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NONLINEAR ANALYSIS OF STEEL FRAMES CONSIDERING LATERAL 
TORSIONAL BUCKLING EFFECT 

SUMMARY 

The use of nonlinear analysis methods is widely preferred to determine the realistic 
behavior of the structures through the computer technologies developed in recent 
years.  However, the stability problems that significantly affect the structure behavior 
are often neglected in nonlinear analysis and in computer programs that are frequently 
used to the realization of these analyses.  Lateral torsional buckling behavior, which is 
one of the stability problems, is considered to be neglected in many studies using 
nonlinear analysis methods in the literature. As a result, the realistic behavior of the 
structures cannot be achieved, the designs are carried out that the structures can carry 
much more load than the foreseen load carrying capacities.  
Due to the necessity of achieving realistic behavior of the structures in this study, the 
steel frames are selected which are previously neglected in the literature for the 
calculation of lateral torsional buckling behavior and analyzed by nonlinear analysis 
methods.  The steel frames are analyzed with and without considering lateral torsional 
buckling effect and their effect on the structure behavior are shown. Approaches 
presented in the regulations have been used in the analyses.  
The analysis taking into account the lateral torsional buckling effect is first carried out 
on a single element and followed by the nonlinear analysis steps of the steel frames. 
The results of the analysis are given comparatively and significant effects of lateral 
torsional buckling on the load carrying capacity of the structure have been 
demonstrated. Besides, out-of-plane motions are prevented by lateral supports, the 
frames with different frame span lengths and floor heights are also examined. Also, 
TSDC and TS 4561 regulations are compared in the results of this study.  

It has been observed that lateral torsional buckling reduces the load carrying capacity 
of the structures significantly in all the frames examined by the nonlinear analysis 
methods. Moreover, order of plastic hinge formations occurred in steel frames has 
changed and displacement capacities of frames have decreased because of the lateral 
torsional buckling effect. Horizontal displacements can be avoided with sufficient 
lateral support. Thus, the lateral torsional buckling effect can be eliminated. According 
to the obtained analysis results, it is concluded that lateral torsional buckling is very 
important in determining the actual behavior of the structures and that it should be 
taken into account in the analyses. 
Keywords: Nonlinear analysis, lateral torsional buckling, steel frame, out-of-plane 
motion 
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ÇELİK ÇERÇEVELERİN YANAL BURULMALI BURKULMA ETKİSİ 
DİKKATE ALINARAK DOĞRUSAL OLMAYAN ANALİZİ 

ÖZET 

Yapı davranışının gerçeğe yakın şekilde belirlenmesinde doğrusal olmayan analiz 
yöntemlerinin kullanılması, son yıllarda gelişen bilgisayar teknolojileri doğrultusunda 
yaygın olarak tercih edilmektedir. Ancak, yapı davranışını önemli ölçüde etkileyen 
stabilite problemleri çoğu zaman doğrusal olmayan analizlerde ve bu analizlerin 
gerçekleştirilmesinde sıklıkla kullanılan bilgisayar programlarında ihmal 
edilmektedir. Stabilite problemlerinden biri olan yanal burulmalı burkulma davranışı 
da literatürde doğrusal olmayan analiz yöntemlerini kullanan birçok çalışmada bu 
stabilite probleminin ihmal edildiği kabulü yapılarak gerçekleştirilmiştir. Bunun 
sonucu olarak, yapıların davranışı gerçeğe yakın şekilde temsil edilememekte, 
yapıların öngörülen yük taşıma kapasitelerinden çok daha fazla yük taşıyabileceğine 
yönelik tasarımlar gerçekleştirilmektedir.  
Yapıların gerçeğe yakın davranışına ulaşılması gerekliliğinden dolayı bu çalışmada 
daha önce literatürde yanal burulmalı burkulma davranışını hesaplarda ihmal edildiği 
ve doğrusal olmayan analiz yöntemleriyle incelenen çelik çerçeveler seçilmiştir. Çelik 
çerçeveler yanal burulmalı burkulma etkisi hesaplarda dikkate alınarak ve 
alınmaksızın analiz edilerek bunun yapı davranışı üzerine etkileri gösterilmiştir. Bu 
analizlerin gerçekleştirilmesinde yönetmeliklerde sunulan hesap yaklaşımları 
kullanılmıştır.  

Yanal burulmalı burkulma etkisini dikkate alan analizler ilk olarak tek bir eleman 
üzerinde ardından çelik çerçevelerin doğrusal olmayan analiz adımlarında dikkate 
alınmıştır. Analiz sonuçları karşılaştırmalı olarak verilmiş ve yanal burulmalı 
burkulmanın yapının yük taşıma kapasitesine olan önemli etkileri gösterilmiştir. 
Bunun yanında, yanal burulmalı burkulmayı etkileyen farklı düzlem dışı hareketlerin 
önlendiği durumlar, farklı çerçeve açıklık uzunluğuna ve kat yüksekliğine sahip çelik 
çerçeveler incelenmiştir. Ayrıca, Çelik Yapıların Tasarım, Hesap ve Yapım Esasları 
ve TS 4561 standardı bu çalışmanın sonuçlarında karşılaştırılmıştır. 

Doğrusal olmayan analiz yöntemleri ile incelenen tüm çerçevelerde yanal burulmalı 
burkulmanın yapının yük taşıma kapasitesinde önemli oranda azalmaya neden olduğu 
görülmüştür. Ayrıca, çelik çerçevelerde oluşan plastik mafsal noktaları değişmiş ve 
çerçevelerin yer değiştirme kapasitelerinde yanal burulmalı burkulma etkisinden 
dolayı azalma olmuştur. Uygulanacak yeterli yanal desteklerle yer değiştirmelerin 
önlenebildiği ve sonucunda yanal burulmalı burkulma etkisinin giderilebildiği 
sonucuna varılmıştır. Elde edilen analiz sonuçlarına göre yanal burulmalı burkulmanın 
yapıların gerçek davranışının belirlenmesinde oldukça önemli olduğu ve analizlerde 
dikkate alınması gerektiği sonucuna varılmıştır.  

Anahtar Kelimeler: Doğrusal olmayan analiz, yanal burulmalı burkulma, çelik 
çerçeve, düzlem dışı hareket 
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1. INTRODUCTION 

1.1. Topic 

Determining the realistic behavior of structures is an important parameter for structural 

engineering problems. Nonlinear analyses play a significant role for design purpose 

since strength and stability of the whole structure can be represented in terms of 

applied load and monitored displacements. Nonlinear analysis methods have 

computational cost and require highly trained engineers unlike linear analysis. 

However, in recent years, nonlinear analysis of structural steel frames becomes 

popular among researchers and design engineers with parallel to the development in 

the computer technology [1]. After these developments process, it is seen that stability 

conditions of the structures are also important parameter for determining the realistic 

behavior of the structures. In order to get the realistic results, structural stability 

problems have to be considered in the nonlinear analysis steps. Lateral torsional 

buckling is also a one the most important stability problems for slender steel structures. 

Therefore, lateral torsional buckling behavior should be investigated from many 

perspectives accounting several conditions for determining the effects on the member 

behavior. 

 In this study, nonlinear analysis of steel frames is aimed to be investigated with and 

without considering lateral torsional buckling behavior. A methodology based on the 

regulation approaches is proposed for improving nonlinear analysis of steel frames 

considering lateral torsional buckling. 

1.2. Aim  

Contemporary design codes necessitate ways to determine realistic behavior of 

structures. Nonlinear analyses are used extensively for design purpose since strength 

and stability of the whole structure can be represented. In nonlinear analyses, some 

assumptions for stability issues are made to ensure the unrestricted plastic 
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redistribution of moments between the frame members. In this study, a methodology 

is presented for improving nonlinear analysis of steel frames considering lateral 

torsional buckling. 

The aim of the research is determining the realistic behavior of the steel frame 

structures and showing the importance of stability conditions on steel structure 

behavior using nonlinear analysis methods considering the lateral torsional buckling 

effect. 

1.3. Scope 

Nonlinear analysis methods of steel structures gained importance parallel to the 

development of the computing technology. Researchers and design engineers aimed 

to use nonlinear analysis in structural steel frames and tried to contribute to the 

literature in order to model the realistic structural behavior. Studies focused more on 

improving the methods of nonlinear analysis and various analysis techniques are 

developed [2]. On the other hand, stability of the steel frames are limited by checking 

the single member behavior and this is investigated based on member local failures. 

Within this scope, selected steel frames from the literature are investigated considering 

lateral torsional buckling in nonlinear analysis steps. Moreover, out-of-plane motions 

have been prevented from different length of the beam members in the analyses. 

Likewise, different design code approaches on lateral torsional buckling calculations 

are examined and the results are compared.  

2. LITERATURE REVIEW 

Studies related with nonlinear analysis methods and lateral torsional buckling behavior 

are presented in the literature. Studies examined in the literature review are given in 

chronological order. During this review, nonlinear analysis methods and lateral 

torsional buckling behavior are generally investigated separately and their effects on 

each other are not frequently considered. Evaluation of these studies are presented.  
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2.1. Researches about Nonlinear Analyses and Lateral Torsional Buckling 

Giberson [3] modeled nonlinear behavior of structural steel frames with using an end-

spring model to establish the elasto-plastic stiffness equation of a beam element 

accounting yielding of the section.  

El-Zanaty et al. [4] investigated inelastic behavior of multistory, planar steel frames. 

Different forms of formulation were used for stability and strength analysis. A method 

to compute elastic buckling loads for multistory frames were discussed. A general 

approach to the elastic and inelastic nonlinear analysis of multistory frames were 

presented and finite element formulation was developed. Also, the features of the 

elastic-plastic response of frames for first and second order analyses were presented.  

Banarjee and Raveendra [5] defined a new incremental direct solutions of two-

dimensional problems of elasto-plasticity. A new direct numerical solution scheme 

comparable to the variable stiffness method used in the finite element analyses has 

been developed and applied to a number of standard plasticity problems. Analysis 

results were similar to the variable stiffness formulation of the finite element method.  

Shi and Atluri [6] studied on the elasto-plastic large deformation analysis of space 

frames. Complementary energy approach was the basis of work. In order to show 

accuracy and efficiency of the approaches, both quasi-static and dynamic loading were 

used when examined the numerous examples. A suppose stress approach and a plastic-

hinge method were employed to get explicit expressions for the tangent stiffness 

matrix. For large deformations of practical interest it is essential to use a single element 

to model each member of the space-frame. According to the analysis results, this 

procedure was exact in analyzing large deformation inelastic response of frames.  

Gharpuray and Aristizabal-Ochoa [7] introduced a simplified nonlinear computer 

algorithm. This algorithm consisted of a simplified second-order elastic-plastic 

analysis in which the effects of bowing and the incremental part of the stiffness matrix 

in each member were neglected. Because of these two simplifications and as expected, 

load-deflection curves predicted by the proposed algorithm were slightly stiffer than 

those obtained by the exact second-order elastic-plastic analysis, particularly near the 

collapse load. The predicted collapse loads were slightly overestimated and the 

corresponding deflections were slightly underestimated by the proposed algorithm. It 

is expected that in structures with very flexible members and connections (hinged) and 
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subjected to large axial loads, the effects of bowing and the incremental part of the 

element stiffness matrix could become substantial and, therefore, an exact second-

order analysis might become necessary. 

Haldar and Nee [8] proposed an efficient second-order finite element-based method. 

Geometric and material nonlinear behavior of steel frames with nonlinear flexible 

connections and local plasticity effects were considered in this method. An obvious 

form of the tangent stiffness matrix of the structure was obtained that makes the 

proposed method extremely efficient in nonlinear analysis. The unique feature of the 

proposed method is that since the tangent stiffness had an explicit form and could 

easily be modified to consider different factors, it was extremely efficient. 

Clarke et al. [9] studied on the advanced analysis. Some aspects of the inclusion of 

residual stresses, geometrical imperfections and capacity factors in advanced analysis 

were examined. An advanced analysis based on the finite element method and utilizing 

a distributed plasticity formulation was developed and used to perform numerical 

studies of the behavior of simple structural elements and frames. It was concluded that 

it was no longer necessary to perform member or section capacity checks with 

advanced analysis, because the effects of the material and geometrical imperfections 

and of the material and geometrical nonlinearities have already been included in the 

analysis.  

Kim and Chen [10] presented three practical advanced analysis procedures for a two-

dimensional braced steel frame design. These procedures could be used to assess 

realistically both strength and behavior of a structural system and its individual 

members in a direct manner. Also, the procedures incorporated the refined plastic-

hinge concept for spread of plasticity together with practical modeling for geometric 

imperfections. Although the current LRFD method does not consider the effect of the 

weak column leaning on the stronger column, but the proposed methods were done. 

Liew et al. [11] concerned with second-order plastic hinge analysis of three-

dimensional frame structures. They developed a computer program which used to 

predict accurately the elastic flexural buckling load of columns and frames by 

modelling each physical member as one element. It could also be used to predict the 

elastic buckling loads associated with axial torsional and lateral torsional instabilities, 

which were essential for predicting the nonlinear behavior of space frame structures.  
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Chan [12] was addressed to a review and summary of the work conducted on the non-

linear analysis and design of steel frames in the past few decades from the vision of 

the current computer age.  

