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Privacy preserving data mining is a hot research field for data mining. The 

aim of privacy preserving data mining is to prevent the leakage of the sensitive 

information of individuals while performing data mining techniques. Classification 

task is one of the most studied fields in data mining hence in privacy preserving 

data mining as well. On the other hand, differential privacy is a powerful privacy 

guarantee that determines privacy leakage ratio by using ϵ parameter and enables 

researchers to mine data which includes sensitive information. Although the 

success of the rule-based classifiers using meta-heuristics such as Ant-Miner etc. in 

data mining has been demonstrated, any implementation of these classification 

algorithms with differential privacy has not been proposed in the literature to our 

best knowledge. Motivated by this, implementations of the rule-based classification 

algorithms by using meta-heuristics with differential privacy are performed in this 

thesis. According to the experimental results, the proposed rule-based classification 

algorithms outperform other classification techniques in the literature for low ϵ 
parameters (i.e., ϵ=1).  

 

Key Words: Differentially Private Rule-Based Classifiers, Artificial Bee Colony 

Optimization, Privacy Preserving Classification. 
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ÖZ 

 

DOKTORA TEZİ 

 

DEĞİŞTİRİLMİŞ YAPAY ARI KOLONİSİ OPTİMİZASYON 

ALGORİTMASINI KULLANAN GİZLİLİK KORUYUCULU KURAL-

TABANLI SINIFLANDIRICILAR 

 

Ezgi ZORARPACI 

 

ÇUKUROVA ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI 

 

Danışman : Prof. Dr. Selma Ayşe ÖZEL 

   Prof. Dr. Yücel SAYGIN 

   Yıl: 2019, Sayfa: 128 

Jüri : Prof. Dr. Selma Ayşe ÖZEL 

: Assoc. Prof. Dr. Umut ORHAN 

: Assoc. Prof. Dr. Serdar YILDIRIM 

: Prof. Dr. Derviş KARABOĞA 

                    : Assist. Prof. Dr. Buse Melis ÖZYILDIRIM  

 

Veri madenciliğinde verilerin gizliliğin korunması yeni bir araştırma 

alanıdır. Gizlilik korumalı veri madenciliğinin amacı veri üzerinde veri madenciliği 

tekniklerini gerçekleştirirken aynı zamanda da kişilerin hassas bilgilerinin 

sızmasını engellemektir. Sınıflandırma veri madenciliğinin en çok çalışılan 

konularından biridir ve bu nedenle gizlilik koruyuculu veri madenciliği alanında da 

popüler olmuştur. Diferansiyel gizlilik, gizlilik sızıntısının oranını ϵ parametresi 

kullanarak belirleyen ve araştırmacılara hassas bilginin bulunduğu veriyi analiz 

etme imkânı sağlayan güçlü bir gizlilik garantisidir. Literatürde Ant-Miner gibi 

meta-sezgisel kullanan kural tabanlı sınıflandırıcılar oldukça başarılı olmasına 

rağmen, bu algoritmaların diferansiyel gizlilik ile ilgili herhangi bir uygulaması 

gerçekleştirilmemiştir. Bu nedenle, bu tezde kural tabanlı sınıflandırıcıların meta-

sezgisel algoritmalar kullanılarak diferansiyel gizlilik ile uygulamaları 

gerçekleştirilmektedir. Önerilen kural tabanlı sınıflandırma algoritmaları küçük ϵ 
değerleri için (ϵ=1) literatürde bulunan diğer sınıflandırma yöntemlerinden daha iyi 

bir performans göstermiştir.  

 

Anahtar Kelimeler: Diferansiyel olarak gizli kural tabanlı sınıflandırıcılar, Yapay 

Arı Kolonisi Optimizasyonu, Gizlilik koruyuculu 

sınıflandırma. 
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EXTENDED ABSTRACT  

 

Data mining is the process of exploring the beneficial information from the 

data. Although data mining techniques extract the useful knowledge, it may cause 

the security threats since the sensitive or private information shows up from this 

extracted knowledge. Consequently privacy preserving data mining which is a sub-

field of data mining has been emerged, and its goal is to protect the privacy of 

individuals while making possible to apply data mining techniques. 

Many privacy preserving methods to analyse sensitive data have been 

studied for years, which covers perturbation of output or data (Adam and 

Worthmann, 1989), secure multiparty computation (Lindell and Pinkas, 2002; 

Goldreich, 2004), and some anonymization techniques such as k-anonymity, l-

diversity, t-closeness (Samarati and Sweeny 1998; Samarati and Sweeny 1998; 

Samarati, 2001; Machanavajhala et al., 2007; Li et al., 2007, Mendes and Vilela, 

2017).  

Recently, differential privacy has been proposed to provide security to the 

databases by reducing the probability for the disclosure of the sensitive information 

of records. It ensures a formal and strong privacy guarantee and it asserts that the 

output of a function running on a database does not entirely depend on any record 

since yielding of the same output is highly probable even if an instance is or not in 

the database (Dwork et al., 2006; Dwork, 2008; Dwork and Roth, 2014). Therefore, 

differential privacy has been broadly used in the studies of privacy preserving data 

mining in the literature. For instance, some differentially private logistic 

regression, differentially private k-means clustering, differentially private 

classification algorithms based-on decision trees, random trees, random forests, 

Naïve Bayes, k-NN have been proposed in the literature (Chaudhuri and 

Monteleoni, 2008; Blum et al., 2005; Jagannathan et al., 2012; Jagannathan et al., 

2013; Patil and Signh, 2014; Rana et al., 2015; Su et al., 2015; Fletcher and Islam, 

2016; Fletcher and Islam, 2017). None of these classifiers are rule-based except 



 

IV 

decision trees such as ID3 which is an indirect rule-based classifier. However, 

among all classification algorithms, rule-based classifiers, which produce relatively 

small number of accurate classification rules, are preferred since the classification 

rules are readily confirmed, highly expressive, easy to understand and interpret by 

humans, and the required time to classify new instances is quite short (Duch et al., 

2000). Although decision trees are well-known rule-based classifiers, they have 

some drawbacks. Therefore, instead of applying decision tree learning algorithms, 

rule induction methods which mine data to discover the classification rules by 

exploiting meta-heuristic methods have been proposed in the literature. For 

example, Parpinelli et al. (2002) have developed Ant-Miner, which uses Ant 

Colony Optimization (ACO) to explore classification rules, and showed that Ant-

Miner has competitive classification performance with respect to CN2 (Clark and 

Niblett, 1989) which is a well-known classification algorithm (Parpinelli et al. 

2002). At the same time, some other rule discovery algorithms based-upon 

Artificial Bee Colony (ABC), Differential Evolution (DE), Genetic Algorithms 

(GA) etc. have been developed and the success of these rule-based classifiers have 

been demonstrated with the experimental results in the literature (Fidelis et al., 

2000; Celik et al., 2011; Shukran et al. 2011; De Falco, 2013; Talebi and Abadi, 

2014, Celik et al., 2016). Although these algorithms so successful, any 

implementation of them with differential privacy has not been proposed for 

performance evaluation in the literature to our best knowledge.  

Motivated by this shortcoming in the literature, we propose to develop 

privacy preserving rule-based classifiers using ABC algorithm with the input 

perturbation technique of differential privacy for the first implementation in this 

thesis. Input perturbation technique is one of the three techniques to apply 

differential privacy while the others are objective and output perturbation 

techniques.  

According to the literature, most of the differentially private classification 

techniques are based-on output perturbation. However, output perturbation is not 
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suitable for the data mining algorithms which require too many appeals to the 

database to perform mining process (Ji et al., 2014). In similar cases, input 

perturbation which means perturbation of the data itself under differential privacy 

can be a solution to perform privacy preserving data mining (Mivule et al., 2012; Ji 

et al., 2014; Sarwate and Chaudhuri, 2013; Edlich, 2017). Therefore, in this thesis, 

the input perturbation technique in the studies of Mivule et al. (2012) is applied to 

provide differential privacy guarantee for the privacy preserving rule-based 

classifiers using ABC optimization algorithm. The performance of the proposed 

rule-based classifiers using ABC are compared with eleven well-known 

classification algorithms such as C4.5 (Quinlan, 1993), Naïve Bayes (NB) 

(Murphy, 2006), Bayesian Networks (BN) (Jensen, 1996), Multilayer Perceptron 

(MLP) (Rumelhart et al., 1986), IBk (Aha et al., 1991), Kstar (Cleary and Trigg, 

1995), One Rule (1R) (Holte, 1993), PART (Frank and Witten, 1998), Random 

Tree (RT) (Breiman, 2001), Bagging (Brieman, 1996), and RIPPER (Cohen, 1995) 

over private data which is perturbed with input perturbation technique of 

differential privacy and non-private data separately. According to the experimental 

results, the proposed rule-based classifiers using ABC can be efficiently used for 

both of the private and non-private data.  

In this thesis, the output perturbation technique of the differential privacy is 

adopted to build a differentially private 1R (Holte, 1993) classification algorithm as 

the second implementation of rule-based classifiers by using meta-heuristics. In the 

second implementation made in this thesis, differentially private 1R classifier is 

developed.To our knowledge this is the first implementation of differentially 

private 1R classifier. In this thesis 1R classification algorithm is preferred because 

it is simple, but efficient and accurate classifier, and it does not have any 

differentially private implementation in the literature. In this implementation, 

ABC-DE based feature selection method proposed in the studies of Zorarpacı and 

Özel (2016) is applied as a pre-processing step to reduce the required count queries 

sent to the differentially private database during the construction of 1R. It is 
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demonstrated that the accuracy values of the differentially private 1R is increased 

by narrowing the attribute space thanks to the proposed ABC-DE based feature 

selection for all values of ϵ parameter used. For the performance evaluation of the 

proposed differentially private 1R classifier, the privacy preserving model used for 

1R is applied to build differentially private NB classifier as well since NB is 

utilized as a baseline for differentially private classification in the literature. The 

experimental results show that the proposed differentially private 1R classification 

algorithm is a simple but efficient privacy preserving classification algorithm. 
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GENİŞLETİLMİŞ ÖZET  

 

Veri madenciliği büyük miktardaki veriden faydalı bilgilerin çıkarılması 

işlemidir. Ancak veri madenciliği yöntemleri ile bu faydalı bilgiler açığa 

çıkarılırken kişilerin hassas ya da özel bilgilerinin de ortaya çıkması güvenlik 

tehditlerine neden olabilmektedir. Bu nedenle gizlilik koruyuculu veri madenciliği 

veri madenciliğinin bir alt alanı olarak ortaya çıkmıştır ve amacı veri madenciliği 

tekniklerini uygulamayı mümkün kılarken aynı zamanda da kişilerin gizli ya da 

hassas bilgilerinin korunmasını sağlamaktır.  

Hassas veriyi analiz etmek için çıkış ya da giriş sarsımı, güvenli çok 

parçalı hesaplama ve k-anonim, l-farklılık, t-yakınlık gibi bazı anonimleştirme 

tekniklerini kapsayan birçok gizlilik koruyuculu veri madenciliği yöntemi yıllardır 

çalışılmaktadır (Samarati and Sweeny 1998; Samarati and Sweeny 1998; Samarati, 

2001; Machanavajhala et al., 2007; Li et al., 2007, Mendes and Vilela, 2017).  

Son zamanlarda kayıtların hassas bilgilerinin ifşa olasılığını azaltarak 

veritabanlarının güvenliğini sağlamak amacıyla diferansiyel gizlilik kavramı 

önerilmiştir. Diferansiyel gizlilik güçlü bir gizlilik garantisi olmakla birlikte 

herhangi bir kaydın veritabanında bulunup bulunmaması bu veritabanında 

yürütülen fonksiyonun çıktısından tamamen bağımsız olduğunu iddia eder. 

Diferansiyel gizlilik kavramına göre bir kayıt veritabanında bulunmasa bile 

veritabanı üzerinde işletilen bu fonksiyonun aynı çıktıyı üretmesi son derece 

olasıdır (Dwork et al., 2006; Dwork, 2008; Dwork and Roth, 2014). Bu nedenle 

diferansiyel gizlilik literatürdeki gizlilik koruyuculu veri madenciliği 

çalışmalarında geniş ölçüde kullanılmıştır. Örneğin, literatürde bazı diferansiyel  

gizli lojistik regresyon, k-ortalama kümeleme algoritmaları ile karar ağaçları, 

rastgele ağaçlar, rastgele ormanlar, Naïve Bayes, k-en yakın komşuluk vb. tabanlı 

diferansiyel gizli sınıflandırma algoritmaları önerilmiştir (Chaudhuri and 

Monteleoni, 2008; Blum et al., 2005; Jagannathan et al., 2012; Jagannathan et al., 

2013; Patil and Signh, 2014; Rana et al., 2015; Su et al., 2015; Fletcher and Islam, 
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2016; Fletcher and Islam, 2017). Ancak literatürdeki diferansiyel gizli 

sınıflandırma algoritmalarından ID3 karar ağacı algoritması (dolaylı kural-tabanlı 

sınıflandırıcı) dışındaki yöntemler kural-tabanlı değildir. Bununla birlikte tüm 

sınıflandırma algoritmaları arasından kural-tabanlı sınıflandırıcılar görece az sayıda 

kural sayısına sahip olduğu durumlarda, kuralların kolay bir şekilde 

doğrulanabildiği, kullanıcılar tarafından anlaşılması ve yorumlanması kolay olduğu 

ve yeni örnekleri kısa zamanda sınıflandırabildiğinden diğer sınıflandırıcılara tercih 

edilmektedir (Duch et al., 2000). Karar ağaçları iyi bilinen kural-tabanlı 

sınıflandırıcılar olmasına rağmen bazı dezavantajları mevcuttur. Bu nedenle karar 

ağaçları öğrenme algoritmalarını uygulamak yerine literatürde meta-sezgisel 

algoritmaları kullanarak sınıflandırma kurallarını veriden direkt olarak çıkaran 

kural indükleme yöntemleri önerilmiştir. Örneğin, Parpinelli ve arkadaşları (2002) 

tarafından sınıflandırma kurallarını çıkarmak için Karınca Kolonisi Optimizasyon 

algoritmasını kullanan Ant-Miner geliştirilmiş ve bu algoritmanın iyi bilinen bir 

sınıflandırma algoritması olan CN2 (Clark and Niblett, 1989) algoritması ile 

rekabet edebilen bir sınıflandırma performansı sergilediği gösterilmiştir. Yine 

bununla birlikte literatürde Yapay Arı Kolonisi, Diferansiyel Gelişim, Genetik 

Algoritmalar vb. yöntemleri kullanan bazı diğer kural çıkarım algoritmaları 

geliştirilmiş ve bu kural-tabanlı sınıflandırıcıların başarısı deneysel sonuçlarla 

ispatlanmıştır (Fidelis et al., 2000; Celik et al., 2011; Shukran et al. 2011; De 

Falco, 2013; Talebi and Abadi, 2014, Celik et al., 2016). Ancak bu algoritmalar 

oldukça başarılı olmasına rağmen, literatüre bakıldığında bu algoritmaların 

diferansiyel gizlilik ile herhangi bir uygulaması mevcut değildir.  

Bu nedenle literatürdeki bu eksiklikten yola çıkarak, bu tezin ilk 

uygulamasında Yapay Arı Kolonisi optimizasyon algoritmasını ve diferansiyel 

gizliliğin giriş sarsımı yöntemini kullanarak gizlilik koruyuculu kural-tabanlı 

sınıflandırıcılar geliştirilir. Giriş sarsımı tekniği diferansiyel gizliliği uygulamak 

için kullanılan üç teknikten birisidir ve diğerleri ise objektif sarsımı ve çıkış sarsımı 

teknikleridir.    
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Literatüre bakıldığında diferansiyel olarak gizli sınıflandırma 

yöntemlerinin çoğu çıkış sarsımına dayanmaktadır. Ancak çıkış sarsımı tekniği veri 

madenciliği işlemini gerçekleştirmek için veritabanına çok fazla başvuruda bulunan 

algoritmalar için uygun değildir (Ji et al., 2014). Bu gibi benzer durumlarda gizlilik 

koruyuculu veri madenciliğini gerçekleştirmek için diferansiyel gizlilik garantisi 

altında verinin kendisinin sarsımı anlamına gelen giriş sarsımı yöntemi bir çözüm 

olabilmektedir (Mivule et al., 2012; Ji et al., 2014; Sarwate and Chaudhuri, 2013; 

Edlich, 2017). Bu nedenle bu tezde, Yapay Arı Kolonisi optimizasyon 

algoritmasını kullanan gizlilik koruyuculu kural-tabanlı sınıflandırıcılar için 

Mivule ve arkadaşlarının (2012) çalışmalarında yer alan diferansiyel gizliliği 

sağlamak için kullandıkları giriş sarsımı tekniği  uygulanmıştır.  

Önerilen Yapay Arı Kolonisi optimizasyon algoritmasını kullanan kural-

tabanlı sınıflandırıcıların performansı on bir popüler sınıflandırma algoritması ile 

kıyaslanmıştır. Performans karşılaştırması için WEKA veri madenciliği aracından 

C4.5 (Quinlan, 1993), Naïve Bayes (NB) (Murphy, 2006), Bayesian Ağları 

(Jensen, 1996), Çok Katmanlı Algılayıcı (Rumelhart et al., 1986), k-en yakın 

komşuluk (Aha et al., 1991), K* (Cleary and Trigg, 1995), Tek Kural (1R) (Holte, 

1993), PART (Frank and Witten, 1998), Rastgele Ağaç (Breiman, 2001), Bagging 

(Brieman, 1996) ve RIPPER (Cohen, 1995) sınıflandırma yöntemleri 

kullanılmıştır. 

Algoritmaların performans karşılaştırması diferansiyel gizliliğin giriş 

sarsımı yöntemi ile diferansiyel olarak gizli hale getirilmiş veri ve gizli olmayan 

veri üzerinde ayrı ayrı gerçekleştirilmiştir. Önerilen Yapay Arı Kolonisi 

optimizasyon algoritmasını kullanan kural-tabanlı sınıflandırma algoritmaları 

küçük ϵ değerleri için (ϵ=1) literatürde bulunan diğer sınıflandırma yöntemlerinden 

daha iyi bir performans göstermiştir. 

Literatürdeki diferansiyel olarak gizli sınıflandırma teknikleri için genel 

olarak diferansiyel gizliliğin çıkış sarsımı yöntemi kullanılmıştır. Bu tez 

çalışmasının ikinci uygulamasında, gizlilik koruyuculu kural-tabanlı sınıflandırıcı 
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olarak diferansiyel olarak gizli 1R (Holte, 1993) algoritması gerçekleştirilmiştir. 

Bu uygulamada literatürdeki diğer diferansiyel olarak gizli sınıflandırma 

algoritmalarının uygulamış oldukları diferansiyel gizliliğin çıkış sarsımı tekniği 

kullanılmıştır.  

Literatür incelendiğinde karar ağaçları, rastgele ağaçlar, rastgele ormanlar, 

Naïve Bayes, k-en yakın komşuluk gibi bazı iyi bilinen sınıflandırma 

algoritmalarının diferansiyel gizlilik ile uygulaması mevcut iken iyi bilinen 

algoritmalardan birisi olan 1R (Holte, 1993) sınıflandırma algoritmasının 

diferansiyel gizlilik ile herhangi bir uygulaması gerçekleştirilmemiştir.  

Tek tek belirleyicilerin değerleri için sıklık tablolarını kullanarak kural 

çıkarımı yapan 1R sınıflandırma algoritması basit, verimli ve doğru bir 

sınıflandırma yöntemidir ve oldukça az sayıda kural ile sınıflandırma 

yapabilmektedir. Tezin bu uygulamasında, 1R sınıflandırıcısının sıklık tablolarını 

oluşturmak için gerekli olan diferansiyel olarak gizli veritabanlarına gönderilen 

sayma sorgularını azaltmak amacıyla Zorarpacı ve Özel (2016) tarafından 

geliştirilen Yapay Arı Kolonisi optimizasyon algoritması ve Diferansiyel Gelişim 

algoritmasına dayalı olan özellik seçimi yöntemi ön-işleme adımı olarak 

uygulanmaktadır. Deneylerde kullanılmış olan tüm ϵ parametreleri için Yapay Arı 

Kolonisi ve Diferansiyel Gelişim algoritmalarını kullanan özellik seçimi 

yönteminin özellik uzayını büyük ölçüde daraltması ile sınıflandırma doğruluk 

değerlerinin oldukça yükseldiği gözlemlenmiştir.  

Diferansiyel olarak gizli 1R algoritmasının performansını karşılaştırmak 

amacıyla diferansiyel olarak gizli Naïve Bayes algoritması kullanılmıştır. Naïve 

Bayes diferansiyel olarak gizli sınıflandırma açısından temel ve karşılaştırmalarda 

sıklıkla kullanılan bir yöntemdir. Deney sonuçları incelendiğinde diferansiyel 

olarak gizli 1R algoritmasının diferansiyel olarak gizli Naïve Bayes algoritmasına 

benzer bir performans sergilediği gözlenmiştir.  
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1. INTRODUCTION  

 

Data mining is a process to discover beneficial information from big 

quantity of data. The extracted information can be patterns, rules, clusters or a 

classification model. Throughout data mining process, sensitive information of 

individuals, subjects to several parties such as collectors, owners, users and miners 

are needed. Consequently, privacy preserving data mining has emerged as a 

significant sub-field of the data mining. Privacy preserving data mining is 

interested in maintaining data mining techniques without disclosing the privacy of 

individual data or sensitive information (Vaghashia and Ganatra, 2015). 

Many privacy preserving techniques to mine sensitive data have been 

studied for years, which includes perturbation of output or data (Adam and 

Worthmann, 1989), secure multiparty computation (; Lindell and Pinkas, 2002; 

Goldreich, 2004), and some anonymization techniques such as k-anonymity, l-

diversity, t-closeness (Samarati and Sweeny 1998; Samarati and Sweeny 1998; 

Samarati, 2001; Machanavajhala et al., 2007; Li et al., 2007, Mendes and Vilela, 

2017).  

Recently, differential privacy, which is a strong privacy guarantee, has 

been proposed to perform data mining algorithms over databases which contain 

sensitive information (Dwork et al., 2006). Differential privacy determines privacy 

leakage ratio by ϵ parameter, and enables individuals’ data to be taken safely in a 

database (Dwork et al., 2006; Dwork, 2008; Dwork and Roth, 2014). Differential 

privacy asserts that the presence or absence of an individual in a database cannot 

change the statistics given out substantially. This formal privacy concept eliminates 

the side information suppositions by considering privacy in the worst case in which 

an attacker has all information about the records except one record in a database. 

Thus, independent of the auxiliary information known by attacker, it is 

indistinguishable by the participation of an individual in the database. 
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In principle, differential privacy aims at maximizing the utility of data by 

minimizing the leakage of sensitive data. A differential privacy mechanism such as 

Laplace mechanism adds random noise drawn from Laplace distribution to the 

outputs of the functions running over sensitive data (Mivule et al., 2012 ; Sarwate 

and Chaudhuri, 2013; Ji et al., 2014; Sanchez et al., 2015; Chaudhuri, 2011; 

Chaudhuri and Monteleoni, 2008; Rubinstein et al., 2009; Zhang et al., 2012; Ji et 

al., 2014; Fukuchi et al., 2017; Friedman and Schuster, 2010; Bojarski et al., 2015; 

Fletcher and Islam, 2015; Fletcher and Islam, 2016; Gursoy et al., 2017). If only a 

small amount of noise is added to the output, the resulting output is close to the 

actual output. On the other hand, when the noise is of large amount, the privacy 

guarantee is rigorous, but the data utility gets worse. Hence, the privacy-utility 

trade-off is a basis for the private algorithms. For instance, when a differentially 

private classification algorithm is considered to illustrate privacy-utility trade-off, 

the case is that the lower the values of ϵ parameter are, the lower classification 

accuracy results are but the more privacy; while the higher the values of ϵ 

parameter are, the higher classification accuracy results are but the less privacy.   

The underlying idea of differential privacy is that the output of a query 

which is directed to the database is unsusceptible to whether a person is in the 

database. Namely, the result of a particular query Q sent to database D is 

indistinctive from the same query Q being dispatched to the database 𝐷′ which 

differs from database D with a single record.  

Differential privacy perturbs the data by adding noise (such as Laplace) to 

the query results. The amount of noise to be added is determined by the sensitivity 

of the query result statistics. The sensitivity of a function (i.e., query) grants an 

upper bound on how much we must perturb its value to protect privacy. For 

instance, we consider a simple count query, whether any person is or not in the 

database changes all of the query result set with only one unit (i.e., ||𝐷′ − 𝐷||). 

