ISTANBUL TECHNICAL UNIVERSITY * INFORMATICS INSTITUTE

THE EVALUATION AND COMPARISON OF
PRIMALITY TESTING ALGORITHMS

M.Sc. THESIS

Go0zde SARIKAYA

Department of Applied Informatics

Cybersecurity Engineering and Cryptography Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

THE EVALUATION AND COMPARISON OF
PRIMALITY TESTING ALGORITHMS

M.Sc. THESIS

Gozde SARIKAYA
(707151013)

Department of Applied Informatics

Cybersecurity Engineering and Cryptography Programme

Thesis Advisor: Assoc. Prof. Dr. Enver OZDEMIR

JUNE 2019

ISTANBUL TEKNIiK UNIiVERSITESI % BiLiSiM ENSTITUSU

ASALLIK TESTi ALGORITMALARININ iNCELENMESI VE
KARSILASTIRILMASI

YUKSEK LiSANS TEZi

Gozde SARIKAYA
(707151013)

Bilisim Uygulamalar1 Anabilim Dah

Bilgi Giivenligi Miihendisligi ve Kriptografi Program

Tez Damismani: Do¢. Dr. Enver OZDEMIR

HAZIRAN 2019

Gozde SARIKAYA, a M.Sc. student of ITU Informatics Institute with student ID
707151013, successfully defended the thesis entitled “THE EVALUATION AND
COMPARISON OF PRIMALITY TESTING ALGORITHMS”, which he/she
prepared after fulfilling the requirements specified in the associated legislations,
before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Enver OZDEMIR oo,
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Ergiin YARANERI ...,
Istanbul Technical University

Assist. Prof. Dr. Elif Segah OZTAS ..o,
Karamanoglu Mehmetbey University

Date of Submission : 03 May 2019
Date of Defense : 14 June 2019

To my beloved family and nephew Umut,

vii

FOREWORD

First and foremost, | would first like to thank my thesis advisor Assoc. Prof. Enver
Ozdemir. He supported me throughout the entire process with his patience, motivation,
enthusiasm and immense knowledge on the topic. It was a great pleasure to join his
research group at the National HPC Center of Turkey. | really appreciate all the efforts
he has put into this thesis.

In addition to my education, the most important reason for me to feel belonging to a
company is to feel friendliness, honesty, and trustworthiness that your colleagues offer.
Thus, 1 would like to acknowledge to my dear colleagues whom | had worked together
at UHeM, TUBITAK and CRYPTTECH. | appreciate all for making me feel like the
part of this family.

Finally, I would like to express my profound gratitude to my lovely family. The words
are not enough for me to express how grateful I am to all members for their sacrifices.
My father always trusts all my decisions and gives encouragement to whatever |
dream. My mother focuses on my achievements all the time to make me stronger
whenever my self-confidence is weakened. My brother makes me feel very lucky by
giving invaluable support and guidance as a polestar since my childhood. My sister
deserves many lovely thanks for being patient in listening to me until I come to the
decisions for my life. And, my sister-in-law always supports me spiritually through
this process. This success could not be achieved without excellent encouragement and
sacrifices. | will be grateful forever for their love and this achievement would not have
been possible without them.

Finally, | dedicate this thesis to my nephew, Umut. He teaches all the people around
him by laughing how to be strong even when everything goes wrong. Hope you never
lose the light and joy in your eyes Umut!

Thank you for all.

June 2019 Gozde SARIKAYA

TABLE OF CONTENTS

Page

FOREWORDooiiiii ettt ettt ettt nne e iX
TABLE OF CONTENTS ...ttt Xi
ABBREVIATIONS ... Xiii
SYMBOLS .ttt ettt XV
LIST OF TABLES ...t Xvii
LIST OF FIGURES ..ottt nnae e Xix
SUMMARY ettt b et b et e e ns XXi
(@)4 = [OOSR XXiii
1. INTRODUCTION. ...ttt sttt nne s 1
1.1 Motivation and OBJECTIVEScccuiiiiiiiieieiee e 1
1.2 TRESIS STTUCKUIE ...ttt ettt nne s 2

2. ENCRYPTION SCHEMAS ...ttt 5
2.1 INEFOTUCTION 1ottt nae s 5
2.2 Cryptography BaSICSc.oiuiiuiiieiiiiieiieieiie sttt 6
2.3 TYPES OF CrypPtOSYSIEIMSeeuiiiiiiitieie ittt 8
2.3.1 Secret-Key CryptOSYSIEIMccuiiiiiieieniesiesie e 8
2.3.2 Public-Key CryptoSYSIEMcccuviiiieiiic ettt 9

2.4 Discrete Logarithm Problem ... 10
2.4.1 Problem definition.........coooiiiiiieie e 10
2.4.2 DLP DaSed PKC ...ttt 10
2.4.2.1 Diffie-Hellman key exchangeccccoeiiiiieci i 11
2.4.2.2 EIGamal encryption SChEMAcccoviiiiiiiiiiiee e 12

2.5 Integer Factorization Problem ... 14
2.5.1 Problem definition.........c.coiiveiiiieceee e 14
2.5.2 IFT hased PKC: RSA ...t 15

3. PRELIMINARIES OF ELLIPTIC CURVES........ccoo ittt 19
3.1 DETINITIONS ...ttt 19
3.2 Elliptic Curve ArithmetiC.........cooviiiiieecesse e 20
3.2. 1 GIOUP AW ...t 21
3.2.2 GIOUP OFAET ..ttt bbbttt bt 21
3.2.3 GrOUP SITUCKUIE ..evvvie ettt e e e e e e nnaee e 22
3.2.4 Scalar MUIIPIICALIONocviiiiiicieee s 22
3.2.4.1 Binary Method........ccooiiiiiiiiie e 23
3.2.4.2 WINdowing Method..........cocvviiiiiiiiieneese e 25
3.2.4.3 Montgomery ladder..........c.coviiiiiie i 26

4. PRIMALITY TESTING AND PROVING ALGORITHMScccoevviiennne 27
4.1 Mathematical Underpinningscocceveiirnenieiin e 27
4.2 Probabilistic Primality TESESccevveieiieiieie e 30
4.2.1 Fermat’s test and Euler’s eXtenSioncccvevveeiiiieinieesiiee e e siieesieeens 30
4.2.2 BULET’ S TEST...eeiiiiie et 37
4.2.3 Solovay-Strassen primality teSt..........ccooveiieriiieiieree e 41

Xi

4.2.4 Miller-Rabin strong pseudoprime teSt..........covrvrieierenenesese e 43

4.3 Deterministic Primality TeStS.......cocuvereiiiiiesisesie e 49
4.3.1 AKS Primality tESt.......ociiiiiiiiiiieiees e 49

4.4 Elliptic Curve Primality ProViNgcccoviiiiiiiniininieeee s 53
4.4.1 Shafi-Killian algorithm ... 55
4.4.2 AtKIN-MOrain ECPPcoiiiiiiiiic e e 58

4.5 Singular Cubic Curve Primality TEStccociirieiiniiieee e 65
5. COMPARISON RESULTSc.oiiiiiitiisieieie et 69
5.1 TheoretiCal RESUILSccviiieiee e 69
5.2 COMPULALIONAL TESTS....eiviiiieiiitesie e 70
5.2.1 Implementation detailSccoeieiiiiiiiiiie s 70
5.2.2 EXPEIIMENTS.....eiitieiecie st esie ettt e e et e e e teenae e e nneennenns 71

6. CONCLUSIONottt sre e neenes 75
REFERENCES ..ot 77
CURRICULUM VITAE ...ttt sttt enes 81

Xii

ABBREVIATIONS

CIA
SPSP
DLP
IFP
ECC
ECPP
ECDLP
GCD
GF
RSA
AKS
CRT
NAF

: Confidentiality-Integrity-Availability
: Strong Pseudoprime

: Discrete Logarithm Problem

. Integer Factorization Problem

: Elliptic Curve Cryptography

: Elliptic Curve Primality Proving

: Elliptic Curve Discrete Logarithm Problem
: Greatest Common Divisor

: Galois Field

: Rivest-Shamir-Adleman

: Agrawal-Kayal-Saxena

: Chinese Reminder Theorem

: Non-adjent Form

Xiii

SYMBOLS

{a,b,c}

Y
p

Ke
Kb
Ex(P)
D(C)
alb
atb
n(n)
o(n)
)
()

R

G
ZInZ
(ZInZ)*

. A set with 3 elements

: Prime number

: A message to encrypt, i.e., plaintext

: Encrypted plaintext, i.e., ciphertext

: Encryption key

: Decryption key

: Encryption of a plaintext P with the key Ke
: Decryption of a ciphertext C with the key Ko
zadivides b

: a does not divide b

: Number of primes less than or equal to n

: Euler’s totient function for n
. Legendre symbol

: Jacobi symbol

: Ring

: Group

: Residue class modulo n

: Multiplicative group whose element are relatively prime to n
: Finite field with g = p* a prime number

- Finite field with p elements, where p is prime

: Elliptic curve with simplified equation y2 = x3 + ax + b

: Elliptic curve over F,

: Point at infinity on elliptic curve E

XV

LIST OF TABLES

Table 4.1 :
Table 4.2 :
Table 4.3 :
Table 4.4 :
Table 4.5 :
Table 4.6 :
Table 4.7 :
Table 4.8 :
Table 5.1 :
Table 5.2 :

Page
DENSItY OF PrIMES.eiiiiiiieieieeee e 28
Number of 2-pPSEUAOPIIMES.........civeiiiierieie e 32
Examples of a-pSeudoprimes.ccoovveiiiininieeeese e 32
EUlEr PRI VAIUES. ..o 34
Number of Euler 2-pseudoprimes.ccoovvieieeienenenesese e 40
Examples of Euler a-pSeudoprimes..........ccovvviireeienienenenesese s 40
NUMDET OF SPSP(2)..vveeiiiieiiee ittt 48
EXamples Of SPSP(Q). «.ververveririiieieiesie e 49
Theoretical comparison results. ... 69
The execution time of each algorithm in seconds...........ccccocvvevvrinnne 73

XVii

LIST OF FIGURES

Page
Figure 2.1 : Key EXChange SChema. ..o 11
Figure 2.2 : EIGamal Key Generationcccoeveiininininieieniene e 12
Figure 2.3 : EIGamal ENCryption.coooieiiiiiieie e 13
Figure 2.4 : EIGamal DeCryption.cccoveieiieii e 13
Figure 2.5 : RSA Key GENEIatiON.ccoiviieiieiieie et 15
Figure 3.1 : Point addition on elliptiC CUIVES.cccoiiiiiiiiccec s 20

XixX

THE EVALUATION AND COMPARISON OF
PRIMALITY TESTING ALGORITHMS

SUMMARY

A prime number is an integer without a non-trivial divisor. In modern cryptography,
several secure digital communication methods need to use large prime numbers. For
example, one of the most popular public key cryptosystems, RSA [22], uses prime
integers with more than 150 digits. Thus, it has been an interest of researchers to
give a generic formula for defining all prime numbers. Although, there was no initial
concern to detect prime integers theoretically, from the beginning of late 60’s, several
researches have presented a practical method for the primality test. Currently, there are
methods [[7H10L/16}/17] to decide the primality of the big numbers. These methods can
be divided into two categories: probabilistic and deterministic primality tests.

Probabilistic tests are very fast and consist of some set of mathematical equations and
procedures. The common property of these tests is having error probability with some
composite numbers. For a given integer n to determine whether it is prime, the test is
100% accurate if it labels that number as a composite. However, the other case where
the test output is prime is not always true, that is to say, there is always a probability
that a composite number passes the test and is labeled as prime. To decrease this
probability and increase the accuracy of the test, we always need to repeat the test for
several times. As examples of probabilistic tests, we provide explanations on Euler’s
Test, Fermat’s Test, Solovay-Strassen Primality Test and Miller-Rabin Test.

To overcome the drawback of probabilistic tests, deterministic tests are invented.
Besides probabilistic tests, deterministic tests guarantee that if the test labels a
given number n as composite, the number is, in fact, composite. Additionally,
deterministic tests also guarantee the primality of numbers. However, the running time
of deterministic tests is not satisfactory for frequent use in commercial applications.
As an example of deterministic test, we give details of Agrawal-Kayal-Saxena (AKS)
primality testing algorithm with a pseudocode, examples, running time analysis, its
accuracy and drawbacks.

Moreover, elliptic curve primality testing methods and theorems are widely used.
Although some algorithms require very long execution time for several-million digit
integers, the results are deterministic. Thus, we include Shafi-Killian and Atkin’s
elliptic curve primality proving algorithms into our analyses.

In this thesis, general mathematical theorems which are very fundamental in number
theory are explained to the reader. Then, their applications on primality testing are
given by commonly used primality test algorithms. The current algorithms analyzed in
terms of computational complexity, illustrated with examples to make the algorithms
clearer and finally evaluated with its advantages and disadvantages. This literature
review is given to increase the knowledge required for the singular cubic curve test
[35]. Then, known primality tests and their analyses are given to provide a base for
comparison.

xXxi

Finally, the theoretical and experimental comparison results are provided in the
last chapter. Known primality tests are compared to the singular cubic primality
test by using the same dataset which includes both primes and composites with
different number of digits. Implementation and testing phrases show that the
singular cubic curve algorithm catches all composite number up to 10?! which were
strong pseudoprimes to base 2 according to commercially used Miller-Rabin test.
Additionally, it successfully detects the compositeness of large integers that have
several hundred digits. Thus, singular cubic curve algorithm is a candidate to be a
primality testing algorithm with running time of 0(log2+£ n).

Xxii

ASALLIK TESTLERI ALGORITMALARININ INCELENMESI
VE KARSILASTIRILMASI

OZET

Asal sayilar, kendisi ve 1 disinda herhangi bir boleni olmayan sayilardir.
Giiniimiizde yaygin olarak kullanilan kriptolojik tekniklerde ve giivenilir haberlesme
protokol tasarimlarinda ylizlerce ve hatta binlerce rakamdan olusan asal sayilar
kullanilmaktadir. Ornek vermek gerekirse, popiiler ve ¢ok bilinen algoritmalardan biri
olan RSA [22] algoritmasi, 150°den fazla rakam igeren iki asal saymnin carpimindan
olugsmaktadir. Bu sebeple, tiim asal sayilar i¢in gecgerli olabilecek genel formiiller
ve testler gelistirilmesi, arastirmacilar tarafindan halen caligmalar1 devam eden bir
alan olmustur. 1960’11 yillardan Oncesinde teorik olarak kanitlanan bir asallik testi
olmamasina ragmen, o yillardan itibaren bu konuda birden fazla pratik metotlar
bulunmustur [7-10, |16} |17]. Cok biiyiik sayilar i¢in kullanilmasi uygun olan
algoritmalar vardir ve bunlar genel olarak olasiliksal testler ve deterministik testler
olarak iki gruba ayrilabilir.

Olasiliksal testler birka¢ gruptan olusan matematiksel denklemleri icerir ve diger
testlerle kargilastirlldiginda daha hizli oldugu kamitlanmistir. Bu testlerin ortak
ozelligi; asal sayilar1 tanimlamakta (¢ok kiiciik ve Onemsiz diizeyde de olsa) bir
hata pay1 icermesidir. Test edilmek {izere verilen bir n sayisi i¢in, say1 eger asal
degil ise, olasiliksal testler bunu tespit etmekte /100 gercek sonug verir. Fakat diger
yonden, verilen sayiya algoritmanin dondii§ii tanimlama, sayiin asal oldugu ise,
bu sonu¢ tam olarak giivenilir degildir. Ciinkii bilinen bazi asal olmayan sayilar
vardir ki; bu testi asal bir sayrymig gibi gecebilirler. Bu yiizden, olasiliksal testlerin
dogrulugunu ve gecerliligini artirmak icin, test ayni say1 i¢in farkl rastgele tabanlar
secilerek ¢ defa tekrar edilir. Bu tekrar, aym1 zamanda test sonucunda olusan hata
payinin diismesini saglar. Ayni sayinin defalarca tekrar edilmesi sebebiyle, olasiliksal
bir sonug¢ elde edilir. Olasiliksal testlere drnek olarak; Euler ve Fermat testleriyle
birlikte, Solovay-Strassen [[10] ve Miller-Rabin [16,/17] tarafindan gelistirilen testleri
de verilmisgtir.

Olasiliksal testler boliimiinde goriildiigii {izere; baz1 yalanci asallar vardir ki, rastgele
secilen baz degerine gore asal sayilar gibi testin tiim sartlarini saglarlar. Tarihsel olarak
siralandiginda, giiniimiiz gelismelerine dogru testlerin yar1 asal olusturma olasilig
gitgide azalmistir. Ornegin; 10* limitinden az Fermat testi icin (baz 2 alindiginda)
yalanci asallarin sayisi1 22 iken; Euler testiyle birlikte bu sayr 12’ye diismiistiir.
Miller-Rabin olasiliksal testi ayn1 baz degeri i¢in degerlendiginde, bu toplam sadece
5’tir. Ancak; en az hata veren Miller-Rabin testinin hata orami incelendiginde;
testin ¢ defa tekrar etmesi sonucunda hata orani (}‘)t degerinden azdir. Bu deger
kiiciik ve 6nemsiz olsa da, asal sayilarin yayginca kullanildig: giiniimiiz algoritmalari
diisiiniildiigiinde, net sonuclar veren asallik testlerine olan ihtiya¢ goriilmektedir.

