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PREFACE

Fuzzy systems and neural networks are being studied extensively as emerging
technologies in aruicial intelligence(Al) applications to increase a given system’s 1Q.
On the other hand. nuclear power plants are known as plants modeled with stiff, non-
lincar equations. Al including time-delay propertics . nuclear power plants appear as
a challenging ficld tor control engineering. In spite of these difficulties, cqnventional
control systems hive been employed in nuclear power plants. All the required and
desired operation has been carried out by these controllers with a satisfactory
performance. But desired performancee is limited in a simple hardware solution by the
hard-wired cquipn‘wnl; essentially due to highly dééircd reliable operation of nuclear
reactors. However some recent developments in digital technology (specially in
microprocessors il their implementations in- control ) made more sophisticated
controllers apphcable for a reliable nuclear reactor operation. During the years
conventional controllers are in service, we have acquired a huge numerical and
linguistic information stack about the plants. We need additional tools to combine this
acquir‘cd information in controller design. Fuzzy logic controller has been developed
to formulate computational control rules using linguistic knowledge about the plants.
Neurai networks can learn very complex control surfaces easily. Hence, they have
been successively  cmploved in the intelligent controller design with an even
increasing application rate. Consequently, fuzzy and neural methodologies can be
utilized in the desien ol super controllers for nuclear power plants.

I wish to cxpress my sineere thanks to my advisor Prof. Dr. Melih Gegkinli for
sluggcsting me a highly interesting and motivating subject, his outstanding suggestions
and thoughts were always useful and influential on this work and my life. 1 wish also
to express my sincere thanks o Proll Dr.Sarman Gengay for his encouragement and

support throughout my work on my thesis.
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: SUMMARY

i
Globally, digital control of nuclear reactors is finding acceptance around the

academic and commercial circles at an increasing rate. Therefore, this resulted in the
importance of controllers designed for nuclear plants using already existing control
methods. State feedback controller offers much more benifits than a simple unitary
6utpul feedback controller. However there is an additional we need to estimate other
states that are not available, hence problem becomes a synthesis of controller and
estimator design. Optimal control design t:wlhudologics have been applied to nuclear
power plants since 1970°s. These and similar studies endeavor to increase controller
robustness for some uncertainties which result from both measurement and
inaccuracy in system modeling. Lincar Quadratic Gaussian(L.QG) accounts for a type
of controller which is a synthesis of stochastic observer design (Kalman Filter) and
Lincar Quadratic Regulator(LQR) using the scparation principle. These types of
controllers are well studied . whose propertics are well-known and their solutions
formulated in the form of nonlincar matrix valued equations which are called Riccati
differential Equations (RDEs). However solution of RDE and some nonlincar laws
designed according to adaptive control are too computation-intensive for application
to nuclear power plants. Due to non-lincar mapping of Fuzzy Logic Controllers and
Artificlal Neural Networks(ANN) and also adaptivity propertics of ANN. they have
been . employed in nuclear power plant control with an even increasing application
rate.

In this spirit, 1 studied some controllers  for nuclear power. plangs ranging
from simple to more sophisticated and intelligent applications designed by the

methodologices of fuzzy and ncural networks.



OZET
YAPAY SiNiR AGLARI ve BULANIK SISTEMLERIN NUKLEER
GUC SANTRALLARININ KONTROLUNDA KULLANILMASI

Bulamk manuk sistemleri ve sinir aglan  konrol sistemlerinin  zekasim
artirmak igin kullanilan yapay zcka araglandir. Diger taraflan nitkleer reaktérler ancak
liner olmay‘an sistemlerle matematiksel olarak ifade cdilmektedirler. Zaman gegikmeli
Ozellikleriyle kontrol uygulamalan igin zor bir alam olusturmaktadirlar. Bununia
birlikte kontrol tasarimlarimin dogrudan birinin digerine dstiinligind kamtlamak
zordur. Degigik kontrol tsanmlanmin baglangigta sayisal olarak simule cdilerck
nitkkleer reaktorler dzerinde denenmeleri gerekir, Karsllasunlahak sonuglara gore bu

kontrol tasarimlan niikleer reaktorler igin degerlendirilebilir.

Nukleer reaktdrlere uygulanan kontrol sistemlerini genel olarak yapilarina gore
'i!&iyc ayirmak mimkindir. Bunlar ¢ikig birim geri besleme kontrol sistemleri ve
durum geri besleme kontrol sistemleridir. Bu kontrol sistemleri kullammda olduklan
uzun yillar boyunca kendilerinden istenilenleri basariyla yerine getirmiglerdir. Ancak
temel olarak ntikleer reaktdrlerin en givenli bigimde ¢alismasi temel ahindigimdan
zamamn kontrol teknoloji de hesapa kaularak en basit yapidaki kontrol sistemleri
segilmig ve kullamlmigur, Bununla beraber bilgisayar teknolojisindeki sox; gelismeler
daha karmagik kontrol sistemlerinin - niikleer reaktorlerde giivenli  bigimde

kullamlmasim olanakl hale getirmistir.

Sayisal Dbilgisayarlann  niikleer reaktdrelerin - kontroliinde  kullaniimas:
akademik ve¢ ticari gevrelerde giderck artan bir oranda kabul pdrmektedir. Bundan
dolay1, ntikleer reaktorlerin daha iyi bigimde kontrol edilebilmesi igin halihazirdaki

kontrol tasarim metodlannmin kullantimast 6nem kazannugtir,

vii



Durum geri besleme kontrol sisteminin basit bir ¢tkig birim geri besleme
kontrol sistemine goére pek ¢ok istinlikleri vardir. Bunula birlikte, nikleer
reaktdrden dlgtilemeyen durumlar igin bi¢ durum Kestirici tasarlamak gerckmektedir.
Bundan sonra problem bir durum Kkestirici ile denetleyicinin uygun bigimde

birlestirilmesi olmaktadir,

Opl{(llal Kontrol tasarim metodlan 1970 'lerden beri nitkleer giig reaktorlerine
uygulanmaktadiriar. Bu ve benzeri ¢ahgmalar, dlgmeden ve sistemi modellemedeki
yanhshklardan en az ctkilenccek, bu degisimlere en iyi bigimde tolere edebilecek
dencetleyiciyi tasarlamayr temel olarak amag cdinmiglerdir. Liner Karesel Gaussian,
stokastik  kestirigi dizaymyla  (Kalman  Stizgegi) i)()grtlszll Karesel Dilzenleyigi
dizaymm aynliklar prensibine gore birlestiren bir ¢esit kontrol sistemi tasarim
mctodudur. Bu tiir tasanimlar iyi bilinen, dzellikleri iyi ¢ahgilnug ve bazilara gore de
artik eski moda tasanm metodlandir, Bu tdr tasanm metodlan sonugta probleme gore
lliner olmayan matris formunda matematiksel  denklemeler  olan  Riccati
Denklemleriyle ¢dztilmektedir. Bununla beraber Ricatti Denklemlerinin ¢éziimil ve
uyarlamali kontrole gore tiretilebilecek liner olmayan kontrol kurallari niikleer reaktor

kontrolu igin oldukga hesaplama yogun iglemler gerektirmektedir.

Bitiln bu anlatlanlar 1gi1g: altinda bulamk mantik denctleyicileri ve sinir aglan
liner olmayan sistemlerdeki  uyarlama  dzelliklerinden  dolays nilklcer giig
santrallerinin kontrol sistemleri tasaniminda gittikge artan oranda kullaniimaktadirlar.

L]

Genel olarak bunlar gézeterck, en basitinden en karmasik ve zekisine kadar

nikleer gilg santralleri igin yapay sinir aglan ve bullamk mantk kullanilarak

tasarlanan kontrol sistemlerini bu tezde aragtirdim.



@

Nikleer giig ve suni zeka insanoglunun en 6nemli basanlandir. Her ikisi de
yasadiginz son yiiz yil iginde dilsiiniilmils ve bazen sivil bazen de askeri amaglar igin
kullamlmuglardir. Bunlardan ilkinin, toplumlar tizerindeki psikolojik etkisi biiyiik
Olgtide soguk savag sirasindaki olasi bir niikleer savag felaketi yilziinden korkung
'olmuslur. Diger yandan yapay zcka son 10-15 sencye kadar bilim kurgu romanlarinin
en pop(llcr‘ konulart olarak kalnuglardir. Bu romanlarda anlatilan hikaycler biyik
¢ogunlukta insan benzeri robotlari diinyadaki insan dstilnliigtine son verip insanlan
kole olarak kullanmalandir. Ne yazik ki suni zcka konusundaki aragtirmacilarin da
. belirtikleri gibi bu tip hikayeler alamin gosterecegi gelismelerde moral bozucu etkiler

)'fupmlsur.

[Ik nikleer gigle ¢alisun enerji santrallerinin kurulmast ve bunlarin diinya
capinda yaginlagmasi niikleer enerjinin en ucuz ve insanoglunun evrensel olarak elde
cdebilecegi tek cnerji kaynagt oldugunu  gostermistir.Genel olarak son yillarda
nilkleer enerjiye olan talebin azalmasina ragmen uzayin derinliklerini kesfetmeyi
disleyen insanoglu gelecek ytzyillardaki diger bilyitk projelerini gergeklestirmek igin
nikleer enerjiyi kullanmali ve onu aragtirmahdir. Bununla beraber giintimiizdeki
nikleer santrallerde kargilagilan en dnemli problem ntikleer santrallerin giivenli
bicimde ¢ahstinimalandir. Ikincisi ve belki en dnemli problem niikleer atiklar
sorunudur. Nikleer teknolojideki son gelismeler nitkleer atiklar sorununu ¢ozebilir.
Benzer olarak ntikleer reaktdrlerdeki yeni tasarnim ve dizenlemeler reaktirlerin
kararhhigim ve glivenilirligini artirarak santrallerin daha glivenli bigimde ¢aligmalarim

saglayabilir.

Bitdn bunlar ve sayisal bilgisayarlardaki son gelismelerle beraber yeni

' L}
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veya oturmus kontrol metodlarimin ntikleer reaktorlere uygdlanmasn nitkleer gilg

santrallerinin bakini,  verimliligi ve gtvenligi  agisindan  daha uygun ¢éziimler

ilretebilecektir.

Aragtirmalar kontrol kuramlariin gtig santrallerine uygulanmasiyla ilgilidir.
Genel olarak, nilklcer reaktdrleri modelleyen denklemler dogrusal olmayan ve zor
(stift) denklemlerdir. Aynca zaman gegikmeli 6zelligi ile nttkleer reaktér dinamigi

kontrol mihendisligi igin meydan okuyucu aragtirma konusunu olusturmaktadir,

A

+

Bunlar dikkate alindiginda, zcki dcncllcyicilcrin digerleri arasinda aranan
ozellikleri saglayabilecek gorilnen uygun adaylar oldugu anlagihir. Yapay sinir aglan
ve bulamik sistemler denetleyicijerin zekasim arirmada kullamlan etkili metodlardir,
Fakat bu diger klasik metodlarla tasarlanan kontrol sistemlerinin  nitkleer giig
santrallarinda gilvenli ve ‘yclcrli bigimde kullanilmayacaklari anlammna gelmez.
Optimal kontrol uygulamasi igin gerekhi olan Riccati Denklemlerinin ¢oziillmesidir.
Zamana gore degisen modellerde bu Ricceati diferansiyel denklemlerinin ¢ézitimiinii
gercktirmektedir. Burda segilen kontrol metodu kadar gergek zamanh nitkleer reaktor
kontrolunda kullamlan ¢6ztim algoritmasimin da 6nemi ortaya ¢ikmaktadir. Hatta baz
algoritmalar igin ¢6zilm olanaksizhiklagmakta ya da bilyilk bir hatayla bulunmaktadir.
Bu dJa sistemin kararsizh@ina yol agmak gibi nitkleer santrallerin ¢alismasinda son

derece tehlikeli durumlann ortaya gikmasina neden olmaktadir.

Bu ve benzeri schepler uyarlamali kontroltin niikleer reaktorlere giivenli
bigimde uygulanmasim  giglegtirmektedir.  Lincer  karesel  optimal — kontrol
problemlerinde liner modeller kullamimaktadir. Genel olarak ntikleer reaktorler igin
tiiretilen liner olmayan modeller bir ¢aligma noktasinda lineerlegtirilmekte ve bu
lincerlestirilmis  modeller parametreleri zamana gore degismeyen dénetleyiciler
tiretmektedir. Ancak kullantdan lincer modeller reaktirlerin dogal lincer olmayan
Ozelliklerini tam olarak kargilamamakta, kontrol sistemi tasartminda baslangigta kabul
edilen bir hata olmaktadirlar. Bu sorunun tstesinden gelebilmek igin reaktoriin gesitli
calisma bolgeleri igin lincerlesgtirme yapilmakta ve her bolge igin farkh denetleyegi

parametreleri hesaplanmaktadir,



Yapay sinir aglan ve bulamk mantik denetleyicilerinin dnemi burda ortaya
¢tkmaktadir. Genel olarak uygulamalarda farkh ¢alisma bolgeleri igin la’isurlzmmls
denetleyicinin kontrol sinyalleri, yapay sinir aglart ya da otamatik olarak kurallan
ayarlanabilen bulamk manuk kontrol sistemlerine drnek. Ogrenilmesi istenilen bilgi
olarak girilir. Bu yapay sinir aglan ve bulamk mantk sistemlerinin dogrudan kontrolu
uygulamasina Ornek  verilebilir. Diger taraftan nilkleer reaktérlerin dinamigi bu
sisl;.:mlcr tarafindan Ogrenilebilir. Bu da sistemin durumlanmn daha kesin bigimde
belirlenmesini saglayan sistemlerin tasanminda kullamlabilir.

Bu tez kapsann iginde klasik en basit yapidaki denetleyiciler baglamak iizere
en karmagigma dogru yapay sinir aglan ve bulamk mantik sistemlerini kapsayacak
bigimde kontrol sistemlerinin tasanmlan yapilmg ve bunlar niikleer reaktérlerin liner

,

olmayan modeclleri kullamilarak bilgisayarla simule edilmiglerdir.

L]
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Chapter one ‘ X

OVERVIEW

1.1. Motivation .

Nuclear power and artificial intelligence are  the most  challenging
accomplishments of mankind . Both of them are conceived and engineered in the
present century for civilian and military purposes. Psychological impact of the first
one on public security was terrible (mostly due to catastrophic results of a possible
nuclear discase during cold war). On the other hand, artificial intelligence was the
popular subject in science-fiction novels until 10-15 years ago (in a typical story,
human-like robots terminate human superiority- on the carth and kill or use them as
their slaves; unfortunately it was reported by artificial intelligence researchers that the
cflect of these stories was discouraging for the development of the field)[27]. But with
the construction of the first nuclear power plant for energy production and its
expansion around the world, it is understood that nuclear energy is the cheapest and
unique encrgy which mankind may handle universally. In spite of the general
decreasing trend in the demand for nuclear energy, ultimately, mankind who dreams
to discover the depths of space should scarch and use the nuclear energy for his other

‘
challenging projects in the next centuries[82]. However, main problems arising from
nuclear power plants are their safe and reliable operation and  sccondly  the
management of nuclear waste. Any way, the main reason for the decrease in the

demand for nuclear energy is mostly due to public unconfidence in nuclear power
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nuclear technologices, especially in fuel preparation, may solve nuclear waste problem
llllld similarly new design and modifications in nuclear reactors may improve the
stability and reliability of the plants to enhance the security. However,  developing
and applying new and embedded control strategies with the last developments in
digital control technology will produce more suitable solutions to improve security,
cfficiency, maintainability of nuclear power plants [2], [3]). .

Rescarchers in this ficld scarched applicability of control theories to power plants.
Asa gcncral\slalcmcnl . mathematical model of nuclear plants are given by non-lincar
and stiff cquations. Also dynamic time-delay properties of nuclear reactors provide
another challenging research topic for control engineers. Among them, intelligent
controllers are good candidates to satisfy required qualifications sought for a nuclear
power plant such as robustness, stability and reliability,

Neural networks and fuzzy systems are employed as a powerful tools to
increase the intelligence of controllers. But this does not mean that classical control
philosophics such as stochastic optimal control can not be embedded in a suitable and
reliable operation. In the case of optimal control, the price paid for optimal controller
is 1o find the solutions of Algebraic Riccati Equations (ARE), sometimes Riccati
Differential Equations (RDE). Generally stiffness in these algorithms (§ul\'c: for RDE
and ARE) is a major problem. Therefore, not only designing  system using optimal
control concept but chosen algorithms play a significant role in the system stability.
Error analysis in the solutions of equations (proposed by optimal control or other
design methodologies) should be taken into consideration for good system reliability.
The word, rcliubilil‘)‘ used here refers to numerically solvability of these equations by
algorithms and their failure mechanism in numeric computation. 1t is mostly due to
highly stifl’ equations arising in ll;is ficld. This stitfness results in some computational
difficultics for some algorithms. Any way main restriction on the applications of
adaptive systems is that their solutions are not guarantied for a reliable operation. The
time-invariant models provide time-invariant controller gains that are solutions of
ARE in the lincar quadratic optimal control. However time-invariant models do not
match with the physical reality because of general nonlinearjty of plant and some

other physical events that affect the process such as burn-up.
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The significance of fuzzy logic controllers and neural hetworks appéars at this
point is that their non-lincar mapping and learning abilities reported in numerous
studies and applications, may be used to overcome the problems due to  nonlinearity
and physical events during the operation of nuclear. power plants.

.
1.2 Objective

Objective of this work cah be summarized in the following items;

I- Understanding the dynamics of nuclear plants and defining problems
resulting l'rdm plants for controller design.

2- Surveying already designed or existing controllers for nuclear plants such
as classical output controllers, state feedback controllers with pole placements, LQ
controllers, and defining problems with these controllers.

¥

3- Designing intelligent controllers using fuzzy logic and neural network
methodologices.

4- Supplying sufficient proofs for intelligent controllers that they can be
cmployed confidentially in the control of nuclear power plants.

. 5- Providing the mathematical fundamentals and necessary  computational
tools to solve the problems for controller design.

O Providing computer aided simulations for the experimental controller

¥
implementations in nuclear plants.

1.3 Control Mcthodologices

We will start the work classifying the control methodologies into non-
intelligent and intelligent controllers. Fig 1.1 illustrates the structural overview of
some non-intelligent controllers. Unitary output feedback controllers. dynamic
compensators (P1, PID) and state feedback controllers may be accounted in this group.
Classical stability analysis such as root locus, pole placement techniques and
deterministic lincar observer designs are typical methods in the design of controllers.
we can improve controller in dynamic response and robustness using the optimal
control theory. Lincar quadratic (1.Q) regulator is a simplest example in optimal
controller design. Using stochastic observer (Kalman filter) with LQ, we can improve

the robustness of controller for disturbances in plant.
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: Fig 1.2 summarizes the intelligent control with neural networks and fuzzy
systems.As a gencral statement, intelligent  controllers  are not  model-based
controllers. They can be applied to any nonlinear model. Among them, fuzzy logic
controllers(FLCs) are knowledge-based ’syslcms. Previously obtained experiences
about a process can be used in the intelligent control design. FLC is a computational
tool to formulate the experiences in linguistic forms. Neural networks are powerfull
tools using in intelligent control because of their learning abilities and flexibility.
N

1.4. Organization

Chapter Two is devoted to dynamics of nuclear plants and conventional
control methads. Classical output control, state feedback control with state estimation
using pole placement techniques are presented with the explanatory results of the
inherent nonlincarity of plants. A state  feedback controller is designed with a state
observer (Luenberger's observer) and results of simulation with nonlinear plant are
presented in this chapter. we will concentrate the nonlinearity and stability of the
plants applying the several theorems, such as lincarization and root locus analysis.
Also we will mention about the stifiness arising in the mathematical model Qf plants.

Chapter Three is devoted to optimal control. optimal state-feedback control
has been designed for nuclear power plants and simulation results are presented at the
end of the chapter. With this chapter, we will introduce the optimality criteria  to
minimize a performance index defined for time -invariant or time arying linearized

.
models of nuclear plants, using the lincar quadratic methods. Also a numerical
example related with stiffness arising in the optimal control of nuclear plants will be
presented.

Chapter Four is orgahized for stochastic optimal control results of simulation
with nonlincar model of nuclear power plant. With simulation results of nonlinear
plant for a Pressurized Water Reactor(PWR) a stochastic problem  for white. gaussian,
zero mean noise has been solved using a scalar Kalman Filter, 1.QG design has been
discussed in this chapter.We will presents the results of the stochastic optimal
estimator (Kalman Filter) for plants. With this chapter, we will also have introduced

the methods to improve the robustness of controllers for nuclear power plants.
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Chapter Five presents the results of an automatically tuned fuzzy logic
controller. Tuning mechanism has been constructed using both least square estimation
and mcan squarc cstimation (Kalman Filter) with an optimal controller output as

supervisory signal to tune fuzzy rules properly. With fuzzy logic controllers, we will

introduce the information-based systems, human-like thinking and intelligent control.

In Chapter six, we will introduce the neural network methodologices to develop
'comrollcrs for nuclear power plants. A direct control of nuclear'plant using neural
)
nctworks will presented in this chapter. Learning ability, flexibility nonlincar mapping
capability of ncural networks will be examined in an application of neurocontroller

which will be designed in this chapter.
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CHAPTER TWO

DYNAMICS OF NUCLEAR POWER PLANTS AND

CLASSICAL CONTROL METHODS

In this chapter, the derivation of a mathematical model for a nuclear power plant is
U L}

presented. PWR is sclected for nuclear plant and it’s lumped circuit parameters are
included for the derivation of mathematical model. Unless stated otherwise, the same PWR
model is used to develop controllers throughout this work.
2.1. Nomenclature

n = neutron density (n/cm")

]

n, =1n/n, ncutron density relative to density at rated power.

n, = ncutron density at rated power.

G = number of delayed neutron groups.

¢, = density of delayed neutron precursor group i (atom per em').

¢ ey B eley, relative precursor group i density

' ¢, = initial equilibrium precursor density .
k-1 Ak -
Sp= w "k = reactivity

Sp, = reactivity due to the control rod.
.. . . N
A = cltective precursor radioactive decay constant (s7).
A = radioactive decay constant(s™) ol delayed neutron precursor group i,

A = eflective prompt neutron lifetime (s).
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B = fraction of delayed fission neutrons in group i.

‘[‘Eg:pi

f; = fraction of reactor power deposited jn the fuel.
e = total heat capacity of the fuel and structural material (MWsee/'C)
K. = total heat capacity of the reactor coolant (MWsec/'C).
Q = heat transfer coefTicient between fuel and coolant (MW/°C)
P, = reactor initial equilibrium power level (MW),
P, = reactor power (MW),
M= mass flow rate times heat capacity of the coolant (MW/C).
z,= control rod speed as control input (fraction of core length per second).
G = total reactivity worth of the rod. '
ug 2 fuel temperature reactivity coeflicient.
a, =coolant temperature reactivity coeflicient.
T,= average reactor fuel temperature('C).
Ty = temperature of the coolant leaving the reactor (°C).
T, = temperature of the coolant entering the reactor ("C).
T = average reactor coolant (water) temperature (T, + T,) / 2. ' "
T, = initial steady-state temperature of the fuel (°C).
Ty, = initial steady-state temperature of the coolant leaving ("C).
Teo = initial steady-state temperature of the coolant entering the reactor (°C).
T, = initial steady-state value of the coolant temperature (°C).
2.2, Simulation Model 1
The mathematical model of a pressurized water reactor(PWR) is derived to
discuss the responses of controller investigated in this work following the lines of [1].
While keeping the main derivation concepts unchanged some parameters were simulated
making them power level dependent to match more actual plant dynamics with simulation
:
modcl' throughout this work. Main dynamics of nuclear reactor is represented by point
Kinetics cquations with G groups of delayed neutron prccursors.'l"or simplicity, one
delayed neutron group was used in the controller design stage and related analysis. The

lumped parameter model was used for the fuel and coolant temperature calculations.
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Simply, point kinetics equations with G groups of delayed neutron precursors:

il C, (2.2.1)
de, B
—&t—' = !/-\in -Ac i=1.....G. (2.2.2)

Following normalized versions of cquations (2.2.1) and (2.2.2) are more

convenicent 1o use for computational purpose :

dn, &p-p I &

R e R D | 223

dt A nl + A %ﬂl Icll ( )
]

dc

-d—t'i =ANn, -Ag, i=l.......G, (2.2.4)

For one delayed neutron group, normalized point kinetics equations are

dn, _Sp-p B

n,+-—cC 225
Cdt T A A (2:23)
dc
' —ati =An, - AC, \ (2.2.6)
We can formulate power transferred from fuel to coolant in MW;
P=Q (T, -T,) (2.2.7)

and power removed from coolant in MW,
P=M(T1,-T,) (2.2.8)

The differentinl cquations governing the fuel and coolant temperatures  using

1

lumped parameters;

d
fiP(t) = n, aTr +Pe(t) (2.2.9)
d
(1= £)Py () + Pe(t) = e T+ Pot) (2.2.10)
where reactor power at time t, P(0)=P()n,(t).
Reactivity entered due to control rod is represented by the following differential
cquation:

ddp,
dt

Total reactivity input to the points kinetics equations is the summation of control

=G,z (2.2.11)

1

rod reactivity and temperature feedback reactivities of the fuel and coolant;

Sp=8p, + o (T, =T )+ (T, - Tg) (2.2.12)



.

' . . . . . W .
After necessary manipulations, we obtain the following 5" order non-linear
differential equation set  that is based on point kinetics and a lumped parameter thermal-

L]
hydraulic model governing the dynamics of nuclear plant.

dn, op-p l ‘

—=—n+— 2B 2.

dt A r + A oy ‘ |c" (2 2 13)

dc,

—+=An, - =l i 2.
o n -Ac, i=1G (2.2.14)

dT, fP, Q Q Q

& m—“'.+2“'.+th, . (2.2.15)

dT, (1-f )P, Q (2M-Q) (2M-Q)

—_—r A 1T o8 —T, - 2.2

ot " n, + - T, 0. T + 20, T, (2.2.16)

dop, _ z 22.17

dt ~ % N

* where 8p is given by Eq.(2.2.12).
The proposed differential equations are nonlinear because of Spn, product.

)

2.3. Lincarization of Nonlincar Systems

Most of the applications are related to lincar system model. The linearization of a
nonlincar system is a powerful nonlincar system analysis tool. Main theorem is based on
Taylor’s expansion of a nonlincar function at an operating point {4]. The system is
assumecd as a lincar system at the vicinity of this operating point and all the linear system
analysis tools become applicable to nonlincar system.
Theorem 2.3.1

Let’s assume that we have a nonlinear differential ctiuminn sct expressed in the

general vector form as follow;

x=f(xu) . (1, £y .0 (2.3.1)
These equations may be rewritten in the following linear state-space form:
x = Ax+Bu (2.3.2)

where A and B are the proper Jucobian matrices;



o,
ox, oOx,
o o
A= ox, 0x,
a.fﬂ afﬂ
-axl axl

[ of,

' au, du,
a

B - du, du,
A, A,

| du, v,

Let x* and u® be the operation point of the nth order nonlinear system and the input

t »
at the system operation at x".

