is the closest
distribution to the critical value. Other goodness-of-fit statistics and criteria are also
lowest for lognormal distribution. Therefore, best fitting distribution is selected as
lognormal distribution for dust EFs derived from EMRs for “1.A.1.a-10102-3.12”
SNAP/NFR category. After assigning best fitting parametric distribution, Monte Carlo

simulation is applied as in Section 2.2.4.4 and Bootstrap method is applied as in
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Section 2.2.4.5. Then, average EF and confidence intervals are calculated for EMR

EFs, and results are given in Table 3.55.

Table 3.54 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of
“l1.A.1.a-10102 -3.12”.

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.331 0.413 2.29 38.15 40.24
Lognormal 0.224 0.168 0.94 25.86 27.95
Uniform 0.338 0.471 - - -
Exponential 0.329 0.633 3.16 41.18 42.23
Logistic 0.327 0.409 2.14 35.88 37.97
Gamma 0.254 0.229 1.26 29.10 31.19
Weibull 0.286 0.287 1.58 31.73 33.82

* Bold values indicate lowest values.

It is seen that, the EF derived from EMRs (0.93 g/GJ) is higher than EMEP EF (0.281
g/GJ) [54]. However it is within the EPA EF range which is between 0.9 g/GJ and 3.59
g/GJ but close to lower CI of EPA [193]. Probability band of EFs derived from EMRs

is given in Figure 3.40.

Table 3.55 : Uncertainty analysis results for dust EF of “1.A.1.a-10102-3.12” and
comparisons with other studies.

EMR EMEP [54] ][31};?]
Fitted distribution type Lognormal between
Mean 093 g/G]  0.281 g/GJ 0.93
95% CI (Lower, Upper) as g/GJ]  0.73-1.2  0.169-0.393 a‘nd
Uncertainty (Lower, Upper) 22-29 40-40 359 4
First parameter -0.21! ' Gl
Second parameter 0.54 2 &

! mean of In(x) for lognormal parametric probability distribution function

2 standard deviation of In(x) for lognormal parametric probability distribution function

* for filterable PM, uncontrolled conditions, all size boilers except tangential
(SCC:10100602)

4 for filterable PM, uncontrolled conditions, all size and tangential boilers (SCC:10100601,
10100601 and 10100604)

One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. However, half of the points are
beyond 50% CI range. This situation is mainly caused by outliers. Anyway, dust EF
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for “1.A.1.a-10102-3.12” SNAP/NFR category is 0.93 g/GJ with 95% lower CI as
0.73 g/GJ and upper CI as 1.2 g/G]J as it is given in Table 3.55.
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Figure 3.40 : Probability band of dust EFs for “1Ala-10102-3.12” as cumulative
distribution of lognormal distribution fitted to dust EFs derived from EMRs.

CO

Summary statistics of CO EFs for “1.A.1.a-—10102-3.12” SNAP/NFR category are

given in Table 3.56. Standard deviation, variance and Cv are calculated large in EFs

derived from EMRs which indicate large variability between EFs.

Table 3.56 : Summary statistics for CO EFs derived from EMRs for “1.A.1.a—

10102-3.12".

EMR
Number of data points 24
Minimum 0
Maximum 105.05
Median 67.9
Variance ! 686
Standard Deviation > 26.2
Cv (%)? 43
Skewness * -1.41
Kurtosis * 1.82

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Large variability is heavily affected from outliers. In Figure 3.41, comparison of CDFs

and histograms with possible parametric distribution fitting options are given.

According to Figure 3.41, looking at the CDF of EFs derived from EMR, it is seen that
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85% of EFs are more than 45 g/GJ. However, 10% of the EFs (three EFs) are 0 g/GJ,

which can be treated as outlier. Those outliers contribute to variability in the EFs.
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Figure 3.41 : Distribution fitting comparisons of CO EF on CDF and Histogram for
EMRs of “1.A.1.a-10102-3.12".

There is negative skewness and positive kurtosis in the EFs derived from EMRs. Large
skewness and kurtosis of EFs in Table 3.53 indicate strong asymmetry and large peak

in the distribution, respectively, as it is also visualized in Figure 3.41.

According to Figure 3.41, looking at the CDF and histogram of EFs derived from
EMRs, none of the distributions perfectly fit to data points. This situation is mainly
caused by “zero value” outliers. However, lognormal distribution is not fitting good
but closest to CDF and histogram of the EFs. In addition to CDF and histograms given
in Figure 3.41, goodness-of-fit statistics and goodness-of-fit criteria for CO EFs

derived from EMRs are also calculated and given in Table 3.57.

Critical value of Kolmogorov-Smirnov statistic (0.188 as it is given in Table 2.9) is
exceeded by entire of the distributions, however, Uniform, Normal and Logistic
distributions are close distributions to the critical value. Normal and logistic
distributions have lowest values in Cramer Von Mises, Anderson-Darling statistics
and Akaike’s Information Criterion. Logistic and Weibull are lowest in Bayesian
Information criteria. If logistic distribution was included in AuvTool, it would be
selected since it has lowest values in most of the statistics and criteria in Table 3.57.
As seen, decision on the good-fitting distribution is not possible with this table.
Besides, most of the statistics are not available for lognormal distribution since it takes
infinite value due to zero values in the dataset. Lognormal, Gamma and Normal

distributions are close to the peak value in histogram given in Figure 3.41.
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Consequently, Lognormal distribution is selected as the fitting distribution by obeying
expert opinion, because it has the highest histogram on Figure 3.41, even if this peak

is not as high as the peak in the data itself.

Table 3.57 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ
measurements of “1.A.1.a—-10102-3.12".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.24 0.30 1.86 229 231
Lognormal 0.32 0.58 - - -
Uniform 0.23 0.39 - - -
Exponential 0.40 1.04 13.52 248 249
Logistic 0.25 0.29 1.64 227 229
Gamma 0.29 0.48 55.61 920 922
Weibull 0.51 1.46 8.14 192 195

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,
average EF and confidence intervals are calculated for EMR EFs, and results are given

in Table 3.58.

Table 3.58 : Uncertainty analysis results for CO EF of “1.A.1.a-10102-3.12" and
comparisons with other studies.

EMEP EPA

EMR [54] [193]
Fitted distribution type Lognormal
Mean (g/GJ) 61.5 39 between
95% CI (Lower, Upper) as g/GJ 51.38-73.02  20-60 133 and
% Uncertainty (Lower, Upper) 16-19 49-54 324
First parameter 4.03! g/GJ
Second parameter 0.4°2

' mean of In(x) for lognormal parametric probability distribution function

2 standard deviation of In(x) for lognormal parametric probability distribution function

* for uncontrolled external combustion of natural gas with any size boilers (except tangential
fired) for electricity generation (SCC is 10100601 and 10100602)

4 for uncontrolled external combustion of natural gas with tangentially fired units for
electricity generation (SCC is 10100604)

It is seen that, the EF derived from EMRs (61.5 g/GJ) is higher than EMEP EF (39
g/GJ) [54] and EPA EF [193]. At the same time, it is also larger than the upper bound
of the CI in both EMEP and EPA EFs. Probability band of EFs derived from EMRs is
given in Figure 3.42.
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Figure 3.42 : Probability band of CO EFs for “1Ala-10102-3.12” as cumulative
distribution of lognormal distribution fitted to dust EFs derived from EMRs.

Most of the EFs are beyond 50% CI range, which was a properly fitting criterion [219].
Anyway, CO EF for “1.A.1.a-10102-3.12” SNAP/NFR category is 61.5 g/GJ with
95% lower CI as 51.38 g/GJ and upper CI as 73.02 g/GJ as it is given in Table 3.58.

SO:
Summary statistics of SO> EFs for “1.A.1.a—10102-3.12” SNAP/NFR category are
given in Table 3.59. Standard deviation, variance and Cv are calculated large in EFs

derived from EMRs which indicate large variability between EFs.

Large variability is heavily affected from outliers. In Figure 3.43, comparison of CDFs
and histograms with possible parametric distribution fitting options are given.
According to Figure 3.43, looking at the CDF of EFs derived from EMR, it is seen that
85% of EFs are 0 g/GJ. However, 15% of the EFs (three EFs) are more than 2 g/GJ,
which can be treated as outlier. Those outliers contribute to large variability in the EFs.

Large skewness and kurtosis are also related with the distribution of those outliers.
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Table 3.59 : Summary statistics for SO, EFs derived from EMRs for “1.A.1.a—
10102-3.12”.

EMR
Number of data points 24
Minimum 0
Maximum 3.39
Median 0
Variance ! 0.67
Standard Deviation > 0.8
Cv (%)? 283
Skewness * 3.06
Kurtosis * 9.45

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.43, looking at the CDF and histogram of EFs derived from
EMRs, Weibull distribution is close to CDF of the in-situ EFs.
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Figure 3.43 : Distribution fitting comparisons on CDF and Histogram for SO2 EFs
derived from EMRs for “1.A.1.a-10102-3.12".

In addition to CDF and histograms given in Figure 3.43, goodness-of-fit statistics and
goodness-of-fit criteria for SO» EFs derived from in-situ measurements were also
calculated and given in Table 3.60. Weibull distribution gets lowest values in
goodness-of-fit criteria, and Logistic distribution gets lowest values in goodness-of-fit
statistics except Kolmogorov-Smirnov statistic. Since logistic distribution is not
included in Auvtool and Weibull distribution doesn’t give good results in distribution
fitting, Lognormal distribution is selected as best fitting distribution for SOz EFs of
“1.A.1.a-10102-3.12” SNAP/NFR category. Most of the statistics are not available for
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Lognormal distribution, since Lognormal distribution logarithm gives infinite values

in goodness-of-fit statistics/criteria with zero values.

Table 3.60 : Goodness-of-fit statistics/criteria for SO, EF derived from EMRs of
“1.A.1.a-10102-3.12".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.24 0.30 1.86 229 231
Lognormal 0.32 0.58 - - -
Uniform 0.23 0.39 - - -
Exponential 0.40 1.04 13.52 248 249
Logistic 0.25 0.29 1.64 227 229
Gamma 0.29 0.48 55.61 920 922
Weibull 0.51 1.46 8.14 192 195

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied

as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,

average EF and confidence intervals are calculated for EMR EFs, and results are given

in Table 3.61.

Table 3.61 : Uncertainty analysis results for SO, EF of “1.A.1.a-10102-3.12” and

comparisons with other studies.

EMEP EPA

EMR [54] [193]
Fitted distribution type Lognormal
Mean (g/GJ) 0.28 0.281
95% CI (Lower, Upper) as g/GJ 0-0.66 0.169-0.393 0.26 ® o/GJ
% Uncertainty (Lower, Upper) 100-136 40-40 ' &
First parameter -2.36'!
Second parameter 1.48 2

! mean of In(x) for lognormal parametric probability distribution function

2 standard deviation of In(x) for lognormal parametric probability distribution function

* for uncontrolled external combustion of natural gas with any type of boilers for electricity
generation (SCC is 10100601, 10100602 and 10100604)

It is seen that, the EF derived from EMRs (0.28 g/GJ) is compatible with EMEP EF
(0.281 g/GJ) [54] and EPA EF (0.26 g/GJ) [193]. However, almost all points are
beyond 50% CI range in Figure 3.44.
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Figure 3.44 : Probability band of SO; EFs for “1A1a-10102-3.12” as cumulative
distribution of lognormal distribution fitted to dust EFs derived from EMRs.

NO
Summary statistics of NO EFs for “1.A.1.a-10102-3.12” SNAP/NFR category are
given in Table 3.62. Standard deviation, variance and Cv are calculated large in EFs

derived from EMRs which indicate large variability between EFs.

Table 3.62 : Summary statistics of NO EFs derived from EMRs for “1.A.1.a-10102—

3.12”.