Olasiliksal testlerin defalarca tekrarlanarak olasiliksal bir sonu¢ donmesinin eksikligini
kapatmak lizere, deterministik testler gelistirilmistir. Deterministik testlerin temel

xxiii

ozelligi, ¢cok yiiksek bir dogruluk pay1 icermeleridir. Diger bir deyimle, deterministik
testler verilen say1 icin sonug¢ olarak asal tanimlamasi yaptiginda, verilen sayinin
gercekte asal olmasi dogrulanmig olur. Aymni sekilde; verilen saymnin tanimlamasi
asal olmadig1 seklinde ise, say1 gercekte de asal degildir. Ancak, bu testlerin
dogruluk 6zelliginin net olmasinin yaninda, pratik uygulamalarda siklikla kullanmak
icin olasiliklar testler kadar hizli sonu¢ vermezler. Deterministik testlere Ornek
vermek gerekirse, Agrawal-Kayal-Saxena (AKS) algoritmasi ve analizi Orneklerle
beraber incelenmistir. Bu test, polinom zamanli deterministik bir test olmasina
ragmen, calisma zamani bakimindan degerlendirildiginde olasiliklsal ve elliptik egri
testlerine nazaran ¢ok yavas kalmaktadir. Bu sebeple, tez icinde karsilastirilmaya dahil
edilmemistir.

Bu testlerin disinda, eliptik egriler ve tiirevleri kullanilarak gelistirilen asallik testi
algoritmalar1 da giinlimiizde yayginca kullanilmaktadir. Bazi eliptik egri asallik testi
algoritmalarinin, ¢ok biiyiik sayida rakamdan olusan sayilarin asal olup olmadigin
tespit etmeleri cok uzun zaman alsa da, doniilen sonu¢ deterministiktir. Bu testlere
ornek olarak Shafi-Killian ve Atkin-Morain olmak iizere, iki eliptik egri asallik
ispatlama algoritmasi incelenmistir.

Oncelikle, Shafi-Killian [9] ve Atkin-Morain [8] tarafindan gelistirilen algoritmalarin
baz aldig1 temel isleyis metodolojisi verilmistir. Ayrica; her iki algoritmanin da ana
temelini olugturan Pocklington Teoremi’nden bahsedilmistir. Her iki algoritma da
benzer metodolojiye farkli bir bakis acis1 sundugundan ve birebir bir karsilastirma
sunulmasi agisindan, bu algoritmalar 5 temel adimda incelenmistir.

Shafi-Killian tarafindan gelistirilen algoritmada, ilk asamada Miller-Rabin testi gibi
olasiliksal bir test kullanmilir. Bu asama sayesinde, sadece olasiliksal testin asal
olmadigini ispatlayamadig1 sayilar i¢in denenmis olur. Daha sonra, rastgele bir
a ve b degeri secilerek eliptik egri denklemi olusturulur. Bu egrinin iizerindeki
tim noktalarin sayisin1 bulmak icin, nokta sayma algoritmalarindan olan Schoof
metodu [[11]] kullanilir. Bu metot ile bulunan degerin carpanlara ayrilmasi gerekir
ve bu agsamana Lenstra’nin carpanlara ayirma metoduna yer verilmistir. Eger deger
carpanlara ayrilmazsa, en basa doniilerek yeni bir egri secilir ve diger adimlar
tekrarlanir. Bu ilk 3 agamanin zaman maliyetli olmas1 sebebiyle, Atkin-Morain eliptik
egri algoritmasi gelistirilmistir.

Atkin-Morain algoritmasinda kullanilacak eliptik egri rastgele degil, belli bir 6n
asamadan sonra olusturulur. Bu metodun temel farki olarak karisik ¢arpim (CM)
yontemine yer verilmisti. CM sayesinde, egri iizerindeki nokta sayisi i¢in olasi
degerler elde edilir ve bu sayilarin ¢arpanlara ayrilmasi denenir. Carpanlara ayrilan
deger bulundugunda, eliptik egri bu degere gore yine rastgele a ve b degerleri secilerek
olusturulur.

Eliptik egri olusturma asamasinda farklilasan Shafi-Killian ve Atkin-Morain algorit-
malari, eliptik egri secildikten sonra ayni operasyonlar1 uygular. Her iki algoritma
da, belirlenen egri ilizerinde, yani egri denklemini saglayan, bir nokta secer. Daha
sonra bu nokta {izerinde grup operasyonu uygular. Bu testler, ilk asamada verilen
sayinin asal oldugunu kabul edip, grup operasyonu sirasinda asal olmadigini bir hata
ile bulma manti§ina dayali oldugu i¢in, grup operasyonunda hata olana kadar testler
devam eder. Bu sebeple, bu testlerin ¢alisma zamanini net olarak 6lgmek miimkiin
degildir. Bu tezde, eliptik egriler ve grup operasyonlari hakkinda temel bilgilere

XX1v

deginilmistir. Ayn1 zamanda, ¢aligma zamani olarak verimli grup operasyonu ve skaler
carpim algoritmalarina yer verilmigtir.

Genel olarak, bu tezde, oncelikle sayilar teorisinde temel olarak bilinen ve kullanilan
genel matematiksel altyapilar i¢in tanimlamalar ve teoremler verilmistir. Daha sonra
devam eden boliimlerde eliptik egrilere dair detaylar anlatilmistir. Literatiir taramasi
olarak, bilinen asallik testi algoritmalar1 altyapilariyla birlikte verilerek, bu testler
okuyucuya daha acik bir anlatim sunabilmek i¢in 6rneklerle beraber pekistirilmistir.
Bilinen algoritmalarin kendilerine dair ozellikleri disinda, diger algoritmalarla
karsilastirildiginda olusan avantajlar ve dezavantajlar1 degerlendirilmistir.

Bilinen algoritmalarin yanina ek olarak, dnceden teorik olarak gelistirilen bir asallik
testi Onermesine [35] yer verilmistir Bu Onermenin algoritma olarak detaylari
verilerek, neden asallik testi olabilecegine dair detaylardan bahsedilmistir. Bu
algoritmanin bilgisayar ortaminda C++ dili ile yazilim tabanli gergeklenmesi yapilip
pratik ortamda kanitlanmasi saglanmigstir. Testler Miller-Rabin algoritmasinin dogru
olarak yakalayamadigi sayilardan olan "baz 2" sayilar1 se¢ilmistir. Baz 2’ye gore
yalanci olan sayilar gercekte asal olmamasina ragmen, Miller-Rabin algoritmasindan
asal olarak gecebilen sayilardir. Bu testin ger¢eklenmesinden elde edilen sonuglar,
onerilen asallik testinin 26*’e kadar olan tiim baz 2’ye gére yalanci asal olan sayilarin
gercekte asal olmadigini tanimladigin1 gostermektedir. Ayni zamanda, ¢ok biiyiik
rakam iceren ve yiiksek hassasliktaki rastgele sayilar denenmis ve bu testin dogru
sonuglara kisa zamanda ulasti§1 goriilmiistiir.

Bu testin gercekliginin pratikte denenmesinin yaninda; testin dier algoritmalar
ile ¢alisma zamani karsilastirilmistir. Teorik karsilastirma ve c¢alisma zamanina
dair sonuglar gostermektedir ki; bu test olasiliklar testler kadar hizli ve pratikte
kullanilabilecek kadar az algoritma karmagsikligina sahiptir.

XXV

1. INTRODUCTION

1.1 Motivation and Objectives

The primality testing algorithms are the keystone of cryptography and computational
number theory. Almost all security of cryptographic algorithms depend on their
underlying mathematical procedures and theorems. For example, the most commonly
used public-key cryptosystem, RSA, is solely using exponentiation and congruences
modulo some integer. In addition, the security of RSA is based on the difficulty of
integer factorization problem. In other words, the product of two integers can easily
be calculated with any computers; nevertheless, the factorization of that calculated
number into its products is challenging. Therefore, if an efficient algorithm that
factorizes very large integers could be found, then RSA will not be safe to use anymore.
In Chapter 2| we provide the RSA algorithm whose key generation step involves
the multiplication of two very large primes. As seen from the algorithm, we need
to deterministically ensure the primality of those large numbers. This provides our

motivation to study on primality testing.

The primality testing algorithms can be categorized into two main categories:
probabilistic and deterministic. The probabilistic tests are fast but if the test results
in composite for a given number n, it is definitely composite. However, if the test
does not say an integer is composite, it is very hard to conclude that the number is
prime. The forebear of probabilistic tests is Fermat’s Little Theorem and continues
with Euler’s extensions, Solovay-Strassen, and the Miller-Rabin test (the most recent).
As seen from the tables of the number of pseudoprimes in Chapter f] Fermat’s test
has less accuracy than the Miller-Rabin Test. In other words, considering just one
trial, the probability of having an error is at most fifty percent in Fermat’s Test,
whereas the Miller-Rabin Test only has at most twenty-five percent. Although every

probabilistic primality test contains some extra conditions to reduce the likelihood of

error, deterministic tests are needed as probabilistic tests would not be sufficient for

every application.

Deterministic tests have been developed to mitigate this disadvantage in probabilistic
tests. These tests can determine the primality of an integer more precisely, i.e., if the
test results as a prime then the number is definitely prime. However, deterministic
tests are not efficient in practice. Thus, there is still a need for practical deterministic

algorithms.

Because of this motivation, we prepared this thesis to serve a brief introduction to
the history and evolution of primality testing algorithms through time from Fermat’s
Little Theorem to modern tests that use elliptic curves. In addition, we included
a newly presented algorithm which uses singular cubics to satisfy the drawback
in Miller-Rabin test. After the introductory chapters including the fundamental
definitions and theorems of number theory, primality testing and proving algorithms
are examined by their algorithms, examples, and analyses. Finally, evaluation and

comparison are given to examine the accuracy and execution rate of known algorithms.

1.2 Thesis Structure

The goal of this thesis is to cover the necessary background from number theory and
to explain significant primality testing algorithms. It consists of six chapters with each

chapter covering the following themes:

In Chapter [2, we will give an overview of the encryption schemas together with
their definitions and security requirements. Then, we will give explanations,
advantages, and drawbacks of two types of cryptosystems: secret-key cryptosystems
and public-key cryptosystems. Since prime numbers and primality testing algorithms
are a major building block of public-key cryptography, we will take a comprehensive
look at public-key cryptosystems along with their underlying mathematical problems
that are not yet computationally feasible. After describing the discrete logarithm

problem with its two applications, the integer factorization problem will be examined.

In Chapter [3] we will present definitions and preliminaries of elliptic curves. After
explaining its group structure as the next issue, we continue with curve arithmetic

which forms a base for modern primality testing algorithms. Furthermore, coordinate

systems for elliptic curves and its comparison will be explained to give the idea of

speeding up the group operation.

In Chapter] we will present the leading primality testing algorithms along with
their principle definitions and theorems coming from number theory. There are two
categories of primality testing algorithms: probabilistic and deterministic tests. Both
methods will be intensively described in this chapter together with their applications
and examples. The oldest techniques illustrated with some examples and tables
herein to explain the basic facts on pseudo-primality. The AKS primality testing
algorithm will be examined as a reference for a deterministic test. Next, we will
introduce the well-known Pocklington’s theorem and Cornacchia’s algorithms, which
are the principle strategies used in elliptic curve primality proving. The given ECPP
algorithms will be divided into five main steps to evaluate gradually the difference in
perspective of two groups of researchers, Shafi-Killian and Atkin-Morain respectively.
Finally, we also give the details of newly presented algorithm [35] that uses singular

cubics.

In Chapter [5] we will first provide our theoretical comparison result which includes
algorithmic complexity of some selected probabilistic and deterministic algorithms
along with singular cubic primality testing algorithm. Afterward, the details of our
implementation will be provided with hardware and software specifications. The
running time comparison results of our implementation will be given at the end of

this chapter.

Finally, in Chapter [6| we will conclude the singular cubic curve primality test and its
contribution to the research area of algebraic and computational number theory. The

final discussion will include suggestions for future research.

2. ENCRYPTION SCHEMAS

2.1 Introduction

In modern technology, information is valuable. Our e-mail contents, passwords,
pictures or text messages are all private information that should be kept secret.
Cryptography provides rule-based techniques, which consist of a set of mathematical
calculations. It is referred almost solely to encryption operation, which basically
converts the information to an unreadable form. Decryption operation is the reverse of
encryption, which reveals the encrypted message to the original form. Cryptography
provides the security of communication between two parties by using encryption and
decryption techniques. Cryptosystems are intended to prevent other people from
reading and changing the confidential message, except for the person who encrypts
and sends the confidential message. Using encryption techniques in our daily lives, our
encrypted messages can be transmitted securely over a secure channel and decrypted

by only the message recipient.

Information security and cryptography built upon three main concepts known as CIA
triad, which refers to confidentiality, integrity, and availability of the information.
All encryption algorithms or any protocols aim to keep secure at least one of these

components. Now, we provide elementary descriptions of each security measurement.

* Confidentiality: This measurement ensures to keep secret as a secret, i.e., nobody
could be able to read the data while transmission between different parties.
Encryption algorithms are used to provide this property. As we will discuss at
the following chapter, symmetric cryptosystems or asymmetric cryptosystems are

two ways of keeping confidentiality of messages.

* Integrity: This measurement states that the message (or even some parts) cannot
be modified by any unauthorized users. Checksums or hash values can be used for

comparison between each version whether there is an unknown change.

* Availability: This measurement refers to being always available for authorized
users and protecting system-level attacks, which interrupt communication between

systems.

In addition to CIA triad, there are also extra measurements as following:

* Non-repudiation: This measurement refers to non-deniability and proving of
doing something, for example, sending an e-mail or perform an action on systems.

Legal policies are for providing this assurance.

* Authentication: This measurement is a trustiness to initial message sender is who

he/she claims to be.

2.2 Cryptography Basics

Before prividing further details, we will use the following definition to explain the key

components that each cryptosystem has.

Definition 2.2.1. An encryption scheme is a tuple (P,C,Kg,Kp,E,D), where P,C,Kg
and Kp are arbitrary sets (not necessarily distinct), and E and D are sets of functions,
such that for each k € K, there is a function E; : P — C, and for every k € Kp there
is a function Dy : C — P. This tuple must satisfy the condition that for every ¢ € Kg,

there is a unique s € Kp, such that Ds(E;(p)) = p for all p € P.

From the above definition; the symbols P,C,Kg and Kp are known as plaintext,
ciphertext, encryption key and decryption key respectively. Then, the symbols E and
D be the encryption and decryption functions respectively. Now, we provide some

non-technical explanations of each term:

* Plaintext (P): The original sensitive information which is transmitted between two

parties.

* Encryption Key (Kg): The secret parameter for which changes the structure and

content of plaintext, and generates its ciphertext.

* Encryption (E): The set of procedures and permutations to hide the original data

from unauthorized users by using an encryption key and plaintext as an input.

6

* Ciphertext (C): The final unintelligible message after an encryption process of a

plaintext.

* Decryption Key (Kp): The secret parameter for which enables to obtain the
original message. It can be derived from the public key as in asymmetric

cryptosystems or is the same as the encryption key as in symmetric cryptosystems.

* Decryption (D): The reverse operation of an encryption schema to retrieve original

text from plaintext by using decryption key and ciphertext as an input.

In every encryption schema, if one inputs the plaintext P with an encryption key Kg
provided before, encryption algorithm E outputs an unpredictable and unintelligible
ciphertext message C. Conversely, the original message can be obtained by applying a
decryption algorithm D, which has similar design with the encryption algorithm. Thus,
decryption algorithm D inputs ciphertext C and the decryption key Kp, then outputs the
original message P. Both encryption and decryption algorithms rely on Correctness

Property such as Dk, (Ek,(P)) = P.

As we have seen from the definition that, encryption is a set of mathematical
procedures which concern with the design and analysis of secure communication
between two parties by protecting their sensitive information from unauthorized
access. The purpose of the encryption process is to provide confidentiality of data
by scrambling it in a way of which just the only people who have the key can reveal the
original data. Thus, it is obvious that the main demand from an encryption schema is
not to allow any unauthorized users to decrypt the encrypted message without having

the key used in encryption.

In cryptography, the encryption and decryption algorithms should be designed not to
compromise the security of systems. The algorithms should provide substitution and
permutation to make the prediction of any secret message hard and complex. Now, we

give one of the main principles used in any cryptosystem.

Kerckhoffs’ Principle. When designing or evaluating the security of cryptosystems,
it should be secure even if everything about the system, except the key, is public

knowledge.

In ancient cryptography, the design of cryptosystems kept its secret to form a barrier
when an attacker intended to hack it. However, the security of an algorithm should
not be depended on the design of the algorithm according to Kerckhoffs’ Principle.
It should not cause any vulnerability even if the algorithm is known broadly so that
the security of the algorithm should solely depend on the security of the encryption
key Kr. By adopting this design principle, the users of the algorithm can be aware
of possible attacks and it is also open for any cryptanalysis by experts to have a more
secure system. Thus, Kerckhoffs’ Principle became a fundamental design criterion in

modern cryptography.

There are also two entities who want to communicate with each other: (1) Alice as
a sender and (2) Bob as a receiver. During secret message transmission, If Alice has
Kr and Bob has matched Kp, it is known as one-way secure communication channel.
However, if Alice and Bob have Kg, and Alice has matched Kp, there is a two-way
secure communication channel. We later present more broad explanations of them as

symmetric and asymmetric encryption.

