
i

İZMİR KATİP ÇELEBİ UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SIMULATION AND DESIGN OF A
GLIDER SWARM ROBOTICS PLATFORM

M.Sc. THESIS

Kasım GÜL

Department of Computer Engineering

Thesis Advisor: Assist. Prof. Dr. Fatih Cemal CAN

September 2017

ii

iii

İZMİR KATİP ÇELEBİ UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SIMULATION AND DESIGN OF A
GLIDER SWARM ROBOTICS PLATFORM

M.Sc. THESIS

Kasım GÜL
(601514004)

Department of Computer Engineering

Thesis Advisor: Assist. Prof. Dr. Fatih Cemal CAN

September 2017

iv

v

İZMİR KATİP ÇELEBİ UNIVERSITY

FEN BİLİMLERİ ENSTİTÜSÜ

GLİDER SÜRÜ ROBOT PLATFORMUNUN

DİZAYN VE SİMULASYONU

YÜKSEK LİSANS TEZİ

Kasım GÜL
(601514004)

Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Fatih Cemal CAN

September 2017

vi

vii

Kasım Gül, a M.Sc. student of İzmir Katip Çelebi University Graduate School of
Science and Engineering student ID 601514004, successfully defended the thesis
entitled “Design and Implementation of a Glider Pattern Following Swarm
Robotics Platform”, which he prepared after fulfilling the requirements specified in
the associated legislations, before the jury whose signatures are below.

Thesis Advisor: Yrd. Doç. Dr. Fatih Cemal CAN
İzmir Katip Çelebi University

Jury Members: Doç. Dr. Ayşegül ALAYBEYOĞLU
İzmir Katip Çelebi University

Yrd. Doç. Dr. Aytuğ ONAN
Manisa Celal Bayar University

Date of Submission : 23 August 2017
Date of Defense : 07 September 2017

viii

ix

FOREWORD

First of all, I would like to thank to my supervisor Assist. Prof. Dr. Fatih Cemal Can
who helped me very much and taught me many valuable lessons, assisted me in
programming and advised me whenever I needed guidance.

I am also grateful to all my professors in Computer Engineering Department for being
very kind to me and let me study in the laboratories of the department throughout the
research.

August 2017 Kasım GÜL

x

xi

TABLE OF CONTENTS
FOREWORD………………………………………………………………….…………………………..ix
Hata! Yer işareti tanımlanmamış.
TABLE OF CONTENTS………………………………………………………………….…………xi
ABBREVIATIONS………………………………………………………………….………………….xii
LIST OF TABLES………………………………………………………………….…………………...xiii
LIST OF FIGURES………………………………………………………………….…………………xiv
SUMMARY………………………………………………………………….……………………………...xv

1. INTRODUCTION
1.1 Swarm Robotics Literature Review ... 1
1.2 Cellular Automata Literature Review .. 3
1.3 Game of Life Algorithm... 6
1.4 Life Forms.. 6
1.5 Oscillators .. 7
1.6 Methuselah configurations ... 7
1.7 Gliders .. 7

2. DESIGN AND MANUFACTURING OF MOBILE SWARM ROBOTS....... 10
2.1 Design Criterias and Component Descriptions .. 10
2.2 Mechanical Components of Mobile Robots... 10
2.3 Design and Manufacturing of Mobile Robot Board .. 12
2.4 NRF24L01 RF Communication Module ... 13
2.5 Communication Network with Multiple NRF24L01....................................... 14
2.6 ULN2803A Motor driver ... 14
2.7 28BJY-48 Stepper Motors.. 15

3. DESIGN AND IMPLEMENTATION OF SOFTWARE 16
3.1 Software of Mobile Robots .. 16
3.2 Processing Simulation Interface... 17
3.3 Mega2560 Interface Software .. 19

4. PERFORMED TEST RESULTS .. 21

5. CONCLUSION .. 27

REFERENCES ... 29

APPENDICES .. 31
APPENDIX A
APPENDIX B
APPENDIX C

CURRICULUM VITAE

xii

ABBREVIATIONS

PLA : PolyLactic Acid
PWM : Pulse Width Modulation
PCB : Printed Circuit Board
PSD : Position Sensitive Detector
API : Application Programming Interface
GOL : Game of Life
CA : Cellular Automata

xiii

LIST OF TABLES

Table 2.1 : Mechanical components.. 10
Table 2.2 : Electrical components. .. 12
Table 2.3 : 28BYJ-48 Stepper Motor Parameters ... 15
Table 3.1 : Order of Signals for Swarm Robots through Cycle1 and Cycle2 19
Table 4.1 : Movement time of robots for each pattern creation................................ 25

xiv

LIST OF FIGURES

Figure 1.1 : Cellular Automata Galaxy Formation. .. 4
Figure 1.2 : The von Neumann neighborhood surrounding a central cell. 4
Figure 1.3 : The Moore neighborhood with r = 1. ... 5
Figure 1.4 : The enumeration of the cells of the von Neumann neighborhood................... 5
Figure 1.5 : The possible evolutionary histories of three cells in the Game of Life 6
Figure 1.6 : The evolution of 4 live cells with time increasing to the right 6
Figure 1.7 : Period-2 oscillators. ... 7
Figure 1.8 : Methuselah configurations. ... 7
Figure 1.9 : A glider moves one cell diagonally to the right after four generations. 8
Figure 1.10 : Light-weight, medium-weight, and heavy- weight spaceships. 8
Figure 1.11 : The initial configuration of the original glider gun...................................... 8
Figure 1.12 : A period 16 puffer train (at right) that produces a smoke trail. 9
Figure 1.13 : Glider-eater. .. 9
Figure 2.1 : Control Board Schematic…………………………………………………………...…13
Figure 2.2 : NRF24L01 Module Pinouts..……………………………….………………...………13
Figure 2.3 : ULN2803A High-Current Darlington transistor array 14
Figure 3.1 : Swarm Robots Software Flowchart... 16
Figure 3.2 : Processing Simulation Flowchart .. 17
Figure 3.3 : 4 different patterns of Glider Formation ... 18
Figure 3.4 : Mega2560 Flowchart for Cycle1 Signal Order 19
Figure 3.5 : Mega2560 Flowchart for Cycle2 Signal Order 20
Figure 4.1 : Complete System Diagram.. 21
Figure 4.2 : Cycle1 Pattern1 ... 22
Figure 4.3 : Cycle1 Pattern2 ... 22
Figure 4.4 : Cycle1 Pattern3 ... 22
Figure 4.5 : Cycle1 Pattern4 ... 23
Figure 4.6 : Cycle2 Pattern1 ... 23
Figure 4.7 : Cycle2 Pattern2 ... 23
Figure 4.8 : Cycle2 Pattern3 ... 24
Figure 4.9 : Cycle2 Pattern4 ... 24
Figure 4.10 : Cycle1 Pattern1 ... 25

xv

SIMULATION AND DESIGN OF A
GLIDER SWARM ROBOTICS PLATFORM

SUMMARY

The main purpose of my thesis is to develop a Swarm Robotics Platform which will
use Cellular Automata Glider model and generate itself with “Game of Life” rules.
The method was experimentally tested with autonomous mobile robots and real-time
PC based simulation software, in all cases very good paths were obtained with
negligible processing effort, and low cost production. Presented results indicate that
the Cellular Automata approach is a very promising method for real time path planning
and Glider like robotic swarms can be used for self-replicating and moving swarm
robots.

We designed five identical mobile robots that interact with each other and the
simulation software at PC through RF connection. PC runs a Glider simulation
simultaneously while robots play “Game of Life” on the grid. Presented model is a
self-organized and a self-driven mechanism.

The base platform used is a lattice of squared cells, but the shape of cells can be
hexagonal and other shapes as well. Each cell can exist in 2 or more different states
(not simultaneoulsy). Most basically ON/OFF states of bright LEDs at the top of each
robot is controlled as an indicator to show dead/alive modes of the robots. We expect
our robots to move on the lattice base as in Glider form and keep their formation
patterns after each step.

Mobile robots are based on Arduino Nano boards. NRF24L01 RF modules used for
communication. ULN2803 IC is used to drive two stepper motors (28BJY-48). Each
robot is powered with a pack of 4 AA batteries.

Each member robot will keep its track and location information and inform the main
PC simulation software. After each robot completes its action, the simulation software
moves to the next pattern of Glider and the LEDs of robots will be turned ON (Live
Mode).

Atmel328P based board with a NRF24L01 RF module establishes the real time
communication between Glider robots and the PC. Main module transfers required
pattern data to each individual Glider robot and receives a confirmation of correct data
transmission from each robot. After each robot gets its required data, then the main
module updates the information of simulation software that runs on the PC. It is
possible to observe the pattern evolution of Glider robots on the simulation software.
Processing programming language is used to create the simulation software.

xvi

With all these simple and commonly found parts, each robot was produced with quite
a cheap and simple way. Thus, the total number of robots can be increased to more
than 5 and different CA models can be realized with this platform.

Some improvements should be done on our system such as including another
NRF24L01 module for each 6 mobile robots due to available channel number
restriction of RF module used. Atmel2560 based board can provide much more
communication capability for crowder Swarms with additional RF modules.

Another future development of the system should be to include a path finding
algorithm into simulation and create “maze solving” or “target searching” Swarm
group with much better performance. This method will allow to conclude results in
much shorter times and with much less effort.

1

1. INTRODUCTION

1.1 Swarm Robotics Literature Review

Path planning is one of the most important part of Swarm Robotics [1]. Some of the
path planning methods are: route maps [2], cell decomposition [3] and potential field
[4]. These methods are considered as discrete models. After fast advances in Swarm
Robotics, Cellular Automata (CA) [5], [6] have also been considered for path planning
[7], [8], [9], [12], [13], [14], [15], [16], [17], [18]. Especially decentralized CA
algorithm allows the development of distributed path-planning for Swarm Robots.