EMR
Number of data points 24
Minimum 15.05
Maximum 172.6
Median 33.1
Variance ! 1904
Standard Deviation 2 43.6
Cv (%)? 95
Skewness * 2.14
Kurtosis * 3.5

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Large variability is heavily affected from outliers. In Figure 3.45, comparison of CDFs
and histograms with possible parametric distribution fitting options are given.
According to Figure 3.45, looking at the CDF of EFs derived from EMR, it is seen that
85% of EFs are less than 55 g/GJ. However, 15% of the EFs (three EFs) are more than
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150 g/GJ, which can be treated as outlier. Those outliers contribute to variability in the

EFs.
Comparison of CDFs for Histogram and Theroetical Densities for
1A1a-10102-3.12 NO EF 1A1a-10102-3.12 NO EF
for EMRs for EMRs
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Figure 3.45 : Distribution fitting comparisons on CDF and Histogram for NO EFs
derived from EMRs for “1.A.1.a-10102-3.12".

There is positive skewness and kurtosis in the EFs derived from EMRs. Large
skewness and kurtosis of in-situ measurements in Table 3.62 indicate strong
asymmetry and large peak in the distribution, respectively, as it is also visualized in

Figure 3.45.

Table 3.63 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of
“1.A.1.a-10102-3.12".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.324 0.614 3.45 253.35 255.71
Lognormal 0.168 0.123 0.91 225.43 227.78
Uniform 0.338 0.686 - - -
Exponential 0.280 0.316 1.90 233.57 234.75
Logistic 0.318 0.607 3.24 249.60 251.95
Gamma 0.259 0.279 1.74 234.35 236.71
Weibull 0.229 0.268 1.71 233.45 235.80

* Bold values indicate lowest values.

According to Figure 3.45, looking at the CDF and histogram of EFs derived from
EMRs, lognormal distribution is close to CDF and histogram of EFs. In addition to
CDF and histograms given in Figure 3.45, goodness-of-fit statistics and goodness-of-

fit criteria for NO EFs derived from EMRs were also calculated and given in Table
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3.63. Lognormal distribution gets lowest values in each of goodness-of-fit statistic and

criteria, therefore fitted as distribution of NO EFs for “1.A.1.a-10102-3.12".

Table 3.64 : Uncertainty analysis results for NOx EF (as NO) of “1.A.1.a-10102—
3.12” and comparisons with other studies.

EMEP EPA

EMR 54] [193]
Fitted distribution type Lognormal between
Mean (g/GJ) 45.68 g/GJ 89 3 42 96 4
95% CI (Lower, Upper) as g/G]  31.3-66.5 15-185 2'11’1d
% Uncertainty (Lower, Upper) % % 1202 5
First parameter 3.51 /GJ
Second parameter 0.82 &

! mean of Inx for Lognormal parametric probability distribution function

2 standard deviation of Inx for Lognormal parametric probability distribution function
3NOx EF

4 NOx for uncontrolled external combustion of natural gas with boilers (except tangential)
with a capacity less than 100 Million Btu for electricity generation (SCC is 10100602 )
5NOx for uncontrolled external combustion of natural gas with boilers (except tangential)
with a capacity more than 100 Million Btu for electricity generation (SCC is 10100601)

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,
average EF and confidence intervals are calculated for EMR EFs, and results are given

in Table 3.64.
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Figure 3.46 : Probability band of NO EFs for “1A1a-10102-3.12” as cumulative
distribution of lognormal distribution fitted to dust EFs derived from EMRs.

It is seen that, the EF derived from EMRs (45.68 g/GJ) [54] is close to lower bound of
EPA EF (42.96 g/GJ) [193] range. Furthermore, it is less than EMEP EF (89 g/GJ),
meanwhile it is in the range of EMEP EF. However, it should be considered that EMEP
and EPA EFs are NOx EF where it is NO EF in this study. Probability band of EFs
derived from EMRs is given in Figure 3.46.
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One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. However, half of the points are
beyond 50% CI range. This situation is mainly caused by outliers. Anyway, NO EF
for “1.A.1.a-10102-3.12” SNAP/NFR category is 45.68 g/GJ with 95% lower CI as
31.3 g/GJ and upper CI as 66.5 g/GJ as it is given in Table 3.64.

NO;

Summary statistics of NO, EFs for “1.A.1.a—10102-3.12” SNAP/NFR category are
given in Table 3.65. Standard deviation, variance and Cv are calculated large in EFs
derived from EMRs due to one outlier value in 24 EFs. The large variability is heavily
affected from outliers. In Figure 3.47, comparison of CDFs and histograms with
possible parametric distribution fitting options are given. According to Figure 3.47,
looking at the CDF of EFs derived from EMR, it is seen that all EFs are 0 g/GJ, except
one EF which is 8.78 g/GJ. This outlier causes large variability in the EFs.

Table 3.65 : Summary statistics of NOz EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10102-3.12".

EMR
Number of data points 24
Minimum 0
Maximum 8.78
Median 0
Variance ! 3.09
Standard Deviation > 1.76
Cv (%)3 480
Skewness * 4.9
Kurtosis ° 24

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

According to Figure 3.47, looking at the CDF and histogram of EFs derived from
EMRs, none of the distributions fit well. By considering outlier value as a

measurement error, NO» EF is accepted 0 g/GlJ.
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Figure 3.47 : Distribution fitting comparisons on CDF and Histogram for “1.A.1.a—
10102-3.12” code NO» EFs derived from EMRs.

NO«

As explained in Section 0, NO» EF is 0 g/GJ. Hence, there is no need for summing NO
and NO; EFs in order to obtain NOx EF. In this case, for this SNAP/NFR category all
NO emissions are accepted as NOy emissions. Consequently, NOx EF for “1.A.1.a—
10102-3.12” SNAP/NFR category is 45.68 g/GJ with 95% lower CI as 31.3 g/GJ and
upper CI as 66.5 g/GJ as it is given in Table 3.64. Comparisons with other studies are
also available in Table 3.64.

3.2.5 Gaseous fuels combusting gas turbines

“l1.A.1.a-10104-3.17” code represents gaseous fuel combustion plants with gas

turbines as the combustion technology for production of public power.

In Marmara region there are 44 plants under this SNAP/NFR category. In-situ
measurements were conducted in five plants in Marmara region within the context of
KAMAG project [194]. Furthermore, EMRs were available for 18 plants.
Consequently, 72 in-situ measurements from five plants are used in the calculation of
country-specific EF for this SNAP/NFR code. 26 to 79 emission measurements

(according to the type of the air pollutant) from EMRs were also used for comparison.

Dust
Summary statistics of dust EFs for “1.A.1.a-10104-3.17” SNAP/NFR category are
given in Table 3.66 for EFs derived from both in-situ measurements and EMRs.

Standard deviation, variance and Cv are calculated large in both EMR and in-situ
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measurements. Cv of in-situ measurements is more than three times of EMR’s. This

situation indicates large variability between in-situ EFs.

Table 3.66 : Summary statistics of dust EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10104-3.17".

In-situ EMR
Measurements

Number of data points 72 26
Minimum 0.01 0.14
Maximum 4.81 4.23
Median 0.039 1.44
Variance ! 0.56 1.42
Standard Deviation > 0.75 1.19
Cv (%)* 255 76
Skewness * 4.04 0.54
Kurtosis * 19.2 -0.8

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

Outliers cause large variability in datasets. In Figure 3.48, comparison of CDFs and
histograms with possible parametric distribution fitting options are given. According
to Figure 3.48, looking at the CDF of EFs derived from in-situ measurements, it is seen
that 85% of EFs are less than 0.5 g/GJ. However, there are two values more than 3
g/GJ, which contribute to large variability (Cv is 255%) in-situ EFs. In the CDF of EFs
derived from EMRs, EFs are distributed between 0.14 and 4.23 g/GJ, homogenously.
This is almost same range with EFs derived from in-situ measurements. However, Cv
of EMRs (76%) is almost one third of in-situ measurements (255%) because EFs are

distributed within this range homogenously, and there are no outliers.

When the histograms given in Figure 3.48 are compared, it is seen that the asymmetry
in the histogram of EFs derived from in-situ measurements is higher than those derived
from EMR. Therefore, the skewness value for in-situ measurements in Table 3.66 is
higher than EMR’s. Due to a large peak in the in-situ measurements’ histogram, the

kurtosis value is large when compared to EFs derived from EMRs.
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Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.48 : Distribution fitting comparisons of dust EF on CDF and Histogram for
both in-situ measurements (above) and EMRs (below) of “1.A.1.a—10104-3.17".

According to Figure 3.48, looking at the CDF and histogram of EFs derived from in-
situ measurements, Weibull, Gamma and Lognormal distributions are close to CDF
and histogram of the in-situ EFs. In addition to CDF and histograms given in Figure
3.48, goodness-of-fit statistics and goodness-of-fit criteria for dust EFs derived from
in-situ measurements were also calculated and given in Table 3.67, in order to

determine best fitting parametric probability distribution function for our in-situ EFs.

171



Table 3.67 : Goodness-of-fit statistics/criteria for dust EF derived from in-situ
measurements of “1.A.1.a-10104-3.17".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.40 3.58 16.9 167 171
Lognormal 0.32 2.61 12.2 -123 -118
Uniform 0.39 3.58 - - -
Exponential 0.51 6.44 35.7 -29 -27
Logistic 0.41 3.64 16.9 137 142
Gamma 0.48 3.59 16.4 -36 -31
Weibull 0.24 1.20 6.5 -99 -95

* Bold values indicate lowest values.

Critical value of Kolmogorov-Smirnov statistic is 0.222, as it is given in Table 2.9. It
is exceeded by entire of the distributions, however Kolmogorov-Smirnov statistic of
the Weibull distribution is closest one to the critical value. Other goodness-of-fit
statistics and criteria are also lowest for Weibull distribution. Therefore, best fitting
distribution is selected as Weibull distribution for dust EFs derived from in-situ
measurements for “1.A.1.a—10104-3.17” SNAP/NFR category. The table of EFs
derived from EMRs is given in Attachment F since the use of EFs derived from in-situ
measurements is given priority in the thesis, and in order to save space in the thesis
text. Weibull distribution is also selected as the fitted distribution for EFs derived from

EMRs.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in Section 2.2.4.5. Then,
average EF and confidence intervals are calculated for each of in-situ EFs and EMR

EFs and results are given in Table 3.68.
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Table 3.68 : Uncertainty analysis results for dust EF of “1.A.1.a-10104-3.17” and
comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Weibull Weibull
Mean 0.179 1.59 0.2 g/G]  between
95% CI (Lower, Upper) as g/GJ 0.128-0.24 1.1-2.18 0.05-0.8 0.81°
Uncertainty (Lower, Upper) as 28-34 31-37 75-300 and
% 2.44 4
First parameter 0.144 ! 1.68 ! g/GJ
Second parameter 0.7 2 1.17 2

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

* for uncontrolled filterable PM, for production of electricity with natural gas (SCC is 10100601,
10100602 or 10100604)

4 for uncontrolled condensable PM, for production of electricity with natural gas (SCC is 10100601,
10100602 or 10100604)

It is seen that, average EF of EMRs is higher than average EF of in-situ measurements.
The EF generated from in-situ measurements (0.179 g/GJ) is so low that it is almost
one fourth of the lower limit of the EPA EF [193] (0.81 g/GJ), however it is within
95% confidence interval range of EMEP EF [54]. Average EF derived from EMRs
(1.59 g/GJ) is larger than upper 95% CI of EMEP [54] (0.8 g/GJ), however compatible
with EPA [193]. Probability band of dust EFs for each of average in-situ EF and EMR
EF is given in Figure 3.49.
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Figure 3.49 : Probability band of dust EFs for “1Ala-10104-3.17” as cumulative
distribution of Weibull distribution fitted to dust EFs derived from (a)in-situ
measurements (b)EMRs.

One important indication that a distribution is properly fitted is that almost all points
on the probability band are within 50% CI range [219]. Although EFs derived from
EMR’s often remain within the 95% CI limits, it is seen that EFs derived from in-situ

measurements are even beyond the 95% CI limits.
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(60

Summary statistics of CO EFs for “1.A.1.a-10104-3.17” SNAP/NFR category are
given in Table 3.69 for EFs derived from both in-situ measurements and EMRs.
Standard deviation, variance and Cv are calculated large in both EMR and in-situ
measurements, however Cv of in-situ measurements is almost three times of EMR’s.
This situation indicates large wvariability between EFs derived from in-situ

measurements. Skewness and Kurtosis is positive in both in-situ EFs and EMR EFs.

