

ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

MSc THESIS

Yoldaş ERDOĞAN

TURKISH TEXT TO SPEECH USING CHILDREN'S VOICES
SYLLABLES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS
ENGINEERING

ADANA, 2019

ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

TURKISH TEXT TO SPEECH USING CHILDREN'S VOICES SYLLABLES

Yoldaş ERDOĞAN

MSc THESIS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of
degree of the Master of Science by the board of jury on 19/08/2019.

………………………………… ……………………………. …………………………...........
Assoc. Prof. Dr. Zekeriya TÜFEKÇİ Assoc. Prof. Dr. Sami ARICA Assoc. Prof. Dr. Serdar YILDIRIM
SUPERVISOR MEMBER MEMBER

This MSc Thesis is written at the Department of Electrical and Electronics
Engineering of Institute of Natural and Applied Sciences of Çukurova University.

Registration Number:

Prof. Dr. Mustafa GÖK
Director
Institute of Natural and Applied Sciences

Note: The usage of the presented specific declarations, tables, figures, and

photographs, either in this thesis or in any other reference without citation
is subject to "The law of Arts and Intellectual Products" number of 5846 of
Turkish Republic

 I

ABSTRACT

MSc THESIS

TURKISH TEXT TO SPEECH USING CHILDREN'S VOICES SYLLABLES

Yoldaş ERDOĞAN

ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Supervisor : Assoc. Prof. Dr. Zekeriya TÜFEKÇİ
 Year: 2019, Pages: 135
Jury : Assoc. Prof. Dr. Zekeriya TÜFEKÇİ
 : Assoc. Prof. Dr. Sami ARICA

 : Assoc. Prof. Dr. Serdar YILDIRIM

Text to speech (TTS) shortly means to convert a written text into audio signals
electronically. This written text may be a text document, electronic book, or a web page. An
ideal TTS system is expected to be able to process every readable text in the quality of natural
human voice. In our country, text to speech studies mostly focus on the production of adult male
and female voices. In this thesis, an audio database consisting of children's voices was designed
so the synthesized sound is aimed to be children's voices.

In voice synthesis studies, it is seen that the closest sound to naturalness was provided
by concatenative voice synthesis methods. Within the scope of this thesis, a TTS system that is
based on additive synthesis technique which uses binary syllable as the length of voice unit is
implemented. In general, conversion of text to audio signal process consists of two main parts.
In the first part, the text to be synthesized is normalized according to language rules and is
divided into syllables. A hyphenation algorithm is developed for the designed system and the
entered text was separated into syllables. In the second part, audio syllable signals are processed
and merged so that the speech synthesizing process is performed. Although there are different
techniques in processing the audio signals, they are extended and shortened based on the
Synchronous Overlap and Add (SOLA) method in this thesis.

The system generates syllables from the text information it receives as an input. It
makes triple syllables to be produced from double syllables. Then, by using the audio files
belonging to these syllables, syllables are taken from the recorded files and began to be merged.
At this stage, rules determined according to the types of sounds are applied at the junction points
of syllables and naturalness is tried to be created similar to the waveforms in real sound files.
This naturalness has been tried to be provided by extending and shortening the beginning or end
of syllables where necessary.

Although the system uses simple techniques, the selected additive method is very
suitable for the structure of Turkish and so produces efficient results.

Keywords: Turkish Text to Speech, Additive Synthesis, Child Voice, Syllabification

, TTS, Voice Extension, WAV, SOLA

 II

ÖZ

YÜKSEK LİSANS TEZİ

ÇOCUK SES HECELERİ KULLANARAK TÜRKÇE METİNDEN KONUŞMA
SESLENDİRME

Yoldaş ERDOĞAN

ÇUKUROVA ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

Danışman : Doç. Dr. Zekeriya TÜFEKÇİ
 Yıl: 2019, Sayfalar: 135

Jüri : Doç. Dr. Zekeriya TÜFEKÇİ
 : Doç. Dr. Sami ARICA
 : Doç. Dr. Serdar YILDIRIM

Metinden Konuşma Sentezleme (MKS) kısaca yazılı haldeki bir metnin elektronik

ortama aktarılarak ses sinyallerine dönüştürülmesi demektir. Bu yazılı metin bir belge veya
elektronik kitap da olabilir, bir web sayfası da olabilir. İdeal bir TTS sisteminden insanın
okuyabildiği her metni doğal insan sesi gibi işleyebilmesi beklenir. Ülkemizde metinden
konuşma sentezleme çalışmaları daha çok yetişkin kadın ve erkek seslerinin üretilmesine
yoğunlaşmıştır. Bu tezde ise çocuk seslerinden oluşan bir ses veritabanı tasarlanmış ve
sentezlenecek sesin çocuk sesi olması hedeflenmiştir.

Ses sentezleme çalışmalarında doğallığa en yakın sesin, eklemeli (concatenative) ses
sentezleme yöntemleri ile sağlandığı görülmüştür. Bu tez kapsamında ses verisi olarak ikili
heceyi kullanan ve eklemeli sentezleme yöntemine dayanan bir metin seslendirme sistemi
gerçeklenmiştir. Metinden konuşma sinyali oluşturma genel olarak iki ana bölümden
oluşmaktadır. Birinci bölümde sentezlenecek metin, dil kurallarına uygun olarak normalize
edilmekte ve hecelerine ayrılmaktadır. Tasarlanan system için bir heceleme algoritması
geliştirilmiş ve girilen metnin hecelerine ayrılması sağlanmıştır. İkinci bölümde ise ses hece
sinyalleri işlenerek bir araya getirilmekte ve konuşma sentezleme işlemi gerçekleştirilmektedir.
Ses sinyallerinin işlenmesinde farklı teknikler bulunmakla beraber bu tez çalışmasında
SOLA(Synchronous Overlap and Add) yöntemi temel alınarak ses sinyalleri uzatılmakta ve
kısaltılmaktadır.

Sistem, girişte aldığı metin bilgisinden heceleri oluşturur. Üçlü heceleri ikili hecelerden
üretilecek şekle getirir. Daha sonra bu hecelere ait ses dosyalarını kullanarak ikili veye tekli
heceleri kayıtlı oldukları dosyalardan alır ve belirli algoritmalar dahilinde birleştirir. Bu aşamada
hecelerin birleştiği yerlerde seslerin türlerine göre belirlenen kurallar uygulanır ve gerçek ses
dosyalarındaki doğallık elde edilmeye çalışılır. Bu doğallık gerekli yerlerde hecelerin başında ya
da sonunda uzatma ve kısaltma yapılarak sağlanmaya çalışılmıştır.

Sistem basit teknikler kullanıyor olmasına rağmen, seçilen eklemeli method Türkçe’nin
yapısına çok uygun olduğu için verimli sonuçlar üretmektedir.

Anahtar Kelimeler: Türkçe Metin Seslendirme, Eklemeli Sentezleme, Çoçuk Sesi, Heceleme,

TTS, Ses Uzatma, WAV, SOLA

 III

ACKNOWLEDGEMENTS

I would like to express my gratitude to my mother Hatun Erdoğan and my

father Aleddin Erdoğan for enabling me to grow up in the difficult life conditions

of the past. I would also like to thank my dearest sister Ceylan, her husband Umut

and my nephew Asmê Hayal for supporting me at every stage of my life.

My lovely family members; I would like to thank my dear wife Ergül for

her patience and for enduring me in this challenging road, my son Rênas Merdan,

my daughters Zelal, Zerya and Roza Dilba for allowing me to work during this

thesis. I love you very, very much.

I would also like to thank my thesis advisor Zekeriya Tüfekçi and valuable

jury members as well as my colleagues Esin, Murat and Erkan for their moral

support.

To the beautiful tomorrows where everyone lives peacefully, without

missing love, respect, happiness and hope…

 IV

TABLE OF CONTENTS PAGE

ABSTRACT ... I

ÖZ .. II

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS .. IV

LIST OF TABLES .. VI

LIST OF FIGURES ... VIII

1. INTRODUCTION .. 1

1.1. General Information ... 1

1.2. Sound and Physical Properties of Sound .. 3

1.3. Speech and Phonetics ... 12

1.4. Production and Perception of Sound in Humans .. 13

1.5. Children's Sound Acoustics .. 16

1.6. Turkish and Sound Rules ... 18

1.6.1. Vowels .. 18

1.6.2. Consonants .. 20

1.6.3. Syllable Concept ... 21

1.6.4. Some Phonetic Rules in Turkish ... 24

1.6.5. Emphasis ... 25

1.7. Sound Synthesizing Techniques ... 26

1.7.1. Natural Sound Addition Method ... 27

1.7.2. Artificial Sound Production Method ... 30

2. RELATED WORKS .. 33

3. MATERIAL AND METHOD .. 39

3.1. Material .. 39

3.1.1. The Software and Hardware Properties .. 39

3.1.2. Formation of Single and Double Syllables ... 39

3.1.3. Wav File Format ... 40

 V

3.1.4. Digitizing and Sampling of Sound .. 44

3.1.5. Preprocessing Sound Data ... 51

3.2. Method ... 55

3.2.1. Developed Software .. 55

3.2.2. The Spelling Algorithm Developed .. 59

3.2.3. Creation, Reading, Showing and Vocalization of Wav Audio

File 62

3.2.4. Extending the Sound Data ... 71

3.2.5. Obtaining Triphones from Diphones ... 86

3.2.6. Determination of the pitch value of a sound syllable 89

3.2.7. Pitch Shifting ... 94

3.2.8. Equalizing Energy ... 99

4. RESULTS AND DISCUSSION .. 101

5. CONCLUSIONS AND SUGGESTIONS .. 103

REFERENCES ... 105

BIOGRAPHY ... 109

APPENDICES .. 110

 VI

LIST OF TABLES PAGE

Table 1.1 Some sound pressure level values ... 12

Table 1.2 Letters can replace different sounds .. 18

Table 1.3 The syllable structure in Turkish .. 23

Table 1.4 The syllable number in Turkish .. 23

Table 1.5 Adding vowels into words that start with two consonants 24

Table 2.1 Some related works done by year ... 34

Table 3.1 The number of single and double syllables ... 40

Table 3.2 RIFF chunk ... 42

Table 3.3 Format data region .. 43

Table 3.4 Data data region .. 44

Table 3.5 Patterns to be search for the words starting with vowels 60

Table 3.6 Patterns to be search for the words starting with consonants 61

Table 3.7 Notes and their frequencies ... 94

Table 4.1 Scoring system .. 101

Table 4.2 Intelligibility assessment of the system .. 102

 VII

 VIII

LIST OF FIGURES PAGE

Figure 1.1. The propagation of sound in the air ... 3

Figure 1.2. A simple sine wave ... 4

Figure 1.3. Period T = 0.1 sec. .. 5

Figure 1.4. Frequency 10Hz. .. 6

Figure 1.5. Phase ... 7

Figure 1.6. Combination of two sinusoidal waves .. 8

Figure 1.7. ADSR ... 9

Figure 1.8. Sound production organs of humans .. 14

Figure 1.9. Model of human sound production organs ... 15

Figure 1.10. Formant Frequencies of Vowels ... 32

Figure 3.1. Wav file format (http://soundfile.sapp.org) .. 41

Figure 3.2. Appearance of a Wav file ... 42

Figure 3.3. Sampling of the sound signal ... 45

Figure 3.4. Digitizing analog sound signal with PCM .. 46

Figure 3.5. Input sound signal .. 46

Figure 3.6. Sampling intervals .. 47

Figure 3.7. Signal with average value ... 47

Figure 3.8. Signal and numerical values ... 48

Figure 3.9. Quantization ... 49

Figure 3.10. Sound passing through the filter ... 49

Figure 3.11. Voiced and unvoiced sound.. 50

Figure 3.12. Periodic sound signal and pitch period ... 50

Figure 3.13. Audio signal windowing .. 52

Figure 3.14. Cascade windows ... 53

Figure 3.15. Commonly used windowing functions ... 55

Figure 3.16. Working structure of the developed system 56

Figure 3.17. Menu structure of the software ... 56

Figure 3.18. Demonstration of the property and wave spectrum of recorded

sounds ... 57

 IX

Figure 3.19. The part where syllables are listed and reviewed 57

Figure 3.20. The part where various effects are applied to the active sound

syllable ... 58

Figure 3.21. Screen for obtaining triple syllables using binary syllables 58

Figure 3.22. Text to speech conversion screen ... 59

Figure 3.23. The graphical view of a.wav sound file .. 62

Figure 3.24 The view of the first 160 bytes of the a.wav file with the hex

editor ... 65

Figure 3.25. Displaying the first sample data in the a.wav sound file 71

Figure 3.26. Waveform of “çü” syllable ... 72

Figure 3.27. Partial addition of ”ü” sound .. 73

Figure 3.28. OLA algorithm ... 75

Figure 3.29. OLA and cut and paste ... 76

Figure 3.30. SOLA algorithm basic .. 77

Figure 3.31. Overlap estimation in SOLA operation .. 79

Figure 3.32. PSOLA algorithm ... 80

Figure 3.33. Parameters sent to the algorithm .. 84

Figure 3.34. “bu” syllable ... 86

Figure 3.35. “ul” syllable .. 87

Figure 3.36. Overlapping ”bu” and “ul” syllables .. 87

Figure 3.37. Extension of “bu” and “ul” syllables .. 88

Figure 3.38. Shortening the new syllable formed from extended syllables by

using the algorithm ... 89

Figure 3.39. Autocorrelation. There is a local maximum when the signal is

shifted λ steps ... 91

Figure 3.40. Notes and octave intervals on the piano ... 94

Figure 3.41. Pitch shifting algorithm .. 95

Figure 3.42. Fourier transform with zero-padding .. 98

1. INTRODUCTION Yoldaş ERDOĞAN

 1

1. INTRODUCTION

1.1. General Information

Text to Speech (TTS) is converting text into spoken word by a computer.

Nowadays, TTS applications are used in many immobile and mobile devices for

different purposes such as making the interaction with the user more humanitarian

in multimedia tools or facilitating the life of some people, especially the visually

impaired ones. Efforts to automatically produce sounds similar to human voices are

one of today's popular topics.

Speech synthesis is the process of converting a text into audio signals by a

computer and so artificially producing human speech. A computer system used for

this purpose is called a “speech synthesizer” and the process can be implemented in

computer software or hardware. Linking the recorded speech segments stored in a

database to each other is a commonly used speech synthesizing technique

The quality of a speech synthesizer is assessed by the similarity and

intelligibility of the synthesized speech to the human voice. There are lots of

application areas of speech synthesizing systems nowadays and these areas are

increasing day by day.

In this study, a Turkish TTS system is designed and implemented. There

are three groups in TTS systems: formant synthesizers, additive synthesizers and

discourse synthesizers. The developed synthesizer is in the second group. The

additive synthesizers synthesize the audio tracks recorded by a speaker by

reassembling them afterwards. For this purpose, first of all, the text that will be

converted into speech is divided into words. The words that are separated from the

space character are then separated into their diphones (binary phonemes). In this

study, diphones are used as sound tracks. Turkish linguistic rules are used in order

to correctly identify the diphones forming the word. The diphones called from the

database are loaded into the developed interface. The fundamental frequencies and

energies of the neighboring diphones that will be combined are equalized as much

1. INTRODUCTION Yoldaş ERDOĞAN

 2

as possible. Afterwards, all the diphones are combined with the existing tunes to

obtain the raw synthesis. The integration process is done by overlapping and

inserting. That is, the last part of the first diphone and the first part of the second

diphone are softened with a window to make a smooth integration. The main

objective here is to give prosedic features to the combined sound tracks in a

suitable manner. In this way, a natural synthesis can be obtained.

1. INTRODUCTION Yoldaş ERDOĞAN

 3

1.2. Sound and Physical Properties of Sound

The most important communication tool between the humans is sound.

Voice communication is a more preferred form of communication because it is

easier and faster than written communication. Sound is a wave that moves from a

point to another point in a medium. It is created by a vibrating object. A sound

travels through the air with the motion of air molecules (Parker, 2015).

The sound propagation event is the sum of successive events occurring in

several interconnected systems.

Source Medium Reciever

Figure 1.1 The propagation of sound in the air (hyperphysics.phy-astr.gsu.edu)

In the sound event, the acoustic energy emitted by the source affects the

receiver while transmitted through the medium and it is perceived by the receiver.

In all of these situations there is something that is propagating – transmitting –

perceiving. This is energy (Zeren, 1995)

In order to evaluate these sound waves as a sound, they must periodically

repeat at least 20 to 20,000 times per second. These limit values are approximate

values and vary from person-to-person or age-to-age. The quality of the sound we

1. INTRODUCTION Yoldaş ERDOĞAN

 4

perceive may vary depending on the source, the medium it emits, and even some

features of our hearing system.

Some important concepts related to sound physiology can be described as

below:

Speed of Sound: The propagation rate of sound waves varies depending on

the medium. The speed of sound in air, is about 344 meters per second (344 m /

sec) at 21 °C.

Sound Wave: Sound is defined as the pressure changes that the human ear

can detect between 20 Hz and 20 KHz in liquid, solid, gas mediums. Since the

mechanical waves in this frequency range stimulate the hearing, they form sound

waves that are particularly important to humans. When a sound wave comes into

the human ear, the ear changes the pressure changes in the sound wave to the

impulses in the nerves, which are then interpreted by the brain as sounds heard.

The simplest sound wave has only one frequency and a constant amplitude. This is

called as sine wave. In Figure 1.2 a simple sine wave graph is shown.

Figure 1.2 A simple sine wave

The length of the sound wave is determined by dividing the propagation

speed of the sound by its frequency.

ߣ ൌ
௖

௙
	

1. INTRODUCTION Yoldaş ERDOĞAN

 5

Period: It has been stated that sound can be defined as vibrations in air, or

rather air pressure. Each sound has its own vibration character. In order to give a

simple example, the simplest voice, a pure tone, will be examined here. In this pure

tone, the pressure first increases, then decreases and finally returns to its original

state. All of this was completed in 0.1 seconds. The period is the time elapsed for a

single repetition of this agitation and it can take different values for different

sounds. In Figure 1.3, the period T = 0.1 seconds.

Figure 1.3 Period T = 0.1 sec.

In order to calculate the period of sound waves the following formula can

be used.

 ܶ ൌ
ଵ

௙

Frequency: The distance between the two peaks is the wavelength. The

number of wave peaks observed per second is called frequency. The frequency

determines the pitch of the sound. It is shown as cycles per second (CPS) or hertz

(Hz). Low frequencies are bass sounds and high frequencies are higher level

sounds. Suppose that the wave defined in Figure 1.3 continues for 1 second. With a

period of 0.1 seconds, this wave will have the opportunity to repeat 10 times in a

second. In this case, the graph in Figure 1.4 will appear. As you can see, the wave

was repeated 10 times in a second. The frequency of repetition per second is

expressed in units of Hertz, and therefore the frequency for the above example is

10 Hz.

1. INTRODUCTION Yoldaş ERDOĞAN

 6

Figure 1.4 Frequency 10Hz.

Amplitude: The electrical representation of a sound wave is called a signal

or an audio signal. The height of the signal level is called amplitude. The amplitude

can be measured in different ways. The top point of the signal level is called as the

peak. The difference between the positive peak value and the zero point is called

the peak value, and the difference between the positive and negative peaks is called

as peak-to-peak value (the value between two peaks).

Root-Mean-Square (RMS): RMS is the average amplitude of a signal

obtained over a period of time. The average level values in an audio signal do not

differ much in themselves, but the peak values change continuously. The RMS

value is used to calculate the overall height of the signal over a period of time.

ܵܯܴ ൌ
௉௘௔௞

√ଶమ ൌ ܲ݁ܽ݇ ∗ 0.707

Noise: They are non-periodic vibrations. The sounds that push the

boundaries in terms of technical sensation of the ear and create psychological

disturbance are called as noise

Phase: Phase is the relation of the signal or sound waves cycle to the

reference time. Phase is expressed in degrees. One cycle is 360o. An example sine

wave phase state is shown in Figure 1.5.