A perturbation is defined around the operating point;

u=u" + du
(4] ~
X=X +0Xx

From (2.3.1).

d . .
a—t(x° +0x) = x° + 8x = f(x° + dx,u° + Su)

Using Taylor series expansion for the jth nonlinear equation;

u, |
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of
= =

ox

x°u°

X? +86x =f(x° u°)+-*0—f-L OX, 4cvenee +0f’
| Y AR ox,| . . 1 x,,
x°u
0f’ 5 (7f'
+ =]  SU b —
00, _— ' ﬂu' o o
x®u L)

and from main definition of nonlincar equations (2.3.1);

X° = 1,(x°,u°)

following cquation is obtained as a result;

ou

(2.3.3)

(2.3.4)

(2.3.5)
(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)
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N of, s o, S
- X, freerees 4 X
x' OXI o a( l axﬂ ° "( "
x°u xu (2 3.10)
(7', . (')f‘ .
4 bu' Forsene L hu,
OU' .OAuo (-)U, oy
' 5

we can express (2.3.10) in the form ol (2.3.2);
ox = Adx+Bdu (2.3.11)

where A and B are the Jacobian matrices that are defined in (2.3.3) and (2.3.4).

Al
2.4. Lincarized Model of Nuclear Plants
In this scction, lincarization theorem that explained in section (2.3.) will be applied
. . . - 3
to a physical system, nuclear power plant whose model is developed in the previous
sections. ‘
Noalincar difTerential equations including (2.2.5), (2.2.6). (2.2.15), (2.2.16) and

(2.2.17) are lincarized and resultant lincar form is written as [1]:

. X=Ax+Bu, (2.4.1) -
ry=Cx+Du ,  (24.2)
Fﬁnﬂ
dc,
State vector ;- x =| 8T, | . control input u=[z] . system output y=[5n,]
s,
L8p, |
(2.4.4)
[ —B/A B/A N /A g /2A N /A]
A -A 0 0 0
system matrix;A = fiP, /p, 0 -Q/p, Q2 0
(1-fP,/n, 0 Qu, -CM+Q)/2p, 0
i 0 0 0 0 0 |
(2.4.5)
o O “
0
input matrix; B=| 0| .output marix C = [1 o000 (46
0 '
-GI—J
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where A and B are proper Jacobian matrices. It is also important to point out that
. . . ] - . ~ .

products of sccond order deviations, such as 8p, times dn, are ignored. In the state

cquations, matrix [) represents direet coupling between input and output with a proper size.

It is assumed that coupling matrix 1) has no.influence on our calculations and it is ignored .

2.4.1. System Paramecters Dependency on n,,
, Besides the system matrix A dependency on equilibrium neutron density n,,. to
]
improve the simulation model accuracy, also  parameters oy ., e, Q and M are
A3

dependent on ny,. For parameter’s dependency on ny,, sce [46][47].

2.5, Classical Qutput Control (COC)
© Classical control approach is the most embedded applications in reactor control.
Fig 2.5.1 shows this kind of control with single input; control rod speed. single output;
neutron density (power of plant). As it is seen from figure, gain G is the only design
l
parameter of control system. Qutput power of plant is compared with demand power signal

P, and amplilied error signal is input to control rod speed 7,

Pd + "
>C‘)°"°' . e ot [NEUTRON P,
demand power 2&- ! . KINETICS
| THERMAL |
RESPONSE
Classical Control Feedback
' L]

Fig 2.5.1 Classical contrpl of nuclear reactors with single input single output and gain G..
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The only design parameter gain G, will be selected using root locus analysis. To do
this, required open-loop transfer function may be found using several tools. One way is to
usc the ss2zp.m Matlab file from it's control toolbox. We can find it's transfer function
from control canonical state-space form of lincarized model. Required analysis tool used
by ss2zp or in finding control cammic'al form, is the similarity transformation that plays a
significant rolc in the lincar system theory. The open-loop transfer function of linearized
model at initially equilibrium conditions (n,,=1) with no temperature feedback is

N

_N(s)_ (G,/A)Ns+2A)
' g(s)"zr(s)-sz(s+k+|¥//\)

(2.5.1H)

0.1585

0.31

Fig 2.5.2 Root locus plot of linearized model with no temperature feedback at start-up,
From root locus plot , at G= 0.1585 system response satisties damping ratio of

0.70 for a step input to second order system. In fact, since our system is fifth order.

dominant cigenvalue may be used as poles of second order system to carry out system

responses analysis properly for higher order systems. In our case dominant ¢igenvalue of
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close loop system is the largest eigenvalue. Poles of close loop system at G.=0.1585 are -
g ¢ ¢

64.8812 and dominant poles ; -0.121910.1252j. General second order system is

b
m

G(s) = ST ot 2 o where £ and o, are damping ratio and natural
0,5+ 0,

frequency, respectively. For s, ,=0.12191 0.1252 0,=0.175 and E=0.69.
Transfer function of open-loop system with temperature feedback is

n(s) (G, /A)s +2)(s +0.2381)(s +1.373)
z,(s)  s(s+0.1052)(s+ ()8117)(5 +1.397)(s + 64.40)

g(s) = (2.5.2)

Fig 2.5.3 illustrites the root locus of Ilnum/ul model with temperature feedback at start-
up. For a good system response, Ge=0.5 from root-locus. In this case. dominant cigenvalue
of close loop system is -0.11944j 0.0358 with a damping ratio of 0.96 .  The damping
ratio 0.96 refers to more sluggish response than response of a model without temperature
feedback . Since it is impossible to improve the response for output feedback control, it

appears as a main restriction on this kind of control strategy.

Ge=0.5

Increasing Gain
1.26

Fig 2.5.3 Root locus of lincarized model with temperature feedback
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2.5.1. Inherent Nonlincarity of Plants

In this section, the effect of nolinearity arising in state equations ol system, and
accuracy of lincarized model will be investigated. Fig 2.5.1.1 and Fig 2.5.1.2 illustrate the
dominant cigenvalues of close loop system for lincarized model at different loof> gains and
different operating points from 10% power to 150% power with 10% equal incremental

steps in power level.
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Fig-2.5.1.1. Dominant cigenvalues of lincarized system(without temperature feedback) at
t
operating points from [% power to 150% power with 10% cqual increase steps for loop

gains Ge=0.01, Ge=0.1585, Ge=0.3, Ge=0.5.

To examine the influence of nonlinearity on state variables, simulation results of
nonlinear model and lincarized model at start-up are compared in Fig 2.5.1.3 for relative
power, relative precursor density, fuel temperature, reactor exit temperature and reactivity

(90% power drop.is entered to reactor as power demand ).
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Fig 2.5.1.3 -(a).(b).(¢).(d).(¢) 90% drop in power is entered to classical control system ,
solid and dashed lines represent the simulation results of nonlinear and linearized model
‘ 5

respectively.

Figures 2.5.1.1 and 2.5.1.2 show that temperature response of system is the major
nonlinearity source. It is scen from Fig 2.5.1.1 that dominant cigenvalue of lincarized
system yithout tcmpprdturc feedback is locatesd at the same path for increased gains G,
and power levels. In the case of temperature feedback (in Fig 2.5.1.2), dominant
cigenvalues are located at the dil"l'crclill paths for changing gains G.. These results can be
turned out with a significant conclusion for the control of plants that response of linearized
model without temperature feedback for different power levels can be compensated
changing the value of gain G, but this is impossible for lincarized models with
temperature feedback.

* Results in Fig 2.5.1.3 show to what degree the lincarized model variables match
nonlincar model. Reactivity is the most sensitive variable to nonlincarity in linearized
model as it is expected. The dynamical behaviors of lincarized model are similar to
nonlincar model for reactor relative power, temperatures and control rod speed. Hence.
most significant deviation from nonlincar model is resulted from the reactivity.

1

2.5.2 Results for Classical Qutput Control

Results in Fig 2.5.2.1 illustrate the respopse of system when 10% power increase is
entered to control stream without temperature feedback. Fig 5.2.1.2 illustrates results for
temperature feedback . Both cases have been examined for nonlincar model of plant.
Results of Fig 2.5.2.1 arc obtained from Cont_t.m when Pd=1.1 ,u=0, u =0, G.=0.1585

for Fig 2.5.2.2 when G =0.5 and a, « are from table 2.1,
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2.5.3. Steady-State Error in COC.,
Close loop transfer function with unitary feedback is

G.g(s) Gen,(s)

9.(s) = 1+G.g(s) ~ z,(s)+G,n,(s) | (2.3.3.1)
Using final value theorem;

y(t = o0) = Lim, ,,8g.(s)X(S) (2.5.3.2)
For step function input ,

X(s)= Pyfs (2.5.3.3)
and slcady\-smlc output becomes
y(t = o) = Lim, ,,P,g.(s) = Lim, ,, PaGen,(5) (2' 5.3.;)

=g
z,(s)+ Gcn,(s)
7, = 0 due to poles at zero for both with and without temperature feedback models

(2.5.1). (2.5.2). Output at steady-state approaches demand power with zero error.

2.5.4. Stiffness in Nuclear Power Plant Model

Differential equations dcsgrihing nuclear power plants are stiff’ equations that may
result in numerical problems. To give a certain mathematical definition of stiffness is
cumbersome undertaking. StfT differential equations are required additional techniques to
solve them. Numerical solvers for stifl ordinary differential equations are extensively

:

studicd. One of the most popular algorithms was proposed by Gear C.W.[51][53]. Gear's
algorithm uses the backward difference formulas (BDF) [52) co;lstructing a Newton
backward-difference interpolating polynomial that is powerful tool for stiff problems.
According to Gear, for the time-invariant case, a problem is stff if the no cigenvalue has a
real part which is at all large and positive and at least one eigenvalue has a real part which
is lurgv.: and negative. In stiff problem no solution component increases rapidly for large
time span. However, there cexist perturbations that cause rapidly changing solution
components. Long time constants are dominant for a stift problem (slowly varying
solutions), but perturbations excite modes wifh small time constants (rapidly varying
solutions) compared to time constants for the time span of interest. ‘The large Qil'tbl‘cxlcc

between time constants complicates the numerical solutions.
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In numerical examples to find the solutions, stiff problems produce ill-conditioned
matrices whose determinant is close to zero. Operations with ill-conditions matrices
complicates the problem to find the correct solutions. For instance, taking inverse of a ill-
conditioned matrix may result in incorrect solutions (see chapter six of [50]).

. For the search of stiffness in nuclear power plant modcl.kit is seen easily from
mathematical model and simulation results that slowly varying output for critical reactor is
rapidly damped for a perturbed reactivity input to reactor due to temperature feedback or
control rod. The stifiness arising in nuclear power plant causes constraints in simulation of
plants and controller design.

| t
2.5.5 Conclusion

In COC, gain Gce has been calculated 'using root locus analysis to provide a good
transicnt response. It is well understood that thermal response of system is a nonlinearity
source (Fig 2.5.1.1 and Fig 2.5.1.2) and reactivity in the lincarized model is the most
deviated state variable from actual nonlincar model (Fig 2.5.1.3). 1t is also observed from
Fig 2.5.2.2-a that controller designed for model with temperature feedback produced

sluggish output response.

2.6. State Feedback Control with State Estimation (SFCSE)

In state feedback control, control signal is modified' using all the state variables [4).
State variables amplified by gain K are fedback to system to modify the control signal.
Main theorem that will be given in this section, guarantees the pole placement of plant
mathematically while zeros appear with no change in the final transfer function. This and
other usctul concepts such as controllability and observability are also introduced in this
section that lhésc concepts will be frequently used in the remaining part of this work. Since
we need state variables, and ncutron density is the only measurable state variable, a state

estimator is required to estimate the sates ol plant.

2,6.1. State feedback Control with Pole Placement
Definition 2.6.1.1: Control Cunonical Form of State Space Equations
Let's assume that AB.C and D are arbitrarily chosen matrices with proper

dimensions in the following state-spage form,
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X =Ax+Bu , (2.4.1)
y=Cx+Du J (2.4.2)

There is a linear transformation T between x and transformed x: x, that resultant

transformed A,, B, and C, are in the following forms respectively.

[0 1 . o0 0 ] 0]
0 0o . 0 0 0
A=l 0 0o . 1 0 Co=] , (2.6.1.1)
0 0. . 0 | 0
-8, -8, —8,, -&, "Jmm ']‘nxl '

C=[b, b . b,, b,],
A, Byand C, represent the control canonical form and transformation ‘T exist if and

only iff A and B are controllable.

Theorem 2.6.1.1 " '
Transfer function of the system may be written directly from the control canonical
form as
n} n
by 8" _+Dy,8" +-4bs+b,

G(s) = — o P~ d— where n is the size of A.
s"+a, " +a,,8" "+-+as+a,

3

Theorem 6.2.1.2 Caviey-Hamilton Theorem

Characteristic function of a system matrix A is

Al-Al=A"+a, A"'+.-+a,k+a, . where cocefticients a, are from A, in
control canonical form.

Definition 6.2.1.2 Similarity Transformation

. let’s assume that A, B and C are arbitrarily given in (2.4.1)

x=Ax+Bu ., (2.4.1)

y=0CX
Then

P=[B AB AB-.ALB

o) (2.6.1.2)

. . '
et's assume that P exists
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pP'=| - . Where ) is the last row of P (2.6.1.3)
LQxn “nxn
define
QIxn
mlﬂA"lﬂ
T-' = . (2()14)
‘ !
qumA:m Joxn

X, =T""x transforms the system A.B and C into system A.B, and C, that X

A= T'A T, B, = '8, Ce=CT in control canonical form.

Augmented state space form of (2.4.1) and (2.4.2) with state feedback loop gain K

x=(A-BK)x+Bu , (2.6.1.5)

y=0Cx

Original equation appears wil'h no change except (A-BK) takes place of A as a new
system matrix.

Notes on Similarity Transformation for State Feedbuck

State fecdback does only change places of poles, but does not change the zeros.

This may be proved using similarity transformation and lincar system theory.

Similarity transformation does not change the transfer function.

Proof: '
Transter function of system (2.4.1) and (2.4.2) is found as
Y(s) . ]
= ==t = C(sl - 2.6.1.6
G(s) X(s) C(sl-A) B (2.6.1.6)

using Laplace transformation and ignoring coupling matrix 1.
' Transter function of transformed system is

Y,
G,(s) = -'-(Z) =C,(sl-A,) 'B, (2.6.1.7)
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G(s)=C,T'(sl-TA,T ") 'TB,

G(s)=C, T (T(sl-A)T ") 'TB,=C,T'T(sl-A,) 'T 'TB,

G(s)=C,(sl-A,)'B,=G,(s) .'

Definition 2.6.1.3: Controllability:

Lincar time-invariant(L.'T1) system

x=Ax+Bu , (2.4.1)

y=Cx

is controllable il any control input transfer the initial state x(0) at t=0 into zero state
X(t,)=0 in finitc time t,. There are several ways to define controllability; if there exist
control canonical form of (2.4.1) system is controllable. To satisfy this condition rank of P
defined in similarity transformation must be equal to it's size or inverse of P must exist. In

this case, (A.B) is said to be controliable.

P=[B AB A'B--ALB.| .
These theorems  guarantee the pole placement of system that desired poles may be
placed adjusting feedback loop gain K. Even an unstable system may be stabilized
choosing proper poles at lefl hand side. Similarity transformation is powerful tool to
calculate K properly in linear system theory. However J.E. Ackermann formulated state
feedback K in following formula ;
K00 oo 0 1B AB ..o A™ B A™'BJ" w(A) (2.6 1.8)
is known as Ackermann’s formula.
where ‘o (A) is matrix polynomial with the coefficient of desired characteristic equation
(desired poles to be placed), .
A A=A+ o A L A gl (2.6.1.9)

2.6.2. State Estimation
With this scction, we will introduce the deterministic lincar observer design
(Ll'xcnbcrgcr’s Obscrver).
' Definition: Observability
Lincar ime-invariant(L11) system
x=Ax+ Bu , (2.4.1)

y=Cx
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1

is said to be observable if the .iniliul conditions x(1==0) can be determined from the
output function y(t) in finite time.
It may also be shown that the observability of system depends on the availability

of inverse of following matrix:

C

nxi
' CnxlA

. R= , , (2.62.0)
C..A

nxi® " oxn

L C‘nulAnxn J

nxn

nn
In another definition, (A.C) is said to be observable if rank(R)=n
Note that (A,C) is observable if (AL.CYYis controllable.
*, Similarly. necessary mathematical derivation for obsevability may be proved using
lincar matrix algebra and defining observer canonical form. But we skip the proof and

present the Ackermann’s formula to determine linear observer gain H;
] o

[ c ]'[o]
CA 0
H=a, (A - 0 (2.6.2.2)
CA™ | |0
Lca ] 1]

nxn
where a(A) is the matrix polynomial with proper coeflicients that define the desired pole

placement for observer.

2.6.3. The Design of State Feedback Control with State Estimation (SFCSE)

The Fig 2.6.3.1 illustrates the whole system for state feedback control with state
estimation. The feedback loop existing in classical control has been saved in state feedback
control. This cnables a reconfigurable controller design from classical output control to
'statc feedback switching to which controller type is preferred. A is replaced wi:h the A-
B.C where 13.~Ge B and Ge substitutes loop gain in COC and appears as a constant value
of 0.5 throughout SFCSE. A represents the new system matrix with classical loop:

A=A-B.C (2.6.3.1)
It was noted in COC that improving dynamic’ response of system will not be

possible and it is determined as a main restriction in already existing design methodology.
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Theories defined in this section enable us to replace the plant’s poles to provide the desired
response. -0.2381 and -1.373 are chosen to cancel the zeros in transfer function of
lincarized model with temperature feedback (2.5.2). -0.12240.125 j is the dominant pole
for a damping ratio of 0.7 while -64.4 is chosen as a {inal pole with no change. Gain K is
determined using Ackermann's formula defined in (2.6.1.8) with the following
characteristic equation:.

(A= A+66.2551 A +120.218 A +48.4629 A 2+8.31238 A +0.642308 1o s  (2.6.3.2)
and resultant gaip Kis

K=[-0.9895 -0.6267 0.0074 -0.0031 -96.1626} (2.6.3.3)

Poles of estimator are chosen taking all the poles with no change except dominant
pole to provide a faster response than the response of state }’ccdback control. Characteristic
cquation with poles at -025% j 0.25, -0.2381, -1.373 , -64.40
A= A +66.5111 A+137.212 A 481.3453 A 2+23.5367 A +2.63163 1os  (2.6.3.4)
and resultant gain 1 for Luenberger's observer.

H=[-0.2248;

-0.4933;

93.1370; o
0.7743;
0.0014] (2.6.3.4)

Non-dynamical precompensator v is determined using final value theorem to track
the demand power. Before calculating v, we will present fundamental model for general
state feedback with state estimation to explain and ensure the dynamic behavior of system

For estimator !

X = (A, — HC)X + Bu + Hy (2.6.3.5)

y=Cx where X is estimated state vecetor.

+ and state feedback
x=Ax+Bu , \ (2.6.3.6)
y=Cx
Combining state feedback with state estimation in Fig 2.6.3.1 new system
dynamics becomes:

x = A x -~ BKx + BVSP, (2.6.3.7)
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X = (A, —HC - BK)X + HCx + BvSP,

liquations (2.6.3.7) and (2.6.3.8) may be rewritten in matrix form;

S P S S X ol
;( B Hlmcnxl (Anm_thle "'Blenxl) X ¥ anl Vol

Error vector X, = X - X is defined in matrix form

1

WS il

Also using derivatives of equation (2.6'3.10)

and following operations
BRI S b
X - 'mm —|nxn X, - 'nxn —lrun Xq
[ lnxn 0 j[ X] [ Amm —Blennl Ilmn
L 'mm _'mm *o - HllnCnnl (Anxn'HlnnCnxl 3 Bn:lKnxl) 'mn

resultant system dynamices is governed by

x:l [Anxn_Bleml Blenxl }[ XJ [anl] SP
*o - . 0 (Amn'Hlanxl) Xo ¥ 0 Vs

The governing cquation (2.6.3.14) shows that error dynamics is an autonomous
system with no input. Error vector X, vanishes exponentially for the cigcn\'lalucs"lucalcd at
the left hand side properly choosing observer gain H in system matrix A-HC. This
provides and proves the stability of estimator’s error asymptotically. When the crror of
cstimator vanishes at steady state, system is governed by system matrix A-BK and input

change in P’ .To track the demand power at output, v is determined at steady-state
d

conditions when x.=0 than close loop transfer function is

5P s +0125)

o e s e rme

= = : S
9(8) = 5B = (7 0122 ¢ j0135)(s + 64.40)
To satisfy &P = 8P4 at steady-state
S0(s +0.125)

L]

0

SP(t — o) =Lim,_,,s9(s)5P,(s) =

v = 1/ 3.1183 to track the demand power.

(s + 0122 + j0.125)(s + 64.40)

nan

I

X

e

(2.6.3.8)

(2.6.3.9)
(2.6.3.10)

(2.6:3.11)

(2.6.3.12)

an! >
+ B,., voP,

(2.6.3.13)

(2.6.3.14)

VvoP, = 3.1183vSP,
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o, . s | NONLINEAR |y=s
o G, Jat "] PLANT WITH -

TEMPERATURE

FEEDBACK

Classical Control Feedback

Estimator
Y
H ye +fx
A-BC |—

State Feedback
K

v
Fig 2.6.3.1 State feedback control with state estimation, reconfigurable control from COC
to SFCSE. ‘When switch a is turned on control system is SFCSE, otherwise COC is

employed without any change in design parameters.

2.6.4 Simulation of SFCSE for Nuclear Power Plant

* Matlab code csfse_1.m has been run to simulate the SFCSE {or PWR illustrated in
fig 2.6.3.1. Code csfse_1.m used state feedback K and observer gain H that are determined
in equations (2.6.3.3) and (2.6.3.4) respectively. The simulation results are illustrated in fig

2.6.3.2 for G.=0.5 and constants from table 2.1.
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Table 2.1 Values of Constants Used in Chapter Two

B 0.0065 X 01255

A 0.0001s T, 0.98 ‘
G,  0.01 total rod reactivity T, 290 C"

P, 2500 MW i, 70.5 MW.S/C"

ue 263 Mw.s/c“ M 92.8 MW/C"

Q ° 653MW.s/C ", +0.00001 reactivity/C”
o  -0.00005 rcactivily/C“
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2.6.5 Conclusion

SFCSE has been designed using pole placement techniques and examined for the
nonlincar model of plant, As it is expected from the state feedback control theory, the
desired response has been obtained by placing the poles for the model with temperature
feedback. From fig 2.6.3.2-a, the same output response is obtained for model with
temperature response, whereas it was sluggish in COC (fig 2.5.2.2-a). State estimator
(Luinberger’s observer) has found the states with diflerent steady-state crrors. While
relative output power is estimated with zero steady-state crror, the estimated value of
reactivity does not shrink to actual reactivity value in nonlinear model. This is mainly due
to inhcrent nonlincarity of reactivity. It is concluded from section 2.5.1 that most
significant error between nonlinear and linearized model oceurs for reactivity. Since we
designed a lincar obscrver using lincarized model at start-up, it can not estimate the
reactivity with a zero steady-state crror for different operating power levels. Hence far, the
tools to change the poles (so, the response of plant) and design lincar observer have been
presented, but no method has  been suggested to dclcrm!inc the places of poles for an

optimal response.



CHAPTER THREE

OPTIMAL CONTROL

1

4

’Aln this chapter we will focus on optimal control [9][11] and it’s applications to
n‘uclcnr' plants [1]{6]{7]I8]). Lincar quadratic optimal control would be a more
dcscripﬁvc title for this chapter. Despite it is possible to develop nonlinear optimal
control laws, lincar or lincarized models will be assumed in design stage and quadratic
cost functions will be employed due to their mathematical simplicity in derivation of

optimal control laws.

3.1. Linear Regulator Problem
“ Some important definitions which we shall introduce next [13] [12] will play a
significant role in problem statement. All of our definitions are assumed for the
following lincar time-invariant dctcrminislfc dynamical system;
x(t) = Ax(t) + Bu(t) (3.1.1)
y(t)=Cx(t)+Du(t)
with the given initial condition x(0) and state x(t) e R".
 Definition 3.1.1
A state x eN" is said to be A-stable if
lim,_,., ¢M'=0
A necessary and sufficient condition is that all the cigenvalues of A must be
located at the lefl hand side or equivalently real parts of cigenvalues must be less than
sero.
Definition 3.1.2
A state x eR" is said to be unobservable if

C ¢ x=0 120
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Note that if there is no unobservable state or observable space is the whole R"
(/|\.C) is said to be observable from definition(2.6.2.1).

Definition 3.1.3

(A.C) is said to be detectable if all unobservable states of (3.1.1) are A-stable
from definition (3.1.1). '

Definition 3.1.4 .

(A.B) is said to stabilizable if there exist a lincar state feedback control input
u=Kx that imnakes (A-BK)-stable. (A,B) is stabilizable if and only it (A'.B")is
detectable.

Definition (3.1.5): Definite Quadratic Forms

If x" Ax>0 for all real x except x=0, x'Ax is said to be positive definite.

If x'Ax20 for all real x except x=0, x'Ax is said to be pusitive semidefinite.

I x"Ax<0 for all real x exeept x=0, X' Ax is said to be negative definite.

If x'Ax<0 for all real x except x=0, x"Ax is said to be negative semidefinite.

A quadratic form x' Ax is said to be indefinite if the form is negative for some
points X and positive for others [83].

A symmetric matrix A, is said to be positive definite, positive semidefinite
and negative definite cte.. if the relative quadratic term x'Ax is p(zsitivf definite,
positive semidefinite and negative definite,

x'Ax is positive (negative) definite if and only if every cigenvalue of A s
positive (negative).

x"Ax is positive (negative) semidelinite if and only if all cigenvalues of A are
non-negative (nonp‘osilivc) and at least onc of the cigenvalues vanishes.

x"Ax is indcfinite if and only if some eigenvalues of A are positive and others
are negative. ‘

Regulator problem:

For time-varying model

x(t) = A(t)x(t) + B(t)u(t) (3.1.2)

' The following quadratic performance index is defined to be minimized

JX(L, ) U()t,) = J(u™Ru)+ xTQx)dt+ xT(T)GX(T) (3.1.3)
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)

A(), B(), Q(t) and R(1) are assumed 1o be continuos and Q(t) and R(t) are
symmetric nonnegative and pogitive definite. Also G is a nonnegative definite
symmetric matrix. Finding an optimal u’(1),tet,.T] that minimizes performance index
J((t,)u(.).t,) defined in (j.l.J) and the related optimum performance  index
J.x(t“),u(.),l‘,) is the main subject in regulator problem. When T is finite regulator
problem becomes a finite time (finite horizon) problem. If T is infinite. problem

’ designated as an infinite time or infinite horizon problem [9].
' To solve this problem (indeed problems), several optimlzation theorems such
as Minimun£ Principle of Pontryagin and Euler-Langrange Equations may be used as
inherent optimization problem tools. The Hamilton-Jacobi equation is another tool

introduced in the next section to solve the optimal control problems.