Table 3.69 : Summary statistics of CO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10104-3.17".

In-situ EMR
Measurements

Number of data points 72 40
Minimum 0 0.24
Maximum 105.87 21
Median 0 2.27
Variance ! 737 28
Standard Deviation > 27.15 5.3
Cv (%)* 274 98
Skewness * 2.59 0.97
Kurtosis ° 5.07 0.21

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

In Figure 3.50, EFs are distributed homogeneously in the CDF of EFs derived from
EMRs, while EFs derived from in-situ measurements show a clustered distribution.
One of the two clustered EFs are around zero, and the other one is clustered above 80
g/GJ. Clustered data represents the measurements taken from different stacks or the

plants. Consequently, this clustered distribution of in-situ EFs causes large variability.

According to Figure 3.50, looking at the CDF and histogram of EFs derived from in-
situ measurements, Weibull distribution is close to CDF and histogram of the in-situ
EFs. Table 3.70 is created in order to quantitatively support this qualitative
interpretation and includes goodness-of-fit statistics and goodness-of-fit criteria for

CO EFs derived from in-situ measurements.
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Figure 3.50 : Distribution fitting comparisons of CO EF on CDF and Histogram for
both in-situ measurements (above) and EMRs (below) of 1“1.A.1.a-10104-3.17".

Critical value of Kolmogorov-Smirnov statistic is 0.222, as it is given in Table 2.9.
Kolmogorov-Smirnov statistic of entire of the distributions are more than critical value
(0.222). However, Weibull distribution is lowest and closest to critical value. Other
goodness-of-fit statistics are also lowest for Weibull distribution. Due to the close CDF
and histogram of Weibull distribution to the in-situ EFs in Figure 3.50, and due to
lowest goodness-of-fit statistics in Table 3.70, best fitting distribution is selected as
the Weibull distribution for CO EFs derived from in-situ measurements. Goodness-of-
fit statistics/criteria for CO EF derived from EMRs are given Attachment F. Weibull
distribution is also fitted to CO EFs derived from EMRs.
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Table 3.70 : Goodness-of-fit statistics/criteria for CO EF derived from in-situ
measurements of “1.A.1.a—10104-3.17".

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.49 4.4 21 684 688
Lognormal 0.65 11.6 1563 3824 3828
Uniform 0.46 4.2 - - -
Exponential 0.71 13.7 460 476 478
Logistic 0.50 4.6 22 666 670
Gamma 0.53 4.1 27 -636 -632
Weibull 0.38 1.81 9.6 -668 -664

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied

as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given

in Table 3.71. It is seen that, the EF derived from EMRs is lower than the EF derived

from in-situ measurements. There is no abatement technology for CO emissions in the

plant, however both of them are compatible with EMEP, where they are low when

compared to EPA.

Table 3.71 : Uncertainty analysis results for CO EF of “1.A.1.a-10104-3.17” and

comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Weibull Weibull
Mean 6.26 5.27 4.8 between
95% CI (Lower, Upper) as g/GJ 2.79-12.5 3.69-7.12 1-70 11°and
Uncertainty (Lower, Upper) as % 55-100 30-35 79-1358 39 4
First parameter 1.61 ! 5.1771! g/GJ
Second parameter 0.37 2 0.94 2

!'scale parameter (k) for Weibull parametric probability distribution function
2 shape parameter (c) for Weibull parametric probability distribution function
3 for uncontrolled combustion of natural gas with tangentially fired units for production of electricity

(SCC is 10100604)

4 for uncontrolled combustion of natural gas with any size of boilers for production of electricity
(SCC s 10100601 and 10100602)

Since the variability is large in EFs derived from in-situ measurements, assigned

Weibull distribution cannot be able to include all points. Furthermore, almost all points

are beyond 50% CI range in probability band of EFs derived from in-situ

measurements in Figure 3.51. However, most of the points are within 50% CI limit in

the probability band of EFs derived from EMRs.
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Figure 3.51 : Probability band of CO EFs for “1Ala-10104-3.17” as cumulative
distribution of Weibull distribution fitted to CO EFs derived from (a)in-situ
measurements (b) EMRs.

SO:

Summary statistics of SO> EFs for “1.A.1.a-10104-3.17" SNAP/NFR category are
given in Table 3.72 for EFs derived from both in-situ measurements and EMRs.
Standard deviation, variance and Cv are calculated pretty large in EFs derived from
in-situ measurements, which indicate large variability between EFs. They are also high

in EFs derived from EMRs but not as high as in-situ EFs.

Table 3.72 : Summary statistics of SO, EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10104-3.17".

In-situ EMR
Measurements

Number of data points 72 27
Minimum 0 0
Maximum 2.13 28.2°6
Median 0 0.98
Variance ! 0.13 71
Standard Deviation 2 0.36 8.3
Cv (%)* 407 215
Skewness * 5.23 2.61
Kurtosis * 27.8 5.33

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
® In one plant which uses refinery gas as fuel

Since the power plants considered in calculations are generally use natural gas as fuel
and sulphur content of natural gas is low, SO2 EFs are generally around 0. This is
clearly seen in the CDFs given in Figure 3.52. Since the majority of the EFs is around

zero, small number of EFs greater than zero contribute significantly to the variability.
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Hence, Cv is so large in in-situ EFs and EMR EFs. EFs derived from both in-situ

measurements and EMRs have close Kurtosis and Skewness values.

According to Figure 3.52, Lognormal and Weibull parametric distributions seem best
fitting distributions for in-situ EFs, where Weibull and Gamma distributions are
appropriate for EMR EFs. In addition to CDF and histograms given in Figure 3.52,
goodness-of-fit criteria are also calculated in order to determine best fitting parametric
probability distribution function for our data, and given in Table 3.73 for EFs derived

from in-situ measurements.

Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.52 : Distribution fitting comparisons of SO2 EF on CDF and Histogram for
both in-situ measurements (above) and EMRs (below) of “1.A.1.a-10104-3.17".

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ
measurements, as it is given in Table 2.9. All of the distribution’s passed critical value
of Kolmogorov-Smirnov statistic (0.222). However, Weibull distribution is minimum

in almost all goodness-of-fit statistics and criteria for in-situ EFs. Finally, best fitting
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distribution is selected as the Weibull distribution for SO> EFs derived from in-situ
measurements. Weibull distribution is also considered as best fitting distribution for
EFs derived from EMRs. Goodness-of-fit statistics of EMR EFs are given in
Attachment F.

Table 3.73 : Goodness-of-fit statistics/criteria for SO, EF derived from in-situ
measurements of “1.A.1.a-10104-3.17".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.50 4.84 229 59.11 63.66
Lognormal 091 18.48 1074 557 562
Uniform 0.48 4.77 - - -
Exponential 091 18.49 616.39 -213.7 2114
Logistic 0.52 491 22.7 159 20.45
Gamma 0.47 4.65 21.15 -1297 -1292
Weibull 0.49 4.72 2222 -1371 -1366

* Bold values indicate lowest values.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given
in Table 3.74. It is seen that in-situ EF is one seventeenth of in EMR-EF, however it

is compatible with EMEP and EPA EFs.

Table 3.74 : Uncertainty analysis results for SO> EF of “1.A.1.a—10104-3.17” and
comparisons with other studies.

In-situ EMR EPA

measurements EMEP [34] [193]
Fitted distribution type Weibull Weibull
Mean 0.176 3.11 0.281
95% CI (Lower, Upper) as g/GJ ~ 0.118-0.257  1.75-5.02 0.169-0.393  0.253
% Uncertainty (Lower, Upper) 33-46 44-61 40-40 g/GJ
First parameter 251 2.69 !
Second parameter 1.24 2 0.77 2

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

5 for uncontrolled combustion of natural gas by reciprocating engines for production of electricity
(SCC is 20100202)

Although EF derived from in-situ measurements (0.176 g/GJ) appears to be well
calculated and appropriate when compared to literature, almost all points are beyond

50% CI limits. This is due to the large number of zero values. Consequently, country
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specific SO> EF is accepted as 0.176 g/GJ for “1.A.1.a-10104-3.17” SNAP/NFR
category.

|
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Figure 3.53 : Probability band of SO; EFs for “1A1a-10104-3.17” as cumulative
distribution of Weibull distribution fitted to SO, EFs derived from (a) in-situ
measurements (b) EMRs.

NO

Summary statistics of NO EFs for “1.A.1.a-10104-3.17” SNAP/NFR category are
given in Table 3.75 for EFs derived from both in-situ measurements and EMRs.
Standard deviation, variance and Cv are calculated large in both EMR and in-situ
measurements, which indicate large variability between EFs. As it is clear on the Cv,
maximum, minimum and median in Table 3.75, variability between emission factors
are large. There is positive skewness in the EFs derived from both in-situ

measurements and EMRs, where both sources have negative Kurtosis.

Table 3.75 : Summary statistics of NO EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10104-3.17".

In-situ Measurements EMR
Number of data points 72 71
Minimum 1.99 0.99
Maximum 115.35 163
Median 14.61 17.98
Variance ! 1445 1935
Standard Deviation > 38 44
Cv(%)* 100 114
Skewness * 0.73 1.56
Kurtosis * -1.3 1.41

! According to equation 2.12
2 According to equation 2.13
% According to equation 2.14
* According to equation 2.15
5 According to equation 2.16
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CDFs and histograms are given in the Figure 3.54 with possible fitting options.
According to Figure 3.54, looking at the CDF and histogram of EFs derived from in-
situ measurements, EFs are distributed around two peak values. One of it is between 0
and 20, and the other one is more than 85 g/GJ. In the CDF and histogram of EFs
derived from EMRs, EFs are homogenously distributed between 0.99 and 163,

however variability is high since they are distributed in a wide range of values.

Comparison of CDFs for Histogram and Theroetical Densities for
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Figure 3.54 : Distribution fitting comparisons of NO EF on CDF and Histogram for
both in-situ measurements (above) and EMRs (below) of “1.A.1.a-10101-3.10".

According to Figure 3.54, looking at the CDF and histogram of EFs derived from in-
situ measurements, none of the distribution is best for in-situ EFs due to high
variability. In this case, Uniform distribution may be considered. In addition to CDF
and histograms given in Figure 3.54, goodness-of-fit statistics and goodness-of-fit

criteria for NO EFs derived from in-situ measurements were also calculated and given
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in Table 3.76, in order to determine best fitting parametric probability distribution

function for our data.

Table 3.76 : Goodness-of-fit statistics/criteria for NO EF derived from in-situ
measurements of “1.A.1.a-10104-3.17"".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.32 1.77 9.49 732.22 736.77
Lognormal 0.30 2.15 13.70 692.76 697.31
Uniform 0.28 1.37 - - -
Exponential 0.24 1.06 5.77 669.80 672.07
Logistic 0.34 2.03 11.03 741.62 746.17
Gamma 0.24 1.06 5.76 671.79 676.34
Weibull 0.22 0.92 5.11 671.46 676.01

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ
measurements, as it is given in Table 2.9. All of the distribution’s passed critical value
of Kolmogorov-Smirnov statistic (0.222), except Weibull. Besides, Weibull
distribution appears to be the best fitting distribution since it has the lowest values for
entire of goodness-of-fit statistics and criteria. Weibull distribution is also considered
as best fitting distribution for EFs derived from EMRs. Goodness-of-fit statistics of
EMR EFs are given in Attachment F.

Table 3.77 : Uncertainty analysis results for NO EF of “1.A.1.a-10104-3.17” and
comparisons with other studies.