1. INTRODUCTION Yoldaş ERDOĞAN

 7

Figure 1.5 Phase

If the amplitude peaks of the two sine waves are in the same place over

time, these two waves are in the same phase; in other words, there is no phase

difference between these two waves. If the amplitude peaks of the two sine waves

are at different locations over time, there is a phase difference between these two

waves or in other words a phase shift. For example, when there is a 90o phase

difference between two sine waves as shown in Figure 1.5; while the first sine

wave is at zero point (0o or 180o), the second sine wave is at plus or minus peak

point (90o or 270o).

The phase is very important for the combination and mixing of signals or

sound waves. If the two sine waves with no phase difference are mathematically

added up, they strengthen each other. The total amplitude of the two sine waves

which have a 90o phase difference is 1.414 times the amplitude of the waves. Two

sine waves with 180o phase difference between them destroy each other. Phase

shifts vary according to frequency and time differences. To calculate the phase,

shift the following formula can be used:

∅ ൌ ݐ∆ ∗ ݂ ∗ 360

∅: Phase shift (degrees)

 Time difference (seconds) :ݐ∆

݂: Frequency (hertz)

1. INTRODUCTION Yoldaş ERDOĞAN

 8

In Figure 1.6, a resultant wave, which is formed by combining two

sinusoidal waves with frequencies f and 2f, and amplitudes 1 and 0.5, is shown in

time and frequency domains.

Figure 1.6 Combination of two sinusoidal waves

The amplitude of this wave at any moment can be calculated by the

following formula:

ܽሺݐሻ ൌ ሻݐ݂ߨሺ2݊݅ݏ ൅
1
2
 ሻݐ2݂ߨሺ2݊݅ݏ

	

Timbre: Timbre is a feature that allows people to distinguish the sounds of

different musical instruments. With this feature, different instruments playing at the

same volume and the same pitch may sound completely different. For example,

suppose a guitar and a piano play the same notes from the same octave with the

same volume; thanks to their timbre, one can easily distinguish these two

instruments. If there was no timbre, in other words, if the notes produced by the

instruments were pure sine waves, all the instruments playing from the same note

1. INTRODUCTION Yoldaş ERDOĞAN

 9

would be perceived as a single instrument. The note produced by the instrument is

named as fundamental frequency.

The upper partial frequencies, which are the multiplications of the base

frequency, are called harmonics. As an example, let’s take the basic pitch A4

(“La”) sound, 440 Hz as the basic frequency. The first harmonic of 440 Hz is itself

(440 Hz x 1 = 440 Hz), the second harmonic (440 Hz x 2) is 880 Hz, third

harmonic (440 x 3) is 1320 Hz, and the fourth harmonic (440 Hz x 4) is 1760 Hz.

Octave means 2:1 frequency ratio. Frequency is doubled if it is increased one

octave, and divided by two if it is decreased one octave.

Envelope: Envelope is divided into two as acoustic and electronic.

Acoustic Envelope: Acoustic envelope is the structure of sound wave in

terms of level over time. Acoustic envelope is composed of three parts named as

attack, sustain ve decay.

Attack is the part where the sound starts and then reaches the highest point

level. Sustain is the section after the attack where the sound extends with small

differences in level. Decay is the part where the volume decreases and disappears.

Electronic Envelope: Electronic envelope is known as ADSR. ADSR is the

structure of an electronic musical instrument in terms of amplitude or, in other

words, level. ADSR is formed from the first letters of attack, decay, sustain and

release. Release is the section where the level of the signal decreases and

disappears.

Figure 1.7 ADSR

1. INTRODUCTION Yoldaş ERDOĞAN

 10

Intensity of Sound: The intensity of sound depends on the vibrational

intensity of the vibrating object. Sound intensity, is one of the most important

feature of sound like timbre and frequency. Logarithmic scale is used instead of

linear scale in sound and signal measurements since large changes in pressure,

power and voltage values cause small changes in perceived sound intensity.

Decibel: Decibel is a very complicated term for most of the people at first.

Decibel is a logarithmic unit used for sound and signal measurements. Because it is

logarithmic, it is possible to express very large values with small values using this

unit. Decibel is one tenth of the Bel unit. In other words, 10 decibels are equal to 1

Bel. The name Bel comes from the name of Alexander Graham Bell; this is why

the letter B in the dB abbreviation for decibels is capitalized.

Decibel is always used to express the ratio of two values; decibel itself is

not a value. More detailed; decibel is a unit to express the ratio between electrical,

acoustic, or other power values logarithmically.

The following formula can be used to express the ratio of two power values

in decibels:

ܤ݀ ൌ 10	logሺܲ ൊ ௥ܲ௘௙ሻ

ܲ : Power (Watt)

௥ܲ௘௙ : Power reference (Watt)

The following formula can be used to convert decibels to power:

ܲ ൌ ௥ܲ௘௙ ∗ 10ሺௗ஻ൊଵ଴ሻ

1. INTRODUCTION Yoldaş ERDOĞAN

 11

Sound Pressure Level: The pressure created by sound waves over a certain

area is called sound pressure level. Sound pressure level is expressed in Pascal (Pa)

or dyne / cm2 units. 10 dyne / cm2 is equal to 1 Pascal.

10 dyne/cm2=1 Pa (Newton/m2)

The threshold of hearing is considered to be 0.0002 Pa. Sound pressure

levels are expressed in logarithmic scale and dB SPL (Sound Pressure Level) is

used as units. The following formula can be used to convert the sound pressure

level in Pascal to dB SPL:

dB SPL = 20 Log (P/Pref)

1. INTRODUCTION Yoldaş ERDOĞAN

 12

Table 1.1 Some sound pressure level values
Typical sound level in dB Sound source

140 Jet engine at 30m

130 Rivet hammer (pain can be felt at this threshold)

120 Rock drill

110 Chain saw

100 Sheet-metal workshop

90 Lawn-mower

85 Front-end loader

80
Kerbside Heavy traffic

Lathe

70 Loud conversation

60 Normal conversation

40 Quiet radio music

30 Whispering

0 Hearing threshold

1.3. Speech and Phonetics

The branch of science that studies the sounds of language is called

phonetics. Phonology examines what features does the sound has, how it reaches to

the listener through sound waves, how the listener perceives that sound, in short, it

examines all the features of language related to sound.

In international terminology, sound is called as phonome; sound knowledge

is called as phonetics. Phonetics is the basis of phonology which is used for science

of sound in international terminology (Coşkun, 2008).

The sound should not be confused with the letter. Sound is related with

sound knowledge and letters are related with spelling. The sound is accepted as the

cornerstone of oral expression and agreement and the letter as the cornerstone of

written expression and agreement. Letters are the ones that make sounds visible in

1. INTRODUCTION Yoldaş ERDOĞAN

 13

text. The Turkish people use Latin letters but different nations may use different

letters (e.g. Iraqis use Arabic letters, Russians use Cyrillic letters). While the letters

corresponding to sounds in Turkish are single, in some languages, single sound is

formed by one or more letters. Instead of “ş” in Turkish, sh is used in English and

sch is used in German; or instead of “ç” in Turkish, the letters tsch are used in

German.

It is not possible to meet all the sounds in languages with the letters in the

alphabets. Phonetic experts have created an alphabet that can meet all voices in the

world. This alphabet is called as “international phonetic alphabet” (Coşkun, 2008).

1.4. Production and Perception of Sound in Humans

Since speech is air-assisted, one of the most important organs that contribute

to this is the diaphragm. The diaphragm is located between the lower part of the rib

cavity and the upper part of the abdominal cavity. It contracts together with the

abdominal muscles to allow air to fill the lungs and discharge from the lungs.

1. INTRODUCTION Yoldaş ERDOĞAN

 14

Figure 1.8 Sound production organs of humans(https://courses.lumenlearning.com)

Trachea is above the lungs and it is connected to diaphragm. At the top of

the trachea is the larynx. The larynx can move up and down with the help of

muscles. In the larynx, there are two mucosal vocal cords, which are located

transversely and produce sound with tone. Vocal cords are organs that can vibrate.

One of the most effective organs in the production of sound is the tongue.

The root of the tongue is connected to the bone and the tongue changes its shape

according to the sound that will be created. Other organs that contribute to the

production of sound are the palate, teeth, lips and lower jaw that can move up and

down.

1. INTRODUCTION Yoldaş ERDOĞAN

 15

Figure 1.9 Model of human sound production organs (Fant, 1970)

As can be seen in the model of the human sound production organs given in

Figure 1.9, the air coming from the lung first passes through the vocal cords. The

sound produced by the vibration of the vocal cords contains all the sounds from the

thickest to the most treble sounds that can be made by the human. This sound,

which includes sound components at every frequency, is actually similar to a

wheezing or, in other words, noise. The amplitude of the wheezing sound produced

in the vocal cords is high in thick and low in treble sounds. The form of the mouth

and nasal cavity produce the human sound by shaping the wheezing sound.

The brain ensures that all of these organs, active or passive, work in

harmony in the production of human sound. As mentioned earlier, the sounds that

are produced while talking are caused by the displacement of air flow within the

respiratory system. At the start of the speech, air is pumped upwards by the lungs,

which act as initiators.

1. INTRODUCTION Yoldaş ERDOĞAN

 16

The air which moves upward from the air tube passes through the larynx,

which has two vocal cords. The air continues its move by going out from the point

of larynx opening to the throat. There are two ways in which airflow can move out

of the respiratory system: the oral cavity or the nasal cavity. The entrance to these

gaps is adjusted by the palate (Özsoy, 2004).

As the airflow moves through the organs and exits from the oral or nose

cavities, it encounters some obstacles in the oral cavity. According to the feature,

location and degree of these barriers, voices form two main groups:

 Consonants

 Vowels

Consonants are formed as a result of a significant obstruction of the

airflow. Vowels, on the other hand, occur as a result of a lesser degree of

obstruction of airflow compared to consonants.

1.5. Children's Sound Acoustics

Human sounds are divided into three groups as female, male and child

sounds. Children's sounds cannot be separated into male or female sounds until

adolescence, because they do not have a distinct difference until this time. Sound

characteristics of children are different from adults. Anatomical and physiological

differences between adult and pediatric larynx cause different sound parameters.

These anatomical and physiological differences are:

 While the vocal tract is sufficiently developed for respiratory, swallowing

and airway protection in children, the sound characteristics are limited.

 Cartilage structures are softer and more flexible, vocal cords are shorter

and density of muscles are less for children.

1. INTRODUCTION Yoldaş ERDOĞAN

 17

 The tongue is more bulky, short and has limited movements within the oral

cavity for children.

All these anatomical differences cause different sound parameters for children

than adults:

 In children, sound is more treble than adults and is more prone to nasality

as a resonance feature.

 Fundamental frequency values are above 250 Hz (80-150 Hz for male,

150-250 Hz for female).

 The timbre is high and the sound range is narrow.

 The sound intensity is moderate to high, the sound stability is low and

inconsistent, and the voice onset is predominantly hard.

Children's sound width and area, narrow to wide, shows a development line

that extends towards more thick sounds until the age of 6 and both thick raw and

thin sounds after the age of 6. However, the child's sound width and development

line are not the same for all ages and children. The sound width and the

development line vary according to the natural, social and cultural environment in

which the child lives. However, in a study conducted in Western Europe it is

shown that the infant's voice, which is around la 1 (sound of la piano in the 4th

octave) during infancy, shows a development line that reaches to fa 1 at the age of

1-2, to mi 1 at the age of 3-5, and to si 1 at the age of 6-8.

In children, the physiological sound range is wider than the musical sound

range. In childhood, the physiological sound range (the range between the highest

and the lowest sound) remains fairly stable, but the musical sound range develops.

In order to sing during the development process, they can generally use a range of

around 1.5 octaves (Lunchsinger et. al., 1967).

1. INTRODUCTION Yoldaş ERDOĞAN

 18

1.6. Turkish and Sound Rules

There are 29 letters in the Turkish alphabet and they are generally classified

as vowels and consonants.

a, b, c, ç, d, e, f, g, ğ, h, ı, i, j, k, l, m, n, o, ö, p, r, s, ş, t, u, ü, v, y, z

In response to the 29 letters in written language, it can be said that there are

36 sounds (with extra sounds) used during the speech. For example, with a, e, g, k

and l letters 10 sounds are tried to be produced as shown in Table 1.2.

Table 1.2 Letters can replace different sounds

Sound Sample Word(s)

a zar

a saat, alim

e yemek

e el, vermek

g geri, gemi

g gaga, gayda

k kalın, katı

k keser, kivi

l sal, kalın

l lastik, lazım

1.6.1. Vowels

Vowels are sounds obtained by resonating the vibrations generated by

vocal cords in the sound path. They form without encountering an obstacle in any

position of the sound path. In contrast to the 16 sounds which are described as

famous in Turkish, 8 phonemes are defined as meaning separators.

/a/, /e/, /ı/, /i/, /u/, /ü/, /o/, /ö/

1. INTRODUCTION Yoldaş ERDOĞAN

 19

Vowels are classified according to the angle of the jaw (tongue-to-palate),

the position of the tongue in the mouth and the shape of the lips.

a) Classification of vowels according to the angle of the jaw (tongue-to-

palate):

The vowels are determined as close or open according to the angle of the

jaw (i.e. rictus).

Close vowels: /ı/, /i/, /u/, /ü/

Open vowels: /a/, /e/, /o/, /ö/

b) Classification of vowels according to the shape of the lips:

Vowels are classified as unrounded and rounded according to the shape of

the lips.

Unrounded vowels: /a/, /e/, /ı/, /i/

Rounded vowels: /o/, /ö/, /u/, /ü/

c) Classification of vowels according to the position of the tongue in the

mouth:

In this classification, when the vowel sound is produced, the point of sound

extraction is taken into consideration, not the form taken by the mouth. Tongue

plays an important role in making sound. Vowels are classified according to tongue

regions as; front, central and back.

Back vowels: /a/, /o/, /u/

Central vowels: /ı/

Front vowels: /e/, /i/, /ö/, /ü/

Front vowels can be classified as unrounded and rounded according to the

form of sound while being produced.

Unrounded front vowels: /e/, /i/

Rounded front vowels: /ö/, /ü/

1. INTRODUCTION Yoldaş ERDOĞAN

 20

1.6.2. Consonants

Sounds that come into contact with an obstacle at any position of the sound

path are called as consonants. Vocal cord vibrations are not important in

consonants; they are produced mostly by the cuts in the sound.

There are 21 consonants in Turkish:

/b/, /c/, /ç/, /d/, /f/, /g/, /ğ/, /h/, /j/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /ş/, /t/, /v/, /y/,

/z/

Consonants in Turkish are classified according to the point of origin, the

form of origin and the presence and absence of vocal cord vibrations.

a) Classification of consonants according to the form of origin:

The way the air exits from the vocal organs affects the sound. Accordingly,

consonants are divided into 5 classes: explosion, impact, side constriction, seizure

and nasal passage.

Explosion consonants: /b/, /d/, /g/, /ğ/ /p/, /t/, /k/

Impact consonants: /r/

Side constriction consonants: /l/

Seizure consonants: /c/, /ç/, /f/, /h/, /j/, /s/, /ş/, /v/, /y/, /z/

Nasal passage consonants: /m/, /n/

b) Classification of consonants according to the point of origin:

The point from where the air exits also affects the sound. According to this,

consonants are divided into 8 classes: double lip, lip-tooth, tongue tip-back teeth,

tongue tip-gums, tongue-front palate, tongue tip-front palate, tongue-art palate and

larynx.

Double lip : /b/, /p/, /m/

Lip-tooth : /f/, /v/

Tongue tip-back teeth: /d/, /t/

Tongue tip-gums : /n/, /r/, /s/, /z/

Tongue-front palate: /c/, /ç/, /j/, /ş/, /y/

1. INTRODUCTION Yoldaş ERDOĞAN

 21

Tongue tip-front palate: /l/

Tongue-art palate : /k/, /g/, /ğ/

Larynx : /h/

c) Classification of consonants according to the vocal cord vibrations:

Some of the consonant sounds vibrate the vocal cords while occurring.

These consonants are called as voiced consonants. If there is no vibration in the

vocal cords when producing consonant sounds, such consonant sounds are called as

unvoiced consonants.

Voiced consonants: /b/, /c/, /d/, /g/, /ğ/, /j/, /l/, /m/, /n/, /r/, /v/, /y/, /z/

Unvoiced consonants: /p/, /t/, /k/, /ç/, /f/, /s/, /ş/, /h/

An important point in terms of phonology is that; Although there are certain

number of consonants and vowels in the world languages, they are in different

qualities. For example, / a / sound in Turkish is different from the / a / sounds in

English, French, Persian and Japanese. Some of these / a / sounds are close to / o /

and some are longer than nasal passage sounds and / a / sound in Turkish.

1.6.3. Syllable Concept

Phonemes combine to form syllables. This rule applies to all languages.

However, since syllables can be in different forms in different languages, defining

syllables is a difficult process. The syllables for each language differ in their

structure. Therefore, it is not possible to make a common syllable definition

covering all languages. There must be one vowel at each syllable in the Turkish

language, without a vowel a syllable cannot be formed.

The words consist of syllables and syllables consists of letters. The syllables

form the sound structure of words. Although vowels in Turkish can form a syllable

on their own, consonant letters cannot form a syllable without taking vowels with

them. Therefore, in a Turkish word the number of syllables is equal to the number

of vowels. The reason for this is that, it is not possible to have more than one vowel

1. INTRODUCTION Yoldaş ERDOĞAN

 22

in a Turkish syllable. The consonants form syllables by getting together with the

vowels that follow them. In Turkish, syllables form as follows.

 The syllables that consist of a single vowel: a, e, ı, i, o, ö, u, ü

 The syllables that consist of vowel-consonant pairs: al, at, ak, ay...

 The syllables that consist of consonant-vowel-consonant: bel, bol, kal,

gel...

 The syllables that consist of consonant-vowel pairs: ba, da, ka, la ...

 The syllables that consist of vowel-2 consonants: alt, üst, ırk...

 The syllables that consist of consonant-vowel-2 consonants: kürk, yurt,

renk...

 The syllables that consist of 2 consonants-vowel-consonant: krem, tren..

 The syllables that consist of 2 consonants-vowel-2 consonants: kramp,

branş..

The syllable system rules in Turkish are sometimes broken due to foreign

originated words. When the syllable type is examined according to these rules,

1714952 meaningful or meaningless syllables can be formed in Turkish. In Table

1.3, the general structure of Turkish syllables is given, “C” represents consonants

and “V” represent vowels.

1. INTRODUCTION Yoldaş ERDOĞAN

 23

Table 1.3 The syllable structure in Turkish

Syllable Structure Sample Syllables

V a, e, ı, i, o, ö, u, ü

VC ab, ac, aç, ad, … ,az, eb, ec, …

CV ba, be, bı, bi, … , za, ze, zı, zi, …

CVC bul, göl, köy, ter, …

VCC aşk,ört, ast, ırk, …

CCV gri, bre, tra, ...

CVCC kalp, dört, renk, sarp, …

CCVC tren, gram, krem, …

CCVCC kramp, branş, …

Table 1.4 The syllable number in Turkish

Syllable

Structure

Sample Syllables Multiplier Total

V a, e, ı, i, o, ö, u, ü 8 8

VC ab, ac, aç, ad, … ,az, eb, ec, … 8x21 168

CV ba, be, bı, bi, … , za, ze, zı, zi,

…

21x8 168

CVC bul, göl, köy, ter, … 8x21x21 3528

VCC aşk,ört, ast, ırk, … 21x8x21 3528

CCV gri, bre, tra, ... 21x21x8 3528

CVCC kalp, yurt, renk, sarp, … 21x8x21x21 74088

CCVC tren, gram , krem, … 21x21x8x21 74088

CCVCC kramp, branş. … 21x21x8x21x21 1555848

1. INTRODUCTION Yoldaş ERDOĞAN

 24

 In this thesis, syllables are very important because by making processes on

the recorded syllables new syllables or words are created.