3.|2 The Hamilton-Jacobi Equation
For the system in general nonlinear differential state-space form |9
x=f(x,u,t) with given initial condition x(t,) (3.2.1)
to find the optimal u°(l). 1 e|t,.T]. which minimizes the performance index

(cost function)

T,

IX(to) Ut = Jlix(e)u(e),e)de + m(x(T)). (322)

' to

Starred J represents the minimum(optimat) cost function according to

J(x(t),t) = mirr}J(x(t),u(.),t) (3.2.3)
T, 1

J(x(t),t) = nlm[ II(X(t),U(t),t)dt + m(x(T))] (3.2.4)

uft. 1

from detinition t is an arbitrary time in the range |t,,.T]

J(x(t).1,) = min nl1'|‘{ Tixtepuee)ode  + i) o + m(x(T))]

(3.2.5)
The first term in summation is independent of uft, T} therefore inner min

becomes
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[} T,
I, ).t,) = mig{ [ixtx) e ode + n'w{ Jixtepuge)yde +mixT) )]}

(3.2.0)

The sccond term in inner summation is equal to optimal performance index:

J(x(t, ) t,) = mig}{ I/(x(r )u(t)t)dt  + J'(x'(t),t)} (3.2.7)

which is an expression of Principle of Optimality used frequently to find
optimal control laws.
Let’s assume that t = 1, +At where At is infinitesimal. in this case equation

(3.2.7) becomes

J(x(t,)t,) = u[mip“l{ II(X(t).U(T),T)dt +J7(x(t, + At),t°'+ /\t;}
CRIAE 1

(3.2.8)
using Taylor’s expansion for the second term in summation;
A (t
f(t, + At)=F(t, )+ (—;‘J(_t) At + OtherTerms
-1,
Ox(t 0J’

J(x(t, + At + At) = I (x(t,).t, )+[-——( x(t, ). t, )] - (gt o) -(—~(x(t ).t )AL+ 0- At?
' ‘ (3.2.9)
Replacing (3.2.9) into (3.2.8) following equation is obtained as

JT(x(t,).t ) mm ,lM (x(t, + Atu(t, + At),t, + At)+ J'(x(t,).t,)

ox(t aJ )
0{-—-( x(t, )t )} out,) t+-5t—(x(t°).t°)Atf()-At‘}
(3.2.10)

After necessary operations Hamillon-Jacobi equation is obtained by

.

‘,;;Jt‘ = —mln{ I(x(t),u(t), t)+[~fl—] f(x(t),u(t), t)}
(3.2.11)

4
3.3. Solution of Optimal Control Problem
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We give the priority to discrete-time systems  for derivation of optimal
control solutions becausec of their cxplanatory facilities in  mathematical
comprehension of optimal control theory based on principle of optimality. In the limit

, case while sampling in discrete time goes to infinity, similar to the derivation of
Hamilton-Jacobi cquation from principle of optimality in previous section, optimal
¥
control results are obtained for continuos-time systems. It may be shown that
Hamilton-Jacobi cquation may be used directly to derive the optimal control laws for
continuos-time casc.
.

3.3.1 Discrete Time Systems

Discrete-time state-space equation

x(t+1) = A(t) x(t) +B(t) u(t) (3.3.1.1)
with initial condition x(1,,) given. ‘

In this case, performance index defined in Eq.(3.1.3) becomes

Jx(t, ) u( ), ) = i(u‘(t—I)R(t)u(t—l))+x’(t)Q(t)x(t)) (3.3.1.2)

teig el

x(t) x(t+1)

x(t+2)

) 141 142
Optimal Control Problem

1o nesi state

e

or cquivalent of’ Eq.(3.3.1.2) is
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Jx(t, ). u(.).t,) = E(U‘(t)R(t +Du() + xT(HAx()
= x"(t,)Q(t)x(t,) + X (TIQ(T)X(T)

With these evaluations, we will interpret the optimal control philosophy under

(3.3.1.3)

the light of principle of optimality formulated in £q.(3.2.7) for discrete case,
remembering that continuos time may be obtained from discrete time in the limit of
At—0. )

We apply u(t,) as a control input, at time t, states of the system is x(1,). After
AL, 1=, +AL as a response to u(l,) states of system becomes x(1,+At). Hencee, the
optimal control problem is that how can we find an optimal input sequence u(t,).
u(t,+A), u(t,+2At1)..... u(t,+kAt) that minimizes the performance index below ?

For every sample, cost is

K (t, + A = [x"(t, + AYQx(1, + Al) + u‘(t;)R(to +abu(t,)] - At (3314

(Performance index at t,+At)

Note that we applied input u(.) at 1, and waited for the response and micasured
the states x(1,+At). With this available data, we calculated performance index defined
in £q.(3.3.1.4).

The whole cost function is a summation of performance indices determined for

cvery sample.
J=§K(t°+kAt)-At T=t,+n At , (33L5)
In the continuos case, At—0
Jx(to ) u( )t = TJ‘(u'Ru) + x"Qx)dt+ x" (T)Gx(T) (3.1.3)
~ t

Jet's take At=1 us unity in this case

J= iK(to +k) T=t, +n (3.3.1.0)
hel
Also it is a priori knowledge that optimum performance index is in the following
form; |
J.(x(lo).t°)= XT(to) P(t,) x(t;)  where P(1) is symmetric marix.  (3.3.1.7)
J(x(),)=mingyl K(t+1) + J'(x(t+1),t+1)]=x(t) P(t)x(t) (3.3.1.8)



x(t+1) = A(t) x(t) +B(t) u(t), 3 (x(t+1).4+1)= x"(t+1) P(t+1) x(t+1)
(3.3.1.9)
Replacing (3.3.1.9) in (3.3.1.8);
J “(x(t).t) = minyl x (t+1)Q(t+1)x(t+1) +u (t) R(t+1) u(t) + x (t+1) P(t+1)x(t+1) ]
= ming [(AXO+B(t(u()'Q(t+1) (AMX(O+B(t(u()+ u'(t) R(t+1) u(t) +
(AOX(D)+B(t(u() P(t+1) (AMXO+B(t(u(t)) ]
= miny,[(u'[BTQ(t+1)B+R(t+1)ju + 2 x"ATQ(t+1)Bu +x"ATQ(t+1)Ax
+u'B'P(t+1)Bu + x'ATP(t+1)Ax + 2x"ATP(t+1)Bu |
(3.3.1.10)

,

Using following matrix properties;

b‘;(x Ax)= Ax+A'x and

L]
0
—a;(x'Qx) =2Qx  where Q is symmetric : Q'=Q.

‘The minimum is found by

AF(u(t))

J(x(®).) = minyg[F(ut)]}=>—7-

minu(t)
since Q and R are symmetric matrices

B'QB=(B'QB)'=B'Q'B. Q'=Q and R"=R.

i)crivulion of (3.3.1.10) with respect to input u(t);

2[B'QU+D)B + R(t+1)] up, + 2 x'A'Q(+1)B + 2 B'P(1+1)B u,,

2 x'ATPa+B =0

2| B QUHI)+P+ 1B + R(t+1)] ugin = -2 X' A [QUUH1)+P(+1)|B

Uy = U =-[BIIQU+ DR+ DB+RA+ D (" AT[Qu 1) 1P+ 1)]B)

For a single input system, x'A'P(t+1)B is a scalar quantity. Hence:
AP DB = (x'A'P+1)B) = B PTa+1)Ax = B P(t+1)Ax, P=P'

and

S(t+1) = [Q(t+1)4P(t+1)] then optimum input (3.3.1.11)
= OSEDBO RO DB OSEEDA X

Notice that optimum input is in the linear slaIc feedback form

u=-Kx where K=[B'(l)S(t+ DB(1)+R(1+1)] is optimal state feedback

gain, .
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XT(OPUx =3 (x(.0={ [u'[B' QU+ +P(+1)B + R(1+1)]u
+2x"A QU D+P+1)Bu + x'A QU+ 1) P+ 1)) Ax]
XTAYBUSEHDBHREH DB S+ DBHR+D'B'S(t DAX |
xTPOx= x"A'S" 1+ BB S+ HB+R(1+1)] ' B'S(1+1)Ax
2 x'ATS (1 DBIB'S(+ 1)BHR+ )] B S(14 DAX
+x'ATS(t+1)AX S
Finally, the following cquation is obtained;
PO=A"{ S+ D)-S(t+1) BOIB'OSW HBAP RO D' B OSE 1A (3.3.1.12)
which is the matrix Riccati equation.
3.3.'1.1 Discrete Time-Continuos Time Conversion
/ Any model in continuos time
x(t) = A(t)x(t) + B(t)u(t) may be transformed to the following discrete time
form;
x(k+1) = A(k) x(k) +B(k) u(k)
Since derivative of x(1) may be written as

x(k + 1) = x(k)
At

x(t) = lim = A(t)x(t) + B(t)u(t) \

Aot

x(1+AL) = (AWALH)X(1) +B)A()

Discrete time models A(k) and B(k) transform into continuos time in the limit

At—>0
AK)=(A(DALH]D)
~ B(k)-B()AL
| and similarly for Q(k) and R(k) !
Q(k)—>Q()At and R(k)—R(t) At
P(1)= (AAH){ QAL +P(t+A1))-(Q(AL +P(1+A1) B(t) AB' (1) AtAL
S+ DBO+R(+1) AYBY(1) ALQDAL +P(1+A1} (A(DALH)
| Neglecting At and higher order terms:
P(1)= (AAHD{ (QAL +P(t+AD)-P(t+ADB() R(t+1)'B' (1) At Pa+An)
(A(OAH+HD)
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P(1)= P+AD+A(L) ' P(1+AL) At +Q(UAL -P(1+ADNB() R(+1)'B' (1) At
P(t+A1)}+P(H+ADA(1)AL
-[P(+AY-PO) AL=A)'P+AY +Q(1) -l’(lQ-PAt)B(l) R(+1)"'B (1) P(t+Ay)
+P(t+At)A(t) ‘
-P=Q+PA+ATP-PBR'B'P (3.3.1.1.1)
.which is thc Ricatti differential equation (RDE).

3.3.2 Continuos Time Systems
X(t) = A(t)x(t) + B(t)u(t) © (3.1.2)

J(x(1).)= x"() P(t) x(t)  where (1) is symmetric matrix.

oy (x(1).y @
aa ot

aJ'(x(t),t)_
ox

[x"Px] = x"Px

]T = —a—-[x’Px]’ =2x'P
ox

I(x(1), u(t), 1) = u'Ru + xTQx

x"Px = —rmp[uTRu +x"Qx+ 2x"P[Ax +Bu]| = ’.'E}EP[“TR“ +x"Qx + 2x"PAx + 2x"PBU]

20"y R+2x'PB=0

U e=-x'PBR"

Umin= -R'T_BTPTX since R,Q anyd P are symmetric.

Umin=-R'B"Px

-x"Px = [x‘PBR“'RR"B'Px; x"Qx + 2x"PAx - 2x"PBBR"'B"Px]

Since x'PAX is scalar and P is symmetric;

x'PAX = (x"PAX)'=x'ATP x then 2x"PAx=x'PAx+x'A'Px

'-g‘Px = x"[PBR'RR"B'P +Q +PA + AP - 2PBBR 'B'P]x = x'[Q + PA + AP - PBBR"'B'P|x

-P=Q+PA+A'P-PBR'B'P (33.1.1.1)

which is the same RDE derived in the previous paragraph.

3.3.3 Time-Invariant Plants

For time-invariant A and B system with state feedback is
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x= Ax+Bu
u=-Kx
x = (A -BK)x
~J=x"Qx+u'Ru
J= x"Px
The last definition for J is a Lyapunov function whose propertics presented in next

scetion. Also main reason to choose the performance index in this form is clarified

It is guaranteed that results of optimal control stabilize the system in the sense of
Lyapunov stability theory.

J=Xx"Px+ x"Px = -(x"Qx+u'Ru) (3.3.3.1)
x"(Q+K'RK)x = -[x"(A-BK)"Px + x"P(A - BK)x] = ~x"[(A - BK)"P "P(A - BK)]x

Using Cholesky fuctorization for R

R=T'T, (R'=T'TT)

Q+K'T"TK = -A"P + K'B'P -PA + PBK

AP +PA -K'B'P - PBK + K'T'TK + Q =0

ATP + PA - [TK-T'B'P]'[TK-T'B'P] - PBR'B'/P+ Q=0  (3.3.3.2)

We choose,

TK-T'B'P=0
K=T'T'8'P=R'B'™P (3.3.3.3)
AfP +PA- PBR'B'P+Q=0 (3.3.3.4)

'3.4. Stability of Dynamical Systems [4]{80]

This scction is concerned with difterential equations in the form
x = f(x,1) with x(,)=x, where x eR", 120 (3.4.1)
The system is said to be autonomous or time-invariant, if’ function does not

depend on t, otherwise the system is said to be nonautonomous or time-varying.,
B, is defincd as a ball with radius h centered at 0 in R".

THe following definitions are true

locally: il"nll Xo Qre in ball By, .

globally: if all x, ¢ R" ,

uniformly: if all 1,20.
Definition 3.4.1. Equilibrium Point



f(t.xe.) =0 where x. is called an equilibrium point of (3.4.1)

Definition 3.4.2. Stability Definition ‘of Lyapunov

X is stable equilibrium point of (3.4.1) if there exists 8(1,,.¢) such that
| Xo | < 8(t,.8)= | X(U) | <e for all 121,20 and £>0 where x(t) is the solution of (3.4.1).

Definition 3.4.3 Uniform Stability '

If' § is independent of 1, x=0 is said to be uniform stable cquilibrium point of
(3.4.1).

Definition 3.4.4. Asympotic Stahility

x=0 is said to be asymptotically stable equilibrium point of (3.4.1)

it x=0 is stuble equilibrium point and there exists 8(t,) such that

|x‘,|< o =lim,_,,. |x(l)|=(). . .

Definition 3.4.5 Uniform Asymptotic Stability(u.a.s)

x=0 is said to be uniform asymptotically stable (u.a.s) equilibrium point (3.4.1)
if x=0 is uniform stable equilibrium point of (3.4.1 )‘ and x(t) converges to O uniformly
int,

L]

Definition 3.4.6 Global Asympitotic Stability

x=0 is said to be glul;ally asymptotically stable equilibrium point of (3.4.1) if
x=0 is asymptotically stable and lim, ,, [ x¢t) | =0 for all x, t R".
3.4.1 Lyapunov Stability Theory

' Definition 3.4.1.1 a().p()e K

al.) ) RN is continuos and monotonicaly increasing function with
a(0)=p(0)=0 .

Definition 3.4.1.2 Locally Positive Definite FFunctions
A continuos function J(LX):R, x R"-R, is said to be locally positive definite function
(Lp.d.p)if

l J(1,0) = 0 and J(t.x)2a(}x|) for all x & l),;, 120,
I)q/iniliun 3.4.1.3 Positive Definite Functions
A continuos function J(t,x):R, x R"5R, is said to be positive definite

function (p.d.f) if
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J(1,0) = 0 and J(t.x)2u(|x]) for all x £ R", 120.
Definition 3.4.4 Decresent Function
The function J(t.x) is said to be decresent if there exists a function such that

JOLX)SPIXID for all x £ By, 120,

Lyapunov sccond's direct method guarantees the system's stability with no
need to solve the system in (3.4.1). Since, Lyapunov stability criteria investigates the
only cquilibrium point at x=0 , other cquilibrium points should be transformed to
~origin. For Lyapunov’s stability theory a Lypunov’s function has to be defined. Any
function 10 be tested to satisfy the properties of Lyapunov’s function. is called
Lyapunov’s candidate function. Hence, several Lyapunov functions may be defined
for a system. The Lyapunov functions satisfying definition (3.4.1.3) or
~ definition(3.4.1.4) may be used to conclude the stability of an equilibrium point. For
the stability analysis of the dynamical system J, partial derivatives of J with respect

to X are nceded.

. ox oJ o
J(x,t) = X f(xt)- o

Lyapunov stability theorems are defined as follow

it J(t,x) is L.p.d.f and =J(x,t)20 locally then system is stable.

i J(1.x) is Lp.d.f..decrescent and =J(x,t)20 locally then system is uniformly

stable. oot
i J(Lx) is Lp.d.fand =J(x,t) is Lp.d.f. then system is asymptotically stable.
if J(t.x) is Lp.d.f..decrescent and ~J(x.1) is L.p.d.f. then system is u.a.stable.
.il'.l(l.x) is pd.fand =J(x,)is p.d.f then sysem is globally w.a.stable.

* 3.5. Simulation Results of Optimal Control

In this section, we will 'l'md optimal state-feedback K to minimize the cost
function defined for Q and R. Simulation results with optimal state-feedback will be
presented. In simulation, we will use the lincar state estimator designed in section
(2.6.3).

We define the following quadratic performance index to minimize:

¥
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J= ,f(x'Qx+u'Ru)dt = I(o.m BT +01-8T +r1-2,7)dt (3.5.1)
[+] 0

Main objective in performance index is to minimize the change in fuel
temperature and temperature of coolant leaving the reactor and restrict the control rod
speed. The restriction of control rod speed is achieved:choosing scalar weight r very

large.

-

00 0 0 0
0 0 0 0 0
For Q={0 0 001 0 0| and r=3000, we should solve the following
00 0 o0l 0
00 0 0 0

algebraic Riceati equation arising in section (3.3.3) for time-invariant plamtd. System
matrix A and input matrix B in ARE (3.3.3.4) is replaced by A, and B, defined in
cquation (2.6.3.1) for G.=0.5 to take the classical contiol loop into assumption.
AP+ PA, - PBR'B'P+Q=0 (3.5.2)
Csfopt_1I.m has been written to solve ARE arising in (3.5.2) and simulate the
comhrul system illustrated in Fig.2.6.3.1. ARE is solved using function are sch.m
which is a solver for stiff algebraic Riccati cquations adapting Newton iteration
method. Csfopt_1 has produced the following results for P and K
P =1.0c+007 *
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0001 0.0000 0.0000 0.0086
0.0000 0.0000 0.0000 0.0000 0.0001
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0086 0.0001 0.0000 1.9651
and optimal gain K is determined from equation (3.3.8)
K=(1/n)B,'p | (3.5.3)
. K=10.0003 0.14306 0.0017 ().()()02‘ 32.7523] (3.54)
Precompensator gain v is determined using final value theorem presented in
section (2.5.3) for a given optimal gain K. Nondynamical gain v compensates the

§
input to track the demand power at steady-state.
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Fig 3.5.1 illustrates the output results of simulation for optimal gain K.

Csfopt_1.m uses optimal gain K from (3.5.4) and nonoptimal linear observer gain H

from (2.6.3.4) for Pg=1.1 (10% increase in demand power).
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Fig 3.5.1 Optimal control results with nonlincar plant simulation (10% increase is

entered to system as a demand power) a) relative output power response b) reactivity
response ¢) control rod speed d)reactor exit temperature ¢) reactor fuel temperatures f)

1

power crror between the estimated power and actual value of plant g) estimator

.. L]
reactivity crror.

3.6 Stiffncss Arising in Optimal Control for Nuclear Power Plant

The accuracy in the solution of ARE arising in 1£q.(3.5.2) is very important for
th‘c optimality and stability of control system. Onc of the major difficulties is
encountered due to stiffness described in Section (2.5.4). Models defined by stiff
equations produce the ilt-conditioned matrices with relative condition numbers which
are close to zero. This results in some numerical difficulties such as taking inverse. It
will be shown later that Schur decomposition algorithm [84] 1o solve the ARE
in(2.5.4) fails and produces incorrect gain K which makes the system unstable.

In Schur decomposition method proper Hamiltonian matrix for ARE in (3.5.2)
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A -R . ,
Z= [_a —A'] and U'ZU=8 where S is the real Schur form of 7 with
| .

orthogonal transformation U. U is partitioned into four parts; ¥

| u, u

2 . . . ‘

U =[U " | and to find the solution we need 1o take the inverse of U,
n Uy

. . . -1 . .
since the solution of ARE ; X=U,,"'U,,'=X"=U,,U,,"
Are_sch uses Schur method and produces the following results tor ARE in

(3.5.2)

Uy =
0.5565 0.0812 -0.0007 -0.6081 0.0827
-0.0011 -0.0002 0.0000 -0.0003 0.0000
-0.8182 -0.1194 -0.0027 -0.4168 0.0567
-0.0051 -0.0007 -0.0001 0.5456 -0.0858
0.0000 0.0000 0.0000 0.0000 0.0000
Uy =

-0.0009 -0.0066 0.9960 -0.0364 -0.0238
0.0009 0.0064 0.0885 0.3879 0.3899
-0.0013 -0.0002 -0.0021 -0.0793 0.0828
0.0000 0.0000 00115 0.0274 -0.9073
-0.1444  0.9895 0.0058 -0.0028 -0.0027
Relative condition number of U,
rcond(U; )= 6.2902¢-011 which is very close to zero (badly scaled) to be taken
inverse. Consequently, U,,U ,," is not equal to identity matrix; ' "
U, |Un'|""
1.0000 0.0009 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 -0.0000
0.0000 -0.0013 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000
0.0000  0.0000 '0.0000  0.0000 1.0000
This mistake in taking inverse leads to nonoptimal gain K. In our case. K is

determined as follow;
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K=1.0¢+004 . [0.0006 -1.5990 0.0025 0.0015 -1.3606]
With state feedback gain K, cigenvalues of system become -63.6072, 63.607, 1.566,
1.2960 and -1.5667 which are slightly unstable.

3.7 Conclusion

upl'imul gain K determined in Eq.(3.5.4). Optimal controller denoted a similar
behavior to Bang-bang control.t Initially, optimal controller displayed much larger
input than demand power and later turned off the offset and only produced the set
value of demand power. Hence, optimal controller modifies the input signal of COC
to provide time-optimal trajectories. It is seen from Fig 2.6.3.2-a and Fig 3.5.1-a that
optimal K reduces the settling time to 15 seconds. It was 35 seconds for nonoptimal K
determined in section (2.6.3) using pole placement method. It is also seen from Fig
2.6.3.2-d-e and Fig 3.5.1-d-e that the optimal controller impr:)vcs the responses of
reactor fuel temperature and reactor exit temperature. For nonoptimal K. reactor fuel
temperature exceeds 720 “C with an overshoot and settle to it’s steady-state value in
45 scconds. Reactor exit temperature shows a similar dynamical behavior for
'n?noptimal K. Optimal controller achieves no overshoot and much sherter settling
time (20 scconds).

For r=3000 with optimal gain K cigenvalues of close loop system( ¢.l.s.) are

-63.6072, -1.5667, -1.2960, -0.3004 and -0.1294,

Different optimal gains can be determined for different scalar weight r.

For r=50, K=[0;0181 1.6038 0.0245 0.0023 269.0009), v=17.4144 and
cigenvalues of ¢.1.5.:-63.6073, -1.4888 + 1.0222i, -1.4888 - 1.0222i. -0.1251,
-1.3710.

For r=1000, K= [0.0010 0.3197 0.0037 0.0004 064.2927], v=4.0141,
cigenvalues of ¢.1s.: -63.6072 -1.5294 -1.2687 -0.5256 -0.1264.



CHAPTER FOUR
STOCHASTIC OPTIMAL CONTROL

ROBUST CONTROLLER DESIGN

In this scction we introduce the stochastic process [10][11] and stochastic
optimal observer (Kalman Filter) design [12] [13] that is used in a wide varicty of
ficlds, from parameter identification to robust controller design. In chapter three we
improve our controller philosophy including optimality designing optimal controllers
for nuclcar power plants [6]. So far, all the designs are carried out ass'sumil:g that all
the model parameters are correct and there exist no measurement noise. In chapter
two, main design objective was to build a controller in such a way that it stabilizes the
system. [t was a sccondary goal to improve the system’s response as much as design
methods allow. Although optimal control offered a method to determine the places of
poles to minimize a predefined cost function, but no tool is suggested to improve the
controller performance for some  inaceuracics, resulting from system model or

measurcment. ‘

4.1, Stochastic Processes
Definition (4.1.1)

¥
A probability is a function P mapping some subsets E; of E into the set [1.0]

with following propertics [85]. i)

0sP(E)s! and iP(E,) =
=)

The joint event is defined by ABC and if the events are mutually independent.

P(ABC..)=P(A)P(B)P(L)...
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If the events are mutually exclusive
P(A+B+C+.)=P(A)+P(B)+P(C)

~If two events are not mutually exclusive, then
P(A+B)=P(A)+P(B)-P(A)P(B)

For events which are not independent, conditional probability is defined as

follow;
_ P(AB) _ PBIAPA)
(AB) = @) (AB) = P @)
for A;. i=1,2......n, given that B has occurred. ’
P(BIA,)P(A,)

and famous l)aycs: theorem is obtained:
P(BIA,)P(A,)
2P(ABIP(A,)

]

(AnlB) =

‘Bayes® theorem plays the central role in probabilistic estimation
theory[12]{13]. The concepts stated here reflects the conventional(Boolean) logic and
. Bayes’ thcorem summarizes what we can estimate only knowing probabilities of

cvents.

Definition (4.1.2)

x 18 a random varinble(RV) and the probability distribution function is
F(x)=P(X<x)

and probability density function is

F,(x)
aox

f(x) =

Definition (4.1.3)
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E[x] denotes the expectation of x. It is also said to be mean value of x.

(XI= Ixf,(x)dx

I the random variables are independent then the mean of product is also
Y
product of individual mean values of random variables;

EIXiX Xy XoFEIXGERXGIEXG) G EFXG)
Definition (4.1.4)

Mecan square valiue is defined as an expectation of the square of x.
2 2
(1= [t o0ae

Definition (4.1.5)
: . o W
Variance of x: a”=E|x"]-Li[x]
o is called standard deviation
Definition (4.1.6) Joint Distribution Functions

The probability of the joint occurrence of two cvents such as A and B was
called the joint probability P(ANB) [85][86]. If the event A is the event (X<x) and
event B is the event (Y<y) the joint Probability is called the joint distribution function

ofrv.xand y
Fxy(x.y)=Pl(Xsx) n P(Ysy)]
Definition (4.1.7)

The covariance. statistical correlation between the random variables istanother

concept will be used frequently
(- Epxy ~ ElyDT = | Jox— EDxiy - ElyDi,, (x yidxdy

+ ~Elxy}-EIXJE[y]

Correlation coefTicient is the normalized covariance
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p = EX] - EIXElY]

0,0,

Itis obvious that if random vuriuhlc’s x and y are independent then covariance

and correlation coeflicient of x and y are zero (The inverse is not true)|85]).
Definition (4.1.8) Orthogonality
IfE[XY]=0 then X and Y are said to be orthogonal [85].
Definition (4.1.9) Normal or Gaussian Distribution

The normal (Gaussian) probability density function is

I X-p,) '
f(x) = Jrre exl{— S_WZ(_:“;: )} forr.v. x

Mecan and covariance values are only parameters to determine the Gaussian

distribution [10][12]]13].

