iZMIiR KATIiP CELEBI UNIVERSITY * GRADUATE SCHOOL OF SCIENCE AND
ENGINEERING

CONTROL AND SIMULATION OF SWARM MOBILE ROBOTS

M.Sc. THESIS

Hayrettin SEN

Department of Mechanical Engineering

Thesis Advisor: Assist. Prof. Dr. Fatih Cemal CAN

JUNE 2016

iZMIiR KATIiP CELEBI UNIVERSITY * GRADUATE SCHOOL OF SCIENCE AND
ENGINEERING

CONTROL AND SIMULATION OF SWARM MOBILE ROBOTS

M.Sc. THESIS

Hayrettin SEN
(Y130105007)

Department of Mechanical Engineering

Thesis Advisor: Assist. Prof. Dr. Fatih Cemal CAN

JUNE 2016

iZMIR KATIiP CELEBI UNIVERSITESI * FEN BILIMLERI ENSTITUSU

SURU MOBIL ROBOTLARIN KONTROLU VE SIMULASYONU

YUKSEK LiSANS TEZI

Hayrettin SEN
(Y130105007)

Makine Miihendisligi Boliimii

Tez Danmismani: Yrd. Do¢. Dr. Fatih Cemal CAN

HAZIRAN 2016

Hayrettin SEN, a M.Sc. student of Izmir Katip Celebi University Graduate School
of Science and Engineering student ID Y130105007, successfully defended the
thesis entitled “CONTROL AND SIMULATION OF SWARM MOBILE
ROBOTS?”, which he prepared after fulfilling the requirements specified in the
associated legislations, before the jury whose signatures are below.

Thesis Advisor: Assist. Prof. Dr. Fatih Cemal CAN .o,
[zmir Katip Celebi University

Jury Members: Prof. Dr. Adnan KAYA e
Izmir Katip Celebi University

Assist. Prof. Dr. Mustafa Berkant SELEK
Ege University

Date of Submission: 22 June 2016
Date of Defense : 28 June 2016

To my spouse,

vii

FOREWORD

First of all, 1 would like to thank to my supervisor Assist. Prof. Dr. Fatih Cemal Can
who helped me very much and taught me many valuable lessons, assisted me in
programming and advised me whenever | needed guidance.

I am also grateful to all my professors in Mechatronics Engineering Department for
being very kind to me and let me study in the laboratories of the department throughout
the research.

I also would like to thank the undergraduate students Murat Hepeyiler and Yunus
Durmus for helping me during the recording test results and the production of the
robots.

I would like to thank to my parents who raised and supported me until today.

Finally, I am too much grateful to my wife for being too much patient with me, helping
and supporting me during the all steps of my study.

June 2016 Hayrettin SEN

TABLE OF CONTENTS

FOREWORD ..ottt bbbttt bbb IX
TABLE OF CONTENTSooiieese ettt Xi
ABBREVIATIONSottt bbb s Xiii
LIST OF TABLES ...ttt XV
LIST OF FIGURESoooiiii e XVii
SUMMARY et ettt sttt st nbe et e beeebe e XiX
OZET ...t ettt Xxi
1. INTRODUCTION. ...ttt sttt et et sbesaesne e enaenaeneens 1
1.1 LItErature REVIBWciuiiiiiiiiiiiiesieiceiie ettt sttt st st 2
2. DESIGN AND MANUFACTURING OF MOBILE SWARM ROBOTS......... 7
2.1 Design Criteria and Component DesCriptions..........ccccveveieeieeieieesie e 7
2.2 COMPONENTS. ...ttt ettt bbbttt e b b e b nneenne e 7
2.3 Design and Manufacturing of Mechanical Parts............ccccooeveniiniiinicienn, 8
2.3.1 Base plate and battery holdersccccccveeeiiciicic e, 8
2.3 2 TOP PIALE ..o e 9

2.4 Design and Manufacturing Arduino Shield Circuitccccoevviiiiicieenee, 10
3. CALIBRATIONS OF SENSORS AND CONFIGURATIN OF XBEES....... 17
3.1 Calibrations Of SENSOIScceiiiiiiiieieiee e 17
3.2 Configuration XBees by UsSing X-CTUcccooiiiiiiiiiieee e 20
3.3 XBee Communication NEetWOrK..........cceieieiiiiiiiinieieieese e 22

4. CONTROL UNIT AND CONTROL ALGORITHM......cccoceiiiiivieerceeee, 25
4.1 Control Unit of the RODOTS.........coviiiiiiiieieceee s 25
4.2 Mechanism of Swarm Behavior...........cccovveiieiieeese e 26
4.3 Control AIGOTItRM ... e 27

5. PROGRAMMING THE MOBILE ROBOTS.......cooeiiiieereee e 29
5.1 The Used Programming SOftWare............cccocvveiieiiiiee i 29
5.2 Converting the Control Algorithm to Programming Codec.ccocvvvrnennn. 30
5.3 Sub-functions in the Control COde.........cccooviiiiiiiiiieieee e 31
5.3.1 doubIE TINT X)..eeuveeeieieeiieee s 31
5.3.2 VOid REAUSENSOIS() «.vveuveivreireeie e sttt ettt 32
5.3.3 void RobotmotorsWrite(int X, INTY) ..cccooeviiiiiiiiieiecee e 32
5.3.4 void senddata(int x) and void getdata()........ccccooeeviiiiiieviie i 32
5.3.5 void orientation(int degree, INt MXX)ccocovireieeinienene e 33
5.3.6 void parallelorientation(int MXX)ccoveviieiiieiiieiieie e 34
5.3.7 void ra(int X) and VOId rr(INt X)cccererirenininieieeese e 35
5.3.8 VOI LCDPIINT() voovveeiieiiiesiie ettt 36

5.4 Sending Data to the Data TaKercccceieiiiiniiiiiseiee e 36
5.5 Programming the Remote Controller...........cccovvvivieiie i 37

6. PROGRAMMING THE DATA TAKER AND SIMULATIONc.cccovenee. 39
6.1 Data Taker and Programming the Data Takercccccovevieiiiiiie e, 39

Xi

6.2 Programming the SIMUIAtioNcccveieiieiiiie e 40

7. CHARACTERIZATION OF SWARMcooiiiiiiiiiiieee s 43
8. PERFORMED TEST RESULTS......cciooiiiiiiii e 45
9. CONCLUSION ...ttt 51
REFERENCESo 53
APPENDICESo 57
APPENDIX A Lo 58
APPENDIX B ... 69
APPENDIX C oo 72
APPENDDX D . 78
CURRICULUM VITAE ... 85

Xii

ABBREVIATIONS

ABS
LCD
PWM
PCB
PSD
IR-LED
PAN ID
CH

DL

MY

AT

API
RSSI
BL

: Acrylonitrile Butadiene Styrene

: Liquid Crystal Display

: Pulse Width Modulation

: Printed Circuit Board

: Position Sensitive Detector

> Infrared Light Emitting Diode

: Personal Area Network Identifier

: Channel

: Destination Low Address

- 16 bit source Address

: Transparent Mode

: Application Programming Interface
: Received Signal Strength Indication
: Body Length

Xiii

LIST OF TABLES

Table 1.1 :
Table 1.2 :
Table 1.3 :
Table 1.4 :
Table 1.5:
Table 2.1 :
Table 2.2 :
Table 3.1 :
Table 3.2 :
Table 6.1 :
Table 8.1 :

Page
Classification of the studied problems in swarm robotics. 2
The used modeling types and communication between the robots........... 4
Developed mobile robot specifications.ccocveveiiiereeieiciese e, 5
Classification of swarm robots in this thesis...........ccccoocvveniiiiiin e 5
The used robots in the swarm robotics [4].......ccccoveviveveiieieece e 6
Mechanical COMPONENTS.coviiiiiriiiiii e 8
Electrical COMPONENLS.ccveiuiiieiicce e, 11
Analog output values of analog distance SENSOI.cccccveveriverieiiennnn, 18
XBee configuration for AT MOUE.ccccovevveiieiiieie e 21
Output of the Map fUNCLION. ..o 39
TESETESUILS. vttt 50

XV

LIST OF FIGURES

Page
FIQUIE 2.1 2 BaASE PIALE......eceieceicie e 9
Figure 2.2 : Battery hoIers. ..o 9
FIQUIE 2.3 2 TOP PIAtE. .o 10
Figure 2.4 2 FINal aSSeMBIY.cooiiiiiiiieee s 10
Figure 2.5 : Final CAD aSSembBIY.........c.cooveiiiiiiice s 10
Figure 2.6 : LM2576 fix +5V DC OULPUL CIFCUIL.c.ovvviiiiiiieieiesec e 12
Figure 2.7 : L298N MOtOr ArVEN........ccviiieieiie ittt 12
Figure 2.8 : XBee S1 wireless antenna connection to Arduino Mega 2560. 12
Figure 2.9 : LSM303D connection to Arduino Mega 2560.ccccovevvevierivennenne. 13
Figure 2.10 : Schematic design of Shield. ...t 14
Figure 2.11 : PCB layout of the Arduino Shield............cccccoviiieiiiieic e 15
Figure 2.12 : The last view of the Arduino Shield...........cccccooiiiiiiiiiiee, 15
Figure 3.1 : The working principle of the analog distance sensors.............cccccev..... 17
Figure 3.2 : Calibration fUNCHION.ccoiiiiiiieii s 18
Figure 3.3 : Calibration code of digital compass.cccccccvrveiireiieiieieere e 19
Figure 3.4 : The output of the digital COMPASSccccuriiriiiiiiiieieeeeeee 19
Figure 3.5 1 XBeE a0apLer.c.veiieiiciccie ettt 20
Figure 3.6 : X-CTU XBee configuration WiNAOW.ccccerererenirenenineseeeeens 22
Figure 3.7 : Network mesh topology of XBee [49].cccecvvieiieiecieceece e 22
Figure 3.8 : XBees communication NEtWOIK.ccovriirieiiiiinenc e 23
Figure 4.1 : Mechanism of swarm behavior.cccoooiiiiiici e 26
Figure 4.2 : Pulse Width Modulation [S51].cccocoeiiiiiiiiiiieeec s 28
Figure 5.1 : Structure of Arduino SOftWare.ccccovevveii i 29
Figure 5.2 : Control parameters of the robots.ccocviiiiiii e, 30
Figure 5.3 : Representation of the sensors in the code..........c.cooevveviiiciecc e, 32
Figure 5.4 : Control parameters of the robots.ccoeviiriiiiciee, 33
Figure 5.5 : The working principle of the void orientation..............ccccoevvivieieenene. 34
Figure 5.6 : The borders of the fields. ... 34
Figure 5.7 : Calculation of the PWM signals in the void ra.ccccooeveiieinene. 36
Figure 5.8 : Calculation of the PWM signals in the void 1.cccoovvviiinincnnn, 36
Figure 5.9 : The prepared data packet...........cccovveiiiiiiciie e 37
Figure 6.1 : The sending data to the simulation by data taker.c.ccoooevvrnnn, 40
Figure 6.2 : The simulation iNterface.cccovevviiii i 41
Figure 7.1 : Grayscale representation of the motion. ..., 44
Figure 8.1 : The test results of swarm with two robots............cccccevveviiiiiciin e 45
Figure 8.2 : The positions of two robots every 10 second during the motion. 46
Figure 8.3 : The test results of swarm with three robots.c.cccocoeviiiiiiiicinn 47
Figure 8.4 : The position of three robots during the motion.cccocvoviiiienn, 47
Figure 8.5 : The test result of swarm with four robots.............cccccooeviiiiiiii e, 48
Figure 8.6 : The positions of four robots in every 10 second during the motion..... 48

Xvii

Figure 8.7 : The results of swarm with five robots.ccccccevvviiiicieiicceccc s, 49

XViii

CONTROL AND SIMULATION OF MOBILE ROBOTS

SUMMARY

This thesis presents both control of mobile robots that can move by using collective
motion algorithm and simulation of the robots during the motion. The orientation of
the robots was controlled remotely by one user during the collective motion. The
transmission of orientation data from the remote controller to the robots was done by
using XBee modules. The control algorithm of collective motion was developed by
using individual-based model. Two modes are considered during the control. These
modes are search and swarm mode.

The collective motion was performed by robots that are moving with respect to some
pair-wise interactions. The pair-wise interactions between the robots were proposed
based on three rules namely attraction, parallel orientation and repulsion fields rules.
While the mobile robots try to move toward their neighbors in attraction field, they try
to remain close to their neighbors in parallel orientation field. The repulsion field rule
avoids the collision with each other during the collective motion.

Since the commercial mobile robots which can be used in swarm robotics are very
expensive, the robots used in this study were manufactured in the Prototyping
Laboratory, in Izmir Katip Celebi University. The mechanical parts of mobile robots
were designed using SolidWorks and manufactured by using 3D printer technology.
Arduino Mega 2560 programmable board was used as control unit of the robots. One
electronic circuit, named Arduino Shield Circuit was designed using Proteus 8
Professional. It was produced in order to connect the used electronic components to
related pins on Arduino Mega 2560 easily and in a secure way avoiding short circuits.

The simulation code works as a real-time simulation. The code uses the data received
from the robots to simulate the motion of the robots. The simulation also saves the all
the received data from the robots to one Excel file. Two parameters, polarization and
expanse were calculated in order to observe and characterize the motion of the swarm
robots by using the saved data.

Lastly the collective motion was tested for a group of two, three, four and five robots.
The expanse and polarization values were presented for each test.

XiX

SURU MOBIL ROBOTLARIN KONTROLU VE SIMULASYONU

OZET

Bu tez kolektif hareket algoritmasini kullanarak hareket eden robotlarin kontroliinii ve
hareket halindeki robotlarin simiilasyonunu gosterir. Robotlarin y6nlenme agisi
robotlarin kolektif hareketi siiresince bir kullanici tarafindan uzaktan kontrol edilir.
Yonlenme agisinin uzaktan kontrolcliden robotlara gonderilmesi XBee modiilleri
kullanilarak saglanmigtir. Kolektif hareketin algoritmasi bireysel tabanli model
kullanilarak gelistirilmistir. Kontrol sirasinda iki mod dikkate alinmistir. Bunlar arama
ve siirii modlaridir.

Kolektif hareket birbirleri arasindaki ikili etkilesimlere gore hareket eden robotlar
tarafindan gergeklestirilmistir. Robotlar arasindaki bu ikili iliskiler ¢ekim, paralel
yonlenme ve itme alani kurallar1 olarak adlandirilan ii¢ kural iizerine tasarlanmistir.
Robotlar ¢ekim alaninda komsu robotlara dogru hareket ederlerken, paralel yonlenme
alaninda ise birbirlerine yakin kalmaya calisirlar. Itme alani kurali kolektif hareket
sirasinda robotlarin birbirleriyle ¢arpismasini dnler.

Siirti robotiginde kullanilabilecek ticari mobil robotlar ¢ok pahali oldugundan dolayi,
robotlar laboratuvarda {iretilmistir. Robotlarin mekanik parcalart SolidWorks
programinda tasarlamis ve ii¢c boyutlu yazici teknolojisi kullanilarak iiretilmistir.
Arduino Mega 2560 programlanabilir kart robotlarin kontrol birimi olarak
kullanilmistir. Arduino Shield devresi olarak adlandirilan bir elektronik devre karti
Proteus 8 Professional programinda tasarlanmistir. Daha sonra kullanilan elektronik
elemanlart Arduino Mega 2560 lizerindeki ilgili bacaklara kolayca ve kisa devre
olusmayacak giivenli bir sekilde baglamak icin iiretilmistir.