1.6.4. Some Phonetic Rules in Turkish

In Turkish, all rules are in accordance with the movements of organs

related to sounds, in case of any strain, the sounds in the word change. These rules

are followed when combining consonants or making annexations or adapting

foreign originated words. These rules play an important role in text analysis and

word synthesis. The formation of a syllable on a computer is done by algorithms

that comply to phonetic rules.

Two consonants do not appear consecutively at the beginning of Turkish

words, whereas it is seen that some consonants come together at the beginning of

some foreign words while spelling. For example, in speaking language, the

“standart” word is vocalized by bringing a suitable vowel in between consonant

letters as “sıtandart”. The vowel that will come between two consonants can be

determined according to the rule in Table 1.5. Here, sample rules are given for

words like “kral, grup, tren”.

Table 1.5 Adding vowels into words that start with two consonants
The vowel in the

syllable

The vowel that will come in

between two consonants
Sample

a, ı, o ı gıramer, kıredi

u u gurup

ü ü bürüt

e, i, ö i tiren, tirilyon

There are no long vowels in Turkish originated words. The long vowel is

seen in Arabic and Persian originated words that are used in Turkish: şive (şi:ve),

şair (şa:ir), kaide (ka:ide), numune (numu:ne), şube (şu:be), adalet (ada:let),

1. INTRODUCTION Yoldaş ERDOĞAN

 25

badem (ba:dem), iman (i:man), beraber (bera:ber), ifade (ifa:de), isaret (isa:ret),

rica (rica:), vali (va:li), idare (ida:re), vefa (vefa:). In these examples, the sound

shown by the letter before the two points is long vowel and it is said as long (TDK,

2000).

When words ending with closed syllables containing long vowels, are

merged with a affix that starts with a vowel letter or are used with auxiliary verbs,

the long vowel comes out again in the syllable: usul / usulü (usu:lü); esas / esasen

(esa:sen); hayat / hayatı (haya:tı); ruh / ruhum (ru:hum); kanun / kanunen

(ka:nu:nen); vicdan / vicdanen (vicda:nen) (TDK, 2000).

In some Arabic originated words, the larynx consonant is located at the end

of the syllable. In such words, the larynx consonant is completely removed from

the Turkish speaking and leads to the prolongation of the vowel before it: telif

(te:lif), dava (da:va), mana (ma:na), tecil (te:cil), memur (me:mur), tesir (te:sir).

(TDK, 2000)

When a word ending with a consonant letter is followed by a word starting

with a vowel letter, they are said by connecting these two sounds. This is called

“ulama” in Turkish language. For example; whereas “satın almak” phrase is

divided into syllables as “sa-tın al-mak” in spelling, it is splitted as “sa-tı-nal-

mak” in vocalization (TDK, 2000).

1.6.5. Emphasis

In a word or phrase pronounciation of a syllable more strongly than others

or in a sentence pronounciation of a word more strongly than others, is called

“emphasis”. The emphasized syllable or word has a stronger and violent

pronunciation than other syllables or words. In Turkey Turkish, instead of some

exceptions, the emphasis is usually located on the last syllable of the word.

For instance, the importance of emphasis in speech and written language is

better understood when the sentence “Ben senden çok sıkıldım.” is examined:

1. INTRODUCTION Yoldaş ERDOĞAN

 26

1. Ben senden çok sıkıldım. (I'm more bored than you. You're not the one

more bored. It is me.)

2. Ben senden çok sıkıldım. (I am so bored of you not anyone else.)

3. Ben senden çok sıkıldım. (I'm more bored than you are.)

4. Ben senden çok sıkıldım. (I'm sick and tired of you.)

5. Ben senden çok sıkıldım. (I can no longer take you, cannot stand you,

cannot live with you.)

As can be seen in the above sentences, emphasis is decisive in meaning and

expression of words and sentences. It is extremely important in the use of

language.

In proper place names (city, district, etc.), with a few exceptions, emphasis

is on the first syllable: Konya, Bursa, Muğla, Ordu.

While calling, the emphasis is on the first syllable for the people names:

Ahmet! Hasan! Neslihan!

Emphasis on most of the adverbs is in the first syllable: yarın, sonra, yine,

şimdi.

Emphasis on conjunctions is mostly in the first syllable: çünkü, yahut,

yalnız.

Emphasis on exclamatory phrases is in the first syllable: eyvah! haydi!

Emphasis on question words is in the first syllable: nerede? nasıl? niçin?

hangi? kimde?

Emphasis on adjacent words is in the first word and is in the last syllable of

that word: köpekbalığı, deveboynu, sarayburma.

1.7. Sound Synthesizing Techniques

Text to speech (TTS) is a natural language modeling process that requires

changing units of text into units of speech for audio presentation. This is the

opposite of speech to text, where a technology takes in spoken words and tries to

1. INTRODUCTION Yoldaş ERDOĞAN

 27

accurately record them as text. The text-to-speech (TTS) synthesis procedure

consists of two main phases. The first one is text analysis, where the input text is

transcribed into a phonetic or some other linguistic representation, and the second

one is the generation of speech waveforms, where the acoustic output is produced

from this phonetic and prosodic information. These two phases are usually called

as high- and low-level synthesis.

Two approaches are seen in Text to Speech Synthesizing Systems. These

approaches are;

 Natural sound addition method

 Artificial sound production method

1.7.1. Natural Sound Addition Method

The method of adding sounds is based on the principle of using sound

recordings produced by human. In the studies carried out in accordance with this

method, the method of adding from a largest part to a smallest part is tried. The

sounding systems based on the method of adding natural sounds are considered as

high quality in terms of sound.

Sentence, Phrase and Word Based Vocalization

Sentence, phrase and word based vocalization method is used especially in

computerized response systems. In such systems, because the texts that will be

converted to speech are certain, the speech form of the response sentences in the

database are used. For example; "Kuruluşumuzu aramış olmanızdan dolayı

teşekkür ederiz".

In some implementations, instead of the whole sentence word patterns that

may be included in the sentence are vocalized and stored in the database. Thus, the

number of vocal recordings in the database is tried to be reduced. For instance, in

the sentence; "Ankara'ya gidecek yolcuların 212 numaralı bekleme salonuna

gelmeleri beklenmektedir." the city names and waiting room numbers, which are

1. INTRODUCTION Yoldaş ERDOĞAN

 28

seen as dark, are stored in one place and other words are stored in another place.

Bold words are variables; others are accepted as constants.

By changing the variable words, the same information can be read as:

Adana'ya gidecek yolcuların 344 numaralı bekleme salonuna gelmeleri

beklenmektedir.

There are also vocalization methods in which only vocalized words are

kept in databases. For example; according to the morphological features of the

language different vocalized forms of the words "Ankara", "gitmek", "yolcu",

"212", " numara", "bekleme", "salonu", "gelmek", and "beklenmek" are also kept in

the database. This method, which is seen as a viable solution for Indian European

languages that are limited in terms of affixes, is not suitable for languages being

rich in affixes such as Turkish.

There are also examples in the sentence vocalization method where only

one or more words are used. For example; “xxxxxx'ya gidecek yolcuların yyyyy

numaralı bekleme salonuna gelmeleri beklenmektedir”. In this sentence, the pattern

sentence, except the city name and the waiting room number of the plane, is kept in

a distinct record than the city name and waiting room number (they are also kept in

separate records). When the sentence is vocalized, the city name and waiting room

number are added to the appropriate points. In this application, some adjustments

should also be made for languages such as Turkish (i.e. rich in affixes).

Format Unit, Syllable, Pair of Sounds and Voice-based Speech

In general, it is not feasible to vocalize a text by adding consecutive

sentences, phrases or words that are vocalized by humans, since it requires a very

large database. Therefore, different methods have been tried. In one of these

methods, the word is divided into pieces morphologically. For instance, gözlükcü

word is splitted as göz + lük + cü to its root and affixes. The database consists of

vocalized root words and affixes. When the “gözlükçü” word is vocalized the root

is vocalized with the affixes.

1. INTRODUCTION Yoldaş ERDOĞAN

 29

Vocalization by adding format units in languages that are limited in terms

of affixes (e.g. English), are easier than adding in languages that are rich of affixes

(e.g. Turkish). Meanwhile, the fact that the affixes will change according to the

sound adaptation rules in Turkish should not be forgotten.

Converting the possible syllables in a language to speech and making use

of them while vocalizing a word is another method that can be used in the process

of text-to-speech.

Table 1.4 gives the possible number of syllable patterns. Looking at these

numbers, it can be said that there are 1714952 syllable structures in Turkish.

According to this, when the 1714952 syllables are converted to speech, it can be

said that a Turkish text can be realized. However, the meaningless ones in these

syllables must be removed.

A syllable database that will be created by recording all the sounds

mentioned in the table will of course be very laborious. Instead, a database

consisting of only binary syllables are created within the scope of this thesis and

other syllables are tried to be produced by using sound synthesizing techniques.

The outlines of a general algorithm that can be used to separate a Turkish

word into its syllables is as follows:

 The word is scanned starting from the end to the beginning.

 When the first vowel is encountered, it is cut to the left of the consonant by

going one step to the left.

This algorithm, which is outlined above, may be an error-free algorithm

when an editing is made for words that have been passed from foreign languages.

In this thesis, a different spelling algorithm has been also tried to be developed.

When we go down to a lower level from the syllable structure, we see

examples where individual or binary letters are added. In these examples the first

step is to divide words vocalized by people into pairs of sounds and sounds. This

1. INTRODUCTION Yoldaş ERDOĞAN

 30

study requires intensive labor, and at the end it is seen that texts can be converted

to speech.

When combining signals related to syllables and binary letters that are

vocalized by humans, it is necessary to use the sound characteristics of the

language. When the sound characteristics of the language are not involved in the

vocalization process, explosions are heard in the sound produced.

1.7.2. Artificial Sound Production Method

Another method used for converting text to speech is to produce artificial

sound. The basis of the artificial sound production method is based on modeling

the human sound production organ. In this method, firstly the frequency

characteristics of the vowels and consonants of the language are produced, then by

using these sounds syllables and words are tried to be vocalized.

The process of producing artificial sound consists of the following steps:

In the first stage, the text is converted into a phonetic (sound-based, sound-

related) alphabet. Although Turkish is accepted as a phonetic language, the fact

that our vowels such as "a, e" have thin, thick and long form, it is necessary to

convert Turkish text into a phonetic alphabet, too. In languages such as English,

where the writing rule is irregular, converting the text into a phonetic alphabet is

quite difficult.

In the second stage, the letters in a word written with the phonetic alphabet

are tried to be vocalized together. At this stage, letter pairs or syllables can be

vocalized.

During the vocalization of a word, two important points to be considered

are “emphasis” and “extensions”. In Turkish words, the duration of reading the

letters is usually equal. However, words taken from foreign languages break this

rule. In Turkish words, it is almost certain where the emphasis will be made in the

word and in the sentence; however, the place of emphasis can be changed in

spoken language.

1. INTRODUCTION Yoldaş ERDOĞAN

 31

“Formant” is a term which was taken from Latin to German in the early

1900s and then into English. It means formative. Phonetic defines the word

formant as the frequencies that determine and format the phonetic property of

vowels. The lowest formant frequency is labeled as f1. The number of formant

frequencies of vowels varies from four to six, but three formant frequencies (F1, F2

and F3) are sufficient for a vowel to be understood. This is the reason why the

frequency range of the telephone lines is narrow, the transmitted sound is not of

good quality but the conversations can be easily understood. The frequency range

of telephone lines is 300 Hz to 3.5 kHz, which covers the first three formant

frequencies of all vowel letters.

1. INTRODUCTION Yoldaş ERDOĞAN

 32

Figure 1.10 Formant Frequencies of Vowels (Coşkun, 2008)

Vowel sounds do not have a single sound frequency; they are combined

audio signals. In other words, a vowel sound consists of a basic frequency

component and, in addition, lower amplitude frequency components. Although the

values of the voice formants vary for each language, the famous formant values

given by IPA (International Phonetic Association) are given in Figure 1.10

(Coşkun, 2008).

IPA Latin F1 F2 F3

i IY 270 2290 3010

ı IH 390 1990 2550

e EH 530 1840 2480

ae AE 660 1720 2410

A AH 520 1190 2390

a AA 730 1090 2440

] AO 570 840 2410

U UH 440 1020 2240

u UW 300 870 2240

g ER 490 1350 1690
1000

1200

1400

1600

1800

2000

2200

2400 I

IH
EH

AE

ER

AH

UH
AA

AO UW F1 (Hz)

F2(Hz)

2. RELATED WORKS Yoldaş ERDOĞAN

 33

2. RELATED WORKS

Post-graduate and doctoral studies on speech synthesis and related subjects

from Turkish texts are given in Table 2.1. When these studies were examined, it

was found that the majority of them were on additive synthesizers. In additive

synthesizer systems, it is seen that the assembled parts were predominantly

phonemes, then syllables and in recent studies mostly diphones (binary phonemes).

In addition, the success of different signal processing (combination) methods (e.g.

different overlap and splicing methods, sinusoidal model) in additive synthesizers

was investigated. Most of the recent studies have tried to develop time and melody

models for a more natural speech synthesis.

2. RELATED WORKS Yoldaş ERDOĞAN

 34

Table 2.1 Some related works done by year
Method M.Sc / PhD Author Title

Linear predictive

coding based hardware

implementation

1991, M.Sc Alper GERÇEK “A TMS 5220 based

speech synthesis

development system”

Linear predictive

coding was

implemented

1992, M.Sc Karen

BÜYÜKAŞIKOĞLU

“Konuşma işaretlerinin

analiz ve sentezi”

Linear predictive

coding was

implemented

1992, M.Sc Enis Sezai BAŞARA “Yapay ses üretim

yöntemleri”

Phoneme and diphone

concatenation (linear

interpolation and

implementation with

TMS 320 C25)

1993, M.Sc İlhan Yaşar ÖZÜM “A speech synthesis

system for Turkish

language based on the

concatenation of

phonemes taken from a

speaker”

Formant synthesizer

for

Turkish vowels

1994, M.Sc Kamil GÜVEN “PC based speech

synthesis for Turkish”

Syllable concatenation

at vowel overlaps

using PSOLA and its

derivatives

1998, M.Sc Kerem AYHAN “Text to speech

synthesizer in Turkish

using non parametric

techniques”

Syllable concatenation

at consonant overlaps

using LP-PSOLA

(RELP)

1999, M.Sc Özgül SALOR “Signal processing

aspects of text to speech

synthesizer in Turkish”

TD-PSOLA based

implementation

2000, M.Sc Barış BOZKURT “Reading aid for visually

impaired (A Turkish

text-to-speech system

2. RELATED WORKS Yoldaş ERDOĞAN

 35

development)”

Formant synthesizer

for

Turkish words

2000, M.Sc Ömer ESKİDERE “Yazılım tabanlı söz

sentezleyici tasarımı”

Sinusoidal model based

implementation

2001, M.Sc Çağla ÖNÜR “Concatenative speech

synthesis based on a

sinusoidal speech

model”

F0 contour synthesis

simulations based on

syntactic features

2001, M.Sc Erkan

ABDULLAHBEŞE

“Fundamental frequency

contour synthesis for

Turkish text to speech”

LP-PSOLA based

diphone concatenation

2002, M.Sc Şifa Serdar ÖZEN “Türkçe metinden

konuşma sentezleme”

Diphone concatenation

at voiced parts

2002, M.Sc Barış EKER “Turkish text to speech

system”

Linear additive, mean

phoneme/triphone and

triphone-tree duration

models

2002, M.Sc Ömer ŞAYLİ “Duration analysis and

modeling for Turkish

text-to-speech

synthesis”

Intonation models in

sentences

2002, M.Sc Banu OSKAY “Automatic modelling of

Turkish prosody”

Word stress patterns

and allophone duration

analysis using the

Festival synthesizer

2003, M.Sc Esra VURAL “A prosodic Turkish

text-to-speech

synthesizer”

Corpus based harmonic

coding concatenation

2004, M.Sc Haşim SAK “A corpus based

concatenative speech

synthesis system for

Turkish”

2. RELATED WORKS Yoldaş ERDOĞAN

 36

Diphone concatenation

using prototype

waveform interpolation

2005, M.Sc Asude KARLI “Örnek bir dizi cümle

için Türkçe metinden

konuşma sentezleyici”

Regression trees for

duration and F0 models

2005, PhD Özlem ÖZTÜRK “Modeling phoneme

durations and

fundamental frequency

contours in Turkish

speech”

LP-PSOLA based

diphone concatenation

on a mobile device

2007, M.Sc İlker ÜNALDI “Taşınabilir cihazlar için

Türkçe metinden

konuşma sentezleme

sistemi”

Microsoft Speech

Server TTS based

implementation for

foreign language

learning

2009, M.Sc Cansel DEMİR “Konuşma tanıma

sentezleme sistemlerinin

okul öncesi dönem

yabancı dil eğitiminde

kullanılması”

Rules for Turkish

syllable concatenation

2009, M.Sc Kenan GÜLDALI “Türkçe metin

seslendirme”

Unit selection based

concatenative

synthesis using TD-

PSOLA

2009, M.Sc Zeliha GÖRMEZ “Implementation of a

text-to-speech system

with machine learning

algorithms in Turkish”

TD-PSOLA based

concatenative synthesis

2010, M.Sc Yücel BİCİL “Türkçe metinden

konuşma sentezleme”

Waveform

concatenation using

at most two-letter

syllables

2010, M.Sc Cavit ERDEMİR

(Erdemir, 2010)

“Türkçe metin

seslendirme için doğal

konuşma sentezleme”

Two-phone and

syllable based

2010, M.Sc Tuncay ŞENTÜRK “Türkçe metin

seslendirme”

2. RELATED WORKS Yoldaş ERDOĞAN

 37

concatenation

Syllable based

concatenation

system for the visually

handicapped

2011, M.Sc Güray ARIK “Görme engelliler için

bilgisayar kullanımının

etkinleştirilmesi,

erişilebilirlik ve bir

Türkçe hece tabanlı

konuşma sentezleme

sisteminin geliştirilmesi”

Natural speech

synthesis using

duration, pitch and

energy modifications

2012, PhD İbrahim Baran USLU Konuşma işleme ve

Türkçenin dilbilimsel

özelliklerini kullanarak

metinden doğal konuşma

sentezleme

Word synthesis using

SOLA methods

2013, M.Sc İLHAMİ SEL Türkçe metinler için

hece tabanlı metinden

konuşma sentezleme

sistemi

Unit Selection and

HMM based TTS

2013, M.Sc EKREM GÜNER A hybrid statistical/unit-

selection text-to-speech

synthesis system for

morphologically rich

languages

Clever Learning

System design using

speech synthesis and

recognition

technologies

2013, PhD ABDULKADİR

KARACI

Ses sentezleme ve

tanıma teknolojilerini

kullanarak Türkçenin

ana dil olarak öğretimi

için zeki öğretim sistemi

geliştirilmesi

Statistical speech

synthesis and speaker

2014, M.Sc AMİR

MOHAMMADİ

Speaker adaptation with

minimal data in

2. RELATED WORKS Yoldaş ERDOĞAN

 38

adaptation statistical speech

synthesis

Phonetic Alphabet was

used

2015, M.Sc TİMUR

KARAMEHMET

Implementation of

turkish text to speech

synthesis with rc8660

voice synthesizer

linear predictive

coding

2016, M.Sc UĞUR AYAZ Text-to-speech synthesis

for Turkish using a DSP

board

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 39

3. MATERIAL AND METHOD

3.1. Material

Materials used in the thesis;

 The programming and database languages used in the preparation of the

developed software and the hardware on which the software is developed

 Sound data set consisting of binary syllables selected as a sample

application for testing the software to be used in sound synthesis and

enriching the content of the thesis.