Swarm Robotics is one of the fastest growing area in multiple robotics field. Swarm
studies begin around 1980s and Craig Reynolds created the first computer program,
“The Boids” that simulates the behavior of flocks of birds in 1987 [19]. Advances of
Robotics hardware later allowed the design and production of Swarm applications in
different ways.

Collective Motion Model is being used by animals in nature long ago before humans
discovered it. These models allowed us to develop new algorithms and hardware
designs that mimics the natural Swarm Robots. These natural Swarm systems mostly
developed to handle specific tasks, such as food gathering, cleaning, production,
colony safety etc.

One of the first example of distributed mobile robotic system was carried out by
Fukuda [20]. Main idea of his work was the communication capability of group robots
with each other. His swarm group is able to connect and separate with each other
autonomously to construct a manipulator together.

Another robotic swarm example was developed by Atyabi [21]. He has designed a
robotic swarm that has two phases, training and testing. Swarm robots also navigated
by a simulation. Main mission of the Swarm was to conclude a rescuing target.

Pattern formation problem of Swarm mobile robots is investigated by Fredslund and
Mataric [22]. Their work included four different robots that uses local sensing and
minimal communication requirement. Each robot was moving without knowing the
position or heading of other robots.

“Kobots” was another developed mobile robotic system by Turgut [23]. Seven mobile
robots were used to investigate “Flocking” algorithms. Flocking model was also

2

investigated as a simulation in computer software to couple with real Swarm system.
Their Swarm Robots had two main important property. First one is the ability of “Short
Range Sensing” which measures the distances with objects around and other kin
robots. Other property is VHS (virtual heading system) which uses a digital compass
and a wireless communication module for sensing the relative headings of neighboring
robots.

One of the first Swarm robotics system that investigates “aggregation problem” was
developed by Bahçeci and Şahin [24]. Their system includes a 3D simulator for
aggregation problem. Simulation allowed the change of different parameters to
investigate the motion of the simulated robots.

In this work, we investigated a centralized control of mobile robots. Each robot has a
unique name and a unique beginning cell on the Glider pattern. Beginning condition
must be selected according to physical locations of each robot on the lattice. Glider
formation repeats itself after 4 patterns. When the simulation begins, robots get their
movement information from the simulation interface.

The first robot will complete its movement and send back a confirmation data and will
start its movement. When all Robots complete their movements, first pattern will be
created and the simulation interface will update the formation of swarm. Then the
second cycle will start. When all swarm robots completed their movements, the
simulation interface will be updated again, and so on.

Avoiding collision of Robots during their movements is an important point to be
considered. We tried not to use collision sensors to keep robots simpler and cheaper.
Because of this reason robots move in a pre-defined path. Stepper motors can provide
enough precision and keeps swarm robots on desired path according to their patterns.

Each robot turns on a LED that is mounted at the top side after each pattern completed.
This represents “Game of Life” live mode of the cells. When Robots start to move
again LEDs will be OFF until the cycle completed.

3

1.2 Cellular Automata Literature Review

Cellular automata allow us to create evolving shapes that are governed by some rules
and these shapes move on grid structure lattice which can be squared in our case.
Defined rules are applied iteratively to each cell. According to rules different shapes
will become existed, destroye or changed. von Neumann has started working on such
a model around 1980s. After long years of new discoveries S. Wolfram published his
first book “A New Kind of Science” in 2002. He presents a gigantic collection of
results concerning cellular automata [25].

Grid structure can be 1 or 2 dimensional, and most the early years of work was done
in 1D formations. Simplest evolving method used is time change. At any chosen time
steps, states of each cell changes according to initially defined rules. Time steps can
be taken t = 0, 1, 2, 3.... as ticking of a clock. t = 0 is initial time period before any
change of the cells’ states happens.

Each cell evolves considering local and neighboring cells’ rules. Extension of
neighboring cells is also important in this case because of the interaction that will occur
between cells. This requires the precise definition of neighboring cell number.

“The lattice of cells, the set of allowable states, together with the transition function is
called a cellular automaton.”[25].

4

Figure 1.1: In this setting the neighbors of each cell change due to the differential rotation of
the rings of the polar grid that is used to emulate galaxy formation. The black circle is an active
region of star formation which induces star formation in its neighbors with a certain probability
at the next time step. At right is a typical galaxy simulation. [25]

Cellular Automata follows three fundemental rules:

1. Homogeneity: The same set of rules apply to all cells for updating;
2. Parallelism: Cells states update simultaneously
3. Locality: In nature rules applied locally [25]

Two and one dimensional cellular automata show similar characteristics. Two main
neighboring types are considered:

1. The von Neumann neighborhood (5-cells are involved):

Figure 1.2: The von Neumann neighborhood surrounding a central cell[25].

Second neighborhood type is “Moore neighborhood” which includes 8 cells around
the center cell. Both cases are useful when considered different outcomes.

5

Figure 1.3: The Moore neighborhood with r = 1 [25].

Typically, in a rectangular array, a neighborhood is enumerated as in the von Neumann
neighborhood illustrated below (Figure 1.4). The state of the (i, j)th cell is denoted by
ci,j.

Figure 1.4: The enumeration of the cells of the von Neumann neighborhood [25].

In 1-dimensional case there are 23= 8 possible neighborhood-states. Two states 0 and
1 and a 9-cell Moore neighborhood (again, k = 2, r = 1), there are 29= 512 possible
neighborhood-states ranging from all white to all black with all the various 510 other
combinations of white and black cells in between. With a 5-cell neighborhood, there
are 232≈ ten billion possible transition functions to choose from[25].

6

1.3 Game of Life Algorithm

This game algorithm includes 8 neighboring cells around a central cell. Rules of the
game are quite simple as followed:

1. If a dead cell has exactly 3 alive cells around it, then becomes alive.
2. If a living cell has 2 or 3 alive cells around, then stays the same
3. If a living cell has more than 3 or less than 2 living cells around it, then dies.

According to the third rule; if a cell is alive but only one if its neighbors is also alive,
then the first cell will die of loneliness. On the other hand, if more than three of a cell’s
neighbors are also alive, then the cell will die of overcrowding[25].

1.4 Life Forms

There is a huge crowdness of Lifeforms defined. Lifeforms that has fewer than three
cells generally dies in one generation. Lifeforms that include more than three live cells
generally evolve to extinction after a few steps, or become stabilized such as a block
of four cells:

Figure 1.5: The possible evolutionary histories of three cells in the Game of Life[25].

Four-cell configurations evolve to stable forms (top four rows of Figure 1.5) as well
as a long sequence of various forms.

Figure 1.6: The evolution of 4 live cells with time increasing to the right. The last two
configurations of the last row alternate in a two-cycle[25].

7

1.5 Oscillators

Some of the Lifeforms oscillate between two distinct states. This alternating behavior
continues indefinitely.

Figure 1.7: Period-2 oscillators. The two rows indicate the two different forms of each
oscillator[25].

1.6 Methuselah Configurations

Some patterns with 10 or less alive initial cells continue to evolve before stabilizing
and exclude configurations that grow forever. An R-pentomino (Figure 1.9) remains
alive for 1103 generations having produced six gliders that march off to infinity. The
acorn (center) was discovered by Charles Corderman and remains alive for 5,206
generations. Rabbits were discovered by Andrew Trevorrow in 1986 and stabilize after
17,331 into an oscillating 2-cycle having produced 39 gliders[25].

Figure 1.8: Methuselah configurations[25].

1.7 Gliders

Gliders are one of the most interesting 5-cell configuration. They move one cell
diagonally at the fourth time step (Figure 1.9). They are known as gliders, and they are
reflected diagonally. By time step t + 4 the glider is reflected once again back to its
original orientation, but one cell (diagonally) displaced, and this process is endlessly
repeated[25].

8

Figure 1.9: A glider moves one cell diagonally to the right after four generations[25].

Conway has proved that the maximum speed a moving formation either horizontally
or vertically can be c/2. Conway called these formations as ‘spaceships’ (Figure 1.10).

Figure 1.10: From left to right: light-weight, medium-weight, and heavy- weight spaceships.
These move horizontally at the speed c/2[25].

Some years later a new productive formation been discovered by some researchers
from MIT. This formation is called “the glider gun” (Figure 1.11). This formation
generates gliders in every 30 generations. With this new discovery Conway’s
conjecture that the number of live cells cannot grow without bound was disproved[25].

Figure 1.11: The initial configuration of the original glider gun discovered by Bill Gosper
that generates a new glider every 30 generations[25].

The other interesting discovery was “puffer train” which will travel in a vertical way
and leave stablizing cells behind it. Bill Gosper was the first researcher who discovered
it, and consisted of an engine escorted by two lightweight spaceships. Since then
numerous other ones have been discovered (Figure 1.12).

9

Figure 1.12: A period 16 puffer train (at right) that produces a smoke trail [25].

‘Glider eaters’ devour gliders and are very well used in the creation of logic gates
(Figure 1.13) [25].

Figure 1.13: In this sequence, a glider-eater in bottom left of the first frame is confronted by
a glider approaching at 45 degrees [25].

John Conway has also proved that Game of Life is capable of universal computation.
His method permits the transmission of information as electric pulses of a regular PC.

There are logic gates created in Game of Life formations and Conway and Gosper
demonstrated a system of logic gates such as NOT, AND, OR works the same way in
logic gates [25].

10

2. DESIGN AND MANUFACTURING OF MOBILE ROBOTS

2.1 Design Criterias and Component Descriptions

Design and manufacturing of robots consists of two parts. The first part is the design
and production of mechanical parts. The second part is the design and manufacturing
of circuit board.