In-situ EMR EMEP EPA

measurements [54] [193]
Fitted distribution type Weibull Weibull
Mean 36.7 35.8 48 3 between
95% CI (Lower, Upper) as g/GJ 29.1-45.8 27.8-44.8  28-68 4254
Uncertainty (Lower, Upper) as % 21-25 22-25 42-42  and 137
First parameter 36.8 ! 35.77 ! 3 ¢/GJ
Second parameter 0.99 2 0.97 2

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

3 as NOx

4 as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is
20100201)

5 as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF

and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given
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in Table 3.77. It is seen that the EFs derived from both in-situ measurements and EMRs
are close to each other. Probability bands are created and given in Figure 3.55. Due to
the high variability between in-situ EFs and because the data is clustered around two
ends of in-situ EFs, almost all EFs of in-situ measurements fall above the 50% CI
range, which is an indicator of a bad fit [219]. It is not possible to determine a better
representing distribution from the available distribution types for in-situ EFs.
Nevertheless, it can be used as country specific EF since it is compatible with other

studies as indicated in Table 3.77.
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Figure 3.55 : Probability band of NO EFs for “1Ala-10104-3.17” as cumulative
distribution of Weibull distribution fitted to NO EFs derived from (a) in-situ
measurements (b) EMRs.

Consequently, country-specific EF of NO is calculated as 36.7 g/GJ, where it is 35.8
g/GJ for EF derived from EMR.

NO:;

Summary statistics of NO; EFs for “1.A.1.a-10104-3.17” SNAP/NFR category are
given in Table 3.78 for EFs derived from both in-situ measurements and EMRs.
Standard deviation, variance and Cv are calculated large in both EMR and in-situ
measurements, which indicate large variability between EFs. As it is clear on the
maximum, minimum and median, variability between emission factors are large. There
is positive skewness in the EFs derived from both in-situ measurements and EMRs,

where both of them have negative Kurtosis.
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Table 3.78 : Summary statistics of NO2 EFs derived from both in-situ measurements
and EMRs for “1.A.1.a-10104-3.17".

In-situ Measurements EMR
Number of data points 72 61
Minimum 3.06 0.28
Maximum 186.03 264.3
Median 23.72 25.6
Variance ! 3770 5820
Standard Deviation > 61.4 76.3
Cv(%)* 100 138
Skewness * 0.73 1.7
Kurtosis * -1.36 1.48

! According to equation 2.12
2 According to equation 2.13
* According to equation 2.14
* According to equation 2.15
5 According to equation 2.16

CDFs and histograms are given in the Figure 3.56 with possible fitting options.
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Figure 3.56 : Distribution fitting comparisons of NO2 EF on CDF and Histogram for
both in-situ measurements (above) and EMRs (below) of “1.A.1.a-10104-3.17".

According to Figure 3.56, looking at the CDF and histogram of EFs derived from in-
situ measurements, EFs are distributed around two peak values. One of it is between 0

and 35, and the other one is more than 140 g/GJ. In the CDF and histogram of EFs
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derived from EMRs, EFs are distributed more homogenous than in-situ EFs (between
0.28 and 263.4), however variability is high since they are distributed within a wide

range of values.

According to Figure 3.56, looking at the CDF and histogram of EFs derived from in-
situ measurements, none of the distribution is best due to high variability. In this case
Uniform distribution may be considered. In addition to CDF and histograms given in
Figure 3.56, goodness-of-fit statistics and goodness-of-fit criteria for NO» EFs derived
from in-situ measurements are also calculated and given in Table 3.79, in order to

determine best fitting parametric probability distribution function for our data.

Table 3.79 : Goodness-of-fit statistics/criteria for NO; EF derived from in-situ
measurements of “1.A.1.a—-10104-3.17"".

Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.32 1.76 9.45 801.25 805.80
Lognormal 0.30 2.13 13.75 763.71 768.27
Uniform 0.28 1.37
Exponential 0.24 1.05 5.72 738.78 741.06
Logistic 0.35 2.02 10.98 810.64 815.19
Gamma 0.24 1.05 5.70 740.77 745.33
Weibull 0.22 0.90 5.01 740.40 744.96

Critical value of Kolmogorov-Smirnov statistic is 0.222 for EFs of in-situ
measurements, as it is given in Table 2.9. All of the distribution’s passed critical value
of Kolmogorov-Smirnov statistic (0.222), except Weibull. Besides, Weibull
distribution appears to be the best fitting distribution since it has low values for most
of goodness-of-fit statistics and criteria. Weibull distribution is also considered as best
fitting distribution for EFs derived from EMRs. Goodness-of-fit statistics of EMR EFs

are given in Attachment F.

After assigning best fitting parametric distribution, Monte Carlo simulation is applied
as in Section 2.2.4.4 and Bootstrap method is applied as in 2.2.4.5. Then average EF
and confidence intervals are calculated for each of in-situ EFs and EMR EFs and given
in Table 3.80. It is seen that the EFs derived from both in-situ measurements and EMRs

are close to each other.
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Table 3.80 : Uncertainty analysis results for NO; EF of “1.A.1.a-10104-3.17” and
comparisons with other studies.

In-situ EMR EMEP EPA
measurements [54] [193]
Fitted distribution type Weibull Weibull
Mean 59.4 48.7 48 3 betwee
95% CI (Lower, Upper) as g/GJ 45.9-74 344-65.6  28-68 n42.54
Uncertainty (Lower, Upper) as % 23-25 29-35 42-42 and 137
First parameter 59.3 1 0.761 ! 3 ¢/GJ
Second parameter 0.99 2 50.75 2

!'scale parameter (k) for Weibull parametric probability distribution function

2 shape parameter (c) for Weibull parametric probability distribution function

3 as NOx

4 as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is
20100201)

5 as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)

Probability bands are created and given in Figure 3.57. Due to the high variability
between in-situ EFs and because the data is clustered around two ends of in-situ EFs,
almost all EFs of in-situ measurements fall above the 50% CI range, which indicates

bad fitting of the distribution [219].
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Figure 3.57 : Probability band of NO2 EFs for “1Ala-10104-3.17” as cumulative

distribution of Weibull distribution fitted to NO; EFs derived from (a) in-situ
measurements (b) EMRs.
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It is not possible to determine a better representing distribution from the available
distribution types for in-situ EFs. Nevertheless, it can be used for country specific EF
since it is compatible with other studies as indicated in 0. Consequently, country-
specific EF of NO» is calculated as 59.4 g/GJ, where it is 48.7 g/GJ for EF derived
from EMR.
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NOx

NOx EF is calculated as the sum of NO and NO; emissions. However, since the
uncertainty levels of NO and NO» EFs are different, the formulas given in equation
2.1a-2.1d were applied in order to calculate total uncertainty of NOx EF. NOx EF of
“1.A.1.a-10104-3.17” SNAP/NFR category and comparisons with other studies are
given in Table 3.81.

Table 3.81 : NOx EF of “1.A.1.a-—10104-3.17 and comparisons with other studies.

In-situ EMEP EPA
Measurements EMR [54] [193]
NOx EF (NO+NO») as g/GJ 96.1 95.2 48 between
95% CI (Lower, Upper) as g/GJ 80.61-113.3 68.9-106.1 28-68 4251
% Uncertainty (Lower, Upper) 16-18% 28-11.5%  42-42% and 1372
NO/NO; share 0.62 0.60 g/GJ
! as NOx for controlled (pre-combustion chamber) combustion of natural gas with turbines (SCC is

20100201)
2 as NOx for uncontrolled combustion of natural gas with turbines (SCC is 20100201)

Country specific NOx EF is calculated as 96.1 g/GJ which is compatible with EMRs.
NOx EF is almost three times of EMEP EF [54], which is 48 g/GJ. NOx EF is within
EF range of EPA EFs [193]. There is no NOy abatement technology in the plants

considered in this study.

The ratio of NO and NO; is 0.6 for both of in-situ EFs and EMR EFs for “1.A.1.a—
10104-3.17” SNAP/NFR category.

3.2.6 Comparison of EFs

Comparison of dust EFs according to SNAP/NFR codes are given in Figure 3.58. In
general, in-situ dust EFs are quite low compared to EMEP [54] and EPA [193] EFs.
In addition, the EFs obtained from EMRs are significantly lower than the literature

although they are more than in-situ measurements, as it is clear on Figure 3.58.
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Figure 3.58 : Comparison of dust EFs according to SNAP/NFR codes.

The reason of these large differences between in-situ measurements and literature EFs
may be due to wide usage of abatement technologies in Turkish energy production
plants. The highest in-situ dust EF (1.32 g/GJ) is calculated for the plants with a
capacity range between 50 and 300 MW and producing energy by combusting brown
coal and lignite (SNAP/NFR codes are 1A1a-10102-3.10). This EF is also compatible
with EMEP EF [54]. The lowest in-situ dust EF (0.179 g/GJ) is calculated for the plants
combusting gaseous fuels with gas turbines (SNAP/NFR codes are 1Ala-10104-3.17).
However, this EF is so low when compared to EMR and EPA EFs, but compatible
with EMEP EF [54].

Comparison of CO EFs according to SNAP/NFR codes are given in Figure 3.59.
Largest in-situ CO EFs is in power plants with a capacity larger than 300 MW
(SNAP/NFR code is 1A1a-10101-3.10). Furthermore in-situ CO EF is also larger than
EMR, EMEP [54] and EPA [193] EFs in 1A1a-10101-3.10 and 1Ala-10104-3.17

(plants combusting gaseous fuels with gas turbines).
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Figure 3.59 : Comparison of CO EFs according to SNAP/NFR codes.

In Figure 3.59, EMR EFs are larger than in-situ EFs in 1A1a-10101-3.16. Furthermore,
EMR EFs are also larger than EMEP [54] and EPA [193] EFsin 1A1a-10101-3.16 and
1A1a-10102-3.12.

Comparison of SO EFs according to SNAP/NFR codes are given in Figure 3.60.
Upper bound of EMEP EFs stretches up to 5000 g/GJ in 1A1a-10101-3.10, 1Ala-
10101-3.16 and 1A1a-10102-3.10. Largest in-situ SO2 EF (229.2 g/GJ) is in power
plants with a capacity larger than 300 MW (SNAP/NFR code is 1Ala-10101-3.10). It
is also less than EMEP EF range, however compatible with EPA EF. In-situ EF of
1A1a-10102-3.10 is also less than EMEP EF. Lowest SOz EF is in 1Ala-10104-3.17.
In-situ SO, EF is lowest in 1A1a-10104-3.17, but compatible with EMEP EF range.
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Figure 3.60 : Comparison of SO EFs according to SNAP/NFR codes.

Comparison of NO, NO; and NOx EFs according to SNAP/NFR codes are given in
Figure 3.61. Average of in-situ NO (Figure 3.61a) and NO; (Figure 3.61b) EFs (shown

as square dots on the figure) are larger than all other EFs. As a result of that, in-situ
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NOx-EFs are larger than all other EFs. As explained in Section 3.2, NOx EFs are
calculated as sum of NO and NO: EFs, however uncertainty levels are calculated in a

different way as explained in section 2.2.4.6.

Although country specific (in-situ) NOx EF is larger than all other studies, range of
confidence interval is narrow when compared to them. This situation indicates low
uncertainty in in-situ EFs. The largest NOx EF (583 g/GJ) is in 1Ala-10102-3.10
which is compatible with both EMEP and EPA EF ranges.

NO2 EF (g/GJ)
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Figure 3.61 : Comparison of (a)NO (b)NO> (c)NOx EFs according to SNAP/NFR
codes.

As it is clear in above figures, uncertainty range of in-situ EFs is rather narrow
compared to EMR, EPA and EMEP [54] EFs. This is a desired condition in emission

inventory calculations.

3.3 Probabilistic Emission Inventory

As discussed in section 3.1.3 , different AQMs (as summarized in Figure 2.1) give

poor results in Eastern European countries when compared to Western countries of
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Europe, regardless of usage of different AQMs, meteorology models and emission
inventories. In this case, the inputs of AQMs came into consideration. As explained in
Section 1, most commonly used emission inventories, as an input to the AQMs, by air
quality modellers are TNO-MACC [66] and EDGAR-HTAP [60] emission
inventories. Detailed information is available in Chapter 1 for those emission

inventories.

In this part of study, a sample emission inventory is prepared for public energy
production sector of Marmara Region in order to compare with TNO-MACC [66] and
EDGAR-HTAP [60] emission inventories. The inventory in this study was prepared
for the energy production plants in Marmara Region of Turkey for SOz, NOx, CO and
dust emissions. Total number of plants considered in this study is 57 where it is 19 in
TNO-MACC [66] emission inventory and 34 in EDGAR-HTAP [60] emission

inventory.