Simiilasyon ger¢ek zamanli simiilasyon olarak ¢aligmaktadir. Simiilasyon robotlarin
hareketini simiile etmek i¢in robotlardan alinan verileri kullanir. Simiilasyon ayni
zamanda robotlardan alinan verileri bir Excel dosyasina kaydeder. Bu kayit edilen
verilen kullanilarak siirii robotlarin hareketinin karakterizasyonunu incelemek i¢in iki
farkli parametre olan kutuplagsma ve yayilma degerleri hesaplanmstir.

Son olarak kolektif hareket iki, {i¢, dort ve bes robottan olusan gruplar i¢in test
edilmistir. Bu testler i¢in kutuplagsma ve yayilma verileri gosterilmistir.

XXi

1. INTRODUCTION

Swarm robotics is a new research field including physical robot body design,
construction of robot structure and control of multi-robots systems [1-3]. Swarm robots
can be considered as multi mechatronic systems interacting with each other, because,
robots can be manufactured using mechanical, computer, electrical and electronics
engineering disciplines. Firstly, robot design and construction of robots are directly
related to mechanical engineering. Secondly, design of electronic circuits, sensors and
batteries are related to electrical and electronics engineering. Thirdly, control of robot
behavior via software is related to computer engineering. As a conclusion, a mixture
of mentioned engineering disciplines is used to construct and control swarm robots.

Swarm robotics is a research area with potential applications such as rescue missions,
constructing buildings, distributed sensing tasks, nanorobotics, micro robotics, mining
tasks and agricultural foraging tasks. The most important three tasks which can be
performed by swarm robots are rescue missions, mining and agricultural foraging for
Turkey. On the other hand, the production of mobile robots for purpose of swarm
investigations can be achieved at very small budgets.

Swarm robotics approach gets the its inspiration from the collective movement of
social insects such as ants and honey bees and fish which show the three desired
parameters to be achieved for multi-robots systems: robustness, flexibility and
scalability [1, 3-6].

Robustness is defined as the need to have a swarm or group work continuity even under
abnormal condition such as the presence of disturbances in the working environment
of the robots, or the failure of some the robots of swarm. Flexibility can be defined as
the capability of the swarm robots to find different solutions for different tasks and to
adapt to different or changing needs of environment and moment. Robustness and
flexibility seem to have the same meaning, but the difference between these two can
be observed in problem level. As the problem changes, the swarm needs to be flexible
and solve the new problem by changing the behavior of the swarm. Flexibility can be
observed in biological systems, like ant colonies, for instance. They can adapt to
different environments and perform different tasks such as foraging and chain
formation problems with the same self-organized behavior mechanism. Scalability can
be defined as the insensitivity of the performance of the swarm robots in terms of

1

number of the individuals. For example, the desired performance of the swarm should
not be related with the individual number in the swarm [1, 3-6].

There are too many problems that are studied in swarm robotics. These problems can
be classified into three classes as the problems based on patterns, focusing entities in
environment and mixed one of the both. These classification is shown in Table 1.1.

Table 1.1 : Classification of the studied problems in swarm robotics.

The problems based on
patterns

Focusing on the entities
in environment

Mixed one

Pattern formation[7-9]
Chain formation[10]
Aggregation[11]
Migration

Searching for targets[13]
Foraging[14, 15]
Rescuing[16]

Cooperative transportation
Demining[17]

Exploring the planet[18]
Navigating in large areas

Coordinated
movement[12]

Since the flocking problem is the most studied problem in the swarm robotics, in this
thesis flocking problem was studied as a pattern formation problem. This thesis
consists of 9 parts. The first chapter of the thesis is introduction and literature review.
The second chapter describes the design and manufacturing of both mechanical and
electronic parts of the mobile robots. While the third part is related with calibration
and configuration of the used components such as sensors, XBee modules and digital
compass, in the fourth chapter the control unit and control algorithm were explained.
The programming of the mobile robots was explained in detail in chapter 5. The
chapter six present both the simulation of mobile robots and the data taker
programming. The characterization parameters, polarization and expanse, of the
swarm were explained in the chapter 7. In the chapter 8 and 9, the performed test
results and conclusion of the study were presented respectively.

1.1 Literature Review

The swarm robotics and swarm simulation studies started to be investigated around
1980s. One of the first swarm simulation was created by Craig Reynolds [19] in 1987.
When this computer simulation was created, this type of collective motion was rarely
seen in computers. However nowadays, simulations of collective motion are very
popular and widely spread.

The collective motion of fish schools was investigated by Inada [20]. The effect of
variation of preferred direction was analyzed with his model. His simulation consists
of three rules namely attraction, parallel orientation and repulsion.

Strombom proposed a collective motion model including as a single rule attraction
[21]. On the other hand, three different phases were generated by his model. These
phases are swarm, undirected mill and moving aligned groups. Model of Strombom
shows that attraction alone can produce many of the patterns which are seen in
simulation with alignment. Furthermore, the simulations of collective motion are
proposed by using elastic springs between nearby individuals [22, 23].

Oboshi [24] carried out one computer simulation of prey-predator system. He observed
the behavior of a fish swarm escaping from a predator. His simulation was compared
with the behavior of real swarm of fishes. Two new methods are presented for direction
sensing of a robot swarm in order to perform some applications that include landmine
detection and firefighting by Venayagamoorthy [25]. The first method indicates an
embedded fuzzy logic approach in the particle swarm optimization algorithm. The
second one presents a swarm of fuzzy logic controllers.

Castro [26] improved a tool that has strategies for a hunting game between predators
and prey by using particle swarm optimization. Based on emergent behavior, this tool
was designed in three dimensional environments.

Development of simulations on collective motion has also caused new technological
advances as the collective motion of robots, for instance. The collective motion
exhibited by animals is applicable to control robotic swarms for specific tasks. There
are already many examples of robotic swarms which are controlled by collective
motion algorithms and different modeling types.

One of the first swarm robotics study was carried out by Fukuda et al. [27] as a
distributed robotic system that had separable mobile robots. These mobile robots were
able to communicate with each other. Fukuda et al. experimentally presented that these
mobile robots were able to connect and separate with each other automatically to
construct a manipulator.

Atyabi et al. [28] designed a robotic swarm which was navigated by a simulation that
has two phases, training and testing. The training phase consisted in the participation
of agents in survivor rescuing missions as a team. In the test phase, performance of the
agents was improved by using the obtained knowledge in training phase.

Swarm robots were controlled by using wireless sensory network and multi mobile
robot approach in the study of Lee and Shen [29]. In their study six and twelve
individuals were used to simulate swarm behaviors.

3

Fredslund and Mataric [8] investigated motion of four mobile robots as a pattern
formation problem using local sensing and minimal communication. In their study the
robots were moving without knowing the position or heading of neighbor robots,
besides the information regarding one of the neighbor robots.

Ijspeert et al. [30] studied the collaboration of a group of simple reactive robots for
stick pulling problem. The task of the robots, which required collaboration of two
robots, was to pull a stick out of the ground. In their study 2 to 6 robots were used.

Turgut et al. [31] produced mobile robots named Kobots. The flocking problem using
seven mobile robots was investigated. The movement of Kobots was also simulated in
computer. The Kobots have two important properties. The first one is short range
sensing system that can measure the distances from obstacles and kin robots. The
second one is VHS (virtual heading system) that has a digital compass and a wireless
communication module for sensing the relative headings of neighboring robots.

Trianni et al. and Trianni et al. [32, 33] investigated the motion of a swarm of robots
called s-bot. In their study the robots had to explore an area avoiding falling into the
holes in the area. The robots avoided falling into the holes due to their ability to connect
and disconnect with each other.

Bahgeci and Sahin [7] developed a 3D simulator for an aggregation problem on a
swarm robotics system. In the simulator the motion of the simulated robots was studied
with different parameter settings.

In the literature there are several methods of control modeling and two types of
communications between robots [1, 6].

Table 1.2 : The used modeling types and communication between the robots.

Sensor-Based Modeling [7, 11, 34]
Microscopic Modeling [30, 35, 36]
Macroscopic Modeling [37-39]
Cellular Automata Modeling [40]
The Communication | Interaction via Sensing

Between The Robots | Interaction via Communication

The Modeling Method

Sensor based modeling is the most commonly and the oldest modeling method used in
swarm robotics applications. Sensor based modeling method considers the sensors,
motors and the objects in the environment as the main components of the system. After
modeling these components, interaction of the robots between objects in the
environment and each other are modeled [1].

Microscopic modeling is a modelling method which models the interactions both robot
to robot and robot to environment individually. In this method all cases for all events
are modeled for each robot.

Macroscopic modeling takes the swarm robots as a whole system. Macroscopic
modeling models the whole behavior of the swarm directly.

Cellular automata modeling is the simplest mathematical model of swarm robotics
system. This model contains discrete lattice of cells in one or two dimensions where
each cell in the lattice has finite number of possible states. Each cell interacts only with
the neighbor cells and the system dynamics are characterized by the local rules
performed locally on the cells in discrete time steps.

The robots which are studied in swarm robotics applications, and specifications of
these robots are shown in Table 1.5. In this thesis sensor based modeling method was
used in order to program the robots.

In this thesis, firstly Original Arduino Robot was considered to be used for swarm
control application. The Original Arduino Robot has no more than one communication
port to connect any wireless communication modules. Besides, the commercial mobile
robots for swarm applications are very expensive. Because of these two reasons, the
robots which were used in this thesis were produced by the author. The specifications
and classification of this robot are shown in Table 1.3 and in Table 1.4.

Table 1.3 : Developed mobile robot specifications.

Size Actuators Computing | Sensors | Communication Relative Development
(mm) (differential | capabilities positioning | /Production
(dia.) drive) system Cost
130 Wheeled AtMega 8 IR XBee S1 IR Based Research/
2560 MCU 250€

Table 1.4 : Classification of swarm robots in this thesis.

AXis Description This Thesis
Collective size Number of robots in the |5 (max)
collective
Communication Maximum communication range | 300 mm
range
Communication Of the robots in the | IR sharp sensor
topology communication range, those
which can be communicated with
Process ability The computational model used | Distributed aggregation
by the robots model
Collective Are the robots homogenous or | Homogenous All robots
composition heterogeneous are completely same

Table 1.5 : The used robots in the swarm robotics [4].

Name Size(mm) Actuators Computing Sensors Communication Relative Development/
(diam.)or(l x w) capabilities positioning Price (If
system commercial)
Khepera [41] 55 Wheeled Motorola 8IR RS232 Wired link - Research
(differential MC68331
drive)
Khepera 111 [42] 120 Wheeled PXA-255 (400 111IR WIFI and IR based Research/
(differential MH2z) 5 ultra sound Bluetooth 3200 €
drive) Linux and
dsPICs
e-puck [43] 75 Wheeled dsPIC 111IR Bluetooth IR based Research/
(differential Contact ring 850 €
drive) Color camera
Alice [44] 20x 20 Wheeled Microchip PIC IR proximity Radio - Research
(differential and light (115 kbit/s)
drive) Linear camera
Jasmine [45] 23 x 23 Wheeled 2 AtMega 8IR IR IR based Research
(differential microcontrollers
drive)
S-Bot [46] 120 Wheeled XSclae (400 15 Proximity WIFI Camera based Research
(differential MHz) Linux OmniCamera
drive) PICs Microphone
Kobot [3, 31, 47] 120 Wheeled PXA-255 (200 8IR XBee IR based Research
(differential MHz) and Colour camera
drive) PICs
SwarmBot [48] 127 x 127 Wheeled ARM (40 MHz) | IR, light sensors IR IR based Research
(differential and Contact, camera

drive)

FPGA 200 kgate

2. DESIGN AND MANUFACTURING OF MOBILE SWARM ROBOTS

2.1 Design Criteria and Component Descriptions

Design and manufacturing of robots consists of two parts. The first part is the design
and production of mechanical parts. The second part is the design and manufacturing
of Arduino shield circuit board. Some criteria were considered during the design of
robots. These criteria are the robot speed, the robot size and the ability of robots to
perform certain tasks. Design criteria of robots are ordered as follows:

e Robot speed should be 5 cm/s to 10 cm/s.

e Robot size should be 130-200 mm diameter and circular shape.

e The robot is able to detect walls or obstacles while it is moving.

e The robot is able to calculate its rotation angle with respect to North while it is
rotating.

e The robot is able to transmit and receive data to/from the other robots.

e The robot is able to operate without stopping for at least one hour.

All the components such as motors, sensors, wheels, ball casters, motor brackets and
the other circuit components were chosen using the design criteria of the robots. The
mechanical parts of robots were designed according to these components.

2.2 Components

We can divide all the used components and units in to three groups. These groups are
mechanical components group, control unit of robots and the other electrical
components and sensors group. The mechanical components and their specifications
are shown in Table 2.1 while the rest of the components will be shown in electrical
design section.

Table 2.1 : Mechanical components.

Component Quantity | Specification Figures
Name
Electrical DC |2 Transmission ratio 1:100
motor with Speed 320 rpm at 6V DC ((%
gearbox (100:1 Current v§ »
Micro Metal Free run current is 80 mA, %
Gear motor HP Stall current is 1600mA and v
(320 Rpm)) Stall torque is 1.8 kg-cm.
Wheel 2 Diameter of wheel is 32mm,

thickness of it is 6.5mm @
Plastic ~ Motor | 2 This component was used to
Brackets attach the motors on the base ‘

plate. ' o
Ball Casters 2 This small ball caster uses a

9mm diameter metal ball. This

component was used to balance

the robot. The ball casters were

placed bottom of the robots

symmetrically.

2.3 Design and Manufacturing of Mechanical Parts

The robots were designed in such a way as to be able to carry all the components
required for their motion and control. They consist of three main mechanical parts, the
base plate, top plate and battery holder. All the mechanical parts were designed in
SolidWorks. The 3D models of the other components were also inserted in the
assembly drawing in order to check the compatibility of all the pieces.

After assessing the compatibility of all the components, the mechanical parts of the
robots were produced by using 3D printer U-print SE. The material used by the 3D
printer is Acrylonitrile butadiene styrene (ABS).

2.3.1 Base plate and battery holders

The base plate (Figure 2.1) has a diameter of 130 mm and 2 mm thickness. Since the
biggest component of the robot was battery, robot sizes were determined according to

8

the battery. On the other hand eight analog distance sensors were needed, therefore the
other affecting factor on the robot size is the number of the analog distance sensors.

The base plate can be named as chassis of the robot. It carries the motors, the wheels,
the ball casters, top plate and the battery with the battery holders. It has twelve holes
for bolts to fix ball casters, motor brackets and plastic rods which hold the top plate.
The base plate also has two openings for the wheels. These openings and holes were
designed according to the dimensions of the motor brackets, wheels and ball casters.

The battery holders consist of two parts. These two parts have the same size, but one
of them has two openings on its corners for the battery cables. The battery holders are
designed according to the dimensions of the batteries. The battery holders (Figure 2.2)
have two rods on their bottoms in order to fix on the bolts of the ball casters on the
base plate.

Battery Holder

Ball caster mounting B
Ball caster

Figure 2.1 : Base plate. Figure 2.2 : Battery holders.

2.3.2 Top plate

The top plate (Figure 2.3) has same size as the bottom plate. The top plate carries
Arduino Mega 2560 with designed Arduino shield circuit. The top plate has eight
protrusions on bottom surface in order to connect the analog distance sensors to the
robot. These protrusions were placed at 45° with respect to each other. Two openings
were provided on the top plate for connection wires to pass. After the connection wires
of motors and analog distance sensors pass through these two openings, they are
connected to the Arduino Shield circuit. Since no cables pass in front of the analog
distance sensors, they give more accurate measurements.

