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THE EVALUATION AND COMPARISON OF
PRIMALITY TESTING ALGORITHMS

SUMMARY

A prime number is an integer without a non-trivial divisor. In modern cryptography,
several secure digital communication methods need to use large prime numbers. For
example, one of the most popular public key cryptosystems, RSA [22], uses prime
integers with more than 150 digits. Thus, it has been an interest of researchers to
give a generic formula for defining all prime numbers. Although, there was no initial
concern to detect prime integers theoretically, from the beginning of late 60’s, several
researches have presented a practical method for the primality test. Currently, there are
methods [7–10, 16, 17] to decide the primality of the big numbers. These methods can
be divided into two categories: probabilistic and deterministic primality tests.

Probabilistic tests are very fast and consist of some set of mathematical equations and
procedures. The common property of these tests is having error probability with some
composite numbers. For a given integer n to determine whether it is prime, the test is
100% accurate if it labels that number as a composite. However, the other case where
the test output is prime is not always true, that is to say, there is always a probability
that a composite number passes the test and is labeled as prime. To decrease this
probability and increase the accuracy of the test, we always need to repeat the test for
several times. As examples of probabilistic tests, we provide explanations on Euler’s
Test, Fermat’s Test, Solovay-Strassen Primality Test and Miller-Rabin Test.

To overcome the drawback of probabilistic tests, deterministic tests are invented.
Besides probabilistic tests, deterministic tests guarantee that if the test labels a
given number n as composite, the number is, in fact, composite. Additionally,
deterministic tests also guarantee the primality of numbers. However, the running time
of deterministic tests is not satisfactory for frequent use in commercial applications.
As an example of deterministic test, we give details of Agrawal-Kayal-Saxena (AKS)
primality testing algorithm with a pseudocode, examples, running time analysis, its
accuracy and drawbacks.

Moreover, elliptic curve primality testing methods and theorems are widely used.
Although some algorithms require very long execution time for several-million digit
integers, the results are deterministic. Thus, we include Shafi-Killian and Atkin’s
elliptic curve primality proving algorithms into our analyses.

In this thesis, general mathematical theorems which are very fundamental in number
theory are explained to the reader. Then, their applications on primality testing are
given by commonly used primality test algorithms. The current algorithms analyzed in
terms of computational complexity, illustrated with examples to make the algorithms
clearer and finally evaluated with its advantages and disadvantages. This literature
review is given to increase the knowledge required for the singular cubic curve test
[35]. Then, known primality tests and their analyses are given to provide a base for
comparison.

xxi



Finally, the theoretical and experimental comparison results are provided in the
last chapter. Known primality tests are compared to the singular cubic primality
test by using the same dataset which includes both primes and composites with
different number of digits. Implementation and testing phrases show that the
singular cubic curve algorithm catches all composite number up to 1021 which were
strong pseudoprimes to base 2 according to commercially used Miller-Rabin test.
Additionally, it successfully detects the compositeness of large integers that have
several hundred digits. Thus, singular cubic curve algorithm is a candidate to be a
primality testing algorithm with running time of O(log2+ε n).
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ASALLIK TESTLERİ ALGORİTMALARININ İNCELENMESİ
VE KARŞILAŞTIRILMASI

ÖZET

Asal sayılar, kendisi ve 1 dışında herhangi bir böleni olmayan sayılardır.
Günümüzde yaygın olarak kullanılan kriptolojik tekniklerde ve güvenilir haberleşme
protokol tasarımlarında yüzlerce ve hatta binlerce rakamdan oluşan asal sayılar
kullanılmaktadır. Örnek vermek gerekirse, popüler ve çok bilinen algoritmalardan biri
olan RSA [22] algoritması, 150’den fazla rakam içeren iki asal sayının çarpımından
oluşmaktadır. Bu sebeple, tüm asal sayılar için geçerli olabilecek genel formüller
ve testler geliştirilmesi, araştırmacılar tarafından halen çalışmaları devam eden bir
alan olmuştur. 1960’lı yıllardan öncesinde teorik olarak kanıtlanan bir asallık testi
olmamasına rağmen, o yıllardan itibaren bu konuda birden fazla pratik metotlar
bulunmuştur [7–10, 16, 17]. Çok büyük sayılar için kullanılması uygun olan
algoritmalar vardır ve bunlar genel olarak olasılıksal testler ve deterministik testler
olarak iki gruba ayrılabilir.

Olasılıksal testler birkaç gruptan oluşan matematiksel denklemleri içerir ve diğer
testlerle karşılaştırıldığında daha hızlı olduğu kanıtlanmıştır. Bu testlerin ortak
özelliği; asal sayıları tanımlamakta (çok küçük ve önemsiz düzeyde de olsa) bir
hata payı içermesidir. Test edilmek üzere verilen bir n sayısı için, sayı eğer asal
değil ise, olasılıksal testler bunu tespit etmekte �100 gerçek sonuç verir. Fakat diğer
yönden, verilen sayıya algoritmanın döndüğü tanımlama, sayının asal olduğu ise,
bu sonuç tam olarak güvenilir değildir. Çünkü bilinen bazı asal olmayan sayılar
vardır ki; bu testi asal bir sayıymış gibi geçebilirler. Bu yüzden, olasılıksal testlerin
doğruluğunu ve geçerliliğini artırmak için, test aynı sayı için farklı rastgele tabanlar
seçilerek t defa tekrar edilir. Bu tekrar, aynı zamanda test sonucunda oluşan hata
payının düşmesini sağlar. Aynı sayının defalarca tekrar edilmesi sebebiyle, olasılıksal
bir sonuç elde edilir. Olasılıksal testlere örnek olarak; Euler ve Fermat testleriyle
birlikte, Solovay-Strassen [10] ve Miller-Rabin [16, 17] tarafından geliştirilen testleri
de verilmiştir.

Olasılıksal testler bölümünde görüldüğü üzere; bazı yalancı asallar vardır ki, rastgele
seçilen baz değerine göre asal sayılar gibi testin tüm şartlarını sağlarlar. Tarihsel olarak
sıralandığında, günümüz gelişmelerine doğru testlerin yarı asal oluşturma olasılığı
gitgide azalmıştır. Örneğin; 104 limitinden az Fermat testi için (baz 2 alındığında)
yalancı asalların sayısı 22 iken; Euler testiyle birlikte bu sayı 12’ye düşmüştür.
Miller-Rabin olasılıksal testi aynı baz değeri için değerlendiğinde, bu toplam sadece
5’tir. Ancak; en az hata veren Miller-Rabin testinin hata oranı incelendiğinde;
testin t defa tekrar etmesi sonucunda hata oranı (1

4)
t değerinden azdır. Bu değer

küçük ve önemsiz olsa da, asal sayıların yaygınca kullanıldığı günümüz algoritmaları
düşünüldüğünde, net sonuçlar veren asallık testlerine olan ihtiyaç görülmektedir.

Olasılıksal testlerin defalarca tekrarlanarak olasılıksal bir sonuç dönmesinin eksikliğini
kapatmak üzere, deterministik testler geliştirilmiştir. Deterministik testlerin temel
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özelliği, çok yüksek bir doğruluk payı içermeleridir. Diğer bir deyimle, deterministik
testler verilen sayı için sonuç olarak asal tanımlaması yaptığında, verilen sayının
gerçekte asal olması doğrulanmış olur. Aynı şekilde; verilen sayının tanımlaması
asal olmadığı şeklinde ise, sayı gerçekte de asal değildir. Ancak, bu testlerin
doğruluk özelliğinin net olmasının yanında, pratik uygulamalarda sıklıkla kullanmak
için olasılıklar testler kadar hızlı sonuç vermezler. Deterministik testlere örnek
vermek gerekirse, Agrawal-Kayal-Saxena (AKS) algoritması ve analizi örneklerle
beraber incelenmiştir. Bu test, polinom zamanlı deterministik bir test olmasına
rağmen, çalışma zamanı bakımından değerlendirildiğinde olasılıklsal ve elliptik eğri
testlerine nazaran çok yavaş kalmaktadır. Bu sebeple, tez içinde karşılaştırılmaya dahil
edilmemiştir.

Bu testlerin dışında, eliptik eğriler ve türevleri kullanılarak geliştirilen asallık testi
algoritmaları da günümüzde yaygınca kullanılmaktadır. Bazı eliptik eğri asallık testi
algoritmalarının, çok büyük sayıda rakamdan oluşan sayıların asal olup olmadığını
tespit etmeleri çok uzun zaman alsa da, dönülen sonuç deterministiktir. Bu testlere
örnek olarak Shafi-Killian ve Atkin-Morain olmak üzere, iki eliptik eğri asallık
ispatlama algoritması incelenmiştir.

Öncelikle, Shafi-Killian [9] ve Atkin-Morain [8] tarafından geliştirilen algoritmaların
baz aldığı temel işleyiş metodolojisi verilmiştir. Ayrıca; her iki algoritmanın da ana
temelini oluşturan Pocklington Teoremi’nden bahsedilmiştir. Her iki algoritma da
benzer metodolojiye farklı bir bakış açısı sunduğundan ve birebir bir karşılaştırma
sunulması açısından, bu algoritmalar 5 temel adımda incelenmiştir.

Shafi-Killian tarafından geliştirilen algoritmada, ilk aşamada Miller-Rabin testi gibi
olasılıksal bir test kullanılır. Bu aşama sayesinde, sadece olasılıksal testin asal
olmadığını ispatlayamadığı sayılar için denenmiş olur. Daha sonra, rastgele bir
a ve b değeri seçilerek eliptik eğri denklemi oluşturulur. Bu eğrinin üzerindeki
tüm noktaların sayısını bulmak için, nokta sayma algoritmalarından olan Schoof
metodu [11] kullanılır. Bu metot ile bulunan değerin çarpanlara ayrılması gerekir
ve bu aşamana Lenstra’nın çarpanlara ayırma metoduna yer verilmiştir. Eğer değer
çarpanlara ayrılmazsa, en başa dönülerek yeni bir eğri seçilir ve diğer adımlar
tekrarlanır. Bu ilk 3 aşamanın zaman maliyetli olması sebebiyle, Atkin-Morain eliptik
eğri algoritması geliştirilmiştir.

Atkin-Morain algoritmasında kullanılacak eliptik eğri rastgele değil, belli bir ön
aşamadan sonra oluşturulur. Bu metodun temel farkı olarak karışık çarpım (CM)
yöntemine yer verilmiştir. CM sayesinde, eğri üzerindeki nokta sayısı için olası
değerler elde edilir ve bu sayıların çarpanlara ayrılması denenir. Çarpanlara ayrılan
değer bulunduğunda, eliptik eğri bu değere göre yine rastgele a ve b değerleri seçilerek
oluşturulur.

Eliptik eğri oluşturma aşamasında farklılaşan Shafi-Killian ve Atkin-Morain algorit-
maları, eliptik eğri seçildikten sonra aynı operasyonları uygular. Her iki algoritma
da, belirlenen eğri üzerinde, yani eğri denklemini sağlayan, bir nokta seçer. Daha
sonra bu nokta üzerinde grup operasyonu uygular. Bu testler, ilk aşamada verilen
sayının asal olduğunu kabul edip, grup operasyonu sırasında asal olmadığını bir hata
ile bulma mantığına dayalı olduğu için, grup operasyonunda hata olana kadar testler
devam eder. Bu sebeple, bu testlerin çalışma zamanını net olarak ölçmek mümkün
değildir. Bu tezde, eliptik eğriler ve grup operasyonları hakkında temel bilgilere
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değinilmiştir. Aynı zamanda, çalışma zamanı olarak verimli grup operasyonu ve skaler
çarpım algoritmalarına yer verilmiştir.

Genel olarak, bu tezde, öncelikle sayılar teorisinde temel olarak bilinen ve kullanılan
genel matematiksel altyapılar için tanımlamalar ve teoremler verilmiştir. Daha sonra
devam eden bölümlerde eliptik eğrilere dair detaylar anlatılmıştır. Literatür taraması
olarak, bilinen asallık testi algoritmaları altyapılarıyla birlikte verilerek, bu testler
okuyucuya daha açık bir anlatım sunabilmek için örneklerle beraber pekiştirilmiştir.
Bilinen algoritmaların kendilerine dair özellikleri dışında, diğer algoritmalarla
karşılaştırıldığında oluşan avantajlar ve dezavantajları değerlendirilmiştir.

Bilinen algoritmaların yanına ek olarak, önceden teorik olarak geliştirilen bir asallık
testi önermesine [35] yer verilmiştir. Bu önermenin algoritma olarak detayları
verilerek, neden asallık testi olabileceğine dair detaylardan bahsedilmiştir. Bu
algoritmanın bilgisayar ortamında C++ dili ile yazılım tabanlı gerçeklenmesi yapılıp
pratik ortamda kanıtlanması sağlanmıştır. Testler Miller-Rabin algoritmasının doğru
olarak yakalayamadığı sayılardan olan "baz 2" sayıları seçilmiştir. Baz 2’ye göre
yalancı olan sayılar gerçekte asal olmamasına rağmen, Miller-Rabin algoritmasından
asal olarak geçebilen sayılardır. Bu testin gerçeklenmesinden elde edilen sonuçlar,
önerilen asallık testinin 264’e kadar olan tüm baz 2’ye göre yalancı asal olan sayıların
gerçekte asal olmadığını tanımladığını göstermektedir. Aynı zamanda, çok büyük
rakam içeren ve yüksek hassaslıktaki rastgele sayılar denenmiş ve bu testin doğru
sonuçlara kısa zamanda ulaştığı görülmüştür.

Bu testin gerçekliğinin pratikte denenmesinin yanında; testin diğer algoritmalar
ile çalışma zamanı karşılaştırılmıştır. Teorik karşılaştırma ve çalışma zamanına
dair sonuçlar göstermektedir ki; bu test olasılıklar testler kadar hızlı ve pratikte
kullanılabilecek kadar az algoritma karmaşıklığına sahiptir.
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1. INTRODUCTION

1.1 Motivation and Objectives

The primality testing algorithms are the keystone of cryptography and computational

number theory. Almost all security of cryptographic algorithms depend on their

underlying mathematical procedures and theorems. For example, the most commonly

used public-key cryptosystem, RSA, is solely using exponentiation and congruences

modulo some integer. In addition, the security of RSA is based on the difficulty of

integer factorization problem. In other words, the product of two integers can easily

be calculated with any computers; nevertheless, the factorization of that calculated

number into its products is challenging. Therefore, if an efficient algorithm that

factorizes very large integers could be found, then RSA will not be safe to use anymore.

In Chapter 2, we provide the RSA algorithm whose key generation step involves

the multiplication of two very large primes. As seen from the algorithm, we need

to deterministically ensure the primality of those large numbers. This provides our

motivation to study on primality testing.

The primality testing algorithms can be categorized into two main categories:

probabilistic and deterministic. The probabilistic tests are fast but if the test results

in composite for a given number n, it is definitely composite. However, if the test

does not say an integer is composite, it is very hard to conclude that the number is

prime. The forebear of probabilistic tests is Fermat’s Little Theorem and continues

with Euler’s extensions, Solovay-Strassen, and the Miller-Rabin test (the most recent).

As seen from the tables of the number of pseudoprimes in Chapter 4, Fermat’s test

has less accuracy than the Miller-Rabin Test. In other words, considering just one

trial, the probability of having an error is at most fifty percent in Fermat’s Test,

whereas the Miller-Rabin Test only has at most twenty-five percent. Although every

probabilistic primality test contains some extra conditions to reduce the likelihood of

1



error, deterministic tests are needed as probabilistic tests would not be sufficient for

every application.