The comparison charts in this section will show 5 titles: “This study”, “EMEP”,
“EPA”, “TNO” and “EDGAR-HTAP”. The contents of these titles are as follows.

The emission inventory given under the title of “This study” in the following figures
is compiled by using country specific EFs calculated in this study for our country
(Chapter 3.2). In the absence of country specific EFs, EMEP [54] EFs were used.
Consequently, country specific EFs calculated within the context of this study were
used for 47 plants of 57. The emission inventory given under the title of “EMEP” in
the following figures is compiled for the same plants using the same activity data but
with only EMEP [54] EFs. “EPA” titled emission inventory is compiled for the same
plants using the same activity data but with only EPA [193] EFs. Here, attention should
be paid to the confidence interval of “EPA” inventory on the figure. When determining
the upper and lower limits of the EPA, no statistics were made for EFs. This was not
possible since the catalogue system is applied in the calculation of uncertainty in EFs
of EPA. In order to decide correct EPA EF, more detailed information is needed than
in EMEP and other EF sources. Generally, abatement technology should be considered
in EF selection. In plants without abatement technology, controlled emissions were
accepted as uncontrolled emissions, because the controlled emission left blank would
be counted as zero in the inventory total. Hence, the lower bound of the EPA was
calculated by using the same activity data with controlled EPA EFs as much as

possible, and the upper bound is calculated by using the same activity data with
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uncontrolled EPA EFs. Consequently, it is best practice to compare the results of “This
study” with the lower bound of “EPA”. Middle point is average of these two emission
inventories. There are two reasons for adopting this approach in calculation of same
emission inventory with EPA EFs. First, it is difficult to achieve the data about
emission abatement technologies that are used by the plants in Turkey. Second, the

usage practices of the existing abatement technologies are questionable.

In order to facilitate the comparison of the TNO-MACC [66] and EDGAR-HTAP [66]
inventories with emission inventory of “This study”, the same plants were identified
from TNO-MACC [66] and EDGAR-HTAP [66] inventories by using the coordinate
information. With the help of a Python code, the coordinate information in these
inventories was converted to address information, energy production plants in the
Marmara region were extracted and matched with the plants in the emission inventory
prepared in the scope of “This study”. Then, the sum of the emissions from the
facilities in the TNO-MACC [66] inventory was added to the following figures under
the title "TNO". Likewise, “EDGAR-HTAP” title in the following figures represents
the sum of emissions in EDGAR-HTAP [66] emission inventory for the same power
plants as in “This study”. Uncertainty calculations include uncertainties arises from
EFs only. Uncertainties arising from activity data were excluded and left for future

study.

One of the most challenging parts when preparing an emission inventory is the
industrial emission inventory part. This is because detailed sectoral information is kept
confidential unless it is requested by official means, thus it is difficult to obtain
information from Turkish industries. This situation makes a major contribution to the
overall uncertainty of the emissions inventory. In the worst case, the facility is not
included in the inventory due to data inadequacy. As a matter of fact, this situation is
easily seen when TNO-MACC [66] and EDGAR-HTAP [60] emission inventories are
examined. Those emission inventories have missing plants especially in industrial part.
The number of plants considered in each emission inventory according to regions of

Turkey are given in Table 3.82.

In TNO emission inventory which was prepared for 2011 base year, the number of
sources under energy production category with SNAP 1 (in SNAP/NFR coding system

it matches with 1.A.1 public electricity and heat production) was 19 for Marmara
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region of Turkey, where it was 34 in EDGAR-HTAP (version 4.2 prepared for year
2008 [60]) emission inventory (in SNAP/NFR coding system it matches with 1.A.1.a).
In this study a deep research was conducted in order to include almost all power plants
located in Marmara region of Turkey, and finally it was counted as 57. As it is clear,
the EDGAR-HTAP [60] emission inventory contains much more plants than TNO-
MACC [66] but is still far from the actual number of plants (57 plants) for Marmara

region of Turkey.

Table 3.82 : Number of public electricity and heat production plants considered by
TNO-MACC [66] and EDGAR-HTAP [60] emission inventories.

TNO-MACC EDGAR-HTAP

base year: 2011 2008
Marmara Region 19 34
Aegean Region 9 20
Black Sea Region 4 9
Eastern Anatolia Region 0 7
South Eastern Anatolia Region 1 4
Central Anatolia Region 10 17
Mediterranean Region 7 9
Total 50 100

When Turkey's other regions are examined, it is seen that TNO-MACC [66] emission
inventory has almost no facilities in Eastern and South-Eastern Anatolia regions while
EDGAR-HTAP [60] emission inventory has more plants. Furthermore EDGAR-
HTAP [60] emission inventory has more plants than TNO-MACC [66] in all regions
of Turkey. From this point of view, it is clear that EDGAR-HTAP [60] emission
inventory is more inclusive than TNO-MACC [66] emission inventory in Turkey in
terms of number of plants, and it is more inclusive in Eastern Anatolian regions of
Turkey where TNO-MACC [66] emission inventory has almost no plants for public

electricity and heat production sector.

In Figure 3.62, SOz emission inventory calculated in the scope of “This study” and
their comparisons with other inventories are given. 57 plants were taken into account
in the calculation of SO> emission. Lignite is used as an energy source in 6 of these 57
power plants, where gaseous fuels are used by 50 plants and motorin is used by 2

plants. Some of the power plants use more than one fuel as the energy source.

3 of the 6 power plants are coal combusting plants with fluid bed boilers (SNAP/NFR
code is 1Ala-10101-3.16 for large plants and 1A1a-10102-3.16 for medium size
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plants). In this study, in-situ measurements were conducted in one of those three plants.
However, as shown in Table 3.27, SO, EF was found to be zero in all measurements.
This plant is a new plant that was commissioned in 2012, however other plants are old
plants. In EMEP, SO, EF is given as 1680 g/GJ for uncontrolled conditions. When an
average of 95% abatement efficiency of the fluid bed boilers are considered, SO> EF
as zero is impossible. In such large energy production plants which are burning lignite,

since SOz EF could not be zero, EMEP EF (1680 g/GJ) was used for these 3 plants.
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Figure 3.62 : SO; emission inventory with uncertainties and comparison with other
studies.

2 of the 6 power plants use pulverized coal combustion technology (SNAP/NFR code
is 1A1a-10102-3.10). In-situ measurements were conducted within the context of
KAMAG project for this category (Table 3.45), and SO> EF was calculated as 142
g/GJ which is quite lower than EMEP EF (1680 g/GJ). Since this EF, which is smaller
than the EMEP EF, is used for two plants, the final emissions of “This study” appear
to be lower than the “EMEP” in Figure 3.62.

It is apparent from Figure 3.62 that, SO emissions are calculated as 152,379
tonne/year in this study. Same activity data is used in calculation of EMEP emission
inventory and resulted 170,596 tonne/year. Approximately 19,000 tonne/year
difference is mainly due to one plant. Uncontrolled conditions are considered for this

one plant in TNO-MACC and EDGAR-HTAP emission inventories.

Of the 57 power plants, 48 generate energy by burning gaseous fuels (mostly natural

gas). 47 of these power plants use gas turbines as combustion technology (SNAP/NFR
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code is “1Ala-10104-3.17). Here it is worth explaining that, it is generally assumed
that power plant owns a gas turbine when there is no consistent information about the
combustion technology of a natural gas burning plant since gas turbines are highly
preferred in the combustion of gas fuels. The deepening of the information in this
section is left to the future part of this study. In 5 of these 47 facilities, in-situ
measurements were carried out within the scope of KAMAG project. As shown in
Table 3.74, the EF calculated from these measurements is 0.176 g/GJ and it is
consistent with EMEP EF (0.281 g/GlJ). This country specific EF was used in all 47

power plants.

As aresult, country specific SO EF derived from this study were used in the emission
calculation of 48 of the 57 plants. 47 of these 48 facilities are gas-fuelled. The
formation of SO, emissions from gas fuels is quite low compared to solid and liquid

fuels. This means that SO, emissions in these 47 plants are expected to be low.

In Figure 3.60, SO emissions are shown on the Marmara region map. The large
bubbles show intensive SO emitting power plants which are mainly lignite
combusting power plants. Other plants emit very little SO in quantity (because they
use gaseous fuels), therefore the size of the representative bubbles was not large

enough to be observed visually on the map.

The main reason that the “EDGAR-HTAP” emission inventory is 27,000 tons/year
lower than “This study" is due to absence of two lignite-fired incineration plants in the

EDGAR-HTAP inventory.

Of the 57 facilities considered in this study, only 17 are in the TNO inventory. As a
matter of fact, there are many big and small plants which are not taken into
consideration in TNO emission inventory. 4 large lignite combustion plants, which are
not included in the TNO inventory, have resulted in 73,500 tons less SO> emissions in
TNO emission inventory when compared to this study. 1000 tonnes of SO emissions
is also not included in the TNO inventory due to about 40 missing natural gas

incineration plants.
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Figure 3.63 : Map of SO, emissions calculated according to this study.

The contribution of these missing natural gas plants to SO> emissions in TNO
inventory is not as much as that of lignite, but their absence will be effective in the
calculation of NOx emissions. In Figure 3.64, NOx emission inventory which is

calculated in the scope of this study and its comparison with other inventories are

given.
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Figure 3.64 : NO, emission inventory with uncertainties and comparison with other
studies.

It should be noted that, “EMEP” emissions are calculated for the same plants and same

activity data of “This study” but with EMEP EFs [54]. In this case, NOx emissions
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(93,000 ton/year) calculated within the scope of “This study” is even higher than the
upper bound (90,000 ton/year) of the “EMEP” emissions. The reason for this is that
NOx EFs calculated in “This study” are generally larger than EMEP EFs, as it is clear
on Figure 3.61c.

Although the NOy emissions calculated in this study (93,000 ton/year) appear to be
lower than those calculated with EPA EFs (101,000 ton/year), the difference is
acceptable. As it is clear on Figure 3.62, NOx emissions calculated in this study is
considerably higher than TNO (24,000 ton/year) and EDGAR-HTAP (42,000
ton/year). When compared to “This study”, TNO inventory has 39 missing plants
(yields 45,000 ton/year NOy emissions less) and EDGAR-HTAP emission inventory
has 35 missing plants which yields 33,000 ton/year missing NOx emissions. NOx
emissions are also calculated lower for plants already exist in TNO and EDGAR-
HTAP inventories when compared to “This study”. This may be due to usage of EMEP
EFs in TNO and EDGAR-HTAP inventories.

In Figure 3.65, NOy emissions are shown on the Marmara region map. Unlike the SO,
map (Figure 3.63), we see more plants on the NOx map as there are more plants using
natural gas when compared to lignite (natural gas combustion is an effective source of
NOx emissions). It is also known that plants with high NOx emissions use natural gas
as well as fuel oil and diesel when required. These fuels also cause intensive NOx

emissions.

In Figure 3.66, CO emissions are compared. The country-specific CO EFs calculated
in this study were generally higher than the EMEP EFs and lower than the EPA EFs,
as it is given in Figure 3.59. The effect of these difference is clearly seen on Figure
3.66. The CO inventory (9000 tons/year) calculated using EFs derived from this study
was close to, but more than, the inventory calculated using EMEP EFs (6000
tons/year). It is quite low compared to CO emissions calculated with EPA EFs (22,000
ton/year).
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Figure 3.65 : Map of NOx emissions calculated according to this study.

Unlike on the SO2 map (Figure 3.63), we see more plants on the NOx map as there are
more plants using natural gas when compared to lignite (natural gas combustion is an
effective source of NOx emissions). It is also known that plants with high NOx
emissions use natural gas as well as fuel oil and diesel when required. These fuels also

cause intensive NOx emissions.

