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CUSTOM DESIGNED OPTICAL TWEEZER FOR TRAPPING YEAST 

CELLS 

ABSTRACT 

The goal of this study is developing custom designed optical tweezer which uses two 
He-Ne lasers (λ=632.8 nm) parallel to each other to trap yeast cells. The 
characteristic specs of this optical tweezer determined by Brownian Motion of   
polystyrene beads in water. Stiffness and trapping forces of optical tweezer 
calculated for laser 1, laser 2 and when both lasers used simultaneously. Laser 2 can 
trap and move particle to laser 1 and multiple particles can be trapped by the laser 1. 
After determination of specs of optical tweezer, yeast cells in yogurt culture medium 
were trapped by laser 1 and laser 2. Stiffness of optical tweezer and trapping force on 
yeast cells were determined by drag force and Brownian motion methods by 
assuming the medium was homogenous and had viscosity of 0.038 kg/ms. Viscosity 
depends on the concentration of fluid and surface. Viscosity of the yogurt culture 
medium which was used in experiments was calculated theoretically with respect to 
velocity of fluid and specs of optical tweezer calculated previously. Possibility of 
application inside yeast cells was studied theoretically by using viscosity of 
cytoplasmic medium. As a result of this study, this custom designed optical tweezer 
which uses two He-Ne lasers are applicable in life sciences like inside cells, viscosity 
measurements and drug delivery systems. 
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ÖZEL YAPIM OPTİK CIMBIZ İLE MAYA HÜCRESİ MANİPÜLASYONU 

ÖZET 

 
Bu çalışmanın amacı maya hücrelerini yakalamak için iki adet birbirine paralel He-
Ne lazer (λ=632.8 nm) kullanan özel yapım optik cımbız geliştirmektir. Bu optik 
cımbızın karakteristik özellikleri su içerisindeki polisitiren küreciklerinin Brownian 
hareketleriyle belirlenmiştir. Optik cımbızın sertliği ve yakalama kuvvetleri lazer 1, 
lazer 2 ve her iki lazerin aynı anda kullanıldığı zaman için hesaplanmıştır. Lazer 2 
parçacıkları yakalayıp lazer 1’e taşıyabilmektedir ve birden fazla parçacık lazer 2 
tarafından yakalanabilmektedir. Optik cımbızın özellikleri tanımlandıktan sonra 
yoğurt kültürü içindeki maya hücreleri lazer 1 ve lazer 2 tarafından yakalanmıştır. 
Optik cımbızın sertliği ve maya hücreleri üzerindeki yakalama kuvveti ortamın 
homojen ve viskozitesinin 0.038 kg/ms olduğunu kabul ederek Brownian hareketi ve 
sürüklenme kuvveti methodlarıyla belirlenmiştir. Viskozite konsantrasyona ve 
yüzeye bağlı olarak değişmektedir. Deneylerde kullanılan yoğurt kültürünün 
viskozitesi akışkanın hızına ve optik cımbızın özelliklerine göre teorik olarak 
hesaplanmıştır. Hücre içinde uygulanma ihtimali için hücre sitoplazmasının 
viskozitesi kullanılarak teorik olarak çalışılmıştır. Bu çalışmanın sonucu olarak; bu 2 
adet He-Ne lazer kullanan özel yapım optik cımbız; hücre içinde, viskozite ölçümleri 
ve ilaç taşınımı gibi fen bilimleri uygulamalarında kullanılabilmektedir. 
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1. INTRODUCTION  

Optical tweezers are defined as the highly focused laser beams which can trap and 

manipulate the particles between nanometer and micrometer size range by means of 

radiation pressure. In 1970, Ashkin was reported that particles were accelerated by 

radiation pressure [1]. In 1986, For optical trapping of dielectric particles, single 

highly focused laser beam was developed by focusing laser beam into high numerical 

aperture objective [2]. They have been used in biological applications such as 

molecular motors studies, single molecule experiments and cellular manipulation 

since 1987 when Ashkin and Dziedzic trap bacteria and viruses by using green laser 

[3,4]. Instead of just a manipulation of particles, optical tweezers can be used to 

control or measure the forces on biological processes[5]. 

The trapping mechanism is the result of the exchange of momentum between 

trapping light and trapped particle. Resulting force occurs due to momentum 

exchange and depends on the size of particle: Ray optics approximation, Rayleigh 

approximation and Generalized Lorenz-Mie Theory. 

The gradient force and the scattering force form the net force on the particle. 

Scattering force pushes the particle in the direction of beam propagation whereas 

gradient force pulls the particle towards the higher internsity regions. Stable trapping 

can be achieved when the gradient force is greater than the scattering force [5,6]. 

Assuming that trapping potential is harmonic and trapping force can be characterized 

by several calibration methods. Force can be calculated by the measuring the 

displacement of the beam from the trap center and fluid velocity. This force is the 

drag force and it is assumed that drag force equals to trapping force. Another way of 

measuring the trap force is Brownian Motion Method. In Brownian Motion Method, 

trap stiffness can be determined without any information about viscosity of fluid and 

geometry of particle [7,8].   
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1.1 Historical Background of Optical Tweezers 

Optical tweezers demonstrate that light is able to exert a force on matter. Quantum 

theory states the momentum carried per photon. Prior to quantum mechanics, it is 

predicted that there exist “radiation pressure” as a result of electromagnetic theory 

developed by James Clerk Maxwell [9]. It describes that there is a pressure in the 

direction normal to the wave in a medium where the waves are propagated and it 

numerically equals to the energy contained in unit volume [10].  

Bartoli predicted such pressure in thermodynamic context which is called as 

Maxwell-Bartoli force [11] and Crooks discovered the radiometric forces [12]. Two 

papers published by P.N. Lebedew and by E. F. Nichols and G. F. Hull in 1901. 

Papers had independent results but same approximation to study the effect of the 

light, produced by an arc lamp, had on thin vanes. Low gas pressures and thin 

metallic vanes were used by Lebedew on the contrary high pressure gas and silvered 

glass vanes used by Nichols and Hull [13,14]. In second paper, measurements were 

carried out for providing the validation of results of Nichols and Hulls in the high 

pressure limit since the gas could be neglected over short exposures of the vanes to 

the light [15]. Nichols and Hulls analysed the experiments in accordance with their 

historical backgrounds and compared them. As a conclusion, they found that both 

experiments had measurement errors but both qualitatively proved the existence of 

the radiation pressure without quantitatively following the theory of Maxwell-Bartoli 

forces. In 1903, Nichols and Hull published the quantitative demonstration [15]. 

Studies of optical manipulation began by Arthur Ashkin in 1970s. Although 

discovery of lasers has provided convenience to study optical forces due to much 

higher intensities of lasers, optical forces are dominated by radiometric forces and it 

is too difficult to observe their direct effects. Ashkin could observe the radiation 

pressure due to reflection from such particles by using transparent particle and 

transparent medium while avoiding heating problems. In 1970, he found that 

particles were trapped by the laser beam and travelled in the direction of beam 

propagation [1]. He has demonstrated that gradient force is created by intensity 

gradient of the laser beam, pulls the high-refractive-index particles toward the beam 

axis and push low-refractive-index particles away from the axis. He hypothesized 
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that light could rotate and accelerate the particles. He also discussed about magneto-

optical trap and atomic dipole trap. By using two beams which propagates against 

each other, an optical trap can be created where particles are under influence of a 

combination of gradient force and radiation pressure [10].  

The next year, Ashkin and J. M. Dziedzic as a co-author trapped glass beads 

suspended in air by single laser beam which was directed upward so that the 

radiation pressure balances the gravitational force on the particle. They observed that 

if the beam was turned off after dragging, the bead was allowed to go back to 

equilibrium position without oscillation. Moreover, they said that laser modes 

different from the normal TEM00 Gaussian beam, such as TEM01 and TEM01*, a 

doughnut mode could be used [16]. Ashkin also found that this new technique was 

possible in high vacuum and for stabilizing particle position by using feedback 

mechanism [10,17,18]. He observed new types of nonlinear effects and studied the 

effect of radiation pressure on a liquid interface [19,20].  

In 1970s, optical levitation of droplets was studied most as application of optical 

manipulation. Ashkin and Dziedzic studied how both solid and liquid airborne 

particles can be trapped and the ways of carrying types of experiments such as 

crystallization and simple measurements on particle interactions. This paper also 

shows problems due to optical levitation, such as trapping multiple particles but not 

controlling them independently [21].  

Ashkin and Dziedzic show how to make sensitive measurements on levitated 

droplets by stabilization method [22]. In this paper, they studied effects of 

wavelength and size on variations of optical forces. Size determination was provided 

highly sensitive by the resonances excited within the droplets. This technique is 

commonly used for size measurement now, and it can be combined with other 

techniques such as Raman spectroscopy [23], to determine the size and composition 

of particle. 

In 1986, Ashkin, Dziedzic, Bjorkholm, and Chu studied trapping with single beam 

laser focusing through high numerical aperture (NA) microscope objective. By this 

way, the particle could be trapped in the plane transverse to the laser beam 

propagation and in the axial direction. Therefore, the particles could be trapped by 
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beam directed downward and they were held against gravity. They demonstrated a 

tweezer which has second beam to guide particles into trapping region. Tweezer was 

able to trap particles between 25 nm and 10 µm [2]. 

They open new size regime to optical trapping by optical tweezers. Ashkin and 

Dziedzic were the first ones who trap bacteria and viruses by optical tweezers which 

used green laser [3]. Green laser has disadvantages on trapping biological samples 

since biological samples absorbs strongly green laser therefore they are easily 

damaged. In 1987, Ashkin and his collegues overcomed this problem by using 

infrared laser to trap cells without damaging. The usage of infrared beams is 

important for biological experiments, in almost all biological experiments such 

wavelengths are used. 

1.2 Applications of Optical Tweezers 

New viewpoints in microscopic world to manipulation of small objects have been 

created by trapping and movement of particles. Optical tweezers have been used for 

cell sorting, actively alteration of polymer structures, application of stall forces, 

characterization of molecular motors and measurement of binding forces in the 

biological and medical fields. 

For cellular manipulation and cell sorting techniques, optical tweezers have many 

advantages than other mechanical techniques. It is possible that in vitro manipulation 

of cells with light is sterile and without harming the cells. Trapping of up to 10 

Escherichia coli (E. Coli) bacteria cells of 2 µm in length was trapped and 

manipulated by using 1064-nm laser tweezer quasi-simultaneously [24].  And control 

of the molecules in the cell without damaging cell wall is possible [25,26]. Altering 

the choromosome movement on to mitotic spindle in vitro [27], accelerating cell-cell 

interaction by bringing active retinal cells together [28], manipulation of vesicles for 

membrane fusion [29] can be examples of the studies for micromanipulation 

applications of optical tweezers.  

Optical tweezers can be used to manipulate organelles. The trapping force on lipid 

granules inside yeast cell was measured between 10 and 60 pN due to change of 

viscosity of the yeast cells in 0.1-0.8 Pas range by 830-nm laser tweezer [30]. In 
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addition to inside cells, optical tweezers can be used in rheology and quantitative 

measurements of biological acitivites for in vivo applications. Flowing RBCs in 

blood capillaries of living animal was trapped and manipulated by infrared laser 

tweezers. The capillaries was blocked with RBCs and then was cleared with optical 

tweezers [31]. Also, cells and nanoparticles inside living zebrafish were trapped with 

1064-nm laser [32].  