Deterministic tests have been developed to mitigate this disadvantage in probabilistic

tests. These tests can determine the primality of an integer more precisely, i.e., if the

test results as a prime then the number is definitely prime. However, deterministic

tests are not efficient in practice. Thus, there is still a need for practical deterministic

algorithms.

Because of this motivation, we prepared this thesis to serve a brief introduction to

the history and evolution of primality testing algorithms through time from Fermat’s

Little Theorem to modern tests that use elliptic curves. In addition, we included

a newly presented algorithm which uses singular cubics to satisfy the drawback

in Miller-Rabin test. After the introductory chapters including the fundamental

definitions and theorems of number theory, primality testing and proving algorithms

are examined by their algorithms, examples, and analyses. Finally, evaluation and

comparison are given to examine the accuracy and execution rate of known algorithms.

1.2 Thesis Structure

The goal of this thesis is to cover the necessary background from number theory and

to explain significant primality testing algorithms. It consists of six chapters with each

chapter covering the following themes:

In Chapter 2, we will give an overview of the encryption schemas together with

their definitions and security requirements. Then, we will give explanations,

advantages, and drawbacks of two types of cryptosystems: secret-key cryptosystems

and public-key cryptosystems. Since prime numbers and primality testing algorithms

are a major building block of public-key cryptography, we will take a comprehensive

look at public-key cryptosystems along with their underlying mathematical problems

that are not yet computationally feasible. After describing the discrete logarithm

problem with its two applications, the integer factorization problem will be examined.

In Chapter 3, we will present definitions and preliminaries of elliptic curves. After

explaining its group structure as the next issue, we continue with curve arithmetic

which forms a base for modern primality testing algorithms. Furthermore, coordinate
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systems for elliptic curves and its comparison will be explained to give the idea of

speeding up the group operation.

In Chapter 4, we will present the leading primality testing algorithms along with

their principle definitions and theorems coming from number theory. There are two

categories of primality testing algorithms: probabilistic and deterministic tests. Both

methods will be intensively described in this chapter together with their applications

and examples. The oldest techniques illustrated with some examples and tables

herein to explain the basic facts on pseudo-primality. The AKS primality testing

algorithm will be examined as a reference for a deterministic test. Next, we will

introduce the well-known Pocklington’s theorem and Cornacchia’s algorithms, which

are the principle strategies used in elliptic curve primality proving. The given ECPP

algorithms will be divided into five main steps to evaluate gradually the difference in

perspective of two groups of researchers, Shafi-Killian and Atkin-Morain respectively.

Finally, we also give the details of newly presented algorithm [35] that uses singular

cubics.

In Chapter 5, we will first provide our theoretical comparison result which includes

algorithmic complexity of some selected probabilistic and deterministic algorithms

along with singular cubic primality testing algorithm. Afterward, the details of our

implementation will be provided with hardware and software specifications. The

running time comparison results of our implementation will be given at the end of

this chapter.

Finally, in Chapter 6, we will conclude the singular cubic curve primality test and its

contribution to the research area of algebraic and computational number theory. The

final discussion will include suggestions for future research.
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2. ENCRYPTION SCHEMAS

2.1 Introduction

In modern technology, information is valuable. Our e-mail contents, passwords,

pictures or text messages are all private information that should be kept secret.

Cryptography provides rule-based techniques, which consist of a set of mathematical

calculations. It is referred almost solely to encryption operation, which basically

converts the information to an unreadable form. Decryption operation is the reverse of

encryption, which reveals the encrypted message to the original form. Cryptography

provides the security of communication between two parties by using encryption and

decryption techniques. Cryptosystems are intended to prevent other people from

reading and changing the confidential message, except for the person who encrypts

and sends the confidential message. Using encryption techniques in our daily lives, our

encrypted messages can be transmitted securely over a secure channel and decrypted

by only the message recipient.

Information security and cryptography built upon three main concepts known as CIA

triad, which refers to confidentiality, integrity, and availability of the information.

All encryption algorithms or any protocols aim to keep secure at least one of these

components. Now, we provide elementary descriptions of each security measurement.

• Confidentiality: This measurement ensures to keep secret as a secret, i.e., nobody

could be able to read the data while transmission between different parties.

Encryption algorithms are used to provide this property. As we will discuss at

the following chapter, symmetric cryptosystems or asymmetric cryptosystems are

two ways of keeping confidentiality of messages.

• Integrity: This measurement states that the message (or even some parts) cannot

be modified by any unauthorized users. Checksums or hash values can be used for

comparison between each version whether there is an unknown change.
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• Availability: This measurement refers to being always available for authorized

users and protecting system-level attacks, which interrupt communication between

systems.

In addition to CIA triad, there are also extra measurements as following:

• Non-repudiation: This measurement refers to non-deniability and proving of

doing something, for example, sending an e-mail or perform an action on systems.

Legal policies are for providing this assurance.

• Authentication: This measurement is a trustiness to initial message sender is who

he/she claims to be.

2.2 Cryptography Basics

Before prividing further details, we will use the following definition to explain the key

components that each cryptosystem has.

Definition 2.2.1. An encryption scheme is a tuple (P,C,KE ,KD,E,D), where P,C,KE

and KD are arbitrary sets (not necessarily distinct), and E and D are sets of functions,

such that for each k ∈ KE , there is a function Ek : P→C, and for every k ∈ KD there

is a function Dk : C→ P. This tuple must satisfy the condition that for every t ∈ KE ,

there is a unique s ∈ KD, such that Ds(Et(p)) = p for all p ∈ P.

From the above definition; the symbols P,C,KE and KD are known as plaintext,

ciphertext, encryption key and decryption key respectively. Then, the symbols E and

D be the encryption and decryption functions respectively. Now, we provide some

non-technical explanations of each term:

• Plaintext (P): The original sensitive information which is transmitted between two

parties.

• Encryption Key (KE): The secret parameter for which changes the structure and

content of plaintext, and generates its ciphertext.

• Encryption (E): The set of procedures and permutations to hide the original data

from unauthorized users by using an encryption key and plaintext as an input.
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• Ciphertext (C): The final unintelligible message after an encryption process of a

plaintext.

• Decryption Key (KD): The secret parameter for which enables to obtain the

original message. It can be derived from the public key as in asymmetric

cryptosystems or is the same as the encryption key as in symmetric cryptosystems.

• Decryption (D): The reverse operation of an encryption schema to retrieve original

text from plaintext by using decryption key and ciphertext as an input.

In every encryption schema, if one inputs the plaintext P with an encryption key KE

provided before, encryption algorithm E outputs an unpredictable and unintelligible

ciphertext message C. Conversely, the original message can be obtained by applying a

decryption algorithm D, which has similar design with the encryption algorithm. Thus,

decryption algorithm D inputs ciphertext C and the decryption key KD, then outputs the

original message P. Both encryption and decryption algorithms rely on Correctness

Property such as DKD(EKE (P)) = P.

As we have seen from the definition that, encryption is a set of mathematical

procedures which concern with the design and analysis of secure communication

between two parties by protecting their sensitive information from unauthorized

access. The purpose of the encryption process is to provide confidentiality of data

by scrambling it in a way of which just the only people who have the key can reveal the

original data. Thus, it is obvious that the main demand from an encryption schema is

not to allow any unauthorized users to decrypt the encrypted message without having

the key used in encryption.

In cryptography, the encryption and decryption algorithms should be designed not to

compromise the security of systems. The algorithms should provide substitution and

permutation to make the prediction of any secret message hard and complex. Now, we

give one of the main principles used in any cryptosystem.

Kerckhoffs’ Principle. When designing or evaluating the security of cryptosystems,

it should be secure even if everything about the system, except the key, is public

knowledge.
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In ancient cryptography, the design of cryptosystems kept its secret to form a barrier

when an attacker intended to hack it. However, the security of an algorithm should

not be depended on the design of the algorithm according to Kerckhoffs’ Principle.

It should not cause any vulnerability even if the algorithm is known broadly so that

the security of the algorithm should solely depend on the security of the encryption

key KE . By adopting this design principle, the users of the algorithm can be aware

of possible attacks and it is also open for any cryptanalysis by experts to have a more

secure system. Thus, Kerckhoffs’ Principle became a fundamental design criterion in

modern cryptography.

There are also two entities who want to communicate with each other: (1) Alice as

a sender and (2) Bob as a receiver. During secret message transmission, If Alice has

KE and Bob has matched KD, it is known as one-way secure communication channel.

However, if Alice and Bob have KE , and Alice has matched KD, there is a two-way

secure communication channel. We later present more broad explanations of them as

symmetric and asymmetric encryption.

2.3 Types of Cryptosystems

In modern cryptography, there are two types of cryptosystems when encryption and

decryption system considered. We provide explanations and features of each in the

following sections:

2.3.1 Secret-key cryptosystems

The secret key cryptosystems, also known as symmetric cryptosystems, are known

as the oldest techniques used in history since the ancient cryptography era. In secret

key cryptosystems, both parties agree on a secret shared key at the initial stage of the

encryption process and the same key is used in the decryption process. The secret keys

should be a randomly chosen text or integer and initially transmitted to each party in

a secure channel. Thus, the security of the symmetric key cryptosystems is mostly

based on keeping the key transmission channel secure. Even the message integrity can

be provided by one of the modes of operation, if an attacker corrupts the key during

transmission, he can decrypt all plaintext and so reveal all original messages.
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The key property of this type of cryptosystems is the need for secure key transmission

between parties. Also, the algorithms provide the same security with shorter key size

comparing to public-key cryptosystems. Because of the efficiency of this feature, many

cryptosystems use secret-key encryption schemas. Besides, one of the drawbacks of a

secret key cryptosystem is generating different random keys for each pair of entities. If

there is a group communication including n people, n(n−1)/2 different key pairs are

needed to be generated to enable communication between any two-party. Generating

many key pairs also leads to the need for secure storage and changing the key regularly

to prevent possible attacks.

Thus, secret key cryptography (such as DES, AES, 3DES, etc.) is widely used in many

applications even key establishment between two-party and trustiness are still open

questions.

2.3.2 Public-key cryptosystems

Public-key cryptosystems (PKC), also known as asymmetric cryptosystems, consist of

a pair of a public and private key for encryption and decryption process. Public keys

can be sharable with anyone; however, the mathematically related private key is owned

and known by just its owner. These cryptosystems have been invented to eliminate the

need to share the secret key with each party in a secure channel. The secret message

encrypted with the receiver’s public key, and only the receiver that has matched private

key can decrypt the encrypted information. Thus, any adversaries who do not have the

receiver’s secret key cannot decrypt the secret message.

The security of this type of cryptosystems is based on the generation of keys and

securing the private keys. One of the keys in pair is the public key, which can be known

and distributed to everyone without adjusting any security agreement and it does not

easily reveal the generation of the private key. Thus, key pair generation algorithms are

mostly based on some unsolved mathematical problems which provide computational

hardness to not to derive the private key from its paired public key. Additionally,

public-key cryptosystems require a relatively longer key size which leads to slower

encryption schemas comparing to secret key cryptosystems.

Moreover, one of the challenges in PKC is the trustiness and proof of public keys

used in encryption. The sender needs to ensure that the public key is not corrupted
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by any malicious third party. This problem leads to a solution by having a Public

Key Infrastructure (PKI) to manage and certificates public keys. However, public-key

cryptosystems such as RSA, ElGamal Signature Schema and Diffie-Hellman Key

Exchange schema are also widely used if one needs to replace the limitations of secret

key cryptosystems.

The security of this type of cryptosystem is based on the protection of private

key, which is mathematically derived from the public key. Thus, we present some

mathematical problems such as discrete logarithm problem and integer factorization

problem, which are computationally unsolved yet. We will give problem definitions of

both in the following sections 2.4 and 2.5 respectively.

2.4 Discrete Logarithm Problem

2.4.1 Problem definition

Definition 2.4.1. Let g be the generator of the group G with the order of n. Given

group and n, for any integer

h = gx (2.1)

computation of x is the discrete logarithm problem. Such an integer x is called a

discrete logarithm of h to base g.

To solve the DLP in general, the first algorithm which comes to mind is a trivial

exhaustive search. However, its complexity is quite high and not efficient in terms

of running time. Although there is no efficient method to solve DLP efficiently in

general, there are some algorithms that can solve very efficiently for some cases. The

methods are called Index-Calculus, Pohling-Hellman, Shank’s Baby-Step-Giant-Step

Method, Pollard Rho Method, and Lenstra’s Elliptic Curve Method. (See Section 11.6

in the book [19] for more information)

2.4.2 DLP based PKC

In previous subsections, we gave the problem definition of the discrete logarithm. In

this subsection, we present examples of some public key encryption systems whose
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security is based on the difficulty of the computationally intractable discrete logarithm

problem.

2.4.2.1 Diffie-Hellman key exchange

As seen in Section 2.3, secret key sharing between two entities is a critical issue in

symmetric type cryptosystems. Thus, Whitfield Diffie and Martin Hellman invented

the algorithm in 1976, which allowed sharing a secret without the need for a secure

communication channel.

Alice Bob

Agreement Stage
p: prime

g: generator s.t. g < p and g ∈ G.

a← Zn and a < p b← Zn and b < p

hA = ga mod p hB = gb mod p

k = (hB)
a = gab mod p k = (hA)

b = gab mod p

Figure 2.1 : Key Exchange Schema.

As we have seen from the figure above, Alice and Bob initially agree on a finite cyclic

group G with the order of n. Then, they choose a prime integer p and a primitive root

of p such that g < p and g ∈ G. Then, Alice chooses a random integer a ∈ Z/nZ such

that a < p as her secret key and calculates hA = ga (mod p ) as a public key. She sends

her public key hA to Bob. (Remember from the Section 2.3.2 that the secret key should

be unknown except Alice; however, the public key hA is sharable to anyone.) At the

same time, Bob chooses his secret key b ∈ Z/nZ such that b < p and calculates his

public key hB = gB (mod p ). Bob sends his public key hB to Alice. Now, each party

has other’s public key. Bob calculates (hA)
b and Alice computes (hB)

a. At the final

stage, they obtain the same calculation since (hA)
b = gab = (hB)

a.

Example. Choose p = 281 and a primitive element a = 3 of p. Then, Alice and Bob

choose a = 59 and b = 181 respectively. Before key exchange stage; Alice computes

359 mod 281 = 74 and Bob computes 3113 mod 281 = 270. After that, they exchange

public keys. Then; Alice computes 74113 = 82 and Bob computes 27059 = 82.
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Security. Assume that an attacker knows everything except the secret keys a and b

given in Figure 2.1. Even the values of p,g and the result of the computation ga,gb are

known to the attacker, it is not computationally feasible to compute the secret keys in a

reasonable amount of time. The problem with the use of very large primes is still very

expensive in terms of calculation, even for modern supercomputers. Thus, the security

of the Diffie-Hellman key exchange method is based on the difficulty of solving the

discrete logarithm problem.

2.4.2.2 ElGamal encryption schema

We have seen from Diffie-Hellman Protocol that it is a great idea to exchange the

secret key between two parties, which was a major problem in secret key cryptography.