2.3 Types of Cryptosystems

In modern cryptography, there are two types of cryptosystems when encryption and
decryption system considered. We provide explanations and features of each in the

following sections:

2.3.1 Secret-key cryptosystems

The secret key cryptosystems, also known as symmetric cryptosystems, are known
as the oldest techniques used in history since the ancient cryptography era. In secret
key cryptosystems, both parties agree on a secret shared key at the initial stage of the
encryption process and the same key is used in the decryption process. The secret keys
should be a randomly chosen text or integer and initially transmitted to each party in
a secure channel. Thus, the security of the symmetric key cryptosystems is mostly
based on keeping the key transmission channel secure. Even the message integrity can
be provided by one of the modes of operation, if an attacker corrupts the key during

transmission, he can decrypt all plaintext and so reveal all original messages.

The key property of this type of cryptosystems is the need for secure key transmission
between parties. Also, the algorithms provide the same security with shorter key size
comparing to public-key cryptosystems. Because of the efficiency of this feature, many
cryptosystems use secret-key encryption schemas. Besides, one of the drawbacks of a
secret key cryptosystem is generating different random keys for each pair of entities. If
there is a group communication including n people, n(n — 1) /2 different key pairs are
needed to be generated to enable communication between any two-party. Generating
many key pairs also leads to the need for secure storage and changing the key regularly

to prevent possible attacks.

Thus, secret key cryptography (such as DES, AES, 3DES, etc.) is widely used in many
applications even key establishment between two-party and trustiness are still open

questions.

2.3.2 Public-key cryptosystems

Public-key cryptosystems (PKC), also known as asymmetric cryptosystems, consist of
a pair of a public and private key for encryption and decryption process. Public keys
can be sharable with anyone; however, the mathematically related private key is owned
and known by just its owner. These cryptosystems have been invented to eliminate the
need to share the secret key with each party in a secure channel. The secret message
encrypted with the receiver’s public key, and only the receiver that has matched private
key can decrypt the encrypted information. Thus, any adversaries who do not have the

receiver’s secret key cannot decrypt the secret message.

The security of this type of cryptosystems is based on the generation of keys and
securing the private keys. One of the keys in pair is the public key, which can be known
and distributed to everyone without adjusting any security agreement and it does not
easily reveal the generation of the private key. Thus, key pair generation algorithms are
mostly based on some unsolved mathematical problems which provide computational
hardness to not to derive the private key from its paired public key. Additionally,
public-key cryptosystems require a relatively longer key size which leads to slower

encryption schemas comparing to secret key cryptosystems.

Moreover, one of the challenges in PKC is the trustiness and proof of public keys

used in encryption. The sender needs to ensure that the public key is not corrupted

9

by any malicious third party. This problem leads to a solution by having a Public
Key Infrastructure (PKI) to manage and certificates public keys. However, public-key
cryptosystems such as RSA, ElGamal Signature Schema and Diffie-Hellman Key
Exchange schema are also widely used if one needs to replace the limitations of secret

key cryptosystems.

The security of this type of cryptosystem is based on the protection of private
key, which is mathematically derived from the public key. Thus, we present some
mathematical problems such as discrete logarithm problem and integer factorization
problem, which are computationally unsolved yet. We will give problem definitions of

both in the following sections 2.4 and [2.5] respectively.

2.4 Discrete Logarithm Problem

2.4.1 Problem definition

Definition 2.4.1. Let g be the generator of the group G with the order of n. Given
group and n, for any integer

h=g" 2.1)

computation of x is the discrete logarithm problem. Such an integer x is called a

discrete logarithm of h to base g.

To solve the DLP in general, the first algorithm which comes to mind is a trivial
exhaustive search. However, its complexity is quite high and not efficient in terms
of running time. Although there is no efficient method to solve DLP efficiently in
general, there are some algorithms that can solve very efficiently for some cases. The
methods are called Index-Calculus, Pohling-Hellman, Shank’s Baby-Step-Giant-Step
Method, Pollard Rho Method, and Lenstra’s Elliptic Curve Method. (See Section 11.6

in the book [19] for more information)

2.4.2 DLP based PKC

In previous subsections, we gave the problem definition of the discrete logarithm. In

this subsection, we present examples of some public key encryption systems whose

10

security is based on the difficulty of the computationally intractable discrete logarithm

problem.

2.4.2.1 Diffie-Hellman key exchange

As seen in Section [2.3] secret key sharing between two entities is a critical issue in
symmetric type cryptosystems. Thus, Whitfield Diffie and Martin Hellman invented
the algorithm in 1976, which allowed sharing a secret without the need for a secure

communication channel.

Alice \ Bob

Agreement Stage
p: prime
g: generator s.t. g < pand g € G.

a<Zpanda<p b<Zyand b <p
hy = g% mod p hg = g” mod p

k= (hg)*=g"mod p | k= (ha)’ =g mod p

Figure 2.1 : Key Exchange Schema.

As we have seen from the figure above, Alice and Bob initially agree on a finite cyclic
group G with the order of n. Then, they choose a prime integer p and a primitive root
of p such that g < p and g € G. Then, Alice chooses a random integer a € Z/nZ such
that a < p as her secret key and calculates 4 = g* (mod p) as a public key. She sends
her public key /14 to Bob. (Remember from the Section that the secret key should
be unknown except Alice; however, the public key hy4 is sharable to anyone.) At the
same time, Bob chooses his secret key b € Z/nZ such that b < p and calculates his
public key 4 = g8 (mod p). Bob sends his public key &g to Alice. Now, each party
has other’s public key. Bob calculates (r4)” and Alice computes (hg)?. At the final

stage, they obtain the same calculation since (hy)? = g* = (hp)“.

Example. Choose p = 281 and a primitive element a = 3 of p. Then, Alice and Bob
choose a = 59 and b = 181 respectively. Before key exchange stage; Alice computes
3% mod 281 = 74 and Bob computes 3''3 mod 281 = 270. After that, they exchange
public keys. Then; Alice computes 74!'3 = 82 and Bob computes 270°° = 82.

11

Security. Assume that an attacker knows everything except the secret keys a and b
given in Figure Even the values of p, g and the result of the computation g¢, g” are
known to the attacker, it is not computationally feasible to compute the secret keys in a
reasonable amount of time. The problem with the use of very large primes is still very
expensive in terms of calculation, even for modern supercomputers. Thus, the security
of the Diffie-Hellman key exchange method is based on the difficulty of solving the

discrete logarithm problem.

2.4.2.2 ElGamal encryption schema

We have seen from Diffie-Hellman Protocol that it is a great idea to exchange the
secret key between two parties, which was a major problem in secret key cryptography.
However, the secret message is not encrypted in the Diffie-Hellman method. Thus, in
1984, Taher ElGamal invented a new public-key cryptosystem, which is similar to
Diffie-Hellman protocol. However, it also encrypts messages and generates digital
signatures of entities. Moreover, it also provides probabilistic encryption which means
that a message can be encrypted with many possible ways depending on the choice
of the key. The method consists of 3 main stages: key generation, encryption, and

decryption. Now, we describe each part by given algorithms and an example.

Alice \ Bob
Key Generation Stage

DA: prime PB: prime
ga: generator modulo pa gp: generator modulo pp
a: randomst. 2 <a < py —2 b: randomsst. 2 < b < pp—2
ba = g4 mod py bp = g5 mod pp

Public: {pa,ga,ba} Public: {pp,gB,bp}

Private: a Private: b

Figure 2.2 : ElGamal Key Generation.

Since ElGamal Methods is a public-key cryptosystem, we generate two different keys:
a public key is used for encryption and a private key is used for decryption. Now, we

give details on encryption and decryption stages by the following figures:

Let us illustrate the encryption schema with an example:

Example.

1. Key Generation:

12

Encryption

Public key received st. {p,g,b}

Selectrandom kst. 1 <k<p—1

Calculate x = g mod p

Calculate y = m - (¢%)* mod p where 0 <m < p—1

Ciphertext: (x,y)

Figure 2.3 : ElGamal Encryption.

Decryption

Ciphertext received st. {x,y}
Calculate m =x"“-y mod p

Plaintext: (g*)~¢-m- (g*)* mod p =m

Figure 2.4 : ElGamal Decryption.

* Alice chooses p = 41 and finds the primitive element g = 6,
* Chooses her private key a = 29, and
« Calculates her public key b = g% = 6*° mod 41 = 22.

2. Encryption:
* Bob receives Alice’s public key {p =41,¢ = 6,b =22}
* Bob chooses k = 17 and the message m = 35,
¢ Calculates x = gk =68 =26 mod 41,
* Calculates y = m- (g*)* = 35-(6*°)!7 mod 41 = 20, and
* Sends the ciphertext pair (x,y) = (26,20).

3. Decryption:
e Alice finds the random k = x4 = 26%° = 24 mod 41, and

« Reveals the secret message m =k~ ' -y =24"1.20 mod 41 = 35.

Security. We know from the algorithm that secret values are the private key a, random
integer k and the message m. If the attacker knows the private key a of Alice, then he
can decrypt the messages. However, finding a by knowing public values {p,q,b,x,y}
is discrete logarithm itself. Thus, the security of ElGamal is as hard as the discrete

logarithm problem as we mentioned in Section

13

2.5 Integer Factorization Problem

As we have already seen from the previous sections, the general idea behind the
public-key cryptography is to have different keys for encryption and decryption. Since
the private key is derived from the public key, key derivation algorithms were based on
mathematical unsolved problems, i.e., the solutions are not feasible even with modern
supercomputers. One of the methods is to choose the Discrete Logarithm Problem
(DLP) to be a base for the security of the algorithm. Diffie-Hellman Key Exchange

and ElGamal Encryption are examples where the security only depends on DLP.

The usage of prime numbers in the RSA algorithm increased the challenge in prime
factoring for many years. Thinking of the last factored RSA number is RSA-220
which consist of 220 digits, integer factorization problem is not easy to solve in a
timely manner. In this section, we give another unsolved mathematical problem, which

constructs the security of RSA.

2.5.1 Problem definition

According to Fundamental Theorem of Arithmetic, every integer has unique prime
factors. It is trivial if the number is prime since prime numbers have no divisors
other than 1 and itself. Otherwise, any factorization algorithm gives the multiplies
of composite numbers. However, the difficulty of problem increases for very large

composites.

The next definition is the main idea behind the factorization:

Definition 2.5.1. Let n denote a composite number which can be written as the form

of
k .
n=[]p (2.2)
i=1

Then, integer Factorization Problem (IFP) can be defined as a decomposition of » into

pi with repeating count of e;.

Even there is no efficient prime factorization algorithm yet, there are some algorithms

with their drawbacks. The first and the simplest one is to try all possible numbers to

14

check whether it divides n or not. Besides the elementary methods, we will mention

elliptic curve factorization method in Chapter 3] which is most recent.

2.5.2 IFT based PKC: RSA

RSA algorithm is invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman
at MIT and became one of the most widely used public-key cryptosystems for years.
RSA algorithm has a key pair such that a known public key and a private key derived
from the public key, as well as the other previous cryptosystems. Furthermore, the
security of the RSA algorithm depends on the difficulty of factorization of large
number (see Section), which is the product of two hundred-digit prime numbers. Now,

we provide details of the method afterward giving examples and security discussion.

First, we come up with the key generation stage by the following figure:

Key Generation

Choose: {p,q} st. p,q are large primes
Calculate: n=p-q

Choose: e st. ged(e,¢p(n)) =1and 1 <e < §(n)
Calculate: d = e~ ! (mod ¢ (n))

Public key: (e,n)
Private key: (d,n)

Figure 2.5 : RSA Key Generation.

As we have seen from the figure that ¢ (n) is the Euler’s Totient Function as we will
discuss the details in Chapter 4, Also, one of the public key e and the private key d
are mathematically related to each other, i.e., one of each is multiplicative inverse of
another modulus ¢ (n).

After the key preparation step is completed, Bob gets Alice’s public key pair {e,,n,}
and computes the ciphertext ¢ = m® mod n, where m is the secret message. When
Bob sends the ciphertext ¢ to Alice, she decrypts using her private key pair {d,,n,} by

da _

doing the calculation m = ¢ méa mod ny.

Example.

1. Key Generation:

* Alice chooses p = 151, g = 607
15

* Calculates n = p*xg = 91657 and ¢(91657) = 90900.

* Chooses e =7 st. gcd(90900,7) = 1

* Calculates d = e~ (mod 90900) = 51943
2. Encryption:

* Bob receives Alice’s public key {e¢ =7,n = 91657}

* Bob encrypts the message m = 96 by calculating 96’ mod 91657 = 76779,
3. Decryption:

* Alice decrypts the message by calculating m = 76779°1°* mod 91657 = 96.

Correctness.
The correctness of the algorithm can be demonstrated by using the following theorem

and its proof.

Theorem 2.5.1 (RSA Correctness). m® = m (mod n) holds for all integers m € Z,,.

Proof. 1t suffices to prove both in modulus p and g because of the Chinese Reminder
Theorem (CRT). Since p and ¢ are distinct primes such that gcd(p,q) = 1, CRT states

that if

m“=m(mod p) and m*=m (mod q) (2.3)

then it implies that
m® =m (mod n) (2.4)

So, we first prove for modulus p, then the further will be the same for modulus g.

Firstly, we know from the key generation stage of RSA that for e > 0 and any k > 0

e-d=1(mod ¢(n))

e-d=k-¢(n)+1=k-(p—1)-(g—1) for some integer k > 0
holds. Additionally, Euler’s extension to Fermat’s Little theorem asserts that

mP~1 =1 (mod p) (2.5)

16

Therefore;

m¢? =m0 . (mod p)
=m-(m")4) (mod p)
= m- (1)((171) (mOd p)

=m (mod p)

Now, we have seen that m®¢ = m (mod p) for all integers m. The proof also satisfies
if one changes p with g. Thus, we have proved by using CRT and Fermat’s Little

Theorem that

m¢? =m (mod n) (2.6)

holds for all integer m.

]

Security. The security of RSA solely depends on the difficulty of solving the integer
factorization problem. Since RSA is the first easily used public-key cryptosystem, it
is implemented in many systems for years and its security analyzed in many ways.
The usual attack is prime factoring very large integers. From 1991, RSA Laboratories
arrange factoring challenges to encourage research on cracking RSA by the area of
computational number theory. Even they did not succeed yet, they applied many
attacks on RSA such as timing attack, partial key exposure attack, implementation
attacks, etc. [30]. Finally, we conclude that RSA can be broken at all if one discovers
a fast integer factorization algorithm, which also works well with very large RSA

modulus.

17

3. PRELIMINARIES OF ELLIPTIC CURVES

An elliptic curve is an algebraic structure which used in many applications in
cryptography because it provides the same security level with lower key size. In
terms of number theory, these curves are used in modern primality testing and integer
factorization algorithms. Elliptic curves first introduced by Miller and Koblitz in 1980,

then Lenstra used them for integer factorization.

Since this thesis includes primality testing algorithms with elliptic curves, we give

some brief notations and definitions in this chapter.

3.1 Definitions

Definition 3.1.1 (Generalized Weierstrass Equation). An elliptic curve over a field K
is given by

E :y2+a1xy+a3y:x3+a2x2 +asx+ag 3.1)

where the constants a; € K for i = 1,2,3,4,6. Then, the set of points on the curve E

can be expressed by the equation
K(K)=(x,y) €K: V2 4 arxy+azy = x> + apxy + asx + ag\Uoo (3.2)
Definition 3.1.2 (Simplified Weierstrass Equation). Let
2.3
E:y =x"4ax+b (3.3)
where the constants a,b € Z, is denotes the simplified Weierstrass form of an elliptic
curve.

Definition 3.1.3 (Discriminant of the curve). The discriminant of an elliptic curve

given in the Weierstrass form is
A = —dy?ds — 8ds> — 27dg* + 9drdsds (3.4)
where :

dr = ay +4a>
19

dy =2a4+a a3
dg = a32 +4ag
dg = a12a6 +4arag —ayazas + agag — ai
and A # 0.
Definition 3.1.4 (Smoothness). If the given elliptic curve has discriminant A # 0, the

curve is smooth which means that no points on the curve have two distinct tangent

lines.

3.2 Elliptic Curve Arithmetic

Now, we have introduced the concepts of elliptic curve arithmetic including algebraic

group operation.

Let P = (x1,y1) and Q = (xp,y7) are two points on elliptic curve, we denote P = (0, 1)
as point at infinity or identity point of elliptic curve. Since elliptic curves are symmetric
geometrically, we denote as the negative —P = (x, —y). If we add two points P and Q
algebraically, we denote this group operation as @, we get an 3’ point P& Q =R =

(x3,y3) on the curve as shown in the figure below.

P,

P

B

Figure 3.1 : Point addition on elliptic curves.

20

3.2.1 Group law

The following theorem gives a brief explanation of group operation on E.

Theorem 3.2.1. The addition of points on an elliptic curve E satisfies the following
properties:

1. Addition: If P,Q € E, then P& Q € E

2. Identity: OOP=PHO =P

3. Inverse: P® (—P) = 0 = P

4. Associativity: P& (Q®R) = (PG Q) @R

5. Commutativity: PEQ=Q®P

If the last property, i.e., commutativity rule, satisfies, then we call this group as abelian

group.

We give details about algebraic point addition & operation on proceeding sections.

3.2.2 Group order

The number of points in the elliptic curve E over the finite field Fj, is called the order
of the curve and represented by #E (F;). Hasse’s theorem on elliptic curve gives
the interval of the order of the curve E over finite fields [29]. It estimates the order by
bounding the value both above and below which are only depend on the finite field and

not the curve.

Theorem 3.2.2 (Hasse’ Theorem). Let p be a prime number and g = p" for n € N.