In rheology applications, optical tweezers can be used for measurement the 

microscopic viscosity as a confocal probe [33] or they combined with optical 

microscopy in order to map the fluid flow and measure the viscosity [34,35] 

Optical trapping in different surfaces has been developed in order to maximize 

efficiency of optical tweezers. Optical trapping of mammalian, yeast and Escherichia 

coli cells on the surface of two-dimensional photonic crystal was developed in order 

to minimize cell-damaging and increase cell viability in cell manipulation techniques 

[36]. The effect of trap position to focal waist in the vicinity of the reflecting surface 

in optical tweezer was studied [37]. As a surface, random gold nano-island substrates 

used for trapping of assembling of particles and live cells. Near-field optical trapping 

force and long-range thermophoretic force, which overcomes the axial convective 

drag force, creates trapping effect. Lateral convection pushes the samples into 

trapping region [38]. 

Two of the main applications of optical tweezers are study of molecular motors and 

physical properties of DNA. In both applications, biological sample is biochemically 

attached to polystyrene beads or glass beads in micron-sized range. By this way, the 

force and step size of the molecular motor can be measured. Block et al. improved 

the efficiency of kinesin motors as well as Svoboda et al. measured step size of 

kinesin on microtubules as 8 nm by combining with interferometry [39,40]. 

Moreover, elasticity of double and single stranded DNA molecules was determined 

by using optical tweezers [41]. Rigidity and bond breaking force was determined by 

applying torque to actin filaments [42]. In order to understand a cell division process 

of eukayotic organisms, minimum trapping force to move isolated single mammalian 

chromosome was determined to be »0.8-5 pN by using 1064 nm laser tweezer [43]. 
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Mechanical properties of double-stranded DNA were determined by using 1064-nm 

laser tweezers [44]. 

Observing phase transitions in colloidal suspensions [45] and measuring entropic 

extraction in giant vesicles [46] can be set examples as applications of optical 

tweezers in colloidal systems.  

For applications in statistical physics, escape of a Brownian particle from a coupled-

tweezer trap was synchronized by using stochastic resonance [47]. Wang et al. 

experimentally demonstrated that the second law of thermodynamics has not been 

favorable for small systems and short timescales by using optical tweezers [48]. 

Besides polystene beads; absorbing particles [49], metallic particles [50,51,52], 

quantum dots [53], carbon nanotubes [54] and fluorescent beads[55] have also been 

trapped as well. 
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2. THE BASICS OF THE OPTICAL TWEEZER 

2.1 Physical Principle of Optical Tweezer 

Optical tweezers use the forces of laser radiation pressure to trap and manipulate 

microscopic particles. The trapping force (FT) is a combination of two forces: a 

gradient force (FG) and the scattering force (FS) and determined by relation: 

																																																																𝐹: = 𝐹< + 𝐹>	                                              (2.1) 

The photon of the incident laser beam applies the pressure against the surface of the 

trapped particle and as result the gradient force arises whereas the scattering force 

arises from the change in velocity due to movement of light between mediums of two 

different indices of refraction. By the reason of the dependence of momentum on 

velocity and conservation of momentum, the trapped particle moves with equal but 

opposite momentum of the photons i.e. in the direction of incident light (Figure 2.1). 

[6]. 

 
Figure 2.1: Optical forces. Gradient force is shown in red; scattering force is shown 

in purple. 
If the size of the particles is larger than the wavelength of the trapping laser, 

principle of optical trapping is explained with ray optics; whereas particle is much 

smaller it is explained with dipole or Rayleigh approximation. In most experiments, 

the sizes of particles are comparable with the wavelength of the trapping laser. In this 
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case, instead of ray optics and Rayleigh approximation, electromagnetic theory of 

light is used. In order to calculate trapping forces in this range, generalized Lorenz-

Mie theory is used [56,57].  

2.1.1 Ray Optics approximation 

The simple ray optics model of the single-beam gradient trap calculates the trapping 

forces on sphere of diameter larger than wavelength of light (R > 10 λ) [57,58].  

In the ray optics or geometrical optics regime, total light beam is seperated into 

individual rays. Each ray has appropriate intensity, direction, polarization and the 

characteristics of a plane wave of zero wavelength. By this specs they can change 

directions by reflection and refraction and changes polarization according to the 

usual Fresnel formulas. This regime neglects diffractive effects [58].  

Due to the neglect of surface reflection from the particle, the particle is trapped at the 

focus of the laser beam (Figure 2.2a). Therefore, there is no net force on the particle 

when the particle trapped at the focus. The particle leaving the traping the restoring 

force is formed to pull particle back to trap center (Figure 2.2b-c). 

       
                                          (a)                      (b)                  (c) 

Figure 2.2: Qualitative view of optical trapping of dielectric spheres [57]. 
Whereas the surface reflection from the particle was neglected in above discussion; 

in reality, it has to be considered. Particle is pushed forward by the photons reflected 

back by the surface. In case of this force is greater than restoring force, particle is 

pushed forward and can not be trapped. The surface reflection depends on the 

relative refractive indices of the particle and the medium.  

                                                           𝑚 = 𝒏𝒑
𝒏𝒎𝒅

                                                        (2.2) 

𝑛A  and 𝑛BC are the refractive indexes of particle and medium, respectively. Larger 

m indicates more surface reflection and therefore greater difficulty in trapping the 

microsphere with an optical tweezer. In order to increase the restoring force, the laser 
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beam should be highly focused by a high numerical aperture (NA) objective lenses.  

For the Ray optics approximation for single ray with power P, the gradient and 

scattering forces are determined as below (Figure 2.3). 

 
Figure 2.3: Ray propagation into dielectric sphere for ray optics approximation [25]. 

The ray is exposed both reflection, R and transmission T at all surfaces. 𝑛 signifies 

the normal to the surface of the sphere.  

                      𝐹> =
7DEF
G

1 + 𝑅 cos 2𝜃 − 𝑇Q RST QUVQW XY RST QU
ZXY[XQY RST QW

                          (2.3) 

                           𝐹< =
7DEF
G

𝑅 sin 2𝜃 − 𝑇Q T^_ QUVQW XY T^_ QU
ZXY[XQY T^_ QW

                             (2.4) 

P is the power of the ray, 𝜃 and 𝜑 are the angles of the incident and refracted rays, 

respectively. 7DEF
G

 is the momentum per second transferred by the ray. R is Fresnel 

reflection coefficient and T is the fresnel transmission coefficient. These coefficients 

give the fraction of the light being reflected or transmitted at an interaction [25]. 

2.1.2 Rayleigh approximation 

If the size of particle is smaller than the wavelength of the light (R < λ/10), the 

optical tweezer forces can be calculated by Rayleigh approximation [59]. The 

gradient in the electromagnetic field causes a force induced on the particle 

proportional to the gradient of the field and therefore proportional to the gradient of 

the intensity of the light. Intensity maximum is in the centre of the highly focused 

Gaussian beam for giving rise to a three-dimensional gradient of the laser light, 

which produces a force directed to the centre. The gradient force, Fg, is induced by 
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the field and described as, 

																																																								𝐹< =
Qabc7DE

G
B[VZ
B[XQ

∇𝐼                                  (2.5) 

𝑐 is the speed of the light, 𝑎 is the radius of the object, 𝑚 the effective index of 

reflection as described in equation (2.2) and 𝐼 is the intensity of the light. It is shown 

that the gradient force is proportional to the volume of the particle and to the gradient 

of the intensity of the trapping light, i.e., 𝐹< ∝ ∇𝐼 [25,57]. 

The scattering force, Fs, is proportional to the intensity of the light and described as, 

																																																					𝐹> = 	
ZQiajbk7DE

lmnG
B[VZ
B[XQ

𝐼                       (2.6) 

The particle is attracted into the region of the highest intensity by gradient force, 

whereas the scattering force pulls the particle into an equilibrium position which is 

not at maximum intensity. Stable trapping is occured by competition of these forces 

[58,60]. Also, the size of the particle affects the gradient and scattering forces. For 

large particles, the scattering force is dominating and that it is resulted to trapping 

unstable [25]. 

2.1.3 Generalized Lorenz-Mie theory 

When the sizes of particle are comparable with the wavelength of the trapping laser, 

electromagnetic theory of light has to be used [57,60]. Generalized Lorenz-Mie 

theory (GLMT) includes the equations of light scattering of a beam. Beam fields 

incident on the particle must be known for calculation of scattering by a transversely 

localized beam. The exact fields of beam complying with both the wave equation and 

Maxwell’s equations are not in closed form, excepting plane wave. In order to 

explain this dificulty, transversely localized beam is expressed in 3 approaches: an 

angular spectrum of plane waves, the fields in terms of infinite series of spherical 

multipole partial waves with specified coefficients, analytic approximations of the 

beam field. GLMT calculations generally use second and third approaches [61]. 

For the fundamental TEM00 mode of laser beam, the electric and magnetic fields of a 

monochromatic Gaussiam beam is described as: 

𝑬 𝑥, 𝑦, 𝑧 = 𝐸s exp − w[

xy[
exp 𝑖𝑘𝑧 𝒖𝒙                           (2.7) 
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𝑩 𝑥, 𝑦, 𝑧 = (𝐸s/𝑐) exp − w[

xy[
exp 𝑖𝑘𝑧 𝒖𝒚                           (2.8) 

where c is the speed of the light, 𝐸s is the peak electric field strength, w0 is the 

electric field half-width. The Gaussian beam of wavelength l and wave number 

k=2p/l is linearly polarized in the x direction and propagating in the +z direction. 

exp(iwt) is time dependence and it is implicit [61]. 

𝜌Q = 𝑥Q + 𝑦Q                                                       (2.9) 

If the center of the beam is at origin of coordinates, beam is on-axis related and thus 

it lies on the beam’s symmetry axis.  

Equations (2.7) and (2.8) ignore the diffraction of the beam. If the Gaussian beam 

fields are Fresnel diffracted from z=0 to z>0, electric and magnetic fields are defined 

as: 

𝑬 𝑥, 𝑦, 𝑧 = 𝐷𝐸s exp −�w[

xy[
exp 𝑖𝑘𝑧 𝒖𝒙                       (2.10) 

𝑩 𝑥, 𝑦, 𝑧 = (𝐷𝐸s/𝑐) exp −�w[

xy[
exp 𝑖𝑘𝑧 𝒖𝒚                   (2.11) 

where the D is given as: 

 𝐷 = 1 + Q�>�
xy

VZ
                                                (2.12) 

where the s is beam confinement parameter and defined as: 

𝑠 = 1/𝑘𝑤s                                                       (2.13) 

The beam becomes freely propagating focused Gaussian beam since it spreads 

tranversely with its minimum width w0 in the z=0 plane. Beam confinement 

parameter has to be equal or less than 1/p because a beam must be tranversely 

confined at least of its wavelength. If the 𝑠 ≪ 1/𝜋, a beam is loosely focused since 

its tranverse spreading goes on narrow and becomes only slowly as a function of z. If 

the 𝑠 ≈ 1/𝜋, a beam is tightly focused since its tranverse spreading is wide and 

develops as a function of z. Equations (2.10) and (2.11) has the limits 𝑤s → ∞ or 𝑠 →

0 which means that is a plane wave [61]. 