However, the secret message is not encrypted in the Diffie-Hellman method. Thus, in

1984, Taher ElGamal invented a new public-key cryptosystem, which is similar to

Diffie-Hellman protocol. However, it also encrypts messages and generates digital

signatures of entities. Moreover, it also provides probabilistic encryption which means

that a message can be encrypted with many possible ways depending on the choice

of the key. The method consists of 3 main stages: key generation, encryption, and

decryption. Now, we describe each part by given algorithms and an example.

Alice Bob
Key Generation Stage

pA: prime pB: prime
gA: generator modulo pA gB: generator modulo pB
a: random st. 2≤ a≤ pA−2 b: random st. 2≤ b≤ pB−2
bA = ga

A mod pA bB = gb
B mod pB

Public: {pA,gA,bA} Public: {pB,gB,bB}
Private: a Private: b

Figure 2.2 : ElGamal Key Generation.

Since ElGamal Methods is a public-key cryptosystem, we generate two different keys:

a public key is used for encryption and a private key is used for decryption. Now, we

give details on encryption and decryption stages by the following figures:

Let us illustrate the encryption schema with an example:

Example.

1. Key Generation:
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Encryption

Public key received st. {p,g,b}
Select random k st. 1≤ k ≤ p−1
Calculate x = gk mod p
Calculate y = m · (ga)k mod p where 0≤ m≤ p−1

Ciphertext: (x,y)

Figure 2.3 : ElGamal Encryption.

Decryption

Ciphertext received st. {x,y}
Calculate m = x−a · y mod p

Plaintext: (gk)−a ·m · (ga)k mod p = m

Figure 2.4 : ElGamal Decryption.

• Alice chooses p = 41 and finds the primitive element g = 6,

• Chooses her private key a = 29, and

• Calculates her public key b = ga = 629 mod 41 = 22.

2. Encryption:

• Bob receives Alice’s public key {p = 41,g = 6,b = 22}

• Bob chooses k = 17 and the message m = 35,

• Calculates x = gk = 618 = 26 mod 41,

• Calculates y = m · (ga)k = 35 · (629)17 mod 41 = 20, and

• Sends the ciphertext pair (x,y) = (26,20).

3. Decryption:

• Alice finds the random k = xa = 2629 = 24 mod 41, and

• Reveals the secret message m = k−1 · y = 24−1 ·20 mod 41 = 35.

Security. We know from the algorithm that secret values are the private key a, random

integer k and the message m. If the attacker knows the private key a of Alice, then he

can decrypt the messages. However, finding a by knowing public values {p,q,b,x,y}

is discrete logarithm itself. Thus, the security of ElGamal is as hard as the discrete

logarithm problem as we mentioned in Section 2.4.1.
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2.5 Integer Factorization Problem

As we have already seen from the previous sections, the general idea behind the

public-key cryptography is to have different keys for encryption and decryption. Since

the private key is derived from the public key, key derivation algorithms were based on

mathematical unsolved problems, i.e., the solutions are not feasible even with modern

supercomputers. One of the methods is to choose the Discrete Logarithm Problem

(DLP) to be a base for the security of the algorithm. Diffie-Hellman Key Exchange

and ElGamal Encryption are examples where the security only depends on DLP.

The usage of prime numbers in the RSA algorithm increased the challenge in prime

factoring for many years. Thinking of the last factored RSA number is RSA-220

which consist of 220 digits, integer factorization problem is not easy to solve in a

timely manner. In this section, we give another unsolved mathematical problem, which

constructs the security of RSA.

2.5.1 Problem definition

According to Fundamental Theorem of Arithmetic, every integer has unique prime

factors. It is trivial if the number is prime since prime numbers have no divisors

other than 1 and itself. Otherwise, any factorization algorithm gives the multiplies

of composite numbers. However, the difficulty of problem increases for very large

composites.

The next definition is the main idea behind the factorization:

Definition 2.5.1. Let n denote a composite number which can be written as the form

of

n =
k

∏
i=1

pei
i (2.2)

Then, integer Factorization Problem (IFP) can be defined as a decomposition of n into

pi with repeating count of ei.

Even there is no efficient prime factorization algorithm yet, there are some algorithms

with their drawbacks. The first and the simplest one is to try all possible numbers to
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check whether it divides n or not. Besides the elementary methods, we will mention

elliptic curve factorization method in Chapter 3, which is most recent.

2.5.2 IFT based PKC: RSA

RSA algorithm is invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman

at MIT and became one of the most widely used public-key cryptosystems for years.

RSA algorithm has a key pair such that a known public key and a private key derived

from the public key, as well as the other previous cryptosystems. Furthermore, the

security of the RSA algorithm depends on the difficulty of factorization of large

number (see Section ), which is the product of two hundred-digit prime numbers. Now,

we provide details of the method afterward giving examples and security discussion.

First, we come up with the key generation stage by the following figure:

Key Generation

Choose: {p,q} st. p,q are large primes
Calculate: n = p ·q
Choose: e st. gcd(e,φ(n)) = 1 and 1 < e < φ(n)
Calculate: d = e−1(mod φ(n))

Public key: (e,n)
Private key: (d,n)

Figure 2.5 : RSA Key Generation.

As we have seen from the figure that φ(n) is the Euler’s Totient Function as we will

discuss the details in Chapter 4. Also, one of the public key e and the private key d

are mathematically related to each other, i.e., one of each is multiplicative inverse of

another modulus φ(n).

After the key preparation step is completed, Bob gets Alice’s public key pair {ea,na}

and computes the ciphertext c = mea mod na where m is the secret message. When

Bob sends the ciphertext c to Alice, she decrypts using her private key pair {da,na} by

doing the calculation m = cda = mea·da mod na.

Example.

1. Key Generation:

• Alice chooses p = 151, q = 607
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• Calculates n = p∗q = 91657 and φ(91657) = 90900.

• Chooses e = 7 st. gcd(90900,7) = 1

• Calculates d = e−1 (mod 90900 ) = 51943

2. Encryption:

• Bob receives Alice’s public key {e = 7,n = 91657}

• Bob encrypts the message m = 96 by calculating 967 mod 91657 = 76779,

3. Decryption:

• Alice decrypts the message by calculating m = 7677951943 mod 91657 = 96.

Correctness.

The correctness of the algorithm can be demonstrated by using the following theorem

and its proof.

Theorem 2.5.1 (RSA Correctness). med ≡ m (mod n) holds for all integers m ∈ Zn.

Proof. It suffices to prove both in modulus p and q because of the Chinese Reminder

Theorem (CRT). Since p and q are distinct primes such that gcd(p,q) = 1, CRT states

that if

med ≡ m (mod p) and med ≡ m (mod q) (2.3)

then it implies that

med ≡ m (mod n) (2.4)

So, we first prove for modulus p, then the further will be the same for modulus q.

Firstly, we know from the key generation stage of RSA that for e > 0 and any k > 0

e ·d = 1 (mod φ(n))

e ·d = k ·φ(n)+1 = k · (p−1) · (q−1) for some integer k > 0

holds. Additionally, Euler’s extension to Fermat’s Little theorem asserts that

mp−1 ≡ 1 (mod p) (2.5)
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Therefore;

me·d = m1+k·(p−1)·(q−1) · (mod p)

= m · (mp−1)(q−1) (mod p)

= m · (1)(q−1) (mod p)

= m (mod p)

Now, we have seen that me·d ≡ m (mod p) for all integers m. The proof also satisfies

if one changes p with q. Thus, we have proved by using CRT and Fermat’s Little

Theorem that

me·d ≡ m (mod n) (2.6)

holds for all integer m.

Security. The security of RSA solely depends on the difficulty of solving the integer

factorization problem. Since RSA is the first easily used public-key cryptosystem, it

is implemented in many systems for years and its security analyzed in many ways.

The usual attack is prime factoring very large integers. From 1991, RSA Laboratories

arrange factoring challenges to encourage research on cracking RSA by the area of

computational number theory. Even they did not succeed yet, they applied many

attacks on RSA such as timing attack, partial key exposure attack, implementation

attacks, etc. [30]. Finally, we conclude that RSA can be broken at all if one discovers

a fast integer factorization algorithm, which also works well with very large RSA

modulus.
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3. PRELIMINARIES OF ELLIPTIC CURVES

An elliptic curve is an algebraic structure which used in many applications in

cryptography because it provides the same security level with lower key size. In

terms of number theory, these curves are used in modern primality testing and integer

factorization algorithms. Elliptic curves first introduced by Miller and Koblitz in 1980,

then Lenstra used them for integer factorization.

Since this thesis includes primality testing algorithms with elliptic curves, we give

some brief notations and definitions in this chapter.

3.1 Definitions

Definition 3.1.1 (Generalized Weierstrass Equation). An elliptic curve over a field K

is given by

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 (3.1)

where the constants ai ∈ K for i = 1,2,3,4,6. Then, the set of points on the curve E

can be expressed by the equation

K(K) = (x,y) ∈ K : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6∪∞ (3.2)

Definition 3.1.2 (Simplified Weierstrass Equation). Let

E : y2 = x3 +ax+b (3.3)

where the constants a,b ∈ Zn is denotes the simplified Weierstrass form of an elliptic

curve.

Definition 3.1.3 (Discriminant of the curve). The discriminant of an elliptic curve

given in the Weierstrass form is

∆ =−d2
2d8−8d4

3−27d6
2 +9d2d4d6 (3.4)

where :

d2 = a1 +4a2
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d4 = 2a4 +a1a3

d6 = a3
2 +4a6

d8 = a1
2a6 +4a2a6−a1a3a4 +a2a2

3−a2
4

and ∆ 6= 0.

Definition 3.1.4 (Smoothness). If the given elliptic curve has discriminant4 6= 0, the

curve is smooth which means that no points on the curve have two distinct tangent

lines.

3.2 Elliptic Curve Arithmetic

Now, we have introduced the concepts of elliptic curve arithmetic including algebraic

group operation.

Let P = (x1,y1) and Q = (x2,y2) are two points on elliptic curve, we denote P∞ = (0,1)

as point at infinity or identity point of elliptic curve. Since elliptic curves are symmetric

geometrically, we denote as the negative −P = (x,−y). If we add two points P and Q

algebraically, we denote this group operation as ⊕, we get an 3rd point P⊕Q = R =

(x3,y3) on the curve as shown in the figure below.

Figure 3.1 : Point addition on elliptic curves.
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3.2.1 Group law

The following theorem gives a brief explanation of group operation on E.

Theorem 3.2.1. The addition of points on an elliptic curve E satisfies the following

properties:

1. Addition: If P,Q ∈ E, then P⊕Q ∈ E

2. Identity: O⊕P = P⊕O = P

3. Inverse: P⊕ (−P) = O = P∞

4. Associativity: P⊕ (Q⊕R) = (P⊕Q)⊕R

5. Commutativity: P⊕Q = Q⊕P

If the last property, i.e., commutativity rule, satisfies, then we call this group as abelian

group.

We give details about algebraic point addition ⊕ operation on proceeding sections.

3.2.2 Group order

The number of points in the elliptic curve E over the finite field Fq is called the order

of the curve and represented by #E(Fq). Hasse’s theorem on elliptic curve 3.2.2 gives

the interval of the order of the curve E over finite fields [29]. It estimates the order by

bounding the value both above and below which are only depend on the finite field and

not the curve.

Theorem 3.2.2 (Hasse’ Theorem). Let p be a prime number and q = pn for n ∈ N.

The order of an elliptic curve E over Fq is bounded by

q+1−2
√

q≤ #E(Fq)≤ q+1+2
√

q (3.5)

Proof. See [29] for the complete proof.

Hasse’s Theorem is used in many elliptic curve cryptosystems over years. For instance,

R. Schoof used this theorem [11] to generate an algorithm for computing the number of

the points on elliptic curves. Additionally, elliptic curve primality proving algorithms

included this theorem in their proofs.
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After describing the main theorem of group order of elliptic curves, we now give details

on their group structures.

3.2.3 Group structure

Let E denote an elliptic curve over the field K. There is a chord-and-tangent rule which

generates the 3rd point on E(K) by drawing a line passing over two distinct points or

a tangent line of a single point on the curve E.

Let P = (x1,y1) and Q = (x2,y2) be two points on elliptic curve E over Fp. Then, we

can uniquely describe a third point by adding P⊕Q = (x3,y3).

The point addition and doubling operation can be done by following way:

x3 = λ
2 +2a− x1− x2, y3 = λ (x1− x3)− y1. (3.6)

where

λ =


y1− y2

x1− x2
if P 6= Q

3x2
1−4ax1 +a2

2y1
if P = Q

Note that −P = (x,−y) and P⊕ (−P) = P∞ where P∞ is called point O or point at

infinity. We should also mention here that there are many other ways to perform group

operation in E(Fq). (For other methods, see [2, 24] related chapters.)

In this way, the computation of the slope (λ ) requires to take the multiplicative inverse

of either “x1− x′′2 or “2y′′1 in modulus n. If the greatest common divisor of any of the

denominator and n is not equal to 1, the operation fails to compute point addition and

returns a factor of n. This is the key point of Lenstra’s Elliptic Curve Factorization

Method [20].

3.2.4 Scalar multiplication

The scalar multiplication operation consists of a positive integer k > 0 and a point P on

elliptic curve E. These three ingredients form the basis of the security level of elliptic

curve cryptosystems which are based on the difficulty of finding the scalar multiplier

k in a given multiplication operation Q = [k]P for given point P,Q on E and the group
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operation denoted by ⊕. The scalar multiplication is mainly applying group addition

operation to the point P repeatedly to itself and finding another point Q on curve E. It

means that

Q = [k]P = P⊕P⊕P⊕ ...⊕P︸ ︷︷ ︸
k−times

This definition can be extended for all integer k by [0]P = P∞ and [−k]P = [k](−P) for

k < 0.

This basic recursive point addition method is very expensive because it requires the

longest addition operation chain for large values of k. Here, the problem arises to

retrieve scalar multiplier k with the least number of steps. Since finding the shortest

addition chain is actually a NP-complete problem, various heuristics methods have

been invented to reduce the number of additions and doublings. For simplicity, we will

not give a detailed analysis of these methods; but, general structures of algorithms will

be given at this point.

3.2.4.1 Binary method

The ‘school book‘ method to retrieve n-bit integer k starts with binary representation

of k = k0 +2k1 +22k2 + ...+2n−1kn−1 where k0,k1, ...kn−1 ∈ {0,1}. By this way, the

multiplication cost depends on the length of k and the number of 1s in representation.

As a result, binary method takes n−1 doublings and w(k) additions such that w is the

Hamming weight which represents the number of non-zero bits in k. Thus, this method

speeds-up retrieving the multiplier k by having n/2 additions on average without any

precomputation step.

The method works as follows:

Algorithm 1 Binary Method Point Multiplication
Require: Point P, n-bit integer k

1: procedure CALCULATE([k]P)
2: if kn−1 = 1 then Q← P
3: elseQ← 0
4: for i = n−2→ 0 do
5: Q← Q⊕Q
6: if ki = 1 then Q← Q⊕P
7: return Q
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Signed Digits

The elliptic curve representation has negative points P = (x,−y) and the point

subtraction costs the same as the point addition. However, this representation of any

given positive integer speeds up the computation by reducing the number of non-zero

digits comparing to signed digit binary representation of the same number. This unique

representation is called width-w non-adjent form and denoted by NAFw(k) = ∑
n−1
i=0 ki2i

for a positive integer k where each ki ∈ {−1,0,1} and width size w. We can easily see

that NAFw conversion of an integer has fewer non-zero digits. It is proved in [MorOl,

1990] that the density is approximately 1/3 for w = 2 and 1/(w+1) in general. [Sol,

2000].