Choi and Kim [13] developed optimal design of steel frame with using practical 

nonlinear inelastic analysis. To capture second-order effects associated with P-δ and 

P-Δ moment, stability functions were used to minimize modeling and solution time. 

The Column Research Council tangent modulus concept was used to account for 

gradual yielding due to residual stresses. A softening plastic hinge model was used to 

represent the degradation from elastic to zero stiffness associated with development of 

a hinge. A direct search method was used for minimum weight optimization. The 

practical nonlinear inelastic analysis overcame the difficulties due to incompatibility 

between the elastic analysis of the structural system and the limit state member design 

in the conventional LRFD method. 

Zieman [14] described a modification to the second-order inelastic hinge method that 

could produce the accuracy of more sophisticated plastic zone methods in the analysis 

of in-plane behavior of compact doubly symmetric sections. To overcome the 

shortcomings of the elementary plastic hinge method, a modified tangent modulus 

approach was presented.  It was demonstrated that a second-order inelastic hinge 

analysis could provide results in close agreement with those of a more sophisticated 

and computationally expensive plastic zone analysis. 

Zhou and Chan [15] investigated the plastic hinge approach which can occur at the 

ends or any position along the element length.  A member was divided into many 

elements in order to approximate the location of a plastic hinge. To describe the 

formation of a plastic hinge along an element in a member at the ultimate limit state, 

a single element capable of modeling the P-δ effect as well as the formation of the 

plastic hinge was needed. This work adopted a simple concept of superimposition of 

triangular deflected shapes due to the formation of plastic hinge to the fifth order 

deflection shape for elastic deflection to yield the final deflection of the element, the 

plastic point wise equilibrium polynomial element. After that, Chan and Zhou [16] 

extended previous study on geometrically nonlinear analysis of skeletal structures 

combined geometrically and material nonlinear analysis of slender frames using a 

single element per member. Three plastic hinges were allowed to form in an element 

with two at the two ends and one at the location of maximum combined stress due to 
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axial force and moment in the proposed element. The formulation was capable of 

conducting an elastoplastic buckling analysis of a beam column modeled by one 

element per member, which was not available in literature before. 

Kim et al. [17] developed an automatic design method of steel frames using practical 

nonlinear analysis. The geometric nonlinearity was considered by the use of stability 

functions. A direct search method was used as an automatic design technique in the 

study. The member with the largest unit value was replaced one by one with an 

adjacent larger member selected in the database. The practical nonlinear analysis and 

the automatic design method were combined. This contribution provided much benefit 

to practicing engineering. 

Yoo and Choi [18] proposed a new method of inelastic buckling analysis in order to 

determine the critical load of steel frames. This inelastic analysis was based on the 

concept of modified bifurcation stability using a tangent modulus approach and the 

column strength curve. The validity and applicability of the proposed inelastic 

buckling analysis were evaluated alongside elastic buckling analysis and refined 

plastic hinge analysis. The results revealed that the proposed inelastic buckling 

analysis suitably evaluated the critical load and failure modes of steel frames, and 

could be a good alternative for the evaluation of critical load in the design of steel 

frames. 

Thai and Kim [19] developed a practical advanced analysis software which can be 

used for nonlinear inelastic analysis of space steel structures. The software employed 

the stability functions and the refined plastic hinge model to minimize modeling and 

computational time. The generalized displacement control method was adopted to 

solve the nonlinear equilibrium equations.  

Saffari et al. [20] developed a new nonlinear method based on Homotopy Perturbation 

Method and was applied to elasto-plastic analysis of steel plane frames. The method 

developed here was applied to plane frames in which elastic perfectly plastic behavior 

was assumed for structural material while conventional plastic hinges of zero length 

were used to model plasticity effect. According to analysis results, it was showed that 

developed method was used for elasto-plastic analysis of structures, using various 

yield criteria for steel elements, less iteration was required to reach solution, and 

convergence was achieved very fast.  
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Doan-Ngoc et al. [21] presented a new beam-column element for nonlinear analysis of 

planar steel frames under static loads. The second-order effect between axial force and 

bending moment and the additional axial strain due to the element bending were 

incorporated in the stiffness matrix formulation by using the approximate seventh-

order polynomial function for the deflection solution of the governing differential 

equations of a beam-column under end axial forces and bending moments in a 

correlational context. The analysis results of numerical examples proved that and the 

developed program from the proposed correlational element was capable of accurately 

predicting the nonlinear behavior of structural members and frames under the static 

loads. 

On the other hand, previous studies considering lateral torsional buckling which is one 

of the stability problems has been investigated. In this part, progresses related with the 

lateral torsional buckling are presented with theoretical and experimental studies. 

Dux and Kitipornchai [22] carried out a series of experiments on the buckling of 

simply supported laterally continuous I-beams to investigate the influence of major 

axis moment gradient on the capacity of inelastic beams in the inelastic range. Nine 

beams were tested in three groups, each group having a different predominant moment 

gradient. Points of load application were prevented from moving laterally and twisting. 

The results demonstrate that capacity is a function of moment gradient. Beams with 

the less severe gradients were able to sustain higher moments than could much stockier 

beams in uniform bending. 

Pandey and Sherbourne [23] presented a more accurate solution for the elastic, lateral 

torsional buckling of I-beams under unequal end moments which incorporates 

accurately the effects of moment gradient, lateral end restraint, and beam slenderness. 

The proposed analytical model was used to derive new parametric expressions for 

moment modification and effective length factors as design aids. This research 

successfully demonstrated that the conditions of loading and support directly influence 

warping and torsional modes, which, in turn, control the critical moment of the 

combined mode. The effective length factor was also found to be very useful in the 

limit states design of beams. 

Kemp [24] described a model in order to assess the maximum moment and available 

inelastic rotation prior to strain weakening due to the interactive local flange and web 
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buckling and lateral-torsional buckling. The results of 44 tests on I-shaped steel beams 

under pure flexure and 14 tests on similar specimens under combined bending and 

simulated axial force were executed. The rotation capacities measured in these tests 

were examined in terms of standard local and lateral buckling parameters as well as 

the proposed model. 

Helwig et al. [25] conducted finite element buckling analyses of singly symmetric I-

shaped girders subjected to transverse loading applied at different heights on the cross 

section. For single-curvature bending, the finite element results showed that traditional 

values of moment gradient factors can be used to estimate the buckling capacity of 

singly symmetric girders. Moreover, the finite element results demonstrated that the 

height of load application on the cross section has a significant effect on the buckling 

capacity. 

Trahair and Pi [26] summarized a series of investigations into the behavior, analysis 

and design of members subjected to combined torsion and bending because of torsion 

was generally ignored by designers. Steel torsion members might be designed for local 

buckling or plastic collapse. 

Papangelis et al. [27] presented a computer program for or the elastic flexural torsional 

buckling analysis of a wide range of beams, beam-columns, and plane frames. It was 

designed to assist designers to implement the method of design by buckling analysis 

which is permitted in modern structural steel design standards, either explicitly or 

implicitly. This computer program makes a first-order elastic analysis of the in-plane 

behavior of the frame, and then uses the results of this in a finite element analysis of 

the elastic flexural torsional buckling of the frame out of its plane. The program also 

uses the method of design by buckling analysis to design beams. 

Suryoatmono and Ho [28] studied on the equations for evaluating the moment-

modification factor (Cb) because the equations which presented in AISC 1994 [29] 

edition given incorrect results for some moment diagrams. From the results, it was 

shown that the equations for evaluating the Cb factor in both editions (1986 [30] and 

1994 [29]) of the AISC Specifications were not accurate for some of the cases 

considered in this paper. Therefore, instead of using one single equation for any 

moment diagram, alternative equations for evaluating the Cb factor for each loading 

case was proposed.  
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Lim et al. [31] investigated the elastic lateral torsional buckling of I-beams under linear 

moment gradient that very precisely incorporates the effects of moment gradient and 

various end restraints. The elastic critical buckling moments were obtained 

independently by using the Bubnov–Galerkin method and the finite element method. 

According to analysis results, alternative equations were proposed in order to evaluate 

the moment gradient correction factor with considering end restraint conditions. 

Serna et al. [32] focused on the equivalent uniform moment factor which is used to 

compute the elastic critical moment. Results obtained using both finite elements and 

finite differences. The new values refer to the equivalent uniform moment factor for 

linear moment distributions, uniform distributed loading and concentrated load with 

two and one end moments. All these cases have been solved considering all possible 

end support conditions: no prevention to lateral bending and warping; prevention to 

lateral bending and warping; and prevention to lateral bending or prevention to 

warping. The results show that warping prevention leads to a significant increase in 

the coefficient. The paper has presented a closed-form expression to obtain the 

equivalent uniform moment factor for any moment distribution.  

Aydin [33] developed a stiffness matrix for the elements of framed systems which are 

under constant axial force and moment. The procedure presented here considers the 

second-order effects due to the axial forces on the bars which are used to calculate the 

critical buckling loads of the framed system. This approach provides more accurate 

and dependable results than the energy methods.  

Taras and Grenier [34] proposed a new analytical description of buckling curves for 

lateral torsional buckling. The proposal made in this paper represented a clear 

improvement of the accuracy and consistency of the analytical description of lateral 

torsional buckling curves. 

Bradford and Pi [35] investigated the lateral-torsional buckling of a pin-ended circular 

arch with a uniform thin-walled cross section that was subjected to a uniform radial 

load. It was demonstrated by comparisons with the FE results that the solution 

provided good predictions for the lateral torsional buckling loads of both shallow and 

deep arches. 

Wu and Mohareb [36] developed a finite element formulation for the lateral torsional 

buckling analysis of plane frames with moment connections consisting of two pairs of 
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welded plate stiffeners. The study developed a joint finite element, which accurately 

quantifies the partial warping restraint provided by common moment connections to 

adjoining members framing at right angles. The new element provided a more accurate 

representation of the joint stiffness than the continuous warping deformation 

assumption. 

Kucukler et al [37] presented a stiffness reduction approach utilizing linear buckling 

analysis with developed stiffness reduction functions for the lateral torsional buckling 

assessment of steel beams. The proposed method was verified against the results 

obtained through nonlinear finite element modelling. The proposed stiffness reduction 

method obviated the need for using lateral torsional buckling assessment equations 

and considers the influence of the development of plasticity on the response of steel 

beams, so offering a realistic and practical means of design. 

Ozbasaran et al. [38] presented an alternative design procedure for lateral torsional 

buckling of cantilever I-beams which aims to simplify the calculation of critical loads 

and design moments. It was seen that the presented design curve was in good 

agreement with mentioned steel design codes. 

2.2. Literature Evaluation 

Having examined the literature about nonlinear analysis, nonlinear analysis is a key 

issue determining the realistic behavior of structures. Previously, nonlinear analysis 

methods were complex and time consuming for researchers. However, developments 

in the computer technology make it easy and help to use it widely in the structural 

analysis among the structural engineers. In this development process, it is observed 

that not only nonlinear analysis procedures but also structural stability behavior has 

significant influence on the design of structures. 

In order to determine realistic behavior of structures, nonlinear analyses and structural 

stability conditions have to be considered together in the analyses. In which, lateral 

torsional buckling is one of the most important stability problems for especially slender 

steel structures. However, after examining the literature works, it is seen that this 

stability problem is not considered in nonlinear analysis steps. Consequently, lateral 

torsional buckling behavior is investigated from many perspectives accounting several 

conditions for determining the effects on the member behavior but this works are 
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generally performed on a single member scale. Moreover, effects of lateral restraints 

on torsional and flexural buckling of members are examined for elastic and inelastic 

ranges. Additionally, moment factors of beams, geometric imperfection effects and 

curved members are discussed and influences on the member behavior are focused. 

Also, approaches using finite elements and experimental studies are performed to 

evaluate lateral torsional buckling behavior. 

As a conclusion, both subjects of nonlinear analyses and lateral torsional buckling have 

progressed separately and there were limited works linked to each other. Therefore, 

need to use lateral torsional buckling effect in the nonlinear analyses has been the basis 

of this study.  

3. ANALYSIS METHODS 

In this study, nonlinear analysis methods are used to determine behavior of steel frames 

considering lateral torsional buckling. For this purpose, various structural steel design 

standards are used to determine the design parameters.  

3.1. Nonlinear Analysis of Steel Frames 

Many of the nonlinear formulations of steel structures presented in the literature are 

based on the displacement method, for its relative ease in implementation [39]. 

Nonlinearities in structures exist in two forms, these are geometrical and material 

nonlinearities. Geometric nonlinearities gives P-Δ effects which is directly reflected in 

second-order analysis. Material nonlinearities emerge when material yield or stress-

strain behavior shows nonlinear characteristics. In which, two models of material 

nonlinear frame analyses arise depending on the degree of the accuracy. These are 

concentrated plasticity (plastic hinge) model and distributed plasticity (plastic zone) 

model. Plastic hinge model ignores the progressive yielding that takes place in cross 

section, likewise, plastic zone method takes into consideration the spread of yield in 

the cross section. In plastic hinge method, yielding is also assumed to be concentrated 

in a small region of zero length, generally termed as the plastic hinge.  Although the 

plastic zone approach yields results that are very close to the reality, it is limited to use 
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due to the difficulties that modeling systems have in modeling and the resolution time 

of these models is very long. Therefore, a popular approach for modelling nonlinear 

behavior of steel frames is concentrated plastic hinge method.  