3.1.1. The Software and Hardware Properties

The computer used in the development of the software is a personal

computer with Intel i7 processor, 800 GB hard disk and 8 GB RAM. The operating

system used is the Windows 10 operating system developed by Microsoft for home

and office users. Microsoft's Visual Studio software, which can be downloaded for

free from the Internet, was installed on the computer.

For the development of the software, C # programming language with

compiler in Visual Studio is preferred. C # is an object-oriented programming

language where you can develop both web form and Windows form applications.

In order to record the sound syllables to the computer the software

developed within the scope of the thesis was used. The raw form of the recorded

syllables are created and the surpluses are trimmed.

3.1.2. Formation of Single and Double Syllables

The audio data to be used in the thesis were recorded from external media

via a microphone connected to the computer. 344 syllable syllables mentioned in

Table 3.1 were transferred to the computer using the program developed within

the scope of the thesis.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 40

Table 3.1 The number of single and double syllables

Syllable structure Sample syllables Multiplier Total

V a, e, ı, i, o, ö, u, ü 8 8

VC ab, ac, aç, ad, … ,az, eb, ec, … 8x21 168

CV ba, be, bı, bi, … , za, ze, zı, zi, … 21x8 168

Increasing the recording quality of binary syllables causes the file size to

grow. Each syllable occupies approximately 30KB. In total, a 12MB folder was

created. New methods have been developed to ensure that the binary syllable data

takes up less space. For example, when the digital structure of a syllable recorded

in VC format is reversed by a software, a sound close to the CV syllable is

obtained. For example, the word “lira” can be formed using only “li” and “ra”

syllables. However, instead of using “fi” + “il” syllables for the word “fiil”, the

first used “li” syllable is reversed to obtain “il”. Within the scope of this thesis, this

method has not been preferred, but it is an open area for new subjects which may

be the continuation of this study.

3.1.3. Wav File Format

Wav is a sound format based on Pulse-code Modulation (PCM). Since it is

based on the same basis as PCM (apart from minor differences), it can be said that

it is also an uncompressed and lossless digital audio format, PCM works with the

logic of digitizing the sound wave as it is, and is an uncompressible format. Since

there is no compression, it takes up a lot of space on the disc. However, the

simplicity of the system allows it to be operated via a simple digital sound

processor. This audio format is currently used in Blu-ray, CD and DVD formats

and it is also preferred in digital telephone systems.

Wav file format is a file format created by taking the first three letters of

the word “Wave” in English. It is also known as a file format created by IBM and

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 41

Microsoft to play small audio recordings on any computer. Its structure is very

simple. Unlike MP3 and other compressed formats, wav files are only digitized

sounds.

Figure 3.1 Wav file format (http://soundfile.sapp.org)

They are simple and since no compression is applied they do not reduce the

quality of sound, but take up a lot of space. Samples in the wav file are kept as

uncompressed in the form of raw data. The wav file contains three data regions

(chunks). The RIFF (Resource Interchange File Format) chunk is 12 bytes long and

it is the region where the file is specified as a “wav” file (Wikipedia).

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 42

Figure 3.2 Appearance of a Wav file

Table 3.2 RIFF chunk
Name Position Size(byte) Byte Order Description

Chunk ID 0 4 Big Endian
Includes the ascii codes of

R,I,F,F characters.

File Size 4 4
Little

Endian

Includes the size of the

data after this section.

Value: (File size-8)

File Format 8 4 Big Endian
Includes the ascii codes of

W,A,V,E characters.

The RIFF chunk fields are shown in Table 3.2. The next data region is the

FORMAT chunk. In this region format-specific parameters are defined and are 24

bytes long. The FORMAT chunk fields are shown in Table 3.3.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 43

Table 3.3 Format data region
Name Position Size(byte) Byte Order Description

Chunk 1 ID 12 4 Big Endian
Includes the ascii codes of f,m,t ve

" " (empty space) characters.

Chunk 1 Data

Size
16 4

Little

Endian
This value is 16 for PCM files.

Compression

code
20 2

Little

Endian

For uncompressed files, this value

is 1. If you read a value other than

1, the value you read shows the

format of compression.

Number of

channels
22 2

Little

Endian

Specifies how many channels are

written into the audio file (1,2, ...).

Sample rate 24 4
Little

Endian

Holds the value of the sampling

frequency.

Average

bytes per

second

28 4
Little

Endian

Indicates how many bytes per

second should be read. The value

is calculated as:

(SampleRate*ChannelNumber

*BitForSample/8)

Block align 32 2
Little

Endian

The value is calculated as:

(ChannelNumber*BitForSample/8)

Significant

bits per

sample

34 2 Big Endian

Indicates how many bits each

sample is expressed. It can take 8,

16, 24 values

The third data region is the DATA chunk. Actual sampling data is kept in

this field. The DATA chunk fields are shown in Table 3.4.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 44

Table 3.4 Data data region
Name Position Size(byte) Byte Order Description

Chunk 2

ID
36 4 Little Endian

Includes the ascii codes of

d,a,t,a.

Sound data

size
40 4 Little Endian

It shows the size of the data that

will come after this part, i.e. the

size of the sound data.

The big endian and little endian rankings mentioned above indicate that in

the 2 byte given audio format part, the value "1" is written as 01 00 in the little

endian order (hexadecimal). The way it is written according to the big endian rank

is 00 01. In the little endian order, the bytes that affect the value least (the least

significant) are written at the end, as the name suggests. In the big endian order, the

most significant bits are written to the end. This should be taken into consideration

when reading audio files byte by byte.

3.1.4. Digitizing and Sampling of Sound

The way to convert analog sound to digital form is sampling. The signal is

sampled multiple times in one second, the height of the wave is recorded. This is

actually the measure of logarithm of the height. Since it is impossible to

continuously measure the height of the signal, the height of the signal is measured

only at certain sampling times and with a limited number of samples.

Digital sound is the state of analog sound signals marked as "1" and "0"

(bits) in the binary system. PCM (Pulse Code Modulation) is a sound signal

digitized as 64Kbps data. The analog sound signal is sampled as 8000 times per

second. Each sample is 8 bits. That's 8bits x 8000/s = 64,000 bits/s in total. This

ratio is derived from the Nyquist theorem developed by Harry Nyquist (Nyquist,

1928).

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 45

Nyquist Theorem:

In order to calculate the number of samples we need in a second, we need

to look at Nyquist theory. In the Nyqusit theorem, it has been decided that

communication channels can capture and carry high frequency sounds with a

sampling of 4000 KHz. According to this theory, it is necessary to take N samples

to copy a signal completely. N can be found from the following formula:

N = 2 x signal bandwidth = 2 x 4000 = 8000

8000 samples per second would be a sufficient value. This allows a sample

to be taken at 125 microseconds.

Analogue levels of sound are converted to 255 digital levels. 255 discrete

numeric levels can be achieved with 8-bit data blocks. Therefore, for one second

audio transmission, it requires a bandwidth of 8000 x 8 = 64.000 bps.

Figure 3.3 Sampling of the sound signal

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 46

Figure 3.4 Digitizing analog sound signal with PCM

The input sound signal during digital conversion is shown in Figure 3.5.

(i.e. http://www.tonmeister.ca/main/ and http://www.terratec.de/4G/2496-en.pdf):

Figure 3.5 Input sound signal

This signal is then divided into specific sampling intervals as shown in

Figure 3.6. Here, the voltage value is determined according to the amplitude. Low

voltage values are numbered more frequently, and voltage values corresponding to

high noises are numbered at longer intervals. This is because the human ear hears

logarithmically.

time

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 47

Figure 3.6 Sampling intervals

After sampling, the converter separates the average-value signals from the

medium as in Figure 3.7 and rounds the remainder according to the sampling value.

Figure 3.7 Signal with average value

time

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 48

Figure 3.8 Signal and numerical values

Each signal is then assigned a numerical value, as shown in Figure 3.8.

This value can range from 0-16536 for 16-bit audio sampling, to 0-16700000 for

24-bit audio sampling. If the value corresponding to the signal does not correspond

to an integer, the converter rounds this value to the nearest upper or lower value.

This process is called as quantization. Figure 3.9 shows this process. As a result of

this process, some error margins occurs, namely quantization losses. In contrast to

the digitization process, the actual analog sound can never be produced because of

these quantization losses that occur during the recovery of the analog sound.

However, the human ear is often unable to perceive it.

time

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 49

Figure 3.9 Quantization

Finally, the converter tries to create a form closer to the original curve than

the above using the reformatting filter. In the example above, the ranges are

deliberately large enough to see the event better. The sound curve through the filter

is similar to the result in Figure 3.10.

Figure 3.10 Sound passing through the filter

There are basically two different sounds in human speech. These can be

called as voiced and unvoiced. When voiced sound is examined in time frame, it

time

time

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 50

can be seen that it shows periodic characteristic. On the other hand, the unvoiced

sound shows non-periodic behavior. The waveform of voiced and unvoiced sounds

is shown in Figure 3.11.

Figure 3.11 Voiced and unvoiced sound

“Pitch” is the name given to a period of sound data and is used in voiced

segment which is periodic. Pitch values cannot be mentioned in unvoiced segment

because it is not periodic. The pitch value can be calculated by dividing the

number of samples in a given sound track by the number of periods. For example,

if an audio file contains 1800 samples and 10 periods, the pitch is calculated as

1800/10 = 180. The periodic sound signal and the pitch period are shown in

Figure 3.12.

Figure 3.12 Periodic sound signal and pitch period

While the frequency is a single and constant sound wave that vibrates at a

certain number of seconds, the pitch is composed of complex sound waves that are

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 51

heard with the overtones and vibrate at a certain number of seconds. The scope of

the pitch is broader than the frequency. It carries the amplitude and the timbre

which emerges from the combination of upper and lower overtones and also gives

the color of sound. These two concepts are not exactly the same. Frequency can be

defined as an objective and scientific concept and pitch as a subjective concept.

The vibrations of the sound wave at a given period, which is the common point in

both concepts, are scaled by frequency and the frequency gives the number of

sound vibrations within a second. The perception of the pitch is different from that.

3.1.5. Preprocessing Sound Data

Digitized signals are kept as binary words in computer environment. In the

signal processing phase, it is often not possible to process all the data that represent

the audio expression at once. Therefore, the expression has to be divided into

pieces of significant length. Algorithms for operations such as Fast Fourier

Transformation (FFT) work on datasets of certain length (a certain number). The

data set to be processed at one time is defined as a window in the signal. Since the

audio data are the values obtained by sampling, a time unit is obtained by

multiplying the number of samples with the sampling period. Therefore, the

window can also be considered as a time zone. The process of separating audio

expressions into certain number of samples is known as windowing.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 52

Figure 3.13 Audio signal windowing

Windowing is often performed by creating overlapping clusters (instead of

separated data sets) (Morris, January 1989). Window examples created on a digital

signal are given in Figure 3.13. In this drawing, (N-M) sample in the N-sampling

window consists of samples that overlap the samples in the previous window. For

audio expression signals, the width of the windows must be short enough to contain

the characteristics of a single sound and long enough not to lose consecutive pitch

harmonics. The window widths for audio expression synthesis are about 25-75 ms.

For a sample rate of 10 kHz, a windows containing 512 samples corresponds to

51.2 ms signal time period.

Samples representing the audio signal are stored and processed as

windows. By keeping the window length larger than the window generation period,

successive windows overlap. Compiled windows are processed during the window

generation period. Since the window generation period is smaller than the window

length (N), the number of samples (M) obtained at the end of the window

generation period does not fill a window. The window presented in step ith step

includes (M) samples compiled during the ith window generation period. The

remaining (N-M) samples are obtained from the samples obtained at the end of the

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 53

previous ((i-1)th) window generation period. However, it is not possible for the first

compiled window (i=1) to do so. Because there is no such (i-1)th window. Some

data of the first window would remain empty, because before the first window is

completely filled the generation of second window should be started. These datas

are filled in with 0. This process is called zero padding.

Figure 3.14 Cascade windows

According to the principle described above, the compiled windows consist

of a series of (N) samples. These samples are part of the signal being examined.

Since the segments in front of and behind this segment are not handled during

operation, the form of the signal masked with a rectangle is examined. In this case,

treating the signal as if it were at the zero level outside the processed window

naturally creates problems. In order to alleviate this problem, windowing is

considered, in a more general perspective, as convolution of the signal with a

suitable function. Convolution process is a special product of the signal with the

window function selected on the time axis.

Convolution process is expressed as given below:

ሻݐሺݕ ൌ ሻݐሺݔ ⊗ 	ሻݐሺݓ

ሻݐሺݕ ൌ ׬ ݐሺݔ െ ߬ሻݓሺ߬ሻ݀ݐ
ାஶ
ିஶ

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 54

Here, x represents the signal, w the convolution function, and ⊗ the convolution

operation. The format of the convolution process for discrete functions is as

follows:

ሾ݇ሿݕ ൌ ሾ݇ሿݔ ∗ ሾ݇ሿݓ

ሾ݇ሿݕ ൌ ∑ .ሾ݅ሿݔ ሾ݇ݓ െ ݅ሿ ൌାஶ
௜ୀିஶ ∑ .ሾ݅ሿݓ ሾ݇ݔ െ ݅ሿାஶ

௜ୀିஶ

Some classic functions are used as convolution functions. These special

functions are given below with their views. From these, the rectangular window

function corresponds to the above-mentioned rectangular window.

Rectangular window:

ሾ݅ሿݓ ൌ ൜
1	݂݅	0 ൑ ݅ ൑ ݊ െ 1
								ݏݕܽݓ	ݎ݄݁ݐ݋	0

Barlett window:

ሾ݅ሿݓ ൌ

ە
ۖ
۔

ۖ
ۓ

2݅
݊ െ 1

	݂݅	0 ൑ ݅ ൑
݊ െ 1
2

															

2 െ
2݅

݊ െ 1
	݂݅	

݊ െ 1
2

൏ ݅ ൑ ݊ െ 1

																																													ݐ݋݊	݂݅	0

Hanning window:

ሾ݊ሿݓ ൌ ൝
1
2
൜1 െ cos ൬

݊ߨ2
ܮ െ 1

൰ൠ 	݂݅	0 ൑ ݊ ൑ ܮ െ 1

																																																									ݐ݋݊	݂݅	0

Hamming window:

ሾ݅ሿݓ ൌ ൝0.54 െ 0.46 cos ൬
݅ߨ2
݊ െ 1

൰ 	݂݅	0 ൑ ݅ ൑ ݊ െ 1

																																																												ݐ݋݊	݂݅	0

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 55

Blackman window:

ሾ݅ሿݓ ൌ ൝0.42 െ 0.5 cos ൬
݅ߨ2
݊ െ 1

൰ െ 0.08 cos ൬
݅ߨ4
݊ െ 1

൰ 	݂݅	0 ൑ ݅ ൑ ݊ െ 1

																																																																																															ݐ݋݊	݂݅	0

Figure 3.15 Commonly used windowing functions

3.2. Method

3.2.1. Developed Software

The logic of the Turkish text-to-speech system presented in this thesis is

shown in Figure 3.16. Although all stages are shown as sequential and independent

stages, such sequence and independence is not applicable for the codes that make

up the system. With the compactness of the codes that make up the system, the

system still works with the logic shown in the figure. Within the scope of this

thesis, a software that can process a sound from every aspect have been developed.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 56

Figure 3.16 Working structure of the developed system

Figure 3.17 Menu structure of the software

Within the software, the sections that enable the recording of phonemes and

diphones have been developed first.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 57

Figure 3.18 Demonstration of the property and wave spectrum of recorded sounds

The user can make all kinds of arrangements related to the sound recorded

from the microphone. Clipping of excess sound data can also be performed from

this screen.

Figure 3.19 The part where syllables are listed and reviewed

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 58

Figure 3.20 The part where various effects are applied to the active sound syllable

There is also a place in the software in order to do tests by applying various

effects and observe the results.

Figure 3.21 Screen for obtaining triple syllables using binary syllables

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 59

The screen in which words are created from syllables and converted to

speech is shown in Figure 3.22.

Figure 3.22 Text to speech conversion screen

3.2.2. The Spelling Algorithm Developed

In order to spell a sentence first of all it should be separated into words. This

can be done by referring to various characters (spaces, commas, periods, etc.) that

can separate words. In addition, the numbers in the sentence should be reintroduced

into the sentence according to their reading.

In the spelling process, the first two letters of the word are important. Firstly,

the first two letters of the word are checked as if they are consonants or not. If the

first two letters of the word are consonants, a new vowel is added between the two

consonants according to the Turkish vowel rule. For example, if the vowel after the

first two consonants is a, i and o, vowel i is placed between the two consonants.

E.g., the word “t-rak-tör”is converted to the form “t (ı) -rak-tör”. This rule and

added vowels are given in detail in Table 1.5.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 60

After this process, all the vowels and consonants in a word are replaced with

“V” and “C”, respectively. It is not necessary to know each letter in order to

separate Turkish words into syllables. For this task, it is sufficient to distinguish the

vowels and the consonants. Within the scope of this thesis, such a method has been

developed. For example, according to this rule, the word “balcalı” is represented as

“CVCCVCV”. This is the first step of the spelling algorithm. After the word is

converted to vowel and consonant notation, grammar rules are applied to the word.

A number of pre-definitions have been made inside the software. According to

these pre-definitions, if a word starts with a vowel (V) letter, it will be searched

within the word in the order specified by the patterns in Table 3.5 and the first

syllable determination will be made.

Table 3.5 Patterns to be search for the words starting with vowels

Order Pattern The syllable is

1 vcccv Before the 2nd letter

2 vccc Before the 4th letter

3 vccv Before the 3rd letter

4 vcc Before the 4th letter

5 vcv Before the 2nd letter

6 vc Before the 3rd letter

7 vv Before the 2nd letter

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 61

Table 3.6 Patterns to be search for the words starting with consonants

Order Pattern The syllable is

1 ccvcc Before the 5th letter

2 ccvcv Before the 4th letter

3 cvccc Before the 4th letter

4 cvccv Before the 4th letter

5 cvcc Before the 5th letter

6 ccvv Before the 4th letter

7 ccvc Before the 5th letter

8 cvcv Before the 3rd letter

9 cvc Before the 4th letter

10 ccv Before the 4th letter

11 cvv Before the 3rd letter

12 ccc Before the 2nd letter

13 cv Before the 3rd letter

14 cc Before the 2nd letter

If the word starts with a consonant letter (C), the syllables are made using the

patterns in Table 3.6. In this way, each derived syllable is separated from the word

and the remaining part is evaluated as a new word so the spelling process continues

in this way. For example, the patterns in Table 3.6 are searched in the word

“balcalı” which is represented as “CV CVCCVCV”. Since the “CVCCV” pattern

in the 4th row in the table is in “CVCCVCV”, the first syllable is created as the

letters before the 4th letter and the rest is taken as a new word and subjected to the

same rules again (i.e., “CVC”+”CVCV” (“bal” + “calı”)). After the first syllable

is separated, the word “CVCV” follows the 8th rule in the table, according to which

the “CV” before the 3rd letter is separated as a syllable (i.e., “CVC” + ”CV” +

”CV” (“bal” + “ca” + “lı”)).

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 62

The codes of the developed spelling algorithm in C # language are presented

in the appendix.

3.2.3. Creation, Reading, Showing and Vocalization of Wav Audio File

A wav class has been created in the software according to the wav file

structure described in section 3.1.3. This wav class and other codes related to this

class are presented in the appendix. The RIFF, FMT and DATA sections of all wav

sound files are read and placed in an array. Thus, the actual data of the sound files

that will be processed are ready on the memory. It is possible to manipulate the

sound data that is digitally stored in memory by using various algorithms.

The first 45 bytes of the wav sound packets contain format information and

the bytes after the 45th byte form the data block. The bits per sample data is

decisive for reading the data block. The data block of the packet with 8 bits per

sample is read as 1 byte and the data block of the packet with 16 bits per sample is

read by 2 bytes.