Design criterias of robots are ordered as follows:

 Robot size should fit into the cell size of the lattice.

 The robot is able to keep its rotation angle with precision by stepper motors.

 The robot is able to transmit and receive data to/from PC.

All the components such as motors, sensors, wheels, ball casters, motor brackets and
the other circuit components were chosen using the design criterias of the robots.

2.2 Mechanical Components of Mobile Robots

We can divide all the used components and units in to three groups:

a. Mechanical components
b. Control board of robots
c. Electrical components

The mechanical components and their specifications are shown in

Table 2.1 while the rest of the components will be shown in electrical design section.

Table 2.1 : Mechanical components.

Component
Name

Quantity Specification Figures

28BYJ48
Stepper Motor
(1:64 gear
ratio)

2 Transmission ratio 1:64
Free run current is 10
mA,
Stall current is 250mA
Stall torque is 3.4 kg-cm.

11

3D printed
Wheels

2 Diameter of wheel is
60mm, thickness of it is
3mm

3D printed
Motor Brackets

2 This component was
used to attach the motors
on the base plate.

3D printed
Chassis Base

1 This is the base for all
components.

Ball Casters 1 This small ball caster
uses a 9mm diameter
metal ball.

12

2.3 Design and Manufacturing of Mobile Robot Control Board

Each robot’s control board is based on 3 main components:

 1 x Atmel 328P processor - Arduino Nano
 1 x NRF24L01 RF connection module
 1 x ULN2803 motor driver IC

Table 2.2 : Electrical components.

Component Name Quantity Specification Figures

Atmel 328P 1 Control Unit of the
robots.
*6 analog inputs
*14 digital I/O
* 6 PWMs

NRF24L01 1 *1mA Power
*100m Range.

ULN2803 1 Step motor driver
1A output

1.5V Battery Pack 1 4xAA

Main power supply doesn’t require any voltage regulator since the battery pack is
within the operating range of all components. It can supply almost 5 hours of non-stop
fully operating functionality if 4AA alkaline batteries used in the pack.

Atmel328P, ULN2803 and NRF24L01 modules are mounted on a PCB and produced
as a single board for each robot.

13

Figure 2.1 : Control Board Schematic

2.4 NRF24L01 RF Communication Module

These modules consume very low power and are capable of operating almost 100m
range in an open area. RF modules on robots start operating as receivers, but PC side
RF main module begins operating as a transmitter. All robots change their modes from
receiver to transmitter and transfer “data received” signal to the main control board.
Main control board RF module changes to receiver mode to get “signal received”
confirmation from mobile robots. When the information from all robots confirmed,
main board sends another data to PC simulation, and the simulation interface updates
the pattern of Glider formation one step ahead.

Figure 2.2: NRF24L01 Module Pinouts

NRF24L01 modules on robots exchange information only with main control board
which works at PC side and transfers received information to Simulation Software.

14

2.5 Communication Network with Multiple NRF24L01

We’ve created a small network between mobile robots and the main unit attached to
PC which communicates with the simulation interface. Main communication unit
sends required movement information to each robot one by one. After completed
pattern formations the simulation interface is updated.

Each NRF24L01 module keeps a unique address for communication and the main
control unit changes it’s address to connect with robots and transfer movement
information.

There are 5 different addresses used for each robot:

 Swarm – Address name of 1st robot
 nhytr – Address name of 2nd robot
 bgtre – Address name of 3rd robot
 vfrew – Address name of 4th robot
 cdewq – Address name of 5th robot

2.6 ULN2803A Motor Driver

The ULN2803A is a high-voltage, high-current Darlington transistor array. The
device consists of eight NPN Darlington pairs that feature high-voltage outputs with
common-cathode clamp diodes for switching inductive loads. The collector-current
rating of each Darlington pair is 500 mA. The Darlington pairs may be connected
in parallel for higher current capability [26].

Figure 2.3 – ULN2803A High-Current Darlington transistor array [26]

15

2.7 28BYJ-48 Stepper Motors

A stepper motor is an electromechanical device which converts electrical pulses into
discrete mechanical movements. The shaft or spindle of a stepper motor rotates in
discrete step increments when electrical command pulses are applied to it in the proper
sequence. The sequence of the applied pulses is directly related to the direction of
motor shafts rotation. The speed of the motor shafts rotation is directly related to the
frequency of the input pulses and the length of rotation is directly related to the number
of input pulses applied. One of the most significant advantages of a stepper motor is
its ability to be accurately controlled in an open loop system. This is a good reason
why we used 28BYJ-48 stepper motors.

Table 2.3 - 28BYJ-48 Stepper Motor Parameters [27]

Rated voltage： 5VDC DC Resistance： 50Ω±7%(25℃)

Number of Phase： 4 In-traction Torque >34.3mN.m(120Hz)

Speed Variation Ratio： 1/64 Self-positioning Torque >34.3mN.m

Stride Angle： 5.625° /64 Friction torque : 600-1200 gf.cm

Max Frequency : 100Hz Pull in torque : 300 gf.cm

16

3. DESIGN AND IMPLEMENTATION OF SOFTWARE

3.1 Software of Mobile Robots

Each mobile robot is based on an Atmega328P processor. Programming Software is
chosen as Arduino IDE [28] which provides easy and sufficient environment for the
algorithm used.

Swarm robots gets movement data from Mega2560 module. They start as “receivers”
and when Mega2560 transfers movement data to the related robot, each robot sends a
uniqe character to Mega2560 module for “signal received” confirmation.

Swarm robots and Mega2560 communicates with different addresses. There are 5
different address names given to each robot initially:

Names Robot Number

"Swarm" 1st Robot

"nhytr" 2nd Robot

"bgtre" 3rd Robot

"vfrew" 4th Robot

"cdewq" 5th Robot

Swarm robots program is given as a flowchart below:

Figure 3.1 – Swarm Robots Software Flowchart

Swarm robots have an indicator LED at their top side. This LED will turn to RED
while moving, turn to BLUE while in mid-pattern formation, and turn to GREEN when
completes the full-pattern all together.

17

3.2 Processing Simulation Interface

Real time Simulation of robots will be followed with a program interface created by
Processing [29]. The user will choose initial locations of robots by clicking to lattice
squares and related cell will turn to green to incidate the existance of robot in that cell.

Another step is to locate each robot on to choosen cells according to Simulation
interface. When the user hits “space bar” key, simulation and the data transfer will
start.

Following diagram (Figure 3.2) shows flowchart of Processing Simulation Program.

Figure 3.2 – Processing Simulation Flowchart

Some instructions about Simulation interface:

 Click on any square to select/deselect it
 Press “spacebar key” to pause/run simulation
 Press “c” key clear screen and clear all selections

This simulation interface is based on “Processing/Topics/Cellular
Automata/GameOfLife.pde” program with some changes such as:

 Serial communication with Mega2560 board (Simulation Line 49)
“myPort = new Serial(this, "COM17", 9600);”

 Updating patterns according to the movements of Swarm Bots:
There are 4 different patterns that Swarm Bots will create. Simulation will repeat itself
after each 4 steps:

18

Figure 3.3 – 4 different patterns of Glider Formation

Each pattern will be updated after simulation receives “g” from Mega2560 and sends
“g” as a confirmation of updated pattern.

Glider formation will keep moving acoording to GOL rules until the “spacebar” key
is pressed and the simulation is paused.

 Cell size is changed due to a better visualization and required number of cells
as 7x7 cells.

 Total number of cells is fixed to 7x7=49 cells which is enough for Glider to
show 16 updated patterns from left-top corner to right-bottom corner.

19

3.3 Mega2560 Interface Board

Mega2560 board is used to communicate between Swarm Bots and the PC simulation.
When Mega2560 gets “start” signal from simulation, it sends data to SwarmBot1 and
receives a confirmation signal. It sends 2nd data to SwarmBot2 and receives another
confirmation signal back. If the signal is due to updated pattern then Mega2560 module
sends an update signal to simulation and waits for pattern updated confirmation signal
from PC side. This process goes on until all patterns are completed and the main cycle
starts again. The flowchart of Mega2560 program is as followed:

Figure 3.4 – Mega2560 Flowchart for Cycle1 Signal Order

When the 1st cycle is completed locations of Swarm Bots will be changed. Due to
relocation of robots, Mega2560 changes the order of signals for robots. Signal orders
for 1st and 2nd cycles can be given as in the following table:

Table 3.1 – Order of Signals for Swarm Robots through Cycle1 and Cycle2

Signal Orders of Robots for Cycle 1 Signal Orders of Robots for Cycle 2

1st 1st 4th 4th 3rd 3rd 5th 5th

2nd 3rd 2nd 5th 2nd 1st 2nd 4th

2nd 2nd 2nd 2nd

20

According to the Table 3.1 it is clear that “Robot1  Robot3” and
“Robot4Robot5” changes their addresses after each cycle completed. Locations
of these robots changes after each cycle and Mega2560 switches between two signal
orders. This method can be better organized with different coding.

Cycle2 signal re-order flowchart can be given as followed:

Figure 3.5 – Mega2560 Flowchart for Cycle2 Signal Order

Mega2560 module works as a communication way between Swarm Robots and the
simulation interface. The functionality of Mega2560 can be done by using Atmega
328P processor based Arduino Nano board.

21

4. TEST RESULTS OF COMPLETE SYSTEM

Our Swarm Robots are designed to play “Game Of Life” algorithm in “Glider”
formation. There are two cycles follow each other for complete pattern and relocation
of swarm robots. We can represent how complete system works as followed:

Figure 4.1 – Complete System Diagram

Cycle1 and Cycle2 are almost the same except names of 4 robots swicthes between
13 and 45. This is required due to relocation of robots and the main signal
should be sent according to new locations of robots. After they return to their initial
locations, glider formation will be re-created, and so on.