In nonlinear analysis of steel frames, the load parameter leading to the formation of 

the first plastic hinge is computed. After determining the location and load parameter 

of first plastic hinge, member is assumed to remain elastic except at places where zero 

length plastic hinges are allowed to form. Plasticity is formulated based on the 

members cross sectional constitutive model that represents the plastic interaction 

between the axial force and the bending moments. Plastic hinges are located when the 

section internal forces exceed the plasticity criterion. This is repeated in step by step 

manner until losing of mechanism of behavior or stability of the structure. Nonlinear 

analysis of steel frames aims to determine the global behavior of structures instead of 

isolated member checks that linear analysis methods uses. For steel structures, the 

plastic interaction curve representing full yielding of the cross section is expressed by 

the design codes. A graphical comparison of the load-deflection behavior of a plane 

frame with using previously mentioned conditions are given in Figure 3.1.   

 

Figure 3.1 : General analysis types of framed structures [12]. 

3.1.1. First-order elastic-plastic analysis 

First-order elastic-plastic analysis is one of the most basic type of nonlinear analyses 

and effects of the change of geometry are ignored in this analysis. This method models 

the effects of section yielding under incremental loading. Consequently, it does not 
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consider second-order stability effects [40]. The plastic limit load can be gained 

directly by a simple elastic-plastic analyses. An elastic-plastic hinge idealization of the 

cross section behavior is used in the formulation of first-order elastic-plastic analysis. 

Members in a structure are assumed to be fully elastic prior to the formation of the 

plastic hinges. Perfectly plastic hinges are used to account the inelastic behavior by 

inserting in the member where the full plastic strength is reached.  

According to AISC 360-10 LRFD [41], cross section’s plastic strength is defined using 

(3.1) and (3.2). 
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Relation between (3.1) and (3.2) is given in Figure 3.2 and this curve is called as the 

bilinear interaction curve. The average I-shapes accounting AISC 360-10 LRFD [41] 

interaction equations is plotted. 

 

Figure 3.2 : Bilinear interaction curve. 

Moment and normal force are written according to load parameter and (3.3) and (3.4) 

are used; 
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Obtained values from (3.3) and (3.4) are inserted in (3.1) or (3.2). There are two 

cases [42]; 

For 1.case 0 2
y

P .
P

 , load parameter is decided using (3.5); 
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For 2.case 0 2
y

P .
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 , load parameter is decided using (3.6); 
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After every hinge is formed, joint displacements and internal forces of members are 

calculated using (3.7), (3.8) and (3.9), respectively. 
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Total load parameters are calculated until the structure reach ultimate load carrying 

capacity. (3.10) is used in order to calculate ultimate load parameter of the structure. 
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Plastic moment and normal force capacity are defined in (3.11) and (3.12). These are 

used in the nonlinear analysis steps. 

                                                n p y xM M F Z                                                     (3.11) 

                                                      p yP F A                                                         (3.12) 

3.1.2. Second-order elastic-plastic analysis 

Second-order elastic-plastic analysis takes account of geometry changes which are 

associated with the increase of P-Δ effects (sway deflection) [40]. Moreover, the effect 

of the geometric changes of the frame and frame elements on the equilibrium equations 

can be calculated by considering the second-order theory. For second-order analysis 
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of steel structures, stability functions, geometric stiffness matrices and iterative 

vertical loads and fictitious horizontal load practical calculation approaches can be 

used. In TSDC-2016 [43] and AISC 360-10 [41], the moment coefficients method, 

also known as the B1 - B2 method, is used for practical second-order analysis. In the 

moment coefficients method, the internal forces obtained from the analysis of the first-

order analysis are increased indirectly with certain coefficients by the second-order 

effects. In this method, the effects of element shape changes (P-δ) and system 

displacement effects (P-Δ) are taken into consideration. In Figure 3.3, procedure for 

second-order analysis is given.  

 

Figure 3.3 : Procedure for second-order analysis using B1-B2 method [44]. 

The effect of the geometric changes of the frame and frame elements on the 

equilibrium equations can be calculated by considering the second-order theory. (3.13) 

(3.14), (3.15) and (3.16) are presented in AISC 360-10 [41];  
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4. LATERAL TORSIONAL BUCKLING 

There are three major fields which are related with the stability designs of steel frame 

structures. These are global buckling, local buckling and structural instability due to 

the plastic hinge formation. Lateral torsional buckling is a form of global buckling and 

it is focused in this part. Lateral torsional buckling is a behavior which is one of the 

instability conditions induced by the compressed flange of unrestrained beam 

subjected to bending around the major axis. If a beam reaches the critical moment 

value under the applied load or moment, this beam may expose to lateral torsional 

buckling failure. The critical moment is a function of lateral and torsional stiffness. 

This is affected by the boundary conditions, unbraced length, material nonlinearities, 

load pattern and dimensions of the member cross section. If a beam is under the 

influence of lateral torsional buckling, it experiences simultaneous in-plane 

displacement, lateral displacement and twisting because of bending. Lateral 

displacement and twisting of the simply supported beam under the bending moment 

considering lateral torsional buckling behavior is shown in Figure 4.1.  

 

Figure 4.1 : Lateral displacement and twisting of the simply supported I-beam 

subjected to bending moments [45]. 

4.1. Methods of Stability Analysis 

Understanding of structural stability conditions have not been achieved exactly and 

ignored mostly in the analysis of steel structures. Therefore, design engineers have 

encountered a number of failures because of the lack of understanding these stability 
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requirements. Beams are one of the main structural members and resist the applied 

load by bending and shearing actions. Open cross sections like I-shape beams have 

very low torsional rigidities and their resistance to torsional instability is very limited. 

As a result of this, they are mainly vulnerable against lateral torsional buckling effect. 

There are two types of torsional rigidity that might exist in a member with thin plate 

cross section. They are uniform torsion and non-uniform torsion [45]. 

4.2. Uniform Torsion of Thin-Walled Open Sections 

A simply supported beam under an equal and opposite twisting moment is shown in 

Figure (4.2). Under this condition, the twisting moment along the length of the member 

is constant and a uniform torsion occur in the beam member, it is showed in Figure 4.2 

(a). Also, warping of the cross section arise because of this torque. Figure 4.2 (b) 

illustrates warping of I section beam under uniform twisting moment. 

 

Figure 4.2 : Simply supported I-beam (a) subjected to twisting moment (b) 

warping of I-section under uniform twisting moment. 

Warping of all the cross sections is unrestrained for simply supported beam and this is 

caused twisting moment by applied torque T. Torque is also attacked only by shear 

stresses developed in the cross section of beam member. These stresses act parallel to 

the edge of the component plates of the cross section, as shown in Figure 4.3.  

(a) (b) 



  42 
 

 

Figure 4.3 : St. Venant shear stress distribution due to uniform torsions in an I-

section. 

These shear stresses are called St. Venant shear stresses. The torsion is related with 

these shear stresses and is stated to as St. Venant torsion, Tsv. The St. Venant torsion 

expressed in (4.1) is also referred to as uniform or pure torsion. d / dz is the rate of 

twist. 

                                               sv
dT GJ
dz


                                                (4.1) 

4.3. Non-Uniform Torsion of Thin-Walled Open Sections 

A cantilever beam subjected to a torque T is shown in Figure 4.4. This torque is applied 

at the free end of the beam. At the fixed end, warping is prevented but at the free end, 

warping is free. Therefore, the applied torque is resisted merely by St. Venant torsion 

at the free end. As a result of this, in addition to St. Venant torsion, there exists another 

type of torsion known as warping restraint torsion in the cross section. There are also 

axial stress in addition to shear stress because the cross section is prevented from 

warping. These axial stresses occur at the fixed end of the beam. Emerged these axial 

stresses in the two flanges creates a pair of equal moments. These moments are called 

as the bi-moment Mf which act oppositely in each of these two planes of the flanges. 
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Figure 4.4 : A cantilever beam subjected to a twisting moment at the free end. 

The bending moment Mf in either the top or the bottom flange is calculated as (4.2). 

There are also occurred the shear forces V in both flanges and opposite directions 

associated with the bending moment. (4.3) is used to calculate the shear forces. These 

arisen bending moments and shear forces are illustrated in Figure 4.5. 

                                                 
2

2
f

f f

d u
M EI

dz
                                                     (4.2) 

                                              
3

3
f f

f f

dM d u
V EI

dz dz
                                           (4.3) 

 

Figure 4.5 : Moment and shear developed at the fixed-end cross section of an I-

section due to non-uniform torsion 
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This pair of shear forces create a couple acting on the cross section. The resulting 

torsion, which is referred to as non-uniform torsion Tw, is given by (4.4). h is the 

distance between the shear forces. 

                                                    w fT V h                                                          (4.4) 

Non-uniform torsion can also be written as (4.5) 

                                    
2 3 3

3 32w f w
h d dT EI EC

dz dz
 

                                            (4.5) 

In which, warping constant of the I-section, Cw is decided to use (4.6). It is important 

that warping constant is different for each of the cross section. 

                                                   
2

2
f

w

I h
C                                                           (4.6) 

When the member is twisted and the applied twisting moment is resisted by St. Venant 

torsion and warping restraint torsion, the internal twisting moment T equals to (4.7). 

                                                sv wT T T                                                          (4.7) 

The internal twisting moment can be defined as (4.8) considering (4.1) and (4.5). 

                                          
3

3w
d dT GJ EC
dz dz
 

                                                 (4.8) 

4.4. Lateral Buckling of Beams 

If a beam is bent about its axis of greatest flexural rigidity, out-of-plane bending and 

twisting may occur when the applied load reaches its critical value, unless the beam is 

provided with a necessary lateral support. The following situations are mentioned and 

examined by Chen and Lui [45].  

4.4.1. Simply supported beam under pure bending 

When a simply supported I- section beam subjected to a couple of equal and opposite 

end moments, in addition to St. Venant torsion, there is also a warping restraint torsion. 

The external moments at any cross section are given in (4.9), (4.10) and (4.11) for each 

axis. 
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                                           0x'( ext ) x( ext )M M M                                                (4.9) 

                                       0y'( ext ) x( ext )M M M                                              (4.10) 

                                      0z'( ext ) x( ext )
du duM M M
dz dz

                                           (4.11) 

The corresponding internal resisting moments are also given in (4.12), (4.13), and 

(4.14) for each axis. 

                                             
2

2x'(int) x
d vM EI
dz

                                                    (4.12) 

                                            
2

2y'(int) y
d uM EI
dz

                                                      (4.13) 

                                       
3

3z'(int) w
d dM GJ EC
dz dz
 

                                             (4.14) 

The corresponding external and internal moments for an I-beam according to axes are 

given in (4.15), (4.16), and (4.17), respectively. 

                                             
2

02 0x
d vEI M
dz

                                                      (4.15) 

                                            
2

02 0y
d uEI M
dz

                                                     (4.16) 

                                     
3

03 0w
d d duGJ EC M
dz dzdz
 
                                         (4.17) 

The first equation is not interested in the calculations because it describes the in-plane 

behavior of the beam before lateral buckling. Therefore, the lateral-torsional buckling 

behavior of beam can be gained from the combination of the last two equations. This 

combining equation is given in (4.18). 

                                   
24 2
0

4 2 0w
y

Md dEC GJ
EIdz dz

                                              (4.18) 

By solving this equation considering the simply supported conditions, the critical 

moment can be calculated as (4.19) [46]. 
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2

21 w
ocr y

EC
M EI GJ

L L GJ


                                             (4.19) 

Describing equation (4.19) is supposed that the in-plane deflection has no effect on the 

lateral torsional buckling behavior of the beam. This can be justified if the major axis 

flexural rigidity is greater than the minor axis flexural rigidity. However, if flexural 

rigidities of major and minor axis are of the same of order of magnitude, the effect of 

bending in the vertical plane direction may be important and should be considered in 

calculating Mcr. This solution is more complicated and an approximate solution was 

given by Kirby and Nethercot [47] in (4.20). 
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EI GJ ECM
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
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                                    (4.20) 

According to this formula, lateral torsional buckling never happens in circular cross 

sections or square box sections in which all the component plates have the same 

thicknesses. This formula also indicates that lateral torsional buckling occurs when the 

load is applied on the plane of weak axis.  

4.5. Design of Members Subjected to Lateral Torsional Buckling Effect 

4.5.1. Australian Standard – (AS 4100) 

Australian steel design standard AS 4100 [48] gives nominal member moment 

capacity under lateral torsional buckling with (4.21). 

                                           b m s s sM M M                                                  (4.21) 

αm and αs factors are calculated according to (4.22) and (4.23). 
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Ms is nominal section capacity, Moa is reference buckling moment which is obtained 

from elastic analysis of simply supported beams under a uniform bending moment and 

is given in (4.24). 