It is seen that the uncertainty range of the inventory prepared with country specific
EFs, given under the title of “This study”, is quite low compared to EMEP. The same
situation is observed in SO; (Figure 3.62) and NOx (Figure 3.64) inventories. Based

on these results, it can be said that country-specific calculations reduce uncertainty.
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Figure 3.66 : CO emission inventory with uncertainties and comparison with other
studies.
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A total of 4800 tons/year of CO emissions was ignored with 36 missing plants in the
EDGAR-HTAP inventory. Despite this incomplete number of CO emission sources in
the EDGAR-HTAP inventory, the total amount of CO emissions calculated in
EDGAR-HTAP inventory is almost same with “This study”. This is due to calculation
of approximately 1000 tons/year emissions in the EDGAR-HTAP inventory for only
one fuel oil burning plant located in Istanbul. In inventories calculated with neither
EPA nor EMEP EFs, such high CO emissions have not been calculated for this plant.
Just as in this example, in EDGAR-HTAP inventory, CO emissions from the same
plants are generally calculated more than twice of “This study”. In other words,
although EDGAR_HTAP inventory seems to have the same results with “This study”
in terms of total CO emissions, the EDGAR-HTAP inventory is less than that
calculated by “This study” in the background.

In Figure 3.67, CO emissions are shown on the Marmara region map. On the map, the
CO emissions are mostly emitted by coal firing plants or by the plants using dual fuel.
The largest source of CO emissions (1572 g/GJ) is a production facility in Kocaeli

using both fuel oil and refinery gas for production of power.
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Figure 3.67 : Map of CO emissions calculated according to this study.

In Figure 3.68, dust emissions are compared. Dust emissions calculated in this study
are lower than all other studies. Although there is no big difference between EMEP
and “This study”, EPA's emissions are high, because dust EFs are also high. The

difference in the EPA emission inventory, which is significantly higher than this study
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and EMEP caused by these 5 lignite burning power plants, because EPA considers that
dust emissions of lignite-fired plants are quite high even in controlled conditions. For
example, for a plant with the SNAP/NFR code "1A1a-10102-3.16", the EF included
in this study was 0.26 g/GJ (generated by in-situ measurements), while it was 10.2
g/GJ in EMEP and 143 g/GJ in EPA for controlled conditions. The reason for this is
that the official standards applied for these plants are kept low because of the high
amount of dust emission emitted from the coal fired power plants. This means that
these plants are equipped with flue gas technologies with high dust reduction
efficiency in order to meet regulation and obtain official emission permits. Therefore,

dust emission from the stacks is low, so the dust EF is also low in this study.

Moreover, EPA emissions are given as PMjo, not dust. TNO and EDGAR-HTAP
emissions are also given as PMio. The emissions calculated by TNO and EDGAR for
these five plants are close to those calculated with EPA EF. Therefore, TNO and
EDGAR emissions are close to each other and close to EPA. Validation of in-situ

measurements which were conducted in this study is considered as future study.
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Figure 3.68 : Dust emission inventory with uncertainties and comparison with other
studies.

In Figure 3.69, dust emissions are shown on the Marmara region map. As can be seen,
dust emissions of all plants are below 300 ton/year. The largest dust emission (292
ton/year) is emitted from a facility in Kocaeli that generates energy by burning fuel

oil.
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The SO» emission inventory calculated in this study is more than twice that calculated
by TNO. When number of plants considered in TNO (19) and our study (57), it is
inferred that, 19 plants were not adequate for representing emission inventory of
Marmara Region. Although SO, emission inventory calculated in this study is 20%
higher than the inventory calculated by EDGAR-HTAP, there are unidentified sources
of excessive emissions in the EDGAR inventory. Therefore, it is not logical to compare
the final values in the EDGAR inventory with the results of this study. Country
specific SO, EFs calculated for coal combustion plants in this study are less than
EMEP and more than EPA EFs. Since the impact of coal burning plants is dominant
in the SO; emission calculation, high emissions may be calculated in the inventory if

the emissions of these plants are calculated with EMEP EFs.

Figure 3.69 : Map of dust emissions calculated according to this study.

The NOx emission inventory calculated in this study is approximately four times that
calculated by TNO and more than twice that of EDGAR-HTAP. If the same inventory
was calculated by using EMEP EFs rather than the EFs calculated within the scope of
this study, it would be 35% less. The inventory calculated with EPA EFs is close to
the inventory calculated in this study. When calculating the NOy inventory, the results
differ more than the SO; inventory, because the number of natural gas combustion

plants in this region is numerous.

The CO emission inventory calculated in this study is more than twice that calculated

by TNO; however, it is same with EDGAR-HTAP inventory. Although CO emission
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inventory calculated in this study is almost equal to the inventory calculated by
EDGAR-HTAP, there are unidentified sources of excessive emissions in the EDGAR
inventory. Therefore, it is not logical to compare the final values in the EDGAR
inventory with the results of this study. If the same inventory was calculated by using
EMEP EFs rather than the EFs calculated within the scope of this study, it would be
30% less. The country-specific CO EFs calculated in this study were generally higher
than the EMEP EFs and lower than the EPA EFs. Therefore, large emissions are
calculated in the inventory when the same emission inventory is calculated with EPA

EFs.
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4. CONCLUSIONS

Correlations between models and PM1o observations are 8% less in Eastern European
countries when compared to Western European countries where BIAS is 2.5-fold of
Western European countries. Furthermore, In Eastern European countries, RMSE is
90%, MAE is 99% and MNE is 25% more than Western European countries. From
these results it is clear that, average of model predictions is significantly beyond the

observations in East when compared to West Europe.

Turkey, which is located in the Eastern Europe, has one of the worst results calculated
by all models. All models predict PMio concentrations with an average of -40 pg/m?
BIAS in stations of Turkey, where it is the worst value within 34 countries of Europe
considered in this study. Models predict close to each other but quite far from the
observations in 80% of the stations in Turkey. Remaining 20% of the stations
encounters 18 over 101 stations, and those stations are mostly in Istanbul and in some
other big cities. Generally, models predict better in big cities, however they are not

good as big cities in small towns.

In Istanbul, MNE is between 29 to 118% where it is between 35 to 64% in Berlin, 9 to
40% in Paris, and 4 to 18% in London. Although models predict well in Istanbul
stations when compared to other cities of Turkey, it is clear that those predictions are

not good as other metropoles in Europe.

In seasonal evaluation of model predictions in Turkey on station basis, it is seen that
emissions cannot be predicted well in Winter, but in Summer it is predicted relatively
better. This difference can be caused by inadequate representation of increased
emissions (in the model inputs) in Winter months from residential heating and traffic
emissions when compared to other months. In this case, it would not be unreasonable

to suspect that the inputs to the models do not cover this difference.

Model inputs to the model are considered as a reason for poor model predictions in
this study. However, problems caused by the model itself or erroneous measurements,

or combination of all, can also cause this. In this study, problems due to the model
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itself are out of consideration since 6 different AQMs were used by 13 modelling
groups. In stations where model estimates are poor, the CDFs of these 6 AQMs are
close to each other, but quite different from the measurements. All models give close
CDFs in Western Europe despite they have different modelling configurations, where
they are not close to observations in Eastern Europe countries even in same models. In
this situation, it would not be wrong to ignore “the problems caused by models” among
the primary causes of this poor prediction problem. Problems due to observations are
not subject of this study, since number of stations more. Systematic errors are not

thought to occur at all stations at the same time.

Emission inventories, which are important inputs of AQMs, do not represent the
ultimate result, but the approximate result, unless in-situ measurements and full
activity data are available for all sources. Quality of an emission inventory is directly
proportional to how close it is to the real value and how low its uncertainty is. Using
most representative EFs, or measurements when possible, increases the quality of an
emission inventory. In this study, in-situ measurements were conducted within the
scope of the KAMAG project in order to generate country-specific EFs and an
emission inventory was prepared in the light of the most consistent information

possible.

Dust EFs obtained from in-situ measurements are significantly lower than the literature
for coal combusting plants. The reason of this large difference between in-situ
measurements and literature EFs may be due to wide usage of dust abatement
technologies in Turkish energy production plants. CO and SO, EFs are significantly
larger than EMR, EMEP [54] and EPA [193] EFs in large coal combusting plants and
in plants combusting gaseous fuels with gas turbines. But in all EFs, uncertainty is low
when compared to EMEP EFs. Country specific NOx EFs are generally larger than all
other studies and range of confidence interval is narrow when compared to them. This

situation indicates low uncertainty in in-situ EFs.

In emission inventory part of the study, a deep research was conducted in order to
include almost all power plants located in Marmara region of Turkey, and finally it
was counted as 57. Lignite is used as an energy source in 6 of these 57 power plants,
where gaseous fuels are used by 50 plants and motorin is used by 2 plants. Some of

the power plants use more than one fuel as the energy source.

204



EDGAR-HTAP [60] emission inventory contains much more plants (34 plants) than
TNO-MACC [66] (19 plants) but is still far from the actual number of plants (57
plants) for Marmara region of Turkey. Furthermore EDGAR-HTAP [60] emission
inventory has more plants than TNO-MACC [66] in all regions of Turkey. From this
point of view, it is clear that EDGAR-HTAP [60] emission inventory is more inclusive
than TNO-MACC [66] emission inventory in Turkey in terms of number of plants, and
it is more inclusive in Eastern Anatolian regions of Turkey where TNO-MACC [66]
emission inventory has almost no plants for public electricity and heat production
sector. There are missing plants in both EDGAR-HTAP and TNO emission

inventories. Furthermore, there some unidentified plants in those emission inventories.

NOx emissions calculated in this study is 93,000 ton/year with lower CI is 69,000
ton/year and upper CI as 114,000 ton/year. When same emission inventory is
calculated with EMEP EFs 60,000 ton/year with lower CI as 33,000 and upper CI as
90,000 ton/year. The inventory compiled by this study beyond the upper CI of EMEP
and it is considerably larger than TNO (24,000 ton/year) and EDGAR-HTAP (42,000
ton/year). When compared to “This study”, TNO inventory has 39 missing plants
(yields 45,000 ton/year NOx emissions less) and EDGAR-HTAP emission inventory

has 35 missing plants which yields 33,000 ton/year missing NOx emissions.

SO2 emissions are calculated as 152,379 tonne/year in this study. Same activity data is
used in calculation of EMEP emission inventory and resulted 170,596 tonne/year. This
is mainly due to lower country specific SOz EF calculated by this study for lignite
firing power plants when compared to EMEP. It is 69,000 ton/year in TNO and 125,00
ton/year in EDGAR-HTAP emission inventory. 4 large lignite combustion plants,
which are not included in the TNO inventory, have resulted in 73,500 tons less SO
emissions in TNO emission inventory when compared to this study. 1000 tonnes of
SO2 emissions is also not included in the TNO inventory due to about 40 missing

natural gas incineration plants. SO> uncertainty of this study is between 80 and 209%.

Although SO; and CO emission inventories of TNO is within the uncertainty range of
this study, they are close to lower bound of confidence intervals. Furthermore SO> and
CO emission inventories are approximately half of this study. In EDGAR-HTAP
emission inventory CO emissions are close to each other however emissions are not

equal on plant basis. This means that, emissions are not representative for the plants in
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EDGAR-HTAP emission inventory although overall emissions are same with this

study. This situation causes large uncertainty other than counted by this study.

Uncertainty range of NOx emission inventory of this study is between 26 (lower) to
23% (upper). When same emission inventory is compiled with EMEP EFs, overall
uncertainty range is 45 (lower) to 48% (upper). As it is clear, country specific EFs
decrease uncertainty when compared to usage of EFs from literature. This situation is
dominant in NOy emission inventory than SO, and CO emission inventories, because
number of natural gas combusting power plants are large (48 over 57 plants in
Marmara region). TNO and EDGAR HTAP emission inventories are out of the

uncertainty range of this study.

In this study a deep uncertainty analysis technique is applied which is including Monte
Carlo and Bootstrap simulations. The uncertainty analysis described in this study can
be used as a basis for developing probabilistic emission inventories, which in turn can
be used to determine the likelihood that an emission budget will be met and an as input
to air quality models. At the end, probabilistic emission inventories may be used to

etermine the likelihood that air quality management goals will be achieved.

No matter how many and high-quality measurements are conducted, no matter how
good models are used, it is not possible for air quality models to predict accurate results
without a good emission inventory. Therefore, consistent, low uncertainty and
comprehensive emission inventories should be compiled for the Eastern European
countries, including Turkey. Development country specific EFs is the preliminary step
of emission inventory development. Access to activity data used in these studies
should be facilitated in order to make room for calculation of the representative EFs

easily.
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APPENDIX A : Questionnaire Form Answered by Plant Operators During In-Situ
Measurements

Table A.1 : Questionnaire form answered by plant operators during in-situ
measurements.