The order of an elliptic curve E over Fy is bounded by

g+1-2/q<#E(F;) <q+1+2\/q (3.5)
Proof. See [29]] for the complete proof. 0

Hasse’s Theorem is used in many elliptic curve cryptosystems over years. For instance,
R. Schoof used this theorem [11]] to generate an algorithm for computing the number of
the points on elliptic curves. Additionally, elliptic curve primality proving algorithms

included this theorem in their proofs.

21

After describing the main theorem of group order of elliptic curves, we now give details

on their group structures.

3.2.3 Group structure

Let E denote an elliptic curve over the field K. There is a chord-and-tangent rule which
generates the 3rd point on E(K) by drawing a line passing over two distinct points or

a tangent line of a single point on the curve E.

Let P = (x1,y1) and Q = (x2,y2) be two points on elliptic curve E over IF,,. Then, we

can uniquely describe a third point by adding P® Q = (x3,y3).

The point addition and doubling operation can be done by following way:

x3=A%+2a—x; —xo, y3=A(x1 —x3) —y1. (3.6)
where
Y1—n ifP+£0Q
X1 — X2
A=

3x% —4ax; + a*
2y

ifP=Q

Note that —P = (x,—y) and P® (—P) = P. where P. is called point O or point at
infinity. We should also mention here that there are many other ways to perform group

operation in E(IF;). (For other methods, see [2}24] related chapters.)

In this way, the computation of the slope (1) requires to take the multiplicative inverse
of either “x; —x) or “2y] in modulus n. If the greatest common divisor of any of the
denominator and 7 is not equal to 1, the operation fails to compute point addition and
returns a factor of n. This is the key point of Lenstra’s Elliptic Curve Factorization

Method [20]].

3.2.4 Scalar multiplication

The scalar multiplication operation consists of a positive integer k > 0 and a point P on
elliptic curve E. These three ingredients form the basis of the security level of elliptic
curve cryptosystems which are based on the difficulty of finding the scalar multiplier

k in a given multiplication operation Q = [k|P for given point P,Q on E and the group

22

operation denoted by @. The scalar multiplication is mainly applying group addition
operation to the point P repeatedly to itself and finding another point Q on curve E. It
means that

Q=[kP=POPOPD..OP

k—times

This definition can be extended for all integer k by [0]P = P, and [—k]P = [k](—P) for
k <0.

This basic recursive point addition method is very expensive because it requires the
longest addition operation chain for large values of k. Here, the problem arises to
retrieve scalar multiplier £ with the least number of steps. Since finding the shortest
addition chain is actually a NP-complete problem, various heuristics methods have
been invented to reduce the number of additions and doublings. For simplicity, we will
not give a detailed analysis of these methods; but, general structures of algorithms will

be given at this point.

3.2.4.1 Binary method

The ‘school book* method to retrieve n-bit integer k starts with binary representation
of k = ko + 2ky +2%ky + ... +2" 'k, | where ko, ki,...k,_1 € {0,1}. By this way, the
multiplication cost depends on the length of k and the number of 1s in representation.
As a result, binary method takes n — 1 doublings and w(k) additions such that w is the
Hamming weight which represents the number of non-zero bits in k. Thus, this method
speeds-up retrieving the multiplier k by having n/2 additions on average without any

precomputation step.

The method works as follows:

Algorithm 1 Binary Method Point Multiplication

Require: Point P, n-bit integer k
1: procedure CALCULATE([k|P)
2: ifk,_1 =1then Q + P

3 elseQ + 0

4 fori=n—2—0do

5: 0+ 040

6 ifki,=1then Q<+ Q®P
7 return Q

23

Signed Digits

The elliptic curve representation has negative points P = (x,—y) and the point
subtraction costs the same as the point addition. However, this representation of any
given positive integer speeds up the computation by reducing the number of non-zero
digits comparing to signed digit binary representation of the same number. This unique
representation is called width-w non-adjent form and denoted by NAF,, (k) = Z?:_Ol k2!
for a positive integer k where each k; € {—1,0, 1} and width size w. We can easily see
that NAF,, conversion of an integer has fewer non-zero digits. It is proved in [MorOl,
1990] that the density is approximately 1/3 for w =2 and 1/(w+ 1) in general. [Sol,
2000].

Now, we will give how to find NAF,, representation of given n—bit scalar k.

Algorithm 2 Converting to NAF,, Representation

Require: n-bit integer k and parameter w
1: procedure NAF,, (k)

2: n+0

3 while k£ > 0 do

4 if k is odd then

5 k, < k mods 2%

6: k<« k—k,

7 else k,, +— 0O

8 k<« k/2

o: n<n+1

10: return (k,_1,kn_2,....k1,ko0)NAF,

where mods function can be computed as:

1: procedure MODS

2 if ¢ mod?2” >2""! then

3: return ((k mod 2") —2%)
4 else

5 return (k mod 2")

Each point multiplication method can be modified by adding the computation of NAF
representation of k as a pre-step. Thus, we first give the modified version of the binary

multiplication method as follows:

24

Algorithm 3 Binary Method Point Multiplication by using NAF Representation

Require: Point P, n-bit integer k
1: procedure CALCULATE([k|P)
2: ifk, |=1thenQ<«+ P

3 elseQ «+ 0

4 fori=n—2—0do

5: Q0+ 0®Q0

6 ifk;=1thenQ <+ Q®P
7 ifki=—1then Q<+ QOP
8 return Q

3.2.4.2 Windowing method

This method is similar to the binary method; however, it consists of precomputation
step and processes blocks of w (window size) bits in one time. Besides it has almost
the same complexity with the binary method, it provides fewer additions with extra
memory to store precomputed values. There are two ways of applying windowing
method: fixed-size windowing method and dynamic (sliding) windowing method. We

give the algorithms and their analysis respectively.

Fixed-size Windowing

Algorithm 4 Fixed-size Windowing Method

Require: Window size w, Point P, n-bit integer with k
10k =ko+ 2%k +22ky + ...+ 20D
2: procedure CALCULATE([k|P)
3 ifk, =1thenQ <+ P
4 elseQ «+ 0

5: fori=n—2—0do

6

7

8

Q—0a0
ifkij=1thenQ<+ Q&P

return Q

25

Sliding Window

Instead of fixed size windowing method, this method has a dynamic windows

approach:

Algorithm 5 Sliding Window Method for Point Multiplication

Require: Window size w, Point P, n-bit integer k = (k,_;...kp)> and precomputed
points [3]P,[5]P,...,[2" — 1]P

1: procedure CALCULATE([k]P)

2 0+ P,

3 i< n—1

4: while i > 0 do

5: if k; = O then

6 O« [2]Qandi<+i—1
7 else

8 s <—max(i—k—+1,0)

9: while n;, = 0do s < s+ 1
10: forh=1—i—s+1do Q<+ 2|0
11: u < (nj...ng)n

12: Q< Q@ [ulP

13: i+—s—1

14: return Q

3.2.4.3 Montgomery ladder

The mainly used scalar multiplication algorithm in the context of elliptic curves is
proposed by [33]] and redesigned for many years. From the computational the point
of view, this method has the advantage of time and power consumption. However, it
exposes to side-channel attack shown in [[15] that the full private key can be extracted

after performing timing against 200 signatures.

Algorithm 6 Montgomery Ladder

Require: Point P, n-bit integer k
1: procedure CALCULATE([k]P)

2: 0«0

3 fori=1—ndo

4 if k,_; =0 then

5: P+~ QO®Pand O+ 20
6: else

7 O+~ QO®Pand P+ 2P
8 return Q

26

4. PRIMALITY TESTING AND PROVING ALGORITHMS

4.1 Mathematical Underpinnings

The primality testing is one of the most important topics in computational number
theory and cryptography since ancient times. For a given integer n, it is trivial to
prove primality if » is even or a very small odd number. However, if we think very
large integers that have several hundred digits, the problem was not so easy because
of the lack of efficient primality testing algorithms that run in polynomial time. In
this section, we present some theorems and definitions regarding the fundamentals of
number theory and then describe some primality testing algorithms in details in the

next sections.

Firstly, we introduce the important theorem which was proposed by Carl Friedrich

Gauss in 1801, which is a remarkable principle in theory.

Theorem 4.1.1 (Fundamental Theorem of Arithmetic). Every integer n > 1 and in 7

is either a prime itself or the product of prime numbers.

Example. Some examples of non-negative integers as given below:

255=3.5-17 , 2520=2%.32.5.7 ., 60291=3%-7-11-29

This theorem asserts that the numbers except for primes are the form of the product
of two (or more) prime numbers, which are known as composite numbers. Since this
theorem states a unique representation and factorization if the order is ignored. The

integers can be written as the form
k
e e e e
":P11'P22"‘Pkk:Hpi 4.1)
i=1

where p;’s are distinct primes with the order of p; < p» < ... < p and ¢;’s are positive
integers corresponding occurrences of each prime p;. Since 1’s could be added finitely

to this product, so 1 is not accepted as prime (or even composite) [27] to prevent the

27

uniqueness of factorization. If 1 would be a prime, the factorization would not be

unique since for example 13 =13-1-1-1---.

Proof. For a complete proof, see section 2.3 in the book [6].

O

Hence, prime numbers are building blocks of all integers in Z. The subsequent theorem
gives a point of view on the density of prime numbers until a limit. Now, we introduce
a very remarkable theorem which conjectured by Carl Fredrich Gauss in 1792 and

proved elementarily by Paul Erdos (1949) and Atle Selberg (1950).

Theorem 4.1.2 (Prime Number Theorem). For any x € R, let m(x) denote
prime-counting function which returns the number of primes that not exceed the bound

x and In(x) is natural logarithm. So; 7(x) can be denoted as

Here we also give the first 10 calculations of 7(x) and % in the table below:

Table 4.1 : Density of primes.

X m(x) ﬁ
10 4 25
102 25 4
103 168 5.952
10 1229 8.137
10° 9592 10.425
10° 78498 12.740
107 664579 15.047
108 5761455 17.357
10° 50847534 19.667

1010 455052511 21.975

As we have seen from the graph and table that 77(x) is monotonically increasing and the
density of prime numbers up to a certain large limit is less frequent. So, it is difficult
to find very large prime numbers in a reasonable amount of time. The largest prime
number founded in the universe, known under the code name M77232917, has more
than 23 million digits [39]. However, the following theorem proposes that there is no

limit to find a prime number.

28

Theorem 4.1.3 (Euclid’s First Theorem). Infinitely many prime numbers exist.

Proof. Before giving the existence and uniqueness proofs of the theorem above, we

first introduce the lemma used in the proof.

Lemma 4.1.1 (Euclid’s Lemma). Let p € 7Z be a prime number and a,b € 7. Then, p
is divisible by the product of ab if and only if p is divisible by a or b.

We follow the proof by contradiction method by assuming that the number of primes
is finite. Let call this count as n and the bound as N. Now, denote that N = py - p» -
p3---pn+ 1. It is apparently seen that p,, is the largest prime, N > p, and N is not
prime. By using Theorem@4.1.1} we deduce that N must have a prime factor in our list,
call p;. The number N will have a remainder 1 when divided by one of the p;. This

contradiction makes N a prime aside from N # 1.

]

Primality tests deal with determining and proving the primality of given a number n.
In high school mathematics, we all know that one of the basic methods for determining
primality is founded by Sieve of Eratosthenes. The idea behind this test is checking if n
is divisible by all numbers less than or equal to \/n. If any number in the list divides n,
the test outputs the compositeness of n; otherwise, n will be a prime. Here, there may
be a modification in the list since we do not need to check for all even numbers. For
example, if n is not divisible by 2, then it will also not divisible by multiples of 2 up
to \/n, let say bound B. Moreover, the idea is the same for other small prime numbers
3,5,7 and so on. If the given number 7 is not divisible by any small prime, it also will
not divisible by its multiples, so we mark its multiples to not to check again. Thus, we
continue to check if unmarked numbers divide n or not. However, this method is very
inefficient considering very large numbers that have several hundred digits. Hence, we

cover mostly the theorems and algorithms used for primality test in an efficient way.

The primality tests are more broader in two categories: deterministic tests and
probabilistic tests. Deterministic tests can exactly determine the primality of a number
but it is slower than probabilistic tests. Although the probabilistic tests are quite fast,

these tests can erroneously determine (with a very small probability) a composite

29

number as prime or a prime number as composite. The next sections we describe

and provide some examples on both probabilistic and deterministic tests.

4.2 Probabilistic Primality Tests

4.2.1 Fermat’s test and Euler’s extension
Fermat’s test

Fermat’s Little Theorem and primality testing algorithm is an ancestor of later
developed algorithms. There are some algorithms which are just an extension of
Fermat’s theorem. Thus, we state primality testing algorithms by beginning from

Fermat’s test.

Theorem 4.2.1 (Fermat’s Little Theorem). If p is prime and a > 0 with p 1 a, then for
allae{1,2,....p—1}
a’~'—1=0(mod p) (4.2)

Proof. See [6] for more detailed proof. O]

Moreover, there is a useful corollary which can be obtained by multiplying both sides
of the congruence stated in [4.2.1| by a. The restated form does not have a restriction
for a to be relatively prime to p. This variant can be applied to any a (regardless of it

is relatively prime to p). The form can be written as:

a’ =a (mod p) (4.3)

Fermat’s Little Theorem states that if p is prime, then a” — a is always divisible by p

for any base a. Now, we illustrate the use of this theorem with an example.

Example.
Let us choose a prime number p = 101 and an integer a = 13 such that p { a.

By using Theorem we calculate that 131 — 1 =0 (mod 101).

The Fermat’s little theorem is a proper fit to reduce residue if one calculates some large
powers of a number. For example; 7214329 = (7652)329 =721 = 186 (mod 653) because

7652 = 1 (mod 653). Moreover, we can obtain information on the compositeness of a

30

number such that if the reminder for the division of a?~! by p is not 1 for an integer

a > 1, p is definitely composite.

However, there is a drawback such that some numbers satisfies the primality test
algorithm and acts like a prime number even though they are actually not prime. Now,
we introduce this snag and special composites which are also the main focus of this

thesis.

Definition 4.2.1 (Fermat pseudoprimes). The composite number n > 2 which succeeds
the condition such that @"~! —1 = 0 (mod n) for an integer a > 0 are called Fermat

pseudoprimes to base a, or a-pseudoprime, psp(a) for short.

If the number n does not pass the case, we can say that it is a composite; however, the

converse of this proposition is not always true as the following example shows.

Example.

Let us choose the number n = 341 to test for base a = 2 and calculate the condition
provided by Theorem Although the calculation is resulted as 234° — 1 = 0 (mod
341), n is actually not prime since 341 = 11-31. We define the base 2 as the following

definition states:
Definition 4.2.2 (Witness/Liar). For a given odd number n, the congruence

an=D/2 = <f> (mod) (4.4)

n
holds or not for some values of base a such that gcd(a,n) = 1.

If n does not satisfy the congruence 4.2.2] for base a, we prove that n is definitely
composite. Therefore, we define the base a as witness base because it helps to prove the
compositeness of n. In contrary, if n passes the congruence even though it is actually

composite, we call a as liar base because it causes an incorrect result.

From the previous example which we examine whether compositeness of n = 341,

base 2 is a Fermat’s liar base for 341.

The results in the research [36] show that Fermat pseudoprimes are relatively rare
than prime numbers, however, there are still infinitely many [34]. The following table
[37] gives the number of 2-pseudoprimes less than 10" where n > 2. We call such

pseudoprimes to base 2 as Poulet numbers.

31

Table 4.2 : Number of 2-pseudoprimes.

limit #Fermat-psp(2)

10° 3

10* 22

10° 78

100 245
107 750
108 2057
10° 5597
1010 14884
10" 38975
1012 101629
1013 264239
1014 687007
101 1801533
1016 4744920
1017 12604009
10'8 33763684
1019 91210364
2064 118968378

The following table contains more examples of different values of base a < 10:

Table 4.3 : Examples of a-pseudoprimes.

n
341, 561, 645, 1105, 1387, ...
91, 121, 286, 671, 703, ...
15, 85, 91, 341, 435, ...
4,124, 217, 561, 781, ...
35, 185, 217, 301, 481, ...
6, 25, 325, 561, 703, ...
9,21, 45,63, 65,117, ...
4,8, 28,52,91, 121, ...
9, 33,91, 99, 259, 451, ...

O 0 I ON AW

[a—
=

We see from the table 3.3 that some numbers are pseudoprimes to more than one bases.
For example; we know that 9 is a composite number but holds the congruences for
base 8 and 10 such that 8°~! =1 (mod 9) and 10°~! =1 (mod 9) respectively. This
increases the probability of having an error if n passes the test. Thus, we need to repeat
this test for different bases to find the compositeness of a number. If a number is a
probable prime for a base a, we give a try to another base because of the existence

of Fermat’s liar bases. If a number # fails at any base a, we say that it is non-prime.

32

We provide the pseudocode of Fermat’s algorithm that uses Fermat’s Little Theorem

as primality testing:

Algorithm 7 Fermat’s Pseudoprime Test

Require: a > 1,n > 2,gcd(a,n) =1
1: t < repeat time.
2: procedure TEST(n)

3: fori=1—1rdo

4: a<+{2,n—1}

5: if gcd(a,n) > 1 then

6: return composite

7: elseif ¢! # 1 (mod n) then
8: return composite

9: else

10: continue
11: return probable prime

As we have seen from the algorithm that the test chooses a random integer a and
applies the condition containing a quadratic equation. If the test stops any of the steps
before completing z-times, it correctly declares that n is composite and has non-trivial
factors (not including factorization step). We hope that if we try for all bases a such
that 1 <a < n—1, we will prove also the primality of a number. However, there are
some special numbers which are not convenient for this test even we test with Fermat’s
Little Theorem. We are unable to prove and predict their compositeness even after
t-trials of Fermat’s test. Now, we give the definition of these troublesome composites

which are pseudoprimes for many bases and proposed by Carmichael.