The a.wav file used in this thesis is taken as an example.

Figure 3.23 The graphical view of a.wav sound file

The wav class created within the scope of the thesis is summarized below:

public partial class Wav

 {

public class Header

 {

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 63

 /***RIFF*******************/

 public byte[] chunkID;

 public uint fileSize;

 public byte[] riffType;

 /***fmt*******************/

 public byte[] fmtID;

 public uint fmtSize;

 public ushort fmtCode;

 public ushort channels;

 public uint sampleRate;

 public uint fmtAvgBPS;

 public ushort fmtBlockAlign;

 public ushort bitDepth;

 /***data*******************/

 public byte[] dataID;

 public uint dataSize;

 public double wavInSec;

 }

private byte[] data;

….

}

The sound file is a digital data file consisting of bits on the disk. It is

necessary to read and understand this data file and reach the data section where the

actual data is located. Therefore, wavreader and wavwriter classes have been

created to read wav sound files and create new wav sound files. The wavreader

class also includes an example function as follows.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 64

public static void readFile(Stream stream, out Wav file)

 {

 Wav waveFile = new Wav();

 BinaryReader reader = new BinaryReader(stream);

waveFile.head.chunkID = reader.ReadBytes(4);

waveFile.head.fileSize = 36 + reader.ReadUInt32();

waveFile.head.riffType = reader.ReadBytes(4);

waveFile.head.fmtID = reader.ReadBytes(4);

waveFile.head.fmtSize = reader.ReadUInt32();

waveFile.head.fmtCode = reader.ReadUInt16();

waveFile.head.channels = reader.ReadUInt16();

waveFile.head.sampleRate = reader.ReadUInt32();

waveFile.head.fmtAvgBPS = reader.ReadUInt32();

waveFile.head.fmtBlockAlign = reader.ReadUInt16();

waveFile.head.bitDepth = reader.ReadUInt16();

waveFile.head.dataID = reader.ReadBytes(4);

waveFile.head.dataSize = reader.ReadUInt32();

waveFile.setData(reader.ReadBytes((int)waveFile.head.dataSize));

waveFile.head.dataSampleCount = (int)waveFile.head.dataSize / 2;

waveFile.head.wavInSec = (double)waveFile.head.dataSize/

(double)waveFile.head.fmtAv

gBPS;

…….

….. }

Let's look at the a.wav file with a binaryhex editor and by taking the first 160

characters as an example let’s see how it is read (Figure 3.24).

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 65

Figure 3.24 The view of the first 160 bytes of the a.wav file with the hex editor

waveFile.head.chunkID = reader.ReadBytes(4);

The code reads the first 4 bytes of the file. The 52, 49, 46, 46 hexadecimal

values are converted to decimal as 82, 73, 70, 70 and they correspond to the

characters 'R', 'I', 'F', 'F' as can be seen from the ASCII code table

(https://en.wikipedia.org/wiki/ASCII).

waveFile.head.fileSize = 36 + reader.ReadUInt32();

The code reads the next 4 bytes of the file (20, 84, 00, 00). In the wav file

format structure this section contains the size of the whole file. According to the

Little Endian rank, the 00008420 hexadecimal number corresponds to 33824 as a

decimal. 36 should also be added to this as the header size. This file appears to be

33860 bytes.

waveFile.head.riffType = reader.ReadBytes(4);

The data read by this code is 57, 41, 56, 45 and it is expressed as decimal 87,

65, 86, 69. In the ASCII code table, the corresponding characters are ‘W’, ’A’, ’V’,

’E’.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 66

waveFile.head.fmtID = reader.ReadBytes(4);

The 66, 6d, 74, 20 hexadecimal number read with this code expresses 102,

109, 116, 32 as decimal, which means ‘f’, ‘m’, ‘t’, ‘ ’ (one space) in the ASCII

table.

waveFile.head.fmtSize = reader.ReadUInt32();

This code reads the next byte sequence 10, 00, 00, 00. The 00000010 data

indicates 16 as decimal. This value is assumed to be 16 for PCM in wav files.

waveFile.head.fmtCode = reader.ReadUInt16();

This line reads the next two bytes represented by 01, 00. This value is

converted to decimal 0001 and this corresponds to 1. A value of 1 in wav files

indicates that this file is an uncompressed file. If you read a value other than 1, this

value indicates the format of the compression.

waveFile.head.channels = reader.ReadUInt16();

This code reads the next two bytes represented by 01, 00. This value is

converted to decimal 0001 and corresponds to 1. In a way, the number of channels

in sound files indicates, with how many different samples does the data inside a

sound file is created. So each channel can be thought of as a separate sound file.

When the file is played, the sound data sequence on each channel is played

simultaneously. Thus, sound sounds more realistic and it is possible to get an idea

about the direction of sound. A value of 1 indicates mono channel sound data.

waveFile.head.sampleRate = reader.ReadUInt32();

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 67

This line reads 4 bytes of 44, ac, 00, 00 hexadecimal data. The number

0000AC44 corresponds to 44100 as decimal. This is the sampling frequency value.

In order to obtain CD quality sound, 44100 samples should be collected from a

sound signal per second. This data indicates that the sound is sampled with a

frequency of 44100 hertz. The sampling frequency is independent of the actual

frequency of the signal.

waveFile.head.fmtAvgBPS = reader.ReadUInt32();

With this code, the next 4 bytes are read from the wav file. The hexadecimal

data is seen as 88, 58, 01, 00 and is read as 00015888. After that it was converted

to decimal number 88200. This value shows the number of bytes that should be

read in a second. The following formula is used to calculate this value:

SampleRate*ChannelNumber *BitForSample/8

waveFile.head.fmtBlockAlign = reader.ReadUInt16();

By this code 02, 00 bytes were read and 0002 data was converted to 2 as

decimal. This refers to the size of the data block. The block consists of samples that

are prepared to be instantly converted into sound on all channels. That is, each

block contains as many samples as the number of channels. The block size is

calculated by multiplying the number of channels and the size allocated to each

sample.

ChannelNumber *BitForSample/8

waveFile.head.bitDepth = reader.ReadUInt16();

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 68

10, 00 bytes are read with this line of code. This hexadecimal byte array

represents 16 as decimal. This shows how many bits each sample is represented by.

This value can be 8, 16 and 24. The data block of the packet with a bit rate of 8 is

read as 1 byte and the data block of the packet with a bit of 16 is read as 2 bytes.

waveFile.head.dataID = reader.ReadBytes(4);

This code reads the 64, 61, 74, 61 bytes in the data shown in Figure 3.24 and

converts them to decimal numbers as 100, 97, 116, 100. These values correspond

to the characters ‘d’, ’a’, ’t’, ’a’ in the ASCII code table.

waveFile.head.dataSize = reader.ReadUInt32();

With this line of code, fc, 83,00,00 byte sequence is read and 000083FC

hexadecimal number is converted to 33788 as decimal. This number shows the data

size of the file after this section. That is, it expresses the size of the actual raw

sound data.

waveFile.setData(reader.ReadBytes((int)waveFile.head.dataSize));

This line of code then reads all raw sound data and transfers it to a byte array.

This data is the most important part for this study. Since each sound sample is

represented by 2 bytes in the file, when we divide the total number of data (33788)

into 2, we can say that the sound in the a.wav sound file actually contains 16894

samples.

Above, the number of bytes that should be read per second for this example

wav file is read from the file and it is seen that this value is 88200. If we divide the

total sound data (33788) by this value, we will find out how many seconds does

this file is. This file contains a sound data of 0.38 seconds.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 69

All the operations on processing the sound is done by playing on every byte of

data after the first 36 bytes of the wav file. If you copy the same 33788 data in the

sound (a.wav) file one after the other and add only these 33788 data to the file size

and data size sections of the file and save the file again, the wav file will be

converted to a file containing two audio from the same sound.

Within the scope of this thesis, wav files can be created in the memory with a

desired ratio and structure and then stored anywhere using the following structure:

private byte[] data;

public Wav(byte[] newData)

 {

 head = new Header();

 head.chunkID = System.Text.Encoding.ASCII.GetBytes("RIFF");

 head.fileSize = 36 + (uint)newData.Length;

 head.riffType = System.Text.Encoding.ASCII.GetBytes("WAVE");

 head.fmtID = System.Text.Encoding.ASCII.GetBytes("fmt ");

 head.fmtSize = 16;

 head.fmtCode = 1;

 head.channels = 1;

 head.sampleRate = 44100;

 head.fmtAvgBPS = 88200;

 head.fmtBlockAlign = 2;

 head.bitDepth = 16;

 head.dataID = System.Text.Encoding.ASCII.GetBytes("data");

 head.dataSize = (uint)newData.Length;

 head.wavInSec = (double)head.dataSize / (double)head.fmtAvgBPS;

 data = newData;

 ……

 }

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 70

When the audio files in the memory are sent to the playback device of the

computer, the commands of the winmm.dll file of the Windows operating system

are used. This file serves as an interface between the hardware device and the

sound file that is waiting in the memory to be played. The header structure

containing the steps described above is sent to the winmm.dll file and so the

playback device is made ready by the operating system. Then the raw sound data is

sent from the buffer to the device byte by byte and so the sound is heard.

The visual representation of the spectrum of sound data, as seen in Figure

3.22, is also derived after processing the raw sound data. The chart component in

visual studio is used for graphical representation of sound file. However, the sound

samples represented by 2 bytes in the file are converted to double data type. The

following codes are used for this translation:

public double[] dataToDouble()

 {

 handle = new Handler();

 double[] result = new double[data.Length / 2];

 for (int i = 0, pos = 0; pos < data.Length - 2; i++, pos++)

 {

 result[i] = handle.byteToDouble(data[pos], data[++pos]);

 }

 return result;

 }

public double byteToDouble(byte firstByte, byte SecondByte)

 {

 short s = (short)((SecondByte << 8) | firstByte);

 return s / 32768.0;

 }

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 71

Each sample of the raw sound data of the a.wav sound file in Figure 3.22 is

accessed with the dataToDouble() function. For example, the byte codes of the first

sample of the sound data are 65, FC hex numbers. These numbers are expressed in

binary form as 01100101 and 11111100. The byteToDouble function shifts the

second byte to 8 bit left and creates the 1111110000000000 number and then by

applying the “and” operation to this number with the first byte (01100101) founds

1111110001100101. After that it converts it to decimal number as -923. The short

variable can store values between -32768 and 32767. When a sound data is

displayed, it is reduced to 1 to 0. The obtained -923 value was divided by 32768 to

obtain the value of -0.028167724609375. This value is the first point of the sound

wave drawn on the screen in Figure 3.25. In this way, the waveform of the sound is

drawn on the screen by reading all bytes forming the sound data.

Figure 3.25 Displaying the first sample data in the a.wav sound file

3.2.4. Extending the Sound Data

The previously recorded syllable sound data is used in additive and syllable

based voice synthesis studies. A syllable is composed of two parts: vowel and

consonant. In Figure 3.26 the waveform of the “çü” syllable is shown. The part

where the letter ‘ü’ is located in the syllable consists of similar waveforms that

periodically repeat each other.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 72

Figure 3.26 Waveform of “çü” syllable

Extending or cropping a syllable can be done by interfering with the audible

and periodic part of the syllable. The first method that comes to mind is the idea

that a long sound can be obtained by adding these periodic parts one after the other.

In practice, however, this method is problematic because each segmented sound

file has different energy and frequency values and cannot be combined from the

right place. The sound obtained by this method is more intermittent than a long “ü”

sound and it is not fully understood.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 73

Figure 3.27 Partial addition of ”ü” sound

To change the speed of speech, it is not enough to keep the recording and

playback speed of the sound different. For example, it can be noticed by everyone

who listens that when a speed-controlled recording is played back quickly, the

sounds vary considerably and when the speed doubles the sounds cannot be

understood.

The relation between the original (analog) sound (ݔ௔ሺݐሻ) and the

accelerated state of this sound in time domain α times (ݕ௔ሺݐሻ) can be expresses as

follows:

ሻݐ௔ሺݕ	 ൌ ሻݐߙ௔ሺݔ

When the Fourier transforms of this equation are taken, the representation of

it in the frequency domain can be shown as follows:

௔ሺΩሻݕ	 ൌ
1
|ߙ|

௔ሺݔ
Ω
ߙ
ሻ

As seen from this equation, a compression or expansion in the time domain

causes an expansion or compression in the frequency domain, respectively.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 74

Therefore, both short-term (envelope or LPC coefficients) and long-term (pitch

period and other long-time parameters) relationships of the speech are changed by

this process. Since the perception of sound is in the frequency domain for the

humans, the intelligibility is impaired. Therefore, in the first designed algorithms,

the input sound is divided into 20-30ms timed frames that do not overlap with each

other to obtain the desired time scale. The input sound is accelerated or decelerated

by discarding or repeating the appropriate ones. This structure, which is called as

cut and paste has a simple and fast algorithm, but produces some distortions in

sound. These distortions occur from the corruption of the continuity and pitch

periods of cut-and-paste points.

In order to eliminate these distortions, cut and paste algorithms considering

the continuity have been developed (frames according to local peaks or pitch

period) and the quality of the sounds (the time scale of it has been changed) has

been improved.

3.2.4.1. Overlap and Add (OLA)

In this method, the sound data is divided into equal blocks. The blocks

selected with the time shift Sa are repositioned with the time shift Ss = αSa. Thus,

a longer sound data is obtained.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 75

Figure 3.28 OLA algorithm

It is also possible to shorten the sound by selecting a smaller Ss = αSa value

with the same method. The OLA destroys the original phase relationships of the

connected input signal particles and then interpolates between the unaligned signal

particles to form the new output signal. This causes irregularities and distortions

that affect signal quality in pitch periods.

Even if the cut and paste methods pay attention to the continuity of the pitch

period, adding or removing a frame may not provide the continuity in the signal at

the desired level. The reason for this is, in a normal conversation sounds may seem

the same, but the tone and emphasis may change in consecutive pitch periods. This

distortion becomes more pronounced in transitions (vowel-consonant or consonant-

vowel transitions) since the tone and emphasis change is even greater there.

Instead of adding/subtracting, OLA (OverLap Add) is used to correct these

distortions. In the OLA method, frames with a size N of ∆݊ distances from each

other are used. The distances between the frames are then changed to ߙ∆݊ as the

sound is synthesized. Since there will be overlap in the last parts of the previous

frames and in the first parts of the frames behind it, decreasing weight is given to

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 76

the values of the previous frame at the overlapping points, and an increasing

weight is given to the overlapping values of the frame behind it. The values of the

overlapping points are found with this weighted sum. In this process, the sum of

the weights used at all overlapping points of the two consecutive parts will be equal

to 1, these weights will be decreasing monotone for the overlapping part of the

previous frame and increasing monotone for the other. Linear weight window (first

and second half of Barlet window) is used mostly, but as an alternative Hamming,

Hanning and etc. windows can also be used. This OLA process is shown in Figure

3.29.

Figure 3.29 OLA and cut and paste

The OLA shown in Figure 1 is expressed as follows;

.ሺ݉ݕ ݊∆ߙ ൅ ݆ሻ ≔ ൫1 െ ݂ሺ݆ሻ൯ݕሺ݉. ݊∆ߙ ൅ ݆ሻ ൅ ݂ሺ݆ሻݔሺ݉∆݊ ൅ ݆ሻ				; 0 ൑ ݆ ൑ ܮ െ 1

.ሺ݉ݕ ݊∆ߙ ൅ ݆ሻ ൌ ݊∆ሺ݉ݔ ൅ ݆ሻ				; ܮ ൑ ݆ ൑ ܰ െ 1

In this equation, f (j) function is folding weights, and L is the number of

overlapping samples:

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 77

The OLA process forms the basis for many other successful time-scale

changing techniques, but because the overlapping parts cannot be similar to each

other, there are distortions in the synthesized sound due to the continuity and shift

of the pitch period.

3.2.4.2. Synchronous Overlap and Add (SOLA)

SOLA is very similar to OLA. The main difference between the two is that

SOLA relies on correlation techniques to develop the time extension algorithm. In

the SOLA method, the best overlap point should be determined when the blocks

are overlapped. In this method, the input signal is divided into overlapping blocks

of fixed length, and each block is shifted according to the time scale factor Sa

constant. The discrete time delay with the highest reciprocal correlation value is

then investigated over the “km” overlap range. At the point where the maximum

similarity is found, the overlap blocks are given weight values by the help of fade-

in and fade-out functions. Basic SOLA process is shown in Figure 3.30.

Figure 3.30 SOLA algorithm basic

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 78

Since the signal continuity is corrupted due to the change in the distance

between consecutive frames in the OLA technique, harmonizing the overlapped

consecutive frames can eliminate these problems. For this reason, it is aimed to

overlap similar places in SOLA.

In SOLA, the input sound x is divided into N-length frames at ܵ௔ sample

intervals (∆݊ ൌ ܵ௔) (analysis step). In the synthesis sound, the frames are

overlapped in the k neighborhood, which provides similarity between the sample

intervals ܵ௭ (ߙ∆݊ ൌ ܵ௭) (synthesis step). Since k values are calculated separately

for all frames, the distance between two consecutive synthesis frames (the frame

“m” and “m-1”) is calculated as ܵ௭ ൅ ݇௠ െ ݇௠ିଵ. The optimum ݇௠ value is

searched in the interval ݇௠௜௡ ൑ 	݇௠ ൑ 	݇௠௔௫. To calculate the optimal ݇௠,

equations like the lowest value of the difference square mean is used:

௠ሺ݇ሻܧ ൌ
∑ ሺݕሺ݉ܵ௦ ൅ ݇ ൅ ݆ሻ െ ሺ݉ܵ௔ݔ ൅ ݆ሻሻଶ௅ೖିଵ
௝ୀ଴

௞ܮ

In the above equations,	ܮ௞ is the number of overlapping samples according

to k. After selecting the ݇௠ value according to these equations, the time-scale

sound synthesis is performed as follows:

ሺ݉ܵ௭ݕ ൅ ݆ሻ ≔ ൫1 െ ݂ሺ݆ሻ൯ݕሺ݉. ܵ௭ ൅ ݆ሻ ൅ ݂ሺ݆ሻݔሺ݉ܵ௔ ൅ ݆ሻ	, 0 ൑ ݆ ൑ ௞ܮ െ 1

ሺ݉ܵ௭ݕ ൅ ݆ሻ ൌ ሺ݉ܵ௔ݔ ൅ ݆ሻ	, ௞ܮ ൑ ݆ ൑ ܰ െ 1

The sign “≔” in the equation above indicates that ݕሺ݉ܵ௭ ൅ ݆ሻ value will be

updated. The new value on the left side of the mark will be updated by also using

the old value on the right side of the mark. ݂ሺ݆ሻ	is a linearly increasing function

and its value is:

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 79

݂ሺ݆ሻ ൌ ቐ
0,																									݆ ൏ 1							

݆ ሺܮ௞ െ 1ሻ, 0 ൑ ݆ ൏ ⁄	௞ܮ
1,																									݆ ൒ 1																

The quality of the sound synthesized by SOLA also depends on the choice

of parameters. In the first applications the parameters are chosen as follows: N is

30 ms for speech sound and 40 ms for music sound, ܵ௔ ൌ ܰ 2⁄ , ݇௠௜௡ ൌ ܰ 2⁄ ,

	݇௠௔௫ ൌ ܰ 2		⁄ .

Figure 3.31 Overlap estimation in SOLA operation

First part of the figure: Distance between frames in original voice. Second

part: Distance between frames in SOLA synthesis sound

3.2.4.3. PSOLA

PSOLA is produced as a variation of the SOLA algorithm and it is based on

the hypothesis that the signal is characterized by a tone (e.g., human voice and

monophonic musical instruments). A high-quality time-domain modification can

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 80

be achieved in this technique by applying a synchronized tone to the overlap

function. One of the main problems of this method is the difficulty of estimating

the base tone period of the signal when the base frequency is lost. The algorithm

can be divided into two parts. First, the input signal is analyzed and segmented. In

the second part, the segmented signal is combined with the overlapping methods

and a tone is added.