Hence, the sensitivity of a count query is equal to 1 (Dwork et al., 2006; Dwork 

and Roth, 2014). On the other hand, the sensitivity is vital for data utility (such as 
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good accuracy for classification) since the low sensitivity values are expected to 

result in better accuracies compared to the high sensitivity values on especially for 

small datasets including a small number of instances.  

Accordingly, high level data mining algorithms such as differentially 

private decision trees, random trees, random forests, NB etc. have been proposed 

by using the queries which have low sensitivity values (such as count queries) in 

the literature (Friedman and Schuster, 2010; Vaidya et al., 2013; Jagannathan et al., 

2012; Jagannathan et al., 2013; Patil and Signh, 2014; Rana et al., 2015; Bojarski et 

al. 2015; Fletcher and Islam, 2015; Fletcher and Islam, 2016; Fletcher and Islam, 

2017).  

Although there exist some differentially private classification algorithms, 

none of them are rule-based except decision trees such as ID3 which is an indirect 

rule-based classifier. However, among all classification algorithms, rule-based 

classifiers, which produce relatively small number of accurate classification rules, 

are preferred since the classification rules are readily confirmed, highly expressive, 

easy to understand and interpret by humans, and the required time to classify new 

instances is quite short (Duch et al., 2000). Although decision trees are well-known 

rule-based classifiers, they have some drawbacks such as unrelated attributes and 

noise in the data may cause decision trees to be unstable. For instance, a little shift 

in one split near to the root node will change the subtrees. Also, a tiny change in 

the training dataset can cause the algorithm to select a wrong attribute as the root 

node which affects the construction of the whole tree (Quinlan, 2014). Therefore, 

instead of applying decision tree learning algorithms, rule induction methods which 

mine data to discover the classification rules by exploiting meta-heuristic methods 

have been proposed in the literature. For example, Parpinelli et al. (2002) have 

developed Ant-Miner, which is based on Ant Colony Optimization (ACO) to 

extract classification rules, and showed that Ant-Miner has competitive 

classification performance with respect to CN2 (Clark and Niblett, 1989) which is 

another well-known data mining algorithm for the classification task (Parpinelli et 
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al. 2002). At the same time, some other rule discovery algorithms based-upon 

Artificial Bee Colony (ABC), Differential Evolution (DE), Genetic Algorithms 

(GA) etc. have been developed and the success of these rule-based classifiers have 

been demonstrated with the experimental results in the literature (Fidelis et al., 

2000; Celik et al., 2011; Shukran et al. 2011; De Falco, 2013; Talebi and Abadi, 

2014, Celik et al., 2016). Although these algorithms are so successful, any privacy 

preserving implementation of them has not been proposed for performance 

evaluation in the literature to our best knowledge.  

ABC (Karaboğa, 2005) is a nature inspired algorithm which imitates 

foraging behavior of bees. It has been proven to be a powerful algorithm to solve 

global optimization problems of continuous space. Also, it has some advantages 

such as simplicity, flexibility, and having just a few parameters. On the other hand, 

some approaches using ABC to discover classification rules have been proposed in 

the literature and the success of ABC algorithm for the discovery of classification 

rules has been demonstrated over some datasets that are from University of 

California Irvine Repository (UCI) (Celik et al, 2011; Shukran et al., 2011; Talebi 

and Abadi, 2014; Celik et al., 2016).  

Motivated by this shortcoming in the literature, we propose to develop 

rule-based classifiers using ABC algorithm with the input perturbation technique of 

differential privacy for the first implementation in this thesis. Input perturbation 

technique is one of the three techniques to apply differential privacy, while the 

others are output perturbation and objective perturbation.  

The flexibility of privacy mechanism such as Laplace facilitates a few 

alternating techniques to construct differentially private implementations as 

summarized below: 

 

1. Input perturbation technique: In this technique, the data is perturbed by 

adding noise to the values of its numerical attributes for a certain privacy level (i.e., 

ϵ). Functions running over this perturbed dataset, private or non-private, will 
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provide the differential privacy guarantee. It is the most straightforward technique 

to apply differential privacy and its most significant advantage is that it enables to 

release the noisy dataset while maintaining the privacy. In other words, it is 

independent of any data mining algorithm unlike objective perturbation and output 

perturbation techniques, and several researchers can utilize this private data to run 

their own functions on it (Mivule et al., 2012; Sarwate and Chaudhuri, 2013; Ji et 

al., 2014; Sanchez et al., 2015; Antonova, 2015; Edlich 2017). 

 

2. Output perturbation technique: In this technique, the output of an 

algorithm or function is perturbed for preserving privacy. For example, to create a 

differentially private machine learning algorithm to perform logistic regression, 

logistic regression is trained as non-private; then a noise vector with the same 

dimension is added to the original estimate, which is a differentially private logistic 

regression proposed by Chaudhuri et al. (2011) (Chaudhuri et al., 2011; Antonova, 

2015). For another example, a count query can be used as a function, such that let 

the actual query result of a count query be 𝛿, then the differentially private result 

(i.e., noisy result) is 𝛿 + 𝑏, where 𝑏 is noise which is drawn from Laplace 

distribution with mean 0 and standard deviation 
∆𝑓

ϵ
, where ∆𝑓 is the sensitivity of 

count query and equal to 1, and ϵ is the privacy level.  

 

3. Objective perturbation technique: Objective perturbation, which was 

proposed by Chaudhuri et al. (2011) for the empirical risk minimization, adds noise 

to an objective function prior to optimization (Antonova, 2015; Edlich, 2017).  

According to the literature, most of the differentially private classification 

techniques are based-on output perturbation. However, output perturbation is not 

suitable for the data mining algorithms which require too many appeals to the 

database to perform mining process (Ji et al., 2014). In these cases, input 

perturbation can be a solution to perform privacy preserving data mining (Mivule 
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et al., 2012; Ji et al., 2014; Sarwate and Chaudhuri, 2013; Edlich, 2017). For 

instance, Mivule et al. (2012) have proposed to perturb the input data under 

differential privacy guarantee for classification, and find an optimal noise amount 

(i.e., ϵ) to achieve satisfactory classification results iteratively. It has been 

demonstrated that higher values of ϵ parameter provide better classification 

accuracies, but lower privacy for ensemble classifier; while the lower ones lead to 

unsatisfactory classification results with high level privacy as in other differentially 

private classification algorithms based-upon output perturbation technique in the 

literature (Mivule et al., 2012). Therefore, the input perturbation technique adopted 

in the studies of Mivule et al. (2012) to provide differential privacy guarantee is 

used in this thesis to build rule-based classifiers using ABC optimization algorithm 

for the privacy preserving classification. The performance of the proposed rule-

based classifier using ABC is compared with eleven well-known classification 

algorithms such as C4.5 (Quinlan, 1993), Naïve Bayes (NB) (Murphy, 2006), 

Bayesian Networks (BN) (Jensen, 1996), Multilayer Perceptron (MLP) (Rumelhart 

et al., 1986), IBk (Aha et al., 1991), Kstar (Cleary and Trigg, 1995), One Rule (1R) 

(Holte, 1993), PART (Frank and Witten, 1998), Random Tree (Breiman, 2001), 

Bagging (Brieman, 1996), and RIPPER (Cohen, 1995) over differentially private 

data which is perturbed with input perturbation technique of differential privacy. 

Additionally, the experiments have been performed over non-private data as well to 

show the performance of the classifier.  

In the literature, the differentially private implementations of well-known 

classification algorithms such as decision trees, random trees, random forests, NB, 

and k-NN have been proposed. However, any implementation of differentially 

private 1R algorithm which is simple and short, but efficient and accurate classifier 

has not been studied so far to our best knowledge. To cover this gap, we propose to 

develop a differentially private 1R algorithm (Holte, 1993) for the second 

implementation of rule-based classifiers by using meta-heuristics in this thesis. For 



1. INTRODUCTION  Ezgi ZORARPACI 

7 

this implementation, the output perturbation technique to ensure differential 

privacy is adopted to build a differentially private 1R algorithm.  

In the differentially private 1R implementation, firstly ABC-DE based 

feature selection method proposed in the study (Zorarpacı and Özel, 2016) is 

applied as a pre-processing step in the data owner side before the construction of 

the differentially private 1R classification algorithm. After the feature selection, 

this pre-processed data is located in differentially private database which responds 

to count queries that are necessary for the classification algorithm (i.e., 1R), by 

adding Laplace noise to the actual results of the count queries. The usage of ABC-

DE based feature selection method in the data owner side arises from the necessity 

that the most significant issue for differential privacy is to appeal a database as few 

as possible for any classification algorithm. In our proposed differentially private 

1R classification algorithm, we need to access to the database for only count 

queries. The number of these queries is equal to 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟 × ∑ ∑ 1𝑖
𝑛
𝑗=1 , where n 

represents the number of attributes in the data, j is the jth attribute (i.e., predictor) of 

the data, and i is the ith  value of the attribute j. Accordingly, it is clear that the 

reduction of n (i.e., the number of attributes) decreases the number of count queries 

sent to the differentially private database. Hence, in this implementation of the 

thesis, we propose to apply ABC-DE based feature selection method to the data as 

a pre-processing step, which reduces the number of attributes on a large scale, in 

the data owner side, and then this pre-processed data is located in a database which 

uses Laplace mechanism to guarantee differential privacy to respond the count 

queries, and called as differentially private database. Then, 1R classifier is built 

with the differentially private count query results. For the performance evaluation 

of the proposed differentially private 1R classifier, the privacy preserving model 

used for 1R is applied to build differentially private NB classifier as well. Because 

NB is utilized as a baseline for differentially private classification in the literature 

and its construction process is very similar to 1R algorithm in terms of requirement 
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of count queries for each value of each attribute (i.e., predictor) in the data to build 

it. Therefore, the proposed differentially private 1R algorithm is compared to the 

differentially private NB classifier for performance evaluation. 

 

1.1. The Aims and Objectives of this Thesis 

The superiority of rule-based classifiers which use meta-heuristic 

algorithms such as ACO, ABC and DE to decision trees have been demonstrated in 

the literature recently (Parpinelli et al., 2002; Celik et al, 2011; Shukran et al., 

2011; De Falco, 2013; Talebi and Abadi, 2014; Celik et al., 2016). Although these 

data mining algorithms are quite successful, any implementation of these rule 

induction methods under differential privacy guarantee has not been studied so far. 

Therefore, the first aim of this thesis is to develop ABC based classification rule 

induction algorithms with differential privacy as ABC is a powerful optimization 

technique. Accordingly, we propose to perform rule induction algorithms using 

ABC for the differentially private and non-private data in the first implementation 

in this thesis.  

Some classification algorithms such as ID3 (Friedman, Schuster, 2010), 

NB (Vaidya et al., 2015), k-NN (Gursoy et al., 2017) etc. have been implemented 

with differential privacy. However any implementation of 1R algorithm, which is 

short, simple, and accurate rule-based classifier, has not been proposed so far 

although the success of this algorithm for classification is well-known in the 

literature (Holte, 1993). Therefore, in this thesis the second aim is to propose a 

differentially private 1R algorithm and show its performance.  

During the construction of the differentially private 1R algorithm, we 

propose to take advantage of ABC-DE based feature selection proposed in the 

study (Zorarpacı and Özel, 2016) to reduce the count queries sent to the 

differentially private database, which increases the classification accuracies 

significantly. On the other hand, differentially private NB (Vaidya et al., 2015) is 

implemented by combining with ABC-DE based feature selection as in 1R 
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algorithm to make fair performance comparison with our proposed classifier since 

the very similar count queries to those of 1R algorithm are required to build NB 

classifier.   

 

1.2. Contributions of this Thesis  

Studies covered in this thesis aim to investigate the classification 

performance of some rule-based classifiers by using meta-heuristics under 

differential privacy guarantee. For the first implementation, rule-induction 

algorithms based on ABC algorithm by using input perturbation technique of 

differential privacy are proposed. To our best knowledge, it is the first 

implementation of differential privacy with the rule induction algorithms using 

meta-heuristics in the literature.  

For the second implementation, differentially private 1R algorithm which 

is a short, effective, and well-known rule-based classifier is proposed. To our best 

knowledge it is the first implementation of 1R algorithm with differential privacy. 

To increase the classification accuracy of the proposed differentially private 1R 

algorithm, ABC-DE based feature selection proposed in the study (Zorarpacı and 

Özel, 2016) is applied since this pre-processing step decreases the number of count 

queries sent to the differentially private database on a large extend. At the same 

time, differentially private NB classifier (Vaidya et al., 2013) is developed by 

applying the ABC-DE based feature selection as pre-processing also, and it has 

been observed that the classification accuracies of these differentially private 

algorithms increase significantly thanks to the feature selection method which 

decreases the number of required count queries sent to the private database.   

 

1.3. Outline of the Thesis 

This thesis is organized as follows:   

In Section 2, the related studies in the literature are reviewed and general 

information is given about them.  
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Section 3 covers materials for this thesis that are ABC and DE algorithms, 

the concept of differential privacy, 1R classification algorithm, and NB 

classification algorithm. In the last part of this section, the datasets used for 

evaluating the proposed methods are given. 

In Section 4, the proposed rule-based classifiers are explained in detail.  

In Section 5, the experimental results of the algorithms are presented, and 

they are compared with the existing methods in the literature.  

Finally, the advantages and disadvantages of the proposed rule-based 

classifiers under differential privacy are discussed, and the perspectives about 

future works are presented in the last part of this thesis.  
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2.1. Classification with ABC Algorithm  

Classification is the task of assigning predefined class labels to previously 

unseen data objects according to values of their features. To perform classification 

task, a set of data objects with their associated class labels are used to train a 

classifier, then this classifier is applied to new objects to assign class labels.  

Classification has many application domains such as patients’ records 

classification to diagnose a specific illness, image classification to identify certain 

objects, text classification to determine its author, sentiment classification to 

analyze reputation of a company, etc. 

In the literature, classifiers such as SVM, MLP, etc. take advantages of 

ABC algorithm to optimize their parameters, or to apply preprocessing by selecting 

a subset of features (Gao et al., 2017; Shah et al., 2014; Palanisamy and Kanmani, 

2012; Rangasamy and Duraisamy, 2018). On the other hand, just a few approaches 

use ABC as a classifier in the literature.  

Celik et al. (2011) have developed ABCminer which uses ABC algorithm 

to extract classification rules from data. They have applied ABC algorithm for the 

discovery of classification rules over the datasets such as Breast Tissue, Breast 

Wisconsin, and Zoo (Celik et al., 2011). The proposed method run 5 times with 10 

folds cross validation and the experimental results are compared to C4.5 decision 

tree classifier. It is observed that 74.92%, 93.31%, and 90.49% of average accuracy 

values are reached by ABCminer while 75.09%, 95.42%, and 93.07% average 

accuracies are achieved with C4.5 decision tree for the datasets Breast Tissue, 

Breast Wisconsin, and Zoo respectively.  

In 2011, Shukran et al. have adopted an ABC algorithm based on enhanced 

local strategy to discover classification rules from data reducing enormous amount 

of time for the convergence of ABC. They have compared the performance of these 

discovered classification rules with standard data mining algorithms that are SOM, 

PART, NB, k-NN over 6 UCI datasets such as Breast Tissue, Iris, Zoo, Can, Monk, 

and Soybean. In this study, a simple modification is proposed to change the local 
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strategy of ABC algorithm and they compare the improvement of the new modified 

ABC with the classical ABC in terms of classification accuracy. The proposed 

ABC classification algorithm reaches 96.3%, 94.8%, 92.5%, 96.4%, 99.9%, and 

95.5% average accuracy values at the end of 10 runs of 10 folds cross-validation 

(Shukran et al., 2011). 

Talebi and Abadi (2014) have constructed BeeMiner which is a novel ABC 

algorithm for rule discovery. BeeMiner uses an information-theoretic heuristic 

function (IHF) different from classical ABC algorithm for searching most up-and-

coming areas across the search space. For rule representation, four conditions are 

used for each attribute to determine whether the attribute is removed from the 

condition list of the rule or not, and the continuous condition of the attribute are 

specified by considering the other three cases. They have compared the 

performance of BeeMiner with those of J48, JRip, and PART on nine benchmark 

datasets that are Breast Tissue, Vertebral Column, Ecoli, Glass, Ionosphere, Liver 

disorders, Parkinsons, Sonar, and Wine from the UCI Machine Learning 

Repository. 70.94%, 84.97%, 83.39%, 68.69%, 89.86%, 67.71%, 89.03%, 72.31%, 

and 95.39% average accuracy values are obtained by BeeMiner.  

CoABCMiner (Celik et al., 2016) has been proposed for cooperative rule 

classification system which extracts all classification rules at once. In other words, 

ABC algorithm is run to discover all classification rules simultaneously. This 

method takes the data and learns the rule list. New updating strategy and token 

competition are employed, and new scout bee mechanism is used to  discover 

different rules for different classes simultaneously. It has been demonstrated that 

CoABCMiner is employed for the discovery of classification rules from the data 

sets utilized in the experiments effectively. 

2.2. Differentially Private Classification  

Data mining is the process of discovering the useful information from the 

data. Privacy preserving data mining is an important research area in data mining. 

The goal of the privacy preserving data mining is to ensure the privacy of 
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individuals while enabling to perform data mining techniques. Many privacy 

preserving techniques such as privacy preserving association rule mining, privacy 

preserving clustering (Vijayarani andPrabha, 2011;  Preethi et al., 2018; Inan et al., 

2007; Hyma et al., 2019), privacy preserving classification relying on a number of 

data mining algorithms such as SVM, decision trees, NB, k-NN etc. (Kantarcioglu 

and Clifton, 2004; Jalla and Girija, 2019; Hyma et al., 2018; Liu et al., 2008; Tsang 

et al., 2011; Liu et al., 2009) have been studied. On the other hand, heuristic 

methods such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 

ABC, Differential Evolution (DE) etc. have been utilized in privacy preserving 

manner (Ravi et al., 2012; Vijarayani and Prabha, 2011; Ravi and Chitra, 2014; 

Mohana and Sahaaya Arul Mary, 2017; Vijayarani and Janakiram, 2016). 

Vijarayani and Prabha (2011) have performed an association rule hiding method 

using ABC algorithm (Vijarayani and Prabha, 2011).  

Ravi and Chitra (2015) have adopted a privacy preserving approach to 

investigate the effects of k-anonymization. In the study, ABC and DE algorithms 

are used for feature generalization and suppression to remove features without 

decreasing classification accuracy (Ravi and Chitra, 2014; Ravi and Chitra, 2015).   

On the other hand, differential privacy has recently been proposed method 

to guarantee strong privacy and it has been used for privacy preserving 

classification. Therefore, differential privacy has been implemented with some data 

mining algorithms in the literature. A differentially private logistic regression 

algorithm has been proposed (Chaudhuri, and C. Monteleoni, 2008). Su et. al 

(2015) has developed a differentially private k-means clustering algorithm. Vaidya 

et. al performed differential privacy on Naïve Bayes classification algorithm (Su et 

al., 2015). Gursoy et al. has conducted a differentially private nearest neighbor 

classification method by using k-NN (Gursoy et al., 2017). Moreover, some 

indirect rule-based differentially private algorithms have been proposed in the 

literature (Blum et al., 2005; Jagannathan et al., 2012; Jagannathan et al., 2013; 
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Patil and Signh, 2014; Rana et al., 2015; Fletcher andIslam, 2016; Fletcher and 

Islam, 2017).  

In 2010, a differentially private version of ID3 tree (Quinlan, 1993) where 

the information gain is estimated with the utilization of noisy counts obtained by 

adding noise drawn from Laplace distribution has been proposed (Friedman and 

Schuster, 2010). After that, Jagannthan et. al has demonstrated that construction of 

such a differentially private ID3 tree with the usage of low-level queries cannot 

ensure both of good privacy and accuracy meanwhile (Jagannathan et al., 2012). 

Hence, they have presented a private ensemble method attributed to random 

decision trees. They observe that this algorithm performs better than the 

differentially private ID3 tree in terms of accuracy values even for small datasets. 

In 2013, they have proposed a variant of the differentially private random tree 

ensemble in (Jagannathan et al., 2013). In this study, a semi-supervised method 

which modifies the random decision tree approach to use with the unlabeled data 

has been performed. This hybrid technique increases the accuracy values of the 

previous study (Jagannathan et al., 2012) without decreasing the privacy 

(Jagannathan et al., 2013). 

Patil and Singh integrated the differential privacy idea with the random 

forest algorithm. Their experimental results show that the accuracy values of the 

non-private and differentially private random forest are approximately equal for the 

datasets (Patil and Signh, 2014). 

Fletcher and Islam (2015) have developed a differentially private decision 

forest approach which employs Gini index to construct a decision tree. The 

proposed approach has been compared to differentially private ID3 of (Friedman 

and Schuster, 2010) and non-private random forest algorithms. It has been 

demonstrated that the proposed method has very close accuracy values to those of 

classical random forest algorithm (Fletcher and Islam, 2015). At the same time, 

Bojarski et al. (2015) have presented three variants of differentially private random 
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decision trees with majority voting, threshold averaging, and probabilistic 

averaging mechanism to classify instances. 

The above mentioned differentially private classifiers are based-on output 

perturbation techniques, but Mivule et al. (2012) have proposed to perturb the input 

data to find an optimal noise amount which provides differential privacy guarantee 

to achieve satisfactory classification results. They have demonstrated that higher 

values of ϵ parameter provide better classification accuracies, but lower privacy for 

ensemble classifier; while the lower ones lead to unsatisfactory classification 

results with high level privacy (Mivule et al., 2012).  

According to the literature, all differentially private classification 

techniques are based-on output perturbation except the study in (Mivule et al., 

2012) in which perturbing the input data under differential privacy guarantee for 

classification has been proposed. In the first implementation of this thesis, the input 

perturbation technique adopted in the studies of Mivule et al. (2012) to provide 

differential privacy guarantee (Sarwate and Chaudhuri, 2013) is used to build rule-

based classifiers using ABC optimization algorithm for the privacy preserving 

classification. The proposed rule-based classifiers using ABC are run over non-

private and differentially private data and  this study is the first to discover 

classification rules from a differentially private data.  

Additionally, the proposed ABC rule-based classification algorithms (i.e., 

wLapMS ABC, 1-rule ABC, and sequential covering wLap ABC) differ from 

ABC-based rule miners in the literature in terms of the usage of ABC operators in 

binary form, the structure of solutions (i.e., food source), and the dataset pruning 

process as we do not need to remove the instances covered by the rules from the 

training data thanks to the proposed rule similarity measure which is utilized in the 

selection phase of ABC to generate different rules from the previously generated 

ones. In wLapMS ABC, we do not remove the training instances from the dataset 

which are classified by using the previously learned rules unlike ABC-based rule 

discovery algorithms in the literature (Celik et al., 2011; Shukran et al., 2011; 
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Talebi and Abadi, 2014). This allows us to keep our search space as large as 

possible, and to generate better classification rules as well as it enables to discover 

the rules with the desired number for each class (i.e., our proposed wLapMS ABC) 

unlike sequential covering rule induction methods (Celik et al., 2011; Shukran et 

al, 2011; Talebi and Abadi, 2014). On the other hand, we also propose 1-rule ABC 

in which each class is represented with a single rule by weighting the precision and 

coverage according to the training data to perform classification task since the goal 

of a rule-based classifier is to classify instances with the minimum number of rules.   

In the second implementation of this thesis, output perturbation technique 

is used to build differentially private 1R and NB classification algorithms. The 1R 

implementation with differential privacy is the first study in the literature. 

However, Vaidya et al. (2013) have proposed a differentially private NB 

classification algorithm. In this study, total ϵ budget is used for each count query to 

build NB classifier and it does not provide differential privacy guarantee. However, 

in our proposed NB classification algorithm, total ϵ budget is partitioned into each 

count query and it provides differential privacy guarantee to evaluate the 

performance of the classifier.  
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3.MATERIALS  

 

In this section, the materials such as ABC and DE algorithms, the concept 

of differential privacy, ABC-DE based feature selection method, and 1R and NB 

classification algorithms used to develop our proposed methods are presented in 

detail. 

 

3.1. Basic ABC Algorithm 

Artificial Bee Colony (ABC) is a meta-heuristic algorithm introduced by 

Karaboğa (2005) to optimize problems of continuous spaces. It imitates the 

foraging behavior of bees. The algorithm consists of some important components 

such as food sources, employed bees, and unemployed bees (Karaboğa, 2005). 

The quality of a food source is related to adjacency to the nest, its nectar 

concentration and convenience of extracting this nectar. Each employed bee 

exploits a particular food source and share information such as nectar amount, 

distance and direction of own food source with other foragers. An unemployed bee 

always sights to exploit a food source. Unemployed bees consist of scouts who 

look for new food sources and onlookers which wait to find a food source thanks to 

information shared by employed  bees (Karaboga, 2005).   