After all the mechanical parts were designed, they were assembled (Figure 2.4) in
SolidWorks for checking the compatibility of parts.

Connection wire opening

Figure 2.3 : Top plate.

Figure 2.4 : Final assembly. Figure 2.5 : Final CAD assembly.

2.4 Design and Manufacturing Arduino Shield Circuit

Although the main control unit of robots is Arduino Mega 2560, it cannot be used
without additional electrical circuit. Arduino shield circuit was designed to connect
easily all the connection wires of electrical components (Table 2.2) and sensors on
Arduino Mega 2560. Also it was designed in such a way as to avoid short circuit and
open circuit that can happen accidentally during the movement. Therefore connections
will be very stable while the robot is moving.

10

Arduino shield has four sub-units. These are voltage regulator unit, motor driver unit,
wireless communication unit and digital compass module. All these units were tested

on the breadboard separately before the whole design of the circuit.

Table 2.2 : Electrical components.

Component Name | Quantity Specification Figures

Arduino Mega 1 Control Unit of

2560 the robots. It has
16 analog input
pins and totally 54
digital 1/0 pins of
which provide 15
PWM output.

Analog Infrared 8 Sensors perform

Distance Sensor distance

(Sharp Sensor) measurements in a
range 4-30 cm.

Digital Compass 1 It is used to

(LSM303D 3D calculate the angle

Compass and between North

Accelerometer) and its orientation.

XBee S1 Wireless | 1 XBee, ImW

Communication Series 1 Wire

Module Antenna, 2.4 GHz
operating
frequency, 100 m
Communication
Range.

LCD Screen 1 16x2 character
LCD (Liquid-
crystal display)
screen

Li-Po Battery 1 7.4V and 3050
mAh Li-Po battery
is used for the
Robots. The Size
of battery is
117x32x16mm.

LM2576 (Figure 2.6) is a voltage regulator that can regulate up to 40V input voltage
to 5V. In the shield circuit it regulates from 7.4 to 8.4 Volt of battery voltage to 5 Volt.
This regulated +5V was used for the analog distance sensors and LCD screen as an
input voltage. The L298N (Figure 2.7) including two H-Bridges was used in the circuit

11

as a motor driver with 15 pins and two channels. It allows to control motor speed and
rotation direction of motor. Operating supply voltage ranges from 5V to 46V and up
to 2 Ampere current for each channel. In this study Arduino PWM outputs were used
as inputs of L298N motor driver.

7V - 40V FEEDBACK
(60V for HV) w| LM2576/ |3
”NREGC”'["“;Sg 7] LM2576HV- L1 +5V
OUTPUT T REGULATED
i OUTPUT
ESSN (02

5.0
L oy = 100K +| coir 3A LOAD
100 uF 3| N0 3 | oN/orF D1 =Bt
| 1N5822 | 1000:25

Figure 2.6 : LM2576 fix +5V DC output circuit.

5 5-46V
Tg 4 L298N MOTOR DRIVER
Arduino PWM 9 |>—§ N1 VCC Vs >
Arduing PW 10 [>————7— IN2 ouT1 —=——{> Motor1.1
Arduing PWM 11 [>————7— IN3 7
Arduino PWM 12 [>————5— IN4 QUT2 —————> Motor1.2
6
1| ENA 12
5 |>—l— ENB ouT3 ——{=> Motor2 1
1; SENSA outa 14— > Motor2.2
SENSB GND
8 L298N

Figure 2.7 : L298N motor driver.

XBee S1 wireless antenna was used for wireless communication among the robot or
between the robots and remote controller. Although it has 20 pins, only its 4 pins were
used in the circuit. These pins are ground, data in (Rx), data out (Tx) and 3.3V input
voltage. In the circuit these four pins were connected (Figure 2.8) to the pins of
Arduino Mega 2560 ground, Tx3, Rx3 and output 3.3V respectively. The other pins of
XBee are analog and digital input output pins which allow to send analog or digital
data to other XBees without any microcontroller.

Figure 2.8 : XBee S1 wireless antenna connection to Arduino Mega 2560.

12

LSM303D is a system-in-package containing a 3D digital linear acceleration sensor
and a 3D digital magnetic sensor. The LSM303D digital compass and accelerometer
was used in order to sense the angle of orientation with respect to North. In the other
words, the output of the LSM303D digital compass gives the orientation of the robots.
Although it has 9 pins, only 4 of these 9 pins were used in the circuit to read the
compass data (Figure 2.9). The LCD screen which can show 16x2 characters, was used
to see the different type of data such as analog distance sensor value, received and
transmitted wireless data and compass data.

VDD (3.3V Out) S8

Figure 2.9 : LSM303D connection to Arduino Mega 2560.

The analog distance sensors have only three pins as ground, 5V input and output. These
pins were connected to Arduino Mega ground, 5V output of Arduino and analog input
of Arduino respectively. It gives output voltage in a range of 3.3V — 0.3V.

According to all these Arduino connections Arduino shield circuit was designed in a
circuit schematic design and PCB (printed circuit board) layout drawing software
Proteus 8 Professional. Firstly schematic design of the shield (Figure 2.10) was done
according to appropriate connections between the pins of electrical components and
sensors to Arduino Mega Pins. Then the schematic design PCB layout drawing was
performed. Since some of the components such as XBee module and digital compass
may interact with each other while they are working, they were placed in the circuit in
such a way to prevent interference from happening.

13

air ovr L¥r

TTEPTITRLL e
EEEREEER AL
e B zoruy \Boruy noo M e
fdy
233222234.._ EXIIIII
T, TR
+
\vi 14 wz |wm |uoz
z <<<<MMMM z zgog tnge 232 H | (7
3 g) &
s BEHE Lo v] -
e I - 1
i g 29999999
M <] 15 - Y (%1 1 P a_..__s
gLr = M«W NgsTl ¢
55 LUS-NNGD = @
* +35Md |_| Tamion <—————— rno o i
il 1I5-HiNGD e |I_.H._ r,_z © vz <] o %ﬂﬁ‘
Sir ml| 710 L ﬁﬁ e ” _ WMH |-
anNo 3snd oiLa crenoy VRN <] 10 n]z vedion
- A F=—<] v —
— NOLLNG 1353 F zuaom D
- Bussax on " e
S ozr = 1oDrNE
ZuooN Lu sodemit
P 1001) 52
m doaw doal c MN nmnw —_
BN z
— Eraie
~— ar <] cumon
- =
e =T
- z| =
=] T ner B8l - g
a1t
1=
e —> et |
L %1 P51 B Y)) Y Y £ 5 P [) FS =) B B BN P P Y (Y
= L L
- Esiiesl] [Ssiiiassiiiiiit]
L doot - = - .
a _ 62 aEgens FUSHNOD DFIS-NNOD 7

Figure 2.10 : Schematic design of shield.

14

After the design PCB layout (Figure 2.11) was printed on a special paper. Then the
paper was put and ironed on the copper plate to transfer printing from paper to the
copper plate. The printed copper plate was put in a solvent which contains HCI and
H>O2 in order to dissolve the unprinted copper area. After drilling holes on the plate,
the electrical components were soldered (Figure 2.12) to the plate.

Figure 2.11 : PCB layout of the Arduino Shield.

Figure 2.12 : The last view of the Arduino Shield.

15

3. CALIBRATIONS OF SENSORS AND CONFIGURATIN OF XBEE S

3.1 Calibrations of Sensors

In this study two different type of sensors (the analog distance sensors and digital
compass) were used. The analog distance sensors contain an integrated combination
of PSD (position sensitive detector), IR-LED (infrared emitting diode) and signal
processing circuit. Analog distance sensors send an IR light to the object. After IR
light reflects from the object, it reaches a certain place (Figure 3.1) on PSD and sensor
gives an output voltage in a range of 3.3V- 0.3V according to place where IR light
reaches.

IR [——] IR —

Figure 3.1 : The working principle of the analog distance sensors.

The output pin of the analog distance sensor was attached on one of the analog input
pins of Arduino Mega 2560 in order to read sensor output. Arduino analog pins give
an analog output value between 0 and 1023 which changes from 0 V to 5V. Since
sensor does not give directly the distance output, the output value of sensor should be
converted to meaningful distance output. The analog output values were recorded from
40 mm to 250 mm, in every 10 mm in order to convert to analog output values to the
real distances in terms of millimeters. These recorded values are given in Table 3.1.
The software Mathematica was used to find a curve fit function for the recorded data.
This function calculates the distance in terms of millimeters by using the analog output
of the sensor as an independent variable. A fifth degree nonlinear function (Figure 3.2)
was obtained due to the characteristic of the sensor. The correlation between function
and data was very good as shown by the value R? as well. This obtained function was
used as a sub converting function from analog output to millimeter in written control
codes of the robots.

17

Table 3.1 : Analog output values of analog distance sensor.

Real Real Real
Analog Distance Analog Distance Analog Distance
Output (mm) Output (mm) Output (mm)
520 40 197 120 117 190
438 50 185 130 113 200
382 60 169 140 105 210
329 70 158 150 100 220
290 80 145 160 96 230
263 90 138 170 93 240
236 100 130 180 88 250
216 110
Distance(mm)
y = 595.121 — 6.392x + 0.0360895x2 — 0.000109734x3 + 1.67994 x 10~7x* — 1.01098 x 10~10x5
250+ R? = 0.99881
200}
150t
100t
50t
0 : : : : : Analog Output
0 100 200 300 400 500

Figure 3.2 : Calibration function.

The LSM303D Arduino library was used in order to read the output data of the sensor.
Although Arduino library was used, the digital compasses needed be calibrated. The
digital compass gives two different integer type output value for each axis as a
maximum and a minimum value of axis between -32767 and +32767 according to the
North. The default maximum and minimum values in the used library for each axis are
defined +32767 and -32767 respectively. Since magnetic field changes from one
location to another location on the Earth, also the digital compass maximum and
minimum output values show an alternation according to the location of the compass
on the Earth. Therefore the digital compass maximum and minimum output values
must be read and replaced the default values. After calibration code (Figure 3.3) was
uploaded to Arduino Mega, the digital compass was connected to Arduino Mega.

18

While the digital compass were rotating randomly on the each axis for all angle
possibilities, the maximum and minimum output values were observed on the serial
monitor (Figure 3.4) of Arduino Mega 2560. The serial monitor of Arduino was
observed until the maximum and minimum output values for each axis stop changing.
When the output values were stable, these output values were recorded and defined in

the control code as maximum and minimum compass values.
@ calibrate | Arduino 1.6.0 =)

File Edit Sketch Tools Help

Calibrate §
L #include <Wive.h> -
#includs <LEM303. h>

| TEM303 compass
5 1L8M303: :vector<intl6_t> running_min = (32767, 32767, 32767}, running_max = [-32788, -32768, -32768);

char report[80];

9 void setup() |

(9600) ;

1 compass. init () ;
13 compass.enableDefault ();
14}

1

L6 void loop() (

1 compass. read () ;

1

1

Funning_min.x = min (running_min.x, compass.m.x);

20 running_min.y = nin(running_min.y, compass.m.y):

I running_min.z = min(running_nin.z, compass.m.z);

running_max.x = nax (FUNNing_max.®, compass.m.x);
running_max.y = max(running_max.y, compass.m.y);
running_max.z = nax (running_max.z, compass.m.z);
snprintf (report, sizeof (report), "min: (%+Gd, %+6d, %4Gd) max: (+Gd, ¥HGd, V+Ed)",

running min.x, running min.y, running mir
running_max.x, running_max.y, running_mas

0 Serial.println(report);

i1 lelay (100) &

eaving 7,600 b sariables. Maximum

Figure 3.3 : Calibration code of digital compass.

Mg. .!.. .* . == I @ comar =]

|
min: { -372, +1078, +1386} max: { -338, +1161, +1440} “|| ||min: { -2686, -2630, -3032} max: { +2426, +2384, +1822} °
min: { -372, +1078, +1386} max: { -334, +1161, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1386} max: { -334, +1161, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1384} max: { -334, +1170, +1440} min: { -2686, =-2630, =-3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -331, +1171, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -331, +1171, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -330, +1171, +1440} llmin: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -330, +1171, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -330, +1171, +1440} llmin: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -330, +1171, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -330, +1171, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -372, +1078, +1375} max: { -325, +1172, +1440} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, +926, +1375} max: { -325, +1172, +1514} min: { -2686, =-2630, =-3032} max: { +2426, +2384, +1822}
min: { -376, +926, +1375} max: { -325, +1172, +1514} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, +36, +1375} max: { -318, +1172, +1753} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +1343} max: { -149, +1172, +1753} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +1343} max: { ~-149, +1172, +1753} min: { -2686, =-2630, =-3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +833} max: { +1446, +1172, +1753} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, ~-1654, +307} max: { +2184, +1172, +1753} |=||| ||min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +307} max: { +2184, +1172, +1753} min: { -2686, -2630, -3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +307} max: { +2184, +1172, +1753} min: { -2686, =-2630, =-3032} max: { +2426, +2384, +1822}
min: { -376, -1654, +307} max: { +2184, +1172 ~ 5
[] Autoscroll No line ending v | 9600 baud v [¥] Autoscroll Noline ending ¥ 9600 baud v

(a) During the calibration. (b) After the calibration.

Figure 3.4 : The output of the digital compass

19

3.2 Configuration XBees by Using X-CTU

XBee S1 is a wireless antenna which uses 802.15.4 networking protocol for
communication in 2.4 GHz operating frequency. XBees have two type of
communication modes, AT mode and APl mode. These modes and the other
communication settings of XBee are configurable. X-CTU software was used to
perform all these configurations. X-CTU is a Windows-based application which
allows to change PAN ID (Personal Area Network Identifier), destination low (DL)
address, channel (CH), 16 bit source address (MY) and communication mode of XBee.
XBee should be connected to the computer in order to perform this configuration.
Since XBee cannot be connect to computer directly, a tool which is called XBee
adapter (Figure 3.5) is needed for serial communication between XBee and computer.

-4
9 4%
D o 0o &

| <

Figure 3.5 : XBee adapter.

Two XBees should be configured in such a way that they have the same PAN ID and
CHANNEL for communication between each other for all communication mode.

AT mode is synonymous with "Transparent” mode. The use of this mode is simpler
than APl mode. In AT mode, any data sent to the XBee module is immediately sent to
the other module identified by the destination low address in memory of the sender
XBee. In this mode data package preparation is not needed, only simple send serial
data to the Transmitter (Tx) of one XBee and it will be received by the Receiver (Rx)
of the destination XBee. Because no packages are created the destination address and
type (only-data) are both fixed. In AT mode 16 bit source address (MY) of the first
XBee should be configured as destination low address of the second XBee. At the
same time 16 bit source address of the second XBee should be configured as
destination low address of the first XBee (Table 3.2). AT mode is used to set
communication only between two XBees. Therefore AT mode is not an appropriate
communication mode for the larger network.

20

Table 3.2 : XBee configuration for AT mode.

First XBee Parameters | Second XBee parameters
CH C CH C

PAN ID | 1001 PANID | 1001

DL 5 DL 10

MY 10 MY 5

Another communication mode for the XBee is called APl mode, for application
programming interface. Instead of sending or receiving the data alone, the entire frame
Is manually constructed for transmission and manually parsed on reception. In API
mode data must be formatted in frames with destination information and payload. The
frame consists of sender’s 16 bit source address, RSSI (Received Signal Strength
Indication) level, options, frame IDs, and the data or message itself. In the APl mode
channels and PAN ID of the XBees must be same as well. But 16 bit source address
and destination low address can be configured randomly as distinct from AT mode. As
frame has destination address which is the MY address of the receiver XBee, receiver
XBee can be identified in the frame without the need for configuration of XBees.
Therefore API mode is useful for larger wireless communication network, multiple
data receiving and sending. In this study APl mode was used for the communication
of XBees due to its advantages and flexibility.