Now, we will give how to find NAFw representation of given n−bit scalar k.

Algorithm 2 Converting to NAFw Representation
Require: n-bit integer k and parameter w

1: procedure NAFw(k)
2: n← 0
3: while k > 0 do
4: if k is odd then
5: kn← k mods 2w

6: k← k− kn
7: else kn← 0
8: k← k/2
9: n← n+1

10: return (kn−1,kn−2, ...,k1,k0)NAFw

where mods function can be computed as:

1: procedure MODS

2: if k mod 2w ≥ 2w−1 then
3: return ((k mod 2w)−2w)
4: else
5: return (k mod 2w)

Each point multiplication method can be modified by adding the computation of NAF

representation of k as a pre-step. Thus, we first give the modified version of the binary

multiplication method as follows:
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Algorithm 3 Binary Method Point Multiplication by using NAF Representation
Require: Point P, n-bit integer k

1: procedure CALCULATE([k]P)
2: if kn−1 = 1 then Q← P
3: elseQ← 0
4: for i = n−2→ 0 do
5: Q← Q⊕Q
6: if ki = 1 then Q← Q⊕P
7: if ki =−1 then Q← Q	P
8: return Q

3.2.4.2 Windowing method

This method is similar to the binary method; however, it consists of precomputation

step and processes blocks of w (window size) bits in one time. Besides it has almost

the same complexity with the binary method, it provides fewer additions with extra

memory to store precomputed values. There are two ways of applying windowing

method: fixed-size windowing method and dynamic (sliding) windowing method. We

give the algorithms and their analysis respectively.

Fixed-size Windowing

Algorithm 4 Fixed-size Windowing Method
Require: Window size w, Point P, n-bit integer with k

1: k = k0 +22k1 +22wk2 + ...+2(n−1)wkn−1
2: procedure CALCULATE([k]P)
3: if kn−1 = 1 then Q← P
4: elseQ← 0
5: for i = n−2→ 0 do
6: Q← Q⊕Q
7: if ki = 1 then Q← Q⊕P
8: return Q
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Sliding Window

Instead of fixed size windowing method, this method has a dynamic windows

approach:

Algorithm 5 Sliding Window Method for Point Multiplication

Require: Window size w, Point P, n-bit integer k = (kn−1...k0)2 and precomputed
points [3]P, [5]P, ..., [2w−1]P

1: procedure CALCULATE([k]P)
2: Q← P∞

3: i← n−1
4: while i≥ 0 do
5: if ki = 0 then
6: Q← [2]Q and i← i−1
7: else
8: s← max(i− k+1,0)
9: while ns = 0 do s← s+1

10: for h = 1→ i− s+1 do Q← [2]Q
11: u← (ni...ns)2
12: Q← Q⊕ [u]P
13: i← s−1
14: return Q

3.2.4.3 Montgomery ladder

The mainly used scalar multiplication algorithm in the context of elliptic curves is

proposed by [33] and redesigned for many years. From the computational the point

of view, this method has the advantage of time and power consumption. However, it

exposes to side-channel attack shown in [15] that the full private key can be extracted

after performing timing against 200 signatures.

Algorithm 6 Montgomery Ladder
Require: Point P, n-bit integer k

1: procedure CALCULATE([k]P)
2: Q← 0
3: for i = 1→ n do
4: if kn−i = 0 then
5: P← Q⊕P and Q← 2Q
6: else
7: Q← Q⊕P and P← 2P
8: return Q
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4. PRIMALITY TESTING AND PROVING ALGORITHMS

4.1 Mathematical Underpinnings

The primality testing is one of the most important topics in computational number

theory and cryptography since ancient times. For a given integer n, it is trivial to

prove primality if n is even or a very small odd number. However, if we think very

large integers that have several hundred digits, the problem was not so easy because

of the lack of efficient primality testing algorithms that run in polynomial time. In

this section, we present some theorems and definitions regarding the fundamentals of

number theory and then describe some primality testing algorithms in details in the

next sections.

Firstly, we introduce the important theorem which was proposed by Carl Friedrich

Gauss in 1801, which is a remarkable principle in theory.

Theorem 4.1.1 (Fundamental Theorem of Arithmetic). Every integer n > 1 and in Z

is either a prime itself or the product of prime numbers.

Example. Some examples of non-negative integers as given below:

255 = 3 ·5 ·17 , 2520 = 23 ·32 ·5 ·7 , 60291 = 33 ·7 ·11 ·29

This theorem asserts that the numbers except for primes are the form of the product

of two (or more) prime numbers, which are known as composite numbers. Since this

theorem states a unique representation and factorization if the order is ignored. The

integers can be written as the form

n = pe1
1 · p

e2
2 · · · p

ek
k =

k

∏
i=1

pei
i (4.1)

where pi’s are distinct primes with the order of p1 < p2 < ... < pk and ei’s are positive

integers corresponding occurrences of each prime pi. Since 1’s could be added finitely

to this product, so 1 is not accepted as prime (or even composite) [27] to prevent the
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uniqueness of factorization. If 1 would be a prime, the factorization would not be

unique since for example 13 = 13 ·1 ·1 ·1 · · · .

Proof. For a complete proof, see section 2.3 in the book [6].

Hence, prime numbers are building blocks of all integers in Z. The subsequent theorem

gives a point of view on the density of prime numbers until a limit. Now, we introduce

a very remarkable theorem which conjectured by Carl Fredrich Gauss in 1792 and

proved elementarily by Paul Erdös (1949) and Atle Selberg (1950).

Theorem 4.1.2 (Prime Number Theorem). For any x ∈ R, let π(x) denote

prime-counting function which returns the number of primes that not exceed the bound

x and ln(x) is natural logarithm. So; π(x) can be denoted as

π(x)∼ x
ln(x)

Here we also give the first 10 calculations of π(x) and x
ln(x) in the table below:

Table 4.1 : Density of primes.

x π(x) x
π(x)

10 4 2.5
102 25 4
103 168 5.952
104 1229 8.137
105 9592 10.425
106 78498 12.740
107 664579 15.047
108 5761455 17.357
109 50847534 19.667
1010 455052511 21.975

As we have seen from the graph and table that π(x) is monotonically increasing and the

density of prime numbers up to a certain large limit is less frequent. So, it is difficult

to find very large prime numbers in a reasonable amount of time. The largest prime

number founded in the universe, known under the code name M77232917, has more

than 23 million digits [39]. However, the following theorem proposes that there is no

limit to find a prime number.
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Theorem 4.1.3 (Euclid’s First Theorem). Infinitely many prime numbers exist.

Proof. Before giving the existence and uniqueness proofs of the theorem above, we

first introduce the lemma used in the proof.

Lemma 4.1.1 (Euclid’s Lemma). Let p ∈ Z be a prime number and a,b ∈ Z. Then, p

is divisible by the product of ab if and only if p is divisible by a or b.

We follow the proof by contradiction method by assuming that the number of primes

is finite. Let call this count as n and the bound as N. Now, denote that N = p1 · p2 ·

p3 · · · pn + 1. It is apparently seen that pn is the largest prime, N > pn and N is not

prime. By using Theorem 4.1.1, we deduce that N must have a prime factor in our list,

call pi. The number N will have a remainder 1 when divided by one of the pi. This

contradiction makes N a prime aside from N 6= 1.

Primality tests deal with determining and proving the primality of given a number n.

In high school mathematics, we all know that one of the basic methods for determining

primality is founded by Sieve of Eratosthenes. The idea behind this test is checking if n

is divisible by all numbers less than or equal to
√

n. If any number in the list divides n,

the test outputs the compositeness of n; otherwise, n will be a prime. Here, there may

be a modification in the list since we do not need to check for all even numbers. For

example, if n is not divisible by 2, then it will also not divisible by multiples of 2 up

to
√

n, let say bound B. Moreover, the idea is the same for other small prime numbers

3,5,7 and so on. If the given number n is not divisible by any small prime, it also will

not divisible by its multiples, so we mark its multiples to not to check again. Thus, we

continue to check if unmarked numbers divide n or not. However, this method is very

inefficient considering very large numbers that have several hundred digits. Hence, we

cover mostly the theorems and algorithms used for primality test in an efficient way.

The primality tests are more broader in two categories: deterministic tests and

probabilistic tests. Deterministic tests can exactly determine the primality of a number

but it is slower than probabilistic tests. Although the probabilistic tests are quite fast,

these tests can erroneously determine (with a very small probability) a composite
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number as prime or a prime number as composite. The next sections we describe

and provide some examples on both probabilistic and deterministic tests.

4.2 Probabilistic Primality Tests

4.2.1 Fermat’s test and Euler’s extension

Fermat’s test

Fermat’s Little Theorem and primality testing algorithm is an ancestor of later

developed algorithms. There are some algorithms which are just an extension of

Fermat’s theorem. Thus, we state primality testing algorithms by beginning from

Fermat’s test.

Theorem 4.2.1 (Fermat’s Little Theorem). If p is prime and a > 0 with p - a, then for

all a ∈ {1,2, ..., p−1}

ap−1−1≡ 0 (mod p) (4.2)

Proof. See [6] for more detailed proof.

Moreover, there is a useful corollary which can be obtained by multiplying both sides

of the congruence stated in 4.2.1 by a. The restated form does not have a restriction

for a to be relatively prime to p. This variant can be applied to any a (regardless of it

is relatively prime to p). The form can be written as:

ap ≡ a (mod p) (4.3)

Fermat’s Little Theorem states that if p is prime, then ap− a is always divisible by p

for any base a. Now, we illustrate the use of this theorem with an example.

Example.

Let us choose a prime number p = 101 and an integer a = 13 such that p - a.

By using Theorem 4.2.1, we calculate that 13100−1≡ 0 (mod 101).

The Fermat’s little theorem is a proper fit to reduce residue if one calculates some large

powers of a number. For example; 7214529≡ (7652)329≡ 721≡ 186 ( mod 653) because

7652 ≡ 1 (mod 653). Moreover, we can obtain information on the compositeness of a
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number such that if the reminder for the division of ap−1 by p is not 1 for an integer

a > 1, p is definitely composite.

However, there is a drawback such that some numbers satisfies the primality test

algorithm and acts like a prime number even though they are actually not prime. Now,

we introduce this snag and special composites which are also the main focus of this

thesis.

Definition 4.2.1 (Fermat pseudoprimes). The composite number n≥ 2 which succeeds

the condition such that an−1−1 ≡ 0 (mod n) for an integer a > 0 are called Fermat

pseudoprimes to base a, or a-pseudoprime, psp(a) for short.

If the number n does not pass the case, we can say that it is a composite; however, the

converse of this proposition is not always true as the following example shows.

Example.

Let us choose the number n = 341 to test for base a = 2 and calculate the condition

provided by Theorem 4.2.1. Although the calculation is resulted as 2340−1≡ 0 (mod

341), n is actually not prime since 341 = 11 ·31. We define the base 2 as the following

definition states:

Definition 4.2.2 (Witness/Liar). For a given odd number n, the congruence

a(n−1)/2 ≡
(a

n

)
(mod n) (4.4)

holds or not for some values of base a such that gcd(a,n) = 1.

If n does not satisfy the congruence 4.2.2 for base a, we prove that n is definitely

composite. Therefore, we define the base a as witness base because it helps to prove the

compositeness of n. In contrary, if n passes the congruence even though it is actually

composite, we call a as liar base because it causes an incorrect result.

From the previous example which we examine whether compositeness of n = 341,

base 2 is a Fermat’s liar base for 341.

The results in the research [36] show that Fermat pseudoprimes are relatively rare

than prime numbers, however, there are still infinitely many [34]. The following table

[37] gives the number of 2-pseudoprimes less than 10n where n > 2. We call such

pseudoprimes to base 2 as Poulet numbers.
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Table 4.2 : Number of 2-pseudoprimes.

limit #Fermat-psp(2)
103 3
104 22
105 78
106 245
107 750
108 2057
109 5597
1010 14884
1011 38975
1012 101629
1013 264239
1014 687007
1015 1801533
1016 4744920
1017 12604009
1018 33763684
1019 91210364
264 118968378

The following table contains more examples of different values of base a≤ 10:

Table 4.3 : Examples of a-pseudoprimes.

a n
2 341, 561, 645, 1105, 1387, ...
3 91, 121, 286, 671, 703, ...
4 15, 85, 91, 341, 435, ...
5 4, 124, 217, 561, 781, ...
6 35, 185, 217, 301, 481, ...
7 6, 25, 325, 561, 703, ...
8 9, 21, 45, 63, 65, 117, ...
9 4, 8, 28, 52, 91, 121, ...

10 9, 33, 91, 99, 259, 451, ...

We see from the table 3.3 that some numbers are pseudoprimes to more than one bases.

For example; we know that 9 is a composite number but holds the congruences for

base 8 and 10 such that 89−1 ≡ 1 (mod 9) and 109−1 ≡ 1 (mod 9) respectively. This

increases the probability of having an error if n passes the test. Thus, we need to repeat

this test for different bases to find the compositeness of a number. If a number is a

probable prime for a base a, we give a try to another base because of the existence

of Fermat’s liar bases. If a number n fails at any base a, we say that it is non-prime.
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We provide the pseudocode of Fermat’s algorithm that uses Fermat’s Little Theorem

as primality testing:

Algorithm 7 Fermat’s Pseudoprime Test

Require: a≥ 1,n > 2,gcd(a,n) = 1
1: t← repeat time.
2: procedure TEST(n)
3: for i = 1→ t do
4: a←{2,n−1}
5: if gcd(a,n)> 1 then
6: return composite
7: else if an−1 6≡ 1 (mod n) then
8: return composite
9: else

10: continue
11: return probable prime

As we have seen from the algorithm that the test chooses a random integer a and

applies the condition containing a quadratic equation. If the test stops any of the steps

before completing t-times, it correctly declares that n is composite and has non-trivial

factors (not including factorization step). We hope that if we try for all bases a such

that 1 < a < n− 1, we will prove also the primality of a number. However, there are

some special numbers which are not convenient for this test even we test with Fermat’s

Little Theorem. We are unable to prove and predict their compositeness even after

t-trials of Fermat’s test. Now, we give the definition of these troublesome composites

which are pseudoprimes for many bases and proposed by Carmichael.

Definition 4.2.3 (Carmichael Numbers). The composite integer n is called Carmichael

number if it passes the Fermat’s primality test for every base a such that n - a.

Carmichael numbers are very rare rather than a-pseudoprimes and 561 is the smallest

for base 2. Now, we illustrate the use of this definition with an example.

Examples.

• 2560 ≡ 1 (mod 561)

• 5560 ≡ 1 (mod 561)

• 7560 ≡ 1 (mod 561)
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As this example shows, 561 always passes the Fermat’s test to base a such that

gcd(a,n) > 1 despite its compositeness. Thus, Carmichael numbers cause trouble in

determining compositeness of an integer with Fermat’s Test. Because of existence

such numbers, if the test does not stop at any condition for t-trials, the test outputs

that n is prime or Carmichael number with probability greater than 1− 1
2t . This lead to

following generalization theorem proposed by Euler.