The information sharing among bees is performed in waggle dancing area. 

Following an onlooker bee appreciates the information about rich sources, she 

makes a decision to exploit food source which is the most lucrative. Employed bees 

share information according to the quality of food sources (Karaboga, 2005).  

Initially, each bee pretends to be an unemployed bee. This bee does not 

have any information about the food sources around the nest. In this situation, two 

choices can be possible (Karaboga, 2005): 

 

i. It can be a scout bee and searches for a food source according to some 

interior motivation or exterior clue.  
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ii. It can move to discover a new food source employing waggle dances 

information.  

 

After finding the food source, bee will act as employed bee and profit by 

food source. Then this bee returns to hive for draining nectar to a food store. 

Following draining the nectar, three choices are possible for the bee (Karaboğa, 

2005): 

 

i. It can be an independent follower after leaving the food source. 

ii. It can dance and recruit nest mates before turning back to the same 

food source. 

iii. It can continue to exploit the food source without collecting other 

bees. 

 

In ABC algorithm, the half of the bees in the swarm are employed bees and 

other half of the bees are onlooker bees. Each food source stands for an employed 

bee which exploit own food source and returns to hive to put across information 

about his own food source with other bees. Each onlooker bee follows the dances 

of the bees and chooses a food source. 

According to the algorithm, a food source symbolizes a potential solution 

(i.e., food source position) of the problem and the nectar amount of a food source 

exemplifies the fitness of the solution. The steps for ABC algorithm can be 

expressed as follows: 

 

Step 1. Initialization: SN food source positions are generated randomly. SN 

denotes the number of employed bees or food source positions. Each food source, 

𝑋𝑖, 𝑖 ∈ {1,2,… , 𝑆𝑁}, is a vector with dimension D that stands for the number of 

parameters to solve the optimization problem. Generally, the beginning food source 

positions are randomly produced by Equation (3.1). 
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𝑋𝑖
𝑗
= 𝑋𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1). (𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
)                                              (3.1) 

 

where,  j=1,2,…,D; 𝑋𝑚𝑎𝑥
𝑗

 and 𝑋𝑚𝑖𝑛
𝑗

 are the top and bottom points for the  j th 

parameter of the problem; 𝑟𝑎𝑛𝑑(0,1) is a real value drawn from uniform 

distribution, and between 0 and 1. 

 

Step 2. Nectar amount (i.e., fitness value) evaluation of the food sources: 

In this step, the fitness (i.e., nectar amount) of each food source is computed.   

Step 3. Employed bee process: In this process, each employed bee is sent 

to a food source and seeks a new food source enjoying further nectar amount (i.e., 

fitness) of his own food source among his neighborhood. For each employed 

bee 𝑋𝑖, neighbor food source position is 𝑉𝑖 computed by Equation (3.2). 

 

 𝑉𝑖
𝑗𝑟𝑎𝑛𝑑

= 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

+ 𝑟𝑎𝑛𝑑[−1,1]. (𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

− 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

)                          (3.2) 

 

where 𝑋𝑘 is a randomly selected food source, 𝑘 ∈ {1,2,… , 𝑆𝑁} is randomly 

specified and has to be different from i, jrand ∈ {1,2,… , 𝐷} is a random integer 

number, and 𝑟𝑎𝑛𝑑[−1,1]  is a random value between -1 and 1.  

 

Step 4. Quality (i.e., fitness value) evaluation and selection: Following 

exploring the new food source, the fitness of this new food source is found. If the 

fitness of the new food source is greater than that of the current food source, the 

bee stores this new food source position (i.e., solution) and abandones the old. 

Step 5. Onlooker bee process: Following that all employed bees complete 

their search processes; employed bees put across the nectar amount of the food 

sources with the onlooker bees. When an onlooker bee perceives a food source, it 

evaluates the quality information obtained by all employed bees and detects a food 

source 𝑋𝑖 with the probability value 𝑝𝑖 related to its quality. For each 𝑋𝑖, the 
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probability value 𝑝𝑖 is calculated by Equation (3.3), where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is the nectar 

amount of the food source i appreciated by its employed bee. To perform this, a 

random value which is between 0 and 1 is generated and compared with the 

probability value 𝑝𝑖. If the probability value of a food source, which is computed 

by using Equation (3.3), is greater than this random value, this food source is 

appointed to the onlooker bee which explores new food source.  

 

                  𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑆𝑁
𝑛=1

                                                                   (3.3) 

 

Step 6. Memorizing the best food source: In this step, the best food source 

which has the highest fitness is memorized.   

Step 7. Scout bee process: In this process of ABC algorithm, a new food 

source is specified by a scout bee and it is exchanged with the abandoned food 

source. For this process, a counter, which is called exceed limit, is used for each 

bee in the swarm. If there exist a bee that its counter value exceeds maximum limit, 

it leaves the food source and seeks a new food source. To seek a new food source, 

a scout bee employs Equation (3.1).  

The steps through 3 to 7 are repeated until a predetermined termination 

criterion is met. The best solution is the (sub)optimum solution for the problem. 

In Figure 3.1, flowchart of the ABC algorithm is presented. Important 

properties of the ABC optimization technique are summarized as follows: 

 

i. If the fitness of a solution increases, the probability of producing a 

new solution from this solution increases as well.  

ii. The global search process for a solution whose counter has exceeded 

the limit value is terminated. 

iii. A random search process to discover a new solution is applied. 
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Figure 3.1. The flowchart of ABC algorithm (Zhang and Wu, 2011).  

 
3.2. Basic DE Algorithm 

DE is a straightforward real-valued evolutionary algorithm which consists 

of initialization of the population, difference-vector based mutation, recombination, 

fitness evaluation and selection steps as summarized below: 
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Step 1. Initialial population: The initial population is created by using a 

randomly generated real number, and a pre-described the upper and lower bounds 

for the parameter of problem solution, according to Equation (3.4). 

 𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
)                                               (3.4) 

 

where 𝑥𝑖
𝑗
 is the 𝑗𝑡ℎ parameter value of the 𝑖𝑡ℎ  individual (i.e., solution) in the 

population, 𝑥𝑚𝑖𝑛
𝑗

  and 𝑥𝑚𝑎𝑥
𝑗

 are the lower and upper boundaries for the 𝑗𝑡ℎ 

parameter of the solution of the optimization problem respectively, 𝑟𝑎𝑛𝑑 (0,1) is a 

uniformly distributed random real value which is between 0 and 1, and 𝑥𝑖 is the 

target or current individual in the population.  

 

Step 2. Difference-vector based mutation: The purpose of mutation step is 

to produce a donor or mutant individual for a target individual 𝑥𝑖, in the 

population. Therefore, three different individuals are drawn from the population 

randomly, and donor vector (i.e., individual) for the target individual is computed 

by using equation 3.5. 

 

 𝑉𝑖
𝑗
= 𝑥𝑟1

𝑗
+ 𝐹. (𝑥𝑟2

𝑗
− 𝑥𝑟3

𝑗
)                                                                       (3.5) 

 

where 𝐹 is the real valued scaling factor in range [0..2], 𝑥𝑟1
𝑗

, 𝑥𝑟2
𝑗

, and 𝑥𝑟3
𝑗

are the 𝑗𝑡ℎ 

parameter of the individuals 𝑟1, 𝑟2, and 𝑟3 in the population, 𝑉𝑖
𝑗
 is the 𝑗𝑡ℎ parameter 

of donor vector for 𝑖𝑡ℎ individual, and 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖. Hence, the minimum 

number of individuals in the population must be 4 for the DE algorithm.  

 

Step 3. Recombination (Crossover): After production of donor vector 

through mutation, a crossover operation is performed between donor vector and 
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target vector to produce a trial vector. Equation (3.6) is used to produce a trial 

vector for a target vector.  

 

 𝑈𝑖
𝑗
= {

𝑉𝑖
𝑗
,      𝑖𝑓 (𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑟 𝑜𝑟  𝑗 =  𝑗𝑟𝑎𝑛𝑑)

 

𝑥𝑖
𝑗
,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

                                 (3.6) 

 

where 𝑈𝑖
𝑗
 is the 𝑗𝑡ℎ parameter of the trial vector for the 𝑖𝑡ℎ individual (i.e., target 

vector), Cr is crossover rate which provides that a particular fraction of parameters 

is generated by the donor vector,  𝑗𝑟𝑎𝑛𝑑 is a parameter index which is drawn from 

{1,2,…𝐷}, and D is the dimension or number of parameters of the problem. 

 

Step 4. Fitness evaluation and selection: In this step, fitness functions of 

the trial vector and target vector are compared and the higher/lower fitness value 

varying according to the problem at hand is preferred. The individual having better 

fitness function value will be in the population, while the worse one will not. 

Equation (3.7) expresses the selection process of DE algorithm for a minimization 

problem. 

 

 𝑥𝑖 = {
 𝑈𝑖 ,    𝑖𝑓 ( 𝑓(𝑈𝑖) < 𝑓(𝑥𝑖))                             

 
𝑥𝑖 ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

                                   (3.7) 

 

According to Equation (3.7), basic DE algorithm adopts greedy selection 

mechanism. Namely if trial vector 𝑈𝑖 , has better fitness than the corresponding 

target vector (i.e., individual) 𝑥𝑖, the trial vector will substitute the target vector in 

the next population of individuals. Otherwise, the target individual will be 

transferred into the next population.  
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After creating of the initial population, Steps 2 to 4 are repeated for each 

target individual in the population until a termination criterion is satisfied. At the 

end of the algorithm, the individual which has the best fitness is taken as the 

solution of the problem. The flow chart of the DE algorithm is given in Figure 3.2. 

 
Figure 3.2. The flowchart of DE algorithm (Deng et al., 2013).  

 

3.3. ABC-DE based Feature Selection Method 

ABC-DE based feature selection method (Zorarpacı and Özel, 2016) is a 

wrapper method which is a hybrid approach that combines the superior properties 

of ABC and DE algorithms proposed in the studies of Zorarpacı and Özel (2016) to 

solve the feature selection problem in the classification tasks (Zorarpacı and Özel, 

2016). The scheme of ABC-DE based feature selection process is presented in 

Figure 3.3. 
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Figure 3.3. The scheme of ABC-DE based feature selection process  

 

The control parameters (i.e., scaling factor and crossover rate) affect the 

performance of DE algorithm. In particular, CR (i.e., crossover rate) is considerable 

to balance exploitation and exploration. Small values of CR promote exploitation 

while its large values enable exploration. Other significant control parameter F 

(i.e., mutation or scaling factor) takes real values between 0 and 2. Small values for 

F support the local search process while large values for it promote the global 

search process and diminish the probability to be trapped in local optimum 

(Mohamed et al., 2012). On the other hand, ABC algorithm shows quite well 

performance in terms of local search process. Therefore, ABC-DE based feature 

selection method combines the strong global search strategy of DE with a modified 

onlooker bee process of ABC algorithm.  

In this method, modified mutation process of DE and modified employed 

bee and onlooker bee processes of ABC algorithm are used. The main steps of the 

ABC-DE based feature selection method are described as follows: 
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Step 1. Determine the initial population of feature subsets: To generate 

initial population, the feature subset vectors are created in the form of binary 

values. . A sample of feature subset vector for a dataset which has 8 features is 

depicted in Figure 3.4.  

 

1

1 

0

0 

0

0 

1

1 

1

1 

1

1 

1

1 

0

0 

Figure 3.4. A sample of feature subset vector for ABC-DE based feature selection 

method 

 

Considering the feature subset vector given in Figure 3.4, we have totally 8 

features, and the chosen attribute indices are 1, 4, 5, 6, and 7, which means the 

classification task will be performed by using these 5 features.  

 

Step 2. Fitness evaluations: Fitness evaluations for the feature subset 

vectors generated in the previous step are made. To compute the fitness value of a 

feature subset vector, the features which are indicated by 0 values in the feature 

subset vectors are extracted from the dataset, and the remaining ones are employed 

to perform classification task. This reduced dataset is classified by using 3-fold 

cross validation with Weka J48 (Quinlan, 1993) classifier and the classification 

result of J48 is equal to the fitness value for the feature subset vector. For each 

feature subset vectors in the population, fitness value is computed in the same way.  

Step 3. Calculating fitness probability values: For each feature subset 

vector, fitness probability value is determined by using Equation (3.3). 

Step 4. DE/ABC neighborhood generation operators:  Two scenarios are 

considered for a source individual (i.e., feature subset vector) to perform 

exploitation or exploration. The scenarios are defined as follows :  
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i. If the probability of the source individual, 𝑋𝑖 , is greater than a random 

value between 0 and 1, the mutation process of DE is applied to 

provide exploration. Therefore, three random individuals 

𝑋𝑟1 , 𝑋𝑟2 and 𝑋𝑟3 are chosen from the population for 𝑋𝑖. These 

individuals have to be different from each other and the  𝑋𝑖 ,  which 

means that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖. Following the determination of  the 

individuals, the difference vector is found as in Equation (3.8). The 

mutant vector of 𝑋𝑖 is specified after the computation of the difference 

vector. To find mutant vector, “OR” logic operator is applied over the 

components of 𝑋𝑟3 and the difference vector, which is given in 

Equation (3.9). After the construction of the mutant vector, the 

crossover operation between 𝑋𝑖 and the mutant vector is performed by 

using Equation (3.6) and the trial vector is found. In ABC-DE based 

feature selection method, CR is set to 1.  

 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑗 = {
0,        𝑖𝑓(𝑋𝑟1

𝑗 = 𝑋𝑟2
𝑗)

𝑋𝑟1
𝑗 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                                  (3.8)            

   

𝑚𝑢𝑡𝑎𝑛𝑡𝑗 = {
1,         𝑖𝑓(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑗 = 1)

𝑋𝑟3
𝑗,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                               (3.9)     

          

ii. Otherwise, to support the exploitation, the employed bee process in 

ABC for 𝑋𝑖 is applied. Therefore, two random individuals 

𝑋𝑟1 and 𝑋𝑟2 are selected from the population (𝑟1 ≠ 𝑟2 ≠ 𝑖). 

Subsequently, a random component 𝑗𝑟𝑎𝑛𝑑 of 𝑋𝑖 is specified and  for 

𝑗𝑟𝑎𝑛𝑑, the difference between 𝑋𝑟1 and 𝑋𝑟2 is found, and it is called 

“difference component”. Equation 3.10 describes how to compute the 

difference component. Then a random value 𝑟1[0, 1] between 0 and 1, 
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which imitates the coefficient to produce neighborhood solution of 

employed bee, is drawn from uniform distribution to decide whether 

“OR” logic operator is applied or not to the component of  𝑋𝑖 and the 

difference component. Equation (3.11) describes how to build the trial 

vector. According to Equation (3.11), 𝑟2[0, 1] is a random value, 

𝑗𝑟𝑎𝑛𝑑  is a random integer value in the range of [1, D] in which D is 

the number of attributes in the dataset. 

 

     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = {
0,        𝑖𝑓(𝑋𝑟1

𝑗𝑟𝑎𝑛𝑑 = 𝑋𝑟2
𝑗𝑟𝑎𝑛𝑑 )

𝑋𝑟1
𝑗𝑟𝑎𝑛𝑑 ,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

       (3.10)        

                      

 𝑡𝑟𝑖𝑎𝑙 = 𝑋𝑖 

𝑡𝑟𝑖𝑎𝑙𝑗𝑟𝑎𝑛𝑑 =

{

1,                𝑖𝑓(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 1 𝑎𝑛𝑑 𝑟1[0, 1]  > 𝑟2[0, 1] )

𝑋𝑖
𝑗𝑟𝑎𝑛𝑑 ,                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

        (3.11) 

 

Step 5. Fitness evaluation and selection process: The fitness value for the 

trial vector is computed by using Weka J48 classifier with 3-fold cross validation. 

Following the calculation of the fitness value for the trial vector, it is compared 

with that of 𝑋𝑖. If fitness function value of the trial vector is higher than that of 

𝑋𝑖  or its fitness function value is equal to 𝑋𝑖, and the number of attributes in the 

trial vector is lower than that of 𝑋𝑖; the trial vector substitute 𝑋𝑖 in the population.  

Step 6. Calculating probabilities of the individuals: The fitness probability 

values of the individuals are computed by using Equation (3.3) for each 𝑋𝑖 to 

perform modified onlooker bee process.  

Step 7. Modified onlooker bee process: In modified onlooker bee process, 

the aim is to ensure the diversity in the population and prevent to be trapped in 

local optimum. Therefore, the probability value 𝑝𝑖 of an individual 𝑋𝑖  is subtracted 
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from the maximum probability value, and if this value is greater than rand[0,1], 

“NOT” logic operator is applied to 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑. “NOT” operator is given in Equation 

(3.12). Following the determination of trial vector, fitness evaluation and selection 

are employed as stated in Step 5. This step is repeated n times, and n is equal to the 

number of onlooker bees.  

 

𝑡𝑟𝑖𝑎𝑙=𝑋𝑖 

𝑡𝑟𝑖𝑎𝑙𝑗𝑟𝑎𝑛𝑑 = {
0,   𝑖𝑓 (𝑡𝑟𝑖𝑎𝑙𝑗𝑟𝑎𝑛𝑑 = 1)  
1,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                                               (3.12) 

 

Steps 3, 4, 5, 6, and 7 are reiterated until a termination criterion is 

provided. The best solution will be the (sub)optimum feature subset for the 

classification task. 

 

3.4. 1R Classification Algorithm  

1R (Holte, 1993) is a simple and efficient rule-based classifier. 1R finds the 

most informative attribute in the data and classify instances with the values of this 

single attribute. As it uses only one attribute for classification task, it is called “One 

Rule”. On the other hand, as it uses only one attribute for classification rules, it 

may be less accurate with respect to the state-of-art classification algorithms, 

however it generates very few rules that are very easy to interpret for humans 

(Holte,1993). The pseudo-code of 1R is given in Algorithm 3.1. 
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Algorithm 3.1. 1R classification algorithm 

Input: Database D 

Output: The IF-THEN rules of 1R classifier 

Begin 

      for each  attribute Aj in D do 

            for each attribute value vi in Aj  

                   Count how often vi appears in each class, and set this value to 𝑛𝑗𝑖 

            end for 

             Detect the most frequent class of vi by using  𝑛𝑗𝑖 values 

             Make an IF-THEN rule with consequent as the most frequent class label       

and the antecedent as Aj=  vi 

            Calculate the total classification error of the rules of Aj 

      end for   

      Choose the best attribute Abest of which IF-THEN rules that have the smallest  

total error among all Aj 

      return The IF-THEN rules of Abest; 

end 

 

3.5. Differential Privacy 

Differential privacy (Dwork et al., 2006), which is a strong privacy 

guarantee, has been proposed to perform data mining algorithms over databases 

which contain sensitive information. It determines privacy leakage ratio by ϵ 

parameter, and enables individuals’ data to be taken safely in a database (Dwork et 

al., 2006; Dwork, 2008; Dwork and Roth, 2014). 

Differential privacy asserts that the output of a function does not entirely 

depend on any instance in the database. It claims that yielding of the same output is 

highly probable even if an instance is or not in the database.  
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Definition 3.5.1. (Neighbor databases) D and D’ are two neighbor 

databases which differ from each other with a single instance, |𝐷′∆𝐷|=1.  

Definition 3.5.2. (ϵ-differential privacy) A randomized mechanism 𝐴 (such 

as Laplace mechanism) is ϵ-differentially private if all subsets S of the outputs of 

the algorithm 𝐴 for all neighbor databases 𝐷′ and D is 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐴). And  

 

Pr[𝐴(𝐷) ∈ 𝑆] ≤ 𝑒ϵ × Pr[𝐴(𝐷′) ∈ 𝑆]                                                    (3.13) 

 

where  Pr[𝐴(𝐷) ∈ 𝑆] is the probability of  𝐴(𝐷) of  being an element of S, 𝐴(𝐷) 

and 𝐴(𝐷′) are the outputs of the randomness algorithm 𝐴  for the databases 𝐷 and 

𝐷′ respectively, and ϵ is used to check out how much a malicious client can 

recognize the difference between the databases 𝐷′ and D, and 𝑅𝑎𝑛𝑔𝑒(𝐴) 

represents the range of the outputs which can be generated by randomized 

mechanism 𝐴. The smaller values of ϵ mean much more privacy.  

 

Definition 3.5.3. (Sensitivity) Let 𝑓(𝐷) ∶ 𝐷 → ℝ be a function mapping a 

database 𝐷 into real numbers. The sensitivity for 𝑓(D) is determined by  

 

  ∆𝑓 ∶= 𝑚𝑎𝑥𝐷,𝐷′ || 𝑓(𝐷) − 𝑓(𝐷′)||                                                        (3.14) 

 

where ∆𝑓 := 1, ||. ||  is the 𝐿1 norm and the sensitivity is equal to 1 for all neighbor 

databases 𝐷 and 𝐷′. The sensitivity of a function f represents the maximum 

magnitude in which the record of only one individual can alter the value of  f  for 

the worst case. In other words, the sensitivity for a function grants a maximum 

bound on how much its output must be perturbed to provide differential privacy 

(Dwork et al., 2006; Dwork and Roth, 2014).  
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Definition 3.5.4. (Laplace mechanism) Let 𝐿𝑎𝑝(𝛾) be the Laplace 

distribution by mean 0 and standard deviation 𝛾. For the function 𝑓(𝐷) ∶ 𝐷 → ℝ, 

the randomized algorithm A, represents Laplace mechanism and responds 𝑓(𝐷) as 

follows: 

 

 𝐴(𝑓(𝐷)) =  𝑓(𝐷) + 𝑉                                                                          (3.15) 

 

where 𝑉 is an independently and identically distributed random variable drawn 

from 𝐿𝑎𝑝(𝛾), and provided that  𝛾 ≥ ∆𝑓/ϵ ,  algorithm A is ϵ-differentially private. 

Therefore, Laplace mechanism is ϵ-differentially private (Dwork et al., 2006; 

Dwork et al., 2008).  

 

𝑑𝑃𝑟 (𝑧) ∝ exp  (
ϵ 

2×∆𝑓
 || 𝑧|| )                                                                (3.16) 

 

where 𝑑𝑃𝑟 represents the probability density function of Laplace distribution.  

According to Equation (3.16), the amount of the added noise is proportional to the 

sensitivity and inversely proportional to ϵ. Decreasing values of ϵ expands the 

range of noise distribution, which results in more noisy estimates. On the other 

hand, increasing the sensitivity results in more perturbation as well (Antonova, 

2015). 

 

Definition 3.5.5. (Composition property) The goal of composition property 

is to provide differential privacy guarantee. Stated a total budget 𝜖, the budget 

should be divided cleverly considering the composition properties to maximize 

data utility by minimizing the added noise to the actual results of the function. ϵ is 

a positive real number which specifies privacy level and larger values of ϵ result in 

less guarantees than smaller values of ϵ (Dwork et al., 2006; Dwork and Roth, 
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2014). Composition property consists of sequential composition and parallel 

composition.  

The sequential composition property is used when a database is appealed to 

multiple times by differentially private algorithms. The parallel composition 

property is utilized when the disjoint subsets of data are given as input to a 

differentially private algorithm.  

Let 𝐴1 and 𝐴2 be 𝜖1-differentially private and 𝜖2-differentially private 

algorithms. Sequential composition provides the (𝜖1 + 𝜖2) –differential privacy for 

the outputs of the functions resulted by 𝐴1(𝑓(𝐷)) and 𝐴2(𝑓(𝐷)). Parallel 

composition provides max (𝜖1, 𝜖2)–differential privacy for the outcomes of the 

functions resulted by 𝐴1(𝑓(𝐷1)) and 𝐴2(𝑓(𝐷2)).  

Differential privacy provides three alternatives to construct differentially 

private implementations: 

 

1. Input perturbation: In this technique, the data is perturbed by adding 

noise to the values of its numerical attributes for a certain privacy level (i.e., ϵ).  

 

Definition 3.5.6 Let x be a d-dimensional vector of a database D, a 

differentially private variant of  x can be given as in Equation  (3.17).  

 

                     𝑥𝑝𝑟𝑖𝑣 =x + 𝑧                                                         (3.17) 

 

where z is a d-dimensional vector with a Laplace density probability function given 

in Equation (3.16). With this noise addition to each individual data vector 𝑥𝑖 in the 

database 𝐷, it can be guaranteed that the resulting database 𝐷𝑝𝑟𝑖𝑣= 

(𝑥𝑝𝑟𝑖𝑣1, 𝑥𝑝𝑟𝑖𝑣2,  𝑥𝑝𝑟𝑖𝑣3, … , 𝑥𝑝𝑟𝑖𝑣𝑛) is an ϵ-differentially private approximation to 𝐷 

(Sarwate and Chaudhuri, 2013). 
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2. Output perturbation: In this technique, the output of an algorithm or 

function is perturbed to provide privacy. For example, to create a differentially 

private MLE for logistic regression, logistic regression is trained as non-private; 

then a noise vector with the same dimension is added to the original estimate, 

which is a differentially private logistic regression proposed by Chaudhuri et al. 