Definition 4.2.3 (Carmichael Numbers). The composite integer 7 is called Carmichael

number if it passes the Fermat’s primality test for every base a such that n t a.

Carmichael numbers are very rare rather than a-pseudoprimes and 561 is the smallest
for base 2. Now, we illustrate the use of this definition with an example.

Examples.

+ 2560 =1 (mod 561)
*+ 50 =1 (mod 561)

» 7590 =1 (mod 561)

33

As this example shows, 561 always passes the Fermat’s test to base a such that
gced(a,n) > 1 despite its compositeness. Thus, Carmichael numbers cause trouble in
determining compositeness of an integer with Fermat’s Test. Because of existence
such numbers, if the test does not stop at any condition for -trials, the test outputs
that n is prime or Carmichael number with probability greater than 1 — % This lead to

following generalization theorem proposed by Euler.
Euler’s extension

We see from the previous section that Fermat’s theorem could only be applied when
a modulus is a prime number. Otherwise, there would be false generalization since
219 = 4 (mod 10), not equal to 1. Euler generalized the Fermat’s Little Theorem for
all numbers n. Before explaining the Euler’s theorem, we first give a definition of
Euler’s Totient function that provides a base for this theorem, whereupon illustrate the

definition with examples.

Definition 4.2.4 (Euler’s Totient Function). For an integer n, the function ¢(n) is
expressed as the count of integers between 1 and n — 1 which are relatively prime

to n.

Examples.

* Choose n = 18. To find ¢(n), search for all integers not exceeding n. The set S =

{1,5,7,11,13,17} contains all numbers which are co-prime to 18. Thus, ¢(18) =6.

* Choose n = 11. The set S ={1,2,3,4,5,6,7,8,9,10} contains all numbers which
are co-prime to 11. Thus, ¢(11) = 10.

The following table gives some preliminary values of ¢ (n). We assume ¢ (1) = 1 by

convention.

Table 4.4 : Euler Phi Values.

n |[1/2(3(4|5/6[7(8/9[10/11|12|13|14[15|16|17|18|19|20
o(n)|1(1]2]2/4]2|6|4]|6|/ 4|10 4 12|68 |8 |16]|6 |18 8

We easily see from two examples above that 1 is co-prime to each number. Moreover;
we can find that the count ¢(n) is equal to n — 1 if n is prime. Now, we give some

calculations for composite numbers by the subsequent theorem [28]].

34

Theorem 4.2.2. Let p be a prime and e be positive number which denotes the power

of p. Then

1
o(p°)=p°—p~=p (1—1—)) (4.5)

We illustrate this theorem by the following examples.

Examples.

s 97T =T"-7=42
« ¢(13%) =13>-132=2018
Before giving the theorem for calculation of ¢(n) for composite integers, we first

introduce the multiplication property of the ¢ function, proposed by Pettofrezzo and

Byrkit in 1970 [5]].
Theorem 4.2.3. Let a and b be positive integers and co-prime. Then, ¢(a-b) = ¢(a) -
¢ (b)

Proof. See [6] for more detailed proof. [

Now, by using the unique factorization theorem4.1.1{and multiplication property given

in theorem 4.2.3| we find ¢ (n) for all composite integers 7.

Theorem 4.2.4. Let n be a composite and e > 0 be a number which denotes the power

of n. Then, n can be written as the form of

n=pi'-p3--p (4.6)
and Euler’s totient function can be found by

(AR ()

Proof. We first apply the multiplication property stated in Theorem [4.2.3| such that

¢(n) =o(p")-0(p5) - 0(p")

k
where n = pfi. Then, we know from the Theorem 4.2.2| that
i=1

o | 1
i i 1_1 i
o(p") = pi' — p¢ pr'<1—;>
1

35

If we multiply each ¢ (p{") where 1 <i < k, we found that

The following example illustrates the Theorem 4.2.4]
9(120) = $(2°-3-5) = 9(2%) - $(3) - ¢(5) = 120- (1 - 3) - (1 —5) - (1 - 5) =32
This theorem is a generalization of Fermat’s Little Theorem [4.2.1] with Euler’s phi

function.

Theorem 4.2.5 (Euler’s Theorem). For a positive integer n and a such that n{ a, then
a®® —1=0(mod n) (4.8)
Proof. See [6] for detailed proof.]

We illustrate the use of this theorem with an example.

Example. Let us pick a number p = 100 and an integer a = 7 such that p { a.

By using Theorem we calculate that 79(100) =740 _1 = ¢ (mod 100) where
¢ (100) = ¢(2%)-9(5?) =2-20=40

Accuracy. In the last part of the previous section, we see that Fermat’s test is not
successful for detecting some composites especially Carmichael numbers which pass
the test for all bases less than n — 1. However, thinking the frequency of Carmichael
numbers among pseudoprimes are very rare, the probability of a Fermat prime is
a Carmichael can be negligible. Thus, for a given a non-Carmichael number, the
probability of correctly detecting composite number as composite is at least % Then, if
we try Fermat’s Little Theorem for ¢ times with different base values a, the probability
of labeling a given composite incorrectly is at most % Hence, having large enough

repeating count increases the accuracy of the test.

36

4.2.2 Euler’s test

In order to introduce Euler’s test, we first give definitions (without their proofs) which

provides a base for Euler’s test.

Definition 4.2.5 (Quadratic Residue). For a prime p and a positive integer a such that

(a,n) =1, we say a is a quadratic residue if the congruence
x* =a (mod p) (4.9)

has a solution. If not, we denote a as quadratic non-residue.
Example. To find quadratic residues of p =7, we try all numbers less than 7.

12=1 (mod 7) 4?2 =2 (mod 7)

2> =4 (mod 7) 52 =4 (mod 7)

32=2(mod 7) 6> =1 (mod 7)
Hence; 1,2, 4 are the entire set of quadratic residues of 7 whereas quadratic nonresidues

of 7 are 3,5,6. A list for quadratic residues where p < 20 can be found at the sequence

number A046071 in OEIS database [37]].

Now, we give the definition for Legendre symbol which is based on the law of quadratic

reciprocity.

Definition 4.2.6 (Legendre Symbol). For any prime p and b > 0, we define Legendre

symbol as
1, if ais quadratic residue mod p.
a
[—] = 0, if a and p are not co-prime.
u —1, if a is quadratic nonresidue mod p.
Example.

Let use the previous example above.

(-0 ()
()-()-(5) -

Now, we give some properties of the Legendre symbol to be used in calculations:

2
7

37

Theorem 4.2.6. Let p,q be distinct primes and a,b be any positive integers which are

co-prime to p. Then the followings hold:

* [fa=b(mod p), then [E] B [é]

p p
(5)-6)-)
p p p
p—1
()0
p
Equivalently, we can write that
[—1]_ I, p=1(mod 4)
p) | -1, p=3(mod4)
2
-1
’ P
. [_] — (_]] 8
p

Equivalently, we can write that

[%]_ I, p=+1(mod 8)
p) | -1, p=+3(mod 8)

* (Law of quadratic reciprocity)

[g] . [%] _ [_1) (p=1)/2x(q—1)/2

Equivalently, we can write that

[Q] , p=1(mod 4)orqg=1(mod 4)

[5]: _(l:%], p=qg=3(mod 4)

As we see from the definition 4.2.6|that the bottom element p is always a prime integer
and the top can be any integer. Since Legendre symbol has a restriction and can be
just applied on prime modulus, we give a slightly different but somehow equivalent
definition which is also generalization for modulus to be chosen from any odd number

n.

Definition 4.2.7 (Jacobi Symbol). Let n be a positive odd integer which has the form
of

k
n=pi e pt = o (4.10)
i=1

38

where each of p; are primes and e; are positive integers. Then, Jacobi symbol can be

expressed as

el e ek k e
[2] _ [i] [i] [i] :H[ﬁ] . @.11)
n P1 p2 Pk i—1 \Di
Jacobi symbol is an extension on Legendre symbol; even the same if 7 is prime. Now,
we give a small note on Jacobi symbol: If a and p are co-prime, [a] = —1 means that
n
the number a is a quadratic non-residue mod n, i.e., there is no solution of the equation

. . . . a
X2 = (mod n). Moreover, if there is a solution to that equation, then [—] =1.

n
. . a

However, the converse is not always true. If Jacobi symbol (-] = 1, we can not say
n

that a is a quadratic residue in p. So, there may be some number whose Jacobi is 1 but

still not square in mod n. For example;
54 54 54 -2]
(3)- () (- (3) () -0 ()
77 7 11 7 11
However, the result of Jacobi is inconclusive since there is no solution to both equations

x?> =54 (mod 11) and x*> = 54 (mod 7). This means that the result of Jacobi symbol

1 is the multiplication of 2 Legendre symbol, i.e., (—1)-(—1) = 1.

Theorem 4.2.7 (Euler’s Criterion). Let p be an odd prime and a be a positive integer

which is not divisible by p, then

[3] =4(P"D/2 (mod p) (4.12)
p
Proof. See [6] for more detailed proof. O

If the congruence in does not hold, we say that n is not prime. However, if
the congruence holds, we are not able to say that the number is prime regarding
the note on Jacobi symbol. This makes the test a compositeness test rather than a
primality test. So, Euler’s criteria does not guarantee to prove the primality of that
integer. All numbers which are satisfying the criteria are called probable primes until a
counterexample found to prove its compositeness. The following definition generalizes

the counterexamples.

Definition 4.2.8 (Euler pseudoprimes). The composite numbers n > 2 which succeeds
Euler Criterion for an integer a > 0 are called Euler pseudoprimes to base a, or

a-pseudoprime, E psp(a) for short.
39

Table 4.5 : Number of Euler 2-pseudoprimes.

limit #Euler-psp(2)

103 1
104 12
10° 36
10° 114
107 375
108 1071
10° 2939
1010 7706
10'! 20417
1012 53332
10'3 124882

As shown from the table above, the number of Euler pseudoprimes are relatively rare
than pseudoprimes and Euler pseudoprimes within the same base and range. For
example; there are just 124882 strong pseudoprimes base 2 less than 10'3, while the
number of Fermat pseudoprimes was 264239 in the same conditions. So, we can say

that we decrease the pseudoprimes by half with Euler’s criteria.

Now, we provide some initial examples of the Euler pseudoprimes for several bases

less than or equal to 10.

Table 4.6 : Examples of Euler a-pseudoprimes.

a n
2 341, 561, 1105, 1729, 1905, 2047, ...

3 121, 703, 1541, 1729, 1891, 2465, ...

4 341, 561, 645, 1105, 1387, 1729, ...

5 217,781, 1541, 1729, 5461, 5611, ...

6 185,217,301, 481, 1111, 1261, 1333, ...
7 25,325,703, 817, 1825, 2101, 2353, ...
8 9,21, 65, 105, 133, 273, 341,481, ...

9 91, 121, 671, 703, 949, 1105, 1541, ...
10 9, 33,91, 481, 657, 1233, 1729, ...

40

Algorithm. Now, we give basic algorithm which repeats the Euler’ criteria to check

primality of a number 7.

Algorithm 8 Euler’s Primality Test

Require: a > 1,n>2,gcd(a,n) =1
I a<{2,n—1}
2: t < repeat time.
3: procedure TEST(n)

4 fora=1—1tdo

5 if a"~1/2 % £1 (mod n) then
6: return composite

7 else

8 continue

9 return probable prime

Accuracy. We see from the Euler’s test that it is actually compositeness test for a given
integer n. If the criteria does not hold, the test guarantees that n is composite. However,
the converse is not always true. In other words, the test could not prove the primality
of that number. If the test holds, we need to repeat the test for a different choice of
bases a, because there are liar bases for composite numbers that provide them to not to

fail the test.

4.2.3 Solovay-Strassen primality test

In this section, we introduce a new type of probabilistic primality test developed by
Robert M. Solovay and Volker Strassen [[10] and used public key cryptography. This
test is based on Euler’s criterion explained in the section [4.2.7] We first give the main

theorem which is the key idea behind the test.

Theorem 4.2.8 (Solovay-Strassen). Let n be a composite odd integer. There exists a
number a < n and gcd(a,n) = 1 hold the condition such that

ZD/2 = (ﬁ

n

] (mod n) (4.13)

where [a] is the Jacobi Symbol.
n

Algorithm. If given input 7 is not definitely composite (i.e., probable prime), it repeats
itself with different bases a which is co-prime to n and 1 < a < p. This is because of

the existence of counterexamples for the theoremd.2.7] i.e., Euler pseudoprimes.

41

Algorithm 9 Solovay-Strassen Algorithm

1: procedure TEST(n)

2 a+{2,n—1}

3 if gcd(a,n) > 1 then

4: return composite

5: j=a""1"2 (mod n)

6 if j #J(a,n) then

7 return composite

8 else if j = J(a,n) then

9 return probable prime

As we see from the theorem above, the Solovay-Strassen test has two main
calculations. Let n denotes the number that we want to check the primality. First, the
test selects random integer a for a base and computes very large power of it modulus
n. Secondly, it computes the Jacobi Symbol mentioned in 4.2.7] for these numbers.
Checking whether these two calculations are equal or not is the key idea behind the

Solovay-Strassen Test.

Example.
Let us try to check primality of an integer n = 217. Then, (n—1)/2 = 108.
As stated in the algorithm, we first randomly select an integer 1 < a < n and check if

gcd(a,n) = 1. Now, we compute the followings:

e gcd(6,217) =1
« a1/ (mod n) = 6'% (mod 217) =1
6
()
217
Since we found that n is probable prime, we repeat the test with different base: n = 11.
e gcd(11,217) =1
« a"=1/2 (mod n) = 11'% (mod 217) = 64
(37)
° - = —1
217
As we have discussed from the example, 217 is not prime after 2 trials. While base 11

is a witness for the compositeness of n, base 6 is a liar because of an incorrect result.

42

Repeating the algorithm ¢ times increases the accuracy of the test and decreases the

probability of having an incorrect result.

Running Time and Accuracy. Finding GCD and Jacobi Symbol can be computed
within the time complexity of O((log n)?). Then, computing the power of the base
a run in complexity O((log n)?). Thus, the algorithm has O(k - log’n) running time
for k-times pass the test where k is the repeat count of the test. Since this algorithm
is a probabilistic algorithm, every result is not definitely true. If the given number
n is prime, the test correctly tags it as probable prime. However, if the number is
composite, the result will not be accurate. As we have seen in the previous chapter,
some composite integers exist by holding the cases mistakenly for these algorithms.
Hence, the probability of the test outputs incorrect result is at most 2~ after 7 trials,

which is the same as Euler’s test.

Drawbacks. Firstly, since the results in Euler test are impractical for Carmichael
numbers which are pseudoprimes to every bases and Solovay-Strassen test is basically
based on repeating the Euler’s criteria[4.2.7] the Solovay-Strassen test is not successful
to catch Carmichael numbers. Secondly, this test is not a deterministic test, so that
the results are probabilistic when checking the primality of a random number. This
means that the accuracy of the test will depend on the number of repetitions. Thus,
the algorithm requires choosing a sufficiently large repetition count of ¢ to use this

algorithm in practical applications.

4.2.4 Miller-Rabin strong pseudoprime test

In this section, we give details of the most useful and common probabilistic primality
test algorithm which is also a generalization of Solovay-Strassen test. As the name
of the algorithm implies, the test is discovered by Gary L. Miller [16] and modified
by Michael O. Rabin [17] in 1980. This test also depends on some set of equalities
proposed by Fermat and Euclid like the tests given in previous sections. The idea
behind all tests considered until now was to have a failure in some cases for composite
numbers even there exists counterexamples known as pseudoprimes. The Miller-Rabin
test shares the same idea, however, for an integer n, it provides more efficient and

accurate results than the tests mentioned in previous sections. Even though we know

43

the test is a probabilistic test, it has also a deterministic version runs in polynomial

time by assuming the Generalized Riemann Hypothesis (GRH) is true.

Firstly, we give some definitions and theorems which will be used as key ingredients

of the singular cubic primality test.

Lemma 4.2.1. Let p be a prime and a,b > 0 be any integers such that
a-b=0(mod p) (4.14)

Then,
a=0(mod p) or b=0(mod p) (4.15)

The lemma states that if prime p divides the multiplication a - b, then it also must divide
at least one of the multiplicands. Since we mentioned some set of definitions in[4.2.5]
we now give the theorem of the square-root of the quadratic equation x> = a (mod p)

related to the Lemma4d.2.11

2

Definition 4.2.9. We call x is a square-root if it satisfies the quadratic equation x

a (mod p) for a prime p and integer a such that (a,n) = 1.

Example.
12=1(mod 7) 4?2 =2 (mod 7)

2> =4 (mod 7) 52 =4 (mod 7)

32 =2 (mod 7) 6> =1 (mod 7)

Theorem 4.2.9 (Square-root). Let p be a prime and x > 0 be any integers. The

congruence
x* =1 (mod p) (4.16)
holds if and only if
x==+1(mod p) (4.17)
Proof. See [28]] for more detailed proof.]

44

If we write the congruence x> —1 = 0 (mod p), we obtain that (x—1)-(x+1) =
0 (mod p) by factorization of two squares. By using the Lemma we see that
if n is prime, x is congruent to at least either +1 or —1, i.e., x = £1 (mod p) holds
and we call x as a trivial square-root of 1. Besides that, if one can find square-roots
other than +1, say non-trivial square-roots of 1, we found n as a composite. Checking
whether there exists a square-root in mod n form a basis to the Strong Pseudoprime

Test used in Miller-Rabin Algorithm.