In this study, communication Channel and PAN ID of the XBees were selected (Figure
3.6) as ‘C’ and 1001 respectively. The MY address of the robots was selected as 1.
While MY address of the remote controller was defined as 2, MY address of data taker
XBee on the computer was configured as 8. These MY addresses of the XBees were
selected randomly, because the MY address of the data transmitting XBee can be
defined in the prepared data frame in Arduino Mega the by the user.

21

Pl

XCTU Working modes Tools Help

mmam

@ Radio Modules ¥ Radio Configuration [- 0013A20040B0F42D]
Name:
AITE] Function: XBEE 802154 $ P iy 2= & a 2 |
E@ Port: COMS - 9600/8/N/1/N - API 2 Read Write Default Update Profile
MAC: NN IAINNANRNFAIN Modif k‘?‘- :>"” -
i CH Channel q (S 2]
| DPANID 1001 490
i DH Destination Address High 0 G O
i DL Destination Address Low 10 490
| MY 16-bit Source Address 3 490
i SH Serial Number High 13A200 S
| SL Serial Number Low 40BOF42D s
| MM MAC Mode 802154 + Maxstream headerw/acks (01 v| © @
| RR XBee Retries 3 490
| RN Random Delay Slots 0 (SX 7}
i NT Node Discover Time 19 x100ms B 906
i NO Node Discover Options Qn -

Figure 3.6 : X-CTU XBee configuration window.

3.3 XBee Communication Network

There are three type of communication network topology (Figure 3.7) such as star, tree
and mesh topology [49]. In all networks there should be one coordinator which set the
network and relay the messages among the other member of the network. The number
of the router and end devices of the network can be changed according to size of the
network. The routers are responsible for routing traffic between different nodes. End
devices do not route the data traffic between the nodes. They can move in the network
and rejoin directly the coordinator or another router. End devices send data such as
sensor data or any numerical value to the routers or coordinator.

@ @ ®© ® ®@®
A U L LL AN 1
F u | SEREEDE)
@ @ @ Coordinator @ Router @ End Device ® @
(@) Star (b) Tree (c) Mesh

Figure 3.7 : Network mesh topology of XBee [49].

XBee S1 wireless communication modules allow to set up only star topology network.
The other network topologies are usable and appropriate for the other XBee or ZigBee
wireless communication modules. In this study, while the robots and remote controller
were configured as end devices, data taker XBee on PC was configured as a
coordinator. In the network MY addresses of the robots, remote controller and data
taker were configured as 1, 2, and 8 respectively. The main reason that the same MY

22

addresses were given to the robots was to avoid the occurring time difference during
the robots are receiving data from the remote controller. The orientation data was sent
by the remote controller during the movement of the robots. After the robots received
the orientation data, they move according to the receiving orientation data and then
robots send their own orientation and velocity values to the data taker on PC.

In the API mode, the received data contains the address of the data transmitting XBee.
When the data taker receives the data, the addresses of the data are going to be same.
Therefore the data taker XBee cannot distinguish the data where it comes from. The
solution of this problem are going to be explained in section 5.4.

-D- Data Taker on PC
API 2 Mode MY address 8

-R-Remote Controller
API 2 Mode MY address 2

-E-Robots
API 2 Mode MY address 1

Figure 3.8 : XBees communication network.

In this thesis, two wireless communication line were created between XBee-s. The first
communication line was created between the robots and remote controller. The second
one was created between the data taker and robots (Figure 3.8). In Figure 3.8 E, R and
D represent the mobile robots, remote controller and data taker respectively.

23

4. CONTROL UNIT AND CONTROL ALGORITHM

4.1 Control Unit of the Robots

The Arduino Mega 2560 is a programmable board based on microcontroller Atmega
2560 chip. Although there are several Arduino programmable board for this study,
Arduino Mega 2560 was used as the control unit of the robots due to the fact that
Arduino Mega 2560 has too many pins. It has 54 digital input output pins of which 15
can be used as PWM (Pulse Width Modulation) outputs, 16 analog inputs which allow
analog reading, 4 serial communication port and a USB connection port. The number
of the analog input pins and communication pins were the reason why Arduino Mega
was used for controlling of the robots. The eight analog input pins were needed for
obtaining analog data from the analog distance sensors. On the other hand it is needed
at least one more communication port for the XBee connection besides Tx0 and Rx0
communication port of Arduino because this communication port is used for
programming Arduino microcontroller chip. If the zeroth (TxO and RxO)
communication port of chip is connected to XBee or any other devices that can be used
for serial communication with Arduino, the user cannot upload the program to Arduino
chip. If the zeroth communication pins are used for serial communication with any
devices, the user have to unplug the device from these pins before uploading the code
to the Arduino. The XBee was connected to third communication port (Tx3 and Rx3,
Serial3) of Arduino Mega for avoiding this unplugging procedure, since Arduino
Mega have 3 more serial communication port besides the zeroth port.

The Arduino Mega can be powered via USB or by any external DC power suppliers.
For the external powered there are two options. The first one is that the power supply
such as a battery can be plugged into the power jack of board. The second option is
that battery positive and negative poles can be inserted in Vin (input voltage) and GND
(ground) pin headers of Arduino Mega respectively. The recommended supply voltage
range for the second powered option is between DC (direct current) 7V and 12V by
the producer of Arduino Mega. In this study the second option was used to supply
power to Arduino Mega. The used battery voltage which is between 7.4V and 8.4V
was supplied to the Vin pin of Arduino Mega.

The Arduino Mega board can be programmed by using Arduino Software. The
Arduino Software allows to write a code and upload this written code to Arduino Mega

25

or any type of Arduino products such as Arduino Uno and Arduino Nano. The Arduino
Software is based on C programming language. There are several libraries written in
C or C++ for sensors and other devices, which can be inserted in the Arduino Software.
By using these libraries, reading data from the sensors, or usage of some special other
modules (such as XBee and digital compass) becomes an easier task.

4.2 Mechanism of Swarm Behavior

Mechanism of swarm behavior was developed according to pairwise interactions
between the robots (Figure 4.1). The pairwise interactions between the robots were
created based on three rules, namely attraction, parallel orientation and repulsion
field[20, 50]. The robots try to follow some rules during the movement. These rules
are:

¢ Intheattraction field, the robots try to get closer until they reach the parallel
orientation field.

¢ Inthe parallel orientation field the robots try to move in the same direction
and keep the distance between each other constant.

¢ Inthe repulsion field the robots try to move away from the each other until
they reach the parallel orientation field.

Parallel Orientation
Field

Repulsion Field

Attraction Field

Figure 4.1 : Mechanism of swarm behavior.
The radii of these three fields were defined in the control code of the robots as a

parameter. Also these radii values can be changed by the user in the control code. The
distances between the robots were measured by the analog distance sensors on the

26

robot. The robots compare the radii of the fields with the sensing the distances between
the robots. After the comparison the robots decide the movement type.

4.3 Control Algorithm

The control algorithm has four steps. These steps are as follows;

e Read the orientation data from the digital compass,

e Get the direction data from the remote controller,

¢ Read the distances from the analog distance sensors,

e Go to direction or behave according to neighbor robot.

The control algorithm of the robots is based on the control of the motors. The robots
get the distance data from the sensors, the orientation data from the digital compass
and the direction data from the remote controller by using XBee before signal was sent
to the motors.

The control of the motors was performed by sending PWM signal from Arduino Mega
to the L298N motor driver. The PWM signals allow to obtain analog output from the
digital outputs. Digital control is used to form a square wave signal that can be
switched on (5V) and off (OV). In order to obtain a voltage value between 5V and 0V
this on and off pattern can be simulated by changing the portion of time the signal
spends on (5V) during the period of the square wave signal. The time duration of 5V
is named pulse width. By changing the pulse width, varying analog output values can
be obtained.

In the Arduino, the period of the square wave signals is 2 millisecond. In order to get
analog output from the PWM output pins analogWrite(x) command was used on the
range between 0-255 for “x”. For example the analogWrite(127) is a 50% pulse width
which gives 2.5V output voltage (Figure 4.2).

The obtained analog outputs were used as input for the L298N motor driver. The
L298N motor driver gives the analog voltages as outputs to the motors according to
the input voltages. Therefore the speed of the motors can be changed during the
movement by the using PWM outputs.

27

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

Sv
Ov

25% Duty Cycle - analogWrite(64)
T
Ov

50% Duty Cycle - analogWrite(127)
Sv
Ov

75% Duty Cycle - analogWrite(191)
Sv
« U U U L

100% Duty Cycle - analogWrite(255)
Sv
Ov
Figure 4.2 : Pulse Width Modulation [51].

28

5. PROGRAMMING THE MOBILE ROBOTS

5.1 The Used Programming Software

Arduino Software (IDE-integrated development environment) was used to write the
control code of robots. The Arduino software is written in Java. It contains a text editor
in order to write codes, a message box which can show the errors while compiling or
uploading the codes, a toolbar with buttons for common functions and a series of
menus. The software can connect to Arduino boards and upload the written codes to
them.

The software consist of two main parts, void setup and void loop. The commands like
declaration of the pin types, starting the serial communication ports or initialization of
the created objects which runs only one time are written in the void setup. The
commands which run repeatedly are written in the void loop. Declaration of the
variables, importing the libraries and creating the objects are written before the void
setup (Figure 5.1).

sketch_jan30a | Arduino 1.6.0 = | B i

File Edit Sketch Tools Help

sketeh_jan30a §

#include <LSMZ03.h> Declaration Variables e
#include <iBes.h>

TImporting the Libraries
5 int x;
5 float yi
id setup() {
t yol

Creating the Objects

pu T tu le. here, to run o :
5 pinMode (4, OUTBUT) ; Initialization the Created Objects
10 pinMode (5, INPUT) ;

serial.begin (9600);

}

Declarations the pin types and starting=
the Serial Communication Ports

14 wvoid loop() {
15 put your main code here, to run repeatedly

Figure 5.1 : Structure of Arduino software.

The software allows to upload the written code to Arduino boards. Before the code is
uploaded to the boards, the appropriate ones are needed to be selected in the Board
section, which is in the Tools menu on the toolbar. At the same time, the connection

29

port between Arduino board and computer is required to be selected in order to upload
the code, otherwise software gives error during uploading. The connection port also
can be selected from the Tools menu on the Port section.

5.2 Converting the Control Algorithm to Programming Code

The control algorithm was converted to the code by using the Arduino Software. In
the code, four different libraries were used in order to make the programming easier.
These libraries are XBee.h, LSM303.h, Wire.h, and LiquidCrystal.h. The first two
libraries were downloaded from the web page of the used XBee and digital compass.
The other ones were already inside the Arduino software. The XBee library was used
to prepare the data package which is send to other XBee-s. Also it was used to convert
the received data to meaningful data.

The digital compass uses 1°C (Inter-Integrated Circuit) communication protocol,
which uses the SCL (Serial Clock Line) and SDA (Serial Data Line) pins of Arduino
Mega. In order to use this communication protocol, the Wire.h library is required.
LSM303.h library was used to directly obtain the orientation angle (6) of the robot
(Figure 5.2). The LiquidCrystal.h library was used to write data to the LCD screen,
such as orientation angle of the robot, received data or obtained distance value from
the analog distance sensors.

After all the libraries were imported to the control code, ten different sub-function
were written. These sub-functions were called in the void loop when the functions
were needed. The sub-functions are going to be explained in section 5.3.

The control parameters of the robots are shown in the Figure 5.2. These parameters are
the sensed North direction (ns), forward velocity (u) and velocity of the left and right
motors (VL and VR).

YA

Figure 5.2 : Control parameters of the robots.

30

5.3 Sub-functions in the Control Code

After the libraries were imported, three different objects were created for XBee, digital
compass and LCD screen respectively. The creation of these objects was needed due
to the structure of the libraries. These created objects are xbee, compass and Icd by
using the XBee.h, LSM303.h and LiquidCrystal.h libraries respectively.

The required variables were declared after the creation of the xbee, compass and lcd
objects. The created objects, the used Serial Port which is Serial3 for the XBee and the
used output pins which are from 9 to 13 of PWM pins were initialized and declared in
the void setup. Also one integer variable which is ‘k” was added for each robot. Since
all robots have the same MY address, when the data taker receives the data from the
robots, it is not able to distinguish the source of the received data. Therefore, the k
variable was used as an identifier for each robot. Afterwards the obtained calibration
data of each digital compass, which is the maximum and minimum compass values,
were attached to each robot by using the k variable with if command. On the other
hand the k variable was used to code the sending orientation angle and velocity data
from the robots to data taker on PC. Therefore the data taker can distinguish which
robot is transmitting the received data.

After assigning the address to each robot, the written sub-functions were used in the
void loop. The written sub-functions are ordered as follows:

double f (int x),

void ReadSensors(),

void RobotmotorsWrite(int x, int y),
void senddata(int x),

void getdata(),

void orientation(int degree, int mxx),
void parallelorientation(int mxx),
void ra(int x),

void rr(int x),

void LCDprint().

Some of these sub-functions were used inside other sub-functions.

5.3.1 double f(int x)

This sub-function takes one integer value. The sub-function puts the value inside the
fifth degree polynomial function (Figure 3.2) obtained from the calibration of the
analog distance sensors. The output of the function is the real distance, measured by
the sensors, in mm.

31

5.3.2 void ReadSensors()

This sub-function does not take any argument. In this sub-function one for loop was
used in order to read quickly the analog outputs of the sensors. As soon as the analog
output was read, it was converted to millimeters by using the function f(int x). Then,
the obtained real distance value was attached to one element of the s[] array (Figure
5.3), which was declared before the void setup. The elements of the s[] array were
used to check the distances in the other parts of the control code.

Analog
Distance
Sensors

Wheel

aa

i

Figure 5.3 : Representation of the sensors in the code.

5.3.3 void RobotmotorsWrite(int x, int y)

The sub-function takes two arguments. These arguments are the sending PWM signals
to the left and to the right motor respectively. Two PWM output signals are needed to
run forward and backward each motor. Therefore totally 4 PWM outputs were used
for two motors. While the PWM 9 and 10 were used to run the left motor, the PWM
11 and 12 were used to run the right motor. When one PWM signal was sent to one
pole of the motor, zero PWM signal has to be sent to the other pole of the motor.

5.3.4 void senddata(int x) and void getdata()

The XBee can send only 255 bytes of data. In order to send a variable or data of size
greater than 255, the variable or data is divided into two parts and attached to an array
that contains two elements. This array is called payload[]. The first element of the
array (payload[0]) is equal to the integer part of the division of the sent data to 256.
The other element is the mode of the sent data with respect to 256. For example the
sending integer data is 350. The elements of the payload[] are going to be 1 and 94
respectively. Then, the data package is prepared. The prepared data package contains
the MY address of the data transmitting XBee, payload[] array and the size of payload
array. After the preparation, the data package is sent. All these operations were
performed within the function void senddata(int x).

32

In the void getdata() sub-function, data is received. The MY address of the data
transmitting XBee and RSSI value of the data are received with the data package itself.
The pure data contains two elements because the sender XBee divides the data into
two parts. In getdata sub-function, these two parts of data were merged again to obtain
the original data. The first element of data was multiplied with 256 and summed with
the second element of data. In this way, the original data was obtained.