Figure 3.32 PSOLA algorithm (Sanjaume, 2002)

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 81

The sound signals (monophonic instrument or speech) have pitches for

long-term relationship. PSOLA (Pitch synchronous overlap and add) finds the

pitches of the sound signal and divides it into 2 pitch lengths parts and makes

overlapping adding according to the detected pitches. The PSOLA algorithm first

finds the voiced and unvoiced parts of the analysis sound. It finds and marks the

pitch of the sound for the voiced parts, and puts the pitch marks at constant

distances for the unvoiced parts.

PSOLA makes pitch detection in time domain. Since the OLA procedure is

performed in synchronous pitch, the synthesized sound is of high quality. PSOLA

algorithm consists of two parts: analysis and synthesis. In the analysis part, the

input sound is divided into frames. In the synthesis part, these frames are combined

to synthesize the time scale modified sound.

The first step in the analysis is to put the pitch mark ݐ௜ on the maximum

points of the periodic parts of the sound and the fixed distance samples of the

unvoiced parts. The pitch period 	ܲሺݐ௜ሻ is calculated as ܲሺݐ௜ሻ ൌ ௜ାଵݐ െ ௜ from theݐ

distance between samples marked with time. Then the samples with the input

sound pitch marks are divided into pieces so that they are centered. Each piece is

windowed with a Hanning window with 2 pitch periods. In synthesis, the

acceleration/deceleration factor α determines the length, ܲ	෩ ሺ̃ݐሻ determines the pitch

periods of the synthesis signal.

ܲ	෩ ሺݐሻ෩ ൌ 	ܲ	෩ ሺݐߙሻ ൌ ܲሺݐሻ

Synthesis pitch times are calculated from the previous pitch periods as

follows:

௞ାଵݐ̃ ൌ ௞ݐ̃ ൅ ܲ	෩ ሺݐ௞ሻ ൌ ௞ݐ̃ ൅ ܲሺݐ௜ሻ

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 82

The ̃ݐ௞	 in the equation shows the kth pitch sign in the synthesized sound and

 ௜ shows the ith pitch sign in the analyzed sound . So the kth part that will it will beݐ

added to the synthesis is obtained by overlapping the ith part in analysis. Here, ݐ௜	is

selected in order to minimize |ݐߙ௜ െ .|௞ݐ̃

In the equation, the acceleration/deceleration factor α is a constant.

However, with ̃ݐ ൌ ׬ ሺ߬ሻ݀߬௞ߙ
௧
଴ , it can be generalized for the non-constant

acceleration/deceleration factor α. As can be seen from Figure 3.32, according to

the above equation some analysis parts for ߙ ൐ 1 can be used in more than one

overlap adding. Likewise, some parts of analysis may not be used for ߙ ൏ 1.

3.2.4.4. The Used Algorithm

The algorithm developed within the scope of this thesis is based on SOLA.

The algorithm includes three functions. The first function takes the parameters and

the sound data shown in Figure 3.31 and processes them. The similar blocks

identified using the FindConnectStartIndex function are also copied here one after

the other.

public double[] Stretch(double[] src, double ratio, int frameLength, int

overlapLength, int searchLength)

 {

 double[] dst = new double[(int)(ratio * src.Length)];

 Array.Copy(src, dst, frameLength);

 int curDstEndIndex = frameLength;

 while (true)

 {

 int srcStartIndex = (int)((double)curDstEndIndex / dst.Length *

src.Length);

 int connectStartIndex = FindConnectStartIndex(dst, curDstEndIndex, src,

srcStartIndex, overlapLength, searchLength);

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 83

 for (int t = 0; t < overlapLength; t++)

 {

 if (connectStartIndex + t == dst.Length || srcStartIndex + t ==

src.Length)

 return dst;

 double a = (double)t / overlapLength;

 dst[connectStartIndex + t] = a * src[srcStartIndex + t] + (1 - a) *

dst[connectStartIndex + t];

 }

 for (int t = overlapLength; t < frameLength; t++)

 {

 if (connectStartIndex + t == dst.Length || srcStartIndex + t ==

src.Length)

 return dst;

 dst[connectStartIndex + t] = src[srcStartIndex + t];

 }

 curDstEndIndex = connectStartIndex + frameLength;

 }

 }

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 84

Figure 3.33 Parameters sent to the algorithm

Here the ratio indicates the extension value of the sound. The sound will be

extended longer if this value is chosen large enough. Frame length specifies the

length of the sound blocks. Overlap length refers to the amount of data to be used

when comparing two blocks. Seach length refers to the amount of sub-blocks that

these comparisons will be made in the main block.

The sound data is transferred to the function named Stretch within the array

named src. An array named dst is defined in the function. The size of this array is

defined as the product of the ratio value with the size of the src array. Then the

data specified as much as frameLength value is copied from the dst array to the src

array.

The following function is used to determine the comparison blocks in the

algorithm. The index of the blocks that are closest (similar) to each other in the

compared blocks is also determined here.

private static int FindConnectStartIndex(double[] dst, int dstEndIndex, double[]

src, int srcStartIndex, int overlapLength, int searchLength)

 {

 int dstSearchStartIndex = dstEndIndex - overlapLength - searchLength;

 double minDiff = double.MaxValue;

 int minDiffIndex = new int();

 for (int t = 0; t < searchLength; t++)

 {

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 85

 double diff = CalcDifference(dst, dstSearchStartIndex + t, src,

srcStartIndex, overlapLength);

 if (diff < minDiff)

 {

 minDiff = diff;

 minDiffIndex = dstSearchStartIndex + t; // 412+t

 }

 }

 return minDiffIndex;

 }

These two data were then compared with the specified initial index values.

The data from src array up to Overlap length value is compared with the data

blocks from dst array specified up to Overlap length while making comparisons.

The CalcDifference function is used for comparisons. The MSE (Mean Square

Error) value of the blocks is determined in each comparison. Thus, the block with

the lowest MSE value in the dst array is considered to be the closest block to the

block in the src array.

One of the methods that can be used to measure the level of overlapping of

the sound data blocks that are compared, is the Mean Square Error (MSE) method.

The MSE helps us to digitize the closeness of the estimated and actual response

values of a particular observation. MSE is expressed as:

ܧܵܯ	 ൌ 	
ଵ

ே
∑ ሺܧ௘௦௧௜௠௔௧௘ௗ െ ௥௘௔௟ሻଶܧ
ே
௜ୀଵ 		

According to the closeness of the predicted values to the actual values the

MSE gets smaller or larger. The minDiffIndex value in the above code holds the

initial index of the block with the lowest MSE value in the data array.

The codes where the MSE calculation is performed are as follows.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 86

private static double CalcDifference(double[] dst, int dstStartIndex, double[] src,

int srcStartIndex, int overlapLength)

 {

 double sum = 0;

 for (int t = 0; t < overlapLength; t++)

 {

 double d = dst[dstStartIndex + t] - src[srcStartIndex + t];

 sum += d * d;

 }

 return sum;

 }

3.2.5. Obtaining Triphones from Diphones

In Text to Speech studies, vocalization of two letter syllables consisting of a

vowel and a consonant (VC, CV) can be performed without any problem. Because

the syllable has already been recorded as a sound file. The operations that can be

done for binary syllables are extending or shortening the voiced part of a syllable

inside a word.

One of the important issues in enhancing the naturalness of vocalization is

the creation of triple syllables (CVC). In forming triple syllables, the method of

adding binary syllables to each other (CVC -> CV + VC) is used. For instance, lets

process the “bul “syllable.

Figure 3.34 “bu” syllable

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 87

Figure 3.35 “ul” syllable

The “bul” syllable is obtained by overlapping “bu” and “ul” syllables. The

voiced part of the “bu” syllable is the last part where the letter “u” exits as seen in

Figure 3.34. On the other hand, the voiced and periodic part of the “ul” syllable is

the beginning where the letter “u” exists as seen in Figure 3.35. By overlapping the

periodic parts of these two syllables, a new sound is tried to be obtained.

Figure 3.36 Overlapping ”bu” and “ul” syllables

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 88

Although the new triple syllable is understandable, there are some

interruptions and tone differences in the syllable. Therefore, a number of

improvements need to be made.

First, the frequencies of the two syllables that will be combined are tried to

be equalized. The syllables “bu” and “ul” are equalized to the same frequency by

taking a pitch value specified in the software as a reference. Then, “bu” and “ul”

syllables are extended by using the sound extension algorithm developed within the

scope of this thesis. The graphical view of the extended syllables is shown in

Figure 3.37.

Figure 3.37 Extension of “bu” and “ul” syllables

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 89

These extended syllables are overlapped by using the method described

above. The new extended sound data is shortened with the same algorithm. Thus,

irregularities in the sound data that are caused by overlapping are also eliminated

within the software.

Figure 3.38 Shortening the new syllable formed from extended syllables by using
the algorithm

Since unbalanced sound files (with different amplitude) may be present

among the automatically generated files, an algorithm is applied on all files in

order to avoid sound cracking at the joints. If desired, it is also possible to change

the frequency value of the new syllable.

3.2.6. Determination of the pitch value of a sound syllable

When recording the sound syllables, it is possible that they have different

pitches. Therefore, it is necessary to find a pitch value for syllables that will be

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 90

combined. It will give information about the cause of the perceived sound

transitions between the syllables. Nowadays, it is a popular topic to add a sentiment

to the sound or change the sentiment in the sound in text to speech studies.

Therefore, it is important to know the pitch values of the sound signals.

Association, in statistics, is the relationship between two random variables

whereas correlation is a statistical association. Correlation gives an idea of how

close two variables are from each other from having a linear relationship.

In digital signal processing, autocorrelation is the correlation of a signal with

delayed copy of itself as a function of delay. Informally, it is the similarity between

observations as a function of lag between them. Autocorrelation is like a search

procedure in frequency detection. The signal is stepped through sample by sample

and a correlation between reference window and the lagged window is performed.

The correlation at “lag 0” will be the global maximum because the reference is

being compared to the exact copy of the signal, at some point it will begin to

increase again, then reach a local maximum again. The pitch is then estimated from

the distance between “lag 0” and that first peak.

Autocorrelation is a very powerful tool in signal processing. It comes very

handy in finding repeating patterns such as a periodic signal interfered by noise,

fundamental frequency hidden in the harmonics etc.

The discrete autocorrelation function ∅ at lag ߬ for a discrete signal x(n) is

defined by:

∅ሺ߬ሻ ൌ
1
ܰ
෍ ሺ݊ݔሺ݊ሻݔ െ ߬ሻ

ேିଵ

௡ୀ଴

For a pure tone, the autocorrelation exhibits peaks at lags corresponding to

the period and its integral multiples. The peak in the autocorrelation of expression

at the lag corresponding to the signal period will be higher than that at the lag

values corresponding to multiples of the period. For a musical tone consisting of

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 91

the fundamental frequency component and several harmonics, one of the peaks due

to each of the higher harmonics occurs at the same lag position as that

corresponding to the fundamental, in addition to several other integer multiples of

the period (sub harmonics) of each harmonic.

Thus, a large peak corresponding to the sum contribution of all spectral

components occurs at the period of the fundamental (and higher integral multiples

of the period of the fundamental). This property of the autocorrelation makes it

very suitable for the pitch tracking of monophonic musical signals. The

autocorrelation pitch detection algorithms chooses as the pitch period the lag

corresponding to the highest peak within a range of lags. Since the signals are

commonly noisy, some extra processing is needed to increase the performance of

the autocorrelation.

Figure 3.39 Autocorrelation. There is a local maximum when the signal is shifted
λ steps

When the shift ߬ approaches an integer multiple of the fundamental

wavelength the correlation will increase, reaching a local maximum when the

signal is shifted exactly an integer number of fundamental wavelengths as can be

seen in Figure 3.39.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 92

The developed pitch detection algorithm is given at the appendix.

The resulting frequency can be expressed in music terminology with a note.

The note, as a word, is of Latin origin. Note is used for recording purposes. A term

for recording sounds. The universal note language and portrait that is in use today

was found by Guido d’Arezzo, a priest and musician in Italy in the 11th century.

The first syllable of each verse of a hymn gives the note its name. After the

addition of si sound and replacing the Do with UT word, this sequence has become

as: do (C), re (D), mi (E), fa (F), sol (G), la (A), si (B). When the tuning fork was

first invented in 1711, the frequency of the pitch La was 423.5 (A423.5). In 1936,

the American National Standards Institute designated it as A440. In 1953, the

International Standards Institute (ISO) adopted the same frequency (ISO, 1975).

In western music, a single octave interval is divided into 12 intermediate

sounds. The frequency of a note is a multiple of the frequency of the previous

note. In this case, if we go 12 steps forward or backward from any sound in an

octave region, we reach the sound at twice higher or lower frequency of that sound.

For example, while the A4 note is 440 Hz, the frequency of the sound

immediately following it is 440 ∗ 2
భ
భమ ൌ But if we do the calculation in this .ݖܪ466

way, there will be cutting and rounding errors in the product of the numbers after

the point. To avoid this type of error, we can use ௡݂ ൌ ଴݂ ∗ 2
೙
భమ.

Due to the above correlation, the ratio of the frequencies of two neighboring

notes is always 2
భ
భమ.

Consider the two sinusoidal signals ݕ ൌ ݃ ሻ andݐሺܽ݊݅ݏ ൌ ሻ withݐሺܾ݊݅ݏ

angular frequencies a and b.

Let's look at the sum of y + g. This can be thought of as the simultaneous

listening of two sounds at different frequencies.

ሺܽ݊݅ݏ ൅ ܾሻ ൌ ሺܽሻ݊݅ݏ ሺܾሻݏ݋ܿ ൅ ሺܽሻݏ݋ܿ ሺܾሻ݊݅ݏ

ሺܽ݊݅ݏ െ ܾሻ ൌ ሺܽሻ݊݅ݏ ሺܾሻݏ݋ܿ െ ሺܽሻݏ݋ܿ ሺܾሻ݊݅ݏ

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 93

ሺܽ݊݅ݏ ൅ ܾሻ ൅ sinሺܽ െ ܾሻ ൌ 2 ሺܽሻ݊݅ݏ ሺܾሻݏ݋ܿ

ݑ ൌ ܽ ൅ ݒ	݀݊ܽ	ܾ ൌ ܽ െ ܾ

 ܽ ൌ
௨ା௩

ଶ
 and ܾ ൌ

௨ି௩

ଶ

ሻݑሺ݊݅ݏ ൅ ሻݒሺ݊݅ݏ ൌ 2 ሺ݊݅ݏ
௨ା௩

ଶ
ሻ ሺݏ݋ܿ

௨ି௩

ଶ
ሻ

The last statement means that a sound with a frequency at half of the sum of

the two note frequencies will undergo amplitude modulation with another sound at

frequency half of the difference of these two frequencies. Table 3.7 shows the

notes and their frequencies.

The following lines of code indicate which note the sound syllable refers to.

private void Find_Closest_Note(double freq, out double closestFreq, out string

note_Name)

 {

 string[] Note_Names = { "A", "A#", "B/H", "C", "C#", "D", "D#", "E", "F",

"F#", "G", "G#" };

 double Tone_Step = Math.Pow(2, 1.0 / 12);

 const double AFreq = 440.0;

 const int Tone_Index_Offset_To_Positives = 120;

 int tone_Index = (int)Math.Round(Math.Log(freq / AFreq, Tone_Step));

 note_Name = Note_Names[(Tone_Index_Offset_To_Positives +

tone_Index) % Note_Names.Length];

 closestFreq = Math.Pow(Tone_Step, tone_Index) * AFreq;

 }

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 94

Table 3.7 Notes and their frequencies

Figure 3.40 Notes and octave intervals on the piano

(http://people.math.sc.edu/sharpley)

3.2.7. Pitch Shifting

The pitch is closely related to the frequency of a sound. Although the pitch is

associated with music and musical notes, it also concerns human voice and other

sounds. The pitch of a male voice can be increased to a female voice, or vice versa.

Pitch shifting is the name given to the process that changes or transposes the

pitch of a sound. The most practical way to shift the pitch of a syllable is to first

determine the pitch frequency of the syllable as described above. The ratio of this

value to the pitch value to be shifted is the amount of shift. In this way, the pitch

value can be changed by playing with the sound data at the specified shift amount.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 95

The sound syllables combined with this method are brought to the same frequency

value and so a harmony is formed in the merged words.

There is a pitch shift factor in the algorithm used. This parameter ranges

from 0.5 (one octave down) to 2 (one octave up). If you set this value to 1, there

will be no shifting.

Figure 3.41 Pitch shifting algorithm (Zhang)

The pitch shifting algorithm is shown in Figure 3.41. The array containing

the syllable sound signal is divided into frames and a window function is

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 96

implemented. Then by applying FFT passed to the frequency domain. Here by

making changes in frequency data, the data is analyzed by returning to the time

domain again and again with IFFT.

The pitch shifting can be separated into an analysis part and a synthesis part,

with an optional processing stage in between. The basis for the pitch shifting is the

Short-Term Fourier Transform (STFT), in which a vector of sound samples is

divided into multiple N-sized blocks referred to as frames. Frames are usually

overlapped and windowed.

Fourier transform is originally based on calculating the unlimited signal,

however only a small number of samples is processed each time in STFT.

Windowing every short-term signal is to compensate this problem. We adopt four

window functions: Hamming, Hanning, triangular and rectangular windows. Each

frame is then decomposed into a set of N complex numbers that represent a set of

sinusoids (known as bins). Decomposition is accomplished using the Fourier

transform. w(n) is the window function, also shown in this formula:

ܺሺ݉ሻ ൌ
1
ܰ
෍ ሺ݊ሻݔ

ேିଵ

௡ୀ଴

݁ି௜ଶగ௡௠/ேݓሺ݊ሻ, ݉ ൌ 0,1, … , ܰ െ 1

Each bin represents a single sinusoid. The frequency of a particular bin can

be obtained from its index m and the sampling rate sr :

݂ሺ݉ሻ௕௜௡ ൌ
݉ ൈ ݎݏ
ܰ

The real and imaginary parts of a bin’s complex number can be manipulated

to obtain the magnitude and phase of each sinusoid :

|ܺሺ݉ሻ| ൌ ඥܺோሺ݉ሻଶ ൅ ூܺሺ݉ሻଶ

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 97

∠ܺሺ݉ሻ ൌ tanିଵ ூܺሺ݉ሻ
ܺோሺ݉ሻ

	݁ݎ݄݁ݓ					, tanିଵሺݔሻ 	∈ 	 ሾെߨ, ሿߨ

Each sinusoid is completely described by these three pieces of information.

The frequency of each bin is fixed, at equally-spaced intervals up to the Nyquist

rate (half the sampling rate). Sinusoids that fall between bin frequencies have their

energy distributed across the surrounding bins. In other words, a single bin

frequency is usually only an approximation of the true frequency of the represented

sinusoid. One of the main innovations of the phase vocoder is that the difference in

phases of a particular bin across two successive frames can be used to derive an

adjustment factor:

∅ሺ݉ሻ ൌ ሾ∠ܺሺ݉ሻ െ ∠ܺሺ݉ െ 1ሻሿିగగ 	ൈ ሺݎݏ ⁄ሻܰߨ2

This can then be added to the original approximate frequency to obtain an

improved frequency estimate:

݂ሺ݉ሻ௜௡௦௧௔௡௧௔௡௘௢௨௦ ൌ ݂ሺ݉ሻ௕௜௡ ൅ ߶ሺ݉ሻ

Additionally, we use FFT-shift and zero-padding for STFT. FFT-shift is to

exchange the first half samples and the rest half samples before FFT calculation.