(2011) (Chaudhuri et al., 2011; Antonova, 2015). As another example a count 

query can be given. A count query is represented as a function, if the actual query 

result of a count query is 𝛿, the differentially private result (i.e., noisy result) is 𝛿 +

𝑏, where 𝑏 is drawn from Laplace distribution with mean 0 and standard deviation 

∆𝑓

ϵ
, such that ∆𝑓 is the sensitivity of count query and equal to 1, and ϵ is the privacy 

level.  

 

3. Objective perturbation technique: Objective perturbation, which was 

proposed by Chaudhuri et al. (2011) for the empirical risk minimization, adds noise 

to an objective function prior to optimization (Antonova, 2015; Edlich, 2017).  

In the literature differentially private classification algorithms are based-on 

output perturbation except the studies of Mivule et al. (2012). However, input 

perturbation could be utilized in case that the data is used in more than one ways, 

or the data analyst wants to employ a non-private algorithm to make privacy 

preserving data analysis  (Mivule et al., 2012; Sarwate and Chaudhuri, 2013; Ji et 

al., 2014; Antonova, 2015) as in our proposed ABC based rule induction 

algorithms in this thesis. On the other hand, output perturbation cannot be suitable 

for the data mining algorithms which require too many appeals to the database to 

perform mining process (Ji et al., 2014). In such cases, input perturbation under 

differential privacy can be a solution to perform privacy preserving data mining as 

well (Mivule et al., 2012; Ji et al., 2014; Sarwate and Chaudhuri, 2013; Edlich, 

2017). Therefore, input perturbation technique is used for the ABC-based rule 

induction methods proposed in this thesis, while output perturbation technique is 
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applied to build a differentially private 1R algorithm as the secondly proposed 

method in this thesis. 

 

3.6. Naïve Bayes Classification Algorithm  

 NB is a quite simple and Bayesian theory based algorithm. Although its 

simplicity, it is often employed as a baseline classifier (Murphy, 2006). According 

to Bayesian method, a new unseen instance is assigned to the most probable class 

label 𝐶𝑘 from class label set C, given the attribute values which represent the 

instance to perform classification. The pseudo-code to classify a new instance by 

using NB classifier is given in Algorithm 3.2. 

 

Algorithm 3.2. Naïve Bayes classification algorithm 

Input: Database D, Class label set C, 

Output: Class label CNB 

Begin 

      for each  class label 𝐶𝑘 ∈ 𝐶 do 

            Compute 𝑛𝑘 which is total number of instances with class label 𝐶𝑘 

                  for each  attribute Aj in D do 

                        for each attribute value vi in Aj  

                                 Count how often vi appears for 𝐶𝑘, and set this value to  𝑛𝑗𝑖 

                                 Use 𝑛𝑗𝑖 to compute 𝑃(𝐴𝑗𝑖|𝐶𝑘) 

                        end for 

                    end for  

            Use 𝑛𝑘 to compute 𝑃(𝐶𝑘) 

      end for 

      Find CNB= 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑘∈𝐶(𝑃(𝐶𝑘)∏𝑃(𝐴𝑗𝑖|𝐶𝑘)) 

      return CNB; 

end 
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According to Algorithm 3.2, 𝐴𝑗𝑖 stands for 𝑖𝑡ℎ value of attribute j, 𝐶𝑘 is the 

class label with indices k, 𝑃(𝐴𝑗𝑖|𝐶𝑘) denotes the conditional probability between 

𝐴𝑗𝑖 and 𝐶𝑘, 𝑃(𝐴𝑗𝑖|𝐶𝑘)= 
𝑛𝑗𝑖

𝑛𝑘
 where 𝑛𝑘 is total number of instances in the training 

dataset with class label 𝐶𝑘, and 𝑃(𝐶𝑘) is the probability of  𝐶𝑘, 𝑃(𝐶𝑘)= 
𝑛𝑘

𝑛
 where n 

is the total number of instances in the training dataset.  

 

3.7. Datasets  

In the experiments, UCI datasets are used, and their properties are given in 

Table 3.1. According to Table 3.1, number of classes for the datasets changes from 

2 to 8, and number of attributes ranges from 5 to 61. Attribute types of the datasets 

are various including real, integer and categorical values. 

 

Table 3.1. Description of Datasets 

Dataset 
# of 

Attributes 
# of 

Classes 
Attribute Type 

# of 
Instances 

Breast Wisconsin 10 2 Integer 699 

Congressional 
Votings 

16 2 Categorical 435 

Credit Approval 15 2 
Categorical, Real, 
Integer 
 

690 

Ecoli 8 8 Real 336 

Heart-statlog 14 2 Categorical, Real 270 

Iris 5 3 Real 150 

Mushroom 22 2 Categorical 8124 

Nursery 8 5 Categorical 12960 

Spect-heart 23 2 Categorical 267 

Sonar 61 2 Real 208 

 

In Table 3.2, the class distribution of datasets used in our experiments are 

given. In Table 3.3, the datasets used for differentially private algorithms in the 

literature are presented as well. In the experiments, some common datasets used in 

the literature that are Congressional voting, Credit approval, Iris, Mushroom, and 

Nursery as well as different datasets that are Breast Wisconsin, Ecoli, Heart-
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statlog, and Sonar are employed. Different datasets from literature are used in the 

experiments since the differentially private classification algorithms in the 

literature are based-on output perturbation technique and use the datasets which 

have discretized or categorical attributes in general. However, for the ABC based 

privacy preserving classification proposed  in this thesis, the input perturbation 

technique of differential privacy is applied and it is required to study with the 

datasets which have numeric attributes. Therefore, we investigate the performance 

of the proposed rule-based classifiers over the datasets which have different 

number of numeric attributes varying from 4 to 60.  

For the second privacy preserving classification method proposed in this 

thesis the output perturbation technique of differential privacy is applied and for 

this purpose the datasets used in the literature that are Congressional voting, Credit 

approval, Mushroom, Spect-heart, Nursery, Breast wisconsin, and Heart-statlog are 

used in the experiments. Among them, Congressional voting, Credit approval, 

Mushroom, and Nursery datasets are common in the literature. On the other hand, 

Breast wisconsin, Heart-statlog, and Spect-heart datasets are employed in our 

experiments as well since medical datasets include sensitive information about the 

patients in general.  
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Table 3.2. Class distribution of the datasets 
Dataset Class Names and # of Instances for each Class 

Breast 
Benign 
458 

Malig. 
241 

      

Con. 
vot. 

Dem. 
267 

Rep. 
168 

      

Credit 
Posit. 
307 

Nega. 
383 

      

Ecoli 
CP 
143 

IM 
77 

PP 
52 

IMU 
35 

OM 
20 

OML 
5 

IML 
2 

IMS 
2 

Heart 
Absent 
150 

Present 
120 

      

Iris 
Iris-set. 
50 

Iris-vers. 
50 

Iris-vir. 
50 

     

Mush. 
Edible 
4208 

 
Poiso. 
3916 

      

Nursery 
Spec 
Prior 
4044 

Priority 
4266 

Very 
Com 
328 

Rec. 
2 

Not 
Rec. 
4320 

   

Spect 
No 
55 

Yes 
211 

      

Sonar 
Mines 
111 

Rocks 
97 
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Table 3.3. Datasets used for differentially private classification algorithms in the 

literature 
Freidman 
and 
Schuster 
(2010) 

Jagannathan 
et al. 
(2012) 

Vaidya 
et al. 
(2013) 

Bojarski  
et al.  
(2015) 

Fletcher 
 and 
Islam 
(2015) 

Gursoy 
et al. 
(2017) 
 

Adult  Adult Adult   

     Banana 

    Car  

 Cong. Vot.     

      

      

 Mushroom Mushroom  Mushroom  

     Phoneme 

 Nursery Nursery  Nursery  

     Thyroid 

     Banknote 

 

Table 3.4. Description of datasets used for differentially private classification 

algorithms in the literature 
Dataset # of 

Attributes  
# of 
Classes 

# of 
Instances 

Attribute 
Type 

Adult 14 2 48842 Categorical, 
Integer 

Banana 2 2 5300 Real 

Car 6 4 1728 Categorical 

Con. vot. 16 2 435 Categorical 

Credit 15 2 690 Categorical, 
Real, Integer 

Iris 5 3 150 Real 

Mushroom 22 2 8124 Categorical 

Phoneme 5 2 5404 Real 

Nursery 8 5 12960 Categorical 

Thyroid 21 2 7200 Categorical, 
Real 

Banknote 4 2 1372 Real 

 

3.8. Weka Data Mining Tool 

Weka (Waikato Environment for Knowledge Analysis) is a famous 

platform of machine learning software which was designed by using Java 

Programming Language and built in University of Waikato, New Zealand. It is free 

and open source software. The sample graphical user interface of Weka is shown in 
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Figure 3.5. Although Weka can be used through its GUI, the source codes of it can 

also be called in our Java code. Weka includes feature selection, data 

preprocessing, clustering, regression, filtering, classification, and visualization 

tools. 

  

 
Figure 3.5. Sample graphical user interface of Weka 

 

Weka Data Mining Tool has 4 general applications that are Explorer, 

Experimenter, KnowledgeFlow, and SimpleCLI with several subtasks.  

Explorer, Experimenter, and KnowledgeFlow have graphical user 

interface; while CLI has command line interface for performing data analysis.  

Explorer application consists of preprocessing, classification, clustering, 

association rule mining, attribute selection, and visualization main tasks. 

Preprocessing which is also called as “filters” can analyze and modify the data. 

Several classifiers (trees, rules, functions etc.) exist in the classification task. 

Clustering task includes different data clustering techniques such as 

SimpleKMeans etc. Association rule mining is performed by the associate task; 

whereas attribute selection algorithms are applied to data in the select attribute 
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task. Finally, with visualization task, scatterplots for attribute values can be 

obtained. Weka Explorer Application GUI is shown in Figure 3.6.  

 

 
Figure 3.6. Weka explorer application GUI 

 

Experimenter component provides users to apply the same techniques in 

the Explorer part with different parameters or apply different analysis techniques to 

a data. Knowledge Flow task presents to users the data sources, data sinks, filters, 

classifiers, clusterers, associations, evaluations, and visualization processes. CLI is 

used if Weka is to run in command line interface.  

In this study, Weka is used for the implementation of well-known 

classification techniques that are J48 (Quinlan, 1993), NB (Murphy, 2006), BN 

(Jensen, 1996), MLP (Rumelhart et al., 1986), IBk (Aha et al., 1991), Kstar (Cleary 

and Trigg, 1995), 1R  (Holte, 1993), PART (Frank and Witten, 1998), Random 

Tree (Breiman, 2001), Bagging (Brieman, 1996), RIPPER (Cohen, 1995) for the 
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performance comparison with our proposed rule-based classifiers. To use these 

algorithms, the source codes of the algorithms are invoked in our Java 

implementations. On the other hand, to perform differentially private 1R and NB 

classification algorithms, the count query results used during the construction of 

the algorithms in the source codes of Weka Data Mining Tool are perturbed with 

necessary Laplace noise function.
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4. METHODS 

In this section, two proposed implementations of differential privacy to 

build rule-based classifiers by using meta-heuristics that are ABC and DE 

algorithms are explained in detail.  

 

4.1. Proposed ABC-based Classifiers 

 To perform privacy preserving classification, three rule-based classifiers 

that are based on ABC algorithm are proposed in this thesis to extract IF-THEN 

classification rules from the input training dataset. Therefore, the proposed ABC-

based classifiers in this section can be used for classification of both differentially 

private and non-private datasets. 

 

4.1.1. Encoding of a Rule as Food Source Position for ABC algorithm 

For the implementation, rules are  formed as 𝐼𝐹 < 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 > 𝑇𝐻𝐸𝑁 <

𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 > format. Here, the < conditions > part consists of one or more 

comparison-based condition(s) that are connected with AND Boolean operator. A 

condition is a predictive feature and a value pair combined with an equality 

operator if the predictive feature type is categorical; otherwise a condition consists 

of a predictive feature, a lower bound, and an upper bound triple connected with 

comparison operators which means that the value of the feature is between the 

lower and upper bounds if the attribute is a real or integer valued. As an example 

𝐼𝐹 𝑐𝑛𝑑1 𝐴𝑁𝐷 𝑐𝑛𝑑2 𝐴𝑁𝐷 𝑐𝑛𝑑3 𝑇𝐻𝐸𝑁 𝑐𝑙1 is a rule where there are three conditions 

𝑐𝑛𝑑1, 𝑐𝑛𝑑2, 𝑐𝑛𝑑3 and a consequent 𝑐𝑙1 which is the class label. 

We propose a two-tier structure to encode a rule (i.e., food source position) 

as shown in Figure 4.1. The first layer is a vector with binary values of size n 

where n is the number of features in the dataset, to show which features are used in 

the < conditions > part of the rule. If the value in the first layer is 1 for any feature 

i, this means the feature is used in the conditions, otherwise if the value is 0, the 

feature is not used in the conditions part. The second layer is a real-valued vector 
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that represents the values of the features in the first layer. If the values of any 

feature (i.e., attribute) in the dataset are continuous, two-units area are allocated for 

this feature in the second layer to show the lower and upper bounds for the range 

covered by the rule. Otherwise, one unit space (i.e., 4 bytes) for each attribute is 

allocated to store its value. 

 

 

Figure 4.1. The encoding of a rule for ABC algorithm. 

 

 

Figure 4.2. A sample encoding of the rule with 4 features. 

 

In Figure 4.2, a sample encoding for a rule is given. It is assumed that the 

dataset D has 4 attributes excluding the class label, and the rule is for any class A is 

given. As the dataset has 4 attributes, there are 4 values in the first layer. As shown 

in the first layer, only the first and the fourth attributes are used in the < conditions 

> as their values are set to 1. Let the name of the first attribute be “SALARY”, and 

that of the fourth attribute be “AGE”. We also assume that SALARY is a real 

value, and AGE is a categorical attribute and takes one of the three values that are 

“young”, “middle” and “old”. The categorical values are encoded with real-values 

starting from 1.0 with 1.0 increment. As AGE has three different values 1.0 is used 

for “young”, 2.0 stands for “middle”, and 3.0 represents “old”. The second layer 
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has randomly generated values for the attributes in the first layer. When we have a 

continuous attribute, we form a range comparison condition as for the SALARY 

attribute. If we have a categorical attribute, we compare the value in the second 

layer with the numeric encodings of the categorical values and then convert the 

value in the second layer to the nearest categorical value. The encoding of the food 

source position given in Figure 4.2 is converted to the following rule: 

 

IF 1000.0≤SALARY≤3000.0 AND AGE=“old” THEN Class A 

 

As AGE has value 3.2 in the second layer, the closest value to 3.2 is 3.0 which is 

equal to “old”. Also, the second and the third attributes are not used in the < 

conditions > part, therefore their values in the second layer are ignored. 

 

4.1.2. Perturbation of Input Data with Differential Privacy 

Differential privacy provides confidentiality guarantee for the individuals 

in a database while the functions are performed on the database. There exists three 

ways to achieve differential privacy that are input perturbation (Mivule et al., 2012; 

Sarwate and Chaudhuri, 2013; Ji et al., 2014; Sanchez et al., 2015), objective 

perturbation (Chaudhuri, 2011; Chaudhuri and Monteleoni, 2008; Rubinstein et al., 

2009; Zhang et al., 2012; Ji et al., 2014; Fukuchi et al., 2017), and output 

perturbation (Friedman and Schuster, 2010; Bojarski et al. 2015; Fletcher and 

Islam, 2015; Fletcher and Islam, 2016; Gursoy et al., 2017).  

According to the literature, most of the differentially private classification 

techniques are based on output perturbation. Although output perturbation provides 

strong privacy guarantee under differential privacy, output perturbation cannot be 

suitable for the data mining algorithms which require too many appeals to the 

database to perform mining process (Ji et al., 2014). On the other hand, input 

perturbation technique allows to release the noisy dataset while preserving the 
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privacy, and it is independent of any data mining algorithm which is private or 

non-private (Antonova, 2015; Edlich, 2017).  

Consequently, the input perturbation technique which provides differential 

privacy guarantee as in the study of Mivule et al. (2012) is adopted to perturb the 

training data to be mined using ABC algorithm. In this technique, perturbation 

process is applied to only numerical attribute values of the training data, and the 

algorithm of the input perturbation is given in Algorithm 4.1.  

 

Algorithm 4.1. Input perturbation with differential privacy 

Input: Original training data T, and privacy parameter ϵ 

Output: Differentially private training data 𝑇𝑝𝑟𝑖𝑣 

Begin 

      for each numerical attribute Aj in T do 

            for each numerical attribute value v of Aj in T do 

                  𝑣 ≔ 𝑣 +  𝐿𝑎𝑝(∆𝑓/ϵ) 

            end for 

      end for 

      𝑇𝑝𝑟𝑖𝑣:= 𝑇 

      return 𝑇𝑝𝑟𝑖𝑣; 

end 

 

 

In Algorithm 4.1, ∆𝑓 which is the sensitivity of the jth numerical attribute 

in T is computed according to Equation (4.1). 

 

∆𝑓 ∶=  || 𝐴𝑗(𝑣𝑚𝑎𝑥) − 𝐴𝑗(𝑣𝑚𝑖𝑛)||                                                            (4.1) 
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where 𝐴𝑗 is the jth numerical attribute of the training data T, 𝐴𝑗(𝑣𝑚𝑎𝑥) and 

𝐴𝑗(𝑣𝑚𝑖𝑛) are the maximum and the minimum values of the jth numerical attribute 

in the training data, respectively. 

 

4.1.3. Rule Similarity Measure 

To discover classification rules using ABC algorithm, three methods are 

proposed, and they are called wLapMS ABC, sequential covering wLap ABC, and 

1-rule ABC.  

In wLapMS ABC, Michigan approach, where each food source 

position/chromosome (i.e., solution) represents only a single rule for a class, is 

adopted. This method provides a simpler structure and a shorter time to converge to 

the best solution (i.e., rule) for ABC algorithm (Celik et al., 2011; Shukran et al., 

2011; Talebi and Abadi, 2014). However, after the extraction of the first rule for a 

class, it is possible that ABC algorithm converges to the same (sub)optimal 

classification rule for this class, that is, almost the same rules are generated for the 

class since we do not remove the instances covered by the discovered rules from 

the training data in wLapMS ABC method. To prevent from having the same or 

very similar rules for a class, a rule similarity measure is proposed in this thesis to 

embed in the greedy selection stages of ABC algorithm. Thanks to this approach, 

the greater similarity a candidate rule (i.e., solution) has to the previously learned 

rules, the lower chance it has to be selected during the selection phase of ABC 

algorithm. Therefore, different rules from each other are discovered from the 

training data for the prediction of any class. Rule similarity measure can be 

considered as an alternative to classical sequential covering rule induction which 

removes instances covered by discovered rules, and it provides to extract required 

number of different rules (this value is determined by the user) for each class.  

To compute the similarity between a candidate rule r and all previously 

generated rules for the class, we propose Algorithm 4.2 which checks the 
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intersection of the attributes used in the rule r and with all of the previously 

generated rules. Let rj be any previously generated rule. For each common attribute 

in rules r and rj, if the common attributes have the same value or if their ranges 

intersect, then similarity score of r is incremented by one. This computation is 

repeated for all previously generated rules, and cumulative similarity score for the 

candidate rule r is computed. If the resulting similarity score is high for the rule r, 

this means the candidate rule r covers or is covered by the previously generated 

rules, and it should not be selected. 

 

Algorithm 4.2. Rule similarity measure 

Input: Candidate rule r, and set of previously generated rules RS 

Output: SimScorer  which is similarity score of r    

Begin 

      SimScorer := 0 

      FS1 := set of valid attributes in rule r 

      for each rule rj in RS do 

            FS2 := set of valid attributes in rule rj 

           FS := FS1 ∩ FS2 

            for each attribute Ai ∈ FS do 

                  if Ai is a categorical attribute then 

                        if value(r.Ai) == value(rj.Ai) then SimScorer ++; 

                  else if Ai is a continuous attribute then 

                          if 𝑟𝑎𝑛𝑔𝑒(𝑟. 𝐴𝑖) ∩ 𝑟𝑎𝑛𝑔𝑒(𝑟𝑗 . 𝐴𝑖) ≠ ∅ then SimScorer ++; 

            end for 

      end for 

      return SimScorer; 

end 
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4.1.4. Selection Mechanism for ABC Algorithm with Rule Similarity Measure 

The proposed rule induction algorithms based on ABC algorithm search for 

different rules from the previously discovered best rules for the class at each 

iteration. In other words, different combinations of the attributes which most cover 

the instances of the class at hand are searched at each iteration in wLapMS ABC. 

Therefore, the rule similarity measure given in Algorithm 4.2 is proposed and 

embedded into the selection phase providing to choose the different rules from 

previously learned ones for the class. The selection mechanism formula is given in 

Equation (4.2).  

 

𝑋𝑖 = {
𝑉𝑖 ,   𝑖𝑓 (𝑅𝑄𝑀𝑋𝑖 ≤ 𝑅𝑄𝑀𝑉𝑖  𝐚𝐧𝐝 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒𝑉𝑖 ≤ 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒𝑋𝑖)  

𝑋𝑖 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                 
    (4.2) 

 

where 𝑋𝑖 is the current rule in the swarm, 𝑉𝑖 is the candidate rule, 𝑅𝑄𝑀𝑋𝑖and 

𝑅𝑄𝑀𝑉𝑖are the rule quality measure values for the current rule and candidate rule 

respectively, and 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒𝑋𝑖 and 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒𝑉𝑖 are the rule similarity score values 

for 𝑋𝑖 and 𝑉𝑖 according to the previously extracted rules in the rule set of the class 

at hand. 

 

4.1.5. Binary Operator of ABC for the First Layer of the Rule Encoding 

The original ABC algorithm has been proposed for continuous valued 

optimization problems and its operators that are used to determine the new food 

source position in employed bee and onlooker bee phases given in Equation 3.2 are 

based on real-valued processes. Therefore, we use a variant of the binary operator 

proposed in (Zorarpacı and Özel, 2016), which has been developed to perform 

feature selection, for the first layer of two-tier solution structure of our ABC 

algorithm. This binary operator for ABC algorithm is employed to specify which 

conditions (i.e., attribute and value pairs) exist in a rule (i.e., food source position). 

The mathematical formulation of the binary operator is given in Equation (4.3).  
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𝑉𝑖
𝑗𝑟𝑎𝑛𝑑

= 

{
 
 

 
 0,             𝑖𝑓 (𝑋𝑖

𝑗𝑟𝑎𝑛𝑑
== 𝑋𝑘

𝑗𝑟𝑎𝑛𝑑
 𝒂𝒏𝒅 𝐹 > 𝑟𝑎𝑛𝑑(0,1))

𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

   𝑖𝑓 (𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

≠ 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

𝒂𝒏𝒅 𝐹 > 𝑟𝑎𝑛𝑑(0,1))     

𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

   (4.3) 

 

where F is a real number between 0 and 1, and it controls whether 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

is 

changed with the difference between 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

 and 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

 or not. F is used for 

simulating the coefficient (i.e., amount of movement of 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

to 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

), which is 

rand[-1, 1] and multiplied with the difference of 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

 and 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

in Equation 

(3.2) and for providing the convergence simultaneously for the first and second 

layer of our proposed ABC algorithm. Finally, 𝑟𝑎𝑛𝑑(0,1) is a random value 

between 0 and 1. 𝑋𝑖
𝑗𝑟𝑎𝑛𝑑

, 𝑋𝑘
𝑗𝑟𝑎𝑛𝑑

, and 𝑉𝑖
𝑗𝑟𝑎𝑛𝑑

 are as given in Equation (3.2).  

 

4.1.6. The Proposed Rule-based classifiers Using ABC Algorithm over 

Differentially Private and Non-private Data 

According to the literature, ABC algorithm is used for classification only a 

few different ways. For the most of these algorithms, ABC is used to optimize the 

vital parameters of the well-known classifiers. On the other hand, a few studies use 

ABC to discover classification rules in the form of IF-THEN from training data 

(Celik et al., 2011; Shukran et al. 2011; Talebi and Abadi, 2014; Celik et al., 2016). 

However, none of these studies learn the rule set from a differentially private data. 

Therefore, to our best knowledge, this is the first study which applies ABC to learn 

classification rules from the differentially private data.  