Euler’s extension

We see from the previous section that Fermat’s theorem could only be applied when

a modulus is a prime number. Otherwise, there would be false generalization since

210 ≡ 4 (mod 10), not equal to 1. Euler generalized the Fermat’s Little Theorem for

all numbers n. Before explaining the Euler’s theorem, we first give a definition of

Euler’s Totient function that provides a base for this theorem, whereupon illustrate the

definition with examples.

Definition 4.2.4 (Euler’s Totient Function). For an integer n, the function φ(n) is

expressed as the count of integers between 1 and n− 1 which are relatively prime

to n.

Examples.

• Choose n = 18. To find φ(n), search for all integers not exceeding n. The set S =

{1,5,7,11,13,17} contains all numbers which are co-prime to 18. Thus, φ(18)= 6.

• Choose n = 11. The set S = {1,2,3,4,5,6,7,8,9,10} contains all numbers which

are co-prime to 11. Thus, φ(11) = 10.

The following table gives some preliminary values of φ(n). We assume φ(1) = 1 by

convention.

Table 4.4 : Euler Phi Values.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

We easily see from two examples above that 1 is co-prime to each number. Moreover;

we can find that the count φ(n) is equal to n− 1 if n is prime. Now, we give some

calculations for composite numbers by the subsequent theorem [28].
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Theorem 4.2.2. Let p be a prime and e be positive number which denotes the power

of p. Then

φ(pe) = pe− pe−1 = pe ·
(

1− 1
p

)
(4.5)

We illustrate this theorem by the following examples.

Examples.

• φ(72) = 72−7 = 42

• φ(133) = 133−132 = 2018

Before giving the theorem for calculation of φ(n) for composite integers, we first

introduce the multiplication property of the φ function, proposed by Pettofrezzo and

Byrkit in 1970 [5].

Theorem 4.2.3. Let a and b be positive integers and co-prime. Then, φ(a ·b) = φ(a) ·

φ(b)

Proof. See [6] for more detailed proof.

Now, by using the unique factorization theorem 4.1.1 and multiplication property given

in theorem 4.2.3, we find φ(n) for all composite integers n.

Theorem 4.2.4. Let n be a composite and e > 0 be a number which denotes the power

of n. Then, n can be written as the form of

n = pe1
1 · p

e2
2 · · · p

ek
k (4.6)

and Euler’s totient function can be found by

φ(n) = n ·
(

1− 1
p1

)
·
(

1− 1
p2

)
· · ·
(

1− 1
pk

)
(4.7)

Proof. We first apply the multiplication property stated in Theorem 4.2.3 such that

φ(n) = φ(pe1
1 ) ·φ(pe2

2 ) · · ·φ(pek
k )

where n =
k

∏
i=1

pei
i . Then, we know from the Theorem 4.2.2 that

φ(pei
i ) = pei

i − pei−1
i = pei

i ·
(

1− 1
pi

)
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If we multiply each φ(pei
i ) where 1≤ i≤ k, we found that

φ(n) = pe1
1 ·
(

1− 1
p1

)
· pe2

2 ·
(

1− 1
p2

)
· · · · · · pek

k ·
(

1− 1
pk

)

= n ·
(

1− 1
p1

)
·
(

1− 1
p2

)
· · · · · ·

(
1− 1

pk

)

The following example illustrates the Theorem 4.2.4.

φ(120) = φ(23 ·3 ·5) = φ(23) ·φ(3) ·φ(5) = 120 ·
(
1− 1

2

)
·
(
1− 1

3

)
·
(
1− 1

5

)
= 32

This theorem is a generalization of Fermat’s Little Theorem 4.2.1 with Euler’s phi

function.

Theorem 4.2.5 (Euler’s Theorem). For a positive integer n and a such that n - a, then

aφ(n)−1≡ 0 (mod n) (4.8)

Proof. See [6] for detailed proof.

We illustrate the use of this theorem with an example.

Example. Let us pick a number p = 100 and an integer a = 7 such that p - a.

By using Theorem 4.2.5, we calculate that 7φ(100) ≡ 740−1 ≡ 0 (mod 100) where

φ(100) = φ(22) ·φ(52) = 2 ·20 = 40

Accuracy. In the last part of the previous section, we see that Fermat’s test is not

successful for detecting some composites especially Carmichael numbers which pass

the test for all bases less than n− 1. However, thinking the frequency of Carmichael

numbers among pseudoprimes are very rare, the probability of a Fermat prime is

a Carmichael can be negligible. Thus, for a given a non-Carmichael number, the

probability of correctly detecting composite number as composite is at least 1
2 . Then, if

we try Fermat’s Little Theorem for t times with different base values a, the probability

of labeling a given composite incorrectly is at most 1
2t . Hence, having large enough

repeating count increases the accuracy of the test.
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4.2.2 Euler’s test

In order to introduce Euler’s test, we first give definitions (without their proofs) which

provides a base for Euler’s test.

Definition 4.2.5 (Quadratic Residue). For a prime p and a positive integer a such that

(a,n) = 1, we say a is a quadratic residue if the congruence

x2 ≡ a (mod p) (4.9)

has a solution. If not, we denote a as quadratic non-residue.

Example. To find quadratic residues of p = 7, we try all numbers less than 7.

12 ≡ 1 (mod 7) 42 ≡ 2 (mod 7)

22 ≡ 4 (mod 7) 52 ≡ 4 (mod 7)

32 ≡ 2 (mod 7) 62 ≡ 1 (mod 7)

Hence; 1,2,4 are the entire set of quadratic residues of 7 whereas quadratic nonresidues

of 7 are 3,5,6. A list for quadratic residues where p≤ 20 can be found at the sequence

number A046071 in OEIS database [37].

Now, we give the definition for Legendre symbol which is based on the law of quadratic

reciprocity.

Definition 4.2.6 (Legendre Symbol). For any prime p and b > 0, we define Legendre

symbol as

a
p

=


1, if a is quadratic residue mod p.
0, if a and p are not co-prime.
−1, if a is quadratic nonresidue mod p.

Example.

Let use the previous example above.1
7

=

2
7

=

4
7

= 1

3
7

=

5
7

=

6
7

=−1

Now, we give some properties of the Legendre symbol to be used in calculations:
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Theorem 4.2.6. Let p,q be distinct primes and a,b be any positive integers which are

co-prime to p. Then the followings hold:

• If a≡ b (mod p), then
a

p

=

b
p


•
a ·b

p

=

a
p

 ·b
p


•
−1

p

=
−1

 p−1
2

Equivalently, we can write that−1
p

=

{
1, p≡ 1 (mod 4)
−1, p≡ 3 (mod 4)

•
2

p

=
−1

 p2−1
8

Equivalently, we can write that2
p

=

{
1, p≡±1 (mod 8)
−1, p≡±3 (mod 8)

• (Law of quadratic reciprocity) p
q

 ·q
p

=
−1

(p−1)/2×(q−1)/2

Equivalently, we can write that

 p
q

=


q

p

 , p≡ 1 (mod 4) or q≡ 1 (mod 4)

−
q

p

 , p≡ q≡ 3 (mod 4)

As we see from the definition 4.2.6 that the bottom element p is always a prime integer

and the top can be any integer. Since Legendre symbol has a restriction and can be

just applied on prime modulus, we give a slightly different but somehow equivalent

definition which is also generalization for modulus to be chosen from any odd number

n.

Definition 4.2.7 (Jacobi Symbol). Let n be a positive odd integer which has the form

of

n = pe1
1 · p

e2
2 · · · p

ek
k =

k

∏
i=1

pei
i (4.10)
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where each of pi are primes and ei are positive integers. Then, Jacobi symbol can be

expressed as a
n

=

 a
p1

e1
·
 a

p2

e2
· · ·
 a

pk

ek
=

k

∏
i=1

 a
pi

ei

. (4.11)

Jacobi symbol is an extension on Legendre symbol; even the same if n is prime. Now,

we give a small note on Jacobi symbol: If a and p are co-prime,
a

n

=−1 means that

the number a is a quadratic non-residue mod n, i.e., there is no solution of the equation

x2 ≡ a (mod n). Moreover, if there is a solution to that equation, then
a

n

 = 1.

However, the converse is not always true. If Jacobi symbol
a

n

= 1, we can not say

that a is a quadratic residue in p. So, there may be some number whose Jacobi is 1 but

still not square in mod n. For example;54
77

=

54
7

 ·54
11

=

−2
7

 ·−1
11

=
−1

 ·−1
= 1

However, the result of Jacobi is inconclusive since there is no solution to both equations

x2 ≡ 54 (mod 11) and x2 ≡ 54 (mod 7). This means that the result of Jacobi symbol

1 is the multiplication of 2 Legendre symbol, i.e., (−1) · (−1) = 1.

Theorem 4.2.7 (Euler’s Criterion). Let p be an odd prime and a be a positive integer

which is not divisible by p, thena
p

≡ a(p−1)/2 (mod p) (4.12)

Proof. See [6] for more detailed proof.

If the congruence in 4.2.7 does not hold, we say that n is not prime. However, if

the congruence holds, we are not able to say that the number is prime regarding

the note on Jacobi symbol. This makes the test a compositeness test rather than a

primality test. So, Euler’s criteria does not guarantee to prove the primality of that

integer. All numbers which are satisfying the criteria are called probable primes until a

counterexample found to prove its compositeness. The following definition generalizes

the counterexamples.

Definition 4.2.8 (Euler pseudoprimes). The composite numbers n≥ 2 which succeeds

Euler Criterion 4.2.7 for an integer a > 0 are called Euler pseudoprimes to base a, or

a-pseudoprime, E psp(a) for short.
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Table 4.5 : Number of Euler 2-pseudoprimes.

limit #Euler-psp(2)
103 1
104 12
105 36
106 114
107 375
108 1071
109 2939
1010 7706
1011 20417
1012 53332
1013 124882

As shown from the table above, the number of Euler pseudoprimes are relatively rare

than pseudoprimes and Euler pseudoprimes within the same base and range. For

example; there are just 124882 strong pseudoprimes base 2 less than 1013, while the

number of Fermat pseudoprimes was 264239 in the same conditions. So, we can say

that we decrease the pseudoprimes by half with Euler’s criteria.

Now, we provide some initial examples of the Euler pseudoprimes for several bases

less than or equal to 10.

Table 4.6 : Examples of Euler a-pseudoprimes.

a n
2 341, 561, 1105, 1729, 1905, 2047, ...
3 121, 703, 1541, 1729, 1891, 2465, ...
4 341, 561, 645, 1105, 1387, 1729, ...
5 217, 781, 1541, 1729, 5461, 5611, ...
6 185, 217, 301, 481, 1111, 1261, 1333, ...
7 25, 325, 703, 817, 1825, 2101, 2353, ...
8 9, 21, 65, 105, 133, 273, 341,481, ...
9 91, 121, 671, 703, 949, 1105, 1541, ...
10 9, 33, 91, 481, 657, 1233, 1729, ...
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Algorithm. Now, we give basic algorithm which repeats the Euler’ criteria to check

primality of a number n.

Algorithm 8 Euler’s Primality Test

Require: a≥ 1,n > 2,gcd(a,n) = 1
1: a←{2,n−1}
2: t← repeat time.
3: procedure TEST(n)
4: for a = 1→ t do
5: if a(n−1)/2 6≡ ±1 (mod n) then
6: return composite
7: else
8: continue
9: return probable prime

Accuracy. We see from the Euler’s test that it is actually compositeness test for a given

integer n. If the criteria does not hold, the test guarantees that n is composite. However,

the converse is not always true. In other words, the test could not prove the primality

of that number. If the test holds, we need to repeat the test for a different choice of

bases a, because there are liar bases for composite numbers that provide them to not to

fail the test.

4.2.3 Solovay-Strassen primality test

In this section, we introduce a new type of probabilistic primality test developed by

Robert M. Solovay and Volker Strassen [10] and used public key cryptography. This

test is based on Euler’s criterion explained in the section 4.2.7. We first give the main

theorem which is the key idea behind the test.

Theorem 4.2.8 (Solovay-Strassen). Let n be a composite odd integer. There exists a

number a < n and gcd(a,n) = 1 hold the condition such that

a(n−1)/2 ≡
a

n

 (mod n) (4.13)

where
a

n

 is the Jacobi Symbol.

Algorithm. If given input n is not definitely composite (i.e., probable prime), it repeats

itself with different bases a which is co-prime to n and 1 < a < p. This is because of

the existence of counterexamples for the theorem 4.2.7, i.e., Euler pseudoprimes.
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Algorithm 9 Solovay-Strassen Algorithm
1: procedure TEST(n)
2: a←{2,n−1}
3: if gcd(a,n)> 1 then
4: return composite
5: j = a(n−1)/2 (mod n)
6: if j 6= J(a,n) then
7: return composite
8: else if j = J(a,n) then
9: return probable prime

As we see from the theorem above, the Solovay-Strassen test has two main

calculations. Let n denotes the number that we want to check the primality. First, the

test selects random integer a for a base and computes very large power of it modulus

n. Secondly, it computes the Jacobi Symbol mentioned in 4.2.7 for these numbers.

Checking whether these two calculations are equal or not is the key idea behind the

Solovay-Strassen Test.

Example.

Let us try to check primality of an integer n = 217. Then, (n−1)/2 = 108.

As stated in the algorithm, we first randomly select an integer 1 < a < n and check if

gcd(a,n) = 1. Now, we compute the followings:

• gcd(6,217) = 1

• a(n−1)/2 (mod n) = 6108 (mod 217) = 1

•
 6

217

= 1.

Since we found that n is probable prime, we repeat the test with different base: n = 11.

• gcd(11,217) = 1

• a(n−1)/2 (mod n) = 11108 (mod 217) = 64

•
 11

217

=−1

As we have discussed from the example, 217 is not prime after 2 trials. While base 11

is a witness for the compositeness of n, base 6 is a liar because of an incorrect result.
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Repeating the algorithm t times increases the accuracy of the test and decreases the

probability of having an incorrect result.

Running Time and Accuracy. Finding GCD and Jacobi Symbol can be computed

within the time complexity of O((log n)2). Then, computing the power of the base

a run in complexity O((log n)3). Thus, the algorithm has O(k · log3n) running time

for k-times pass the test where k is the repeat count of the test. Since this algorithm

is a probabilistic algorithm, every result is not definitely true. If the given number

n is prime, the test correctly tags it as probable prime. However, if the number is

composite, the result will not be accurate. As we have seen in the previous chapter,

some composite integers exist by holding the cases mistakenly for these algorithms.

Hence, the probability of the test outputs incorrect result is at most 2−t after t trials,

which is the same as Euler’s test.

Drawbacks. Firstly, since the results in Euler test are impractical for Carmichael

numbers which are pseudoprimes to every bases and Solovay-Strassen test is basically

based on repeating the Euler’s criteria 4.2.7, the Solovay-Strassen test is not successful

to catch Carmichael numbers. Secondly, this test is not a deterministic test, so that

the results are probabilistic when checking the primality of a random number. This

means that the accuracy of the test will depend on the number of repetitions. Thus,

the algorithm requires choosing a sufficiently large repetition count of t to use this

algorithm in practical applications.

4.2.4 Miller-Rabin strong pseudoprime test

In this section, we give details of the most useful and common probabilistic primality

test algorithm which is also a generalization of Solovay-Strassen test. As the name

of the algorithm implies, the test is discovered by Gary L. Miller [16] and modified

by Michael O. Rabin [17] in 1980. This test also depends on some set of equalities

proposed by Fermat and Euclid like the tests given in previous sections. The idea

behind all tests considered until now was to have a failure in some cases for composite

numbers even there exists counterexamples known as pseudoprimes. The Miller-Rabin

test shares the same idea, however, for an integer n, it provides more efficient and

accurate results than the tests mentioned in previous sections. Even though we know
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the test is a probabilistic test, it has also a deterministic version runs in polynomial

time by assuming the Generalized Riemann Hypothesis (GRH) is true.