The diffracting Gaussian beam is favorable for the paraxial wave equation, but not 
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for full wave equation or Maxwell’s equations. In order to obtain a beam in the form 

of infinite series in powers of s the procedure has been developed which is both exact 

solution of wave equation and Maxwell’s equations. The procedure has the Gaussian 

beam of equations (2.10) and (2.11) as its zeroth order term [62,63]. s5 order of the 

expansion of the beam fields is given as, 

𝑬 𝑥, 𝑦, 𝑧 = 𝐷𝐸s exp −�w[

xy[
exp 𝑖𝑘𝑧 [𝑒�𝒖𝒙 + 𝑒�𝒖𝒚 − 2𝑖𝐷

�
xy

𝑒�𝒖𝒛]   (2.14) 

𝑩 𝑥, 𝑦, 𝑧 = (𝐷𝐸s/𝑐) exp −�w[

xy[
exp 𝑖𝑘𝑧 [𝑏�𝒖𝒙 + 𝑏�𝒖𝒚 − 2𝑖𝐷

�
xy

𝑏�𝒖𝒛]	(2.15) 

where 

𝑒� = 1 + 𝑠Q
𝐷
𝑤s

Q
2𝑥Q + 𝜌Q − 𝐷

𝜌�

𝑤sQ
 

+𝑠� �
xy

�
𝜌Q 2𝜌Q + 8𝑥Q − 3𝐷 wn

xy[
− 2𝐷 �[w[

xy[
+ 𝐷Q wk

Qxyn
	    (2.16) 

𝑏� = 1 + 𝑠Q
𝐷
𝑤s

Q
2𝑦Q + 𝜌Q − 𝐷

𝜌�

𝑤sQ
 

+𝑠� �
xy

�
𝜌Q 2𝜌Q + 8𝑦Q − 3𝐷 wn

xy[
− 2𝐷 �[w[

xy[
+ 𝐷Q wk

Qxyn
																					(2.17) 

𝑒� = 𝑏� = 𝑠Q �
xy

Q
2𝑥𝑦 + 𝑠� �

xy

�
2𝑥𝑦 4𝜌Q − 𝐷 wn

xy[
																(2.18) 

𝑒� = 𝑏� = 𝑠 + 𝑠l
𝐷
𝑤s

Q
3𝜌Q − 𝐷

𝜌�

𝑤sQ
+ 

𝑠� �
xy

�
𝜌Q 10𝜌Q − 5𝐷 wn

xy[
+ 𝐷Q wk

Qxyn
        (2.19) 

In the above equations, s is determined as L approximation of the exact TEM00 laser 

beam. s converges rapidly near the focal waist and slowly only when 𝜌Q is greater 

than 𝑤sQ + 4𝑠Q𝑧Q. When the focal waist of the beam moved from the origin to other 

point which is favorable translation of coordinates, the translated beam is called off-

axis related to scatterer whose center is not along the beam’s symmetry axis [61].  

It is assumed that exact electric and magnetic fields of the incident beam, which is 

considered as arbitrary tranversely localized, on a homogeneous sphere of radius a 

and refractive index 𝑛A and centered at origin of coordinates, the TE and TM 
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Bromwich potentials of the beam in spherical coordinates are given by [61,64,65] 

𝑈:���bB 𝑟, 𝜃, 𝜑 = �y
¡
𝑖7𝑐7

Ax𝑔7,:�B 𝜓7(𝑘𝑟)7
B¤V7

∞
7¤Z 𝑃7

B cos 𝜃 exp	(𝑖𝑚𝜑)        (2.20) 

𝑈:¦��bB 𝑟, 𝜃, 𝜑 = �y
¡
𝑖7𝑐7

Ax𝑔7,:¦B 𝜓7(𝑘𝑟)7
B¤V7

∞
7¤Z 𝑃7

B cos 𝜃 exp	(𝑖𝑚𝜑)        (2.21) 

where 

𝑐7
Ax = (2𝑛 + 1)/[2𝑛 𝑛 + 1 ]                                 (2.22) 

𝐸s is the maximum strength of the electric field of the beam. 𝜓7and 𝑃7
B are the 

Ricatti-Bessel and Legendre functions, respectively.		𝑔7,:�B  and 𝑔7,:¦B  are the beam 

shape coefficients. Electric and magnetic field are obtained by vector derivatives of 

equations (2.20) and (2.21). Beam shape coefficients is important for GLMT since 

the scattered intensity and all quantities derived from it are calculated by 

combination of beam shape coefficients, angular functions and an plane wave 

function of LMT and bn  partial wave function of LMT. 

According to equations (2.20) and (2.21) and beam shape coefficients are given 

𝑔7,:�B =
−𝑖 7VZ

2𝜋
𝑘𝑟

𝑗7 𝑘𝑟
𝑛 − 𝑚 !
𝑛 + 𝑚 !

sin 𝜃 𝑑𝜃
a

s
𝑑𝜑

Qa

s
 

×𝑃7
B cos 𝜃 exp −𝑖𝑚𝜑 𝑐𝐵¬bC��bB 𝑟, 𝜃, 𝜑                              (2.23) 

𝑔7,:¦B =
−𝑖 7VZ

2𝜋
𝑘𝑟

𝑗7 𝑘𝑟
𝑛 − 𝑚 !
𝑛 + 𝑚 !

sin 𝜃 𝑑𝜃
a

s
𝑑𝜑

Qa

s
 

×𝑃7
B cos 𝜃 exp −𝑖𝑚𝜑 𝐸¬bC��bB 𝑟, 𝜃, 𝜑                              (2.24) 

where 𝐸¬bC��bB and 𝐵¬bC��bB are the radial components of the presumably known beam 

fields in spherical coordinates. If the beam is on-axis in compliance with sphere, only 

m=±1 beam shape coefficients are not zero due to the structure of the 𝜑 integral and 

they are defined as: 

𝑔7,:�Z = −𝑖𝑔7,:�                                               (2.25) 

𝑔7,:�VZ = 𝑖𝑔7,:�                                                  (2.26) 

𝑔7,:¦
±Z = 𝑔7,:¦                                                   (2.27) 

If Gaussian beam propagates freely, 𝑔7,:� equals to 𝑔7,:¦. But more general beams 
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(laser beam) transmitted high numerical aperture lens 𝑔7,:� is different from 𝑔7,:¦. 

Since assuming that the Maxwell’s equations are solved by the beam, the radial 

dependence of angular integrals stops the kr/jn(kr) which is prefactor. The resulting 

beam shape coefficients become constants. But if the beam shape coefficients are not 

solutions of Maxwell’s equations, the beam shape coefficients are obtained from 

equations (2.23) and (2.24) without cancellations. In order to obtain constant 

coefficients, the value r is identified at a convenient location or right-hand side are 

integrated with respect to r from the origin to infinity. Both of these ways define a 

new beam by the beam shape coefficients by equations (2.20) and (2.21) in order to 

renormalize the original beam and repair the defect of not being exact solution of 

Maxwell’s equation. The original beam is strongly resembled by the new beam in the 

region where the scattered fields are largest due to large field strength [61].  

According to equations (2.20) and (2.21), for the scattering of beam by a sphere, 

scattered and interior Bromwich potentials are given, 

𝑈:�>Gb®® 𝑟, 𝜃, 𝜑 = − �y
¡
𝑖7𝑐7

Ax𝐵7B𝜁7
Z 𝑘𝑟7

B¤V7
∞
7¤Z 𝑃7

B cos 𝜃 exp 𝑖𝑚𝜑  (2.28) 

𝑈:¦>Gb®® 𝑟, 𝜃, 𝜑 = − �y
¡
𝑖7𝑐7

Ax𝐴7B𝜁7
(Z)(𝑘𝑟)7

B¤V7
∞
7¤Z 𝑃7

B cos 𝜃 exp	(𝑖𝑚𝜑)   (2.29) 

and 

𝑈:��7®�¬�°¬ 𝑟, 𝜃, 𝜑 = ±�y
¡

𝑖7𝑐7
Ax𝐷7B𝜓7(𝑁𝑘𝑟)7

B¤V7
∞
7¤Z 𝑃7

B cos 𝜃 exp	(𝑖𝑚𝜑)  (2.30) 

𝑈:¦�7®�¬�°¬ 𝑟, 𝜃, 𝜑 = ±�y
¡

𝑖7𝑐7
Ax𝐶7B𝜓7(𝑁𝑘𝑟)7

B¤V7
∞
7¤Z 𝑃7

B cos 𝜃 exp	(𝑖𝑚𝜑)  (2.31) 

where 𝜁7
(Z) are Ricatti-Henkel functions, 𝐴7Band 𝐵7B  are defined as partial wave 

scattering amplitudes and 𝐶7Band 𝐷7B are described as the partial wave interior 

amplitudes. These are obtained by matching the boundary conditions for various 

components of electric and magnetic fields at the sphere: 

𝐴7B = 𝑎7𝑔7,:¦B                                                 (2.32) 

𝐵7B = 𝑏7𝑔7,:�B                                                  (2.33) 

𝐶7B = 𝑐7𝑔7,:¦B                                                  (2.34) 

𝐷7B = 𝑑7𝑔7,:�B                                                  (2.35) 
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The scattered fields are various vector derivatives of the Bromwich potentials of 

equations (2.30) and (2.31). For the r goes to infinity, scattered intensity defined as 

𝐼>Gb®® 𝑟, 𝜃, 𝜑 = 𝐸sQ/𝜇s𝑐 1/𝑘𝑟 Q 𝑆Z(𝜃, 𝜑) Q + 𝑆Q(𝜃, 𝜑) Q           (2.36) 

where 𝜇s	is permeability of free space and the 𝑆Z(𝜃, 𝜑) and 𝑆Q(𝜃, 𝜑) are the total 

scattering amplitudes. 

𝑆Z 𝜃, 𝜑 = − 𝑐7
Ax[−𝑖𝑚7

B¤V7
∞
7¤Z 𝑎7𝑔7,:¦B 𝜋7

B 𝜃 + 𝑏7𝑔7,:�B 𝜏7
B 𝜃 ]exp	(𝑖𝑚𝜑)  (2.37) 

𝑆Q 𝜃, 𝜑 = − 𝑐7
Ax[−𝑖𝑚7

B¤V7
∞
7¤Z 𝑏7𝑔7,:�B 𝜋7

B 𝜃 + 𝑎7𝑔7,:¦B 𝜏7
B 𝜃 ]exp	(𝑖𝑚𝜑)  (2.38) 

and the angular functions are defined as below. 

𝜋7
B 𝜃 = Z

T^_ U
𝑃7
B cos 𝜃                                       (2.39) 

𝜏7
B 𝜃 = 𝑑/𝑑𝜃 𝑃7

B cos 𝜃                                       (2.40) 

GLMT formulas have also been derivations of the scattered power and scattered 

cross section [64], the radiation force on the sphere [64,66,67] and the radiation 

torque [66,68].  

This method becomes complex when hundreds and thousands are required for 

scattering of beam from large particle with 2pa/l≫1. If the s≪1, localized model of 

the coefficients which is based upon van de Hulst’s association in LMT of the 

incident ray impact parameter kr with partial wave number n+1/2 is an alternative to 

this method. Given the fact that the center of a Gaussian beam’s focal waist is 

located at (𝑥s = 𝜌s cos 𝜑s , 𝑦s = 𝜌s sin 𝜑s 	, 𝑧s), the localized model coefficients 

are defined below [69,70]. 