5.3.5 void orientation(int degree, int mxx)

This sub-function takes two variables, which are desired direction angle and velocity
of the motor. The first variable is the receiving data from the remote controller. The
second one was defined in the code. The desired direction angle and orientation angle
at that moment were shown in the Figure 5.4 as a and 6 respectively. The void
orientation sub-function changes orientations of the robots from the current orientation
to desired direction.

Ya

s

’ .
- —
Vi n"-‘_e\ P
1
1

N desired

=

” .
" direction

X

Figure 5.4 : Control parameters of the robots.

The working principle of the void orientation sub-function is explained as follows;

e The function calculates the angle difference between 6 and a.
e The function checks shortest route to reach the desired direction.

The function determines the velocity of the motors according to the shortest route. For
example if the desired direction is near the right side of the robot, the function increases
the velocity of the right motor, while the velocity of the left motor is decreased. The
change rate of velocity is dependent on the angle difference between 0 and a. The
effect of angle difference (¢) on the movement of the robot is shown in the Figure 5.5.
If & = 0°, the movement of the robot is governed by translation. If ¢ =~ 90°, the

33

movement of the robot is governed by rotation. If ¢ > 90°, the movement of the robot
is governed by rotation.

desired
direction

A d) A . A
desired

Iy NN
NP NN

translation-+rotation translation+rotation rotation

Figure 5.5 : The working principle of the void orientation.

5.3.6 void parallelorientation(int mxx)

This sub-function takes only one variable, the velocity of the motors. In this sub-
function four different borders were defined, namely mdmin, border2, borderl and
mdmax. These borders define the radius of the attraction field, parallel orientation field
and repulsion field respectively (Figure 5.6).

Attraction Field
mdmin

Parallel Orientation|
Field border2

I

Repulsion Field
borderl

Figure 5.6 : The borders of the fields.

This sub-function starts with the void orientation function by using the received angle
data from the remote controller. Then the distance data were taken from the analog
distance sensors in order to sense the robots. The robots behave according to the
measurements of the sensors. If one of the measurements of the s[1], s[2], s[6] or s[7]
is between mdmin value and border2 value, the robots try to move towards each other
until the measurements of the sensors are between border2 and borderl. The
movement of the robots towards each other was performed by increasing the velocity
of one the motors. For example if s[1] or s[2] is in the range of attraction field, the

34

velocity of the left motor is increased. If the frontal sensor measurement (s[0]) is
between the mdmin and border2, the robot get closer to the detected robot increasing
the velocities of both motors, until the s[0] reaches a value between border2 and
borderl.

If one of the measurements of s[1], s[2], s[6] or s[7] is between mdmax value and
borderl value, the robots try to move away from each other until the measurements of
the sensors are between border2 and borderl values. The drifting movement of the
robots was performed by increasing the velocity of one of the motors. For example if
s[1] or s[2] is in the range of repulsion field, the velocity of the right motor is increased.
If s[4] is in the range of repulsion field, the robot move away from the other robots
behind by increasing the velocities of both motors, until s[4] reaches a value between
border2 and borderl.

If s[3] or s[5] is in the range of the repulsion field, the robot moves away from the
other robots behind by increasing the velocities of both motors, until s[3] or s[5]
reaches a value between border2 and borderl.

5.3.7 void ra(int x) and void rr(int x)

In the void parallelorientation sub-function the velocity of the robots were increased
according to the cases. These situations were explained in the section 5.3.6. The
change rate of the velocities of the motors were calculated in the void ra and void rr
sub-functions. When the robots were in the attraction field, void ra function was used
in order to calculate the velocity of the motors. The velocity of the motors can increase
up to two times the normal velocity that is mxx value. The change rate is the same for
void rr function as well. The void rr function was used in order to calculate the velocity
of the motors, when the robots were in the repulsion field.

In the code mxx was declared as 60, that is the sending PWM signal to the motors. The
borders mdmin, border2, borderl and mdmax were declared as 290 mm, 160 mm, 110
mm and 60 mm respectively. In the void ra function the sending PWM signals were
calculated using a linear function that gives maximum and minimum PWM signals
when the distances are equal to 290mm (mdmin) and 160mm (border2) respectively.

35

120 void ra

100
80 y =0,3846x - 11,538
60
40
20

0
0 40 80 120 160 200 240 280 320

Distance (mm)

PWM

Figure 5.7 : Calculation of the PWM signals in the void ra.

void rr
110
100
90 y=-x+160
80
70
60
50

40
50 60 70 80 90 100 110 120
Distance (mm)

PWM

Figure 5.8 : Calculation of the PWM signals in the void rr.

5.3.8 void LCDprint()

This sub-function was used to show the orientation angle of the robot, received angle
data or measured distances on the LCD screen. By using this sub-function a lot of data
can be written on the LCD screen. The main reason of the usage of the LCD screen
and sub-function was to crosscheck the measurements and the other data.

5.4 Sending Data to the Data Taker

The robots send their orientation and velocity to the data taker on PC. Since two data
needed to send either two different data packet is required to prepare and send with a
certain time delay or one data packet which contains two data can be prepared and
send. In the first option sending two data packet caused the overloading to the data
taker. Therefore the second option was used to send data to data taker. In order to
prepare one data packet the two data was converted to one integer data. Since the
addresses of the XBees, one identification parameter is needed to be added in the data
packet. During the procedure one k variable was also used to identification of the data

36

packet for each robot. The prepared data is a five-digit number. The first digit shows
the k variable. The three digits after the first digit show the orientation data. The last
digit shows the velocity of the robots.

The
Orientation of

The Robot
Address

The Velocity
of The Robot

\ The Robot

3123 [s]2]

Figure 5.9 : The prepared data packet.

The velocity of the motors is 320 Rpm @ 6V. Since maximum voltage can be 5V for
the motors, the velocity of the motors decreases to 267 Rpm @ 5V. This velocity was
converted to the rad/s by multiplying 27/60. Then obtained velocity was converted to
the mm/s by multiplying the radius of the wheel (16 mm). The 447.4 mm/s was
obtained as the velocity of the robots when the 255 PWM signal was sent to the each
motor. In this study, used minimum and maximum PWM signals were 50 and 100.
The velocity of the robots was calculated as average of the velocities of the motors.

The last digit was calculated as the ratio of the current velocity of the robot to minimum
velocity of the robot. The ratio is going to be a float number between 1 and 2. This
ratio was multiplied by 10 and two digits integer number was obtained. These ten two-
digit numbers were converted to one-digit number from 1 to 9 by using map function
in the Arduino. Lastly the last digit is going to be between 1 and 9. This mapping
procedure was performed in order to send an int data to the data taker.

For example, orientation of the second robot 325° and sending PWM signals to the
motors are 60 and 80 respectively. The average velocity is 70 and the ratio is 1.16.
After the ratio is multiplied by ten, 11 is obtained. After the using map function of the
Arduino Software, the last digit of the data packet is obtained as 2. The total data is
going to be ‘23252’. Lastly this prepared data is sent to the data taker on PC.

5.5 Programming the Remote Controller

The Arduino Shield circuit was used for the remote controller as well. The remote
controller has XBee and digital compass. The all libraries were used again in the
remote controller code. The remote controller reads the current orientation data from
the digital compass and sends it to the robots. Therefor the robots try to move with the
same orientation angle of the remote controller.

37

6. PROGRAMMING THE DATA TAKER AND SIMULATION

In this study four different codes were written, the control code of robots, code of the
remote controller, code of the data taker and simulation code. The first and second
code were explained in section 5. In this section the code of the data taker and
simulation code are going to be explained.

6.1 Data Taker and Programming the Data Taker

One Arduino Mega 2560 board and one XBee S1 module were used as data taker. The
data taker was connected to the computer for serial communication. After the data
taker gathered the information from the robots, it sent this information to the computer
by using serial communication. The received data by the computer were used in the
simulation as inputs.

Table 6.1 : Output of the Map function.

The last digitof theData |1 |2 |3 |4 |5 |6 |7 |8 |9

The Converted Two

L. 1011|1213 |14 |15|16 |17 |18
Digit Number

The robots send five-digit number to the data taker as explained in section 5.4. While
the first digit shows the number of the robot, the three digits in the middle show its
orientation. The last digit of the data represents the velocity of this robot. As a first
step, this last digit was converted to a two digit number between 10 and 18, since the
original velocity data which is the ratio of the motor velocities, is in this range. For
example the received data is “30533°. It shows that the orientation of the third robot is
53°. The last digit is converted to 12 by using map function (Table 6.1). Then the real
velocity of the robot is obtained by multiplying 5*447/255 with this two digit number.
The data 30533’ means the velocity of the third robot is 105 (12*5%447/255) mm/s.

After the data taker receives the real velocity and orientation data for each robot, it
produces a seven digit number which contains velocity and orientation data of one
robot to send to the simulation (Figure 6.1). The first digit is the address of the robot.
While the first three digits of the remaining digits show the orientation data, the last

39

three digits show the velocity of the robot in mm/s. Since the data that is greater than
255 byte cannot be send over the serial connection, this seven digit number was sent
as a string to the simulation. These seven digit numbers were sent to simulation
separately for each robot.

The
The Robot i
Orientation of The Velocity

Address
The Robot of The Robot
1

f \f \
[3 12 [3[s]ofs]7]

Figure 6.1 : The sending data to the simulation by data taker.

6.2 Programming the Simulation

The first aim of the written simulation was to observe the collective motion of the
robots by using the received robot data from the data taker. The second one was to
save the received data to one Excel file in order to observe the behavior of the swarm
in terms of polarization and expanse values. These two terms are going to be explained
in section 7.

The simulation code was written in C#. One circle and one line were used to show
each robot. In the simulation interface two textbox were used to see received
orientation and velocity data for each robot (Figure 6.2). There are two buttons on the
simulation interface, named Stop Communication and Export to Excel. When the
simulation is stopped or closed, it gives error since the serial communication is not
closed properly. For this reason, firstly the serial communication between simulation
and data taker is required to be stopped. The Stop Communication button was used to
stop serial communication between data taker and simulation. After closing the serial
communication, orientation, velocity and position data of the robots can be saved in
Excel file by using Export to Excel button.

40

The Robots

€}
(€]

Figure 6.2 : The simulation interface.

In the simulation, each robot starts to move at a certain position that is defined in the
code. There is a determined distance of 100 twips between every two robots at the
beginning of the simulation. When the data taker sends the data to simulation, the
robots start to move by using the received orientation and velocity data. The simulation
firstly separates into three parts the received seven digit number. After the separation,
the obtained velocity and orientation data for each robot are used to calculate the
positions of the robots in the simulation. A very simple mathematical model was used
in the simulation in order to calculate the positions of the robots [20, 50].

Time was increased at time steps of 50 milliseconds. The new time is calculated by
adding the time step to the previous one as,

t=t+ At (6.1)

Where t is time and At is time step.
x;(t) = Xi o (t-at + At v;j(t) cos 8;(t) (6.2)
y;(©) = Yi@(—a0 + At vj(t) sin8;(t) (6.3)

Where x;(t) and y;(t), v;(t) and 8;(t) describe position, velocity and orientation of the
robot j at time t, respectively.

During the simulation all the orientation, velocity and position data of the robots were
stored in an array for each robot. These data were saved in output Excel file before the

simulation was closed. These data are going to be used for calculation of the
polarization and expanse values of the swarm.

41

7. CHARACTERIZATION OF SWARM

Two parameters were calculated in order to observe the characterization of the swarm
robots. These parameters are polarization and expanse. Polarization p, is an average of
the angle differences between the orientation of the each robot and movement direction
of the swarm [50]. The polarization was calculated by using the saved data in Excel
output file using Equations 7.1 and 7.2;

Pol,, (t) = 0;(t)| /n (7.1)
Pol(t) = Pol,, (t) — 6:(t)| /n (7.2)

Where Pol,, (t), Pol(t) and 8;(t) show the movement direction of the swarm,
polarization of the swarm and orientation of the j robot respectively.

Expanse a, is defined as the arithmetic distance average between each robot and center
of the swarm [50]. The expanse was calculated using Equations 7.3, 7.4 and 7.5:

X,v(0) = ixj(t) /n (7.3)
j=1]
Yav(t) = i Xj (t) /n (74)
=1
a(t) = Z \/(Xav(t) —Xj (t))z + (Yav(t) - y](t))z /n (75)
=1

Where X, (t) is the horizontal position of the center of the swarm, Y,, (t) is the vertical
position of the center of the swarm and a(t) is the expanse value of the swarm. x;(t)
and y; (t) are horizontal and vertical position of j" robot at time t.

The movement of the robots can be shown by using grayscale representation (Figure
7.1). The motion of the robot can be determined by contrast of the arrows. The contrast

43

of arrows gradually increases from the beginning to the end of the motion. This
illustration is going to be used to observe polarization and expanse values of swarm
for a certain time interval.

A
/ \
y A
e i
» S
P I
P » A
» A \
Ve 4 by
3 4
I’ v 4
PP Sl N
7Y Tl
¥ !
4
P 4
¥
A

Figure 7.1 : Grayscale representation of the motion.

44

8. PERFORMED TEST RESULTS

The collective motion of the robots was tested for a group of two, three, four and five
robots. The expanse and polarization values are presented for each test in this section.

P
70

60

50

40

30

20 l

nf\w | a

10

M T A A

0 20 40 60
(a) Polarization

1(s)

41

3t

2

a(BL)
S .

7

0 20

40 60 80

(b) Expanse

1(s)

(c) Grayscale representation
Figure 8.1 : The test results of swarm with two robots.

The motion of the swarm with two robots was recorded for 85 seconds and the
polarization and expanse values were presented in Figure 8.1. The polarization values
can change between 0° and 90° during the motion [50]. If p is equal to 90°, the swarm
is maximally confused. If p is equal to 0°, the swarm is optimally paralyzed
(polarized). It can be seen that the polarization reaches a maximum value of 31.5°,
while the average polarization during the motion is 6.5°. This shows the swarm is
polarized and the robots are in the parallel orientation field during the motion which is
the desired behavior. If the robots stay together during the motion the expanse has a
value of 1 BL [50]. The average expanse during the motion has a value of 1.5 BL. This
shows the robots stay together during the motion. Figure 8.2 shows the positions of
the robots during the motion for every 10 seconds.

45

Figure 8.2 : The positions of two robots every 10 second during the motion.

The motion of the swarm with three robots was recorded for 100 seconds and the
polarization and expanse values are shown in Figure 8.3. While the maximum
polarization value is 72° for one second, the average polarization has a value of 15.5°
during the motion. The average expanse has a value of 1.48 BL while the maximum
expanse value is 2.45 BL. These results show the robots stay together but not as much
as the swarm with two robots. The grayscale representation of motion is shown for two
different time periods. These time periods are 0s — 40s (Figure 8.3(c)) and 40s — 100s
(Figure 8.3(d)).

The test results of the swarm with four robots were shown in Figure 8.5. The average
polarization has a value of 13.9° for this test. The maximum polarization value is 46.5°
for this motion. This maximum polarization value occurs during the 90° turn of the
swarm. The average expanse has a value of 2.67 BL while the maximum expanse value
is 3.3 BL. When these values are compared with the results of the swarm with three
robots, it can be seen that the number of the robots in the swarm effects the expanse.
When the number of the robots is increased, the robots cannot stay together as much
as a swarm with three robots. The grayscale representation of motion is shown for two
different time periods. These time periods are 0s — 45s (Figure 8.5 (c)) and 45s — 80s
(Figure 8.5 (d)).

46

p a(BL)
5 .