For random vector x with n random variable multidimensional (multivariate)

Gaussian probability density function is

LA R P ]
(X, Xy X,) 20 P ex;{ 2(x m) P '(x-m)

where random vector is ,
lv L]
X ®]X) X3 oo X
m=k|x]| .
. |

P=LE[(x-m)(x-m) ]
are the mean and covariance of the vector x.
Definition (4.1.10) Tchbycheff Inequality
% . 2,2
P(x-p>e) <0, /¢ .

where ju, is the mean value of r.v. x and € is a positive constant[86].

Definition (4.1.11) Chernoff Bound
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P(x>€)< min ,, explste + In lfi{c“} ]

Chernoft Bound requires the probability density function unlikely Tchbycheff

incquality[86].

Definition (4.1.12) Stochastic (Randomy) Process

¥
As a random variable is a rule assigning for every outcome & of an experiment
a number x(&). a stochastic process x(t) is a rule assigning to every & a function x(L.8).
Hencee, stochastic process is a function of time and £[85]. Probability density function
is

1

0F(x,t
f(x.t) = < nx“‘)‘

Definition (4.1.13) Gaussian Process

A stochastic process is called Gaussian process if its distribution functions are

gaussian distributions [ 13][85]{86). One dimensional gaussian process is

|
f(x.t) = =—expg - ———5—
2
JV2no 20
Mecan and covariance values are only parameters to determine the gaussian
process. Hence, the one-dimensional gaussian process is expressed by
2
x~N(mn,0%)
and for multidimensional gaussian process
x~N(m,P) where m, P and o are mean, covariance and standard deviation.
Definition (4.1.14) Correlation Functions
‘The Autocorrelation function is
R“(tht))“*lilx(l,)x(lz)]
and the cross-correlation function -
4
S l(x\’(h.‘z)"lil.\i(h))'(lz)l !

Definition (4.1.15) Stationarity
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A stochastic process is said to strict sense stationary (SSS) if all the probability
- 0 . » ~ -’ 3 . 3 .
distribution [unctions are invariant for time translations. It is obvious that time-

invariant p.d.l describing the process is SSS.

A stochastic process called wide sense stationary (WSS) if it’s mean value is

constant and autocorrelation function depends only on the time difference.
E[X(D] = n,
l':ll\'(ll)X(lz)lﬁlixx(l|-12):l{xx(f) l|~t2=T

Also two processes X(U) and Y (1) ere said to be jointly WSS if the following

cquation is satishied:
l:lX(l. )Y(lz)l"‘kxy(h'lz):ny(T) l|-lz='l'

It is also obvious that 888 processes are WSS; but the inverse is not true in

general.

4.2. Discrete-time Kalman Filter ' '
Measurement model is defined by linear equation; [13]
7 = x vy e (4.2.1)

where vi~N{O,R,) (zcro mean, white and gaussian noisc)

X, represents the estimatgd state vector and  state veetor x(K) is the error
between actual and estimated parameters.
We are looking for a recursive filter to update X, in the lincar form:

x(k + 1) =K, x(k) +K, z, (4.2.2)

Writing cquations for x; before and after the measurement, following
¥
cquations are obtained

x(k) = x, + x,(k) and
x(k + 1) = x, + x,(k+1) (4.2.3)

. Xy +Xg(k+1 )=K'k(xk"'xe(k))*'Kk(Hkxk+Vk)
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Xa(k+1)=K X+ K Xg(K)- Xy +KHixy+HKyvy

Xo(k+1)=(K i+ KiHy, 1) %+ KXo (k) +Ky v (4.2.4)

to avoid a bias from x; let (KX K H, -1)=0

K, = (I-KH,) is obtained. (4.2.5)
Xo(k+1)= (I-K Hy)Xo(K)+ Ky vy (4.2.6)

I'he cost function is defined to minimize the mean square of error to find a

optimum lincar gain K.
I =E[xe (K)Xo(K)] (4.2.7)
Error covariance matrix is a

| P =E[xo(k) Xe' ()] : (4.2.8)

For next estimated value of :hc error cuvariﬁncc matrix becomes
Pye1=E[Xq(k+1) x,T(k+‘1 )]
Preor=E{ [(I-KHXa(k)+ Ko Jvic K+ (K)(1-H K]}
Prer=EL (K Hy)Xa(K) X, (k) (1-H K] + EL0-KH)Xo (k) v K, ]
+ E[K Vi Xe' (K) (IFH K] + E[K Vv K] ’ (4.2.9)
and taking following cquations into account;
E[vy X (K)]=0

r E[xq(k) vi'}=0
En =R, und POO=Elxy(K) X, ()]
P(k+1) = (FKHIP(K) (-KeH) +K R KT (4.2.10)
J=E[X, (K)Xo(K)]= trace( P(k+1)) (4.2.11)

The following properties are usetul to find optimum Ky

:
(—%(trace(ABA’)) =2AB . (ABAT)=2AB (4.2.12)
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K, aK [u K HOPG) (-K H) v KRK (4.2.13)

= 2 (I-KHJP(K) H' +2K,R, = 0 (4.2.14)

KiRi-HiP (k)H, " ]=-PH,| | (4.2.15)

K= PeHC THPUOHT+R, ] ; (4.2.16)

P(k+1)= P(k) - P(k) H'[H.P(k)H,"+R, ] 'H P (k) (4.2.17)

P(k+1)= P(k) - K,HP(k) = (I-KH,) P(K) (4.2.18)
l Piant

: {u}ww{ b

Fig 4.2.1 Discrete-Time Kalman Fliter

For transformation to continous time with the measurement model
y(1) =C(t) x(1) + v(1) (4.2.19)
where v(O)~N(O.R(1))

At—0
H(K)-C )AL
v(K)—»vit)A -
© R(k)=R() At
P(+AL) = P(1) - K1) COAP1)=P(t) - POCH)' A[AL terms +R(1) At Ct) Pt)
P+AY= P - POCH) 'R ALC) Pt

lim - P(t+ A - P(t)

AR At

-P = P()C()"R(1) ' C(H)P(1) (4.2.20)

and Kalman gain in continuos time is

K(t)=limy, .o POCH)TACR)PECH) A +RMAL '=Pt)C(t) R(t)"

(4.2.21)
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ot
Plant

( 2 o 23 o
Ll

Fig 4.2.2 Continuous-Time Kalman Fliter . \

4.3. Classical Output Control with Kalman Filter

In previous section we  derived slochziSlié optimal estimator when only
measurement noise exists. In general output measurements are obtained in noisy
environments and gaussian process describing noise effects  leads to stochastic
models that match with physical r:'uli(ics. In this scction a simple scalar Kalman filter

has been used for the output of nuclear plant in Fig.4.3.1.

NONLINEAR PLANT v

Pd + O Z, S, P P
D.m.nd .~ Uc (;f Id‘ NEUTRON +
emand A KINETICS
| THERMAL
RESPONSE
Classical Conlrol Laop ~mom—m—o--—y Power measurement with
Filtered Output Power Kalman additive noise v

§

Filter

Fig 4.3.1 Block diagram of classical output control with Kalman filter
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Fig 4.3.2 Simulation results for classical output control with Kalman filter. a) Relative
output power b)Reactivity ¢)Control rod speed d) Reactor Exit Temperature ¢)Reactor

Fuel Temperature ¢)Plant’s output measurcment with additive gaussian noisc.

It is assumed that output ncutron density measurement is obtained with
additive noise v. The output of Kalman filter is used for the feedback'signal to
construct classical feedback loop.Nonlinear model with thermal response has been
used for simulation. It is also showed in previous section that small sampling
intervals for discrete time Kalman filters result in simulation of continuous time
Kaimun filters. Hence, plant’s output with additive gaussian and zero mean noise, has
been filtered using discrete time equations derived in t!\c previous scction. Fig.4.3.2.

‘illustrates the results of COC with a simple scalar Kalman filter.

4.4. Stochastic Optimal Estimator Design
A system model with

Xhot= Ay tBLuy +wy (4.4.1)
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L and measurcement model

7=y x v (4.4.2)
where w~N(0.Q) and vi~N(O.R,) (4.4.3)
Lrror covariance is updated by

P(k+1)= A (I-KHy) P(K)A,+Q, (4.4.4)
with the Kalman Gain

Ki= P(KH, THP(KH,+R,] " (4.2.16)
Hence error covariance updating becomes .

P(k+1)= A(l- P()H, [HP(OH, +R, ] 'H,) P(K)A,T+Q,  (4.4.5)
Kalman Filter difference equation is obtained as

X, = A X, +K, (2, -H,x,)+B,u, (+.4.6)
Continuous time system and measurement model;
(1) = A()X(D) + B)U(t) + w(t) 447
y(1) =C(t) x(1) + v(t) where w(t)~N(0.Q(t)) and v(1)~N(O.R(t) (4.4.8)

To obtain the continuous time results, following limit operations transforms

discrete time to continuous time have been determined.

At—0

A (A(DALH])

13, > B(t)At

H, - C(1)At

vi— V(L)AL

w,—w(1)At

Rk—)‘R(t) At ' v

Qi —Q(1) At (4.4.9)

Py—-P(1) and Py, —P(1+AL) (4.4.10)



-72-
P(t+An)= (AUAHI)(I- P(t) C'A[CAP() Cu)'At +RAT" C(nAY
P(t) (A() At+1)+Q(t) AL
Neglecting At and higher order terms
P(t+Al)= P()+A@POAHPRAM) A-P@)C) 'R COPOAHQ() At

* Finally, error covariance updating in continuous time is in the form of Riccati

differential equation:

lim - S A,:z “PO _ _p = AP + PIOAR)T - PIOCH)TR() ' COP() + Q(Y)
4.4.11)
with Kalman gain
K()y=Pt)C(t)'R(t)" (4.4.12)
and Kalman filter dynamics is
X(1) = A(X(1) +K()(y(t) - CHX(V) + Bt)u(t) (4.4.13)

Kalman gain K(t) obtained solving RDE minimizes the mean square error
_ T
J()=E[xe (t)x4(t)] (4.4.14)
It is also called minimum variance estimation,
4.4.1. Time Invariant Case

4

It is casy to show that for time-invariant models RDE (4.4.11) reduces to

algebraic Riceati equation (ARE) as follow;
0=AP+PA'-PC'R'CP+Q . (4.4.1.1)
with time-invariant Kalman gain;

K=PC'R" . " (4.4.1.2)
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4.5. Linear Quadratic Gaussian(LQG) Stochastic Control Problem

Hence far, we have concerned with optimal control for deterministic systems

and optimal estimator design for stochastic models. Optimal control of stochastic [10]
¥

systems sccks a optimum control input for uncertain models that complicate the

problem. In general, stochastic control problem is related with the minimization of the

cost function defined by
|/

J(x(t,).u(.).ty) = j/(X(t),U(t),t)dt +m(x(T)) 4.5.1
te

for nonlincar plant model
§

x=f(x.ut)+w(t) with given initial condition x(t,) (4.5.2)

and nonlincar measurement model
y()=c(x.t)+v(t) (4.5.3)

where w(t) and v(t) are stochastic processes that model the uncertainties in

plant and mcasurcment.

However LQG is a special case of stochastic optimal control if w(t) and v(t)
arc while, zero mean gaussian processes and performance index (cost function) has

the following form:
T
Jx(t,)u(.)t,) = I(u'Ru) +x'Qx)dt + xT(T)Gx(T) (4.5.4)
te

Needless to say, LQG uses the lincar models for both of plant and
measurcement. ’ h

Another crucial theorem  called scparalion principle [9] reduces this
(.ompht.uu.d problem to the combination of two dcau,n stages. One of the stages is to
design a Kalman Filter using the stochastic mlormulmn about the noise. At the second
stage, a deterministic lincar optimal controller is designed independently. This 1.Q

regulator uses the estimated states of Kalman filter. Resultant controller minimizes the

performance index defined in Eq.(4.5.4).

4
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Fig 4.5.1 LQG : A stochastic optimal control problem simulation results for nuclear
power plants. a) Reactor relative power response. b) reactivity response of system. ¢)
Control rod speed. d)Reactor exit temperature. ¢) Reactor fuel temperature. (f) and (g)
illustrate the error between the actual value t;l’ actual state and estimated state
produced by stochastic optimal estimator (Kalman Filter) for relative output power

and reactivity. ’
Lgg_1.m exccutes the function are_2.m to solve ARE arising in Eq.(4.6.1).
Pe= 1.0c+008 *
0.0093 0.0001 0.0440 0.0065 0.0001
0.0001 0.0000 0.0159 0.0010 0.0000
0.0440 00159 89801 0.5402  0.0006
0.0005 0.0010 0.5402 0.0368‘ 0.0000

0.0001  0.0000 0.0006 0.0000 0.0000
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and resultant 11 for Kalman filter is obtained as

3

H= 1.0¢+003 #1-0.3095 -0.0020 -1.4650 -0.0173 -0.0024]"
(4.6.2) ‘

Fig 4.5.1 illustrates the simulation results for [ and K from E£q.(4.6.2) and
Eq.(3.5.4). It is scen comparing Fig.d.5.1-f-g and Fig.3.5.1-f-g that Kalman filter
estimates the states in the shortest time. It takes 2-3 seconds to estimate the output
power correctly for Kalman filter but it took 17 seconds for nonoptimal observer
designed in’ section (2.6.3) from fig 3.5.1-f. Kalman filter is designed to compensate
the uncertainties resulting from external disturbances or changes of model parameters.
In both cases, Kalman filter estimates the states in shorter time. This imptoves the
robustness of control system. The robustness of controllers can be examined casily
changing the parameters of simulation model, while optimal state-feedback and
.Kalman filter are designed for the unchanged parameters.  But we prefer to examine

the robustness of controllers in the last chapter and end the stochastic optimal control.



CHAPTER FIVE

- AUTOMATICALLY TUNED FUZZY LOGIC
CONTROLLER FOR NUCLEAR POWER PLANTS

In this chapter, we introduce fuzzy logic [15][16][17] as a new philosophy in
controller design. First of all, the need to develop a new kind logic and to explain why
the fuzzy logic transcends conventional logic with fbhilosophical remarks has been
included in the following sections. Control system developed [18][21][22] by using
fuzzy logic is the essential spirit of the chapter. With the concept of fuzzy logic we
have also introduced the intelligent control . human-like thinking and information-
based systems. ‘

5.1. Fuzzy Logic versus Baycsian Approach

The title of this section became the source for numerous studies. It is also
subject of genceral discussion. Some rescarchers put forward that the studies with this
title  did not do fully justice to conventional methods. However, to assess
conventional methods properly, it is worth giving this title for a comparative
discussion.

Hence far, conventional logic and its natural results called Bayesian approach
played the crucial role in the solutions of stochastic estimation and control problems.
Therelore, these results may be classified under ‘the title of Bayesian approach that
reflects an exact view of conventional Boolean logic. It is conventional, false-true or
zero-one logic that any clement cither is or hot is a member of a group. Otherwise it
is always the logical complement of the statement. there exist no third kind of
classification that explains uncertain states. Multivaluedness or fuzziness is defined to
overcome this problem. L.A.Zadch known as the father of fuzzy systems, first
established fuzzy fundamentals in fuzzy set theory in 1965 [24]. As an analogy.
Newtonian mechanics are deterministic definitions of particle motions in physics.

Under certain conditions, all the physical data may be evaluated. such as distance for a
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particle moving at known speed. Certainty of events is the main propertics of
Newtonian mechanics. Howeyer  quantum mechanics appeared as another approach
using Heisenberg uncertainly principle. In this case, possibility of existence of any
particle in space-time is represented by probability theory. For instance an electron
may cxist in a cell within a probability. Whether or not it oceurs, this event is modeled
with probability theory. According to Kosko [25], randomness and fuzziness are not
¥
the same things although they have a lot of similarities that may be misleading to
distinguish cach other. An element may be member of much more than one group
with possibililics. The first in quantum mechanics is randomness, the second one is
fuzziness. If we scarch the fuzziness in physics, first of all a particle must exist in a
spegific space-time. An event occurs and if someone determined a physical law that
the particle is electron with that pereent and neutron with a different percent, proposed

method would have referred to fuzziness.

5.2. Fuzzy Set
Definition (5.2.1)
X is a fuzzy sct with
X=[xs X2y oo« Xp)=l%3)s i=1on

X; is a fuzzy variable and called crisp input space x,ci" to fuzzy set defined in

Definition (5.2.2) A

Let’s assume that X is a set of clements. A fuzzy subset A of X is denoted by a
membership function.

CAX-|0,1)

Fuzzy subset A is said to be normal if at least one element of Ais 1.

The x; crisp input space x,cR" to fuzzy set defined in A by a membership
function: pa(x;): x;—{0,1} ‘ \

Ha(Xy) is membership value measures the clementhood of the ith element of
fuzzy set A.

ch/?iti(i()rz (3. 2 3) Complement of A

Complement of a fuzzy set A, denoted ", is defined by
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Ax)=1-A(x)
Definition intersection
Lct‘s assume A and B are two fuzzy subset of X,
The intersection df these sets is equal to
ANnB=min[A(X), B(x)]=A(x)AB(x)

This refers to AND logic in Boolean logic.

Definition (5.2.4) t-norms

t-norm is defined as a function with two arguments {87](18]

::]0,1]x][0.1]>[0.1]) satisfics the following propertics

Xxt0=0, xtl=x ’

for xsy, wsz  xt wS'y t z nondecreasing function (monotonicity)
Also t is commutative, associative.

| The inlcrscclibn of two fuzzy subsets is t-norm.

Some examples for t-norms:

X Ly =min(x.y)=xAy

Xty=1 '|:l+-(l-":-l—)(—\f———ll} 0<w<o W
y— 0&\\ (\V_l) . ' *

[}

ol Xy
Y+ (1-y)(x+y-xy)
Xty =max{O(A+1)(xty-1)-Axy] .A2-1

Xty ¥ 20

Xt y= xey (multiplication)
x ty=1 -min| L((1-x)™+(1-y))'"?} . p21
It is casy to show that last t norm becomes min operation for p—o

iy { | -minf 1(CE-x)™+ (1 -1 = min(x.y) ,

Definition (5.2.5) s-norms

s-norm is defined as a function with two arguments | 18]
s:10,1]x[0.1 j—:»[().l ] satisfies the following éropcrlics

xs0=s, xs =]

for xsy, wsz X s wSy s 2 nondecreasing function (monotonicity)

Also s is commutative, associative.

4
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The s-norm can be derived from the relationship
xsy=1-(l-x)t(l-y)

This relationship is equivalent to De Morgan law in Boolean logic.
Some cxamples for s-norms:

X Ly =min(x.y)=xAy )

(W =D(w?’ -1
(w=1)

xsy=l—log“[l+ ] O<w<oo Wz

_ Xy -2)+x+y
XY = Ty -+

X sy =min[l,x+y+Axy] .A2-1

20

X s y= x+y-xy
R T
x s y=min[1.(x"+y")'"] . p2I
It is casy to show that last s-norm becomes min operation for p—oo

limy, o { min[1 AX"+y")P )= max(x.y)
Definition (5.2.6) The size (cardinality) of A
The cardinality of a fuzzy sct A, M(A) is defined by

(A= gm(X.)

Definition IFuzzy Hamming distance

The distance between the fuzzy sets A and B in "

(°(A,B) = glm(x.)-ua(x.)l"

" Definition (5.2.7) Possibility:

The, possibility of V is B given V is A:
poss|B/A]=max,|A(x)AB(x)]

It is obvious from dcﬁnilion that

poss|{B/A]=poss|A/B].

Definition (5.2.8)Certainty
Certanity is denoted and defined by
cert|B/A =1 -poss| B/A|
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and following incquality is satisfied
cert(B/A)Sposs|B/A|

5.3. Fuzzy Logic Systems

)
Fuzzy Logic Systems

Fuzzy Rule Base

input

Defuzzifier

X Fuzzifier

Y output

Fuzzy Inference
Engine

Y

Fig 5.3.1 Basic Configuration of fuzzy logic systems.

b
‘The block diagram  shows input-output relationship of the machine with a

transfer function.

The fuzzifier performs a mapping from observed crisp input X to fuzzy set
defined a membership function py. X—[0.1].

Fuzzy rule consists of a sct of linguistic IF-THEN rules, Jth fuzzy rule R; is
defined by

R;:IF x, is A and x, is A, and ... and x, is A, THEN y is B'.

where j=1,2,....N, xi(i=1..n) ‘

Output of j th fuzzy rule is a fuzzy set defined in B'. IF statement is the
ANTECEDENT and THEN portion is the CONSEQULENT.

The fuzzy inference machine is a decision maker mapping some fuzzy sets
from fuzzy rules into another fuzzy sct. The output of fuzzy inference machine is
transformed to the real world as an output of fuzzy logic system by the defuzzifier.

' h
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[
The Defuzzifier uses the several methods to provide the nonfuzzy output set

» L . . ! - 3
(crisp) y . Mean of maxima (MOM) and center of gravity are commonly used

procedurcs.

'S, 4 l‘uuy Loglc Conlrol
" In fuzzy log,u, Lonlml [18]121]{22]]23], knowledge is' represented by the
l'oll.owmg if-then rules Ry: IF ' and DE' Then U,
Ry IF E2and DEX Then U,
s IFE and DE Then U,
where j=1..N for N {uzzy rules.

They represents the membership values of the error and change in error of the
output of the controlled process. For n fuzzy set partiioning A A,......, A, we can
derive nxn fuzzy rules. So total number of fuzzy rules must satisly

Nsn’

Uy is the control input of the j-th rule defined in fuzzy sct. For niulli-input
multi-output (MIMO) systems crror E, change in error DE and control input U are
defined in sct

E={c¢|.z.... ¢}, DE={de | dey.... dega ) U={upu,.... uy)

and for cvery control input u, fuzzy inference machine produces proper outputs
in fuzzy sct defined by the fuzzy rules. ’

For the AND operation in IF part, any t-norm such as min operation or
multiplication, can be used.

(£ and DEY= max(E, DE))  or

(1 and DEYy= 1leDE!

4 1 Control with Linguistic Variables
- F uzzy. sets A can be defined in linguistic variables [18]. Every luzzy set A is
rcprc.suucd by a linguistic quantity. According 10 Kosko[25] these linguistic variables
are
N{l,;: Negative Large
~ NM: Negalive Medium
NS: Négalivc Small
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ZE:  Zero

PS:  Positive Small

PM:  Positive Medium '

PL: . Positive Large

SN
5.5 Classification of Fuzzy Logic Controllers

We mainly classify the fuzzy logic controller into two groups. These are
(A3non-ildup(ivc and (B)adaptive fuzzy logic controllers.

(A) Non-adaptive fuzzy logic systems consist of predefined time-invariant
rules and membership functions. These are knowledge bases defined in fuzzy logic
controller. In one type. IF part and Then part of fuzzy rules are in the linguistic forms
(fuzzy scts) as follows ‘

Type Al:? . Rule : 1F ¢y is NL and dey is PLTHEN duis PL
Then part can also be in polynomial form of ¢ and de. It is called Sugeno type output
[19](20}. - “
Type A2: ' Rule : IF ¢, is NL and dey is PL THEN u=k ¢y tkade tk,
~(I3) Adaptive fuzzy logic systems

Membership functions and fuzzy rules are automatically tuned according to
supervisory data ( ipput output data of plant).

Type Bl: Membership functions are knowledge-based but fuzzy rules are
defined adaptively. These are

: Bl.1:The adaptive fuzzy associative memories(AFAM) in Kosko's
work|[25].

' B1.2:The fuzzy logic controllers as cerebellum model articulation
conqullcrv‘(CMAC)[38|[18]. In CMAC, the fuzified data is entered to a neural
nctworks that finds l'ﬁu.y rules and defuzilied output of the controller properly.

B1.3: Conscquents are Sugeno type polynomial function of  crisp
inputs. 'l'l‘lc parameter of consequents are tuned using cither Kalman filters or least
square estimation according to a supervisory signal to provide the desired response for

. " 1
fuzzy logic controller [ 14].



-87-

Type B2 Membership functions and fuzzy rules are determined in adaptive
fuzzy logic controller structures. FFuzzy Neural Networks (FNN) are this kind of

structures whose membership functions and fuzzy rules are automatically tunable.

56 Fuuy Logic Controller (FL.C) for Nu’clcar'l’owcr Plant

In this section, we introduce design of a fuzzy logic controller defined as B1.3
type in the previous section. Fig 5.3.2 illustrates the scheme of tuzzy logic controller
application to nuclear power plants. As a general statement, FLC illustrated in Fig

5.3.2 can be used for the every kind of nonlinear plant without any restriction.

NONLINEAR PLANT

Pd Fuzzy . .
™ Logic o — o NEUTRON P
™ Controller < G. Idt KINETICS

THERMAL
| RESPONSE

Classicsl Control Loop

Fig 5.3.2 Fuzzy Logic Control of Nuclear Power Plant

<

In bur example, output power of nonlincar plant is unique output to be
controlled; It is also possible to control other state variables such as fuel or exit
temperatures. In this casc, an observer is used (o estimate the tempceratures.
Conventional control loop is saved but whether  or not it is saved fuzzy logic
controller can be designed for both cases. FLC produces the inputs to plant with
conventional loop. Fuzzy rules are tuned using a supervisory signal provided by a
LQG control developed in the chapter four. The tunning process Lan be carried out in

several ways. One of the most practical methods is the least square estimation and
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another is the mean square estimation (Kalman Filter) to tune the fuzzy rules. In the
later sections, we will focus on the tunning methods more deeply. As it is seen from
scheme, main structural difference between the optimal controllers and FL.C s that
FLC uscs oﬁly pla;u's output power while the optimal controllers need estimated
values of  state variables.

Five fuzzy sets A, l=l.2...'.5 A =large negative (LN), A,=small negtive(SN),
A= zero (ZE). Ay= small positive (SP). A¢= large positive(L.P) have been used in
FLC design. Outputs of fuzzy rules are in the polynomial form defined by Sugeno as
follow;

'Rulel: if E(k) is A, and DE(k) is A, then u(k)= ¢, +¢," Ek) +¢, DE(k)
Rule2: if E(k) is A, and DE(K) is A, then uy(k)= ¢, +¢;' E(k)1 e’ DE(K)
Rule25: il E(k) is Ag and DE(K) is Ag then upek)= ¢34 1 ¢56' E(k) 1o’ DE(K)

Where crror for the kth sample E(K)=P(k)-Py(k); P and P, are process
output(plant’s power) and demand power, respectively.

' The change in error is defined by DE(K)= E(k)-E(k-1).
Maximum twenty five fuzzy rules can be defined for five fuzzy sets.
Knowledge based membership functions have been defined by J.Dombi[88] in two
funéliuns. The first one is monotonically increasing function defined in [a,b]:
(1-v)*'(x-a)’
(1-v)*'(x-a)* +v* (b -x)*
and the second is the monotonically decreasing function:

(1-v)*'(b-x)*
1-v)*'(b-x)* + v '(x-a)*’

where A and v are the sharpness and inflection points of S-shaped functions.