𝑔7,:�B = (−𝑖𝐹7) −𝑖𝑒𝑥𝑝 −𝑖𝜑s / 𝑛 + 1/2 BVZ 𝐼BVZ 𝑄 − exp	(−2𝑖𝜑s)𝐼BXZ 𝑄    (2.41) 

𝑔7,:�s = 𝐹7
Q�7 7XZ
7XZ Q

sin 𝜑0 𝐼1(𝑄)                                  (2.42) 

𝑔7,:�VB = (−𝑖𝐹7) −𝑖𝑒𝑥𝑝 𝑖𝜑s / 𝑛 + 1/2 BVZ 𝐼BVZ 𝑄 − exp	(2𝑖𝜑s)𝐼BXZ 𝑄     (2.43) 

𝑔7,:¦B = 𝐹7 −𝑖𝑒𝑥𝑝 −𝑖𝜑s / 𝑛 + 1/2 BVZ 𝐼BVZ 𝑄 − exp	(−2𝑖𝜑s)𝐼BXZ 𝑄        (2.44) 

𝑔7,:¦s = 𝐹7
Q�7 7XZ
7XZ Q

cos 𝜑0 𝐼1(𝑄)                                  (2.45) 

𝑔7,:¦VB = 𝐹7 −𝑖𝑒𝑥𝑝 𝑖𝜑s / 𝑛 + 1/2 BVZ 𝐼BVZ 𝑄 − exp	(2𝑖𝜑s)𝐼BXZ 𝑄            (2.46) 
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where 

𝐹7 = 𝐷s exp −�ywy[

xy[
𝑒𝑥𝑝 −𝐷s𝑠Q 𝑛 + 1 2

Q exp	(−𝑖𝑘𝑧s)              (2.47) 

𝐷s = 1 − 2𝑖𝑠 �y
xy

VZ
                                       (2.48) 

𝑄 = 2𝐷s𝑠 𝑛 + 1 2 (𝜌s 𝑤s)                                    (2.49) 

and Im are modified Bessel functions. 

When the beam is on-axis, these focused Gaussian beam coefficients as simplified as 

𝑔7,:� = 𝑔7,:¦ = 𝐷s𝑒𝑥𝑝 −𝐷s𝑠Q 𝑛 + 1 2 2 exp		(−𝑖𝑘𝑧s)              (2.50) 

In the plane wave, 𝑔7,:� = 𝑔7,:¦ = 1 limits the LMT. The localized beam shape 

coefficients in equations (2.20) and (2.21) define a beam which is exact solution of 

Maxwell’s equations. It has been studied the reason why localized beam shape 

coefficients are related to Fresnel diffracted fields rather than Davis-Barton fields 

[71,72,73,74,75]. The localized model coefficients are derivation of general 

principles, and the beam defined by the localized coefficients performs to expect the 

behavior of the higher order Davis-Barton beams. 

For other beam types, localized models have been derived from GLMT scattering 

calculations for scattering of a beam with s≪1 and large particle with 	2pa/l≫1 

[75,76,77,78,79,80]. Localized models have been developed for scattering by a 

circular [81] or elliptical cylinder [82].  Also, the procedure used experimently in 

order to measure beam shape coefficients [83,84].  

By the means of beam shape coefficients, optical force can be calculated by using 

cross sections in x, y and z axis for radiation force [59,64]. 

         𝑭 𝒓 = 7DE
G
𝐼s 𝒙𝐶A¬,� 𝒓 + 𝒚𝐶A¬,� 𝒓 + 𝒛𝐶A¬,�(𝒓)                   (2.51) 

where P is the power of the laser and I0 equals to intensity of beam at center of the 

beam and determined as I0=2P/pw0
2 [59]. Cpr,i are cross-sections [59,64,85,86]. 
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2.2 Trapping Efficiency 

For optimizing the optical trapping, trapping efficiency must be considered as well as 

magnitude of the trapping force on the dielectric particle. The force is related to 

trapping beam power.  

𝐹 = ½7DEF
G

                                                   (2.52) 

where F is force on the particle in an optical trap, Q is defined trapping efficiency, P 

is the beam power of the laser at trapping plane. Higher Q means higher trapping 

efficiency. 𝑛BC𝑃/𝑐 defines the incident flux from the laser in a medium with 

refraction index 𝑛BC, c is the speed of the light trapping [87]. 

Intensity distribution of the light at entrance of the microscope determines the 

trapping efficiency. In Ray optics approximation, it is predicted that overfilling the 

microscope objective can make the efficiency higher. Diameter of the incident laser 

beam is greater then the objective opening, trimming the outer portion of the beam. 

The farther rays entering the objective with steepest angles, make an increase in 

intensity related to central on-axis beams. Thus, the axial trapping efficiency 

increases since gradient force is getting greater than scattering force. For lateral 

trapping, the effect of overfilling is clear since particle size have come up with 

conflict results. 

2.3 Detection and Calibration of Optical Forces 

2.3.1 Force detection techniques  

Optical tweezers can measure and apply forces on spheres besides trapping the 

particles for manipulation. The particle is confined in a three-dimensional harmonic 

potential by optical trap (Figure 2.4). Single direction of this potential can be defined 

as E(x)=kx2/2 where k is a harmonic constant. The force is linearly dependent on the 

displacement. In order to determine the force, position of the bead in a trap should be 

measured [25].  
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Figure 2.4 :Trapped particle confined in harmonic potential. 

In order to measure the position of the trapped particle, quadrant photodiode (QPD) 

or standard video camera with subsequent particle tracking can be used. QPD 

measures smaller forces with high time resolutions and nanometer sized 

displacements at a rate of several kHz. They offer precise, high-bandwidth 

measurements. However, tracking multiple particles with QPD simultaneously is 

difficult. Although standard video cameras allow tracking multiple particles with an 

accuracy of the order of 10 nm and frame rate of about 30 Hz, this frame rate is often 

slower than typical resonance frequency of an optical trap. High-speed video camera 

is an alternative to QPD and standard video camera for recording positions of many 

particles at several kHz. It is showed that both high-speed, full-field , CCD camera 

and QPD have similar performance for measuring displacement in optical tweezers 

[88]. CMOS cameras provide reduced field of view frame rates of the order 1kHz, 

and the data can be managed in real time using a stardard PC [89,90]. 

2.3.2 Calibration techniques 

Various methods for measuring trap forces have been studied. Firstly, there is a drag 

force method which allows to calculate stiffness and trapping force by using velocity 

and viscosity of fluid. Second method is equipartition method or Brownian Motion 

method. In this method, trap force is measured by Boltzmann’s constant, absolute 

temperature and position data of particle. Escape force methods calculates the force 

by escape velocity which can be measured by accelerating the particle until it gets 

out from the optical trap. Fourth method is the power spectrum method which uses 

the thermal vibrations for calculating stiffness. Last method is step response method 

which is based on estimation of trapped bead’s response according to movement of 

the trapped focus [7,8].  
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2.3.2.1 Drag force method 

The viscosity and velocity of fluid, size and shape of particles must be known for this 

method. In this method sample is moved at constant velocity, the occurring force 

causes displacement of the bead from the laser, x [8].  Stiffness, k, can be calculated 

as given, 

𝑘 = 𝐹®¬bA/𝑥                                               (2.53)  

where Ftrap is trapping force. Trapping force equals to the drag force since drag force 

can not break the trapping action. 

𝐹®¬bA = 𝐹C¬b< = 6𝜋𝜇𝑣À𝑎                                     (2.54) 

where the µ is the dynamic viscosity of the fluid, vf is the velocity of the fluid and 𝑎 

is the radius of the particle. 

2.3.2.2 Brownian Motion method 

Particles suspended in fluid moves randomly due to the collisions with the moving 

molecules of liquid. This is called as The Brownian Motion. The Brownian motion 

method uses the thermal fluctuation of the trapped particle, using absolute 

temperature to measure trap stiffness, k. This stiffness of the tweezer is calculated 

from the equipartition theorem for a particle fluctuating in a harmonic potential of 

the trap [7,8]. In equipartition theorem, a molecule in thermal equilibrium has a 

kinetic energy for each degree of freedom <H>. Assuming that the movement of the 

trapped particle is resulted from only thermal fluctuations, kinetic energy equals to 

potential energy of the trap: 

𝐻 = Z
Q
𝑘�𝑇 = 	

Z
Q
𝑘 𝑥Q                                       (2.55) 

where the kb is the Boltzmann’s constant, kb=1.3807x10-23 JK-1 and the T is the 

absolute temperature. <x2> is the time-averaged square of the bead’s horizontal 

displacement from the center of the trap. In this method, either particle geometry or 

viscosity of fluid is not required to calculate the stiffness. The temperature causes 

random vibration and trap force resists movement from the trap center [7]. 
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2.3.2.3 Escape force method 

It was the first method to estimate optical trapping [2]. In this method, the force 

required on the particle to escape from the trap. If the particle slowly is accelerated 

until it breaks from its trap, the escape force can be measured (Figure 2.5). The trap 

force simply equals to the escape force caused by the acceleration [8]. 

𝐹®¬bA = 𝐹�>GbA� = 6𝜋𝛾𝑣G𝑎                                     (2.56) 

g is a drag coefficient, 𝑎 is the radius of the particle and vc is the escape velocity. 

 
                              (a)                                (b)                              (c) 

Figure 2.5: Potential energy of the beads displaced by the optical tweezer at 
different velocities [8]. 

At first the particle is trapped on the bottom of the potential well of the optical trap. 

And then, drag force is active and it produces displacements, the bead is placed at the 

edge of the trap vc. 

2.3.2.4 Power spectrum method 

In this method, the stiffness is calculated by determining the power spectrum of the 

movement of trapped particle [8]. In the harmonic potential of the trap, the particle 

motion can be explained with Langevin equation and given 

𝐹 𝑡 = 𝛾𝑥 + 𝑘𝑥                                            (2.57) 

where, x is the deviation from the equilibrium, k is the trap spring constant, g is a 

drag coefficient and F(t) is the fluctuation force due to random vibration of the 

molecules in the fluid. In order to find out fluctuating x(t), position of the bead is 

recorded with respect to time. And then, the power spectrum for x(t) is found by 

taking the Fourier transform and the modulus squared to obtain 

𝑆 𝑓 = ¡Å:
Æa[(À[XÀÇ[)

                                                (2.58) 

where fc is corner frequency [91,92], 𝑓G = 𝑘�/2𝜋𝛽 and 𝛽 = 6𝜋𝛾𝑎.  
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2.3.2.5 Step response method 

In this method, the response data of the particle’s movement is taken by moving the 

trap focus stepwise [93]. The particle displaced by small offset and the subsequent 

trajectory of trapped bead is recorded. By rapid displacement, the large external force 

occurs on bead which is called as restoring force. The stiffness calculated by, 

 𝑘 = Æ
É
                                                     (2.59) 

where, t is the time constant [94]. When the particle trapped at the center of the 

focus, particle does not suffer restoring force towards the trap center.  
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3. THE BASIC ELEMENTS OF OPTICAL TWEEZER  

In this section, components of optical tweezer are described. This optical tweezer 

consists of two focused laser beams to trap the objects, a sample manipulating 

system, and an imaging system used to monitor the experiment (Figure 3.1). 

 

 

Figure 3.1: The setup of the optical tweezer. 
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3.1 Trapping Optics 

Maximizing the trap depth means maximizing gradient intensity (∇𝐼) at the trapping 

focus. When the microscope objective and lasers are chosen, trap depth can be 

maximized by adjusting the beam size and radius of curvature of the light incident on 

the microscope objective [95].  

Increase in ∇𝐼 causes reduction in trap depth as long as the total power is held 

constant. The trap depth (wtrap) is limited by the diffraction of the light but it can be 

overcomed with particular laser and microscope objective. wtrap is obtained by an  

lens of focal length f focusing on a collimated laser beam with a diameter D: 

																	𝜔®¬bA ≥
Z.QQ	Àm
Q�

=
Z.Qmy ÌÍ_ T^_ÎÏ ÐÑ

ÒDE
7DE

= Z.QQmy
7DE

7DE
±Ó

Q
− 1              (3.1)  

where NA is the numerical aperture of the lens, and 𝑛BC is the refractive index of the 

medium, l0 is the wavelength of the laser.  

Equalization of diameter of the incident light at the objective, dobj, and the diameter 

of the objective, Dobj, makes the trap strongest. If dobj is less than Dobj, wtrap will be 

greater than the minimum value for the lens, and it causes a reduction in strength of 

the trap. If dobj is greater than Dobj, all of the light can not be transmitted through the 

objective. Therefore, wtrap has the minimal value whereas the intensity and the 

intensity gradient is lower. Since the diameter of the output of lasers are smaller than 

Dobj, in order to transform the output of the laser into a collimated beam and make 

the diameter equals to objective, telescopes are formed. [95]. 