These are the followed patterns and the pictures of robots while they follow Glider
formation.

22

(a) (b)

Figure 4.2 Cycle1 Pattern1 (a) Diagram (b) Realization Picture

(a) (b)

Figure 4.3 Cycle1 Pattern2 (a) Diagram (b) Realization Picture

(a) (b)

Figure 4.4 Cycle1Pattern3 (a) Diagram (b) Realization Picture

23

(a) (b)

Figure 4.5 Cycle1Pattern4 (a) Diagram (b) Realization Picture

(a) (b)

Figure 4.6 Cycle2 Pattern1 (a) Diagram (b) Realization Picture

(a) (b)

Figure 4.7 Cycle2 Pattern2 (a) Diagram (b) Realization Picture

24

(a) (b)

Figure 4.8 Cycle2 Pattern3 (a) Diagram (b) Realization Picture

(a) (b)

Figure 4.9 Cycle2 Pattern4 (a) Diagram (b) Realization Picture

25

After this step, all robots will be returned to their initial positions and Cycle1 restarts.
This two cycles will continue until the simulation stopped.

(a) (b)

Figure 4.10 Cycle1 Pattern1 (a) Diagram (b) Realization Picture

The movement precision of Swarm robots is enough good to create each pattern. Two
cycles can be completed without leaving the boundaries of squared ground. This
precision is based on 28BJY-48 stepper motors.

Movement speeds of swarm robots is chosen maximum speed of stepper motors.
Precision is kept even with the highest speed of motors. Total movement duration of
each pattern is given in the table below.

Table 4.1 – Movement time of robots for each pattern creation

Formation Time of Cycle1 Patterns (s) Formation Time of Cycle2 Patterns (s)

1 21 1 22

2 21 2 21

3 33 3 34

4 25 4 24

As we can see that precision of robots are good enough as timing. There are some
mechanical disturbances on robots while they move. Especially during rotations to left
and right, robots loose some time due to mechanical differences. This is why between
two cycles there are minor differences even for the same pattern formations. As we

26

remember robots 1-3 and 4-5 switches locations and they show different movements
for each cycle. This change causes the minor time difference between cycles for
pattern1 and pattern3 formations as in the table. Robot2 doesn’t show any time
difference between two cycles because it follows the same movements for both cycles.

27

5. CONCLUSION

Swarm robotics is one of the most interesting areas of advancing technology. Benefits
of swarm robotics will be huge on human life and production abilities. We aimed to
contribute to the advancements of swarm robotics including another very interesting
area which is Cellular Automata based Glider Formation Algorithm.

Gliders are very interesting formations of CA.Our main purpose is to create a swarm
group that demonstrates Game of Life and create Glider formation on a 2D squared
lattice. Production of robots are completely done from scratch. Mechanical design,
circuit production and coding are all done step by step.

Simulation and Swarm Robots were successfully worked and tested. Simulation
program is not designed very functional because it requires only realization of swarm
movements as expected. It is designed only to show pattern updates and pause/stop
controls of swarm group.

There are a lot of future advencements can be added to our Glider Swarm system. Such
as;

 Desired path can be chosen by users from simulation interface and robots can
follow the chosen path.

 Number of robots can be increased and different Cellular Automata formations
can be trained with the same system. This will be very interesting to see how
different CA formations will be realized by swarm robots.

 One of the most important improvement will be to include sensors to our
swarm robots. Sensors are not needed with this Glider formation but if swarm
robots has to move at the same time to create each pattern and they start moving
at the same time, then sensor information will be crucial to avoid collisions
between robots.

 Another interesting future improvement would be to try swarm system
including sensors and obstacles on the grid. These obstacles will be avoided by
robots while they create glider formations. Whenever a robot crosses an
obstacle it will inform main simulation interface and all other robots of swarm
group will be aware of already discovered obstacle on the same grid. With this
method, swarm robots can handle very important tasks such as “rescue”,
“search”, and “mapping”. This future improvement will require location
information to be carried for each robot individually and the simulation
interface will follow each robots location simultanously.

 One of the most desired swarm robotics property is to create “Decentralized
Swarm”. Our robots are capable of being converted to a decentralized swarm

28

system. Each robot will keep it’s movement information and after it completes
its movement, it will inform the next robot to continue to create glider
formation. Mega2560 is not required in this case because simulation interface
will not be needed to control the swarm but robots will communicate with each
other. This system can be implemented with some new codes to robot group
without Mega2560 and Processing interface.

This work we’ve implemented as hardware, software and simulation interface was a
success to realize Glider pattern “Game of Life” algorithm applied Swarm robotics. It
needs better mechanical production, however it is enough good to observe desired
patterns and simulation at the same time as planned.

29

REFERENCES

1. Arkin, R.C.: Behavior-based robotics. MIT Press (1998)
2. Zhang, Y., Fattahi, N., Li, W.: Probabilistic roadmap with self-learning for path

planning of a mobile robot in a dynamic and unstructured environment. In:
Mechatronics and Automation (ICMA), pp. 1074–1079 (2013)

3. Ramer, C., Reitelshofer, S., Franke, J.: A robot motion planner for 6-DOF industrial
robots based on the cell decomposition of the workspace. In: 2013 44th
International Symposium on Robotics (ISR), pp. 1–4 (2013)

4. Jianjun, Y., Hongwei, D., Guanwei, W., Lu, Z.: Research about local path planning
of moving robot based on improved artificial potential field. In: Control and
Decision Conference (CCDC), pp. 2861–2865 (2013)

5. Mitchell, M.: Computation in cellular automata: A selected review. Non-standard
Computation, 385–390 (1996)

6. Oliveira, G., Martins, L.G.A., de Carvalho, L.B., Fynn, E.: Some investigations
about synchronization and density classification tasks in one-dimensional and two-
dimensional cellular automata rule spaces. Electronic Notes in Theoretical
Computer Science 252,121–142

7. Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An Algorithm for Robot Path
Planning with Cellular Automata. In: Proc. of the 4th Int. Conf. on Cellular
Automata for Research and Industry, pp. 11–19 (2000)

8. Soofiyani, F.R., Rahmani, A.M., Mohsenzadeh, M.: A Straight Moving Path
Planner for Mobile Robots in Static Environments Using Cellular Automata. In: Int.
Conf. on Computational Intelligence, Communication Systems and Networks, pp.
67–71 (2010)

9. Rosenberg, A.: Cellular ANTomata. Paral. and Distributed Processing and
Applications,78–90 (2007)

10. Cyberbotics. Webots 7: robot simulator (2013),
http://www.cyberbotics.com/overview

11. E-puck Education Robot, http://www.e-puck.org
12. Akbarimajd, A., Lucas, C.: A New Architecture to Execute CAs-Based Path-

Planning Algorithm in Mobile Robots. In: IEEE Int. Conf. on Mechatronics, pp.
478–482 (2006)

13. Akbarimajd, A., Hassanzadeh, A.: A novel cellular automata based real time path
planning method for mobile robots. Int. Journal of Engineering Research and
Applications (2011)

14. Ioannidis, K., Sirakoulis, G.C., Andreadis, I.: A Cellular Automaton Collision-
Free Path Planner Suitable for Cooperative Robots. In: Panhellenic Conf. on
Informatics (2008)

15. Ioannidis, K., Sirakoulis, G., Andreadis, I.: Cellular ants: A method to create
collision free trajectories for a cooperative robot team. Robotics and Autonomous
Systems (2011)

30

16. Shu, C., Buxton, H.: Parallel path planning on the distributed array processor.
Parallel Computing 21(11), 1749–1767 (1995)

17. Marchese, F.: A reactive planner for mobile robots with generic shapes and
kinematics on variable terrains. In: Proc. Advanced Robotics, ICAR 2005, pp. 23–
30 (2005)

18. Tzionas, P., Thanailakis, A., Tsalides, P.: Collision-free path planning for a
diamond shaped robot using two-dimensional CA. IEEE Trans. on Rob. and
Automation (1997)

19. https://cs.stanford.edu/people/eroberts/courses/soco/projects/2008-09/modeling-
natural-systems/boids.html

20. T. Fukuda and Y. Kawakuchi. Cellular robotic system (CEBOT) as one of the
realization of selforganizing intelligent universal manipulator. In Proc. of IEEE Int'l
Conf. on Robotics and Automation.

21. Atyabi, A., Phon-Amnuaisuk, S., and Ho, C.K. (2010). Applying area extension
PSO in robotic swarm. Journal of Intelligent and Robotic Systems.

22. Fredslund, J. and M.J. Mataric, A general algorithm for robot formations using
local sensing and minimal communication. Robotics and Automation, IEEE
Transactions on, 2002. 18(5): p. 837-846.

23. Turgut, A.E., et al., Self-organized flocking in mobile robot swarms. Swarm
Intelligence, 2008. 2(2-4): p. 97-120.

24. Bahçeci, E. Evolving aggregation behaviors for swarm robotic systems: A
systematic case study. in Swarm Intelligence Symposium, 2005. SIS 2005.
Proceedings 2005 IEEE. 2005. IEEE.