Date

Name, Surname and duty of the person
completing this form

Contact information

Facility name

Facility activity area

Product type

Annual production amount with unit

Does the production quantity change
during the day? (Yes/No)

If yes, write down the hours of the
production.

Does the production quantity change
intra-week and weekend? (Yes/No)
If yes, briefly explain.

Does the facility run 365 days? (Yes/No)
If no, briefly explain.

Are there seasonal changes in
production quantities? (Yes/No)
If yes, briefly explain.

Fuel type

Annual fuel amount (tonne/year)

Heat power of the plant

Facility combustion technology
(i.e. Gas turbine, internal combustion
engine)

Briefly describe the process that the
measured stack connected.

Height of the stack that measured by our
team

Inner diameter of the stack that
measured by our team

Are there any flue gas control device in
the stack that measured by our team,
write their names.

What is the frequency of the use of the
flue gas control devices?

Yield of the power plant (%)
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APPENDIX B : Maps of Performance Metrics (BIAS, IoA, MAE, MFE, MNE,
NBIAS, NMSE, PCC, r2, RMSE, UPA) according to Models
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Figure B.1 : BIAS maps.
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Figure B.1 (continued) : BIAS maps.
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Figure B.2 : IoA maps.
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Figure B.2 (continued) : IoA maps.

232



Mean Absolute Error (MAE) map
PM;, of DE1_HTAP_bas Model

® MAE =13.0(Q1)
13.0(Q1) < MAE = 21.0(Q3)
® MAE > 21.0(Q3)

B

Mean Absolute Error (MAE) map
PM;, of DE1_SMOKE_bas Model
® MAE = 11.0(Q1) °

11.0(Q1) < MAE = 20.0(Q3)
® MAE > 20.0(Q3)

B

Mean Absolute Error (MAE) map
PM1o of DK1_HTAP_bas Model

® MAE =9.0(Q1)
9:0(Q1) < MAE = 19.0(Q3)
® MAE >19.0(Q3)

Mean Absolute Error (MAE) map
PM;, of DK1_Tracer_noDep Model
® MAE = 10.0(Q1) N

10.0(Q1) < MAE = 20.0(Q3)
® MAE > 20.0(Q3)

B

Mean Absolute Error (MAE) map
PM;, of ES1_MACC_bas Model

® MAE = 13.0(Q1)
13.0(Q1) < MAE s 25.0(Q3)
® MAE > 25.0(Q3)

B

Mean Absolute Error (MAE) map
PM; of FI1_HTAP_bas Model

® MAE =9.0(Q1)
9.0(Q1) < MAE s 17.0(Q3)
® MAE >17.0(Q3)

B

Mean Absolute Error (MAE) map
PM;, of FI1_MACC_bas Model

® MAE =9.0(Q1)
9:0(Q1) < MAE = 17.0(Q3)
® MAE >17.0(Q3)

Mean Absolute Error (MAE) map
PM;, of FI1_MACC_bas2 Model

® MAE s 9.0(Q1)
9:0(Q1) < MAE = 17.0(Q3)
® MAE >17.0(Q3)

Mean Absolute Error (MAE) map
PM; of FI1-MACC-NEW Model

® MAE s 11.0(Q1)
11.0(Q1) < MAE = 18.0(Q3)
® MAE > 18.0(Q3)

Mean Absolute Error (MAE) map
PM;o of FI1-SMOKE-NEW Model

@ MAE =10.0(Q1)
10.0(Q1) < MAE = 17.0(Q3)
® MAE > 17.0(Q3)

Figure B.3 : MAE maps.
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Figure B.3 (continued) : MAE maps.

234
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Figure B.4 : MFE maps.
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Figure B.4 (continued) : MFE maps.



Mean Normalized Error (MNE) map
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Figure B.5 : MNE maps.
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Figure B.5 (continued) : MNE maps.
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Figure B.6 : NBIAS maps.
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Figure B.6 (continued) : NBIAS maps.
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Figure B.7 : NMSE maps.
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Figure B.7 (continued) : NMSE maps.



Pearson Correlation Coefficient (PCC) map
PM;, of DE1_HTAP_bas Model

4 0sPCCs0.1 0.1sPCC<0.2 & 02sPCC<03 & PCC203
v -0.1=PCC<0 -0.2sPCC<-0.1 v -0.3sPCC<-0.2 v PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of DE1_SMOKE_bas Model

a 0sPCC=0.1 0.1sPCC<0.2 a 02sPCC<0.3 a PCC20.3
v -0.1=PCC<0 -0.2=PCC<-0.1 v -0.3sPCC<-0.2 v PCC=-03

B

Pearson Correlation Coefficient (PCC) map
PM;o of DK1_HTAP_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a PCCz203
v -0.1=PCC<0 -0.2sPCC<-0.1 v  -0.3sPCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;( of DK1_Tracer_noDep Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a4 PCC203
v -0.1sPCC<0 -0.2sPCC<-0.1 v  -0.3sPCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;o of ES1_MACC_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a PCCz203
v -0.1=PCC<0 -0.2sPCC<-0.1 v -0.3sPCC<-0.2 v PCCs-03

b

Pearson Correlation Coefficient (PCC) map
PM; of FI1_HTAP_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a4 PCC203
v -0.1=sPCC<0 -0.2=PCC<-0.1 v  -0.3sPCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of FI1_MACC_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a PCC20.3
v -0.1=PCC<0 -0.2sPCC<-0.1 v  -0.3sPCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of FI1L_MACC_bas2 Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a4 PCC203
v -0.1=PCC<0 -0.2<PCC<-0.1 v _ -0.3sPCC<-0.2 PCC=-0.3

B
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PM; of FI1-MACC-NEW Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a PCC20.3
v -0.1=PCC<0 -0.2sPCC<-0.1 v -0.3sPCC<-0.2 v PCCs-03

Pearson Correlation Coefficient (PCC) map
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B

Figure B.8 : PCC maps.
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Pearson Correlation Coefficient (PCC) map
PM;o of IT1_MACC_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a PCC20.3
v -0.1sPCC<0 -0.2sPCC<-0.1 v -0.3sPCC<-0.2 v PCCs-0.3

B

Pearson Correlation Coefficient (PCC) map
PM; of IT2_MACC_bas Model

a4 0sPCCs0.1 0.1sPCC<0.2 : 0.2sPCC<0.3 a4 PCC20.3
v -0.1=PCC<0 -0.2<PCC<-0.1 v _ -0.3sPCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
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Pearson Correlation Coefficient (PCC) map
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a 0=PCC=0.1 0.1sPCC<0.2 : 0.2=PCC<0.3 a PCCz03
v -0.1sPCC<0 -0.25PCC<-0.1 v  -0.35PCC<-0.2 PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of UK1_internal Model

a 0s=PCC=0.1 0.1=PCC<0.2 : 0.2=PCC<0.3 a PCC203
v -0.1=sPCC<0 -0.2=PCC<-0.1 v -0.3sPCC<-0.2 v PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of UK1_MACC_bas Model

a 0=PCC=0.1 0.1=PCC<0.2 : 0.2=PCC<0.3 a PCC203
v -0.1=PCC<0 -0.2=PCC<-0.1 v -0.3sPCC<-0.2 v PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of UK2_HTAP_bas Model

a 0s=PCC=0.1 0.1=PCC<0.2 : 0.2=PCC<0.3 a PCC203
v -0.1sPCC<0 -0.2=PCC<-0.1 v -0.3sPCC<-0.2 v PCC=-0.3

B

Pearson Correlation Coefficient (PCC) map
PM;, of UK3_MACC_bas Model

a 0=PCC=0.1 0.1=PCC<0.2 : 0.2=PCC<0.3 a PCC203
v -0.1=PCC<0 -0.2=PCC<-0.1 v -0.3sPCC<-0.2 v PCC=-0.3
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Figure B.8 (continued) : PCC maps



Coefficient of Determination (r?) map
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Figure B.9 : r? (coefficient of determination) maps.



Coefficient of Determination (r2) map
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Figure B.9 (continued) : r? (coefficient of determination) maps.
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Root Mean Square Error (RMSE) map Root Mean Square Error (RMSE) map
PM;o of DE1_HTAP_bas Model PM;o of DE1_SMOKE_bas Model

® RMSE = 16.0(Q1)
16.0(Q1) < RMSE = 27.0(Q3)
® RMSE > 27.0(Q3)

® RMSE <15.0(Q1)
15.0(Q1) < RMSE = 25.0(Q3)
® RMSE > 25.0(Q3)

B

Root Mean Square Error (RMSE) map Root Mean Square Error (RMSE) map
PM; of DK1_HTAP_bas Model PM,, of DK1_Tracer_noDep Model

@ RMSE = 13.0(Q1)
13.0(Q1) < RMSE = 25.0(Q3)
® RMSE > 25.0(Q3)

@ RMSE = 15.0(Q1)
15.0(Q1) < RMSE = 28.0(Q3)
® RMSE > 28.0(Q3)

B B

Root Mean Square Error (RMSE) map Root Mean Square Error (RMSE) map
PM1o of ES1_MACC_bas Model PM, of FI1_HTAP_bas Model

® RMSE = 20.0(Q1)
20.0(Q1) < RMSE = 43.0(Q3)
® RMSE >43.0(Q3)

® RMSE = 13.0(Q1)
13.0(Q1) < RMSE = 23.0(Q3)
® RMSE > 23.0(Q3)

B P

Root Mean Square Error (RMSE) map Root Mean Square Error (RMSE) map
PM;, of FI1_MACC_bas Model PM; of FI1_MACC_bas2 Model

® RMSE = 13.0(Q1)
13.0(Q1) < RMSE = 23.0(Q3)
® RMSE > 23.0(Q3)

@ RMSE s 13.0(Q1)
13.0(Q1) < RMSE = 23.0(Q3)
@ RMSE >23.0(Q3)

P B

Root Mean Square Error (RMSE) map Root Mean Square Error (RMSE) map
PM;o of FI1-MACC-NEW Model PM; of FI1-SMOKE-NEW Model
® RMSE s 15.0(Q1) N }

15.0(Q1) < RMSE = 24.0(Q3)
® RMSE > 24.0(Q3)

@ RMSE =13.0(Q1)
13.0(Q1) < RMSE = 23.0(Q3)
® RMSE > 23.0(Q3)

B>

Figure B.10: RMSE maps.
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Root Mean Square Error (RMSE) map
PM;, of IT1_MACC_bas Model

@ RMSE = 14.0(Q1)
14.0(Q1) < RMSE = 23.0(Q3)
@ RMSE > 23.0(Q3)
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® RMSE > 26.0(Q3)
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Figure B.10 (continued) : RMSE maps.



Unpaired Peak Accuracy (UPA) map
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Figure B.11 : UPA maps.
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Figure B.11 (continued) : UPA maps.
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APPENDIX C : MAE CDFs of stations (PM10) for the countries with more than 10
stations.

MAE - CDFs of PM,for stations in Austria MAE - CDFs of PMy, for stations in Czech Republic
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Figure C.1 : MAE CDFs of stations for PMio, for the countries with more
than 10 stations
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MAE - CDFs of PMy for stations in England

MAE - CDFs of PMy for stations in Spain
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Figure C.1 (continued) : MAE CDFs of stations for PMjo, for the countries
with more than 10 stations.
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APPENDIX D : Country Averages of Performance Metrics for All Models

Table D.1 : Country averages of performance metrics for all models.