Firstly, we give some definitions and theorems which will be used as key ingredients

of the singular cubic primality test.

Lemma 4.2.1. Let p be a prime and a,b > 0 be any integers such that

a ·b≡ 0 (mod p) (4.14)

Then,

a≡ 0 (mod p) or b≡ 0 (mod p) (4.15)

The lemma states that if prime p divides the multiplication a ·b, then it also must divide

at least one of the multiplicands. Since we mentioned some set of definitions in 4.2.5,

we now give the theorem of the square-root of the quadratic equation x2 ≡ a (mod p)

related to the Lemma 4.2.1.

Definition 4.2.9. We call x is a square-root if it satisfies the quadratic equation x2 ≡

a (mod p) for a prime p and integer a such that (a,n) = 1.

Example.
12 ≡ 1 (mod 7) 42 ≡ 2 (mod 7)

22 ≡ 4 (mod 7) 52 ≡ 4 (mod 7)

32 ≡ 2 (mod 7) 62 ≡ 1 (mod 7)

Theorem 4.2.9 (Square-root). Let p be a prime and x > 0 be any integers. The

congruence

x2 ≡ 1 (mod p) (4.16)

holds if and only if

x≡±1 (mod p) (4.17)

Proof. See [28] for more detailed proof.
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If we write the congruence x2−1 ≡ 0 (mod p), we obtain that (x−1) · (x+1) ≡

0 (mod p) by factorization of two squares. By using the Lemma 4.2.1, we see that

if n is prime, x is congruent to at least either +1 or −1, i.e., x ≡ ±1 (mod p) holds

and we call x as a trivial square-root of 1. Besides that, if one can find square-roots

other than ±1, say non-trivial square-roots of 1, we found n as a composite. Checking

whether there exists a square-root in mod n form a basis to the Strong Pseudoprime

Test used in Miller-Rabin Algorithm.

Theorem 4.2.10 (Strong Pseudoprime Test). Let n > 2 is an odd number which can

also be expressed by n−1 = 2e ·m where m is an odd number and e > 0. If n is prime,

either

am ≡ 1 (mod n) or am2i
≡−1 (mod n) (4.18)

holds for some 0≤ i < e, and then n passes the test for base a which is between 1 and

n-1.

Proof. The Fermat’s Little Theorem given in 4.2.1 states that the congruence an−1 ≡

1 (mod n) holds if n is prime. Since we have the expression n−1 = 2e ·m, by taking

the power of both sides, we get an−1 = a2e·m = 1. Now, we compute the following

sequence by taking the square of each previous item:

am,a2m,a22m,a23m, ...,a2e−1m,a2em mod n

We know that the last item in the sequence is a2em = 1. Considering square-root

theorem 4.2.9, the sequence will have two forms:

• The first element am is equal to 1. Since the next item a2m is a square of the first

item, this will be 1 too. Thus, we will get the whole sequence containing all 1’s.

• The first element am is not equal to 1. This is also possible if there exist a k-th

element (1 < k≤ e) which is a2k−1m =−1 and whose square makes its next element

a2km equal to 1.
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We also can prove the Theorem 4.2.10 follows:

By taking power of both sides in the equation n− 1 = 2e ·m with base a result as

an−1 = a2e·m. From the Fermat’s Little Theorem given in 4.2.1, left hand side of the

equation is an−1−1≡ 0 (mod n) if n is prime. Thus, the right-hand side a2e·m will be

equal to 0 mod n. Now, we do some factorizations as follows:

a2em−1 = (a2e−1m)2−1

= (a2e−1m−1) · (a2e−1m +1)

= (a2e−2m−1) · (a2e−2m +1) · (a2e−1m +1)
...

= (am−1) · (am +1) · (a2m +1) · (a22m +1) · · ·(a2e−1m +1)≡ 0 (mod n)

One or some of these elements must be equal to 0 if n is prime. This means that either

the first element is am−1≡ 0 (mod n) or every subsequent is (a2im +1)≡ 0 (mod n)

where 0≤ i < e.

The strong pseudoprime test returns two results:

• the number fails the test and found as definitely composite, or

• the number passes the test and found as probable prime.

There are some composite numbers that pass the test.

Definition 4.2.10 (Strong Pseudoprime). For any given composite integer n, if n passes

the test for base a, then we define n as strong pseudoprime to base a, spsp(a) for short

and a as liar base.

Also, we can say that each strong pseudoprime to base a is also Euler pseudoprime to

a even the converse is not always true.

Example.

Let us evaluate n = 2047. We write n− 1 = 2 · 1023. Then, the congruences 21023 ≡

1 (mod 2047) and 22046 ≡ 1 (mod 2047) hold for base a = 2. However, 2047 is not

prime because it can be factorized as 23 ·89.

Theorem 4.2.11 (Generalized Riemann Hypothesis (GRH)). For an odd composite

integer n > 0, let n− 1 = 2e ·m for some power e > 0 and odd integer m. For all a
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which is 1 < a < 2(log n)2, either

am ≡ 1 (mod n) or 2i ·m≡−1 (mod n) for some 0≤ i < e (4.19)

holds, then n is prime.

The following algorithm is the deterministic version of Miller-Rabin Test. As seen

from the algorithm, it outputs definitely prime or composite if Generalized Riemann

Hypothesis is true.

Algorithm 10 Miller Rabin Deterministic Algorithm
Require: a > 0,n > 2

1: procedure TEST(n)
2: n−1 = 2em
3: for each a = 2→ min(n−1,2(logn)2) do
4: for each i = 0→ m−1 do
5: if (am 6≡ 1 (mod n ))&(a2im 6≡ −1 (mod n )) then
6: return composite
7: return prime

Since GRH has not been proven yet, we give the probabilistic version of the

Miller-Rabin Algorithm:

Algorithm 11 Miller Rabin Probabilistic Test
Require: a > 0,n > 2

1: n−1 = 2em
2: t← repeat time.
3: procedure TEST(n)
4: for i = 1→ t do
5: a←{2,n−1}
6: x← am (mod n )
7: if x≡±1 (mod n ) then
8: continue
9: for i = 1→ e−1 do

10: x← x2 (mod n )
11: if x = 1 then
12: return composite
13: else if x =−1 then
14: continue
15: return composite
16: return probable prime
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Theorem 4.2.12. Let n > 9 be an odd composite integer such that n− 1 = m2e for

some integer e > 0 and odd integer m. Let

S = {a ∈ (Z/nZ)× | am ≡ 1 mod n or am2i
≡−1 mod n for some 0≤ i < e}.

Then
#S

φ(n)
≤ 1

4

where φ() is the Euler’s phi function.

The theorem below states that the algorithm has error-probability bound less than
(1

4

)t

for t-trials.

Table 4.7 : Number of Spsp(2).

limit #spsp(2)
103 0
104 5
105 16
106 46
107 162
108 488
109 1282
1010 3291
1011 8607
1012 22407
1013 58892
1014 156251
1015 419489
1016 1135860
1017 3115246
1018 8646507
1019 24220195

As shown from the table above, the number of strong pseudoprimes are relatively very

rare than pseudoprimes and Euler pseudoprimes within the same base and range. For

example; there are just 3291 strong pseudoprimes base 2 less than 1010, while the

count for Fermat pseudoprimes were 14884 and for Euler pseudoprimes were 7706 in

the same conditions.

The following table contains the initial examples of strong pseudoprimes for several

bases less than 10.
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Table 4.8 : Examples of Spsp(a).

a n
2 2047, 3277, 4033, 4681, 8321, ...
3 121, 703, 1891, 3281, 8401, 8911, ...
4 341, 1387, 2047, 3277, 4033, 4371, ...
5 781, 1541, 5461, 5611, 7813, ...
6 217, 481, 1111, 1261, 2701, ...
7 25, 325, 703, 2101, 2353, 4525, ...
8 9, 65, 481, 511, 1417, 2047, ...
9 91, 121, 671, 703, 1541, 1729, ...

Running Time and Accuracy. The running time of this algorithm is O(t · log3(n))

where t is the repeating count. In terms of accuracy, the Miller-Rabin test has lower

error probability for a single round when compared with other probabilistic tests. For

any random composite n, we have 50% chance to determine correctly by using other

probabilistic tests. However, the probability of success is at least 75% in Miller-Rabin

test for all bases which are relatively prime to n. Moreover, this probability will

decrease if the repeating count of k is chosen large enough. For example; if we choose

t = 20, the probability of a composite number passes the test is less than 1
420 = 1

240

Moreover, there are too many liar bases for Carmichael numbers when one uses other

tests, but the Miller-Rabin test gets rid of this snug.

Drawbacks. Although the test is very quick and useful for very large integers which

contain several hundred digits, this test is also a probabilistic test like other tests such

as Fermat, Euler, and Solovay-Strassen tests. There is always error probability in the

probabilistic version. In case of deterministic version, if one assuming GRH is true,

the test will have a reliable limit for repeating count t. If a number does not fail until

that limit, we could prove that number is prime. Thus, the deterministic version of

the Miller-Rabin algorithm is conditional to Generalized Riemann Hypothesis which

is needed to be proven.

4.3 Deterministic Primality Tests

4.3.1 AKS primality test

As we have seen probabilistic primality test until this section, some primality tests

such as Fermat and Miller-Rabin correctly label prime numbers despite that some
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conclusive results may occur while detecting composites. Even there were some

classifying errors for composites that pass the test, probabilistic tests could guarantee

the compositeness of a given integer n if they fail some sort of number theoretical

theorems and conditions. There were two outputs in the probabilistic test; the result

was either composite or probable prime since the tests do not guarantee the result of

primality. Moreover, there are always some counterexamples for some numbers which

pass the test as prime as if it were not really a prime, for instance, Carmichael numbers.

Thus, finding a deterministic primality test algorithm which decides the primality or

compositeness of a given number in polynomial time without dependency on some

unproven assumptions was an unsolved problem for many years.

Then, in 2002, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena invented the first

deterministic polynomial time primality test in their paper [7]. This algorithm was the

first example of deterministic tests which prove primality or compositeness of a given

number in polynomial time. In other words, the algorithm guarantees both primality

and compositeness by not depending on the form of a given number, i.e., it also runs

on any form of number such as Mersenne numbers, Carmichael numbers or Fermat

pseudoprimes, etc. Since the deterministic version of Miller-Rabin Pseudoprime test

depends on unproved Generalized Riemann Hypothesis, AKS test is unconditional so

that it does not depend on any of unproven hypothesis.

Before giving the AKS primality test algorithm, we give underlying definitions which

are the used in the algorithm.

Definition 4.3.1 (Multiplicative order). Let ordn(a) denote the multiplicative order of

a given number a modulus n such that gcd(a,n) = 1. Then, the order of a (mod n) is

defined as the smallest integer k > 0 that satisfies the equation ak ≡ 1 (mod n).

Example.
43 ≡ 1 (mod 7)⇒ ord7(4) = 3

1816 ≡ 1 (mod 97)⇒ ord97(18) = 16

6536161 ≡ 1 (mod 12323)⇒ ord12323(653) = 6161

Theorem 4.3.1. Let p be a prime. If 0 < i < p, then
(p

i

)
≡ 0 (mod p).
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Proof. We can expand the binomial as follows:(
n
k

)
=

n!
k!(n− k)!

(4.20)

As seen from the formula that the numerator of the division will always be greater than

the denominator since 0 < i < p. Since the denominator cannot eliminate p, we get 0

in modulus p.

Now, we give the key theorem which leads to the AKS primality test.

Theorem 4.3.2. For any integer n≥ 2 and a such that a and p are co-prime, n is prime

if the congruence

(x+a)n ≡ xn +a (mod n) (4.21)

holds (by assuming x is just a formal symbol).

Proof. See Section 2 in the paper [7] for complete proof.

Example.

The following example illustrates and verifies the theorem:

1. Let us choose n = 5 and a = 3.

(x+3)5 =

(
5
0

)
x530 +

(
5
1

)
x431 +

(
5
2

)
x332 +

(
5
3

)
x233 +

(
5
4

)
x134 +

(
5
5

)
x035

= x5 +15x4 +90x3 +270x2 +405x+243 = x5 +3 (mod 5 )

Hence; we see that n = 5 is prime and so the congruence (x+3)5 = x5+3 (mod 5 )

holds.

2. Let us choose n = 6 and a = 5.

(x+5)6 =

(
6
0

)
x650 +

(
6
1

)
x551 +

(
6
2

)
x452 +

(
6
3

)
x353 +

(
6
4

)
x254 +

(
6
5

)
x155 +

(
6
6

)
x056

= x6 +30x5 +375x4 +2500x3 +9375x2 +18750x+15625

= x6 +3x4 +4x3 +3x2 +1 6= x6 +3 (mod 6 )

Hence; we see that n = 6 is not prime and so the congruence (x+5)6 6= x6+3 (mod

5 ) does not hold.
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Moreover, Euler’s totient function which is mentioned in the section 4.2.4 will be used

in the algorithm. Now, we give the pseudocode of the AKS algorithm.

Algorithm 12 AKS Algorithm

Require: a≥ 1,n > 2,gcd(a,n) = 1
1: procedure TEST(n)
2: if n is the form of ab then
3: return composite
4: Find the smallest r s.t. ordr(n)> (log2n)2 and (r,n) = 1
5: if ∃a≥ r s. t. 1 < gcd(a,r)< 1 then
6: return composite
7: if r ≥ n then
8: return prime
9: for a = 1→ b

√
ϕ(r) · log2(n)c do

10: if (X +a)n 6≡ xn +a (mod X r−1,n) then
11: return composite
12: return prime

We have mentioned from the beginning that AKS primality test is unconditional,

deterministic and polynomial time primality test algorithm. Also, we know from

the previous algorithm that if the given number n fails at one of the steps, then it is

definitely composite. The converse is normally not true, however, AKS test holds in

both ways. This means that, if the AKS algorithm given above results as prime, then

the number will be labeled as definitely prime. We do not give the full proof of this

theorem, but the proof of this claim can be found in [7]. Now, let us illustrate the

algorithm by an example.

Example.

We first check by AKS algorithm whether n = 97 is prime or not.

(i) To check if n is the form of ab, we take the rational power of 97 such that 97x

where are prime numbers less than log(97)≈ 6.

97(
1
2 ) = 9.85 97(

1
3 ) = 4.6 97(

1
5 ) = 2.5

Since none of the results are a natural number, we say that 97 is not perfect

square. (Passed)

(ii) We found r = 59 which is the smallest number satisfying ordr(n) > log2
2(97) =

43.56. (Passed)
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(iii) For integers 1≤ a≤ 59, we found that all of them have gcd(a,97) = 1. (Passed)

(iv) n = 97 > r = 29. (Passed)

(v)
√

φ(59) · log2(97) = 44. Since the condition (x+a)n ≡ xn +a (mod xr−1,n)

satisfies for all a such that 1≤ a≤ 44.

Running Time and Accuracy. In terms of accuracy, we say that the results are 100%

accurate since the test is deterministic.