                                  
2 2
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y w
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e e

EI EI
M GJ

l l
      

             
                                        (4.24) 

4.5.2. American Design Specification – (AISC 360-10 / LRFD) 

AISC 360-10 [41] specification presents an approach for checking the lateral torsional 

buckling effects for the steel frame members. This approach is classified into 

subcategories considering unbraced length limits and the section features such as 

section type, modulus of elasticity, elastic and plastic section modulus. 

For beams of compact sections, there are two possible types of failure: (1) plastic 

yielding, (2) lateral torsional buckling. The design curve is shown in Figure 4.6. 

 
Figure 4.6 : Nominal flexural strength and unbraced length graphic under lateral 

torsional buckling for I-shaped members. 

The unbraced length limits are given in (4.25) and (4.26) according to AISC 360-10 

[41] specification : 

                                           1 76p y
y

EL . r
F

                                                          (4.25) 
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In which, effective radius of gyration, rts is determined using (4.27). 

                                                 2 y w
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S
                                                         (4.27) 

For I-shaped members, which are subjected to bending moment about the strong axis, 

nominal flexural strength, Mn is determined with respect to length of the unbraced 

segment of the member Lb. Limits about length of unbraced segment are defined in 

AISC 360-10 [41]. If ܮ௕ ≤  ௣, full plastic moment is accounted to be developed in theܮ

section and the limit state of lateral torsional buckling does not need to be applied. For 

this situation, (4.28) is directly used for the calculation of Mn. If ܮ௣ ≤ ≥ ௕ܮ   ,௥ܮ

inelastic lateral torsional buckling may occur and (4.29) is used for calculating Mn. If 

< ௕ܮ  ௥, elastic lateral torsional buckling may occur and (4.30) is used for calculatingܮ

Mn. 

                                                   n p y xM M F Z                                                   (4.28) 
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                          (4.29) 

                                                    n cr x pM F S M                                                (4.30) 

Fcr, critical stress in (4.30) is calculated using (4.31). 
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Moment modification factor Cb is calculated according to (4.32) in AISC 360-10 [41]. 
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                                     (4.32) 

Moment modification factor is studied in order to improve the capability of 

representing lateral torsional buckling behavior. Since moment modification factor 

studies are evaluated in here, these factors are summarized considering the relevant 

literature. 
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Moment modification factor is first studied by Salvadory [49] with using (4.33) 

considering linear moment distribution between the brace points.  

                                    21 75 1 05 0 3 2 3bC . . . .                                            (4.33) 

Kirby and Nethercot [47] presented an alternative equation for Cb, which is applicable 

for any shape of moment diagrams. A slightly modified version is given in (4.34) and 

is adopted by AISC 360-10 for any moment distribution. 
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  
                                       (4.34) 

Serna et al. [32], provide another equation for moment modification factor by curve 

fitting the numerical analysis results. In the study, numerical analysis results are 

obtained for equivalent uniform moment factor using the finite difference and finite 

element methods for a wide range of loading and end support conditions. (4.35) targets 

to account lateral rotation and warping restraints at the brace points. 
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
                                        (4.35) 

Wong and Driver [50], proposed an equation for Cb factor and it is presented in (4.36). 

                                                              (4.36) 

4.5.3. British Standard – (BS 5950-1: 2000) 

For equal flanged rolled sections, in each length between lateral restraints, the 

equivalent uniform moment M is should not exceed the buckling resistance moment 

Mb. This can be expressed in (4.37) by BS 5950-1:2000 [51] ; 

                                               x b ltM M / m                                                       (4.37) 

The buckling resistance moment Mb is dependent on the section classification of the 

member and a bending strength pb that depends on the slenderness of the beam. Mb is 

determined in (4.38):  

                                                    b b xM p S                                                       (4.38) 
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For plastic and compact sections Sx is the section plastic modulus, for semi-compact 

and slender sections Zx is the section elastic modulus are used instead of Sx. 

For I and H sections, the equivalent slenderness λLT is determined using (4.39), u is a 

buckling parameter obtained from section property tables.  

                                              0 5.
LT wuv ( )                                                      (4.39) 

λ is the slenderness, and this minor axis slenderness are expressed in (4.40) 

                                                      
e
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                                                             (4.40) 

British code for steelworks in buildings [51] presents a formulation for determining 

equivalent uniform moment factor with C1 as in (4.41) under lateral torsional buckling.  

C1 is also equal to 1 / mLT . All of M values are the absolute moments along Lb. 
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                            (4.41) 

4.5.4. European Standard – European Code 3 (EN 1993-1-1) 

The design buckling resistance moment of laterally unrestrained beam is defined in 

EN 1993-1-1 [52] with (4.42); 

                                        1b,Rd LT y y MM W f /                                               (4.42) 

Reduction factor, χLT  is calculated using (4.43). 
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In which, ϕ is calculated as (4.44) and 


 is calculated as (4.45). 
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Critical elastic lateral torsional buckling moment capacity for the case of beams with 

doubly symmetric sections and simply supported ends and subjected to a constant 
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moment over the laterally unbraced length is given with (4.46) in EN 1993-1-1 [52]. 

In this equation, member is assumed to be loaded from shear center. 
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                                 (4.46) 

In which, the effective length factors k and kw vary from 0.5 for full fixity to 1.0 for no 

fixity, with 0.7 for one end fixed and one end free.  

For a case with k is equal to 1.0, the value of C1 for any ratio of end moment loading 

is given with (4.47). 

                           2
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                                 (4.47) 

The end moment ratio, ψ, is taken as positive for moment causing reverse-curvature 

bending and negative for single-curvature bending. 

4.5.5. Turkish Steel Design Code – (TSDC-2016) 

TSDC-2016 [43] presents an approach for determining the lateral torsional buckling 

effects for the steel frame members and it is summarized in this part. This approach is 

very similar to that of AISC 360-10 [41], and it classifies elastic and inelastic buckling 

considering unbraced length limits. These unbraced length limits are presented in 

(4.48) and (4.49).  
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In which, effective radius of gyration, its is calculated as (4.50). 
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For I-shaped members, which are subjected to bending moment about the strong axis, 

Mn is determined with respect to length of the unbraced segment of the member Lb. 

This methodology is similar to the AISC 360-10 [41]. When unbraced length exceeds 
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unbraced length limit, inelastic or elastic lateral torsional buckling may occur. If ܮ௕ ≤

 ௣, full plastic moment is accounted to be developed in the section and the limit stateܮ

of lateral torsional buckling does not need to be applied. For this situation, (4.51) is 

directly used for the calculation of Mn. If ܮ௣ ≤ ≥ ௕ܮ  ௥,  inelastic lateral torsionalܮ

buckling may occur and (4.52) is used for calculating Mn. If ܮ௕ >  ௥, elastic lateralܮ

torsional buckling may occur and (4.53) is used for calculating Mn. 

                                           n p y pxM M F W                                                     (4.51) 
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                                                  n cr ex pM F W M                                               (4.53) 

The critical stress, Fcr is defined in TSDC-2016 [43] as (4.54). 
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4.5.6. Turkish Standard according to plastic theory – (TS 4561) 

Design standard TS 4561 [53] is used in structural steel design practice in Turkey up 

to publication of TSDC-2016 [43]. After the publication of TSDC-2016 [43] in 2016, 

TS 4561 [53] standard is abolished. Unbraced length limits for TS 4561 are given in 

(4.55), (4.56), and (4.57) [53]. 
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In case of lateral torsional buckling in steel frame members according to TS 4561 [53], 

the carrying capacity of this part is calculated by (4.58). In here, (4.59) and (4.60) are 

used to calculate kD and MD values in the calculation of plasticization moment.  

                                                   Kr D pM k M                                                           (4.58) 
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Member is subjected to moment and axial pressure forces acting around the principal 

axis giving great moment of inertia when stability loss is caused by lateral torsional 

buckling. Lateral torsional buckling will result in loss of stability unless it is prevented 

against the out of plane motion at a sufficient level and the member is not able to reach 

its plastic moment carrying capacity. In this case, (4.61) is used for section effects. 
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4.6. Considering Lateral Torsional Buckling Effects in Nonlinear Analysis Steps 

Nonlinear analysis assumes that frame systems are safe against lateral torsional 

buckling, regardless of lateral support situations. It is clear that this acceptance is far 

from reflecting the real situation, in many cases, except when composite frames are 

used, when steel frames are thought to be used more for industrial purposes. In this 

study, an approach has been proposed to consider the effects of lateral torsional 

buckling in practical nonlinear analysis steps and to be able to model structure analyzes 

as accurately as possible in real situations taking into account TSDC-2016 [43] and 

AISC 360-10 [41] codes.  

The strong axes of the steel frame members are generally selected in this direction as 

the bending stiffness in which the load is applied are large for economical design. For 

this reason, out-of-plane motion is often determined by considering weak axes. If the 

out-of-plane displacements and rotational behavior of these elements are not impeded 

adequately, members will not be able to reach moment-bearing capacities in the plane 

because of lateral torsional buckling. Consequently, in order to reflect the lateral 

torsional buckling effects to the nonlinear analysis steps, the axial force and the 

bending moment interactions are defined by (4.62) and (4.63). 
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The inelastic moments are redistributed in the frame systems by incorporating the 

lateral torsional buckling into the calculations using the defined axial forces and 

bending moment interactions in nonlinear analysis with (4.62) and (4.63). In the load 

increment steps, firstly the lateral torsional buckling for each element is controlled on 

an element basis, and the moment carrying capacity is recalculated for elements 

exposed to the lateral torsional buckling effect. This applies to parts where the out-of-

plane motion of steel frame elements is inhibited. For out-of-plane motion and for 

elements yielding due to lateral torsional buckling, the contribution of the element to 

the system is assumed to be zero and the inelastic moment distribution for the element 

is prevented from being redistributed. This analytical approach proposed in the study 

contributes to the development of nonlinear analysis methods of steel structures as it 

aims to determine the overall load carrying capacity of the frame system beyond the 

elemental lateral torsional buckling behavior. It is also known that many computer 

software performs nonlinear analysis assuming that the safety against lateral torsional 

buckling is provided by the designer, and the approach presented here allows the lateral 

torsional buckling effect to be directly accounted for in the nonlinear analysis steps. 
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5. NUMERICAL EXAMPLES 

Lateral torsional buckling effect on nonlinear analysis of steel frames is investigated 

using numerical examples. In these examples, different structural parameters are aimed 

to be focused. In the beginning, a simply supported beam is examined with unequal 

end moments conditions under the lateral torsional buckling effect. Also, different 

design specifications are used to compare the results. Following this, a fixed supported 

beam is analyzed considering lateral torsional buckling. After member based 

investigations, frames which have different story heights and spans, various loading 

and support conditions are considered and examined with and without considering 

lateral torsional buckling effect. Finally, different unbraced length conditions are 

applied on a simply supported beam and the importance of unbraced lengths is 

presented. Consequently, frame examples are investigated with different unbraced 

conditions. 

All of the frame examples are selected from the literature and nonlinear behavior of 

these frames are investigated considering lateral torsional buckling. Moreover, 

numerical examples are aimed to be performed for determining the effects of different 

bracing conditions that limit out-of-plane deformations, end-restraint conditions, 

loading types. Furthermore, different design specifications that account lateral 

torsional buckling effect is investigated comparatively. Load carrying capacity and 

joint deflections of steel frame structures are used for evaluating the analysis results. 

Load increments are performed up to ultimate load parameter value, behavior beyond 

this limit is not considered in the numerical examples. 

5.1. Comparison of Lateral Torsional Buckling Effect According to Design 

Specifications 

Lateral torsional buckling behaviors of I-shaped steel members are examined 

considering different design approaches using a simply supported steel beam made of 

IPE 500 section. Loading procedure of simply supported beam is presented in Figure 

5.1.  
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Figure 5.1 : Simply supported I-shaped member under linear moment gradient. 

Section properties for IPE500 section are; torsion constant, J is 7.23x10-7 m4, warping 

constant, Cw is 1.336x10-6 m6, plastic section modulus about the major axis, Zx is 2.194 

x 10-3 m4. 

Lateral torsional buckling analyses are performed considering several standards, codes 

and also recommended moment gradient factor equations. Beside the analytical 

approach, LTBeam [54] and finite element based ANSYS [55] are used to validate the 

analytical analysis results. In Figure 5.2 and Figure 5.3, lateral torsional buckling of I-

shaped members are illustrated using LTBeam [54] and ANSYS [55], respectively. 

According to these figures, when I-shaped member is loaded in its major principle 

plane, upper flange goes into compression, which means it is trying to get shorter. This 

flange will therefore tend to buckle out sideways. 

       
Figure 5.2 : Lateral torsional buckling with LTBeam [54] 

 
 

Figure 5.3 : Lateral torsional buckling with FE Analysis [55] 
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In order to plot the end moment ratio -1 < β < 1 to elastic lateral torsional buckling 

moment capacity, different unbraced length conditions are considered in the present 

study. These unbraced lengths are selected as 8 m, 10 m, 12 m, and 16 m in which 

lateral torsional buckling occurs in the elastic range. 

Lateral torsional buckling behaviors of I-shaped steel members are calculated for 

simply supported steel IPE 500 beam considering unbraced lengths. In the study, AISC 

360-10 [41], AS 4100 [48], BS 5950 [51], EN 1993-1-1 [52], TSDC-2016 [43] and TS 

4561 [53] approaches are compared with finite element based LTBeam [54] and 

ANSYS [55] analysis outcomes. Furthermore, moment gradient factor proposed by 

researchers [32, 47, 49, 50] are also used and the outcomes are presented for 

evaluation. 