100
80 4+
60 1 s

znrxxj\\‘vMPNﬂ J\ﬂflﬁ X 1ffN}/\\hH’IQ\\\V//,—j\\\J""*-\f"\/

L’ 1(s)

0 L . ' 1(s
0 20 40 60 80 100 120 0 20 ﬁl] Sl] 100 120()
(a) Polarization (b) Expanse
A
’) 5 ““ 4
/ ~ 4
7 i 4
;u R N V" >
i ’ »
}/, 44 l‘ L “‘*LV'WM..#;
» v d Ny P
v 4 i 4 L
P gl N / ar” B U
e 2 SV »
y v
. A Ly,
v \ 4
A % /
Ca 4
~) e

(c) Grayscale representation (0s — 40s) (d) Grayscale representation (40s — 1005s)
Figure 8.3 : The test results of swarm with three robots.

t=10s t=20s
t=30s t=35 t=45s

Figure 8.4 : The position of three robots during the motion.

47

80

LM —

AT A

1(s)

0 20 40 60 80 0 le] 4Il] ﬁh Sll]
(a) Polarization (b) Expanse

(c) Grayscale representation (0s — 45s) (d) Grayscale representation
(45s — 80s)

Figure 8.5 : The test result of swarm with four robots.

t=0

t=10s t=20s

t=30s t=40 t=50s
Figure 8.6 : The positions of four robots in every 10 second during the motion.

The test results of the swarm with five robots are shown in Figure 8.7. The average
polarization has a value of 20.6° for this test. The maximum polarization value is 46.5°
for this motion. The average expanse has a value of 5.96 BL while the maximum

48

expanse value is 10.96 BL. The grayscale representation of motion is shown for two
different time periods. These time periods are 0s — 55s (Figure 8.7 (c)) and 55s — 90s
(Figure 8.7 (d)).

P a(BL)
10
80
\‘

60 |~W
40

njm VJJ‘L\\ \[\f kwi I

0 '1(s)y O . L - - 1(s)

0 20 40 60 80 100 0 20 40 60 80

(a) Polarization (b) Expanse
aw
/ \

‘1 o
4‘ Tae
i ; SN
\Y
e
. / /‘ R
- 'x-_hA *~‘4~ s M"‘-»
e !
(c) Grayscale representation (0s — 55s) (d) Grayscale representation
(55s — 90s)

Figure 8.7 : The results of swarm with five robots.

According to the results, when the number of the robots increases, polarization of the
motion is in the same range. However, expanse values increase considerably. The first
reason of the expanse difference between the motions is the increment of the occurring
time delay during the sending of the orientation data from the remote controller to the
robots. The occurring time delay during the two robot motion is less than the time
delay that occurs during the motion of the swarms which contain more than two robots.
The time delay also occurs because the robots send data packages to the data taker.

49

Table 8.1 : Test results.

Number of Robots | The Average Polarization | The Average Expanse
2 6.5° 1.5BL
3 15.5° 245 BL
4 13.9° 2.7BL
5 20.6° 5.96 BL

The second reason the expanse value increases considerably is the output difference
between the digital compasses. The digital compasses are affected by any metallic
object in the environment. Because of this, even when the robots are parallel and very
close to each other, the digital compasses gives measurements with 3 — 5° error.

Polarization alone is not sufficient to give a concluding remark whether the movement
of the swarm is well organized or not. Expanse is equally important for this statement.
In the observed swarms, expanse varied between 1.5BL to 5.96 BL (Table 8.1). A
small expanse value indicates that the robots are moving in close vicinity with each
other, while a greater expanse indicates increased distance among them. Again, the
increase in number of robots in the swarm increased the value of expanse.

A combination of both these parameters indicates that a swarm composed of a smaller
number of robots has a better organized movement, while the swarm containing more
robots (i.e 5 robots) has a more confused movement. The reason for this behavior is
the summation of errors on the compass measurements for all the robots of any given
swarm.

50

9. CONCLUSION

In this thesis the motion of the swarm robots as a flocking problem was investigated.
One simulation code was also written to observe the motion of the robots and to record
their orientation and velocity. The orientation of the robots was controlled remotely
by a user during the motion of the robots. The transmitting of orientation data from the
remote controller to the robots was carried out by using XBee modules.

The robots were designed and produced by the author according to determined design
criteria and the used distance sensors, motors, and battery. In order to carry out the
experiments in small areas, the robots were produced in smallest possible size
conforming the design criteria conditions.

The Arduino Mega 2560 programmable card was used as a control unit of the robots.
However, an external electronic circuit, named Arduino Shield Circuit was designed
to connect electronic components such as sensors, digital compass, XBee module and
Icd screen to Arduino Mega properly. This external circuit was designed in Proteus 8
Professional. The designed external card was also manufactured by the author.

In this thesis four different codes were written. These are the control code of the robots,
the code of the remote controller, the code of the data taker and the simulation code.

Collective motion was performed by robots that are moving with respect to some pair-
wise interactions. The pair-wise interactions between the robots were performed based
on three rules, namely attraction, parallel orientation and repulsion field rules. While
the mobile robots try to move toward their neighbors in attraction field, in parallel
orientation field they try to remain close to their neighbors. The repulsion field rule
avoids the collision with each other during the collective motion. The control code was
written according to these field rules. The robots sense each other by using the distance
sensors, then according to the output of the sensors, the robots decide the movement

type.
The code of remote controller was written to send the orientation data to the robots for
every 100ms. The Arduino Shield Circuit was also used as remote controller. The data

taker code was written to send the received data from the robots to the simulation. The
simulation works as a real-time simulation. The simulation uses the data received from

51

the robots to simulate their motion. The simulation also saves all the received data
from the robots in one Excel file.

The motion of swarms having two, three, four and five robots were recorded and the
data of the robots were saved by using the created simulation. Two different
parameters, expanse and polarization, were calculated to characterize the motion.
These parameters were plotted as functions of time, in graphs, for better visualization.
One graphical representation method, named grayscale representation, was also used
and the motion of the robots was shown by using this representation.

Polarization for the observed swarms varied from 6.5° to 20.6°. A small polarization
value, close to 0° indicates a well-polarized swarm, while high polarization values,
close to 90°, indicate a highly confused swarm. The observed swarms had relatively
low polarization, thus the motion of these swarms was polarized. Yet, it was observed
that the increase in number of robots in the swarm increased the polarization as well.

Polarization alone is not sufficient to give a concluding remark whether the movement
of the swarm is well organized or not. Expanse is equally important for this statement.
In the observed swarms, expanse varied between 1.5BL to 5.98 BL. A small expanse
value indicates that the robots are moving in close vicinity with each other, while a
greater expanse indicates increased distance among them. Again, the increase in
number of robots in the swarm increased the value of expanse.

A combination of both these parameters indicates that a swarm composed of a smaller
number of robots has a better organized movement, while the swarm containing more
robots (i.e 5 robots) has a more confused movement. The reason for this behavior is
the summation of errors on the compass measurements for all the robots of any given
swarm.

52

REFERENCES

10.

11.

12.

13.

Bayindir, L. and E. Sahin, A review of studies in swarm robotics. Turkish
Journal of Electrical Engineering & Computer Sciences, 2007. 15(2): p. 115-
147.

Sahin, E. and A. Winfield, Special issue on swarm robotics. Swarm
Intelligence, 2008. 2(2): p. 69-72.

Turgut, A.E., Self-Organized Flocking with A Mobile Robot Swarm, in
Mechanical Engineering. 2008, Middle East Technical University. p. 133.

Navarro, I. and F. Matia, An Introduction to Swarm Robotics. ISRN Robotics,
2013. 2013: p. 1-10.

Tan, Y. and Z.-y. Zheng, Research advance in swarm robotics. Defence
Technology, 2013. 9(1): p. 18-39.

Brambilla, M., et al., Swarm robotics: a review from the swarm engineering
perspective. Swarm Intelligence, 2013. 7(1): p. 1-41.

Bahgegi, E. Evolving aggregation behaviors for swarm robotic systems: A
systematic case study. in Swarm Intelligence Symposium, 2005. SIS 2005.
Proceedings 2005 IEEE. 2005. IEEE.

Fredslund, J. and M.J. Mataric, A general algorithm for robot formations using
local sensing and minimal communication. Robotics and Automation, IEEE
Transactions on, 2002. 18(5): p. 837-846.

Fredslund, J. and M.J. Mataric. Robot formations using only local sensing and
control. in Computational Intelligence in Robotics and Automation, 2001.
Proceedings 2001 IEEE International Symposium on. 2001. IEEE.

Nouyan, S. and M. Dorigo, Chain formation in a swarm of robots. IRIDIA,
Université Libre de Bruxelles, Tech. Rep. TR/IRIDIA/2004-18, 2004.

Trianni, V., et al., Evolving aggregation behaviors in a swarm of robots, in
Advances in artificial life. 2003, Springer. p. 865-874.

Hayes, A.T. and P. Dormiani-Tabatabaei. Self-organized flocking with agent
failure: Off-line optimization and demonstration with real robots. in Robotics
and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference
on. 2002. IEEE.

Stormont, D.P. Autonomous rescue robot swarms for first responders. in
Computational Intelligence for Homeland Security and Personal Safety, 2005.
CIHSPS 2005. Proceedings of the 2005 IEEE International Conference on.
2005. IEEE.

53

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Hamann, H. and H. Wérn, An analytical and spatial model of foraging in a
swarm of robots, in Swarm Robotics. 2006, Springer. p. 43-55.

Labella, T.H., M. Dorigo, and J.-L. Deneubourg, Efficiency and task allocation
in prey retrieval, in Biologically Inspired Approaches to Advanced Information
Technology. 2004, Springer. p. 274-289.

Kantor, G., et al. Distributed search and rescue with robot and sensor teams.
in Field and Service Robotics. 2003. Springer.

Zafar, K., S.B. Qazi, and A.R. Baig. Mine detection and route planning in
military warfare using multi agent system. in Computer Software and
Applications Conference, 2006. COMPSAC'06. 30th Annual International.
2006. IEEE.

Landis, G.A., Robots and humans: synergy in planetary exploration. Acta
astronautica, 2004. 55(12): p. 985-990.

Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. in
ACM SIGGRAPH computer graphics. 1987. ACM.

Inada, Y., Steering mechanism of fish schools. Complexity international, 2001.
8: p. 1-9.

Strombom, D., Collective motion from local attraction. Journal of theoretical
biology, 2011. 283(1): p. 145-151.

Triandaf, 1. and 1.B. Schwartz, A collective motion algorithm for tracking time-
dependent boundaries. Mathematics and Computers in Simulation, 2005.
70(4): p. 187-202.

Varghese, B. and G. McKee, A mathematical model, implementation and study
of a swarm system. Robotics and Autonomous Systems, 2010. 58(3): p. 287-
294,

Oboshi, T., et al., A simulation study on the form of fish schooling for escape
from predator. FORMA-TOKYO-, 2003. 18(2): p. 119-131.

Venayagamoorthy, G.K., L.L. Grant, and S. Doctor, Collective robotic search
using hybrid techniques: Fuzzy logic and swarm intelligence inspired by
nature. Engineering Applications of Artificial Intelligence, 2009. 22(3): p.
431-441.

Castro, E. and M.d.S.G. Tsuzuki, Swarm Intelligence applied in synthesis of
hunting strategies in a three-dimensional environment. Expert Systems with
Applications, 2008. 34(3): p. 1995-2003.

Fukuda, T., et al. Structure decision method for self organising robots based
on cell structures-CEBOT. in Robotics and Automation, 1989. Proceedings.,
1989 IEEE International Conference on. 1989. IEEE.

Atyabi, A., S. Phon-Amnuaisuk, and C.K. Ho, Navigating a robotic swarm in
an uncharted 2D landscape. Applied soft computing, 2010. 10(1): p. 149-1609.

Li, W. and W. Shen, Swarm behavior control of mobile multi-robots with
wireless sensor networks. Journal of Network and Computer Applications,
2011. 34(4): p. 1398-1407.

54

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Ijspeert, A.J., et al., Collaboration through the exploitation of local
interactions in autonomous collective robotics: The stick pulling experiment.
Autonomous Robots, 2001. 11(2): p. 149-171.

Turgut, A.E., et al., Self-organized flocking in mobile robot swarms. Swarm
Intelligence, 2008. 2(2-4): p. 97-120.

Trianni, V., S. Nolfi, and M. Dorigo, Cooperative hole avoidance in a swarm-
bot. Robotics and Autonomous Systems, 2006. 54(2): p. 97-103.

Trianni, V. and M. Dorigo. Emergent collective decisions in a swarm of robots.
in Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE.
2005. IEEE.

Soysal, O. Probabilistic aggregation strategies in swarm robotic systems. in
Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE.
2005. IEEE.

Martinoli, A. and K. Easton, Modeling swarm robotic systems, in Experimental
Robotics VIII. 2003, Springer. p. 297-306.

Martinoli, A., K. Easton, and W. Agassounon, Modeling swarm robotic
systems: A case study in collaborative distributed manipulation. The
International Journal of Robotics Research, 2004. 23(4-5): p. 415-436.

Lerman, K., et al., A macroscopic analytical model of collaboration in
distributed robotic systems. Artificial Life, 2001. 7(4): p. 375-393.

Lerman, K., A. Martinoli, and A. Galstyan, A review of probabilistic
macroscopic models for swarm robotic systems, in Swarm robotics. 2004,
Springer. p. 143-152.

Berman, S., et al., Algorithms for the analysis and synthesis of a bio-inspired
swarm robotic system, in Swarm Robotics. 2006, Springer. p. 56-70.

Shen, W.-M., C.-M. Chuong, and P. Will. Simulating self-organization for
multi-robot systems. in Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on. 2002. IEEE.

Mondada, F., E. Franzi, and A. Guignard. The development of khepera. in
Experiments with the Mini-Robot Khepera, Proceedings of the First
International Khepera Workshop. 1999.

Pugh, J., et al., A fast onboard relative positioning module for multirobot
systems. Mechatronics, IEEE/ASME Transactions on, 2009. 14(2): p. 151-162.

Mondada, F., et al. The e-puck, a robot designed for education in engineering.
in Proceedings of the 9th conference on autonomous robot systems and
competitions. 2009. IPCB: Instituto Politécnico de Castelo Branco.

Caprari, G. and R. Siegwart. Mobile micro-robots ready to use: Alice. in
Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on. 2005. IEEE.

Kornienko, S., O. Kornienko, and P. Levi. Minimalistic approach towards
communication and perception in microrobotic swarms. in Intelligent Robots
and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on.
2005. IEEE.

55

46.

47.

48.

49.

50.

51.

Mondada, F., et al., The cooperation of swarm-bots: Physical interactions in
collective robotics. Robotics & Automation Magazine, IEEE, 2005. 12(2): p.
21-28.

Turgut, A.E., et al., Kobot: A mobile robot designed specifically for swarm
robotics research. Middle East Technical University, Ankara, Turkey,
METUCENG-TR Tech. Rep, 2007. 5: p. 2007.

McLurkin, J.D., Stupid robot tricks: A behavior-based distributed algorithm
library for programming swarms of robots. 2004, Massachusetts Institute of
Technology.

Ata Elahi, A.G., ZigBee Wireless Sensor and Control Network. 1 ed. 2009:
Prentice Hall.

Huth, A. and C. Wissel, The simulation of the movement of fish schools. Journal
of theoretical biology, 1992. 156(3): p. 365-385.

https://www.arduino.cc/en/Tutorial/PWM.