Zeropadding shown in Figure 3.42 is to get more precise bin frequencies. The FFT

size becomes 8 larger than frame size and the added samples have 0’s for their

values.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 98

Figure 3.42 Fourier transform with zero-padding

The analysis algorithm in the pitch shifting is following steps;

1. Take frame(N) size samples from input sound. Store them into a frame

buffer.

2. Choose a proper window and window the buffer

3. Zero-pad the buffer

4. FFT-shift the zero-padded buffer.

5. Decompose the buffer by Fourier transform

6. Calculate and store magnitude and phase (output from analysis that is used

in resynthesis).

7. Go back to step 1 and start taking frame size sample located at hop size

distant from the first sample of the previous loop.

The synthesis stage is basically the analysis stage in reverse: a list of

sinusoids in complex number representations are converted resynthesized using an

inverse Fourier transform (IFFT) into a sound signal. While resynthesis can be

accomplished using other techniques, such as direct additive synthesis, the IFFT

method is much faster, and with today’s computers can easily be done in real time.

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 99

If the output of the analysis stage is used directly for resynthesis, the result

will be the original sound file with no perceptible difference from the original (and

we would have nothing more than a very computationally-expensive way to copy

sound information). However, one of the strengths of the phase vocoder is the

possibility of introducing additional processing between the analysis and synthesis

stages.

Processing and resynthesis algorithm for pitch-shifting is:

1. Unwrap phases which values become between π and -π (Equation 2.5).

2. Multiply the phases by pitch-shift ratio (processing).

3. Calculate complex numbers from both a) the original magnitudes from

analysis and b) modified phases from step 1 (resynthesis from this step and

below).

4. Compose the complex numbers by Inverse FFT, and store modified sound

samples in a buffer.

5. FFT-shift the buffer.

6. Window the buffer.

7. Interpolate the sound samples in the buffer.

8. Place the buffer in a new empty sound data at every analysis hop size

interval.

9. Go back to step 1.

Because phase is wrapped after 2π (360 degree), phase unwrapping process

is necessary to get linearly continuous phase.

3.2.8. Equalizing Energy

The amplitude of the speech signals varies with time. Short Term Energy is

higher in areas where there is speech than in areas where there is no speech. This

3. MATERIAL AND METHOD Yoldaş ERDOĞAN

 100

gives us important clues about the speech zones. The formula of Short Term

Energy is as follows:

ሺ݊ሻܧ ൌ ∑ ܺ௡ଶ
ே
௜ୀଵ ሺ݅ሻ

Where; N denotes the length of the sound frame, X(i) the original speech

signal and E(n) the energy of the sound frame. As can be seen, the energy of a

sound frame can be calculated by taking the sum of the squares of each sound

sample.

In order to change the energy of the speech piece, all samples are multiplied

by the square root of the energy ratio

ଵܧ ൌ
ଵ

௄
∑ ݀ଵ

ଶ௄
௡ୀଵ ሺ݁݊݀ െ ݊ሻ

ଶܧ ൌ
ଵ

௄
∑ ݀ଶ

ଶ௄
௡ୀଵ ሺ݊ሻ

∝ൌ ට
ாభ
ாమ

ଶݏ ൌ∝. ݀ଶ

Where; E1 is the energy of the last K samples of the first diphone, and E2 is

the energy of the first K samples of the following diphone. α (by taking the square

root of the energy ratio) is multiplied by the second diphone and a new diphone

with equal energy is obtained.

4. RESULTS AND DISCUSSION Yoldaş ERDOĞAN

 101

4. RESULTS AND DISCUSSION

In this study, a text to speech system based on additive synthesis technique,

which uses syllable as the length of the sound unit, is realized. The following

features are intended when implementing a text synthesizer: the quality of the

generated speech output should be high, the memory requirement should be low,

the complexity of the application should not be too high, and the computational

speed should be high. In the designed system, rules related to merging the recorded

syllables have been established. These rules are formed depending on the forms of

sounds at the junction of syllables (breath, breathless, explosive, etc.) or production

places of the sounds. These rules are then added to the merging software. A

syllable database is created and this word synthesizer software is tested on it. The

system generates syllables from the text information it receives at the input. Then it

begins to combine these syllables. At this stage, the rules determined according to

the types of sounds are applied to the junction points of syllables and naturalness

(similar to waveforms in real sound files) is tried to be created.

In order to evaluate the success of the text to speech system presented in

this thesis, 5-sentence intelligibility tests are conducted. Ten volunteers are

included in these tests whose mother tongue was Turkish. The tests were conducted

for each listener at separate times. The audience is asked to assess each sentence

they listened for their intelligibility according to the scores given in Table 4.1.

Table 4.1 Scoring system

Score Intelligibility Level

1 Good

2 Medium

3 Bad

4. RESULTS AND DISCUSSION Yoldaş ERDOĞAN

 102

The audience was asked to evaluate the intelligibility according to how

easily they could perceive the words in the sentences they listened to. The

intelligibility scores of the audience are averaged separately for each sentence.

Then, the overall intelligibility scores and success percentages of the system are

obtained by taking the averages of the intelligibility scores obtained separately for

all sentences. The test results of the Turkish text to speech system developed in the

scope of this thesis is shown in Table 4.2.

Table 4.2 Intelligibility assessment of the system
Sentences Intelligibility Percentage

Sentence 1 75

Sentence 2 65

Sentence 3 65

Sentence 4 70

Sentence 5 80

Sentence 6 65

Average 70

According to the results of the intelligibility assessment tests, it can be said

that the text to speech system developed in the scope of this thesis has an average

of %70 success. The system is developed by focusing on creating intelligible and

acoustically natural syllables. Because of this, the system is weak in terms of

intonation of sentences according to the semantic content, and vocalization of

words with appropriate emphasis and appropriate rhythms. However, due to the

successful implementation of syllable merging, the generated speech is

understandable.

5. CONCLUSION AND SUGGESTIONS Yoldaş ERDOĞAN

 103

5. CONCLUSIONS AND SUGGESTIONS

Although there are several studies that have been conducted on Text to

Speech Synthesis (TTS) for different languages, there have not been many studies

on additive languages such as Turkish. Since Turkish is an additive language many

words and phrases can be produced from a root word, and so different sound

changes occur. This situation causes difficulties in the speech synthesis process

from Turkish text. For example, tens of words can be derived from a word.

Therefore, the number of words in the language can be increased easily. For

example; A, Ada, Adana, Adanalı, Adanalıyık, Adanalılaşmak and so on.

The quality of a speech synthesizer is assessed by the similarity and

intelligibility of speech to human voice. Speech synthesis systems are widely used

today and their application areas are increasing day by day. Artificial intelligence

studies, virtual assistants in various occupational groups, assistance systems for

visually impaired people, multimedia devices, navigation applications, consumer

electronics products, telecommunications systems, and so on can be given as an

example to main text to speech usage areas.

In most of the studies, because the existing sound files were digitally

processed, a robotic sound could be presented to the audience instead of a real

human voice. The new TTS systems, which were designed for foreign languages

and prepared with great investments by commercial firms, started to be more

successful in naturalness and started to add Turkish to their applications in 2009,

too.

In the existing TTS systems developed for academic or commercial

purposes, differences in pronunciation, reading habits in numeric statements and

voice changes in punctuations and abbreviations used in Turkish are not taken into

consideration. In other words, the Turkish text taken as an input is not analyzed

semantically, but is converted to speech as it is written. In this study, the method of

synthesizing triple syllables from binary syllables is tried. It is observed that it is

5. CONCLUSION AND SUGGESTIONS Yoldaş ERDOĞAN

 104

easier to combine the sounds with this method and there is not much need for

digital processing. While developing the application on the subject, instead of

vocalizing all the words in Turkish, a sample text was studied and it was aimed to

develop solutions to the problems experienced in Turkish.

As a result, the standardization method prepared will be enriched with each

passing day by means of solution methods that will be produced against the

exceptions to be determined and so more accurate conversions will be obtained.

Studies on emphasis, intonation, homogenity and sentiment will contribute greatly

to the completion of the text to speech synthesis system with the closest intended

real human voice.

 105

REFERENCES

A hybrid model for text-to-speech synthesis. Fabio Violaro, Olivier Böeffard. 1998.

5, s.l. : IEEE Transactions on Speech and Audio Processing, 1998, Vol. 6.

Ann K. Syrdal, Raymond W. Bennett, Steven L. Greenspan. 1994. Applied Speech

Technology. s.l. : CRC Press, 1994. 0849394562, 9780849394560.

Arık, Güray. 2011. Görme engelliler için bilgisayar kullanımının etkinleştirilmesi,

erişilebilirlik ve bir türkçe hece tabanlı konuşma sentezleme sisteminin

geliştirilmesi . Yüksek Lisans Tezi. s.l. : Gazi Üniversitesi , 2011.

Bicil, Yücel. 2010. Türkçe metinden konuşma sentezleme, Yüksek Lisans Tezi. s.l. :

Sakarya Üniversitesi, 2010.

Coşkun, Prof. Dr. Mustafa Volkan. 2008. Türkçenin Ses Bilgisi. İstanbul : Bilge

Kültür Sanat, 2008. ISBN:978-605-9241-04-5.

David M. Howard, Damian T. Murphy. 2007. Voice Science, Acoustics, and

Recording. s.l. : Plural Publishing, 2007. 1597568260, 9781597568265.

Demir, Cansel. 2009. Konuşma tanıma sentezleme sistemlerinin okul öncesi dönem

yabancı dil eğitiminde kullanılması , Yüksek Lisans Tezi. s.l. : Gazi

Üniversitesi , 2009.

Erdemir, Cavit. 2010. Türkçe metin seslendirme için doğal konuşma sentezleme,

Yüksek Lisans Tezi. İstanbul : İstanbul Üniversitesi, 2010.

Ertürk, Sarp. 2005. Sayısal İşaret İşleme. İstanbul : Birsen , 2005. 309-6.

Fant, Gunnar. 1970. Acoustic Theory of Speech Production. s.l. : Walter de

Gruyter, 1970. 9027916004, 9789027916006.

Furui, Sadaoki. 2018. Digital Speech Processing: Synthesis, and Recognition. s.l. :

CRC Press, 2018. 1351990926, 9781351990929.

Gazi, Orhan. 2011. Sinyaller ve Sistemler. Ankara : Seçkin, 2011. 978-975-02-

1633-6.

 106

Görmez, Zeliha. 2009. Implementation of a text-to-speech system with machine

learning. [book auth.] Zeliha GÖRMEZ. M.Sc. Thesis. İstanbul : Fatih

University, 2009.

Güldalı, Kenan. 2009. Türkçe metin seslendirme. [book auth.] Kenan GÜLDALI.

Yüksek Lisans Tezi. İstanbul : İstanbul Teknik Üniversitesi, 2009.

HyperPhysics. Sound Waves in Air. [Online] [Cited: 08 18, 2019.]

http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/tralon.html.

ISO. 1975. Acoustics -- Standard tuning frequency (Standard musical pitch).

International Organization for Standardization. [Online] 1 1975. [Cited:

Temmuz 1, 2019.] https://www.iso.org/standard/3601.html.

Kahrs, Mark and Brandenburg, Karlheinz. 2002. Applicatıons of digital signal

processing to audio and acoustics. New York : Kluwer Academic, 2002. 0-

7923-8130-0.

Kutlugün, Mehmet Ali. 2017. Gözetimli makine öğrenmesi yoluyla türe göre

metinden ses sentezleme. [book auth.] Mehmet Ali KUTLUGÜN. M.Sc.

Thesis. İstanbul : İstanbul Sabahattin Zaim Üniversitesi, 2017.

Learning, Lumen. University Physics Volume 1. [Online] Lumen Learning.[Cited:

08 17, 2019.] https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/17-5-sources-of-musical-sound/.

Lee, Edward Ashford and Varaiya, Pravin. 2011. Structure and Interpretation of

Signals and Systems. Boston : Addison-Wesley, 2011. 0-201-74551-8.

Li Deng, Douglas O'Shaughnessy. 2003. Speech Processing: A Dynamic and

Optimization-Oriented Approach. s.l. : CRC Press, 2003. 0824740408,

9780824740405.

Martin, J.A.M. 2012. Voice, Speech, and Language in the Child: Development and

Disorder. s.l. : Springer Science & Business Media, 2012. 3709170427,

9783709170427.

Morris, L. Robert. January 1989. Special Feature a Pc-Based Digital Speech

Spectrograph. IEEE Micro. January 1989, Vols. 68 - 85 .

 107

Özen, Şifa Serdar. 2002. Türkçe metinden konuşma sentezleme, Yüksek Lisans Tezi.

s.l. : Hacettepe Üniversitesi , 2002.

Özsoy, A. Sumru. 2004. Türkçe'nin Yapısı -1 Sesbilim. İstanbul : Boğaziçi

Üniversitesi, 2004. ISBN:975-518-227-6.

Öztürk, Özlem. 2005. Modeling phoneme durations and fundamental frequency

contours in Turkish speech , PhD. Ankara : Middle East Technical

University, 2005.

Parker, Barry. 2015. Güçlü Titreşimler Müziğin Fiziği. Ankara : Tübitak, 2015.

ISBN 978-975-403-986-3.

Parker, Michael. 2010. Digital Signal Processing 101. United Kingdom : Newnes,

2010. 978-1856179218.

Perez-Meana, Hector. 2007. Advances in Audio and Speech Signal Processing:

Technologies and Applications . London : Idea Group Publishing, 2007.

ISBN 978-1-59904-134-6.

Rabiner, Lawrence R. and Schafer, Ronald W. 2007. Introduction to Digital

Speech Processing. Hanover : now Publishers, 2007. 978-1-60198-070-0.

Richard Lunchsinger, Godfrey E. Arnold. 1967. Voice-Speech-Language Clinical

Communicology, Its Physicology and Patology,. s.l. : Wadsworth

Publishing Company California, 1967.

Sak, Haşim. 2004. A corpus-based concatenative speech synthesis system for

Turkish. M.Sc. Thesis. İstanbul : Boğaziçi University, 2004.

Sanjaume, Jordi Bonada. 2002. Audio Time-Scale Modification. Ph. D. Program.

Barcelona : Universitat Pompeu Fabra, 2002.

sapp.org. WAVE PCM soundfile format. [Online] [Cited: 08 16, 2019.]

http://soundfile.sapp.org/doc/WaveFormat/.

Schroeder, Manfred R. 2004. Computer Speech: Recognition, Compression,

Synthesis. s.l. : Springer, 2004. 978-3540212676.

Sharpley, Professor Robert. MATH 750. MATH 750. [Online] [Cited: 08 14, 2018.]

http://people.math.sc.edu/sharpley/math750/MathMusic.pdf.

 108

Tatham, Mark and Morton, Katherine. 2005. Developments ın speech synthesıs .

England : John Wiley & Sons, Ltd., 2005. ISBN 0-470-85538-X.

Taylor, Paul. 2009. Text-to-Speech Synthesis. Cambridge : Cambridge University

Press, 2009. 978-0-521-89927-7.

Taylor, Paul, Caley, Richard and Zen, Heiga. 2014. The Festival speech synthesis

system: system documentation. http://www.cstr.ed.ac.uk/projects/festival/.

[Online] 2014. [Cited: Temmuz 1, 2019.]

http://www.cstr.ed.ac.uk/projects/festival/.

TDK, Türk Dil Kurumu. 2000. Türkçe İmla Kılavuzu. 2000.

Uslu, İbrahim Baran. 2012. Konuşma işleme ve Türkçenin dilbilimsel özelliklerini

kullanarak metinden doğal konuşma sentezleme. [book auth.] İbrahim

Baran USLU. Doktora Tezi. Ankara : Ankara Üniversitesi, 2012.

Ünaldı, İlker. 2007. Taşınabilir cihazlar için Türkçe metinden konuşma sentezleme

sistemi. Yüksek Lisans Tezi. Ankara : Hacettepe Üniversitesi, 2007.

Vural, Esra. 2003. A Prosodic Turkish text-to-speech synthesizer. M.Sc. Thesis.

s.l. : Sabancı University, 2003.

Wikipedia. Wikipedia. https://en.wikipedia.org/wiki/WAV. [Online] [Cited: Haziran

1, 2019.] https://en.wikipedia.org/wiki/WAV.

Zeren, Ayhan. 1995. Müzik Fiziği. İstanbul : Pan Yayıncılık, 1995. ISBN 975-

7652-46-6.

Zhang, Jingjie. Echoing Harmonics. Echoing Harmonics. [Online] [Cited: 08 10,

2019.] https://ccrma.stanford.edu/~jingjiez/portfolio/echoing-

harmonics/index.html.

 109

BIOGRAPHY

He was born in Kavak village of Sivas, Şarkışla district. He spent his

childhood in a mountain village in Mazgirt district of Tunceli (Dersim). Since his

father was a teacher, he completed his primary, secondary and high school

education in different cities. He graduated from Trakya University Computer

Engineering Department. He has been working as an Instructor at Çukurova

University Department of Informatics since 2003.

He received his master's degree from Çukurova University, Institute of

Science, Department of Agricultural Machinery and Technologies Engineering. He

continues his doctoral studies in the same department.

He is married and has 4 children. He is interested in IT, new technologies,

music and basketball. In addition to his academic studies, he is a member of

Turkey Informatics Association and TMMO Chamber of Computer Engineers

Adana representative. He is involved in the establishment of an IT cooperative

initiative that will be the first in our country.