Unbraced member length of 8 m is first used for determining elastic lateral torsional 

buckling moment capacity considering the changes in the moment ratio values. 

Outcomes of the analyses are given in Figure 5.4 and Figure 5.5. 

 
Figure 5.4 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

8 m. 
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Figure 5.5 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 8 

m considering Cb factors. 

Unbraced member length of 10 m is analyzed and results are presented in Figure 5.6 

and Figure 5.7.  

 
Figure 5.6 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

10 m. 
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Figure 5.7 :  End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

10 m considering Cb factors. 

Unbraced member length of 12 m is analyzed and results are presented in Figure 5.8 

and Figure 5.9. 

 
Figure 5.8 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

12 m. 
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Figure 5.9 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

12 m considering Cb factors. 

Finally, unbraced member length of 16 m is analyzed and results are presented in 

Figure 5.10 and Figure 5.11. 

 
Figure 5.10 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

16 m. 
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Figure 5.11 : End moment ratio (β) and Mcr for doubly symmetric I-beam with Lb = 

16 m considering Cb factors. 

According to the numerical example of the study, TS 4561 [53] and AS 4100 [48] give 

more conservative results than the other approaches. AISC 360-10 [41], TSDC-2016 

[43] and BS 5950 [51] give close results to each other. Results of EN 1993-1-1 [52] 

are generally close to FEM [55] and LTBeam [54] results. Unbraced member length 

increases cause significant decrease in elastic moment capacity under lateral torsional 

buckling. In addition, differences in between analysis approaches decrease with the 

increase of unbraced member length. In order to improve the accuracy of determining 

the elastic critical moment capacity, moment gradient factors from the literature are 

also investigated. Results of the numerical example of this study show that Cb equation 

provided by Serna et al. [32] are more close to FEM [55] results than other approaches 

considered in the study. 

5.2. Nonlinear Analysis of Fix Supported Beam under Uniformly Distributed 

Load 

In order to investigate lateral torsional buckling effects on structural steel members, a 

beam which has fixed supports at both ends, is selected and structural behavior is 

determined [56]. Beam member has 12 m length and W 24x55 steel section. Section 
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properties for W 24x55 section is defined as torsion constant, J is 491 x103 mm4, 

warping constant, Cw is 1040 x109 mm6, plastic section modulus about the major axis, 

Zx is 2200 x 103 mm4. Distributed load is applied as 20 kN/m and steel beam is shown 

in Figure 5.12. 

 
Figure 5.12 : Fixed end beam. 

For monitoring the lateral torsional buckling effects and evaluating the structural 

behavior, nonlinear analysis results without and with considering lateral torsional 

buckling are given in Figure 5.13. Degradation due to lateral torsional buckling is 

represented and load parameter - midpoint vertical displacement relationships are 

plotted. Also, plastic hinge formations are also given in Figure 5.13.  

 

Figure 5.13 : Fixed end beam analysis results. 

Analysis results for beam member show that load carrying capacity decreased 65.2% 

when lateral torsional buckling is considered. It is observed that lateral torsional 

buckling has decreased the load carrying capacity of the beam significantly.  
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5.3. First-Order Elastic-Plastic Analysis of One Story Side-Sway Prevented 

Frames  

Single-story steel frames in which side-sway is prevented are selected from literature 

and shown in Figure 5.14. In the literature, plastic zone analysis was used and lateral 

torsional buckling effect was not considered [57].  

In order to analyze these frames, geometric and section properties, loading details are 

presented. These single-story frames have different restraint conditions fix supports 

and pinned support, respectively. Out-of-plane motion is limited using braces at the 

joints of the member ends and bracing points are also presented in Figure 5.14. Beams 

and columns in these frames are rigidly connected about their strong-axis bending 

direction and same section is used in both frames. Cross section of the beam is W 

16x50 (J= 63300 mm4, Cw= is 610 x109 mm6, Zx= 1510 x 103 mm4). Cross section of 

the columns is W 8x31 (J= 223 x103 mm4, Cw= 142 x109 mm6, Zx= 498 x 103 mm4). 

These frames are both subjected to uniformly distributed load Wb along the beam and 

point loads Pc at the end joints of the beam members. Relationship about loads are 

given as; b b bP W L  and 2b c bP / ( P P )    where β is the ratio of the load. In this study, 

β is accounted as 0.34 to evaluate these examples as given in the literature [57]. 

 
Figure 5.14 : Single-story frame with fix support and pin support. 

Nonlinear analysis is applied on the single-story frames and lateral torsional buckling 

effect is considered for determining the realistic behavior [58]. Load carrying 

capacities - midpoint vertical displacements of the beams are calculated and the 

graphics are plotted. Load parameter – vertical displacement graphic for fix support 

and pin support conditions is presented in Figure. 5.15. Also, plastic hinge formations 

for fix supported and pin supported conditions are given in Figure 5.16, respectively. 
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Figure 5.15 : Load parameter – beam midpoint vertical displacement of single-story 

frame with fix supports. 

   

Figure 5.16 : Order of plastic hinge formations (a) for fix support frame (b) for pin 

support frame. 

Nonlinear analysis results show that considering lateral torsional buckling decreased 

the load carrying capacity by 9.9% and 10.2% for fix and pin support conditions. For 

this example, lateral torsional buckling have no vital influence on the vertical midpoint 

displacements of the beams. Vertical midpoint displacement values for the pin 

supported frame is greater than the fix supported frame. In this example, considering 

lateral torsional buckling in the nonlinear analysis decreased the load carrying capacity 

but the displacement values are not significantly affected. On the other hand, support 

conditions have changed slightly the midpoint displacements. 

(a) (b) 
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5.4. First-Order Elastic-Plastic Analysis of Ziemann Frame  

A benchmark frame that exists in the literature [59] is used for determining the load 

carrying capacity due to lateral torsional buckling. This frame have two spans and two 

stories. Cross section of the beams are W 27x84 (J= 1170 x103 mm4, Cw= 4810 x109 

mm6, Zx= 4000 x 103 mm4), W 36x170 (J= 6290 x103 mm4, Cw= 26500 x109 mm6, 

Zx= 10900 x 103 mm4), W 21x44 (J= 320 x103 mm4, Cw= 567 x109 mm6, Zx= 1560 x 

103 mm4) and W 27x102 (J= 2200 x103 mm4, Cw= 6440 x109 mm6, Zx= 5000 x 103 

mm4). Cross section of the columns are W 8x15 (J= 57 x103 mm4, Cw= 13.9 x109 mm6, 

Zx= 223 x 103 mm4), W 14x132 (J= 5120 x103 mm4, Cw= 6850 x109 mm6, Zx= 3830 x 

103 mm4), W 14x120 (J= 3900 x103 mm4, Cw= 6100 x109 mm6, Zx= 3470 x 103 mm4), 

W 8x13 (J= 36.3 x103 mm4, Cw= 11 x109 mm6, Zx= 187 x 103 mm4) and W 14x109 

(J= 2960 x103 mm4, Cw= 5420 x109 mm6, Zx= 3150 x 103 mm4). Beams and columns 

are rigidly connected about their strong axis bending direction and out-of-plane motion 

is prevented at the joints of the member. Dimensions, structural sections and applied 

load values of the steel frame are also given in Figure 5.17. Horizontal displacement 

is monitored for the joint A and positive direction for displacement is accounted. 

 
Figure 5.17 : Ziemann Frame [59]. 

Ziemann frame is analyzed for considering lateral torsional buckling effect and the 

structural behavior is investigated [56]. Load carrying capacity – lateral displacements 

of joint A are calculated and the graphic is plotted in Figure 5. 18. Also, order of plastic 

hinge formations are given in Figure 5.19 for lateral torsional buckling considered and 

ignored cases, respectively. 
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Figure 5.18 : Peak point lateral displacements and load parameters of Ziemann 

frame.  

       

Figure 5.19 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

Nonlinear analyses are performed for the Ziemann frame with and without considering 

lateral torsional buckling. In literature, ultimate load parameter has been found as 

approximately 1.00 and in this study, ultimate load parameter is calculated as 1.03 for 

lateral torsional buckling ignored case. Load parameter decrease when the lateral 

torsional buckling is considered in the nonlinear analysis steps Moreover, horizontal 

displacements are affected from lateral torsional buckling effect and direction changes 

have been observed. This is due to change in the order of plastic hinge formations. If 

lateral torsional buckling behavior is considered, load carrying capacity decreases as 

32.0 %. It is determined that lateral torsional buckling is considerable for nonlinear 

analysis of steel frames in order to decide the structural behavior. 

(a) (b) 
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5.5. Second-Order Elastic-Plastic Analysis of Two Stories and Two Spans 

Frame  

Steel frame selected from the literature [60] is investigated with and without 

considering lateral torsional buckling. This frame have two stories and two spans. 

Cross section of the beams are W 24x84 (J= 1540 x103 mm4, Cw= 3440 x109 mm6, Zx= 

3670 x 103 mm4), W 21x62 (J= 762 x103 mm4, Cw= 1600 x109 mm6, Zx= 2360 x 103 

mm4). Cross section of the columns are W 8x28 (J= 224 x103 mm4, Cw= 83.8 x109 

mm6, Zx= 446 x 103 mm4), W 8x35 (J= 320 x103 mm4, Cw= 166 x109 mm6, Zx= 569 x 

103 mm4), W 8x18 (J= 71.6 x103 mm4, Cw= 32.8 x109 mm6, Zx= 279 x 103 mm4). 

Section types, dimensions and applied loads are also shown in Figure 5.20. Out-of-

plane motion is prevented at the joints of the member. Lateral displacement (Δ) is 

monitored at the top point of the frame and shown in Figure 5.20.  

 

Figure 5.20 : Two story and two span frame. 

Steel frame is analyzed under the lateral torsional buckling effect and second-order 

elastic-plastic analysis method is used in the analyses. According to the analysis 

results, structural behavior is examined. In this frame, moment modification factor (Cb 

= 1) case is also examined because AISC 360-10 [41] and TSDC-2016 [43] 

specifications recommend to use Cb =1 in order to be on the safe side in the calculations 

of lateral torsional buckling and results are compared other analysis results. Load 

carrying capacity – lateral displacements of top point of the frame (Δ) are calculated 

and the graphics are plotted in Figure 5.21. Also, order of plastic hinge formations are 

given in Figure 5.22 for lateral torsional buckling considered and ignored cases, 

respectively. 
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Figure 5.21 : Peak point lateral displacements and load parameters of two stories 

and two spans frame. 

      

Figure 5.22 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

In Table 5.1, ultimate load parameters and decreasing in load carrying capacities of 

the examined steel frame structure under different conditions are given.  

Table 5.1 : Ultimate load parameter and decreasing in load carrying capacity for two 
stories and two spans frame. 

Lateral torsional buckling (LTB) effect Ultimate load 
parameter 

% decrease in 
load carrying 

capacity 
From the literature ignoring LTB [60] 1.91 - 
LTB ignored 1.90 - 
LTB considered 1.29 32.11 
LTB considered and Cb = 1 1.13 40.53 

 

For calibrating the results, steel frame is firstly analyzed with not considering lateral 

torsional buckling effect and result are approximately same the literature result with 

(a) (b) 
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% 0.8 difference. Lateral torsional buckling effect in all of the approximations decrease 

the load carrying and displacement capacity of the frame. Especially, Cb = 1 case, load 

carrying capacity is far from the real solutions and very conservative in the design. 

Moreover, order of plastic formations are changed in this analyses when lateral 

torsional buckling is considered in the nonlinear analysis steps. 

5.6. Second-Order Elastic-Plastic Analysis of Three Stories and Two Spans 

Frame 

Steel frame selected from the literature [60] is investigated considered and ignored 

lateral torsional buckling. This frame have three stories and three spans. Cross section 

of the beams are W 18x40 (J= 337 x103 mm4, Cw= 387 x109 mm6, Zx= 1280 x 103 

mm4). Cross section of the columns are W 8x31 (J= 223 x103 mm4, Cw= 142 x109 

mm6, Zx= 498 x 103 mm4), W 10x45 (J= 629 x103 mm4, Cw= 322 x109 mm6, Zx= 900 

x 103 mm4), W 6x25 (J= 192 x103 mm4, Cw= 40.3 x109 mm6, Zx= 310 x 103 mm4), W 

8x35 (J= 320 x103 mm4, Cw= 166 x109 mm6, Zx= 569 x 103 mm4), W 5x16 (J= 79.9 

x103 mm4, Cw= 10.9 x109 mm6, Zx= 158 x 103 mm4), W 6x20 (J= 99.9 x103 mm4, Cw= 

30.3 x109 mm6, Zx= 246 x 103 mm4). Section types, dimensions and applied loads are 

shown in Figure 5.23. Out-of-plane motion is prevented at the joints of the member. 

Lateral displacement (Δ) is monitored at the top point of the frame and it is also shown 

in Figure 5.23.  

 
Figure 5.23 : Three stories and two spans frame. 