H(x) .

p(x) = ( x € [a,b] (5.6.1)

“The inputs ¢rror E and change in error DE to FLC are'fuzzified by p(L) and p(DE)
defined in 5.6.1. Every fuzzy rule is weighted according to AND function of
membership values for E and DE. This is processed using either min or multiplication
(or any t-norm). We prefer to use the multiplication to determine the weights of fuzzy
rules. Output of the FLC is the weighted avarage of outputs for every fuzzy rule as

defuzzilication process.
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5.6.1. Kalman Filter Approach to ldentify The Paramaters of Fuzzy Rules

We start the work defining the state-space model of adaptive fuzzy logic

’ . . .
controller. The state vector contains the unknown parameters ¢;” in the outputs of

. . | -
fuzzy rules. Unknown parameters appears in the consequent ¢ i-1.2...n.k=1.2 . The

ith fuzzy rule output is

L] . 2 .
U= ¢ +C|‘ lf‘"’ci DE ¢

and state-vector is defined by

model:

x=[c! ¢ ¢ . ¢ ¢ ¢ ¢ . ¢

System model

Xio1 = Xp Wy N

measurcment model

u'=y=B,E(k) BoEK)......BE(k) B,DEK) BDEK)......BDEK)] xy vy’

for n=25, 13,.B,..... BB, represent the weighted avarages of fuzzy rules.
1:932 24 £ )

___Wy(E)-p,(DE)
) = s
33 1, En, (DE)

=1 j-1 ,

B(u-nxs.

w, and v, are white, zero mean gaussian process and measurement noises.

From the results derived in chapter four with A =1,,,,, and measurement

&N =1 Xt vy ' (4.4.2)
whcu; w,~N(0,Qy) and v ~N(0.R;) (4.4.3)
‘To minimize the mean square error

I=Elxe (K)xe(K)]

- Error covariance is updated by
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P(k+1)= (I-KHy) P(k)+Qy
with the Kalman Gain
- Ki= P(KH, HPKH, +R,]! - (4.2.16)
Hence error covariance updating becomes
P(k+1)= (I- P()H THP(R)H +RJ ' H) P(k)+Q,
With the following Kalman Filter difference  cquation. new  estimated
paramecters of fuzzy rules are casily obtained
i'ul = ;‘k +K,(z, "Hu;(u)
7y is the desired output of FLC. This signal is produced by a supevisory
conroller (In this work, we shall use 1LOQG designed in chapter four as a supervisory
conlrullcr).
5.6.2. Least Square Estimation of Fuzzy Rules
. ]
Least square estimation [89] is another tool which may be used instead of
mean square estimation (Kalman Filter)[13]. In the lecast square estimation, following

cost function is minimized;

- " - -
Jo = (2, -H %) (2, ~Hx,) = |z, -Hx,)|, (5.6.2.1)
It is casy show that to satisfy
i
J , . N R L A
i 0 with positive semidetinite Hessian of J |- =552 0
'3

.;;‘k = (HkTHk)JHu'zu = Hu.zu
where H" is pseudo-inverse (or generalized inverse or Moore-Penrose inverse)
, it H"H is non-singular then pseudo-inverse can be determined casily.
'Othcrwisc.: singular value decomposition is used to find the solution in least square
estimation.

Definition Orthogonality

A matrix Q e™™ is said to be orthogonal it Q'Q=1.

Theorem Singular Value Decomposition(S1VD)
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If arcal matrix A eR™"

then there exist orthogonal matrices
U=[u;.uge iy eR™™ and V=[v,.vo.. v ] €™ '

with the following equation

U'AV=diag(o,......0,):M™" where p=min(m.n) and 0,2 0, >....25,20

The o are the singular values of A,

Theorem Least Square Minimization by S1VD

Let's assume UTHV=Y is the SVD of matrix HeR™" with r=rank(I1)

To minimize the (5.6.2.1) L
T
R L I A
S X= Q2
' -1

5.6.3 Tuning Mcchanism

A supervisory signal is used to tune the fuzzy rules in FLC. This supervisory
signal is produced by a reference controller. In our case, we have used optimal
controller 1.QG designed in chapter four for the reference controller. The simulation
results of p]unt tor Py=0.6(%40 decrease in demand power) are accommodated in the
l'uzzf rule identification. For this purpose, Fuzzyr_l.m has been coded to tune the
fuzzy rules according to the output of a reference controller. Signals  accompanied
with Fuzzyr_E.m are the demand powerYy .control input of reference controllerY .,
output response of plant Y, . Ye is the modified control input of LGQ to maodify the
dynamical response of plant. Fuzzy rules determined by Fuzzyr 1 are used in Fe_i.m
to simulate the FLC for nonlincar plant. Fig.5.6.3.1 shows the tuning mechanism with

L.QG.
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Fig 6.6.3.1 FLC Tuning Mechanism

5.6.4 Identification of Fuzzy Rules

. 1 . . . .
We need plant response Y, control input of a reference controller Y., and

demand power Y,
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Signals illustrated in fig 5.6.4.1 are used in Fuzzyr l.m and the following

parameters are determined for fuzzy rules in FLC;

1 2

Rules I o
(1.0e+004) *
1 0 0.0000

2 -0.0013 -0.1048
3 0.0002 0.1313
4 0.0014 -0.7032
5 0.0000 0.0000
6 0.0000 0.0000
7 0.0367 2.6936
8 -0.0017 -0.9410
9 -0.1419 0.0528
10 0.0000 0.0000
11 0.0000 0.0000
12 0.0089 0.2052
13 -0.0005 0.0105
14 0.1792 -0.0005
15 0.0000 0.0000
16 0.0000 0

17 -0.1635 0.0377
18 0.0696 0.0910
19 0.0000 0.0000
20 0.0000 0

21 0.0003 0.0200
22 -0.0001 0.0126
23 0.0000 0.0695
24 0.0000 0

25 0.0000 0

5.7. Simulation of FLC for Nuclear Power Plant
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Fc_1.m has been run to simulate the control system illustrated in fig 5.3.2

taking the parameters determined in the previous section. Fig 5.7.1 illustrates the

simulation_’results for FLC.
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Fig 5.7.1 Fuzzyv logic control simulation results for a) relative output power b)

reactivity response c) reactor exit temperature and d) reactor fuel temperature.
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5.8 Conclusion

In this chapter, we have designed a fuzzy logic controller(FLC) for nuclear
power plant. Hence. far, control methodologies studied previously were linear model;
based approaches. Among them SFCSE with pole placement and optimal control have‘:
‘been studied extensively in the previous chapters. FL.Cs have appeared as a control
methodology which can be applied to any nonlinear plant without knowing its
mathematical model. Essentially, main problem arising in FLCs is to identify the
fuzzy rules. To achieve this goal, we have presented several methods to tune FLC
properly. Some of these methods to identify the parameters of fuzzy rules, are mean
square estimation (Kalman Filter), least square estimation (LSE) , least mean square
LMS algorithm and cell state space algorithm. Cell state space algorithm was’
developed for tuning fuzzy rules [54]. Also LMS (developed by B.Widrow[26][34]) is
another algorithm using gradient descent for fuzzy rule identification. We have
preferred the LSE algorithm and identified the parameters ¢' and ¢* which appear in
the consequent part of fuzzy rules. It is seen from the simulation results that FLC have
learned a control surface produced by LQG as a reference controller. The control
surface learned by FLC is illustrated in fig 5.8.1. For a structural comparison. FLC in
fig 5.3.2 uses only the output of plant meanwhile optimal controller requires the states
of plant.

FLC may be assumed as a combination of N PD (proportional derivative)
controllers. Objective of intelligent control is to develop the methods combining
previously designed conventional controllers or experiences about the plant in such a
way that overall performance of control system is improved. FLC supervises the
different PD controllers using fuzzy rules which are determined from the information
of plant. Each PD controller is weighted by a fuzzy rule according to the dynamical

behavior of plant. Therefore, FLCs are powerful information-based intelligent control

tool.
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Fig 5.8.1 Control surface of FLC for parameters determined in section (5.6.4). To

achieve this control surface. fuzzy rules are tuned for the supervisory signal which is
produced by LQG designed in the chapter four.



CHAPTER SIX

ARTIFICIAL NEURAL NETWORKS AND
NEUROCONTROL OF NUCLEAR POWER PLANTS

In this chapter we introduce the neural networks and their applications to

nuclear power plants. Necessary fundamentals will be given with an overview.

6.1 Artificial Neural Networks

Neural networks are embeded in control theory and adaptive signal processing
as an inspiration from neuroscience that investigates the structural analysis of the
brain in the sense of biology. Functional capacity of brain and its complexity have
always been attractive for researchers. Anyone can easily notice the superiority of the
brain to digital computers. As our engineers, we have endeavored to build the new
machines with the help of research results articulating the structural and working
principles of biological nervous system of the brain. Because brain behavior has some
recognizable superiority in the functional comparison with conventional computation
machines: it is massively parallel, robust and fault tolerant, flexible (learning ability),
very fast to retrieve the information (recognizing speech and images). As a result of
neuroscience, neurons refer to processing elements and synapses are connections in
computation science. Great number of neurons that each process the simple functions
are connected to provide collective behavior under the massive parrallesizm. The
collective behavior of neurons (simple basic processing units) can solve very
complicated numerical problems that have not been handled with the conventional
computation methods. This is the main fascinating property of artificial neural
networks (networks constructed nonbiologicaly). They can be used to grasp very
complicated functions without being an expert. Needless to say, this property of
neural networks (learning ability of the nonlinear dynamics) may be utilized in
dynamic system control for highly nonlinear plants or unknown models. So far, all

the conventional methods including the optimal control needed very complicated
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computational tools to control the dynamics. Fuzzy logic control is one alternative
way to avoid these computation intensive methods. Again it is inspired from human-
like thinking in decision making as a consequent of human behavioral analysis.
Neural networks appear as another research topic in engineering inspired from brain
structure. This research may be backdated to 1940’s and several important
contributions have been carried out up to 1969 [30]{32]. In this year, book
‘Perceptrons” [31] published abouth the restrictions of perceptrons proposed by
Rosenblatt, F.[30], caused the decrease in the popularity of field. Until the recent
developements have solved the difficuilties arisen in perceptrons in 1985 [33], a few
researchers stayed in this field[34]. These important developments are the feedforward

networks and back-propagation algorithms.
6.2. Neural Networks and Learning Algorithms

Madaline I architecture of B.Widrow is recognized as one of the early works in
this field [34]. Hebbian learning proposed by Hebb in 1949 may be be classified in the
coincidence learning as a basic learning law (p. 50 in [27]). Hopfield developed a
new model using Hebbian learning in 1982. The other important learning types are
competitive learning and performance learning. Filter learning can be added to this list
[27]. The cognitron and neocognitron are the examples of competitive learning. Both
of them were developed by K.Fukushimo in 1975 and 1980 [35][36]. The other
competitive learning examples; ART1, ART2. ART3[40] were proposed using the
adaptive resonance theory (ART) developed by S.Grossberg[39]. Kohonen’s layer[41]
is another recognizable model can be counted in the self organized structures with
ARTI1, ARTZ and ART3. Kosko’s adaptive bidirectional associative memory
(ABAM) model is a combination of Hebbian and competitive learning[25].
Performance learning is the most common learning type used in numerous
studies.Most of the performace learning architectures are based on gradient descent
techniquest. Adaptive linear combiner (Adaline) uses least mean square (LMS)
algorithm developed by B.Widrow[26]. Multi layer feedforward networks have been
trained by back-propagation algorithm derived by using gradient descent. Fig 6.2.1

shows the neural networks and learning algorithms stated in this section.
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Learning algorithms are catogorized in two groups. There are supervised and

unsupervised learning. In supervised learning, network is trained with the help of a

MRI (Madaline Rute |}
by Widrow 1962

Hebbian Learmning
by D.O.Hebb
1949

Hopfield Modeis
recurrent networks
by J.J.Hopfleld

Adaptive Bldirectional 1982
Associative Memory(ABAM)
by B. Kosko

1987 Competitive learning

Cognitron & Neocognitron
by K.Fukushima
CMAC 1975-1980
by J.S.Albus
1975

Adaptive Resonance Theory(ART)
developed by S.Grossberg
1976

Seif organizing Systems

Art1-Art2-Art3 Kohonen's Layers
by Carpenter & Grosberg by T.Kohonen
1983-1987-1990 1982

Reinforcement Learning
Punish-Reward
by Widrow
(1966-1973)

Performance Learning
Gradient Descent Learning

LMS Algorithm BackPropagation Recurrent Back-propagation
by B.Widrow Algorithm Algorithm
Multi-layer Feedforward
Adaline Neural Networks l Recurent Neurai Networks

Fig. 6.2.1 Neural Networks and Learning Algorithms

supervisory signal. Most of neural network applications related with control are the

examples of supervised learning. An expception is the temporal back-propagation
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algorithm developed to train the fuzzy neural networks [42]. Unsupervised learning in
contrast to supervised learning, uses only the input paterns and classifies them.
Unsupervised learning is mainly used in recognition.(Vector Quantizations are typical

examples).

6.3. Neural Network Structures

Neural networks are said to be linear unit or nonlinear unit. single-layer or
multi-layered. feedforward or nonfeedforward (recurrent). All of them defines the

structure of neural network.

Fig 6.3.1 illustrates the simple processing unit called neuron in feedforward

neural network(FNN).
Input
weights
X1
g1 Activation
X2 w2 function y
Xi W/ —FO)] output
Xn /

Fig 6.3.1 Neuron:A Processing unit

Function F(.) determines the linearity of network. In linear neural networks
F(.) is a linear function such as Widrow’s Adaline [26]. Function F(.) is also called
activation output of neuron. It is generally choseen as a bounded and monotonically
increasing function. This property is required for the neural network’s stability. *‘Back
propagation in non feed-forward networks” in page 74 of [43] investigates the required

stability conditions in the sense ot Lyapunov’s stability theory given in 3.4.1.



103

Fig 6.3.2 shows the structure of the feedforward multi-layered neura] network.
the first layer is input layer. The layers between the input and output layers are called
hidden layers. In a FNN model every layer can include neurons (proceessing element)

in the desired number.,

Hidden Layers

6.4. Adaptation of Neural Networks
According to reference [28], adaptation is possible in three levels, These are
function leve] adaptation. parameter leve] adaptation. structure [eve] adaptation.
Function Leve] Adaptation: Activation funcrion is changed according to input

signals.



104

Parameter Level Adaptation: Unknown parameters are identified to satisfy
relationship between inputs and outputs. Parameter level adaptation is related with

parameter estimation (discussed in chapter four) and identification problem.

Structure Level Adaptation: Structure of neural network is adapted such as

neuron numbers in layers and layer numbers.

In this chapter, we will use the fixed activation functions and structures. In
[28] a special Fluctuated Distortion Measure is proposed to be used in an adaptable

structure feedforward layered neural networks, FUNNET(FUNction NETwork).

In later sections, most common algorithm for FNN, back-propagation will be
presented. Also extended Kalman filter will be used to estimate the weights of a

FNN.

6.5. Parameter Level Adaptation

In this section. we introduce the learning algorithms for neural networks. The
adaptation rules for the weights of a neural networks are called the learning
algorithms. The optimal control and adaptive control have studied this problem as a
parameter identification or estimation problem for the last 30 years. Essentially,
algorithms developed in adaptive signal processing have been applied to neural
networks to identify the weights properly. For example. extended Kalman filters have
been used in neural networks as a nonlinear minimum variance estimator[77]. Hence,
for the neural networks. we will modify the results of optimal control and estimation

theory which are presented in the chapters three and four.
6.5.1 Backpropagation (BP) Algorithm for FNN

The backpropagation algorithm is based on gradient descent to minimize a

defined performance. The error performance is defined by

1 \
Jw) = Z Z‘,(Oid - OM)* where O, is the desired output for the ith output.

- u i

for output layer
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OM—AM)=f (2 WiV

Activation function f(x) is

i) ==

l+e
The weighting matrix W is updated according to gradient descent.
WMk + 1) = WM (k) + AW

od
[0 Suaaryarryy
aVVI:VI IM

AWM = oV, J(W) = -

where a is the learning rate O<a<l.

For the convergence and derivation of B.P. refer to page 115 of [29].

6.5.2 Least Mean Square (LMS) Algorithm

LMS was developed by B.Widrow for adaline in adaptive signal processing(p.
99 of [26]). Main objective of LMS algorithm is to minimize the following

performance index using gradient descent method:
J(W=Els,’]

g is error defined by g,=d,-X, Wy for the kth sample. In adaline, (adaptive
linear combiner) the activation function is unitary and there exists only one layer with
weights W, [34]. d, represents the desired output. LMS algorithm minimize the mean

square error (MSE) surface.

6.5.3 Learning Algorithm via Extended Kalman Filter

Kalman filter, studied extensively in chapter four can be used in nonlinear
estimation. For this application Kalman filters must be modified. This modified

Kalman filters are called extended Kalman filter[13] uses linearized model of
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nonlinear system. Kalman filter is used in neural networks to identify the weights as a
nonlinear minimum variance estimator. Extended Kalman filter application to neural

networks increase the learning rate apparently with respect to B.P. algorithm.

6.5.4 Other Algorithms and Improving Learning

Some other methods may be used to adapt the weights in neural networks.
Newton's method uses Hessian matrix of performance index. The steepest descent
method is the simplest approach using line search. However, backpropagation
algorithm presented in section 6.5.1 may failure to find the global minimum due to
local minima. To overcome this problem. a momentum term is added in updating
equation:
ﬁm + AWM (t)

il

AWMt 4+1) = —aV , JW) + AWM (1) = —a

where 1 is the momentum parameter between 0 and 1.

Similarly. fast learning algorithms are proposed for neural networks in
literature[76].Hence far. all the learning algorithms including extended Kalman filter
methods are linear and quadratic programming problems. We must be familiar with
these terms from optimal control studied in the previous section that algorithms are
linear and quadratic because weights are updated using linear rules to minimize the
performance index defined in the quadratic form. Hence. the global stability of neural
networks which are nonlinear models, becomes important for the convergence speed
of a specific algorithm{78]. In contrast to linear quadratic programming of neural
networks, Lagrange multipliers can be used in the learning as a global optimization

tool{75].
6.7. Important Theorems in Neural Networks

For the performance guarantee of neural networks, Kolmogorov and The

Stone-Weierstrass theorems are important.
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6.7.1 Kalmogorov’s Theorem and Its Application to Neural Networks

One of most influential and surprising theorem in neural networks is
Kolmogorov’s theorem. This famous theorem has been conceived to solve the 13th
problem of Hilbert and utilized in neural networks. Briefly, this theorem proves that
neural networks with at least one hidden layer can learn any continuous nonlinear

function (p. 122 of [27]).
6.7.2. The Stone-Weierstrass Theorem

Another powerful theorem to examine the nonlinear mapping ability of a
network is the Stone-Weierstrass Theorem[44]. From the application of theorem, it is
guaranteed that a neural network biased unitarily can map any nonlinear continuos

function in the unit hypercube.

6.8. Neural Networks in System Identification and Control

Applications of neural networks spread in a broad spectrum. They have been
used successfully in a wide variety field such as modeling chemical process[71], heat
transfer data analysis[70], automatic braking control systems[68], solving linear and

differential equations[67][69].

Neural networks have been applied to control systems in numerous examples
because of their capability of mapping nonlinear functions. Theoretical background of
neural networks in control and system identification has been studied
extensively[55][56][57][58][59][60][61]. Neural networks can be used as a nonlinear
estimator. They can also be used as a feedforward controller like cerebellar model
articulation controller(CMAC)[38] . CMAC is a feedforward controller uses a look-up
table. In CMAC example a neural network can learn a control surface produced by a

reference controller.

Neural networks can find application tield in the adaptive control[80]

strategies. Two adaptive control structures are Model Reference Adaptive Control
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[81] and Self-Tuning Regulator(STR). Fig 6.8.1 illustrates the block diagram of
MRAC. MRAC is also called direct adaptive control since any error between plant
and reference model is used directly for the adaptation of control input to compensate
the error. STR is indirect adaptive control; a barameter identitication is used to obtain
the unknown parameters of plant’s model. This identified parameters are used to
redesign a controller. Fig 6.8.2 illustrates the block diagram of STR. The objective of

adaptive control is to find the control rules for slowly time-varving plants.

Yr

Reference Model -

Pad I
| _—fcontroller —{ Plant ‘——X%_ )

: ri

Adjustment
Mechanism

A

A

Fig 6.8.1 Model Reference Adaptive Control (Direct Adaptive System)

Neural networks can be used in the direct and indirect adaptive control of
nonlinear plants{56]. In MRAC (direct adaptive control), nonlinear control laws are
updated taking account the error between reference model and plant. These nonlinear
adaptation laws(adaptation mechanism in fig 6.8.1) are derived to minimize a
performance index using several methods such as gradient descent. For the stability
criteria. some adaptation rules are determined under the Lvapunov stability theory.
Some others are derived using hyperstability theory. Consequently, these adaptation

rules may be very computation-intensive and complicated. K.S. Narendra proposed



109

neural network architectures for adaptive control in [56]. Fig 6.8.3 shows the direct

adaptive control of nonlinear plant using the neural networks.

disturbance
u L Yp
_ ™% Controller Plant >
redesignT
Design Parameter
Block Identifier

Fig 6.8.2 Self-Tuning Controller(Indirect Adaptive System)
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Fig 6.8.3 Direct adaptive control of nonlinear plants using neural networks

Neural networks can be used as direct transfer function identifier (fig 6.8.4-a)

or inverse transfer function identifier(fig 6.8.4-b)[537] for nonlinear plants. Similarly,

neural networks can be used as a nonlinear estimator in fig 6.8.4-a.
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Fig 6.8.4 a)Block diagram of direct transfer function identifier
b)Block diagram of inverse transfer function identifier
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6.9. Neurocontrol of Nuclear Power Plants

Recently, neural networks have been applied in power prediction[63], signal
prediction [64], alarm processing and diagnostics [65] and control [62][66] of nuclear
power plants. We will present the results of a direct control of a nuclear power plant
using feedforward neural networks (FNN). To examine the flexibility and nonlinear
mapping neural networks and compare the neurocontrol with FL.C for nuclera plants,
we have prefered to use FNN in the control system configuration ilustrated in
Fig.5.3.2. A FNN with 2 inputs,! output and 2 hidden layers, has been trained to learn
the same supervisory signals which were used to tune the fuzzy rules of a FLC in
chapter five. FNN with 10 neurons in each hidden layer has been trained via extended
Kalman filter learning algorithm. Error and change in error have been entered to the
inputs of FNN. The single output of FNN has been used as a control input to plant.
The code MLNNKF.m using extended Kalman filter learning for a FNN defined in
vector M. has been run for the inputs error E and change in error DE and output Y, of
LQG as a reference controller.Fig.6.9.1 shows the learning mechanism to train a FNN
for the control surface produced by LQG. M is a vector defining FNN in
MLNNKF.m. In our case. M is [2 10 10 l]T which refers to a FNN with 2 inputs, 1

output and 2 hidden layers which each has 10 neurons. From Fig.6.3.2. there are three

34

weighting matrices for 2 hidden layers. Weighting matrices Wi.jl'z, Wi‘jz‘3 - Wy

connect the inputs to the first hidden layer, the first hidden layer to the second hidden
layer and the second hidden layer to output layer. respectively. The values of
weighting matrices after 10th training

2
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Fig.6.9.1 Neural network learning mechanism for optimal control surface to be used like CMAC

Nc_1.m has been run for the simulation of neurocontrol of the nuclear power

plant. Fig.6.9.2 and Fig 6.9.3 ilustrate the results for 20% decrease in demand

power(P;=0.8) and 10% increase in demand power (P;=1.1).
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6.10. Conclusion

In our application, a FNN has been trained for a control surface produced by
LQG as a reference controller to construct a neurocontroller for nuclear power plants
in design stage. Designed neurocontroller modified demand power signal using the
dynamic output of the plant. Decision of neurocontroller is based on experience taught
by supervisory controller but not a mathematical model. It is seen from the simulation
results in Fig.6.9.2 and Fig.6.9.3 that action of neurocontroller is very similar to the
action of optimal controller. We can conclude from the results of our application that a
neurocontroller can behave like an optimal controller and produce the similar control
inputs. It is an advantage of neurocontroller that it can make decisions only using the
output of a plant without needing state variables which are required for LGQ. The
final remark is for the learning capability of neural networks: although neurocontroller
has been trained for a control input produced by the LQG to reduce the output power
to its %60 (P4). neurocontroller achieved a similar performace for a %10 increase in

the demand power(P,).



CHAPTER SEVEN

CONCLUSIONS AND DISCUSSIONS

[n this work, we have designed several controllers for nuclear power plants.
These are classical output controller(COC), state feedback controller with state
estimation (SFCSE) using pole placement techniques, deterministic optimal state
feedback controller (LQ), stochastic optimal controller (LQG), automatically tuned

fuzzy logic controller(FLC) and neurocontroller.

7.1 Summary of Work

In order to define the required qualifications sought for a controller of nuclear
plants. we have investigated the dynamical behavior of plants presenting a nonlinear
model of the nuclear plant in Chapter Two. In the same chapter, classical output
control (COC) and state feedback control with state estimation (SFCSE) have been
simulated for the derived nonlinear model of the nuclear plant. SFSE has been
designed using the linearized model of plant. It is seen from the results of the Chapter
One that reactivity denotes the most nonlinear characteristics among the other state
variables as it is expected from the nonlinear model. It is concluded from the
dominant eigenvalues of linearized model at different power levels that major
nonlinearity source is mostly due to temperature feedback. In SFSE. we have used
Ackermann’s formulas to place the poles for the desired response of plant. We have
also defined the stiffness which results in some numerical difficulties.

In Chapter Three, we have introduced the concept of optimality and designed
optimal state feedback controller for nuclear piants. To achieve this goal. we have
solved algebraic Riccati equation(ARE) arising in optimal control. We have

concentrated on the accuracy in the solution of ARE. We have showed in a numerical
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example that stiffness arising in the model of plant, results in the inaccurate solutions
for some algorithms solving the ARE.

In Chapter Four, It is seen from the simulation results that estimator
performance has been improved in Kalman filter.This also improves the robustness of
controller.

[n Chapter Five. an automatically tuned fuzzy logic controller has been
designed and simulated for the nonlinear model of nuclear plant. Fuzzy rules has been
tuned via least square estimation using a LQG as a reference controller.

[n the final chapter, we have introduced neural networks and used them in the
control of nuclear plants. A feedforward neural network has learned the control
surface produced by the same LQG. FNN has been trained using learning via the

extended Kalman filter.

7.2. Comparison of Controllers

We will compare the controllers in the sense of intelligent control , robustness

and structure.