In our proposed method, firstly, numerical attribute values of the training 

data are perturbed under differential privacy guarantee by using Algorithm 4.1 to 

protect the sensitive data, then the classification rules are learned from this 

differentially private data by using the proposed rule-based classifiers employing 
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the ABC algorithm. The flowchart of the proposed ABC algorithm to discover 

classification rules from training data for the both version of non-private and 

differentially private data is given in Figure 4.3.  
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Figure 4.3. The flowchart of the proposed ABC-based classification 

algorithm. 
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In the ABC-based classifier implementation of this thesis, three rule-

induction methods based-on ABC algorithm are proposed, which are called as 

wLapMS ABC, 1-rule ABC, and sequential covering wLap ABC, to discover 

classification rules over the differentially private and non-private data.  

According to Figure 4.3, the proposed rule-induction methods search for a 

set of classification rules (i.e., IF-THEN rules) for each class in the dataset, and 

each classification rule for a class is learned in one by one. The best rule 

discovered at the end of each iteration of ABC algorithm for a class (i.e., when 

ABC algorithm reaches the threshold value of iterations) is stored as a 

classification rule for the class at hand. Searching process starts with the first class 

in the dataset and continues to discover rules for all classes in the training dataset.  

To stop the rule discovery process for a class, the termination criteria for 

wLapMS ABC and 1-rule ABC is chosen as the number of rules to be discovered 

for the class. When this threshold is reached, rule discovery process is stopped for 

the class at hand, and the algorithm starts to discover new rules for the next class. 

This threshold value is determined by the user. For the  1-rule ABC, number of 

rules to be discovered for each class is set to 1.  For the wLapMS ABC on the other 

hand, the user of the algorithm determines the number of rules to be discovered for 

each class and this value is greater than 1. In sequential covering wLap ABC, the 

termination criteria is defined as the number of uncovered instances of the current 

class in the training data and this value is less than or equal to 5% of all instances 

of the class in the training data as in other ABC-based classification algorithms 

(Celik et al., 2011; Shukran et al., 2011; Talebi and Abadi, 2014). The other details 

of our proposed methods are explained in the below subsections of this thesis.   

 

4.1.6.1. Rule Quality Measures 

Developing a rule-based classifier requires a measure to determine whether 

the quality of the generated rule is good or not to compute nectar amount of the 

food sources. Measures used for computing rule quality in terms of precision and 
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coverage have been compared in detail in (Hilderman and Hamilton, 1999; Lavrac 

et al., 1999; Azevedo and Jorge, 2007; Michalak et al., 2015). 

Two measures are used to compute rule qualities for ABC algorithm. First, 

weighted Laplace measure (wLap) is used to discover rules which have high 

precision and low coverage (Michalak et al., 2015). It is based on decision tree rule 

induction algorithm and it uses Laplace estimate (S+N)/S which takes into account 

the distribution of data instances between the classes and has the best classification 

accuracy even for unbalanced datasets (Michalak et al., 2015). The weighted 

Laplace measure wLap of a rule for class A is computed as in Equation (4.4). 

 

𝑤𝐿𝑎𝑝 =
(𝑝+1)(𝑆+𝑁)

(𝑝+𝑛+2)𝑆
                                                                                  (4.4) 

 

In Equation (4.4), if we assume that D is a dataset which has instances 

from 3 classes A, B, and C; and p expresses the number of samples of class A 

covered by the rule, n is the number of instances from other classes (i.e., B and C) 

covered by that rule, and S denotes the number of all samples of class A. N is the 

number of instances which belong to classes (i.e., B and C) except class A.  

Another rule quality measure is Mutual Support (MS) (Michalak et al., 

2015) which is computed as in Equation (4.5). MS prefers rules with high coverage. 

 

𝑀𝑆 =
𝑝

𝑆+𝑛
                                                                                                (4.5) 

 

By Equation (4.6), we propose to weight MS with the 𝛼 and 𝛽 coefficients 

to adjust the precision and coverage of the rule. Therefore, the user can prefer the 

rules which have higher precision or coverage according to the data at his hand.   

 

𝑤𝑀𝑆 =
𝑝

𝛼 𝑆+𝛽𝑛
                                                                                         (4.6) 
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 The rule quality measure wLap, prefers the rules which have high 

precision. However, in some cases, we need to discover rules which have high 

coverage as well. Therefore, to adjust coverage and precision for the rules to be 

discovered, we propose to use the combination of wLap and wMS as the rule 

quality measure, which is called wLapMS, and its formula is given in Equation 

(4.7).   

 

𝑤𝐿𝑎𝑝𝑀𝑆 =
(𝑝+1)(𝑆+𝑁)

(𝑝+𝑛+2)𝑆
×

𝑝

𝛼 𝑆+𝛽𝑛
                                                             (4.7) 

 

where  and  are real numbers in the range 0 and 1and they are determined by the 

user experimentally. 

 

4.1.6.2. The Proposed Sequential Covering Rule-based Classifier Using ABC 

with wLap Rule Quality Measure (Sequential Covering wLap ABC) 

There exists two main ways to learn classification rules by using 

metaheuristic algorithms: i) Pittsburg approach in which each candidate solution 

(i.e., food source) stands for an entire set of rules, and each solution evolves along 

the iterations as an exact rule base (Tan et al., 2012) such as in (De Falco et al., 

2013; Li et al., 2013) or ii) Michigan approach where each solution represents a 

single rule (Chui and Hsu, 2005) such as the encoding of the rules in (Su et al., 

2010; Celik et al., 2011; Shukran et al. 2011; Talebi and Abadi, 2014).  

In Michigan approach, initially a training set T is taken and discovered rule 

set R is set to empty. At each iteration, the algorithm discovers a classification rule 

one by one. At the end of each iteration, the best discovered rule is inserted into set 

R and all samples covered by it (i.e., samples satisfying the rule conditions) are 

removed from T. This process is repeated while the number of uncovered samples 

left in T reduces. This method is known as sequential covering rule induction and 

in our proposed sequential covering wLap ABC, this approach is adopted as in 
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other rule-based classifiers that are based on ABC in the literature (Celik et al., 

2011; Shukran et al., 2011; Talebi and Abadi, 2014) however  we use weighted 

Laplace as rule quality measure in our implementation since measures used for 

computing rule quality have been compared in detail in (Hilderman and Hamilton, 

1999; Lavrac et al., 1999; Azevedo and Jorge, 2007;  Michalak et al., 2015) and 

weighted Laplace achieves the best classification accuracy even for unbalanced 

datasets (Michalak et al., 2015).  

 

4.1.6.3. The Proposed Rule-based Classifier Using ABC with wLap and wMS 

Rule Quality Measure (wLapMS ABC) 

In our proposed wLapMS ABC, classification rules are learned one by one 

for each class as in the Michigan approach, however, we do not remove instances 

from T that are covered by the learned rules from the dataset. Instead, a similarity 

measure given in Section 4.1.3 is used for rules learned, and this measure is 

employed in the onlooker and employed bee processes of ABC algorithm to learn 

different rules from the previously learned ones. As we do not remove any 

instances from the training set, wLapMS ABC is able to learn more than one rule 

for each class, and the number of rules to be learned for each class is determined by 

the user.  

Additionally, in wLapMS ABC the proposed rule quality measure 

wLapMS, which enables that the user can adjust the weights of precision and 

coverage, is used.  

 

4.1.6.4. The Proposed Rule-based Classifier Using ABC with wMS Rule 

Quality Measure (1-rule ABC) 

In our proposed 1-rule ABC, each class is represented with a single rule 

and ABC algorithm is run to learn only one classification rule for each class unlike 

the proposed wLapMS ABC and sequential covering wLap ABC in which ABC 

algorithm is run to discover multiple rules for each class in the training data.  
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The aim of 1-rule ABC is to classify instances with the minimum number 

of rules since having small number of rules is always preferred. Thus, for 1-rule 

ABC algorithm, the total number of rules to be discovered is equal to the number 

of classes in the dataset. 

 

4.2. Differentially Private 1R Classification Algorithm Using ABC and DE  

Some differentially private implementations of the well-known 

classification algorithms such as decision trees, random trees, random forests, 

Naïve Bayes etc. have been proposed in the literature (Vaidya et al., 2013; 

Friedman and Schuster, 2010; Bojarski et al. 2015; Fletcher and Islam, 2015; 

Fletcher and Islam, 2016). However, to our knowledge any differentially private 

implementation of 1R algorithm (Holte, 1993) has not been proposed in the 

literature so far. As 1R is a simple, but efficient and accurate classifier, a 

differentially private 1R classification algorithm, which employs ABC and DE 

meta-heuristics to reduce feature space, is proposed in this thesis. At the same time, 

our proposed ABC and DE based feature selection process is also applied to build a 

differentially private NB classifier which is used as baseline for differentially 

private classification in the literature. The scheme to construct the proposed 

differentially private classification algorithms (i.e., 1R and Naïve Bayes) is given 

in Figure 4.4. 

In our proposed method to build a differentially private classifier (i.e., 1R 

and NB), the data owner applies ABC-DE based feature selection, proposed by 

(Zorarpacı and Özel, 2016) as the first step. The used feature selection method is 

explained in Section 3.3. After the feature selection process, this reduced data is 

located in a differentially private database which responds the count queries, that 

are necessary for the classification algorithms (i.e., 1R and NB). Therefore we 

apply output perturbation by adding Laplace noise to the actual results of the count 

queries sent to the private database. The reason of the usage of ABC-DE based 

feature selection method in the data owner side is to appeal the private database as 
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few as possible to reduce noise added to the results of the count queries send by the 

classifiers. If the number of features of the dataset is reduced, the number of 

queries to be sent to the database also decreases. 

 

 
Figure 4.4. The scheme of the proposed differentially private classification 

algorithms. 

 

In our proposed differentially private classification algorithm, we need to 

access to the database for only count queries. The number of these queries is equal 

to 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟 × ∑ ∑ 1𝑖
𝑛
𝑗=1 , here n represents the number of attributes in the 

dataset, j is the jth attribute (i.e., predictor) of the dataset, and i is the ith  value of the 

attribute j. Accordingly, it is clear that the reduction of n (i.e., the number of 

attributes) decreases the number of count queries sent to the differentially private 

database. Hence, in this study, we propose to apply ABC-DE based feature 
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selection method as a pre-processing step, which reduces the number of attributes 

on a large scale, in the data owner side, and this pre-processed data is located in a 

database which uses Laplace mechanism to guarantee differential privacy to 

respond the count queries, and called differentially private database. Then, 1R and 

NB classifiers are built using sequential composition property of differential 

privacy. The classification algorithms used are described in Algorithm 4.3 and 4.4 

respectively. Sequential composition property is used since we keep our data as a 

whole in one database. Indeed, it is the worst-case scenario for the classifiers as it 

results in the minimum classification accuracy. The classification accuracies of the 

proposed differentially private classifier can be improved by applying data 

partitioning and parallel composition property of differential privacy as in 

Definition 3.5.5 given in Section 3.5, however, we don’t apply these techniques in 

this thesis study since we make a general assessment for the proposed method, 

these improvements may be done as a future work. Therefore, we consider the 

worst case scenario and sequential composition property for our proposed method.  
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Algorithm 4.3. Differentially private 1R classification algorithm 

Input: Privacy parameter ϵ, differentially private database D 

Output: IF-THEN classification rules of differentially private 1R classifier 

Begin 

      ϵ′:= 
ϵ

𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟×∑ ∑ 1𝑖
𝑛
𝑗=1

 

      𝛾:= ∆𝑓/ϵ′ 

      for each  attribute Aj in D do 

            for each attribute value vi in Aj 

                  Count how often appears in each class and set this value to 𝑛𝑗𝑖  

                  Perturb 𝑛𝑗𝑖 as 𝑛𝑗𝑖
′ =𝑛𝑗𝑖+ 𝐿𝑎𝑝(0, 𝛾) 

            end for 

            Detect the most frequent class of vi by using  𝑛𝑗𝑖
′  values 

            Make an IF-THEN rule assigning the most frequent class to vi 

            Calculate the total classification error of the rules of Aj 

      end for     

      Choose the best attribute Abest of which IF-THEN rules that have the smallest 

total error among all Aj 

      return the IF-THEN rules of Abest; 

end 

  

According to Algorithms 4.3 and 4.4, the noisy count query results are 

used to build differentially private 1R and NB classification algorithms unlike 

classical 1R and NB classification algorithms.  

In Algorithms 4.3 and 4.4, the sensitivity ∆𝑓, is equal to 1 since the type of 

the queries sent to the differentially private database D is count query. ϵ is the total 

budget to guarantee differential privacy. ϵ′ is the budget per each count query and 

is equal to 
ϵ

𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟×∑ ∑ 1𝑖
𝑛
𝑗=1

 due to sequential composition property of 

differential privacy on ϵ parameter given in Definition 3.5.5 in Section 3.5. 



4.METHODS  Ezgi ZORARPACI 

61 

𝐿𝑎𝑝(0, 𝛾) represents the noise drawn from Laplace distribution with mean 0 and 

standard deviation 𝛾 where 𝛾= 
∆𝑓

ϵ′
.  

 

Algorithm 4.4. Differentially private NB classification algorithm 

Input: Database D, Class label set C, the privacy parameter ϵ 

Output: Class label CNB 

Begin 

      𝛾:= ∆𝑓/ϵ′; 

      for each  class label 𝐶𝑘 ∈ 𝐶 do 

            Compute 𝑛𝑘 which is total number of instances with class label 𝐶𝑘,         

𝑛𝑘
′ =𝑛𝑘+ 𝐿𝑎𝑝(0, 𝛾) 

            for each  attribute Aj in D do 

                  for each attribute value vi in Aj  

                        Compute 𝑛𝑗𝑖, 𝑛𝑗𝑖
′ =𝑛𝑗𝑖+ 𝐿𝑎𝑝(0, 𝛾), which is equal to how often vi            

appears for 𝐶𝑘 

                        Use 𝑛𝑗𝑖
′  to compute 𝑃(𝐴𝑗𝑖|𝐶𝑘) 

                  end for 

            end for  

            Use 𝑛𝑘
′  to compute 𝑃(𝐶𝑘) 

      end for 

      Find CNB= 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑘∈𝐶(𝑃(𝐶𝑘)∏𝑃(𝐴𝑗𝑖|𝐶𝑘)) 

      return CNB; 

end 
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5. RESULTS AND DISCUSSIONS 

 

In this section, the experimental results are given and the performances of 

the proposed methods and other techniques in the literature are compared.  

We implemented the proposed methods in Java programming language 

under NetbeansIDE 8.0.2 platform. The experiments were run on a PC which has 

Windows 7 Home Premium operating system, 4 GB of RAM, Intel Core i5-2430M 

2.4 GHz processor. Weka data mining tool is utilized to perform the other 

classification methods such as J48, MLP, NB etc.   

 

5.1. Performance Metrics for Evaluation of Classifiers 

In this study, the accuracy value is utilized to compare the algorithms since this 

metric is used as performance metric for most of the studies in the literature. The  

accuracy value for a classifier is computed by using the equation given in Equation 

(5.1).  

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

|𝐷| 
                                                                                (5.1) 

 

where |𝐷| is the total number of instances in the dataset,  𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of 

instances correctly classified by the classifier.  

 

5.2. Experimental Results for the ABC-based classifiers 

In the experiments, we investigate the performance of the proposed rule-

based classifiers using ABC in two cases which are for non-private and 

differentially private data. Eleven well-known classification algorithms that are 

J48, NB, BN, MLP, IBk, Kstar, 1R, PART, RTree, Bagging, and RIPPER from the 

Weka data mining tool are used to make comparison with the our proposed 

methods. Among the classifiers C4.5(Quinlan, 2014), PART (Frank and Witten, 
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1998), and RTree (Breiman, 2001) are decision tree algorithms whereas PART is a 

partial decision tree algorithm  instead of a whole decision tree.  

RIPPER is a sequential covering rule induction algorithm which learns one 

rule at a time and remove the instances covered by this rule from the dataset as in 

other ABC-based classification algorithms in the literature (Celik et al., 2011; 

Shukran et al. 2011; Talebi and Abadi, 2014).  

NB (Murphy, 2006) is a statistical method based on Bayes theorem. A 

Bayesian Network (Jensen, 1996) utilizes graph-based structure to represent the 

probabilistic relationships between the predictors (i.e., features) of the data and 

deduces probabilistic results by using these relations. MLP (Rumelhart et al., 1986) 

is a neural network based classification method.  

IBk (Aha et al., 1991) and Kstar (Cleary and Trigg, 1995) are the 

implementations of k nearest neighbor algorithm where only the k value used is 

different. 1R (Holte, 1993) is a rule-based classification algorithm that acquires one 

rule for each attribute (i.e., predictor), and the rule which has the minimum total 

error is selected as “One Rule”.  

Bagging (Breimann, 1996) is an ensemble method. An ensemble method 

consists of a series of n trained base classifiers. Ensemble has better classification 

results than those of its base classifiers.  

In the experiments, REPTree (Reduces Error Pruning Tree) (Quinlan, 

2014) is selected as base classifiers of Bagging algorithm. REPTree is a fast 

decision tree model and based on C4.5 algorithm because it takes advantages of 

information gain and entropy. To apply these well-known classification techniques, 

the default parameter values of the algorithms in Weka have been used.  

10-fold cross validation is utilized to test the performance of the classifiers. 

In 10-fold cross validation, the whole dataset is split into almost equal ten 

partitions. One partition is taken as the test data and the rest of the partitions are 

used as training data for each run of the algorithms. In the experiments, we apply 

10 times of 10 fold cross validation to the datasets over both of non-private and 



5. RESULTS AND DISCUSSIONS  Ezgi ZORARPACI 

65 

differentially private data. Average values at the end of 100 runs are presented for 

the proposed rule-based classifiers using ABC algorithm and the well-known 

classification techniques.   

 

5.2.1. Performance Evaluation of Rule-based classifiers Using ABC Algorithm 

over Non-private Data 

In this section, the experimental results of the proposed rule-based 

classifiers using ABC algorithm (i.e., 1-rule ABC, wLapMS ABC, and sequential 

covering wLap ABC) over non-private datasets are presented. The best results are 

given in bold face and the rankings of the algorithms are specified in brackets in 

the below of the average results.  

In Table 5.1, the average classification accuracies of 10 runs of 10 fold 

cross validation with standard deviations are given for the datasets Breast-w, Ecoli, 

Heart-statlog, Iris, and Sonar. In Table 5.2, average number of rules to achieve the 

average classification accuracies in Table 5.1 are presented.   
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Table 5.1. Average classification accuracies for classifiers over non-private data 

Method 
Dataset 

Breast-w Ecoli Heart Iris Sonar 

J48 
0.932±0.02 
(7) 

0.828±0.04  
(4) 

0.778±0.06 
(8) 

0.952±0.05 
(5) 

0.722±0.05 
(9) 

NB 
0.949±0.02 
(2) 

0.859±0.03 
(1) 

0.849±0.05 
(1) 

0.954±0.05 
(4) 

0.676±0.06 
(11) 

Bayes 
Net. 

0.947±0.02 
(3) 

0.813±0.03 
(7) 

0.840±0.06 
(3) 

0.933±0.06 
(11) 

0.756±0.05 
(6) 

Part 
0.923±0.02 
(10) 

0.835±0.04 
(3) 

0.783±0.07 
(7) 

0.945±0.06 
(7) 

0.742±0.05 
(7) 

Ripper 
0.926±0.02 
(8) 

0.817±0.03 
(6) 

0.791±0.06 
(5) 

0.932±0.06 
(12) 

0.735±0.04 
(8) 

1R  
0.921±0.02 
(11) 

0.653±0.05 
(12) 

0.708±0.07 
(13) 

0.938±0.05 
(10) 

0.618±0.05 
(13) 

Kstar 
0.932±0.02 
(7) 

0.817±0.03 
(6) 

0.771±0.07 
(9) 

0.945±0.05 
(7) 

0.833±0.04 
(2) 

IBk 
0.933±0.02 
(6) 

0.808±0.04 
(8) 

0.750±0.06 
(10) 

0.950±0.05 
(6) 

0.856±0.04 
(1) 

RT 
0.923±0.02 
(10) 

0.793±0.04 
(10) 

0.740±0.07 
(11) 

0.939±0.05 
(9) 

0.718±0.06 
(10) 

Bagging 
0.937±0.02 
(4) 

0.821±0.04 
(5) 

0.818±0.06 
(4) 

0.942±0.05 
(8) 

0.761±0.05 
(5) 

MLP 
0.936±0.02 
(5) 

0.852±0.03 
(2) 

0.787±0.07 
(6) 

0.960±0.04 
(3) 

0.825±0.04 
(3) 

wLap 
MS 
 ABC 

0.925±0.03 
(9) 

0.801±0.04 
(9) 

0.841±0.05 
(2) 

0.986±0.01 
(1) 

0.821±0.05 
(4) 

1-rule 
ABC 

0.914±0.02 
(12) 

0.703±0.04 
(11) 

0.735±0.06 
(12) 

0.852±0.06 
(13) 

0.665±0.08 
(12) 

Seq. 
cov. 
wLap 
ABC 

0.966±0.01 
(1) 

0.852±0.02 
(2) 

0.841±0.01 
(2) 

0.961±0.01 
(2) 

0.833±0.00 
(2) 

 

According to Table 5.1, sequential covering wLap ABC classification 

algorithm has the best classification accuracy for the dataset Breast-w and the 

second best results for other datasets that are Ecoli, Heart-statlog, Iris, and Sonar. 

On the other hand, the best result belongs to wLapMS ABC for the dataset Iris and 

wLapMS ABC outperforms the other rule-based classifiers such as Part, Ripper 

and 1R. At the same time, 1-rule ABC has similar or higher classification 
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performance to 1R which is short but effective and well-known classification 

technique making classification task by using the values of a single attribute. 

Additionally, when analyzed the standard deviations of the classification 

results for the proposed ABC-based classification algorithms (i.e., sequential 

covering wLap ABC, 1-rule ABC, and wLapMS ABC), the standard deviations of 

the proposed methods range between ±0.00 and ±0.08. The minimum standard 

deviation of the classification accuracies for the proposed sequential covering 

wLap ABC is ±0.00 while the maximum standard deviation of the classification 

accuracies for this method is ±0.02. On the other hand, the well-known 

classification techniques achieve minimum ±0.02 standard deviation value while  

the maximum standard deviation ±0.07 value is obtained. As a result, the proposed 

ABC-based classification algorithm (i.e., sequential covering wLap ABC and 

wLapMS ABC) shows a more stable performance with respect to other well-known 

classification techniques.  

 

Table 5.2. Average # of rules to achieve classification accuracies over non-private 

data 

Dataset 

wLap 

MS 

ABC 

Part Ripper 

Seq. 

Cov. 

wLap 

ABC 

Breast-w 6.0 6.45 4.1 14.11 

Ecoli 16.0 13.5

2 

9.15 55.46 

Heart 8.0 17.4

4 

3.95 42.67 

Iris 18.0 4.14 3.62 14.41 

Sonar 20.0 7.27 4.56 37.02 

 

Looking at the Table 5.2 to analyze the number of rules to provide the 

average classification accuracies in Table 5.1, it can be seen that the proposed 

sequential covering wLap ABC classify instances with higher number of rules with 

respect to the other rule-based classifiers for the datasets Ecoli and Heart-statlog, 
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which stems from the rule quality measure wLap that prefers the rules with higher 

precision against coverage. As a result, the number of rules discovered by 

sequential covering wLap ABC algorithm for these datasets are surplus.  On the 

other hand, it can be seen that wLapMS ABC reaches the close accuracy values to 

those of sequential covering wLap ABC algorithm with the number of rules 2 per 

class and 4 per class for these datasets. Therefore, wLapMS taking account of 

coverage can be used as the rule quality measure in the sequential covering wLap 

for these datasets to attain similar accuracy values with smaller number of rules. 

However, wLapMS ABC classify instances with smaller number of rules in which 

the number of rules are specified by the user according to data at hand.  

 

5.2.2. Performance Evaluation of Rule-based classifiers Using ABC Algorithm 

over Differentially Private Data 

In this section, the experimental results of the proposed rule-based 

classifiers using ABC algorithm (i.e., 1-rule ABC, wLapMS ABC, and sequential 

covering wLap ABC) over differentially private data with varying values of 

privacy parameter ϵ are given. In Table 5.3, the average classification accuracies 

over differentially private datasets, which are perturbed with Laplace noise to 

provide privacy with ϵ=1 (i.e., high level privacy), are presented. On the other 

hand, the average number of rules  to satisfy these classification accuracies are 

given in Table 5.4.  
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Table 5.3. Average classification accuracies for ϵ=1 over differentially private data 

Method 
Dataset 

Breast-w Ecoli Heart Iris Sonar 

J48 
0.817±0.06 
(8) 

0.387±0.11 
(8) 

0.646±0.09 
(7) 

0.551±0.14 
(5) 

0.520±0.06 
(7) 

NB 
0.803±0.09 
(9) 

0.391±0.08 
(7) 

0.654±0.09 
(6) 

0.477±0.15 
(9) 

0.508±0.08 
(11) 

Bayes 
Net. 