Steel frame is analyzed under the lateral torsional buckling effect and second-order 

elastic plastic analysis method is used in the analyses. According to the analysis 
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results, structural behavior is examined. In this frame, moment modification factor (Cb 

= 1) case is examined as in the previous example and compared with other analysis 

results. Load carrying capacity – lateral displacements of top point of the frame (Δ) 

are calculated and the graphics are plotted in Figure 5.24. Also, order of plastic hinge 

formations are given in Figure 5.25 for lateral torsional buckling considered and 

ignored cases, respectively. 

 

Figure 5.24 : Peak point lateral displacements and load parameters of three stories 

and two spans frame. 

   

Figure 5.25 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

(a) (b) 
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In Table 5.2, ultimate load parameters and decreasing in the load carrying capacities 

of the examined steel frame structure under different conditions are given.  

Table 5.2 : Ultimate load parameter and decreasing in load carrying capacity for 
three stories and three spans frame. 

Lateral torsional buckling (LTB) effect  Ultimate load 
parameter 

% decrease in load 
carrying capacity 

From the literature ignoring LTB [60] 1.63 - 
LTB ignored 1.61 - 
LTB considered 1.24 22.98 
LTB considered and Cb=1 1.11 31.06 

 

For calibrating the results, steel frame is firstly analyzed with not considering lateral 

torsional buckling effect and result are seen that approximately same the literature 

result with % 1.2 difference. These analysis results show the analogy with previous 

example results and order of plastic formations are also changed in this analyses when 

lateral torsional buckling is considered in nonlinear analysis steps. Load carrying and 

displacements capacities of frame under the lateral torsional buckling effect have 

decreased considerably.  

5.7. Analysis of Simply Supported Beam with Different Unbraced Length 

Conditions 

In order to examine lateral torsional buckling behavior, a simply supported beam is 

selected with different unbraced length conditions. Simply supported beam is loaded 

with uniformly distributed load and the total length of the beam is selected as 12.00 m. 

Out-of-plane motion is prevented using fictitious braces. These bracing points, that are 

also used to determine the unbraced length of the segments, are applied on different 

points on the beam and presented in Figure 5.26. Unbraced segment lengths are 

selected as 12 m, 6 m, 4 m, 3 m, 2.4 m, and 2 m. Cross section of beams is also chosen 

as W 16x40 (J= 330 x103 mm4, Cw= 465 x109 mm6, Zx= 1200 x 103 mm4). 
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Figure 5.26 : Simply supported beams with different unbraced conditions. 

In these analysis, TSDC-2016 [43] and TS 4561 [53] are compared according to load 

carrying capacity of the beam under the lateral torsional buckling effect. Unlike other 

analysis, different unbraced conditions are examined in order to determine importance 

of unbraced length of the beam under the lateral torsional buckling effect. Analysis 

results are given in Table 5.3, comparatively.    

 Table 5.3 : Load carrying capacity of simply supported beam. 

Unbraced length 
of beam, Lb (m) 

  Load carrying capacity,      
q (kN/m) 

% decreasing in load 
carrying capacity 

 
 According to 

TSDC-2016  
According to 

TS 4561  
According to 
TSDC-2016  

According to 
TS 4561 

  
12.00 4.57 5.65 72.61 66.11 
6.00 13.20 13.62 20.79 18.28 
4.00 13.62 16.67 18.27 0 
3.00 15.97 16.67 4.17 0 
2.40 16.08 16.67 3.51 0 
2.00 16.67 16.67 0 0 

 

The load carrying capacity of the simply supported beam is calculated separately for 

the different unbraced conditions, and as the unsupported element length increased, 

the load carrying capacity of the beam element decreased due to lateral torsional 

buckling. It has been found here that considerable reduction in the load carrying 

capacity of the element occurs due to the lateral torsional buckling effect. This basic 

numerical example is to be considered in order to attain the predicted structural 

performance. As a result of examining the lateral torsional buckling behavior 

considering the unbraced element lengths, it has been found that the load carrying 
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capacities can be calculated more practically by the TSDC-2016 [43] when compared 

to TS 4561 [53] standard.  

5.8. First-Order Elastic-Plastic Analysis of Multi-Story Frame 

A multi-story frame is selected from literature [61] and nonlinear analysis is performed 

accounting lateral torsional buckling. Cross sections of the columns are W 12x79 (J= 

1600 x103 mm4, Cw= 1970 x109 mm6, Zx= 1950 x 103 mm4) and W 10x60 (J= 1030 

x103 mm4, Cw= 709 x109 mm6, Zx= 1220 x 103 mm4). Cross sections of the beams are 

W 16x40 (J= 330 x103 mm4, Cw= 465 x109 mm6, Zx= 1200 x 103 mm4). Out-of-plane 

motion is prevented by using midpoint bracing where point loads are applied. Braces 

are first applied from the joints at the member ends as shown in Figure 5.27 (a). 

Similarly, braces are applied from both the joints at the member ends and from 

midpoints of the members as illustrated in Figure 5.27 (b). Section types, dimensions 

and applied loads are also shown in Figure 5.27 (a) (b). In both frames, beams and 

columns are rigidly connected about their strong axis bending direction and same 

section is used for both frames. In this analysis, r factor is selected 0.24 as in the 

literature [61].  

 

Figure 5.27 : Multi-story frame (a) braced from joints (b) braced from joints and 

midpoints of the beams. 

(a) (b) 
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Multi-story frame is analyzed accounting lateral torsional buckling for different 

unbraced length segments [58]. Nonlinear analysis results with and without 

considering lateral torsional buckling are shown in Figure 5.28. Moreover, effects of 

different unbraced segment lengths are investigated by limiting out-of-plane motions. 

Also, order of plastic hinge formations are given in Figure 5.29 for lateral torsional 

buckling considered and ignored cases, respectively. 

 

Figure 5.28 : Multi-story frame analysis results. 

                  
Figure 5.29 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

(a) (b) 
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In Table 5.4, ultimate load parameters and decreasing in load carrying capacities of 

the examined steel frame structure under different conditions are given comparatively.  

Table 5.4 : Ultimate load parameter and decreasing in load carrying capacity for 
three stories and three spans frame. 

Lateral torsional buckling (LTB) effect  Ultimate load 
parameter 

% decreasing in 
load carrying 

capacity 
LTB ignored 1.30 - 
LTB considered with only joints braces 1.23 5.38 
LTB considered with midpoint braces 0.71 45.38 

 

Multi-story frame that is braced from both member end joints and beam mid-points 

show that structural behavior is almost the same for first four plastic hinges when 

compared to conventional nonlinear analysis behavior in which lateral torsional 

buckling is ignored. After this loading point, lateral torsional buckling governs the 

behavior and load carrying capacity decreases. 

5.9. Solution Details for Second-Order Elastic-Plastic Analysis of One Story and 

One Span Frame 

A steel frame is selected from the literature [54] and is investigated considering lateral 

torsional buckling. This frame have one story and one span. Section types, dimensions 

and applied loads are shown in Figure 5.30. Cross section properties of the columns 

and beam are given in Table 5.5. Out-of-plane motion is prevented from joints in this 

example. Lateral displacement (Δ) is observed at the top point of the frame and shown 

in Figure 5.30. 

 

Figure 5.30 : One story and one span frame.  
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Material properties for W 12x30 section are given in Table 5.5; 

Table 5.5 : W12x30 section properties. 

Section Properties  
W12x30 

A 5670.0 mm2 
E 200000 N/mm2 
Fy 250 N/mm2 
J 190000.0 mm4 

Cw 1.93E+11 mm6 
Sx 633000.0 mm3 
Sy 102000.0 mm3 
ho 302 mm 
rts 45 mm 
ry 38.6 mm 
Zx 706000.0 mm3 
Zy 157000.0 mm3 

Plastic moment and normal force capacity of the W 12x30 section are 176 5pM . kNm 

and 1417 5pP . kN, respectively.  

Lateral torsional buckling effect is calculated for beam member of the frame structure 

according to criteria of design specifications. In here, AISC 360-10 [41] are preferred 

in order to calculate lateral torsional buckling effect. As mentioned before, TSDC-

2016 [43] and AISC 360-10 [41] specifications rules show similarity when calculating 

lateral torsional buckling.   

For sections of examined frame structure, it is also shown in Figure 5.31, unbraced 

length limits of beam member are 1921 5pL . mm, 5913 1rL . mm, and 9000bL  mm. 

According to length limit values, elastic lateral torsional buckling occur because ܮ௕ >

 ௥. In the analysis, lateral torsional buckling effect is calculated step by stepܮ

accounting the moment modification factor Cb after every hinge formation.  

 

Figure 5.31 : Sections of one story and one span frame.  
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Procedure in order to examine frame structure given in Figure 4.32 is given step by 

step; 

1. The existing loads applied to the structure are called reference loads. Under the 

applied reference loads, the structure is analyzed. Current loads are smaller than 

maximum carrying load capacities. In the opposite case, the building cannot carry 

these loads. 

2. The load parameter at each crossing examined is obtained by dividing the plastic 

moment capacity by the moment value which is formed by the reference loads at 

that point. 

3. The location of the smallest load parameter in the sections examined is the location 

of the first plastic joint and the load parameter at that crossing becomes the first 

load parameter. 

4. The displacements, internal forces and reference forces in the structure is 

multiplied by previously founded load parameter and behavior of the structure 

under the load parameter is calculated. 

5. In the investigated structure, a hinge is put where the first plastic joint is formed. 

This is after it has reached the plastic moment capacity of that section, it cannot 

carry more moment. 

6. Structure is solved again in order to calculate moment and normal forces after the 

plastic hinge formation.  

7. Displacements and internal forces are multiplied with founded new load parameter.  

8. Cumulative load parameter, displacements and internal forces are found for every 

examining section. 

9. After other plastic hinge is found, structure is solved again. This process next until 

the mechanism has lost its behavior or stability.  

When lateral torsional buckling effect is considered, beam members are investigated 

step by step after the each plastic hinge formation occur. Therefore, changing of plastic 

moment capacity of member is calculated and added in procedure at Step 6. According 

to this, structure is solved and place of hinge formation is decided.  

Selected and previously examined frame from the literature [57] is solved considering 

with and without lateral torsional buckling. Detailed information about the solution 

steps are presented in this part for clarification. 
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5.9.1. Nonlinear analysis of one story and one span frame ignoring lateral 

torsional buckling effect 

Second-order elastic-plastic analysis is carried out in this part. Lateral torsional 

buckling effect is ignored in the nonlinear analysis steps. After the frame is linear 

elastically analyzed, required parameters under the applied load is given in Table 5.6. 

According to (3.15), B1 coefficient can be calculated; 

1 1
1

m

r

el

CB P
P

 


 

For beam-columns subject to transverse loading between supports, the value of Cm 

shall be taken conservatively as 1.0 for all cases [43] or determined by using 

formulation.  

1 20 6 0 4mC . . (M / M )    

where M1 and M2 calculated from a first-order analysis, are the smaller and larger 

moments, respectively, at the ends of that portion of the member unbraced in the plane 

of bending under consideration. 

1 0 603m,C .  

2 0 897m,C .  

Pel (N) is the elastic critical buckling strength of the member in the plane of bending. 

9630346elP   N 

It is permitted to use first-order estimate of Pr ( r nt ltP P P  ) in B1 formulation [43]. 

1 108540r ,P   N 

2 125730r ,P   N 

11 0 6,B .  

1 2 0 9,B .  

B1 should be taken as 1.0 because it have to be greater than 1.0 according to (3.15).  

 

 



  79 
 

According to (3.16), B2 coefficient can be calculated; 

2

1 1
1 story

e ,story

B P
P

 


 

215910storyP   N 

e,story M
H

HLP R
  

1 0 15M mf storyR . ( P / P )    

Pmf is total vertical load in columns in the story that are part of moment frames in N.  

215910mfP   N 

0 85MR .  

H is the story shear produced by the lateral forces used to compute H in N. 

1 32050H   N 

L is the height of story in mm. 

6000L   mm 

6776741e,storyP   N 

H  is the first-order interstory drift in mm. 

1 24 12H , .   mm 

2 1 0329B .   

Table 5.6 : First load parameter and control values.  

 

11 11 1, , x ,p     

11 1 024 0 02412 0 0247, . . .     

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt ΔM1 ΔP1 P/Pp 0.2 Δp1

1 176.5 -1417.5 1 1.033 -58.37 56.67 -112.46 3.93 0.17 -108.41 0.076 < 25.516
2 176.5 -1417.5 1 1.033 122.13 -36.05 -109.84 6.55 84.89 -103.08 0.073 < 1.933
3 176.5 -1417.5 1 1.033 59.56 59.04 -112.64 -13.09 120.55 -126.16 0.089 < 1.375
4 -176.5 -1417.5 1 1.033 -122.92 -40.53 -110.02 -10.47 -164.79 -120.84 0.085 < 1.024
5 -176.5 -1417.5 1 1 -122.13 36.05 -62.47 15.45 -86.08 -47.01 0.033 < 1.983
6 176.5 -1417.5 1 1 124.82 2.18 -62.47 15.45 127.00 -47.01 0.033 < 1.358
7 -176.5 -1417.5 1 1 -122.92 -40.53 -62.47 15.45 -163.45 -47.01 0.033 < 1.061
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First hinge occurs when load parameter p1= 1.024 and maximum top point 

displacement of frame is 0.0247 m.  