3.1.1 Lasers 

The output beam shape, the beam astigmatism, the power and the wavelength are the 

four important characteristics of lasers. The output beam shape and the beam 

astigmatism effects focusing of the laser by the objective. Laser should have a single 

tranverse mode output with good beam quality for focusing to a single spot. 

The laser wavelength is preferred by the applications of the trap. For manipulating 

objects such as polystyrene beads, visible lasers are appropriate. For biological 

specimens, absorption of visible lasers can damage the specimen whereas the 



25 

absorption of infrared lasers are less and therefore light sources with wavelengths 

range from 750 nm to 1000 nm can be used. The HeNe lasers which have 632.8 nm 

wavevlength are used in this custom designed optical tweezer system.  

3.1.2 Lenses 

In order to create collimated beam with a diameter equal to diameter of the 

microscope objective, telescope is used. Simple telescope has two convex lenses, 𝐿Z 

and 𝐿Q, with focal lengths 𝑓Z and 𝑓Q, respectively and the distance between them is 

𝑑Z = 𝑓Z + 𝑓Q, and the magnification, M equals to Õ[
ÕÏ

. The telescope, 𝑇Z,	 which is used 

for first laser is composed of two biconvex lenses, 𝐿Z and 𝐿Q, with focal lengths 25,4 

and 175 mm, respectively. And the telescope, 𝑇Q,	which is used for second laser is 

composed of two biconvex lenses, 𝐿l and 𝐿�, with focal lengths 38.1 and 250 mm, 

respectively. 

3.1.3 Sending the light through the objective 

The light is sent into the objective after telescope by mirrors and lens with focal 

length 175 mm. The collimated beam which exits first telescope, 𝑇Z,	 goes through 

the mirror and reflects to the lens, 𝐿�,	which makes the beam diameter equals to 

diameter of the objective. The laser beam goes to the dichroic mirror, which allows 

to first laser beam get through it, and is reflected to the curvature lens, 𝐿�. After 𝐿�, 

the laser beams are reflected by the dichroic mirror in adjustable mount to center and 

make the light perpendicular on the objective. 

3.1.4 Objective  

Objective (RMS100X-O, 100X Olympus Plan Achromat Oil Immersion Objective, 

1.25 NA, 0.150 mm WD) that requires the usage of oil between microscope objective 

and cover slip is used. Trapping is possible but more difficult with lower 

magnification or lower numerical aperture objectives, so they are not recommended.  

3.2 Sample manipulation 

In order to trap objects in aqueous medium, standard microscope slide and cover slip 

is used. Translator is used to move the sample in micro-sized range. Also, changing 
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alignment of the laser into objective provides very fine changes in the position of the 

trapped particles. 

3.3 Imaging System 

The trapping objective is used for the imaging system. The imaging light is chosen as 

LED. The reason why the both trapping light and the imaging light pass through the 

same objective, CCD camera (DCU223M CCD Camera, 1024 x 768 Resolution, 

B&W) was used for the imaging trapped particle. As a dichroic beam splitter, 

dichroic green filter is chosen since it permits transmittance of the imaging light and 

reflection the trapping light. Two beams follow the way between objective and CCD 

but only the imaging light reach the viewers to image trapped particle. 
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4. THE ALIGNMENT PROCEDURE   

The setup of the optical tweezer begins with the alignment of the laser beam. At first 

the beams are aligned with diaphragm which are attached to posts and rail carriers. 

After that, the mirrors are placed in kinematic mirror mounts which allow the 

mirrors’ vertical and horizontal angle to be changed. Lenses used in optical tweezer 

are mounted on the rails assembly using posts and rail carriers. The lens height must 

be adjusted so that the laser beams pass through them. Once alignment complete, the 

diaphragms are removed from the rail. The maximum trapping force can be achieved 

when the diamater of the beam entering the objective equals the diameter of the 

objective. Lens 1 and lens 2 form telescope 1, lens 3 and lens 4 form telescope 2. All 

lenses of telescopes are bi-convex. Telescopes are used to expand the beams to 

correct diamaters and collimate them. In order to minimize the divergence of the 

inicdent beam, the telescopes should be placed as close as the lasers. 

The light is sent into the objective after telescope by mirrors and lens 5 with focal 

length 175 mm which is plano-convex. The collimated beam which exits first 

telescope, 𝑇Z,	 goes through the mirror and reflects to the lens, 𝐿�,	which makes the 

beam diameter equals to diameter of the objective. The second laser beam which 

exits the telescope 2, 𝑇Q,	 goes to the dichroic mirror, which allows to first laser beam 

get through it, and is reflected to the curvature lens, 𝐿�. The way of the light between 

the output of the laser and objective is set up by using mirrors. Mirrors are held in 

adjustable mounts, which can control the angle between mirror and two orthogonal 

axes, and reflect the light. Angles and positions of lasers are controlled by these 

mirrors independently. After 𝐿�, the laser beams are reflected by the dichroic mirror 

in adjustable mount to center and make the light perpendicular on the objective. 100× 

objective with numerical aperture 1.25 that requires the usage of oil between 

microscope objective and cover slip is used. 

The correct distances between optical components can be calculated by using 

Gaussian Beam Optics. 
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4.1 Gaussian Beam Optics 

Focusing, modifying or shaping the laser beam by lenses or other optical equipments 

is required for most laser applications. In general, it is assumed that laser beam 

propagates approximately Gaussian beam, and it has Gaussian beam intensity profile 

which corresponds to theoretical TEM00 mode. In TEM00 mode, the laser beam 

begins as a perfect plane wave with a Gaussian transverse intensity (Figure 4.1). The 

output of real-life lasers is not truly Gaussian while He-Ne and argon-ion lasers are 

very close approximation [96]. 

 
Figure 4.1: Irradiance profile of a Gaussian TEM00 mode [96].  

The Gaussian beam is trimmed at some diameter by some limiting optical aperture or 

internal dimensions of the laser in order to determine the propagation characteristics 

of a laser beam. There are two definitions about it. First one is the diameter at which 

the beam irradiance has decreased to 1/e2 of its peak or axial value. Second one is 

referred to as FWHM, full width at half maximum, since diameter at which the beam 

radiance has decreased to 50% of its peak or axial value (Figure 4.2) [96]. 
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Figure 4.2: Diameter of a Gaussian beam [96]. 

For the lasers which are operating in TEM00 mode, the irradiance is given by 

Gaussian function: 

𝑰 𝒓 = 𝑰𝟎𝒆V𝟐𝒓
𝟐/𝒘𝟐 = 𝟐𝑷

𝝅𝒘𝟐
𝒆V𝟐𝒓𝟐/𝒘𝟐                            (4.1) 

where w is the distance out from the center axis of the beam where the irradiance 

falls to 1/e2 of its value on axis. P is total power of the beam and r is defined as the 

transverse distance from the central axis. w depends on the distance z that the beam 

has propagated. w0 is the radius of the 1/e2 irradiance [96].  

The beam size will increase, slowly at first, then faster, eventually increasing 

proportional to z. The curvature of wavefront which was infinite at z=0, will become 

finite and initially decrease with z. When it reaches the minimum value, then 

increase with larger z, eventually proportional to z [96,97].  

𝑅 𝑧 = 𝑧 1 + axy[

m�

Q
                                       (4.2) 

 𝑤 𝑧 = 𝑤s 1 + m�
axy[

Q Z/Q
                                 (4.3) 

w(z) is the radius of the 1/e2 contour after the wave has propagated a distance z, and 

R(z) is the wavefront radius of curvature after propagating a distance z.  

The total beam behavior is defined by two parameters above since they occur in the 

same combination in both equations, they are often combined into a single 

parameter, zR, the Rayleigh range: 
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 𝑧Y =
axy[

m
                                                    (4.4) 

R has its minimum value at z= zR. Rayleigh range is the distance from the beam 

waist to the point at which beam radius has increased to 2	𝑤s [97] . 

In the condition of z>>zR, the beam starts to diverge as a spherical wave. The 

diverging beam has a full angular width q: 

𝜃 = �m
Qaxy

                                                         (4.5) 

When the origin gets closer to a point source and tanq»q, q is given by geometrical 

optics by division of the diameter of illumination on the lens, d, to the focal length of 

the lens, f (Figure 4.3). 

 

Figure 4.3: Tangent approximation. 

𝜃 ≈ Û
Ü
= 𝑓

#
VZ

                                         (4.6) 

where f/# is defined as the photographic f-number of the lens. Beam waist diameter 

can be found as given 

2𝑤s =
�m
a

Ü
Û

                                          (4.7) 

And also depth of focus (DOF) shown in figure 4.4 can be defined as the distance 

between the values of z at 𝑤 = 2𝑤s given as below[98]. 

𝐷𝑂𝐹 = 8𝜆
𝜋

f
d

2
                                                 (4.8) 
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4.1.1 Gaussian beam propagation and ABCD matrices 

If the Gaussian beam propagates in free space, the spot size of the beam and radius of 

curvature at z are given above. The real and imaginary parts of both spot size and 

radius of curvature is contained by the complex radius of curvature q(z) [99, Page 

81]. Since q(z) varies according to 

𝑞 𝑧 = 𝑧 + 𝑖𝑧Y                                             (4.9) 

The inverse of q(z) contains lots of information about Gaussian beam and it is given 

as below. 

Z
ã(�)

= Z
�X��ä

= �
�[X�ä

[ − 𝑖
�

�[X�ä
[                               (4.10) 

Equation (4.10) can be written by using w0, w(z) and R(z). 

Z
ã(�)

= Z
Y(�)

− �my
a7x[(�)

                                        (4.11) 

If the initial value of q(0) is determined by using equations (4.10) and (4.11), R(z) 

and w(z) can be calculated for different z values as the beam propagates. It means 

that calculation of q(z) is simplified and it is able to be known the behaviour of the 

Gaussian beam about calculation of the paraxial wave equation [99]. q(z) can be 

calculated by using ABCD matrices. The ABCD matrix is a characteristic of each 

optical element. 

r and q coordinates of before and after an optical element have a linear relation 

(Figure 4.4). 

 
Figure 4.4: r and q coordinates of optical system. 

𝑟′
𝜃′

= 𝐴 𝐵
𝐶 𝐷

𝑟
𝜃                                               (4.12) 



32 

𝑟æ = 𝐴𝑟 + 𝐵𝜃					                                            (4.13) 

𝜃æ = 𝐶𝑟 + 𝐷𝜃                                                (4.14) 

r and r’ are the positions of the input and output of an optical element, respectively. 𝜃 

is an angle at the input and 𝜃′ is an angle at the output with respect to the optical axis 

[100]. 

If q1 and q2 are signified as parameters of Gaussian beam at the input and output of 

the optical element, respectively, the optical element can be described by using 

ABCD matrix as below [99]. 

𝑞Q =
ÓãÏXç
èãÏX�

                                                    (4.15) 

At distance d in free space, since wave propagates along beams, coordinates of the 

beam change according to equations r’ = r + 𝜃𝑑 and 𝜃æ = 𝜃 [100]. The transmission 

matrix M is therefore 

 𝑀 = 1 𝑑
0 1                                                    (4.16) 

For refraction on planar boundary which created by two medium of refraction 

indexes n1 and n2 , angles of the beam change according to Snell’s law [100]. 