7.2.1 Structural Comparison

All the controllers designed in this work can be incorporated in mainly two
groups.  servocompensators and  state  feedback  controllers(regulators).
Servocompensators includes output unitary feedback and feedforward compensators.
COC. FLC and neurocontrol (in our application) are servocompensator examples. In
contrast to state-feedback controllers. they do not require the states of plant. Control
input is a function of error between output of plant and demand signal and its
derivative(change in error). COC includes only static compensator, while FLC and
neurocontrol use both static and dynamical compensators. We can count proportional
derivative (PD) and proportional integral (PI) controllers from conventional control in
this group. COC. PI and PD controllers are linear controllers. Since FLC and
neurocontrol produce the their control outputs using complex nonlinear functions.

they are nonlinear controllers.
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7.2.2 Intelligent Control

Intelligent control includes all the methodologies to combine all the
conventional control problems to solve new challenging problems. Conventional
control problems are solved in the lower level of intelligent control. FLC and
neurocontrol are intelligent control methodologies. In FLC, output of FLC is a
combination of several PD controllers. FLC supervises these PD controllers according
to the fuzzy rules and information-based membership function. It is appropriate
example for the definition of intelligent control that a conventional method least
square estimation is used in the tuning mechanism of FLC. Similarly, neural network
is trained using the extended Kalman filter. It is seen from neurocontrol application in
chapter six that neural networks can learn complex control surfaces easily. Several
control surfaces produced by different conventional controllers can be combined in a
neurocontroller. FLC uses the linguistic knowledge’s about the plant with no need of
mathematical model. In our work, automatically tuned FLC and neurocontroller have

learned the control surface produced by the LQG as a reference controller.

7.2.3 Robustness

The robustness is another criteria to test the stability, steady state error of
output and dynamical performance of close loop system under a given class of
variations of the open-loop dynamics. We can conclude from the simulation results
that LGQ is the most robust controller which can compensate for the variations.
Kalman filter in LQG has been designed taking some inaccuracies into account using
stochastic model. We can improve the robustness of LQG controller design by
linearizing the model equations at different power levels. A neurocontroller trained for

the LQG designed at the different power levels provides a more robust controiler.

7.3 Conclusions and Future Work

Initially. application of a broad spectrum of control design procedures, ranging
from the most elementary classical output control to robust optimal control has been
considered for a PWR core modeled with point kinetic equations and lumped
thermal-hydraulic description. to demonstrate the benefits offered by the more

advanced methods. The LQG controller was chosen as the reference model. Then two



-123-

separate controllers, one based on fuzzy logic, and the other on artificial neural
networks have been proposed and trained by feeding the output of the LQG controller
as a supervisory signal.

FLC and neural networks can map nonlinear functions. In control applications
they can learn control surfaces produced by a reference controllers. In this work we
showed that fuzzy system and neural networks can be utilized in the control of nuclear
plants. They can combine different reference controllers each of which is an expert for
a different operating region of the plant, in a single controller with some structural

advantages. This provides more intelligent and robust controllers for nuclear plants.

Suggestions for Future Work.

i-A more realistic and detailed models can be used to simulate the reactor core.

ii-The number of rules that comprise the data base of the FLC can be reduced
Presumably not more than 3 to 5 rules are needed.

iii-The inlet water temperature is assumed to be constant. However. we may

incorporate the reactor core into the loop of a power plant whose control is in

question.

iv-Other ANN architectures , for example recurrent networks may be implemented.

v- State identification may be done with the help of an ANN.

vi-Controller parameters obtained for a nonlinear system linearized over a wide

range of power setpoints can be interpolated seamlessly with the help of an ANN.

vii. A "Reactor Control Toolbox’ for training students can be prepared. based on the

results presented in this work.
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APPENDIX A

Simulation of Nonlinear Model for Nuclear Power
Plants using BDFs

Nonlinear mathametical model arising in the modelling of nuclear power
plants in the chapter two. is partitioned into linear differential equations. These linear
differential equations are integrated constructing a Newton backward-difference
interpolating polynomial. BDFs are succesfully applied in solving stiff differatial
equations[51][52][48][49]. We have obtained fast and accurated simulation results of
the plant using implicit backward differentiation formulas for the stiffness arising in

the mode! of nuclear plant.
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Fig App-A.1 Block Diagram of Simulation of Nonlinear Model
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We obtain the following 5™ order non-linear differential equation set that is
based on point kinetics and a lumped parameter hydraulic model governing the
dynamics of nuclear plant for one delayed neutron group normalized point kinetics

equations are as follow:

dn, dp-Bp B

————— - 225

" NG (2.2.3)
% _an, —2e 2.2.6)
dt o =
dT, fP Q Q Q
ah e, 24,245, 2 (2.2.15)
dt M M ' 2u, ! 2p,
dT, (1-f)P Q (2M-Q) (2M- Q)
20 Ve Balni T T 2.2,

dt “C nr + },Lc 2Hc | + zpc e ( 16)
dop, 2
bttt S 2.

at Z, (2.2.17)

Total reactivity input to the points kinetics equations is the sum of control rod
reactivity and temperature feedback reactivities of the tuel and coolant;

dp=8p, +0o (T — Ty) +a (T, = T,) (2.2.12)

Block F( ) refers to the mathematical function of temperature feedback
reactivity given in the equation(2.2.12).

INTEG6BD.m and INTEGBDF.m have been coded to integrate the linear
differential equations in simulation block. Although parameters are time invariant in

our model. in most general case models with time-varying parameters can be
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simulated easily. For example, LQG_2.m is a simulation program using the power

dependent (time varying) parameters.

Functions INTEG6BD.m and INTEGBDF.m solve the following linear
system;

X () = B(t) en XV + Q)

constructing a Newton backward-difference interpolating polynomial for the

past values of X;

T « TT oy
Xy, = ﬂ— ﬂl ~hait,.) | LZ%*HX +hQ<tk+,)}

where h is the step size and r is the order of backward difference equation,

h

r] 1 if j=0
A== (r=j+h) i j>0
S G- N
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APPENDIX B

PROGRAMS

The following list includes the main programs and functions used in the

simulation of controllers which are designed in the related chapters.

LINSF 1.m: State-feedback control simulation for the model linearized at
start-up.

LIN.m Classical output control (COC) simulation the model linearized
at start-up.

CONT _1.m COC simulation for the nonlinear model.

CONT 2.m COC simulation with Kalman filter for the nonlinear model.

CSF I.m State feedback control simulation for the nonlinear model.

CSFSE_1.m State feedback control with state estimation (SFCSE) via pole
placement (Ackermann’s formula) methodusing the nonlinear model in simulation.

CSFOPT _1.m SFCSE simulation for the optimal state-feedback K (LQR) with
deterministic linear observer using the nonlinear model.

LQG I.m Linear quadratic gaussian (LQG) simulation for the nonlinear
model(Deterministic optimal state-feedback gain design+Kalman filter design).

LQG 2.m LQG simulation using the nonlinear model and parameters
which are dependent on opearation point n,,(power level).

FC 1.m Fuzzy logic controller(FLC) simulation for the nonlinear
model.

FC 2.m FLC simulation with different membership functions defined
for error and change in error.

NC 1I.m Neurocontrol simulation for the nonlinear model.

ARE_SCH.m function [X.Xresidua]=are_sch(K.R.Q)

ARE solver using Schur decomposition.

ARE 2.m function [X.Xresidua]=are2(L.K.R.Q)
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ARE solver usimg Newton iteration method.
FNNOUT.m function [y]=fonout(E,DE,M,W)
Output of feedforward neural network defined in the matrices,
Mand W.
FUZZYOUT.m function[y]=fuzzyout(E.DE.P)
Output of FLC whose fuzzy rules are defined in the vector P.
FUZZYR 1.m function [P.X,Y.Fout,E.DE]=fuzzyr 1(Yc,Yd.Yp.X)
Fuzzy rule identification using least square estimation (LSE).
FUZZYR 2.m function [P,X,Y,Fout,E.DE]=fuzzyr 1(Yc,Yd,Yp.X)
Fuzzy rule identification using least square estimation (LSE)
for the different membership functions for error E and change in error DE.
INTEG6BD.mfunction [X]=integ6bd(A.X.Q.h)
Sixth order BDFs for integration in the simulation.
INTEGBDF .mfunction [X]=integbbd(A.X.Q.h.r)
rth order BDF's for integration where | <r < 6.
MSHIP 1.m function [v]=mship(x.i)
1st Fuzzy membership function (proposed by J.Dombi) used by
FC_land FC_2.

MSHIP 2.m function [v]=mship(x.i)
2nd Fuzzy membership function (proposed by J.Dombi) used bt
FC 2.
TANH.m function [v]=tanh(x)
Sigmoid function used in the neural networks.
MLNNBP.m Backpropagation algorithm for multi-layered neural networks.
MLNNKF.m Learning algorithm via extended Kalman filter for multi-
layered
neural networks.
MLKFBDF.m Learning algorithm via extended Kalman filter modified with
BDFs for multi-layered neural networks.
EXPBDF.m Simulation test program for the integration of exponential

inputs using BDFs.
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SINBDF.m Simulation test program for the integration of sinosodial inputs

using BDFs.

% LINSF_I.m
% State-feedback control simulation for the linearized model at start up

Be=0.0065 ;
V=0.0001 :
Gr=0.01 :
Poa=2500;
mf=26.3 :
ohm=6.53 ;
af=-0.00005 :

L=0.125 .
£=0.98:
Te=290 :
mc=70.5;
M=92.8:
ac=0.00001;

A=[-Be:V  Be/V af’V ac/(2*V) 1/V:
L -L 0 0 0.
t*Poamf 0 -ohm/mf ohm/(2*mf) 0:
(1-H*Poa‘mc 0 ohm/mc -(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 01

numofpoints=500;

gc=0.5;

Pd=0.1/3.181:

Be=gc*B:

Zr=0;

T=to;

K=[-0.9895 -0.6267 0.0074 -0.0031 -96.1626]
Ac=A-Bc*C-Bc*K:;

for r=1:6.

t=to+r*h:

X=integbdf( Ac.X.Bc*Pd.h.r);
T=[T tl;

end

i=8:
t=to+7*h:

while(i<numofpoints)

X=integbbd(Ac.X,Bc*Pd.h);
T=[Tt];
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t=t+h;
i=it+l;
end

%LIN.m
%COC simulation for the linearized model at start-up.

Be=0.0065 ;

V=0.0001 ;

Gr=0.01 ;

Poa=2500;

mf=26.3 ;

ohm=6.53 ;

% no temperature feedback
af=-0.00005 ;

L=0.125;
=0.98:
Te=290 :
mc=70.5:
M=92.8;
ac=0.00001:
Pd=-0.9:

B="-Be/V BeV aflV ac/(2*V) 1/V: L -L 0 0 0. f*Poa/mf
-ohm/mf  ohm (2*mf) 0: (I-f)*Poarmc 0 ohm mc -(2*M+ohm)/(2*mc) 0: -0.005

0 0 07

Q="[0:0:0:0:0.005*Pd T

X DH=[00000]:
to=2.5:

T=[to]:

h=0.3;

m=5;
numofpoints=3500:

t=to+h:

X(:,2)=-inv(-eye(m)+h*eval(B))*(X(:,1)+h*eval(Q)):

T=[T t}:

t=to+2*h:

X(:,3)=-inv(-(3:2Y*eye(m)+h*eval(B))*(2* X(:,2)-(1/2)* X(:, +h*eval(Q));
T=[T t]:

t=to+3*h; .
X(:,4)=-inv(-(11 6)*eye(m)+h*eval(B))*(3*X(:,3)-(3/2)*X(:.2)+(1/3Y*X(:, [ )+h*eval(Q));
T=[Tt];

t=to+4*h;
X(:,5)=-inv(-(25 12)*eye(m)+h*eval(B))*(4*X(:,4)-3*X(:.3)+(4/3)*X(:,2)-(1/4)*X(:. 1 ) +h*eval(Q));
T=[Tt];

=to+5*h:

X(:,6)=-inv(-(137 60)*eye(m)+h*eval(B))*(5*X(:,5)-5*X(:.4)+(10/3y*X(:,3)-
(5/4y*X(:,2)+(1 3)*X(:.1)+h*eval(Q));

T=[T t]:

t=to+6*h;

0
0
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X(..7)=-inv(-(147/60)*eye(m)+h*eval(B))*(6*X(:.6)-(15/2)* X(:,5)+(20/3)* X(:,4)-
(15/4)*X(:,3)H6/5)*X(:,2)~(1/6)*X(:,1)+h*eval(Q));
T=[T t};

i=8:

t=to+7*h;

while(i<numofpoints)

X(:.)=-inv(-(147/60)*eye(m)+h*eval(B))* (6 * X(:,i-1)-(15/2)* X (:,i-2)+{20/3)* X(:,i-3)-(15/4)* X (:,i-
AYH6/5)*X(:.1-5)-(1/6)*X(:,1-6)+h*eval(Q)):

T=[Tt];

t=t+h;

i=i+1;

end

% CONT_i.m

% Classical Output Unitary Feedback Control

% Non-linear Plant Model Simulationwith BDF's

% System Simulation used in "State feedback Assisted classical
% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0067 .

V=0.0001 :

Gr=0.01 .

Poa=2500:

mf=26.3 .

ohm=6.53 :

af=-0.00005:

% af=0;

L=0.125:

£=0.98:

Te=290:

mc=70.5:

M=928:

ac=0.00001:
% ac=0:

Al ='[-L 0 0:0 -ohm/mf ohm/(2*m{):0 ohm/mc -((ohm/2)+M)/mc]".
BTe="[0 : ohm*Te/(2*mf);(M-(chm/2))* Te/mc]";
Bl ="[L : f*Poasmf ; (1-f)*Poa/mc]":

Pd=1.1;

Gce=0.1585:

Gce=0.5;

X1, 1)=[1 678.6607 316.9396]"

Xar(1)=[1];

Xrr(1)=[2.704¢-8];

to=0:

h=0.1;

numofpoints=500;

Zr=0;

T=to;

for r=1:6.

t=to+r*h:
X1=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r):
Q2=(1/V)*(((af*(X1(2,r)-X 1(2.1))+ac*(X1(3,r)-X1(3. D))+Xrr(r))* Xnr(r))+(Be/V)*X 1(1,r);
Xnr=integbdf(-Be/V.Xnr,Q2.h.r);
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Q3=Gr*Gc*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r) );
% rod speed limitation
% Q3=max(-0.0125*Gr,min(Q3,0.0125*Gr));

Zr=[Zr Q3/Gr];

Xrr=integbdf(0,Xrr,Q3,h,r);

T=[T t];

end

i=8:
t=to+7*h;

while(i<numofpoints)

X I=integ6bd(eval(A1),X1,eval(B1)*Xnr(i-1)+eval(BTe),h);
Q2=(1/VY*(((af*(X1(2.i-1)-X1(2. 1))+ac*(X1(3.i-1)-X1(3, 1)))+Xrr(i- 1))*Xnr(i-1))+(Be/V)* X 1(L,i-1);
Xnr=integ6bd(-Be/V,Xnr,Q2,h);
Q3=Gr*Gc*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xnr(i-1) );
% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr)):
Zr=[Zr Q3/Gr]:
Xrr=integ6bd(0.X1r,Q3.h);
T=[Tt};

t=t+h;
i=i+1;
end

%CONT_2.m

%Classical Output Power Feedback Control in Noisy Environment

%OQutput Power is disturbed with zero mean. white and gaussion noise
%Kalman Filter is used to estimate output power signal from noisy environment

% System Simulation used in "State feedback Assisted classical
% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0065 ;

V=0.0001 :

Gr=0.01 ;

Poa=2500:

mf=26.3 ;

ohm=6.53 :

af=-0.000035:

% af=0:

L=0.125;

=0.98:

Te=290 ;

mc=70.5;

M=92.8:

ac=0.00001:

% ac=0;

Al ='[-L 0 0:0 -ohm/mf ohm/(2*mf);0 ohm/mc -({(ohm/2)+M)/mc]’;
BTe='[0 ; ohm*Te/(2*mf);(M-(ohm/2))*Te/mc]'";
Bl ='[L ; f*Poa/mf ; (1-f)*Poa/mc]’;

Y%noise specifications
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%Covariance of noise
%Rn=E[V*V]

Rn=-1;

% E[V]=0;

%P:covariance of (Xnr-Xne)
%einitial value for P
P=10000:

%Xne

Pd=1.1;
Gce=0.1585;
X1(¢.1=[1678.6607 316.9396]".
Xnr(1=[1];
Xne(1)=[1];
Xrr(1)=[2.704¢e-8];
to=0:

h=0.1:
numofpoints=1000:
Zr=0;

T=to:

for r=1:6.

t=to+r*h:

vout(r)=Xnr(r)+randn(1)/10:
Kgain=P*inv(P~Rn);
P=(1-Kgain)*P:
Xne=Xne+~Kgain*(yout(r)-Xne):
Xest=[Xest Xne]:
X 1=integbdf{eval(A1),X l.eval(B1)*Xnr(r)+eval(BTe),h.r).
Q2=(1/Vy*(((af*(X1(2.r)-X 1(2.1))+ac*(X 1(3.r)-X1(3. ))+Xrr(r))* Xnr(r))+(Be/V)* X 1(L.r):
Xnr=integbdf(-Be/V Xnr.Q2.h.r):
Q3=Gr*Gce*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xne).
% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr)):
Zr=[Zr Q3/Gr];
Xrr=integbdf(0.Xrr.Q3.h.r)
T=[Tt]:
end

i=8:
t=to+7*h:

while(i<numotpoints)

yout(i-1)=Xnr(i- 1 )+randn(1)/10:
Kgain=P*inv(P+Rn):
P=(1-Kgain)*P;
Xne=Xne+Kgain*(yout(i- 1 )-Xne);
Xest=[Xest Xnel;

X 1=integ6bd(eval(A1),X1,eval(B1)*Xnr(i-1)+eval(BTe),h);
Q2=(1/V)*(((aP*(X 1(2.i-1)-X 1(2. D))+ac*(X1(3.i- 1)-X1(3.1)))+Xrr(i-1))* Xnr(i- 1)) +(Be/V)* X 1(1,i-1);
Xnr=integ6bd(-Be/V,Xnr.Q2,h):
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xne):
% rod speed limitation
2% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr)):
Zr=[Zr Q3/Gr];
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Xrr=integ6bd(0,Xrr,Q3.h);
T=[T t];

t=t+h;
i=i+1;
end

%CSF _l.m
%State-feedback control simulation for nonlinear model

Be=0.0065 ;
V=0.0001:
Gr=0.01 ;
Poa=2500:
mf=26.3 ;
ohm=6.53 :
af=-0.00005;
L=0.125 .
=0.98:
Te=290 ;
mc=70.5:
M=92.8:
ac=0.00001:

Al ='[-L 0 0:0 -ohm/mf ohm/(2*mf):0 ohm/mc -((ohm:2)+M¥mc]";
BTe= "0 : ohm*Te/(2*mf):(M-(ohm/2))*Te/mc]":
Bl ="[L : f*Poa/mf : (1-f)*Poa/mc]"

Pd=1+0.2/3.181:
Ge=0.5;
K={-0.9895 -0.6267 0.0074 -0.0031 -96.1626]
X1, 1)=[1 678.6607 316.9396]"
Xnr(1)=1];
Xrr(1)=[2.704e-8]:
to=0;
h=0.1;
numofpoints=300:
Zr=0;
T=to;
for r=1:6,
t=to+r*h:
Xl=integbdf(eval(A1).X1,eval(B1)*Xnr(r)+eval(BTe),h.r);
Q2=(1/V)*(((af*(X1(2.r)-X1(2, 1)) +ac*(X1(3.r)-X 1(3. 1))+ Xrr(r))* Xnr(r))+(Be/V)* X 1(1.r);
Xnr=integbdf(-Be/V.Xnr,Q2.h.r):
Q3=Gr*Gce*(  1.0+(Pd-D)*((sign(t-2.5)+1)/2)-  Xnr(r)-(K(1)*(Xnr(r)-Xnr( N)+K2:4)*(X1(..r)-
XICDHREY*(Xrr(r)-Xrr(1))) );
Zr=[Zr Q3/Gc*Gr];
Xrr=integbdf(0,Xrr,Q3.h.1);
T=[T t]:
end

i=8;
t=to+7*h;

while(i<numofpoints)

X!I=integ6bd(eval(A1).X1,eval(B1)*Xnr(i-1)+eval(BTe),h):
Q2=(1/V)*(((af*(X1(2.i-1)-X1(2, ))rac*(X1(3,i-1)-X1(3, 1))+ Xrr(i-1))* Xnr(i- D}HBe V)*X 1 (1.i-1);
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Xnr=integ6bd(-Be/V,Xnr,Q2,h);
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xnr(i- 1)-(K(1)*(Xnr(i-1)-Xnr(1))+K(2:4)*(X 1(:,i-1)-
X1G,DIHKGS)*(Xrr(i-1)-Xrr (1)) );
Zr=[Zr Q3/Gr*Gc]j;
Xrr=integ6bd(0,Xrr,Q3,h);
T=[Tt];

t=t+h:
i=i+1;
end

% CSFSE_l.m

% State-Feedback Contro! with State-Estimation via Pole Placement
% System Simulation used in "State feedback Assisted classical

% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0065 ;
V=0.0001 ;
Gr=0.01 ;
Poa=2500:
mf=26.3 :
ohm=6.33 :
af=-0.00005:
L=0.125 .
=0.98:
Te=290:
mc=70.5;
M=92 8.
ac=0.00001;

A=[-Be/V  Be/V aflV ac/(2*V)  1/V:
L -L 0 0 0:
f*Poa/mf 0 -ohm/mf ohm/(2*mf) O0;
(1-H*Poa/mc 0  ohm/me -(2*M+ohm)/(2*mc) 0 :
0 0 0 0 01];
B=[0: 0: 0; 0; Gr];
C=[10000];

Al ='[-L 0 0:0 -ohm/mf ohm/(2*mf);0 ohm/mc -((ohm/2)~M)/mc]’;
BTe="[0 : ohm*Te/(2*mf);,(M-(ohm/2))*Te/mc]";
B1 ='[L : f*Poa/mf : (1-1)*Poa/mc]"

Pd=1-0.2/3.1183;
Gce=0.5:
K=[-0.9895 -0.6267 0.0074 -0.0031 -96.1626]
H=[-0.2248;

-0.4933;

93.1370:

0.7743;

0.0014]

X1=[1 678.6607 316.9396]";
Xe=[000 0 0];

Be=Gc*B;

Ac=A-Bc*C;
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Xnr=[1];

Xrr=[2.704e-8]:

to=0;

h=0.1:

numofpoints=500;

Zr=0;

T=to;

for r=1:6,

t=to~r*h;

X l=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);

Q2=(1 V)*(((af*(X1(2.r)-X1(2.1))+ac*(X1(3,r)-X1(3,1)))*+Xrr(r))*Xnr(r))+(Be/V)*X1(1,r);
Xnr=integbdf(-Be/V,Xnr,Q2.h.r);

Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)-K*(Xe(:,r)-Xe(.,1))):
Zr=[Zr Q3/(Gc*Gr)];

Xrr=integbdf(0,Xrr.Q3,h,r);

Xe=integbdf( Ac-H*C ., Xe.Bc*(Xnr(r)-1+Q3/(Ge*Gr))+H*(Xnr(r)-1),h,r);

T=[T 1t}
end

1=8:
t=to~7*h.

while(i<numofpoints)

Xl=integbbd(eval(A1),X1.eval(B1)*Xnr(i-1)+eval(BTe),h).