0.829±0.06 
(6) 

0.427±0.05 
(4) 

0.619±0.09 
(9) 

0.311±0.16 
(13) 

0.510±0.05 
(10) 

Part 
0.823±0.06 
(7) 

0.383±0.11 
(10) 

0.658±0.08 
(5) 

0.509±0.14 
(7) 

0.515±0.07 
(9) 

Ripper 
0.830±0.05 
(5) 

0.436±0.06 
(3) 

0.694±0.07 
(4) 

0.459±0.15 
(12) 

0.532±0.07 
(6) 

1R  
0.608±0.12 
(13) 

0.419±0.07 
(6) 

0.564±0.09 
(14) 

0.500±0.18 
(8) 

0.502±0.06 
(13) 

Kstar 
0.721±0.10 
(11) 

0.320±0.12 
(14) 

0.581±0.09 
(11) 

0.472±0.15 
(10) 

0.506±0.07 
(12) 

IBk 
0.705±0.10 
(12) 

0.321±0.11 
(13) 

0.575±0.08 
(12) 

0.467±0.14 
(11) 

0.486±0.06 
(14) 

RT 
0.774±0.07 
(10) 

0.332±0.10 
(11) 

0.624±0.08 
(8) 

0.500±0.15 
(8) 

0.516±0.07 
(8)  

Bagging 
0.863±0.04 
(3) 

0.467±0.08 
(1) 

0.704±0.07 
(3) 

0.605±0.13 
(4) 

0.543±0.07 
(5) 

MLP 
0.849±0.06 
(4) 

0.425±0.10 
(5) 

0.613±0.08 
(10) 

0.547±0.13 
(6) 

0.582±0.08 
(4) 

wLap 
MS 
ABC 

0.905±0.04 
(1) 

0.325±0.12 
(12) 

0.758±0.10 
(2) 

0.744±0.14 
(1) 

0.781±0.11 
(2)  

1-rule 
ABC 

0.867±0.08 
(2) 

0.446±0.11 
(2) 

0.570±0.14 
(13) 

0.710±0.15 
(3) 

0.638±0.18 
(3) 

Seq. 
cov. 
wLap 
ABC 

0.867±0.04 
(2) 

0.385±0.15 
(9) 

0.776±0.11 
(1) 

0.726±0.11 
(2) 

0.829±0.09 
(1) 

 

When Table 5.3 is examined, the proposed rule-based classifiers such as 

wLapMS  ABC and sequential covering wLap ABC achieve satisfactory 

classification results for the datasets except Ecoli while the well-known 

classification techniques do not yield good enough classification results. On the 

other hand, none of the algorithms used in experiments have satisfactory 

classification accuracies, but the best result belongs to Bagging classification 
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algorithm with 46.7% accuracy for this dataset. However, the second best result for 

this dataset is achieved by 1-rule ABC algorithm with 44.6% accuracy.  

 

Table 5.4. Average # of rules to achieve classification accuracies for ϵ=1 over 

differentially private data 

Dataset 

wLap 

MS 

ABC 

Part Ripper 

Seq. 

Cov. 

wLap 

ABC Breast-w 6.0 2.55 2.94 32.56 

Ecoli 16.0 45.3

1 

2.09 
 

65.65 

Heart 8.0 3.55 2.52 19.39 

Iris 18.0 5.11 2.99 26.34 

Sonar 20.0 7.24 2.55 
 

30.95 

 

In Table 5.5, the average classification accuracies over differentially 

private datasets perturbed according to privacy parameter ϵ=2 are introduced and 

the average number of rules to provide these results are given in Table 5.6. When 

analyzed Table 5.5, it is clear that sequential covering wLap ABC performs quite 

well over the datasets except Ecoli. On the other hand, the best classification result 

for this dataset belongs to 1-rule ABC algorithm and it can be inferred that 

wLapMS ABC is the second best classifier according to the rankings of the 

algorithms in Table 5.5. 
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Table 5.5. Average classification accuracies for ϵ=2 over differentially private data 

Meth. 
Dataset 

Breast-w Ecoli Heart Iris Sonar 

J48 
0.884±0.04 
(6) 

0.533±0.08 
(5) 

0.722±0.06 
(9) 

0.743±0.10 
(6) 

0.550±0.07 
(10) 

NB 
0.881±0.04 
(7) 

0.499±0.08 
(8) 

0.786±0.05 
(3) 

0.693±0.11 
(9) 

0.580±0.08 
(7) 

Bayes 
Net. 

0.894±0.03 
(4) 

0.515±0.08 
(6) 

0.758±0.05 
(5) 

0.708±0.11 
(8) 

0.522±0.06 
(13) 

Part 
0.886±0.04 
(5) 

0.515±0.08 
(6) 

0.727±0.06 
(8) 

0.717±0.10 
(7) 

0.557±0.07 
(9) 

Ripper 
0.880±0.04 
(8) 

0.493±0.07 
(9) 

0.735±0.05 
(6) 

0.693±0.11 
(9) 

0.591±0.07 
(6) 

1R  
0.772±0.06 
(12) 

0.483±0.07 
(10) 

0.624±0.09 
(14) 

0.670±0.14 
(11) 

0.511±0.06 
(14) 

Kstar 
0.821±0.05 
(11) 

0.424±0.11 
(13) 

0.641±0.08 
(13) 

0.665±0.11 
(12) 

0.543±0.07 
(11) 

IBk 
0.834±0.02 
(10) 

0.428±0.11 
(12) 

0.660±0.06 
(12) 

0.648±0.11 
(13) 

0.530±0.07 
(12) 

RT 
0.864±0.04 
(9) 

0.472±0.08 
(11) 

0.684±0.06 
(11) 

0.691±0.11 
(10)  

0.565±0.06 
(8) 

Bag. 
0.902±0.03 
(3) 

0.586±0.06 
(3) 

0.774±0.06 
(4) 

0.801±0.08 
(4) 

0.607±0.07 
(4) 

MLP 
0.919±0.03 
(2) 

0.591±0.08 
(2) 

0.733±0.07 
(7) 

0.776±0.09 
(5) 

0.660±0.07 
(3) 

wLap
MS 
ABC 

0.902±0.03 
(3) 

0.511±0.09 
(7) 

0.795±0.08 
(2) 

0.887±0.06 
(1) 

0.850±0.06 
(2) 

1-rule 
ABC 

0.834±0.05 
(10) 
 

0.610±0.08 
(1) 

0.701±0.08 
(10) 

0.803±0.10 
(3) 

0.600±0.14 
(5) 

Seq. 
cov. 
wLap 
ABC 

0.961±0.02 
(1) 

0.537±0.12 
(4) 

0.860±0.06 
(1) 

0.864±0.08 
(2) 

0.857±0.06 
(1) 
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Table 5.6. Average # of rules to achieve classification accuracies for ϵ=2 over 

differentially private data 

Dataset 

wLap 

MS 

ABC 

Part Ripper 

Seq. 

Cov. 

wLap 

ABC Breast-w 6.0 4.34 2.93 25.351

3 Ecoli 16.0 41.8

9 

3.17 61.85 

Heart 8.0 5.77 3.27 
 

17.97 

Iris 18.0 7.21 3.57 23.87 

Sonar 20.0 8.29 2.73 29.88 

 

In Table 5.7, the average classification accuracies over differentially 

private datasets that are perturbed according to privacy parameter ϵ=3 are listed, 

and the average number of rules to provide these results are given in Table 5.8.  

When Table 5.7 is examined, sequential covering wLap ABC shows quite 

good performance compared to other algorithms in the experiments over the 

differentially private datasets for ϵ=3. Following sequential covering wLap ABC, 

the best performance belongs to wLapMS ABC algorithm. On the other hand, 

Bagging algorithm has the best classification accuracies over the datasets for ϵ=3 

with respect to other well-known classification techniques and 1-rule ABC 

algorithm shows very close performance to Bagging algorithm according to the 

experimental results.  

Considering Table 5.4, 5.6, and 5.8, when a general assessment is made in 

terms of the number of rules of sequential covering wLap ABC, it can be inferred 

that the number of rules discovered by sequential covering wLap ABC algorithm 

with ϵ=1, ϵ=2, and ϵ=3 are very close to each other for the datasets, but these 

numbers decrease with the increase of ϵ values according to the experimental 

results.  
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Table 5.7. Average classification accuracies for ϵ=3 over differentially private data 

Meth. 
Dataset 

Breast-w Ecoli Heart Iris Sonar 

J48 
0.906±0.02 
(5) 

0.623±0.06 
(7) 

0.741±0.06 
(9) 

0.804±0.08 
(8) 

0.609±0.07 
(9) 

NB 
0.893±0.03 
(10) 

0.624±0.05 
(6) 

0.817±0.04 
(2) 

0.831±0.07 
(6) 

0.647±0.07 
(6) 

Bayes 
Net. 

0.907±0.03 
(4) 

0.629±0.06 
(5) 

0.811±0.05 
(3) 

0.761±0.09 
(14) 

0.578±0.08 
(13) 

Part 
0.905±0.03 
(6) 

0.606±0.07 
(8) 

0.759±0.05 
(7) 

0.808±0.08 
(7) 

0.621±0.07 
(8) 

Ripper 
0.899±0.03 
(9) 

0.569±0.07 
(10) 

0.754±0.05 
(8) 

0.792±0.11 
(9) 

0.642±0.06 
(7) 

1R  
0.823±0.04 
(13) 

0.549±0.06 
(12) 

0.670±0.09 
(13) 

0.787±0.10 
(10) 

0.524±0.06 
(14) 

Kstar 
0.859±0.04 
(14) 

0.505±0.09 
(14) 

0.688±0.07 
(12) 

0.758±0.09 
(12) 

0.583±0.07 
(12) 

IBk 
0.878±0.03 
(12) 

0.517±0.09 
(13) 

0.698±0.06 
(11) 

0.743±0.09 
(13) 

0.594±0.06 
(10) 

RT 
0.900±0.03 
(8) 

0.559±0.08 
(11) 

0.724±0.06 
(10) 

0.764±0.08 
(11) 

0.589±0.07 
(11) 

Bag. 
0.915±0.02 
(3) 

0.675±0.05 
(3) 

0.782±0.05 
(5) 

0.875±0.06 
(3) 

0.660±0.06 
(5) 

MLP 
0.932±0.02 
(2) 

0.688±0.06 
(2) 

0.767±0.04 
(6) 

0.866±0.07 
(4) 

0.693±0.06 
(4) 

wLap 
MS  
ABC 

0.904±0.02 
(7) 

0.586±0.08 
(9) 

0.796±0.06 
(4) 

0.924±0.05 
(1) 

0.835±0.07 
(2) 

1-rule 
ABC 

0.861±0.03 
(13) 

0.653±0.07 
(4) 

0.724±0.06 
(10) 

0.840±0.08 
(5) 

0.703±0.09 
(3) 

Seq. 
cov. 
wLap 
ABC 

0.972±0.01 
(1) 

0.698±0.08 
(1) 

0.879±0.04 
(1) 

0.902±0.04 
(2) 

0.853±0.05 
(1) 
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Table 5.8. Average # of rules to achieve classification accuracies for ϵ=3 over 

differentially private data 

Dataset 

wLap 

MS 

ABC 

Part Ripper 

Seq. 

Cov. 

wLap 

ABC Breast-w 6.0 5.84 3.4 20.34 

Ecoli 16.0 38.4

5 

4.48 
 

57.12 

Heart 8.0 6.51 3.62 17.22 

Iris 18.0 8.21 4.07 22.11 

Sonar 20.0 9.2 2.94 29.85 

 

In the experiments, 𝜶=0.4 and 𝜷=0.6 are used in the ABC based 

classification algorithms (i.e., wLapMS ABC and 1-rule ABC) for all over non-

private datasets since the different combinations of 𝜶 and 𝜷 parameters have been 

tested and the best results which provide both high precision and high coverage 

observed with 𝜶=0.4 and 𝜷=0.6 for the datasets except Sonar and Heart-statlog. 

For the dataset Sonar dataset, these values are determined as 𝜶=0.3 and 𝜷=0.7 in 1-

rule ABC and 𝜶=0.05 and 𝜷=0.95 in wLapMS ABC. For the dataset Heart-statlog, 

these values are determined as 𝜶=0.3 and 𝜷=0.7 in wLapMS ABC and 1-rule 

ABC. On the other hand, the values of 𝜶 and 𝜷 parameters for the differentially 

private datasets with varying values of 𝛜 parameters are given in Table 5.9.  

According to Table 5.9 and 𝜶 and 𝜷 parameter values yet mentioned above 

for non-private datasets, the weights for precision are higher for differentially 

private datasets of 𝛜=1and 𝛜=2 especially with respect to the non-private datasets in 

general. Because it has been observed that the precision values of the rules 

discovered by the proposed rule-based classifiers (i.e., 1-rule ABC and wLapMS 

ABC) may decrease for differentially private datasets compared to those for non-

private datasets. As a result of this situation, the weights of precision have been 

increased for differentially private datasets.  
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Table 5.9. 𝛼 and 𝛽 values used for 1-rule ABC and wLapMS ABC with ϵ 
parameters 

Dataset 1-rule ABC wLapMS ABC 

ϵ=1 ϵ=2 ϵ=3 ϵ=1 ϵ=2 ϵ=3 

Ecoli 
𝛼=0.2 

𝛽=0.8 

𝛼=0.3 

𝛽=0.7 

𝛼 =0.3 

𝛽=0.7 

𝛼=0.2 

𝛽=0.8 

𝛼=0.3 

𝛽=0.7 

𝛼 =0.3 

𝛽=0.7 

Iris 
𝛼 =0.3 
𝛽=0.7 

𝛼 =0.3 
𝛽=0.7 

𝛼 =0.3 
𝛽=0.7 

𝛼 =0.3 
𝛽=0.7 

𝛼 =0.3 
𝛽=0.7 

𝛼 =0.3 
𝛽=0.7 

Heart 
𝛼=0.1 

𝛽=0.9 

𝛼=0.2 

𝛽=0.8 

𝛼=0.3 

𝛽=0.7 

𝛼=0.1 

𝛽=0.9 

𝛼=0.1 

𝛽=0.9 

𝛼=0.1 

𝛽=0.9 

Sonar 𝛼=0.1 

𝛽=0.9 

𝛼=0.1 

𝛽=0.9 

𝛼=0.2 

𝛽=0.8 

𝛼=0.05 

𝛽=0.95 

𝛼=0.05 

𝛽=0.95 

𝛼=0.05 

𝛽=0.95 

Breast 𝛼=0.2 

𝛽=0.8 

𝛼=0.2 

𝛽=0.8 

𝛼=0.2 

𝛽=0.8 

𝛼=0.2 

𝛽=0.8 

𝛼=0.2 

𝛽=0.8 

𝛼=0.2 

𝛽=0.8 

 

The number of rules are determined as 2, 6, 4, 3, and 10 per class for the 

non-private and differentially private version of the datasets Ecoli, Iris, Heart-

statlog, Breast-w and Sonar in wLapMS ABC. For sequential covering wLap ABC, 

no input parameter as the number of rules for the classes are taken from the user 

since the sequential covering wLap ABC terminates the discovery of classification 

rules for a class when the number of uncovered instances of the class in the training 

data is equal to or lower than 5% of instances of the class in the training data as in 

other some meta-heuristic based classification algorithms (Parpinelli et al., 2002; 

Celik et al., 2011; Shukran et al., 2011; Talebi and Abadi, 2014).  

 The parameter values of the proposed ABC algorithm are given in Table 

5.10. The values of exceed limit, threshold of iterations, and swarm size are set to 

the values of parameters used in the experiments of some ABC based rule 

discovery algorithms in the literature (Celik et al., 2011; Shukran et al., 2011).  

To investigate the impact of F parameter for the proposed ABC based 

classification algorithm, the average accuracy values achieved by our proposed 1-

rule ABC classification algorithm with different F values over some datasets are 

presented in Table 5.11. When analyzed Table 5.11, F=0.6 provides good results 

for the datasets  in terms of accuracy values and  standard deviation in general. As 

a result, in the experiments F value is set to 0.6.  
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Table 5.10. The parameter values used for the proposed ABC algorithm in the 

experiments 
Parameter Value 

F 0.6 

Exceed limit  100 

Threshold of iterations 500 

Swarm size 20 

 

Table 5.11. The average classification accuracies of 1-rule ABC algorithm with 

different F values at the end of 20 runs 

F 
Dataset 

Breast-w Ecoli Iris 

0.1 0.910±0.03 0.719±0.05 0.862±0.06 

0.2 0.937±0.02 0.734±0.04 0.870±0.06 

0.3 0.931±0.02 0.712±0.04 0.882±0.05 

0.4 0.934±0.03 0.725±0.05 0.873±0.06 

0.5 0.921±0.03 0.734±0.04 0.878±0.06 

0.6 0.929±0.02 0.758±0.04 0.889±0.05 

0.7 0.922±0.03 0.737±0.05 0.880±0.06 

0.8 0.927±0.03 0.707±0.05 0.884±0.05 

0.9 0.921±0.03 0.741±0.04 0.878±0.06 

1.0 0.916±0.03 0.739±0.05 0.884±0.05 

 

In addition to experimental results, in Table 5.12, 5.13, 5.14, and 5.15, we 

present the statistical properties of the original data and the differentially private 

version of it for each attribute of one of the datasets which is Iris dataset to show 

the correlation between the two versions of the dataset. The values in Table 5.12, 

5.13, 5.14, and 5.15 are computed by using only one fold of the dataset for  

different values of ϵ parameter.  

To show the relationships between the original and the perturbed versions 

of the Iris dataset, for each attribute in the dataset we compute the mean, standard 

deviation, and variance values of the original and perturbed (i.e., differentially 
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private) data. Covariance and correlation between these two versions of the data 

are also given as well in Table 5.12, 5.13, 5.14, and 5.15.  

The covariance of two random variables X and Y (i.e., the attribute values 

of original data and differentially private data), Cov(X, Y), measures how these two 

random variables change in common. If Cov(X, Y) is positive, it is said that X and Y 

grow meanwhile. If the covariance is negative, then either X grows and Y reduces, 

or Y grows while X reduces. If the covariance is 0, the random variables are 

uncorrelated (Crawley, 2005; Mivule et al., 2012).  

The correlation evaluates the statistical dependency between two random 

variables X and Y. The widely  used measure is Pearson’s correlation coefficient, 

which is 𝐶𝑟𝑥𝑦 = Cov(X, Y) /(𝜎𝑥𝜎𝑦). When 𝐶𝑟𝑥𝑦 is equal to +1, then it is said that a 

positive linear relationship is between X and Y . In other words, when one of X and 

Y moves, the other moves in the same direction proportionally. When 𝐶𝑟𝑥𝑦 is equal 

to -1, a negative linear relationship is between X and Y. In other words, they move 

in opposite direction with respect to the mean. Values of 𝐶𝑟𝑥𝑦 between 1 and -1 

show the grade of the relationship between X and Y, when 𝐶𝑟𝑥𝑦 = 0 it is said that X 

and Y are uncorrelated (Crawley, 2005; Mivule et al., 2012). 

 

Table 5.12. The statistical properties of the original data and differentially private 

data for the attribute Sepal length 
Statistical 
property 

Original 
Data 

Differentially private data 

ϵ=1 ϵ=2 ϵ=3 

Mean 5.840 5.806 5.823 5.828 

Std. dev. 0.821 4.738 2.472 1.758 

Variance 0.674 22.454 6.115 3.090 

Covariance  0.665 0.670 0.671 

Corelation  0.170 0.329 0.465 

 

Table 5.13. The statistical properties of the original data and differentially private 

data for the attribute Sepal width 
Statistical 
property 

Original 
Data 

Differentially private data 

ϵ=1 ϵ=2 ϵ=3 

Mean 3.041 3.192 3.116 3.091 

Std. dev. 0.427 2.990 1.542 1.078 



5. RESULTS AND DISCUSSIONS  Ezgi ZORARPACI 

78 

Variance 0.182 8.941 2.380 1.162 

Covariance  0.198 0.190 0.187 

Corelation  0.155 0.288 0.407 

 

Table 5.14. The statistical properties of the original data and differentially private 

data for the attribute Petal length 
Statistical 
property 

Original 
Data 

Differentially private data 

ϵ=1 ϵ=2 ϵ=3 

Mean 3.791 4.880 4.336 4.154 

Std. dev. 1.753 9.002 4.654 3.307 

Variance 3.074 81.046 21.668 10.938 

Covariance  1.275 2.175 2.474 

Corelation  0.080 0.266 0.426 

 

Table 5.15. The statistical properties of the original data and differentially private 

data for the attribute Petal width 
Statistical 
property 

Original 
Data 

Differentially private data 

ϵ=1 ϵ=2 ϵ=3 

Mean 1.212 1.561 1.386 1.328 

Std. dev. 0.762 3.468 1.869 1.378 

Variance 0.581 12.027 3.495 1.900 

Covariance  0.686 0.634 0.616 

Corelation  0.259 0.444 0.586 

 

When the values given in the tables are analysed, it is clear that the 

standard deviation and variance values of the attributes are the highest for 

ϵ=1where we have high level privacy with respect to those for ϵ=2 and 3 since the 

𝜎 of Laplace noise (√𝜎 ≥ ∆𝑓/ϵ ) increases with the decreasing of ϵ values, which 

results in the lower classification accuracies for our proposed ABC-based 

classification algorithm and the well-known classification techniques. According to 

the covariance and correlation values in the tables, the differentially private data 

and original data are positively correlated for all ϵ parameters. When paid attention, 

correlation is getting close to +1 which is perfect positive linear relationship with 

the increase in ϵ parameter since the 𝜎 of Laplace noise decreases.  

According to the experimental results over differentially private datasets, 

the low values of ϵ mean more privacy since the 𝜎 of Laplace noise added to the 
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training data increases with the low values of ϵ. On the other hand, the proposed 

ABC-based classification algorithm (i.e., wLapMS ABC, and sequential covering 

wLap ABC) outperforms the other classification techniques even for low ϵ 

parameter value (i.e., ϵ=1) over differentially private datasets. At the same time, it 

shows similar or higher performances to the eleven well-known classification 

techniques categorized as rule-based, instance-based, artificial neural networks, 

and decision trees over non-private datasets.  

Consequently, it can be inferred from the experimental results that the 

proposed ABC-based algorithm (i.e., wLapMS ABC, sequential covering wLap 

ABC, and 1-rule ABC) can be efficiently used to discover classification rules from 

both of differentially private and non-private datasets.  

Finally, as an example, we list the discovered rules by the proposed rule-

based classifiers using ABC algorithm for the dataset Iris with the varying values 

of ϵ parameter that are 1, 2, and 3 in the below. 