After the first plastic hinge occurs, frame structure is solved again. Required 

parameters are given in Table 5.7.  

According to (3.15), B1 coefficient can be calculated; 

1 1
1

m

r

el

CB P
P

 


 

1 20 6 0 4mC . . (M / M )    

1 0 33m,C .  

2 0 60m,C .  

9630346elP   N 

1 124715r ,P   N 

2 109549r ,P   N 

11 0 3,B .  

1 2 0 6,B .  

B1 should be taken as 1.0 because it have to be greater than 1.0 according to (3.15).  

According to (3.16), B2 coefficient can be calculated; 

2

1 1
1 story

e ,story

B P
P

 


 

215910storyP   N 

e,story M
H

HLP R
  

1 0 15M mf storyR . ( P / P )    

Pmf is total vertical load in columns in the story that are part of moment frames in N.  

215910mfP   N 

0 85MR .  
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H is the story shear produced by the lateral forces used to compute H in N. 

2 72310H   N 

L is the height of story in mm. 

6000L   mm 

4080339e,storyP   N 

H  is the first-order interstory drift in mm. 

2 90 38H , .   mm 

2 1 0558B .  

Table 5.7 : Second load parameter and control values. 

 

Second load parameter can be calculated; 

2 1 2p p p   

2 1 024 0 198 1 222p . . .    

Displacement value is calculated when loads are increased ݌ଶ = 1.222 times.  

1 2 11 1 2 2, , , x ,p      

1 2 0 0247 0 198 0 09038 0 04261, . . . .      

After the first and second plastic hinges occur, frame structure is solved again. 

Required parameters are given in Table 5.8.  

B1 and B2 coefficients can be calculated using previously expressed calculation 

methods. 

Table 5.8 : Third load parameter and control values. 

 

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp2

1 176.5 -1417.5 1 1.056 -77.57 192.46 -130.55 5.84 0.17 -111.04 125.64 -124.39 0.088 < 1.270
2 176.5 -1417.5 1 1.056 162.01 -93.76 -127.93 8.45 86.96 -105.59 63.01 -119.00 0.084 < 1.178
3 176.5 -1417.5 1 1.056 0.00 147.64 -94.55 -15.00 123.48 -129.23 155.89 -110.39 0.078 < 0.276
4 - - - - - - - - - - - - - - -
5 -176.5 -1417.5 1 1 -162.01 93.76 -72.31 47.70 -88.17 -48.16 -68.25 -24.61 0.017 < 1.223
6 176.5 -1417.5 1 1 166.34 51.30 -72.31 47.70 130.09 -48.16 217.64 -24.61 0.017 < 0.198
7 -176.5 -1417.5 1 1 0.00 0.00 -72.31 47.70 -167.43 -48.16 0.00 -24.61 0.017 < 3.965

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp3

1 176.5 -1417.5 1 1.086 -237.70 465.14 -167.5 -5.57 25.061 -135.68 267.29 -173.6 0.122 < 0.514
2 176.5 -1417.5 1 1.086 494.69 8.8393 -164.9 -2.95 99.439 -129.16 504.28 -168.1 0.119 < 0.134
3 176.5 -1417.5 1 1.086 0.00 470.4 -57.6 -3.6 154.36 -151.10 510.71 -61.5 0.043 < 0.025
4 - - - - - - - - - - - - - - -
5 -176.5 -1417.5 1 1 -494.69 -8.8 -154.4 76.05 -101.69 -53.03 -503.5 -78.4 0.055 < 0.141
6 - - - - - - - - - - - - - - -
7 -176.5 -1417.5 1 1 0.00 0.00 -154.45 76.05 -167.43 -53.03 0.00 -78.40 0.055 < 1.182
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Third load parameter can be calculated; 

3 2 3p p p   

3 1 222 0 025 1 247p . . .    

Displacement value is calculated when loads are increased ݌ଷ = 1.247 times.  

1 3 1 2 1 3 3, , , x,p      

1 3 0 04261 0 025 0 2879 0 04973, . . . .      

After all of the occurred plastic hinges are considered, frame structure is solved again. 

Required parameters are given in Table 5.9.  

Table 5.9 : Fourth load parameter and control values. 

 

Fourth load parameter can be calculated; 

4 3 4p p p   

4 1 247 0 109 1 356p . . .    

Displacement value is calculated when loads are increased ݌ଷ = 1.356 times.  

 

1 3 0 05973 0 109 0 5765 0 1126, . . . .      

Frame structure have failed after the fourth plastic hinge occur. Analysis is catted at 

this point because frame structure reach the maximum load carrying capacity.  

5.9.2. Nonlinear analysis of one story and one span frame considering lateral 

torsional buckling effect 

Before analyzed frame structure, it have to be decided that lateral torsional buckling 

affect or doesn’t affect beam member. For this, frame is firstly solved under the 

reference loads and required parameters are obtained.    

For beam member; 

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp4

1 176.5 -1417.5 1 1.188 -237.70 935.54 -167.5 -5.57 31.675 -139.98 873.43 -174.1 0.123 < 0.154
2 176.5 -1417.5 1 1.188 494.69 8.8393 -164.9 -2.95 111.92 -133.32 505.18 -168.4 0.119 < 0.109
3 - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - -
5 -176.5 1417.5 1 1 -494.69 -8.8 -154.4 154.5 -114.15 -54.97 -503.5 0.0 0.000 < 0.131
6 - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - -

1 4 1 3 1 4 4, , , x ,p     
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Cb,1 and Mn are calculated using (4.32) and (4.30), respectively. 

Cb,1= 1.584  

Mp= Mn= 100.2 kNm and Pp= Pn= 804.7 kN 

For beam member, calculated nominal moment capacity is used in the frame structure 

nonlinear analysis and this is given in Table 5.10. 

Table 5.10 : First load parameter and control values. 

 

11 11 1, , x ,p     

1 1 0 563 0 02412 0 013585, . . .     

First hinge occur when load parameter p1= 0.563 and maximum top point displacement 

of frame is 0.013585 m.  

After the first plastic hinge occur, beam member is investigated again and moment 

modification factor Cb,2 is calculated according to moment distribution of the member. 

In Table 5.11, nonlinear analyzed results under lateral torsional buckling effect are 

given. 

Cb,2= 1.163 

Mp= Mn= 73.6 kNm and Pp= Pn= 590.8 kN 

Table 5.11 : Second load parameter and control values. 

 

Second load parameter can be calculated; 

2 1 2p p p   

2 0 563 0 002 0 565p . . .    

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt ΔM1 ΔP1 P/Pp 0.2 Δp1

1 -176.5 -1417.5 1 1.033 -58.83 56.67 -112.46 3.93 -0.29 -108.41 0.076 < 25.068
2 176.5 -1417.5 1 1.033 122.31 -36.05 -109.84 6.55 85.07 -103.08 0.073 < 1.929
3 176.5 -1417.5 1 1.033 60.03 59.04 -112.64 -13.09 121.02 -126.16 0.089 < 1.370
4 -176.5 -1417.5 1 1.033 -123.11 -40.53 -110.02 -10.47 -164.97 -120.84 0.085 < 1.023
5 -100.2 -804.7 1 1 -122.31 36.05 -62.57 15.45 -86.26 -47.12 0.059 < 1.123
6 100.2 -804.7 1 1 124.63 2.18 -62.57 15.45 126.81 -47.12 0.059 < 0.772
7 -100.2 -804.7 1 1 -128.11 -46.73 -64.57 15.45 -174.84 -49.12 0.061 < 0.563

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp2

1 176.5 -1417.5 1 1.056 -78.26 191.77 -130.60 5.80 -0.18 -65.21 124.22 -124.48 0.088 < 1.308
2 176.5 -1417.5 1 1.056 162.43 -93.42 -127.98 8.42 51.18 -62.01 63.80 -119.09 0.084 < 1.706
3 176.5 -1417.5 1 1.056 0.00 147.12 -94.50 -14.96 72.80 -75.89 155.34 -110.30 0.078 < 0.610
4 176.5 -1417.5 1 1.056 0.00 0.00 -91.88 -12.34 -99.24 -72.69 0.00 -104.92 0.074 < 41.522
5 -73.6 -590.8 1 1 -162.43 93.42 -72.50 47.53 -48.59 -26.54 -69.02 -24.97 0.042 < 0.331
6 73.6 -590.8 1 1 186.13 58.13 -76.90 52.53 71.43 -26.54 244.25 -24.37 0.041 < 0.002
7 - - - - - - - - - - - - - - -
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Displacement value is calculated when loads are increased ݌ଶ = 0.565 times.  

1 2 11 1 2 2, , , x ,p      

1 2 0 013585 0 002 0 09006 0 015386, . . . .      

After the second plastic hinge occur, beam member is investigated again and moment 

modification factor Cb,3 is calculated according to moment distribution of the member. 

Cb,3= 1.938 

Mn are calculated using (3.52).because unbraced length of the member change. Hence, 

lateral torsional buckling effect can be neglected since nominal flexural strength equal 

to plastic moment capacity of the section. After frame structure is analyzed, results are 

given in Table 5.12. 

Mn= Mp and Pn= Pp 

Table 5.12 : Third load parameter and control values. 

 

Third load parameter can be calculated; 

3 2 3p p p   

3 0 565 0 191 0 756p . . .    

Displacement value is calculated when loads are increased ݌ଷ = 0.756 times.  

1 3 1 2 1 3 3, , , x,p      

1 3 0 015386 0 191 0 28854 0 068768, . . . .      

Beam member is failed because it reaches capability of plastic deformation under the 

lateral torsional buckling. There is no connection between column members for frame 

structure after this occur. 

After the third plastic hinge, beam member is investigated and moment modification 

factor Cb,4 equal to Cb,3 value. Nonlinear analysis results are given in Table 5.13. 

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp3

1 176.5 -1417.5 1 1.086 -239.61 466.09 -167.51 -5.57 0.08 -61.31 266.42 -173.56 0.122 < 0.623
2 176.5 -1417.5 1 1.086 494.69 8.84 -164.90 -2.95 48.05 -58.30 504.28 -168.09 0.119 < 0.242
3 176.5 -1417.5 1 1.086 0.00 496.37 -67.58 -4.60 68.47 -71.28 538.90 -72.58 0.051 < 0.191
4 176.5 -1417.5 1 1.086 0.00 0.00 -54.97 -0.98 -92.92 -68.27 0.00 -56.03 0.040 < 76.016
5 -176.5 -1417.5 1 1 -494.69 -8.84 -154.77 76.21 -48.72 -26.59 -503.52 -78.56 0.055 < 0.248
6 - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - -
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Cb,4= 1.938 

Mn= Mp and Pn= Pp 

Table 5.13 : Fourth load parameter and control values. 

 

Fourth load parameter can be calculated; 

4 3 4p p p   

4 0 756 0 026 0 7817p . . .    

Displacement value is calculated when loads are increased ݌ସ = 0.782 times.  

 

1 3 0 068768 0 026 0 5 0 081683, . . . .      

Frame structure have failed until the fourth plastic hinge occur because of the lateral 

torsional buckling effect. Beam member fails without reaching its full capacity. As a 

result of this, places of plastic hinge formations and behavior of the frame structure 

change. Results are plotted as a graphic in Figure 5.32 in order to compare the results. 

Also, plastic hinge formations for lateral torsional bucking ignored and considered 

cases are given as (a) and (b) in Figure 5.32.  

 

Figure 5.32 : One story and one span frame analysis results.  

Section Mp Pp B1 B2 Mnt Mlt Pnt Plt M1 P1 ΔM2 ΔP2 P/Pp 0.2 Δp4

1 176.5 -1417.5 1 1.084 -235.32 583.81 -161.95 -161.95 50.87 -94.39 397.76 -337.57 0.238 < 0.286
2 176.5 -1417.5 1 1.084 485.85 485.85 -161.95 -161.95 144.17 -90.34 1012.70 -337.57 0.238 < 0.026
3 - - - - - - - - - - - - - - -
4 176.5 -1417.5 1 1.084 0.00 0.00 0.00 -53.98 -92.92 -78.95 0.00 -58.54 0.041 < 72.577
5 -176.5 -1417.5 1 1 -485.85 -485.85 -152.58 -136.24 -144.71 -41.56 -971.69 -288.82 0.204 < 0.030
6 - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - -

1 4 1 3 1 4 4, , , x ,p     
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5.9.3. Second-Order Elastic-Plastic Analysis of One Story and One Span 

Frame Considering Braces in Out-of-Plane Directions 

A steel frame is selected from the literature [57] and is investigated considering lateral 

torsional buckling. This frame have one story and one span. Cross sections of the 

columns and beam are W 12x30 (J= 190 x103 mm4, Cw= 193 x109 mm6, Zx= 706 x 

103 mm4). Section types, dimensions and applied loads are also shown in Figure 5.33. 

Out-of-plane motion is prevented at only joints, mid-point and three points of the beam 

member. Lateral displacement (Δ) is observed at the top point of the frame and shown 

in Figure 5.33. 