Q2=(1'VY*(((af*(X1(2.i-1)-X (2, 1))+ac*(X1(3.i-1)-X 1(3. 1)) Xrr(i- 1))*Xnr(i- 1))+(Be/V)*X I (1.i-1):
Xnr=integbbd(-Be/V.Xnr,Q2.h);

Q3=Gr*Gce*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xnr(i-1)-K*(Xe(:.i-1)-Xe(:,1)) )

Zr=[Zr Q3/(Gr*Ge)]:

Xrr=integ6bd(0,Xrr.Q3.h):
Xe=integb6bd(Ac-H*C.Xe.Bc*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1).h);

T=[T 1

t=t+h:
i=i+l:
end

% CSFOPT_L.m
% Optimal Controller Design(LQR)

% System Simulation used in "State feedback Assisted classical
% Controf :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0065 ;
V=0.0001 ;
Gr=0.01 ;
Poa=2300:
mf=26.3 ;
ohm=6.53 ;
af=-0.00005:
L=0.125;
=0.98:
Te=290:
mc=70.5:
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M=92.8;
ac=0.00001;

A=[-Be/V  Be/V af/lV  ac/(2*V) 1/V;
L -L 0 0 0;
f*Poa/mf 0 -ohm/mf ohm/(2*mf) O;
(1-f)*Poa/m¢c 0  ohm/mc -(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 01
0; 0, 0; 0; Grl:
[10000];

B
C

Al ="[-L 0 0:0 -ohm/mf ochm/(2*mf);0 ohm/mc -({(ohm/2)+M)/mc]";
BTe="[0 ; ohm*Te/(2*mf);(M-(ohm/2))*Te/mc]";
Bl ='[L ; f*Poa/mf ; (1-f)*Poa/mc]’;
%for state feedback pole placement method v=1/3.1183
%Pd=1+0.1/3.1183:
Ge=0.5:
% State feedback gain found using pole placement method
%%(deterministic case Ackermann's formula)
% K=[-0.9895 -0.6267 0.0074 -0.0031 -96.1626]
% calculating optimal gain
r=3000;
Q=[00000:00000:000.100:0000.010:00000];
% Solving ARE using Newton Iteration for Stiff Case
[P.res]=are2((A-Gc*B*C)' . A-Gc*B*C,Ge*B*inv(r)*B'*Gc'.Q):
% Solving ARE via Schur Decomposition Method
% [P.res]=are_sch(A-Gc*B*C.Ge*B*inv(r)*B'™*Gc'.Q)
K=inv(r)*B'*Gc¢'*P
% Deterministic observer gain observer gain (using Ackermann's formula)
H=[-0.2248:
-0.4933;
93.1370;
0.7743;
0.0014]
%calculating nondynamical compensator gain to track input for unit step response
[z.p.k]=582zp(A-Gc*B*(C+K).Ge*B.C,0.1):
[npl=size(p.1):
[nz]=size(z.1);
pm=1;
for i=1:nz, pm=pm*z(i):end
for i=1:np, pm=pm. p(i);end
v=1/(k*pm)
Pd=1+0.1*v;
Pdd1=1;
Pdd=1.1;
X1=[1678.6607 316.9396]";
Xe=[00000]"
Be=Gc*B:
Ac=A-Bc*C;

Xnr={1];
Xrr=[2.704e-8]:
to=0;

h=0.1;
numofpoints=500:
Zr=0;

T=to;

forr=1:6,



~146-

t=to+r*h;
Xl1=integbdf(eval(A1),X1,eval(B1y*Xnr(r)+eval(BTe),h,r);
Q2=(1/VY*(((aP*(X1(2,r)-X1(2,1))+ac*(X1(3,r)-X 1 (3. 1))+ Xrr(r))*Xnr(r))+(Be/VY*X 1(1,r);
Xnr=integbdf(-Be/V,Xnr.Q2,h,r);
Q3=Gr*Ge*( 1.0+(Pd-1)*{(sign(t-2.5)+1)/2)- Xnr(r)-K*(Xe(:,r)-Xe(:,1)));
% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));
Pdd1={Pdd1 [.0+(Pdd-1)*((sign(t-2.5)+1)/2)];
Zr=[Zr Q3/Gr];
Xrr=integbdf(0,Xrr,Q3,h.r);
Xe=integbdf(Ac-H*C,Xe.Bc*(Xnr(r)-1+Q3/(Ge*Gr))y+H*(Xnr(r)-1),h.r);

T=[Tt];
end

i=8:
t=to+7*h:

while(i<numofpoints)

Xl=integbbd(eval(A1),X1.eval(B1y*Xnr(i-1)+eval(BTe).h):

Q2=(1/VY*(((af* (X 1(2.1-D)-X1(2. 1)) +ac*( X 1(3.i-1)-X1(3. D)+ Xrr(i- 1) *Xnr(i-1)+(Be/VY* X 1(1.i-1);
Xnr=integ6bd(-Be/V.,Xnr.Q2.h);

Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xnr(i-1)-K*(Xe(:.i-1)-Xe(:,1)) );

Pdd1=[Pdd1 1.0+(Pdd-1)*((sign(t-2.5)+1)/2)];

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr)):

Zr={Zr Q3/Gr];
Xrr=integbbd(0.Xrr.Q3.h):
Xe=integbbd(Ac-H*C.Xe Bc*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h);

T=[Tt]:

t=t-+h:
=i+l

end

%LQG_2
% Linear Quadratic Gaussion (LQG)
% Robust Conrol Design Methodology

Be=0.0065 ;
v=0.0001 ;
Gr=0.01 :
Poa=2500;
mf=26.3 ;
ohm=6.53 ;
af=-0.00005;
L=0.125;
=0.98;
Te=290 ;
mc=70.5;
M=92.8.
ac=0.00001;
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A=[-Be/'V  Be/V aflV ac/(2*Vy  1/V;
L L 0 0 0;
f*Poa'mf 0 -ohm/mf ohm/(2Q*mf) O0;
(1-H)*Poa/mc 0 ohm/mc -(2*M-+ohm)/(2*mc) 0 ;
0 0 0 0 01
B=[0; 0: 0: 0: Gr];
C=[10000];

Al ="[-L 0 0;0 -ohm/mf ohm/(2*mf).0 ohm/mc -((ochm/2)+M)/mc]’;
BTe="[0 : ohm*Te/(2*mf);(M-(ohm/2))*Te/mc]';

Bl ="[L : f*Poa/mf ; (1-H)*Poa/mc]’;

%for state feedback pole placement method v=1/3.1183
%Pd=1-0.1/3.1183:

Ge=0.5:

% State feedback gain found using pole placement method
%(deterministic case Ackermann’s formula)

% K=[-0.9895 -0.6267 0.0074 -0.0031 -96.1626]

% calculating optimal gain

r=3000;

Q=[00000:00000;000.100:0000.010:00000]:
[P.res]=are2((A-Ge*B*C). A-Ge*B*C.Ge*B*inv(r)*B'*Gc'.Q);
K=inv({r)*B*G¢'*P

% Deterministic observer gain observer gain (using Ackermann's formula)
% H=[-0.2248:
% -0.4933:
% 93.1370:
% 7743

% 0.0014]

re=50000: -

Qe=[K(1)20000;0 K(2)*2000:0 0 K(3)2 0 0:0 00 K{4)*2 0:0 0 0 0 K(5)"2]:
[Pe.Rese]=are2((A-G¢c*B*C),(A-Ge*B*C) . .C'*inv(re)*C.Qe);

H=-Pe*C'*inv(r)

%

%calculating nondynamical compensator gain to track input for unit step response
[z,p.k]=ss2zp(A-Ge*B*(C+K),Ge*B,C.0.1);
[np]=size(p.1):

[nz]=size(z.1);

pm=1:

for i=1:nz. pm=pm*z(i);end

for i=1:np. pm=pm/p(i);end

v=1/(k*pm)

Pd=1+0.1*v;

Pdd1=1:

Pdd=1.1:

X1=[1678.6607 316.9396]"
Xe=[00000]"

Be=Gc*B;

Ac=A-Bc*C;

Xnr=[1]:
Xrr=[2.704e-8]:
to=0;

h=0.1:
numofpoints=250;
Zr=0;

T=to:
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for r=1:6,
t=to+r*h;
Xl1=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);
Q2=(1/Vy*(((af*(X 1(2.r)-X1(2,1))+ac*(X1(3,r)-X1(3, 1))+ Xrr(r))* Xnr(r))+(Be/V)* X 1(1,r);
Xnr=integbdf(-Be/V,Xnr,Q2.h,r);
Q3=Gr*Ge*( 1.0+(Pd-~1)*((sign(t-2.5)+1)/2)- Xnr(r)-K*(Xe(:,r)-Xe(:,1)));
% rod speed limitation
% Q3=max(-0.0125*Gr,min(Q3,0.0125*Gr));
Pdd1=[Pdd| 1.0+Pdd-1)*((sign(t-2.5)+1)/2)];
Zr={Zr Q3/Gr};
Xrr=integbdf(0.Xrr,Q3,h.r):
Xe=integbdf( Ac-H*C.Xe,Bc*(Xnr(r)-1+Q3/(Ge*Gr))y+H*(Xnr(r)-1),h.r);

T=[Tt];
end

i=8:
t=to+7*h;

while(i<numofpoints)

X1=integbbd(evai(A1).X1.eval(Bl)*Xnr(i-1)+eval(BTe),h);

Q2=(1/VY*(((af*(X 1(2.i-1)-X1(2,1))+ac*(X1(3.i- N-X1(3, 1))+ Xrr(i-1))*Xnr(i- | )—~(Be/V*X 1 1.i-1):
Xnr=integ6bd(-Be/V.Xnr.Q2.,h):

Q3=Gr*Ge*( 1.0+(Pd-1*{(sign(t-2.5)-1)/2) - Xar(i-D-K*(Xe(:,i-1)-Xe(:.1)) );

Pddi=[Pddl 1.0+{Pdd-1)y*((sign{t-2.5)=1)/2)]:

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));

Zr=[Zr Q3/Gr]:
Xrr=integ6bd(0,Xrr.Q3.h):
Xe=integ6bd(Ac-H*C.Xe.Bc*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h):

T=[{T1]:

t=t+h:
i=i+1;

end

%LQG 2
% Linear Quadratic Gaussion (LQG)
% Robust Conrol Design Methodology

Be=0.0065 :
V=0.0001 ;
Gr=0.01 ;
Poa=2500:;
mf=26.3 :
ohm=6.53 ;
af=-0.00005;
L=0.125;
f=0.98;
Te=290:
mc=70.5:
M=92.8:
ac=0.00001:
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A=[-Be/V Be/V affV  ac/(2*V) 1/V;
L L 0 0 0;
f*Poa/mf 0 -ohm/mf ohm/(2*mf) O0;
(1-H*Poa/mc 0 ohm/mc -(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 01;
B={0; 0: 0; 0: Gr];
C=[10000]:

Al ="[-L 0 0:0 -ohm/mf ohm/(2*mf);0 ohm/mc¢ -((ohm/2)+M)/mc]";
BTe="[0 ; ohm*Te/(2*mf);(M-(ohm/2)}*Te/mc]';
B! ="[L ; f*Poa/mf ; (1-f)*Poa/mc]";
%for state feedback pole placement method v=1/3.1183
%Pd=1+0.1/3.1183;
Ge=0.5;
% State feedback gain found using pole placement method
%(deterministic case Ackermann's formula)
% K={-0.9895 -0.6267 0.0074 -0.0031 -96.1626]
% calculating optimal gain
r=3000;
Q=[00000:00000:000.100:0000.010;00000];
[P.res]=are2((A-Gc*B*C) A-Ge*B*C.Ge*B*inv(r)*B™*Ge'.Q):
K=inv(r)*B"™*Gc"™*P
% Deterministic observer gain (using Ackermann's formula)
% H=[-0.2248:
% -0.4933:
% 93.1370:
% 0.7743:
% 0.0014]

re=50000:

Qe=[K(1)"20000:0 K(2)*2000:0 0 K(3)*2 0 0:0 0 0 K()*2 0:0 0 0 0 K(5)"2];
[Pe.Resel=are2((A-Gc*B*C),(A-Ge*B*CY.C™*inv(re)*C,Qe):

H=-Pe*C"*inv(r)

%calculating nondynamical compensator gain to track input for unit step response
[z,p.k]=ss22zp(A-Gc*B*(C+K),Ge*B,C,0.1);
[np]=size(p.1):

[nz]=size(z,1);

pm=1;

for i=1:nz. pm=pm*z(i).;end

for i=1:np. pm=pm/p(i):end

v=1/(k*pm)

Pd=1+0.1%v;

Pddl=1;

Pdd=1.1;

X1=[1 678.6607 316.9396]';
Xe=[00000]"

Bc=Gc*B;

Ac=A-Bc*C:

Xnr=[1];
Xrr=[2.704e-8]:
to=0;

h=0.1;
numofpoints=2350;
Zr=0;

T=to:
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for r=1:6,
t=to+r*h;
Xl=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);
Q2=(1/Vy*(((af*(X1(2,0)-X1(2,1))+ac*(X1(3.r)-X1(3,1)))+Xrr(r)}* Xnr(r)}+(Be/V)*X1(1,r);
Xnr=integbdf(-Be/V,Xnr,Q2,h,r);
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)-K*(Xe(:,r)-Xe(:,1)));
% rod speed limitation
% Q3=max(-0.0125*Gr,min(Q3,0.0125*Gr));
Pddi=[Pdd] 1.0+(Pdd-1)*((sign(t-2.5)+1)/2}];
Zr=[Zr Q3/Grl;
Xrr=integbdf(0,Xrr,Q3.h.r);
Xe=integbdf(Ac-H*C,Xe.Bc*(Xnr(r)-1+Q3/(Ge*Gr))+H*(Xnr(r)-1),h.r);

T=[Tt];
end

i=8;
t=to+7*h:

while(i<numofpoints)

X1=integ6bd(eval(A1),X1.eval(B1)*Xnr(i-1)+eval(BTe).h);
Q2=(1/VY*(((af*(X1(2.i-1)-X1(2. 1))+ac*(X1(3.i-1)-X (3. 1))+ Xrr(i-1))*Xnr(i- 1))+(Be/V)*X 1(1,i-1):
Xnr=integbbd(-Be/V.Xnr.Q2.h):

Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2) - Xnr(i-1)-K*(Xe(:.i-1)-Xe(:, 1)) ):

Pddi=[Pdd1 1.0+(Pdd-1)*((sign(t-2.5)+1)/2)]:

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gn)):

Zr=[Zr Q3/Gr}:
Xrr=integbbd(0.Xrr.Q3.h);
Xe=integ6bd(Ac-H*C . Xe Bc*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h);

T=[Tt];

t=t+h;
=i+
end

%LQG 2

% Linear Quadratic Gaussion {(LQG)

% Robust Conrol Design Methodology

% Operating point dependent parameters are included in non-linear model
% Optimal Stochastic Observer Design with Optimal State Feedback Gain
% (time invariant case Kalman Filter Design)

% System Simulation Parameters are taken from
% R.M.Edwards et. al., Robust Optimal Control of Nuclear Reactors and Power Plants.

% Nuclear Technology Vol.98 May 1992,p.137-148.

% A.Ben-Abdennour. et. al., LQG/LTR Robust Control ofNuclera Reactors with
% Improved Temperature Performance. IEEE Trans.on

% Nuclear Science Vol.39,No.6 December 1992

% Reactors with Improved Temperature Performance"
% IEEE Tran. on Nuclear Science Vol.39.No.6.December 1992 pg 2286-2294
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% Parameters for Controller Design at the Middle of Fuel Cycle of
% a TMI-Type PWR

Be=0.006019  : % fraction of delayed fission neutrons
V=0.00002 : % effective prompt neutron life time (s)
Gr=0.01450 ; % reactivity worth of rod per unit length

Poa=2500 ; % initial equlibrium power lever (MW)

mf=26.3 : % total heat capacity of fuel and structural material (MW.s/C)
ohm=6.6 . % heat transfer coeffient between fuel and coolant
af=-0.0000324 : % fuel temperature reactivity coeffient

L=0.150 : % effective precursor radioactive decay constant (1/s)

=0.92 . % fraction of reactor power deposited in fuel

Te=290 : % temperature of the water entering the reactor (C)

mc=71.8 : % total heat capacity of reactor coolant (MW.s/C)

M =102.0 : % mass flow rate times heat capacity of the water (MW/C)

ac=-0.000213 ;% coolant temperature reactivity coefficient

A=[-Be:'V  Be/V af'V ac/(2*V) 1/V:
L -L 0 0 0:
*Poa'mf 0 -ohm/mf ohm/(2*mf) 0:
(1-H)*Poa/mc 0  ohm/mc ~-(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 0l
B=[0: 0: 0: 0: Gr}:
C=[10000}:

Al ="[-L 0 0:0 -ohm0/mf ohm0/(2*mf):0 ohm0/mc0 -((ohm0/2)+M0)/mc0]":
BTe="[0 : ohm0*Te/(2*mf);(MO-(ohm0/2))*Te/mc0]'":

Bl ="'[L : f*Poa/mf : (1-)*Poa/mc0]";

Ge=0.5:

% calculating optimal gain

r=3000:

Q=[00000:00000:000.100:0000.010:00000];
[P.res]=are2((A-Gc*B*C). A-Gc*B*C.Ge*B*inv(r)*B'™*Gc¢',Q):
K=inv(r)*B'*Gc'*P

%designing Kalman filter

re=30000:

Q=[K(1)Y*20000:0 K(2)*2000:0 0 K(3)"2 0 0:0 0 0 K(4)*2 0:0 0 0 0 K(5)*21:
[Pe.Rese]=are2((A-Gc*B*C),(A-Gc*B*CY.C'*inv(re)*C,Q);
H=-Pe*C"™*inv(r)

%
%calculating nondynamical compensator gain to track input for unit step response
[z.p.k]=ss2zp(A-Gc*B*(C+K),Gc*B.C.0,1);
[np]=size(p.1):
[nz]=size(z,1);
pm=1;
for i=1:nz, pm=pm*z(i);end
for i=1:np, pm=pm/p(i);end
v=I1/(k*pm)
Pd=1-0.5*v;
Pddi=1:
Pdd=0.5:
% X1=[1 678.6607 316.9396]";
X1=[1650.7415 314.5098]"
Xe=[00000]:
Bc=Ge*B:
Ac=A-Bc*C:
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Xnr=[1];
Xrr=[1.174828e-9];

to=0;

h=0.1;

numofpoints=500;

Zr=0;

=to;

for r=1:6,

nro=Xnr(r);
% parameters depend on operating point nro;
af=(nro-4.24)*le-5;
ac=(-4*nro-17.3)*le-5:
mc0=((160/9)*nro+54.022):
ohm0=((5/3)*nro+4.9333):
MO=(28*nro+74).

t=to+r*h;
XI=integbdf(eval(A1).X1.eval(B1)*Xnr(r)+eval(BTe),h.r);

Q2=(I/Vy*(((af*(X 1(2.r)-X 1 (2.1 )+ac*(X1(3,r)-X1(3.1)))+Xrr(r))* Xnr(r))+(Be/V)*X I (l.r}
Xnr=integbdf(-Be/V.Xnr.Q2.h.r):
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)-K*(Xe(:,r)-Xe(:.1)));
% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));
Pdd1=[Pdd1 1.0+(Pdd-1)*((sign(t-2.5)+1)/2)]:
Zr=[Zr Q3/Gr]:
Xrr=integbdf(0.Xrr.Q3.h.r):
Xe=integbdf( Ac-H*C.Xe.Be*(Xnr(r)-1+Q3/(Ge*Gr))~H*(Xnr(r)- 1).h.r):

T=[T1t]:
end

i=8:
t=to+7*h:

while(i<numofpoints)

nro=Xnr(i-1):

% parameters depend on operating point nro:
af=(nro-4.24)*e-5;

ac=(-4*nro-17.3)*le-3:
mc0=((160.9)y*nro+54.022):
ohm0=((5,3)*nro+4.9333):
MO=(28*nro+74);

X1=integ6bd(eval(A1).X1.eval(B1)*Xnr(i-1)+eval(BTe),h);
Q2=(1/Vy*(((af*(X1(2.i-)-X1(2. D)+ac*(X 1(3.i-1)-X1(3, 1))+ Xrr(i-1))* Xnr(i- 1))}+(Be VY*X1(1,i-1);
Xnr=integ6bd(-Be/V.Xnr.Q2.h):

Q3=Gr*Gc*( 1.0+(Pd-1)*((sign(t-2.3)+1)/2) - Xnr(i-1)-K*(Xe(:.i-1)-Xe(:,1)) ):

Pdd1=[Pdd1 1.0+(Pdd-1)*((sign(t-2.5)+1)/2)];

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));

Zr=|Zr Q3.Gr};
Xrr=integ6bd(0.Xrr,Q3.h):
Xe=integ6bd(Ac-H*C.Xe.Be*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h);
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T=[T t]:

t=t+h;
i=i+1;
end

% FC I.m
% Fuzzy Logic Controller Design

% System Simulation used in "State feedback Assisted classical
% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0065 ;
V=0.0001 :
Gr=0.01 .
Poa=2500:
mf=26.5 .
ohm=6.53 :
af=-0.00005:;
L=0.125 .
£=0.98:
Te=290 :
mc=70.3:
M=92.8:
ac=0.00001:

A=[-BeV Be/V aflV ac/(2*V) 1/V;
L -L 0 0 0:
f*Poamf 0 -ohm/mf ohm/2*mf) 0;
(1-)*Poa/mc 0 ohm/me -(2*M+ohm)/(2*mc) 0 :
0 0 0 0 01l
0: 0; Gr]:
0

B=[0; 0:
C=[10000]:

0
Al ='"[-L 0 0:0 -ohm/mf ohm/(2*mf):0 ochm/mc -((ohm/2)+M})/mc]";
BTe="'[0 : ohm*Te/(2*mf);(M-(ohm/2))*Te/mc]"

B1 ="[L : f*Poa/mf ; (1-f)*Poa/mc]’;

Ge=0.5:

Pd=1.1:

X1=[1678.6607 316.9396]"

Xe=[00000];

E=0;

DE=0;

Yfc=0;

Bc=Gc*B;

Ac=A-Bc*C:

Xor=[1]:
Xrr=[2.704e-8]:
to=0;
h=0.01;
numotpoints=1000;
Zr=0;

=t0;
for r=1:6.
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t=to+r*h;
Xl1=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);
Q2=(1/V)*(((af*(X 1(2,r)-X1(2.1))+ac*(X1(3.r)-X1(3, 1))+ Xrr(r))* Xnr(r))+(Be/V)*X1(1,r);
Xnr=integbdf(-Be/V,Xnr,Q2,h,r);
% calculation of error and change in error
E={E (Xnr(r)-(1.0+(Pd- 1)*((sign(t-2.5)+1)/2)))]
DE=[DE E(r+1)-E(r)];

Bfc=1:

fori=1:53,
for j=1:5,
Bfc=[Bfc mship_1(E(r),i)*mship_1(DE(r),j}];
end

end

Bfc=Bfc(2:size(Bfc.2)) /(Bfc(2:size(Bfc.2))*ones(size(Bfc,2)-1,1));
Xfe=[Bfc*E(r) Bfc*DE(r)];

% Fuzzy controller output
Yfe=[Yfc Xfc*Pfr];

Q3=Gr*Gce*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)+Yfc(r+1))

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));

Zr=[Zr Q3/Gr]:
Xrr=integbdf(0.Xrr.Q3.h.r):
Xe=integbdf{ Ac-H*C,Xe.Bc*(Xnr(r)-1+Q3/(Gc*Gr))+H*(Xnr(r)-1).h,r);

i=8:
t=to+7*h:

while(i-numofpoints)

Xl=integ6bd(eval(A1).X1.eval(B1)*Xnr(i-1)+eval(BTe).h):
Q2=(1 V)*(((af*(X1(2.i-1)-X1(2,1)~ac*(X1(3.i-1)-X1(3, 1 )D+Xrr(i-1))*Xnr(i- 1 ))+(Be/V)* X 1(1,i-1);
Xnr=integ6bd(-Be/V,Xnr,Q2.h);
% calculation of error and change in error
E=[E (Xnar(i-1)-(1.0+(Pd-1)*((sign(t-2.5)+1)/2)))]:
DE=[DE E(i)-E(i-1)]:

Bfc=1:

for ii=1:5,
for j=1:3.
Bfc=[Bfc mship_1(E(i-1).iiy*mship_1(DEG-1),j)];
end

end

Bfc=Bfc(2:size(Bfc,2)) /(Bfc(2:size(Bfc,2))*ones(size(Bfc,2)-1,1));
Xfc=[Bfc*E(i-1) Bfc*DE(i-1)];
% Fuzzy controller output
Yfe=[Ytc Xfc*Ptr];
i
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(i-1)+Y fe(i)):
Xnr(i-1)

% rod speed limitation
% Q3=max(-0.0125*Gr,min(Q3.,0.0125*Gr));
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Zr=[Zr Q3/Gr];
Xrr=integ6bd(0,Xrr,Q3.h);
Xe=integ6bd(Ac-H*C.Xe,Bc*(Xnr(i-1)-1+Q3/(Gr*Ge))y+H*(Xnr(i-1)-1),h);

T=[Tt};

t=t+h:
i=i+1;

end

% FC_2.m
% Fuzzy Logic Controller Design

% System Simulation used in "State feedback Assisted classical
% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants"

Be=0.0065 :
V=0.0001 :
Gr=0.01 :
Poa=2500:
mf=26.3 :
ohm=6.53 ;
af=-0.00005:
L=0.125:
=0.98:
Te=290 ;
mc=70.5;
M=92.8:
ac=0.00001:

A=[-Be/V  Be'V af/lV ac/(2*V)  1/V:
L -L 0 0 0:
*Poa/mf 0 -ohm/mf ohm/(2*mf) O0:
(1-H*Poa/mc 0 ohm/mc -(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 01

Al ="-L 0 0:0 -ohm mf ohm/(2*mf):0 ohm/mc -((ohm/2)+M)/mc]';
BTe="[0 ; ohm*Te:(2*mf);(M-(ohm/2))*Te/mc]';
B1 ="[L : f*Poa/mf : (1-f)*Poa/mc]";

Ge=0.5;

Pd=1.1;

X1=[1678.6607 316.9396]";

Xe=[0000 0]

E=0;

DE=0:

Yfc=0:

Bc=Gc*B:

Ac=A-Bc*C;

Xnr=[1];
Xrr=[2.704e-8]:
to=0;

h=0.01;
numofpoints=1000:



Zr=0;

T=to;

for r=1:6,
t=to+r*h;
Xl1=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);
Q2=(V/VY*(((af*(X1(2,r)-X1(2,1))+ac*(X1(3,r)-X 1(3, 1)))+Xrr(r))*Xnr())+(Be/VY*X 1 (1,1);
Xnr=integbdf(-Be/V.Xnr,Q2,h,r).

% calculation of error and change in error
E=[E (Xnr(r)-(1.0+(Pd-1)*((sign(t-2.5)+1)/2)))]
DE=[DE E(r+1)-E(r)];

Bfc=1;
for i=1:5,
for j=1:5,
Bfc=[Bfc mship_1(E(r),i)*mship_2(DE(r),j)];
end
end

Bfc=Bfc(2:size(Bfc.2)) /(Bfc(2:size(Bfc.2))*ones(size(Bfc,2)-1.1)):
Xfe=[Bfc*E(r) Bfc*DE(r)];

% Fuzzy controller output
Yfe=[Yfc Xfc*Pfr];

Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)+Y fe(r+1))

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr)):

Zr=[Zr Q3/Gr].
Xrr=integbdf(0.Xrr.Q3.h.r): ‘
Xe=integbdf( Ac-H*C.Xe.Bc*(Xnr(r)-1+Q3/(Ge*Gr))+H*(Xnr(r)-1).h.r):

T=[T tl;
end

i=8:
t=to+7*h:

while(i<numofpoints)

X1=integ6bd(eval(A1).X1.eval(B1)*Xnr(i-1)+eval(BTe),h);
Q2=(1/VY*(((af*(X1(2.i-1)-X (2. 1))+ac*(X1(3,i-1)-X 1G. 1))+ Xrr(i-1))* Xnr(i- 1)) +(Be/VY*X 1(1.i-1);
Xnr=integbbd(-Be/V.Xnr.Q2.h);
% calculation of error and change in error
E=[E (Xnr(i- 1)-(1.0+(Pd- D)*((sign(t-2.5)+1)/2)))];
DE=[DE E(i)-E(i-1)];

Bfc=1;
for ii=1:5,
for j=1:5,
Bfc=[Bfc mship_1(E(i-1),ii)*mship_2(DE(i-1),j)];
end
end

Bfc=Bfc(2:size(Bfc.2)) /(Bfc(2:size(Bfc,2))*ones(size(Bfc,2)-1.1));
Xfe=[Bfc*E(i-1) Bfc*DE(i-1)];
%o Fuzzy controller output
Yfe=[Yfc Xfe*Pfr];
i
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(i-1)+Yfc(i)):
Xnr(i-1)
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% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3,0.0125*Gr));

Zr=[Zr Q3/Gr];
Xrr=integ6bd(0.Xrr,Q3,h);
Xe=integ6bd(Ac-H*C,Xe,Be*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h);

T=[Tt];

t=t+h;
i=i+1:
end

% NC_1l.m
% Neurocontrol of Nuclear Power Plant

% System Simulation used in "State feedback Assisted classical
% Control :An Incremental Approach to control modernization of
% Existing and future Nuclear Reactors and power plants”

Be=0.0065 :
V=0.0001 :
Gr=0.01 :
Poa=2500:
mf=26.3 :
ohm=6.53:
af=-0.00005:
L=0.125;
=0.98;
Te=290 ;
mc=70.5;
M=92.8:
ac=0.00001:

A=[-Be/V Be/'V  aflV ac/(2*V) 1/V:
L -L 0 0 0;
PPoa/mf 0 -ohm/mf ohm/(2*mf) 0:
(1-H*Poa/mc 0 ohm/mc -(2*M+ohm)/(2*mc) 0 ;
0 0 0 0 01;
=[0: 0: 0; 0: Gr]
[10

B
C=[10000]:

1l

Al ='[-L 0 0:0 -ohm/mf ohm/(2*mf):0 ohm/mc -((chm/2}+M)/mc]";
BTe="[0 ; ohm*Te/(2*mf);(M-(ohm/2))*Te/mc]'’;
Bl ="[L : f*Poa/mf ; (1-N)*Poa/mc]":

Ge=0.5;

Pd=1.1:

X1=[1678.6607 316.9396]";

Xe=[00000]"

E=0:

DE=0;

Ync=0;

Be=Gce*B:

Ac=A-Bc*C:
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Xnr=[1];
Xrr=[2.704¢-8]:
to=0;
h=0.01;
numofpoints=4000;
Zr=0;
T=to;
for r=1:6,
t=to+r*h;
X 1=integbdf(eval(A1),X1,eval(B1)*Xnr(r)+eval(BTe),h,r);
Q2=(1/V)*(((af*(X1(2,r)-X 12, 1))+ac*(X1(3,r)-X1(3, 1))+ Xrr(r))* Xnr(r))+(Be/V)y* X 1(1,r);
Xnr=integbdf(-Be/V,Xnr,Q2,h.r);
% calculation of error and change in error
E=[E (Xnr(r)-(1.0+(Pd-1)*((sign(t-2.5)+1)/2)))]
DE=[DE E(r—D-E(r)]:

Ync=[Ync fnnout(E(r),DE(r).Mnc.Wnc)];
Q3=Gr*Ge*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(r)+Ync(r+1))

% rod speed limitation
% Q3=max(-0.0125*Gr,min(Q3.0.0125*Gr)):

Zr={Zr Q3/Gr]:
Xrr=integbdf(0.Xrr.Q3.h.r):
Xe=integbdf{ Ac-H*C.Xe.Be*(Xnr(r)-1-Q3/(Ge*Gr))+H*(Xnr(r)-1).h.r);

T=[T1l;
end

i=8;
t=to+7*h:

while(i<numofpoints)

X i=integbbd(eval(A1).X1.eval(B1)*Xnr(i-1)+eval(BTe),h):
Q2=(1/V)*(((aP*(X 1(2.i-1)-X 1(2, 1))+ac*(X1(3.i-1)-X 1(3. 1))+ Xrr(i-))*Xnr(i- 1))+ Be/V)*X1(1,i-1);
Xnr=integ6bd(-Be/V.Xnr.Q2.h);
% calculation of error and change in error
E=[E (Xnr(i- D-(1.0+(Pd-1)*((sign(t-2.5)+ 1)/2)))];
DE=[DE E(D)-E(i-1)];

Yne=[Yne fnnout(E(i-1),DE(i-1).Mnc,Wnc)];

Q3=Gr*Gce*( 1.0+(Pd-1)*((sign(t-2.5)+1)/2)- Xnr(i-1)+Ync(i)):
Xnr(i-1)

% rod speed limitation
% Q3=max(-0.0125*Gr.min(Q3.0.0125*Gr));

Zr=[Zr Q3/Grl:
Xrr=integb6bd(0.Xrr,Q3.h);
Xe=integ6bd( Ac-H*C,Xe,Be*(Xnr(i-1)-1+Q3/(Gr*Ge))+H*(Xnr(i-1)-1),h);

T=[Tt];
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t=t+h;
i=i+1;

end

function {X.Xresidua.Z.U.S,U11.U12,U21,U22]=are_sch(K.R.Q)

%
%
%
%
%
%
%
%
%

Algebric Riccati Equation Solver [ARE].
This program can be used for only time invariant ARE's.