25. J.L. Schiff, Introduction to Cellular Automata, Wiley , February 2008.
26. https://www.sparkfun.com/datasheets/IC/uln2803a.pdf
27. https://arduino-info.wikispaces.com/SmallSteppers
28. https://www.arduino.cc/en/
29. https://processing.org/

31

APPENDICES

APPENDIX A: The control code of Swarm Robots

APPENDIX B: The code of Mega2560 Communication Unit

APPENDIX C: The code of Processing Simulation

APPENDIX A:

/*

* Kasım Gül

* Master Thesis 2017.08.18 - İzmir Katip Çelebi Üniversitesi

* Glider Formation Game of Life Algorithm applied Swarm Robots

*

* Arduino Nano v.3 and Arduino 1.8.0 IDE

*/

// SPI(nRF24L01) commands

#define READ_REG 0x00 // Define read command to register

#define WRITE_REG 0x20 // Define write command to register

#define RD_RX_PLOAD 0x61 // Define RX payload register address

#define WR_TX_PLOAD 0xA0 // Define TX payload register address

#define W_ACK_PAYLOAD 0xA8 // pipe buna eklenecek

#define FLUSH_TX 0xE1 // Define flush TX register command

#define FLUSH_RX 0xE2 // Define flush RX register command

32

#define REUSE_TX_PL 0xE3 // Define reuse TX payload register command

#define ACTIVATE 0x50 //

#define NOP 0xFF // No Operation, might be used to read status register

//--

#define RX_DR 0x40 //data geldi biti

#define TX_DS 0x20

#define MAX_RT 0x10

//--

// SPI(nRF24L01) registers(addresses)

#define CONFIG 0x00 // 'Config' register address

#define EN_AA 0x01 // 'Enable Auto Acknowledgment' register address

#define EN_RXADDR 0x02 // 'Enabled RX addresses' register address

#define SETUP_AW 0x03 // 'Setup address width' register address

#define SETUP_RETR 0x04 // 'Setup Auto. Retrans' register address

#define RF_CH 0x05 // 'RF channel' register address

#define RF_SETUP 0x06 // 'RF setup' register address

#define STATUS 0x07 // 'Status' register address

#define OBSERVE_TX 0x08 // 'Observe TX' register address

#define CD 0x09 // 'Carrier Detect' register address

#define RX_ADDR_P0 0x0A // 'RX address pipe0' register address

#define RX_ADDR_P1 0x0B // 'RX address pipe1' register address

#define RX_ADDR_P2 0x0C // 'RX address pipe2' register address

#define RX_ADDR_P3 0x0D // 'RX address pipe3' register address

#define RX_ADDR_P4 0x0E // 'RX address pipe4' register address

#define RX_ADDR_P5 0x0F // 'RX address pipe5' register address

#define TX_ADDR 0x10 // 'TX address' register address

#define RX_PW_P0 0x11 // 'RX payload width, pipe0' register address

33

#define RX_PW_P1 0x12 // 'RX payload width, pipe1' register address

#define RX_PW_P2 0x13 // 'RX payload width, pipe2' register address

#define RX_PW_P3 0x14 // 'RX payload width, pipe3' register address

#define RX_PW_P4 0x15 // 'RX payload width, pipe4' register address

#define RX_PW_P5 0x16 // 'RX payload width, pipe5' register address

#define FIFO_STATUS 0x17 // 'FIFO Status Register' register address

#define DYNPD 0x1C //

#define FEATURE 0x1D //

#define CE 0 // Chip Enable Activates RX or TX mode

#define CSN 1 // SPI Chip Select ,Slave Enable signal, controlled by master

#define SCK_PIN 13 // SPI Clock,controlled by master

#define MOSI_PIN 11 // SPI Master Data Output,Slave Data Input

#define MISO_PIN 12 // SPI Master Data Input, Slave Data Output, with tri-state option

//--

#define TX_ADR_WIDTH 5 // TX/RX adres genişliği

#define TX_PLOAD_WIDTH 30 // 30 RX/TX gönderme/alma bayt sayısı payload

int i; //used for islemler() function

char data;

int buzzerPin=10; //Buzzer to implement short sounds for swarm robots

//Names and data transmission channels defined here

char pipe0[] = "Swarm"; //Robot1 name;

char pipe1[] = "nhytr"; //Robot2 name;

char pipe2[] = "bgtre"; //Robot3 name;

char pipe3[] = "vfrew"; //Robot4 name;

char pipe4[] = "cdewq"; //Robot5 name;

34

char pipe0_adresi[10];

char pipe1_adresi[10];

char pipe2_adresi[10];

char pipe3_adresi[10];

char pipe4_adresi[10];

unsigned char rx_buf[35] = {0}; // fill with 0s

char tx_buf[35];

char isim[20];

unsigned char X;

char veri;

int Steps = 0;

int bekle=1000;

boolean Direction1 = true;// Motor1 direction

boolean Direction2 = true;// Motor2 direction

unsigned long last_time;

unsigned long currentMillis ;

int steps_left;

long time;

int kalinanYer=0;

int donerken=1880;

int ilerle=4430;

bool RF_mod=true;

int RPIN = A3;

int GPIN = A4;

int BPIN = A5;

35

void pulse_CSN()

{

digitalWrite(CSN, HIGH);

delayMicroseconds(20);

digitalWrite(CSN, LOW);

}

//This function allows us to use names for Swarm robots with more than 5 characters

void isim_ayarla(char *pBuf)

{

byte i; byte uzunluk=0; byte orta=0;

memset(isim,0,sizeof(isim)); //CLEAR

uzunluk=strlen(pBuf); // verdiğimiz pipe isim uzunluğunu bul

orta=uzunluk/2;// "adres" dizisinin ortasını bul

//"pBuf" dizisinin en sağından 2 karekteri "isim" dizisine al (Ters al)

isim[0]=pBuf[uzunluk-1];

isim[1]=pBuf[uzunluk-2];

isim[2]=pBuf[orta]; // "pBuf" dizisinin ortasından bir karekteri "isim" dizisine ekle

isim[3]=pBuf[1];

isim[4]=pBuf[0];

strcpy(pipe0_adresi,isim); //"isim" dizisini "pipe0_adresi" dizisine kopyala

}

//---------------------------------------

// NRF2401 in bağlı olduğu pinlerin giriş çıkış durumunu ayarlar

void NRF_Init(void)

{

pinMode(CE, OUTPUT);

pinMode(SCK_PIN, OUTPUT);

36

pinMode(CSN, OUTPUT);

pinMode(MOSI_PIN, OUTPUT);

pinMode(MISO_PIN, INPUT);

digitalWrite(CE, 0); // chip enable

digitalWrite(CSN, 1); // Spi disable

}

// unsigned char bir bayt nRF24L01 e yazar,ve unsigned char bir bayt okur döndürür

unsigned char SPI_RW(unsigned char Byte)

{

unsigned char i;

for(i=0;i<8;i++) // output 8-bit

{

if(Byte&0x80)

{

digitalWrite(MOSI_PIN, 1);

}

else

{

digitalWrite(MOSI_PIN, 0);

}

digitalWrite(SCK_PIN, 1);

Byte <<= 1; // shift next bit into MSB..

if(digitalRead(MISO_PIN) == 1)

{

Byte |= 1; // capture current MISO bit

}

digitalWrite(SCK_PIN, 0);

37

}

return(Byte); // return read unsigned char

}

unsigned char SPI_RW_Reg(unsigned char reg, unsigned char value)

{

unsigned char status;

digitalWrite(CSN, 0); // CSN low, init SPI transaction

status = SPI_RW(reg); // select register

SPI_RW(value); // and write value to it..

digitalWrite(CSN, 1); // CSN high again

return(status); // return nRF24L01 status unsigned char

}

unsigned char SPI_Read(unsigned char reg)

{

unsigned char reg_val;

digitalWrite(CSN, 0); // CSN low, initialize SPI communication...

SPI_RW(reg); // Select register to read from..

reg_val = SPI_RW(0); // ..then read register value

digitalWrite(CSN, 1); // CSN high, terminate SPI communication

return(reg_val); // return register value

}

unsigned char SPI_Read_Buf(unsigned char reg, unsigned char *pBuf, unsigned char bytes)

{

unsigned char status,i;

digitalWrite(CSN, 0); // Set CSN low, init SPI tranaction

status = SPI_RW(reg); // Select register to write to and read status unsigned char

for(i=0;i<bytes;i++)

38

{

pBuf[i] = SPI_RW(0); // Perform SPI_RW to read unsigned char from nRF24L01

}

digitalWrite(CSN, 1); // Set CSN high again

return(status); // return nRF24L01 status unsigned char

}

unsigned char SPI_Write_Buf(unsigned char reg, char *pBuf, unsigned char bytes)

{

unsigned char status,i;

digitalWrite(CSN, 0); // Set CSN low, init SPI tranaction

status = SPI_RW(reg); // Select register to write to and read status unsigned char

for(i=0;i<bytes; i++) // then write all unsigned char in buffer(*pBuf)

{

SPI_RW(*pBuf++);

}

digitalWrite(CSN, 1); // Set CSN high again

return(status); // return nRF24L01 status unsigned char

}

void NRF_SeTxMode(void)

{

digitalWrite(CE, 0);

//PWR_UP=1, enable 1 bayt CRC,TX,MAX_RT & TX_DS ve RX_DR

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0A);

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); //sadece pipe0 ACK göndersin

SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0xFF); //

SPI_Write_Buf(WRITE_REG + TX_ADDR, isim, TX_ADR_WIDTH); // Writes TX_Address

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, isim, TX_ADR_WIDTH);

39

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);//Sadece pipe 0 ı enable et TAMAM

SPI_RW_Reg(WRITE_REG + RF_CH, 2); //RF kanal 2

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); ////data rate = 1MB 0 dBm 1 MW

digitalWrite(CE, 1);

}

void NRF_Send(unsigned char *buf_tx)

{

SPI_RW_Reg(FLUSH_TX,0); // Clear TX Buffer

SPI_RW_Reg(WRITE_REG+STATUS,0xff);//Clear interrupt flags

RX_DR,TX_DS,MAX_RT

//Write data to NRF24L module

SPI_Write_Buf(WR_TX_PLOAD,tx_buf,TX_PLOAD_WIDTH);