Theorem 4.2.10 (Strong Pseudoprime Test). Let n > 2 is an odd number which can
also be expressed by n — 1 = 2°-m where m is an odd number and e > 0. If n is prime,
either

a"=1(mod n) or da"* =—1(mod n) (4.18)

holds for some 0 < i < e, and then n passes the test for base a which is between 1 and

n-1.

Proof. The Fermat’s Little Theorem given in states that the congruence a" ! =
1 (mod n) holds if n is prime. Since we have the expression n — 1 = 2¢ - m, by taking
the power of both sides, we get a" ' =a*m=1. Now, we compute the following

sequence by taking the square of each previous item:

2 3 e—1 e
a".a?ma* " ad " a” " a® ™ mod n

We know that the last item in the sequence is a*™ = 1. Considering square-root

theorem {.2.9] the sequence will have two forms:

2m

* The first element @ is equal to 1. Since the next item a“™ is a square of the first

item, this will be 1 too. Thus, we will get the whole sequence containing all 1’s.

* The first element a™ is not equal to 1. This is also possible if there exist a k-th
element (1 < k < e) which is a®~'m = _1 and whose square makes its next element

k
a*>™ equal to 1.

45

We also can prove the Theorem 4.2.10] follows:

By taking power of both sides in the equation n — 1 = 2¢-m with base a result as
a"~ ! = ¢* ™. From the Fermat’s Little Theorem given in left hand side of the
equation is @"~! — 1 =0 (mod #n) if n is prime. Thus, the right-hand side a* ™ will be
equal to 0 mod n. Now, we do some factorizations as follows:
A —1=(a® ™M1
=@ "1 (@ ")

= (@ =) (@) (@)

=@ —1)-(@"+1)- (@ +1)- (@™ +1)--- (@ "™+1)=0 (mod n)

One or some of these elements must be equal to 0 if n is prime. This means that either
the first element is a” — 1 = 0 (mod n) or every subsequent is (azim +1)=0(mod n)

where 0 <i < e.

The strong pseudoprime test returns two results:

* the number fails the test and found as definitely composite, or

* the number passes the test and found as probable prime.

There are some composite numbers that pass the test.

Definition 4.2.10 (Strong Pseudoprime). For any given composite integer n, if n passes
the test for base a, then we define n as strong pseudoprime to base a, spsp(a) for short

and a as liar base.

Also, we can say that each strong pseudoprime to base a is also Euler pseudoprime to

a even the converse is not always true.

Example.
Let us evaluate n = 2047. We write n — 1 = 2-1023. Then, the congruences 2!0%3 =
1 (mod 2047) and 22946 = 1 (mod 2047) hold for base a = 2. However, 2047 is not

prime because it can be factorized as 23 - 89.

Theorem 4.2.11 (Generalized Riemann Hypothesis (GRH)). For an odd composite

integer n > 0, let n — 1 = 2¢-m for some power e > 0 and odd integer m. For all a

46

which is 1 < a < 2(log n)?, either

d"=1(modn) or 2 -m=—1(mod n)forsome0<i<e (4.19)
holds, then n is prime.

The following algorithm is the deterministic version of Miller-Rabin Test. As seen
from the algorithm, it outputs definitely prime or composite if Generalized Riemann

Hypothesis is true.

Algorithm 10 Miller Rabin Deterministic Algorithm

Require: a > 0,n > 2
1: procedure TEST(n)
B n—1=2m
3 for each a = 2 — min(n—1,2(logn)?) do
4: foreachi=0—+m—1do
5: if (@" # 1 (modn))&(a®>™ # —1 (modn)) then
6:
7

return composite
return prime

Since GRH has not been proven yet, we give the probabilistic version of the

Miller-Rabin Algorithm:

Algorithm 11 Miller Rabin Probabilistic Test
Require: a > 0,n > 2

I: n—1=2°n

2: t < repeat time.

3: procedure TEST(n)

4: fori=1—1do

5: a<+{2,n—1}

6: X< a™ (modn)

7: if x=+1 (modn) then
8: continue

9: fori=1—e—1do
10: x < x> (modn)
11: if x =1 then
12: return composite
13: else if x = —1 then
14: continue
15: return composite

16: return probable prime

47

Theorem 4.2.12. Let n > 9 be an odd composite integer such that n — 1 = m2° for

some integer e > 0 and odd integer m. Let

S={ae(Z/nZ)* | ad"=1 mod n or @™ = —1 mod n for some 0 <i < e}.
Then

#S <1

o(n) — 4

where ¢() is the Euler’s phi function.

1\
The theorem below states that the algorithm has error-probability bound less than (Z)

for #-trials.

Table 4.7 : Number of Spsp(2).

limit #spsp(2)

10° 0
10% 5
10° 16
10° 46
107 162
108 488
10° 1282
1010 3291
10! 8607
1012 22407
1013 58892
1014 156251
10 419489
1016 1135860
1017 3115246
10'8 8646507

10" 24220195

As shown from the table above, the number of strong pseudoprimes are relatively very
rare than pseudoprimes and Euler pseudoprimes within the same base and range. For
example; there are just 3291 strong pseudoprimes base 2 less than 10!°, while the
count for Fermat pseudoprimes were 14884 and for Euler pseudoprimes were 7706 in

the same conditions.

The following table contains the initial examples of strong pseudoprimes for several

bases less than 10.

48

Table 4.8 : Examples of Spsp(a).

n
2047, 32717, 4033, 4681, 8321, ...
121,703, 1891, 3281, 8401, 8911, ..
341, 1387, 2047, 3277, 4033, 4371, ..
781, 1541, 5461, 5611, 7813, ...
217,481, 1111, 1261, 2701, ...
25, 325,703, 2101, 2353, 4525, ...
9,65, 481, 511, 1417, 2047, ...
91, 121, 671, 703, 1541, 1729, ...

O 0 O LD &~ W

Running Time and Accuracy. The running time of this algorithm is O(z - log>(n))
where ¢ is the repeating count. In terms of accuracy, the Miller-Rabin test has lower
error probability for a single round when compared with other probabilistic tests. For
any random composite n, we have 50% chance to determine correctly by using other
probabilistic tests. However, the probability of success is at least 75% in Miller-Rabin
test for all bases which are relatively prime to n. Moreover, this probability will
decrease if the repeating count of k is chosen large enough. For example; if we choose
t = 20, the probability of a composite number passes the test is less than 4% = 2%

Moreover, there are too many liar bases for Carmichael numbers when one uses other

tests, but the Miller-Rabin test gets rid of this snug.

Drawbacks. Although the test is very quick and useful for very large integers which
contain several hundred digits, this test is also a probabilistic test like other tests such
as Fermat, Euler, and Solovay-Strassen tests. There is always error probability in the
probabilistic version. In case of deterministic version, if one assuming GRH is true,
the test will have a reliable limit for repeating count z. If a number does not fail until
that limit, we could prove that number is prime. Thus, the deterministic version of
the Miller-Rabin algorithm is conditional to Generalized Riemann Hypothesis which

is needed to be proven.

4.3 Deterministic Primality Tests

4.3.1 AKS primality test

As we have seen probabilistic primality test until this section, some primality tests

such as Fermat and Miller-Rabin correctly label prime numbers despite that some

49

conclusive results may occur while detecting composites. Even there were some
classifying errors for composites that pass the test, probabilistic tests could guarantee
the compositeness of a given integer n if they fail some sort of number theoretical
theorems and conditions. There were two outputs in the probabilistic test; the result
was either composite or probable prime since the tests do not guarantee the result of
primality. Moreover, there are always some counterexamples for some numbers which
pass the test as prime as if it were not really a prime, for instance, Carmichael numbers.
Thus, finding a deterministic primality test algorithm which decides the primality or
compositeness of a given number in polynomial time without dependency on some

unproven assumptions was an unsolved problem for many years.

Then, in 2002, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena invented the first
deterministic polynomial time primality test in their paper [[7]. This algorithm was the
first example of deterministic tests which prove primality or compositeness of a given
number in polynomial time. In other words, the algorithm guarantees both primality
and compositeness by not depending on the form of a given number, i.e., it also runs
on any form of number such as Mersenne numbers, Carmichael numbers or Fermat
pseudoprimes, etc. Since the deterministic version of Miller-Rabin Pseudoprime test
depends on unproved Generalized Riemann Hypothesis, AKS test is unconditional so

that it does not depend on any of unproven hypothesis.

Before giving the AKS primality test algorithm, we give underlying definitions which

are the used in the algorithm.

Definition 4.3.1 (Multiplicative order). Let ord,(a) denote the multiplicative order of
a given number a modulus n such that gcd(a,n) = 1. Then, the order of a (mod n) is

defined as the smallest integer k > 0 that satisfies the equation a* = 1 (mod 7).

Example.
4 =1(mod 7) = ord7(4) =3

181 =1 (mod 97) = ordy7(18) = 16
6536161 =1 (mod 12323) = 0rd12323(653) =6161

Theorem 4.3.1. Let p be a prime. If 0 < i < p, then () =0 (mod p).

50

Proof. We can expand the binomial as follows:

n n!
<k) T kl(n—k)! (4:20)

As seen from the formula that the numerator of the division will always be greater than
the denominator since 0 < i < p. Since the denominator cannot eliminate p, we get 0

in modulus p. O

Now, we give the key theorem which leads to the AKS primality test.

Theorem 4.3.2. For any integer n > 2 and a such that a and p are co-prime, n is prime
if the congruence

(x+a)"=x"+a (mod n) (4.21)
holds (by assuming x is just a formal symbol).
Proof. See Section 2 in the paper [//]] for complete proof. 0

Example.

The following example illustrates and verifies the theorem:

1. Letus choose n =15 and a = 3.

(x+3)° = ((S))x530+ (f)x“Sl + <§)x332+ (§>x233 + (i)x134+ (2))6035

= x° + 15x* +90x° 4+ 270x% + 405x +243 = x> +3 (mod 5)

Hence; we see that n = 5 is prime and so the congruence (x+3)°> = x° +3 (mod 5)

holds.

2. Letus choosen=6and a = 5.

6 6 6 6 6 6 6
(x45)° = <O)x650+ (1>x551 + <2)x452+ (3)x353 + <4)x254+ (5>x155 + (6))6056

= x% + 30 +375x* +2500x> + 9375x% 4 18750x + 15625

=204+ 3x* + 43 +3x2 +1 # x5 +3 (mod6)

Hence; we see that n = 6 is not prime and so the congruence (x+5)® # x5 +3 (mod

5) does not hold.
51

Moreover, Euler’s totient function which is mentioned in the section 4.2.4] will be used

in the algorithm. Now, we give the pseudocode of the AKS algorithm.

Algorithm 12 AKS Algorithm

Require: a > 1,n>2,gcd(a,n) =1
1: procedure TEST(n)

2: ifnis the form of a® then
3: return composite
4: Find the smallest r s.t. ord,(n) > (logon)? and (r,n) = 1
5: if da > rs. t. 1 < ged(a,r) < 1 then
6: return composite
7: if » > n then
8: return prime
9: fora=1— |\/o(r)-logx(n)] do
10: if (X +a)" #x"+a(mod X" —1,n) then
11: return composite
12: return prime

We have mentioned from the beginning that AKS primality test is unconditional,
deterministic and polynomial time primality test algorithm. Also, we know from
the previous algorithm that if the given number #n fails at one of the steps, then it is
definitely composite. The converse is normally not true, however, AKS test holds in
both ways. This means that, if the AKS algorithm given above results as prime, then
the number will be labeled as definitely prime. We do not give the full proof of this
theorem, but the proof of this claim can be found in [7]. Now, let us illustrate the
algorithm by an example.

Example.

We first check by AKS algorithm whether n = 97 is prime or not.

(i) To check if n is the form of a?, we take the rational power of 97 such that 97*

where are prime numbers less than log(97) =~ 6.

972) =985 97G) =46 9750 =25

Since none of the results are a natural number, we say that 97 is not perfect

square. (Passed)

(ii) We found r = 59 which is the smallest number satisfying ord,(n) > log3(97) =
43.56. (Passed)

52

(iii) For integers 1 < a <59, we found that all of them have gcd(a,97) = 1. (Passed)
(iv) n =97 > r =29. (Passed)

(V) V(59)-1log2(97) = 44. Since the condition (x+a)" = x"+a (mod x" — 1,n)

satisfies for all a such that 1 <a <44,

Running Time and Accuracy. In terms of accuracy, we say that the results are 100%
accurate since the test is deterministic.

Drawbacks. Besides it is algorithmic complexity was in P, it is not a practical
algorithm in terms of running time. From the theoretical computer science point of
view, the AKS algorithm is best in algorithmic complexity. Due to its inefficiency,
“almost” polynomial time algorithms such as Miller-Rabin algorithm are better in

choice of real-time applications.

4.4 Elliptic Curve Primality Proving

In this section, we give a detailed explanation of one of the modern and widely used
primality test which use elliptic curves over a finite field FF,. Elliptic curve primality
test is a deterministic test which certificates the primality and it seems to be polynomial
time under some plausible assumptions. Besides its algorithmic complexity, the
running time of algorithms is hard to estimate. Because we first assume the given
number 7 is prime, i.e., it has passed a probabilistic primality test such as Miller-Rabin
test. By this assumption, we also assume that all elements in modulo # is invertible
so that group operation can be done successfully as if n is prime. However, if any
error occurs in group operation when performing point addition or doubling in Z/nZ,
i.e., a non-invertible element appears, the algorithm then outputs a non-trivial factor of
n by taking greatest common divisor (GCD) of that non-invertible element and n. In
this manner, the algorithm successfully finds the compositeness of that given number.
Since the algorithms immediately stop when an unlikely error occurs, it makes running

time estimation quite hard.
To give more details on elliptic curve primality testing theorems and algorithms, we
denote E(Z/nZ) as elliptic curve E over Z/nZ in the form of Weierstrass equation
2_ .3
=x"+ax+b (4.22)

53

where a,b € Z/nZ and the determinant A = 4a> 4 27b* € (Z/nZ)*.

The main idea of all elliptic curve primality testing algorithms is the following

theorem:

Theorem 4.4.1 (Pocklington’s Theorem). Let n be an integer and s be divisor of n — 1.

Suppose that there is an element a in 7./n’Z such that

a" =1 (mod n)
(4.23)
ged (a1 n) =1
for each prime divisor q of s. Then, any prime p dividing n satisfies p =1 (mod s). In

particular, if s > \/n, then n is prime.

The following elliptic curve primality testing theorem is based on the analog of

Theorem 4.4.11

Theorem 4.4.2 (Elliptic Curve Primality Testing). Let n > 2 be an odd positive integer
such that gcd(n,6) = 1 and E be an elliptic curve over Z/nZ given in the form of the
equation Let m and s be positive integer such that s is a divisor of m. Suppose

that there is a point P on the curve E satisfying the conditions:
o [m]P is identity;
e [m/q|P is defined and not identity for any prime divisor q of s.

Then, every prime p dividing n satisfies #E(7Z/pZ) = 0 (mod s). In particular, if
s > (/n+1)2, then n is prime.

Proof. See the Theorem 5.2 in [23]]. O]

Next, we give the general methodology of elliptic curve primality testing algorithms:

54

Algorithm 13 General ECPP Method

Require: An odd integer n

Ensure: Primality certificate or compositeness with a factor of n
1: procedure ECPP(n)
2: Generate a non-singular elliptic curve in E(Z/nZ)

m < the order of the curve E

Choose a prime factor g of m such that g > (/n+1)?

Pick a random point P on E

if [m|P # O then goto Step 5.

if [m/q]P = 0 then goto Step 5.

if an error occurs then return a factor of n.

return prime

Ve ;N hw

As seen from the Algorithm [I3] the first step requires to choose an elliptic curve E
over Z/pZ and the order of that curve as m. If we assume every calculation upon
the assumption of primality of n, the order can be written of the form m = kg such
that ¢ is probable prime by a probabilistic primality test and g > ({/n + 1)?. These
two steps differ in Shafi-Killian algorithm [9] and Atkin-Morain test 8] which we will
give more details in proceeding sections. The following steps are all common in both
algorithms. The idea is to find a random point P on the elliptic curve which holds
the conditions given in the Theorem and to perform group operation in Z/pZ.
Finally, it continues recursively by setting the number n’ = ¢ and applies the same
process again. Hence, the random point P proves the primality of » if ¢ is prime. In
other words, finding primality of n will be reduced to the proving that a smaller number

is prime.

This key idea leads first to Shafi-Killian primality testing algorithm. Due to some
drawbacks of Shafi-Killian algorithm, Atkin and Morain developed a more elegant
solution in 1993. We will give details, examples, and analyses of both algorithms

respectively in the next two sections.

4.4.1 Shafi-Killian algorithm

The main methodology of elliptic curve primality test [Theorem@4.4.2|] prepared a base
with some uncertainties on how to choose the curve E, find the order in the form
of m = kg and pick a point P which holds conditions. Now, we will give details of

Shafi-Killian [9] algorithm in five steps.