Drawbacks. Besides it is algorithmic complexity was in P, it is not a practical

algorithm in terms of running time. From the theoretical computer science point of

view, the AKS algorithm is best in algorithmic complexity. Due to its inefficiency,

“almost” polynomial time algorithms such as Miller-Rabin algorithm are better in

choice of real-time applications.

4.4 Elliptic Curve Primality Proving

In this section, we give a detailed explanation of one of the modern and widely used

primality test which use elliptic curves over a finite field Fp. Elliptic curve primality

test is a deterministic test which certificates the primality and it seems to be polynomial

time under some plausible assumptions. Besides its algorithmic complexity, the

running time of algorithms is hard to estimate. Because we first assume the given

number n is prime, i.e., it has passed a probabilistic primality test such as Miller-Rabin

test. By this assumption, we also assume that all elements in modulo n is invertible

so that group operation can be done successfully as if n is prime. However, if any

error occurs in group operation when performing point addition or doubling in Z/nZ,

i.e., a non-invertible element appears, the algorithm then outputs a non-trivial factor of

n by taking greatest common divisor (GCD) of that non-invertible element and n. In

this manner, the algorithm successfully finds the compositeness of that given number.

Since the algorithms immediately stop when an unlikely error occurs, it makes running

time estimation quite hard.

To give more details on elliptic curve primality testing theorems and algorithms, we

denote E(Z/nZ) as elliptic curve E over Z/nZ in the form of Weierstrass equation

y2 = x3 +ax+b (4.22)
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where a,b ∈ Z/nZ and the determinant4= 4a3 +27b2 ∈ (Z/nZ)∗.

The main idea of all elliptic curve primality testing algorithms is the following

theorem:

Theorem 4.4.1 (Pocklington’s Theorem). Let n be an integer and s be divisor of n−1.

Suppose that there is an element a in Z/nZ such that

an−1 ≡ 1 (mod n)

gcd(an−1/q,n) = 1

 (4.23)

for each prime divisor q of s. Then, any prime p dividing n satisfies p≡ 1 (mod s). In

particular, if s >
√

n, then n is prime.

The following elliptic curve primality testing theorem is based on the analog of

Theorem 4.4.1.

Theorem 4.4.2 (Elliptic Curve Primality Testing). Let n > 2 be an odd positive integer

such that gcd(n,6) = 1 and E be an elliptic curve over Z/nZ given in the form of the

equation 4.22. Let m and s be positive integer such that s is a divisor of m. Suppose

that there is a point P on the curve E satisfying the conditions:

• [m]P is identity;

• [m/q]P is defined and not identity for any prime divisor q of s.

Then, every prime p dividing n satisfies #E(Z/pZ) ≡ 0 (mod s). In particular, if

s > ( 4
√

n+1)2, then n is prime.

Proof. See the Theorem 5.2 in [23].

Next, we give the general methodology of elliptic curve primality testing algorithms:
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Algorithm 13 General ECPP Method
Require: An odd integer n
Ensure: Primality certificate or compositeness with a factor of n

1: procedure ECPP(n)
2: Generate a non-singular elliptic curve in E(Z/nZ)
3: m← the order of the curve E
4: Choose a prime factor q of m such that q > ( 4

√
n+1)2

5: Pick a random point P on E
6: if [m]P 6= 0 then goto Step 5.
7: if [m/q]P = 0 then goto Step 5.
8: if an error occurs then return a factor of n.
9: return prime

As seen from the Algorithm 13, the first step requires to choose an elliptic curve E

over Z/pZ and the order of that curve as m. If we assume every calculation upon

the assumption of primality of n, the order can be written of the form m = kq such

that q is probable prime by a probabilistic primality test and q > ( 4
√

n+ 1)2. These

two steps differ in Shafi-Killian algorithm [9] and Atkin-Morain test [8] which we will

give more details in proceeding sections. The following steps are all common in both

algorithms. The idea is to find a random point P on the elliptic curve which holds

the conditions given in the Theorem 4.4.2 and to perform group operation in Z/pZ.

Finally, it continues recursively by setting the number n′ = q and applies the same

process again. Hence, the random point P proves the primality of n if q is prime. In

other words, finding primality of n will be reduced to the proving that a smaller number

is prime.

This key idea leads first to Shafi-Killian primality testing algorithm. Due to some

drawbacks of Shafi-Killian algorithm, Atkin and Morain developed a more elegant

solution in 1993. We will give details, examples, and analyses of both algorithms

respectively in the next two sections.

4.4.1 Shafi-Killian algorithm

The main methodology of elliptic curve primality test [Theorem 4.4.2] prepared a base

with some uncertainties on how to choose the curve E, find the order in the form

of m = kq and pick a point P which holds conditions. Now, we will give details of

Shafi-Killian [9] algorithm in five steps.
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Algorithm.

Step 1: Choose a random curve over Zn

In this step, the algorithm picks a and b values at random and constructs the curve E

in the form given in 4.22

Step 2: Curve Order

This step is one of the drawbacks of the algorithm that consumes time in terms of

running time complexity. The order of the curve E, i.e., the number of points on the

curve can be calculated by using Schoof’s Method [11]. It is possible to determine the

compositeness of the given n if it gets an error and stops immediately at this step. In

other words, if this algorithm does not succeed to find the cardinality of the curve in a

timely manner, this will allow determining a non-trivial factor of n.

Step 3: Order Factorization

Once the order is found by using Schoof’s method (see Algorithm 7.5.6 in [12]), the

algorithm proceeds to determine if that order m is of the form of m = kq where q is

prime and q > ( 4
√

n+1)2. If we cannot factor the order by using known factorization

algorithms, we discard that curve E and step back to choosing random values of a,b

and generation another random curve.

Step 4: Random Point on Ea,b(Zn)

Once the curve is successfully generated, we pick a random point on the constructed

curve and perform group operations. Here is how we pick a random point on a given

curve Ea,b(Zn):
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Algorithm 14 Picking a random point P on a given elliptic curve E

Require: Elliptic curve E : y2 = x3 +ax+b and integer n
Ensure: (x,y) on E

1: procedure RandomPoint(a,b,n)
2: f ound← f alse
3: do
4: do
5: x ∈ {0,n−1} . Random integer
6: y = (x(x2 +a)+b) mod n
7: while Jacobi(y/n) = 1
8: t← Sqrt(y,n) . See Algorithm 15
9: if t is found then

10: P = (x,y)
11: f ound← true
12: while ! f ound
13: if (Py)

2 mod n 6= y then . n is composite
14: P = ∞

The Algorithm 14 requires to compute square roots mod p. Thus, we give the following

algorithm developed by Tonelli in 1891, which outputs a solution to the equation

x2 ≡ a (mod p) (4.24)

for a prime p and given integer a such that Jacobi
a

p

= 1.

Algorithm 15 Tonelli’s Square Root mod p Algorithm
Require: Integer a and prime number p
Ensure: Square root x

1: procedure Sqrt(a, p)
2: a← a mod p
3: if p≡ 3,7 (mod 8) then . Case for 3,7
4: return a(p+1)/4 mod p
5: else if p≡ 5 (mod 8) then . Case for 5
6: x← a(p+3)/8 mod p
7: c← x2 mod p
8: if c 6= a mod p then
9: x = x2(p−1)/4 mod p

10: return x
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Algorithm 15 Tonelli’s Square Root mod p Algorithm - Continued
11: else

12: while
d

p

 6=−1 do . Case for 1

13: d← d ∈ [2, p−1]
14: p−1 = 2st
15: A← at mod p
16: D← dt mod p
17: m← 0
18: for i = 0→ s do
19: if (ADm)2s−1−i ≡−1 (mod p) then
20: m← m+2i

21: x← a(t+1)/2Dm/2 mod p
22: return x

Step 5: Point Operation

The details of group operation methods and its analyses are given in Chapter 3 and

subsection 3.2.4

Running Time and Accuracy. The results show that the algorithm is expected to be

in polynomial time.

Drawbacks. The construction of the curve is costly because the test requires Schoof’s

method [11] (which is very slow and cumbersome) for counting the number of points

on the elliptic curve. Secondly, the test finds a curve whose number of points m is of the

form m = kq where q is probable prime. This construction increases the computational

complexity of the algorithm.

4.4.2 Atkin-Morain ECPP

As we discussed in the previous subsection, Shafi-Killian Elliptic Curve Primality

Proving (ECPP) algorithm selects and constructs an elliptic curve randomly.

Additionally, the point counting step increases the time and computational complexity

of the algorithm. Due to the lack of this pre-step in this algorithm, Atkin and Morain

developed a new algorithm in the same year (1986) which finds curves using complex

multiplication (CM) method. The key point of the new algorithm was to choose a

suitable discriminant D to make the computation of the order of the curve m, i.e., the
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number of points on E, easier. After this step, the curve will be generated based on this

order. Now, we first give details of the algorithm in five steps for a given off number n.

Algorithm.

Step 0: Miller Rabin and Sieve test

The initial step of this algorithm requires to eliminate by checking whether the given

number is composite by Miller-Rabin probabilistic test Algorithm 11 with a small

round value (for example, only 10 or 20 rounds). If not, Sieve of Eratosthenes method

can be used to check the given number is less than a bound.

Step 1: Choose discriminant

This step is the keystone of Atkin-Morain algorithm comparing to Shafi-Killian

algorithm. It will be very easy to find a discriminant because the Jacobi(D,n) should

be equal to 1. If not, the algorithm tries to find another discriminant from the list of

increasing values of the class number h(D). The following algorithm gives the details:

Algorithm 16 Choosing Discriminant
Require: Number n
Require: Initialized discriminant array for class number 1 and 2
Ensure: The order m = kq and the discriminant d

1: procedure ChooseDiscriminant(n)
2: index← 0
3: size← array size
4: while index+1 < size do
5: d← array[i]
6: (x,y)←Modi f iedCornacchia(d,n) . See Algorithm 17
7: if Jacobi(d,n)! = 1 then continue
8: else if (x,y)! = null then continue
9: else if OrderFactorization(x,y,d,n) is not found then continue

10: elsebreak
11: return d

Note: The discriminant list for class number 1 and 2 is taken from the results of the

work [Cox 1989]. (See Algorithm 7.5.9 in [12] for complex multiplication method).

We used a closed-form solution by using the explicit parameter sets for all D for class

number 1 and 2 computed in Table 7.1 in [12].

We pick a discriminant value in order and check if Jacobi test results in 1 or not. If the

discriminant value does not pass the Jacobi test, the next discriminant will be chosen
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from the initial array. In the case of Jacobi(D,n) = 1, the algorithm proceeds to find a

solution (x,y) to the Diophantine equation:

x2 + |D|y2 = 4n (4.25)

If there exists no such solution to the above equation, then it returns null and skips to

the next D value in the array.

Finding a solution to the equation 4.25 can be easily computed by using Modified

Cornacchia Algorithm for a given prime p and discriminant D such that |D|< 4p and

d ≡ 0,1 (mod 4). The details of algorithm are given below:

Algorithm 17 Modified Cornacchia Algorithm
Require: Discriminant D and prime number p
Ensure: The solution (x,y)

1: procedure Cornacchia(D, p)
2: if p = 2 then . Initial case
3: k← D+8
4: if k is square then
5: return (

√
k,1)

6: return null

7: if
D

p

< 1 then . Solvability test

8: return null
9: x0←

√
D mod p . See the Algorithm 15

10: if x0 6≡ D (mod 2) then
11: x0 = p− x0

12: a← 2p . Initialize Euclid chain
13: b← x0
14: c← b2√pc
15: while b > c do . Euclid chain
16: l← a mod b
17: a← b
18: b← l
19: t← 4p−b2 . Results
20: if t 6≡ 0 (mod |D|) then
21: return null
22: if t/|D| is not square then
23: return null
24: return (±b,±

√
t/|D|)
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Step 2: Order Factorization

If a suitable discriminant D and the solutions x,y are found (via Algorithm 17), it yields

the possible curve order m as the following:

m ∈


{n+1± x , n+1±2y} for D =−4

{n+1± x , n+1± (x±3y)/2} for D =−3

{n+1± x} for D <−4

If the order m has any factor q such that q > ( 4
√

n+ 1)2 and passes the Miller-Rabin

test (Algorithm 11). Once an acceptable factor q of m is not found in a timely manner,

then the algorithm returns back to choose new discriminant (Step 1).

There are three widely used integer factorization algorithm such as Pollard’s p-1,

Pollard’s p and Lenstra’s Elliptic Curve Factorization Method. The most efficient of

all is Lenstra’s ECM method which consists of group operation on the elliptic curve.

Step 3: Curve Parameters

Since the standard elliptic curve Weierstrass equation E : y2 = x3+ax+b where a,b ∈

F, we need to find a and b values to construct the curve E.

Before we provide a detailed description of the curve generation algorithm, we need

to find a suitable quadratic non-residue g which has no solution to the equation x2 ≡

g (mod p). The following algorithm helps to find g value at random.

Algorithm 18 Finding a non-residue value
Require: Discriminant D and number n
Ensure: Quadratic non-residue g

1: procedure NonResidue(D,n)
2: p← (n−1)/3
3: do
4: g ∈ {0,n−1}

5: if g = 0 or
g

n

 6=−1 then

6: continue
7: if d =−3 then
8: t← gp mod n
9: if t = 1 then

10: continue
11: break
12: while true
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Now, we use the complex multiplication (CM) method to construct the curve E with

parameters a and b. If the chosen discriminant is −3, then 6 isomorphism classes of

elliptic curves can be generated with points (0,−gk) and the curve y2 = x3−gk where

k ∈ {0,5}. Similarly, If D = −4, then 6 points can be generated with points (−gk,0)

and the curve y2 = x3−gkx where k ∈ {0,5}. Otherwise, either Hilbert class or Weber

class polynomial calculation is needed. Since all coefficients of these calculations take

time even for small discriminant, we prefer a closed-form solution by using in Table

7.1 [12] which includes precomputed (x,y) values for each discriminant D.

The following algorithm generated curves for a given non-residue value g, discriminant

D and number n.

Algorithm 19 Elliptic Curve Generation
Require: Discriminant D and number n
Ensure: Curve constants a and b

1: procedure GenerateCurve(D,n)
2: g← NonResidue(D,n) . See Alg. 18
3: if d =−3 then
4: return (0,−gk) where k ∈ {0,5} . 6 curves: y2 = x3−gk

5: else if d =−4 then
6: return (−gk,0) where k ∈ {0,3} . 4 curves: y2 = x3−gkx
7: else
8: Select precomputed values at Table 7.1 [12]
9: return (−3rs3g2k,2rs5g3k) where k ∈ {0,1}

Step 4: Random Point

Once the elliptic curve is generated, the rest of the algorithm works as in the

Shafi-Killian method 14.

Step 5: Point Operation

Once a random point is chosen by using Algorithm 14, we perform group operation on

this point. The group operation consists of two different parts: addition an doubling.