 

 

Figure 5.33 : Out of plane motion prevented from (a) only joints (b) mid-point of the 

beam (c) three points of the beam for one story frame. 

One story and one span frame is analyzed under the lateral torsional buckling effect 

and second-order elastic plastic analysis method is used in the analyses. In this frame 

analyses, lateral torsional buckling calculations are carried out with using TSDC-2016 

[43] and TS 4561 [53]. Moment modification factor (Cb = 1) case is examined and 

compared with other analysis results. Moreover, different unbraced length conditions 

are investigated. Load carrying capacity – lateral displacements of top point of the 

frame (Δ) are calculated and the graphics are plotted in Figure 5.34.  

(a) (b) 

(c) 
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Figure 5.34 : Peak point lateral displacements and load parameters of one story and 

one span frame. 

In Table 5.14, ultimate load parameter capacities of the examined steel frame structure 

under different conditions are given. In order to determine importance of unbraced 

length conditions and approximations of design codes on the lateral torsional buckling 

effect, results are given comparatively.  

Table 5.14 : Ultimate load parameter and decreasing in load carrying capacity for 
one story and one span frame. 

Lateral torsional buckling (LTB) effect  Ultimate 
load 

parameter 

% decrease in 
load carrying 

capacity 
LTB ignored 1.36 - 
LTB considered with respect to TSDC 0.75 44.8 
LTB considered with respect to TS 4561 0.70 48.6 
LTB considered with respect to TSDC and Cb=1 0.49 63.6 
LTB considered with bracing of beams from the 
midpoint according to TSDC 1.33 1.8 
LTB considered with bracing of beams at three 
midpoint according to TSDC 1.30 4.4 

 
Nonlinear analysis results show that considering lateral torsional buckling decreased 

the load carrying capacity for all of conditions. In this example, considering lateral 

torsional buckling effect according to TSDC-2016 [43] and TS 4561 [53] standards 

give the very closer results under the lateral torsional buckling. However, accounting 

Cb= 1 case in lateral torsional buckling calculations decrease the load carrying capacity 
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more than enough. On the other hand, changing unbraced length conditions on the 

beam elements increase the load carrying capacity and eliminate lateral torsional 

buckling effect. 

5.10. Second-Order Elastic-Plastic Analysis of Two Stories and One Span Frame 

A steel frame is selected from the literature [57] and is investigated considering lateral 

torsional buckling. This frame have two stories and one span. Cross sections of the 

columns are W 10x33 (J= 243 x103 mm4, Cw= 212 x109 mm6, Zx= 636 x 103 mm4). 

Cross sections of the beams are W 21x44 (J= 320 x103 mm4, Cw= 567 x109 mm6, Zx= 

1560 x 103 mm4) and W 16x31 (J= 192 x103 mm4, Cw= 198 x109 mm6, Zx= 885 x 103 

mm4). Section types, dimensions and applied loads are also shown in Figure 5.35.  Out-

of-plane motion is prevented at only joints, mid-point and three points of the beam 

member. Lateral displacement (Δ) is observed at the top point of the frame and shown 

in Figure 5.35.  

 

 
Figure 5.35 : Out of plane motion prevented from (a) only joints (b) mid-point of the 

beam (c) three points of the beam for one story frame. 

(a) (b) 

(c) 
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Two stories and one span frame is analyzed under the lateral torsional buckling effect 

and second-order elastic plastic analysis method is used in the analyses. In this frame 

analyses, lateral torsional buckling calculations are carried out with using TSDC-2016 

[43] and TS 4561 [53]. Moment modification factor (Cb = 1) case is examined and 

compared other analysis results. Moreover, different unbraced length conditions are 

investigated. Load carrying capacity – lateral displacements of top point of the frame 

(Δ) are calculated and the graphics are plotted in Figure 5.36.  Also, order of plastic 

hinge formations are given in Figure 5.37 for lateral torsional buckling considered and 

ignored cases, respectively. 

 
Figure 5.36 : Peak point lateral displacements and load parameters of two stories 

and one span frame. 

 
Figure 5.37 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

(a) (b) 
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In Table 5.15, ultimate load parameter capacities of the examined steel frame structure 

under different conditions are given. In order to determine importance of unbraced 

length conditions and approximations of design codes on the lateral torsional buckling 

effect, results are given comparatively.  

Table 5.15 : Ultimate load parameter and decreasing in load carrying capacity for 
two stories and one span frame. 

Lateral torsional buckling (LTB) effect  Ultimate 
load 

parameter 

% decrease in 
load carrying 

capacity 
LTB ignored 1.93 - 
LTB considered with respect to TSDC 1.02 47.4 
LTB considered with respect to TS 4561 1.00 47.6 
LTB considered with respect to TSDC and Cb=1 0.70 63.9 
LTB considered with bracing of beams from the 
midpoint according to TSDC 

 
1.89 

 
2.5 

LTB considered with bracing of beams at three 
midpoint according to TSDC 

 
1.79 

 
7.5 

 
According to the analysis results, lateral torsional buckling effect decrease the load 

carrying capacity significantly. TSDC and TS4561 standards give approximately same 

results under the lateral torsional buckling effect. However, accounting Cb= 1 case in 

lateral torsional buckling calculations decrease the load carrying capacity more than 

enough. On the other hand, changing unbraced length conditions on the beam elements 

increase the load carrying capacity and eliminate lateral torsional buckling effect. 

5.11. Second-Order Elastic-Plastic Analysis of Three Stories and One Span 

Frame 

A steel frame is selected from the literature [57, 60] and is investigated considering 

lateral torsional buckling. This frame have two stories and one span. Cross sections of 

the columns are W 8x48 (J= 816 x103 mm4, Cw= 250 x109 mm6, Zx= 803 x 103 mm4) 

and W 8x35 (J= 320 x103 mm4, Cw= 166 x109 mm6, Zx= 569 x 103 mm4). Cross 

sections of the beams are W 21x44 (J= 320 x103 mm4, Cw= 567 x109 mm6, Zx= 1560 

x 103 mm4) and W 14x30 (J= 158 x103 mm4, Cw= 238 x109 mm6, Zx= 775 x 103 mm4). 

Section types, dimensions and applied loads are shown in Figure 5.38. Out-of-plane 

motion is prevented at only joints, mid-point and three points of the beam member. 

Lateral displacement (Δ) is observed at the top point of the frame and shown in Figure 

5.38.  
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Figure 5.38 : Out of plane motion prevented from (a) only joints (b) mid-point of the 

beam (c) three points of the beam for one story frame. 

Three stories and one span frame is analyzed under the lateral torsional buckling effect 

and second-order elastic plastic analysis method is used in the analyses. In this frame 

analyses, lateral torsional buckling calculations are carried out with using TSDC [43] 

and TS 4561 [53]. Moment modification factor (Cb = 1) case is examined and 

compared other analysis results. Moreover, different unbraced length conditions are 

investigated. Load carrying capacity – lateral displacements of top point of the frame 

(Δ) are calculated and the graphics are plotted in Figure 5.39. Also, order of plastic 

hinge formations are given in Figure 5.40 for lateral torsional buckling considered and 

ignored cases, respectively. 

 

 

(a) (b) 

(c) 
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Figure 5.39 : Peak point lateral displacements and load parameters of three stories 

and one span frame. 

           
Figure 5.40 : Order of plastic hinge formations (a) lateral torsional buckling ignored 

(b) lateral torsional buckling considered. 

In Table 5.16, ultimate load parameter capacities of the examined steel frame structure 

under different conditions are given. In order to determine importance of unbraced 

length conditions and approximations of design codes on the lateral torsional buckling 

effect, results are given comparatively.  

 

 

(a) (b) 
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Table 5.16 : Ultimate load parameter and decreasing in load carrying capacity for 
three stories and one span frame. 

Lateral torsional buckling (LTB) effect  Ultimate 
load 

parameter 

% decrease in 
load carrying 

capacity 
From the literature ignoring LTB [60] 2.19 - 
LTB ignored 2.20 - 
LTB considered with respect to TSDC 1.38 33.5 
LTB considered with respect to TS 4561 1.34 39.1 
LTB considered with respect to TSDC and Cb=1 0.94 57.4 
LTB considered with bracing of beams from the 
midpoint according to TSDC 

 
2.14 

 
2.7 

LTB considered with bracing of beams at three 
midpoint according to TSDC 

 
2.10 

 
4.7 

 

These analysis results show the analogy with previously examined frame structures. 

Load carrying and displacement capacities of frame under the lateral torsional 

buckling effect have decreased considerably. Bracing of the beams from the different 

points increase load carrying capacity and eliminate lateral torsional buckling effect.
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6. CONCLUSION 

Within scope of this thesis, lateral torsional buckling effect is examined in nonlinear 

analysis steps. Member base analyses are performed to show decreasing of the load 

carrying capacity of the member. For this purpose, lateral torsional buckling of I-

shaped steel members are investigated considering finite element program outcomes 

and several design standard and code approaches using different unbraced member 

lengths and linear moment gradient. On the other hand, nonlinear analysis of steel 

frames is investigated with and without considering lateral torsional buckling. In order 

to apply the lateral torsional buckling behavior in the nonlinear analysis steps, it is 

seen that the proposed approach can be practically applied considering TSDC-2016 

[43] or AISC 360-10 [41] , and in the case of neglecting the lateral torsional buckling 

behavior, the results in the literature can be obtained with nonlinear analysis. In this 

analyses, different unbraced length conditions are also taken in to consideration. The 

following is a summary of the most significant findings from these studies. 

1. In the case of the simple beam examples investigated for the first time in the 

study, the lateral torsional buckling effect is examined with considering 

different out-of-plane supports and the variations in the load carrying capacity 

of the member are given in details. When the out-of-plane motion is not 

prevented from any point of the beam, the load carrying capacity of the beam 

member decrease considerably. It is concluded that required quantity of out-

of-plane support has to be selected in order to prevent lateral torsional buckling 

effect. If out-of-plane motion is neglected, the beams may not reach its 

potential load carrying capacities due to lateral torsional buckling, which will 

result in uneconomical designs. 

2. Nonlinear analysis results show that load carrying capacity of the structure and 

the displacements of the selected joints are overestimated when lateral torsional 

buckling is neglected. This may cause inadequate structural design since the 

structural performance is evaluated using load – displacement capacities in 

modern performance based design codes. 
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3. Out of plane bracings of frame members become substantial since unbraced 

length conditions have direct influence on lateral torsional buckling of 

members of the frames. Likewise, member lengths become crucial for steel 

structures. It has been found that the load carrying capacity of frame systems 

increases in case of a decrease in the length of the lateral unsupported element. 

However, higher load carrying capacity has been achieved for the case of 

dividing the two equal parts, while the beam members are divided into three 

equal parts, so that the load carrying capacity of the beam members is expected 

to increase more than the single point part by dividing the beam members into 

two equal parts. The reason for this is that the moment modification factor Cb 

in TSDC-2016 [43] and AISC 360-10 [41] caused by the loads on the beam 

head parallel to the beam axis cannot accurately reflect the sudden changes in 

the moment diagram for the elements to which the load is applied.  

4. Loading type of the member is also an influencing parameter for the lateral 

torsional buckling for frame members since shape of bending moment 

diagrams affects member capacity directly. 

5. The nonlinear analysis of the systems examined in the study using the TS 4561 

[53] standard, which has been abolished from the activation date of the TSDC-

2016 [43] code on September 1, 2016. The results obtained by using this 

standard and the results obtained by using TSDC-2016 [43] are presented 

comparatively. Although the results of some of the examined examples are 

close to the results of TS 4561 [53] and TSDC-2016 [43], the formulas used in 

TS 4561 [53] are very complicated and far from practical. The formulas related 

to the lateral torsional buckling in the TSDC-2016 [43] have significant 

advantages because they are contemporary and practical in terms of their 

application to nonlinear analysis steps. 

6. In TSDC-2016 [43] and AISC 360-10 [41] codes, it is stated that the moment 

modification factor, Cb= 1 may be taken in order to shorten the calculation 

steps and to remain safe at the same time. This is also taken into consideration 

in various frame samples examined in the study and it has been seen that the 

load carrying capacity is limited to a considerable extent according to the 

results of the calculations obtained and this will cause the use of the building 

elements below the existing capacities. This leads to economical 

disadvantages, so that in analyzes the moment modification factor, Cb, has to 
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be calculated so that the performance of the building elements can be fully 

utilized.  

7. In nonlinear analysis steps, lateral torsional buckling effect is considered and 

ignored for all of the selected steel frames. According to analysis results, it is 

seen that order of plastic hinge formations in most examined steel frames 

changes for lateral torsional buckling effect considered and ignored cases. This 

also changes the frame behavior and decreases the load carrying and 

displacement capacities of the frames.   

As a conclusion, lateral torsional buckling which is a global stability problem and has 

significant effect on the nonlinear analysis of steel frame structures. For this reason, 

lateral torsional buckling is very crucial especially for beam members and it should be 

considered in nonlinear analysis steps.  

For the future studies, lateral torsional buckling effect should be implemented in 

commercial structural engineering programs. Also, Cb, moment modification factor 

which affect directly lateral torsional buckling should be studied in detail. 
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