 

Discovered rules by 1-rule ABC algorithm for the original data 

 

 IF sepalwidth between (2.825656805542188 and 4.2) and petal length 

between (1.0275483035881807 and 3.4325862983723074) THEN 

Class=Iris-setosa 

 IF petalwidth between (0.7555154980873141 and 1.591550285750013) 

THEN Class=Iris-versicolor 

 IF petalwidth between (1.6615598596118841 and 2.485139771412621) 

THEN Class=Iris-virginica 

Discovered rules by 1-rule ABC algorithm for the differentially private data of 

𝛜=1 
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 IF sepallength between (-0.4657818588095203 and 7.81798912159113) 

and sepalwidth between (3.4367024522923835 and 13.475396811557221) 

THEN Class=Iris-setosa 

 IF sepallength between (1.7965738479553544 AND 9.947735892333764) 

and petallength between (-4.877351209861676 and 14.840946422824832) 

AND petalwidth between (-3.900207983745684 and 

15.622057863092135) THEN Class=Iris-versicolor 

 IF sepalwidth between (-4.203676566884612 and 5.330409266611276) 

and petalwidth between (-4.811544342717559 and 16.70518809175706) 

THEN Class=Iris-virginica 

 

Discovered rules by 1-rule ABC algorithm for the differentially private data of 

𝛜=2 

 

 IF sepallength between (2.3094805964812286 and 6.005589174191702) 

and sepalwidth between (3.234663956450949 and 8.78769840577861) 

THEN Class=Iris-setosa 

 IF sepallength between (3.4030086658775294 and 9.11888118695996) 

and sepalwidth between (-0.6018382834423059 and 5.741130437833356) 

and petallength between (-0.3790992274166598 and 9.759411034290457) 

and petalwidth between (-1.4895164507309424 and 8.894713733436117) 

THEN Class=Iris-versicolor 

 IF sepallength between (5.992270489484784 and 13.136278208584546) 

and sepalwidth between (-0.6018382834423059 and 4.354073994865576) 

THEN Class=Iris-virginica 

Discovered rules by 1-rule ABC algorithm for the differentially private data of 

𝛜=3 
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 IF sepallength between (3.0483066594909327 and 5.783856366773856) 

and sepalwidth between (3.0627592599764184 and 7.225132270519073) 

THEN Class=Iris-setosa 

 IF sepallength between (4.330658877138605 and 7.065085617224864) 

and sepalwidth between (1.7847105475181175 and 3.9939193533737156) 

and petalwidth between (-0.2824398576581886 and 2.707199907327946) 

THEN Class=Iris-versicolor 

 IF sepallength between (6.094370460007446 and 10.75751880572303) 

THEN Class=Iris-virginica 

 

Discovered rules by wLapMS ABC algorithm for the original data  

 

 IF sepalwidth between (2.6128858620464 and 4.198770961405614) and 

petallength between (1.0275483035881807 and 3.4325862983723074) 

THEN Class=Iris-setosa 

 IF petalwidth between (0.658884937089109 and 1.551490481995595) 

THEN Class=Iris-versicolor 

 IF petallength between (4.822724916657451 and 6.547640728124049) 

THEN Class=Iris-virginica 

 

 

 

 

 

 

Discovered rules by wLapMS ABC algorithm for the differentially private 

data of 𝛜=1 
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 IF sepallength between (-0.5741553252266216 and 7.710032367446601) 

and sepalwidth between (3.4797248176118107 and 13.475396811557221) 

THEN Class=Iris-setosa 

 IF sepallength between (5.418760983485363 and 9.427021051218444) 

and sepalwidth between (-1.6437412863867822 and 5.975961990452238) 

and petallength between (-19.647877181396954 and 

14.008070900745839) and petalwidth between (-5.860144566110757 and 

10.067470834776852) THEN Class=Iris-versicolor 

 IF sepalwidth between (-4.203676566884612 and -1.1521252437127623) 

THEN Class=Iris-virginica 

 

Discovered rules by wLapMS ABC algorithm for the differentially private 

data of 𝛜=2 

 

 IF sepallength between (2.1998721360616327 and 5.790014787240827) 

and sepalwidth between (3.225933019052612 and 8.78769840577861) 

THEN Class=Iris-setosa 

 IF sepallength between (6.883861327777364 and 7.58343387377861) and 

sepalwidth between (-0.6018382834423059 and 8.78769840577861) 

THEN Class=Iris-versicolor 

 IF sepallength between (6.007146152847497 and 13.136278208584546) 

and sepalwidth between (-0.6018382834423059 and 4.755415016682328) 

THEN Class=Iris-virginica 

 

Discovered rules by wLapMS ABC algorithm for the differentially private 

data of 𝛜=3 
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 IF sepallength between (3.143206826520672 and 5.785105682539721) 

and sepalwidth between (3.272372481038399 and 7.225132270519073) 

THEN Class=Iris-setosa 

 IF sepallength between (6.746448637996943 and 7.155786451881849) 

THEN Class=Iris-versicolor 

 IF sepallength between (6.060417393517042 and 6.706299946590372) 

THEN Class=Iris-virginica 

 

Discovered rules by sequential covering wLap ABC algorithm for the original 

data 

 

 IF sepallength between (4.3 and 5.801151410237652) and sepalwidth 

between (2.706037396581697 and 4.2) THEN Class=Iris-setosa 

 IF petalwidth between (0.883686444779515 and 1.7856694833214435) 

THEN Class=Iris-versicolor 

 IF petallength between (5.167505565293222 and 6.853649257039449) 

THEN Class=Iris-virginica 

 

Discovered rules by sequential covering wLap ABC algorithm for the 

differentially private data of 𝛜=1 

 

 IF sepallength between (-3.9287920637011675 and 4.606983879501613) 

THEN Class=Iris-setosa 

 IF sepallength between (5.878619308509025 and 10.2954141867077) and 

sepalwidth between (-4.092185911660381 and 4.49181973967097) THEN 

Class=Iris-versicolor 

 IF sepalwidth between (-4.203676566884612 and -1.1530481351473827) 

and petallength between (-17.497395794425906 and 
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21.300966480020417) and petalwidth between (-1.310405722324477 and 

4.42195720704856) THEN Class=Iris-virginica 

 

Discovered rules by sequential covering wLap ABC algorithm for the 

differentially private data of 𝛜=2 

 

 IF sepalwidth between (3.2236922900515608 and 8.78769840577861) 

THEN Class=Iris-setosa 

 IF sepallength between (5.690474903618018 and 13.136278208584546) 

and sepalwidth between (-0.6018382834423059 and 

3.6117980138789365) and petalwidth between (0.7038950193364588 and 

3.3519712178353247) THEN Class=Iris-versicolor 

 IF sepallength between (6.085264251527051 and 11.255370021339598) 

and sepalwidth between (1.7025860342741872 and 8.78769840577861) 

and petalwidth between (2.9543058257335995 and 7.600426515113706) 

THEN Class=Iris-virginica 

 

Discovered rules by sequential covering wLap ABC algorithm for the 

differentially private data of 𝛜=3 

 

 IF sepalwidth between (0.5987744777051294 and 7.225132270519073) 

and petalwidth between (-2.8660888700145297 and 0.3672278063761216) 

THEN Class=Iris-setosa 

 IF sepallength between (5.662152412291221 and 7.6596053649338645) 

and sepalwidth between (2.293427446038246 and 3.992792167552733) 

THEN Class=Iris-versicolor 

 IF sepallength between (6.082623037589031 and 6.667082032103514) 

and sepalwidth between (2.2464673011335567 and 3.338132684527776) 

THEN Class=Iris-virginica 
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5.3. Experimental Results for Privacy Preserving 1R Classifier 

 In this section, the experimental results of the proposed differentially 

private 1R classification algorithm with and without applying ABC-DE based 

feature selection are given and compared with the performance of differentially 

private NB classification algorithm.  

In the experiments, we investigate the performance of the proposed 

differentially private 1R algorithm for the different values of privacy parameter ϵ. 

High values of this parameter mean less privacy while the low values of that 

provide high level privacy. However, the lower the values of ϵ parameter are, the 

lower classification accuracies are observed but the more privacy is provided; 

while the higher the values of ϵ parameter are, the higher classification accuracies 

are obtained but having less privacy. Therefore, it is expected that with the 

decreasing values of ϵ parameter for a differentially private classifier  accuracy also 

decreases (Rubinstein, 2009; Vaidya et al., 2013; Friedman and Schuster, 2010; 

Mivule et al., 2012; Bojarski et al. 2015; Fletcher and Islam, 2015; Fletcher and 

Islam, 2016; Gursoy et al., 2017).  

Additionally, we implement both our proposed model, which is 

differentially private 1R algorithm, and differentially private NB classifier for the 

performance comparison since Naïve Bayes classifier has been used as the baseline 

classifier in the literature (Vaidya et al., 2013; Gursoy et al., 2017), and its 

construction process is very similar to 1R algorithm in terms of usage of the count 

queries. Therefore, we use the same privacy mechanism to implement both 

classifiers  in this study.  

In the experiments, we analyse the classification performances of the 

proposed differentially private 1R and NB classification algorithms for the values 

of ϵ parameter that are 0.1, 0.25, 0.5, 1, 2, and 3. We run the classifiers for 10 times 

with 10 fold cross validation and give the average accuracy values with the 
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standard deviations for the different ϵ parameters in Table 5.16, 5.17, 5.18, 5.19, 

5.20, 5.21, and 5.22 for the datasets Cong. votes, Mushroom, Heart-statlog, Spect-

h, Credit, Breast-w, and Nursery respectively.  

 

Table 5.16. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Congressional votes 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.956 
±2E-16 

0.950 
±0.004 

0.944 
±0.008 

0.903 
±0.021 

0.839 
±0.034 

0.721 
±0.038 

0.656 
±0.078 

NB 
with 
F.S. 

0.933 
±0.001 

0.928 
±0.005 

0.927 
±0.006 

0.908 
±0.006 

0.900 
±0.014 

0.844 
±0.027 

0.652 
±0.055 

1R 
without  
F.S. 

0.956 
±2E-16 

0.886 
±0.014 

0.800 
±0.017 

0.739 
±0.048 

0.625 
±0.038 

0.558 
±0.033 

0.570 
±0.046 

NB 
without  
F.S. 

0.901 
±0.001 

0.893 
±0.004 

0.886 
±0.006 

0.866 
±0.009 

0.799 
±0.025 

0.701 
±0.033 

0.603 
±0.063 

 

According to the experimental results in Table 5.16, it is clear that 

differentially private 1R algorithm shows very close performance to differentially 

private NB algorithm for the values of ϵ parameter that are 3, 2, 1, and 0.5. 

However, differentially private NB with 84.4% accuracy outperforms differentially 

private 1R with 72.1% accuracy for ϵ=0.25. 

 

 

 

Table 5.17. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Mushroom 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.985 
±2E-16 

0.972 
±0.011 

0.971 
±0.011 

0.969 
±0.012 

0.931 
±0.018 

0.893 
±0.029 

0.770 
±0.042 

NB 
with 

0.979 
±0.006 

0.967 
±0.008 

0.960 
±0.009 

0.950 
±0.008 

0.939 
±0.008 

0.900 
±0.011 

0.831 
±0.035 
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F.S. 

1R 
without  
F.S. 

0.950 
±0.008 

0.968 
±0.007 

0.946 
±0.010 

0.862 
±0.016 

0.760 
±0.029 

0.641 
±0.025 

0.560 
±0.028 

NB 
without  
F.S. 

0.957 
±2E-16 

0.929 
±0.001 

0.926 
±0.004 

0.911 
±0.002 

0.873 
±0.006 

0.803 
±0.008 

0.688 
±0.020 

 

When examined Table 5.17, it can be seen that differentially private 1R 

algorithm shows higher performance than differentially private NB algorithm for 

the values of ϵ parameter that are 3, 2, 1, 0.5, and 0.25. However, differentially 

private NB with 83.1% accuracy outperforms differentially private 1R with 77% 

accuracy for ϵ=0.1. 

 

Table 5.18. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Heart-statlog 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.722 
±0.01 

0.617 
±0.01 

0.575 
±0.03 

0.550 
±0.03 

0.502 
±0.02 

0.532 
±0.03 

0.530 
±0.02 

NB 
with 
F.S. 

0.845 
±0.002 

0.645 
±0.02 

0.637 
±0.02 

0.574 
±0.02 

0.533 
±0.02 

0.537 
±0.03 

0.506 
±0.04 

1R 
without  
F.S. 

0.722 
±0.01 

0.535 
±0.02 

0.517 
±0.03 

0.512 
±0.03 

0.503 
±0.03 

0.515 
±0.02 

0.506 
±0.02 

NB 
without  
F.S. 

0.835 
±0.006 

0.564 
±0.03 

0.550 
±0.03 

0.540 
±0.02 

0.508 
±0.04 

0.503 
±0.03 

0.492 
±0.02 

 

According to the experimental results in Table 5.18, differentially private 

1R and differentially private NB have quite close classification results, but NB has 

slightly higher classification accuracies with respect to 1R algorithm.  

In Table 5.19, differentially private 1R and differentially private NB 

performs very similar, but 1R yields slightly higher classification results than those 

of NB algorithm.  
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Table 5.19. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Spect-h 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.723 
±0.001 

0.690 
±0.01 

0.662 
±0.01 

0.610 
±0.02 

0.592 
±0.03 

0.539 
±0.03 

0.512 
±0.03 

NB 
with 
F.S. 

0.693 
±0.02 

0.643 
±0.02 

0.606 
±0.02 

0.565 
±0.02 

0.548 
±0.02 

0.521 
±0.02 

0.509 
±0.02 

1R 
without  
F.S. 

0.723 
±0.001 

0.571 
±0.02 

0.564 
±0.02 

0.526 
±0.01 

0.510 
±0.03 

0.504 
±0.02 

0.515 
±0.02 

NB 
without  
F.S. 

0.681 
±0.03 

0.619 
±0.02 

0.605 
±0.01 

0.568 
±0.02 

0.512 
±0.01 

0.515 
±0.03 

0.484 
±0.03 

 

Table 5.20. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Credit 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.855 
±1E-15 

0.772 
±0.01 

0.733 
±0.01 

0.680 
±0.02 

0.611 
±0.02 

0.540 
±0.03 

0.514 
±0.02 

NB 
with 
F.S. 

0.693 
±0.02 

0.589 
±0.01 

0.566 
±0.02 

0.533 
±0.02 

0.521 
±0.02 

0.501 
±0.01 

0.503 
±0.01 

1R 
without  
F.S. 

0.855 
±1E-15 

0.689 
±0.01 

0.628 
±0.01 

0.588 
±0.01 

0.554 
±0.02 

0.516 
±0.02 

0.511 
±0.01 

NB 
without  
F.S. 

0.681 
±0.03 

0.535 
±0.02 

0.530 
±0.01 

0.514 
±0.01 

0.495 
±0.01 

0.501 
±0.01 

0.490 
±0.01 

 

According to the experimental results in Table 5.20, it can be seen easily 

that differentially private 1R outperforms differentially private NB algorithm for 

Credit dataset.  

 

Table 5. 21. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Breast-w 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 



5. RESULTS AND DISCUSSIONS  Ezgi ZORARPACI 

89 

1R 
with  
F.S. 

0.917 
±0.003 

0.861 
±0.01 

0.835 
±0.01 

0.817 
±0.01 

0.768 
±0.02 

0.655 
±0.06 

0.595 
±0.05 

NB 
with 
F.S. 

0.960 
±0.001 

0.924 
±0.006 

0.915 
±0.006 

0.857 
±0.01 

0.792 
±0.02 

0.636 
±0.03 

0.570 
±0.05 

1R 
without  
F.S. 

0.917 
±0.003 

0.772 
±0.02 

0.748 
±0.02 

0.675 
±0.03 

0.614 
±0.04 

0.576 
±0.03 

0.536 
±0.06 

NB 
without  
F.S. 

0.973 
±4E-4 

0.893 
±0.004 

0.843 
±0.01 

0.779 
±0.01 

0.668 
±0.03 

0.590 
±0.05 

0.545 
±0.03 

 

In Table 5.21, the experimental results of differentially private NB 

algorithm outperforms 1R algorithm for ϵ = 3 and ϵ = 2 for the dataset Breast-w. 

However, NB shows very close performance to 1R algorithm for ϵ=1, ϵ=0.5, 

ϵ=0.25 and ϵ =0.1.  

 

Table 5.22. Average classification accuracies of differentially private 1R and NB 

according to different ϵ parameters for the dataset Nursery 
Epsilon 
value 

Non 
private 

𝟑 𝟐 𝟏 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟏 

1R 
with  
F.S. 

0.709 
±2E-16 

0.709 
±2E-16 

0.709 
±2E-16 

0.708 
±0.001 

0.695 
±0.007 

0.550 
±0.039 

0.283 
±0.019 

NB 
with 
F.S. 

0.898 
±2E-4 

0.894 
±0.001 

0.887 
±0.002 

0.859 
±0.004 

0.758 
±0.015 

0.534 
±0.014 

0.387 
±0.018 

1R 
without  
F.S. 

0.709 
±2E-16 

0.709 
±2E-16 

0.709 
±2E-16 

0.707 
±0.001 

0.691 
±0.008 

0.545 
±0.023 

0.347 
±0.026 

NB 
without  
F.S. 

0.902 
±2E-4 

0.895 
±0.001 

0.886 
±0.002 

0.854 
±0.004 

0.740 
±0.011 

0.549 
±0.016 

0.386 
±0.014 

According to the experimental results in Table 5.22, NB outperforms 1R 

algorithm for Nursery dataset.  

When a general classification performance assessment is made for the 

proposed differentially private 1R algorithm, it can be inferred that the proposed 

method shows similar performance to differentially private NB which is used as a 

baseline for differentially private classification in the literature (Vaidya et al., 
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2013; Gursoy et al., 2017), and the proposed differentially private 1R algorithm 

can be used as an efficient private rule-based classifier.  

 In our proposed method, we apply ABC-DE based feature selection 

method as a pre-processing step to reduce the number of required count queries to 

build differentially private 1R and NB classification algorithms. According to the 

experimental results, it has been demonstrated that the classification accuracies of 

differentially private 1R and NB algorithms increase for all values of ϵ parameter 

for the majority of the datasets when ABC-DE based feature selection is applied. 

The number of attributes determined by applying the ABC-DE based feature 

selection method are presented in Table 5.23. 

According to the values in Table 5.23, the number of count queries 

required to build differentially private 1R and NB classification algorithms 

decreases at least 70%, 70.5%, 60%, 57.1%, 77.2%, 12.5%, and 56.5% with 

applying of ABC-DE based feature selection method as a pre-processing step, 

which enables to have higher level of privacy with more accuracy. As an example, 

differentially private NB classification algorithm yields 84.4% accuracy with 

applying of ABC-DE based feature selection for ϵ=0.25 (i.e., quite high level 

privacy) over Cong. votes. dataset while it achieves 70.1% accuracy without 

applying the feature selection.  
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Table 5.23.  # of attributes selected with ABC-DE based Feature Selection Method 
Dataset # of Attributes # of Attributes with 

F.S. 

Breast-w 10 3 

Cong. Vot. 17 5 

Credit 15 6 

Heart 14 6 

Mushroom 22 5 

Nursery 8 7 

Spect-h 23 10 

 

Finally, when a general comparison is made between differentially private 

1R and NB classification algorithms for ϵ=1 which is a most commonly used 

privacy value, 1R algorithm outperforms NB for 3 datasets that are Credit, 

Mushroom, and Spect-h among 7 datasets. However, 1R algorithm achieves 0.903, 

0.550, and 0.817 average accuracies while NB reaches 0.908, 0.574, and 0.857 

average accuracies for the datasets Cong. votes, Heart-statlog, and Breast-w. The 

differences of average accuracies for the algorithms are only 0.005, 0.024, and 0.04 

for these datasets. Therefore, differentially private 1R algorithm has quite similar 

performance to differentially private NB classification algorithm for these datasets. 

Consequently, differentially private 1R algorithm can also be efficiently used for 

privacy preserving classification.  

 

5.4. Comparison of the Proposed Methods with Recent Studies in the 

Literature 

In this section, the proposed methods are compared with the recent studies 

in the literature. Therefore, the section is divided into two subsections. The first 

subsection includes the comparison with the recent studies of rule-based classifiers 

using ABC while the second subsection contains the comparison with differentially 

private classification algorithms in the literature.  
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5.4.1. Comparison of the Proposed Rule-based Classifiers Using ABC with 

Recent Rule-based Classifiers Using ABC over Non-private Data 

In this subsection, the classification results of the proposed rule-based 

classifiers using ABC (i.e., 1-rule ABC, wLapMS ABC, and sequential covering 

wLap ABC) and the other rule-based classifiers using ABC in the literature are 

compared in Table 5.24 for the common datasets used in the experiments.  

 

Table 5.24. Classification accuracies for our proposed rule-based classifiers using 

ABC and the other rule-based classifiers using ABC in the literature 

Dataset 
Celik 
et al. 

(2011) 

Shukran  
et al. 

(2011) 

Talebi 
and 

Abadi 
(2014) 

1-rule 
ABC 

wLap 
MS 

ABC 

Seq. 
Cov. 
wLap 
ABC 

Breast 95.42% - - 91.4% 92.5% 96.6% 

Ecoli - - 83.39% 70.3% 80.1% 85.2% 

Iris - 94.8% - 85.2% 98.6% 96.1% 

Sonar  - - 72.1% 66.5% 82.1% 83.3% 

 

According to the classification results given in Table 5.24, the  proposed 

ABC-based classification algorithms (i.e., wLapMS ABC and sequential covering 

wLap ABC) have very close or higher classification accuracies to the other ABC-

based classication  algorithms  in the literature for the datasets Breast-w, Ecoli, and 

Iris. However, higher classification accuracies are achieved by our proposed rule-

based classification algorithm (i.e., sequential covering wLap ABC and wLapMS 

ABC) for the dataset Sonar.  

 

5.4.2. Comparison of the Proposed Rule-based Classifiers with Recent 

Differentially Private Classification Algorithms for the used Datasets 

 In Table 5.25, the average classification accuracies of our proposed 

classifiers and the average accuracy values reached by other differentially private 

classification algorithms in the literature over the most commonly used datasets 

that are Cong. votes, Mushroom, and Nursery are given. 
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 When Table 5.25 is examined, the proposed differentially private 1R 

algorithm achieves satisfactory classification results considering the classification 

results of the other differentially private classification algorithms in the literature 

(Friedman and Schuster, 2010; Jagannathan et al., 2012; Vaidya et al., 2013; 

Fletcher and Islam, 2015) for the datasets Mushroom, Nursery, and Cong. votes.  

According to Table 5.25, differentially private ID3 is an indirect rule-based 

classification algorithm and achieves 83.0%  and 40.4% classification accuracies 

for the datasets  Mushroom and Nursery while 86.2% and 70.7% of classification 

accuracies are attained by the proposed differentially private 1R algorithm.  On the 

other hand, by applying the ABC-DE based feature selection method over the 

dataset Mushroom, differentially private 1R classification algorithm reaches 96.9% 

classification accuracy which is the highest value of accuracy values reported in the 

literature for this dataset.  

Briefly, the proposed differentially private 1R algorithm achieves 

satisfactory classification results considering the classification results of the other 

differentially private classification algorithms in the literature (Friedman and 

Schuster, 2010; Jagannathan et al., 2012; Vaidya et al., 2013; Fletcher and Islam, 

2015) over the most commonly used datasets in the literature.  

As a result,  it can be inferred that the proposed differentially private 1R 

algorithm can be used as a differentially private rule-based classification algorithm 

taking account of our experimental results and the results of other differentially 

private classification algorithms in the literature.  Also, the classification accuracy 

of the proposed differentially private 1R algorithm can be improved by applying 

the ABC-DE feature selection as a pre-processing step.  
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Table 5.25. Classification accuracies with ϵ=1for the proposed 1R classifier and the 

other differentially private classifiers in the literature. 

Method 
Dataset 

Cong. votes Mushroom Nursery 

Diff.Priv. ID3 
(Friedman and 
Schuster, 2010) 

- 83.0% 40.4% 

Diff. Priv. RT 
(Jagannathan et 
al., 2012) 

90.0% 92.2% 63.9% 

Diff. Priv. NB 
(Vaidya et al., 
2013) 

86.6% 91.1% 85.4% 

Diff.Priv. Random 
Forest 
(Fletcher and 
Islam, 2015) 

- 93.5% 69.0% 

Diff. Priv. 1R with 
F.S. 

90.0% 96.9% 70.8% 

Diff. Priv. NB with 
F.S. 

90.0% 95.0% 85.9% 

Diff. Priv. 1R 
without F.S. 

73.9% 86.2% 70.7% 

Diff. Priv. NB 
without F.S. 

86.6% 91.1% 85.4% 
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6. CONCLUSION 

 

Privacy preserving data mining is a sub-field of data mining and its goal is 

to protect the privacy of individuals while making possible to apply data mining 

techniques. Recently, differential privacy has been proposed to present maximum 

security to the statistical databases by minimizing the chances for the disclosure of 

the sensitive information of records. Therefore, some implementations of 

classification algorithms such as decision trees, random trees, random forests, NB, 

k-NN etc. with differential privacy have been performed in the literature. Although 

the success of the rule-based classifiers using meta-heuristics such as Ant-Miner, 

Bee-miner etc. in data mining has been demonstrated, any implementation of these 

classification algorithms with differential privacy has not been studied in the 

literature to our best knowledge. 

Motivated by this, we investigate the performance of some rule-based 

classifiers using meta-heuristics under differential privacy guarantee in the first 

implementation of this thesis. To make performance comparison, eleven well-

known classification techniques categorized as rule-based method, instance-based 

technique, artificial neural networks, and decision trees are used. The experiments 

are performed over both of non-private and differentially private datasets. The 

proposed rule-based classifiers especially wLapMS ABC, and sequential covering 

wLap ABC outperform the other well-known classification techniques when high 

level privacy (i.e., ϵ=1) is applied. The experimental results show that the proposed 

rule-based classifiers can be efficiently used to discover classification rules from 

both of the differentially private and non-private databases. 

In the second differential privacy implementation of this thesis, 

differentially private 1R classifier is developed to cover the gap for the lack of that 

implementation of 1R classification algorithm with differential privacy which has 

not been developed in the literature to our best knowledge. On the other hand, 1R 

is a simple classification algorithm and it discovers the rules which result in 
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slightly lower accuracy with respect to the state of the art classification algorithms, 

but its rules are of a small number and very easy to interpret for humans.  