 110

APPENDICES

 111

 112

APPENDIX 1

TTS System Architecture

Text as input

Preprocessing
the text

Analyzing the
text

Syllabification

Syllable
analyzing

Diphones
selection

Language

rules

Normalized text

A sequence of
syllables

Preparing
database

A sequence of
diphones

Syllabification
rules

Concatenation
of units

pitch & energy
smoothing

Speech as
output

Speech

 113

APPENDIX 2

 public class TimeStretchClass

 {

 public double[] Stretch(double[] src, double ratio, int frameLength, int

overlapLength, int searchLength)

 {

 double[] dst = new double[(int)(ratio * src.Length)];

 Array.Copy(src, dst, frameLength);

 int curDstEndIndex = frameLength;

 while (true)

 {

 int srcStartIndex = (int)((double)curDstEndIndex / dst.Length *

src.Length);

 int connectStartIndex = FindConnectStartIndex(dst, curDstEndIndex, src,

srcStartIndex, overlapLength, searchLength);

 for (int t = 0; t < overlapLength; t++)

 {

 if (connectStartIndex + t == dst.Length || srcStartIndex + t ==

src.Length)

 return dst;

 double a = (double)t / overlapLength;

 dst[connectStartIndex + t] = a * src[srcStartIndex + t] + (1 - a) *

dst[connectStartIndex + t];

 }

 for (int t = overlapLength; t < frameLength; t++)

 {

 if (connectStartIndex + t == dst.Length || srcStartIndex + t ==

src.Length)

 114

 return dst;

 dst[connectStartIndex + t] = src[srcStartIndex + t];

 }

 curDstEndIndex = connectStartIndex + frameLength;

 }

 }

 private static double CalcDifference(double[] dst, int dstStartIndex, double[]

src, int srcStartIndex, int overlapLength)

 {

 double sum = 0;

 for (int t = 0; t < overlapLength; t++)

 {

 double d = dst[dstStartIndex + t] - src[srcStartIndex + t];

 sum += d * d;

 }

 return sum;

 }

 private static int FindConnectStartIndex(double[] dst, int dstEndIndex,

double[] src, int srcStartIndex, int overlapLength, int

searchLength)

 {

 int dstSearchStartIndex = dstEndIndex - overlapLength - searchLength;

 double minDiff = double.MaxValue;

 int minDiffIndex = new int();

 for (int t = 0; t < searchLength; t++)

 {

 double diff = CalcDifference(dst, dstSearchStartIndex + t, src,

srcStartIndex, overlapLength);

 if (diff < minDiff)

 115

 {

 minDiff = diff;

 minDiffIndex = dstSearchStartIndex + t;

 }

 }

 return minDiffIndex;

 }

 }

 116

APPENDIX 3

public class Pitch_Shifter

 {

 private static int MAXFRAMELENGTH = 44100;

 private static double[] g_In_FIFO = new double[MAXFRAMELENGTH];

 private static double[] g_Out_FIFO = new double[MAXFRAMELENGTH];

 private static double[] g_FFT_worksp = new double[2 *

MAXFRAMELENGTH];

 private static double[] g_Last_Phase = new double[MAXFRAMELENGTH /

2 + 1];

 private static double[] g_Sum_Phase = new double[MAXFRAMELENGTH /

2 + 1];

 private static double[] g_Output_Accum = new double[2 *

MAXFRAMELENGTH];

 private static double[] g_Ana_Freq = new double[MAXFRAMELENGTH];

 private static double[] g_Ana_Magn = new double[MAXFRAMELENGTH];

 private static double[] g_Syn_Freq = new double[MAXFRAMELENGTH];

 private static double[] g_Syn_Magn = new double[MAXFRAMELENGTH];

 private static long g_Rover;

 #region Public Static Methods

 public static double[] Pitch_Shift(double pitch_Shift, long

num_Samps_To_Process, double sample_Rate, double[] in_data)

 {

 return Pitch_Shift(pitch_Shift, num_Samps_To_Process, (long)2048,

(long)10, sample_Rate, in_data);

 }

 public static double[] Pitch_Shift(double pitch_Shift, long

num_Samps_To_Process, long fft_FrameSize, long osamp,

double sample_Rate, double[] indata)

 117

 {

 double _magn, _phase, _tmp, _window, _real, _imag;

 double freq_Per_Bin, expct;

 long i, k, qpd, index, inFifoLatency, stepSize, fft_FrameSize2;

 double[] outdata = indata;

 fft_FrameSize2 = fft_FrameSize / 2;

 stepSize = fft_FrameSize / osamp;

 freq_Per_Bin = sample_Rate / (double)fft_FrameSize;

 expct = 2.0 * Math.PI * (double)stepSize / (double)fft_FrameSize;

 inFifoLatency = fft_FrameSize - stepSize;

 if (g_Rover == 0) g_Rover = inFifoLatency;

 for (i = 0; i < num_Samps_To_Process; i++)

 {

 g_In_FIFO[g_Rover] = indata[i];

 outdata[i] = g_Out_FIFO[g_Rover - inFifoLatency];

 g_Rover++;

 if (g_Rover >= fft_FrameSize)

 {

 g_Rover = inFifoLatency;

 for (k = 0; k < fft_FrameSize; k++)

 {

 _window = -.5 * Math.Cos(2.0 * Math.PI * (double)k /

(double)fft_FrameSize) + .5;

 g_FFT_worksp[2 * k] = (double)(g_In_FIFO[k] * _window);

 g_FFT_worksp[2 * k + 1] = 0.0F;

 }

 /* ***************** ANALYSIS ******************* */

 Short_Time_Fourier_Transform(g_FFT_worksp, fft_FrameSize, -1);

 for (k = 0; k <= fft_FrameSize2; k++)

 118

 {

 _real = g_FFT_worksp[2 * k];

 _imag = g_FFT_worksp[2 * k + 1];

 _magn = 2.0 * Math.Sqrt(_real * _real + _imag * _imag);

 _phase = Math.Atan2(_imag, _real);

 _tmp = _phase - g_Last_Phase[k];

 g_Last_Phase[k] = (float)_phase;

 _tmp -= (double)k * expct;

 qpd = (long)(_tmp / Math.PI);

 if (qpd >= 0) qpd += qpd & 1;

 else qpd -= qpd & 1;

 _tmp -= Math.PI * (double)qpd;

 _tmp = osamp * _tmp / (2.0 * Math.PI);

 _tmp = (double)k * freq_Per_Bin + _tmp * freq_Per_Bin;

 g_Ana_Magn[k] = (double)_magn;

 g_Ana_Freq[k] = (double)_tmp;

 }

 /* ***************** PROCESSING ******************* */

 for (int zero = 0; zero < fft_FrameSize; zero++)

 {

 g_Syn_Magn[zero] = 0;

 g_Syn_Freq[zero] = 0;

 }

 for (k = 0; k <= fft_FrameSize2; k++)

 {

 index = (long)(k * pitch_Shift);

 if (index <= fft_FrameSize2)

 {

 119

 g_Syn_Magn[index] += g_Ana_Magn[k];

 g_Syn_Freq[index] = g_Ana_Freq[k] * pitch_Shift;

 }

 }

 /* ***************** SYNTHESIS ******************* */

 for (k = 0; k <= fft_FrameSize2; k++)

 {

 _magn = g_Syn_Magn[k];

 _tmp = g_Syn_Freq[k];

 _tmp -= (double)k * freq_Per_Bin;

 _tmp /= freq_Per_Bin;

 _tmp = 2.0 * Math.PI * _tmp / osamp;

 _tmp += (double)k * expct;

 g_Sum_Phase[k] += (float)_tmp;

 _phase = g_Sum_Phase[k];

 g_FFT_worksp[2 * k] = (float)(_magn * Math.Cos(_phase));

 g_FFT_worksp[2 * k + 1] = (float)(_magn * Math.Sin(_phase));

 }

 for (k = fft_FrameSize + 2; k < 2 * fft_FrameSize; k++)

g_FFT_worksp[k] = 0.0F;

 Short_Time_Fourier_Transform(g_FFT_worksp, fft_FrameSize, 1);

 for (k = 0; k < fft_FrameSize; k++)

 {

 _window = -.5 * Math.Cos(2.0 * Math.PI * (double)k /

(double)fft_FrameSize) + .5;

 g_Output_Accum[k] += (double)(2.0 * _window *

g_FFT_worksp[2 * k] / (fft_FrameSize2 * osamp));

 }

 120

 for (k = 0; k < stepSize; k++) g_Out_FIFO[k] = g_Output_Accum[k];

 for (k = 0; k < fft_FrameSize; k++)

 {

 g_Output_Accum[k] = g_Output_Accum[k + stepSize];

 }

 for (k = 0; k < inFifoLatency; k++)

 g_In_FIFO[k] = g_In_FIFO[k + stepSize];

 }

 }

 return outdata;

 }

 #endregion

 #region Private Static Methods

 public static void Short_Time_Fourier_Transform(double[] fft_Buffer, long

fft_FrameSize, long sign)

 {

 double wr, wi, arg, temp;

 double tr, ti, ur, ui;

 long i, bitm, j, le, le2, k;

 for (i = 2; i < 2 * fft_FrameSize - 2; i += 2)

 {

 for (bitm = 2, j = 0; bitm < 2 * fft_FrameSize; bitm <<= 1)

 {

 if ((i & bitm) != 0) j++;

 j <<= 1;

 }

 if (i < j)

 {

 121

 temp = fft_Buffer[i];

 fft_Buffer[i] = fft_Buffer[j];

 fft_Buffer[j] = temp;

 temp = fft_Buffer[i + 1];

 fft_Buffer[i + 1] = fft_Buffer[j + 1];

 fft_Buffer[j + 1] = temp;

 }

 }

 long max = (long)(Math.Log(fft_FrameSize) / Math.Log(2.0) + .5);

 for (k = 0, le = 2; k < max; k++)

 {

 le <<= 1;

 le2 = le >> 1;

 ur = 1.0F;

 ui = 0.0F;

 arg = (double)Math.PI / (le2 >> 1);

 wr = (double)Math.Cos(arg);

 wi = (double)(sign * Math.Sin(arg));

 for (j = 0; j < le2; j += 2)

 {

 for (i = j; i < 2 * fft_FrameSize; i += le)

 {

 tr = fft_Buffer[i + le2] * ur - fft_Buffer[i + le2 + 1] * ui;

 ti = fft_Buffer[i + le2] * ui + fft_Buffer[i + le2 + 1] *

ur;

 fft_Buffer[i + le2] = fft_Buffer[i] - tr;

 fft_Buffer[i + le2 + 1] = fft_Buffer[i + 1] - ti;

 fft_Buffer[i] += tr;

 fft_Buffer[i + 1] += ti;

 122

 }

 tr = ur * wr - ui * wi;

 ui = ur * wi + ui * wr;

 ur = tr;

 }

 }

 }

 #endregion

 }

 123

APPENDIX 4

 public partial class Wav

 {

 public class Header

 {

 /*The header bytes of the wav file */

 /***RIFF*******************/

 public byte[] chunkID;

 public uint fileSize;

 public byte[] riffType;

 /***fmt*******************/

 public byte[] fmtID;

 public uint fmtSize;

 public ushort fmtCode;

 public ushort channels;

 public uint sampleRate;

 public uint fmtAvgBPS;

 public ushort fmtBlockAlign;

 public ushort bitDepth;

 /***data*******************/

 public byte[] dataID;

 public uint dataSize;

 public int dataSampleCount;

 public uint wavMinLength; //Length of audio in minutes

 public double wavSecLength; //Length of audio in seconds

 public double wavInSec;

 public string fileName;

 public uint fileLength;

 }

 124

 public double[] mag;

 public double[] selection;

 public double[] data_double;

 //public Complex[] df;

 //The wav samples

 private byte[] data;

 public Wav()

 {

 head = new Header();

 handle = new Handler();

 }

 public Wav(byte[] newData)

 {

 head = new Header();

 head.chunkID = System.Text.Encoding.ASCII.GetBytes("RIFF");

 head.fileSize = 36 + (uint)newData.Length;

 head.riffType = System.Text.Encoding.ASCII.GetBytes("WAVE");

 head.fmtID = System.Text.Encoding.ASCII.GetBytes("fmt ");

 head.fmtSize = 16;//16 for PCM.

 head.fmtCode = 1; //PCM = 1

 head.channels = 1;// Mono = 1, Stereo = 2,

 head.sampleRate = 44100;// Common values are 44100 (CD), 48000

(DAT). Sample Rate = Number of Samples per second, or Hertz. ;

 head.fmtAvgBPS = 88200;// ;//== SampleRate * NumChannels *

BitsPerSample/8 veya SampleRate * fmtBlockAlign

 head.fmtBlockAlign = 2;//== NumChannels * BitsPerSample / 8

 head.bitDepth = 16; // BitsPerSample 8 bits = 8, 16 bits = 16

 125

 head.dataID = System.Text.Encoding.ASCII.GetBytes("data");

 head.dataSize = (uint)newData.Length; // == NumSamples * NumChannels

* BitsPerSample/8

 head.dataSampleCount = (int)head.dataSize / 2; //NumSamples =

NumBytes / (NumChannels * BitsPerSample / 8)

 head.wavMinLength = ((uint)head.dataSize / (uint)head.fmtAvgBPS) / 60;

 head.wavSecLength = ((double)head.dataSize / (double)head.fmtAvgBPS) -

(double)head.wavMinLength * 60;

 head.wavInSec = (double)head.dataSize / (double)head.fmtAvgBPS;

 data = newData;

 data_double = dataToDouble();

 }

 public double[] dataToDouble()

 {

 handle = new Handler();

 double[] result = new double[data.Length / 2];

 for (int i = 0, pos = 0; pos < data.Length - 2; i++, pos++)

 {

 result[i] = handle.byteToDouble(data[pos], data[++pos]); //make method

static

 }

 return result;

 }

 public float[] dataToFloat()

 {

 int input_Samples = data.Length / 2;

 float[] output = new float[input_Samples];

 int outputIndex = 0;

 126

 for (int n = 0; n < input_Samples; n++)

 {

 short sample = BitConverter.ToInt16(data, n * 2);

 output[outputIndex++] = sample / 32768f;

 }

 return output;

 }

 //Returns the wav files samples in bytes.

 public byte[] getData()

 {

 return data;

 }

 public void setData (byte[] newData)

 {

 data = newData;

 data_double = dataToDouble();

 }

 public double[] copy(int start, int end)

 {

 double[] temp = new double[(end - start)];

 byte[] byteTemp = new byte[(2* end) - (2* start)];

 for (int i = 0; i < end - start; i++)

 {

 temp[i] = data_double[start + i];

 }

 127

 for (int i = 0; i < (2 * end) - (2 * start); i++)

 {

 byteTemp[i] = data[(2 * start) + i];

 }

 Clipboard.SetAudio(byteTemp);

 return temp;

 }

 public void paste(int index)

 {

 //If there is no data to paste

 if (Clipboard.GetAudioStream() == null)

 return;

 BinaryReader read = new BinaryReader(Clipboard.GetAudioStream());

 byte[] byteTemp =

read.ReadBytes((int)Clipboard.GetAudioStream().Length);

 List<byte> bTemp = data.ToList();

 bTemp.InsertRange(index * 2, byteTemp);

 updateData(bTemp.ToArray());

 }

 public double[] cut(int start, int end)

 {

 double[] temp = copy(start, end);

 List<byte> lData = data.ToList();

 lData.RemoveRange(2 * start, (2 * end - 2 * start));

 updateData(lData.ToArray());

 //data_double = dataToDouble();

 return temp;

 }

 public void delete(int start, int end)

 128

 {

 double[] cut = new double[data_double.Length - (end - start)];

 List<byte> lData = data.ToList();

 try {

 lData.RemoveRange(2 * start, (2 * end - 2 * start));

 updateData(lData.ToArray());

 }

 catch { }

 }

 public void updateData(byte[] newData)

 {

 head.fileSize = 36 + (uint)newData.Length;

 head.dataSize = (uint)newData.Length;

 data = newData;

 data_double=dataToDouble();

 }

 public byte[] toArray()

 {

 List<byte> arr = new List<byte>();

 arr.AddRange(head.chunkID);

 arr.AddRange(BitConverter.GetBytes(head.fileSize));

 arr.AddRange(head.riffType);

 arr.AddRange(head.fmtID);

 arr.AddRange(BitConverter.GetBytes(head.fmtSize));

 arr.AddRange(BitConverter.GetBytes(head.fmtCode));

 arr.AddRange(BitConverter.GetBytes(head.channels));

 arr.AddRange(BitConverter.GetBytes(head.sampleRate));

 129

 arr.AddRange(BitConverter.GetBytes(head.fmtAvgBPS));

 arr.AddRange(BitConverter.GetBytes(head.fmtBlockAlign));

 arr.AddRange(BitConverter.GetBytes(head.bitDepth));

 arr.AddRange(head.dataID);

 arr.AddRange(BitConverter.GetBytes(head.dataSize));

 arr.AddRange(data);

 return arr.ToArray();

 }

 public byte[] FloatArrayToByteArray(float[] floatArray1)

 {

 int volume = 1;

 short[] destBuffer = new short[floatArray1.Count()];

 int destOffset = 0;

 for (int sample = 0; sample < floatArray1.Count(); sample++)

 {

 // adjust volume

 float sample32 = floatArray1[sample] * volume;

 // clip

 if (sample32 > 1.0f)

 sample32 = 1.0f;

 if (sample32 < -1.0f)

 sample32 = -1.0f;

 destBuffer[destOffset++] = (short)(sample32 * 32767);

 }

 return destBuffer.Select(x => Convert.ToInt16(x))

 .SelectMany(x => BitConverter.GetBytes(x))

 .ToArray();

 }

 130

 public byte[] DoubleArrayToByteArray(double[] doubleArray)

 {

 int nSamples = doubleArray.Length;

 byte[] dataB = new byte[nSamples * 2];

 int s = 0;

 for (int j = 0; j < dataB.Length; j = j + 2)

 {

 handle.doubleToBytes(doubleArray[s++], out dataB[j], out dataB[j + 1]);

 }

 return dataB;

 }

 public double[] ByteArrayToDoubleArray(byte[] inputArray)

 {

 Handler handle = new Handler();

 double[] result = new double[inputArray.Length / 2];

 for (int i = 0, pos = 0; pos < inputArray.Length - 2; i++, pos++)

 {

 result[i] = handle.byteToDouble(inputArray[pos], inputArray[++pos]);

//make method static

 }

 return result;

 }

 public float[] ByteArrayToFloat(byte[] input_Array)

 {

 int input_Samples = input_Array.Length / 2; // 16 bit input, so 2 bytes per

sample

 131

 float[] output = new float[input_Samples];

 int outputIndex = 0;

 for (int i=0, n = 0; n < input_Samples;i++, n++)

 {

 short sample = BitConverter.ToInt16(inputArray, n * 2);

 output[outputIndex++] = sample / 32768f;

 }

 return output;

 }

 }

 132

APPENDIX 5

public static class PitchDetection2

 {

 public enum Pitch_Detect_Algorithm

 {

 Autocorrelation, Amdf

 }

 public static double DetectPitch(Wav w)

 {

 return detect_Pitch_Calculation(w, 50.0, 500.0, 1, 1,

Pitch_Detect_Algorithm.Autocorrelation)[0];

 }

 private static double[] detect_Pitch_Calculation(Wav w, double min_Hz,

double max_Hz, int n_Candidates, int n_Resolution,

Pitch_Detect_Algorithm algorithm)

 {

 // note that higher frequency means lower period

 int n_Low_Period_In_Samples = hz_To_Period_In_Samples(max_Hz,(int)

w.head.sampleRate);

 int n_Hi_Period_In_Samples = hz_To_Period_In_Samples(min_Hz,

(int)w.head.sampleRate);

 if (n_Hi_Period_In_Samples <= n_Low_Period_In_Samples) throw new

Exception("Bad range for pitch detection.");

 if (w.head.channels != 1) throw new Exception("Only mono supported.");

 double[] _samples = w.data_double;

 if (_samples.Length < n_Hi_Period_In_Samples) throw new

Exception("Not enough _samples.");

 133

 double[] results = new double[n_Hi_Period_In_Samples -

n_Low_Period_In_Samples];

 if (algorithm == Pitch_Detect_Algorithm.Amdf)

 {

 for (int period = n_Low_Period_In_Samples; period <

n_Hi_Period_In_Samples; period += n_Resolution)

 {

 double sum = 0;

 for (int i = 0; i < _samples.Length - period; i++)

 sum += Math.Abs(_samples[i] - _samples[i + period]);

 double mean = sum / (double)_samples.Length;

 mean *= -1;

 results[period - n_Low_Period_In_Samples] = mean;

 }

 }

 else if (algorithm == Pitch_Detect_Algorithm.Autocorrelation)

 {

 for (int period = n_Low_Period_In_Samples; period <

n_Hi_Period_In_Samples; period += n_Resolution)

 {

 double sum = 0;

 for (int i = 0; i < _samples.Length - period; i++)

 sum += _samples[i] * _samples[i + period];

 double mean = sum / (double)_samples.Length;

 results[period - n_Low_Period_In_Samples] = mean;

 }

 }

 134

 int[] best_Indices = find_Best_Candidates(n_Candidates, ref results);

 // convert back to Hz

 double[] res = new double[n_Candidates];

 for (int i = 0; i < n_Candidates; i++)

 res[i] = periodInSamplesToHz(best_Indices[i] +

n_Low_Period_In_Samples,(int) w.head.sampleRate);

 return res;

 }

 private static int[] find_Best_Candidates(int n, ref double[] inputs)

 {

 if (inputs.Length < n) throw new Exception("Length of inputs is not long

enough.");

 int[] res = new int[n]; // will hold indices with the highest amounts.

 for (int c = 0; c < n; c++)

 {

 // find the highest.

 double f_Best_Value = double.MinValue;

 int n_Best_Index = -1;

 for (int i = 0; i < inputs.Length; i++)

 if (inputs[i] > f_Best_Value) {

 n_Best_Index = i;

 f_Best_Value = inputs[i];

 }

 // record this highest value

 res[c] = n_Best_Index;

 // now blank out that index.

 inputs[n_Best_Index] = double.MinValue;

 135

 }

 return res;

 }

 private static int hz_To_Period_In_Samples(double hz, int sample_Rate)

 {

 return (int)(1 / (hz / (double)sample_Rate));

 }

 private static double periodInSamplesToHz(int period, int sample_Rate)

 {

 return 1 / (period / (double)sample_Rate);

 }

 }

}