}

//If ACK signal detected return1 else return0

unsigned char NRF_CheckAck(void)

{

unsigned char sta;

sta = SPI_Read(STATUS); // Serial.println(sta);

if(sta & TX_DS) //BIT5

{

return(1);

}

else {return(0);}

}

void NRF_SetRxMode(void)

{

digitalWrite(CE, 0);

40

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);//Sadece pipe 0 ACK göndersin

SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0xFF);

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);

SPI_RW_Reg(WRITE_REG + SETUP_AW, 0x03);

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);// Set to: 1Mbps 0dBm 1mW

SPI_RW_Reg(WRITE_REG + RX_PW_P0,TX_PLOAD_WIDTH);

SPI_RW_Reg(WRITE_REG + RF_CH,2);

SPI_Write_Buf(WRITE_REG + TX_ADDR, pipe0_adresi, TX_ADR_WIDTH);

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, pipe0_adresi, TX_ADR_WIDTH);

SPI_RW_Reg(WRITE_REG + CONFIG, 0x7B);

}

unsigned char NRF_Receive(unsigned char *buf_rx)

{

unsigned char genel;

unsigned char sta = SPI_Read(STATUS);// Serial.println(sta);

if(sta & RX_DR)// STATUS un 6.biti (RX_DR Data hazır flag) test et H ise

{

genel=sta & 0x0E;

genel=genel>>1; // Shift 1 bit to right

//Read received data and store in "rx_buf" array

SPI_Read_Buf(RD_RX_PLOAD, rx_buf, TX_PLOAD_WIDTH);

SPI_RW_Reg(FLUSH_RX,0); // Clear RX buffer

SPI_RW_Reg(WRITE_REG+STATUS,0xff);

return 1; }

else

return 0;}

41

void setup()

{

for(int pin=2;pin<11;pin++)

{

pinMode(pin, OUTPUT);

}

pinMode(RPIN, OUTPUT);

pinMode(BPIN, OUTPUT);

pinMode(GPIN, OUTPUT);

NRF_Init();// IO portları ayarla

digitalWrite(RPIN, 0);

digitalWrite(GPIN, 1);

digitalWrite(BPIN, 0);

}

void loop()

{

while(true)

{

isim_ayarla(pipe0); // Swarm adresli robot olarak başlayacak

NRF_SetRxMode(); //Alıcı moduna ayarla

delay(50);

if(NRF_Receive(rx_buf))//Eğer data gelmişse gir (gelen Data şimdi "rx_buf" ta)

{

if(rx_buf[0]=='k') //this condition is used to avoid complication between Mega2560 and Robot1

continue;

42

digitalWrite(GPIN, 0);

digitalWrite(BPIN, 0);

digitalWrite(RPIN, 1);

islemler();

digitalWrite(RPIN, 0);

digitalWrite(GPIN, 1);

digitalWrite(BPIN, 0);

for(int i = 0; i < 30; i++)//Clear received buffer

rx_buf[i] = 0;

isim_ayarla(pipe0);

NRF_SeTxMode();

delay(50);

memset (tx_buf , 0 , sizeof(tx_buf)) ;

strcpy(tx_buf,"f");

transmit_Data(); //SimBot modülüne "f" onay bilgisini gönder

delay(50);

}//if

delay(100);

} //while

}

void SetDirection1()

{

if(Direction1==0){ Steps--;} //geri gidiyor

if(Direction1==1){ Steps++; } //ileri gidiyor

43

if(Steps>7){Steps=0;}

if(Steps<0){Steps=7; }

}

void donusSaga(){

#define IN1 2

#define IN2 3

#define IN3 4

#define IN4 5

//Sol Motor

#define IN5 6

#define IN6 7

#define IN7 8

#define IN8 9

switch(Steps){

case 0:

digitalWrite(IN1, HIGH); //1

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

case 1:

digitalWrite(IN1, HIGH); //1-2

44

digitalWrite(IN2, HIGH);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, HIGH);

break;

case 2:

digitalWrite(IN1, LOW); //2

digitalWrite(IN2, HIGH);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

break;

case 3:

digitalWrite(IN1, LOW); //2-3

digitalWrite(IN2, HIGH);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

45

break;

case 4:

digitalWrite(IN1, LOW); //3

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

case 5:

digitalWrite(IN1, LOW); //3-4

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

case 6:

digitalWrite(IN1, LOW); //4

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

break;

46

case 7:

digitalWrite(IN1, HIGH);

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

default:

for(int pin=2;pin<10;pin++)

{

digitalWrite(pin, LOW);

}

break;

}

SetDirection1();

}

void donusSola(){

#define IN1 6

#define IN2 7

#define IN3 8

#define IN4 9

#define IN5 2

#define IN6 3

47

#define IN7 4

#define IN8 5

switch(Steps){

case 0:

digitalWrite(IN1, HIGH); //1

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

case 1:

digitalWrite(IN1, HIGH); //1-2

digitalWrite(IN2, HIGH);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, HIGH);

break;

case 2:

digitalWrite(IN1, LOW); //2

digitalWrite(IN2, HIGH);

48

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

break;

case 3:

digitalWrite(IN1, LOW); //2-3

digitalWrite(IN2, HIGH);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

break;

case 4:

digitalWrite(IN1, LOW); //3

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

49

case 5:

digitalWrite(IN1, LOW); //3-4

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

case 6:

digitalWrite(IN1, LOW); //4

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

break;

case 7:

digitalWrite(IN1, HIGH);

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

default:

50

for(int pin=2;pin<10;pin++)

{

digitalWrite(pin, LOW);

}

break;

}

SetDirection1();

}

void geri()

{

Direction1=0;

steps_left=4430;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{

hareket();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

}

kalinanYer=Steps;

motorsOff();}

51

void hareket(){

#define IN1 2

#define IN2 3

#define IN3 4

#define IN4 5

//Sol Motor

#define IN5 6

#define IN6 7

#define IN7 8

#define IN8 9

switch(Steps){

case 0:

digitalWrite(IN1, LOW);

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

case 1:

digitalWrite(IN1, LOW);

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, HIGH);

52

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, HIGH);

break;

case 2:

digitalWrite(IN1, LOW);

digitalWrite(IN2, LOW);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

break;

case 3:

digitalWrite(IN1, LOW);

digitalWrite(IN2, HIGH);

digitalWrite(IN3, HIGH);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, HIGH);

digitalWrite(IN8, LOW);

break;

case 4:

digitalWrite(IN1, LOW);

53

digitalWrite(IN2, HIGH);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

case 5:

digitalWrite(IN1, HIGH);

digitalWrite(IN2, HIGH);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, HIGH);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

break;

case 6:

digitalWrite(IN1, HIGH);

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

break;

case 7:

digitalWrite(IN1, HIGH);

digitalWrite(IN2, LOW);

54

digitalWrite(IN3, LOW);

digitalWrite(IN4, HIGH);

digitalWrite(IN5, HIGH);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, HIGH);

break;

default:

for(int pin=2;pin<10;pin++)

{

digitalWrite(pin, LOW);

}

break;

}

SetDirection1();

}

void ileri()

{

Direction1=1;

steps_left=ilerle;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{

55

hareket();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

}

kalinanYer=Steps;

motorsOff();

}

void ileri3()

{

Direction1=1;

steps_left=ilerle*3;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{ hareket();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

}

kalinanYer=Steps;

motorsOff();

}

56

void islemler()

{

for(i=0;i<30;i++) // ------- 30 BAYT ALINACAK ---------------------

{

data=rx_buf[i];

if(data=='w')

{ileri();

}

else if(data=='s')

{geri();

}

else if(data=='d')

{saga();

}

else if(data=='a')

{sola();

}

else if(data=='u')

{uTurn();

}

else if(data=='i')

{ileri3();

}

}

}

57

void motorsOff()

{

digitalWrite(IN1, LOW);

digitalWrite(IN2, LOW);

digitalWrite(IN3, LOW);

digitalWrite(IN4, LOW);

digitalWrite(IN5, LOW);

digitalWrite(IN6, LOW);

digitalWrite(IN7, LOW);

digitalWrite(IN8, LOW);

delay(500);

}

void saga()

{

Direction1=1;

steps_left=donerken;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{

donusSaga();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

58

}

kalinanYer=Steps;

motorsOff();

}

void sola()

{

Direction1=1;

steps_left=donerken;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{

donusSola();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

}

kalinanYer=Steps;

motorsOff();

}

//-------------------

void transmit_Data()

{

digitalWrite(CE, 0);

59

//PTX verici olarak ayarla Interrupt etkisini IRQ pinine gönderme

//RC enabled CRC 1 bayt PWR_UP = 1

SPI_RW_Reg(WRITE_REG + CONFIG, 0x7A);

SPI_RW_Reg(WRITE_REG+STATUS,0xff);

SPI_RW_Reg(FLUSH_TX,0); // TX bufferini boşalt

//Gönderilecek datayı NRF2401 modüle yaz

SPI_Write_Buf(WR_TX_PLOAD,tx_buf,TX_PLOAD_WIDTH);

digitalWrite(CE, 1);

}

void uTurn()

{

Direction1=1;

steps_left=donerken*2;

Steps= kalinanYer;

while(steps_left>0) //Verilen adım sayısı bitene kadar burada kal

{

currentMillis = micros();

if(currentMillis-last_time>=1000)

{

donusSola();

time=time+micros()-last_time;

last_time=micros();

steps_left--;

}

}

kalinanYer=Steps;

motorsOff();}

60

APPENDIX B:

#define W_REGISTER 0x20

#define R_REGISTER 0x00

#define R_RX_PAYLOAD 0x61

#define W_TX_PAYLOAD 0xa0

#define STATUS 0x07

#define FIFO_STATUS 0x17

#define FLUSH_TX 0xE1

#define MAX_RT 0x10

#define TX_DS 0x20

#define RX_DR 0x40

#define RF24_CE 48 // CE

#define RF24_CSN 49 // CSN nRF24L01+

#define SPI_CLK 52 // SCK

#define SPI_MOSI 51 //MOSI

#define SPI_MISO 50 //MISO

#define RTX_CSN_Low() digitalWrite(RF24_CSN, LOW);

#define RTX_CSN_High() digitalWrite(RF24_CSN, HIGH);

#define RTX_CE_Low() digitalWrite(RF24_CE, LOW);

#define RTX_CE_High() digitalWrite(RF24_CE,HIGH);

char alici1_ismi[] ="Swarm"; //Alıcı1 ismi

char alici1_adresi[7];

char RF_DATA[30]; //gönderilen ve alınan datalar için dizi

char TX_RX_ADDRESS[7];

char isim[10];

int timeout=0;

61

char str [10];

int alici_NO;

int i;

bool RF_mod=true;

int delays=200;//used for RX TX changes and transfer_data...