𝑛Z sin 𝜃 = 𝑛Qsin	(𝜃′)                                      (4.17) 

In paraxial approximation, 𝑛Z𝜃 ≈ 𝑛Q𝜃′ and therefore, position of the beam stays 

unchanged r’=r. The transmission matrix is written as 

𝑀 =
1 0
0 𝑛Z 𝑛Q

                                              (4.18) 

For a Gaussian beam which propagates through thin lens of the focal length f, 

distance from the axis is unchanged and axial equation can be written as 

𝜃æ = 𝜃 − ¬
À
                                                   (4.19) 

f is greater than 0 for convex lenses and f is less than 0 for concave lenses. The 

transmission matrix is written for thin lenses as below [100]. 

𝑀 =
1 0

−1
𝑓 1                                                (4.20) 
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For reflecting beam from planar mirror, angles and positions do not change (r=r’ and 

𝜃 = 𝜃′). The transmission matrix is unitary. 

𝑀 = 1 0
0 1                                                  (4.21) 

However for spherical mirror which has radius R, output values differ from input 

values [100]. 

𝜃æ + 𝜃 = Q¬
VY

                                                (4.22)         

And the transmission matrix for reflection from spherical mirror can be written as          

        𝑀 =
1 0
2
𝑅 1                                                (4.23) 

R is less than 0 for convex mirror and f is greater than 0 for concave mirror [99]. 

If the tranmisson matrices of optical components order from the output of the laser as 

M1, M2, M3..Mz to distance z, transmission matrix of the complete optical system is 

calculated as 

𝑀 = 𝑀� …𝑀l𝑀Q𝑀Z                                        (4.24) 

In order to find a beam waist by using ABCD matrices, the initial position of the 

beam waist must be located at z=0 with the radius of Gaussian distribution (w0) 

[101]. 

𝐵𝐷 + 𝐴𝐶𝑞Q = 0                                             (4.25) 

𝑤ZQ =
xy[

(Ó�Vçè)
𝐴Q + ç[

ã[
                                     (4.26) 

New position and radius of the beam waist for a condition of refractive index=1 can 

be solved with equation (4.25) and (4.26), respectively.  

𝑞 = axy[

m
                                                      (4.27) 
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5. LASER SETUP 

The distances between optical components are defined experimentally and 

theoreatically by using MATLAB (Figure 5.1 and Table 5.1). Power was measured 

after optical components (Table 5.2).  

 

Figure 5.1: The setup of optical tweezer with dimensions and powers. 
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Table 5.1: Distances between optical components. 

D1 690 mm 
D12 205 mm 
D2 580 mm 
D3 675 mm 
D34 300 mm 
D4 500 mm 
D5 115 mm 
D6 215 mm 
D7 280 mm 
D8 20 mm 
D9 40 mm 

Distances between optical components (Table 5.1) were measured for best trapping 

performance. And the powers of the laser beams after optical systems were 

determined by powermeter (Thorlabs PM100D) (Table 5.2). 

Table 5.2: Power of the beams after optical components. 

 LASER 1 LASER 2 LASER 1&2 

Output of the laser PL1=25,45 mW PL2=24,43 mW - 

After Telescope PT1=19,28 mW PT2=19,23 mW - 

After Mirror PM1=15,70 mW - - 

After Dichroic Mirror PD1= 5,98 mW PD2= 7,13 mW PD12= 12,55 mW 

After Lens 5 P51= 5,33 mW P52= 6,68 mW P512=11,62 mW 

After Objective PO1= 1,33 mW PO2= 1,69 mW PO12= 2,36 mW 

In MATLAB, beam waists and radius of curvatures after telescopes and after lens L5 

were calculated by using ABCD matrix method for both lasers since the beam 

behaves as Gaussian beam (APPENDIX A). Beam waist after objective was 

determined at exit pupil and end of the working distance. Depth of focus was 

determined as 3 µm for both lasers. Beam waists after telescope system were 

determined as 4.82 mm and 4.60 mm for laser 1 and laser 2, respectively (Figure 5.2 

and Figure 5.3). 
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Figure 5.2: Waist radius and radius of curvature after telescope system for laser 1.
 

 

Figure 5.3: Waist radius and radius of curvature after telescope system for laser 2. 
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After lens 5, the minimum value of beam waist was calculated as 0.015 mm for both 

lasers. (Figure 5.4 and Figure 5.5). In experiments, objective located 300 mm after 

lens 5. And at this point beam waist was calculated as 1.732 mm and 1.652 mm for 

laser 1 and laser 2, respectively.  In order to make beam diameter equal to objective 

diameter the distance between objective and lens 5 must be 353 mm for laser 1 and 

373 mm for laser 2. However, in experiments the beam diameter equalled to 

objective diameter for both lasers. 

 

Figure 5.4: Waist radius and radius of curvature after lens 5 for laser 1. 
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Figure 5.5: Waist radius and radius of curvature after lens 5 for laser 2. 

Beam waist after objective was calculated as 17.23 µm and 16.44 µm at exit pupil for 

laser 1 and laser 2, respectively (Figure 5.6 and Figure 5.7).  

 

Figure 5.6: Waist radius after objective for laser 1. 
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Figure 5.7: Waist radius after objective for laser 2. 

In the experiments two lasers were located parallel to each other (Figure 5.8) and 

after reflecting mirrors they propagate closely to each other to the objective (Figure 

5.9). 
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Figure 5.8: Views of telescopes and lasers in optical tweezer setup. 
 

 

Figure 5.9: Views of the mirrors and objective in optical tweezer setup. 
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6. RESULTS 

The stiffness and trapping force of optical tweezers were calculated by Brownian 

Motion method and drag force method. During experiments, absolute temperature 

was 23ºC. Uncertainities were related to change of temperature due to laser which is 

±1.15 K and displacement which is ±0.005 µm. 

According to Brownian Motion method, displacements of trapped particle must be 

measured to calculate 〈x2〉 in equations (6.1) and (6.2) [102]. Displacements of the 

trapped beads under Brownian Motion was determined by using ImageJ [103]. In 

order to determine displacements in µm-sized range, pixels converted to µm by 

measuring diameter of polystyrene bead. 1 µm equals to 48.11 pixels. 

𝑥Q = �Ò[Ð
ÒíÏ
±

                                                    (6.1) 

𝑦Q = �Ò[Ð
ÒíÏ
±

                                                   (6.2) 

After finding displacements, the stiffnesses in both axis were calculated with 

equation (6.3) and (6.4). 

Z
Q
𝑘�𝑇 = 	

Z
Q
𝑘 𝑥Q                                                (6.3) 

Z
Q
𝑘�𝑇 = 	

Z
Q
𝑘 𝑦Q                                                (6.4) 

Trapping force was found out by multiplication of stiffness (k) and distance of the 

bead’s center from trap center, x. 

𝐹: = 	𝑘𝑥                                                     (6.5) 

In order to find trapping force which equals to drag force in yeast cells, viscosity of 

fluid (𝜇), particle diameter (𝑎) and velocity of fluid (𝑣) must be known. Velocity of 

the fluid was measured by displacement of the reference point at a given time.   

𝐹: = 𝐹C = 	6𝜋𝜇𝑎𝑣                                           (6.6) 



44 

 

And stiffness found out by equation (6.7) 

𝑘 = îï
�

                                                        (6.5) 

6.1 Characteristics of Optical Tweezer 

The stiffness of optical tweezer and trapping force on polystyrene beads were 

calculated by using only Brownian Motion method since the particles inside fluid 

almost stayed still and drag force could not be measured in fluid due to low velocity 

of fluid. But polystyrene beads which were approximately 1µm were trapped and 

manipulated in water. 

In order to calculate the stiffnesses and trapping forces of optical tweezers for x and 

y axis, polystyrene beads were trapped by Laser 1, Laser 2 and both lasers 

simultaneously. Contrast was added to pictures to show the trapped and moving 

particles. 

6.1.1 Results of laser 1 

Displacements were calculated by splitting of video to frames (Figure 6.1). Video of 

3 seconds was splitted to 32 frames. Displacements were calculated by using 

equations (6.1) and (6.2) and they were found that 𝒙𝟐 	equals to 2.108x10-16 m2 and 

𝒚𝟐 	equals to 3.206x10-16 m2. 

According to equations (6.3) and (6.4), stiffnesses in both axis were found out as 

kx=19.401±2.302 pN/µm and ky=12.754±0.996 pN/µm.  

The distance between trap center and center of the bead were 0.03 and 0.05 µm for x 

and y axis, respectively. Trapping force on polystyrene beads were found as 

Fx=0.582±0.070 pN and Fy=0.637±0.050 pN in both axis.  
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                             (a)                                                                       (b)    

Figure 6.1: Trapped polystyrene bead by laser 1. The trapped polystyrene beads 
were shown in orange circle. The particle which is in green circle was moving while 
the bead in yellow circle was staying still at a given time. The (a) shows that at the 

beginning of the trap, and (b) shows that end of the 3 seconds. 

6.1.2 Results for Laser 2 

Displacements were calculated by splitting of video to frames. Video of 1.8 seconds 

was splitted to 20 frames (Figure 6.2). 𝒙𝟐 	calculated as 4.738x10-16 m2 and 

𝒚𝟐 	equals to 4.034x10-16 m2 according to equations (6.1) and (6.2). According to 

equations (6.3) and (6.4), stiffnesses in both axis were found out as 

kx=8.623±0.457pN/µm and ky=10.137±0.630 pN/µm.  

The distance between trap center and center of the bead were 0.03 and 0.04 µm for x 

and y axis, respectively. Trapping force on polystyrene beads were found that Fx 

equals to 0.259±0.0144 pN and Fy equals to 0.405±0.0257 pN in both axis. 

 
(a)                                                            (b) 

Figure 6.2: Trapped polystyrene bead by laser 2. The trapped polystyrene beads 
shown in orange circle. It is shown that the particles which are in yellow circle was 

moving due to the fluid flow. The (a) shows that at the beginning of the trap, and (b) 
shows that end of the 1.8 seconds. 

 
 



46 

6.1.3 Result when both lasers used simultaneously 

The polystyrene beads trapped by both lasers when they used simultaneously (Figure 

6.3). In order to find the displacements of the polystyrene beads, video of 1,25 

seconds was splitted to 15 frames. 𝒙𝟐 	calculated as 1.764x10-16 m2 and 𝒚𝟐 	equals 

to 3.585x10-16 m2 according to equations (6.1) and (6.2). Stiffnesses in both axis 

were found out as kx=23.179±3.290 pN/µm and ky=11.406±0.797 pN/µm. 

The distance between trap center and center of the bead were 0,01 µm for both x and 

y axis. Trapping force on polystyrene beads were found that Fx equals to 

0,232±0,0349 pN and Fy equals to 0,114±0,0098 pN. 

 
(a)                                                                       (b) 

Figure 6.3: Trapped polystyrene bead by both lasers simultaneously. The trapped 
polystyrene beads shown in orange circle by both lasers simultaneously. It is shown 
that the particle which is in green circle was rotated at a given time. The (a) shows 

that at the beginning of the trap, and (b) shows that end of the 1.25 seconds. 

6.1.4 Moving polystyrene beads with laser 2 to laser 1 

Polystyrene bead was trapped and moved by laser 2 to laser 1. And then laser 1 

trapped this particle (Figure 6.4). By this way, optical tweezer can be used in drug 

delivery applications.  
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Figure 6.4: Moving polystyrene particles. the trapped polystyrene beads by laser 2 
shown in red circle. The (a) shows that at the beginning of the trap, at (e) two lasers 

trapped the bead simultaneously and at (f) only laser 1 trapped the bead at 2 seconds. 