T
KX+XK-XRX+Q=0: (ARE)

Written by F.Erol SAGIROGLU (1991) Hacettepe U. EEE

[Z]5[K -R:-Q -K]
[Uo.S]=schur(Z)
[Ul=inv(Uo";
[n.n]=size(S):
n=n/2;

for k=1:n,

for I=1:n,
UT1(Lk)y=U(Lk);
U12(Lk)y=U(lL.k-n):
U21(Lk)=U(l+n.k):
U22(Lky=U(l+n.k+n);
end

end

X=U21*inv(U11)

Xresidua= (K'*X) + (X*K) - (X*R*X) + Q

%o X=inv(U11)*U21";

end

Xresidua= (K*X) + (X*K) - (X*R*X)} + Q;

function [ X, Xresidua]=are2(L.K.R.Q)

Algebraic Riccati Equation Solver

The Form of Algebraic Riccati Equation(ARE)
Q+LX+XK-XRX=0;

Algebraic Riccati equation is reduced into Sylvester Equation
Using Newton Iteration Method

Written by F.Erol SAGIROGLU (1991) Hacettepe U. EEE

[n.m]=size(Q);

Xi=rand(n,m);

while(1>0),

%

[ )3
7

[B]=K-R*Xi;
[A]=L-Xi*R;
[Cl=-(Q+Xi*R*Xi);

Sylvester Equation solver;
Calculation the upper Hessenberg H and quasi-upper triangular S;
H upper Hessenberg,U orthogonal;

[U,H]=hess(A);
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% S quasi upper triangular,V orthogonal;
[V,S]=schur(B);
[ FIFU™C*V;
% So far, transformation H'Y +Y S'= F is completed;
% So that,solution X=UY V'

% Decomposition of AX+XB=C;

for i=1:m.
for k=1:n,
for j=1:m,
E1((i-1)*n+k,(-1)*n+k)=H(i,j):
end
end
end
for i=1:m,
for k=1L:n.
for j=1:n.
E2((i-1Y*n=k.(i-1)*n+j)=S(j.k):
end
end
end
% Transformation of F[m.n] into F[n*m.1]
for i=1:m.
for j=1:mn.
F1((i-D*n~j. D=F(,j):
end
end
[Y1]=inv(E1+E2)*F1:
for i=1:m.
for j=1:n,
Y. )=Y1((i-1)*n~j. 1)
end
end
[X]=U*Y*V"
E1=EI1-El:E2=E2-E2:
X

% Error Difference is set to le-6
if max(max(abs(X-Xi)))>1e-6,
Xi=X:
disp('new appr.."):
Xresidua=(L*X)HK*X)+Q-(X*R*X);
disp{max{max(abs(Xresidua))));
else
Xresidua=(L*X)+HK*X)+Q-(X*R*X)
return;
end
end

function [y]=fnnout(E.DE.M.W)
[n.m]=size(M):
v=[E;DE];

%%Propagation the signals forward through the network using:

for k=1:n-1,
H(E:MK+1).k) = LAW(1:M(k+1), sum(M(1:k-1)~+1

ssum(M(1:k))) * v,
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V(1:M(k+1),k) = tanh( H(1:M(k+1),k) );
v=V(1:M(k+1),k);
end;
y=vi
end:

function [Y]=fuzzyout(E.DE,P)

for k=1:size(DE.1),

B=1;
for i=1:3,
for j=1:5,

B=[B mship 1(E(k),i)*mship_2(DE(k),j)];
end
end

B=B(2:size(B.,2))/(B(2:size(B.2))*ones(size(B,2)-1,1)):
X=[B*E(k) B*DE(K)}:
Y (k)=X*P:

end

function [P.X.Y Fout.E.DE]=fuzzyr 1(Yc.Yd.Yp.X)
% Fuzzy Rule Identification using Least Square

% Pseudo-inverse technique

% Yc: controller output as supervisory signal

% Yp: Plant output or plant response to control signal
% Yd:set point. desired plant output

% E:error

E=Yp-Yd:
DE=E(2:size(E,1))-E(1:size(E.1)-1):
tfigure:
plot(DE.E(!1:length(DE))):
X=zeros(50,50);

Y=zeros(50,1);

for k=1:size(DE.1),

B=l1;
for i=1:5,
for j=1:5,

B=[B mship_(E(k),i)*mship_l1(DE(k).j)];
end
end
B=B(2:size(B.2))/(B(2:size(B.2))*ones(size(B.2)-1,1));
X1=[B*E(k) B*DE(K)];
X=X+X1"*X1;
Y=Y+X1"*Yc(k):
end
P=pinv(X)*Y:
Fout=fuzzyout(E.DE.P):
figure:
plot(Fout):
grid;
end
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function [P,X,Y,Fout.E,DE}=fuzzyr_2(Y¢,Yd,Yp)

% Fuzzy Rule Identification using Least Square

% Pseudo-inverse technique

% Yc: controller output as supervisory signal

% Yp: Plant output or plant response to control signal
% Yd:set point, desired plant output

% E:error
E=Yp-Yd;
DE=E(2:size(E,1))-E(1:size(E.1)-1);
figure:
plotDE.E(1:length(DE))):
X=zeros(50,50);
Y=zeros(50,1);
for k=1:size(DE, 1),

B=1:
for i=1:5.
for j=1:5,
B=[B mship_(E(k).i)*mship_2(DE(k).j)]
end
end

B=B(2:size(B.2))/(B(2:size(B.2))*ones(size(B.2)-1.1));
X1=[B*E(k) B*DE()]:
X=X-X1"*X1;
Y=Y-X1*Yc(k):
end
P=pinv(X)*Y:
Fout=fuzzyout(E.DE.P):

figure:

plot{ Fout);

grid:

end

function [X]=Integ6BD(A,X.Q.h)

% Sixth order Backward Difference Formulas for Integration
%

% X=AX+Q

%
% This function is used in simulation of non-linear systems

%%

%% notice: matrix A must be square with the proper sizes of vectors X and Q
9% h refers to step size of integration

[m.k]=size(X);
X=[X -inv(-(147/60)*eye(m)+h* AY*(6* X (k) +(-15/2)* X(:.k-1)+(20/3y* X (2, k-2)-(15/4)* X (: k-
3)H(6/5)* X (. k-)-(1/6)* X (- k-5 +h*Q)]:
function [X]=integBDF(A.X,Q,h.r)

Rk={1 0 0 0 0 O

122 0 0 0 0;
1/3-32 3 0 0 0;
1443 -3 4 0 0;

1/5 -5/4 10/3 -5 5 0,
-1/6 6/5-15/4 20/3 -15/2 6];
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Ck=[-1-3/2 -11/6 -25/12 -137/60 -147/60];

[m.k}=size(X);
X=[X -inv(Ck(r)*eye(m)+h*A)y*( X(:,k-r+1:k)*Rk(r,1:r)'+ h*Q)];
function [y]=mship_1(x,i)
% Fuzzy Membership Function(proposed J.Dombi)
% for Servosytem Control
%
boundary=[-1 -0.008 -0.002;
-0.008 -0.002 0.0 :
-0.002 0.0 0.002;
0.0 0.002 0.008:
0.002 0.008 1.0 ];
% inflection point of S-shaped membership function
v=2:
% sharpness of membership function
=I:

if (i==1 & x<boundary(1,2)} | (i==5 & x>boundary(5,2))
v=1;
return:
end:
if x<boundary(i.1) | x>boundary(i.3)
v=0:
return:
end:
if x>=boundary(i.1) & x<boundary(i.2)
v=((1-v)"(I-1Y*(x-boundary(i. D) "D/(1-v)(I-1)*(x-boundary(i, I N +v~(1-1)*(boundarv(i,2)-x)"]):
return:
end:
if x>=boundary(i.2) & x<=boundary(i.3)
y=((1-v)(I-1)*(boundary(i.3)-x)"D/((1-v)(I- ) *(boundary(i.3)-x)"+v/(I- 1)* (x-boundary(i.2))"):
return:
end:

function [y]=mship_ 2(x.i)
% Fuzzy Membership Function(proposed by J.Dombi)
% for Servosytem Control
%
boundary=[-1 -0.008 -0.002:
-0.008 -0.002 0.0 ;
-0.002 0.0 0.002;
0.0 0.002 0.008:
0.002 0.08 1.0 J;
% inflection point of S-shaped membership function
v=2;
% sharpness of membership function
I=1;

if (i==1 & x<boundary(1.2)) | (i==5 & x>boundary(5,2))
y=1:
return;

end;

if x<boundary(i.1) | x>boundary(i.3)
y=0;
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return;

end:

if x>=boundary(i,1) & x<boundary(i,2)
y=((1-v)(I-1)*(x-boundary(i, ) )/((1-v)*(1-1)*(x-boundary(i, 1)) +v"(I- 1 )*(boundary(i,2)-x)"l);
return;

end:

if x>=boundary(i,2) & x<=boundary(i.3)
y=((1-v)"(I-1)*(boundary(i.3)-x)*)/((1-v)"(I-1)*(boundary(i,3)-x)"l+v/(l- 1)* (x-boundary(i,2))*);
return;

end:

function [y]=tanh(x)
%sigmoid function used in Neural Networks

v=(exp(x)-exp(-x))./(exp(x)+exp(-x));

MLNNBP.m
%Multi-Layer Neural Networks Back-Propagation Algorithm-1

disp('"Multi-Layer Neural Network Simulation:'):
M=input(‘enter neural network definition vector :");
eta=input('enter the learning factor eta :"):

[n.m]=size(M):

%9Stepl:
%lnitialization of the weights to small random numbers:

rand('normal’);
Jbp=0:
% W=rand( max{ M(2:n) ), sum( M(l:n-1) ) );

N=size(Pi.2);
cle:
J=10:
while(J>0.0001)
home
fori=1:N,

%Step2:
%Choosing a pattern and applying it to the input layer

v=Pi(1:M(1).1);

%Step3:
%Propagation the signals forward through the network using;
for k=1:n-1,

H(1:Mk+1),k) = 1.+W(1:M(k+1). sum(M(1:k-1)+1 : sum(M(1:k))) * v ;
V(1:M(k+1),k) = tanh( H(1:M(k+1).k) );
v=V(1:M(k+1).k);

end;
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%Step4:
%Computation of the deltas for the output layer;

d=(1. - (V(1:M(n),n-1))."2).*(Po(1:M(n),i) - V(1:M(k+1),k))
D(1:M(n),n-1)=d;
%StepS:
%Computation the deltas for the preceeding layers by propagating the error backwards;

for k=n-1:-1:2,
D(1:M(k).k-1)=(1. -(V(1:M(K),k-1)).72).*(W(1:M(k+1), sum(M(1:k-1)})+1 : sum(M(1:k)))"*d);
d=D(1:M(k),k-1);
end:
%Step6:
%Updating weighting matrix:

dW(1:M(2), 1:M(1) )=eta. *(D(1:M(2). 1)*Pi(1:M(1),i)"):

for k=2:n-1,
dW(L:M(k+1), sum(M(1:k-1))+1:sum(M(1:kp))=eta.*(D(1:M(k+1),K)Y*V(1:MK).k-1));
end:

W=W +dW:
%Step7:
%Repeat for the next pattern:

end:

%Calculating cost function:
J=l
J=0:
Pout=1:
for i=1:N,

v=Pi{1:M(1),1);

%Propagation the signals forward through the network using;
for k=1:n-1,

H(1:M(k+1).k) = L+W(L:M((k+1), sum(M(1:k-1))+1 @ sum(M(1:k))) * v :
V(E:M(k+1),k) = tanh( H(1:M(k+1).k) );
v=V(1:M(k+1),k);

end;

%Stepd:
%Computation sum of squares as cost function
Pout=[Pout v];
I=J+(Po(1:M(n),i) - V(1:M(k+1).kN"2;
end:
J=sqrt(JY/N;
figure(1);
plot(Pi.Pout(2:N+1),Pi.Po,'x);
xlabel(num2str(J}));
text(1.0.num2str(eta))
if J>J1,
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eta=9*eta/10;
end
if J<J1,
% eta=10.1*eta/10;
end
Jbp=[Jbp J]:
end

%MLNNKF.m
% Learning Algorithm via Extended Kalman Filter
% for MultiLayered Feedforward Neural Networks

disp('Multi-Layer Neural Network Simulation:").
M=input('enter neural network definition vector :"):

[n.m]=size(M):

%Stepl:
%Initialization of the weights to small random numbers:

rand('normal'):
W=rand( max( M(2:n) ). sum{ M(1:n-1))):
%%save W:
Wki=W:

%error covariance of pseudo-noise to tune weights
R=ones( max( M(2:n) ), sum( M(l:n-1)));

%kError covariance initial matrix
P=1*ones( max({ M(2:n) ). sum( M(1:n-1) ) ):

N=size(Pi.2):
%clc:
%Jkf=1:
%J=10:
home
while(J>0.0001)
for i=1:N.

%Step2:
%Choosing a pattern and applying it to the input layer

v=Pi(1:M(1),i):
%Step3:
%Propagation the signals forward through the network using:
for k=1:mn-1.
H(1:M(k+1).k) = L+W(1:M(k+1), sum(M(1:k-1)+1 : sum(M{1:k))) * v ;
V(1:M(k+1).k) = tanh( H(I:M(k+1).k) ):

v=V(1:M(k+1).k);
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end;

%Step4:
%Computation of the deltas for the output layer;

d=(1. - (V(1:M(n),n-1))."2).*(Po(1:M(n),i) - V(1:M(k+1),k}))
D(1:M(n).n-1)=d:
%Step3:
%Computation the deltas for the preceeding layers by propagating the error backwards;

for k=n-1:-1:2,
D(1:M(k).k-1)=(1. -(V(1:M(k),k-1))."2).¥*(W(1:M(k+1), sum{M(1:k-1))~1 : sum(M(1:k)))*d);
d=D(1:M(k).k-1Y;
end:
%Step6:
%Updating weighting matrix;

dW(1:M(2). LMD =(D(1:M2), D*Pi(1:M(1).0)'):
for k=2:n-1.
dW(EMk+1). sum(M(1:k-1)+1:sum(M(1:k))=(D(1:M(k+1),kK)*V(1:M(k).k-1)):
end:
K=(P *dW*(1/(Po(1:M(n).i) = V(MK D)INAP*(dW*(1/(Po(1:M(n).i)
V(1:M(k+1).K))."2+R):
W =W ~ K*(Po(1:M(n),i) - V(1:M(k+1).k)):
P=(1.-K.*dW*(1 (Po(1:M(n).i) - V(1:M(k+1).k})) ).*P:

%Step7:
%Repeat for the next pattern:

end:

Wkf=[Wkf W]:

%9Calculating cost function:
J=0;
Pout=|,
for i=1:N,
v=Pi(1:M(1).i):

2oPropagation the signals forward through the network using:
for k=1:n-1.

H(1:M(k+1),k) = 1. +W(L:M(k+1), sum(M(1:k-1)+1 : sum(M(1:k))) * v ;
V(1:M(k+1).k) = tanh( H{(1:M(k+1),k) ):
v=V(1:M(k+1).k);

end:

0oStepd:
%%Computation sum of squares as cost function
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Pout=[Pout v];
J=J+(Po(1:M(n),i) - V(1:M(k+1),k))"2;

end;

J=sqrt(J)/N;

figure(1);

% plot(Pi,Pout(2:N+1),Pi,Po,'x");

plot(1:N Pout(2:N-+1),1:N,Po);

xlabel(num2str(J)):

Jkf={JKf J];
end

%MLKFBDF.m

%Multi-Layered Feedforward Neural Networks
%Extended Kalman Filter Learning Algorithm-1
%Modified with Backward Difference Formulas

disp('Multi-Layer Neural Network Simulation:'):
Ms=input('enter neural network definition vector :');

[n.m]=size(M):

%Stepl:
%lnitialization of the weights to small random numbers;

rand('normal’):

W=rand{ max( M(2:n) ). sum( M(1:n-1) ) ):
[nW.mW]=size(W);
Wx=reshape(W.nW*mW.1);

%error covariance of pseudo-noise to tune weights
R=0.1*ones( max( M(2:n})). sum( M(1:n-1)) )

%Error covariance initial matrix
P=[*ones( max( M(2:n) ). sum{ M(1:n-1}) ):

N=size(Pi.2).
clc;

J=10:
home

r=1;
while(J>0.001),

for i=1:N,

%Step2:
%Choosing a pattern and applying it to the input layer

v=Pi(L:M(1),0):
%Step3:
%Propagation the signals forward through the network using;

for k=1:n-1,

H(1:M(k+D.k) = L+W(1:M(k+1), sum(M{1:k-1))+1 : sum(M(1:k))) * v :
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V(1:M(k+1),k) = tanh( H(1:M(k+1).k) );
v=V(1:M(k+1),k);
end;

%Step4:
%Computation of the deltas for the output layer:

d=(1. - (V(1:M(n),n-1))."2).*(Po(1:M(n),i) - V(1:M(k+1),k})

D(1:M(n).n-1)=d:

%oSteps:
9%Computation the deltas for the preceeding layers by propagating the error backwards:

for k=n-1:-1:2.
D(1:M(k).k-D=(1. «(V(1:M(K),k-1))."2).*(W(1:M(k+1), sum(M(L:k-1))+1 : sum(M(1:k)))*d);

d=D(1:M(k).k-1);
end:
%oStep6:
%9Updating weighting matrix:

dW(1:M(2), 1:M(1) )=(D(1:M(2), *Pi(1:M(1).i)"):

for k=2:n-1.
dW(L:M(k+ 1), sum(M(1:k- D)+ Tisum(M(1:k)))=(D(E:M(k+ D.K)Y* VLMK k-1Y):

end:

K=(P.*dW*(1/Po(1:M(n).i) - V(LMD KA PA(AW*(1/(Po(1:M(n).i)

V({EMK+ 1)) 2+R);
dW1 = K*(Po( 1:M(n),i) - V(1:M(k+1),k)):

P=(1.-K.*dW*(1/ (Po(1:M(n),i) - V(1:M(k+1).k))) ).*P:

%49 Integration using BDF

dWx=reshape(dW1.nW*mW,1):

it r<7,
Wx=integbdf(0.Wx.dWx.1.r).
r=r+1;

else
Wx=integ6bd(0.Wx.dWx,1):

end:

W=reshape(Wx(:.size(Wx.2)),nW.mW).
% W=W+dWI.

%Step7;
%Repeat for the next pattern;

end:

%Calculating cost function:
J=0;
Pout=1;
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for i=1:N,
v=Pi(1:M(1),i):

%Propagation the signals forward through the network using;
for k=1:n-1,

H(I:M(k+1D.K) = 1+W(1:M(k+1), sum(M(1:k~-1))+1 : sum(M(1:k))) * v ;
V(1:M(k+1).k) = tanh( H(1:M(k+1),k) );
v=V(1:M(k~1).k):

end;

%Step4:
%Computation sum of squares as cost function
Pout=[Pout v}.
J=3+(Po(1:M(n).i) - V(1:M(k+1).kN)"2:
end:
J=sqrt(J)'N:
figure( 1.
plot(Pi.Pout(2:N+1).Pi.Po.x');
xlabel(num32str(J)):

end

% EXPBDF.m

% System Simulation Test using

% Backward Difterence Formulas (BDFs) in Integration
% for exponential inputs

B="'[0]":
a=1000000:
Q="[exp(~a*1)}":

X(.H=[0]"

t0=0:

h=0.00001:

m=|:
numofpoints=200:

k=1:

Erms=0.

H=0;
while(h<=0.0001)

t=to+h;
X(:,2)=-inv(-eve(m)+h*eval(B))*(X(:,1)+h*eval(Q));

=to+2*h:
X(:.3)=-inv(~(3 2)*eve(m)+h*eval(B))*(2*X(:.2)-(1/2)*X(:.1)+h*eval(Q));

t=to+3*h;
X(:.4)=-inv(-(1 1/6)*eve(m)+h*eval(B))*(3*X(:.3)~(3/2)* X(:.2)+(1/3)*X(:,1 )+h*eval(Q)):

t=to-+4*h;
X(:.3)=-inv(-(25/12)*eve(m)+h*eval(B))*(4* X (:.4)-3* X(:.3)+(4/3)* X (:.2)-(1/4)* X(:. 1)+h*eval(Q));
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t=to+5*h;
X(:,6)=-inv(-(137/60)y*eye(m)+h*eval(B))*(5*X(:,5)-5* X(:,4)+(10/3)*X(:,3)-
(5/4Y*X(:,2yH(1/5)*X(:, 1 )+h*eval(Q));

t=to+6*h:;
X, 7)=-inv(-(147/60)*eye(m)+h*eval(B))*(6* X(:.6)-(15/2)* X(:,5)+20/3)*X(:.4)-
(15/4)y* X(:, 3y H(6/5 X (2, 2)-(1/6Y* X (:, ) +h*eval(Q));

i=8;
=to+7*h;
while(i<numofpoints)
X(i)=-inv(-(147/60)*eye(m)+h*eval(B))* (6 * X (:.i- 1 )~(15/2Y* X (:,i-2)+(20/3)* X (:,i-3)-(15/4)* X(:,i-
4YH6/5)* X (:,i-3)~(1/6)*X(:,i-6)+h*eval(Q));
t=t+h;
i=i+1;
end
figure:
plot(X):
title(num2str(h));
grid;
Xa=0;
T=0:
E=0:
for i=1:(numofpoints-1),
Xa(D)=(1/ay*(1-exp(-a*(i*h-h)));
T(i)=i*h-h:
E=E+(X(i)-Xa(i))"2:
end
Erms(k)=sqrt(E/numofpoints);
H(k)=h:
k=k+1
h=h+0.00001:
end
clg:
plot(H,Erms):
xlabel('step size');
ylabel('error rms"):
end.

% SINBDF.m
% System Simulation Test using
% Backward Difference Formulas (BDFs) in Integration

B='{0]"
Q="[sin(100*t)]":

X, D=-17

to=0:

h=0.001;

m=1;
numofpoints=500:

k=1;

Erms=0;

H=0;
while(h<=0.01)
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t=to+h;
X(:.2)=-inv(-eye(m)+h*eval(B))*(X(:,1)+h*eval(Q)):

t=to+2*h;
X(:,3)=-inv(-(3/2)*eye(m)+h*eval(B))*(2*X(:,2)-(1/2)*X(:, 1 ) +h*eval(Q));

t=to+3*h;’
X(:.4)=-inv(-(11/6)*eye(m)~h*eval(B)y*(3* X(:,3)~(3/2)* X(:.2)+(1/3)*X (.. 1)+h*eval(Q));

t=to+4*h;
X(:,5)=-inv(~(25/12)*eye(m)+h*eval(B))*(4* X(:.4)-3* X(:,3)+(4/3Y* X (:,2)-(1/4)* X (:. D+h*eval(Q)):

t=to+5*h;
X(:,6)=-inv(-(137/60)*eye(m)+h*eval(B))*(5*X(:.5)-5* X(:.4)+(10/3)*X(:.3)-
(5/4y*X(:.2)+(1/5)*X(:.1)y+h*eval(Q));

t=to+6*h;
X(:.7)y=-inv(-(147/60)*eye(m)+h*eval(B))*(6* X(:.6)-(15/2)*X(:,5)+H20/3)*X(:.4)-
(15/4Y* X (:.3)H(6/5)X(:.2)-(1/6)*X(:.1)+h*eval(Q)):

i=8:
t=to+7*h:
while(i<numofpoints)
X, 1)=-inv(-(147/60)*eye(my+h*eval(B)*(6* X(:.i- )-( 152V X(:,1-2)+(20/3)* X (=.i-3)-( 1 5/4)* X (.1~
$y+(6/5)*X(:.1-5)-(1/6)* X(:.i-6)+h*eval(Q)):
t=t+h:
i=i+1:
end
figure:
plot(X):
xlabel(num?2str(h));
arid
Xa=0;
T=0:
E=0:
for i=1:(numofpoints-1),
Xa(i)=-cos(i*h-h);
T(i)=i*h-h;
E=E+(X(i)-Xa(i)"2:
end
Erms(k)=sqrt(E/numofpoints):
H(k)=h;
k=k+1
h=h+0.001;
end
clg;
plot(H.Erms);
xlabel('step size'):
ylabel('error rms'):
end.
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