//---------------------------

void pulse_CSN()

{

RTX_CSN_High();

delayMicroseconds(20);

RTX_CSN_Low();

}

//---------------------START -----------------------------

void setup() {

Serial.begin(9600);

pinMode(RF24_CE, OUTPUT);

pinMode(RF24_CSN, OUTPUT);

pinMode(SPI_CLK, OUTPUT);

pinMode(SPI_MOSI,OUTPUT);

pinMode(SPI_MISO,INPUT);

// pinMode(13,OUTPUT);

}

char SwarmUp=0;

void loop()

{

62

if (Serial.available() > 0)

{

SwarmUp = Serial.read();

}//if

int tekrarEt=0;

if(SwarmUp=='9')

{

while (tekrarEt<2)

{

delay(50);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"wdwa"); //robot1 için gönderilecek bilMgiyi belirle

one(); //SwarmBot1 moves...wdwa

//Serial.println("f");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"awdw"); //robot1 için gönderilecek bilgiyi belirle

two(); //SwarmBot2 bilgisini gönder...awdw

Serial.println("g");

//pattern1

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

three(); //SwarmBot1....dwa

//Serial.println("f");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

63

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

four(); //SwarmBot3

//Serial.println("h");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

five(); //SwarmBot2 moves...

Serial.println("g");

//pattern2

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwaw"); //robot1 için gönderilecek bilgiyi belirle

six(); //SwarmBot4 bilgisini gönder...dwaw

//Serial.println("j");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"sdwa"); //robot1 için gönderilecek bilgiyi belirle

seven();//SwarmBot2.....sdwa

Serial.println("g");

//pattern3

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

eight();//SwarmBot4

//Serial.println("j");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

64

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

nine();//SwarmBot5....dwa

//Serial.println("k");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

ten();//SwarmBot2.....dwa

Serial.println("g");

//***//

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"wdwa"); //robot1 için gönderilecek bilMgiyi belirle

four(); //SwarmBot3 moves...wdwa

//Serial.println("f");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"awdw"); //robot1 için gönderilecek bilgiyi belirle

two(); //SwarmBot2 bilgisini gönder...awdw

Serial.println("g");

//pattern1

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

four(); //....dwa

//Serial.println("f");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

65

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

one();

//Serial.println("h");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

two(); //SwarmBot1 moves...

Serial.println("g");

//pattern2

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwaw"); //robot1 için gönderilecek bilgiyi belirle

nine(); //SwarmBot5 bilgisini gönder...dwaw

//Serial.println("j");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"sdwa"); //robot1 için gönderilecek bilgiyi belirle

two();//.....sdwa

Serial.println("g");

//pattern3

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"w"); //robot1 için gönderilecek bilgiyi belirle

nine();

//Serial.println("j");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

66

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

eight();//....dwa

//Serial.println("k");

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

delay(10);

strcpy(RF_DATA,"dwa"); //robot1 için gönderilecek bilgiyi belirle

two();//.....dwa

Serial.println("g");

//pattern4

tekrarEt++;

}//while

}//if SwarmUp=='1'

SwarmUp='0';

delay(20);

}

/*

char pipe0[] = "Swarm"; //Robotun ismi;

char pipe1[] = "nhytr"; //Robotun ismi;

char pipe2[] = "bgtre"; //Robotun ismi;

char pipe3[] = "vfrew"; //Robotun ismi;

char pipe4[] = "cdewq"; //Robotun ismi;

*/

unsigned char ack_geldimi()

{

67

unsigned char sta=0; unsigned char genel;

RTX_CSN_Low();

bb_xfer(R_REGISTER + STATUS); //STATUS okunacak

sta= bb_xfer(0x00); //STATUS u al

pulse_CSN();// Bu gerekli

if(sta & TX_DS) //BIT5 H ise data alıcı tarafından alınmış ACK gelmiş

{ return(1);

}

else{ return(0);}

}

uint8_t bb_xfer(uint8_t spi_data)

{

int rt;

int result = 0;

int d=0; //int1 d = 0;

delayMicroseconds(50);

for(rt=0;rt<8;rt++)

{

if (spi_data & (1<<(7-rt)))

{

digitalWrite(SPI_MOSI, HIGH);

}

else

{

digitalWrite(SPI_MOSI, LOW);}

delayMicroseconds(10);

digitalWrite(SPI_CLK, HIGH);

68

delayMicroseconds(60);

digitalWrite(SPI_CLK, LOW);

delayMicroseconds(10);

if (rt<7)

{

if(digitalRead(SPI_MISO))

{

bitSet(result,6-rt);

}

else

{

bitClear(result,6-rt);

}

}

}

digitalWrite(SPI_MOSI, LOW);

return(result);

}

void configure_RX()

{

RTX_CSN_Low();

RTX_CE_Low();

bb_xfer(W_REGISTER); //PRX, CRC enabled CRC 1 bayt PWR_UP = 1

bb_xfer(0x39);

pulse_CSN();

delay(2); //delay_ms(2);

bb_xfer(0x21); //Alici ACK gönderecek bütün kanallar

69

bb_xfer(0x3F);

pulse_CSN();

bb_xfer(0x23); //address width = 5 bytes

bb_xfer(0x03);

pulse_CSN();

bb_xfer(0x26); //data rate = 1MB 0dBm 1 mW

bb_xfer(0x07);

pulse_CSN();

bb_xfer(0x31); // RX_PW_P0 dan alinacak bayt sayisi

bb_xfer(30); // ---------------- ALINACAK BAYT SAYISINI BELİRT 30 -----

pulse_CSN();

bb_xfer(0x25); // 2. kanala ayarla

bb_xfer(0x02);

pulse_CSN();

//-----------

bb_xfer(0x30); //TX_ADDR set address 0x10h adresine aşağıdakiler yazılacak

for(i=4;i>=0;i--) //TERS GÖNDERİYORUZ

{

bb_xfer(TX_RX_ADDRESS[i]);

}

pulse_CSN();

// NOT modülün TX_ADDR ve RX_ADDR_P0 ayni olmalıdır

bb_xfer(0x2A); //0x0A. adres RX_ADDR_P0 pipe 0 in adresini ayarla

for(i=4;i>=0;i--) //TERS GÖNDERİYORUZ

{

bb_xfer(TX_RX_ADDRESS[i]);

}

70

pulse_CSN();

//---

bb_xfer(W_REGISTER); //PWR_UP = 1 PRX alici, CRC enabled

bb_xfer(0x7b); //bb_xfer(0x3b);

RTX_CSN_High();

RTX_CE_High();

}

void configure_TX()

{

RTX_CSN_Low();

RTX_CE_Low();

bb_xfer(W_REGISTER); //0x00. adres CONFIG PTX, CRC enabled,

bb_xfer(0x38); //PTX verici olarak ayarla

pulse_CSN();

delay(2);

bb_xfer(0x21); //Alici ACK gönderecek bütün kanallar

bb_xfer(0x3F);

pulse_CSN();

bb_xfer(0x24); //otomatik Tekrar gönderme ENABLE

bb_xfer(0xFF); //4000 mikrosaniyede bir 15 defa

pulse_CSN();

bb_xfer(0x23); //address width = 5

bb_xfer(0x03);

pulse_CSN();

bb_xfer(0x26); //data rate = 1MB 0 dBm 1 MW

bb_xfer(0x07);

pulse_CSN();

71

bb_xfer(0x25); //2.kanal

bb_xfer(0x02);

pulse_CSN();

bb_xfer(0x30); //TX_ADDR set address 0x10h adresine aşağıdakiler yazılacak

for(i=4;i>=0;i--) //TERS GÖNDERİYORUZ

{

bb_xfer(TX_RX_ADDRESS[i]);

}

pulse_CSN();

// NOT modülün TX_ADDR ve RX_ADDR_P0 ayni olmalıdır

bb_xfer(0x2A); //0x0A. adres RX_ADDR_P0 pipe 0 in adresini ayarla

for(i=4;i>=0;i--) //TERS GÖNDERİYORUZ

{

bb_xfer(TX_RX_ADDRESS[i]);

// Serial.println(TX_RX_ADDRESS[i]);

}

pulse_CSN();

RTX_CSN_High();

}

// Bu alınacak data varmı STATUS un 6. bitine bakar ve güzel çalışıyor

int data_geldimi()

{

unsigned char durum;

durum=0;

RTX_CSN_Low();

bb_xfer(R_REGISTER + STATUS); //STATUS okunacak

durum= bb_xfer(0x00); //STATUS u al

72

pulse_CSN();// Bu gerekli

if(durum & RX_DR) //BIT6 H ise data alıcı tarafından alınmış ACK gelmiş

{

return(1);

}

else{

return(0);