56

http://www.arduino.cc/en/Tutorial/PWM

APPENDICES

APPENDIX A: The control code of the robots
APPENDIX B: The code of the remote controller
APPENDIX C: The code of the data taker
APPENDIX D: The code of the simulation

57

APPENDIX A

#include <XBee.h>

#include <Wire.h>

#include <LSM303.h>

#include <LiquidCrystal.h>

LSM303 compass;

XBee xbee = XBee();

XBeeResponse response = XBeeResponse();
uint8_t payload[]={0,0};

uint8_t data = 0;

uint8 trssi =0;

Tx16Request tx = Tx16Request(0x8, payload, sizeof(payload));//0x8 address of the
other Xbee

TxStatusResponse txStatus = TxStatusResponse();

Rx16Response rx16 = Rx16Response();

/lused variables

long last;

int time=0;

int dfx=2,xr,xl,cxra,cxrr,adr,x1, direc,v=0,diff,degree,aa,bb, speedLeft, speedRight;
inti,a=0, datal, data2, cntr2 =0, adress, k, degav = 0;

int mdx, mdmin = 290.00, borderl = 110.00, border2 = 160.00, mdmax=60.00;
double mxx,al,a2,b1,b2,vratio;

int sensorpins[] = {A0, Al, A2, A3, All, A10, A9, A8};

int s[8] = {}; //reading distances from the Sharps

int robots[8][2] = {};// assign to received data to robots matrice.

float heading;

/[initialize the library with the numbers of the interface pins

LiquidCrystal lcd(50, 51, 34, 32, 30, 28); //LCD Digital Pins Declaration

58

void setup()
{

k=1,

Icd.begin(16, 2);

Serial.begin(9600);

Serial3.begin(9600);

xbee.setSerial(Serial3);

Wire.begin();

compass.init();

compass.enableDefault();

if(k==1)

{mxx=50.00;

compass.m_min = (LSM303::vector<intl6_t>) { -2512, -2874, -2748};
compass.m_max = (LSM303::vector<intl6_t>) { +2147, +2236, +1988};

}
if(k==2)
{mxx=50.00;

compass.m_min = (LSM303::vector<int16_t>) {-2612, -2516, -3061};
compass.m_max = (LSM303::vector<intl6 _t>) { +2316, +2482, +1689};

}
if(k==3)
{mxx=53.00;

compass.m_min = (LSM303::vector<intl6_t>) { -2848, -2585, -2153} ;
compass.m_max = (LSM303::vector<intl6_t>) { +2003, +2348, +2676};

b
if(k==4)
{ mxx=54.00;

compass.m_min = (LSM303::vector<intl6_t>) { -2245, -2400, -955};

compass.m_max = (LSM303::vector<intl6_t>) { +2650, +3052, +3750};
59

¥
if(k==5)
{mxx=55.00;
compass.m_min = (LSM303::vector<int16_t>) { -2331, -2634, -2032};
compass.m_max = (LSM303::vector<int16_t>) { +2589, +2407, +2658};

}

if(k==6)
{
mxx=44.00;

compass.m_min = (LSM303::vector<int16_t>) { -2158, -2547, -2944};
compass.m_max = (LSM303::vector<intl6 t>) { +2572, +2381, +1801};
}

pinMode(9, OUTPUT);

pinMode(10, OUTPUT);

pinMode(11, OUTPUT);

pinMode(12, OUTPUT);

pinMode(13, OUTPUT);

randomSeed(analogRead(A4));//for randomly starting
}/end void setup
void loop()
{

compass.read();

ReadSensors();

heading = compass.heading();

direc=heading;

last=k*10000+direc*10+vratio;

getdata();

delay(60);

senddata(last);
60

delay(50);
switch (k)
{
case 1: mxx=52;xr=52;x1=52;
break;
case 2: mxx=51;xr=51;x1=51;
break;
case 3: mxx=54;xr=54;x1=54;
break;
case 4: mxx=51;xr=51;x1=51;
break;
case 5: mxx=55;xr=55;x1=55;
break;
case 6: mxx=44;xr=50;x1=50;
break;
default:
break;
}
if(data2>300&&data2<350){cntr2=1;}
if(cntr2==1){parallelorientation(mxx);}
LCDprint();
}
void senddata(int x)//
{
payload[0] = x >> 8 & Oxff;
payload[1] = x & Oxff;
xbee.send(tx);

}
I

61

void getdata()
{
xbee.readPacket();
if (xbee.getResponse().getApild() == RX_16_RESPONSE)
{
xbee.getResponse().getRx16Response(rx16);
rssi = rx16.getRssi();
adr=rx16.getRemoteAddress16();//adress of the other Xbee that sent data packet
//OnEMLI KISIM&//
data = rx16.getData(0);
datal = rx16.getData(1);
data2 = data * 256 + datal;

}
}
double f(int x)//converting output voltage of sensors to millimeter
{
double a;

a=595.121 - 6.39166 * x + 0.0360895 * X * x - 0.000109734 * x * x * x +1.67994e-
T*X*X*X*Xx-1.01098e-10* X * X * X * X * X

return a;

}

void RobotmotorsWrite(int X, int y)
{
double vx,vy;
VX=X*447.0/255;
Vy=y*447.0/255;
v=(VX+vy)/2;
vratio=(x+y)/2;
vratio=(vratio/mxx)*10;

62

if(vratio==0){vratio=0;}
else{vratio=map(vratio,10,19,1,9);}
if (x>=0&&y>=0)
{

switch (k)

{

case 1: X=x; y=y,

break;

case 2: X=X; y=Y,

break;

case 3: X=X; y=Y,

break;

case 4: Xx=x+5;y=y-1,

break;

case 5: X=X+5;

break;

case 6: Xx=x+5; y=y-1,

break;

default:

break;

}
}
if(x>=0&&y>=0)
{
analogWrite(10, x);
digitalWrite(9, LOW);
analogWrite(11, y);
digitalWrite(12, LOW);

delay(35);
63

¥
¥

//Function of orientation

void parallelorientation(int mxx)

{
LCDprint();
orientation(data2,mxx);
getdata();delay(5);
ReadSensors();
while (s[0]<=mdmin+5 && s[0]>border2)
{

ReadSensors();

if(s[1]<=border2 || s[2]<=border2 || s[7]<=border2 || s[6]<=border2 ||
s[0]<=border2)break;

Ilra(s[0]);if(cxra>=mxx && cxra<= 2*mxx){RobotmotorsWrite(cxra,cxra);}
mxx=mxx+dfx;if(mxx>2*mxx){mxx=2*mxx; }RobotmotorsWrite(mxx,mxx);
}
while (s[0]<=border1-10 ||s[1]<=border1-10 ||s[7]<=border1-10)
{ReadSensors(); mxx=mxx-dfx;
if(mxx<0){mxx=0;}

RobotmotorsWrite(mxx,mxx);

}

while (((s[1]>borderl && s[1]<border2) ||(s[2]>borderl && s[2]<border2) ||
(s[3]=borderl && s[3]<border2))&&((s[5]>borderl && s[5]<border2) ||
(s[6]>borderl && s[6]<border2) || (s[7]>borderl && s[7]<border2)))

{ ReadSensors();

if(s[0]<borderl || s[1]<borderl ||s[2]<borderl ||s[3]<borderl ||s[6]<borderl
|Is[7]<borderl)break;

getdata(); delay(20); orientation(data2,mxx);

64

while(s[1]<=borderl||s[2]<=borderl)

{LCDprint();ReadSensors();if((s[1]>=borderl && s[2]>=borderl) || (s[6]<=borderl
|| s[7]<=borderl))break;mdx=min(s[1],s[2]);rr(mdx);

RobotmotorsWrite(mxx,cxrr);RobotmotorsWrite(mxx,mxx);

}
while((s[1]>border2 && s[1]<=mdmin)||(s[2]>border2&&s[2]<=mdmin))
{ReadSensors();

if(s[6]>border2 && s[7]>border2)

{

LCDprint(); ReadSensors();if(s[1]<=(border2)||s[2]<=(border2)||s[0]<=120)break;

if(s[1]<=mdmin &&
s[2]<=mdmin){mdx=max(s[1],s[2]); }else{mdx=min(s[1],s[2]);}

ra(mdx);if(cxra>=mxx && cxra<=2*mxx)
{RobotmotorsWrite(cxra,mxx); }delay(time);RobotmotorsWrite(mxx,mxx); }
if(s[6]<=mdmin && s[7]<=mdmin){orientation(data2,mxx);}
}
while(s[6]<=borderl||s[7]<=border1){LCDprint();ReadSensors();
if((s[6]>=borderl && s[7]>=borderl) || (s[1]<=borderl || s[2]<=borderl))break;
mdx=min(s[6],s[7]);rr(mdx);
RobotmotorsWrite(cxrr,mxx);RobotmotorsWrite(mxx,mxx); }
while((s[6]>border2 && s[6]<=mdmin)||(s[7]>border2 && s[7]<=mdmin))
{ReadSensors();

if(s[1]>border2 && s[2]>border2)

{LCDprint();ReadSensors();
if(s[6]<=(border2) || s[7]<=(border2) || s[0]<=120)break;

if(s[6]<mdmin && s[7]<mdmin){mdx=max(s[6],s[7]);}else{mdx=min(s[6],s[7]);}

ra(mdx);if(cxra>=mxx && cxra<= 2*mxx){RobotmotorsWrite(mxx,cxra);
delay(time);RobotmotorsWrite(mxx,mxx); }

¥

65

if(s[1]<=mdmin && s[2]<=mdmin){orientation(data2,mxx);}

}

while ((s[4]<mdmin && s[4]>border2)||(s[3]<mdmin &&
s[3]>border2)||(s[5]<mdmin && s[5]>border2))

{ReadSensors();LCDprint();if(s[3]<border2|| s[4]<border2 || s[5]<border2)break;
mxx=mxx-2;if(mxx<xl-10){RobotmotorsWrite(mxx-10,mxx-
10);}else{RobotmotorsWrite(mxx,mxx);} }

while(s[3]<=mdmax+20)

{ReadSensors();if(s[3]>=borderl||s[0]<=150 || s[6]<=border1+5 ||
s[7]<=border1+5)break;

mxx=mxx+dfx; if(mxx>2*xI){mxx=2*xl;RobotmotorsWrite(mxx,mxx);}
else{RobotmotorsWrite(mxx,mxx);}}
while(s[4]<=(mdmax+20))

{ReadSensors();if(s[4]>=borderl||s[0]<=150 || s[1]<=borderl+5 ||
s[7]<=border1+5)break;

mxx=mxx+dfx; if(mxx>2*xI){mxx=2*xl;RobotmotorsWrite(mxx,mxx);}

else{RobotmotorsWrite(mxx,mxx);}}

while(s[5]<=(mdmax+20))

{ReadSensors();if(s[5]>=borderl||s[0]<=150|| s[1]<=borderl1+5 ||
s[2]<=border1+5)break;

mxx=mxx+dfx; if(mxx>2*xI){mxx=2*xl;RobotmotorsWrite(mxx,mxx); }

else{RobotmotorsWrite(mxx,mxx);}}

if(data2>360){data2=data2%360;}

H/END Parallel Orientation

void ra(int x)

{
al=(mxx/(double)(mdmin-border2));
bl=mxx*(1-border2/(double)(mdmin-border2));

cxra=al*x+bl;

66

¥

void rr(int x)

{
a2=mxx/(double)(mdmax-borderl);
b2=mxx*(1-(borderl/(double)(mdmax-borderl)));
CXIr=a2*x+b2;

}

void orientation(int degree, int mxx)

{ diff = heading - degree;

if (diff > 180)
{

diff = -360 + diff;
}
else if (diff < -180)
{

diff = 360 + diff;
}

diff = map(diff, -180, 180, -mxx, mxx);
if (diff >0) {
/I keep the right wheel spinning,
/I change the speed of the left wheel
speedLeft = mxx - diff;
speedRight = mxx +2*diff;
} else {
Il keep the right left spinning,
Il change the speed of the left wheel
speedLeft = mxx -2*diff;

speedRight = mxx + diff;
67

}
RobotmotorsWrite(speedLeft, speedRight);

¥
//[Function of Reading distances
void ReadSensors()
{ x1=0;
for (i=0;i<=7;i++)
{
for (inty = 0; y < 25; y++) {x1 = x1+analogRead(sensorpins[i]);}
x1=x1/25;
s[i] = f(x1);
¥
¥

/ffunction to write something to LCD

void LCDprint()

{
Icd.print("d:");
lcd.print(heading); led.print("/");lcd.print("/");lcd.print(s[1]);
Icd.setCursor(0, 1);

Icd.print(data2); Icd.print("/"); lcd.print(cxrr);
Icd.print("/™);lcd.print(s[3]);lcd.print("/");

delay(50);

Icd.clear();

¥

68

APPENDIX B

#include <XBee.h>

#include <Wire.h>

#include <LSM303.h>

#include <LiquidCrystal.h>

LSM303 compass;

XBee xbee = XBee();

XBeeResponse response = XBeeResponse();
uint8_t payload[2];

uint8 _t data = 0;

uint8 trssi =0;

Tx16Request tx = Tx16Request(0x1, payload, sizeof(payload));//0x1 address of the
other Xbee

TxStatusResponse txStatus = TxStatusResponse();
Rx16Response rx16 = Rx16Response();
/lused variables
int datal, data2;
float heading;
// initialize the library with the numbers of the interface pins
LiquidCrystal Icd(50, 51, 34, 32, 30, 28); //LCD Digital Pins Declaration
void setup()
{

Icd.begin(16, 2);

Serial.begin(9600);

Serial3.begin(9600);

xbee.setSerial(Serial3);

Wire.begin();

compass.init();

69

compass.enableDefault();
compass.m_min = (LSM303::vector<intl6_t>) { -2512, -2874, -2748} ;
compass.m_max = (LSM303::vector<intl6_t>) { +2147, +2236, +1988};
}/end void setup
void loop()
{
compass.read();
heading = compass.heading();
senddata(int(heading));
delay(50);
LCDprint();
¥
void senddata(int x)//
{
payload[0] = x >> 8 & Oxff;
payload[1] = x & Oxff;
xbee.send(tx);
}
I
void getdata()
{
xbee.readPacket();
if (xbee.getResponse().getApild() == RX_16_RESPONSE)
{
xbee.getResponse().getRx16Response(rx16);
rssi = rx16.getRssi();
data = rx16.getData(0);
datal = rx16.getData(l);

data2 = data * 256 + datal;
70

¥
¥

/[function to write something to LCD
void LCDprint()
{
Icd.print("d:");
lcd.print(heading); Icd.print("/"),
Icd.setCursor(0, 1);

/llcd.print(data2); Icd.print("/"); lcd.print(cxrr);
Icd.print("/™);lcd.print(cxra);lcd.print(/");lcd.print(al);

delay(50);

Icd.clear();

}

71

APPENDIX C

#include <XBee.h>

#include <Wire.h>

#include <LSM303.h>

LSM303 compass;

XBee xbee = XBee();

XBeeResponse response = XBeeResponse();
uint8_t payload[] ={ 0,0 };

uint8 t data = 0;

uint8 trssi =0;

Tx16Request tx = Tx16Request(0x1, payload, sizeof(payload));//0x1 address of the
other Xbee

TxStatusResponse txStatus = TxStatusResponse();
Rx16Response rx16 = Rx16Response();

long data2;

intc=1,

int heading, x, i =1, a, aa, bb, adress, datal, data3, data4, vel, adr, mdx, k, mdmin =
250.00, borderl = 120.00, border2 = 180.00, mdmax = 60.00, x1, cxra, cxrr, degree,
deg[8], v[8];

double al, a2, b1, b2, mxx;

void setup()