55

Algorithm.
Step 1: Choose a random curve over Z,

In this step, the algorithm picks a and b values at random and constructs the curve E

in the form given in [4.22]
Step 2: Curve Order

This step is one of the drawbacks of the algorithm that consumes time in terms of
running time complexity. The order of the curve E, i.e., the number of points on the
curve can be calculated by using Schoof’s Method [11]. It is possible to determine the
compositeness of the given n if it gets an error and stops immediately at this step. In
other words, if this algorithm does not succeed to find the cardinality of the curve in a

timely manner, this will allow determining a non-trivial factor of n.
Step 3: Order Factorization

Once the order is found by using Schoof’s method (see Algorithm 7.5.6 in [12]), the
algorithm proceeds to determine if that order m is of the form of m = kg where g is
prime and ¢ > (+/n+ 1)?. If we cannot factor the order by using known factorization
algorithms, we discard that curve E and step back to choosing random values of a,b

and generation another random curve.
Step 4: Random Point on E, ;(Z,)

Once the curve is successfully generated, we pick a random point on the constructed
curve and perform group operations. Here is how we pick a random point on a given

curve E, ,(Zy):

56

Algorithm 14 Picking a random point P on a given elliptic curve E

Require: Elliptic curve E : y* = x> 4 ax+ b and integer n
Ensure: (x,y)on E

1: procedure RandomPoint(a,b,n)

2: found < false

3: do
4 do
5: xe{0,n—1} > Random integer
6: y= (x(x*+a)+b) mod n
7: while Jacobi(y/n) = 1
8: t < Sqrt(y,n) > See Algorithm [15]
9: if ¢ is found then
10: P = (x,y)
11: found < true
12: while ! found
13: if (P))?> mod n#y then > 1 is composite
14: P=o

The Algorithm[I4]requires to compute square roots mod p. Thus, we give the following

algorithm developed by Tonelli in 1891, which outputs a solution to the equation

x*> =a (mod p) (4.24)

for a prime p and given integer a such that Jacobi [4] =1.
p

Algorithm 15 Tonelli’s Square Root mod p Algorithm

Require: Integer a and prime number p
Ensure: Square root x
1: procedure Sqrt(a,p)

2: a<a mod p

3: if p=3,7 (mod 8) then > Case for 3,7
4; return ¢?*1/% mod p

5: else if p =5 (mod 8) then > Case for 5
6: x <+ aPt3)/® mod p

7: c<+ x> mod p

8: if c 2 a mod p then

9: x=x2P=1D/4 mod p

10: return x

57

Algorithm 15 Tonelli’s Square Root mod p Algorithm - Continued

11: else
i d
12: while [;] # —1do > Case for 1
13: d«—de2,p—1]
14: p—1=2%
15: A<+ d mod p
16: D <« d" mod p
17: m<+0
18: fori=0—sdo
19: it (AD™)2""" = —1 (mod p) then
20: m<—m+2'
21: x < a"t)/2pm/2 mod p
22: return x

Step 5: Point Operation

The details of group operation methods and its analyses are given in Chapter [3] and

subsection [3.2.4]

Running Time and Accuracy. The results show that the algorithm is expected to be

in polynomial time.

Drawbacks. The construction of the curve is costly because the test requires Schoof’s
method [11] (which is very slow and cumbersome) for counting the number of points
on the elliptic curve. Secondly, the test finds a curve whose number of points m is of the
form m = kq where g is probable prime. This construction increases the computational

complexity of the algorithm.

4.4.2 Atkin-Morain ECPP

As we discussed in the previous subsection, Shafi-Killian Elliptic Curve Primality
Proving (ECPP) algorithm selects and constructs an elliptic curve randomly.
Additionally, the point counting step increases the time and computational complexity
of the algorithm. Due to the lack of this pre-step in this algorithm, Atkin and Morain
developed a new algorithm in the same year (1986) which finds curves using complex
multiplication (CM) method. The key point of the new algorithm was to choose a

suitable discriminant D to make the computation of the order of the curve m, i.e., the

58

number of points on E, easier. After this step, the curve will be generated based on this

order. Now, we first give details of the algorithm in five steps for a given off number 7.
Algorithm.
Step 0: Miller Rabin and Sieve test

The initial step of this algorithm requires to eliminate by checking whether the given
number is composite by Miller-Rabin probabilistic test Algorithm [TT] with a small
round value (for example, only 10 or 20 rounds). If not, Sieve of Eratosthenes method

can be used to check the given number is less than a bound.
Step 1: Choose discriminant

This step is the keystone of Atkin-Morain algorithm comparing to Shafi-Killian
algorithm. It will be very easy to find a discriminant because the Jacobi(D,n) should
be equal to 1. If not, the algorithm tries to find another discriminant from the list of

increasing values of the class number /(D). The following algorithm gives the details:

Algorithm 16 Choosing Discriminant

Require: Number n
Require: Initialized discriminant array for class number 1 and 2
Ensure: The order m = kq and the discriminant d
1: procedure ChooseDiscriminant(n)
2: index <— 0
3 size <— array size
4 while index 41 < size do
5: d < arrayli]
6: (x,y) = ModifiedCornacchia(d,n) > See Algorithm[17]
7: if Jacobi(d,n)! = 1 then continue
8 else if (x,y)! = null then continue
9: else if OrderFactorization(x,y,d,n) is not found then continue
10: elsebreak
11: return d

Note: The discriminant list for class number 1 and 2 is taken from the results of the
work [Cox 1989]. (See Algorithm 7.5.9 in [[12] for complex multiplication method).
We used a closed-form solution by using the explicit parameter sets for all D for class

number 1 and 2 computed in Table 7.1 in [12].

We pick a discriminant value in order and check if Jacobi test results in 1 or not. If the

discriminant value does not pass the Jacobi test, the next discriminant will be chosen

59

from the initial array. In the case of Jacobi(D,n) = 1, the algorithm proceeds to find a

solution (x,y) to the Diophantine equation:

x>+ |D|y* = 4n (4.25)

If there exists no such solution to the above equation, then it returns nul/l and skips to

the next D value in the array.

Finding a solution to the equation [.25| can be easily computed by using Modified
Cornacchia Algorithm for a given prime p and discriminant D such that |D| < 4p and

d =0,1 (mod 4). The details of algorithm are given below:

Algorithm 17 Modified Cornacchia Algorithm

Require: Discriminant D and prime number p
Ensure: The solution (x,y)
1: procedure Cornacchia(D, p)

2: if p =2 then > Initial case
3: k< D+38
4: if k is square then
5 return (\/§7 1)
6: return null
o (D -
7: if [;] < 1 then > Solvability test
return null
: Xo v/D mod p > See the Algorithm
10: if xo Z D (mod 2) then
11: Xo=p—Xo
12: a<+2p > Initialize Euclid chain
13: b+ xg
14: c+ [2,/p]
15: while b > ¢ do > Euclid chain
16: [+ a mod b
17: a<b
18: b+1
19: t < 4p—b? > Results
20: if7 %0 (mod |D|) then
21: return null
22: if /|D| is not square then
23: return null

24: return (+b,++/t/|D|)

60

Step 2: Order Factorization

If a suitable discriminant D and the solutions x, y are found (via Algorithm|[I7), it yields

the possible curve order m as the following:

{n+1£x,n+1£2y} forD=—4
me {n+1+x,n+1£(x+3y)/2} forD=-3

{n+1+£x} forD < —4

If the order m has any factor g such that ¢ > (3/n + 1)? and passes the Miller-Rabin
test (Algorithm[TT)). Once an acceptable factor g of m is not found in a timely manner,

then the algorithm returns back to choose new discriminant (Step 1).

There are three widely used integer factorization algorithm such as Pollard’s p-1,
Pollard’s p and Lenstra’s Elliptic Curve Factorization Method. The most efficient of

all is Lenstra’s ECM method which consists of group operation on the elliptic curve.
Step 3: Curve Parameters

Since the standard elliptic curve Weierstrass equation E : y* = x> +ax+ b where a,b €

IF, we need to find a and b values to construct the curve E.

Before we provide a detailed description of the curve generation algorithm, we need

to find a suitable quadratic non-residue g which has no solution to the equation x> =

¢ (mod p). The following algorithm helps to find g value at random.

Algorithm 18 Finding a non-residue value

Require: Discriminant D and number n
Ensure: Quadratic non-residue g
1: procedure NonResidue(D,n)

2: p+(n—1)/3

3: do

4: ge{0,n—1}

5: ifg=0o0r [%] # —1 then

6: continue

7: if d = —3 then

8: t <+ g’ mod n

0: if t = 1 then
10: continue
11: break
12 while true

61

Now, we use the complex multiplication (CM) method to construct the curve E with
parameters a and b. If the chosen discriminant is —3, then 6 isomorphism classes of
elliptic curves can be generated with points (0, —g¥) and the curve y* = x> — g* where
k € {0,5}. Similarly, If D = —4, then 6 points can be generated with points (—g¥,0)
and the curve y> = x> — gkx where k € {0,5}. Otherwise, either Hilbert class or Weber
class polynomial calculation is needed. Since all coefficients of these calculations take
time even for small discriminant, we prefer a closed-form solution by using in Table

7.1 [12] which includes precomputed (x, y) values for each discriminant D.

The following algorithm generated curves for a given non-residue value g, discriminant

D and number n.

Algorithm 19 Elliptic Curve Generation

Require: Discriminant D and number n
Ensure: Curve constants a and b
1: procedure GenerateCurve(D,n)

2: g < NonResidue(D,n) > See Alg.
3: if d = —3 then

4: return (0, —g¥) where k € {0,5} > 6 curves: y> = x> — gk
5: else if d = —4 then

6: return (—g¥,0) where k € {0,3} > 4 curves: y> = x> — gkx
7: else

8: Select precomputed values at Table 7.1 [[12]]

9: return (—3rs3g%*, 2rs°g*) where k € {0,1}

Step 4: Random Point

Once the elliptic curve is generated, the rest of the algorithm works as in the

Shafi-Killian method
Step S: Point Operation

Once a random point is chosen by using Algorithm [[4] we perform group operation on
this point. The group operation consists of two different parts: addition an doubling.

The details of group operation methods and its analyses are given in Chapter [3] and

subsection [3.2.4]

The next page includes full pseudocode of the Atkin-Morain ECPP Test.

62

Algorithm 20 Atkin-Morain ECPP

Require: Number n
Ensure: Prime or composite
1: procedure AtkinMorain(n)

2: if MillerRabin(n) is composite then return composite
3: else if SieveTest(n) then return composite
4: else
5: found < false > For calculation
6: result <— false > Compositeness or primality
7: while ! found do
8: d < ChooseDiscriminant (n) > See Algorithm
9: do
10: k<0
11: while ! found and GenerateCurve(d,n,k) is found do
12: P € E(a,b) > See Algorithm [14]
13: if P is not found then break > New random point
14: Q < [m/q|P mod n
15: if O is not found then > Composite
16: found < true
17: result < false
18: break
19: else if Q # oo then
20: R+ [¢]Q mod n
21: if R is not found then
22: result < true
23: n<q > Try for factor ¢
24: points = 100 > Go to choose discriminant step
25: break
26: k++
27: points+ =k
28: while ! found and points < 100

Now, we give the following example to illustrate the algorithm for the prime number

289 1.

Example.

* number = 2% — 1 = 618970019642690137449562111
D=-3
(x,y) = (48215832688019 , 7097266064519)
m = 618970019642738353282250131
q =57306024217633
a=0,b=576847241968978529162657802
P =(257330503798390012319382377 , 611426850505584859173079386)

63

Q = (505491236768072315331388501 , 405267140089843400755651166)
R=(0, 1)

« number = 57306024217633
D=-3
(x,y) = (13318945 , 4156513)
m = 57306037536579
q = 9014635447
a=0,b=31449508861799
P = (1732983213944 , 4894216390798)
Q = (2855554411665 , 14026450171402)
R=(0, 1)

* number = 9014635447
D=-3
(x,y) = (168821 , 50193)
m = 9014804269
q = 1908703
a=0,b=7340921285
P = (5819216896 , 6330263360)
Q =(2558437617 , 8734715535)
R=(0,1)

e number = 1908703

The given number is proven prime because /908703 is prime.

Running Time and Accuracy. Since Atkin-Morain test avoids very expensive
point-counting step, it runs faster than the Shafi-Killian case practically. Moreover,
the heuristic results show that the whole primality proof can be done in O(log>*¢n)

where € > 0 using fast scalar multiplication techniques.

Drawbacks. Since this algorithm uses the complex multiplication method, the
construction of the curve with order m is not costly as in Shafi-Killian algorithm.

However, finding a good discriminant D and factoring the order m is still a costly

64

operation. This factorization operation increases the algorithmic complexity of the

algorithm.

4.5 Singular Cubic Curve Primality Test

This algorithm [35]] is designed for strong pseudoprimes which pass the Miller-Rabin
test for base 2. The algorithm first eliminates all composites for base 2 since the
Miller-Rabin test guarantees the compositeness of numbers which do not pass the test.
Then, the singular cubic primality test generates a singular cubic curve E by choosing
a particular prime number, a point on the curve E and tries to compute certain power

of that point as we have also given theorems on elliptic curve arithmetic.

The main tool used for this algorithm is singular cubics which are defined below.

Definition 4.5.1 (Singular Cubic Curves). Let E denote the singular curve and a is a

non-zero integer. E is defined by an algebraic equation of the form of
y2 =x(x— a)2 (4.26)
where a is a singular point in Z/nZ.

The generalized Jacobian group, Jac(E), is introduced by Maxwell Rosenlicht in 1954
and associated to curve with a divisor. It is similar to the elliptic curve group |1,
24]. Thus, we can perform the same group law, which is mentioned in Chapter [3] for

generalized Jacobian groups.

Let p be a prime, a > 0 be a integer such that gcd(a,n) = 1 and E be a singular cubic
curve defined by the equation 4.26] We have the following theorem from [24] which

gives the structure of the group E(Zj).

Theorem 4.5.1. The order of cyclic group E(Z,,) is either p— 1 if Jacobi(a/p) =1 or
p+1ifJacobi(a/p) = —1

Proof. See the proof of Theorem 2.31 at [24]. [

The key idea in the following theorem is used as a backbone for singular cubic curve

algorithm:

65

Theorem 4.5.2 (Lenstra’s Elliptic Curve Factorization Method). Assume that n be a
composite integer with prime factors (p and q), E be an elliptic curve, k > 0 and D be
an element in generalized Jacobian group, Jac(E). If kD(mod p) gives D, and kD(mod
q) gives Dy such that the only one of D), or Dy is the identity. Then, the computation

fails when computing kD(mod n) and returns a non-trivial factor (q or p) of n.
Proof. See the proof in [20]].]

By using theorems above, this algorithm conjectures to a primality test which has
additional steps to strong pseudoprime test to base 2 and computes some powers of
certain points on the curve modulo n. Now, we describe the algorithm by using these

mathematical preliminaries on elliptic curves as well as singular cubic curves.
The Algorithm.
Step 0: Miller Rabin Test

The first step of the algorithm is the strong pseudoprime test to base 2 which we have
already presented at this chapter. The steps in the singular cubic primality test are for
numbers which are already a probable prime in the Miller-Rabin test, so we eliminate

composites with the Miller-Rabin test.
Step 1: Curve Generation

Then, the algorithm chooses a convenient small prime number a such that 0 < a < 100
and the Jacobi [%] = —1. The selection of random a is a try-and-error method
starting from the smallest prime 2. After finding a suitable prime a (several points
may be tried), the algorithm constructs the singular curve E which is of the form y* =

x(x —a)? mod n.
Step 2: Random Point

Once the singular cubic is generated, the algorithm proceeds to select a random point

on the curve which is the form of P = (1,1 —a).
Step 3: Point Operation

At this step, the algorithm computes a certain power of a randomly chosen point P on

the generated curve E. The group operation is based on the idea of finding either illegal

66

operations or the infinity point while computing the power of the point P. If there is an

illegal group operation, the algorithm proves the compositeness of the number.

In this algorithm, the group operation will be computed by using singular curves. The
nice thing about singular curves, we already know the order of group. It’s p — 1 if a is

square mod p, and p + 1 otherwise .

From this observation [35]], the order of the curve E mod n must be "n+ 1" if n is
"prime". According to the proof of this conjecture, the algorithm first tries with small
orders i where i < 200 to check [i]P (mod n) is identity. If there is no illegal group
operation and [i]P (mod n) is not identity, then it computes [n — 1]P (mod). The final
step is to look at the n + 1-th power of P, i.e., [n — 1]P @ [2|P = [n+ 1]P, and it must

be identity. If [n+ 1]P is not identity, then n is "definitely composite".

The results [3,21,25,26] show that the strong pseudoprimes to base 2 tend to have
only two prime factors. For example, the experimental results in [3,/26]] show that the
majority of spsp(2) are of the form n = pg where p and g are primes and p — 1 =
d(q—1) such that d < 20 and ged(p — 1,dj(n—1)) = p—1 with d; < 20. Thus,
the algorithm shows that the above algorithm can easily detect compositeness of such

integers.

This version of the algorithm given below is for detecting the compositeness of strong
pseudoprimes base 2. However, our experimental results also encourage us to claim if
[n+ 1]P (mod n) is identity, then given n is "definitely prime". Thus, it is actually a

primality test depending on our results.

Now, we give details of the algorithm below:

67

Algorithm 21 Singular Curve Primality Test Algorithm

Require: An odd integer n
1: procedure PrimalityTest(n)
2: if MillerRabin(n) is composite then

3: return composite

4: else a
5 a<—a € {0,100} where a is prime and (;] =—1
6: E(Z,) :y* =x(x—a)?