Station

Country Number Mean Median stDev Var Cv Skewness RMSE BIAS MAE NBIAS NME MFB MFE NMSE PCC 1'2 UPA 1I0A
Austria 74 12 10 8 74 70 0.82 19 -12 14 -49 59 -66 79 1.5 0.4 02 -37 05
Belgium 38 17 15 9 95 56 0.87 16 -9 12 -33 47 -40 56 0.7 0.5 03 -34 06
Bosnia. 1 11 9 9 135 77 0.82 55 -38 39 -78 81 -121 125 6.6 0.1 00 -80 04
Bulgaria 32 18 14 15 324 75 0.80 41 -25 29 -53 67 =17 89 2.7 0.3 0.1 -47 05
CzechR. 95 14 12 9 88 64 0.85 27 -15 17 -48 58 -60 72 2.0 0.5 03 -60 05
Denmark 2 15 14 8 83 56 0.88 24 -5 13 -8 63 -12 61 2.3 0.3 0.1 -20 04
England 25 13 11 8 81 58 0.85 12 -5 9 -25 49 -39 57 0.7 0.5 03 -10 0.6
Estonia 4 11 9 8 78 77 0.80 11 -2 8 -12 61 -26 65 1.0 0.4 02 36 0.6
Finland 8 10 8 8 71 86 0.77 11 -3 7 -24 57 -39 67 1.2 0.4 02 1 0.6
France 231 15 13 9 109 61 0.85 16 -9 12 -36 51 -52 65 0.9 0.5 03 -11 0.6
Germany 199 13 11 8 70 61 0.86 15 -7 10 -32 50 -41 58 0.9 0.5 03 42 06
Greece 4 28 22 20 691 65 0.84 26 -7 17 -19 50 -34 54 1.1 0.5 03 -30 0.6
Hungary 14 15 13 10 114 66 0.84 21 -13 15 -46 53 -62 69 1.2 0.6 04 -38 0.6
Iceland 2 13 9 12 547 77 0.77 28 2 12 16 92 0 60 6.8 0.0 00 -75 02
Ireland 9 11 9 7 58 62 0.83 12 -4 9 -25 58 -33 64 1.1 0.4 02 -33 0.5
Italy 188 17 14 12 213 69 0.83 20 -9 15 -31 57 -46 67 1.2 0.4 02 -6 0.6
Latvia 4 12 9 8 79 72 0.82 15 -7 11 -38 58 -49 71 1.3 0.3 0.1 -24 05
Lithuania 5 11 9 8 78 75 0.79 22 -15 16 -56 62 -79 86 1.8 0.4 02 -51 0.5
Luxemb. 3 15 13 9 79 57 0.87 10 -2 7 -12 41 -22 45 0.4 0.5 02 16 0.6
Malta 2 33 24 30 1484 79 0.77 36 1 19 2 58 -13 49 1.7 0.5 03 42 06
Moldova 1 14 11 9 96 67 0.82 24 -8 19 -37 86 -2 111 2.1 0.0 00 -2 0.4
Netherl. 28 17 15 9 90 54 0.88 16 -8 11 -31 45 -39 52 0.7 0.5 03 -46 0.6
Norway 9 9 7 7 89 73 0.80 16 -8 11 -46 65 -69 83 2.0 0.2 0.1 -24 04
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Table D.1 (continued) : Country averages of performance metrics for all models.

Station
Country Number Mean Median stDev Var Cv Skewness RMSE BIAS MAE NBIAS NME MFB MFE NMSE PCC 1'2 UPA 1I0A
Poland 136 15 13 10 104 65 0.84 35 -23 24 -57 62 -76 83 2.6 0.5 03 -65 0.5
Portugal 26 22 17 20 605 90 0.77 22 0 13 0 61 -20 58 1.4 0.5 02 78 0.6
Romania 13 17 14 12 208 71 0.81 18 -6 12 -25 54 -33 61 1.1 0.4 02 -1 0.6
Serbia 1 21 18 13 200 62 0.86 21 -2 14 -11 62 0 64 1.1 0.3 02 -28 0.5
Slovakia 22 14 11 9 94 67 0.84 24 -18 19 -54 60 -719 84 1.6 0.5 03 -46 0S5
Slovenia 11 14 12 9 103 67 0.85 21 -13 15 -48 56 -65 73 1.3 0.5 03 -38 0.6
Cyprus 2 28 23 21 800 66 0.84 36 -1 24 -24 57 -43 63 1.9 0.3 0.1 -52 05
Spain 111 14 10 13 341 89 0.77 18 -7 13 -29 62 -56 75 1.6 0.5 03 27 0.6
Sweden 9 10 8 6 50 70  0.83 8 -2 6 -20 51 -34 59 0.7 0.5 03 -15 0.6
Switzerl. 22 12 8 76 71  0.81 14 -6 10 12 96 -37 68 1.8 0.5 02 161 0.6
Turkey 101 27 22 20 727 70 0.83 62 -40 48 -50 65 -80 91 3.6 0.3 0.1 -45 0.5
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APPENDIX E : Taylor Diagrams for all stations in Marmara Region
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Figure E.1 : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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Figure E.1 (continued) : Taylor Diagrams for stations in Marmara region.
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APPENDIX F : Goodness-of-fit Statistics/Criteria for EFs Derived from EMRs

Table F.1 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of

1.A.1.a—10101-3.10.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.24 0.12 0.67 43.61 44.58
Lognormal 0.32 0.22 2.88 63.95 64.92
Uniform 0.27 0.16 - - -
Exponential 0.42 0.40 1.85 50.55 51.04
Logistic 0.23 0.10 0.62 43.47 44.44
Gamma 0.30 0.18 1.62 50.36 51.33
Weibull 0.29 0.16 1.01 44.95 45.92

Table F.2 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of

1.A.1.a—-10101 - 3.10.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.28 0.15 0.98 49 50
Lognormal 0.32 0.30 4.97 77 78
Uniform 0.22 0.14 1.16 45 46
Exponential 0.34 0.29 1.43 52 52
Logistic 0.30 0.17 1.10 50 51
Gamma 0.30 0.25 2.49 57 58
Weibull 0.28 0.22 1.44 51 52

Table F.3 : Goodness-of-fit statistics/criteria for SO, EF derived from EMRs of

1.A.1.a-10101 - 3.10.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.13 0.03 0.23 97.89 98.86
Lognormal 0.14 0.04 0.38 99.69 100.66
Uniform 0.18 0.07 - - -
Exponential 0.49 0.82 3.84 127.86 128.35
Logistic 0.10 0.02 0.17 97.63 98.60
Gamma 0.14 0.03 0.31 98.86 99.83
Weibull 0.14 0.03 0.23 97.62 98.59

265



Table F.4 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of

1.A.1.a-10101 - 3.10.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.16 0.06 0.33 91.15 92.12
Lognormal 0.15 0.05 0.35 91.48 92.45
Uniform 0.20 0.06 - - -
Exponential 0.49 0.78 3.66 118.76 119.24
Logistic 0.18 0.07 0.41 91.94 92.91
Gamma 0.15 0.05 0.33 91.22 92.19
Weibull 0.17 0.06 0.35 91.39 92.36
Table F.S5 : Goodness-of-fit statistics/criteria for NO2 EF derived from EMRs of
1.A.1.a—10101 - 3.10.
Goodness-of-fit statistics Goodness-of-fit criteria
Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.15 0.05 0.35 152.55 154.10
Lognormal 0.15 0.05 0.35 152.46 154.01
Uniform 0.13 0.04 0.23 146.91 148.45
Exponential 0.55 1.22 5.66 203.93 204.71
Logistic 0.18 0.07 0.48 154.11 155.66
Gamma 0.15 0.05 0.34 152.44 153.98
Weibull 0.15 0.06 0.39 153.24 154.78

Table F.6 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of

1.A.1.a—10101 - 3.16.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.27 0.07 0.47 23.60 23.59
Lognormal 0.33 0.12 1.83 36.37 36.26
Uniform 0.22 0.07 - - -
Exponential 0.33 0.21 1.04 27.15 27.10
Logistic 0.30 0.09 0.53 24.20 24.09
Gamma 0.31 0.10 1.04 28.15 28.04
Weibull 0.29 0.09 0.66 24.59 24.48
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Table F.7 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of

1.A.1.a—10101 - 3.16.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.26 0.10 0.71 89.34 89.94
Lognormal 0.39 0.34 7.38 130.53 131.14
Uniform 0.21 0.07 0.50 85.81 86.41
Exponential 0.28 0.17 1.13 83.20 83.50
Logistic 0.28 0.12 0.85 90.76 91.37
Gamma 0.34 0.23 2.20 89.45 90.06
Weibull 0.29 0.15 0.85 84.75 85.35

Table F.8 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of

1.A.1.a—10101 - 3.16.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.20 0.08 0.55 64.71 66.26
Lognormal 0.20 0.08 0.59 65.42 66.96
Uniform 0.16 0.08 - - -
Exponential 0.58 1.46 6.67 145.80 146.57
Logistic 0.22 0.10 0.62 65.16 66.70
Gamma 0.20 0.08 0.57 65.17 66.71
Weibull 0.19 0.09 0.52 62.13 63.67

Table F.9 : Goodness-of-fit statistics/criteria for NO; EF derived from EMRs of
1.A.1.a— 10101 - 3.16.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.22 0.07 0.50 86.66 87.27
Lognormal 0.30 0.18 4.51 141.28 141.89
Uniform 0.16 0.05 0.33 83.13 83.74
Exponential 0.24 0.10 0.69 83.98 84.28
Logistic 0.24 0.09 0.61 87.89 88.50
Gamma 0.24 0.11 1.31 91.74 92.34
Weibull 0.23 0.09 0.67 85.88 86.48
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Table F.10 : Goodness-of-fit statistics/criteria for dust EF derived from EMRs of

1.A.1l.a—10104 - 3.17.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.177 0.129 0.846 86.854 89.371
Lognormal 0.291 0.379 4.302 92.984 95.501
Uniform 0.156 0.092 - - -
Exponential 0.133 0.105 0.680 77.226 78.484
Logistic 0.196 0.172 1.097 89.219 91.735
Gamma 0.218 0.177 1.232 78.801 81.317
Weibull 0.180 0.114 0.720 77.565 80.081

Table F.11 : Goodness-of-fit statistics/criteria for CO EF derived from EMRs of

1.A.l.a— 10104 - 3.17.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer- Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.24 0.41 2.39 250.75 254.13
Lognormal 0.28 1.00 8.92 244.10 247.48
Uniform 0.22 0.36 - - -
Exponential 0.18 0.32 1.72 216.97 218.66
Logistic 0.26 0.50 2.79 252.69 256.07
Gamma 0.18 0.36 1.92 219.27 222.65
Weibull 0.15 0.25 1.34 218.62 222.00

Table F.12 : Goodness-of-fit statistics/criteria for SO, EF derived from EMRs of

1.A.1.a—10104 - 3.17.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.451 1.40 7.06 195 197
Lognormal 0.278 0.66 3.52 105 107
Uniform 0.434 1.37 - - -
Exponential 0.433 1.73 9.46 129 131
Logistic 0.459 1.44 6.96 188 191
Gamma 0.430 0.92 4.59 130 133
Weibull 0.240 0.37 2.34 114 116
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Table F.13 : Goodness-of-fit statistics/criteria for NO EF derived from EMRs of

1.A.l.a—10104 - 3.17.

Goodness-of-fit statistics

Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information
statistic Mises statistic Criterion Criterion
Normal 0.22 1.09 6.30 742.80 747.33
Lognormal 0.21 0.66 6.39 684.28 688.81
Uniform 0.25 1.24 - - -
Exponential 0.14 0.30 1.80 663.02 665.28
Logistic 0.24 1.12 6.16 738.46 742.99
Gamma 0.09 0.12 0.94 664.64 669.17
Weibull 0.10 0.13 0.92 663.26 667.78

Table F.14 : Goodness-of-fit statistics/criteria for NO; EF derived from EMRs of

1.A.1.a— 10104 - 3.17.
Goodness-of-fit statistics Goodness-of-fit criteria

Type of Kolmogorov- Cramer-  Anderson- Akaike's Bayesian
distribution Smirnov von Darling | Information Information

statistic Mises statistic Criterion Criterion
Normal 0.32 1.55 8.32 705.93 710.15
Lognormal 0.23 0.98 8.92 640.84 645.06
Uniform 0.29 1.61 - - -
Exponential 0.24 1.03 6.05 613.63 615.74
Logistic 0.33 1.61 8.34 701.48 705.71
Gamma 0.15 0.21 1.40 605.45 609.67
Weibull 0.14 0.17 1.08 601.81 606.03
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