}

}

void eight()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"vfrew");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

read_Data();

}

void five()

{

73

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"nhytr");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

delay(10);

read_Data();

}

void four()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"bgtre");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

74

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

read_Data();

}

void isim_ayarla(char *pBuf, unsigned char pipe_NO)

{

byte uzunluk=0;

byte orta=0;

memset(isim,0,sizeof(isim)); //"isim" dizisini temizle CLEAR

uzunluk=strlen(pBuf); // pBuf dizisinin uzunluğunu bul

orta=uzunluk/2;// "pBuf" dizisinin ortasını bul

// pBuf dizisinden "isim" dizisine 2 karekter al

isim[0]=pBuf[0];

isim[1]=pBuf[1];

isim[2]=pBuf[orta];//"pBuf" dizisinin ortasından bir karekteri "isim" dizisine ekle

//"pBuf" dizisinin en sağından 2 karekteri "isim" dizisine ekle

isim[3]=pBuf[uzunluk-2];

isim[4]=pBuf[uzunluk-1];

strcpy(alici1_adresi,isim); //"isim" dizisini "alici1_adresi" dizisine kopyala

}

void nine()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"cdewq");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

75

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

read_Data();

}

void one()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

delay(10);

read_Data();

}

76

void read_Data()

{

RTX_CSN_Low();

bb_xfer(R_RX_PAYLOAD); //gelen datalari alma komutu gonder RX payload

for(i=0;i<2;i++) // ------- 30 BAYT ALINACAK ----------------

{

RF_DATA[i] = bb_xfer(0x00);

// Serial.println(RF_DATA[i]);

}

// Serial.print("RF_DATA[i]: ");

pulse_CSN();

bb_xfer(0xe2); //Flush RX FIFO alıcı tamponunu boşalt FLUSH_RX

pulse_CSN();

bb_xfer(0x27); // //Data hazır gel al kesme bayrağını temizle STATUS 6.bit

bb_xfer(0x40);

RTX_CSN_High();

}

void seven()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"nhytr");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

77

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

delay(10);

read_Data();

}

void six()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"vfrew");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

read_Data();

}

void ten()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"nhytr");//robot1 adresini ayarlıyoruz

78

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

delay(10);

read_Data();

}

void three()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

79

read_Data();

}

void transmit_Data()

{

RTX_CSN_High();

RTX_CSN_Low();

bb_xfer(0x27); //(STATUS | W_REGISTER)

bb_xfer(0x7e); //kesme bayraklarını temizle RX_DR,TX_DS,MAX_RT

RTX_CSN_High();

delayMicroseconds(20);

RTX_CSN_Low();

bb_xfer(W_REGISTER); //PWR_UP = 1

bb_xfer(0x3a);

RTX_CSN_High();

delayMicroseconds(20);

RTX_CSN_Low();

bb_xfer(0xe1); //clear TX fifo FLUSH_TX tamponunu boşalt

RTX_CSN_High();

delayMicroseconds(20);

RTX_CSN_Low();

bb_xfer(W_TX_PAYLOAD);

for(i=0;i<30;i++) // ---- 30 BAYT GÖNDERİLECEK -------------------

{ bb_xfer(RF_DATA[i]); // RF_DATA içeriğindeki bilgiyi gönder, biz sadece 'w'
gönderiyoruz

}

RTX_CSN_High();

RTX_CE_High();

80

delayMicroseconds(50);

RTX_CE_Low();

}

void two()

{

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"nhytr");//robot1 adresini ayarlıyoruz

configure_TX();

delay(delays);

transmit_Data();

delay(delays);

memset(TX_RX_ADDRESS,0,sizeof(TX_RX_ADDRESS));

strcpy(TX_RX_ADDRESS,"Swarm");//robot1 adresini ayarlıyoruz

configure_RX();

delay(delays);

memset(RF_DATA,0,sizeof(RF_DATA));//RF_DATA uzunlugu kadar 0 yaz

while(!data_geldimi());

delay(10);

read_Data();

}

APPENDIX C:

import processing.serial.*;

Serial myPort; // Create object from Serial class

String val; // Data received from the serial port

/**

* Press SPACE BAR to pause and change the cell's values with the mouse

81

* On pause, click to activate/deactivate cells

* Press R to randomly reset the cells' grid

* Press C to clear the cells' grid

* The original Game of Life was created by John Conway in 1970.

*/

// Size of cells

int cellSize = 100;

// How likely for a cell to be alive at start (in percentage)

float probabilityOfAliveAtStart = 0;

// Variables for timer

int interval = 500;

int lastRecordedTime = 0;

// Colors for active/inactive cells

color alive = color(0, 200, 0);

color dead = color(0);

// Array of cells

int[][] cells;

// Buffer to record the state of the cells and use this while changing the others in the interations

int[][] cellsBuffer;

// Pause

boolean pause = true;

int sayac=0;//used to control sending "9" to Mega after 4th "g" is received

void setup() {

size (700, 700);

// Instantiate arrays 700/100=7 Columns and Rows

cells = new int[width/cellSize][height/cellSize];

82

cellsBuffer = new int[width/cellSize][height/cellSize];

// This stroke will draw the background grid

stroke(48);

myPort = new Serial(this, "COM5", 9600);

}

void draw() {

//Draw grid

for (int x=0; x<width/cellSize; x++)

{ for (int y=0; y<height/cellSize; y++)

{ if (cells[x][y]==1)

{ fill(alive); // If alive

}

else

{ fill(dead); // If dead

}

rect (x*cellSize, y*cellSize, cellSize, cellSize);

}

}

// Iterate if timer ticks

//if (millis()-lastRecordedTime>interval)

//{val = myPort.readStringUntil('\n'); // read it and store it in val

//This block updates to next pattern after it gets "g" and sends "9" to Mega after 4 patterns
completed

if (!pause&&val!=null&&val.equals("g\r\n"))

{

iteration();

sayac++;

83

if(sayac==3)

myPort.write('9');

}

if(val!=null)

print(val);

lastRecordedTime = millis();

}

// Create new cells manually on pause

if (pause && mousePressed)

{ // Map and avoid out of bound errors

int xCellOver = int(map(mouseX, 0, width, 0, width/cellSize));

xCellOver = constrain(xCellOver, 0, width/cellSize-1);

int yCellOver = int(map(mouseY, 0, height, 0, height/cellSize));

yCellOver = constrain(yCellOver, 0, height/cellSize-1);

// Check against cells in buffer

if (cellsBuffer[xCellOver][yCellOver]==1)

{ // Cell is alive

cells[xCellOver][yCellOver]=0; // Kill

fill(dead); // Fill with kill color

}

else

{ // Cell is dead

cells[xCellOver][yCellOver]=1; // Make alive

fill(alive); // Fill alive color

}

}//if pause && mousePressed

else if (pause && !mousePressed) { // And then save to buffer once mouse goes up

84

// Save cells to buffer (so we opeate with one array keeping the other intact)

for (int x=0; x<width/cellSize; x++) {

for (int y=0; y<height/cellSize; y++) {

cellsBuffer[x][y] = cells[x][y];

}

}

}

}

void iteration() { // When the clock ticks

// Save cells to buffer (so we opeate with one array keeping the other intact)

for (int x=0; x<width/cellSize; x++) {

for (int y=0; y<height/cellSize; y++) {

cellsBuffer[x][y] = cells[x][y];

}

}

// Visit each cell:

for (int x=0; x<width/cellSize; x++) {

for (int y=0; y<height/cellSize; y++) {

// And visit all the neighbours of each cell

int neighbours = 0; // We'll count the neighbours

for (int xx=x-1; xx<=x+1;xx++) {

for (int yy=y-1; yy<=y+1;yy++) {

if (((xx>=0)&&(xx<width/cellSize))&&((yy>=0)&&(yy<height/cellSize))) { // Make sure
you are not out of bounds

if (!((xx==x)&&(yy==y))) { // Make sure to to check against self

if (cellsBuffer[xx][yy]==1){

neighbours ++; // Check alive neighbours and count them

85

}

} // End of if

} // End of if

} // End of yy loop

} //End of xx loop

// We've checked the neigbours: apply rules!

if (cellsBuffer[x][y]==1) { // The cell is alive: kill it if necessary

if (neighbours < 2 || neighbours > 3) {

cells[x][y] = 0; // Die unless it has 2 or 3 neighbours

}

}

else { // The cell is dead: make it live if necessary

if (neighbours == 3) {

cells[x][y] = 1; // Only if it has 3 neighbours

}

} // End of if

} // End of y loop

} // End of x loop

} // End of function

void keyPressed() {

if (key=='r' || key == 'R') {

// Restart: reinitialization of cells

for (int x=0; x<width/cellSize; x++) {

for (int y=0; y<height/cellSize; y++) {

float state = random (100);

if (state > probabilityOfAliveAtStart) {

86

state = 0;

}

else {

state = 1;

}

cells[x][y] = int(state); // Save state of each cell

}

}

}

if (key==' ') { // On/off of pause

pause=!pause;

if(!pause)

myPort.write('9');

}

if (key=='c' || key == 'C') { // Clear all

for (int x=0; x<width/cellSize; x++) {

for (int y=0; y<height/cellSize; y++) {

cells[x][y] = 0; // Save all to zero

}

}

}

}

87

CURRICULUM VITAE

Name Surname: KASIM GÜL

Place and Date of Birth: İZMİR - 1976

School: İzmir Katip Çelebi Üniversitesi
Mühendislik ve Mimarlık Fakültesi,
Bilgisayar Mühendisliği Bölümü, Balatçık
Kampüsü, Çiğli/İzmir, Türkiye

E-Mail: kasimgul1@gmail.com

B.Sc.: Applied Physics – Ege Univ 2001