7: P+ (1,1—a)

8: for i =0 — 200 do

9: Q; < [i]P mod n
10: if Q; = oo then
11: P <« (r?,r(r—a)) for some r # a
12: Q<+ [n—1]P+[2]P mod n
13: if Q # o then
14: return composite

Running Time and Accuracy. In this algorithm, we need to find a prime a < 100
such that Jacobi(a/n) = —1. the Jacobi symbol (a/n) can be computed with very low
complexity. As seen in the 12/ step, we need to compute (n4 1) power of P in the
Jacobian of the singular cubic curve. In order to compute (n — 1)P mod n, we need to
perform at most 2logn + 1 addition or doubling in E(Z,). Thus, the running time of

2+e n). In terms of accuracy, we tested all strong pseudoprimes

the algorithm is O(log
less than 2% and algorithm successfully finds the compositeness of all. Additionally,
the algorithm finds the primality or compositeness of very large numbers with several

hundred digits in just seconds. (see Table [5.2|for execution time analyses).

Drawbacks. Since this algorithm is not tested with numbers larger than 10%!, the test

is just an observation.

68

S. COMPARISON RESULTS

In this chapter, the theoretical and computational comparison details of selected

algorithms will be given.

The selected algorithms are:

Sieve of Eratosthenes

Miller-Rabin Probabilistic Primality Test

Atkin-Morain ECPP Implementation

Atkin-Morain GMP-ECPP Executable [40]

Singular Curve Primality Test

These algorithms will be evaluated based on their algorithmic complexity and
experimental tests. Since each algorithm has distinct properties, running time analysis
may not give very strict comparable results. For example, some tests include elliptic
curve primality testing analog (see Section 4.4] in Chapter [4] for more details) which
have not an estimated running time because of randomized values inside. However,

the average execution time value will be used in comparison results.

5.1 Theoretical Results

The following table evaluates the theoretical comparison results:

Table 5.1 : Theoretical comparison results.

Primality Test Running Time

Miller-Rabin O(log*n) assuming GRH.

ECPP Hard to make running time analysis. [23]]
AKS Algorithm O(log'**€ n)

Singular Cubic Primality Test O(log>*€n)

69

5.2 Computational Tests

In this section, we will examine the running time comparison of the selected algorithms
according to execution time until it finds primality or compositeness of a given number.
For a fair comparison, we prepared a list of prime numbers which have different
numbers of bits and used the same list for each algorithm. There will be two metrics

to compare:

* Execution time of each algorithm when determining composites with an increased

number of bits

* Execution time of each algorithm when determining primes with an increased

number of bits
* Execution time of all algorithms with the same odd composite integer

* Execution time of all algorithms with the same odd prime integer

5.2.1 Implementation details

The algorithms could be implemented in some higher-level programming language
like Java or MATLAB; however, they may lack performance during testing. So, the
algorithm is implemented and tested by using C++ programming language, because it

makes the algorithm very portable and fast with GCC compilers.

Since primality testing is a challenge for very large integers, we needed a library to
provides us fast arithmetic for rational numbers and large integers which has several
hundred digits. The next thing was to choose of a portable multiple precision library,
so we chose GNU Multiple Precision Arithmetic Library (GMP [41]) which is also

implemented in C programming language.

Finally, the calculation results may vary due to model or properties of hardware as well
as the version of software, we provide the following specifications which include both

hardware and software specifications:

70

Hardware Specifications:

e Processor: Intel Xeon E-2176M (6 cores, 12 threads)

Main Memory: 32 GB DDR4-2666 RAM (non-ECC)

Cache Memory: 12 MB

Disk Capacity: 1 TB PCle NVMe M.2 SSD

GPU: NVIDIA Quadro P2000 (Memory: 4GB)
Software Specifications:

* Programming Language: C++ (c++11, c++14 and c++17)
* Compiler: g++
¢ IDE: CodeLite, Gedit

* Libraries:
- The GNU Multiple Precision Arithmetic Library (GMP) (Version 6.1.2) [41]
- Pari/GP (Version 2.11.1) [42]
- Open Multi-Processing Library (OpenMP) [43]]
- A High-Performance Message Passing Library (MPI) [44]
- Gmp-Ecpp (version 2.49) [40]

5.2.2 Experiments

* Sieve of Eratosthenes: The experimental results show that this method is suitable
for only small integers which have less than 60 digits. We tested with random 600
primes which has 1 to 600 digits, the method fails after at 39" prime. Moreover,
it fails at 59" composite over random composites which has increased number
of digits. Finally, for the case which includes the first 10° primes take 236.816

seconds, other cases ignored because of very long execution time.

* Miller-Rabin probabilistic test: As we mentioned in the previous chapter, this test
is a probabilistic test which can output some composites as prime with some error
probability. Since our test includes random primes and composites not including

strong pseudoprimes to some special base, the outputs are all correctly labeled.

71

Additionally, the execution time of this test increases linearly when determining
the primality of an integer with an increased round count. However, the round
count is not important when determining the compositeness because the algorithm
terminates without waiting for the round loop ends. All in all, the Miller-Rabin test

results are the best in terms of lowest execution time among other tests.

* ECPP: We compared our Atkin’s elliptic curve primality testing implementation
with GMP-ECPP implementation. The randomization techniques may differ in
these two implementations, so we get the time difference in approximate values
when the calculation of the first 107 primes case. However, our implementation gets
better results when 1020 + 153 is calculated. Since both ECPP implementations
include the Miller-Rabin test for composites, the case for composites gives actually
the running time Miller-Rabin test. Because of this, both ECPP implementation
gets much lower running time for composites compared to primes. Finally, all these

execution time averages are still slower compared to the Miller-Rabin algorithm.

* Singular curve primality test: When we compared the proposed algorithm [35]
with well-known primality tests, the experimental results show that the algorithm
runs nearly like a probabilistic test Miller-Rabin, additionally, it is not probabilistic.
For instance, we try 1500 digits prime numbers, the singular curve primality test
takes only 1.5 seconds to prove its primality. Other elliptic curve primality testing

algorithms never find the result as fast as the singular curve primality test.

Moreover, we give another experimental result that we conduct to observe if there
is any counterexample in the singular curve primality testing algorithm. Thus,
we tested all strong pseudoprimes base 2 less than 26 ~ 1.89-10'? [36] and the
algorithm catches all composite numbers. In addition, we tested to extend the
limit of the number of pseudoprimes [3]], but we were able to find up to 10'°
without using parallel programming on supercomputers. Finally, we tested several
million high precision strong pseudoprimes base 2 and again the algorithm detects

compositeness of such large numbers with very short execution time.

The following table contains the execution time of each algorithm for different cases

which includes random primes and composites with a different number of digits:

72

689¢C°1 - - ceoL’e ¢81¥8¢0 00ST ! SIA wopuey
8688760 - - LyST0C TLSL6T 0 00<1 I BN wopuey
861L19°0 - - 6L1°1 LTe611°0 000T I BN wopuey
¢6800€°0 - - 60S0LY°0 899LY0°0 00L I SOA wopuey
6L6S1°0 - - 619¢LT0 Y16810°0 00¢ I SIA wopuey
LT15990°0 - - LCLSY00 ¢evS000 00¢ I SN wopuey
999¢CT'1 Co619¢ 0~ €CL6VO 0~ LOYSE00 [€L9€0°0 00¢-1 009 ON sysodwo)
L9S6S°8 - - 9ceere 9180CE 0 00¢-1 009 SIA Sowitd
¢866¢0°0 CIL'LYC =~ LAY YEl ~ 9LEVIO0 €68100°0 00¢ I SN €ST + 9oz01
9¥800°0 8eL'lT =~ CLIOY'I =~ 8CLTI000 96000°0 €S I SN wopuey
LL9S00°0 I169€90°0~ 6L9690°0 ~ 188000°0 ¢LS000°0 LT I SN I—1gC

80°ISS 08686 ~ 96y vLT ~ I1eee 9891°¢C L1 01 SN sowrd Q[IsI1q

1S9, dAIn)) JemsulS JAOA-dIND ddDA MO (00T) UIqeY-BIIA (0T) Wqe-P[IA SHSIQ # SI3NUL # (LIewrlig SIse))

"SPU09ds UT WILIOT[B OB JO QWIN) UOIINJAXA Y], ¢ 'S d[qeL

6. CONCLUSION

Prime numbers are crucial in the field of number theory and especially in cryptography.
Different types of primality tests have their own advantages and disadvantages.
Probabilistic tests are faster; on the other hand, deterministic tests can determine results

without employing a doubt.

In this thesis, we analyze the trade-offs between known primality tests. We first
introduce general number theoretical methods, such as Fermat’s and Euler’s test.
Because determining and proving the primality of a potential prime number cannot
be done with certainty with these methods, we proceed with deterministic tests. A
disadvantage of the deterministic Agrawal-Kayal-Saxena (AKS) test is that it is hard
to implement, so we then move on to elliptic curve primality testing and proving

algorithms that are developed by Shafi-Killian and Atkin-Morain.

In general, the evaluation of primality testing algorithms is illustrated with examples.
The theoretical results show that deterministic polynomial-time algorithms are the best.
However, our practical results demonstrate that probabilistic methods are faster for

commercial applications.

Moreover, we also included singular cubic primality testing algorithm into our
comparison, because the widely used Miller-Rabin algorithm has strong pseudoprimes
and the conjectured test [35] catches them. The experimental results show that the
conjectured algorithm catches all strong pseudoprimes (base 2) up to 2. Moreover,
even the compositeness of high-precision integers is successfully detected by this

algorithm with a very short running time (see Table[5.2)).

All in all, the execution time of the singular cubic curve primality test is close to that
of the probabilistic Miller-Rabin test; additionally, the algorithm does not employ a
probability when determining compositeness or primality of a given integer. When this

hypothesis is proved to be a successful primary test, we have been demonstrated that

75

the singular cubic curve primality test had good theoretical and experimental results,

as evaluated in this thesis.

76

REFERENCES

[1] Cohen, H. (2000). A Course in Computational Algebraic Number Theory,
Springer-Verlag.

[2] Cohen, H. and Frey, G. (2005). Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Chapman & Hall/CRC.

[3] Jaeschke, G. (1993). On Strong Pseudoprimes to Several Bases, Math. Comp.
(204), 915-926.

[4] Adleman, L. M., Pomerance, C. and Rumely, R. S. (1983). On distinguishing
prime numbers from composite numbers, Ann. of Math. 2, 117:1, 173—
206.

[5] Pettofrezzo, A. J. and Byrkit, D. R. (1994). Elements of Number Theory (2nd
Edition), Orange Pub.

[6] Rosen, K.H. (1984). Elementary Number Theory and Its Applications, Pear-
son/Addison Wesley.

[7] Agrawal, M., Kayal, N. and Saxena, N. (2004). Primes is in P, Annals of Math.
160, 781-793.

[8] Atkin, A. O. L. and Morain, F. (1993). Elliptic curves and primality proving.
Math. Comp., 61(203): 29-68.

[9] Goldwasser, S. and Killian, J. (1999). Primality testing using elliptic curves, J.
ACM 46, 4, 450-472.

[10] Solovay, R. M. and Strassen, V. (1977). A fast Monte-Carlo test for primality,
SIAM Journal on Computing 6, 84-85.

[11] Schoof, R. (1995). Counting points on elliptic curves over finite fields, Journal
de Théorie des Nombres de Bordeaux, tome 7, no 1, p. 219-254.

[12] Crandall, R. and Pomerance, C. (2001). Prime numbers: a computational
perspective, Springer, New York.

[13] Jiang, Y. and Deng, Y. (2014). Strong pseudoprimes to the first eight prime
bases, Math. Comp. 83, No 290, 2915-2924.

[14] Koblitz, N. (1987). Elliptic curve cryptosystems, Math. Comp. 48.

[15] Benger, N., Pol, J.V.D., Smart, N.P. and Yarom, Y. (1977). "Ooh Aah... Just a
Little Bit": A small amount of side channel can go a long way, CHES
2014, 75-92.

77

[16] Miller, G. (1976). Riemann’s hypothesis and tests for primality, J. Comput. and
System Sci. 13, 300-317.

[17] Rabin, M. O. (1980). Probabilistic algorithms for testing primality, J. Number
Theory 12, 128-138.

[18] Muller, S. (2003). A Probable Prime Test With Very High Confidence for n= 3
mod 4, J. Cryptology, Vol 16, No. 2, pp. 117-139.

[19] Mullen, G.L. and Panario., D. (2013). Handbook of Finite Fields, Chapman and
Hall/CRC.

[20] Lenstra, Jr. H. W. (1987). Factoring integers with elliptic curves, Ann. of Math.
(2), 126(3), 649-673.

[21] Pomerance, C., Selfridge, J. L. and Wagstaff, Jr. Samuel S. (1980). The
pseudoprimes to 25 * 102, Math. Comp. 35, 1003-1026.

[22] Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining
digital signatures and public key cryptosystems, Commun. of the ACM,
21:120-126.

[23] Schoof, R. (2008). Four primality testing algorithms, Algorithmic Number Theory,
MSRI Publications, VVolume 44, 101-126.

[24] Washington, L. C. (2008). Elliptic Curves: Number Theory and Cryptography,
2nd edition. Chapman & Hall/CRC.

[25] Zhang, Z. (2001). Finding strong pseudoprimes to several bases, Math. Comp. 70,
863-872.

[26] Zhang, Z. and Tang, M. (2003). Finding strong pseudoprimes to several bases
I1, Math. Comp. 72, 2085-2097.

[27] Wells, D. (1986) The Penguin Dictionary of Curious and Interesting Numbers,
Penguin Books, Penguin Press Science.

[28] Jones, G. A. and Jones, J. M. (1998). Elementary Number Theory, London:
Springer

[29] Hasse, H. (1936). Zur Theorie der abstrakten elliptischen Funktionenkorper, I,
I, 11, Crelle’s Journal(175),55-63,69-88,193-208.

[30] Boneh, D. (2002). Twenty Years of Attacks on the RSA Cryptosystem, Notices of
the American Mathematical Society 46(3).

[31] Gaudry, P.(2014). Integer factorization and discrete logarithm problems, Notes
d’un cours donné aux Journées Nationales de Calcul Formel.

78

[32] Buchman, J. A. (2004). Introduction to cryptography (2nd Edition), Springer-
Verlag, New York.

[33] Montgomery, P.L. (1987). Speeding the Pollard and elliptic curve methods of
factorization, Mathematics of Computation, 48(177):243-264.

[34] Solomon, R. (2003). Abstract Algebra, American Math. Soc., 48(177):243-264.

[35] Ozdemir, E. (t.y.). Primality Test with Singular Cubic Curves.

[36] Url-1 <http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html>, date
retrieved 04.05.20109.

[37] Url-2 <http://oeis.org>, date retrieved 04.05.2019.
[38] Url-3 <http://oeis.org/A006880>, date retrieved 04.05.20109.

[39] Url-4 <http://primes.utm.edu/primes/lists/all.txt>, date retrieved 04.05.2019.

[40] Url-5 <https://sourceforge.net/projects/gmp-ecpp/>, date retrieved 04.05.2019.

[41] Url-6 <https://gmplib.org/>, date retrieved 04.05.2019.

[42] Url-7 <ftp://pari.math.u-bordeaux.fr/pub/pari/manuals/2.3.5/users.pdf>, date
retrieved 04.05.2019.

[43] Url-8 <https://www.openmp.org/>, date retrieved 04.05.2019.

[44] Url-9 <https://www.mpich.org/>, date retrieved 04.05.20109.

79

http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html
http://oeis.org/
http://oeis.org/
http://oeis.org/A006880
http://primes.utm.edu/primes/lists/all.txt
https://sourceforge.net/projects/gmp-ecpp/
https://gmplib.org/
ftp://pari.math.u-bordeaux.fr/pub/pari/manuals/2.3.5/users.pdf
https://www.openmp.org/
https://www.mpich.org/

CURRICULUM VITAE

Name Surname : GOzde SARIKAYA
Place and Date of Birth : Emindni, 07 June 1992

E-Mail : sarikayagozde@outlook.com

EDUCATION

e B.Sc. :2015, Fatih University, Faculty of Arts and Sciences, Mathematics.
e B.Sc. :2015, Fatih University, Faculty of Engineering, Computer Engineering.
e M.Sc. : 2019, Istanbul Technical University, Informatics Institute, Information

Security Engineering and Cryptography.

PROFESSIONAL EXPERIENCE:

e 2014, Undergraduate Research Intern, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, UK.

e 2015, Undergraduate Research Intern, Department of Computer Engineering,
Fatih University, Turkey.

e 2015, Researcher, National High-Performance Center of Turkey (UHeM),
Istanbul Technical University, Turkey.

e 2016, Graduate Student, European Union PRACE Project - Summer of HPC
Programme, 1T4 National HPC Center, Czech Republic.

e 2016, Researcher, National Research Institute of Electronics and Cryptology
(UEKAE), TUBITAK, Turkey.

e 2017, R&D Software Engineer, CRYPTTECH, Yildiz Technical University,
Turkey.

ACHIEVEMENTS & HONORS:

e 2012, Ranked 1st in the Department of Mathematics.

e 2012, Ranked first in the Competition for Game Development with Java.

e 2010-2015, High Honor List for eight semesters in Department of Mathematics.
e 2015, Ranked third in Graduation from Department of Computer Engineering.

81

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

Ozdemir E., Sarikaya G., 2016. A Primality Testing Algorithm. ACMES -
Computational Discovery in Mathematics, May 12-15 2016, Western
University, Ontario, Canada.

Ozdemir E., Sarikaya G., 2019. A Note on Primality Testing: Algorithms and

Analyses. ICOMAA - 2nd International Conference on Mathematical Advances
and Applications, May 3-5 2019, Yildiz Technical University, Istanbul, Turkey.

82