{
Wire.begin();
Serial.begin(9600);
Serial3.begin(9600);
xbee.setSerial(Serial3);
compass.init();

compass.enableDefault();

72

compass.m_min = (LSM303::vector<intl6_t>){ -32767, -32767, 32767};
compass.m_max = (LSM303::vector<intl6_t>) {+32767, +32767, +32767};
if (c==1)
{for(intj=1;j<8;j++)
{ deg[i] = 0;
v[i] = 0;

c=2;
¥
;
void loop()
{
getdata();
if (i ==6)
{i=1}
i=i+1;
if (deg[i] >= 0 && deg[i] < 360 && V[i] >= 0 && V[i] < 200)
{
if (deg[i] < 10 && deg[i] >=0 && V[i] >= 0 && V[i] < 10) {
Serial.print(i, DEC);
Serial.print("00");
Serial.print(deg]i], DEC);
Serial.print("00");
Serial.print(v[i], DEC);
Serial.print("\n");
¥
if (deg[i] < 10 && deg[i] >= 0 && V[i] >= 10 && V[i] < 100) {
Serial.print(i, DEC);

Serial.print("00");
73

Serial.print(deg]i], DEC);
Serial.print("0");
Serial.print(v[i], DEC);
Serial.print("\n");
¥
if (deg[i] < 10 && deg[i] >= 0 && VJ[i] >=100) {
Serial.print(i);
Serial.print("00");
Serial.print(deg[i]);
Serial.print(v[i]);
Serial.print("\n");
¥
if (deg[i] >= 10 && deg[i] <100 && Vv[i] >= 10 && Vv[i] <100) {
Serial.print(i, DEC);
Serial.print("0");
Serial.print(deg]i], DEC);
Serial.print("0");
Serial.print(v[i], DEC);
Serial.print(*\n");
}
if (deg[i] >= 10 && deg[i] < 100 && Vv[i] >=100) {
Serial.print(i, DEC);
Serial.print("0");
Serial.print(deg[i], DEC);
Serial.print(v[i], DEC);
Serial.print("\n");
b
if (deg[i] >=10 && deg[i] <100 && V[i] >=0 && Vv[i] <10) {

Serial.print(i, DEC);
74

Serial.print("0");
Serial.print(deg]i], DEC);
Serial.print("00");
Serial.print(v[i], DEC);
Serial.print("\n");

¥

if (deg[i] >= 100 && V[i] >= 10 && V[i] < 100) {
Serial.print(i, DEC);
Serial.print(deg[i], DEC);
Serial.print("0");
Serial.print(v[i], DEC);
Serial.print("\n");

}

if (deg[i] >= 100 && Vv[i] >=100) {
Serial.print(i, DEC);
Serial.print(deg]i], DEC);
Serial.print(v[i], DEC);
Serial.print("\n");

}

if (deg[i] >= 100 && V[i] >= 0 && V[i] < 10) {
Serial.print(i, DEC);
Serial.print(deg[i], DEC);
Serial.print("00");
Serial.print(v[i], DEC);
Serial.print("\n");

b

b
delay(100);

}
75

void senddata(int x)//

{
payload[0] = x >> 8 & Oxff;
payload[1] = x & Oxff;
xbee.send(tx);
delay(40);

}
void getdata()

{
xbee.readPacket();
if (xbee.getResponse().getApild() == RX_16_RESPONSE)
{
xbee.getResponse().getRx16Response(rx16);
rssi = rx16.getRssi();
adr = rx16.getRemote Address16(); //adress of the other Xbee that sent data packet
data = rx16.getData(0);
datal = rx16.getData(1);
data2 = data * 256 + datal;
vel = data?;

}
if (data2 < 0 || (data2 > 0 && data2 < 4500))

{
data2 = data2 + 65536;

b

a = data2 / 10000;

deg[a] = (data2 % 10000) / 10;

v[a] = (data2 % 10000) - deg[a] * 10;
if (v[a] == 0) {

v[a] =0;
76

}

else {

v[a] = map(v[a], 1, 9, 10, 19);

v[a] = v[a] * 447 * 5/ 255;
}

77

APPENDIX D

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;
using System.lIO;

using System.Collections;

using Excel = Microsoft.Office.Interop.Excel,
namespace simulation

public partial class Form1 : Form

{
string[] a;
string[] vv;
string b,X;
int i,j,k=0;
int[] d;
int[] v;
double xi = 250, yi = 700, L,dx=80,dxx,dxy, dt = 0.03, t;
double dt1=0.0379,dt2=0.018895;
double[] xx;
double[] yy;
double[,] xrr=new double [8,400000];
double[,] yrr = new double[8,400000];
double[,] tetar = new double[8,400000];
double[,] vrr = new double[8,400000];

public Form1()
{

}

private void Form1_Load(object sender, EventArgs e)
{
dxx = dx * Math.Cos((72) * Math.P1/ 180);
dxy = dx * Math.Sin((72) * Math.PI / 180);
a = new string[8];
d = new int[8];
VvV = new int[8];
vV = new string[8];
xx = new double[8] { 0, xi, xi + dxx, xi + dx, Xi + dxX, Xi - dx *Math.Cos((36)*
Math.P1/180), xi - dx *Math.Cos((36) * Math.P1/180), xi - dx * 0.5 };

InitializeComponent();

78

yy = new double[8] { 0, yi, yi - dxy, i, yi + dxy, yi + dx * Math.Sin((36) * Math.PI /
180), yi - dx * Math.Sin((36) * Math.P1/ 180), yi - dx * 0.5 * Math.Sqrt(3) };

/l ovalShapel.Visible = false;
/lovalShape2.Visible = false;
/lovalShape3.Visible = false;
/lovalShape4.Visible = false;
Il ovalShape5.Visible = false;
ovalShape6.Visible = false;
ovalShape7.Visible = false;
/llineShapel.Visible = false;
/llineShape2.Visible = false;
/llineShape3.Visible = false;
/llineShape4.Visible = false;
/l//lineShape5.Visible = false;
lineShape6.Visible = false;
lineShape7.Visible = false;

this.WindowState = FormWindowState.Maximized;
serialPortl.PortName = "COM32";
serialPortl.BaudRate = 9600;

serialPort1.0Open();

¥
private void timerl_Tick(object sender, EventArgs e)
{

L = 10;

textBox1.Text = Convert. ToString(d[1]);
textBox2.Text = Convert. ToString(d[2]);
textBox3.Text = Convert. ToString(d[3]);
textBox4.Text = Convert. ToString(d[4]);
textBox5.Text = Convert. ToString(d[5]);
textBox6.Text = Convert. ToString(d[6]);
textBox7.Text = Convert. ToString(d[7]);
textBox8.Text = Convert. ToString(v[1]);
textBox9.Text = Convert. ToString(v[2]);
textBox10.Text = Convert. ToString(v[3]);
textBox11.Text = Convert. ToString(v[4]);
textBox12.Text = Convert. ToString(v[5]);
textBox13.Text = Convert. ToString(v[6]);
textBox14.Text = Convert. ToString(v[7]);
k=k+1;
for (j=1;)<8;j+t)
{

xx[j] = xx[j] + v[j] * dt * Math.Cos(-d[j] * Math.P1/ 180);

yylil = yyljl + v[j] * dt * Math.Sin(-d[j] * Math.P1/ 180);

xrr[j,k] = xx[j];

yrrlj.k] = yy[il;

tetar[j,k] = d[j];

79

vrr[j,k] = v[j];
}

ovalShapel.Left = Convert. ToInt32(xx[1]);

ovalShapel.Top = Convert.ToInt32(yy[1]);

lineShapel.X1 = ovalShapel.Left + ovalShapel.Width / 2;

lineShapel.Y1 = ovalShapel.Top + ovalShapel. Width / 2;

lineShapel.X2 = lineShapel.X1 + Convert.ToInt32(L * Math.Cos((-d[1]) *
Math.P1/180));

lineShapel.Y?2 = lineShapel.Y1 + Convert.ToInt32(L * Math.Sin((-d[1]) *
Math.P1/180));

//if (textBox1.Text I="" && (textBox1.Text is string))

ovalShape2.Left = Convert. Tolnt32(xx[2]);

ovalShape2.Top = Convert.ToInt32(yy[2]);

lineShape2.X1 = ovalShape2.Left + ovalShape2.Width / 2;

lineShape2.Y1 = ovalShape2.Top + ovalShape2.Width / 2;

lineShape2.X2 = lineShape2.X1 + Convert.ToInt32(L * Math.Cos((-d[2]) *
Math.P1/180));

lineShape2.Y?2 = lineShape2.Y1 + Convert. ToInt32(L * Math.Sin((-d[2]) *
Math.P1/180));

Ilt=1t+dt;

ovalShape3.Left = Convert. Tolnt32(xx[3]);

ovalShape3.Top = Convert.Tolnt32(yy[3]);

lineShape3.X1 = ovalShape3.Left + ovalShape3.Width / 2;

lineShape3.Y1 = ovalShape3.Top + ovalShape3.Width / 2;

lineShape3.X2 = lineShape3.X1 + Convert.ToInt32(L * Math.Cos((-d[3]) *
Math.P1/ 180));

lineShape3.Y2 = lineShape3.Y1 + Convert. ToInt32(L * Math.Sin((-d[3]) *
Math.P1/ 180));

Ilt=t+dt;

ovalShape4.Left = Convert. Tolnt32(xx[4]);

ovalShape4.Top = Convert.ToInt32(yy[4]);

lineShape4.X1 = ovalShape4.Left + ovalShape5.Width / 2;

lineShape4.Y1 = ovalShape4.Top + ovalShape5.Width / 2;

lineShape4.X2 = lineShape4.X1 + Convert.ToInt32(L * Math.Cos((-d[4]) *
Math.P1/ 180));

lineShape4.Y2 = lineShape4.Y1 + Convert.ToInt32(L * Math.Sin((-d[4]) *
Math.P1/ 180));

Ilt=1t+dt;

ovalShape5.Left = Convert. Tolnt32(xx[5]);

ovalShape5.Top = Convert.ToInt32(yy[5]);

lineShape5.X1 = ovalShape5.Left + ovalShape5.Width / 2;

lineShape5.Y1 = ovalShape5.Top + ovalShape5.Width / 2;

lineShape5.X2 = lineShape5.X1 + Convert. Tolnt32(L * Math.Cos((-d[5]) *
Math.P1/180));

lineShape5.Y2 = lineShape5.Y1 + Convert. Tolnt32(L * Math.Sin((-d[5]) *
Math.P1/180));

Ilt=t+dt;

80

ovalShape6.Left = Convert. Tolnt32(xx[6]);

ovalShape6.Top = Convert.ToInt32(yy[6]);

lineShape6.X1 = ovalShape6.Left + ovalShape6.Width / 2;

lineShape6.Y1 = ovalShape6.Top + ovalShape6.Width / 2;

lineShape6.X2 = lineShape6.X1 + Convert.ToInt32(L * Math.Cos((-d[6]) *

Math.PI/ 180));

lineShape6.Y?2 = lineShape6.Y1 + Convert. ToInt32(L * Math.Sin((-d[6]) *

Math.PI/ 180));

Ilt=1t+dt;

ovalShape7.Left = Convert. ToInt32(xx[7]);

ovalShape7.Top = Convert.ToInt32(yy[7]);

lineShape7.X1 = ovalShape7.Left + ovalShape7.Width / 2;

lineShape7.Y1 = ovalShape7.Top + ovalShape7.Width / 2;

lineShape7.X2 = lineShape7.X1 + Convert.ToInt32(L * Math.Cos((-d[7]) *

Math.P1 / 180));

lineShape7.Y2 = lineShape7.Y1 + Convert.ToInt32(L * Math.Sin((-d[7]) *

Math.P1 / 180));

private void serialPortl_DataReceived(object sender,

System.l0.Ports.SerialDataReceivedEventArgs e)

if (serialPort1.1sOpen)

{
b = serialPortl.ReadLine();

x=b.Substring(0,1);
if (x!="" && X is string)
{ i = Convert.ToInt32(x); }

a[i] = b.Substring(1,3);
wv[i] = b.Substring(4,3);

if (@[i] '="" && (a[i] is string) && vv[i] '="" && (vV]i] is string))

{
d[i] = Convert.ToInt32(al[i]);

v[i] = Convert.TolInt32(vv[i]);

private void Form1_FormClosed(object sender, FormClosedEventArgs e)

81

private void buttonl_Click(object sender, EventArgs €)
{

serialPort1.Close();

}

private void textBox1_TextChanged(object sender, EventArgs e)

{
¥

private void button2_Click(object sender, EventArgs €)
{

Excel.Application xIApp;

Excel.Workbook xIWorkBook;

Excel.Worksheet xI\WorkSheet;

object misValue = System.Reflection.Missing.Value;

xIApp = new Excel.Application();

xIWorkBook = xIApp.Workbooks.Add(misValue);

xIWorkSheet = (Excel.Worksheet)xIWorkBook.Worksheets.get_ltem(1);

xIWorkSheet.Cells[2, 1] = "Time";

for (inti=1;i<8;it++)

{
xIWorkSheet.Cells[1, 1+i+3*(i-1)] ="Robot"+i;
xIWorkSheet.Cells[2, 1+i + 3 * (i - 1)] = "X Pos.";
xIWorkSheet.Cells[2, i+1+1 + 3 * (i - 1)] ="Y Pos." ;
xIWorkSheet.Cells[2, i+2+1 + 3 * (i - 1)] = "Orientation angle™;
xIWorkSheet.Cells[2, i+3 +1+ 3 * (i - 1)] = "Velocity";

¥
for (int jj = 1; jj <= k; jj++)
{

for (intii = 1; ii < 8; ii++)

{
xIWorkSheet.Cells[jj+2, 1] = jj;

xIWorkSheet.Cells[jj+2, 1 +ii + 3 * (ii - 1)] = xrr[ii, jj];
xIWorkSheet.Cells[jj+2, 1 + ii + 1 + 3 * (ii - 1)] = yrr]ii, jj];
xIWorkSheet.Cells[jj+2, 1 +ii + 2 + 3 * (ii - 1)] = tetar[ii, jj];
xIWorkSheet.Cells[jj+2, 1 + ii + 3 + 3 * (ii - 1)] = vrr]ii, jj];

}/end for

}/end for

xIWorkBook.SaveAs("C:\\UsersW\HAYRETTiN\\Desktop\KODLAR\simulation\\ou
tput.xls", Excel. XIFileFormat.xIWorkbookNormal, misValue, misValue, misValue,

82

misValue, Excel.XISaveAsAccessMode.xIExclusive, misValue, misValue,
misValue, misValue, misValue);
xIWorkBook.Close(true, misValue, misValue);

xIApp.Quit();

83

CURRICULUM VITAE

Name Surname:

Place and Date of Birth:

Address:

E-Mail:

B.Sc.:

List of Publications:

Hayrettin SEN
ODEMIS 23.05.1990

Izmir Katip Celebi Universitesi Miihendislik ve
Mimarhk Fakiiltesi, Mekatronik Miihendisligi
Boliimii, Balatcik Kampiisii, Cigli/izmir, Tiirkiye

hayrettinsenn@gmail.com

Mechanical Engineering

Can F.C. and Sen H., Siirii Simiilasyon Programi Gelistirilmesi ve Performansinin
Incelenmesi, Akilli Sistemlerde Yenilikler ve Uygulamalar1 Sempozyumu (ASY U-

2014), 163-166.

Can F.C. and Sen H., A Simulation Study on Collective Motion of Fish Schools. The
Seventh International Conference on Swarm Intelligence: ICSI 2016, Advances in
Swarm Intelligence, 9712(1), 131-141.

85