6.1.5 Trapping multiple polystyrene beads 

Optical tweezer is able to trap multiple polystyrene beads. The polystyrene bead was 

trapped by laser 2 and moved to laser 1. Laser 1 trapped this moved particle while it 

was trapping the other multiple particles (Figure 6.5). 
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Figure 6.5: Trapping multiple particles. The polystyrene particle is trapped by laser 
2 and moves to laser 1 in Figure 6.5 (a-c). At (d), laser 2 leaving the bead to laser 1 

and at (e) laser 2 saperated from trapping region. 

6.1.6 Comparison of lasers 

Stiffnesses and trapping forces according to Brownian motion results are different 

from each other. Stiffness of laser 1 in x-axis is greater then laser 2 since it traps 

better than laser 2. But when both lasers trapped simultaneously, the stiffness in x-

axis is greatest. Stiffnesses in y-direction were close to each other (Figure 6.6).  

When both lasers were used simultaneously, the difference between stiffnesses in x 

and y-axis could be caused by the shape of particle or the overlapping of the lasers. If 

the particle were ellipsoid, it makes greater stiffness in that direction. And if the 

lasers did not overlap in x direction, kx would be greater than ky. 



49 

 

Figure 6.6: Stiffnesses of lasers. 

The distance between trap center and center of the bead, x, is determinant of the 

trapping force. Increase in x results with greater forces to trap the particle. Therefore, 

Laser 1 has the greatest force in both axis (Figure 6.7). When both lasers were used 

simultaneously since the distance, x, was shorter than others the trapping force was 

less than others. And for laser 2, stiffnesses and trapping forces were in proportion. 

 

Figure 6.7: Trapping forces on the polystyrene beads.  

6.2 Results for Yeast Cells 

Stiffness and trapping force calculated by both Brownian Motion method and drag 

force method. Stiffnesses and trapping forces according to Brownian Motion were 

calculated as polystyrene beads.  

In drag force method, 0.038 kg/ms was used as a viscosity of the yogurt culture 

[104]. The particle diameter measured for each calculation differently. In order to 
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calculate velocity of the fluid, the particle which had constant velocity was selected 

as a reference point.  

Stiffness and trapping force were calculated by laser 1 and laser 2 in both axis. 

Uncertainities resulted from absolute temperature (1.150 K), displacement of 

reference point (0,500 µm), radius of beam (0.010 µm) and displacements for 

Brownian motion (1 nm). 

6.2.1 Results for laser 1 

In order to measure displacements of yeast cells in yogurt culture for Brownian 

Motion method, the video of 3 seconds was splitted to 30 frames (Figure 6.8). 

𝒙𝟐 	calculated as 7.056x10-16 m2 and 𝒚𝟐 	equals to 8.40533x10-16 m2. Stiffnesses in 

both axis were found out as kx=5.795±0.023 pN/µm and ky=4.865±0.019 pN/µm. 

The distance between trap center and center of the bead were 0.050 µm and 0.040 

µm for x and y axis, respectively. Trapping force on polystyrene beads were found 

that Fx equals to 0.290±0.006 pN and Fy equals to 0.195±0.005 pN by Brownian 

Motion method (Figure 6.9). 

The velocity component of fluid was found as 1.4405 µm/s for x-axis and 0.45699 

µm/s for y-axis by displacements in 3 seconds. Viscosity of the medium equals to 

0.038 kg/ms. And radius of the trapped yeast cell is 0.305 µm. Drag force calculated 

as 0.315±0.057 pN for x-axis and 0.099±0.041pN for y-axis. 

The stiffness is calculated by drag force method as 6.294±1.140 pN/µm for x-axis 

and 2.496±1.501 pN/µm for y-axis (Figure 6.10).  
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                     (a)                                                          (b) 

Figure 6.8: Trapping of yeast cells (Laser 1). The cell in yellow circle was moving 
while the yeast cell in red circle was trapping. (a) shows the beginning of the trap 

moment and (b) is the end of 3 seconds. 

 

Figure 6.9: Comparison of trapping forces on the polystyrene beads and yeast cells 
(Laser 1). 

 

Figure 6.10: Comparison of stiffnesses for the polystyrene beads and yeast cells 
(Laser 1). 
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When the results of polystyrene beads are compared with results of yeast cells for 

laser 1, it is shown that there is a reduction in stiffness and trapping force values. It 

has been showed that the trapping forces in x-axis on yeast cells are close to each 

other but less than trapping force on polystyrene beads. It can be resulted from the 

viscosity or refractive index of the medium.  

Reduction in stiffness for Brownian Motion can be caused by the displacement of the 

particle. Increase in displacement makes reduction in stiffness. 

6.2.2 Results for laser 2 

In order to measure displacements of yeast cells in yogurt culture for Brownian 

Motion method, the video of 1.9 seconds was splitted to 21 frames (Figure 6.11). 

𝑥Q 	calculated as 14.721x10-16 m2 and 𝑦Q 	equals to 9.391x10-16 m2. Stiffnesses 

were found out as kx=2.777±0.005 pN/µm and ky=4.354±0.117 pN/µm for laser 2.  

Trapping force on polystyrene beads were found that Fx equals to 0.139±0.004 pN 

and Fy equals to 0.174±0.006 pN by Brownian Motion method. And the distances 

between trap center and center of the bead were 0.05 µm and 0.04 µm for x and y 

axis, respectively. 

The velocity component of fluid was found as 2.45 µm/s for x-axis and 0.467 µm/s 

for y-axis by displacements in 1.9 seconds. According to viscosity of 0.038 kg/ms 

and particle radius 0.5 µm, drag force calculated as 0.878±0.150 pN for x-axis and 

0.167±0.097 pN for y-axis. The stiffness is calculated by drag force method as 

14.627±2.501 pN/µm for x-axis and 0.796±0.461 pN/µm for y-axis. 

 
                                     (a)                                                 (b) 

Figure 6.11: Trapping yeast cells (Laser 2). Trapped yeast cell by laser 2 is shown in 
orange circle and trapped yeast cell by laser 1 is shown in yellow circle. The cell in 
blue circle was moving while others trapping. (a) indicates the beginning of the trap 

and (b) indicates the end of the 1.9 seconds. 
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The stiffness and force values of polystyrene beads are greater than yeast cells in 

Brownian motion (Figure 6.12 and Figure 6.13). It is resulted from the displacement 

of the particles under Brownian Motion. Due to the fluid flow in x-axis stiffness and 

trapping force for drag force method is greater than values in y-axis.  

 

Figure 6.12: Comparison of stiffness for the polystyrene beads and yeast cells    
(Laser 2). 

 

Figure 6.13: Comparison of trapping forces on the polystyrene beads and yeast cells 
(Laser 2). 

6.2.3 Trapping multiple particles 

Yeast cell was trapped and moved to laser 1 trapping region while laser 1 was 

trapping multiple yeast cells (Figure 6.14). The multiple yeast cells trapped by laser 1 

and the yeast cell trapped and moved by laser 2.  
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(a)                                                (b) 

 
(c) 

Figure 6.14: Trapping multiple yeast cells. (a) and (b) show that movement of 
trapped yeast cell in green circle by laser 2. (c) shows that trapping multiple cells 

which are in yellow circle by both lasers simultaneously. 

6.2.4 Moving particle between each other 

Laser 2 could trap yeast cell and leave it into trapping region of laser 1 (Figure 6.15).  

 
(a)                                         (b)                                         (c) 

Figure 6.15: Trapping multiple yeast cells. Trapped yeast cells is shown in red circle 
(a-b) and in (c) yeast cells trapped by both lasers simultaneously. 
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6.3 Measuring Viscosity 

Viscosity measurements of the yogurt culture medium was calculated by assuming 

that the stiffness of optical tweezer equals to polystyrene beads and trapping force on 

yeast cells equals to optical tweezers’ trapping force which was characterized by 

using polystyrene beads. 

Viscosity of medium contained yeast cells was calculated as 0.054±0.016 kg/ms for 

laser 1. For laser 2, viscosity of medium was calculated as 0.033±0.014 kg/ms. 

Viscosity depends on the serum seperation of the yogurt culture. It has been showed 

that it varies 0.038-0.292 kg/ms under acoustic energy [104]. The yogurt culture 

medium used in experiments with laser 1 was favorable with the literature. The 

density of the yogurt culture has been defined 1.020 g/mL [105]. Reynolds number 

was calculated as 3.373x10-11 for laser 1 and 1.367x10-10 for laser 2. Small Reynolds 

number means that the fluid field is predictable and stable, viscous and surfaces 

forces dominates the fluid flow. 

6.4 Results When Cytoplasmic Medium Was Used 

The trapping force and stiffness were calculated theoretically by assuming the 

medium is cytoplasm of cells. Velocity and radius of yeast cells in calculations were 

assumed as values of yogurt culture. As a cytoplasm for calculations cytoplasm of 

Schizosaccharomyces pombe strain SP837 was used. Schizosaccharomyces pombe is 

called as “fission yeast”. The apparent viscosity of the cytoplasm was measured 

between 0.1 to 0.8 Pa.s. Sacconi et al. have been measured the trapping force 

between 10-60 pN for viscosities in range of 0.1 to 0.8 Pa.s. But the results were 

doubtful since cytoplasm was inhomogoneous, viscoelestic and not purely viscous. 

And Stoke’s law assumption of an infinite medium did not hold in cell surrounded by 

the stiff wall [30]. But in here, it is theoretically approximation of the application of 

this tweezer in cell medium. And the results were not different from the results in 

Sacconi et al. 

If the cytoplasmic medium was used in experiments for laser 1, trapping force and 

stiffness differ due to the viscosity (Figure 6.16 and Figure 6.17). X-axis component 
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of trapping force was changed from 0.828±0.132 pN to 6.625±0.828 pN. And y 

component of the trapping force varied between 0.263±0.106 pN and 2.102±0.824 

pN. 

Stiffnesses were calculated for both axis. kx varied between 16.563±2.664 pN/µm 

and 132.505±16.778 pN/µm. ky was in the range of 6.568±3.345 pN/µm and 

52.546±20.658 pN/µm. 

 
Figure 6.16: Trapping force for cytoplasmic medium (Laser 1). 

 
Figure 6.17: Stiffness for cytoplasmic medium (Laser 1). 

Stiffness and trapping force were directly propotional to viscosity since the velocity 

was constant. But in reality, the velocity depends upon the viscosity. Therefore, the 

plots can be changed. But the trapping forces in these range has been appropriate to 

results of Sacconi et al. Forces at low viscosities has been smaller than results of 

Sacconi et al. due to the velocity. 
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All calculations about stiffness and trapping force in cytoplasmic medium were 

applied for laser 2 (Figure 6.18 and Figure 6.19). Stiffness changed between 

38.493±4.253 pN/µm and 307.942±34.027 pN/µm for x-axis. And stiffness in y-axis 

varied in the range of 2.095±1.182 pN/µm and 16.761±9.454 pN/µm. 

Component of trapping force in x-axis was changed from 2.310±0.252 pN to 

18.476±2.180 pN. And component in y-axis varied between 0.440±0.248 pN and 

3.520±1.985 pN. 

 
Figure 6.18: Trapping force for cytoplasmic medium (Laser 2). 

 
Figure 6.19: Stiffness for cytoplasmic medium (Laser 2). 

Stiffness of laser 2 are shown as greater than laser 1 (Figure 6.19). It was resulted 

from the velocity of the fluid. Although the trapping forces is favorable with the 

results of Sacconi et al [30].  

 

 



58 

6.5 Trapping Efficiency of the System 

Trapping efficiency of the system was calculated for both yeast cells in yogurt 

culture and polystyrene beads in water for each condition (Figure 6.20). Trapping 

efficiency was determined by Q=Fc/nP equation. F is the trapping force, P is the 

trapping power, c is the speed of the light and n is the refractive index of the 

medium. In order to calculate the trapping efficiency, as a trapping force found out 

by Brownian motion method was used. Refractive index of medium was 1.330 for 

water and 1.352 for yogurt culture [106]. Efficiency had the maximum value for 

trapped polystyrene beads by laser 1. When both lasers used simultaneously, 

efficiency had minimum value since laser beams could not overlapped and it effected 

the trapping force. Efficiencies of yeast cells was calculated lower than polystyrene 

beads due to refractive index of the medium.  