In this second rule-based implementation of differential privacy with meta-

heuristics, an ABC-DE based feature selection method proposed by Zorarpacı and 

Özel (2016) is applied as a pre-processing step to reduce the required count queries 

sent to the differentially private database on a large scale during the construction of 

1R.  

Additionally, for the performance evaluation of the proposed differentially 

private 1R, the same privacy preserving model is used for both differentially 

private 1R and differentially private NB classifier. For the performance comparison 

of the proposed differentially private 1R classifier, differentially private NB 

classifier is utilized as it is the baseline for differentially private classification in 

the literature. 

The experimental results show that the proposed differentially private 1R 

classification algorithm has very similar or higher performances with respect to 

differentially private NB classification algorithm for the different values of privacy 

parameter ϵ. Also, the accuracy values of the differentially private 1R and NB 

classifiers can be increased for all values of ϵ parameter by applying ABC-DE 

based feature selection.  

In this thesis, we investigate the performance of rule-based classifiers using  

ABC meta-heuristic algorithm for the implementation. However other meta-

heuristics or evolutionary algorithms, or hybrid approaches of these algorithms can 

be considered to develop rule-based classifiers under differential privacy guarantee 

as future work. Additionally differentially private feature selection method may be 

developed to build differentially private 1R and NB classification algorithms as 

future work as well. 1R algorithm may be updated to develop a more accurate 

version of differentially private 1R classifier. 
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Original data for Iris dataset  
sepallength sepalwidth petallength petalwidth 

5,10 3,50 1,40 0,20 

4,90 3,00 1,40 0,20 

4,70 3,20 1,30 0,20 

4,60 3,10 1,50 0,20 

5,00 3,60 1,40 0,20 

5,40 3,90 1,70 0,40 

4,60 3,40 1,40 0,30 

5,00 3,40 1,50 0,20 

4,40 2,90 1,40 0,20 

4,90 3,10 1,50 0,10 

5,40 3,70 1,50 0,20 

4,80 3,40 1,60 0,20 

4,80 3,00 1,40 0,10 

4,30 3,00 1,10 0,10 

5,80 4,00 1,20 0,20 

5,40 3,90 1,30 0,40 

5,10 3,50 1,40 0,30 

5,70 3,80 1,70 0,30 

5,10 3,80 1,50 0,30 

5,40 3,40 1,70 0,20 

5,10 3,70 1,50 0,40 

4,60 3,60 1,00 0,20 

4,80 3,40 1,90 0,20 

5,00 3,00 1,60 0,20 

5,20 3,50 1,50 0,20 

5,20 3,40 1,40 0,20 

4,80 3,10 1,60 0,20 

5,40 3,40 1,50 0,40 

5,20 4,10 1,50 0,10 
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5,50 4,20 1,40 0,20 

4,90 3,10 1,50 0,10 

5,00 3,20 1,20 0,20 

5,50 3,50 1,30 0,20 

4,90 3,10 1,50 0,10 

4,40 3,00 1,30 0,20 

5,00 3,50 1,30 0,30 

4,50 2,30 1,30 0,30 

4,40 3,20 1,30 0,20 

5,00 3,50 1,60 0,60 

5,10 3,80 1,60 0,20 

4,60 3,20 1,40 0,20 

5,30 3,70 1,50 0,20 

5,00 3,30 1,40 0,20 

7,00 3,20 4,70 1,40 

6,40 3,20 4,50 1,50 

6,90 3,10 4,90 1,50 

6,50 2,80 4,60 1,50 

5,70 2,80 4,50 1,30 

6,30 3,30 4,70 1,60 

4,90 2,40 3,30 1,00 

5,20 2,70 3,90 1,40 

5,00 2,00 3,50 1,00 

5,90 3,00 4,20 1,50 

6,00 2,20 4,00 1,00 

6,10 2,90 4,70 1,40 

5,60 2,90 3,60 1,30 

6,70 3,10 4,40 1,40 

5,60 3,00 4,50 1,50 

5,80 2,70 4,10 1,00 

6,20 2,20 4,50 1,50 
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5,60 2,50 3,90 1,10 

5,90 3,20 4,80 1,80 

6,10 2,80 4,00 1,30 

6,30 2,50 4,90 1,50 

6,10 2,80 4,70 1,20 

6,40 2,90 4,30 1,30 

6,70 3,00 5,00 1,70 

6,00 2,90 4,50 1,50 

5,70 2,60 3,50 1,00 

5,50 2,40 3,80 1,10 

5,50 2,40 3,70 1,00 

5,80 2,70 3,90 1,20 

5,40 3,00 4,50 1,50 

6,00 3,40 4,50 1,60 

6,70 3,10 4,70 1,50 

6,30 2,30 4,40 1,30 

5,60 3,00 4,10 1,30 

5,50 2,50 4,00 1,30 

5,50 2,60 4,40 1,20 

6,10 3,00 4,60 1,40 

5,80 2,60 4,00 1,20 

5,00 2,30 3,30 1,00 

5,60 2,70 4,20 1,30 

5,70 3,00 4,20 1,20 

5,70 2,90 4,20 1,30 

6,20 2,90 4,30 1,30 

5,10 2,50 3,00 1,10 

5,70 2,80 4,10 1,30 

6,30 3,30 6,00 2,50 

5,80 2,70 5,10 1,90 

7,10 3,00 5,90 2,10 
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6,30 2,90 5,60 1,80 

6,50 3,00 5,80 2,20 

4,90 2,50 4,50 1,70 

7,30 2,90 6,30 1,80 

6,70 2,50 5,80 1,80 

7,20 3,60 6,10 2,50 

6,50 3,20 5,10 2,00 

6,40 2,70 5,30 1,90 

5,70 2,50 5,00 2,00 

5,80 2,80 5,10 2,40 

6,40 3,20 5,30 2,30 

6,50 3,00 5,50 1,80 

7,70 3,80 6,70 2,20 

7,70 2,60 6,90 2,30 

6,00 2,20 5,00 1,50 

6,90 3,20 5,70 2,30 

5,60 2,80 4,90 2,00 

7,70 2,80 6,70 2,00 

6,30 2,70 4,90 1,80 

6,70 3,30 5,70 2,10 

7,20 3,20 6,00 1,80 

6,20 2,80 4,80 1,80 

6,10 3,00 4,90 1,80 

6,40 2,80 5,60 2,10 

7,20 3,00 5,80 1,60 

7,40 2,80 6,10 1,90 

7,90 3,80 6,40 2,00 

6,40 2,80 5,60 2,20 

6,30 2,80 5,10 1,50 

6,10 2,60 5,60 1,40 

7,70 3,00 6,10 2,30 
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6,30 3,40 5,60 2,40 

6,40 3,10 5,50 1,80 

6,00 3,00 4,80 1,80 

6,90 3,10 5,40 2,10 

6,70 3,10 5,60 2,40 

6,90 3,10 5,10 2,30 

5,80 2,70 5,10 1,90 

6,80 3,20 5,90 2,30 

6,70 3,00 5,20 2,30 

6,30 2,50 5,00 1,90 

6,50 3,00 5,20 2,00 

6,20 3,40 5,40 2,30 

5,90 3,00 5,10 1,80 

 

Differentially private data with ϵ=1 for Iris dataset  
sepallength sepalwidth petallength petalwidth 

4,75 4,07 -2,22 3,16 

0,26 3,89 9,06 4,28 

3,96 -1,14 11,67 -0,13 

4,38 9,58 28,81 -0,07 

-0,26 9,68 5,45 -1,65 

14,96 3,56 4,30 2,89 

3,97 3,67 -9,67 7,17 

2,67 4,56 -0,66 1,53 

5,88 -0,84 1,40 -4,90 

10,44 0,67 3,12 0,41 

5,68 3,97 12,44 4,72 

5,86 2,40 0,83 -6,58 

4,44 4,19 -6,25 -0,53 

0,09 2,26 8,17 1,60 

7,23 4,73 -11,42 1,37 
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-2,90 2,56 4,54 3,09 

5,38 6,63 13,55 -1,84 

-3,88 2,00 1,44 -0,26 

5,24 8,09 -3,26 -2,33 

3,55 4,34 2,55 -0,87 

6,70 5,74 -0,02 0,15 

4,70 1,78 17,44 -1,32 

2,82 3,66 18,39 11,14 

5,63 3,99 18,48 -0,07 

4,37 6,24 -8,21 4,68 

4,50 2,90 5,88 -1,39 

7,56 9,45 6,89 -1,94 

4,05 -0,45 1,50 -12,06 

5,70 13,48 -7,08 -3,11 

4,99 3,50 9,18 -1,16 

13,66 2,56 7,80 -0,14 

0,48 5,19 1,58 0,06 

2,32 5,97 2,86 -2,15 

15,87 1,93 1,29 -1,38 

5,00 0,53 2,55 1,86 

5,18 2,97 -2,60 -0,76 

2,88 2,41 19,90 4,00 

4,88 -1,02 -13,18 2,01 

6,52 4,50 2,37 8,51 

6,88 4,58 13,30 -5,09 

6,06 9,77 -1,38 3,08 

3,14 -0,35 2,82 8,10 

5,73 1,19 14,72 1,62 

6,95 2,42 -4,12 0,19 

7,46 2,95 -2,64 4,28 

5,87 4,12 6,32 1,82 
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3,28 0,58 6,63 -0,15 

6,62 5,58 -2,32 1,29 

8,35 0,88 5,65 2,05 

4,42 6,87 -5,85 4,24 

6,61 3,66 -1,85 -1,20 

5,07 -1,37 -1,56 4,67 

12,19 7,71 7,23 -3,42 

6,77 8,74 3,94 2,38 

-0,31 3,23 6,31 2,72 

9,11 6,03 26,53 0,94 

11,93 2,53 -5,20 3,52 

-2,35 4,76 -2,80 7,42 

-2,66 4,35 17,89 2,39 

5,50 2,57 4,21 2,14 

3,79 1,55 8,40 3,03 

3,23 4,45 3,34 0,12 

8,57 2,60 12,52 2,27 

6,89 -1,03 8,62 1,31 

7,93 5,95 2,59 0,74 

11,12 8,25 19,05 1,20 

7,72 -0,15 8,03 4,55 

9,37 -0,83 4,96 5,46 

15,60 3,10 -26,73 -5,07 

18,63 6,34 2,59 1,91 

3,40 1,62 7,13 -0,33 

-1,56 3,29 8,95 0,62 

4,22 2,25 4,39 0,02 

5,97 -0,86 3,00 1,66 

6,98 3,14 3,37 2,57 

5,47 3,75 2,77 1,99 

2,74 0,77 6,29 1,84 
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4,69 5,83 12,34 2,75 

2,32 3,76 3,58 4,45 

14,89 2,29 8,95 2,81 

5,62 2,92 11,80 1,46 

6,68 -0,89 11,55 0,49 

2,53 2,74 -17,29 3,05 

4,13 5,78 -0,54 -1,28 

8,82 1,15 3,55 0,65 

7,85 3,42 -12,54 3,16 

2,32 6,86 2,96 -1,13 

2,13 1,23 4,91 3,52 

15,09 5,05 -4,23 6,21 

-3,01 4,71 13,72 2,99 

15,68 -4,20 15,45 1,34 

6,75 1,30 14,69 4,64 

6,80 1,88 10,68 -0,78 

-0,68 1,38 23,30 -1,68 

3,80 -2,60 8,44 0,25 

6,36 -2,07 7,60 1,26 

8,06 0,95 0,73 13,19 

6,89 1,95 8,68 1,56 

6,60 1,84 1,22 1,89 

-0,90 2,52 2,65 -0,72 

4,11 1,07 -1,61 1,00 

7,13 -1,83 -6,16 4,34 

5,95 2,37 3,27 0,41 

14,04 4,85 3,83 0,79 

10,82 -1,18 2,09 3,26 

20,27 2,41 6,35 -0,12 

4,90 7,18 23,92 0,43 

-3,05 5,05 7,24 0,60 



 

119 

8,02 2,68 15,69 0,53 

14,92 2,93 -8,16 1,87 

-1,73 3,14 14,70 -0,01 

0,65 1,85 8,21 2,40 

10,07 -0,27 3,66 1,67 

15,44 4,70 3,46 8,74 

8,94 6,28 -10,53 -1,84 

-0,94 1,25 5,48 1,46 

4,67 4,17 2,93 0,52 

5,68 2,81 9,47 1,73 

3,50 6,58 -18,13 2,21 

4,18 1,73 21,32 -0,02 

12,43 4,49 -3,27 -4,61 

1,96 4,82 9,70 17,70 

7,04 6,03 28,28 3,63 

6,54 1,12 0,98 4,16 

3,35 3,42 -5,47 1,97 

4,74 3,03 1,62 1,70 

5,49 1,09 13,49 0,19 

5,85 8,59 1,13 6,58 

13,11 10,13 10,81 0,89 

16,17 -3,54 4,54 1,76 

9,59 3,49 16,58 6,10 

-3,93 -1,51 11,88 2,01 

-0,77 4,51 3,78 1,99 

-1,01 -2,54 6,23 0,23 

6,15 3,10 13,46 1,53 

 

  



 

120 

Differentially private data with ϵ=2 for Iris dataset  
sepallength sepalwidth petallength petalwidth 

4,92 3,79 -0,41 1,68 

2,58 3,44 5,23 2,24 

4,33 1,03 6,48 0,04 

4,49 6,34 15,15 0,07 

2,37 6,64 3,42 -0,72 

10,18 3,73 3,00 1,65 

4,28 3,53 -4,13 3,74 

3,84 3,98 0,42 0,87 

5,14 1,03 1,40 -2,35 

7,67 1,89 2,31 0,26 

5,54 3,84 6,97 2,46 

5,33 2,90 1,21 -3,19 

4,62 3,60 -2,43 -0,21 

2,20 2,63 4,64 0,85 

6,52 4,36 -5,11 0,78 

1,25 3,23 2,92 1,75 

5,24 5,06 7,48 -0,77 

0,91 2,90 1,57 0,02 

5,17 5,94 -0,88 -1,02 

4,47 3,87 2,12 -0,33 

5,90 4,72 0,74 0,27 

4,65 2,69 9,22 -0,56 

3,81 3,53 10,15 5,67 

5,32 3,50 10,04 0,06 

4,78 4,87 -3,36 2,44 

4,85 3,15 3,64 -0,59 

6,18 6,27 4,25 -0,87 

4,73 1,48 1,50 -5,83 

5,45 8,79 -2,79 -1,50 



 

121 

5,24 3,85 5,29 -0,48 

9,28 2,83 4,65 -0,02 

2,74 4,20 1,39 0,13 

3,91 4,74 2,08 -0,98 

10,39 2,52 1,39 -0,64 

4,70 1,76 1,92 1,03 

5,09 3,24 -0,65 -0,23 

3,69 2,35 10,60 2,15 

4,64 1,09 -5,94 1,11 

5,76 4,00 1,99 4,56 

5,99 4,19 7,45 -2,45 

5,33 6,49 0,01 1,64 

4,22 1,67 2,16 4,15 

5,36 2,25 8,06 0,91 

6,98 2,81 0,29 0,79 

6,93 3,08 0,93 2,89 

6,39 3,61 5,61 1,66 

4,89 1,69 5,62 0,68 

6,16 4,19 1,09 1,30 

7,33 2,09 5,18 1,82 

4,66 4,63 -1,27 2,62 

5,91 3,18 1,03 0,10 

5,04 0,31 0,97 2,84 

9,04 5,36 5,72 -0,96 

6,38 5,47 3,97 1,69 

2,89 3,07 5,51 2,06 

7,36 4,46 15,07 1,12 

9,31 2,82 -0,40 2,46 

1,62 3,88 0,85 4,46 

1,57 3,52 10,99 1,70 

5,85 2,39 4,36 1,82 



 

122 

4,70 2,02 6,15 2,06 

4,56 3,82 4,07 0,96 

7,34 2,70 8,26 1,78 

6,60 0,73 6,76 1,41 

7,01 4,38 3,64 0,97 

8,76 5,57 11,67 1,25 

7,21 1,42 6,51 3,12 

7,69 1,04 4,73 3,48 

10,65 2,85 -11,61 -2,04 

12,07 4,37 3,19 1,51 

4,45 2,01 5,41 0,34 

2,12 2,99 6,43 0,91 

4,81 2,62 4,45 0,76 

5,99 1,27 3,75 1,63 

6,84 3,12 4,04 2,03 

5,88 3,03 3,58 1,64 

4,17 1,88 5,19 1,57 

5,10 4,16 8,17 2,02 

3,91 3,18 3,99 2,82 

10,49 2,64 6,78 2,10 

5,71 2,76 7,90 1,33 

5,84 0,71 7,42 0,74 

4,06 2,72 -6,55 2,18 

4,92 4,39 1,83 -0,04 

7,26 2,03 3,87 0,98 

7,02 3,16 -4,12 2,23 

3,71 4,68 2,98 -0,02 

3,91 2,02 4,50 2,41 

10,69 4,17 0,88 4,35 

1,40 3,71 9,41 2,45 

11,39 -0,60 10,67 1,72 



 

123 

6,52 2,10 10,14 3,22 

6,65 2,44 8,24 0,71 

2,11 1,94 13,90 0,01 

5,55 0,15 7,37 1,03 

6,53 0,22 6,70 1,53 

7,63 2,27 3,41 7,84 

6,70 2,58 6,89 1,78 

6,50 2,27 3,26 1,90 

2,40 2,51 3,83 0,64 

4,95 1,93 1,74 1,70 

6,77 0,69 -0,43 3,32 

6,23 2,68 4,38 1,11 

10,87 4,32 5,27 1,50 

9,26 0,71 4,49 2,78 

13,14 2,30 5,67 0,69 

5,90 5,19 14,81 1,37 

1,28 3,92 6,07 1,30 

7,86 2,74 11,20 1,26 

10,61 2,81 -1,63 1,84 

2,48 3,22 10,20 1,05 

3,92 2,52 7,11 2,10 

8,13 1,26 4,23 1,73 

10,77 3,85 4,18 5,27 

7,67 4,54 -2,46 0,13 

3,13 2,12 5,64 1,53 

6,03 3,48 4,52 1,21 

6,79 3,31 7,94 1,86 

4,95 4,69 -6,26 2,21 

5,24 2,26 13,21 0,74 

9,27 3,55 1,16 -1,60 

4,83 3,91 7,90 10,00 



 

124 

6,67 4,71 16,94 3,02 

6,47 2,11 3,24 2,98 

4,67 3,21 -0,34 1,89 

5,82 3,06 3,51 1,90 

6,09 2,10 9,55 1,29 

6,37 5,84 3,11 4,44 

9,45 6,41 7,96 1,39 

11,48 -0,17 5,22 2,03 

8,14 3,25 10,89 4,20 

1,19 0,50 8,44 1,95 

2,87 3,76 4,49 1,99 

2,60 0,43 5,81 1,26 

6,03 3,05 9,28 1,66 

 

Differentially private data with ϵ=3 for Iris dataset  
sepallength sepalwidth petallength petalwidth 

4,98 3,69 0,19 1,19 

3,35 3,30 3,95 1,56 

4,45 1,75 4,76 0,09 

4,53 5,26 10,60 0,11 

3,25 5,63 2,75 -0,42 

8,59 3,79 2,57 1,23 

4,39 3,49 -2,29 2,59 

4,22 3,79 0,78 0,64 

4,89 1,65 1,40 -1,50 

6,75 2,29 2,04 0,20 

5,49 3,79 5,15 1,71 

5,15 3,07 1,34 -2,06 

4,68 3,40 -1,15 -0,11 

2,90 2,75 3,46 0,60 

6,28 4,24 -3,01 0,59 



 

125 

2,63 3,45 2,38 1,30 

5,19 4,54 5,45 -0,41 

2,51 3,20 1,61 0,11 

5,15 5,23 -0,09 -0,58 

4,78 3,71 1,98 -0,16 

5,63 4,38 0,99 0,32 

4,63 2,99 6,48 -0,31 

4,14 3,49 7,40 3,85 

5,21 3,33 7,23 0,11 

4,92 4,41 -1,74 1,69 

4,97 3,23 2,89 -0,33 

5,72 5,22 3,36 -0,51 

4,95 2,12 1,50 -3,75 

5,37 7,23 -1,36 -0,97 

5,33 3,97 3,99 -0,25 

7,82 2,92 3,60 0,02 

3,49 3,86 1,33 0,15 

4,44 4,32 1,82 -0,58 

8,56 2,71 1,43 -0,39 

4,60 2,18 1,72 0,75 

5,06 3,32 0,00 -0,05 

3,96 2,34 7,50 1,53 

4,56 1,79 -3,53 0,80 

5,51 3,83 1,86 3,24 

5,69 4,06 5,50 -1,56 

5,09 5,39 0,47 1,16 

4,58 2,35 1,94 2,83 

5,24 2,60 5,84 0,67 

6,98 2,94 1,76 1,00 

6,75 3,12 2,12 2,43 

6,56 3,44 5,37 1,61 



 

126 

5,43 2,06 5,28 0,95 

6,01 3,73 2,23 1,30 

6,98 2,49 5,02 1,75 

4,74 3,89 0,25 2,08 

5,67 3,02 1,98 0,53 

5,02 0,88 1,81 2,22 

8,00 4,57 5,21 -0,14 

6,26 4,38 3,98 1,46 

3,96 3,01 5,24 1,84 

6,77 3,94 11,24 1,18 

8,44 2,91 1,20 2,11 

2,95 3,59 2,07 3,47 

2,98 3,25 8,70 1,46 

5,97 2,32 4,40 1,71 

5,00 2,18 5,40 1,74 

5,01 3,62 4,31 1,24 

6,92 2,73 6,84 1,62 

6,50 1,32 6,14 1,44 

6,71 3,85 4,00 1,05 

7,97 4,68 9,22 1,27 

7,04 1,95 6,01 2,65 

7,12 1,66 4,65 2,82 

9,00 2,77 -6,58 -1,02 

9,88 3,71 3,40 1,37 

4,80 2,14 4,84 0,56 

3,35 2,90 5,58 1,01 

5,01 2,75 4,46 1,01 

5,99 1,98 4,00 1,62 

6,79 3,11 4,26 1,86 

6,02 2,78 3,86 1,53 

4,65 2,26 4,83 1,48 



 

127 

5,23 3,61 6,78 1,78 

4,44 2,99 4,13 2,28 

9,03 2,76 6,05 1,87 

5,74 2,71 6,60 1,29 

5,56 1,24 6,05 0,83 

4,58 2,71 -2,96 1,88 

5,18 3,93 2,62 0,37 

6,74 2,32 3,98 1,08 

6,75 3,07 -1,31 1,92 

4,17 3,95 2,99 0,36 

4,51 2,28 4,37 2,04 

9,23 3,88 2,59 3,74 

2,86 3,37 7,97 2,26 

9,96 0,60 9,08 1,85 

6,45 2,37 8,63 2,75 

6,60 2,63 7,43 1,21 

3,04 2,13 10,77 0,57 

6,13 1,07 7,01 1,28 

6,59 0,98 6,40 1,62 

7,49 2,72 4,31 6,06 

6,63 2,78 6,29 1,85 

6,47 2,41 3,94 1,90 

3,50 2,51 4,22 1,09 

5,24 2,22 2,86 1,93 

6,64 1,52 1,48 2,98 

6,32 2,79 4,76 1,34 

9,81 4,15 5,74 1,73 

8,74 1,34 5,30 2,62 

10,76 2,27 5,45 0,96 

6,23 4,53 11,77 1,68 

2,72 3,55 5,68 1,53 



 

128 

7,81 2,76 9,70 1,51 

9,17 2,78 0,55 1,82 

3,89 3,25 8,70 1,40 

5,02 2,75 6,74 2,00 

7,49 1,78 4,42 1,76 

9,21 3,57 4,42 4,11 

7,25 3,96 0,22 0,79 

4,49 2,42 5,69 1,55 

6,49 3,26 5,04 1,44 

7,16 3,47 7,42 1,91 

5,43 4,06 -2,31 2,20 

5,59 2,44 10,51 0,99 

8,21 3,23 2,64 -0,60 

5,79 3,61 7,30 7,43 

6,55 4,28 13,16 2,81 

6,45 2,44 3,99 2,59 

5,12 3,14 1,38 1,86 

6,18 3,08 4,14 1,97 

6,30 2,43 8,23 1,66 

6,55 4,93 3,78 3,73 

8,24 5,18 7,00 1,56 

9,92 0,95 5,45 2,12 

7,66 3,16 8,99 3,57 

2,89 1,16 7,29 1,94 

4,08 3,50 4,73 2,00 

3,80 1,42 5,68 1,61 

5,98 3,03 7,89 1,71 

 

 

 

 