The details of group operation methods and its analyses are given in Chapter 3 and

subsection 3.2.4

The next page includes full pseudocode of the Atkin-Morain ECPP Test.
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Algorithm 20 Atkin-Morain ECPP
Require: Number n
Ensure: Prime or composite

1: procedure AtkinMorain(n)
2: if MillerRabin(n) is composite then return composite
3: else if SieveTest(n) then return composite
4: else
5: f ound← f alse . For calculation
6: result← f alse . Compositeness or primality
7: while ! f ound do
8: d←ChooseDiscriminant(n) . See Algorithm 16
9: do

10: k← 0
11: while ! f ound and GenerateCurve(d,n,k) is found do
12: P ∈ E(a,b) . See Algorithm 14
13: if P is not found then break . New random point
14: Q← [m/q]P mod n
15: if Q is not found then . Composite
16: f ound← true
17: result← f alse
18: break
19: else if Q 6= ∞ then
20: R← [q]Q mod n
21: if R is not found then
22: result← true
23: n← q . Try for factor q
24: points = 100 . Go to choose discriminant step
25: break
26: k++

27: points+= k
28: while ! f ound and points < 100

Now, we give the following example to illustrate the algorithm for the prime number

289−1.

Example.

• number = 289−1 = 618970019642690137449562111

D = -3

(x,y) = (48215832688019 , 7097266064519)

m = 618970019642738353282250131

q = 57306024217633

a = 0, b = 576847241968978529162657802

P = (257330503798390012319382377 , 611426850505584859173079386)
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Q = (505491236768072315331388501 , 405267140089843400755651166)

R = (0 , 1)

• number = 57306024217633

D = -3

(x,y) = (13318945 , 4156513)

m = 57306037536579

q = 9014635447

a = 0, b = 31449508861799

P = (1732983213944 , 4894216390798)

Q = (2855554411665 , 14026450171402)

R = (0 , 1)

• number = 9014635447

D = -3

(x,y) = (168821 , 50193)

m = 9014804269

q = 1908703

a = 0, b = 7340921285

P = (5819216896 , 6330263360)

Q = (2558437617 , 8734715535)

R = (0 , 1)

• number = 1908703

The given number is proven prime because 1908703 is prime.

Running Time and Accuracy. Since Atkin-Morain test avoids very expensive

point-counting step, it runs faster than the Shafi-Killian case practically. Moreover,

the heuristic results show that the whole primality proof can be done in O(log5+εn)

where ε > 0 using fast scalar multiplication techniques.

Drawbacks. Since this algorithm uses the complex multiplication method, the

construction of the curve with order m is not costly as in Shafi-Killian algorithm.

However, finding a good discriminant D and factoring the order m is still a costly
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operation. This factorization operation increases the algorithmic complexity of the

algorithm.

4.5 Singular Cubic Curve Primality Test

This algorithm [35] is designed for strong pseudoprimes which pass the Miller-Rabin

test for base 2. The algorithm first eliminates all composites for base 2 since the

Miller-Rabin test guarantees the compositeness of numbers which do not pass the test.

Then, the singular cubic primality test generates a singular cubic curve E by choosing

a particular prime number, a point on the curve E and tries to compute certain power

of that point as we have also given theorems on elliptic curve arithmetic.

The main tool used for this algorithm is singular cubics which are defined below.

Definition 4.5.1 (Singular Cubic Curves). Let E denote the singular curve and a is a

non-zero integer. E is defined by an algebraic equation of the form of

y2 = x(x−a)2 (4.26)

where a is a singular point in Z/nZ.

The generalized Jacobian group, Jac(E), is introduced by Maxwell Rosenlicht in 1954

and associated to curve with a divisor. It is similar to the elliptic curve group [1,

24]. Thus, we can perform the same group law, which is mentioned in Chapter 3, for

generalized Jacobian groups.

Let p be a prime, a > 0 be a integer such that gcd(a,n) = 1 and E be a singular cubic

curve defined by the equation 4.26. We have the following theorem from [24] which

gives the structure of the group E(Zp).

Theorem 4.5.1. The order of cyclic group E(Zp) is either p−1 if Jacobi(a/p) = 1 or

p+1 if Jacobi(a/p) =−1

Proof. See the proof of Theorem 2.31 at [24].

The key idea in the following theorem is used as a backbone for singular cubic curve

algorithm:
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Theorem 4.5.2 (Lenstra’s Elliptic Curve Factorization Method). Assume that n be a

composite integer with prime factors (p and q), E be an elliptic curve, k > 0 and D be

an element in generalized Jacobian group, Jac(E). If kD(mod p) gives Dp and kD(mod

q) gives Dq such that the only one of Dp or Dq is the identity. Then, the computation

fails when computing kD(mod n) and returns a non-trivial factor (q or p) of n.

Proof. See the proof in [20].

By using theorems above, this algorithm conjectures to a primality test which has

additional steps to strong pseudoprime test to base 2 and computes some powers of

certain points on the curve modulo n. Now, we describe the algorithm by using these

mathematical preliminaries on elliptic curves as well as singular cubic curves.

The Algorithm.

Step 0: Miller Rabin Test

The first step of the algorithm is the strong pseudoprime test to base 2 which we have

already presented at this chapter. The steps in the singular cubic primality test are for

numbers which are already a probable prime in the Miller-Rabin test, so we eliminate

composites with the Miller-Rabin test.

Step 1: Curve Generation

Then, the algorithm chooses a convenient small prime number a such that 0 < a < 100

and the Jacobi
a

n

 = −1. The selection of random a is a try-and-error method

starting from the smallest prime 2. After finding a suitable prime a (several points

may be tried), the algorithm constructs the singular curve E which is of the form y2 =

x(x−a)2 mod n.

Step 2: Random Point

Once the singular cubic is generated, the algorithm proceeds to select a random point

on the curve which is the form of P = (1,1−a).

Step 3: Point Operation

At this step, the algorithm computes a certain power of a randomly chosen point P on

the generated curve E. The group operation is based on the idea of finding either illegal
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operations or the infinity point while computing the power of the point P. If there is an

illegal group operation, the algorithm proves the compositeness of the number.

In this algorithm, the group operation will be computed by using singular curves. The

nice thing about singular curves, we already know the order of group. It’s p−1 if a is

square mod p, and p+1 otherwise .

From this observation [35], the order of the curve E mod n must be ”n+ 1” if n is

"prime". According to the proof of this conjecture, the algorithm first tries with small

orders i where i < 200 to check [i]P (mod n) is identity. If there is no illegal group

operation and [i]P (mod n) is not identity, then it computes [n−1]P (mod n). The final

step is to look at the n+ 1-th power of P, i.e., [n− 1]P⊕ [2]P = [n+ 1]P, and it must

be identity. If [n+1]P is not identity, then n is "definitely composite".

The results [3, 21, 25, 26] show that the strong pseudoprimes to base 2 tend to have

only two prime factors. For example, the experimental results in [3, 26] show that the

majority of spsp(2) are of the form n = pq where p and q are primes and p− 1 =

d(q− 1) such that d < 20 and gcd(p− 1,d1(n− 1)) = p− 1 with d1 < 20. Thus,

the algorithm shows that the above algorithm can easily detect compositeness of such

integers.

This version of the algorithm given below is for detecting the compositeness of strong

pseudoprimes base 2. However, our experimental results also encourage us to claim if

[n+ 1]P (mod n) is identity, then given n is "definitely prime". Thus, it is actually a

primality test depending on our results.

Now, we give details of the algorithm below:
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Algorithm 21 Singular Curve Primality Test Algorithm
Require: An odd integer n

1: procedure PrimalityTest(n)
2: if MillerRabin(n) is composite then
3: return composite
4: else
5: a← a ∈ {0,100} where a is prime and

a
n

=−1

6: E(Zn) : y2 = x(x−a)2

7: P← (1,1−a)
8: for i = 0→ 200 do
9: Qi← [i]P mod n

10: if Qi = ∞ then
11: P← (r2,r(r−a)) for some r 6= a
12: Q← [n−1]P+[2]P mod n
13: if Q 6= ∞ then
14: return composite

Running Time and Accuracy. In this algorithm, we need to find a prime a < 100

such that Jacobi(a/n) =−1. the Jacobi symbol (a/n) can be computed with very low

complexity. As seen in the 12th step, we need to compute (n+1)th power of P in the

Jacobian of the singular cubic curve. In order to compute (n−1)P mod n, we need to

perform at most 2 logn+ 1 addition or doubling in E(Zn). Thus, the running time of

the algorithm is O(log2+ε n). In terms of accuracy, we tested all strong pseudoprimes

less than 264 and algorithm successfully finds the compositeness of all. Additionally,

the algorithm finds the primality or compositeness of very large numbers with several

hundred digits in just seconds. (see Table 5.2 for execution time analyses).

Drawbacks. Since this algorithm is not tested with numbers larger than 1021, the test

is just an observation.
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5. COMPARISON RESULTS

In this chapter, the theoretical and computational comparison details of selected

algorithms will be given.

The selected algorithms are:

• Sieve of Eratosthenes

• Miller-Rabin Probabilistic Primality Test

• Atkin-Morain ECPP Implementation

• Atkin-Morain GMP-ECPP Executable [40]

• Singular Curve Primality Test

These algorithms will be evaluated based on their algorithmic complexity and

experimental tests. Since each algorithm has distinct properties, running time analysis

may not give very strict comparable results. For example, some tests include elliptic

curve primality testing analog (see Section 4.4 in Chapter 4 for more details) which

have not an estimated running time because of randomized values inside. However,

the average execution time value will be used in comparison results.

5.1 Theoretical Results

The following table evaluates the theoretical comparison results:

Table 5.1 : Theoretical comparison results.

Primality Test Running Time
Miller-Rabin O(log4 n) assuming GRH.
ECPP Hard to make running time analysis. [23]
AKS Algorithm O(log12+ε n)
Singular Cubic Primality Test O(log2+ε n)
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5.2 Computational Tests

In this section, we will examine the running time comparison of the selected algorithms

according to execution time until it finds primality or compositeness of a given number.

For a fair comparison, we prepared a list of prime numbers which have different

numbers of bits and used the same list for each algorithm. There will be two metrics

to compare:

• Execution time of each algorithm when determining composites with an increased

number of bits

• Execution time of each algorithm when determining primes with an increased

number of bits

• Execution time of all algorithms with the same odd composite integer

• Execution time of all algorithms with the same odd prime integer

5.2.1 Implementation details

The algorithms could be implemented in some higher-level programming language

like Java or MATLAB; however, they may lack performance during testing. So, the

algorithm is implemented and tested by using C++ programming language, because it

makes the algorithm very portable and fast with GCC compilers.

Since primality testing is a challenge for very large integers, we needed a library to

provides us fast arithmetic for rational numbers and large integers which has several

hundred digits. The next thing was to choose of a portable multiple precision library,

so we chose GNU Multiple Precision Arithmetic Library (GMP [41]) which is also

implemented in C programming language.

Finally, the calculation results may vary due to model or properties of hardware as well

as the version of software, we provide the following specifications which include both

hardware and software specifications:
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Hardware Specifications:

• Processor: Intel Xeon E-2176M (6 cores, 12 threads)

• Main Memory: 32 GB DDR4-2666 RAM (non-ECC)

• Cache Memory: 12 MB

• Disk Capacity: 1 TB PCIe NVMe M.2 SSD

• GPU: NVIDIA Quadro P2000 (Memory: 4GB)

Software Specifications:

• Programming Language: C++ (c++11, c++14 and c++17)

• Compiler: g++

• IDE: CodeLite, Gedit

• Libraries:

- The GNU Multiple Precision Arithmetic Library (GMP) (Version 6.1.2) [41]

- Pari/GP (Version 2.11.1) [42]

- Open Multi-Processing Library (OpenMP) [43]

- A High-Performance Message Passing Library (MPI) [44]

- Gmp-Ecpp (version 2.49) [40]

5.2.2 Experiments

• Sieve of Eratosthenes: The experimental results show that this method is suitable

for only small integers which have less than 60 digits. We tested with random 600

primes which has 1 to 600 digits, the method fails after at 39th prime. Moreover,

it fails at 59th composite over random composites which has increased number

of digits. Finally, for the case which includes the first 105 primes take 236.816

seconds, other cases ignored because of very long execution time.

• Miller-Rabin probabilistic test: As we mentioned in the previous chapter, this test

is a probabilistic test which can output some composites as prime with some error

probability. Since our test includes random primes and composites not including

strong pseudoprimes to some special base, the outputs are all correctly labeled.
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Additionally, the execution time of this test increases linearly when determining

the primality of an integer with an increased round count. However, the round

count is not important when determining the compositeness because the algorithm

terminates without waiting for the round loop ends. All in all, the Miller-Rabin test

results are the best in terms of lowest execution time among other tests.

• ECPP: We compared our Atkin’s elliptic curve primality testing implementation

with GMP-ECPP implementation. The randomization techniques may differ in

these two implementations, so we get the time difference in approximate values

when the calculation of the first 105 primes case. However, our implementation gets

better results when 10200 + 153 is calculated. Since both ECPP implementations

include the Miller-Rabin test for composites, the case for composites gives actually

the running time Miller-Rabin test. Because of this, both ECPP implementation

gets much lower running time for composites compared to primes. Finally, all these

execution time averages are still slower compared to the Miller-Rabin algorithm.

• Singular curve primality test: When we compared the proposed algorithm [35]

with well-known primality tests, the experimental results show that the algorithm

runs nearly like a probabilistic test Miller-Rabin, additionally, it is not probabilistic.

For instance, we try 1500 digits prime numbers, the singular curve primality test

takes only 1.5 seconds to prove its primality. Other elliptic curve primality testing

algorithms never find the result as fast as the singular curve primality test.

Moreover, we give another experimental result that we conduct to observe if there

is any counterexample in the singular curve primality testing algorithm. Thus,

we tested all strong pseudoprimes base 2 less than 264 ≈ 1.89 · 1019 [36] and the

algorithm catches all composite numbers. In addition, we tested to extend the

limit of the number of pseudoprimes [3], but we were able to find up to 1010

without using parallel programming on supercomputers. Finally, we tested several

million high precision strong pseudoprimes base 2 and again the algorithm detects

compositeness of such large numbers with very short execution time.

The following table contains the execution time of each algorithm for different cases

which includes random primes and composites with a different number of digits:
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6. CONCLUSION

Prime numbers are crucial in the field of number theory and especially in cryptography.

Different types of primality tests have their own advantages and disadvantages.

Probabilistic tests are faster; on the other hand, deterministic tests can determine results

without employing a doubt.

In this thesis, we analyze the trade-offs between known primality tests. We first

introduce general number theoretical methods, such as Fermat’s and Euler’s test.

Because determining and proving the primality of a potential prime number cannot

be done with certainty with these methods, we proceed with deterministic tests. A

disadvantage of the deterministic Agrawal–Kayal–Saxena (AKS) test is that it is hard

to implement, so we then move on to elliptic curve primality testing and proving

algorithms that are developed by Shafi-Killian and Atkin-Morain.

In general, the evaluation of primality testing algorithms is illustrated with examples.

The theoretical results show that deterministic polynomial-time algorithms are the best.

However, our practical results demonstrate that probabilistic methods are faster for

commercial applications.

Moreover, we also included singular cubic primality testing algorithm into our

comparison, because the widely used Miller-Rabin algorithm has strong pseudoprimes

and the conjectured test [35] catches them. The experimental results show that the

conjectured algorithm catches all strong pseudoprimes (base 2) up to 264. Moreover,

even the compositeness of high-precision integers is successfully detected by this

algorithm with a very short running time (see Table 5.2).

All in all, the execution time of the singular cubic curve primality test is close to that

of the probabilistic Miller-Rabin test; additionally, the algorithm does not employ a

probability when determining compositeness or primality of a given integer. When this

hypothesis is proved to be a successful primary test, we have been demonstrated that
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the singular cubic curve primality test had good theoretical and experimental results,

as evaluated in this thesis.
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