 
Figure 6.20: Trapping efficiencies. 

Trapping efficiencies (Q) of polystyrene beads calculated as 0.140±0.015, 

0.064±0.004, 0.025±0.004 for laser 1, laser 2 and both lasers used simultaneously. 

And for yeast cells they were calculated as 0.058±0.003 and 0.029±0.001 for laser 1 

and laser 2, respectively. 

Trapping efficiency was calculated also for yeast cells in cytoplasmic medium. The 

refractive index cytoplasmic medium was determined as 1.393±0.006 [107]. 

Trapping efficiency of this optical tweezer in trapping yeast cells in cytoplasmic 

medium 0.1403±0.027 for laser 1 and 0.300±0.046 for laser 2. Trapping efficiencies 

in cytoplasmic medium were greater than in water or yogurt culture since the 

trapping force due is greater due to viscosity of the medium. 
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7. CONCLUSIONS  

The aim of this thesis was trapping yeast cells with custom designed optical tweezer 

which uses two He-Ne lasers (λ=632.8 nm) parallel to each other. Optical tweezers 

use the forces of laser radiation pressure to trap and manipulate microscopic 

particles. The stiffness and the trapping force of optical tweezer was determined by 

using Brownian Motion and Drag Force methods in order to characterize the specs of 

the original setup and its potential applications in life science. Characteristic specs 

for polystyrene beads were determined only Brownian Motion method since low 

velocity of fluid hindered the calibration with Drag Force Method. Stiffnesses and 

trapping forces of optical tweezer for each condition (Laser 1, Laser 2 and when both 

lasers were used simultaneously) were calculated and compared with results of yeast 

cells. The stiffness depended on the shape of the particle since stiffness in x-direction 

was dfferent from stiffness in y-direction. This optical tweezer system can trap 

multiple polystyrene beads and yeast cells and laser 2 can move particle (polystyrene 

beads or yeast cells) to laser 1 while laser 1 is trapping other particles. In contrary to 

polystyrene beads, stiffness and trapping force values of yeast cells in yogurt culture 

decreased due to refractive index of particle and viscosity of fluid. For laser 2 drag 

force in x-direction was greater than other forces since reference particle had high 

velocity in x-direction. Viscosity of yogurt culture found as quantitatively applicable 

with the results in the literature [104]. The serum seperation of yogurt affects to the 

viscosity of the yogurt drink. The applicability of this optical setup inside yeast cell 

was studied by calculating the trapping force. Trapping force created by custom 

designed optical tweezer was favorable with the results [30]. At lower viscosities, the 

trapping force is less then results of Sacconi et al. since the velocity of fluid is lower. 

Optical tweezer trapping polystrene beads in water has greater efficiency than yeast 

cells in yogurt culture. Trapping efficiency of optical tweezer had the highest value 

for the cytoplasmic medium since the high viscostiy of medium affected the trapping 
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force positively. By this way, the optical tweezer which is applicable inside yeast cell 

was designed theoretically.  
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APPENDICES 

 

 

 

APPENDIX A: ABCD MATLAB CODES FOR GAUSSIAN BEAM 
PROPAGATION 
 
%Codes were written by Kristoffer Lemoins and modified from Dr. Alan Cheville 
%=================================================== 
 
%Waist Radius and Radius of Curvature Calculation After Telescope System 
f1=input(‘enter the the focal length f1 in mm:’)/1000 %input focal length f1 
f2=input(‘enter the the focal length f2 in mm:’)/1000 %input focal length f2 
d1=f1+f2; %distance of telescope is sum of focal lengths 
wo=input(‘enter the the initial waist radius in mm:’)/1000; %input waist radius 
x=input(‘enter the distance that you would like to track the output beam in m:’); 
 
lamda=632.8e-9 % He-Ne lasers wavelength 
 
%At first set up the matrices for lens 1, lens 2, space between lenses and space after 
lenses by using capital letters for matrices. 
 
L1=[1 0;-1/f1 1]; 
L2=[1 0;-1/f2 1]; 
D1=[1 d1;0 1]; 
 
Ro=1e60; %R is essentially infinity, but Matlab can’t handle infinity.. 
 
%now calculate starting q 
qo=(1/Ro-j*lamda/(pi*wo^2))^(-1); 
 
%Now loop through distances, plotting w(z) and R(z) at each point 
N=500; 
D2=linspace(0,x,N); %define d2 as a user-specified distance 
 
for k=1:N 

%find D2 for a given distance 
D2=[1 d2(k);0 1]; 
 
%ABCD matrix of the system – multiply in reverse order. 
M=D2*L2*D1*L1; 
 
%Now figure out R(d2) and w(d2) using formula to calculate 1/q 
%first find A, B, C, D 
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A=M(1,1);B=M(1,2);C=M(2,1);D=M(2,2); 
%Now get 1/q 
oneoverq=(C+D/qo)/(A+B/qo); 
%Get R(d2) from real part 
R(k)=(real(oneoverq))^(-1); 
%w(d2) from imaginary part 
oneoverqi=-imag(oneoverq); 
w(k)=sqrt(lamda/pi(oneoverqi)); 

end 
 
%Now plot up results. 
subplot(2,1,1); 
semilogy(d2,w*1000) 
xlabel(‘Distance after telescope (m)’) 
ylabel(‘Waist Radius (mm)’) 
title(‘Waist Radius After Telescope System’) 
grid on; 
subplot(2,1,2); 
semilogy(d2,R); 
grid on; 
xlabel(‘Distance after telescope (m)’) 
ylabel(‘Radius of Curvature (m)’) 
title(‘Radius of Curvature After Telescope System’) 
 
%=================================================== 
%Calculations after Lens 5 
f1=input(‘enter the the focal length f1 in mm:’)/1000 %input focal length f1 
f2=input(‘enter the the focal length f2 in mm:’)/1000 %input focal length f2 
d12=f1+f2; %distance of telescope is sum of focal lengths 
f5=input(‘enter the the focal length f5 in mm:’)/1000; %input focal length f5 
d25= input(‘enter the distance between lens 2 and lens 3 in mm:’)/1000; 
wo=input(‘enter the the initial waist radius in mm:’)/1000; %input waist radius 
x=input(‘enter the distance that you would like to track the output beam in m:’); 
lamda=632.8e-9 % He-Ne lasers wavelength 
 
%At first set up the matrices for lens 1, lens 2,  lens 5, space between lenses and 
space after lenses by using capital letters for matrices. 
 
L1=[1 0;-1/f1 1]; 
L2=[1 0;-1/f2 1]; 
L5=[1 0;-1/f5 1]; 
D12=[1 d12;0 1]; 
D25=[1 d25;0 1]; 
 
Ro=1e60; %R is essentially infinity, but Matlab can’t handle infinity.. 
 
%now calculate starting q 
qo=(1/Ro-j*lamda/(pi*wo^2))^(-1); 
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%Now loop through distances, plotting w(z) and R(z) at each point 
N=500; 
d5=linspace(0,x,N); %define d5 as a user-specified distance 
 
for k=1:N 

%find D5 for a given distance 
D5=[1 d5(k);0 1]; 
 
%ABCD matrix of the system – multiply in reverse order. 
M=D5*L5*D25*L2*D12*L1; 
 
%Now figure out R(d5) and w(d5) using formula to calculate 1/q 
%first find A, B, C, D 
A=M(1,1);B=M(1,2);C=M(2,1);D=M(2,2); 
%Now get 1/q 
oneoverq=(C+D/qo)/(A+B/qo); 
%Get R(d5) from real part 
R(k)=(real(oneoverq))^(-1); 
%w(d5) from imaginary part 
oneoverqi=-imag(oneoverq); 
w(k)=sqrt(lamda/pi(oneoverqi)); 

end 
subplot(2,1,1); 
semilogy(d5,w*1000); 
hold on; 
wobj=2.5; 
plot(d5,wobj*ones(size(d5))); 
hold off 
xlabel('Distance after Lens 5 (m)'); 
ylabel('Waist Radius (mm)'); 
title('Waist Radius After Optical System'); 
grid on 
subplot(2,1,2); 
plot(d5,R*1000); 
hold on; 
robj=140; 
plot(d5,robj*ones(size(d5))); 
hold off; 
xlabel('Distance after Lens 5 (m)'); 
ylabel('Radius of Curvature (mm)'); 
title('Radius of Curvature After Optical System'); 
grid on 
y=min(w*1000); % This is the minimum waist size of the beam in mm 
 
%=================================================== 
%Calculations after objective  
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f1=input(‘enter the the focal length f1 in mm:’)/1000 %input focal length f1 
f2=input(‘enter the the focal length f2 in mm:’)/1000 %input focal length f2 
d12=f1+f2; %distance of telescope is sum of focal lengths 
f5=input(‘enter the the focal length f5 in mm:’)/1000; %input focal length f5 
d25= input(‘enter the distance between lens 2 and lens 5 in mm:’)/1000; 
d5O= input(‘enter the distance between lens 5 and the objective in mm:’)/1000; 
wo=input(‘enter the the initial waist radius in mm:’)/1000; %input waist radius 
fo=1.8 %focal length of objective – Edmund optics 
wo=fo; %working distance of objective – plot is useless beyond this distance 
lamda=632.8e-9 % He-Ne lasers wavelength 
 
%At first set up the matrices for lens 1, lens 2,  lens 5, the objective, space between 
lenses and space after lenses by using capital letters for matrices. 
 
L1=[1 0;-1/f1 1]; 
L2=[1 0;-1/f2 1]; 
L5=[1 0;-1/f5 1]; 
LO=[1 0;-1/fo 1]; 
D12=[1 d12;0 1]; 
D25=[1 d25;0 1]; 
D5O=[1 d5O;0 1]; 
 
Ro=1e60; %R is essentially infinity, but Matlab can’t handle infinity.. 
 
%now calculate starting q 
qo=(1/Ro-j*lamda/(pi*wo^2))^(-1); 
 
%Now loop through distances, plotting w(z) and R(z) at each point 
N=500; 
dOb=linspace(0,x,N); %define dOb as a user-specified distance 
 
for k=1:N 

%find D5 for a given distance 
DOb=[1 dOb(k);0 1]; 
 
%ABCD matrix of the system – multiply in reverse order. 
M=DOb*LO*D5O*L5*D25*L2*D12*L1; 
 
%Now figure out R(dOb) and w(dOb) using formula to calculate 1/q 
%first find A, B, C, D 
A=M(1,1);B=M(1,2);C=M(2,1);D=M(2,2); 
%Now get 1/q 
oneoverq=(C+D/qo)/(A+B/qo); 
%Get R(dOb) from real part 
R(k)=(real(oneoverq))^(-1); 
%w(dOb) from imaginary part 
oneoverqi=-imag(oneoverq); 
w(k)=sqrt(lamda/pi(oneoverqi)); 
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end 
subplot(2,1,1); 
semilogy(d5,w*1000*1000/100); %plot in um and compensate for 100X of objective 
xlabel('Distance after Objective (m)'); 
ylabel('Waist Radius (um)'); 
title('Waist Radius After Optical System'); 
grid on 
subplot(2,1,2); 
plot(d5,R*1000*1000/100); %convert to um and compensate for 100X of objective 
xlabel('Distance after Objective (m)'); 
ylabel('Radius of Curvature (um)'); 
title('Radius of Curvature After Optical System'); 
grid on 
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